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SUMMARY

Advances in genome engineering technology over the past four years have triggered

a renaissance for gene therapy prospects. But while researchers have “cured” numerous

single gene disorders in cellular models by repairing the underlying defect in the genome

[64, 103, 84, 70, 49, 133, 41], clinical translation of these findings has progressed much

more slowly. “Off-target” effects of gene therapy remain a major safety concern as the

negative outcomes of the X-SCID clinical trials [46] continue to haunt the field. However,

most researchers do not perform an analysis of the off-target effects of the nucleases they

use or design their nucleases to rationally limit potential off-target effects. This is primarily

attributed to the lack of user-friendly tools and methods that could be easily applied by

researchers who do not have particular expertise in genome-wide bioinformatics analysis.

Furthermore, efforts to optimize homology directed repair (a more versatile genome engi-

neering approach for gene therapy applications) in primary cells have been muted due to

the lack of sensitive assays which can detect incremental—but potentially clinically mean-

ingful—improvements in efficiency at endogenous loci. Therefore, there is a clear need to

develop tools that can be placed into the hands of eager experts in various genetic diseases

to help them translate cellular proof-of-concept studies into more clinically meaningful

results. To address this need, my research developed computational tools to accurately pre-

dict locations of off-target effects and novel DNA sequencing-based methods to sensitively

measure homology directed repair.

The goal of accurately predicting nuclease off-target activity through computational ap-

proaches (as opposed to experimentally examining a nuclease in order to predict off-target

activity) is not new. However, numerous previous attempts failed to uncover any off-target

sites through their computational approaches [54, 129, 26, 103, 66, 134]. To date, no study
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has uncovered unexpected off-target activity of ZFNs or TALENs using computational pre-

dictive modeling apart from the work described in this thesis. We created more advanced

models of ZFN and TALEN binding guided by biological principles of the protein-DNA in-

teractions which allowed us to make the first report of ZFN and TALEN off-target activity

discovered through computational modeling (Fine EJ et al. [34]). Through this analy-

sis, we discovered that alternative ‘NK’ forms of TALENs can have substantially reduced

off-target activity. We then provided this model as an online webtool which allowed any

researcher to easily search for potential off-target sites of their nuclease in a wide variety

of different genomes.

Although our algorithms were able to accurately locate off-target activity, there was

ample room for improvement in the predictive power of the algorithms (particularly with

respect to false-positives). To achieve this, we investigated a large number of nucleases

for off-target activity, achieving an overall ∼230% increase in the number of ZFNs and

TALENs with known off-target sites from 2011 levels ([79, 1], and other manuscripts in

preparation). Through these analyses, we discovered that adding additional zinc finger

modules does not always reduce off-target activity, that rational design of TALEN bind-

ing sites can allow for enhanced discrimination between two similar sequences, that the

locations of off-target are similar between different cell types, and that the frequencies of

off-target activity are very consistent within the same cell type. With a larger training set

of data from which to construct more advanced algorithms, we applied machine learning

techniques to develop a robust framework for ZFN and TALEN off-target prediction and

achieved a ∼10% improvement in the predictive power of the algorithms. The large dataset

of nuclease off-target sites also allowed for the first comprehensive comparison of the ge-

nomic locations of off-target activity of engineered nucleases compared to lentiviral vectors

(Fine EJ and Bao G, submitted). Through this analysis, we discovered that while lentivi-

ral vectors tend to induce off-target activity within cancer-associated genes more frequently

than engineered nucleases, nucleases are much more prone to have off-target activity within
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exons.

Leveraging the long read lengths of SMRT sequencing, we developed a highly sen-

sitive DNA-sequencing based approach to simultaneously measure rates of homology di-

rected repair and non-homologous end-joining in any cell type, at any genomic locus, us-

ing any type of nuclease (Hendel A*, Kildebeck EJ*, Fine EJ* et al. [48]). We validated

the approach against the ‘gold standard’ of sequencing single cell clones and found our

new method to be both precise and accurate, with minimal variance introduced by the ex-

perimental processes and the bioinformatics analysis pipeline. We discovered substantial

variance in the ratios of the two DNA repair pathways at different genomic loci, an effect

that had previously been undiscovered because only artificial reporter constructs had been

able to measure both pathways [15]. We used the system to quantify low (<1%) rates of

homology directed repair occurring in primary human CD34+ and embryonic stem cells.

Furthermore, we demonstrated the use of our system in optimizing gene editing parame-

ters, including plasmid masses and ratios and the length of donor homology arms. We then

used the method specifically to investigate a wide variety of nucleases targeting the HBB

gene and found that CRISPR systems achieved the most favorable homology directed re-

pair rates. Finally, we observed rare cases of exogenous DNA (from sources such as bovine

and E. coli genomes) integrating at the nuclease target site—a phenomenon only observ-

able through the SMRT-based approach—that warrants caution when choosing reagents for

human therapeutic purposes.

Genome engineering has enormous potential to impact human health by curing ge-

netic disorders. However, limitations in available methods have slowed the translation of

this technology. Together, this project has established a toolkit of robust and user-friendly

methods that can be applied by researchers to tackle a wide variety of genetic diseases in

different clinically relevant cell types to optimize on-target activity and minimize off-target

effects.
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CHAPTER I

INTRODUCTION

Single gene disorders have a global prevalence of 1/100 births and are estimated to account

for up to 40% of pediatric hospital care in developed countries [99]. While transplants are

curative for some diseases, the discovery that engineered nucleases could create targeted

modifications to the genomes of human cells [90] opened the possibility of curing genetic

disorders by correcting the underlying mutation in the DNA sequence of a patients cells.

Recent advances have made the design of these nucleases much easier [78, 72, 77], allowing

many new researchers to join the field and prompting a rapid increase in the number of ge-

netic diseases that have been corrected in cellular experiments [64, 103, 84, 70, 49, 133, 41].

However, progress in understanding nuclease off-target effects and increasing modification

efficiency in relevant cell types has been limited due to the complexity of current assays

required to obtain those types of data. This thesis aims to fill this gap by developing a user

friendly analysis toolkit that can be used by any lab along with basic molecular biology

techniques to answer questions about off-target effects and gene modification efficiency. I

hypothesized that nuclease off-target effects can be reasonably predicted by bioinfor-

matic modeling and that Single Molecule Real-Time (SMRT) sequencing can yield

sensitive gene modification rates without the use of specialized computing platforms

or complex experimental protocols.

Recent experiments in unbiased assessments of nuclease off-target effects [88, 44] and

analysis of DNA binding domains [78, 28] produced theories that formed the basis of my

new bioinformatic predictive models. Improvements made to the SMRT sequencing plat-

form now allow it to achieve sufficiently long read lengths to make measurement of gene

modification possible [117].
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The objective was accomplished and the central hypothesis was tested through comple-

tion of the following specific aims:

Specific Aim 1: Develop and validate an off-target prediction tool An online search

interface to allow exhaustive searching of a genome for potential nuclease off-target sites

was implemented. Previously discovered off-target sites were collated and ranking algo-

rithms developed that preferentially score validated off-target sites higher than other pre-

dictions. HEK-293T cells transfected with newly developed TALENs and ZFNs targeting

the beta-globin gene were analyzed at the off-target sites predicted by the tool.

Specific Aim 2: Expand off-target data set and refine off-target prediction algo-

rithms Many samples of genomic DNA from cells treated with different ZFNs and TAL-

ENs were analyzed for off-target effects to generate a greatly expanded training set of bona

fide off-target sites. Modifications to the off-target prediction algorithm parameters were

evaluated for improvement through Precision-Recall analysis and several other metrics.

Specific Aim 3: Develop a method to provide molecular data on gene editing events

An analysis pipeline was developed to process SMRT reads to simultaneously measure the

rates of different DNA repair mechanisms by directly examining the DNA sequences. K562

cells were transfected with different types of nucleases and donor repair templates in order

to optimize conditions for repairing the beta-globin gene.

This thesis addresses two issues inhibiting clinical translation of engineered nucleases:

off-target effects and gene editing efficiency. The impact of this work is significant be-

cause it will optimize nuclease treatment conditions for the repair of sickle cell anemia and,

through the development of easier methods, allow other laboratories to optimize nuclease-

based therapies for other single gene disorders.
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CHAPTER II

BACKGROUND

2.1 Significance

This research was the first to accurately predict novel nuclease off-target sites using a

purely bioinformatics-based approach. While previous methods that used experimental

characterization of the nucleases to guide a bioinformatic search of the genome have suc-

cessfully found off-target sites [88, 44, 89, 37, 116, 51], previous purely bioinformatics-

based approaches have failed to locate any novel valid off-target sites [54, 129, 26, 103,

66, 134]. Current methods for experimental characterization of nucleases for off-target

prediction are extremely technically challenging and their use has therefore been effec-

tively limited to the originating laboratory. By accurately predicting potential off-target

sites purely in silico, the ability to investigate off-target activity is now extended to every

laboratory.

Limitations in next generation sequencing technologies and enzymatic assays have

thus far prevented direct molecular analysis of endogenous gene editing events in a high-

throughput manner. Although a fluorescent reporter system has been useful in examining

general aspects of the gene editing process [15], that system is unable to provide data for

editing endogenous gene targets and—while theoretically possible—has yet to be imple-

mented in clinically relevant cell lines due to the difficulty involved. The method developed

in this thesis using SMRT sequencing was the first to provide high-throughput molecular

data that can be used to optimize gene editing conditions using the exact reagents that

would be translated clinically.

At the onset of this work, only two TALENs [116, 51] (See section 2.3.2) and three

ZFNs [88, 44] (See section 2.3.1) had been successfully interrogated for off-target effects,
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uncovering a total of three and ∼120 off-target sites for TALENs and ZFNs respectively.

In order to more thoroughly understand nuclease off-target effects—and how to diminish

them for clinical applications—many more examples, especially for TALENs, needed to

be found in order to search for trends and build meaningful hypotheses. Multiple in sil-

ico prediction attempts were made to discover additional TALEN and ZFN off-target sites

[54, 129, 26, 103, 66, 134], but none were successful—possibly due to their use of only

simplistic bioinformatics models to predict potential off-target sites. This thesis dramati-

cally increased the total number of ZFNs and TALENs which have known off-target

sites which provided a data set to better train off-target predictive models. Better under-

standing of off-target effects will allow for selection of nucleases in pre-clinical stages with

minimal chances of inducing adverse events in patients.

As a whole, this work establish methods to easily interrogate nucleases for off-target

effects and to optimize gene editing conditions. These methods were used in this thesis

specifically to optimize nucleases that target the hemoglobin beta (HBB) gene for correction

of sickle cell anemia. While many high-throughput sequencing and bioinformatics anal-

ysis packages require specialized software or hardware systems that only highly trained

researchers can operate, this thesis developed an analysis toolkit consisting entirely of

user-friendly components that can be run on a standard Windows® machine. Insights

gained through the use of these new methods will lead to improved gene therapy applica-

tions for single gene disorders.

2.2 Sickle Cell Anemia

Sickle cell anemia was the first disease to have its molecular basis uncovered; an A→T

transversion in the sixth codon of the HBB gene creates a missense mutation substitut-

ing valine for glutamate[110]. This mutation causes polymerization of the hemoglobin

molecules under low oxygen tension which causes the red blood cells to adopt a “sickle”

conformation which can lead to vasooclusion. Acute and chronic pain, increased risk of
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stroke, and a drastically shorter life expectancy are hallmarks of the illness. Bone mar-

row stem cell transplants are currently the only cure, but suitable donors are only available

for ∼10% of patients and complications (fatal in some cases) arise during the transplant

process. Because of the simple molecular basis of the disease and the knowledge that allo-

geneic transplants are curative, sickle cell anemia has been a major focus of gene therapy

attempts [103]; by correcting the patient’s own hematopoietic stem cells ex vivo and per-

forming an autologous transplant, the limitations of current allogeneic transplants could be

overcome.

2.3 Engineered Nucleases

Restriction enzymes are common tools in molecular biology due to their ability to recognize

and cleave a specific sequence of DNA. Since DNA is a nucleic acid, these enzymes fall

into the broad class of “nucleases”. While restriction enzymes commonly recognize a

short 6 bp sequence, engineered nucleases expand the concept by targeting an 18-50 bp

sequence. The longer recognition sequence ensures that, even in large genomes, there is

only a single site that perfectly matches the target sequence. There are a few naturally

occurring restriction enzymes that have long (≥ 18 bp) recognition sequences, but they

generally do not target near any region of interest in the human genome. The ability to

re-engineer the sequence that the nuclease targets so that it will recognize a location near a

gene of interest has driven a revolution in genetic studies and formed the basis of the new

field of “genome engineering”.

2.3.1 Zinc Finger Nucleases

Nearly two decades ago, the discovery was made that a DNA binding domain from a “zinc

finger” transcription factor could be fused to the cleavage domain from a restriction enzyme

to create a nuclease—which later became known as a zinc finger nuclease (ZFN)—with a

novel target sequence [60]. Three aspects of this work were critical to the subsequent

proliferation of ZFNs. Firstly, zinc fingers are a modular family of naturally occurring
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Figure 2-1: Protein-DNA interactions of ZFNs (a, b) and TALENs (c, d). Adapted from

Gaj et al.[38]

transcription factors with each subunit—the “finger”—specifying three nucleotides (Fig-

ure 2-1a) and these interchangeable subunits are able to be linked together to recognize

longer sequences.

2.3.2 Transcription Activator-Like Effector Nucleases

In 2009, it was discovered that the transcription activator-like effector (TALE) family of

proteins in pathogenic plant bacteria had a surprisingly simple pattern in its DNA binding

domains to determine what sequence it targeted [78]. The proteins consist of tandem re-

peats of 34 amino acid blocks where all amino acids except the 12th and 13th are constant in

each repeat. The 12th and 13th residues, termed repeat variable di-residues (RVDs), specify

the single nucleotide targeted by that repeat unit (Figure 2-1c). The most common RVDs

create a very simple system: Asparagine-Isoleucine (NI) to target adenosine, His-Asp (HD)

to target cytidine, Asn-Asn (NN) to target guanosine, and Asn-Gly (NG) to target thymi-

dine. Soon after the binding pattern was discovered, designed blocks of TALE repeats

were attached to the FokI cleavage domain to create a new class of engineered nucleases

that became known as TALE nucleases (TALENs) [77] (Figure 2-1d). TALENs have been

used to edit the genomes of rats [116], grasshoppers [129], human embryonic and induced
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pluripotent stem cells [51], and many other animals and cell lines.

Compared to ZFNs, TALENs have certain advantages and disadvantages. Due to the

simple RVD code, it is easy to design TALENs to target a new DNA sequence, and the ma-

jority of TALEN pairs meeting minimal design criteria are able to cut the intended genomic

target [97]. While ZFNs can theoretically target any sequence, using triplets with a motif

other than GNN (where “N” stands for any nucleotide) greatly reduce the chances that the

ZFNs will be able to function correctly in cells. Although studies of TALEN off-target

activity have so far been limited, initial findings suggest that they are more specific than

ZFNs in preferentially cutting their intended target sequence as opposed to other locations

in the genome [51, 116]. The major disadvantage of TALENs is their size—they are ∼4

times larger than ZFNs—which makes delivery into primary cells more difficult because

packaging them into viral delivery vectors has proved troublesome [52].

2.3.3 CRISPR/Cas9 Nucleases

In 2012, it was discovered that the clustered regularly interspaced short palindromic re-

peat (CRISPR) bacterial defense system—that operates by cleaving invading DNA se-

quences—could be co-opted to easily direct cleavage to any DNA sequence of interest

[56]. The combination of a short RNA sequence and the Cas9 protein is all that is required

to cause cleavage at the intended genomic locus. The first 20 bp of the single guide RNA

(sgRNA) strand can be customized to any desired sequence (Figure 2-2) to direct Cas9 to

cleave at the complementary matching site in the genome.

Although the sgRNA fragments are easy to design and construct, they do not confer a

high level of specificity. Many off-target sites with relatively high nuclease-induced muta-

tion rates were easily found for CRISPR/Cas9 systems using very simple search methods

[53, 21] but, counterintuitively, substantially less cytotoxicity is observed than with TAL-

ENs or ZFNs. The Cas9 from Streptococus pyogenes, the version of Cas9 used in nearly

all studies to date, is only one of many different proteins that can be paired with sgRNAs
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Figure 2-2: sgRNA architecture for the CRISPR/Cas9 nuclease system. The sgRNA

consists of a 20-nt guide sequence (blue) and scaffold (red). The scaffold was truncated at

various positions as indicated and the +85 bp scaffold was found to be optimal for achieving

NHEJ. Taken from Hsu, ...Fine et al., Nature Biotechnology 2013 [53].

to act as an engineered nuclease and as of yet Cas9 itself has not been studied for ways

to improve specificity. Because CRISPR systems are so efficient at inducing cleavage and

so simple to design, it is expected that attempts to re-engineer Cas9 to be more specific

or to adapt a different Cas protein will be forthcoming shortly in an effort to determine if

CRISPR could be a viable gene therapy option.

2.3.4 Paired CRISPR/Cas9 Nickases

A recent development to reduce CRISPR off-target effects are paired CRISPR nickases

[95]. While Cas9 normally causes a double strand break in the DNA, these nickases have

one catalytic domain inactivated (commonly through the D10A mutation but also through

H840A) which causes them to only cleave one of the phospho-diester bonds of the DNA

backbone, thereby creating a ‘nick’ rather than a double strand break. Because nicks are

repaired in an error-free manner much more frequently than double strand breaks, indi-

vidual CRISPR guide strands causing nicking at off-target sites in the genome is of less
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Figure 2-3: Paired CRISPR Nickases. A schematic detailing the double offset nicks

generated by a pair of CRISPR nickases. Taken from Ran et al. [95].

concern—reductions in mutation levels at off-target sites exceeded 1400 fold in some cases

for nickases compared to nucleases [95]. In order to promote on-target activity, two guide

strands are deployed that cause offset nicks in nearby sequences in order to create an effect

similar to a double strand break (Figure 2-3). Somewhat surprisingly, studies have found

that these paired nickases can cause on-target mutations at rates even higher than single

CRISPR nucleases [95].

2.4 DNA Repair Pathways

Of all types of DNA damage, breaks in the phosphodiester backbones of both strands of the

double helix in close proximity to each other—termed a double strand break (DSB)—are

the most dangerous to cells [55]. Inattention to these breaks will rapidly lead to genome

instability which can cause programmed cell death or transformation into a cancerous phe-

notype. To prevent this, cells have several different mechanisms to repair DSBs.

2.4.1 Non-Homologous End-Joining

The non-homologous end-joining (NHEJ) repair pathway is the most common DSB repair

pathway in higher eukaryotes [102]. In the case of a clean break—such as the type made

by engineered nucleases—where no DNA bases have been lost and compatible overhangs

are present, NHEJ can often result in an error free re-ligation of the two ends of DNA.

However, if the two strands have begun to diffuse away from each other, end-processing
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enzymes are not able to bind quickly enough, or other circumstances have interfered, NHEJ

can result in small (typically < 50 bp) insertions and deletions (indels) at the site of the

break in the process of re-joining the ends together. In rare cases, exacerbated if there are

a large number of DSBs being generated, NHEJ can re-join two pieces of DNA that were

not originally together, causing chromosomal translocations, gross deletions, or inversions.

2.4.2 Homology Directed Repair

The homology directed repair (HDR) pathway is a slower process than NHEJ, but typically

results in “error-free” repair whereas NHEJ is “error-prone”. Instead of simply re-ligating

the broken DNA ends together, complexes form in HDR to find a section of DNA with

high homology to the regions surrounding the DSB. Typically, the homologous template

is the sister chromatid and therefore HDR is restricted to the S and G2 phases of the cell

cycle (after chromosome replication has taken place), whereas NHEJ can occur at any

stage of the cell cycle. If a homolgous template is found, the broken strands are resected

a short distance, the broken strands then invade the region of homologous DNA, and DNA

polymerases use the homologous DNA as a template to fill in the gap in the original strands

where the DSB occurred.

2.5 Gene Therapy using Engineered Nucleases

While viral gene therapy is useful in many applications, there are several shortcomings.

Viruses cannot knock-out a specified gene, alter the status of the diseased allele, or regulate

the inserted healthy gene in the same manner as the full endogenous promoter. Addition-

ally, viruses integrate at random into the genomes of dividing cells, which can cause the

cells to become cancerous if a sensitive area of the genome is altered. By directly edit-

ing the genetic defect at the in situ location in the genome, engineered nucleases offer the

promise of curing genetic disorders at the most fundamental level: repairing the mutation

causing the disease.

Some potential gene therapy treatments using engineered nucleases involve the NHEJ
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repair pathway. The NHEJ pathway creates small indels during repair of the DSB. If the

DSB induced by the nucleases occurs in the coding sequence of a gene and the length of the

resulting indel is not a multiple of three (roughly 66% of the time), the reading frame of the

downstream sequence will be shifted. In most cases, this frameshift will cause a premature

stop codon which effectively knocks-out the gene; this strategy is used to treat HIV/AIDS

by knocking-out the CCR5 receptor that HIV requires for cell entry [89]. Alternatively, if

the original mutation that causes the disease is a short deletion or insertion that creates a

frameshift, the indels resulting from NHEJ repair can restore the correct reading frame; this

strategy is being developed to treat Duchenne muscular dystrophy by restoring the reading

frame of the dystrophin gene to allow cells to properly express the full length protein [85].

However, since the NHEJ pathway does not allow the exact nature of the DNA modi-

fication to be precisely specified, most potential gene therapy treatments utilize the HDR

repair pathway. While HDR normally uses the sister chromatid as a template to repair the

DSB by restoring the original sequence, if another DNA template with homology to the

region surrounding the DSB is introduced, the cell can use that as a template instead. For

precise genome editing, a plasmid can be constructed containing homologous sequences

stretching ∼400-800 bp upstream and downstream of the site of the DSB—typically called

“arms of homology”—and the desired DNA modifications placed in the region immediately

adjacent (within ∼200 bp) to the DSB between the two arms of homology (Figure 2-4). This

plasmid can then act as a template for HDR repair, “donating” the desired DNA sequence

into the genome at the location of the DSB to replace the endogenous sequence.

HDR-based engineered nuclease gene therapies have been validated in cell lines for

several diseases. The single point mutations causing sickle cell anemia [103], epidermol-

ysis bullosa [84], α1-antitrypsin deficiency [133], and inactive versions of the p53 tumor

suppressor protein [49] as well as the three bp deletion causing most forms of cystic fibro-

sis (∆508) [64] have all been repaired using ZFNs or TALENs. For diseases where a range

of mutations throughout the gene exists in the patient population, a healthy version of the
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Figure 2-4: Donor plasmid repair template for precise genome editing using HDR.

Adapted from Sigma Aldrich Biowire Fall 2010.

full length cDNA for the gene can be placed between the arms of homology and targeted

to the start codon of the gene; this approach has been used to insert healthy copies of the

IL2Rγ gene to correct severe combined immunodeficiency (SCID) [70]. The advantage

of the cDNA approach using engineered nucleases over viruses is that since the cDNA is

targeted to the endogenous location of the gene instead of randomly integrated, it will be

under the control of the entire endogenous promoter, including any distal elements, which

will encourage a more natural gene expression pattern.

2.6 Experimental-based Off-Target Prediction Methods1

Most previous studies of nuclease off-target activity have used experimental characteri-

zation of the specific nuclease in order to predict potential off-target sites. Although

experimental-based prediction methods are generally quite effective (nearly all publications

employing them have located at least one bona fide nuclease off-target site), they are very

1Modified from: Fine et al. (in press). Strategies to Determine Off-Target Effects of Engineered Nucle-

ases. Springer.
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technically challenging, costly, and time intensive. Because of the difficulty of implement-

ing these techniques, most have never been replicated outside of the original laboratories

in which they were developed.

2.6.1 SELEX

Systematic Evolution of Ligands by Exponential Enrichment (SELEX) is an established

technique for determining nucleic acid sequences that have high affinity for target molecules.

This approach has been used to ascertain nuclease specificity in works from the laborato-

ries of Sangamo Biosciences. SELEX has been used to determine the binding preference

of ZFNs [50, 89] and TALENs [77, 116, 51] and subsequently to guide bioinformatics

searches for potential genomic off-target sites. The general approach is to (i) genetically

tag the nuclease with an affinity molecule, such as hemagglutinin (HA), (ii) express the nu-

clease in vitro, (iii) incubate it with a semi-randomized library of oligonucleotides (usually

biased towards the expected binding site of the nuclease), (iv) capture the nuclease protein

using antibodies, and (v) PCR the bound DNA fragments to amplify them. Steps (iii)-(v)

are then repeated for multiple rounds of enrichment with the PCR products from step (v)

replacing the initial semi-randomized library in step (iii). After the desired number of se-

lection rounds, the PCR amplicons are sequenced to determine the identity of the selected

DNA. SELEX typically yields 20-50 unique sequences that were bound by the nucleases or

DNA binding domains [77]; if too few or too many unique sequences are found, amplicons

from prior rounds can be sequenced or additional rounds of selection can be carried out.

These sequences can be compiled to form position weight matrices (PWMs) indicating the

binding preferences of the nuclease at each position (Figure 2-5).

Once PWMs for each nuclease half-site have been established, the genome can be

searched bioinformatically and scores calculated for each position. Each potential bi-partite

nuclease off-target siteone half-site, separated by an appropriate length spacer sequence,

and the other half-sitecan be given a score by calculating the product of the values of the
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Figure 2-5: SELEX characterization of zinc finger binding domains. The positive y-

axis represents a preference for the intended base at that binding position. The negative

y-axis represents preferences for alternative bases at that position. Adapted from Perez et

al. [89]

PWM for each nucleotide comprising the potential off-target site (Note: the authors from

Sangamo did not publish their formula for generating a score from the PWMs, but calcu-

lating the product of all positions provides a close approximation [20]). All sites in the

genome can then be ranked and a subset can be chosen for further investigation.

This technique has faced several criticisms, but has proven remarkably robust at finding

off-target sites for both ZFNs and TALENs. Drawbacks of this technique include the fact

that it only provides information about the binding preferences of each nuclease half-site,

therefore ignoring interactions between the two half-sites required for nuclease cleavage.

Another limitation is that it is performed completely in vitro, therefore ignoring changes

that may occur to the protein in the cellular environment as well as ignoring any factors that

may affect the genomic DNA at the potential off-target sites in the cells, such as chromatin

structure, accessibility, and methylation status. Finally, because the starting oligonucleotide

library is only semi-randomized, this method is biased towards finding sites with relatively

high homology to the intended nuclease target. Nevertheless, this has been the most pub-

lished experimental characterization technique for successfully finding nuclease off-target

sites and is one of only two experimental-based prediction technique thus far published that
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has found bona fide TALEN off-target sites [116, 51].

2.6.2 Bacterial One-Hybrid

The bacterial one-hybrid (B1H) approach is similar to SELEX in that it analyzes the bind-

ing preferences of nuclease monomers. To begin, a library of reporter plasmids is generated

with a semi-randomized (biased towards the intended nuclease target) region upstream of

the reported gene. This library is co-transformed into bacteria along with a plasmid en-

coding the nuclease DNA binding domain fused to a transcriptional activator [44]. E. coli

colonies expressing the reporter gene, due to the nuclease DNA binding domain having suf-

ficient affinity for the sequence in the plasmid to be able to activate the gene, are selected

and the plasmid is sequenced to determine the sequence of the semi-randomized binding

site. All sequences recovered from the E. coli colonies are compiled to create a PWM that

can be used to screen the genome for potential off-target sites in the same way as the SE-

LEX method. Using B1H for nuclease off-target prediction was developed by Scot Wolfe’s

laboratory which has been the only group to employ this method so far, and only for pre-

dicting off-target activity of ZFNs [44]. This approach faces many of the same criticisms

as SELEX relating to the analysis of single monomers, but it has the advantage of being

performed in a cellular (albeit bacterial and not eukaryotic) environment which may better

model protein-DNA interactions than a completely in vitro analysis.

2.6.3 In vitro cleavage

Unlike the previous two prediction methods that separately characterize the DNA binding

abilities of each monomer, in vitro cleavage assays explicitly investigate which DNA se-

quences in a random pool can be cut by a nuclease [88]. This approach has been applied

to ZFNs [88], TALENs [43], and CRISPRs [87], but has only been in studies published

by David Lius laboratory. In this approach, a semi-randomized oligonucleotide library is

synthesized that consists of the full nuclease recognition site. For paired nucleases (such
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as ZFNs, TALENs, or paired CRISPR nickases), the half-sites of both monomers are in-

cluded, separated by appropriate length spacer sequences. The nuclease is then expressed

in vitro, and incubated with the oligonucleotide library. Several enzymatic and gel isolation

steps allow separation of sequences cleaved by the nuclease. Libraries are deep sequenced

before and after nuclease incubation to identity the sequences cleaved by the nuclease. A

bioinformatics search is then performed to determine if any of the sites that were cleaved

in vitro also exist in the genome of interest. These sites can then be assayed for off-target

activity.

There are several advantages and limitations of this technique. By examining nuclease

cleavage instead of merely binding, insights were gained in the original study [88] that

led to the hypothesis of an “energy compensation” model of dimeric ZFN interactions

where larger numbers of mismatches in one half-site can be compensated by few or no

mismatches in the other half-site. However, as this technique is performed entirely in vitro,

effects of the cellular environment on the nuclease and genomic DNA are not accounted for.

Furthermore, since the oligonucleotide library is semi-randomized, the analysis is biased

towards finding sites with higher levels of homology to the intended nuclease target site.

An extension to this approach was recently developed to make better use of the large

amount of data generated [101]. The original applications of this method searched through

genomes to find exact matches to sequences that had been cleaved [88, 87], but those

sequences that matched the genome were only a small fraction of the total sequences that

the nuclease was shown to be able to cleave. By applying a Bayesian machine learning

algorithm to the full list of sequences that the CCR5 and VEGF ZFNs were confirmed to

cleave in the original study, classifiers were developed for each nuclease that could generate

a score for any given sequence predicting the likelihood of cleavage. The full genome was

then screened bioinformatically—in a similar manner to the PWM screening in the SELEX

and B1H methods—for sites that scored highly by the classifier. The analysis of off-target

activity at the sites predicted by this method demonstrated that it could locate bona fide
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off-target sites with relatively low sequence homology and sites that have low activity.

Impressively, this method also appears to have a fairly low false discovery rate that resulted

in the analysis locating a large number of new bona fide off-target sites for both the CCR5

and VEGF ZFNs [101] and two TALENs targeting CCR5 and ATM [43]. Unfortunately,

the incredibly difficult and time consuming nature of this approach that must be performed

for each nuclease to be studied—conducting the in vitro cleavage experiments and then

subsequently building a Bayesian classifier using machine learning—will likely severely

limit the number of nucleases that are studied using this method.

2.6.4 IDLV LAM-PCR

Integrase-Deficient Lentiviral Vector Linear Amplification Mediated Polymerase Chain

Reaction (IDLV LAM-PCR) is one of the two off-target prediction methods that is per-

formed in the full intracellular environment. This approach was developed by Christof von

Kalle’s laboratory [37] and thus far, they have the only publications using this method. In

this approach, the cells are transduced by an IDLV encoding a selectable marker, such as

green fluorescent protein (GFP). Because the virus is integrase deficient, its ability to inte-

grate into the genome is severely limited. Therefore, cultured dividing cells would rapidly

dilute the IDLV gene sequence after several weeks, as it is not replicated during cell di-

vision. If nucleases are added, the resulting DSB can lead to a much higher efficiency of

IDLV integration into the cellular genome. In this case then, after culturing dividing cells

for several weeks, a larger fraction of nuclease treated cells express the selectable marker

compared to control cells. These cells are then selected and viral integration site analysis

is performed. Briefly, their approach was to use LAM-PCR on the genomic DNA using

primers that bind to the long terminal repeat (LTR) regions of the IDLV. The amplicons re-

sulting from LAM-PCR include a portion of the genomic sequence flanking the LTR, and

therefore the location of the integration site of the IDLV can be deduced by high-throughput

sequencing of the amplicons. Clustered integration site (CLIS) analysis is performed to
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filter out much of the random integration by imposing a criteria that two independent in-

tegration sites must be observed within 500 bp of each other in order for that locus to be

considered a potential site of nuclease activity (although fragile sites in the genome are

also prone to clustered integration sites). The next step is to search the sequence space

surrounding the CLIS locus for a region with homology to the intended nuclease target that

might be a location of bona fide nuclease cleavage activity; random sequence space has an

expected level of ∼45% homology to the nuclease target [37], so sequences with > 60%

homology to the nuclease target are likely candidates. The predicted off-target sites can

then be interrogated in cells treated with nucleases without the IDLV.

The major limitation of this approach is its lack of sensitivity. This drawback is an

inherent part of the method since the underlying process relies on the relatively rare event

of the IDLV being captured during the repair of a DSB. Consequently, many off-target

sites, especially those with lower activity, are overlooked; the IDLV LAM-PCR analysis

of the hetero-obligate CCR5 ZFNs [37] predicted only four of the 38 known off-target

sites [101, 34]. This method has thus far only been successfully used to locate ZFN off-

target sites; an attempt was made using it to locate TALEN off-target sites, but very few

cases of CLIS were observed and no attempt was made to validate off-target activity at the

predicted loci [84]. However, this approach does provide an unbiased survey of any highly

active off-target sites in the full intracellular environment with the cells genome in its native

structure. Because it is not biased by oligonucleotide selection libraries, this method was

able to locate bona fide off-target sites with extremely low (66%) homology to the intended

nuclease target [37]. As this method lacks sensitivity, it may not be optimal for testing

nucleases for potential use as human therapeutics—or other applications where even rare

off-target cleavage could cause adverse events—but it remains a highly useful research tool

because its unbiased nature allows it to uncover sites that might not fit standard models

of nuclease specificity used to guide the generation of oligonucleotide libraries or in silico

searches.

