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SUMMARY 

Blindness and visual impairment due to eye disease results in significant loss in 

patient quality of life. Although therapeutics to treat these diseases may exist, specific 

targeting of diseased ocular tissue, while sparing other tissues, is difficult with traditional 

ophthalmic routes of administration. The suprachoroidal space (SCS, a potential space 

bordered by the choroid and sclera) is being explored as a site for drug delivery since 

high bioavailability and targeting can be achieved at the retina, choroid, and ciliary body. 

A hollow microneedle sized to pierce the sclera, while preventing penetration through the 

chorioretina, enables injections into the SCS in a reliable and efficient manner. The safety 

and efficacy of microneedle injections into the SCS is being investigated for posterior 

segment indications in ongoing clinical trials.  

 

One goal of this thesis was to investigate the distribution and clearance kinetics of 

formulations injected into the SCS using a microneedle. Specifically, we identified 

anatomical barriers in the SCS that impeded circumferential spread of particles. We next 

looked for other factors that could influence particle and molecule spread. We found that 

increasing injection volume resulted in increased particle and molecule coverage, with 

molecules occupying a larger area than particles. Increasing formulation viscosity 

reduced this discrepancy in area coverage. We next studied the SCS thickness, and found 

that injection volume had a minor effect and formulation injected had a major effect on it. 

We investigated the kinetics and routes of clearance of fluid and molecules injected into 

the SCS. We found that molecules exited the SCS via reflux, pressure-mediated trans-

scleral transport, and diffusion-mediated clearance by the choroid. We also showed 



 xix 

greatly prolonged residence time in the SCS was possible with very large 

macromolecules.  

A second goal was to develop a controlled release system for use in the SCS. We 

demonstrated 1-month efficacy of a controlled-release microparticle system injected into 

the SCS to treat glaucoma in a rabbit model. Dose sparing was achieved compared with 

conventional therapy. 

This work advances our understanding of the SCS as an emerging route of 

administration in treating ophthalmic disease. 
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1 INTRODUCTION 

Visual perception is a complex sensation that allows humans to identify objects, 

navigate the world, awaken in the morning, and appreciate a smile. Visual perception 

begins with visible light (~400-700 nm in wavelength) that is transmitted, reflected, 

refracted, or absorbed by an object1. The eyes are a pair of organs located in the head that 

detect this visible light, and process and transmit signals to the brain that subsequently 

become vision.  

Unfortunately, ocular diseases can cause vision loss, robbing an individual of 

arguably the most important of the senses. Drugs can be used to treat or cure these 

diseases, however, targeting drugs within the eye can be challenging. This work further 

examines the use of microneedle injections to specifically target regions of the SCS to 

treat ocular diseases. 

1.1 Anatomy and Physiology of the Eye 

The human eye is a spherical organ composed of three concentric layers 

surrounding fluid (Figure 1.1). The outermost fibrous layer consists of the cornea 

anteriorly and sclera posteriorly; the intermediate layer consists of the uvea, which can be 

sub-classified as iris, ciliary body, and choroid; and the innermost layer is the 

neurosensory retina1. The retina is a thin sheet of light-sensitive neurons that detects and 

processes light. Within these three layers is the watery aqueous humor in the anterior 

segment and the jelly-like vitreous humor in the posterior segment. The eye weighs ~7.3 

g, and occupies a volume of 6.2 to 7.2 mL1. The ocular globe has dimensions of 24.2 mm 

(transverse), 23.7 mm (sagittal), and 22.0 to 24.8 mm (axial)2. 
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Figure 1.1 – Diagram of the human eye. Suprachoroidal space is potential space between sclera and 

choroid.(1) sclera, (2) choroid, (5) cornea, (6) iris, (7) pupil, (8) aqueous humor, (10) ciliary body, (11) 

lens, (12) vitreous humor, (13) retina, (14) optic nerve, (15) zonules. Credit: Talos, colorized by Jakov 

(https://commons.wikimedia.org/wiki/Human_eye#/media/File:Eye_scheme_mulitlingual.svg)  

As light enters the eye, the cornea and lens refract light so as to focus it on the 

retina. The iris dynamically controls the amount of light reaching the retina by changing 

the size of the pupil. The lens can dynamically change shape to adjust its own refractive 

power, allowing fine adjustments in the focal plane of the eye. The aqueous and vitreous 

humor maintain the shape and rigidity of the eye so the focal plane of the light does not 

shift away from the retina. The retina detects light, processes the signal, and transmits 

electrical impulses (i.e., action potentials) along the optic nerve to the visual cortex of the 

brain. The visual cortex and other regions of the brain further process these signals to 

produce vision. 

 

Suprachoroidal 

Space 

Posterior segment Anterior segment 

https://de.wikipedia.org/wiki/Benutzer:Talos
https://de.wikipedia.org/wiki/Benutzer:Jakov
https://commons.wikimedia.org/wiki/Human_eye#/media/File:Eye_scheme_mulitlingual.svg
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1.1.1 Anterior segment of the ocular globe 

The anterior segment of the eye is generally responsible for focusing light on the 

retina, controlling light intensity, and controlling intraocular pressure (IOP)1. The anterior 

segment consists of the cornea, ciliary body, iris, lens, and aqueous humor. 

1.1.1.1 Cornea 

The cornea (5 in Figure 1.1) is the transparent fibrous layer in the anterior 

segment of the eye. It is comprised of five layers, from anterior to posterior: corneal 

epithelium, Bowman’s layer, corneal stroma, Descemet’s Layer, and corneal 

endothelium1. In humans, central corneal thickness is 536 ± 31 µm (mean ±SD)3.  

The corneal epithelium is comprised of stratified squamous cells, with Bowman’s 

layer as its basement membrane. The epithelium forms a barrier to the outside world that 

keeps microbes out4. These cells are continually renewed by corneal stem cells, which 

reside in the limbus5. Newly formed epithelial cells migrate towards the center of the 

cornea and anteriorly, replenishing the cornea every 1-3 weeks6.  

The cornea stroma forms the bulk of the cornea (~90% of its thickness)1. The 

stroma is composed of aligned collagen fibers with uniform thickness, which are 

organized into parallel sheets7. To maintain transparency, the stroma is kept in a 

dehydrated state so the distance between fibers is constant (<200 nm)8. The highly 

organized stromal fibers act as Rayleigh scatterers that allow visible light (400-700 nm) 

to pass through the stroma with minimal interference7. On the other hand, UV light (<400 

nm) experiences destructive interference when passing through the stroma, and 

consequently, does not reach the retina. 
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The stroma’s radius of curvature and refractive index accounts for most of the 

eye’s refractive power9. Because the refractive index of air is quite dissimilar from that of 

cornea, the anterior surface of the cornea accounts for most of the refractive power. The 

refractive power of the cornea is ~43 D (diopters) and does not change through 

adulthood1, 8. 

The corneal endothelium is the innermost layer of the cornea. It is actually a 

single layered epithelium – with Descement’s layer as its basement membrane – that does 

not regenerate with age. The cornea endothelium actively pumps water out of the cornea 

to maintain the relatively dehydrated state of the stroma10.  

1.1.1.2 Iris 

The iris (6 in Figure 1.1) serves as a biological aperture (called the pupil, 7 in 

Figure 1.1) for the neurosensory retina, adjusting the diameter of the pupil depending on 

ambient light conditions1. The iris receives both sympathetic and parasympathetic 

innervations.  

1.1.1.3 Ciliary body 

The ciliary body (10 in Figure 1.1) consists of the ciliary muscles and the ciliary 

processes. The function of the former is to alter the refractive power of the lens by 

controlling the tension of the zonules, which are fibers that attach the ciliary muscles to 

the lens1. The ciliary muscle forms a ring anchored to the sclera near the scleral spur. 

When the ciliary muscles contract, the zonules are placed under tension, and the lens is 

pulled, reducing its radius of curvature and its refractive power, and vice versa11, 12. 

 The ciliary processes is continuous with the uveal tract. It produce aqueous 

humor, which is a transparent nutrient-rich fluid derived from blood13, 14. The aqueous 
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humor is required to feed the avascular cornea and lens (these tissues are necessarily 

devoid of blood vessels so as to maintain their transparency). The interior of the ciliary 

body contains a rich blood vessel network. The ciliary processes is lined by two layers, 

called the pigmented and unpigmented ciliary epithelium, which sequentially filter blood 

into aqueous humor13. They collectively form the blood-aqueous barrier which keeps 

blood from leaking into the aqueous humor15. 

1.1.1.4 Aqueous humor 

Aqueous humor (8 in Figure 1.1) contains nutrients necessary to feed the corneal 

epithelium and endothelium, as wells as the lens epithelium, since the cornea and lens are 

avascular1. It is produced by the ciliary epithelium lining the ciliary body. Aqueous 

humor production (and elimination) is also important in maintaining the intraocular 

pressure (IOP)13. This IOP keeps the eye inflated, which is necessary to maintain the 

focal plane of the eye on the retina, especially when externally forces are applied on the 

eye13. Elimination of aqueous humor is possible through two paths: the ‘traditional 

outflow’ and uveoscleral outflow13, 16. Traditional outflow occurs through the trabecular 

meshwork. Fluid flowing through the trabecular meshwork enters Schlemm’s canal, 

which is a circular channel near the limbus. Fluid collected by Schlemm’s canal is 

eventually shunted into the episcleral veins13. The uveoscleral outflow is usually less than 

traditional outflow, though there are drugs that can dramatically increase uveoscleral 

outflow. In uveoscleral outflow, fluid flows through the iris root and into the 

suprachoroidal space16. Aqueous humor production in humans is 2.4 ± 0.6 µL/min, and 

the characteristic elimination time is approximately 0.01/min13.  
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1.1.1.5 Lens 

The lens (11 in Figure 1.1) is an avascular transparent tissue that is suspended in 

the anterior segment by zonules. The lens accounts for about one-third the refractive 

power of the human eye (with the cornea accounting for the remainder)17. It can 

dynamically adjust the focal plane of the eye when it changes shape. The lens epithelium 

surround the lens and grown inwards18. The lens nucleus is made of enucleate fibers 

(cells that have lost their nucleus). In young adults, the lens is smaller and can change its 

shape easily, allowing accommodation. However, with age, the lens becomes larger and 

more rigid19. Lens opacity can result from damage to the lens epithelium, or aggregation 

of the proteins found in the lens fibers19.  

1.1.2 Posterior segment of the ocular globe 

The posterior segment of the eye is responsible for detecting light and 

transmitting a signal to the brain. The posterior segment consists of the sclera, choroid, 

retina, optic nerve, and vitreous humor. 

