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SUMMARY

Functional MRI (fMRI) have provided information on networks, disorders, and cogni-

tive performance of the brain. Recent studies have focused on fMRI during resting state

(rs-fMRI) without any explicit tasks. To supplement BOLD signals, resting-state fMRI

studies have been paired with simultaneous recording of electrophysiology data, a method

to provide a direct measure of neural activity. Studies have focused on analyzing infraslow

frequencies (< 1Hz) to understand large-scale spontaneous spatial and temporal fluctua-

tions. Dynamic analysis of infraslow frequencies has shown semi-reoccurring BOLD pat-

terns, which have been defined as quasi-periodic patterns (QPP) [1]. This study expands on

the previously acquired data [2, 3] using simultaneous fMRI and local field potential (LFP)

recordings to understand effects of removing quasi-periodic patterns from the BOLD sig-

nal. Furthermore, this study focuses on the impact of quasi-periodic patterns regression

on the relationship between BOLD and LFP at multiple frequency bands (infraslow and

frequencies between 1 and 100Hz). Results show that the most significant BOLD cor-

relation before QPP regression occurs at the infraslow LFP band. After QPP regression,

the stronger BOLD correlation shifts towards the higher LFP frequencies. The reduction

in BOLD correlation to LFP after QPP regression suggests that infraslow and higher fre-

quency neural activities contribute to the coordination of large-scale networks observed

through quasi-periodic patterns.

ix



CHAPTER 1

INTRODUCTION AND BACKGROUND

Functional MRI (fMRI) studies have been able to provide information on neural networks,

neurological disorders, and cognitive performance. Functional MRI indirectly measures

neural activity based on the concentration of oxyhemoglobin and deoxyhemoglobin ratio.

Magnetic susceptibility of oxygen provides fMRI the necessary signal contrast in the brain.

Neurons that are active require more oxygen than those that are inactive. Because the brain

doesn’t store any energy, increased blood flow and metabolism supply energy to neurons.

Through a process called hemodynamic response, the level of oxygenated hemoglobin ex-

ceeds the level of deoxygenated hemoglobin within the active neuron. This measured signal

from fMRI has been defined as blood oxygenation level-dependent signal (BOLD) [4]. In-

creased localized blood flow in response to active neurons increases BOLD signal. BOLD

signals provide an indirect way to measure local changes in neural activity.

Compared to early studies that focused on task-based fMRI, recent studies have focused

on measuring fMRI without any explicit task, which is commonly known as resting-state

fMRI. One of the earliest studies demonstrated a difference in BOLD signal between task

and resting state fMRI by showing a strong correlation of low frequency (< 0.1Hz) BOLD

signals in distinct regions of the human brain [5]. These correlated areas of the brain were

named functional networks because the regions did not necessarily follow anatomical con-

nections although later studies have shown some functional networks follow anatomical

pathways. Some of the most commonly found functional networks in humans were named

as default mode network and task-positive networks. Default mode network includes poste-

rior cingulate cortex, angular gyri, and prefrontal cortex regions during resting conditions

whereas task-positive networks (anti-correlated with default mode network) contain re-
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gions activated during task-oriented activities [6, 7]. Methods to identify these functional

networks have been termed functional connectivity.

Early studies assumed functional networks to be stationary throughout a fMRI scan.

Traditional functional connectivity techniques measured an average estimate of functional

networks. However, different experiments have shown that functional networks can vary

throughout a scan. Recent studies have focused on dynamic analysis techniques such as

sliding window correlation [8, 9] and pattern finding algorithms [1, 10] to conduct dy-

namic analysis of the brain on a shorter time scale of seconds instead of minutes.

Because of the complexity of BOLD signals, many studies have incorporated other

modalities to accompany fMRI scans. One popular method has been simultaneous fMRI-

EEG studies to noninvasively measure electrical activity in human and primate [11, 12,

13]. Multi-modal studies have provided a way to verify and understand neural origins of

BOLD signals. Studies in rodents [13, 2, 14, 15], monkeys [11], and humans [10, 16]

have shown highly structured spatial correlations in distinct areas of the brain. Functional

connectivity has shown differences between healthy and patients with brain disorders such

as Alzheimer, schizophrenia, depression, and autism [8, 17, 16]. Relationships have also

been established between functional networks and behavior through studies of language

and memory. Evidence have demonstrated neural activity drives functional connectivity.

Simultaneous fMRI and intracortical neurophysiological recordings have provided more

localized measurements of BOLD and neural activity. Our lab has focused on developing

concurrent fMRI and intracortical electrophysiology experiments to provide more local-

ized electrical measurements compared to EEG studies. Simultaneous fMRI and local

field potential (LFP) recordings have shown infraslow frequencies have strong correlation

to BOLD signals and greater interhemispheric correlation [13]. Invasive microelectrode
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animal recordings have shown that gamma-band activity is linked to local BOLD signals

[11]. These studies with invasive microelectrodes have demonstrated spontaneous BOLD

fluctuations to correlate with electrical activity. Studies with fMRI and neurophysiological

recordings have provided additional insight into the relationship of BOLD signals to neural

activity.

Recently, more studies have shifted towards investigating infraslow frequencies (<

1Hz) [13, 14, 15] to understand large-scale spatial and temporal organizations of the brain.

Past limitations in amplifier hardware have prevented studies on infraslow frequencies.

However, recent developments in simultaneous fMRI and neurophysiological recordings

have shown infraslow frequencies have strong correlation to BOLD signals [13, 2]. One

possible source of the strong correlation between infraslow BOLD and LFP signals has

been linked to semi-reoccurring patterns called Quasi-periodic patterns (QPPs) [10, 2].

QPPs have been revealed in resting-state fMRI signals for rats and humans. For rats, QPPs

tend to propagate from ventral-lateral to dorsal medial cortex [1, 2]. For humans, QPPs

alternate between default mode and task- positive networks, which are associated with at-

tention and cognitive processing [10]. Studies have suggested infraslow LFP signals play

an essential role in the coordination of large-scale BOLD fluctuations shown through QPPs.