18



2.6.5 ChIP-Seq

Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a well-established

method for determining what sequences in a genome a certain protein binds. ChIP-Seq in-

volves genetically tagging the nuclease with an affinity epitope (commonly hemagglutinin)

and catalytically inactivating the nuclease (so that it binds but does not cleave DNA), ex-

pressing the modified nuclease in cells, cross-linking the protein and DNA together, shear-

ing the genomic DNA into smaller fragments, purifying the nuclease (and the DNA frag-

ments to which it is cross-linked) using antibodies (immunoprecipitation), sequencing the

DNA fragments bound to the nuclease, and then mapping those sequences to the genome.

In early 2013 it was noted how well the idea of ChIP-Seq seemed to be suited to facilitating

an unbiased genome-wide survey of nuclease off-target activity in living cells [104], but

the results of recent studies thus far have not been as promising as initially hoped.

Dimeric nucleasessuch as ZFNs, TALENs, RFNs, and paired Cas9 nickasespresent spe-

cial challenges for ChIP-Seq. As noted in an unsuccessful attempt in late 2013 to use ChIP-

Seq to identify off-target sites of the CCR5 ZFNs: “thousands of high affinity monomeric

target sites may exist in the genome, however a monomer is not sufficient to generate a

lesion. Alternatively, dimeric ZFN sites that are bound weakly by both monomers may be

sufficient to cleave DNA at a low frequency but may not bind stably enough to be detected

reliably via ChIP” [101].

Because Cas9 can act as a monomeric nuclease, three groups attempted to use ChIP-Seq

to locate CRISPR/Cas9 off-target sites in early 2014. While Cas9 binding was observed at

many (up to thousands, depending on the gRNA used) sites throughout the genome other

than the intended target site, off-target nuclease activity (NHEJ) was only found at a tiny

fraction of the sites interrogated by two of the groups [130, 82], indicating that this method

has a very high false positive rate as a method of discovery of off-target nuclease activity.

In summary, ChIP-Seq has not yet become a reliable method to predict off-target nucle-

ase activity. Although it identifies the on-target site with reasonably accuracy , ChIP-Seq
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may be fundamentally ill-suited to identifying off-target sites of nuclease activity. Emerg-

ing evidence into the mechanism of Cas9 shows that it uses a multi-step approach to DNA

cleavage [130, 111]: binding to many points along a chromosome as it pauses in the search

for a target matching the gRNA but only cleaving when a good match is found. ChIP-Seq

detects all binding events which leads to very high false positive prediction rates of nu-

clease activity. Without a method to discriminate between binding and cleavage events,

ChIP-Seq may be incapable of detecting sites of low frequency off-target cleavage because

the ChIP-Seq signal at those sites may not rise above the background noise.

2.7 SMRT Sequencing

Single molecule real-time (SMRT) sequencing is a recently developed “third-generation”

sequencing platform with different strengths and weaknesses compared to the “next-generation”

sequencing (NGS) platforms such as Illumina and Ion Torrent. Chief among these tradeoffs

is throughput versus read length. While NGS platforms can sequence millions of pieces of

DNA in parallel, they cannot provide reliable information about sequences longer than

∼400 bp [93]. In contrast, SMRT sequencing has lower throughput—providing information

about tens of thousands of pieces of DNA instead of millions—but can provide highly ac-

curate information about much longer pieces of DNA; when sequencing 900 bp samples,

nearly half of the reads have an average QV score of > 40, meaning that the error rate is

less than one in ten thousand bases. Examining longer pieces of DNA (> 600 bp) is critical

to gaining a full understanding of the different types of DNA repair events occurring after a

nuclease induced DSB. SMRT sequencing achieves this high accuracy by having the DNA

polymerase iteratively loop around the amplicon multiple times (Figure 2-6).

Beyond the technical differences between SMRT and NGS sequencing, there are sev-

eral aspects that make SMRT a more favorable choice for a system designed to be user-

friendly and accessible to any lab. The average cost per sequenced DNA base is substan-

tially cheaper for NGS systems than for SMRT [93], however the cost per sequencing
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Figure 2-6: SMRT sequencing process. Adapted from Hendel*, Kildebeck*, Fine* et al.

[48]
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reaction is much lower for SMRT. This is because each NGS run provides a much larger

amount of data than each SMRT run. For a core facility analyzing dozens of different nu-

cleases on a regular basis, NGS platforms would hold a strong price advantage. But for a

single lab that wants to analyze just a few experiments, an NGS run would cost much more

than a SMRT run and would generate an amount of sequencing data far in excess of what

would be needed to answer their questions. Additionally, there are various restrictions and

requirements for the sizes of amplicons and adapter sequences that must be used for NGS

platforms that can make the process difficult for novice users, whereas SMRT only requires

that within each sequencing run the amplicons are of roughly the same length (±100 bp).

For this proposal, the only effect of that SMRT requirement is that off-target and gene edit-

ing investigations are sequenced separately, which makes SMRT much more user-friendly

for a lab without extensive sequencing experience.

2.8 Machine Learning

Machine learning involves looking for predictive patterns in large datasets. Each item in

the dataset is accompanied by a list of attributes—also known as ‘features’—which can be

readily observed which the machine uses an inputs into its algorithm in order to predict

an unknown attribute. How each feature is weighted and other features of the algorithm

are customized to the question at hand by ‘training’ the algorithm on a dataset where the

desired attribute is known. In this manner, the machine can select parameters which result

in a close fit between the predictions of the algorithm and the known results.

2.8.1 Feature Extraction

Most machine learning algorithms work best when the ‘features’ of the dataset are numeri-

cal values, however many experimental attributes do not naturally exist in that state. While

percentages, concentrations, and temperatures can easily be formatted into machine learn-

ing features, other types of data (such as diverse lengths of DNA sequences representing

potential nuclease off-target sites) present more of a challenge. The process of creating
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numerical representations of complex data that can be used as machine learning input is

known as ‘feature extraction’ and is as much an art as a science, analogous to determining

how best to quantify microscopy images.

2.8.2 Learning Algorithms

Most machine learning algorithms fall into the following three categories:

Classification Predicting an item’s category based on other available attributes

Regression Predicting a quantitative value for an item based on other available attributes

Clustering Determining groups of items which are similar to each other based on available

attributes

For the purposes of predicting off-target activity, clustering algorithms are not as relevant

because it is known (for the sites in the algorithm development dataset) whether a site

is or is not a bona fide off-target site. Additionally, while using regression algorithms to

accurately predict exact levels of off-target activity would be extremely useful, with current

available datasets it is not yet feasible (for reasons discussed further in Section 5.3.3).

Understanding how classification algorithms work can be facilitated using the following

model. Consider a case where there are only two ‘features’ of a datapoint; all datapoints can

then be plotted on a simple plot with one feature on the x and y axes respectively. The goal

of the classification algorithm is to find a line which can divide the data such that the two

different classes fall on opposite sides of the line while the relative emphasis placed on false

positives and false negatives is given through tuning the algorithm parameters (Figure 2-7).

As the model becomes more complex, the dataset is plotted in multi-dimensional space and

the dividing ‘line’ can become a curved hyper-surface.

2.8.3 Performance Metrics2

2Modified from: http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
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Figure 2-7: Classification Algorithm Model. Two different dataset classes (red circles

and blue pluses) are plotted according to their two features (x- and y-axes). A line sep-

arating the two classes is determined by the classification algorithm. Different algorithm

parameters can result in lower false positive (left) or false negative (right) rates. Figure

modified from Ben-Hur and Weston [6]

.

In a binary classification problem, performance metrics are based on the values of the

‘confusion matrix’ (Table 2-1). Three commonly used attributes of the confusion matrix

are:

‘True Positive Rate’ or ‘Recall’: When it’s actually yes, how often does it predict yes?

• True Positives divided by the number of positives in the dataset (‘Actual Yes’)

– Method 1: 9
10
= 0.9

– Method 2: 9
10
= 0.9

False Positive Rate: When it’s actually no, how often does it predict yes?

• False Positives divided by the number of negatives in the dataset (‘Actual No’)

– Method 1: 1
99990

= 1 ∗ 10−5

– Method 2: 191
99990

= 191 ∗ 10−5
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Precision: When it predicts yes, how often is it correct?

• True Positives divided by the number of predicted positives (‘Predicted Yes’)

– Method 1: 9
10
= 0.900

– Method 2: 9
200
= 0.045

The most frequently used performance metric is known as the “Receiver Operating Charac-

teristic” (ROC). ROC is based on the True Positive Rate and the False Positive Rate. While

ROC is a informative metric for many cases, it is not as useful in datasets where the pos-

itives are greatly outnumbered by the negatives (as in the case of a small number of bona

fide nuclease off-target sites mixed in with a very large number of additional sites in the

genome with some homology to the intended nuclease target). For example, compare the

two methods in Table 2-1; both classifiers retrieve the same number of true positives (and

therefore have the same ‘True Positive Rate’ / ‘Recall’), but method 2 has a much higher

number of false positives and is therefore clearly inferior. Using the False Positive Rate

component of the ROC metric, the two rates have only a small difference of 0.0019 (see

above definition of False Positive Rate) which masks the performance difference.

An alternative to the ROC that is particularly well-suited to cases with large numbers

of negatives in the dataset is “Precision-Recall”. The Precision measurements of these two

methods show a large difference of 0.855 (see above definition of Precision), accurately

capturing the considerable difference in the performance of the two classifiers.

The examples above calculated precision and recall for a specific data point, but in eval-

uating algorithm performance, precision is evaluated for all possible recalls to form a two

dimensional curve (Figure 2-8). Precision-Recall curves typically trend from the upper left

(high precision, low recall) to the bottom right (low precision, high recall), signifying that

an algorithm becomes less precise as it is required to recovers more of the true positives.

The overall performance of the algorithm is quantified by calculating the area under the

curve (AUC) and is termed the ‘average precision’. Precision-Recall curves often exhibit a
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Table 2-1: Sample Confusion Matrix. Categorization of classifier predictions for a sam-

ple dataset. TN–True Negative. FN–False Negative. FP–False Positive. TP–True Positive.

Method 1 Method 2

n=100,000

Predicted:

NO

Predicted:

YES

Predicted:

NO

Predicted:

YES

Actual:

NO 99,989 (TN) 1 (FP) 99,799 191

Actual:

YES 1 (FN) 9 (TP) 1 9

99,990 10 99,800 200

jagged ‘sawtooth’ like appearance due to the fact that finding several true positives in quick

succession can actually cause an increase in the measured precision even at a higher recall

value.

2.8.4 Cross-validation

In order to mitigate the possibility of over-fitting the model to the training data, cross-

validation approaches are typically employed. Cross-validation (Figure 2-9) consists of

randomly dividing a training set into several equal parts, using all but one subset of those

parts as a training set, and then testing the model’s predictive abilites on the “hold-out” data

set (also known as the “test-set”). The process is then repeated choosing different subsets

as the “hold-out” data set and the performance is averaged across all of the tested subsets.

Additional cross-validation can be performed by iteratively repeating the whole previously

described process with different randomized divisions of the dataset.
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Figure 2-8: Precision-Recall Curve. Figure obtained from Davis and Goadrich [25].
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Figure 2-9: Cross Validation. A dataset consisting of two different classes (red cir-

cles and green circles) is broken up into a test set and a training set for each fold of

the cross-validation. Image obtained from http://genome.tugraz.at/proclassify/

help/pages/XV.html.
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CHAPTER III

DEVELOPMENT OF AN ONLINE BIOINFORMATICS TOOL TO

PREDICT ZFN AND TALEN OFF-TARGET SITES1

3.1 Abstract

Although engineered nucleases can efficiently cleave intracellular DNA at desired target

sites, major concerns remain on potential off-target cleavage that may occur throughout the

genome. We developed an online tool: Predicted Report Of Genome-wide Nuclease Off-

target Sites (PROGNOS) that effectively identifies off-target sites. The initial bioinformat-

ics algorithms in PROGNOS were validated by predicting 44 of 65 previously confirmed

off-target sites, and by uncovering a new off-target site for the extensively studied zinc

finger nucleases (ZFNs) targeting C-C chemokine receptor type 5. Using PROGNOS, we

rapidly interrogated 128 potential off-target sites for newly designed transcription activator-

like effector nucleases containing either Asn-Asn (NN) or Asn-Lys (NK) repeat variable

di-residues (RVDs) and 3- and 4-finger ZFNs, and validated 13 bona fide off-target sites

for these nucleases by DNA sequencing. The PROGNOS algorithms were further refined

by incorporating additional features of nuclease-DNA interactions and the newly confirmed

off-target sites into the training set, which increased the percentage of bona fide off-target

sites found within the top PROGNOS rankings. By identifying potential off-target sites in

silico, PROGNOS allows the selection of more specific target sites and aids the identifica-

tion of bona fide off-target sites, significantly facilitating the design of engineered nucleases

for genome editing applications.

1Modified from: Fine EJ et al. (2013). An online bioinformatics tool predicts zinc finger and TALE

nuclease off-target cleavage. Nucleic Acids Research [34]
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3.2 Introduction

The efficiency of genome editing in cells is greatly increased by specific DNA cleavage with

zinc finger nucleases (ZFNs) or transcription activator-like (TAL) effector nucleases (TAL-

ENs), which have been used to create new model organisms [54, 66, 134, 129, 116, 44],

correct disease-causing mutations [103], and genetically engineer stem cells [51]. How-

ever, both ZFNs [44, 88, 37, 101] and TALENs [116, 51] have off-target cleavage that can

lead to genomic instability, chromosomal rearrangement, and disruption of the function

of other genes. It is vitally important to identify the locations and frequency of off-target

cleavage to reduce these adverse events, and ensure the specificity and safety of nuclease-

based genome editing. Although the emerging systems utilizing clustered regularly in-

terspaced short palindromic repeats (CRISPR) and CRISPR associated (Cas) proteins are

highly active at their intended target sites, recent publications indicate that they likely have

much greater levels of off-target cleavage than ZFNs or TALENs [53, 21, 35].

Experimental identification of ZFN and TALEN off-target sites is a daunting task be-

cause of the size of genome and the large number of potential cleavage sites to assay.

Previous attempts to identify new off-target sites based entirely on bioinformatics search

methods have all failed to locate any off-target cleavage sites [54, 129, 26, 103, 66, 134],

which has led to the belief that identifying off-target activity based on sequence homology

alone would not be fruitful [37]. In contrast, efforts using experimental methods to char-

acterize the specificity of nucleases have successfully identified several off-target cleavage

sites for ZFNs [44, 88, 37, 101] and TALENs [116, 51]. While most of these characteri-

zation methods incorporate a bioinformatics component to search through the genome, the

final decision of what sites to investigate is dictated by the experimental data; for example,

Perez et al. applied a classifier based on their characterization of the nucleases to narrow

the full list of 136 genomic sites with two or fewer mismatches in each ZFN down to the top

15 sites they chose to interrogate [89].However, these experimental characterization meth-

ods, including SELEX [89, 50, 51, 116], bacterial one-hybrid [44], in vitro cleavage [88],
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or IDLV trapping [37], can be very time consuming, costly, and technically challenging.

This has severely limited the number of laboratories undertaking these experiments and the

number of nucleases characterized for off-target effects. There is a clear unmet need for a

rapid and scalable online method that can predict nuclease off-target sites with reasonable

accuracy without requiring the user to have specialized computational skills, especially for

application of nucleases in disease treatment.

3.3 Methods

3.3.1 Major Features of PROGNOS Ranking Algorithms

All PROGNOS algorithms only require the DNA target sequence as input; prior construc-

tion and experimental characterization of the specific nucleases are not necessary. Based

on the differences between the sequence of a potential off-target site in the genome and

the intended target sequence, each algorithm generates a score that is used to rank poten-

tial off-target sites. If two (or more) potential off-target sites have equal scores, they are

further ranked by the type of genomic region annotated for each site with the following

order: Exon > Promoter > Intron > Intergenic. A final ranking by chromosomal location

is employed as a tie-breaker to ensure consistency in the ranking order.

The average 5’ base and RVD-nucleotide frequencies for engineered TALEs were cal-

culated by compiling previously published SELEX results of nine engineered TALEs [77,

51, 116] and calculating frequency matrices (Table 3-1).

The PROGNOS algorithm operates in three stages. First, all potential off-target sites

that meet the search criteria (spacing distances, number of mismatches, etc.) are located.

Second, these sites are all assigned a score according to the different algorithms. Finally,

these sites are ranked by their scores and PCR primers are designed for top ranking sites.

3.3.2 PROGNOS Homology, RVDs and Conserved G’s Algorithms

The ‘Homology’, ‘RVDs’, and ‘Conserved G’s’ algorithms in PROGNOS all apply the “en-

ergy compensation” model of dimeric nuclease cleavage [88] to account for the interactions

31



Table 3-1: Comparisons of SELEX studies of engineered TALs to TALE-NT fre-

quency matrix. The frequencies of RVD-nucleotide binding derived from natural TAL

Effectors in Supplementary Table 1 from Doyle et al. [28] were subtracted from the aver-

ages of SELEX data from engineered TALs. A positive number implies that the RVD is

predicted to be more likely to associate with that nucleotide in engineered TALs compared

to naturally occurring TAL Effectors.

SELEX Averages from all TAL domains

Count A C G T

5’ Base 9 0.053333 0.037942 0.008889 0.900947

NI 23 0.825696 0.077411 0.072375 0.024517

HD 52 0.075316 0.882704 0.009886 0.031709

NK 6 0.058025 0.012346 0.9 0.02963

NN 21 0.225663 0.04575 0.661518 0.068498

NG 37 0.092757 0.060536 0.043682 0.803835

Comparison to TALE-NT Frequency Matrix

A C G T

NI -0.0153 -0.03159 0.047375 -0.00048

HD -0.00868 0.024704 -0.01511 -0.00129

NK 0.033025 -0.01265 -0.025 0.00463

NN -0.13134 -0.10525 0.225518 0.011498

NG -0.00924 -0.04146 0.005682 0.045835
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between the two half-sites, but the scores for each half-site are calculated in different ways.

The Homology algorithm can be applied to both ZFNs and TALENs and is based largely

on the number of mismatches relative to the intended target sequence. The RVDs algorithm

is designed for use with TALENs and utilizes the RVD-nucleotide binding frequencies of

natural TAL Effectors [28]; alternate “5T”and “5TC” versions require either a thymidine

or a pyrimidine to be in the 5’ position of each half-site. The Conserved G’s algorithm is

designed for use with ZFNs and applies a weighting factor to the Homology algorithm that

biases the rankings towards sites where intended guanosine contacts are maintained.

3.3.2.1 Homology Algorithm

If M represents the maximum number of mismatches allowed per nuclease half-site in a

given PROGNOS search, a homology score for a potential off-target site is calculated by

Equation 1:

S coreH = (M + 1 − L)2 + (M + 1 − R)2 (1)

where L and R are the number of mismatches in the left and right half-sites, respectively.

A higher score indicates a more likely off-target site. The squared factor captures some of

the energy compensation effects observed in previous work [88]. L and R must be less than

or equal to M as defined by the original search criteria.

3.3.2.2 Conserved G’s Algorithm

Ranking ZFN off-target sites by counting the number of guanine residues—the “G’s”—has

proven useful because many ZFNs, especially those using canonical frameworks, bind to

guanosine residues more strongly than other nucleic acids. The Conserved Gs ranking

system adds a weighting factor to the homology score based on the number of guanosine

residues in the intended target sequence (Gtotal) and the number of guanosine residues
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matching the target sequence at potential off-target sites (Gconserved) according to Equa-

tion 2:

S coreG = S coreH ∗ (
Gconserved

Gtotal

∗ 10)2.5 (2)

A higher score indicates a site more likely off-target cleavage site. The weighting factor

of 2.5 was developed by varying the weighting factor in order to optimize the number of

previously published off-target sites for the CCR5, VEGF, and kdrl ZFNs identified in the

top rankings [44, 88].

3.3.2.3 RVD Algorithm

The repeat variable di-residue (RVD) ranking system is intended for ranking TALEN off-

target sites and uses the previously published method for ranking single TAL effector sites

based on RVD nucleotide preferences observed in natural TAL effectors [28, 78]. Given

RVDLmin, and RVDRmin as the scores for the left and right TALs binding to their intended

target sites, and RVDL and RVDR as the scores for the TALs binding to a potential off-target

sequence the score is calculated according to Equation 3:

S coreRVD =

(

RVDL

RVDLmin

)0.5

+

(

RVDR

RVDRmin

)0.5

(3)

A lower score indicates a more likely off-target site. The exponent is an attempt to cap-

ture the “energy compensation” effects observed for the interaction between ZFN dimers

[88]. Although there has been no direct testing of the energy compensation model with

TALENs, the similarities between the nucleases (both use FokI cleavage domain, both bind

in pairs) led us to include this model in our original algorithm. However, the optimization

of the parameter in the TALEN v2.0 algorithm found a slight preference for an “energy

distribution” model for TALENs instead of energy compensation. If no RVDs are specified

by the user in the PROGNOS online input form, RVDs are assumed to follow the standard

code based on the intended target sequence: NI→A, HD→C, NN→G, NG→T.
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3.3.3 PROGNOS “ZFN v2.0” and “TALEN v2.0” Algorithms

The weightings of the parameters for the refined PROGNOS algorithms “ZFN v2.0” and

“TALEN v2.0” were developed by training the algorithms to maximize recovery of previ-

ously confirmed off-target sites, as well as the novel off-target sites found using the initial

algorithms developed in this study. For each algorithm, approximately 105 randomly as-

signed parameter sets (within a constrained range) were analyzed for their performance

using the Perl off-target ranking script. The top performing parameter sets were further

optimized by running further analyses allowing each parameter to vary slightly from the

original value.

3.3.3.1 ZFN v2.0 Algorithm

The ZFN v2.0 algorithm was constructed based on the binding of individual zinc finger

subunits rather than treating all mismatches equally. Previously, it had been hypothesized

that each zinc finger subunit contributed a certain amount of overall binding energy and

that if one nucleotide contact in the zinc finger were disrupted, further disruptions in that

zinc finger were less detrimental. To model this, we analyzed each zinc finger subunit sep-

arately rather than considering all mismatches as equal (as was the case with the original

“Homology” algorithm). To model the increased affinity most zinc fingers have for guano-

sine residues, a parameter for binding a guanosine at the intended position was included.

Because many zinc fingers bind especially well to the “GNN” motif, if a guanosine was at

the 5’ position of a finger’s triplet, the parameter was doubled.

Each finger was therefore analyzed as follows:

i) An initial score of 100 was given as a starting point.

ii) If there was at least one mismatch, “First Penalty” was subtracted

iii) If there were additional mismatches, “Additional Penalty” was subtracted for each

additional mismatch
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iv) If a guanosine was the intended base at position 2 or 3 and it matched, “G Bonus” was

added

v) If a guanosine was the intended base at position 1 and it matched, “G Bonus”∗2 was

added

vi) If the resulting score was less than zero, it was set to zero

Because mismatches further from the FokI domain were better tolerated by zinc fingers in

previous bona fide off-target sites, we introduced parameters weighting the impact of each

of the 2nd-4th nucleotide triplets away from the FokI domain to model these polarity effects.

The 1st triplet weighting was arbitrarily set to 1 and there were no published bona fide off-

target sites at the time for ZFNs containing more than four zinc fingers to use to establish

weightings of additional fingers. In the online implementation, all fingers past the fourth

use the weighting parameter of the fourth finger.

The score for each zinc finger subunit is multiplied by the corresponding polarity pa-

rameter and all scores for the half-site are summed together. The sum is then divided by

the score of a perfect match to the intended target sequence of that half-site and multiplied

by 100 to generate a score from 0-100 (100 being a perfect match).

To allow for compensation effects between the two ZFN dimers, the score for each half-

site was raised to the power of “Dimer Exponent” before being summed together, divided

by two, and multiplied by 100 to generate a score from 0-100 (100 being a perfect match).

The final optimized parameter values are given in Table 3-2. The formal definition of

how to arrive at the scores of each ZFN half-site is as follows:

The score of a ZFN/DNA alignment of l consecutive DNA bases in a 5’→3’

orientation starting at the FokI junction, with b1 being the first base in the DNA

helix and z1 being the first intended base of the zinc finger helix, is calculated
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using the following formula:

ZFN Hal f S ite S core =

l
3
−1

∑

k=0

PC(3∗k+1)∗NN(100−MS (3∗k+1)+GS (3∗k+1))

(4)

The score of the “Intended” half-site is calculated by setting b to equal z at all

positions.

The formula utilizes the following functions:

• NN(x) ensures that the value is not negative by returning x if x ≥ 0 and

returning 0 if x < 0

• MC(start) returns the mismatch count (an integer from zero to three), for

the zinc finger beginning at start, between the intended target sequence

and the DNA bases according to the formula:

MC(start) = 3 −

start+2
∑

k=start

(zk == bk) (5)

• PC(position) returns the polarity coefficient algorithm parameter for that

position according to the following:

1 ≤ position ≤ 3 : 1.0

4 ≤ position ≤ 6 : Polarity 2

7 ≤ position ≤ 9 : Polarity 3

10 ≤ position : Polarity 4

• MS (start) returns the mismatch score for the zinc finger beginning at

start according to the rules:

If MC(start) == 0, return 0

If MC(start) == 1, return First Penalty

If MC(start) == 2, return (First Penalty + Additional Penalty)

If MC(start) == 3, return (First Penalty + Additional Penalty ∗ 2)
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Table 3-2: ZFN v2.0 Algorithm Parameters

Parameter Name Training Range Optimized Value

First Penalty 30–90 70

Additional Penalty 10–80 65

G Bonus 0–35 17.5

Polarity 2 0.4–1 0.85

Polarity 3 0.4–1 0.8

Polarity 4 0.4–1 0.7

Dimer Exponent 0.2–2.8 1.75

• GS (start) returns the guanosine score for the zinc finger beginning at

start according to the rules:

Initialize gS um = 0

If (zstart == “G” AND bstart == “G”): gS um = gS um +G Bonus ∗ 2

If (zstart+1 == “G” AND bstart+1 == “G”): gS um = gS um +G Bonus

If (zstart+2 == “G” AND bstart+2 == “G”): gS um = gS um +G Bonus

return gS um

Once the scores for each ZFN half-site have been calculated, then full off-target

score can be calculated according to Equation 6:

ZFN v2.0 S core =

(

O f f Target Le f t S core

Intended Le f t S core

)Dimer Exponent
+

(

O f f Target Right S core

Intended Right S core

)Dimer Exponent

2
∗100

(6)

Several interesting points emerged from the optimization of the ZFN algorithm:

a) The polarity parameters did form a decreasing trend away from the FokI domain as

hypothesized despite the possibility of remaining flat given their training range.

b) The dimer exponent was optimized at a value > 1, supporting the “energy compensa-

tion” model of dimeric nuclease interactions [88], despite the possibility of being equal
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to or less than 1 given its training range.

c) The First Penalty parameter optimized at a relatively high value (70% of the default

starting energy of 100), implying that most of the binding energy of a zinc finger can be

disrupted by a single mismatch.

d) The Additional Penalty parameter also optimized at a relatively high value which brings

the score for that finger close to zero in the case of two mismatches even with a high

guanosine composition in the binding site, implying that nearly all remaining binding

energy is disrupted by the second mismatch and that a third mismatch has negligible

effect. However, there were limited examples of fingers with all three nucleotides dis-

rupted in the training set of bona fide off-target sites, decreasing the significance of this

observation.

3.3.3.2 TALEN v2.0 Algorithm

A score for each RVD-nucleotide interaction is calculated using the same formula as in

TALE-NT [28] (and the original RVDs algorithm) except that the RVD-nucleotide fre-

quencies used were derived from engineered TAL domains instead of naturally occurring

TAL Effectors (Table 3-1). A value for the 5’ base is also able to be calculated using the

values derived from engineered TAL domains. Although there is no SELEX data for other

RVDs, a user may enter any of the RVDs allowed by TALE-NT and the RVD-DNA bind-

ing frequency from TALE-NT will be utilized for that interaction; however, we make no

claims as to the accuracy of predictions employing these alternate RVDs and it should be

noted that substituting the TALE-NT frequencies into the TALEN v2.0 algorithm resulted

in worse overall performance (Figure 3-9). If no RVDs are specified by the user in the

PROGNOS online input form, RVDs are assumed to follow the standard code based on the

intended target sequence: NI→A, HD→C, NN→G, NG→T.

Streubel et al. found that the presence of the “strong” RVDs NN and HD are key to TAL

binding [112]. We hypothesized that these RVDs may impart excess binding energy that
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could compensate for local effects of adjacent RVD-nucleotide mismatches. Accordingly,

we developed two parameters, “Single Strong” and “Double Strong” that were applied to

the score of RVDs that were flanked on one or both sides by NNs or HDs correctly bound

to their respective intended bases (guanosines or cytidines). If these criteria were met, a

fraction (defined by the parameter) of the difference between the mismatched RVD binding

to its intended base and the base at the potential off-target site was subtracted from the score

for that RVD-nucleotide interaction; subtraction is used because the base formula [28] uses

a negative logarithm indicating lower scores as more likely binding sites.

In accordance with the findings that a polarity effect exists in TAL-DNA binding where

mismatches further from the N-terminus have a less disruptive effect [75], the scores for the

14th RVD (including score modifications relating to strong RVDs) and any RVDs further

towards the C-terminus are all multiplied by the “Polarity” parameter.

The scores of all positions in each half-site are summed together to create the “Off Target”

score for that half-site and the full score for the potential off-target sites is computed using

the “Dimer Exponent” parameter and the score for a complete match between the RVDs

and their intended target bases to yield a score from 0 to 100 (a perfect match) according

to Equation 7.

T ALEN v2.0 S core =

(

Intended Le f t S core

O f f Target Le f t S core

)Dimer Exponent
+

(

Intended Right S core

O f f Target Right S core

)Dimer Exponent

2
∗100

(7)

The formal definition to calculate the score of a TALEN half-site is as follows:

The score of a TALEN/DNA alignment of l consecutive RVDs (rl at each po-

sition with r0 representing the N-terminal sequence that binds to the 5’ base)

aligned to DNA bases (bl at each position with b0 representing the 5’ base) is
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calculated using the following formula:

T ALEN Hal f S ite S core = Prn(r0, b0) ∗ PC(0)+

l
∑

k=1

(PC(k) ∗ (Prn(rk, bk) − ((S FS (k) + DFS (k)) ∗ (Prn(rk, bk) − Prn(rk, I(rk))))))

(8)

The score of the “Intended” half-site is calculated by setting b to equal I(r) at

all positions.

The formula utilizes the following functions:

• A formula for the probability of an RVD-nucleotide interaction of the

identical form as used in Doyle et al. [28]:

Prn(RVD, base) = − log(0.9 ∗ S ELEX(RVD, base) + (1 − 0.9) ∗ 0.25)

• S ELEX(RVD, base) returns the frequency of that RVD (or the N-terminal

sequence that binds to the 5’ base) binding to that DNA base according

to the SELEX data in Table 3-1.

• PC(position) determines the polarity coefficient by returning 1.0 for all

position ≤ 14 and returning the Polarity algorithm parameter for all

position ≥ 15.

• I(RVD) returns the intended DNA base most frequently associated with

RVD according to the SELEX analysis: NI→A, HD→C, NN→G, NK→G,

NG→T

• S FS (position) determines if that position has a single flanking strong

RVD by returning the S ingle S trong algorithm parameter if the follow-

ing statement is true, and 0 if it is false:

((rposition−1 ==“NN” OR rposition−1 == “HD”) AND bposition−1 == I(rposition−1))

XOR ((rposition+1 ==“NN” OR rposition+1 == “HD”) AND bposition+1 ==

I(rposition+1))
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Table 3-3: TALEN v2.0 Algorithm Parameters

Parameter Name Training Range Optimized Value

Single Strong 0–0.4 0.10

Double Strong 0–0.5 0.15

Polarity 0.4–1.9 0.9

Dimer Exponent 0.2–2.8 0.6

• DFS (position) determines if that position has double flanking strong

RVDs by returning the Double S trong algorithm parameter if the fol-

lowing statement is true, and 0 if it is false:

((rposition−1 ==“NN” OR rposition−1 == “HD”) AND bposition−1 == I(rposition−1))

AND ((rposition+1 ==“NN” OR rposition+1 == “HD”) AND bposition+1 ==

I(rposition+1))

Several interesting points emerged from the optimization of the TALEN algorithm:

a) The polarity parameter was optimized to a value less than one, supporting the hypothesis

that TAL binding in off-target locations exhibits polarity effects.

b) The dimer exponent was optimized at a value < 1, which is contrary to the “energy

compensation” model of dimeric interactions for that was proposed for ZFNs and ap-

proximates a more “distributed energy” model where mismatches are preferred to be in

equal numbers in each half-site rather than concentrated in one half-site. However, this

finding is based on a relatively small number of bona fide off-target sites and it should

be noted that several parameter sets with exponents > 1 performed fairly well, but not

quite as well as the top performing sets with exponents < 1.

c) The Double S trong and S ingle S trong parameters were optimized at values greater

than 0, indicating that there are some compensatory effects of flanking strong RVDs,

supporting our hypothesis. Moreover, the double flanking strong RVD optimized to a
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higher value than a single flanking strong RVD supporting the hypothesis that a second

strong RVD has an additive effect over only a single flanking strong RVD.

3.3.4 Nuclease Construction

Four novel TALEN pairs and two novel ZFN pairs were designed to target sequences near

the A→T mutation that causes sickle-cell anemia in the human beta-globin gene. TAL-

ENs were assembled using the Golden Gate method [14] and cloned into a mammalian

expression destination vector containing the wild-type FokI domain. ZFNs were rationally

designed to target overlapping sites. As these ZFNs target the same site, the activity and

specificity of the 3-finger (3F) and 4-finger (4F) ZFNs can be directly compared. ZFN1-

4F contains an additional finger added to ZFN1-3F, extending the target site from 9 bp to

12bp. ZFN2-4F shares two proximal fingers with ZFN2-3F, and uses a long linker between

fingers two and three, extending the target site from 9bp to 13bp (Figure 3-1). The coding

sequences for the ZFNs were ordered (IDT) and cloned into a wild-type FokI expression

vector.