1.1.2.1 Retina 

The retina (13 in Figure 1.1) is a part of the central nervous system. Total 

thickness of the human retina is 230 ± 15 µm20. The neurosensory retina is a highly 

organized collection of neural layers responsible for detecting and processing light, and 

transducing a complex spatiotemporal pattern along the optic nerve to the brain 

representing light and darkness1. The photoreceptors, which are the outermost layer of the 

retina, are responsible for detecting photons and initiating signal transduction. There are 

two types of photoreceptors: rod and cone. Rods are capable of detection in low light 

settings (down to single photons) but have low spatial resolution5. There are 
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approximately 91 million rod photoreceptors in the eye, mostly distributed in the 

periphery21. Cones are capable of detection in high light settings with high spatial 

resolution. Furthermore, there are three subtypes of cones that have maximal sensitivity 

at 420, 534, and 564 nm, respectively9. There are 4.5 million cone photoreceptors, the 

vast majority of which are found in the center region of the retina called the macula21. At 

the center of the macula is a pit that contain only cone photoreceptors, called the fovea. 

The fovea is responsible for central vision, allowing for tasks such as reading.  

The retinal pigment epithelium (RPE) is a single monolayer of epithelial cells that 

supports the outer retina (i.e., the photoreceptors) structurally and metabolically22, 23. It is 

located between the outer retina and the choroid22-25, with Bruch’s membrane serving as 

the basement membrane for both RPE and choroid. The RPE shuttles nutrients from the 

choroid to the outer retina, while shuttling waste out of the outer retina26.  

Interneurons, such as the bipolar cells, horizontal cells, and amacrine cells, 

process and convey the information to the retinal ganglion cells1. Müller cells support the 

retina structurally and metabolically. Inner retinal blood vessels supply the inner retina 

with nutrients25. The axons of the retinal ganglion cells coalesce at the optic disc to form 

the optic nerve. The optic nerve exits the ocular globe, heading towards the brain. 

1.1.2.2 Choroid 

The choroid (2 in Figure 1.1) is a rich vascular bed that supplies nutrients to the 

outer layers of the neurosensory retina26, 27. Larger caliber vessels are found in the outer 

choroid, while capillaries, termed choriocapillaris, are found in the inner choroid. The 

choriocapillaris is one of the densest capillary beds with one of the highest perfusion rates 

of the body28, 29. The total thickness of the choroid in humans is 354 ± 111 µm at the 
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center of the visual axis30. Individual choriocapillaries can be classified as non-sinusoidal 

fenestrated capillaries31. The large supply of nutrients and oxygen is necessary for the 

metabolic demand and health of the retina. Since the oxygen consumption of the outer 

retina does not deplete the choroid’s carrying capacity29, 32, some have posited that the 

choroid can function as a heat sink that regulates retinal temperature. 

1.1.2.3 Suprachoroidal space 

The suprachoroidal space is a potential space that exists between the sclera and 

the choroid. Pigment can migrate into this space. In healthy adults, the suprachoroidal 

space is approximately 30 µm thick due to the negative pressure relative to intraocular 

pressure that keeps the space closed1, 33, 34. Furthermore, there are connective tissue fibers 

that connect the sclera to the choroid and ciliary body1, 35. A strain of about “5 g/cm” 

(calculated to be ~490 Pa) is required to break these fibers1, 36, 37. The minimal but 

nonzero thickness allows the sclera to slide relative to the choroid during 

accommodation38. Due to negligible lymphatics39, drainage of the suprachoroidal space is 

through intravascular (into the choroid)11, 31, trans-scleral8, 35, 36, 40, and perivascular16, 41-44 

routes. 

1.1.2.4 Sclera 

The sclera (1 in Figure 1.1) encapsulates the posterior segment of the eye and is 

continuous with the cornea, meeting at the limbus. The sclera has three layers: the 

episcleral layer, the sclera proper, and the lamina fusca1. The episcleral layer is a 

composed of loose elastic tissue and attaches the sclera to Tenon’s capsule. The sclera 

proper forms the bulk of the sclera. Unlike the corneal stroma, the scleral stroma is 

opaque since the sclera’s collagen fibers are not aligned nor are they uniform in size1. In 
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humans, scleral thickness is 530 ± 140 µm at the limbus, and ~900 µm near the optic 

nerve45. The lamina fusca is the innermost layer of the sclera, and is loosely arranged. 

The lamina fusca contains many pigment cells.  

1.1.2.5 Vitreous humor 

The vitreous humor (12 in Figure 1.1) is a jelly-like substance that occupies much 

of the ocular globe1. It is composed mostly of water (99%) with hyaluronic acid46. With 

age, the vitreous can partially liquefy, changing its diffusional properties47, 48.  

1.1.3 Extra-ocular structures 

Other structures surround the eye but are not a part of the ocular globe. These 

include the conjunctiva, Tenon’s capsule, extraocular muscles, and eyelid. 

1.1.3.1 Eyelid 

The eyelids are folds of skin that can close to protect the eye1. Muscles can open 

or close the eyelid. When the eyelids are opened, the cornea and conjunctival surfaces are 

exposed to the outside world. The blink reflex helps to replenish the tear film and to wash 

away particulates that may have deposited on the eye1, 4. The two muscles that elevate 

and depress the eyelid are considered extraocular muscles. 

1.1.3.2 Conjunctiva 

The conjunctiva is a clear membrane that covers the sclera, but not the cornea, 

and the inner surface of the eyelids1. Thus, the only region of the ocular globe actually 

exposed to the outside world is the cornea. Secretory cells located in the conjunctival 

membrane produce mucus and tears, which help lubricate the eye. Many blood vessels 

and lymphatics run in the subconjunctival space31, 39.  
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1.1.3.3 Tenon’s capsule 

Tenon’s capsule is a thin membrane that envelops the ocular globe from the optic 

nerve to the limbus1. Tenon’s capsule adheres to conjunctiva anteriorly, and to the outer 

surface of the sclera posteriorly. It helps to keep the retro-orbital tissues (e.g., retro-

orbital fat) separated from the eye.  

1.1.3.4 Extraocular muscles 

There are six extraocular muscles that move the eye in the orbit to position the 

eye in different directions1. The muscles typically work in concert to reposition the eye, 

as well as hold it stationary. Pairs of muscles work together in a push-pull system. For 

example, to elevate the eye, the superior rectus muscle contracts, while the inferior rectus 

relaxes. Since the extraocular muscles are innervated by cranial nerves, they can elucidate 

the health status of the cranium.  

1.2 Ocular Pathology 

Many pathologies can affect the eye, which in turn affect vision. Selected ocular 

diseases are described below to better motivate the need for targeted ophthalmic drug 

delivery. 

1.2.1 Primary open angle glaucoma 

Glaucoma is a group of ocular diseases with characteristic optic neuropathy49. 

Patients with glaucoma will slowly and painlessly lose peripheral vision and eventually, 

central vision. The most common form of glaucoma is primary open-angle glaucoma 

(POAG). It is a leading cause of blindness in the United States, affecting nearly 3 million 

individuals with an annual cost of $2.9 billion50, 51. POAG is usually associated increased 
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intraocular pressure (IOP) but elevated IOP is neither causative nor requisite for 

glaucoma52. Lowering IOP has been shown to prevent the progression of glaucoma53, 54, 

and IOP is strongly linked with aqueous humor production and outflow4, 13.  

Medical and surgical therapy seek to decrease intraocular pressure. Medical 

therapy is first-line treatment, and calls for of a topical eye drop regimen (common 

regimens are presented in Table 1.1)4, 53, 54. 

Table 1.1 – Summary of medications used to treat glaucoma 

Patient adherence to eye drop regimens is low, with an estimated adherence of 

~60%, in part because patients do not notice the slow painless loss of vision from the 

periphery 4, 55-58. The low compliance is due to a number of reasons including regimen 

difficulties (e.g., refill, cost), patient factors (e.g., knowledge, memory, and motivation), 

provider factors (e.g., dissatisfaction, communication), or situational/environmental 

issues (e.g., change in routine, competing activity)53, 55-58. Situational/ environmental 

factors accounted for about half of all adherence barriers58. Simplifying the dosing 

regimen (i.e., using a once-per-day eye drop vs. twice-per-day eye drops) did increase 

adherence, but did not result in perfect (100%) adherence56.  

 

 

Drug Class Mechanism of Action Example Dose 
Dosing 

Regimen 

Dose/day 

(µg/day) 

Beta Blocker 
Decrease aqueous humor 

production 
Timolol 0.25% 2/d 250 

Prostaglandin 

analogue 

Increase uveoscleral 

outflow 
Latanoprost 0.005% 1/d 2.5 

Carbonic 

anhydrase 

inhibitor 

Decrease aqueous humor 

production 
Dorzolamide 2% 3/d 3000 

Alpha-2 

adrenergic 

agonist 

Decrease aqueous humor 

production, increase 

aqueous humor removal 

Brimonidine 0.1% 3/d 150 

Miotic agent Increased aqueous outflow Pilocarpine 0.5% 3-4/d 750 
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1.2.2 Posterior segment diseases 

Selected ocular diseases that affect the posterior segment are presented below. 

The posterior segment can be separated geographically into the macula (necessary for 

central, high-resolution vision) and the periphery (necessary for vision in dark 

environments). Since these diseases only affect specific regions, targeted treatment to 

those regions may be more efficacious and/or mitigate side effects (Table 1.2).  

Table 1.2 – Selected posterior segment diseases and their distribution 

Disease 
Site of disease 

Comments 
Macula Periphery 

Noninfectious posterior 

uveitis 
x x 

Corticosteroids in anterior segment of 

eye can cause side effects. 

Age-related macular 

degeneration 
x   

Retinitis pigmentosa  x 

Treatments under investigation include 

gene therapy; transfection in other 

regions of eye may be undesirable. 

Ocular tumors ? ? 

Lesions can develop anywhere in eye. 

Chemotherapy in other regions of eye 

can cause side effects. 

1.2.2.1 Noninfectious posterior uveitis 

Noninfectious posterior uveitis is typically an autoimmune inflammation of the 

entire choroid59. Patients can experience photopsia or pain from light. Current treatment 

calls for corticosteroids administered systemically, topically, or intravitreally59-61. 

However, long term steroid use causes cataract formation due to inadequate 

compartmentalization of drug away from nontarget tissues (e.g., lens) 61, 62.  