BOLD signals reflect multiple electrical activities of the brain whereas QPP signal has

been shown to be driven primarily by infraslow neural activity. The motivation of this

study explores the BOLD signal after removal of the QPP signal. Does the remaining

signal become more closely linked to higher frequency neural activity? Furthermore, this

study addresses whether higher frequencies drive QPP in addition to infraslow electrical

activity. This study expands on previously acquired data in our lab [13, 2] by removing

QPP components from the BOLD signal with a linear regression method and analyzing the

effects on correlation to electrophysiology data. Changes to infraslow BOLD signals with
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and without QPP regression were correlated with different LFP bands including infraslow,

delta, theta, alpha, beta, and gamma under isoflurane and dexmedetomidine anesthesia. By

comparing changes before and after QPP regression, the study expected QPP regression

to remove QPP component from the BOLD signal and significantly reduce correlation to

electrophysiology data although the degree of reduction may differ for different LFP bands.

The results showed that infraslow frequency band has the strongest correlation to BOLD

before QPP regression. After QPP regression, the BOLD signal becomes more closely

linked to the higher frequencies although the results are unclear due to the small correla-

tion values. Furthermore, the study showed that both infraslow and higher frequency neural

activity play a role in coordinating large-scale networks observed in the QPPs.
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CHAPTER 2

TECHNICAL APPROACH

2.1 Data Preparation and Recording

2.1.1 Animal Preparation and Anesthesia

Ten rats underwent simultaneous fMRI-LFP scans with either isoflurane or dexmedetomi-

dine anesthesia. These two anesthesia have been widely used in rats for functional con-

nectivity research [18, 3]. Animal preparation and recordings were approved by Emory

University Institutional Animal Care and Use Committee. Six rats were recorded between

1.3% to 2.0% isoflurane. Four of those rats underwent additional scans with dexmedeto-

midine anesthesia after isoflurane scans. Remaining rats were recorded with dexmedeto-

midine. An initial 0.05mg/kg bolus of dexmedetomidine was injected and then continued

with 0.1mg/kg/hour infusion [12, 3]. Between 2 and 15 simultaneous fMRI-LFP scans

were recorded for each rat. Physiological parameters were aligned with the protocol for

isoflurane and dexmedetomidine anesthesia. Body temperature averaged at 37.0 ◦C under

isoflurane and 37.1 ◦C under dexmedetomidine. Breathing rate averaged at 56.9 breaths per

minute with isoflurane and 84.3 breaths per minute with dexmedetomidine.

2.1.2 fMRI Data Recording

With anesthetized rats, fMRI BOLD data was recorded on a 9.4T Bruker animal scanner

using a volumetric transition coil and 2cm surface receiver coil. BOLD data was acquired

with ParaVision 4.0, gradient echo planar imaging (EPI), TR 500ms (2Hz), TE of 15ms,

2mm slice, FOV of 1.92x1.92cm, and a matrix size of 64x64. 500 seconds of BOLD signal

were recorded for each scan.
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2.1.3 Local Field Potential (LFP) Data Recording

For LFP recordings, silver/silver chloride glass microelectrodes were inserted to the left and

right primary somatosensory cortex of forelimb region (S1FL). Direct-current amplifiers

were used to record low-frequency content from electrodes. Microelectrodes acquired data

at a sampling frequency of 12kHz from left and right S1FL regions. LFP recording began

a few seconds before fMRI acquisition and ended a few seconds afterward.

2.2 Data Processing Flowchart

Preprocess Infraslow LFP 

Preprocess Delta, Theta, Alpha, 
Beta, Gamma BLP

El
ec

tr
op

hy
si

ol
og

y 

Original 
LFP

Original 
BOLD 
Signal 

Preprocess Infraslow
BOLD 

BO
LD

 

QPP 
Template

BOLD 
Regressed

Infraslow
BOLD

Seed based 
Correlation

QPP 
Regression

A

B

C

Figure 2.1: Flowchart. Part A illustrates the steps to process the BOLD signal into in-
fraslow and BOLD regressed signal. Part B shows the steps to separate the LFP data into
different frequency bands. Part C demonstrates the relationship between BOLD and elec-
trophysiology through seed-based correlation.

2.3 Part A: Process BOLD Signal

2.3.1 A1: Extract Infraslow BOLD

To obtain infraslow BOLD signal, the following steps were applied to the original fMRI

BOLD signal (Fig. 2.2). For each voxel within the rat brain, fMRI BOLD signal was re-
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Figure 2.2: Preprocessed BOLD Infraslow for Rat1 Scan2 with isoflurane anesthesia. Fig-
ures a-d display BOLD signal over the entire 500 second scan for left ROI region of the rat
brain (primary somatosensory cortex S1FL). (a) Original BOLD signal over the entire 500
second scan time that was acquired with gradient echo planar imaging (EPI), TR 500ms
(2Hz), and TE of 15ms. (b) Resampled BOLD signal from 2Hz to 4Hz. (c) Detrended with
zero-phase 4th order high-pass IIR filter with a passband frequency of 0.01Hz. (d) Filtered
BOLD signal to infraslow frequencies using empirically derived filter and normalized to
mean zero.
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sampled to 4Hz. Detrending was performed by zero-phase fourth order high-pass infinite

impulse response (IIR) filter with a passband frequency of 0.01Hz. The last data point

of the resampled BOLD signal was cropped to match the size of LFP data. Based on a

previous study, an empirical filter performed better than a standard box filter for infraslow

frequencies [2]. This empirical filter was calculated based on magnitude squared coherence

between each electrode’s LFP and BOLD signal using the same dataset. Peaks from mean

coherence spectra were used to develop the empirical filter for each anesthesia. The empir-

ical filter in this study has a pass-band of 0.038-0.184Hz for isoflurane and 0.045-0.304Hz

for dexmedetomidine. Further details are shown in the study by Thompson et al [2]. The

filtered BOLD signal was normalized to mean zero as the final step to preprocessed BOLD

signal.