3.3.5 Cellular Transfection of Nucleases

HEK-293T cells were cultured under standard conditions (37°C, 5% CO2) in Dulbecco’s

Modified Eagle’s Medium (Sigma Aldrich), supplemented with 10% FBS. Plates were

coated with 0.1% gelatin. Passaging was performed with 0.25% Trypsin-EDTA. For TAL-

ENs, 2 ∗ 105 cells/well were seeded in 6-well plates 24 hours prior to transfection with

FuGene HD (Promega). 3.3 µg of each nuclease plasmid along with 80 ng of an eGFP

plasmid were transfected with 19.8 µL of FuGene reagent. Media was changed 24 and

48 hours after transfection. 72 hours after transfection, cells were trypsinized and the ge-

nomic DNA extracted using the DNeasy Kit (Qiagen). A small fraction of the cells were

analyzed with the Accuri C6 flow cytometer to determine transfection efficiency by GFP

fluorescence. For ZFNs, 8∗104 cells/well were seeded in 24-well plates and 100 ng of each

ZFN was transfected using 3.4 µL of FuGene HD along with 10 ng of eGFP and 340 ng of
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Figure 3-1: Binding sites of novel nucleases in the beta-globin gene. The binding sites

of the novel ZFNs (a) and TALENs (b) designed to target the beta-globin gene mutation

that causes sickle cell anemia. The start codon of beta-globin is underlined in bold. HEK-

293T cells contain a T→C SNP relative to the reference genome in the middle of the S1

and S2 binding sites, which is underlined. The S2 TALEN is designed to target the sickle

allele, which has an A→T mutation (underlined) at the 3’ position of the TALEN binding

site. This mutation is not present in HEK-293T cells. (c) The RVDs of the TALENs are

shown. In “NK” versions of the TALENs, all guanosines are targeted by the NK RVD.

In “NN” versions of the TALENs, all guanosines are targeted by the NN RVD: the other

RVDs remain the same. The differences between the TALEN versions are underlined.
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a Mock vector containing FokI but no DNA binding domain. 72 hours after transfection,

cells were harvested and the genomic DNA extracted using 100 µL of QuickExtract (Epi-

Centre). Mock transfections were performed similarly to the TALEN transfections, except

that 6.6 µg of the mock FokI vector was transfected instead of TALEN plasmid.

3.3.6 Implementation of PROGNOS Search Algorithm

PROGNOS exhaustively searches for matches to queries by moving the query mask itera-

tively across the sequence of an entire genome, base by base. To optimize search time, the

sequence comprising the length of the 5’ binding site is first examined to determine if the

number of mismatches does not exceed the query maximum. If that requirement is met, the

sequences comprising potential 3’ binding sites (separated by allowed spacing distances)

are examined. PROGNOS was implemented in Strawberry Perl 5.12 and can be run in par-

allel on different processors. We found that scale up to 8 parallel processors with minimal

efficiency losses was possible for most genomes.

3.3.7 PCR Amplification of Regions of Interest

3.3.7.1 Automated Design of PROGNOS PCR Primer Sequences2

An automated primer pair design process was included in PROGNOS to design primers

appropriate for off-target validation assays, matching user input criteria. This greatly sim-

plifies the standard method for primer design that requires iterative steps of primer design

and verification of the resulting fragment sizes. In addition to speeding the primer design

throughput, this automated design process allows the primers to be custom designed for the

downstream assays or sequencing, and to be matched for high-throughput, full-plate PCR

amplification.

For Surveyor assays, the primer design parameters can be specified to ensure that the

nuclease site is placed in an optimal position within the amplicon to yield cleavage bands

2This automated primer design algorithm was also incorporated into the COSMID tool. Cradick TJ, Qiu P,

Lee CM, Fine EJ, Bao G. (2014). COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas

Off-target Sites. Molecular Therapy—Nucleic Acids [22]
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that can be easily distinguished on gels from the parental band and each other. For res-

olution on a 2% agarose gel, the recommended parameters are: Minimum Distance Be-

tween Cleavage Bands—100, Minimum Separation Between Uncleaved and Cleaved Prod-

ucts—150.

To optimize amplicons for different sequencing platforms, the minimum distance from

the edge of the amplicon to the nuclease site can be specified. For SMRT sequencing, the

recommended parameters are: Minimum Distance Between Cleavage Bands—0, Minimum

Separation Between Uncleaved and Cleaved Products—125.

The design process implemented by PROGNOS uses the following steps and consider-

ations to yield primer pairs suitable for high-throughput PCR:

Each possible position in the sequence 5’ of the nuclease binding sites is con-

sidered as a possible 5’ base for a primer (beyond the minimum distance spec-

ified between the edge of the amplicon and the nuclease site). For a given 5’

starting position, the first 18 bases in the 3’ direction are taken as an initial

sequence for the primer. Then the following design loop begins:

1) Check for potential secondary structure that could result from the 3 end

folding back.

Check that the sequence of the primer up to the 4th most 3’ base does not

contain any exact matches to the reverse complement of the three most 3’

bases.

Example: For the potential primer sequence 5’-ACATTGAGGCACTACTTG-

3’, check that the sequence ‘CAA’ does not appear in ‘ACATTGAG-

GCACTA’.

If there is a match, lengthen the primer by one base in the 3’ direction

and repeat the loop.

2) Check the predicted melting temperature of the primer and GC content.
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Let Length be the number of nucleotides in the primer sequence

Let %GC be the percentage of guanosine and cytidine residues in the

primer sequence

Calculate the melting temperature of the primer according to the equa-

tion:

Tm = 56.7 + 44.67 ∗ %GC −
479.7

Length
(9)

If Tm < 58 or %GC < 0.33 or %GC > 0.63 then lengthen the primer by

one base in the 3’ direction and repeat from Step 1.

3) If the primer length is > 30 bp, then exist the design loop unsuccess-

fully—no primer for this position.

4) Check for high self-complementarity by comparing all 7 bp sequences

within the primer to the reverse-complement sequence of the primer.

If any exact matches are found, then exit the design loop unsuccess-

fully—no primer for this position.

5) If all requirements are met, then exit the design loop successfully and

record the primer for this position.

After attempts to generate primers for all forward positions and all reverse

positions are complete, pairs are made with each forward pair to each possible

reverse pair. This list of pairs is then pruned to remove any that would result

in products where the distances between nuclease sites and the ends of the

amplicon fall outside of the specified ranges. This list is further pruned to

remove any primer pairs that could potentially form primer dimers as defined

by having the final 3’ bases of one primer match the reverse complement of the

final 3’ bases of the other primer.

All primer pairs are then sorted by how close their melting temperature is

to the target melting temperature (the default is 60°C) by computing Tdi f f =
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(Tm f orward
− 60)2 + (Tmreverse

− 60)2

All pairs where Tdi f f < 2 are then further sorted according to the following

criteria (in order of priority):

1. Prefer shorter amplicon length

2. Prefer a shorter length of the longer primer sequence in the pair

3. As a final tie-breaker, sort the primer sequences alphabetically

If no primer pairs are found acceptable under this optimal set of criteria, the

primer design constraints are iteratively relaxed and the primer search repeated.

The most lenient set of criteria still require a minimum %GC of 0.25, a max-

imum %GC of 0.70, a maximum Length of 38, and a minimum melting tem-

perature of 55°C.

3.3.7.2 PCR Experimental Conditions

The primers designed by PROGNOS (ordered from Eurofins-MWG-Operon) were used in

a high-throughput manner to amplify genomic regions of interest in a single-plate PCR

reaction. Each 25 µL reaction contained 0.5 units of AccuPrime Taq DNA Polymerase

High Fidelity (Invitrogen) in AccuPrime Buffer 2 along with 150 ng of genomic DNA or

0.5 µL of QuickExtract, 0.2 µM of each primer, and 5% DMSO vol/vol. Touchdown PCR

reactions were found to yield the highest rate of specific amplification. Following an initial

2-minute denaturing at 94°C, 15 cycles of touchdown were performed by lowering the

annealing temperature 0.5°C per cycle from 63.5°C to 56°C (94°C for 30 seconds, anneal

for 30 seconds, extend at 68°C for 90 seconds). After the touchdown, an additional 29

cycles of amplification were performed with the annealing temperature at 56°C before a

final extension at 68°C for 10 minutes. Reactions were purified using MagBind EZ-Pure

(Omega), quantified using a Take3 Plate and SynergyH4 Reader (Biotek) and normalized

to 10 ng/µL.
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3.3.8 High-Throughput Sequencing

3.3.8.1 Sequencing Chemistry

Amplicons from each transfection were pooled in roughly equimolar ratios and SMRT

sequenced using the C2/C2 Chemistry and Consensus Sequencing options, according to

the manufacturer’s protocol (Pacific Biosciences).

3.3.8.2 Sequencing Analysis

There are three main processing steps of the raw SMRT sequencing reads to detect nuclease-

induced non-homologous end joining (NHEJ). First, because many amplicons are pooled

into a single SMRT sequencing cell, sequencing reads must be mapped to the amplicon

from which they were generated. Second, because the processivity of the polymerase used

in SMRT sequencing is a stochastic factor, the quality of the sequencing reads ranges over

a distribution. However, for detecting the small insertions and deletions characteristic of

NHEJ, sequencing artifacts that would yield false positives must be eliminated. Therefore,

the sequencing reads must be filtered to obtain only the higher quality sequencing reads.

Third, the high quality sequencing reads need to be analyzed to determine if they show

mutations consistent with nuclease-induced NHEJ.

To address these issues, we created a sequencing processing pipeline based in Perl

and also utilizing the BLAST and Needle software packages for sequence alignment. All

aspects of the pipeline were implemented on a Windows machine and the source code is

available on the PROGNOS website http://bit.ly/PROGNOS.

Sequence Mapping

1. Create a BLAST database of all expected amplicons obtained from the reference

genome

2. BLAST each consensus SMRT sequencing read against the BLAST database using

the parameters: gapopen 2, gapextend 1, reward 1, penalty -1.
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3. Remove from further processing any reads that failed to make a significant BLAST

alignment to any sequence in the database.

Pairwise Alignment

1. Use the Needleman-Wunsch algorithm [81] to align each sequence read with the

expected amplicon to which it was mapped. Needle parameters: gapopen 10,

gapextend 1.

2. If the alignment of the sequencing read extends more than 65 bp past the end of the

reference sequence, remove it from further processing.

Sequence Quality Filtering

1. Calculate the average Phred score of each consensus SMRT read from the FASTQ

data.

2. Remove from further processing any reads that have an average Phred score lower

than 40.

3. Scan the region of the pairwise alignment extending 100 bp out from the edge of the

nuclease binding sites for “indels”. Define “indels” as a stretch of deleted, inserted,

or mismatched bases in the sequencing read relative to the reference sequence.

4. If an indel is found that does not overlap the nuclease target site (the region encom-

passing the binding site of the left nuclease, the spacer region, and the right nuclease

in the reference sequence), add the square of its length to a running total errorCount.

5. If errorCount
Length o f scanned sequence

> 0.005, remove that sequencing read from further process-

ing.

Identifying Events of Non-Homologous End-Joining (NHEJ)

1. Scan the pairwise alignment extending 100 bp out from the edge of the nuclease

binding site for indels.
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2. Check if the observed indel overlaps the spacer region in the reference sequence.

3. If the indel overlaps the spacer and is of length 5 or greater, classify as NHEJ.

4. If the indel overlaps the spacer, is 4 or 4 bp, and is either composed entirely of a

deletion or entirely of a tandem repeat of flanking sequence, classify as NHEJ.

5. Manually verify suspected NHEJ events by hand to confirm true cases of NHEJ.

3.3.9 Statistical Analysis

P values for off-target cleavage in Table 3-4 were calculated exactly as previously described

[88]. Briefly, the t-statistic was calculated based on the fraction of mutated reads in the

nuclease-treated sample compared to the fraction of mutated reads in the mock-treated

sample and the number of sequencing reads was given as the degrees of freedom. In a

similar manner, 90% confidence intervals were calculated by determining the upper and

lower bounds of the fractions of mutated sequences that would yield P values of 0.05.

3.4 Results

3.4.1 Construction of initial bioinformatics ranking algorithms

The initial PROGNOS algorithms codified several established factors influencing nucle-

ase specificity, including sequence homology, zinc fingers’ preference for binding guanine

residues [44], and RVD-nucleotide binding frequencies of natural TAL effectors [78]. To

improve upon simple “mismatch counting”, we incorporated the recently proposed “en-

ergy compensation” model of dimeric nuclease interactions [88]. Using these factors, three

different algorithms were initially developed. The “Homology” algorithm, which could

be used for both ZFNs and TALENs, generates a score based primarily on sequence di-

vergence from the intended target site, including the number of mismatches in the left

and right nuclease half-sites, and the maximum number of mismatches allowed per half-

site. The “Conserved G’s” algorithm (for ZFNs only) ranks ZFN target sites by counting
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the number of guanine bases and adding a weighting factor to the homology score ac-

cordingly. The “RVDs” algorithm (for TALENs only) weighs mismatches based on RVD

nucleotide preferences observed in natural TAL effectors and then applies the energy com-

pensation model. Since all three of the TALEN off-target sites discovered previously using

experimental-based off-target prediction methods contained a pyrimidine at the 5’ position,

a “5TC” version of the “Homology” and “RVDs” algorithms was also applied to TALEN

rankings that required a thymidine or cytidine in the preceding 5’ position of each half-site.

For any given potential off-target site, these algorithms generate a score that allows ranking

of all potential off-target sites in a genome for a specific nuclease target site. Search param-

eters, such as target sites, maximum mismatches per half-site and allowed spacer lengths

are entered as inputs using the online interface (Figure 3-2a) and ranked lists of potential

cleavage sites in the selected genome are given as PROGNOS outputs for further analy-

sis. Although two online tools—ZFN Site [20] and TALE-NT [28]—exist to help search

genomes for cleavage sites with homology to intended nuclease on-target sites, neither

automatically ranks the potential off-target sites, nor has led to a report of any new experi-

mentally verified off-target cleavage sites. In a direct comparison, we found that TALE-NT

was only able to predict two of the seven bona fide TALEN off-target sites in unrelated

gene families—three sites from previous work [116, 51] and four from this work—while

PROGNOS could predict six. Recently, a new tool for identifying TALEN off-target sites,

TALENoffer, was published [42]. Although it performs better than TALE-NT and does pro-

vide a rank-order for the potential off-target sites, it is outperformed by the refined TALEN

v2.0 algorithm (Table 3-5).

3.4.2 Validation of PROGNOS Algorithms with Previously Confirmed Off-target

Sites

To validate the initial PROGNOS ranking algorithms, we compared PROGNOS predictions

with the off-target sites of ZFN and TALEN pairs identified by others using experimental

characterization methods. If the same number of sites (1X) were interrogated as in the
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Figure 3-2: PROGNOS search interface and comparison to previous prediction meth-

ods. (a) The PROGNOS online interface allows users to enter the target site of their nucle-

ase pair and specify search parameters and primer design considerations. (b) A comparison

of PROGNOS predictions to previously reported methods identifying off-target sites for

different ZFNs [44, 88]. The Homology and Conserved Gs algorithms were used to deter-

mine what percentage of the sites with previously identified off-target activity fell within

the top fractions of PROGNOS rankings. The “1X” top fraction corresponds to searching

the same number of top PROGNOS sites as were investigated in the original paper and

“3X” corresponds to searching three times as many PROGNOS sites as were investigated

in the original paper. (c) A comparison of the PROGNOS search algorithms to previously

reported methods identifying off-target sites for TALENs [116, 51]. The top PROGNOS

rankings using the Homology-5TC and RVD-5TC algorithms were searched to determine

what percentage of off-target sites found to have activity fell within the top fractions of

PROGNOS rankings. (d) Venn diagram displaying the 13 known off-target sites iden-

tified for the heterodimeric CCR5 ZFNs during development and testing of the original

PROGNOS algorithms [88, 37]. The sites ranked at the top of the PROGNOS Homology

and Conserved G’s in silico algorithms (allowing 3X the number of sites searched by Pat-

tanayak et al. [88]) are compared to the 12 sites identified previously and 1 site uncovered

in this study.
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original studies, but the sites were chosen by taking the top-ranked PROGNOS predictions,

33 ± 21% (mean ± std) of the off-target sites previously found in studies of ZFNs targeting

CCR5 [88], VEGF [88], and kdrl [44] could be located. Since off-target searches using

the in silico PROGNOS predictions can be scaled up readily, we tripled (3X) the number

of sites interrogated from PROGNOS top-ranked lists, and found that PROGNOS could

identify 65 ± 24% of the off-target sites previously confirmed experimentally (Figure 3-

2b). Excluding sites in highly homologous gene pairs such as CCR5/CCR2, only three

bona fide TALEN off-target sites had previously been experimentally identified to date

[116, 51], making a rigorous analysis of the predictive power of PROGNOS for ranking

TALEN off-target sites more difficult. Nevertheless, we found that the “Homology-5TC”

and “RVD-5TC” algorithms in PROGNOS could predict several off-target sites confirmed

previously for TALEN pairs targeting the AAVS1 [51] and IgM [116] loci (Figure 3-2c).

Since no single off-target analysis method has yet been able to provide a comprehensive

list of all off-target sites of a nuclease (Figure 3-2d) [37, 88], the comparison of PROGNOS

predictions with previously published results may underestimate the power of PROGNOS.

Specifically, these comparisons are limited by the small number of off-target sites experi-

mentally validated previously, and do not reflect the ability of PROGNOS to predict new

off-target sites.

3.4.3 Validation of Novel CCR5 ZFN Off-target Site Predicted by PROGNOS

To date, the only nuclease pair to have its off-target sites experimentally interrogated using

two independent methods is a ZFN pair targeting CCR5 (analyzed using in vitro cleavage

[88] and IDLV [37]). These two studies located a total of 12 hetero-dimeric bona fide

off-target sites, verified by sequencing the resulting mutations. A comparison between

PROGNOS predictions using the “Homology” and “Conserved G’s” algorithms and those

12 sites identified experimentally shows that PROGNOS (analyzing the top 3X number of

sites interrogated by Pattanayak et al. [88]) was able to predict 10 out of the 12 off-target
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sites (Figure 3-2d.

3.4.4 PROGNOS Search Output

PROGNOS provides ranked lists of potential nuclease cleavage sites that can be used

to guide experimental evaluation of ZFN and TALEN off-target activities (Figure 3-3a).

Specifically, for each pair of ZFNs or TALENs, the user-friendly online interface of PROG-

NOS (http://bit.ly/PROGNOS or http://baolab.bme.gatech.edu/bao/Research/

BioinformaticTools/prognos.html) allows entry of the nuclease search parameters

and returns lists of the top-ranked off-target sites according to the PROGNOS algorithms, as

well as a full list of un-ranked potential off-target sites meeting the search parameters (Fig-

ure 3-3b). While the top-ranked sites provide a list of likely locations in a genome where

off-target cleavage may occur, neither the PROGNOS rankings nor any published method

can yet directly correlate the ranking with the precise level of observed off-target mutagen-

esis at a given site (Figure 3-4). Furthermore, to aid experimental analysis, PROGNOS also

provides PCR primer sequences that can be used to amplify the potential nuclease cleav-

age sites in a high-throughput manner, a unique feature not present in other online search

tools. Automated design of PCR primers significantly facilitates the analysis of off-target

sites, since an initial experimental study of off-target cleavage by a single pair of nucleases

typically requires at least 40 primers [54, 51], and an in-depth investigation of nuclease

off-target effects may require >250 primers [44, 88]. Although tools such as Primer3 [100]

can assist in primer design, they require a large amount of effort to generate primers opti-

mal for off-target analysis due to specific requirements of where the nuclease site must be

positioned within the amplicon. Although PCR amplification is an essential step in exam-

ining a potential off-target site, in previous investigations the success rates of amplifying

off-target loci varied from 31% [54] to 95% [51]. In contrast, the primers automatically

designed by PROGNOS had a robust 95% success rate across the 116 potential off-target

loci interrogated in this study (Figure 3-3c). PROGNOS also provides the sequences, the
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Figure 3-3: Using PROGNOS to identify nuclease off-target sites. (a) Outline of the

procedure to identify nuclease off-target activity. (b) Sample outputs of the PROGNOS

online software showing all sites found and what types of genomic regions they are located

in as well as rankings of the top potential off-target sites. The rankings include the closest

gene, the number of mismatches, the size of PCR product from the automatically designed

primers, and other helpful information. (c) Comparison of the success of the automatically

designed PROGNOS primers used in high-throughput full plate PCR of off-target sites to

primers designed in other off-target publications. (d) Sequencing reads of an off-target

location for the 3-finger ZFN pair that show evidence of NHEJ. In the wild-type (WT)

sequence, the ZFN binding sites are highlighted in yellow and mismatches to the intended

target sequence are lowercase red. In the sequencing reads, inserted bases are lowercase

and highlighted in blue. The size of the indel is displayed to the right of the sequence,

along with the number of times that mutation was observed.

sizes of expected cleavage products of the amplicons, and site of expected cleavage. This

information is used when testing for nuclease-induced mutations—typically short inser-

tions and deletions (indels) resulting from error-prone resolution of the DNA double strand

break through the non-homologous end-joining (NHEJ) repair pathway—using methods

such as the Surveyor Nuclease assay, high-throughput sequencing, or Sanger sequencing

of TOPO-cloned fragments (Figure 3-3d).

3.4.5 Determination of NHEJ-mediated Indels Using high-throughput SMRT se-

quencing

To experimentally measure nuclease activity at on-target and potential off-target sites iden-

tified by PROGNOS, we used Single Molecule Real-Time (SMRT) sequencing of the PCR
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Figure 3-4: Low correlation between predicted off-target ranking and observed ac-

tivity. The current goal of off-target prediction methods is to refine a global list of all

possible off-target sites in the genome into a list of the top ranked sites that are likely to

have off-target activity that can then be tested. An ideal prediction method would addi-

tionally be able to correlate local rankings (i.e. the 7th ranked site vs. the 12th ranked site)

with observed levels of off-target activity. The off-target prediction method described by

Gupta et al. [44] did not associate any rankings with the predicted off-target sites, however

Pattanayak et al. [88] did provide rankings, as well as detailed information about observed

off-target activity, and Gabriel et al. [37] provided the number of IDLV-CLIS events at each

predicted site which can be used as a ranking. Using the results from Pattanayak et al. and

the PROGNOS predictions for the same ZFNs, we constructed linear correlations measur-

ing the ability of the different off-target prediction methods to rank order sites for the CCR5

(a) and VEGF (b) ZFNs by their precise level of observed off-target activity. Similarly, we

constructed linear correlations for the Gabriel et al. prediction of the wild-type ZFNs (the

hetero-obligate ZFNs have only four points, making a linear correlation not statistically

meaningful) and the corresponding activity (c); several of the sites found by Gabriel et al.

are not found by PROGNOS so a meaningful comparison is not possible. The extremely

low correlation coefficients indicate that neither the current experimental-based prediction

methods, nor the PROGNOS algorithms can yet accurately model precise off-target activity

levels. This is likely due to variability in the cells and poorly understood factors such as

the genomic accessibility of a given off-target locus.
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amplicons. The consensus sequencing mode of the SMRT platform provides highly accu-

rate long length reads [117] that allowed determination of nuclease activity and specificity

with reasonable sensitivity, and at a lower cost per run than other deep sequencing plat-

forms. The good agreement between SMRT sequencing results and Sanger sequencing of

TOPO-cloned samples further confirmed the accuracy of the SMRT-based analysis of nu-

clease cleavage (Figure 3-5a). Further, the high quality of the SMRT consensus sequence

reads allowed us to achieve a much better signal to noise ratio for the mutation analysis

than other sequencing methods [54]. We found that only three sequencing reads from mock

treated control cells (∼0.003% of the total) contained indels flagged by the analysis and all

three were from the same genomic site, which in retrospect should have been excluded

from sequencing analysis due to several long adjacent homopolymer stretches known to be

error-prone during the sequencing process.

Although the spectrums of indels induced by ZFNs [44] or TALENs [54, 62] have

been investigated previously, the long SMRT read lengths provided a more comprehensive

analysis (Figure 3-5b). We found that ZFNs induced predominately 3, 4, and 5 bp insertions

or deletions, with just a small number of large deletions. In contrast, TALENs induced

indels over a much broader range, centered around 5 bp to 20 bp deletions, possibly due to

the flexibility of the +63 C-terminal TAL domain [18].

3.4.6 Prediction and Validation of Off-target Sites for Novel Nucleases

To demonstrate the application of PROGNOS in analyzing newly designed nucleases, we

investigated the off-target cleavage of four pairs of TALENs and two pairs of ZFNs (Ta-

ble 3-4). TALENs containing the Asn-Asn (NN) RVD have been shown to be less specific

than corresponding TALENs containing the Asn-Lys (NK) RVD [18]; however the differ-

ence in off-target activity of NN-TALENs and NK-TALENs has not been demonstrated in a

genome-wide context. For ZFNs, although both 3-finger (3F) and 4-finger (4F) ZFNs have

been shown to have off-target cleavage [44, 88, 37], there has been no direct comparison
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Figure 3-5: Using SMRT Sequencing to analyze nuclease activity. (a) SMRT sequenc-

ing produced very similar results to standard TOPO sequencing over a range of mutation

rates from ∼20% to ∼76%. Error bars are 90% confidence intervals. S2/S5 NK and S2/S5

NN are the TALENs targeting beta-globin compared in this study. S116/S120 and J7/J8

are NK-TALENs targeting beta-globin and CDH1, respectively from Lin et al. [69]. (b)

Comparison of the range and frequency of different sizes of indels observed in cells treated

with TALENs or ZFNs. The observed frequencies of the different sizes are normalized to

the frequency of the most common indel size for each nuclease type.
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of off-target cleavage induced by 3F- and 4F-ZFNs that target the same DNA sequence.

We expressed the TALENs and ZFNs in HEK-293T cells, and analyzed the PROGNOS

top-ranked off-target sites (Table 3-4a,b). We found that TALENs exclusively using the

NN RVD to target all of the guanosine nucleotides in the target sequence imparted higher

activity level than TALENs exclusively using the NK RVD at corresponding positions, in

agreement with previous reports [54, 18]. However, the NN-TALENs tested in this study

had higher off-target cleavage activity than the corresponding NK-TALENs. For the first

time, off-target cleavage by NK-TALENs was uncovered, as well as bona fide TALEN

off-target sites with substantial (>5%) sequence divergence from the intended target that

lacked a 5’ pyrimidine and a site with a spacer longer than 24 bp (Table 3-4a). For ZFNs,

we found that the 4F-ZFNs had higher on-target activity (consistent with previous reports

that additional fingers increased activity [9]) and much lower off-target activity compared

with the corresponding 3F-ZFNs targeting the same DNA site. Specifically, all six of the

off-target sites found for the 3F-ZFNs had equal or greater activity than the off-target site

of the 4F-ZFNs (a single site with 0.2% activity), with three sites having activity >1%

(Table 3-4b).

3.4.7 Refinement of PROGNOS Ranking Algorithms

Although the set of initial PROGNOS algorithms (2 for ZFNs and 4 for TALENs) per-

formed well in locating bona fide off-target sites for newly-designed nucleases based solely

on in silico prediction, a user would still need to choose a specific algorithm or use all

the available algorithms without knowing a priori which one would be most predictive for

their nuclease. Using the expanded set of bona fide off-target sites including those found in

this study (Table 3-4) as well as new insights into TALEN-DNA binding [112, 75], we re-

fined the PROGNOS algorithms so that they are more sensitive, efficient, and user friendly

compared with the initial algorithms. Although the “Homology”, “Conserved G’s” and
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Table 3-4: SMRT Sequencing confirms on-target and off-target activity at sites ranked

by PROGNOS We interrogated 138 highly ranked genomic loci for the novel TALENs (a)

and ZFNs (b) using SMRT, and observed off-target activity in 13 cases, 9 of which were

outside the globin gene family. The “match type” indicates the orientation of the left (L)

and right (R) nucleases at the site and the length of the spacer sequence. In sequences,

lower-case letters indicate mutations compared to the target site. Site sequences are listed

as 5’–(+) half-site–spacer–(-) half-site–3’. Therefore, the (-) half-site for TALENs and the

(+) half-site for ZFNs are listed in the reverse anti-sense orientation compared to the DNA

sequence that the nuclease binds. Rankings by the initial PROGNOS algorithms Homology

(column H), RVDs for NK (RK), RVDs for NN (RN), and Conserved G’s (C) are displayed

as well as the rankings by the refined “TALEN v2.0” algorithm for NK (TK) and for NN

(TN) and the “ZFN v2.0” algorithm (Z). 293T Modification Frequency is the percentage

of observed sequences showing evidence of non-homologous end-joining repair. (c) 15

off-target sites for the CCR5 ZFNs ranked by PROGNOS that had not been previously

investigated were interrogated using SMRT, validating a novel off-target site. Additionally,

6 known highly active off-target sites were sequenced as positive controls. The PROGNOS

rankings for the site near KDM2A are listed as “N/A” because the site was not found by

PRGONOS due to the high number of mismatches. * indicates P < 0.05 in cells expressing

active nuclease compared to cells expressing empty vector. ˆ indicates P < 0.05 for the

difference in activity between NK and NN at that site.

a) Novel TALENs
293T Cell Line

Modification Frequency

Mutations

per

half-site

PROGNOS

Rankings RVD Targeting Guanine

Nucleases

Closest

Gene

Match

Type (+) (-) (+) half-site (-) half-site H RK RN TK TN NK NN

S2/S5 TALENs

HBB L-16-R 0 1 TCACCTTGCCCCACAGGGCAGT tCAGGAGTCAGGTGCA 1 1 1 1 1 23.0% * 48.7% *ˆ

FAM3D R-17-R 3 3 TGCcCCTGACTCCTta AaAtGAGgCAGGTGCA 4 15 25 5 6 0.1% * 0.05%

HBD L-16-R 2 2 TCACtTTGCCCCACAGGGCAtT tCAGGAGTCAGaTGCA 2 2 2 2 2 0% 5.0% *ˆ

GPR6 R-30-R 2 5 TcCACCTGgCTCCTGT gCAGGAGTtAaGgGtA 21 241 16 11 5 0% 0.09% *ˆ

Total Sites Interrogated: 21 20

S1/S7 TALENs

HBB L-15-R 0 0 TCACCTTGCCCCACAGGGCAGTAAC AGGAGTCAGGTGCACCA 1 1 1 1 1 0.3% * 42.8% *ˆ

LINC00299 R-23-R 3 5 TGGaGCACCTGACcCCa AGGAGaaAaGgGCACCt 17 8 50 5 10 0.2% * 0.1%

HBD L-15-R 3 1 TCACtTTGCCCCACAGGGCAtTgAC AGGAGTCAGaTGCACCA 2 2 3 2 2 0% 4.9% *ˆ

FAM3D R-21-R 3 5 ctGTGCcCCTGACTCCT AtGAGgCAGGTGCAttt 8 4 2 13 6 0% 0.1% *ˆ

Total Sites Interrogated: 24 25

b) Novel ZFNs
H C Z ZFN Activity

4F ZFNs

HBB L-5-R 0 0 TCACCTTGCCCC GCAGTAACGGCA 1 1 1 6.3% *

PLG R-5-R 3 1 TGCCaTTgaTGC GCAGTAACtGCA 24 41 28 0.2% *

Total Sites Interrogated: 23

3F ZFNs

HBB L-5-R 0 0 CCTTGCCCC GCAGTAACG 1 1 1 1.9% *

ATG7 L-6-L 1 0 CCTTGgCCC GGGGCAAGG 3 7 11 0.5% *

TMEM132C R-6-L 1 0 aGTTACTGC GGGGCAAGG 4 35 9 0.2% *

PARD3B L-5-L 0 1 CCTTGCCCC GGGGCAAGc 5 8 7 1.3% *

GLIS2 L-6-L 1 0 CCTgGCCCC GGGGCAAGG 9 6 4 0.6% *

AFF3 L-6-L 2 0 CCTaGgCCC GGGGCAAGG 16 37 20 2.9% *

RGS10 L-6-L 0 2 CCTTGCCCC GGGGCAgaG 22 39 15 5.2% *

Total Sites Interrogated: 23

c) CCR5 ZFNs

PROGNOS

Investigation

CCR5 L-5-R 0 0 GTCATCCTCATC AAACTGCAAAAG 1 1 1 31% *

CSNK1G3 L-5-R 3 1 GcCtTCCcCATC AAAgTGCAAAAG 33 13 18 0.09% *

Total Sites Interrogated: 16

Known Off-

Target Sites

CCR2 L-5-R 1 1 GTCgTCCTCATC AAACTGCAAAAa 2 5 2 11% *

KDM2A R-5-L 2 5 CTaTTaCAGTTT GATGAGGtctca N/A N/A N/A 2.6% *

BTBD10 L-5-R 2 1 GTttTCCTCATC AAACTGCAAAAt 3 45 6 2.6% *

KCNB2 L-5-R 3 1 aTgtTCCTCATC AAACTGCAAAtG 29 33 8 1.3% *

WBSCR17 R-6-L 2 2 CTgTTcCAGTTT GcTGAGGATaAC 60 51 95 1.4% *

TACR3 L-5-R 1 3 GTCATCtTCATC AAACTGtAAAgt 17 197 26 8.6% *
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“RVDs” algorithms (including the “5TC” version for TALENs) all located bona fide off-

target sites, no algorithm was consistently superior across all ZFNs or all TALENs studied

(Figure 3-2b,c and Table 3-4). In developing the refined algorithms, we were able to unify

the different algorithms for each type of nuclease into a single algorithm (ZFN v2.0 for

ZFNs, TALEN v2.0 for TALENs). Compared with the original PROGNOS algorithms,

ZFN v2.0 and TALEN v2.0 achieved higher precision within the Top 16 rankings (repre-

senting the minimum recommended size of a small-scale off-target analysis), located higher

mean percentages of known off-target sites per nuclease across all nucleases tested (within

the top 3X rankings for previously investigated nucleases and within the same number of

sites as in the PROGNOS-based investigations, and had lower standard deviations of the

mean percentages, demonstrating that the refined algorithms performed more consistently

across all nucleases tested.