1.2.2.2 Age-related macular degeneration (AMD) 

Age-related macular degeneration (AMD) is an ocular disease that affects the 

macula, or the central part of the retina. AMD affects 10 million Americans63. The cause 

of AMD is not known, but certain genetic mutations, smoking and other forms of 

oxidative stress, and age increase the risk of developing AMD64, 65. AMD can be sub-
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classified as wet-form or dry-form. In dry AMD, there are subretinal deposits of cellular 

debris known as drusen in the macular region. Dry AMD progresses slowly towards 

geographic atrophy of the macula. One the other hand, wet AMD is characterized by the 

rapid uncontrolled growth of the choroidal vasculature (termed choroidal 

neovascularization or CNV). These newly formed choroidal vessels are leaky and can 

disrupt the macula, all of which can cause blindness66.  

There is no FDA-approved treatment for dry AMD. Wet AMD is currently 

managed with monthly intravitreal injections of anti-VEGF monoclonal antibodies (such 

as ranibizumab or aflibercept) that suppress CNV and macular edema67-70. There is 

mounting evidence that anti-VEGF therapy can cause visual impairment through the total 

suppression of VEGF signaling24, 71-73.  

1.2.2.3 Retinitis pigmentosa 

Retinitis pigmentosa is a group of genetic diseases where the rhodopsin gene is 

mutated74. Rhodopsin is the photo-pigment found exclusively in rod photoreceptors, and 

thus the disease primarily affects rod photoreceptors. Patients experience night blindness 

and tunneling of vision, and eventual blindness. Because of the distribution of rod vs. 

cone photoreceptors, the peripheral retina is affected in early/mid-stage disease, while the 

macula is spared.  

Though there is no current FDA-approved treatment, there are clinical trials 

underway that are testing the safety and efficacy of gene therapy to ‘fix’ the mutated 

rhodopsin gene (e.g., NCT01482195)75, 76 and a visual prosthesis that electrically 

stimulates the surviving interneurons to simulate vision (e.g., NCT01603576)77, 78. 
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1.2.2.4 Ocular tumors 

Primary ocular tumors are typically focal lesions that affect one specific region of 

the ocular globe. The most common primary tumor in children is retinoblastoma79 and in 

adults is uveal melanoma80. The goal of treatment is to kill cancer cells (including any 

metastatic seeds) while sparing noncancerous cells. If the cancerous cells cannot be 

controlled, the eye is enucleated. 

1.3 Ophthalmic Imaging Modalities 

The healthy and diseased eye can be readily imaged using post mortem and in 

vivo imaging techniques. Since the eye is a largely transparent light detector, imaging the 

interior surfaces of the eye is possible. In fact, the eye is one of the only regions in the 

human body where nerves can be visualized. The following subsections briefly review 

the pros and cons of various imaging techniques. 

1.3.1 Post mortem imaging techniques 

These methods can enable definitive diagnosis, however, they also require tissue 

harvesting. Thus, they are not useful in clinical medicine, but can be valuable tools in 

research. Due to tissue processing, kinetic information is lost.  

1.3.1.1 Dissection 

After enucleation, the eye can be dissected to provide gross visualization of the 

inner surfaces of the eye. The suprachoroidal space of albino eyes can be easily seen 

since there is no pigment in the RPE or choroid, and thus, the retina and choroid are 

transparent81. Such a technique is sacrificial as the eye must be cut open. Since 

enucleation of the eye must occur, temporal resolution is limited (on the order of 
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minutes). However, the eye can be frozen in ethanol chilled over liquid nitrogen to arrest 

fluid movement.  

1.3.1.2 Histology 

Histology can be performed to visualize a cross-section of the eye at the cellular 

level. The eye must be enucleated and fixed to preserve the cellular structure. Thin slices 

(~10 µm in thickness) are cut in cross-section. Different stains can be applied to 

accentuate different cellular or extracellular features. For example, a hematoxylin & 

eosin (H&E) stain is commonly used to identify cells82. Care must be taken to choose an 

appropriate histological processing technique since most techniques are quite harsh and 

can destroy structures or objects of interest. For example, H&E stains require xylene 

washes, however, xylene will dissolve polymeric particles and denature fluorescent 

proteins.  

1.3.2 In vivo imaging techniques 

These techniques can be carried out in live subjects, and can thus be used to study 

kinetics. Some imaging modalities are not useful in the eye but are covered here since 

they are commonly used techniques. Since ophthalmology is so visual, many imaging 

techniques have been developed specifically for the eye83. 

1.3.2.1 Magnetic resonance imaging (MRI) 

Magnetic resonance imaging (MRI) enables three-dimension (3D) views of 

anatomical (and some functional) structures84, 85. The subject is placed in a strong 

magnetic field and radio frequency pulses are used to excite hydrogen atoms; the 

resulting changes in radio waves can be detected and processed into a 3D stack. No 
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ionizing radiation is used. Anatomical structures in the eye can be seen under MRI. MRI 

contrast agents exist, though there is not enough resolution to simultaneously track two 

different contrast agents. Due to the low signal-to-noise ratio (SNR) of radio frequency, 

long imaging sessions are necessary to ensure sufficient signal. Furthermore, spatial 

resolution is limited. For example, the Bruker Pharmascan 7T (available in the Institute 

of Bioengineering and Bioscience (IBB) core facility at Georgia Tech) acquired a 3D 

image of the eye with a resolution of ~200 µm in 45 min. This temporal and spatial 

resolution are insufficient to study kinetics in the rabbit eye. Figure 1.2 is an example 

image of an ex vivo rabbit eye after microneedle injection of contrast agent. Due to long 

image acquisition, the localization of contrast agent is unclear. 

 
Figure 1.2 – Single slice of ex vivo rabbit eye acquired with Bruker Pharmascan 7T MRI imager after 

microneedle injection of contrast agent. Contrast agent shows up as bright signal against ocular tissue. 

Voxel size was a cube with sides ~200 µm. Acquisition time was ~45 min. 

1.3.2.2 Computed tomography 

Computed tomography (CT) is a technique whereby multiple X-ray images are 

acquired and processed into a 3D stack. Ionizing radiation is used. Anatomical structures 

are not visible since all ocular tissue has roughly equal X-ray attenuation properties. 

Contrast agent can be used. The spatiotemporal resolution of µCT is limited. For 

example, the Scanco µCT 40 scanner was able to image the whole eye with a resolution 
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of ~50 µm in approximately 1 hr. Since anatomical structures are not readily visible on 

CT, localization of injected contrast agent in the eye is difficult (Figure 1.3).  

 
Figure 1.3 – Single slice of ex vivo rabbit eye acquired with Scanco µCT 40 scanner after microneedle 

injection of contrast agent (Left). 3D render of eye (Right). Note that it was impossible to differentiate 

ocular tissue from these images. Voxel size was a cube with sides ~50 µm. Acquisition time was ~1 h. 

1.3.2.3 Fundus photography 

Planar images of the inner surface of the eye can be acquired noninvasively83. 

Optics are needed account for the refractive power of the eye so that a camera can resolve 

fundus. There are many types of commercial ophthalmic imaging tools, including slit 

lamp microscopes, direct and indirect ophthalmoscopes, and contact and non-contact 

retinal cameras83 Contact retinal cameras (e.g., Clarity Medical Systems Retcam II 

pediatric ophthalmic imaging system) have wide field lenses that enable visualization 

into the far periphery (>130° from the optic nerve). Albino subjects can be used so the 

suprachoroidal space is readily visible. Some cameras also have single wavelength light 

sources and optical filters that match the excitation and emission spectra of fluorescent 

molecules, such as fluorescein. Furthermore, these cameras can be modified to visualize 

fluorescent molecules with other spectra. 
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1.3.2.4 Ultrasound B-scan 

Ultrasonography can be used to acquire cross-sectional views of ocular tissue 

noninvasively83, 86. The ultrasound probe emits high-frequency soundwaves that echo off 

tissue, and processes the data to show the spatial distribution of density. A single line of 

information (called an A scan) can be rastered to form a 2D image (called a B scan). 

Ultrasound B-scan can be used to image through optically opaque tissue (e.g., sclera). 

Since the suprachoroidal space is a potential space, injection of fluid distends the tissue. 

This space is visible as a void between the tissues under ultrasound.  

1.3.2.5 Optical oherence tomography 

Optical coherence tomography (OCT)83, 87 also generates cross-sectional views of 

ocular tissue noninvasively using similar techniques as ultrasound (except with shorter 

wavelengths). Typically, OCT is used to image the retina along the visual axis and is thus 

not suitable for imaging the far periphery. 

1.4 General Overview of Ophthalmic Drug Delivery 

1.4.1 Ocular barriers of the eye 

Since the retina is a part of the central nervous system, the eye is a site of immune 

privilege4, 88. The difficulty in maintaining a sterile and immune privileged environment 

are compounded by the fact that a part of the eye (i.e., cornea) is exposed to the outside 

world. In the healthy eye, multiple barriers maintain this immune privilege by selectively 

controlling the entry of particulates (e.g., microbes) and molecules into the eye from 

systemic circulation, as well as the outside world. The barriers that prevent entry from the 

outside world include the tear flow, the cornea, and aqueous humor flow. The barriers 
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that prevent particulates and molecules floating in systemic blood from reaching the 

retina include the blood-aqueous barrier and the blood-retinal barrier. Ocular 

inflammation can override these barriers so immune cells may enter the eye. 

 
Figure 1.4 – Diagram of the ocular barriers in eye. Adapted from: Talos, colorized by Jakov 

(https://commons.wikimedia.org/wiki/Human_eye#/media/File:Eye_scheme_mulitlingual.svg)  

1.4.1.1 Pre-corneal and corneal barriers 

Tear flow and tear drainage form the first barrier to entry into the eye from the 

outside world (Figure 1.4 B). Glands located in the conjunctiva and eyelids secrete a 

constant flow of tears that lubricate the eyes and wash away particulates, such as dust or 

microbes, that may settle on the external surface of the eye. In humans, basal tear film 

volume is 7.0 ± 2.0 µL and the rate of tear film turnover is 10.3 ± 3.7 %/min89, 90. In 

https://de.wikipedia.org/wiki/Benutzer:Talos
https://de.wikipedia.org/wiki/Benutzer:Jakov
https://commons.wikimedia.org/wiki/Human_eye#/media/File:Eye_scheme_mulitlingual.svg
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addition, antimicrobial proteins, such as lactoferrin and lysozymes, are secreted into the 

tears as an additional means to prevent infection4.  

The cornea is the next barrier to entry from the outside world (Figure 1.4 B). Due 

to the unique barrier function of the cornea, bioavailability of drugs across the cornea is 

low, estimated at 1-7%4. The corneal epithelium’s barrier function and the dense collagen 

of the stroma inhibit diffusion of particulates and macromolecules through the cornea. 