0.25s 1.5s 2.75s 4s 5.25s

6.5s 7.75s 9s 10.25s

-15

-10

-5

0

5

10

15

Figure 2.3: QPP Template images Rat1 Scan2 in isoflurane conditions. Images display the
final QPP template extracted from Rat1 Scan2. Images display QPP template at different
time points: 1.25 second interval time points ranging from 0.25 to 10.25 seconds. The
BOLD signal fluctuates more in the left S1FL region and not in the right region. The scale
ranges from -15 to 15.
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2.3.2 A2: Extract Quasi-periodic pattern template from Infraslow BOLD

The BOLD signal was exclusively used to extract quasi-periodic pattern (QPP) templates

(Fig. 2.3). This algorithm was developed in our lab as shown in the paper by Majeed et al

[1]. This algorithm first selected an initial template based on a starting point and calculated

correlation of the initial template over the entire duration of the scan. Sections of the BOLD

signal with correlations above the thresholds were averaged together and updated to be the

template for the next iteration. These steps were repeated multiple times with the updated

templates. Correlation thresholds peaks were set to a low value of 0.001 for the first three

iterations and 0.002 for the remaining iterations up to a maximum of 10,000 iterations to

ensure convergence. The final template was determined when the previous and updated

correlation time series does not change. As mentioned before, the QPP extraction step was

only based on preprocessed BOLD data and does not include any information from LFP

data.

Parameters chosen for this algorithm were unique and may be different for other studies.

The initial QPP template was selected at approximately 62.5 seconds into the BOLD signal.

Different starting points were shown not to influence the final QPP template results [2].

The inverse of the empirical filter frequency center of mass was used to determine the

template length parameter. With a 0.088Hz frequency center of mass from the isoflurane

empirical filter, template length was set to 11.25 seconds. With a 0.15Hz frequency center

of mass from the dexmedetomidine empirical filter, the template length was set to 6.50

seconds. Furthermore, the region of interest (ROI) for the QPP template algorithm was

set to both left and right S1FL regions, which were manually drawn using a rat brain atlas

as a comparison. QPPs were less prevalent in the right S1FL region and excluded from

further analysis. The lack of QPPs in the right S1FL may have been due to inaccurate LFP

recordings of the right electrode.
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Figure 2.4: Quasi-periodic pattern (QPP) correlation and ROI time series. (a) Correlation
QPP strength. (b) Peak correlation seed timepoints that are above the QPP template thresh-
old used on the final iteration to calculate the final QPP template. (c) Left ROI of the QPP
template. Colored lines illustrate the left ROI QPP template time series that was used to
calculate the final QPP template (Black line). (d) Right ROI QPP template time series to
estimate the final QPP template.
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2.3.3 A3: Remove QPP components from Infraslow BOLD using Linear Regression

Y = Xβ, (2.1)

Solve : min
β
||Y −Xβ||2, (2.2)

Solution : β̂ = (XTX)−1XTY (2.3)

Ŷ = Xβ̂ (2.4)

Regression : Z = Y − Ŷ (2.5)

where each variable represents one pixel:

Y = BOLD Signal Time Vector

X = Regressor (Normalized QPP) Time Vector

β = Regression Coefficient (Scaling Factor) Value

Ŷ = Scaled Regressor (Estimated QPP Component) Time Vector

Z = BOLD QPP Regressed Time Vector

QPP regression was an important step to understand changes that occur when removing

QPP content from BOLD signal (Fig. 2.5). This step involved a linear regression technique

by assuming a general linear model of the BOLD signal as a time vector at one pixel (Eq.

2.1). The Regressor vector (X) was calculated by convolving QPP template by the QPP

correlation strength and normalizing by z score at the same pixel. The generalized least-

squares minimization problem solved for a (β) regression coefficient that minimizes the

error between the scaled regressor (Ŷ ) and preprocessed BOLD signal (Y ) (Eq. 2.3). Re-

gressor vector (X) was multiplied by the regression coefficient (β) to calculate the scaled

regressor (Ŷ ), which is an estimate of the QPP component from the BOLD signal (Eq.

2.4). To remove the QPP component, the scaled regressor (Ŷ ) was subtracted from BOLD
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Figure 2.5: QPP regression of left S1FL region. (a) QPP template convolved with QPP
correlation strength showing left ROI. (b) Regressor (X) calculated by taking z score of the
QPP convolved time series. (c) Regression coefficients (βi) for each pixel of the entire rat
brain. (d) Scaled Convolved QPP template (Ŷ ) estimated by multiplying the regressor by
the regression coefficient. (e) BOLD signal after QPP regression (Z). (f) Comparison of
the BOLD signal of left ROI before and after QPP Regression. The blue signal indicates
the BOLD signal before QPP regression (Y ). The red signal indicates BOLD signal after
QPP regression (Z).
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signal (Y ) (Eq. 2.5). The same steps were repeated for each pixel within the entire brain to

remove the QPP component from the BOLD signal.

The regression coefficient β spatial map showed higher β values at the left S1FL region

compared to the small β values at the right S1FL region (Fig. 2.5c). The high β value

illustrates the Y and X vectors at pixel have similar patterns but differ in a scaling factor.

In other words, the QPP component is higher at the pixels with higher β coefficients. On

the other hand, low β value indicates the Y and X vectors have very different patterns, and

the QPP component is very small.

2.4 Part B: Process Electrophysiology LFP Data

2.4.1 B1: Extract Infraslow LFP

LFP data artifacts were removed by averaging the period between each repetition time

(TR). This noise template was created and subtracted for each scan. Further information on

artifact removal technique can be found in the paper by Pan et al [13]. Only data recorded

with high dose isoflurane between 1.7% to 2.0% were selected for further analysis. High

dose isoflurane has been shown in previous studies to have spontaneous BOLD fluctuations

[19]. For dexmedetomidine, data recorded at least two hours after switching from isoflu-

rane were considered in the analysis. One previous study showed two hour is necessary to

have a stable state to measure spontaneous BOLD activity under dexmedetomidine [20].