In developing the refined and unified ZFN algorithm, we added factors weighing a

model of the binding energy of each zinc finger subunit [88] and polarity effects reflecting

the distance of a mismatch from the FokI domain and allowed more flexible models of the

previous concepts of energy compensation between the two half-sites of a nuclease pair and

a stronger affinity for guanosine residues. This new “ZFN v2.0” algorithm outperforms the

initial “Homology” and “Conserved G’s” algorithms for ZFNs in terms of both identifying

a larger set of bona fide off-target sites for the nucleases tested and having superior precision

within the Top 16 rankings (Figure 3-6a). The Top 16 ranked sites were chosen as a cutoff

because by necessity nearly all of the novel off-target sites found were within the Top 24

rankings of one of the original algorithms since that was their initial criteria for being

selected for investigation. Therefore, a stricter cutoff was required in order to observe

differential performances between the algorithms for these new sites.

Recently, Sander et al. [101] used Bayesian machine learning to re-analyze the original

results of the in vitro cleavage experiments for CCR5 and VEGF ZFNs [88] and subse-

quently developed two separate classifiers that ranked all sequences in the human genome
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for their potential as off-target sites of either the CCR5 or VEGF ZFNs respectively. Their

work validated 25 new bona fide off-target sites for the CCR5 and 26 new sites for the

VEGF ZFNs, but did not locate—among any of the 15,882 possible off-target sites pre-

dicted for the CCR5 ZFNs by their classifier system—the novel off-target site for the CCR5

ZFNs predicted by the PROGNOS algorithms near CSNK1G3 that was validated in this

study (Table 3-4c).

Since the 51 new sites found by Sander et al. [101] were not part of the training set

for the “ZFN v2.0” algorithm, this provided an opportunity to test the new algorithm for

its ability to locate additional off-target sites. By extending the standard PROGNOS search

limit recommendations for the CCR5 ZFNs to allow for a larger number of possible off-

target sites (3X the number of possible off-target sites considered by Sander et al.), we

found that the refined ZFN algorithm successfully identified more than half (13 of 25 =

52%) of the new off-target sites for those ZFNs (Figure 3-6b). For the VEGF ZFNs, the

standard PROGNOS search provided enough potential off-target sites to make an appro-

priate 3X comparison to Sander et al. [101], and the refined algorithm again located more

than half (18 of 26 = 69%) of the new off-target sites for those ZFNs. Three additional

pairs of ZFNs (a 3-finger pair, a 4-finger pair, and a 5-finger CompoZr pair from Sigma-

Aldrich) which had previously been investigated using the Homology and Conserved G’s

PROGNOS algorithms [79, 1] were also re-analyzed using the refined algorithm and all

six of the previously located bona fide off-target sites were highly ranked by ZFN v2.0.

Taken together, these results provide significant evidence that the refined ZFN algorithm

was not overtrained to existing sites during its development and is able to robustly predict

additional bona fide off-target sites. An analysis of each of the components of the ZFN v2.0

algorithm showed that while all play a part in the improved performance, some parameters

are more critical to the algorithm than others (Figure 3-7).

In developing the refined and unified TALEN algorithm, we added new parameters

based on compensatory effects of strong RVDs (NN and HD) [112] on adjacent mismatches
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Figure 3-6: Improved performance of the refined PROGNOS algorithms. (a) The

performance of the two initial ZFN algorithms and the refined “ZFN v2.0” algorithm are

compared for their ability to predict off-target sites for the all ZFNs in the training and

validation sets. Percentages of off-target sites located were calculated according to 3X

limits for previous studies and within the number of sites interrogated for PROGNOS-

based studies (typically the top 24 ranked sites). Error bars represent standard deviation.

(b) The expanded landscape of 38 total heterodimeric off-target sites for the CCR5 ZFNs

found by four different experimental-based prediction methods and the refined “ZFN v2.0”

PROGNOS algorithm. The PROGNOS sites are drawn from the top rankings spanning

3X the number of predictions by the Bayesian abstraction of the in vitro cleavage profile.

(**) Note that only six of the sites found using ChIP-Seq were provided by Sander et al.

[101], so the full degree of overlap of all ChIP-Seq sites with sites found by other methods

is unclear. (c) The performance of the four original TALEN algorithms and the refined

“TALEN v2.0” algorithm are compared for their ability to predict off-target sites for all

TALENs in the training and validation sets.
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Figure 3-7: Performance of ZFN v2.0 Algorithm Variants. To determine the impact

of each of the individual parameters of the ZFN v2.0 algorithm, each parameter was sys-

tematically removed from the analysis of both the training set (a) and the full list of ZFN

off-target sites comprising the training set and the validation set (b). The specific alterations

to the parameters in the algorithm formula are supplied in the graph. To measure aggregate

performance of the algorithms across a wide range of ZFNs, we measured the percentage

of known off-target sites for each ZFN pair that the algorithms were able to identify (within

3X limits for previously studied ZFNs, and within the limit of the original Homology and

Conserved G’s PROGNOS experimental searches for newly studied ZFNs), and then took

the mean of these percentages across all ZFNs. In some cases, algorithms tied in perfor-

mance by this metric, so we further measured the ability of the algorithms for the total

number of off-target sites that they identified within the defined limits. The ordering of the

algorithm variants was chosen based on the results for the training set data (a) and main-

tained in the same ordering for the full off-target set (b). From this analysis, we observed

that while removing any one of the individual parameters does not cause a severe decrease

in effectiveness of the algorithm (with the exception of setting either First Penalty or Ad-

ditional Penalty to 0), it is only when all of the parameters are incorporated that optimal

results—both in the training set and the full set—are achieved.
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and polarity effects indicating that mismatches further from the N-terminus are less dis-

ruptive [75]. These new considerations were combined with a model of dimeric nucle-

ase interactions, as well as RVD-nucleotide association frequencies. To improve upon the

RVD-nucleotide association frequencies derived from natural TAL effectors [28], as were

used in the initial “RVDs” algorithm and the TALE-NT online tool [28], we calculated as-

sociation frequencies based on SELEX data from engineered TAL domains [77, 116, 51]

(Figure 3-8 and Table 3-1). Importantly, this generated an association frequency for the 5’

“Position 0” in the TALEN binding site that allowed us to use this parameter to unify the

“5TC” and standard versions of the “RVDs” algorithm. Further, we found that while the nu-

cleotide frequencies for the RVDs NI, HD, NK, and NG did not appreciably vary between

engineered TALEs and natural TALEs, the results for NN were substantially different. Al-

though the NN RVD is still the least specific of all the standard RVDs, in engineered TALEs

it showed a stronger preference for its intended base (guanosine) and a reduced preference

for adenosines and cytidines compared with that of naturally occurring TALEs (Table 3-

1). We found that the new unified “TALEN v2.0” algorithm outperforms the four initial

algorithms for TALENs in terms of both having higher precision within the Top 16 rank-

ings and locating a higher mean percentage of known off-target sites per nuclease across

all nucleases tested (Figure 3-6c). The refined TALEN algorithm was additionally able to

predict several bona fide TALEN off-target sites not in its training set that were found using

the initial PROGNOS algorithms [79], demonstrating that the refined algorithm was not

overtrained during development and retains robust predictive capabilities. An analysis of

each of the components of the TALEN v2.0 algorithm showed that while all play a part in

the improved performance, some parameters are more critical to the algorithm than others

(Figure 3-9).
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Figure 3-8: Average RVD-nucleotide frequencies of engineered TAL domains. Pub-

lished SELEX data from nine engineered TAL domains [77, 116, 51] were compiled to

derive the average nucleotide association frequencies for the 5’ base and the 5 common

RVDs (Table 3-1). These frequencies are employed in the “TALEN v2.0” prediction algo-

rithm.
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Figure 3-9: Performance of TALEN v2.0 Algorithm Variants. To determine the impact

of each of the individual parameters of the TALEN v2.0 algorithm, each parameter was sys-

tematically removed from the analysis of both the training set (a) and the full list of known

TALEN off-target sites comprising the training set and the validation set (b). The specific

alterations to the parameters in the algorithm formula are supplied in the graph. Because

investigations of TALEN off-target activity have been much more limited than ZFNstyp-

ically investigating ∼20 locations and finding 1-2 bona fide off-target sites as opposed to

investigating 30-100 potential sites out of up to thousands of predicted locationswe were

able to use more precise measurements of the algorithms’ performances. Our initial chief

metric for this analysis was number of bona fide sites found in the Top 16 rankings, but

as the total number of bona fide sites within those rankings was so low (6 sites was the

highest result in the training set) we found that there were not any differences in this metric

for many of the variants. We therefore further included secondary and tertiary measure-

ments of the total number of bona fide off-target sites found within the search limits (3X

for previous investigations and 24 sites for novel nucleases tested) and the mean rank of all

off-target sites located (taking the reciprocal in this case so that larger values implied a su-

perior performance). The ordering of the algorithm variants was chosen based on the results

for the training set data (a) and maintained in the same ordering for the full off-target set

(b). While removing some of the individual parameters does not cause a marked decrease

in effectiveness of the algorithm, it is only when all of the parameters are incorporated that

optimal results—both in the training set and the full set—are achieved.
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3.4.8 Sensitivity and Specificity of PROGNOS Search Algorithms

When applying the initial PROGNOS algorithms to identify off-target sites for newly con-

structed NN-TALENs and 3- and 4-finger ZFNs, we obtained a very manageable average

false positive ratiodefined as the number of interrogated sites with no detectable activity

compared to the number with detectable activityof only ∼11:1, which is less than 2-fold

higher than current experimental prediction methods (Figure 3-10a). When interrogating

three additional pairs of NN-TALENs with the initial algorithms, we observed a similarly

low false positive ratio of 11:1 [79]. For NK-TALENs, the false positive ratio was higher

(∼21:1); however, since no previously published method has identified any off-target sites

for NK-TALENs, we were not able to make a meaningful comparison of the false positive

ratio with experimental-based prediction methods. As the new “ZFN v2.0” and “TALEN

v2.0” algorithms have higher precision among the Top 16 rankings, we would expect that

their false positive ratios would be even lower than the initial algorithms when used as the

basis for investigations of novel nucleases.

As mentioned above, to date only a single nuclease pair (the heterodimeric sites of

the CCR5 ZFNs) has had its off-target cleavage investigated by independent experimental

prediction methods [88, 101, 37], and it is therefore the only pair for which a false negative

rate analysis can be conducted. Defining the false negative rate as the percentage of all

known off-target sites that are not predicted by the particular method within a top portion

of the rankings, the PROGNOS algorithms had false negative rates equal or superior to the

IDLV and in vitro cleavage experimental prediction methods (Figure 3-10b). A Precision-

Recall analysis of the different predictive methods for the CCR5 ZFNs using the false

discovery and true positive rates also demonstrates that the PROGNOS algorithms perform

comparably to experimental based prediction methods.
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Figure 3-10: Sensitivity and specificity analysis of PROGNOS algorithms. (a) Average

false positive ratios are shown for the PROGNOS investigation of novel nucleases using

the initial algorithms, and for previous experimental prediction methods. Ratios are also

shown for individual nucleases in the three different categories of nuclease that have been

investigated previously by experimental prediction methods. (b) The false negative rates

of the different PROGNOS algorithms and previous experimental prediction methods are

shown. These were determined by each methods ability to identify the 38 known hetero-

dimeric off-target sites of the CCR5 ZFNs in their top ranking predictions.

Table 3-5: Comparison of TALENOffer to PROGNOS TALEN v2.0 Algorithm For

the full set of TALEN off-target sites, as well as different relevant subsets, the PROGNOS

TALEN v2.0 algorithm consistently outperforms the TALENoffer search program in terms

of both having lower (better) mean rankings for all off-target sites and a higher (better)

number of sites in the Top 16 rankings of the different TALENs. For all TALENs and

for both algorithms, the off-target sites in highly homologous, closely related genes were

ranked #2.

All Known TALEN Off-Target Sites:

Training TALEN v2.0 Ranking TALENoffer Ranking

Mean Rank of Off-Target Sites 7.8 45.8

# of sites in Top 16 Rankings 12 out of 14 9 out of 14

Excluding Highly Homologous Sites In Closely Related Genes:

Mean Rank of Off-Target Sites 10.1 65.1

# of sites in Top 16 Rankings 8 out of 10 5 out of 10

Excluding Nucleases in TALEN v2.0 Training Set and Sites in Highly Homologous Genes:

Mean Rank of Off-Target Sites 12.8 110.4

# of sites in Top 16 Rankings 4 out of 5 2 out of 5
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3.5 Discussion

Engineered nucleases can readily be designed and optimized to target specific endogenous

sequences in a genome. However, to reach their potential for generating research model

systems and treating human diseases, the specificity of engineered nucleases must be bet-

ter understood. However, the analysis of the location and frequency of TALEN and ZFN

off-target effects has been beyond the reach of most laboratories due to the limitations

of the existing methods. We created PROGNOS, an online search tool solely based on

bioinformatics and the current understanding of nuclease-DNA interactions, which allows

users to predict potential nuclease off-target sites by following a simple set of instructions,

and to evaluate the sites using standard molecular biology techniques if so desired (Fig-

ure 3-11). The novel bioinformatics ranking algorithms in PROGNOS predict many of

the off-target sites of the CCR5 ZFNs that were identified previously using experimental

methods and also identified a novel off-target site that was missed in those studies. How-

ever, there are several highly active (>5% mutation rate) off-target sites for these ZFNs that

PROGNOS did not rank highly, suggesting that there are still unknown factors influencing

ZFN off-target activity that are not accounted for in our current models. Future unbiased

genome-wide analysis of off-target activity (such as the IDLV method [37]) will be critical

to build a larger data base of sites with low sequence homology from which further insight

into the factors affecting off-target activity can be gained. Nevertheless, PROGNOS is able

to successfully predict many off-target sites and overcomes the drawbacks of the current

experimental-based prediction methods that limit the number of nucleases tested, as evi-

denced by the fact that no bona fide off-target sites for new ZFNs or TALENs have been

reported over the last two years (Sept 2011 through Dec 2013) [116, 51]. The improved

performance of the refined “ZFN v2.0” and “TALEN v2.0 algorithms over the initial algo-

rithms highlights a key advantage of bioinformatics-based predictions: as more bona fide

off-target sites are discovered, increasingly better predictive models can be incorporated.
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Figure 3-11: Flowchart of PROGNOS-aided search of off-target sites. The entire pro-

cess of designing a nuclease, confirming on-target activity, and testing off-target activity

can be completed with minimal “hands-on” time when aided by PROGNOS. After trans-

fection and genomic DNA harvesting, the off-target search process takes several days of

preparation before sequencing, and several days after to process the results.

PROGNOS allowed interrogation and comparison of the off-target activities of sev-

eral novel nucleases targeting the beta-globin gene. We directly compared 3-finger vs.

4-finger ZFNs that targeted the same site, and compared NK-TALENs vs. NN-TALENs

that shared target sites. We found that these NN-TALENs and 3-finger ZFNs had more

off-target activity than the corresponding NK-TALENs and 4-finger ZFNs, respectively.

While NN-TALENs generally have high on-target cleavage, this may be accompanied by

decreased specificity leading to high off-target activity. To confirm the conclusion that the

4F-ZFNs targeting this site are more specific than the 3F versions, we interrogated several

of the validated 3F-ZFN off-target sites in cells expressing 4F-ZFNs and found no statisti-

cally significant off-target activity. Our comparison of the specificity of NN-TALENs vs.

NK-TALENs is somewhat limited by the fact that the NN-TALENs had higher on-target

activity than the corresponding NK-TALENs, but the dramatic difference in off-target ac-

tivity at HBD for the S2/S5 NN- and NK-TALENs (Table 3-4) strongly supports the notion

that NK-TALENs have improved specificity over NN-TALENs.
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Although TALENs seem to be much easier to design and appear less cytotoxic than

ZFNs, there still remain concerns about off-target effects. The three previously reported

cases of TALEN off-target sites shared only 78% [116], 74% [51], and 72% [51] sequence

homology to the intended target site. We observed off-target activity at four additional sites

sharing only 81%, 78%, and two cases of 76% homology to the intended target. Given

the abundance of sites in a genome that share that level of homology with a TALEN target

site, these findings strongly reinforce the need to interrogate these types of genomic loci

for possible off-target cleavage.

The lack of discrimination of NN RVDs between guanosine and adenosine is a major

concern. We report here, at the GPR6 off-target site for the S2/S5 TALENs, a case where

there are two substitutions of G→A in one half-site and the NN TALENs show off-target

activity while the NK TALENs do not. In the HBD site for both TALEN pairs, even though

there are no G→A substitutions, the NN TALENs show high off-target activity while the

NK TALENs show none at all. It is likely then, that NN may increase off-target activity

of the TALENs through alternative means; perhaps the strong affinity of the NN RVD can

compensate for mismatched bases in other positions in the TALEN binding site. Although

NN imparts higher activity than NK, we caution its use due to increased off-target effects.

Previously, TALENs had been shown to have strong preference for a pyrimidine in the

5’ position of the binding site. We report here, the first cases of off-target activity at sites

lacking a 5’ pyrimidine. Both of these were homodimeric sites of the S1 TALEN where

an adenosine was in the 5’ position of one of the half-sites. It remains to be determined

whether this is a general feature of all TALENs, or if somehow specific to a characteristic

of the S1 TALEN.

We employed wild-type FokI domains that allow homodimerization of nucleases in

order to see a broader picture of nuclease off-target activity. We found that in several

cases, homodimers of one nuclease showed nearly equal, or greater activity at an off-target

site compared to the activity of the heterodimer at the target site. While research into the
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fundamental basis of nuclease off-target effects should continue to look at homodimeric

interactions, we would strongly recommend use of hetero-obligate FokI architectures [30]

for use in nucleases for targeted genome editing in order to reduce the off-target effects.

TALENs using the +63 C-terminal truncation (as were used here) have been shown

to cleave over a wide range of spacers [18]. This makes design of TALENs easier and

increases the number of potential sequences that can be targeted, but it also increases the

number of potential regions of the genome that could be cleaved through off-target activ-

ity. At the GPR6 off-target site for the S2 homodimer, we observed off-target activity with

a 30 bp spacer—the longest reported for an off-target site. Reducing the range of spac-

ers that TALENs can cleave at—potentially through use of shorter C-terminal truncations

[18]—has the potential to greatly reduce TALEN off-target effects.

3.6 Conclusion

In summary, PROGNOS provides a user-friendly, web-based tool for rapid identifica-

tion of potential nuclease off-target cleavage sites that can be evaluated using standard

molecular biology techniques. The bioinformatics-based ranking algorithms in PROGNOS

identify most nuclease off-target cleavage sites found by existing experimental methods.

PROGNOS has relatively low false positive ratios and comparable false negative rates to

experimental-based predictions, making it a robust method that can be readily implemented

by most laboratories. Screening potential target sites using PROGNOS can facilitate the se-

lection of better nuclease target sites that minimize the number of likely genomic off-target

sites. PROGNOS allows nuclease off-target analysis to become a routine component of

nuclease design and testing, facilitating the discovery of new off-target sites for ZFNs and

TALENs, which expand the off-target database and may improve the PROGNOS algo-

rithms. These capabilities give PROGNOS the potential to help expand and expedite the

application of engineered nucleases for a wide range of biological and medical applications.
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CHAPTER IV

USING PROGNOS TO EXPAND THE DATASET OF NUCLEASES

WITH KNOWN OFF-TARGET SITES

4.1 Introduction

A major advantage of in silico predictive models is that they can be iteratively refined and

improved as more data become available. Although the algorithms developed in Chapter 3

successfully located several bona fide off-target sites, the data available at the time were

fairly limited; off-target sites were known for only three different ZFNs and two different

TALENs (for a total of only 3 TALEN off-target sites) in 2011 when the study was initiated.

By applying the PROGNOS algorithms to many different ZFNs and TALENs, the training

set of known off-target sites was greatly expanded to allow for more sophisticated machine

learning techniques that reveal underlying patterns and trends that can better differentiate

between bona fide off-target sites and other sites with homology to the intended target of

the nuclease. This work moves the field closer to the ultimate goal of off-target prediction

algorithms that allow for screening of potential nuclease target sites in order to design, with

reasonable confidence, a nuclease with no likely off-target sites in the genome of interest.

In addition to locating new off-target sites, the following studies also revealed information

about off-target activity related to different delivery methods, nuclease types, cell types,

and doses.

4.2 Methods

Genomic DNA samples were provided to me by various collaborators. The genome of

interest was scanned using the PROGNOS algorithm [34] and potential off-target sites were

rank-ordered. Using primers designed by the PROGNOS algorithm, PCR reactions were
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performed and amplicons were sequenced and analyzed exactly as previously described

(Section 3.3.7.2, Section 3.3.8.1, and Section 3.3.8.2).

4.3 Results

4.3.1 Lentiviral delivery of ZFNs into mouse SC-1 cells1

Delivery of nucleases into primary cells is a challenge in the field. Packaging nucleases into

lentiviral vectors allows for efficient delivery. We tested the on-target and off-target activ-

ity of ZFNs delivered into murine SC-1 embryonic fibroblasts targeting the “safe-harbor”

Rosa26 locus. After analyzing the top 24 sites predicted by the PROGNOS ZFNv2.0 algo-

rithm [34], robust activity was observed at the target site and modest off-target activity at

the locus near Lgals3 (Table 4-1).

In addition, collaborators also had lentivirus encoding the CCR5-ZFNs [89] available.

Although the mouse homolog to CCR5 contains several mismatches within the binding site

of the ZFNs designed for the human gene, these ZFNs were also interrogated for off-target

activity after lentiviral transduction (Table 4-1).

4.3.2 Lentiviral delivery of ZFNs into rat cells2

4.3.2.1 Abstract

ZFNs are promising tools for genome editing for biotechnological as well as therapeutic

purposes, however delivery remains a major issue impeding targeted genome modification.

Lentiviral vectors are highly efficient for delivering transgenes into cell lines, primary cells

and into organs, such as the liver. However, the reverse transcription of lentiviral vec-

tors leads to recombination of homologous sequences, as found between and within ZFN

monomers. We used a codon swapping strategy to both drastically disrupt sequence identity

between ZFN monomers and to reduce sequence repeats within a monomer sequence. We

1Collaboration with Kerstin Schmidt and Dr. Dorothee von Laer, Division of Biology, Innsbruck Medical

University, Austria
2Modified from: Abarrategui-Pontes C, Creneguy A, Thinard R, Fine EJ et al. (2014). Codon Swapping

of Zinc Finger Nucleases Confers Expression in Primary Cells and In Vivo from a Single Lentiviral Vector.

Human Gene Therapy [1]
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Table 4-1: Rosa26 and CCR5 ZFN off-target activity at sites ranked by PROGNOS.

23 sites from throughout the top-ranked cleavage sites of the Rosa26 and CCR5 ZFNs,

as determined by the PROGNOS ‘ZFN v2.0’ algorithm, were evaluated using SMRT se-

quencing in transduced SC-1 cells. The site in the Eif4g3 locus was chosen based on a

‘rational design’ analysis of the zinc finger binding helices. The ‘match type’ indicates the

orientation of the left (L) and right (R) nucleases at the site and the length of the spacer

sequence. Site sequences are listed as 5’–(+) half-site–spacer–(-) half-site–3’. Therefore,

the (+) positive half-site is listed in the reverse anti-sense orientation as compared to the

DNA sequence that the ZFN binds. In sequences, lower-case letters indicate mismatches

as compared to the target site. “SC-1 cells modification frequency” is the percentage of

observed sequences showing evidence of NHEJ events. For all sites shown, significantly

higher (p < 0.05) frequencies of indels were observed in transduced cells as compared to

mock treated cells.

SC-1 Cells

Modification

Frequency

Mutations per

half-site ZFN v2.0

RankingsZFN Closest Gene Match Type (+) (-) (+) half-site (-) half-site

Rosa26

Gt(ROSA)26Sor L-6-R 0 0 GACTCCCGCCCA AGAAAGACTGGAGTTGCA 1 29.05%

Lgals3 L-6-R 5 4 ctCcCCCcaCCA ccAAAGACTGttGTTGCA 20 0.07%

Total Sites Interrogated: 23

CCR5

Gm2176 L-6-R 1 2 GTCAgCCTCATC AAACTGaAAAtG 2 0.46%

Syt17 L-5-R 3 1 GagATCCaCATC AAACTGCAAgAG 7 3.87%

Ccr5 L-5-R 1 2 GTCtTCCTCATC AAgCTGCAAAAa 10 0.06%

Ppfia2 L-5-R 2 2 tTCAgCCTCATC AAAacGCAAAAG 23 0.45%

C530044C16Rik L-5-R 3 1 GTCAggCTCAgC AAACTGCAAAgG 26 0.72%

BC031181 L-5-R 3 2 aagATCCTCATC AAACaGgAAAAG 46 13.29%

Mamdc2 L-5-R 3 1 tTCAgtCTCATC tAACTGCAAAAG 54 0.95%

Eif4g3 L-5-R 5 1 caCtTaCTCcTC AAACTGgAAAAG 3152 18.47%

Total Sites Interrogated: 23
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constructed lentiviral vectors encoding codon-swapped ZFNs or unmodified ZFNs from a

single mRNA transcript. We reduced total identity between ZFN monomers from 90.9% to

61.4% and showed that a single lentivirus allowed efficient expression of functional ZFNs

targeting the rat UGT1A1 gene after codon-swapping, leading to much higher ZFN activity

in cell lines (up to 7-fold increase compared to unmodified ZFNs and 60% activity in C6

cells), as compared to plasmid transfection or a single lentivirus encoding unmodified ZFN

monomers. Off-target analysis located several active sites for the 5-finger UGT1A1-ZFNs.

4.3.2.2 Methods

C6 cells (5 ∗ 104) were seeded in each well of a 6-well plate one day before transduction.

On the day of transduction, the medium was changed before addition of the viral particles.

Cells were kept at 37°C for four days before genomic DNA was harvested and subjected to

off-target analysis.

4.3.2.3 Results

The high levels of targeted DSBs in the UGT1A1 gene observed after C6 cell transduction

with codon-swapped lentivirus gave the opportunity to look for potential off-target effects,

which may not be easily detectable with a low ZFN activity, as observed after transfection.

Off-target sites were chosen for investigation based on a mixture of the top-ranked sites

by the PROGNOS method [34]. Using SMRT sequencing, we interrogated 22 genomic

loci that were highly ranked for cleavage in the rat genome by the Ugt1A1 ZFNs (the

intended target site and 21 potential “off-target” sites) in transduced C6 cells. High levels of

modification (∼64.4%) at the UGT1A1 intended target was confirmed and we also detected

off-target activity at 6 additional loci (Table 4-2). Off-target sites were found in an intronic

region of the Tarsl2 gene at a frequency of ∼10% and in five other sites at low frequency.

Of note, Tarsl2 and Gbas off-target sites share only 80% sequence identity with the target

site.
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Table 4-2: UGT1A1 ZFN off-target activity at sites ranked by PROGNOS. The 22 top-

ranked cleavage sites of the UGT1A1 ZFNs, as determined by the PROGNOS ‘homology’

and ‘Conserved G’s’ algorithms, were evaluated using SMRT sequencing in transduced

C6 cells. The ‘match type’ indicates the orientation of the left (L) and right (R) nucle-

ases at the site and the length of the spacer sequence. Site sequences are listed as 5’–(+)

half-site–spacer–(-) half-site–3’. Therefore, the (+) positive half-site is listed in the reverse

anti-sense orientation as compared to the DNA sequence that the ZFN binds. In sequences,

lower-case letters indicate mismatches as compared to the target site. “C6 cell line mod-

ification frequency” is the percentage of observed sequences showing evidence of NHEJ

events. For all sites shown, significantly higher (p < 0.05) frequencies of indels were ob-

served in transduced cells as compared to mock treated cells. Our analysis revealed that

the locus near the Ftcd gene contains a homozygous C→T SNP at the second position of

the (-) half-site, introducing an additional mutation in that ZFN binding site relative to the

reference genome.

C6 Cell Line

Modification

Frequency

Mutations per

half-site PROGNOS Rankings

Closest Gene Match Type (+) (-) (+) half-site (-) half-site Homology Conserved G’s

Ugt1a1 L-5-R 0 0 CTCCGGTTCCCATGG ATGAAGGAATATGCA 1 1 64.469%

Tarsl2 L-5-R 3 3 CTCCtaTcCCCATGG ATGAAGGAAgcTGCt 9 2 10.464%

Gbas L-6-R 2 4 CTCaGGTTCCCgTGG ATGgAGGAATATctt 4 22 1.282%

Il1rapl1 L-5-R 5 2 aTCCGGTgCCCtTtt cTGcAGGAATATGCA 29 9 0.229%

Myo16 R-6-L 5 3 TtCAatgcCCTTCAT CCtTGGGtACtGGAG 205 12 0.157%

Ssr1 R-6-L 2 4 TGCATATTCCTTgcT gCATGGGAcCaGaAG 3 20 0.117%

Ftcd R-6-L 5 4 gtCAcAaTCCaTCAT atgTGGGAACaGGAG 240 13 0.051%

Total Sites Interrogated: 22
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4.3.2.4 Discussion

When nucleases cut at other locations in the genome other than their intended target, they

can potentially induce unwanted gene disruption, destabilization of the cell’s genome, or

transformation of the cell into a cancerous pheno- type. Therefore, it is important to reveal

potential off-target sites of a given pair of ZFNs. A pre-requisite for detecting off-target

sites is to induce sufficient on-target activity. Because of high ZFN activity in C6 cells, we

could investigate off-target effects using the PROGNOS algorithm in these cells [34]. Given

that only 21 potential off-target sites were interrogated, finding six bona fide locations of

off-target activity, validated as having a statistically significant mutation frequency greater

than untreated cells, was higher than expected. Based on off-target studies of other 3- and

4-finger ZFNs, an analysis of this size would be expected to yield perhaps four bona fide

off-target sites [34, 37, 44, 88, 101]. Moreover, this study is the first report of bona fide

off-target activity discovered for 5-finger ZFNs with heterodimeric FokI domains. In our

study, the levels of on-target activity after lentiviral transduction were much higher than

in previous studies [34]. Thus, it is probable that conducting these studies by delivering

ZFNs using a single lentiviral vector and our codon swapping approach revealed off-target

sites that wouldn’t have been detected otherwise with an approach that yielded lower on-

target activity. Our data highlight the impact of the nuclease design and of the efficacy of

delivery methods on off-target effects and thus on the biosafety of artificial nucleases for

gene therapy purposes.

4.3.3 Dosing experiments with GFP ZFNs3

The pair of ZFNs targeting a sequence in the green fluorescent protein (GFP) have been

used in many previous studies [90], but their off-target activity had never been charac-

terized. The GFP-ZFNs were transfected into a special line of HEK-293T cells with an

integrated copy of the GFP gene. Several different doses were transfected to examine the

3Collaboration with Dr. Zhong Chen and Dr. Steffen Meiler, Medical College of Georgia
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Figure 4-1: GFP-ZFN Dose Response

dose-response and to determine if a “sweet-spot” of the on-target:off-target activity ratio

could be found. We interrogated the top 23 sites ranked by the PROGNOS ‘Homology’ and

‘Conserved G’s’ algorithms [34] and found one bona fide off-target site near the TM2D1

locus resulting from homodimeric binding of the left zinc finger to a sequence with a sin-

gle A→G mismatch in the 2nd position of the right half-site. Although a dose-dependent

response for both the on-target and off-target sites was observed, the on-target:off-target

specificity ratio did not appreciably vary (Figure 4-1).
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4.3.4 TALENs facilitate targeted genome editing in human cells with high specificity

and low cytotoxicity4

4.3.4.1 Abstract

Designer nucleases have been successfully employed to modify the genomes of various

model organisms and human cell types. While the specificity of ZFNs and RGENs has

been assessed to some extent, little data are available for TALENs. Here, we have engi-

neered TALEN pairs targeting two human loci (CCR5 and AAVS1) and performed a detailed

analysis of their activity, toxicity and specificity. The TALENs showed comparable activ-

ity to benchmark ZFNs, with allelic gene disruption frequencies of 15-30% in human cells.

Notably, TALEN expression was overall marked by a low cytotoxicity and the absence

of cell cycle aberrations. Bioinformatics-based analysis of designer nuclease specificity

confirmed fairly substantial off-target activity of ZFNs targeting CCR5 and AAVS1 at six

known and five novel sites, respectively. In contrast, only marginal off-target cleavage ac-

tivity was detected at four out of 49 predicted off-target sites for CCR5- and AAVS1-specific

TALENs. The rational design of a CCR5-specific TALEN pair decreased off-target activity

at the closely related CCR2 locus considerably, consistent with fewer genomic rearrange-

ments between the two loci. In conclusion, our results link nuclease-associated toxicity to

off-target cleavage activity and corroborate TALENs as a highly specific platform for future

clinical translation.

4.3.4.2 Methods

Target sites at the two chosen human loci where identified in proximity of benchmark ZFN

targets without using previously published algorithms. TALE-based DNA binding domains

were assembled using a previously described Golden Gate assembly kit [14] that was modi-

fied with four different Level 3 destination vectors to express functional nuclease monomers

4Modified from: Mussolino C, Alzubi J, Fine EJ et al. (2014). TALENs facilitate targeted genome editing

in human cells with high specificity and low cytotoxicity. Nucleic Acids Research [79]
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based on our previously optimized TALEN scaffold [80] (∆135/+17). These vectors in-

cluded the 17.5th repeat and the wild-type FokI cleavage domain (pVAX CMV TALshuttle(xx);

‘xx’ stands for the four different 17.5th RVDs used, NI, NG, HD and NN). The ZFN ex-

pression plasmids were generated by subcloning previously published zinc-finger arrays

(codon-optimized and synthesized by GeneArt/Life Technologies, Regensburg) into the

pRK5.N backbone [3], which includes an N-terminal HA tag and the SV40 nuclear local-

ization domain and either of the obligate heterodimeric FokI variant KV or EA [114] at the

C-terminus.