Only small molecules within a tight hydrophobic/hydrophilic range may diffuse through 

the cornea91. 

Corneal epithelial cells form and maintain tight junctions between adjacent cells, 

which prevent the passage of ions and macromolecules between the cells92. Because 

intracellular transport is limited by tight junctions, the transport of molecules through the 

epithelium happens via para-cellular or trans-cellular means91. In both para-cellular and 

trans-cellular transport, the diffusing molecule must easily pass into and out of the 

lipophilic plasma membrane. The corneal stroma is the second structure encountered in 

the cornea. The collagen fibers and dispersed proteoglycans, which comprise the stroma, 

are strongly charged and can inhibit the passage of lipophilic molecules. Furthermore, the 

dense network of collagen fibers physically prevents the movement of particulates and 

macromolecules. The corneal endothelium provides little barrier function relative to the 

epithelium and stroma.  

Though the barrier function of the sclera is similar to the cornea, the conjunctiva 

and the subconjunctival space (both of which overlay the sclera) are strong barriers to 

entry into the eye. The subconjunctival space contains many blood vessels and 
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lymphatics that drain the space; thus, molecules and particulates within the 

subconjunctival space are preferentially cleared before diffusing through the sclera4, 93.  

Of the fraction of molecules that are able to pass through the cornea into the 

anterior chamber (1-7%), there is a small but constant convective current caused by 

aqueous humor outflow that severely limits diffusion deep into the eye to the posterior 

segment (Figure 1.4 B). Aqueous humor production in humans is 2.4 ± 0.6 µL/min and is 

directed posterior (from the ciliary body) to anterior (out the trabecular meshwork)13. By 

calculating the Péclet number of the anterior segment, which is dimensionless number 

that relates the advective transport rate to the diffusion transport rate, we find that 

advective transport dominates in the anterior chamber94. Thus, molecules that cross the 

cornea will not diffuse towards the back of the eye; rather, they will be pushed by the 

bulk fluid flow of newly produced aqueous humor into the trabecular meshwork.  

1.4.1.2 Blood-retinal barrier 

The interior tissues of the eye are separated from the systemic circulation by the 

blood-aqueous barrier in the ciliary body and the blood-retinal barrier in the retina 

(Figure 1.4 C and D)25. The pigmented and non-pigmented epithelium of the ciliary body 

form the blood-aqueous barrier (Figure 1.4 C). These cell layers maintain tight junctions 

that prevent the passage of large macromolecules and cells into the eye15. The ciliary 

epithelium actively transport selected molecules, such as ions, amino acids, and glucose, 

to form the filtrate that is aqueous humor14. 

Since the retina is a highly metabolically-active tissue, the retina derives nutrients 

from two separate blood supplies. The inner retina is fed by the retinal vasculature, and 

the outer retina is fed by the choroid. Each blood supply has its own blood retinal-barrier 
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(i.e., there is an inner and an outer blood-retina barrier) that limits movement from 

systemic circulation to the retina (Figure 1.4 D)25. The inner blood-retinal barrier is 

inherent to the retinal arteries and their branches. Similar to the vessels that feed the 

central nervous system, the retinal vasculature is comprised of non-fenestrated capillaries 

with tight junctions31. This limits passive transport of molecules <1 nm (~5kDa) into the 

inner retina. To enter the inner retina, larger molecules must be actively transported by 

pericytes that surround the capillary31. The outer blood-retinal barrier is comprised of the 

retinal pigment epithelium (RPE) that separates the outer retina from the choriocapillaris. 

The choriocapillaris does not have any inherent barrier function because they are 

fenestrated non-sinusoidal vessels25, 95, 96. As with most epithelial layers, the RPE 

maintains tight junctions that prevent intercellular transport. The RPE actively transports 

select molecules from the choroid to the outer retina.  

1.4.2 Traditional ophthalmic drug delivery techniques 

The ability for a pharmacologic agent (i.e., drug) to prevent, treat, or cure a 

disease has had a profound effect on healthcare. Despite the knowledge that a drug will 

have a therapeutic effect, it is also essential to deliver drugs to the appropriate site88. 

Optimal drug delivery technologies must balance two sometimes opposing goals: (1) 

ensuring sufficient drug concentrations are at the drug’s site of action to induce a 

therapeutic effect, and (2) ensuring low drug concentrations are at non-target tissues to 

minimize side effects. Because of the unique barriers of the eye as well as its small size, 

targeted drug delivery to specific tissues and regions in the eye can be difficult88. 
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Figure 1.5 – Diagram of the human eye demonstrating the common ophthalmic drug delivery routes: 

intravitreal injections and topical eye drops. Adapted from : Talos, colorized by Jakov 

(https://commons.wikimedia.org/wiki/Human_eye#/media/File:Eye_scheme_mulitlingual.svg)  

Pharmacokinetics is the study of the movement (including the absorption, 

distribution, and elimination) of drugs or therapeutic agents in the body. The unique 

barriers of the eye limit absorption and distribution (e.g., the cornea prevents the bulk 

movement of drugs into the eye) and increase clearance (e.g., the conjunctival lymphatics 

clear drug away from the eye into the systemic circulation)88. Understanding the 

pharmacokinetics of each drug delivery method can help us evaluate the advantages and 

shortcomings of that method. The most common methods for ocular drug delivery are (1) 

systemic dosing, (2) topical eye drops, and (3) intravitreal injections.  

1.4.2.1 Systemic delivery 

With systemic dosing, the drug is delivered either orally or parenterally so the 

entire body is bathed in drug. The drug could distribute into the eye, though the eye’s 

small size (<0.1% of the total mass of an adult) limits the amount of drug that would 

naturally diffuse into the eye97. The actual amount entering the eye is even less due to the 

blood-retinal barriers. Thus, systemic dosing is inefficient in treating isolated ocular 

diseases97. Instead, systemic dosing is indicated when there is systemic disease with 

Intravitreal 

injection 

Eye drop 

https://de.wikipedia.org/wiki/Benutzer:Talos
https://de.wikipedia.org/wiki/Benutzer:Jakov
https://commons.wikimedia.org/wiki/Human_eye#/media/File:Eye_scheme_mulitlingual.svg
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ocular involvement. For example, intravenous injections of an antifungal are appropriate 

for fungal endophthalmitis in the presence of systemic candidiasis.  

1.4.2.2 Topical eye drops 

Topical eye drops are a common drug delivery method used for diseases of the 

anterior segment, such as glaucoma and keratitis4, 97. In practice, a patient instills ~50 µL 

of a drug solution onto their eye. Some manual dexterity and experience are needed to 

place the drop on the eye and not on the cheek. Tear drainage and corneal barriers limit 

the total amount of applied drug (~1-7%) that can enter the eye and reach its ultimate site 

of action4. Since the capacity of the lacrimal lake is only about 7-10 uL4, 89, the vast 

majority of the eye drop is lost immediately with tear drainage. Drugs that can diffuse 

through the cornea are moderately-uncharged small molecules91. The low bioavailability 

and fast clearance from the eye necessitate frequent dosing, typically once to four times a 

day. Because the rate of aqueous humor production is greater than the diffusional rate of 

the drug (large Péclet number), drugs administered as eye drops do not diffuse deep into 

the eye94.  

1.4.2.3 Intravitreal injections 

Intravitreal injections have become common with the introduction of anti-VEGF 

monoclonal antibodies (such as bevacizumab and ranibizumab) for wet AMD69, 98, 99. 

Nowadays, intravitreal injections are used for most posterior segment diseases, including 

AMD, diabetic retinopathy, and uveitis100. In the outpatient clinic setting, a trained 

ophthalmologist uses a 27-30-gauge hypodermic needle to penetrate through all the 

layers of the eye and inject a drug solution into the vitreous. Such a technique bypasses 

the ocular barriers of the front of the eye, allowing the delivery of macromolecules (e.g., 
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bevacizumab has a molecular weight of ~146 kDa) into the eye100. Unfortunately, 

intravitreal injections carry a small but significant risk of choroidal hemorrhage, retinal 

detachment, and infection101. After the injection, the vitreous serves as a drug depot, 

prolonging time between doses. It is estimated that ranibizumab injected intravitreally has 

a half-life of 2.9 days and was detectable in the vitreous after 29 days102.  

Intravitreal injections are typically intended to treat diseased tissues in the 

posterior segment diseases (such as the macula in AMD and the choroid in posterior 

uveitis), not the vitreous itself. The drug must diffuse through the vitreous and reach the 

site of action in the posterior segment. However, there is no preferential driving force for 

the injected drugs towards the site of action in the back of the eye, nor is there the ability 

to direct drug towards specific regions within the back of the eye. The injected drug can 

freely diffuse throughout the vitreous humor and affect tissue throughout the eye. This 

nonselective dosing can result in side effects caused by dosing non-target tissues. For 

example, corticosteroids injected intravitreally for the treatment of uveitis will cause 

drug-induced cataracts because the corticosteroids can diffuse through the vitreous to the 

lens61, 62.  

1.4.2.4 Other ophthalmic drug delivery techniques 

Other less commonly used ocular drug delivery techniques can be used to deliver 

drugs around the eye100. These techniques are also not targeted towards specific regions 

or tissues in the eye. 

Because the subconjunctival space is a potential space, it is possible to place drug 

depots inside for extended release applications. This might result in less drug washing 
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away immediately with the tear film. However, clearance by blood and lymphatic vessels 

from the subconjunctival space is high95, 103.  

Alternatively, drugs can be placed in Tenon’s capsule, the fibrous capsule 

encapsulating the back of the eye100. Besides their posterior position, sub-Tenon’s 

injections are similar to conjunctival injections in they do not penetrate into the ocular 

globe, and thus, are subject to clearance by lymphatics. To have a therapeutic effect in the 

eye, the drug deposited in the sub-Tenon’s space must diffuse through the sclera, which is 

a diffusional barrier for larger molecules95, 104.  

1.5 Microneedle Injections to Access Suprachoroidal Space 

1.5.1 Microneedles 

Microneedles are needles with sub-millimeter dimensions. Use of microneedles 

allows reliable access to superficial tissues that may be difficult to target with 

conventional means. There are three general classes of microneedles: (1) hollow 

microneedles enable the injection of drug solutions or suspensions into superficial tissues 

(Figure 1.6, left); (2) coated microneedles can be used to penetrate into superficial tissues 

and deliver drugs that are coated on the microneedle (Figure 1.6, middle); and (3) 

dissolving microneedle are shaped drug-polymer mixtures that can penetrate into 

superficial tissue and release drug upon dissolution of the polymer (Figure 1.6, right)8, 81, 

105-113.  