To extract infraslow frequency, LFP data was resampled to 4Hz (0.25sec period) with

an anti-aliasing filter to match the sampling frequency of the BOLD signal. The same

detrending method using highpass IIR filter with 0.01Hz passband frequency was applied

to the resampled LFP data to reduce effects of signal drift. Then, LFP data was filtered

to infraslow frequencies using the empirical filter as mentioned before. Filtered data then

went through a normalization to set mean signal to zero. Final infraslow LFP data matched

13



the same number of BOLD data points.
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(c) Filtered infraslow LFP (d) Normalized infraslow LFP

Figure 2.6: Preprocessed LFP infraslow Rat1Scan2 isoflurane. Figures a-d display LFP
signal of the left electrode. (a) Denoised LFP signal sampled at 12kHz and acquired at the
left electrode (left S1FL region) (b) 4Hz resampled LFP signal to match the sampling fre-
quency of the pre-processed BOLD signal. Detrended with zero-phase 4th order high-pass
IIR filter with a passband frequency of 0.01Hz. (c) LFP filtered to infraslow frequencies
using the same empirically derived filter. (d) Normalized Infraslow LFP signal to mean
zero.

2.4.2 B2: Extract BLP High Frequency LFP

To push the boundaries of the original scope of the study, bandlimited power (BLP) was

analyzed to study the relationship of QPP regression with higher LFP frequencies. Original

LFP data underwent the same noise and artifact removal technique as before. Detrending
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was applied with a zero-phase fourth order highpass IIR filter with 0.8Hz passband fre-

quency. Then, LFP signal was bandlimited to frequencies of interest: delta (1-4Hz), theta

(4-8Hz), alpha (8-16Hz), beta (16-32Hz), and gamma (32-100Hz). These bands have been

commonly analyzed with electrophysiology data. LFP signals were filtered in the Fourier

domain to band-limit the LFP to different higher frequencies.

For the higher LFP frequencies, LFP data was divided into two second window. A two

second window was necessary to span at least one cycle for all higher frequencies. Further-

more, each BLP calculation corresponded to the same time point of the infraslow BOLD

signal. Hence, BLP estimation matched the 4Hz BOLD sampling rate. For each two second

window, mean power spectral density was calculated using power spectrograms. BLP cal-

culation provided a way to capture the envelope of power fluctuations. The same empirical

filter was applied to BLP signal and normalized to mean zero. Filtering higher BLP fre-

quencies to the infraslow frequencies using the same empirical filter was a necessary step

in this study. Because of significant differences in oscillation timescale between BOLD and

higher LFP frequencies, the empirical filter was applied to BLP to have a better comparison

to the infraslow BOLD signal.
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(a) Detrended LFP (b) Bandlimited alpha
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(c) Bandlimited alpha power (d) Empirical filtered Alpha BLP

Figure 2.7: Preprocessed alpha LFP Rat1 Scan2 in isoflurane conditions. Figures a-d dis-
play preprocessing steps for left alpha LFP data. (a) Detrending with a zero-phase fourth
order highpass IIR filter with 0.8Hz passband frequency. (b) Bandlimiting alpha signal
frequencies (8-16Hz) using Fourier transformation and recovering alpha time signal. (c)
Alpha bandlimited power (BLP) by calculating the mean power of the power spectrogram
for each two second window. (d) Filtering alpha BLP with the empirically derived filter.
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2.5 Part C: Correlation Analysis

Frequency BOLD Correlation BOLD Regressed Correlation

Infraslow r-BOLD-Infraslow r-Infraslow-BOLDRegress
Delta r-BOLD-Delta r-BOLDRegress-Delta
Theta r-BOLD-Theta r-BOLDRegress-Theta
Alpha r-BOLD-Alpha r-BOLDRegress-Alpha
Beta r-BOLD-Beta r-BOLDRegress-Beta
Gamma r-BOLD-Gamma r-BOLDRegress-Gamma

Table 2.1: List of time-lagged correlation for each BOLD-LFP pair. Six different LFP sig-
nal correlated with BOLD. Same LFP signals correlated with BOLD after QPP regression.
Total of 12 different time-lagged correlations.

A seed-based functional connectivity analysis was performed at different time lags to

provided a method to determine any spatial and temporal relationships between BOLD and

LFP signal. Seed signal was set as the left LFP and correlation was calculated over the

entire rat brain at different time lags. Pearson correlation coefficient (PCC) was used to

analyze the relationship between BOLD and BLP at various time lags. For each voxel

within the rat brain, Pearson correlation was calculated between BOLD and LFP electrode

with time shifts between -10 to 10 seconds. The range of time shift was sufficient to cap-

ture localized correlations. A similar analysis was demonstrated in a previous study by

Thompson et al [2]. Due to abnormal correlations at the edges of the signal, 10 seconds

at the beginning and end were excluded in time-lag correlations. The time-lag correlation

was calculated for r-BOLD-Infraslow and r-BOLDRegress-Infraslow to compare effects

of regression on correlation for infraslow frequencies. The same time-lag correlation was

calculated for higher BLP frequencies. As stated in the previous study on the same dataset,

the sign of correlation coefficient between infraslow LFP and infraslow BOLD was re-

versed because the bursting direction was recorded downwards [21, 2]. Sign reversal was

not applied to correlation between BOLD and higher BLP frequencies because BLP is not

influenced by the direction of the power fluctuations. The final list of the different time-
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lagged correlation is shown in Table 2.1.

2.6 Significance Testing

Significance was determined using a paired one-sided t-test. Peak correlation before and

after QPP regression was compared to determine a statistical difference. The null hypoth-

esis tests whether the true mean difference is less or equal to zero. Only the left ROI was

included in the analysis. The comparison was tested with a significance level of 0.01.
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CHAPTER 3

RESULTS

Data was acquired from ten Sprague-Dawley rats. Four rats underwent isoflurane condi-

tions and seven rats underwent dexmedetomidine conditions. Two glass electrodes were

inserted in left and right primary somatosensory cortex (S1FL) region. After discarding

scans that did not fall within appropriate isoflurane and dexmedetomidine criteria, 14 total

scans were analyzed for isoflurane and 46 total scans for dexmedetomidine anesthesia.

Furthermore, third-party matlab code was used to plot figures. “PlotPub.m” function by

K M Masum Habib was used to plot figures (https://github.com/masumhabib/

PlotPub) and “boundedline.m” function by Kelly Kearney was used to plot shaded error

bars (https://github.com/kakearney/boundedline-pkg).