HEK-293T cells were cultured in Dulbeccos modified Eagles medium (DMEM, PAA)

supplemented with 10% Fetal Bovine Serum (FBS, PAA), 100 U/ml penicillin (PAA) and

100 µg/ml streptomycin (PAA). Cells were transfected with polyethylenimin (PEI) as pre-

viously described [80]. Genomic DNA was extracted from HEK-293T cells 3 days post-

transfection with ZFNC, ZFNA, TC06, TC-NC, TA04 or empty vector. Potential off-target

sites for the TALENs were chosen from the PROGNOS RVD-5TC and Homology-5TC

rankings to contain a mixture of the top-ranked sites from both algorithms [34]. In addi-

tion, CCR2 was also interrogated for the TC-NC TALENs to facilitate comparison at that

off-target site, even though this site did not appear in the 5TC PROGNOS rankings because

of the lack of the 5’ pyrimidine in one of the half-sites. The ‘specificity factor’ in Tables 4-3

and 4-4 is calculated as the ratio of on-target to off-target mutagenesis frequency based on

the detected indels events.

4.3.4.3 Results

We investigated the specificity of our CCR5- and AAVS1-specific designer nucleases by

high-throughput sequencing at potential off-target sites predicted in silico using the recently

developed PROGNOS software [34]. When applying the bioinformatics tool, four of seven

previously validated off-target sites (Table 4-3; [37, 88]) were listed in the top 32 off-

target sites for the CCR5-specific ZFN For the AAVS1-specific ZFN, few specificity data are
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available in the literature. PROGNOS confirmed the prediction of two out of five previously

identified but not validated [50] off-target sites in the top 23 list of predicted off-target

sites. We also used PROGNOS to predict the top 15 off-target sites for TC06 and TC-NC

CCR5-specific TALENs, respectively, and the top 22 off-target sites for the AAVS1-specific

TALEN TA04.

For the CCR5-specific ZFN, we confined high-throughput sequencing analysis to those

sites that were previously identified and we confirmed off-target cleavage activity at six

out of seven sites analyzed, sometimes with disruption activities over 12%, i.e. almost as

high as at the CCR5 locus. Moreover, PROGNOS was able to predict a novel off-target

site on chromosome 5 [34]. Analysis of off-target cleavage of the AAVS1-specific ZFN

pair revealed activity of up to 4.4% at 5 out of the 23 predicted off-target sites (Table 4-4).

Hence, we validated three previously predicted off-target sites and identified and validated

two additional off-target sites for the AAVS1-specific ZFN. In addition to CCR2, the two

CCR5-specific TALEN pairs exhibited minor off-target cleavage activity (0.12%) at a total

of three off-target sites. The AAVS1-specific TALEN pair revealed statistically significant

activity (0.13%) at 1 out of the 22 predicted off-target sites (Table 4-4).

The majority of mutations retrieved at the analyzed loci consisted of short deletions in

the respective spacer sequences, as previously reported [62], and DNA repair seemed to be

driven mostly by microhomology-mediated repair.

In summary, the high-throughput sequencing results exposed important information re-

garding the specificity of the assessed nucleases. In particular, compared to the benchmark

ZFN, our CCR5-specific TALENs are better tolerated when expressed in human cells and

can be designed to discriminate between highly identical sequences, such as CCR5 and

CCR2. The CCR5:CCR2 targeting ratio was determined to be in the range of 3:1 for the

ZFN, and 130:1 or 7:1 for the TALEN pairs TC-NC and TC06, respectively. The calcu-

lated ‘specificity factor’, indicating the ratio of the frequency of on-target mutagenesis to

the overall frequency of off-target mutagenesis, was 1:2 for the CCR5-specific ZFN, 60:1
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Table 4-3: Off-target sites of CCR5-specific designer nucleases. In addition to CCR5 and

CCR2, the top 14 PROGNOS off-target loci for each of the TALEN pairs and several pre-

viously identified loci for the CCR5 ZFNs were interrogated with SMRT sequencing. The

‘match type’ indicates the orientation of the left (L) and right (R) nucleases at the site and

the length of the spacer sequence. Site sequences are listed as 5’–(+) half-site–spacer–(-)

half-site–3’. Therefore, the (-) half-site for TALENs and the (+) half-site for ZFNs are

listed in the reverse anti-sense orientation compared to the DNA sequence that the nucle-

ase binds. Lowercase red letters indicate mismatches as compared to the target site. PCR

amplification failed for sites listed as “N/A”. For some nucleases, two biological replicates

(‘Rep #1’ and ‘Rep #2’) were analyzed. The ‘specificity factor’ is calculated as the ratio

of on-target to total observed off-target mutation frequencies. * indicates that significantly

higher (p < 0.05) frequencies of indels were observed in nuclease-treated cells as compared

to mock treated cells.

Nuclease

ID

Mutations per

half-site Modification Frequency Specificity

FactorClosest Gene Match Type (+) (-) (+) half-site (-) half-site Rep #1 Rep #2

ZFNC

CCR5 L-5-R 0 0 GTCATCCTCATC AAACTGCAAAAG 27.89% * 14.40% * 0.48

CCR2 L-5-R 1 1 GTCgTCCTCATC AAACTGCAAAAa 9.88% * 7.95% *

KRR1 L-5-R 2 2 GgCcTCCTCATC AAACTGgAAAtG N/A

KCNB2 L-5-R 3 1 aTgtTCCTCATC AAACTGCAAAtG 1.10% *

BTBD10 L-5-R 2 1 GTttTCCTCATC AAACTGCAAAAt 6.33% *

TACR3 L-5-R 1 3 GTCATCtTCATC AAACTGtAAAgt 12.64% *

KDM2A R-5-L 5 2 tgagaCCTCATC AAACTGtAAtAG 8.58% *

WBSCR17 R-6-L 2 2 GTtATCCTCAgC AAACTGgAAcAG 2.70% *

Total Sites Interrogated: 2 8

TC-NC

CCR5 L-15-R 0 0 TGTGGGCAACATGCTGGTC AACTGCAAAAGGCTGAAGA 11.43% * 7.85% * 59.6

CCR2 L-15-R 0 2 TGTGGGCAACATGCTGGTC AACTGCAAAAaGCTGAAGt 0.07% * 0.07% *

NRXN1 R-15-R 4 5 TaTTCAGCaaaTTGCAGTT cACTGtActAGGtTGAAGA 0.05% 0.12% *

Total Sites Interrogated: 16 16

TC06

CCR5 L-14-R 0 0 TTTGTGGGCAACATGCTGG ATAAACTGCAAAAGGCTGA 21.53% * 6.51

CCR2 L-14-R 0 1 TTTGTGGGCAACATGCTGG ATAAACTGCAAAAaGCTGA 3.08% *

TBL1X L-18-L 5 5 TaaGTaGGCAACATcCTGt CtAtCtTcTTGCCCAaAAA 0.12% *

TRMT44 L-22-L 5 3 TTTGaGGGggAaATGCTtG CCAGCgTGgTGCCCACAcA 0.12% *

Total Sites Interrogated: 16

for TALEN TC-NC and 7:1 for TALEN TC06 (Table 1). A similar trend was observed

for the AAVS1- specific nucleases. While we identified and validated five novel off-target

sites for the AAVS1-specific benchmark ZFN, with a specificity factor of 1:2, we detected

off-target cleavage activity at a single predicted site for TALEN TA04, with a calculated

specificity factor of 27:1 (Table 4-4).

4.3.4.4 Discussion

Nuclease specificity is a key factor for advancing targeted genome engineering into the

clinic. Here we show that expression of TALENs is generally well tolerated by human

cells. In contrast, expression of our ZFN pairs reduced cell survival, was associated with
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Table 4-4: Off-target sites of AAVS1-specific designer nucleases. In addition to sev-

eral previously predicted (but unconfirmed) off-target sites for the AAVS1 ZFNs [50], the

top PROGNOS off-target loci for the AAVS1 TALENs and ZFNs were interrogated with

SMRT sequencing. The ‘match type’ indicates the orientation of the left (L) and right (R)

nucleases at the site and the length of the spacer sequence. Site sequences are listed as

5’–(+) half-site–spacer–(-) half-site–3’. Therefore, the (-) half-site for TALENs and the

(+) half-site for ZFNs are listed in the reverse anti-sense orientation compared to the DNA

sequence that the nuclease binds. Lowercase red letters indicate mismatches as compared

to the target site. The ‘specificity factor’ is calculated as the ratio of on-target to total ob-

served off-target mutation frequencies. All sites shown had significantly higher (p < 0.05)

frequencies of indels were observed in nuclease-treated cells as compared to mock treated

cells.

Nuclease

ID

Mutations per

half-site Modification

Frequency

Specificity

FactorClosest Gene Match Type (+) (-) (+) half-site (-) half-site

ZFNA

AAVS1 L-6-R 0 0 ACCCCACAGTGG TAGGGACAGGAT 9.09% 0.55

CHRAC1 R-6-L 2 3 caCCCACAGTGG ctGGGACAGGAg 2.95%

ATRNL1 L-5-R 5 0 caCCCACAGatt TAGGGACAGGAT 3.71%

BEGAIN R-6-L 2 2 cCCCCACtGTGG cAGGGACAGGAc 4.40%

LINC00548 L-6-R 1 1 ACCCCACAGTaG TAGGGACAGGAa 4.15%

H19 L-5-R 1 3 tCCCCACAGTGG gAGGGcCAGGAg 1.28%

Total Sites Interrogated: 24

TA04

AAVS1 R-15-L 0 0 TCTGTCCCCTCCACCCCAC GACAGGATTGGTGACAGAA 12.57% 26.9

CPN1 L-11-R 5 5 cCacTCCCtcCCACCCCAC aAtAGGATTGGgGgCAGgA 0.13%

Total Sites Interrogated: 23

cell cycle arrest and increased cell death, all of which suggest surplus DNA cleavage at off-

target sites. Using the newly developed PROGNOS bioinformatics tool [34], we predicted

potential ZFN and TALEN off-target sites in the human genome and screened them by

high-throughput sequencing. Importantly, the top 32 ranked potential off-target sites of

the CCR5-specific ZFN included four off-target sites in the top seven that were previously

verified experimentally [37, 88] and one novel site [34]. The top 23 predicted off-target

sites for the AAVS1-specific ZFN included two previously predicted sites and allowed us

to verify a total of five novel off-target sites. PROGNOS was also successfully employed

to predict four novel off-target sites for TALENs targeting beta-globin [34]. These results

clearly validate and underline the high predictive value of PROGNOS that can be reliably

applied to predict both ZFN and TALEN off-target sites.

In our study we have profiled TALEN off-target activity in a non-clonal cell population
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with high-throughput sequencing. Many previous reports have either focused on identify-

ing the integration site of non-integrating viral vectors trapped in TALEN-induced DSBs

[84] or using Surveyor/T7E1 assays to monitor off-target activity at genomic loci predicted

by bioinformatics [113]. However, the small number of off-target sites identified and ana-

lyzed or the use of genomic DNA extracted from clonally derived cell populations or live

animals [113, 85] may likely not provide enough depth to identify rare mutagenic events

at off-target sites as those identified here. The five novel off-target sites of the widely used

AAVS1-specific ZFN are certainly of importance to those researchers currently using or

planning to use this nuclease pair for targeted integration at the AAVS1 ‘safe harbor’ lo-

cus. Given the superior toxicity profile and the absence of significant off-target activity, our

AAVS1-specific TALEN pair TA04 might be a valid alternative for targeted gene addition

into the AAVS1 ‘safe harbor’ site, in particular in primary cells.

Due to the high sequence similarity with CCR5, assessment of nuclease specificity

confirmed that the major off-target sites of our CCR5-specific ZFN and TALEN pairs were

found in the CCR2 locus. As reported before, concomitant cleavage at CCR2 and CCR5

results in deletion of the intervening sequence [21, 65]. We show that nucleases, which

are not specific enough to discriminate between these two highly similar loci (i.e. ZFNC

and TC06), induce deleterious genomic rearrangements, including deletions and inversions.

Even though not investigated further, we envision that simultaneous off-target activity on

two different chromosomes can induce translocations between two major off-target sites,

as previously shown [12]. Importantly, we show that such deleterious genotoxic events can

be restrained by using rationally designed nucleases, such as TALEN TC-NC, which shows

an unprecedented CCR5:CCR2 targeting ratio of ∼130:1. We speculate that the ability of

TALEN TC-NC in discriminating between CCR5 and CCR2 is based on the fact that one of

the two TC-NC subunits targets a T in position 0, which is not present in CCR2. Thus, the

5’-T can be used as a major discriminant between highly similar off-target sites to overcome

cytotoxic side effects.
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Examination of the few off-target sites shows that TALENs tolerate up to five mis-

matches in their 19-bp target half-sites. Whether the position of these mismatches has

an impact on the overall binding affinity of TALEN monomers has not been addressed

here. In any case, a systematic analysis of TALEN off-target activity may provide novel

design guidelines that can be taken into consideration in the future to avoid potential off-

target activity at sites with more than 74% nucleotide identity to the intended target site.

Our sequencing data revealed some off-target mutagenic events at predicted homodimeric

TALEN off-target sites for our CCR5-specific TALENs. Thus, TALEN specificity can be

further increased by coupling the TALE DNA binding domains to obligate heterodimeric

FokI endonuclease variants [30, 108] that have been shown to abolish cleavage of ZFNs at

homodimeric off-target sites [37]. Even though most of our findings are based on TALENs

with the ∆135/+17 scaffold developed in the Cathomen lab [80], we believe that they can

be extended to alternative TALEN designs with longer linkers [77]. Importantly, as shown

for ZFNs [47], our short 17-residue linker may improve specificity by limiting spacer tol-

erability. Additionally, intranuclear concentration of the designer nucleases and duration

of the expression are important parameters affecting cleavage specificity. For instance, de-

livery of a CCR5-specific ZFN pair in the form of proteins resulted in short persistence in

the transduced cells and was associated with reduced off-target activity at CCR2 [39].

We systematically measured higher off-target activity of the CCR5-specific ZFNs than

previously published [37, 88]. We reason that this is most likely due to the cell line (HEK-

293T versus K562 cells) and the transfection method (PEI versus nucleofection) that we

used, which may result in higher intranuclear nuclease expression levels. Also, our ZFNs

contain a slightly different obligate heterodimeric FokI domain [114] compared to the most

commonly used one [76] and a different epitope tag (HA versus FLAG). Given that we were

able to identify previously reported off-target sites at much higher frequencies demonstrates

that PEI-mediated transfection of HEK-293T cells represents an ideal ‘mutation-prone sys-

tem’ to evaluate nuclease specificity and further emphasizes the high specificity of the
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TALENs tested here.

Taken together, our results establish TALENs as a safe and specific platform to edit

the human genome, paving the way for their use for clinical translation. As mentioned

previously, RGENs have been established as a versatile tool to modify the human genome

[73, 19]. Although there has been some concern regarding their specificity [35, 87, 53, 21],

it will be interesting to see whether this novel class of designer nucleases can match the

high specificity set by TALENs, e.g. as recently shown by truncating the gRNA molecule

[36].

4.3.5 Functional Gene Correction of IL2RG by TALEN-mediated Genome Editing5

4.3.5.1 Abstract

Gene editing with engineered nucleases allows for precise and complex changes to be made

to the human genome, but translation of this technology for the treatment of human disease

is complicated by the diversity of disease-causing mutations in patient populations. Here

we show that nuclease-mediated targeting of IL2RG cDNA to IL2RG Exon 1 provides

endogenous control over transgene expression, functionally correcting the IL2RG gene.

Using TALENs, we achieved high frequencies of IL2RG gene replacement in cell lines (up

to 20%) and CD34+ hematopoietic stem/progenitor cells (up to 2.9%). Targeted addition

of wild-type IL2RG cDNA to the endogenous IL2RG promoter showed decreased levels of

IL2Rγ activity, but modification of the cDNA with codon-optimization and the introduction

of an artificial intron increased IL2Rγ activity to wild-type levels. Off-target activity was

analyzed in 293T, K562, and CD34 cells. This strategy has potential clinical application

for multiple genetic diseases by providing a functional gene in patients with essentially any

disease-causing mutation while maintaining endogenous gene expression patterns.

5Modified from: Kildebeck EJ, Clark JT, Hendel A, Fine EJ, Bao G, Porteus MH (manuscript in prepa-

ration). Functional Gene Correction of IL2RG by TALEN-mediated Genome Editing
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Table 4-5: Off-target site identification in 293T cells. The top PROGNOS off-target loci

for the IL2RG TALENs were interrogated with SMRT sequencing. The ‘match type’ in-

dicates the orientation of the left (L) and right (R) nucleases at the site and the length of

the spacer sequence. Site sequences are listed as 5’–(+) half-site–spacer–(-) half-site–3’.

Therefore, the (-) half-site for TALENs is listed in the reverse anti-sense orientation com-

pared to the DNA sequence that the nuclease binds. Lowercase red letters indicate mis-

matches as compared to the target site. All sites shown had significantly higher (p < 0.05)

frequencies of indels were observed in nuclease-treated cells as compared to mock treated

cells.

Mutations per

half-site Modification

Frequency

TALEN v2.0

RankingClosest Gene Match Type (+) (-) (+) half-site (-) half-site

IL2RG R-14-L 0 0 TAATGATGGCTTCAACAT ATTCCCTGGGTGTA 18.18% 1

TNN L-15-L 2 3 TACACCCAtGaAAT ATgCCtTGGtTGTA 9.08% 2

HDDC2 L-25-L 1 4 TACACtCAGGGAAT ATTCtCTGGagGcA 0.62% 4

TMEM182 L-14-L 1 4 TACACCCAGGtAAT AcTCCCTGaaTtTA 0.71% 9

DEK L-11-L 4 1 TACAgCtgGGGAAa ATTgCCTGGGTGTA 0.90% 12

GPD2 L-13-L 3 4 TACACCaAaGaAAT ATTttCTGGtTGTt 2.52% 23

SLC19A1 L-13-L 1 4 aACACCCAGGGAAT ATTCCtTGGGTcgc 0.70% 24

CCDC171 L-30-L 3 3 acCACCCAGaGAAT ATgCCtTGGtTGTA 0.58% 25

CSNK1G3 L-17-R 3 2 TAggCCCAGGGAgT gaGTTGAAGCCATCATTA 3.73% 26

Total Sites Interrogated: 24

4.3.5.2 Results

Because HEK-293T cells have previously been shown to be a mutation-prone cell line

that can be used as a model system to screen for off-target activity [79], we first analyzed

genomic DNA from HEK-293T cells transfected with TALEN plasmids. The top 24 sites

predicted by the PROGNOS TALEN v2.0 algorithm [34] were analyzed and bona fide off-

target activity was observed at 8 sites (Table 4-5). Having determined that the TALENs did

induce off-target activity in the 293T model system, we began to investigate methods to

reduce off-target activity and the relative off-target mutagenesis tendencies of different cell

lines.

Since gene repair through homologous recombination was the ultimate goal of our ap-

proach, we next examined off-target activity in the K562 cell line—a model system for

homologous recombination. Furthermore, because delivery of nuclease protein has been

previously linked to lower off-target activity compared to expression from plasmids [39],

we sought to also examine the effects of delivery as mRNA transcripts compared to DNA
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Table 4-6: Off-target activity in K562 cells. The top PROGNOS off-target loci for the

IL2RG TALENs were interrogated with SMRT sequencing. Consistent activity across all

replicates was observed at the locus near TNN. On-target activity was quantified as the

percentage of sequences modified through either NHEJ or HDR. ‘NHEJ’ sequencing reads

are the number of observed sequences containing evidence of indels in the TALEN target

site.

Nucleic Acid Replicate

On-Target:Off-Target

Ratio

TNN Locus

Modification Frequency

Sequencing Reads

NHEJ Total

Plasmid 1 57:1 0.36% 13 3614

Plasmid 2 52:1 0.32% 7 2161

Plasmid 3 38:1 0.41% 10 2443

mRNA 1 36:1 1.33% 18 1350

mRNA 2 22:1 1.46% 18 1230

mRNA 3 47:1 1.08% 60 5540

plasmids. We therefore nucleofected K562 cells with donor DNA to act as a template for

homologous recombination, and either mRNA or plasmids encoding the TALENs. In all

samples tested, the off-target site near the TNN locus, which was found to have the highest

level of off-target activity in HEK-293T cells (Table 4-5), also had the highest off-target

activity in K562 cells. However, while the ratio of on-target activity to off-target activ-

ity near TNN was ∼2:1 in HEK-293T cells, the ratios were much higher (i.e. less off-target

activity) in K562 cells (Table 4-6), affirming the notion that HEK-293T cells are highly sus-

ceptible to off-target nuclease activity. While we observed consistent activity at the TNN

locus across all replicates, providing evidence that nuclease off-target activity is a highly

repeatable phenomenon, we did not observe any statistically significant differences in the

on-target:off-target ratios between plasmid and mRNA delivery of the TALENs (although

the ratio was 1.4-fold greater for plasmid delivery).
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4.3.6 TALEN pairs with one inactive FokI domain have increased specificity6

4.3.6.1 Abstract

Transcription Activator-Like Effector Nucleases (TALENs) have the potential to become

a powerful tool for genome editing in a wide range of biomedical applications. However,

TALEN pairs that target an intended gene locus (on-target) may also cleave similar se-

quences in the genome (off-target), inducing genomic mutagenesis and instability. Here

we show that TALEN pairs targeting the human beta-globin gene with one inactive FokI

domain had similar levels of on-target gene modification, but lower levels of off-target

cleavage compared with the TALEN pair having two active FokI domains (normal TALEN

pair), in contrast to ZFN nickase pairs. TALEN pairs with one inactive FokI domain may

thus prove a general method for improving the specificity of TALENs for genome editing

applications.

4.3.6.2 Results

As a potentially effective way to reduce TALEN off-target mutagenesis, we constructed and

evaluated TALEN pairs that consist of one inactive and one active FokI domain, similar to

the “nickase” Zinc Finger Nucleases (ZFNs) [94, 128]. Specifically, four TALEN pairs

were constructed and characterized based a previously validated TALEN pair targeting the

β-globin mutation responsible for sickle cell anemia, with ‘L4’ and ‘R4’ representing the

‘left’ and ‘right’ TALENs respectively [125]:

i) a pair with both FokI domains active (L4+/R4+, referred to as normal pair of TALENs)

ii) a pair with the right FokI domain inactivated (L4+/R4-)

iii) a pair with the left FokI domain inactivated (L4-/R4+)

iv) a pair with both FokI domains inactive (L4-/R4-).

6Modified from: Cradick TJ, Lindsay C, Kumaran RI, Fine EJ, et al. (manuscript in revision). TALEN

pairs with one inactive FokI domain have increased specificity
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Table 4-7: L4+R4+ TALEN off-target activity at sites ranked by PROGNOS. 49 sites

were chosen for interrogation based on the top-ranked sites of the L4R4 TALENs, as de-

termined by a mixture of the ‘Homology’ and ‘RVDs’ PROGNOS algorithms (preference

given to potential heterodimeric sites), were evaluated using SMRT sequencing in trans-

fected HEK-293T cells. The ‘match type’ indicates the orientation of the left (L) and right

(R) nucleases at the site and the length of the spacer sequence. Site sequences are listed

as 5’–(+) half-site–spacer–(-) half-site–3’. Therefore, the (-) negative half-site is listed in

the reverse anti-sense orientation as compared to the DNA sequence that the TALEN binds.

In sequences, lower-case letters indicate mismatches as compared to the target site. “293T

cells modification frequency” is the percentage of observed sequences showing evidence of

NHEJ events. The target site in the HBB gene contains a mismatch in the left binding site

because the TALEN is designed to target the sickle allele, not the wild-type allele found in

293T cells. For all sites shown, significantly higher (p < 0.05) frequencies of indels were

observed in nuclease-treated cells as compared to mock-treated cells.

293T Cells

Modification

Frequency

Mutations per

half-site

Closest Gene Match Type (+) (-) (+) half-site (-) half-site

HBB L-15-R 1 0 TGCACCTGACTCCTGa TACTGCCCTGTGGGGCAA 39.57%

HBD L-15-R 2 2 TGCAtCTGACTCCTGa cAaTGCCCTGTGGGGCAA 12.66%

GREB1L L-17-R 5 5 TaCAgCTaACaCaTGT TACTtgCtTGTGGGGtAg 0.39%

TMED10 L-14-R 5 5 TGtACCccACTCCTcc TACTGtttTGTtGGGtAA 0.09%

Total Sites Interrogated: 49

Here, ‘+’ or ‘-’ represent respectively TALEN monomers with an active or inactive FokI

domain. The on- and off-target cleavage activities were systematically quantified for all

four pairs of TALENs. We found that TALEN pairs with one inactivated FokI domain had

the same on-target activity as the normal TALEN pair in HEK-293T cells, but with lower

off-target activity.

Initially, an off-target screen was conducted using the L4+R4+ ‘normal’ TALEN pair

at potential off-target sites predicted by the PROGNOS algorithm [34]. From this search,

three heterodimeric off-target sites were discovered (Table 4-7)—heterodimeric sites were

of particular interest for this study because they would allow analysis of how the inactiva-

tion of one of the two FokI domains affected activity.

Following the initial off-target screen, we determined that the sites at the HBD and

GREB1L loci had off-target activity sufficiently above the detection limit of the assay to

warrant investigation using the inactive FokI domains. Using SMRT sequencing, the HBB,

93



Figure 4-2: TALEN pairs with one inactivate cleavage domain have lower off-target

NHEJ. Using SMRT sequencing, the on- (HBB) and off-target (HBD, GREB1L) indel per-

centages were calculated and compared for the variants to the level of the L4+/R4+ TALEN

pair.

HBD, and GREB1L loci were analyzed from HEK-293T cells transfected with each of

the four different TALEN pairs (Figure 4-2). As expected, the L4-R4- control TALENs

had no NHEJ activity at any loci. Surprisingly, the L4+R4- TALENs had higher on-

target activity and substantially lower off-target activity at both HBD and GREB1L than

the L4+R4+ TALENs. The L4-R4+ TALENs had reduced activity only at the off-target

site near GREB1L. At this time, the reason for the differences in performance observed by

inactivating the left vs. the right FokI domain are unknown.

4.3.7 Total increase in off-target dataset expansion

Due to the difficulty of previous off-target prediction methods, as of 2011, only 7 TAL-

ENs and ZFNs had identified off-target sites. By utilizing the solely bioinformatics-based
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Table 4-8: All nucleases investigated using PROGNOS. 9 total TALENs and 7 total

ZFNs were investigated using PROGNOS in various cell types and species. *a modified

HEK-293T cell line with a single copy of the GFP gene integrated into its genome.

Bona Fide

Sites

Total

SitesNuclease Name ZFN/TALEN Species Target Gene Cell Type Delivery Method Year Publication? Thesis Section

S2/S5 NK TALEN Human HBB HEK-293T 1 21 FuGene Transfection 2012

Fine EJ, et al. [34] Table 3-4

S2/S5 NN TALEN Human HBB HEK-293T 3 20 FuGene Transfection 2012

S1/S7 NK TALEN Human HBB HEK-293T 1 24 FuGene Transfection 2012

S1/S7 NN TALEN Human HBB HEK-293T 3 25 FuGene Transfection 2012

ZFN 3F ZFN Human HBB HEK-293T 6 23 FuGene Transfection 2012

ZFN 4F ZFN Human HBB HEK-293T 1 23 FuGene Transfection 2012

L4/R4 TALEN Human HBB HEK-293T 3 49 FuGene Transfection 2013 Cradick et al. (in revision) Table 4-7

TC-NC TALEN Human CCR5 HEK-293T 2 16 PEI Transfection 2013

Mussolino et al. [79]

Table 4-3
TC06 TALEN Human CCR5 HEK-293T 3 16 PEI Transfection 2013

TA04 TALEN Human AAVS1 HEK-293T 1 23 PEI Transfection 2013
Table 4-4

ZFNA ZFN Human AAVS1 HEK-293T 3 24 PEI Transfection 2013

GFP-ZFNs ZFN Human GFP HEK-293T* 1 23 Lipofectamine Transfection 2013 Figure 4-1

Ugt1a1-ZFNs ZFN Rat UGT1A1 C6 6 22 Lentiviral Vector 2013 Abarrategui-Pontes et al. [1] Table 4-2

L3/R3 TALEN Human IL2RG HEK-293T/K562 8/1 24 FuGene / Nucleofection 2014 Kildebeck et al. (in preparation) Table 4-5

Rosa26-ZFNs ZFN Mouse Rosa26 SC-1 1 23 Lentiviral Vector 2014
Table 4-1

CCR5-ZFNs ZFN Mouse CCR5 SC-1 7 23 Lentiviral Vector 2014

Figure 4-3: Nuclease Off-Target Studies Over Time.

PROGNOS algorithms to predict off-target sites, we were able to study 16 different nucle-

ases and identify bona fide off-target sites for all of them (Table 4-8). This represents an

increase of ∼230% over the 2011 level. Further underscoring the contributions of PROG-

NOS to the field is the fact that only one study was published between 2011 and 2014

identifying off-target sites for a new nuclease (Figure 4-3). In total, the nucleases studied

by PROGNOS represent over half (64%) of all published ZFNs and TALENs with known

off-target sites.
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4.3.8 Engineered nucleases and lentiviral vectors have different off-target profiles7

4.3.8.1 Introduction

Gene therapy approaches continue to gain momentum as methods employing integrating

viral vectors [2] or engineered nucleases [41] demonstrate great success in improving effi-

cacy. However, “off-target” effects remain a major safety concern as the negative outcomes

of the X-SCID clinical trials [46] continue to haunt the field. Potentially harmful modi-

fications to the genome can be made by viral vectors randomly integrating their cargo or

by nucleases—including zinc-finger nucleases (ZFNs), transcription activator-like effec-

tor nucleases (TALENs), and RNA-guided endonucleases (RGENs) such as CRISPR/Cas9

systems—creating DNA breaks at locations other than their intended target site, which are

then repaired in an error-prone manner by non-homologous end-joining (NHEJ). While

many factors influence whether the off-target effects will result in an adverse clinical out-

come, one metric that can be used to compare gene therapy methods is the genomic context

of the off-target event. For example, disruptions within genes are more likely to be detri-

mental to a patient than those in regions with no currently known function.

We used the QuickMap tool [4] to compare the genomic contexts of the off-target events

between two prominent gene therapy platforms: lentiviral vectors (LVs) and engineered

nucleases. Our LV dataset consisted of 806 integration sites gathered from three indepen-

dent publications. By combining nearly all bona fide off-target sites identified for ZFNs,

TALENs and RGENs in the human genome to date (totaling 282 sites from 35 different

nucleases), we created an engineered nuclease dataset of sufficient size to permit statistical

comparisons. As a control, QuickMap provides a dataset of 106 random locations in the

human genome.

7Modified from: Fine EJ & Bao G (manuscript submitted). Engineered nucleases and lentiviral vectors

have different off-target profiles
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4.3.8.2 Datasets

All sites were converted to coordinates in the hg19 build of the human genome prior to

QuickMap analysis.

Our engineered nuclease dataset is drawn from a diverse set of observations in order to

ensure that the results are truly representative. The results were obtained from the experi-

ments described in this thesis and 12 additional manuscripts [53, 35, 119, 88, 87, 21, 22, 68,

37, 101, 57, 43, 51], from 7 independent laboratories which employed 9 different methods

to locate off-target activity. The set of 282 off-target sites is diverse, consisting of 35 differ-

ent nucleases with a mean of 8 sites per nuclease and only a modest non-parametric skew

of 0.43 due to the presence of some nucleases with larger numbers of identified off-target

sites.

Our lentiviral vector (LV) integration site dataset is drawn from 6 separate transductions

of 4 different cell types by 3 independent laboratories [121, 5, 7]. Although there are many

additional publications analyzing LV integrations, only a small fraction are in human cells

(many are performed in mice) and listed the genomic coordinates of the integration events;

indeed, two of these datasets were only obtained through personal correspondence with the

authors (many thanks to Dr. Duran Üstek and Dr. Nirav Malani).

4.3.8.3 Results

In comparing the two platforms, we observed marked differences in the preference of where

off-target activities occurred. Compared to the random dataset, LVs showed a strong pref-

erence (3.2-fold) for integration within cancer-associated genes, which was not observed

in the off-target activity of nucleases (Figure 4-4a). For off-target events within genes, LVs

also showed a clear preference compared to the random control (1.7-fold), whereas nucle-

ases only had a modest preference (1.3-fold) (Figure 4-4b). In contrast, nucleases modify

exons much more frequently than LVs (Figure 4-4c). Finally, we compared the three dif-

ferent major classes of engineered nucleases (ZFNs, TALENs, and RGENs) and found no
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Figure 4-4: Comparison of engineered nuclease and lentiviral vector off-target pro-

files. Error bars are 95% confidence intervals. P-values calculated using two-tailed Fisher’s

exact test. (a) Percentage of sites located within cancer-associated genes. (b) Percentage of

sites located within all genes. (c) Percentage of sites located within exons. (d) Comparison

of the percentage of sites located within genes for different types of engineered nucleases.

statistically significant difference between the percentage of off-target sites located within

genes (Figure 4-4d), suggesting a similar underlying mechanism in how off-target sites are

accessed. The limited sample size did not permit statistically meaningful comparisons for

other metrics such as cancer-associated genes or exons for the three classes of engineered

nucleases.