The main advantage for using microneedles is that they can reliably deliver drug 

into spaces directly below the body’s protective surfaces. In many cases, this can result in 

less pain, ease of administration, and/or increased efficacy and potency8, 105-107, 112, 113. 

The main disadvantage to using microneedles is the limited amount of drug that can be 
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delivered (<1 µg per microneedle with coated and dissolving microneedles, although 

multiple microneedles can be used). A dissolving microneedle patch (similar to (Figure 

1.6, right) for the delivery of flu vaccine is being investigated in an ongoing phase I 

clinical trial (NCT02438423).  

 
Figure 1.6 – Three types of microneedles that can be used to penetrate the body’s superficial barrier (e.g., 

epidermis) and deliver drugs: (Left) hollow microneedles, similar in function to hypodermic needle, allows 

infusion of liquid formulations. (Middle) metal studs with dried drug deposited on surface. Upon 

penetration, the dried drug dissolves. (Right) dissolving polymeric studs with drug interspersed in polymer. 

Upon penetration, the polymer and drug dissolve. No sharps waste after delivery. 

1.6 Suprachoroidal Delivery using Microneedles 

Microneedles have been used to deliver drugs to different regions of the eye. 

Jiang et al. used coated metal microneedles (500-700 µm in length) to deliver small-

molecules, proteins, and DNA into the corneal stroma and sclera109. Sixty-nine percent 

bioavailability was possible with this technique compared with ~5% bioavailability with 
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topical eye drops. Kim et al. was able to deliver bevacizumab using coated microneedles 

to the cornea for the prevention of corneal neovascularization114.  

Figure 1.7 – Hollow Metal Microneedle 

Representative image of ½” hypodermic 

needle (top), 33 G (left), 30 G (middle), 

and 27 G (right) microneedles. 

Figure 1.8 – SCS separation caused by microneedle 

injection. Composite images after saline was injected into 

the suprachoroidal space of an in vivo rabbit eye. Scale bar 

= 500 µm. From Chiang et al.115  

 

Jiang et al. also used a hollow microneedle to deliver drugs into the scleral 

stroma110. Small molecules and particles up to 1.0 µm in diameter were infused into the 

scleral stroma. However, it was only possible to infuse up to 35 µL, despite changing 

injection parameters. Patel et al. found that slightly longer microneedles that fully 

penetrated through the full thickness of the sclera could deposit drug into the 

suprachoroidal space8, 81. Fluid injected into this space would spread circumferentially 

within the suprachoroidal space, bathing the choroid with drug. Though drugs had been 

delivered into this space before using cannulation and/or sclerotomy, 2, 5, 36, 116-118 use of a 

microneedle simplified the procedure. The microneedle could be used to administer drug 

in a fashion similar to an intravitreal injection procedure, which is a regularly performed 

outpatient procedure8, 69. Success with injecting a particle suspension was dependent on 

needle length, needle gauge, infusion pressure, and particle size, and did not depend on 

intraocular pressure81.  

Preclinical animal studies have shown that suprachoroidal space drug delivery has 

a similar or better safety profile compared with intravitreal injections2, 17, 118-120. Interim 
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results from Phase I/II clinical trials (e.g., NCT01789320) have also been promising7. 

Intraocular pressure immediately after injection increased with increasing injection 

volume, however, IOP returned to baseline within 1 h post-injection17, 120. These IOP 

changes are similar to those observed with intravitreal injections98, 101, 102, 121, 122, and are 

not expected to cause long term ocular damage. Some studies have examined the eye 

histologically. Einmahl et al. noted that suprachoroidal delivery of hyaluronic acid 

resulted in retinal atrophy118, however, no abnormalities were noted by Olsen et al. 

following suprachoroidal delivery of bevacizumab and hyaluronic acid9. Gu et al. 

observed the eye in vivo using indirect ophthalmoscopy and found evidence of choroidal 

dilation and hyperemia that resolved by 24 h120. They were unable to identify parameters 

that affected this finding in a systematic way. The same group found no changes in 

electroretinograms before and after injection, indicating suprachoroidal injection did not 

adversely affect retinal health119, 120.  

Immediately after injection into the suprachoroidal space, higher levels of small 

molecules and macromolecules where found in the choroidal, RPE, and retinal tissues, 

compared with intravitreal injections2, 5, 8, 9, 36, 81, 119, 120, 123-125. Furthermore, anterior 

segment tissues, including lens, aqueous humor, and cornea, were largely spared from 

drug. However, drug was cleared significantly faster with suprachoroidal delivery than 

intravitreal or subconjunctival injections5, 9, 126. The vitreous humor can serve as a depot 

that slowly releases drug to the retina and choroid9, 69, 93, 102. Gu et al. found that the 

suprachoroidal space collapsed to baseline levels within 1 h120. Faster clearance was 

observed with suprachoroidal delivery of bevacizumab, 4 kDa and 40 kDa FITC dextran 

than with intravitreal injections8, 9. Thus, molecular weight (and molecular size) did not 
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affect this trend, although macromolecules were cleared more slowly from the 

suprachoroidal space than small molecules. Controlled release systems consisting of 

triamcinolone in suspension were able to release triamcinolone within the suprachoroidal 

space for 1 mo or more2, 7, 119, 127. Drug properties had an effect on clearance of drug, 

possibly due to drug binding123. 

Clearance from the suprachoroidal space was reasoned to be by choroidal blood 

flow. Olsen et al. performed immunohistochemistry to visualize bevacizumab clearance 

and concluded it occurred through the choroid9. Abarca et al. used recently euthanized 

pigs eyes to study the role of choroidal perfusion in clearance126. The study concluded 

that choroidal perfusion resulted in faster clearance than no perfusion.  

Though fluid injected into the suprachoroidal space distributes circumferentially 

around the eye in the suprachoroidal space, it does not cover the entire space8, 120, 128. 

Similarly, since most ocular diseases do not affect the eye uniformly (e.g., macular 

degeneration affects the macula while sparing the peripheral retina64, 66, 67, retinitis 

pigmentosa affects the peripheral retina while sparing the macula74). Therefore, targeting 

to specific regions of the suprachoroidal space is of interest. Multiple studies have shown 

that increasing injection volume resulted in increasing coverage area. Gu et al. found that 

increasing injection volumes resulted in increasing suprachoroidal space cross-sectional 

area under optical coherence tomography120. Seiler et al. looked at the maximal 

suprachoroidal thickness with different injections volumes116. While the thickness 

resulting from the smallest injection volume tested was different than those from larger 

injection volumes116, there did not appear to be a linear trend, especially with intraocular 

pressure at physiological levels. Kim et al. demonstrated that the density of the 
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microparticles injected could be used to affect the distribution of particle17. Denser 

particles would sink via decreased buoyancy towards the back of the eye if the eye was 

oriented upright with respect to gravity. Seiler et al. studied the distribution of ultrasound 

contrast agent injected into the suprachoroidal space116, but the distribution of these less 

dense microparticles would not be expected to mimic neutral density microparticles. Kim 

et al. also studied the distribution of particles injected with liquid formulations of varying 

viscosities128. They found that formulations containing carboxymethyl cellulose were 

able to localize particles near the site of injection, and that liquid formulations containing 

hyaluronic acid spread to cover up to 100% of the suprachoroidal space.  

1.7 Aims 

This work seeks to further elucidate the pharmacokinetics (specifically, 

distribution and clearance) of particles suspended in liquid formulations injected into the 

suprachoroidal space using a microneedle. Successful completion of these aims will 

enable the rational design of injection techniques, formulations, and controlled release 

systems.  

Our central hypothesis is as follows. The formulation exerts a force that is able to 

separate the weak adhesions between the sclera and the choroid. The thickness and 

circumferential area covered can be modulated by formulation viscosity, as well as the 

injection volume. Particles suspended in the liquid formulation become trapped in the 

suprachoroidal space relative to small molecules, though the formulation viscosity can be 

used to counteract this entrapment. Anatomical barriers physically limit the 

suprachoroidal space, and can prevent particle deposition in regions of the eye. Due to the 

initial high pressure state post-injection, fluid movement is due to convective flow either 
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through leakage sites (e.g., out the injection site or out perivascular drainage routes). 

Once the pressure returns to baseline, fluid and molecules drain via intravascular 

clearance by the choroid. As fluid clears from the suprachoroidal space, the sclera and 

choroid are re-apposed and particles become entrapped in that position until degraded. 

We will test this central hypothesis in three aims, outlined below. 

1.7.1 Aim 1: Identify anatomical barriers that limit spread in the SCS 

Previous studies have demonstrated that the suprachoroidal space is bounded by 

the scleral spur and the optic nerve. These boundaries confine fluid and particles injected 

into the suprachoroidal space. We hypothesize there are additional anatomical barriers 

that limit the circumferential spread of particles in the suprachoroidal space. Possible 

candidates include the vortex veins and the posterior ciliary arteries. Identification of 

anatomical barriers will motivate the development of strategies that enable the entire 

suprachoroidal space to be covered.  

1.7.2 Aim 2: Study the distribution of particles and molecules in the SCS 

Though some studies have described the distribution of particles and molecules 

injected into the suprachoroidal space, they have not attempted to go beyond observation 

or study both in concert. The purpose of this study was to investigate the distribution of 

molecules and particles co-injected into the suprachoroidal space. We further hypothesize 

that particles become entrapped relative to fluids and small molecules that were co-

injected. We will determine the circumferential distribution of fluorescent species via 3D 

cryo-reconstruction, flat mounts of enucleated eyes, and in vivo fundus photography. 

Finally, we hypothesize that the viscosity of the liquid formulation prevents particle 

entrapment, and prolongs transport time. 
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1.7.3 Aim 3: Investigate kinetics of the SCS thickness 

Few studies have looked at the distention of the choroid off the sclera (aka, SCS 

thickness). We set out to determine the effect of injection volume and formulation of a 

microneedle injection into the suprachoroidal space on SCS thickness and closure 

kinetics. We hypothesize that injections of varying volumes of a low viscosity fluid has a 

minor effect on SCS thickness, whereas formulation injected has a major effect on the 

SCS thickness. We will determine the distribution of suprachoroidal space thickness 

using high-frequency ultrasound B-scan and a 3D cryo-reconstruction method. 