3.1 Quasi-periodic Patterns

Individual QPP templates were generated for all rats and scans using the algorithm de-

veloped by Majeed et al [1]. The pattern finding algorithm extracted a semi-reoccurring

spatial and temporal pattern within the left and right S1FL region. In some cases, the QPP

algorithm found a distinct quasi-periodic pattern in both left and right S1FL regions. Of-

ten, the algorithm extracted a distinct pattern in only one region, mainly in the left S1FL

region. In this case, QPP existed primarily in the left S1FL region, which was used for

further analysis. As mentioned before, QPP templates were generated only from BOLD

signals without any information from electrophysiology data.
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3.2 LFP Bandlimited Power (BLP)

To analyze the relationship of BOLD before and after QPP regression to higher LFP fre-

quencies, LFP was bandpass filtered to frequencies of interest. Then, average bandlimited

power (BLP) was estimated within each window over the entire scan time. Setting a 0.25

seconds window length to calculate gamma bandlimited power resulted in BLP signal to be

at the noise level. Thus, two second windows were chosen to capture enough oscillation of

LFP signal to accurately estimate power even though power estimation includes overlap-

ping regions as shown in a small offset in the BLP estimation (Fig. 2.7). A larger window

of two seconds provided a BLP estimation that reduced effects of noise.

3.3 Time-lagged BOLD-LFP Spatial Correlation maps - Isoflurane

Spatial BOLD time-lagged correlation of Rat1 Scan2 was analyzed for BOLD before (r-

BOLD-Infraslow) and after QPP regression (r-BOLDRegress-Infraslow) under isoflurane

conditions (Fig. 3.1 and 3.2). For seed-based functional connectivity calculation, seed

signal was set as the left electrode infraslow LFP for these specific figures. Time-lag

correlation for BOLD before QPP regression showed dynamic changes of BOLD signal

throughout time (Fig. 3.1) with the greatest change especially prominent in the S1FL left

region. In this particular example, BOLD coherence was not observed between left and

right S1FL regions although some scans showed coherence between interhemispheric re-

gions. Time-lag correlation varied from negative to positive with a positive peak correlation

occurring at 3.75 seconds. These BOLD spatial correlation maps were drastically different

after QPP regression (Fig. 3.2). Correlation values within the left S1FL regions were signif-

icantly smaller and not prominent in the BOLD-Regressed spatial correlation maps. With

QPP regression, correlation coefficients between infraslow LFP frequency and infraslow

BOLD-Regressed signal were significantly reduced.
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Figure 3.1: Infraslow BOLD images time-lag correlation before QPP regression - isoflurane
Rat1 Scan2. This figure illustrates changing correlation that occurs between preprocessed
infraslow BOLD signal and infraslow LFP signals over the entire rat brain as a function
of time lag. A seed-based correlation was performed on the whole brain, and seed signal
was set as the left LFP infraslow signal. In this particular rat and scan, correlation values
within the left S1F1 region had a positive peak correlation at 3.75 seconds time-lag. Im-
ages display time-lag correlation values between -10 and 10 seconds with intervals of 1.75
seconds. The correlation scale ranges between 0.6 and -0.6.
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Figure 3.2: Infraslow BOLD images time-lag correlation after QPP regression - isoflurane
Rat1 Scan2. This figure is a direct comparison to Figure 3.1 to illustrate changes in BOLD
time-lag correlation after QPP regression. A seed-based correlation was performed on
the whole rat brain, and seed signal was set as the left LFP infraslow signal. With QPP
regression, correlation values were significantly reduced over the whole rat brain region.
Images display time-lagged correlation values between -10 and 10 seconds with intervals
of 1.75 seconds.The correlation scale ranges between 0.6 and -0.6.

3.4 Time-lagged BOLD-LFP Spatial Correlation maps - Dexmedetomidine

Spatial maps of time-lag correlation were also analyzed for dexmedetomidine conditions

(Fig. 3.3 and 3.4). These figures showed time-lag correlation of the entire rat brain

before (r-BOLD-Infraslow) and after QPP regression (r-BOLDRegress-Infraslow) under

dexmedetomidine conditions. As before, seed-signal was set as the left infraslow LFP

signal, and seed-based functional connectivity analysis was performed over the entire rat

brain. Correlation varied from positive to negative within the positive time-lags. For this
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particular scan, peak correlation for r-BOLD-Infraslow was located at 1.25 second time lag.

Compared to isoflurane anesthesia, different areas of the brain showed coherence to the left

S1FL (Fig. 3.3). QPP regression decreased the overall correlation of r-BOLDRegress-

Infraslow throughout the entire cortex.
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Figure 3.3: Infraslow BOLD images time-lag correlation before QPP regression -
dexmedetomidine for Rat4 Scan2. A seed-based correlation was performed over the en-
tire rat brain, and seed signal was set as the left LFP signal. This figure illustrates changing
correlation that occurs between preprocessed infraslow BOLD signal and infraslow LFP
signals over the entire rat brain as a function of time lag under dexmedetomidine anes-
thesia. In this particular rat and scan, correlation values within left S1F1 region had peak
correlation at 2.5 seconds time-lag. Images display time-lag correlation values of the entire
rat cortex between -10 and 10 seconds with intervals of 1.75 seconds. The correlation scale
ranges between 0.6 and -0.6.
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Figure 3.4: Infraslow BOLD images time-lag correlation after QPP regression -
dexmedetomidine for Rat4 Scan2. A seed-based correlation was performed over the en-
tire rat brain, and seed signal was set as the left LFP electrode. This figure is a direct
comparison to Figure 3.3 to illustrate changes in time-lag correlation after QPP regression.
With QPP regression, correlation values were significantly reduced over the entire rat brain
region. Images display time-lagged correlation values of the entire rat cortex between -10
and 10 seconds with intervals of 1.75 seconds. The correlation scale ranges between 0.6
and -0.6.
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3.5 Time-lagged BOLD-LFP for All Scans - Isoflurane

To understand the relationship between BOLD and LFP signal, time-lag BOLD-LFP cor-

relation was analyzed for all scans and multiple LFP bands under isoflurane (Fig. 3.5).