4.3.8.4 Discussion

There are some limitations to our study. One limitation is that most engineered off-target

studies take place in immortalized cell lines. Indeed, in our dataset, all sites were discov-

ered in K562, HEK-293, or U2OS cells except for two sites found in hESCs. In contrast,
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many LV integration site analyses take place in primary cells. To compensate for this, we

obtained LV data from HEK-293 and K562 cells to make our datasets more comparable.

However, as we lack substantial data on engineered nuclease off-target activity in primary

cells, it remains possible that the location pattern reported here are different than what

might be observed in primary cells.

In conclusion, our study shows that engineered nucleases and LVs can produce different

profiles of off-target modifications. Whether disruptions within exons or within cancer-

associated genes are more prone to trigger adverse clinical outcomes will require future

investigations.

4.4 Conclusion

The large number of additional nucleases that were able to be successfully analyzed by the

PROGNOS algorithms [34] to locate new bona fide off-target sites demonstrates that the

two major goals of the original approach were achieved:

• A method so easy to apply that it could be readily used on large numbers of nucleases

• Reasonably accurate predictive algorithms that successfully locate sites of bona fide

off-target activity

The substantial (∼230%) increase in the total number of ZFNs and TALENs with known

bona fide off-target sites created a dataset large enough to attempt to use for machine learn-

ing and also allowed insight into the nature of the genomic context of where nuclease

off-target activity occurs. Throughout the course of identifying off-target sites for the vari-

ous ZFNs and TALENs, several insights into the general nature of nucleases and off-target

activity were gained:

• Lentiviruses can delivery ZFNs into a variety of cell types that are refractory to tra-

ditional transfection techniques and achieve robust nuclease activity.
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• ZFNs with additional numbers of zinc finger units do not necessarily confer higher

specificity.

• While varying the delivered dose of nuclease does affect the activity level accord-

ingly, there is not necessarily an optimal zone which can achieve a high on-target:off-

target ratio.

• TALENs are generally more specific than ZFNs.

• TALENs can be rationally designed to discriminate between highly similar sequences.

• The locations of off-target activity are consistent across different cell types and the

level of off-target activity is consistent across experimental replicates.

• mRNA delivery of nucleases does not necessarily confer an improved on-target:off-

target ratio compared to plasmid delivery.

• Nucleases have a distinct tendency (compared to a random control) for off-target

activity to occur in exons.

• While nucleases do not have a tendency for off-target activity to occur in cancer-

associated genes, this tendency is observed in lentiviral vectors.
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CHAPTER V

USING MACHINE-LEARNING TECHNIQUES TO IMPROVE

OFF-TARGET PREDICTION

5.1 Abstract

5.2 Introduction

Machine learning is a powerful approach for building predictive models which can greatly

facilitate the analysis of large datasets. While the field of genome engineering has histor-

ically been a relatively low-throughput environment that did not generate sufficient data

on which to train machine learning algorithms, the development of transcription activator-

like repeat nucleases (TALENs) and RNA-guided endonucleases (RGENs) based on the

CRISPR/Cas9 system have led to a rapid increase in the amount of raw data available. This

has enabled several recent efforts to incorporate machine learning techniques into genome

engineering research. Doench et al. [27] trained a logistic regression classifier on a dataset

of >1800 RGENs to better predict highly active target sites within genes. In the realm of

off-target analysis, Sander et al. [101] applied a Naı̈ve Bayesian algorithm to the full set of

sequences cleaved by ZFNs in vitro in order to build a model that could rank any sequence

in the genome for its likelihood as an off-target site for that pair of zinc finger nucleases

(ZFNs); this approach was later extended as a method to analyze pairs of TALENs as well

[43]. While that approach is highly effective at predicting off-target activity for a particu-

lar nuclease, the reliance on extensive experimental work to obtain the necessary in vitro

cleavage data for that nuclease limits its broader applicability.

The extreme ease with which the newer generation TALENs and CRISPRs can be de-

signed and constructed—compared to earlier technologies such as ZFNs or meganucle-

ases—has triggered a paradigm shift in the genome engineering field. It is now possible
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to rapidly create dozens of nucleases in a matter of a few weeks that are highly efficient

at modifying their intended target site. As a result, off-target prediction methods that rely

on experimental characterization of the nuclease create a bottleneck in the development

process. There is therefore a great need for methods that can predict off-target activity for

a nuclease purely in silico based solely on the sequence of the intended target site.

To address this need, we trained classifiers on a set of all known off-target sites in order

to develop two generalized models, one for ZFNs and one for TALENs, which reliably

predict off-target sites in a genome for any given nuclease target sequence. This approach

will allow for judicious target site selection in the initial design of a nuclease in order to

choose an approach that has the minimal potential for off-target activity.

5.3 Methods

The scikit-learn package for Python was used to implement all machine learning ap-

proaches.

5.3.1 Feature Extraction

All features were scaled to values between 0 and 1 for input into learning algorithms since

many algorithms are not scale invariant. Because ZFNs and TALENs can target different

lengths of sequence as well as different bases at each position, special care was taken to

ensure that all features could be generalized to any ZFN or any TALEN.

Because ZFNs and TALENs operate as dimers, most of the features were extracted

separately for each monomeric half-site. During training, the ordering of the ‘left half-site’

vs. ‘right half-site’ designation was randomized in order to eliminate any biases.

5.3.1.1 ZFNs

Because ZFNs consist of individual zinc fingers that bind to a triplet of bases, many features

were created relating to the division of the intended binding site into base triplets. There is

well-documented evidence that many zinc finger subunits exhibit context-dependent effects
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due to the bases surrounding the triplet, but a generalized set of rules regarding these effects

has not been established [72].

The following were extracted as one-hot encoded features (either 1 if the statement was

true, or 0 if it was false) separately for each half-site:

• The closest base to the FokI domain is matched to its target sequence

• The 2nd closest base to the FokI domain is matched to its target sequence

• The 3rd closest base to the FokI domain is matched to its target sequence

• The closest triplet of bases to the FokI domain has 0 mismatches

• The closest triplet of bases to the FokI domain has 1 mismatch

• The closest triplet of bases to the FokI domain has 2 mismatches

• The closest triplet of bases to the FokI domain has 3 mismatches

• The furthest triplet of bases from the FokI domain has 0 mismatches

• The furthest triplet of bases from the FokI domain has 1 mismatch

• The furthest triplet of bases from the FokI domain has 2 mismatches

• The furthest triplet of bases from the FokI domain has 3 mismatches

• The 3rd further base from the FokI domain is matched to its target sequence

• The 2nd further base from the FokI domain is matched to its target sequence

• The furthest base from the FokI domain is matched to its target sequence

The following were extracted as decimal percentages (i.e. ranging from 0–1) regarding

the triplets lying between the most proximal triplet to the FokI domain and the most distal

triplet from the FokI domain:
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• The % of triplets that contain 0 mismatches

• The % of triplets that contain 1 mismatch

• The % of triplets that contain 2 mismatches

• The % of triplets that contain 3 mismatches

• The % of triplets that contain a matched base at the position proximal to the FokI

domain

The following were extracted as decimal percentages (i.e. ranging from 0–1) regarding

the full sequence of each half-site:

• The % of all positions where the base matches the intended target (Homology)

• The % of intended guanosine targets that remain matched (Conserved G’s)

The following were extracted as decimal percentages (i.e. ranging from 0–1) regarding

the relationship between the two half-sites:

• The ratio of %Homologies of [less well-matched half-site]:[more well-matched half-

site] (so that the resulting value is ≤ 1)

• The ratio of %Conserved G’s of [less well-matched half-site]:[more well-matched

half-site] (so that the resulting value is ≤ 1)

5.3.1.2 TALENs

Many of the extracted features were based on the approach of the TALEN v2.0 algorithm

previously developed (Section 3.3.3.2). Interactions between individual RVDs and the cor-

responding DNA bases in a target site were scored using binding frequencies derived from

SELEX experiments as previously described (Table 3-1). As in the TALEN v2.0 algorithm,

the concepts of TALEN polarity [75] and the effects of strong RVDs [112] were also taken

into account.

104



The following features were extracted as decimal percentages (i.e. ranging from 0–1)

by normalizing the RVD-DNA interaction scores of the potential binding site to the RVD-

DNA interaction scores of the intended binding site:

• The normalized score of position 0 (5’ to where the RVDs begin)

• The average normalized score of positions 1 to 5 (starting at the 5’ end of the binding

site)

• The average normalized score of positions 6 to N-5 (where ‘N’ is the 3’ distal RVD)

• The average normalized score of positions N-4 to N-1

• The normalized score of position N

• The average normalized score of all positions (0 to N)

The following were extracted as decimal percentages (i.e. ranging from 0–1):

• The percentage of strong RVDs (NN or HD) which matched their intended base

(calculated separately for each half-site)

• The ratio of the average normalized score of all positions of of [less well-matched

half-site]:[more well-matched half-site] (so that the resulting value is ≤ 1)

5.3.2 Cross-Validation

In order to mitigate the possibility of over-fitting the model to the training data, we utilized

a nested (5 iterations) 4-fold cross-validation strategy. Because the ratios of the two classes

in our datasets are highly unbalanced, we used the StratifiedKFold method which en-

sures that each fold contains the same percentage of each class (i.e. bona fide active vs.

inactive/untested) as the overall dataset.

The average precision (the area under the Precision-Recall curve) was used as a metric

to score the performance of the classifiers. To construct the Precision-Recall curve, the
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decision function of the classifier (which provides a confidence estimate of the classifica-

tion assignment, based on the signed distance to the hyperplane) was used to rank-order all

samples. The mean of the best score from each of the 5 nested cross-validation iterations

was used to evaluate the performance of a classifier.

5.3.3 Datasets

By aggregating nearly all published bona fide off-target sites for ZFNs and TALENs,

we were able to create datasets of sufficient size to permit training machine learning al-

gorithms. Because of the wide variety of experimental methods utilized in the various

manuscripts documenting off-target activity from which we drew our dataset, it is difficult

to make quantitative comparisons as to the exact level of off-target activity at each different

off-target site. Therefore rather than train an estimator to predict exact rates of off-target

activity, we strove to create a model which would classify a potential site as either ‘active’

or ‘inactive’. For our datasets, the ‘active’ class consisted of all bona fide off-target sites

as well as on-target sites. To generate the ‘inactive’ class, we used the PROGNOS algo-

rithm [34] to search the genome for all sites with >66% homology to the intended target

sequence. Since the resulting ‘inactive’ class contained ∼106 as many sites as the ‘active’

class, we selected a random subset of ∼2.5% of the ‘inactive’ sites for each nuclease in order

to reduce the computational resources required for the machine learning process. Since a

nuclease typically had several bona fide off-target sites, the number of off-target sites in the

‘active’ class outnumbered the on-target sites. In order to help guide the machine towards

recognizing the baseline biological assumption that all on-target sites should be classified

as ‘active’, we added in additional ‘spike-in’ examples of on-target sites into the datasets.

5.3.3.1 ZFNs

The ‘active’ class of our ZFN dataset consisted of 134 bona fide off-target sites gathered

from 11 different ZFNs, the on-target sites for those ZFNs, and 50 additional ‘spiked-in’

on-target sites (Figure 5-1). ∼35, 000 ‘inactive’ sites are drawn from genomic sequences
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with homology to the intended target sites. The off-target sites were uncovered using a

variety of methods and the number of off-target sites per nuclease shows only a moderate

positive skew (non-parametric skew of 0.384). Taken together, this should result in a model

that can be broadly applied to accurately predict off-target sites for any given ZFN.

5.3.3.2 TALENs

Several publications have sought to investigate off-target activity by designing TALENs

to sites that have additional highly homologous sites in the genome. While this acts as

an effective model system to examine what may affect levels of off-target activity, these

sites are trivial to locate by any off-target prediction method. Therefore, while they are

included in the ‘active’ class of TALEN sites in our dataset, any site with >87% homology

to the intended target is marked as a ‘trivial’ off-target site to denote the fact that it is not

appreciably contributing to the diversity of off-target sites in our dataset.

The ‘active’ class of our TALEN dataset consisted of 43 bona fide off-target sites gath-

ered from 14 different TALENs, the on-target sites for those TALENs, 33 ‘trivial’ off-target

sites, and 50 additional ‘spiked-in’ on-target sites (Figure 5-1). ∼35, 000 ‘inactive’ sites are

drawn from genomic sequences with homology to the intended target sites. The off-target

sites were uncovered using a variety of methods and the number of bona fide off-target sites

per nuclease shows only a moderate positive skew (non-parametric skew of 0.381). Taken

together, this should result in a model that can be broadly applied to accurately predict

off-target sites for any given TALEN.

5.4 Results

5.4.1 Hyperparameter Tuning

After testing several different machine learning algorithms, we determined that a support

vector classifer (SVC) employing a radial basis function (RBF) kernal achieved the best re-

sults on the ZFN dataset while a stochastic gradient descent (SGD) logarithmic regression

classifer employing an elastic net penalty achived the best results on the TALEN dataset. In
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Figure 5-1: Machine learning datasets

order to further refine the classifiers, we performed a grid search over a range of hyperpa-

rameters. For ZFNs, we found that setting C = 105 and γ = 10−4 achieved the best results

(Figure 5-2a). For TALENs, we found that setting α = 10−6 and the L1/L2 ratio at 0.01

achieved the best results (Figure 5-2b).

5.4.2 Training Results

After optimizing the choice of machine hyperparameters, we trained the models on the ZFN

and TALEN datasets using 4-fold cross-validation. By plotting the Precision-Recall curves

for each of the folds, we observed that each fold was clustered relatively closely around the

average of all of the folds, providing evidence that the model was not overtraining to the

dataset (Figure 5-3).

5.4.3 Performance on Hold-Out Test Set

Prior to the onset of any experiments, 10% of each dataset (ZFNs and TALENs) was set

aside to use for a hold-out test set on the final classifiers to asses the performance of the

off-target prediction models. Due to the relatively small size of the overall training sets, the

hold-outs were also limited in size (13 and 6 bona fide for ZFNs and TALENs respectively),
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Figure 5-2: Hyperparameter Tuning. Results of a grid search over a range of hyperpa-

rameters. (a) Tuning a support vector classifier using a radial basis function kernal on the

ZFN dataset. (b) Tuning a stochastic gradient descent logarithmic regression classifer with

an elastic net penalty on the TALEN dataset.

Figure 5-3: Cross-validation on training set. Performance of individual cross-validation

folds compared to the average of all folds for the ZFN (a) and TALEN (b) classifiers.
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Figure 5-4: Testing performance of classifiers on hold-out datasets. Performance on

the full training set, the hold-out test set, and the average performance across folds of the

cross-validation for the ZFN (a) and TALEN (b) classifiers.

resulting in a somewhat coarse-grained Precision-Recall plot. Nevertheless, we observed

relatively high concordance between the performance of the models on the training and

test sets (Figure 5-4), increasing our confidence that the classifiers were not overtrained

and that these results can be used to estimate their performance on future off-target studies

of nucleases.

5.4.4 Cross-Validation by Nuclease

In addition to performing standard cross-validation on the whole dataset, we performed an

additional type of cross-validation based on the off-target sites of the individual nucleases.

Rather than dividing the training set into random folds for cross-validation, we trained

the classifier on all sites except for those of a particular nuclease, and then assessed the

performance of the classifier on that nuclease (Figure 5-5). As expected, the precision-

recall curves for any individual nuclease are less smooth than the average performance, but

overall the classifier seemed to have similar performance across a wide variety of nucleases.

To quantify the performances, we calculated the coefficient of variation (CV)—the standard

deviation divided by the mean—of the AUC. For ZFNs, the CV across all nucleases was

50%, but if two extreme outliers (the GFP ZFNs and the Li Mouse Albumin ZFNs) are
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excluded, then the CV drops to 35%. The CV across all TALENs was 29%.

5.4.5 Comparison to Other Off-Target Prediction Algorithms

After validating that the classifiers were not over-trained, we compared their performance

to the previous algorithms developed in Chapter 3. Specifically, we used three metrics to

measure algorithm performance. As in Chapter 3, we calculated the precision within the

top 16 rankings (taking the mean across all nucleases) and also the percentage of all bona

fide sites found within the search limit for each nuclease (the search limit is defined by the

number of sites interrogated in the original study that uncovered the bona fide sites). Addi-

tionally, we calculated the average precision (the area under the Precision-Recall curve) of

the classifier for each nuclease.

The ‘ZFN 02’ classifier developed through machine learning represented a 14% im-

provement over the best previously developed algorithm (Figure 5-6a). Delving deeper

into the individual metrics, the ‘ZFN 02’ classifier outperformed all previous algorithms in

all three measurements (Figure 5-6b).

The ‘TALEN 04’ classifier developed through machine learning represented a more

modest, but still readily observed, 7% improvement over the best previously developed

algorithm (Figure 5-6c). Looking at the individual metrics, the ‘TALEN 04’ classifier out-

performed all previous algorithms in terms of average precision and the percentage of bona

fide sites within the search limit, but several other algorithms had slightly better perfor-

mance in terms of the precision within the top 16 rankings (Figure 5-6d).

5.4.6 Insights from Feature Weightings

Because the TALEN classifier was constructed using a logarithmic regression algorithm,

each feature is assigned a discrete value during training. These weighting values provide

insight into what the most influential features are—what has the most impact on TALEN

specificity. Previous experimental data had provided evidence that there can be a ‘polarity’

effect where mismatches in the 5’ region of the TALEN binding site less well tolerated
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Figure 5-5: Cross-Validation by Nuclease. Performance of classifiers trained on all data

except the indicated nuclease and then tested on that nuclease for ZFNs (a) and TALENs

(b). Average performance of all classifiers is shown by the thicker brown line.
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Figure 5-6: Performance of different off-target prediction algorithms. Comparing the

overall performance across all nucleases of different predictive algorithms for ZFNs (a, b)

and TALENs (c, d).
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Figure 5-7: Positional feature weightings of the TALEN classifier. Weightings assigned

to different features of the ‘TALEN 04’ classifier along the axis of the target site beginning

with the 5’ base and ending with the RVD closest to the FokI nuclease (Fn) domain.

than mismatches in the 3’ region of the binding site [75]. Looking at the features in this

classifier, we were able to see a clear trend matching this experimental observation in that

the RVDs in positions 1 to N-5 were weighted very highly, RVDs in positions N-4 to N-

1 less so, and the last RVD (furthest in the 3’ direction) substantially lower (Figure 5-7).

However, we also observed a low weighting assigned to the 5’ base by the classifier.

5.5 Discussion

Evidence from the cross-validation analyses indicated that these algorithms do not appear

to be over-trained, and that their performance on these test-sets provides a close approx-

imation to how the algorithms will perform on future ZFNs and TALENs. The internal

cross-validation analysis found relatively low variance between the different folds using

the optimized hyperparameter settings (Figure 5-3). Furthermore, testing the algorithms on

the ‘hold-out’ datasets showed only a slight reduction in performance compared to the av-

erage performance of the internal cross-validation (Figure 5-4). However, the small size of

the ‘hold-out’ datasets (an unavoidable limitation given the current number of total known

ZFN and TALEN off-target sites) somewhat limits the interpretation of those findings.
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Since the overall goal of the algorithms is to be able to predict the off-target behavior

of a novel ZFN or TALEN solely based in information gathered about other nucleases,

we sought to also cross-validate the algorithms by testing their performance using each

different nuclease as a test-set. Although the performance differences between individual

nucleases were certainly greater than the randomized subdivisions used for the standard

cross-validation procedures, the CVs for the two algorithms were both < 50%. The small

number of off-target sites for some individual nucleases likely contributed to the larger vari-

ability observed in this cross-validation approach. The overall lower average precision val-

ues (the area under the curve) for the ‘by nuclease’ cross-validation approach—compared

to the standard cross-validation approach—are due to the fact that additional ‘spike-in’

on-target sites were not present in the test-sets of the ‘by nuclease’ approach.

The algorithms derived from the machine learning approach outperformed the previ-

ously developed algorithms (Figure 5-6), however the gain in predictive power was more

modest than originally anticipated. These findings may reflect the limitation imposed by

the number of known off-target sites available as training data. While the two previously

developed performance metrics (the percentage of total bona fide off-target sites found

within the search limits and the precision within the top 16 rankings) are more intuitive,

we believe that average precision is a more appropriate performance metric as it is well es-

tablished in the machine learning community and better reflects the aggregate performance

of the predictive algorithm. We note that while some TALEN algorithms outperformed the

new ‘TALEN 04’ algorithm developed through machine learning in terms of the precision

within the top 16 rankings, none of the previous algorithms achieved as high of an average

precision score (Figure 5-6d).

In our analysis here of an expanded dataset of off-target sites, the ‘v2.0’ algorithms

did not retain the performance advantage over the first-generation algorithms that was pre-

viously observed (Figure 3-6). Although the ZFNv2.0 and TALENv2.0 algorithms still

performed comparably or better than the first-generation algorithms (Figure 5-6), they was
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not clearly superior. We speculate that the less sophisticated validation approaches used in

developing the ‘v2.0’ algorithms may have led them to be somewhat over-trained.

The weightings assigned by machine learning algorithms to different features can pro-

vide a variety of useful information. On one hand, the weightings can offer insight into

potential new mechanisms of how the phenomenon in question operates, which can guide

researchers towards testable hypotheses. On the other hand, if certain factors have al-

ready been experimentally validated, then seeing whether the feature weightings recapitu-

late those findings can be used as an assessment of how well the algorithm is capturing the

underpinnings of the problem in question. In our case, we observed consensus with previ-

ous publications [75] that mismatches towards the 3’ end of TALENs are better tolerated

than mismatches towards the 5’ end (Figure 5-7), indicating that the algorithm appropri-

ately captured that aspect. However, the weighting of the 5’ base was substantially lower

than the weightings of the RVDs in the 5’ region; most published evidence [79] suggests

that the 5’ base has a very high impact on TALEN binding. This could reflect an issue with

our choice of extracted features or could simply be that the weighting of the impact of a

single base and the weighting of 5 grouped RVDs are not directly comparable.

5.6 Conclusion

Using the most comprehensive list of ZFN and TALEN off-target sites compiled to date,

we successfully applied machine learning techniques to create algorithms with abilities

to predict bona fide off-target sites de novo solely based on the intended target site that

are superior to any algorithms previously developed. Although the overall improvement

in algorithm performance gained through the machine learning process was incremental

rather than transformative, we have developed a robust framework that should continue

to provide performance improvements as more bona fide off-target sites are added to the

training datasets through future investigations.
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CHAPTER VI

QUANTIFYING GENOME-EDITING OUTCOMES AT

ENDOGENOUS LOCI WITH SMRT SEQUENCING1

6.1 Abstract

Targeted genome editing with engineered nucleases has transformed the ability to introduce

precise sequence modifications at almost any site within the genome. A major obstacle

to probing the efficiency and consequences of genome editing is that no existing method

enables the frequency of different editing events to be simultaneously measured across a

cell population at any endogenous genomic locus. We have developed a novel method

for quantifying individual genome editing outcomes at any site of interest using single

molecule real time (SMRT) DNA sequencing. We show that this approach can be applied

at various loci, using multiple engineered nuclease platforms including TALENs, RNA

guided endonucleases (CRISPR/Cas9), and ZFNs, and in different cell lines to identify

conditions and strategies in which the desired engineering outcome has occurred. This

approach facilitates the evaluation of new gene editing technologies and permits sensitive

quantification of editing outcomes in almost every experimental system used (Figure 6-1).

6.2 Introduction

Genome editing with engineered nucleases is a transformative technology for efficiently

modifying essentially any genomic sequence of interest [74]. This technology utilizes en-

gineered nucleases to generate site-specific double-strand breaks (DSB) at desired genomic

1Modified from: Hendel A*, Kildebeck EJ*, Fine EJ* et al. (2014). Quantifying Genome-Editing

Outcomes at Endogenous Loci with SMRT Sequencing. Cell Reports [48]. * These authors contributed

equally to the work.
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Figure 6-1: Graphical Abstract
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locations followed by resolution of DSBs using the endogenous cellular repair mecha-

nisms of nonhomologous end-joining (NHEJ) and homology directed repair (HDR) [91].

A variety of desired genetic modifications can be achieved with this approach, includ-

ing mutation of a specific site through mutagenic NHEJ and precise change of a genomic

sequence to a new sequence through HDR. There are currently four principal families of

engineered nucleases used for gene editing: Zinc Finger Nucleases (ZFNs) [91], Transcrip-

tion Activator-Like Effector Nucleases (TALENs) [10], Clustered Regularly Interspaced

Short Palindromic Repeats (CRISPR/Cas9) or RNA-guided endonucleases (hereafter called

“RGENs”) [38, 73], and engineered meganucleases [106]. The rapid development of these

technologies is allowing for the precise alteration of genomes for numerous applications,

including plant engineering [67], generation of cell lines for basic science [107], human

gene therapy [120], and industrial applications [33].

When a new set of gene editing reagents is developed for a custom application, the

activity levels of nucleases and the frequency of the desired gene editing event at the tar-

get locus must be determined and often need to be optimized for the specific cell type and

system being used. This need has previously been met by a variety of methods including

gel-based assays to measure mutagenic NHEJ [45], gene addition of fluorescent reporters

to measure HDR [90, 109], analysis of large numbers of single cell clones, and the use of

optimization assays to measure NHEJ and HDR at engineered reporter loci [15]. While

each of these assays have their utility, each have important limitations including a lack of

sensitivity required for difficult applications (gel based assays), the use of an indirect rather

than a direct measure of genome editing (targeted gene addition of fluorescent reporters),

and the need to generate reporter cell lines (Traffic Light Reporter system). The Traffic

Light Reporter (TLR) system [15] is the only one of these assays that allows simultaneous

measurement of NHEJ and HDR by expressing GFP in cells that undergo HDR-mediated

correction of a GFP gene and expressing mCherry in cells with NHEJ-induced frameshift

mutations. While the TLR is a very sensitive assay for measuring DSB repair (DSBR)
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pathway choice, the need to generate a fluorescent reporter locus precludes measurement

at endogenous target loci and thus far has prevented the use of the TLR in human primary

cells. High-throughput sequencing of endogenous loci overcomes these limitations, but

the range of outcomes that can be measured is limited by sequencing read-lengths. Illu-

mina [132] and 454 [92] sequencing have recently been used to measure HDR and NHEJ

outcomes when single-stranded oligodeoxynucleotides (ssODNs) or plasmids with short

homology arms are used as donor templates, but the read-length limitations of these plat-

forms do not allow analysis of longer arms of homology that drive more efficient HDR and

provide the flexibility to target long gene cassettes.

Here, we present a new method for measuring genome editing outcomes at endogenous

loci using single molecule real time (SMRT) DNA sequencing, which provides read-lengths

approaching 15 kb and is an affordable approach that can be widely used. This technique

allows for analysis of gene editing frequencies when donor templates with long arms of

homology are used, which is a common strategy to increase HDR efficiency in primary

cells and for the addition of large gene inserts. Using this method, we were able to measure

simultaneous frequencies of NHEJ and HDR in primary cells and cell lines with greatly

improved detection sensitivity. We describe the use of SMRT sequencing analysis to mea-

sure genome editing outcomes and rare large insertions generated by TALENs, ZFNs, and

RGENs at the endogenous IL2RG, HBB, and CCR5 loci. In addition, we use this system

to quantify the effect of varying different parameters on the frequency of different gene

editing outcomes.

6.3 Methods

6.3.1 Plasmid Construction

IL2RG TALENs were synthesized (Genscript) using the ∆152 N-terminal domain and the

+63 C terminal domain as previously described [77] and fused to the FokI nuclease domain

and cloned into pcDNA3.1 (Invitrogen). HBB TALENs were previously described in Voit
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et al. [125]. CCR5 TALENs containing the same RVDs as previously described in Mus-

solino et al. [80] were made using a Golden Gate cloning strategy [14] and cloned with the

same N- and C- termini and nuclease domain into pcDNA3.1. CCR5 ZFNs were previously

described in Perez et al. [89]. For generating RGEN expression vectors, the bicistronic ex-

pression vector (pX330, provided by Dr. Feng Zhang, and also available through Addgene

#42230) expressing Cas9 and sgRNA were digested, and the linearized vector was gel pu-

rified. Oligo pairs for the IL2RG and HBB sites were annealed, phosphorylated, and ligated

to linearized vectors.

The IL2RG, HBB, and CCR5 targeting vectors were constructed by PCR amplifying

arms of homology from the corresponding loci using genomic DNA isolated from K562

cells. The point mutations that, upon successful homologous recombination, would be

stably integrated into the genome and prevent binding and cleavage by the engineered nu-

cleases were added as part of the PCR primers used to generate the arms of homology. The

homology arms were then cloned into a ∼2900 base pair vector based on pBlueScript SK+

using standard cloning methods.

6.3.2 Cell Culture

K562 cells (ATCC) were maintained in RPMI 1640 (Hyclone) supplemented with 10%

bovine growth serum, 100 units/ml penicillin, 100 µg/ml streptomycin and 2mM L-glutamine.

Human CD34+ hematopoietic stem/progenitor cells (HSPCs) were purchased from Lonza

(2M-101B) and thawed per the manufacturers instructions. CD34+ HSPCs were maintained

in X-VIVO15 (Lonza) supplemented with SCF (100 ng/ml), TPO (100 ng/ml), Flt3-Ligand

(100 ng/ml), IL-6 (100 ng/ml), and StemRegenin1 (0.75 µM). hESC line H1 (WiCell) was

maintained in feeder-free culture conditions in mTeSR1 (Stem Cell Technologies) on a thin

layer of Matrigel (BD). Cultures were passaged every 3-5 days enzymatically with Accu-

tase (Innovative Cell technologies). Cells were transfected between passage 45 and 47.
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6.3.3 Transient Transfection for Genome Editing

1 ∗ 106 K562 cells were transfected with 2 µg TALEN-encoding plasmid and 5 µg donor

plasmid (unless otherwise indicated) by nucleofection (Lonza) using program T-016 and a

nucleofection buffer containing 100 mM KH2PO4, 15mM NaHCO3, 12 mM MgCl2·6 H2O,

8mM ATP, 2mM glucose, pH 7.4. 4∗105 CD34+ HSPCs were nucleofected with an Amaxa

4D Nucleofector with the P3 Primary Cell Nucleofector Kit (V4XP-3032) and program

EO-100 per the manufacturers instructions. 1 ∗ 106 H1 cells were transfected with 0.5 µg

or 2.5 µg of each TALEN-encoding plasmid and 4 µg donor plasmid (unless otherwise in-

dicated) by nucleofection (Lonza) using an Amaxa 4D Nucleofector (program B-105) with

the P3 Primary Cell Nucleofector Kit (V4XP-3032) and following manufacturers instruc-

tions.

6.3.4 Flow Cytometry

Samples were collected 72h post-nucleofection and analyzed for fluorescence using an Ac-

curi C6 flow cytometer. GFP expression was measured using a 488-nm laser for excitation

and a 530/30 bandpass filter for detection.

6.3.5 Restriction Fragment Length Polymorphism Assay

Restriction fragment length polymorphism assay was performed as previously described

[16]. Briefly, Genomic DNA was extracted from transfected cells with DNeasy Blood

& Tissue Kit (Qiagen). Genomic DNA was then PCR amplified with primers flanking

the donor target region. The amplification was carried out with Accuprime polymerase

(Invitrogen), using the following cycling condition: 95°C for 5 min for initial denaturation;

30 cycles of 95°C for 30 s, 67°C for 45 s and 68°C for 120 s; and a final extension at 68°C

for 5 min. PCR products were digested with 20 U of AfIII at 37°C for ∼2h and resolved

with PAGE.
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6.3.6 Single cell clone analysis

Single-cell cloning was performed by flow cytometry cell sorting on a BD FACSAria. Ge-

nomic DNA was isolated from single clones using the Qiagen DNeasy kit (Qiagen). The

IL2RG target region was PCR amplified with Accuprime polymerase (Invitrogen) and the

following cycling condition: 95°C for 5 min for initial denaturation; 30 cycles of 95°C for

30 s, 67°C for 45 s and 68°C for 120 s; and a final extension at 68°C for 5 min. PCR

amplicons were sequenced using standard Sanger sequencing. Sequences were analyzed

using the ApE plasmid editor by M. Wayne Davis.

6.3.7 SMRT Sequencing

Genomic DNA containing IL2RG alleles was harvested from cultured K562, CD34+ HSPC,

and hESC samples using the DNeasy Blood & Tissue Kit (Qiagen). IL2RG alleles were am-

plified with Accuprime polymerase (Invitrogen) and the following cycling condition: 95°C

for 5 min for initial denaturation; 30 cycles of 95°C for 30 s, 67°C for 45 s and 68°C for

60 s; and a final extension at 68°C for 5 min for the K562 samples and 95°C for 5 min for

initial denaturation; 30 cycles of 95°C for 30 s, 67°C for 45 s and 68°C for 90 s; and a final

extension at 68°C for 5 min for the HSPC, and hESC samples. Sequencing libraries were

constructed, as previously described [117], using the DNA Template Prep Kit 1.0 (Pacific

Biosciences, Menlo Park, CA). SMRTbell libraries contained amplicons that were pooled

together, with different barcodes appended to allow multiplex analysis. Purified, closed

circular SMRTbell libraries were annealed with a sequencing primer complementary to a

portion of the single-stranded region of the hairpin. For all SMRTbell libraries, annealing

was performed at a final template concentration between 30 and 60 nM, with a 20-fold

molar excess of sequencing primer. All annealing reactions were carried out at 80°C for 2

min, with a slow cool to 25°C at a rate of 0.1°C/second. Annealed templates were stored

at -20°C until polymerase binding. DNA polymerase enzymes were stably bound to the

primed sites of the annealed SMRTbell templates using the DNA Polymerase Binding Kit
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2.0 (Pacific Biosciences). SMRTbell templates (3 nM) were incubated with 6 nM of poly-

merase in the presence of phospholinked nucleotides at 30°C for 2 h. Following incubation,

samples were stored at 4°C. Sequencing was performed within 72 h of binding using final

on plate concentration of 0.3 nM. Each sample was sequenced as previously described [96]

using DNA Sequencing Kit 2.0 (Pacific Biosciences). Sequencing data collection was per-

formed on the PacBio® RS (Pacific Biosciences) using C2/C2 chemistry and movies of 55

min in each case.