1.7.4 Aim 4: Determine the relative contribution of clearance routes and study the 

clearance kinetics of molecules from the SCS 

Previous studies have investigated clearance of select molecules from the 

suprachoroidal space. The purpose of this aim is to correlate collapse and clearance with 

distinct events so that we can better understand these kinetics. We hypothesize that there 

are two phases of clearance, the first is driven by high pressure, and the second phase is 

driven by concentration gradient. We will determine the collapse rate of the 

suprachoroidal space after injection with different liquid formulations using a high-

frequency ultrasound B-scan probe in an in vivo rabbit model. We will also investigate 

suprachoroidal space clearance of a wider range of molecular weights. Finally, we will 

also determine the route of clearance from the suprachoroidal space. These results will 

guide the rational design of formulations. 
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1.7.5 Aim 5: Develop controlled-release brimonidine microspheres in the SCS for 

the treatment of glaucoma 

Because glaucoma patients have a low compliance (~50%) in administering eye 

drops, there is a clinical need for a sustained-release drug delivery system for glaucoma. 

We hypothesize that a sustained-release polymeric microsphere drug delivery system 

injected into the anterior suprachoroidal (aka, supraciliary) space will produce a 

therapeutic effect for 1+ mo. Previous studies have shown that brimonidine lowers 

intraocular pressure in the albino New Zealand White rabbit. This will be the first 

demonstration that a controlled release system injected into the suprachoroidal space can 

be efficacious in treating glaucoma. 
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2 CIRCUMFERENTIAL FLOW OF PARTICLES IN THE 

SUPRACHOROIDAL SPACE IS IMPEDED BY THE 

POSTERIOR CILIARY ARTERIES 

This work has been published in Experimental Eye Research129. 

2.1 Summary 

Microneedle injection into the suprachoroidal space (SCS) enables targeted drug 

delivery for treatment of posterior segment diseases (e.g., posterior uveitis). This study 

sought to identify and characterize anatomical barriers to circumferential spread of 

particles in the SCS of rabbit and human cadaver eyes. These barriers could make 

targeting specific regions within the SCS challenging. A hollow microneedle (33-gauge, 

750 µm long) was used to inject fluorescent particles into albino New Zealand White 

rabbit eyes ex vivo at six different positions around the limbus and a limited number of 

conditions in vivo. SCS injections were also performed in human cadaver eyes 8 mm and 

2 mm from the optic nerve (ON). Eyes were dissected and particle distribution was 

quantified. In rabbit eyes, injections made in the superior or inferior hemispheres (even 

when injected temporally immediately adjacent to the long posterior ciliary artery 

(LPCA)) did not significantly cross into the other hemisphere, apparently due to a barrier 

formed by the LPCA. The vortex veins had a minor effect on particle deposition, limited 

to only around the vortex vein root. In human eyes, the short posterior ciliary arteries 

(SPCAs) prevented circumferential spread towards the macula and ON. In conclusion, 

the rabbit LPCA and the human SPCA were anatomical barriers to particle spread within 

the SCS. Therefore, design of drug delivery protocols targeting the SCS need to account 
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for barriers formed by anatomical structures in order for injected drug to reach target 

tissues. 

2.2 Introduction 

Suprachoroidal delivery is being explored as a targeted ophthalmic drug delivery 

technique to treat posterior segment diseases that affect choroidal, retinal pigment 

epithelial, and/or retinal tissues 2, 5, 8, 81, 118, 119, 123, 125, 127, 130. The suprachoroidal space 

(SCS), which is a potential space between the sclera and choroid, is an attractive drug 

delivery site because it is directly adjacent to the diseased tissue in many posterior 

segment diseases, including age-related macular degeneration (AMD) and posterior 

uveitis 64, 97, 127. SCS delivery results in increased drug concentrations and bioavailability 

at the choroid while limiting drug concentrations elsewhere in the ocular globe compared 

with intravitreal injections 5, 8, 9, 81, 123.  

The SCS can be accessed with a hollow microneedle that has a length similar to 

the thickness of sclera 8, 81. The microneedle is designed to penetrate the sclera and 

conjunctiva (but not the chorioretina) and inject material that can flow circumferentially 

within the SCS, thus bathing the choroid in drug. The safety and tolerability of 

microneedle injections into the SCS has been studied in an open-label Phase I/II clinical 

trial (NCT01789320) where triamcinolone acetonide suspension was injected into the 

SCS to treat noninfectious posterior uveitis 7. In this clinical trial and supporting pre-

clinical studies, the microneedle injection procedure was performed in a manner similar 

to an intravitreal injection, except it used a much shorter needle and therefore injected 

into the SCS rather than the vitreous; the procedure was well tolerated in animal and 

human subjects 7, 8, 81.  
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Since the chorioretina is typically not uniformly diseased (e.g., AMD affects the 

macula while sparing the peripheral retina), targeting drugs to specific regions of the 

chorioretina (i.e., to optimally treat the diseased region of the chorioretina) is of 

importance. Thus, understanding and controlling the movement of drugs within the SCS 

is needed to deliver drugs to the diseased tissue using the SCS as a conduit. The purpose 

of this work is, therefore, to study the movement of particles injected into the SCS and, 

more specifically, to identify barriers that impede circumferential flow in the SCS, which 

might influence the ability to target specific regions of the SCS.  

Previous experiments show that fluid injected into SCS is limited by the scleral 

spur anteriorly and the optic nerve (ON) posteriorly 8, 17, 81. Anatomically, the sclera and 

the choroid are tightly bound at these two sites, as they delineate the physical extent of 

the SCS. We hypothesize that there are additional barriers that prevent circumferential 

flow in the SCS following microneedle injection. Other likely candidates include the 

posterior ciliary arteries and the vortex veins since the sclera and choroid are bound at 

these points 118. Although a previous study reported no anatomical barriers to spread of 

micro-bubbles within the SCS 116, in that study injections were carried out at the superior 

(12 o’clock) position near the limbus, which may not optimally assess the existence of 

barriers throughout the eye, as shown in the present study. 

2.3 Methods 

2.3.1 Microneedle injection and tissue processing 

Enucleated albino New Zealand White rabbit eyes (shipped overnight from Pel-

Freeze, Rogers, AR) were stored at -80°C upon arrival until use in ex vivo rabbit 

experiments. Frozen eyes were used to facilitate the testing of many parameters, a subset 
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of which were tested in an in vivo rabbit model. In all ex vivo eyes, no particles were 

detected in the vitreous, which suggests that the choroid had not degraded. When needed, 

frozen eyes were rapidly defrosted in a room-temperature water bath for ~30 min, and 

muscle, conjunctiva, and fascia were dissected from the ocular globe. The superior prime 

meridian of the eye (i.e., 12 o’clock) and the injection site were marked with a shallow 

cut in the adjacent cornea using a scalpel dipped in blue or red food coloring 

(McCormick, Hunt Valley, MD), respectively. 

All injections were performed at room temperature (~23°C). SCS injections were 

accomplished using a 33-gauge hollow microneedle with a length of ~750 µm (kindly 

provided by Clearside Biomedical, Alpharetta, GA) and a 250 µL glass chromatography 

syringe (National Scientific, Rockwood, TN). Injections were performed 3 mm posterior 

to the limbus, and occurred in 3 s. The fluid injected was 50 µL of 0.5% (w/v) 200 nm 

diameter red-fluorescent microspheres (580 nm excitation and 605 nm emission 

wavelength; FluoSpheres, Life Technologies, Carlsbad, CA) in Hank’s Balanced Salt 

Solution (HBSS, Mediatech, Manassas, VA), unless otherwise specified. After waiting 1 

min, the needle was withdrawn from sclera.  

To arrest fluid flow in SCS, each eye was rapidly frozen 1 min after injection by 

submersion in 100% ethanol chilled over dry ice. Eight approximately equally-spaced, 

full-thickness cuts were made in the sclera from the posterior pole to limbus using a 

scalpel. This yielded eight scleral flaps (a.k.a., “petals”) approximately equal in area. One 

cut was aligned with the injection site and one with the 12 o’clock position. The scleral 

flaps were splayed open to expose the frozen vitreous humor, lens and aqueous humor, 

which were removed with forceps and collected to verify no particles were in the 



 39 

 

vitreous. Three replicates were performed in each condition unless otherwise stated. The 

following experiments were performed. 

2.3.1.1 Effect of injection site on spread in the SCS of rabbits 

We performed injections at six positions around the limbus of ex vivo rabbit eyes 

(Figure 2.1A): at the superior (12 o’clock) and inferior (6 o’clock) prime meridians; 

infratemporal (7.5 o’clock) and supratemporal (10.5 o’clock) locations; and temporally 

directly superior and inferior to the 90° meridian (9 o’clock). Injections were performed 

in the temporal hemisphere because, in humans, the macula is temporal to the ON, which 

we knew limited flow from previous studies 8, 17, 81. 

2.3.1.2 Effect of IOP on spread in the SCS of rabbits 

To change intraocular pressure (IOP), the eye was cannulated through the ON 

using a 25-gauge needle connected to a water column of predetermined height 17. We 

tested three pressures: unpressurized, 10-12 mmHg (normotensive IOP in rabbits), and 

22-25 mmHg (hypertensive IOP in rabbits). After confirming IOP using a rebound 

tonometer (iCare Tonovet, Helsinki, Finland), we performed an injection at either the 

temporal position (3 o’clock; directly above the temporal LPCA) or the superior position 

(12 o’clock) of that eye. 

2.3.1.3 Effect of injection volume on spread in the SCS of rabbits 

To determine if injection volume would change the flow patterns following a 

microneedle injection, injections of 50, 100, and 200 µL were performed. Before each 

experiment, the eye was pressurized to 10-12 mmHg. Injections were performed either at 
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the superior position (12 o’clock) or the temporal position (9 o’clock) directly superior to 

the LPCA. 

2.3.1.4 Effect of particle size on spread in the SCS of rabbits 

To study the effect of particle size on spread, we injected one of three mixtures: 

0.5% (w/v) 200 nm red fluorescent particles, 0.5% (w/v) 20 nm red fluorescent particles, 

or 0.025% sulforhodamine B dye (559 Da; 565 nm excitation and 585 nm emission 

wavelength). The excitation/emission spectra of these three mixtures were comparable. 

The eyes were pressurized to 10-12 mmHg. Fifty microliters of one of the three 

formulations were injected at the superior position (12 o’clock) or the temporal position 

(9 o’clock), directly superior to the LPCA. 

2.3.1.5 Effect of bevel orientation on spread in the SCS of rabbits 

To study the effect of bevel orientation on spread, injections were performed at 

the superior position (12 o’clock) with the bevel either directed temporally or nasally. 

Before each experiment, the eye was pressurized to 10-12 mmHg.  