These plots were generated by calculating the left S1FL time-lag correlation using the left

electrode as the seed signal. For isoflurane conditions, peak BOLD correlations for all

different LFP were found within the positive time-lag which align with a previous study

[13]. Left S1FL region overall exhibited strong BOLD correlation (Tab. 3.1) for all LFP

frequency bands. Maximum BOLD-LFP correlations for all LFP frequency bands ranged

between 3.25 and 5 second time-lag. After QPP regression, greatest correlation change oc-

curred between r-BOLD-Infraslow and r-BOLDRegress-Infraslow in the left S1FL region.

Mean maximum correlation decreased by 0.13 (Fig. 3.1). Overall, the trend showed QPP

regression decreases correlation for all LFP frequency bands under isoflurane anesthesia.
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Figure 3.5: Time-lag correlation left ROI - isoflurane. Time-lag cross correlation of the
left S1FL regions before (Blue) and after (Red) QPP Regression for all rats and scans in
isoflurane conditions. Positive time-lag indicates LFP preceded BOLD signal. The plot
illustrates mean (middle curve) and one standard deviation (outer curve) of correlation for
all scans using isoflurane. The correlation scale ranges between 0.6 and -0.6. Time-lag
ranges between -10 and 10 seconds.
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Table 3.1: Time-lag maximum correlation results of the left S1FL - isoflurane.

BOLD Before QPP BOLD After QPP BOLD Corr Diff

LFP

Time-

lag

(sec)

Peak

Correlation

Time-

lag

(sec)

Peak

Correlation

Time-

lag

(sec)

Peak

Correlation

Infraslow 3.3 0.21 ± 0.15 3.3 0.06 ± 0.08 3.3 0.15 ± 0.11

Delta 4.3 0.11 ± 0.14 5.3 0.03 ± 0.07 3.8 0.08 ± 0.09

Theta 4.8 0.16 ± 0.13 4.5 0.05 ± 0.09 4.8 0.10 ± 0.10

Alpha 4.0 0.16 ± 0.16 4.0 0.07 ± 0.08 4.3 0.10 ± 0.12

Beta 4.3 0.16 ± 0.16 4.5 0.06 ± 0.09 4.3 0.10 ± 0.13

Gamma 4.3 0.15 ± 0.16 4.0 0.05 ± 0.08 4.3 0.10 ± 0.13

This table is based on results shown in Figure 3.5. Maximum mean time-lag correlation
(Max r-BOLD-LFP) was calculated, and time-lag location (Time-Lag (Sec)) of the max-
imum correlation was determined for each LFP band within the left S1FL region. Max-
imum time-lag correlation and the corresponding time-lag location for BOLD regressed
(r-BOLDRegress-LFP) was calculated. Lastly, the maximum difference in correlation be-
tween r-BOLD-LFP and r-BOLDRegress-LFP and the corresponding time-lag location was
determined. Furthermore, one standard deviation of the correlation mean at the maximum
peak was calculated for each LFP.
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3.6 Time-lag BOLD-LFP for All Scans - Dexmedetomidine

Time-lag BOLD-LFP correlation results were different for dexmedetomidine (Fig. 3.6)

compared to isoflurane. First, dexmedetomidine BOLD-LFP time-lag correlations for

higher frequencies were overall weaker. Maximum correlation was 0.14 for r-BOLD-

Infraslow (Tab. 3.2). Time-lag for infraslow, delta, and theta peak correlation ranged

between 1.5 and 3.5 seconds (Fig. 3.2). After QPP regression, greatest BOLD correla-

tion change occurred at r-BOLD-Infraslow with a decrease of 0.09 at maximum peak (Tab.

3.2). When excluding infraslow LFP results, maximum correlation ranged between 0.01

and 0.07. Smaller correlation differences were shown after QPP regression for alpha, beta,

and gamma frequencies. Despite overall smaller correlation changes, dexmedetomidine

results still showed that QPP regression decreases BOLD-LFP correlation. As mentioned

before, the plots were calculated using the left electrode as seed signal.
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Figure 3.6: Time-lag correlation left ROI - dexmedetomidine. Figures illustrate time-lag
cross correlations of the left S1FL region before (Blue) and after (Red) QPP regression
for all rats and scans under dexmedetomidine conditions. Positive time-lag indicates LFP
preceded BOLD signal. The plot illustrates mean (middle line) and one standard deviation
(shaded region) of correlation for all scans using dexmedetomidine. The correlation scale
ranges between 0.6 and -0.6. The time-lag ranges between -10 and 10 seconds.
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Table 3.2: Time-lag maximum correlation results of the left S1FL - dexmedetomidine.

BOLD Before QPP BOLD After QPP BOLD Corr Diff

LFP

Time-

lag

(sec)

Peak

Correlation

Time-

lag

(sec)

Peak

Correlation

Time-

lag

(sec)

Peak

Correlation

Infraslow 2.5 0.14 ± 0.12 3.0 0.05 ± 0.07 2.3 0.09 ± 0.13

Delta 1.5 0.04 ± 0.07 -0.8 0.02 ± 0.04 1.5 0.03 ± 0.07

Theta 1.5 0.06 ± 0.08 0.5 0.04 ± 0.05 7.8 0.03 ± 0.06

Alpha -10.0 0.02 ± 0.06 2.5 0.01 ± 0.05 -10 0.02 ± 0.05

Beta 1.0 0.02 ± 0.07 2.0 0.01 ± 0.05 0.3 0.02 ± 0.06

Gamma -4.8 0.01 ± 0.08 -4.0 0.01 ± 0.05 1.5 0.01 ± 0.06

This table is based on results shown in Figure 3.6. Maximum mean time-lag correlation
(Max r-BOLD-LFP) was calculated, and time-lag location (Time-Lag (Sec)) of the max-
imum correlation was determined for each LFP band within the left S1FL region. Max-
imum time-lag correlation and the corresponding time-lag location for BOLD regressed
(r-BOLDRegress-LFP) was calculated. Lastly, the maximum difference in correlation be-
tween r-BOLD-LFP and r-BOLDRegress-LFP and the corresponding time-lag location was
determined. Furthermore, one standard deviation of the correlation mean at the maximum
peak was calculated for each LFP.
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3.7 Histogram - Time-Lag Maximum Correlation - Isoflurane