6.3.8 SMRT Analysis Pipeline

A SMRT library can contain amplicons from different genomic loci, with different barcodes

appended to allow multiplex analysis, with indels resulting from NHEJ, or with SNPs intro-

duced through dHDR. To separate out all of these components, as well as deal with variable

read quality and other artifacts introduced by the sequencing process, we implemented an

analysis pipeline using Perl (Figure 6-2).

6.3.8.1 Determining amplicon source

To begin, we take the FASTQ output files (Figure 6-2a) of the SMRT consensus sequence

generation algorithm that is provided by the PacBio RS instrument. These files are labeled

with the extension “.ccs.fastq” and contain the assigned DNA bases for each sequencing

read as well as Phred quality values (QV) indicating the degree of confidence in the as-

signment of each base. Using the wild-type amplicon sequences (excluding barcodes) that

would be expected to be contained in the SMRT library (Figure 6-2b), a BLAST database

is constructed (Figure 6-2c). All sequence reads are BLASTed against this database to

determine the amplicon from which they originated (BLAST Parameters: gapOpen 2,

gapExtend 1, reward 1, penalty -1) and also to align the read in the proper ori-

entation (because the SMRT polymerase can initially bind to either strand of DNA, some

reads are in the “sense” orientation while others are “anti-sense”). Due to trace levels of

contamination or non-specific PCR amplification, a small fraction (typically <0.5%) of the
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Figure 6-2: SMRT Analysis Pipeline
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raw sequence reads do not have a significant BLAST match to any of the expected ampli-

con sequences (Figure 6-2d) and are subsequently discarded. After all BLAST queries are

completed, each read has been mapped to a genomic site (Figure 6-2e).

6.3.8.2 Initial quality filtering

After reads have been mapped to a genomic site, reads are pairwise aligned to the expected

amplicon sequence for further analysis (Figure 6-2f). The alignment is performed using

the Needleman-Wunsch algorithm obtained from the mEmboss server (all pairwise align-

ments are performed with the parameters: gapOpen 10, gapExtend 1). PCR and the

sequencing process sometimes generate reads that are missing large segments of the 5’ or

3’ ends of the amplicon or have concatemerized amplicons together. To remove these arti-

facts, the 40 proximal bases of the 5’ and 3’ ends of the pairwise alignments are scanned

for “gaps” between the sequencing read and the expected amplicon. If more than 30 gaps

are observed at either end of the alignment, the read is discarded (Figure 6-2g); typical

loss at this step is 4%-15% of the sequencing reads. To decrease the computing require-

ments of the pipeline, a simple quality filter is applied to the reads (Figure 6-2h) and all

those with a mean Phred QV of less than 40 are discarded (Figure 6-2i); typical loss at this

step is 20%-40% of the remaining sequencing reads. Skipping this initial QV filter would

be expected to have negligible effect on the final results because low quality reads would

be removed in downstream quality filters (Figure 6-2n,y). The threshold of 40 was found

through empirical testing to be optimal for decreasing total analysis time while minimizing

the number of reads discarded using this simple preliminary filter that would have passed

through later, more complex, quality filters (Figure 6-2n,y).

6.3.8.3 De-multiplexing experimental conditions

For investigation of multiple experimental conditions at a single genomic locus, amplicons

can be barcoded and pooled together in the same SMRT library for multiplex analysis. To

determine the barcode of each sequencing read (Figure 6-2j), the 5’ and 3’ ends of the
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read are pairwise aligned against all barcode sequences for that amplicon in the library.

An additional two bases of the sequence read are included in the alignment to allow for

small errors generated during sequencing (i.e. for a 10 bp barcode, 10 + 2 = 12 bp of the

edges of the sequencing read would be aligned to each 10 bp barcode). The alignments

are analyzed for matches between a given barcode and the sequencing read. If more than

three gapped bases occur in the alignment, it is determined that that barcode does not

match the sequence. If ≥80% of the bases align in both the left and right barcodes, that

sequence is counted as a match for that barcode set. Due to sequence similarity between

barcodes and small sequencing errors, there are rare cases (0%-0.01% of sequencing reads)

where a sequencing read can match (at the ≥80% threshold) more than one barcode. Any

reads that match more than one barcode or are not matched to any barcode are discarded

(Figure 6-2k); typical loss due to reads not matching any barcode is 4-15% of the remaining

sequencing reads. The 80% threshold was found through empirical testing to be optimal

for reducing the number of reads matching no barcode while keeping the number of reads

matching to more than one barcode very close to zero. A further filter is applied to remove

any reads that have an initial gap of more than six bases at the 5’ or 3’ ends of the alignment

(Figure 6-2l); removal of reads by this filter is very rare (0%-0.1% of sequencing reads).

After all these steps are completed, the sequencing reads have been separated using the

barcodes to determine what experimental condition each read originated from (Figure 6-

2m).

6.3.8.4 Secondary quality filtering

The processivity of the polymerase used in the SMRT sequencing process is highly stochas-

tic, which leads to a wide distribution of the number of passes around the SMRTbell and

therefore a wide distribution of the quality of the consensus sequence reads. Low quality

reads containing small insertions, deletions, and substitutions must be removed so that they

do not produce false positive reports of a sequence read showing evidence of mutNHEJ
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or dHDR. Several approaches to filter low quality sequences using the Phred QV scores

were attempted, but background noise still persisted, perhaps due to the lack of a 1:1 cor-

respondence between calculated QV scores and measured empirical accuracy (Travers et

al. Figure 5 [117]). Consequently, a filter to remove low fidelity sequences (Figure 6-2n)

was constructed based on empirical comparison of the sequencing read to the expected

sequence. The sequencing read is expected to match the wild-type genomic sequence in

the positions flanking the nuclease cleavage site and excluding any SNPs introduced by the

DNA Donor Template. Therefore, the accuracy of the sequencing read in these constant

regions was used as a proxy for the accuracy of the sequence in the variable regions of the

amplicons. Specifically, the reads were scanned for substitutions, insertions, and deletions

(indels), relative to the wild type sequence that did not overlap any regions within ten bases

of DNA Donor SNPs or nuclease binding sites. The sum of the squares of the lengths of

the indels was divided by the length of the total search sequence and if the quotient was

greater than 0.03, the read was discarded (Figure 6-2o). For example, a read containing a

one bp indel and a 3 bp indel out of a total sequence length of 500 would be calculated as:

12+32

500
= 0.02; since 0.02 ≤ 0.03, this read would meet acceptable quality standards for this

filter and would remain in the pipeline. Typical loss at this step is 4%-10% of the remaining

sequencing reads.

6.3.8.5 Allele assignment

The next step in the pipeline is to determine if a sequencing read originated from an allele

that had undergone homology directed repair using the DNA Donor as a template (dHDR)

or from an allele that was the wild-type (WT) genomic sequence (Figure 6-2p). To perform

this comparison, the read is pairwise aligned to both the expected WT and dHDR amplicon

sequences (in separate steps). For each alignment, the positions of the SNPs introduced by

the DNA Donor Template are examined. If the position of the SNP, in addition to the two

flanking bases on each side (a total of five bases), contains no gaps or substitutions in the
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pairwise alignment, that SNP is counted as a match. If the percentage of matching positions

is ≥80%, then a read is declared as a match for that allele. Similar to the barcode analysis

(Figure 6-2j), in rare cases (0-0.01%), a read will be declared as matching both alleles

due to small sequencing errors; these reads are discarded from further analysis (Figure 6-

2q). Another subset of reads will not meet the threshold to match either allele (Figure 6-

2r); these are typically 0.1%-1.5% of the remaining sequencing reads. While sometimes

these reads simply do not have the necessary sequence fidelity to be confidently matched, a

substantial fraction consists of reads with a large deletion that has removed the entire region

where the SNPs exist. As these large deletions are typically resulting from a mutNHEJ

event, these reads are saved for further analysis (Figure 6-2s,t).

6.3.8.6 Detecting unanticipated SNPs

When testing different cell lines, there may often be unknown SNPs present in the cell

line that are not in the reference genome which could interfere with accurate sequence

fidelity, mutNHEJ, and dHDR analysis. To identify any unanticipated SNPs, all the se-

quencing reads in each barcode set are compiled together in a multiple sequence alignment

(Figure 6-2u) which allows analysis of the base in each sequencing read that was pairwise

aligned to a position in the expected amplicon sequence. In the unanticipated SNP analy-

sis (Figure 6-2v), any positions where 40% or more of the bases in the reads are different

than the expected base are flagged for manual inspection. In some cases, a homozygous

SNP relative to the reference genome is identified (Figure 6-2x) and the expected amplicon

sequence can be adjusted accordingly and the analysis re-run. In other cases, the SNP is

heterozygous and is simply noted for downstream steps in the pipeline. Bases flagged as

SNPs that occur near the nuclease cleavage site should be inspected very carefully, espe-

cially if the SNP analysis showed that most reads had a deletion instead of the expected

base, to determine if this “SNP” may actually be the result of high levels of mutNHEJ

modifying that position.

129



6.3.8.7 Final quality filtering

Once all SNPs have been identified, a final sequence fidelity filter can be applied to prune

any remaining low quality sequences (Figure 6-2y). This filter works similarly to (Figure 6-

2n) in that it searches for indels in the pairwise alignment and calculates an “error score”.

It differs in a few aspects though: any positions where a SNP was identified are not counted

as an indel if the base matches the alternate SNP base, only the 100 bases flanking each side

of the nuclease binding site are searched instead of the whole sequence, indels overlapping

any region except the nuclease binding site and the DNA Donor SNPs are counted instead

of allowing ten bases of “buffer” surrounding those regions in which indels would also not

be counted, and the quality threshold for excluding low fidelity sequences is set at the more

stringent 0.01 level (instead of 0.03). The 100 flanking bases are used for this filter instead

of the whole sequencing read because different portions of a longer read may have different

levels of quality and the regions flanking the nuclease binding site are presumed to be a

better proxy for the sequence quality in the binding site than regions further away. Any

reads not meeting the 0.01 error threshold are discarded (Figure 6-2z); typical loss at this

step is 5%-20% of the remaining sequencing reads.

6.3.8.8 NHEJ analysis

Once the final set of high fidelity sequencing reads has been filtered, they can be analyzed

for the presence of indels caused by mutNHEJ (Figure 6-2aa). Some indels in the sequenc-

ing reads may be due to errors in the SMRT sequencing process, so a set of guidelines was

developed to characterize indels that would result from mutNHEJ but not from sequencing

errors. For an indel to be considered to be caused by mutNHEJ, the initial requirements

are that the indel must overlap the spacer region between the nuclease binding sites and

be at least three bases long. If those criteria are met, then the following characteristics are

considered:

a) If the indel is larger than four bases, it is considered mutNHEJ
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b) If the indel consists entirely of deleted sequence, it is considered mutNHEJ

c) If the indel consists entirely of inserted sequence AND is a tandem repeat of either the

immediately adjacent 5’ or 3’ flanking sequence or allowing up to a one base separation.

Examples:

Wild-type Sequence: ACACCCAGGGAATGAAGAGCAAGCGCCATGTTGAAGCCATCATT

3 bp tandem repeat: ACACCCAGGGAATGAAGagcAGCAAGCGCCATGTTGAAGCCATC

4 bp tandem repeat: ACACCCAGGGAATGAAGagcaAGCaAGCGCCATGTTGAAGCCAT

1 base separation: ACACCCAGGGAATGAAGgcaAGCAAGCGCCATGTTGAAGCCATC

Sequencing reads previously identified in step (Figure 6-2p) as originating from dHDR

alleles theoretically should not have any mutations indicative of mutNHEJ due to the SNPs

in the nuclease binding site that should inhibit binding and cleavage. However, these reads

are still analyzed for evidence of mutNHEJ by the pipeline to ensure that this is the case. To

date, we have not observed any reads that were identified as dHDR that showed evidence

of mutNHEJ.

Once all sequencing reads have been analyzed for indels, the rates of mutNHEJ and

dHDR for each barcoded experimental condition can be determined (Figure 6-2ab). Reads

that had previously been unable to be definitively assigned as either originating from a

dHDR or WT allele (Figure 6-2r) are analyzed for indels in two configurations: pairwise

aligned to the dHDR allele (Figure 6-2s) and pairwise aligned to the WT allele (Figure 6-

2t). Only sequencing reads that show evidence of mutNHEJ in BOTH pairwise alignments

are considered to have been originally WT alleles in which mutNHEJ occurred. If indels

indicative of mutNHEJ only occur in one of the pairwise alignments, then it is possible that

it is due to small sequencing errors combined with alignments with the incorrect allele. If

indels indicative of mutNHEJ do not occur in either pairwise alignment, it is still unknown

which allele the read originated from and so it cannot be appropriately assigned. The rates

of mutNHEJ and dHDR for a given barcode set are calculated as follows:

131



Let R be the number of reads from (Figure 6-2r) with mutNHEJ indels in both

alignments.

Let W be the total number of reads assigned to the WT allele.

Let N be the number of reads in W with mutNHEJ indels.

Let D be the total number of reads assigned to the dHDR allele.

%mutNHEJ = R+N
W+R+D

%dHDR = D
W+R+D

6.3.8.9 Indel spectrum analysis

After the sequencing reads with mutNHEJ have been identified, the sizes of the different

indels are analyzed to produce a mutation spectra showing the distribution of indels created

(Figure 6-2ac). For indels consisting of both insertions and deletions, the resulting total

change in the amplicon size is used for the distribution (i.e. an indel consisting of a +7

insertion and a -3 deletion would be recorded as a +4 overall insertion). Mutation spectra

are displayed as cumulative distribution functions representing the fraction of all mutation

sizes observed that are more negative than the given value.

6.3.8.10 Systemic biases

Certain steps in the analysis pipeline introduce small amounts of systemic bias in the mea-

surements of mutNHEJ and dHDR. From the comparison of the SMRT pipeline to single

cell clone analysis, it appears that these small biases largely cancel each other out to yield

highly accurate results (Figure 6-4). However, for special applications of this pipeline,

certain biases may become more prominent and should be kept in mind. Any biases intro-

duced by the different steps are denoted at the end of the paragraphs as either increases (↑)

or decreases (↓) to the measurements of mutNHEJ or dHDR.

SMRT sequencing process:

The diffusion mechanics of the SMRT sequencing process cause shorter amplicons to be

slightly overrepresented and longer amplicons to be slightly underrepresented in the raw
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sequencing reads (Figure 6-2a). Therefore, amplicons with a large deletion caused by

mutNHEJ will be slightly overrepresented compared to wild-type amplicons while those

with large insertions caused by mutNHEJ will be slightly underrepresented. Similarly,

longer amplicons tend to have lower average sequence quality than shorter amplicons. This

is due to the reduced number of passes around the SMRTbell that can be achieved with a

given read length for longer compared to shorter amplicons. This results in reads with large

insertions tending to be discarded at a slightly higher frequency than wild-type amplicons

and reads with large deletions discarded at a slightly lower frequency (Figure 6-2 i,o,z).

↑mutNHEJ, ↓mutNHEJ

Allele analysis:

In determining whether a sequencing read originated from a dHDR allele or a WT allele

(Figure 6-2p), there are a small fraction of reads that do not contain enough SNPs for

definitive matching to either allele (Figure 6-2r). A large fraction of these reads contain

large deletions resulting from mutNHEJ that removed the entire sequence containing the

SNPs from the allele. These reads with mutNHEJ are later recovered in the indel anal-

ysis step (Figure 6-2aa), but the only way to determine if a read from (Figure 6-2r) was

originally WT or dHDR is by making the assumption that mutNHEJ can only occur in

WT alleles. Therefore, no reads can be recovered from (Figure 6-2r) that did not have

mutNHEJ which means that in the final determination of the rate of mutNHEJ in (Fig-

ure 6-2ab), the numerator and denominator are always increased simultaneously; there are

no cases where only the denominator is increased. This results in a slight overestimation

of the rate of mutNHEJ. Excluding these reads would result in an underestimation of the

rate of mutNHEJ and would also make the mutation spectra inaccurate. Since the mutation

spectra is an analysis of the types of mutations and not the overall rate of mutation, includ-

ing these reads means that the mutation spectra is accurate.

↑mutNHEJ

Indel analysis:
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In determining whether or not a sequencing read has indels indicative of mutNHEJ, some

small types of indels are ignored. Because the predominant error mode of SMRT sequenc-

ing is single inserted and deleted bases, these are discounted in the indel analysis to remove

background noise. However, this reduction in background noise comes at the cost of a

slight underestimation in the rate of mutNHEJ since it is known that mutNHEJ can pro-

duce small one or two base indels.

↓mutNHEJ

6.3.9 Statistical analysis

To calculate confidence intervals, t-statistics were calculated as previously described [88].

90% confidence intervals were calculated by determining the upper and lower bounds of the

mutation rates that would yield P values of 0.05. 66% confidence intervals were calculated

similarly using a target P value of 0.32.

6.4 Results

6.4.1 Measurement of Gene Editing Outcomes at the Endogenous IL2RG Locus

To develop a method for quantitatively and rapidly measuring the different gene alterations

occurring at an endogenous locus of interest, we used a highly active TALEN pair to stim-

ulate DSBs at the endogenous IL-2 receptor common γ-chain gene (IL2RG), mutations in

which are responsible for the congenital primary immunodeficiency SCID-X1 [58, 105].

For the introduction of precise sequence alterations at this locus, we designed a donor tem-

plate with approximately 400bp arms of homology 5’ and 3’ of the TALEN cut site (Fig-

ure 6-3a). Within the 3’ arm of homology we introduced seven point mutations that, upon

successful HDR, are stably integrated into the IL2RG gene and prevent binding and cleav-

age by the TALEN pair (Figure 6-3a,b). To measure the frequency of mutagenic NHEJ

and HDR with this system, we developed a strategy based on single molecule real time

(SMRT) DNA sequencing, a high-throughput sequencing technology capable of analyzing

long DNA fragments. First, the IL2RG locus was amplified using a forward primer that is
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5’ and outside the start of the 5’ homology arm and a reverse primer that is downstream of

the TALEN pair target site (Figure 6-3c). With this approach, non-integrated and randomly

integrated donor templates are not amplified, removing common sources of background

noise. The SMRT DNA sequencing technology allows for the determination of DNA se-

quence from individual DNA templates [31, 98]. Single-molecule read lengths approaching

15 kb were reached in this study, with an average read length approaching 3 kb. For DNA

fragments shorter than the read limit of the polymerase, improved sequence accuracy (fre-

quently reaching an average Phred QV score of 40, denoting 99.99% accuracy) is achieved

by iteratively sequencing the same circular DNA template [117] (Figure 6-3c).

To induce sequence alterations in IL2RG we expressed the IL2RG TALENs from plas-

mid DNA with or without introduction of donor DNA, and then analyzed cell popula-

tions by SMRT DNA sequencing. Following transfection with TALENs alone we detected

unmodified alleles and alleles with deletions or insertions indicative of mutagenic NHEJ

(Figure 6-3d). When cells were transfected with both the TALENs and donor DNA, we

detected unmodified alleles, alleles with deletions or insertions, and alleles with the 7 point

mutations precisely integrated into IL2RG by HDR. Notably, no alleles were detected with

both the 7 point mutations and indels indicative of NHEJ, validating the ability of the point

mutations to prevent TALEN cleavage of HDR-modified alleles. High frequencies of ‘on-

target’ IL2RG modification were observed in K562 cells under these conditions, with 18%

of alleles mutated by NHEJ and 17% of alleles precisely modified by HDR (Figure 6-3d).

Due to the PCR strategy being used, where one primer is outside of the donor template

arm of homology, essentially no background signal was detected from amplification of

non-integrated or randomly integrated donor template. Control experiments (either mock

or donor only transfections) had low background frequencies of NHEJ and HDR reads

resulting from PCR or DNA sequencing errors, which ranged from 0.00% to 0.03% for

individual samples with average frequencies of 0.007% NHEJ and 0.001% HDR. This low
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Figure 6-3: Measuring gene editing at an endogenous locus with SMRT sequencing.

(a) Sequence of the TALEN target site at the IL2RG locus and the IL2RG donor template.

The donor template harbors seven point mutations that, when integrated into IL2RG, create

silent mutations and a novel AflII restriction site. These substitutions alter the right TALEN

binding site and provide a signature for alleles precisely modified by HDR. (b) Diagram of

gene editing at an endogenous locus. TALENs create a double strand break (DSB), which

can lead to no modification, insertion or deletion mutations, or integration of point muta-

tions from the donor template. (c) Schematic of SMRT DNA sequencing analysis. The

endogenous locus is amplified by PCR, with at least one primer outside the arms of homol-

ogy of the donor template, and SMRT adapters are added to PCR amplicons. Individual

DNA molecules are sequenced by SMRT sequencing, with read lengths averaging ∼3kb in

length and approaching ∼15kb. (d) Measurement of gene editing outcomes at the IL2RG

locus in K562 cells. Modification frequencies are normalized to transfection efficiency.

Bars represent three independent biological replicates; error bars, s.d.
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level of background noise, coupled with the high-throughput nature of this approach, pro-

duces a high level of sensitivity and creates new possibilities for studying rare DNA repair

events.

6.4.2 Reliability of SMRT Sequencing Analysis at a Single Endogenous Locus

To validate the accuracy of the SMRT DNA sequencing strategy, we compared our high-

throughput results with standard gel-based assays and single cell clone analysis of K562

cells. First, we used a restriction fragment length polymorphism (RFLP) assay to measure

the frequency of HDR by measuring the presence of an AflII restriction site that is created

when the 7 point mutations within the donor template are precisely incorporated into the

target locus (Figure 6-4a). Using the RFLP assay, the AflII restriction site was detected in

an average of 14.3% of alleles normalized for transfection efficiency compared to 16.8% of

alleles by SMRT sequencing analysis of the same populations. The most commonly used

methods for determining the frequency of NHEJ measure any small deletion or insertion

events, which is confounded by sequence alterations introduced by HDR. To independently

determine the true frequency of alleles modified by NHEJ and HDR, we grew single cell

clones from a representative sample. Analysis of these clones showed that 11.3% of alle-

les had undergone mutagenic NHEJ and 11.1% of alleles had been precisely modified by

HDR, compared to frequencies of 11.2% and 11.0% respectively as measured by SMRT

sequencing analysis of the same population (Figure 6-4b); SMRT frequencies represent the

total population frequency, not normalized to transfection efficiency, in order to directly

compare to the clonal analysis. To confirm the reproducibility of SMRT sequencing analy-

sis, we analyzed a single targeted population eight times and found standard deviations for

NHEJ and HDR of 0.66% and 0.79% respectively (Figure 6-4c). This experimental vari-

ance between samples was only slightly higher than the expected statistical variance for the

number of sequences analyzed, demonstrating the reliability of this approach (Figure 6-4d).
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Figure 6-4: Reliability of SMRT sequencing analysis for measuring gene editing out-

comes at an endogenous locus. (a) RFLP analysis of K562 cells targeted with 1 µg of each

TALEN and 5 µg donor in triplicate. The frequency of HDR in each sample as measured by

RFLP and SMRT sequencing analysis is shown. (b) Quantification of NHEJ and HDR fre-

quencies in single cell clones grown from a representative population of K562 cells. Error

bars represent 90% confidence intervals. (c) A representative sample of targeted K562 cells

was analyzed by SMRT sequencing 8 separate times to determine the variability introduced

by PCR, SMRT library synthesis, and sequencing. Error bars represent 90% confidence in-

tervals. (d) Quantification of the observed experimental variation compared to the expected

statistical variation for the number of sequences analyzed for the 8 replicates. Error bars

for experimental variation represent standard deviation. Error bars for statistical variation

represent 68% confidence intervals (corresponding to the fraction of the normal distribution

covered by ±1 standard deviation).
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6.4.3 Quantification of Gene Editing at the IL2RG Locus in Primary Cells

For novel gene editing applications, moving from known conditions in commonly-used cell

lines to more difficult experimental platforms, such as induced pluripotent stem cells or pri-

mary cells, poses a significant challenge. Using the gene editing tools previously described,

we next tested our ability to measure gene editing events in CD34+ hematopoietic stem/pro-

genitor cells (HSPCs) and human embryonic stem cells (hESCs), both of which are difficult

to target, but important cell types for basic research and gene therapy. After introducing

TALENs and donor DNA into CD34+ HSPCs, SMRT sequencing analysis showed frequen-

cies of mutagenic NHEJ and HDR of 7% and 1% respectively at the endogenous IL2RG

locus (Figure 6-5a). In hESCs, which commonly require enrichment of targeted clones

due to low gene editing efficiencies, addition of our gene editing reagents resulted in muta-

genic NHEJ and HDR frequencies of 0.10% and 0.14% respectively (Figure 6-5b). Control

hESC samples transfected with only donor DNA showed background frequencies of 0.02%

NHEJ and no HDR, illustrating the very low level of background noise for this technique.

Our transfection efficiency for these hESC populations was approximately 20%, suggest-

ing that with enrichment for transfected cells we would generate modification frequencies

of 0.5-0.7%. These numbers are consistent with the numbers published by Soldner et al.

[107], who showed that after sorting for highly transfected hESCs targeting frequencies

of 0.4-0.8% were obtained. Importantly, since IL2RG is silent in both of these cell types,

these results demonstrate the ability of this approach to provide quantitative and sensitive

measures of gene editing and DNA damage repair at a silent endogenous locus in primary

cells.
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Figure 6-5: Measurement of genome editing at an endogenous locus in human pri-

mary cells. (a) Measurement of gene editing outcomes at IL2RG in CD34+ HSPCs us-

ing the high-expression TALEN plasmids. (b) Measurement of gene editing outcomes at

IL2RG in hESCs using the high-expression TALEN plasmids.

Bars represent three independent biological replicates; error bars, s.d.

6.4.4 Analysis of Gene Editing with TALENs, RGENs, and ZFNs at the Endogenous

IL2RG, HBB, and CCR5 Loci

The extraordinary expansion of gene editing technologies over recent years has created a

plethora of opportunities for researchers attempting to modify genomes. With the introduc-

tion of TALENs and RGENs, it is now possible to generate tens to hundreds of candidate

nucleases in a matter of weeks, or even days, and target multiple genomic sites simulta-

neously [11, 19, 61, 97, 131]. Via simultaneous analysis of different genomic sites and

conditions in a single SMRT sequencing run, this approach has the potential to rapidly

expedite the process of characterizing nuclease activities and optimizing targeting param-

eters. To determine the ability of this method to measure the activities of different classes

of nucleases at multiple genomic sites, we treated cells with TALENs, RGENs, and ZFNs

designed to target the IL2RG, HBB, and CCR5 genes and analyzed gene modification.

To test the relative activity of TALENs and RGENs at the IL2RG locus we first con-

structed an RGEN with a target site overlapping the target site of the IL2RG TALENs

(Figure 6-6a). Expression of the RGEN in K562 cells generated targeted mutations in 37%

of IL2RG alleles compared to only 13% of alleles using TALENs. Introduction of donor
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template DNA with either the RGEN or TALENs produced alleles modified by mutagenic

NHEJ and alleles precisely modified by HDR. As expected, the more active RGEN stim-

ulated a higher level of HDR than the TALENs with 33% and 22% of alleles harboring

the integrated SNPs respectively. Moving to a different genomic locus, we used a TALEN

pair and an RGEN targeting the HBB gene, mutations in which are responsible for sickle

cell anemia and thalassemia [40] (Figure 6-6b). At HBB, the RGEN again produced sig-

nificantly higher frequencies of gene disruption than the TALENs and stimulated higher

frequencies of HDR upon the introduction of donor template. When expressed with donor

template, the HBB RGEN mutated 41% of HBB alleles while the IL2RG RGEN mutated

21% of IL2RG alleles, suggesting that more DSBs were being created at the HBB locus.

Despite this increase in mutagenesis, the simultaneous level of HDR was only 14% at HBB

compared to 33% at IL2RG. Thus, total modification levels at HBB and IL2RG were highly

similar, 55% and 54% respectively, but the ratio of HDR to NHEJ was markedly lower at

HBB (0.34:1) than at IL2RG (1.6:1) (Figure 6-6a,b). This large difference in the efficiency

of precise gene targeting suggests that there could be intrinsic differences between these

loci affecting their ability to participate in plasmid-mediated gene targeting by HDR.

To further confirm the utility of SMRT sequencing analysis to measure targeted ge-

nomic modifications for multiple classes of nucleases, we compared the activity of previ-

ously reported ZFNs and TALENs designed to target the CCR5 locus [80, 89]. As seen at

IL2RG and HBB, addition of nucleases led to targeted disruption of the endogenous gene

by NHEJ and the further addition of donor template DNA stimulated targeted integration

through HDR (Figure 6-6c). The CCR5-specific ZFNs, variants of which are currently

being used in clinical trials for HIV [89, 115], produced higher levels of modification at

the endogenous CCR5 locus than TALENs designed to an overlapping target site. It is

important to note that in this study, stable modifications in K562 cells were measured for

TALENs, RGENs, and ZFNs 14 days post-transfection. The absolute genome editing fre-

quencies reported here are thus somewhat different than published results for previously
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described nucleases where nuclease activity was measured at different time points, in dif-

ferent cell types, and with different nuclease levels [80, 89, 126]. Nuclease-induced NHEJ

is typically measured with high nuclease levels 3 days post-transfection to detect maximal

NHEJ levels, but these modifications decrease over time due to toxicity [29, 30, 59, 70].

Instead of measuring NHEJ and HDR separately or with different transfection conditions,

SMRT DNA sequencing provides a simple alternative for comparing stable NHEJ and HDR

frequencies simultaneously.

6.4.5 Optimization of Gene Targeting Parameters

In addition to comparing different nuclease platforms, we have also used the SMRT DNA

sequencing approach to study different variables that might affect genome editing out-

comes. To explore how varying the dose of TALENs effects gene editing frequencies we

measured frequencies of NHEJ and HDR at IL2RG while progressively decreasing the

amount of TALENs transfected in K562 cells. Keeping the amount of donor DNA constant

and titrating down the amount of TALENs by 100-fold, we saw a progressive decrease in

both mutagenic NHEJ and HDR events while their relative frequencies remained largely

unchanged (Figure 6-7a). Using this approach we were able to reliably detect gene editing

outcomes at frequencies ranging from >20% at high TALEN levels to ≤0.1% at very low

TALEN levels. Even at modification frequencies of 0.1-0.4%, relative activity levels were

easily distinguished with this approach. Next, to test conditions for maximizing the fre-

quency of HDR at IL2RG, we investigated the effect of the amount of donor template DNA

on gene modification. Keeping the amount of TALENs constant and titrating the amount of

donor DNA, we saw the overall level of modification at IL2RG remain relatively constant

while the total level of HDR rose from 1.6% to 17.8% at optimal levels (Figure 6-7b). With

this rise in the contribution of HDR, the ratio of HDR to NHEJ increased from 0.12 to 1.37

with increasing abundance of donor DNA (Figure 6-7c).

Another important variable for efficient HDR-mediated DNA repair is the length of
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Figure 6-6: Measuring gene editing with different engineered nuclease platforms at

different genomic targets. (a) Left; IL2RG target site for TALENs and RGEN guide

sequence. The IL2RG start codon is shown in cyan. Right; Modification of the IL2RG

locus in K562 cells. (b) Left; HBB target site for TALENs and RGEN guide sequence. The

HBB start codon is shown in cyan. Right; Modification of the HBB locus in K562 cells. (c)

Left; CCR5 target site for TALENs and ZFNs in exon 3. Right; Modification of the CCR5

locus in K562 cells.

Bars represent three independent biological replicates; error bars, s.d.
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the homologous regions in donor DNA, which has been shown to vary between species

and in different cell types of the same species [8, 83, 127]. To determine the effect of

homology arm length on HDR efficiency with plasmid donors, we constructed a series of

donor templates with a range of homology arm lengths from 800bp to 100bp (Figure 6-

7d). At the IL2RG locus in K562 cells, homology arms 100bp or 200bp in length were

found to be significantly less effective for HDR than plasmid donor templates with 400bp

or 800bp homology arms. As would be predicted, the homology arm length did not change

the frequency of mutagenic NHEJ. In this cell type, 400bp arms of homology actually

resulted in the same levels of HDR as more commonly used 800bp arms, suggesting that

for gene targeting in some human cell types maximal levels of HDR may be achieved

with relatively short 400bp arms of homology. For all areas of optimization, however, the

specific setting of the cell type and the chromosomal locus under investigation should be

taken into consideration.

6.4.6 SMRT Sequencing of Genome Editing Outcomes Reveals Genomic and Plas-

mid DNA Sequences Captured into Targeted Sites

A unique feature of the SMRT sequencing method is the combination of high-throughput

with long sequence read-lengths. This combination allowed us to see rare mutations in-

cluding large insertions and deletions hundreds of base pairs (bp) in length. Analysis of

mutations at the IL2RG, HBB, and CCR5 loci showed a wide range of insertions and dele-

tions ranging from +334 bp to -412 bp. Interestingly, when we BLASTed the inserted

sequences that were >30 bp against NCBI non-redundant nucleotide databases, we were

able to identify sequences originating from the same chromosome as the target site, nonho-

mologous chromosomes, plasmid DNA, and the E. coli genome. Representative samples of

such insertion events can be seen in Figure 6-8. At each end of an insertion event, there is a

junction with the chromosomal segment on one side and the inserted segment on the other

side. Processing of the chromosomal sides of the junctions can be tracked by examining

the sequences at these sites. NHEJ-mediated DSBR commonly involves deletion of a few
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Figure 6-7: Optimization of gene editing parameters at IL2RG with SMRT sequenc-

ing. (a) Titration of TALEN amount in K562 cells with amount of donor DNA held con-

stant at 5 µg. (b) Titration of donor DNA amount in K562 cells with TALEN DNA amount

held constant at 1 µg each TALEN. (c) Ratio of HDR to NHEJ for samples in (b). (d) Left;

Schematic of donor templates with varying arm of homology lengths. Right; Quantifica-

tion of effect of homology arm length on gene editing frequencies in K562 cells.