2.3.2 In vivo injection into the SCS of rabbits 

All in vivo experiments were carried out in albino New Zealand White rabbits 

(Charles River, Wilmington, MA) and were approved by the Georgia Institute of 

Technology Institutional Animal Care and Use Committee. Practices complied with the 

ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Both eyes 

were used in this study, since the growing body of evidence on SCS injections (pre-

clinical animal and human clinical data) indicates that SCS injections are well-tolerated 

and there have been no reports on vision loss associated with SCS injection.  
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Animals (N=3 per group) were anesthetized with a subcutaneous injection of 

ketamine and xylazine. A 50 µL injection of 200 nm fluorescent particles in HBSS was 

made either in the supratemporal position (10.5 o’clock) or in the temporal position (9 

o’clock), directly superior to the LPCA. A superior injection was infeasible as that would 

have required puncturing through the superior rectus muscle. In some cases, green 

fluorescent fundus images of the eye after suprachoroidal injection were obtained with a 

RetCam II with fluorescein angiography attachment (Clarity Medical Systems, 

Pleasanton, CA). In this case, a 50 µL injection of 200 nm green fluorescent particles was 

made in the supranasal quadrant. Animals were euthanized with an injection of 

pentobarbital through the ear vein after two days. The eyes were enucleated and 

processed as described above.  

2.3.3 Dissection of ocular globe of rabbits and humans  

To better visualize attachments between choroid and sclera, we dissected ex vivo 

rabbit eyes and human cadaveric posterior poles (Georgia Eye Bank, Atlanta, GA) under 

a stereoscope (Olympus SZX16, Tokyo, Japan) with a camera (Olympus DP71). The 

human donors had no history of ocular disease. 

2.3.4 Effect of injection site on spread in the SCS of cadaver eyes 

Based on findings from the dissections, we hypothesized that the short posterior 

ciliary arteries (SPCA) would impede particle spread. We tested this hypothesis by 

injecting particles within and without the SPCA ring. Although this was a different 

injection site than those used with previous injections (in this and previous studies) and 

also not clinically relevant, injections made at these positions would adequately test the 

barrier function of the SPCAs. 
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Human cadaveric ocular globes (Georgia Eye Bank, Atlanta, GA) with no history 

of posterior segment disease were obtained 1-3 days after death. We performed injections 

at two positions: (a) 2 mm from the ON and (b) 8 mm from the ON (N = 4 per group), 

which were on either side of the SPCAs 131. To process the eye, the cornea was removed 

and the eyes were cut with a scalpel through all the ocular tissue, starting anteriorly and 

leaving the ON and surrounding tissue untouched. Since the eyes were pigmented, the 

retina and choroid were removed prior to imaging. Other procedures are described above. 

2.3.5 Image acquisition and analysis, and statistics 

We took two photographs of each mounted eye using a Canon 60d dSLR digital 

camera (Canon, Melville, NY). Camera settings were held constant at an aperture of 1/2.8 

and shutter speed of 1/15 s. All images were captured in the same windowless room with 

the same light sources. The first image was taken with room light and no filter; the 

second image was taken with green light (Bluewind Multicolor RGB, HitLights, Baton 

Rouge, LA) and an optical bandpass filter (610 ± 10 nm; Edmunds Optics, Barrington, 

NJ) mounted on the camera. This lighting and filter were chosen to match the 

fluorescence properties of the fluorescent particles used. 

After the images were acquired, the red channel of the fluorescent images was 

thresholded to capture the coverage of the fluorescent particles (ImageJ, National 

Institutes of Health, Bethesda, MD). The measurement tool in ImageJ was then used to 

find, for each petal: (a) the area of each petal, (b) the average intensity and (c) standard 

deviation, and (d) the percentage of the area of each petal that was above the threshold. 

Alternatively, we used the measurement tool in ImageJ to find the percentage of 

thresholded area that was superior and inferior to the LPCAs. 



 43 

 

Further analysis was performed using Matlab (Mathworks, Natick, MA) and 

Prism (Graphpad, La Jolla, CA). Values are presented as the mean ± standard error of the 

mean (SEM), unless otherwise specified. Unpaired Student’s t-test and two-way ANOVA 

analysis were performed to determine statistical significance (α = 0.05).  

2.4 Results 

2.4.1 Effect of injection site on spread in SCS of rabbits 

After injecting particles at different positions around the limbus, we identified the 

LPCA as a barrier to circumferential spread of particles in the SCS of rabbit eyes ex vivo 

(Figure 2.1). Injections at the superior (Figure 2.1B), supratemporal (Figure 2.1C), 

infratemporal (Figure 2.1F), and inferior (Figure 2.1G) positions resulted in similar 

particle distributions, where the spatial distributions of particles were roughly normal 

(i.e., not skewed) (see Figure 2.1, right column for quantification of particle per petal). 

Furthermore, the spatial distribution of particles was centered near the injection site. 

Vortex veins, typically located in the supratemporal and infratemporal quadrants, did not 

produce a noticeable effect on circumferential particle spread when visualized via flat 

mounts.  
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Figure 2.1 – SCS injections at different injection sites, shown in the right eyes ex vivo.  [A] Representative 

images showing spread of fluorescent particles in eyes at the tested injection sites. Eyes are all positioned 

in the same anatomical orientation – superior is on top and temporal is right. Injections were performed at 

the superior (12 o’clock, b); supratemporal (10.5 o’clock, b); temporal, directly superior (d) and inferior 

(e) to the long posterior ciliary artery (9 o’clock); infratemporal (7.5 o’clock, f); and inferior (6 o’clock, g) 

positions. [B-G] Quantification of the average concentration of particles in each scleral flap for the tested 

injection sites. Distribution of particles is shown after 50 µl of HBSS containing 200-nm particles was 

injected into SCS at different sites. Injection site indicated by white arrow in representative images, and 

hollow arrow in graphs. Sup. = superior (12 o’clock); Temp. = temporal (9 o’clock); Inf. = inferior (6 

o’clock); Nas. = nasal (3 o’clock). Since the eye is spherical, leftmost and rightmost bars are adjacent.  
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In contrast, injections at the temporal (9 o’clock) position (Figure 2.1D and E) 

had markedly different patterns of spread compared with the others (p < 0.0001, 2-way 

ANOVA). In particular, >95% of particles injected on one side of the 90° meridian did 

not cross to the other side (i.e., injection superior to the LCPA resulted in few particles in 

the inferior hemisphere, and vice versa). This resulted in a skewed distribution with the 

tail directed away from the 90° meridian (Figure 2.1 D and E, right column), which 

indicates an anatomical barrier that impedes flow near the 90° meridian.  
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Figure 2.2 – Percentage of particles above versus below LPCA. Data from images like those in Figure 2.1 

were re-analyzed to find the percentage of SCS area with fluorescent signal above threshold, indicating 

presence of injected particles. Injections were carried out in right eyes ex vivo using 50 µl of HBSS 

containing 200-nm particles. Data show mean±SEM from n=3 replicates.  

We reanalyzed the eyes presented in Figure 1 to further examine barrier function 

at the site of LPCA. We calculated percentage of area with fluorescent signal exceeding 

background threshold levels above and below LPCA for each injection site (Figure 2.2) 

and found they were significantly different (p = 0.0009, 2-way ANOVA), despite their 

close proximity. For each of the three injection sites above LPCA (i.e., Figure 2.2 B, C 

and D), 96±3% (mean±SD) of thresholded area was in the superior hemisphere of the 

eye. Likewise, in each of the three injections below LPCA (i.e., Figure 2.2 E, F and G), 

98+3% (mean±SD) of thresholded area was found in the inferior hemisphere. From these 
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data, we conclude that barriers at the site of LPCA impeded circumferential flow into the 

opposite hemisphere.  

2.4.2 Effect of IOP, injection volume, and particle size on spread in SCS 

The effects of IOP, injection volume and particle size on spread in the SCS were 

evaluated. We found no statistical difference in particle spread at the three different IOPs 

tested (unpressurized, normotensive IOP, and hypertensive IOP) (Figure 2.3A, p=0.85, 2-

way ANOVA).  

Varying injection volume did not result in a statistically significant difference in 

particle spread (Figure 2.3B, p = 0.59, 2-way ANOVA). It is important to note that the 

eye was able to accommodate the entire 200 µL volume when injected at the 12 o’clock 

position but not when the injection occurred temporally above the LPCA (i.e., there was 

leakage out the injection site, supporting the hypothesis that the LPCA formed a barrier 

to flow). Furthermore, particles injected at 12 o’clock had entirely covered the superior 

hemisphere and could be found partially in the inferior hemisphere. On the other hand, 

the 200 µL injection above the LPCA had a smaller coverage area compared to the 

injection at 12 o’clock. The presence of LPCA might have decreased the expandability of 

SCS enough so that 200 µL could not be injected temporally.  

No differences in particle spread were detected when particle size was varied 

(Figure 2.3C, p=0.28, 2-way ANOVA) with >90% of delivered compounds retained in 

the superior hemisphere. We conclude that particle size did not significantly affect 

particle spread circumferentially past LPCA. Moreover, since very little sulforhodamine 

B was found in the inferior hemisphere, LPCA appears to physically prevent fluid flow 

into the opposite hemisphere and did not just sieve particles. Indeed Gu et al. noted that 
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saline injected into the suprachoroidal space of guinea pigs did not cross the “horizontal 

midline” and was not found in the inferior hemisphere 120. 
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Figure 2.3 – Effect of IOP (A), injection volume (B), and particle size (C) on LPCA barrier function. The 

fraction of eyes in which particles were detected inferior to LPCA is shown above each tested condition. 

Data show mean±SEM from n=3-5 replicates. (A) Injections were carried out in left eyes ex vivo using 50 

µl of HBSS containing 200-nm particles. The percentage of SCS area with fluorescent signal above 

threshold is shown in unpressurized eyes, eyes at physiological IOP (10 - 12 mmHg), and eyes with 

hypertensive IOP (22 – 25 mmHg). (B) Injections were carried out in right eyes ex vivo using 50, 100 or 

200 µl of HBSS containing 200-nm particles. Pound sign (#) indicates that significant leakage out the 

injection site occurred. (C) Injections were carried out in right eyes ex vivo using 50 µl of HBSS containing 

200 nm fluorescent particles, 20 nm fluorescent particles, or a small molecule fluorescent dye (559 Da ≈ 1 

nm).  
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2.4.3 Effect of bevel orientation on spread in SCS 

When the bevel was directed either temporally or nasally during injection, particle 

spread was indistinguishable (data not shown). This result was expected, since the needle 

length, including bevel, was designed to penetrate only conjunctiva and sclera.  