Maximum correlation values were analyzed to determine statistical significance before and

after QPP regression for all LFP frequency bands under isoflurane anesthesia. Using max-

imum correlation values from positive time-lags (Fig. 3.5), histograms were plotted as a

function of maximum correlation difference for each scan (Fig. 3.7) under isoflurane con-

ditions. 17 scans were used to create the histogram for each LFP band. A one-sided paired

t-test with a significance level of 0.01 was used to determine statistical differences be-

tween peak correlation BOLD (max r-BOLD-LFP) and BOLD regressed correlations (max

r-BOLDRegress-LFP). Statistical significance was observed for infraslow and all higher

LFP frequencies.
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(a) Infraslow LFP (b) Delta LFP

(c) Theta LFP (d) Alpha LFP

(e) Beta LFP (f) Gamma LFP

Figure 3.7: Histogram of time-lag maximum correlation with isoflurane for multiple LFP
bands. The histogram displays maximum correlation changes before and after QPP regres-
sion for each scan at multiple LFP frequency bands under isoflurane anesthesia. Correla-
tion bins have a width of 0.05. *** indicates statistical significance at the 0.01 level. (a)
Maximum correlation difference at infraslow LFP shows statistically significance (t(15) =
5.5084, p < 2.3834× 10−5) (b) Maximum correlation difference at delta LFP shows sta-
tistically significance (t(15) = 3.8692, p < 6.7962× 10−4) (c) Maximum correlation dif-
ference at theta LFP shows statistically significance (t(15) = 4.1897, p < 3.4667× 10−4)
(d)Maximum correlation difference at alpha LFP shows statistically significance (t(15) =
4.4847p < 1.8761× 10−4) (e) Maximum correlation difference at beta LFP shows statisti-
cally significance (t(15) = 4.5990p < 1.4819× 10−4) (e) Maximum correlation difference
at gamma LFP shows statistically significance (t(15) = 3.7946p < 7.9540× 10−4).
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3.8 Histogram - Time-Lag Maximum Correlation - Dexmedetomidine

Similar histograms were plotted for dexmedetomidine conditions as shown previously with

isoflurane anesthesia. Using maximum correlation values from positive time-lags (Fig.

3.6), histograms were plotted based on the maximum correlation difference before and after

QPP regression for each scan under dexmedetomidine conditions (Fig. 3.8). 43 scans were

used to create the histogram for each LFP band. A one-sided paired t-test with a signifi-

cance level of 0.01 was used to determine statistical differences between peak correlation

BOLD (max r-BOLD-LFP) and BOLD regressed correlations (max r-BOLDRegress-LFP).

The paired t-test showed significance for infraslow and higher frequency LFP bands.
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(a) Infraslow LFP (b) Delta LFP

(c) Theta LFP (d) Alpha LFP

(e) Beta LFP (f) Gamma LFP

Figure 3.8: Histogram of time-lag maximum correlation with dexmedetomidine for mul-
tiple LFP bands. The histogram displays maximum correlation changes before and af-
ter QPP regression for each LFP frequency bands under dexmedetomidine anesthesia.
Correlation bins have a width of 0.05. *** indicates statistical significance at the 0.01
level. (a) Maximum correlation difference at infraslow LFP shows statistically significance
(t(44) = 4.8760, p < 6.9433× 10−6) (b) Maximum correlation difference at delta LFP
shows statistically significance (t(44) = 5.4102, p < 1.1608× 10−6) (c) Maximum corre-
lation difference at theta LFP shows statistically significance (t(44) = 3.0193, p < 0.0021)
(d)Maximum correlation difference at alpha LFP shows statistically significance (t(44) =
2.8105, p < 0.0036) (e) Maximum correlation difference at beta LFP shows statistically
significance (t(44) = 3.3529, p < 8.1477× 10−4) (e) Maximum correlation difference at
gamma LFP shows statistically significance (t(44) = 2.4772, p < 0.0085).
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CHAPTER 4

DISCUSSION

This section will focus on three main topics: 1) BOLD correlation before QPP regression.

2) BOLD correlation after QPP regression. 3) QPP component based on the BOLD corre-

lation difference before and after QPP regression.

4.1 BOLD correlation before QPP regression

Time-lag corresponding to peak correlation was found between 3.25 to 5 seconds for isoflu-

rane and 1.5 to 3.5 seconds for dexmedetomidine. As mentioned before, positive time-lags

illustrate BOLD signal lagging behind LFP data. Based on time-lag ranges, peak positive

correlation time-lag most likely represents the hemodynamic response. These time lags

align with previous studies that analyzed time-lag correlation between BOLD and electro-

physiology [3, 14]. Shorter time-lag for dexmedetomidine compared to isoflurane may be

explained by different empirical filters. Differences in empirical filter between isoflurane

and dexmedetomidine most likely reflect vascular effects from each anesthesia. Isoflurane

induces vasodilation by blocking potassium-ATP channels in smooth muscle [22] whereas

dexmedetomidine influences alpha receptors that bind to smooth muscle and induce vaso-

constriction [23]. Differences in the empirical filter from vascular effects most likely played

a factor in different peak time-lags [18].

Infraslow correlation demonstrated greater peak correlation than higher BLP frequen-

cies. For isoflurane, the strongest BOLD correlation of 0.21 was observed with infraslow

LFP. Unlike expectation, strong correlations were also observed with all higher BLP fre-

quencies except for delta band. One possible explanation for the strong correlations may be

explained by the burst suppression pattern that is commonly observed with high isoflurane
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levels. LFP alternates between bursting state and non-bursting state under high isoflurane

levels [24]. Alternation of low and high frequency neural activity at similar time points

may have caused both infraslow and higher BLP frequencies to have similar fluctuation

patterns. One way to confirm this explanation would be analyzing rat data with lower

isoflurane concentrations and see if BOLD correlation still maintains strong correlation for

both infraslow and higher BLP. A study by Pan et al. showed an increase in isoflurane level

decreases higher frequency LFP power coherence and increases lower frequency BOLD

coherence [3] which aligns with results shown in this study. Another possible reason for

strong high frequency correlation may be explained by a high degree of synchronization

between infraslow and higher BLP frequencies. One study used EEG to find infraslow sig-

nals to be synchronized with higher frequencies in humans under sleeping conditions [16].