Bars represent three independent biological replicates; error bars, s.d.
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nucleotides. Surprisingly, of the 42 long insertions we found only 7 that involved dele-

tions of nucleotides. The remaining 35 did not involve even single nucleotide deletions.

This finding suggests that the insertion event may have a role in protecting chromosomes

from harmful deletions during DSBR. Microhomology is known to drive some small inser-

tion and deletion events during NHEJ. But analysis of the sequences flanking the external

sources of these long insertion events did not reveal any trends suggesting that these events

were driven by flanking microhomologous sequences.

6.5 Discussion

While the simplicity and flexibility of engineering TALENs and RGENs has transformed

gene editing over recent years, many questions remain about DSBR processes and gene

targeting in different cell types and at different genomic sites. Here, we present a rapid,

accurate, and sensitive strategy for analyzing gene editing outcomes and DSBR pathway

choice at endogenous loci in potentially any cell type using any type of engineered nucle-

ase. The SMRT DNA sequencing strategy offers three principle advantages over currently

available techniques:

1) Sensitive measurement of genome editing in any cell type, including primary stem cells,

without the need to make a stable reporter cell line

2) Measurement of modifications at endogenous loci regardless of transcriptional status

3) Long sequencing read-lengths that allow insight into a wide range of DNA repair out-

comes when donor templates with long arms of homology are used

Without generating reporter cell lines, we used the SMRT DNA sequencing strategy

to measure gene editing outcomes in CD34+ HSPCs, hESCs, and K562 cells. Measure-

ment at the IL2RG locus was not inhibited by the lack of transcription of this gene in

CD34+ HSPCs and hESCs, demonstrating the ability of this method to provide quantitative

and sensitive analysis of silent endogenous loci. Epigenetic status is known to affect all

146



Figure 6-8: DNA repair by insertion of large sequences from various sources. (a) An

event from the IL2RG RGEN-only transfections where the insert is an exact repeat—in the

inverse orientation—of a sequence near the cleavage site. (b) Reads from the IL2RG RGEN

and Donor transfections containing inserts derived from the E. coli genome, an intronic se-

quence in chromosome 12, and a Donor plasmid. (c) Several representative SMRT reads

from the HBB TALENs-only transfections were recovered containing inserts derived from

a repetitive genomic element, one of the TALEN plasmids, and a region in chromosome

11 on the opposite arm from the HBB gene. (d) Reads from the HBB RGEN and Donor

transfections containing inserts derived from the E. coli genome and a region in chromo-

some 11 on the opposite arm from the HBB gene. (e) Reads from the CCR5 TALENs-only

transfections containing inserts derived from a TALEN plasmid and an unknown plasmid.

Wild-type (WT) sequences are shown with nuclease binding sites highlighted in yellow. In-

serted sequences in the SMRT reads are lowercase and highlighted in blue with the size and

source listed below. Deleted bases, likely resulting from sequencing errors, are represented

by hyphens highlighted in red.
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DNA-metabolism processes including transcription, replication, and repair [13, 86]. The

importance of transcriptional activation and epigenetic status for gene editing efficiency

is still largely unknown, but epigenetic modification was recently shown to impact DSBR

pathway choice [24, 63, 122, 123, 124]. The SMRT DNA sequencing strategy could be

used to further study how chromatin status influences DSBR pathway choice and gene

editing efficiency by providing analysis in a broader range of cell types in which the chro-

matin state of the targeted site is known. One other potentially important variable for gene

editing efficiency, particularly when working between different cell types, is the method of

delivery and this strategy could be used to quantitatively measure the impact of using dif-

ferent delivery methods including electroporation-based techniques, viral-based strategies,

and lipid or nanoparticle-based methods.

Genome editing with engineered nucleases can be used to create many types of changes

to a genome, and any site within an organisms genome is now a potential target. The ver-

satility of this approach, combined with the ease of synthesizing new nucleases, creates a

need for a method to evaluate different types of nucleases at different genomic locations.

In this study we used SMRT DNA sequencing analysis to measure genome editing at sites

within the IL2RG, HBB, and CCR5 genes using the three most widely used classes of en-

gineered nucleases. For the specific nucleases we investigated in K562 cells, we found that

at both the IL2RG and HBB loci the RGEN generated significantly higher frequencies of

mutagenic NHEJ than TALENs designed to overlapping sites. When transfected alone, the

IL2RG-specific and HBB-specific RGENs created very similar levels of mutagenic NHEJ,

suggesting that a similar amount of DSBs are being created at the two loci. Despite this, the

HBB-specific RGEN stimulated a significantly lower frequency of HDR than that seen at

IL2RG. Whether this difference in repair pathway utilization is the result of different chro-

matin status or the sequence composition of the target sites and corresponding donor DNA

is still unclear, but this technique could be applied to further elucidate how spatial param-

eters affect DNA repair. Additionally, moving between genomic loci we have encountered
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single nucleotide polymorphisms (SNPs) that confound measurement of NHEJ using stan-

dard mismatch detection assays [45], including one at HBB in K562 cells. The ability to

use SMRT DNA sequencing to quantify mutation frequencies even in the presence of SNPs

is another advantage of this system.

In addition to the gamut of new nucleases and target sites, molecular and genetic strate-

gies to influence DSBR pathway choice can play a significant role in achieving a desired

outcome or minimizing unwanted outcomes. By titrating the amount of donor template in

K562 cells we were able to optimize conditions for generating HDR events and alter the

ratio of HDR to NHEJ significantly. Furthermore, the long read-lengths of SMRT DNA se-

quencing allowed us to measure gene editing outcomes using donor templates with 800bp

arms of homology. These data demonstrate the advantage of using long arms of homology

to stimulate higher frequencies of HDR with plasmid donors, and this technique could fur-

ther be used to directly compare gene editing outcomes with different donor architectures

including plasmids, minicircle DNA, viral vectors, and ssODNs [16, 17, 70]. Beyond tar-

geted gene editing, this method offers a new experimental system for studying DNA repair

pathway utilization when DSBs occur at endogenous genomic loci following manipula-

tion of DNA repair genes. As was shown in this study, and previous studies, parameters

like nuclease properties, donor template architecture, cell type, and the site being modified

can influence DSBR. The SMRT DNA sequencing method thus opens up new possibilities

for studying DSBR with engineered nuclease-induced breaks, where previous work has

focused significantly on breaks induced by I-SceI at defined sites within reporter cell lines.

One area where application of SMRT DNA sequencing is challenging is the quantifi-

cation of gene modifications that result in differently sized alleles, such as when entire

linear donor templates are captured by NHEJ at ‘on-target’ and ‘off-target’ DSBs [23, 37].

PCR bias when amplifying WT and modified loci with significantly different sizes can fa-

vor shorter alleles and confound quantification, which is further effected by loading bias

for shorter molecules in the SMRT sequencing cells. For analysis of large gene inserts
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mediated by HDR, we have overcome this obstacle using embedded primers that distin-

guish between targeted and WT allele sequences while producing similar PCR amplicon

sizes [125]. Simultaneous measurement of amplicons with different lengths has also been

achieved by adding a size standard ladder to the SMRT sequencing reaction, and a sim-

ilar strategy could be used for quantification of large gene additions or NHEJ-mediated

integrations of the donor template [71].

By analyzing thousands of alleles within cell populations modified by TALENs and

CRISPRs, this technique revealed the presence of rare insertional events where large stretches

of DNA from other sources were integrated at nuclease cleavage sites. Choosing a cutoff

of >30bp to exclude sequences generated by DNA polymerase, we analyzed these inserted

sequences and found matches to the donor template and nuclease expression plasmids intro-

duced for gene targeting, sequences from nearby chromosomal sites, sites on other chromo-

somes, and sites within the E. coli genome that may have originated from trace impurities

from the plasmid purification process. The presence of these events highlights the impor-

tance of minimizing the amount of exogenous DNA added for gene targeting and illustrates

the potential for SMRT DNA sequencing to measure large, rare sequence alterations at sites

throughout the genome.

6.6 Conclusion

The recent explosion in custom gene editing technologies is ushering in a new age of

genome engineering where scientists across fields of study and using different organisms

and cell types can precisely modify essentially any locus they desire. Here we show that

SMRT DNA sequencing provides a simple, rapid, quantitative, and sensitive strategy for

measuring genome editing outcomes with different cell lines, at any endogenous loci, in-

cluding transcriptionally silent loci, and using multiple nuclease platforms. Moreover, our

strategy offers a new approach for studying DNA repair pathway utilization when DNA
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breaks occur within genomic sites that have been difficult to study using previous method-

ologies. With the flexibility to evaluate new engineered nucleases and targeting constructs

directly at desired loci without the development of reporter systems, SMRT DNA sequenc-

ing can streamline the development of genome editing projects and hasten the expansion

of these technologies to a wider range of applications.
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CHAPTER VII

FURTHER ANALYSIS OF NHEJ VS HDR

7.1 Introduction

With the new tool developed in Chapter 6 to simultaneously analyze the NHEJ and HDR

repair pathways at endogenous loci, we conducted a variety of different experiments aimed

at further understanding how to optimize gene repair therapeutic strategies.

7.2 Comparing mRNA vs Plasmid Delivery of TALENs1

There have been previous comparisons of the performance of nucleases encoded as mRNA

vs plasmids (DNA) in microinjection experiments [116], but very limited data on the per-

formance in bulk cell populations. mRNA tends to be better tolerated by cells than plasmid

DNA and can therefore be given in higher doses, which would lead to higher expected

nuclease activity. On the other hand, expression from mRNA is much more transient than

from DNA plasmids, which would lead to lower expected nuclease activity. We sought to

determine the overall effect on nuclease activity as well as to observe if any differences in

the HDR:NHEJ ratio occurred.

We nucleofected K562 cells with mRNA (synthesized by TriLink Biotechnologies, San

Diego CA) or plasmid DNA encoding TALENs targeting the IL2RG gene along with a

donor plasmid (as described previously in Figure 6-3a). SMRT analysis was used to deter-

mine the rates of HDR and NHEJ repair.

We found that the was no significant difference in HDR:NHEJ ratios between the two

different methods, however mRNA delivery resulted in substantially higher levels of both

NHEJ and HDR (Figure 7-1).

1In collaboration with Dr. Eric Kildebeck and Dr. Matthew Porteus, Stanford University.
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Figure 7-1: mRNA vs Plasmid Delivery of TALENs. n=3, error bars are s.t.d.
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While synthesized mRNA remains much more expensive than plasmid DNA, the marked

increase in nuclease activity makes mRNA a promising option for more critical experi-

ments, such as those in primary CD34+ cells.

7.3 Enrichment of Gene Modified CD34+ Cells through FACS2

Rates of HDR in primary cells are typically much lower than in immortalized cell lines

such as the K562 model system. Therefore, an area of growing interest is the ability to

enrich the subpopulation of HDR-modified primary cells.

We constructed a donor plasmid which would fuse the gene for the mCitrine fluores-

cent protein to the HBB sequence such that expression of mCitrine would only occur from

the endogenous HBB locus (and not from the donor plasmid itself). CD34+ cells were nu-

cleofected with the TALENs previously described (Figure 6-6b) with or without the donor

plasmid. The cells were then put through a two-week erythroid differentiation protocol

so that the HBB locus would be actively expressed. At that point, a portion of the bulk

population was set aside, and the remaining cells were sorted using FACS into mCitrine+

and mCitrine- sub-populations. Genomic DNA was harvested from the cells and cDNA

libraries were created from the RNA. Both the DNA and the RNA were analyzed using the

SMRT analysis pipeline previously described [48].

Modified alleles and RNA transcripts were observed at low rates in the bulk cell popula-

tion (Figure 7-2). After FACS selection, the percentage of HDR-modified alleles increased

∼40-fold while the percentage of NHEJ-modified alleles stayed roughly equal; selective en-

richment of only HDR-modified alleles was expected because mCitrine is only integrated

in the case of HDR. While the percentage of HDR-modified alleles in the mCitrine+ pop-

ulation was ∼25%, the percentage of HDR-modified transcripts was much higher—nearly

90%. This was an unexpected result since our original hypothesis was that the percentage

2In collaboration with Dr. Adam Hartigan (Harvard), Dr. Amy Wagers (Harvard), Gabriel Washington

(Stanford), and Dr. Matthew Porteus (Stanford).
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of modified transcripts would roughly mirror the percentage of modified alleles. Possi-

ble reasons for this observation include preferential gene modification of the more highly

expressed allele and/or bias during the FACS process for selecting cells where one allele

(containing mCitrine) is expressed at much higher levels than the other allele (therefore

giving a stronger fluorescent signal). These possibilities will require further investigation.

7.4 Analysis of Many HBB Nucleases

In order to further advance gene therapy approaches for correcting sickle cell anemia, we

analyzed the HDR:NHEJ ratios of many different classes of nucleases all targeting HBB.

In addition to determining an optimal nuclease to move forward with for further sickle cell

experiments, this study also provides a direct comparison different types of nucleases all at

the same genetic locus to control for location-dependent effects.

7.4.1 Methods

7.4.1.1 Preliminary SMRT Investigation

200,000 K562 cells were nucleofected with 1000 ng of total DNA, consisting of 200 ng of

total nuclease plasmid and 800 ng of donor plasmid (or pUC control). Nucleofections were

performed in simultaneous triplicate (separate nucleofections of cells taken from the same

cultured population). After 72 hours, genomic DNA was harvested and the HBB locus was

analyzed using SMRT sequencing as described in Chapter 6.

7.4.1.2 Follow-up Illumina Investigation

200,000 K562 cells were nucleofected with 1400 ng of total DNA, consisting of 400 ng

of total nuclease plasmid and 1000 ng of donor plasmid (or pUC control). Nucleofections

were performed in biological triplicate with each replicate performed on different weeks.

After 72 hours, genomic DNA was harvested and the same sequence of the HBB locus

as described in Chapter 6 was amplified; however, the primers contained additional 5’

sequences to facilitate binding to the Illumina flow cell. Dual i5/i7 Illumina barcodes were
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Figure 7-2: Analysis of CD34+ DNA and RNA.
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added to each amplicon to facilitate multiplexing 128 samples into a single MiSeq run.

250-bp paired end (PE) sequencing was used.

Because Illumina sequencing only provides the sequences at the edges of the amplicons,

as opposed to SMRT sequencing which provides the full sequence of the amplicon, several

alterations needed to be made to the previously described analysis pipeline (Figure 6-2).

Since the total HBB amplicon length is ∼600 bp, the two 250 bp Illumina sequencing reads

do not overlap and are therefore handled separately by the modified pipeline. The following

modified initial steps were changed to accommodate the Illumina data:

1) Reads were de-multiplexed according to their i5/i7 barcodes by the internal Illumina

analysis software.

2) If the average FASTQ score of either read is below 25, the reads are discarded.

3) The 20 bp at the 5’ end of each read must exactly match the expected template sequence.

4) The read distal from the nuclease target site was pairwise-aligned to the expected HBB

sequence and the 5’ 100 bp were checked to ensure ≥80% match to the template se-

quence.

5) The 3’ 50 bp of the read proximal to the nuclease target site were also checked by

pairwise alignment to ensure ≥80% match to the template sequence.

6) If all those requirements were met, the remaining expected template sequence 3’ of the

end of the proximal read was computationally appended to the sequencing read to make

the data more closely resemble a SMRT read (which consists of the full amplicon) and

then the reads were fed into the previously developed pipeline at the allele analysis step

(Figure 6-2p) for subsequent analysis.

7.4.1.3 Donors and Nucleases

Several different repair donors were tested (Figure 7-3). In the preliminary SMRT investi-

gation, the ‘EcoRI Donor’ (which introduces an EcoRI restriction site that can be assayed
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Wild-Type: 5’-ATGgtgcacctgactcctgaggagaagtctgccgttactgccctgtggggcaaggtgaacgtggatgaagttggtggt-3’

EcoRI Donor: ←400 bp-ATGgtgcacctgactcctgaggagaagtctgccgttactgGAAtTCggggcaaggtgaacgtggatgaagttggtggt-400 bp→

"M4" Donor: ←400 bp-ATGgtgcaTctTacGccAgaggagaagtctgcAgttactgcGctgtggggcaaAgtTaaTgtTgaCgaagttggtggt-400 bp→

AfeI Donor: ←400 bp-ATGgtgcacctgactcctgaggagaagAGCgcTgtGacCgcTTtAtggggAaaAgtgaacgtggatgaagttggtggt-400 bp→

5’-gAGGTGAACGTGGATGAAGTNGG - R7

5’-GTGAACGTGGATGAAGTTGGNGG - R1

CRISPR/RGEN 5’-ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGT-3’

Binding Sites 3’-TACCACGTGGACTGAGGACTCCTCTTCAGACGGCAATGACGGGACACCCCGTTCCACTTGCACCTACTTCAACCACCA-5’

R2 - GGNAATGACGGGACACCCCGTTg-5’

R2d3 - GGNAATGACGGGACACCCCG-5’

R3 - GGNCACCCCGTTCCACTTGCAg-5’

5’-TGCACCTGACTCCTGt - L4 TALEN

5’-TCTGCCGTTACTGCCCTGT - S136 TALEN

4F-ZFN - GGGGCAAGGTGA-3’

ZFN & TALEN 5’-ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGA-3’

Binding Sites 3’-TACCACGTGGACTGAGGACTCCTCTTCAGACGGCAATGACGGGACACCCCGTTCCACTTGCACCTACTTCAACCACCACT-5’

R4 TALEN - ATGACGGGACACCCCGTT-5’

S120 TALEN - TACTTCAACCACCACT-5’

3’-ACGGCAATGACG - 4F-ZFN

Figure 7-3: HBB Donors and Nucleases. (upper panel) The wild-type HBB sequence

beginning with the start codon in green, followed by the corresponding sequence of differ-

ent donor plasmids with mismatches highlighted in red—all three donor plasmids had ∼400

bp flanking arms of homology to the endogenous HBB sequence on either side. (middle

panel) CRISPR/RGEN binding sites within HBB are given. PAM sequences are under-

lined and a mismatched 5’ base in the guide strand is signified by a lowercase ‘g’. (lower

panel) ZFN and TALEN binding sites within HBB are given. The L4 TALEN targets a

mismatched base relative to the wild-type HBB sequence, signified by a lowercase ‘t’—it

is designed to target the sickle mutation.

using RFLP) was used. While this donor blocked the binding of all of the nucleases (or at

least one element of each nuclease pair) tested in the preliminary study, its SNPs did not

block all of the nucleases planned for the followup study; therefore, a donor was made with

synonymous SNPs spread throughout exon 1 (“M4” Donor). In parallel to the development

of “M4”, our collaborators created the “AfeI Donor” which also contains a larger number

of synonymous SNPs as well as an AfeI restriction enzyme site.

Several different nucleases were tested (Figure 7-3). The R7, R1, R3, and R2 CRISPR

/ RGEN guide sequences have been previously described [21] while the R2d3 guide strand

is a truncated version of R2 following the findings of Fu et al. [36]. The L4/R4 TALEN

pair is the same as was used in Chapter 6. The 4F-ZFN pair is the same as was used in

Chapter 3. The S136/S120 TALEN pair was previously described by Lin et al. [69].
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7.4.2 Results

7.4.2.1 Preliminary SMRT Investigation

A wide range of performance was observed across the different types of nucleases (Fig-

ure 7-4). The L4/R4 TALENs outperformed the ZFNs, the S136/S120 TALENs, and an-

other version of the L4/R4 TALENs utilizing a bi-partite nuclear localization signal (NLS)

generated by a collaborator in terms of NHEJ, but none of those nucleases had appreciable

HDR activity above background levels. The “RH” CRISPR paired nickases (employing the

H840A mutation) performed poorly, consistent with previous results [95], in contrast to the

“RN” CRISPR paired nickases (employing the D10A mutation) which had extremely high

NHEJ and activity and moderate HDR activity as well. The single CRISPR nucleases (R2

and R3) had the highest rates of HDR as well as the most favorable HDR:NHEJ ratios. The

truncated guide strand (R2d3) showed slightly reduced NHEJ activity compared to the full

length guide strand (R2) but much lower HDR activity.

7.4.2.2 Follow-up Illumina Investigation

In order to examine some of the trends observed in the preliminary SMRT investigation in

more detail, a more comprehensive set of experiments was conducted. In order to reduce

sequencing costs for the 128 total samples, we modified the approach to be compatible with

the Illumina sequencing approach.

Because analyzing the Illumina sequencing data required modifications to the previ-

ously developed bioinformatics pipeline, we performed side-by-side comparisons of the

two different analysis methods on the same genomic DNA (Figure 7-5). Overall, the same

trends were observed between the two different analysis methods; both reported that the

RN1/RN2 paired CRISPR nickases induced high levels of NHEJ and lower levels of HDR

and that the R3 CRISPR nuclease had higher levels of HDR than NHEJ. However, the exact

reported values different slightly between the two methods and the Illumina method was
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Figure 7-4: Preliminary SMRT Investigation of HBB nucleases. Several different

types of nucleases were nucleofected into K562 cells, including ZFNs, TALENs, CRISPR

nucleases (R2 and R3), CRISPR nucleases with truncated guide strands (R2d3), D10A

paired CRISPR nickases (RN1/RN2 and RN7/RN2), and H840A paired CRISPR nickases

(RH7/RH2). n=3, error bars are s.t.d.

characterized by much higher variability in the measurements (indicated by higher stan-

dard deviations of the replicates). Overall, while the current Illumina analysis pipeline has

clearly not reached the same level of refinement and precision as the SMRT pipeline, it

appears to provide reasonably accurate results and warrants some, but not complete, confi-

dence in the results obtained for the following experiments.

Two pairs of TALENs and a pair of ZFNs were analyzed. As in the preliminary SMRT

analysis, only moderate levels of activity were observed (Figure 7-6). In contrast to the

robust NHEJ activity observed for the S136/S120 TALENs in 293T cells (∼60% modified

alleles [69]), extremely low activity was seen under these conditions in K562 cells. The

levels of NHEJ for the L4/R4 TALENs were relatively constant in the presence or absence

of a donor. However, the HDR activity using the AfeI donor was much higher than when

using the “M4” donor.
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Figure 7-5: Comparing SMRT and Illumina Analysis Methods. The same 6 genomic

DNA samples (3 replicates of each experiment) were analyzed by SMRT and by Illumina

for HDR and NHEJ repair. n=3, error bars are s.t.d.
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Figure 7-6: TALEN and ZFN Analysis. Two pairs of TALENs and a pair of ZFNs were

analyzed, in the presence or absence of either the “M4” or AfeI donors. n=3, error bars are

s.t.d.

Working with collaborators3, we tested the performance of a “mini-circle” version of

the AfeI donor. Mini-circles are plasmids that are processed to remove elements that are es-

sential for production in E. coli but are not relevant for the final purpose (such as antibiotic

resistance gene or origins of replication). For genome engineering applications, this results

in a plasmid that consists of just the homology arms and the internal region with the de-

sired SNPs to be integrated. We hypothesized that the higher numbers of donor molecules

(since total donor mass is held constant and mini-circles are smaller than plasmids) com-

bined with the longer persistence of the mini-circles in cells [17] might lead to higher levels

of HDR. While the total level of gene modification was similar between the experiments

with the three different donors, the mini-circle experiments had markedly lower levels of

HDR (Figure 7-7). Surprisingly, the mini-circle donor performed worse than the parental

3In collaboration with Carol Dickerson and Dr. Steffen Meiler, Georgia Regents University, Augusta GA.
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Figure 7-7: Mini-circle Donor Analysis. n=3 for most samples, n=2 for Nuclease+Mini-

Circle and Nuclease+PreMiniCircle. error bars are s.t.d.

“pre”-mini-circle plasmid.

Truncated guide RNAs have been shown in previous studies to have reduced off-target

effects, but sometimes at a cost of reduced on-target activity. We tested a guide RNA

with a 3 bp truncation compared to the full length guide RNA (Figure 7-8). In contrast to

the substantial decrease in HDR efficiency we observed in the preliminary SMRT analysis

(Figure 7-4), the full-length and truncated guide RNAs performed at statistically indistin-

guishable levels in these experiments (although the mean activities were slightly lower with

the truncated guide RNA for both NHEJ and HDR).

Two different configurations of paired CRISPR nickases were analyzed. In order to

better understand the contributions of each component of the system to the levels of NHEJ

and HDR, each individual guide was analyzed separately as a nickase and as a nuclease in

addition to analyzing the full paired nickase systems (Figure 7-9). Consistent with previous

reports [118], individual nickases can, but do not always, trigger NHEJ and HDR (i.e. the
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Figure 7-8: Truncated Guide RNA Analysis. n=3, error bars are s.t.d.

R-1 guide) even without their paired partner. This phenomenon seems to be highly guide-

strand dependent with no known features being yet able to predict this behavior a priori.

Apart from the aberrantly low levels of NHEJ activity observed for the “R-2 Nuclease

Only” sample, the paired nickases had similar levels of total gene modification activity

as the single nucleases. However, in contrast to the results from the preliminary SMRT

analysis (Figure 7-4), these experiments showed the paired nickases having equal or greater

rates of HDR as the single CRISPR nucleases.

7.4.3 Discussion

High-throughput sequencing analysis allowed a detailed look at the rates of NHEJ and

HDR for a wide variety of nucleases at the HBB locus. While the newer Illumina analysis

pipeline provided similar results as the well-validated SMRT pipeline, there was increased

variability and slight discrepancies between the measurements. Given the marked cost

advantage of Illumina, further refinement of the analysis pipeline should provide a valuable
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Figure 7-9: Paired CRISPR Nickase Analysis. Two different paired CRISPR nickase

configurations were analyzed; the R-2 guide paired with the R-1 guide (upper) and the

R-2 guide paired with the R-7 guide (lower). n=3 for most samples, error bars are s.t.d.
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tool for use in cases where it is acceptable to place one of the PCR primers inside the

homology arms near the nuclease cut site; in cases which require both primers to be outside

the homology arms, SMRT sequencing remains the only available method.

Although the preliminary SMRT analysis pointed to several major performance dif-

ferences—particularly related to HDR rates and NHEJ:HDR ratios—between the different

types of nucleases, these trends were largely not observed in the follow-up Illumina study.

While it is clear that CRISPR systems outperform TALENs and ZFNs, the Illumina anal-

ysis showed no clear differences between CRISPR nucleases, truncated guide strands, and

paired CRISPR nickases. The exact reason for these differences is unclear, but it may be

related to the fact that all SMRT experiments were performed from a single passage of the

K562 cells whereas the Illumina experiments were performed over three different passages.
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CHAPTER VIII

FUTURE CONSIDERATIONS

The tools created in this thesis represented ‘first-in-class’ developments of new methods

of off-target prediction and analysis of DNA repair outcomes. However, there are several

areas in which these tools could be improved with future work.

8.1 Accurately Predicting CRISPR Off-Target Sites

Although several online tools are now available to search a genome for CRISPR sites with

homology to the intended target sequence [53, 22], none of the tools provides a quantitative

basis for their rankings nor their overall predictive power. Indeed, recent studies have

shown that current online tools routinely do not locate most known CRISPR off-target sites

[119, 22]. The poor performance of current tools is likely due to their simplistic models, but

the current understanding in the field as a whole on the underlying biology of what dictates

the observed performance differences between CRISPR guide strands is still fairly limited,

although single molecule studies have provided some useful insights [111]. However, the

increasing numbers of researchers involved with CRISPR and the tendency of CRISPRs to

cause readily observable off-target effects has led to an accelerating pace of the discovery of

bona fide CRISPR off-target sites; a recent study validated over 100 off-target sites [119],

although it was still unable to divine any broad principles governing CRISPR off-target

activity. The rapid rise in the number of CRISPR off-target sites provides hope that in the

near future there may be a large enough dataset on which to attempt machine learning, even

in the absence of preconceived models of the most important features that distinguish bona

fide off-target sites from other sites with homology to the intended target.
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8.2 Cell-Type-Specific Off-Target Prediction

The intracellular genomic context of a particular off-target location can have a large in-

fluence on what level (if any) of off-target activity occurs. One study found that at two

identical off-target DNA sequences, one site had off-target activity at nearly the same fre-

quency as the on-target site while the other site had no detectable off-target mutagenesis

[21]. Chromatin status, methylation, histone modifications, or other bound proteins are

all factors that can influence the level of nuclease activity at an off-target site, but these

properties are often cell-type dependent. As most nucleases would only need to be applied

clinically in one certain cell type, accurate predictions could greatly enhance the ability to

rationally design nucleases to be less prone to off-target activity in that particular cell as

well as to narrow the focus of off-target assessments on the most appropriate regions.

Databases such as the ENCODE project [32] now provide large amounts of information

about the genomic context in particular cell types. Unfortunately, this is only one side of the

coin—sufficiently large datasets of comparisons of nuclease off-target activity across dif-

ferent cell types must still be performed in order to better understand how different genomic

contexts affect the propensity of a nuclease to cleave that location. However, intermediate

steps in this process could include annotations in the off-target prediction summaries about

known attributes such as whether a site was within a DNAse I hypersensitivity region. Such

information might still provide some utility to end-users even without formal quantitative

algorithms to assess the impact of such factors on off-target activity levels.

8.3 Quantitative Prediction of Off-Target Frequencies

Correlating the rank order of off-target predictions with the observed off-target mutagenesis

has long been a goal in this field. However, even experimental-based off-target character-

ization methods have not had much success in this area (Figure 3-4). In fact, it was only

very recently that any published experimental-based off-target prediction method was able

to achieve any correlation between its predictive ranking and actual observed off-target
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activity [119]. However, there are several challenges in implementing this as a gener-

alized predictive bioinformatic algorithm. As mentioned above, cell-type-specific factors

can play a large confounding role in the exact frequency of mutagenesis at a given off-target

site. Furthermore, compiling data from multiple studies in order to assemble an appropriate

training set would be complicated by different doses, incubation times, and nuclease deliv-

ery methods used in different studies—all of which are factors that affect the on-target:off-

target activity ratios. Given the different downstream applications of nucleases, it seems

unlikely that the field as a whole will adopt more standardized off-target testing conditions

since those may not be as relevant for their particular area of interest. Therefore, unless one

institution or consortium dedicates itself to conducting a large number of off-target inves-

tigations of different nucleases all under similar experimental conditions, it seems unlikely

that computational quantitative prediction of off-target frequencies will occur in the near

future.

8.4 Optimizing Illumina Sequencing of NHEJ vs HDR

Although the short readlengths of Illumina sequencing (compared to SMRT) impose cer-

tain restrictions, the cost-savings available for large scale studies of NHEJ vs HDR makes it

an attractive option to pursue. Current reliable Illumina readlengths are ∼250 bp (although

newer 300 bp chemistries are being further developed). While this is not sufficient to ob-

serve integration of large pieces of exogenous DNA (Figure 6-8) nor in cases where both

PCR primers must be placed outside of the homology arms in order to completely elimi-

nate any non-specific donor amplification—we have not found this to be an issue in K562

cells, but we observed some non-specific amplification of the donor plasmid in recent ex-

periments in hESCs—but can be sufficient in some applications. Specifically, if one PCR

primer is inside the donor homology arms (while the other primer is outside the homol-

ogy arms), then Illumina can provide sequence information about the ∼100 bp flanking the

nuclease target site. In our preliminary investigation, we found that Illumina sequencing
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could provide reasonably accurate readouts (Figure 7-5) at less than 20% of the cost of

SMRT sequencing for large scale analyses. However, the Illumina readout is currently not

as accurate or precise as the SMRT measurements. Because Illumina sequencing reads are

formatted differently than SMRT (uni-directional paired reads from the edges of the ampli-

con rather than providing the full amplicon sequence) and because the Illumina chemistry

is prone to different types of sequencing errors and artifacts than SMRT chemistry, sev-

eral additional changes to the bioinformatics analysis pipeline in order to accomodate these

differences will be needed in order to allow the Illumina approach to provide comparable

results as SMRT. Further optimizations of the experimental protocol are also possible in-

cluding more advanced size selection of the PCR amplicons and variation in the number of

PCR cycles in each of the steps.
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APPENDIX A

EFFECT OF SERUM STARVATION ON PAIRED CRISPR/CAS9

NICKASE ACTIVITY

A.1 Introduction

Although paired Cas9 nickases create indels at very high rates, most measurements have

been made in rapidly dividing cells. The nicks in these cases are typically separated by ∼35

bp, a much larger distance than the typical 4 bp that separates the breaks made by FokI. One

hypothesis was that the indels observed after paired nickase treatment might be generated

by a different method than cannonical NHEJ repair; the nicks might be causing interference

during DNA replication which would lead to deletion of the intervening sequence. In order

to test this hypothesis, we reduced the rate of cell division using serum starvation and

measured the activity of CRISPR nucleases and paired nickases.

A.2 Methods

On Day 0, K562 cells were passaged into media containing 10% FBS (standard treatment)

or no FBS (serum starvation). On Day 1, the K562 cells were nucleofected with Cas9 plas-

mids and plated in fresh media (+/- serum). On Day 4, cells were harvested and genomic

DNA was analyzed by the T7E1 assay to test for indel activity.

A.3 Discussion

Serum starvation had no effect on the activity of Cas9 nucleases but did reduce the activity

of Cas9 nickases (Figure A-1). However, the activity of the Cas9 nickases under serum

starved conditions was still substantially greater than the activity of the Cas9 nucleases.
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Figure A-1: Effect of Serum Starvation on Cas9 Activity. Error bars are s.t.d., n=3. P

value derived from Students’ paired t-test (two-tailed).

Clearly, paired Cas9 nickases are still active in cells undergoing limited cell division, how-

ever the reason for the observed reduction in activity requires further investigation.
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