For dexmedetomidine anesthesia, infraslow BOLD signal exhibited the strongest corre-

lation with infraslow LFP. Only delta and theta BLP showed a distinct peak in the time-lag

correlation plot (Fig. 3.6) whereas alpha, beta, and gamma BLP did not have a distin-

guishable correlation peak. The overall correlation values under dexmedetomidine were

smaller compared to isoflurane and may be linked to the different anesthetic mechanism.

Another possible reason may be the decrease in power with increasing frequency (inverse

relationship of power and frequency). A larger dataset for dexmedetomidine may help with

improving power estimation.

4.2 BOLD after QPP regression and LFP

The time-lag at peak correlation after QPP regression showed more variability but still cap-

tured the hemodynamic response. Time-lag ranged between 3.3 and 5.3 seconds for isoflu-

rane and 0.5 to 3 seconds for dexmedetomidine. The time-lags lie within the hemodynamic

response. As mentioned before, the different anesthesia vascular effects may explain the
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differences in time-lag. Even after QPP regression, the BOLD correlation seems to capture

the hemodynamic response.

The peak correlation values after QPP regression were very small and hard to interpret.

The peak correlation values ranged between 0.03 to 0.07 for isoflurane and 0.01 to 0.05

for dexmedetomidine. For isoflurane, the alpha peak correlation of 0.07 was the strongest

compared to infraslow frequency band. For dexmedetomidine, infraslow peak correlation

of 0.05 was only slightly higher than alpha correlation of 0.04. Larger differences between

infraslow and higher BLP correlations were not observed after BOLD QPP regression. This

shows that BOLD correlation after QPP regression is less linked to infraslow frequencies

and more linked to higher frequencies. However, this argument is difficult to make because

of the small correlation values. Future studies on awake rats may reveal more differences

between the different frequency bands with BOLD after QPP regression because the rats

won’t be affected by specific anesthesia effects.

4.3 QPP Component (Difference in BOLD before and after QPP regression)

The correlation difference between BOLD before and after QPP regression revealed in-

formation about the QPP component. Greatest correlation difference was observed with

infraslow BOLD correlation for both isoflurane and dexmedetomidine anesthesia. Cor-

relation differences were shown for all higher frequencies but lesser degree compared to

infraslow. Clearly, QPP components are an important aspect of spatiotemporal patterns

of the BOLD signal. One possible interpretation of this result is that quasi-periodic pat-

terns (QPP) found in infraslow BOLD is influenced by all frequencies. A similar study

done by Thompson et al. [21] demonstrated that QPP correlated to infraslow LFP but QPP

only correlated to high frequency (25-40Hz or high beta) BLP for isoflurane. Those results

align with this study where greatest difference in BOLD correlation before and after QPP

regression was found in infraslow LFP for both isoflurane and dexmedetomidine. Unlike
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Thompson et al. where only one high frequency band was compared, this study compared

BOLD correlation with multiple higher frequency LFP bands. A study by Hughes et al.

demonstrated infraslow oscillations are linked to changes in alpha band (8-13Hz) within

the thalamic region with cats [25]. Furthermore, there has been more evidence showing

cross-frequency coupling as a method for the brain to transfer information at various dis-

tances using high and low frequency oscillations [26]. This study provides more evidence

that infraslow and higher frequency neural activities contribute to large-scale networks ob-

served through quasi-periodic patterns. Future studies may be able to address whether

infraslow frequency directly affects higher frequencies or higher frequencies modulate in-

fraslow frequencies.

4.4 Clinical Potential

BOLD and QPP may provide valuable information to assist in clinical diagnosis and spa-

tial mapping. More studies have shown the use of resting-state fMRI to distinguish healthy

patients from people with a neurological disorder such as schizophrenia [8] and cognitive

disorders [17]. A preliminary study in our lab utilized quasi-periodic patterns to show

a larger contribution of QPPs to functional connectivity for people with major depressive

disorders [27]. Regression of QPP from BOLD may provide another avenue for diagnosing

different disorders. Furthermore, QPP can provide high spatial resolution to map the in-

fraslow electrical activity of an entire brain compared to EEG that provide lower resolution

surface level electrical information.

4.5 Limitation

Although BOLD signals reflect neural activity, there have been studies showing that BOLD

signals can be influenced by non-neural activity. Vasomotion and respiration have been

shown to change BOLD signals [28]. Imaging system noise and MRI artifacts affect BOLD

signals [29]. Furthermore, level of arousal contributes to changes in functional connectiv-
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ity [30]. Careful experimental setup in this study helped minimize effects from these non-

neural based origins such as reducing motion with a head holder or maintaining anesthesia

levels [13, 12]. However, the BOLD signal in this study may contain a mixture of neural

and non-neural processes despite attempts to reduce non-neural influences. Investigating

microscopic level of metabolism or measuring calcium concentrations would provide ad-

ditional information to help distinguish neural and non-neural contributions of the BOLD

signal within these studies.

Another limitation of this study is the lack of statistical power. Only a total of ten rats

were utilized in this study for both anesthesia conditions which is reflected in the high

standard deviation correlations plots (Tab. 3.1 and 3.2). Furthermore, some rats were

scanned more often up to 15 scans and other rats were scanned less than five times. Due

to the lack of experimental data, all the rat scans were combined to produce the results. In

future studies, an analysis of the scans within each rat would provide a better understanding

of QPP and BOLD signals.
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CHAPTER 5

CONCLUSION

This study was able to examine the effects of QPP regression on BOLD correlation in

relation to infraslow and higher LFP frequencies. The results after QPP regression were

unclear due to very small correlation values but seem to suggest that BOLD signal is driven

less by infraslow and more from higher frequency neural activity. The greatest change in

correlation occurred in the infraslow band for isoflurane and dexmedetomidine anesthesia,

which confirms QPP reflect a large portion of the spontaneous spatiotemporal BOLD sig-

nal. Results also suggest that higher LFP frequencies do play a role in QPP but to a lesser

degree depending on the anesthesia. The study shows the importance of analyzing both

infraslow and higher LFP frequencies in relation to BOLD and QPP.
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