2.4.4 In vivo injection into SCS  

Guided by findings in the ex vivo eye, we performed injections in the rabbit eye in 

vivo at the supratemporal position or temporal position above LPCA, and found no 

statistical difference between these injection sites (p = 0.71, 2-way ANOVA). The 

supratemporal position was chosen instead of the superior position (as in the ex vivo eyes) 

because a superior injection would require puncturing the superior rectus muscle. In eyes 

injected supratemporally, 87±13% (mean±SD) of thresholded area was above LPCA and 

in eyes injected temporally, 92±12% (mean±SD) of thresholded area was above LPCA 

(Figure 2.4A-F). One of the eyes injected temporally had particles present in the inferior 

hemisphere (Figure 2.4F).  

We next visualized the rabbit fundus (Figure 2.4G) and imaged spread of green-

fluorescent particles (Figure 2.4H) after supranasal injection in the rabbit eye in vivo 

using an ophthalmic digital imaging system. Since these rabbits were albino, the choroid 

was readily visible, with the inner retinal vessels shadowing the choroid. The LPCA 

could be seen (Figure 2.4G, blue arrowheads) after penetrating through sclera anteriorly 

(rightmost arrowhead) and as it traversed deep to sclera, sending small branches through 

sclera. When visualized with fluorescein angiography, the injected green fluorescent 

particles were clearly seen in SCS. Fluorescence was shadowed by the inner retinal and 

choroidal vessels, confirming particles’ localization in SCS between choroid and sclera. 
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The microneedle injection (Figure 2.4H, white arrowhead) occurred in the supranasal 

quadrant and spread until flow was impeded by LPCA and its branches (blue arrowheads) 

anteriorly, as indicated by bright fluorescence superior to LPCA and dimmer 

fluorescence elsewhere. When we imaged the superior region of the eye, the area 

immediately adjacent (within 0.5 mm) to the vortex vein was devoid of fluorescent 

particles (Figure 2.4I). We hypothesize that vessels feeding into the vortex vein were 

sufficiently dense to prevent particle deposition or, alternatively, particles deposited were 

efficiently cleared. Thus, the vortex veins had a minor effect on particle deposition that 

was visible on fundus exam but not flat mounts.  

 
Figure 2.4 – Distribution of particles in SCS after injection into rabbit eyes in vivo.  (A-F) The path of 

LPCA (dotted line) and injection site (white arrow) are shown, based on examination of tissue using 

brightfield optics (not shown). Supratemporal (A, B, C) and temporal, above the LPCA, (D, E, F) injections 

are shown. One eye (F) had some particles present in the inferior hemisphere presumably by flowing 

anteriorly bypassing the LPCA. Temporal injections were carried out in left (D, E) and right (F) eyes in 

vivo using 50 µl of HBSS containing 200-nm particles. RetCam image after supranasal injection 

illuminated with white light (G) and fluorescein angiography attachment (H and I). Particles were not 

found near the root of the vortex vein (I). White arrow = injection site; ON = optic nerve; VS = visual 

streak; blue arrowheads = LPCA with its branches. 
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2.4.5 Dissections of ex vivo rabbit eyes and human eyes 

Previous studies have reported that branches of the LPCA pass through sclera via 

multiple tightly packed perforations 132, 133. To confirm this anatomy in this study, we 

dissected ex vivo rabbit eyes to better visualize the path of LPCA as it penetrated through 

sclera. During dissection, choroid easily separated off sclera for most of the globe, 

consistent with a potential space between these tissues, but was strongly attached to 

sclera where LPCA penetrated through sclera near and anterior to the equator (Figure 

2.5). The vortex vein did not tightly adhere sclera and choroid together, possibly due to 

tissue processing. We hypothesize that multiple sites of adhesion associated with 

penetration of branches of LPCA across SCS in the rabbit eye are responsible for LPCA’s 

barrier to circumferential flow.  

 
Figure 2.5 – Image of rabbit sclera showing LPCA perforations through sclera. The temporal LPCA is a 

branch of the ophthalmic artery that penetrates through sclera near the equator to supply choroid, ciliary 

body, and iris (Gray, 1918). In the rabbit, the LPCA branches before penetrating through sclera; these 

LPCA branches appeared to strongly adhere choroid to sclera during dissection. Dashed lines indicate the 

path of LPCA. Arrows indicate sites where LPCA branches perforated sclera. The representative image 

was taken with a brightfield stereoscope in an ex vivo rabbit eye after dissection. No SCS injection was 

performed. 
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The literature indicates that in human eyes, the LPCA anatomy is different from 

rabbit eyes 132. Dissection in human cadaver eyes demonstrated that the LPCA penetrated 

through sclera more posteriorly (relative to the equator) than in the rabbit eye, and then 

travelled within SCS for at least 5 mm before anastomosing with the circulus arteriosus 

(Figure 2.6A). Notably, the two LPCAs penetrated into SCS at just one location and did 

not have multiple branches penetrating into SCS, as seen in the rabbit eye. It is possible 

that the presence of a section of LPCA running within SCS may be able to facilitate, 

rather than impede, distention of SCS during microneedle injection in humans, especially 

anterior to the equator.  

 
Figure 2.6 – Images of the posterior pole of a representative human cadaver eye showing LPCA and 

SPCAs.  (A) Choroid was lifted off sclera and folded over to show the LPCA, which penetrated more 

posteriorly than in the rabbit and traveled within SCS for at least 5 mm before anastomosing with the 

ciliary body. (B) Retina/choroid was removed to show SPCAs, which are vessels originating from the 

ophthalmic artery that penetrate sclera to form a ring around the optic nerve and macula (Gray, 1918). 

Images were taken with a brightfield stereoscope in a representative human cadaver eye after dissection. 

No SCS injection was performed. 

However, we found that the choroid was tightly attached to the sclera in a region 

surrounding the ON and roughly corresponding to sites of the SPCA penetration into the 

eye. The six-to-twelve SPCAs found in the human eyes formed an ellipsoid around the 

ON with a major radius of ~5 mm and minor radius of ~1 mm (Figure 6B), which is 

consistent with previous findings 131. Since retina had peeled off choroid, we were unable 

to locate the macula in relation to SPCA. However, it is likely that the macula was within 
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the ellipsoid demarcated by SPCAs 134. This suggests that in human eyes, flow within 

SCS may also be impeded, but not anteriorly by LPCAs, as seen in the rabbit eye, but 

more posteriorly by SPCAs in the human eye. This might affect the ability of an injection 

in the SCS to target the macula due to a possible barrier formed by the SPCAs.  

2.4.6 Microneedle injection into human cadaver eyes 

To test the hypothesis that the SPCAs impede flow in the human eye, we 

performed injections inside the SPCA ring (2 mm from the ON, Figure 2.7A) and outside 

the SPCA ring (8 mm from the ON, Figure 2.7B) in human cadaver eyes. The SPCAs 

could be found between the chosen injection sites at ~3 mm from the ON. Although these 

injection sites were not clinically relevant, they allowed us to assess the barrier function 

of the SPCAs; we reasoned that if the SPCAs formed a barrier when an injection was 

made immediately adjacent to the vessels, then an injection made near the limbus (i.e., 

>20 mm from the ON) would experience similarly impeded flow, provided particles 

could flow that far.  

The particle distributions of these conditions were statistically different (p = 

0.0035, 2-way ANOVA, Figure 2.7C). When injection occurred within the SPCA ring, 

66±8% (mean±SD) of particles were within 5 mm of the ON. When injection occurred 

outside the SPCA ring, 18 ± 7% (mean ± SD) of particles were found within 5 mm of the 

ON. These data indicated that the SPCAs provided a barrier to circumferential spread 

towards the ON and macula when an injection occurred more anteriorly than the SPCAs. 
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Figure 2.7 – Images of human cadaver eye after microneedle injection (A) 2 mm from the optic nerve (ON), 

and (B) 8 mm from the ON. Solid gray circle denotes location of ON, dashed line denotes location of 

SPCAs and white arrow denotes injection location. (C) Quantification of images following injection within 

the SPCA ring and without the SPCA ring. ** indicates p<0.005. 

2.5 Discussion 

The SCS is an attractive site of drug delivery targeted to the chorioretina 2, 5, 8, 81, 

118, 119, 123, 125, 127, 130. However, targeting within the SCS is important as well, since sites of 

disease are often localized to specific regions of the chorioretina, such as localization of 

AMD to the macula and localization of tumors at their sites of growth. This study 

addressed the possible existence of barriers to flow in the SCS due to its anatomy, more 

specifically due to sites where the posterior ciliary arteries, but not the vortex vein, cross 

the SCS and thereby limit its distention. This study showed that sites where the LPCA 

crosses the SCS in the rabbit eye and where the SCPA crosses the SCS in the human eye 

were associated with limited movement of particles in the SCS. The vortex veins had a 

minor effect on particle deposition, limited only to near the vortex vein root. In the rabbit 

eye, the LPCA barrier limited flow of particles between the upper and lower hemispheres 
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of the eye, which was similar to distribution of saline seen with guinea pigs 120. In the 

human eye, the SPCA barrier limited flow of particles posteriorly to the macula and ON.  

We believe that previous studies have not reported this barrier because they were 

not designed to look for it and, in some cases, used animal models with different anatomy 

8, 116. One studies mentions injected fluid not crossing the midline but does not offer an 

explanation as to why this is 120 . Other studies have shown that formulations designed to 

keep SCS open after injection allow particles to redistribute within SCS and cover both 

hemispheres of the eye 128, although re-analysis of particle spread indicates lower particle 

concentration overlaying LPCAs compared with elsewhere (data not shown).  

Vortex veins, another likely candidate that may have had barrier function in the 

SCS, did not have a large effect on particle distribution. Any effect by the vortex vein on 

particles spread was not apparent when viewed in flat mount, but was visible when 

imaged fundoscopically in vivo. We noted that few particles were deposited within 0.5 

mm of the vortex vein upon funduscopic exam. It is important to note that each vortex 

vein penetrates through sclera as a single large vessel, which does not form a large region 

of physical attachment between sclera and choroid 41. We posit that morphological 

differences between how branches of LPCAs penetrate sclera at multiple locations, 

whereas each vortex vein penetrates at just a single vessel, govern the ability of vessels to 

block circumferential flow.  

Results from our ex vivo studies agreed with in vivo rabbit studies, suggesting that 

particle distribution was insensitive to vital processes, such as blood flow, for the 

injection formulation tested (i.e., particles suspended in HBSS). Previous studies using 



 55 

 

particles suspended in HBSS have indicated that particle spread occurs at the time of 

injection, after which the particles do not move 6, 8, 17, 81, 128.  

Dissection of the choroid from the sclera demonstrated that the choroid is strongly 

attached to the sclera where multiple branches of the LPCA penetrate through sclera to 

anastomose with the choroid. These branches of the LPCA may act like staples to secure 

sclera and choroid together, thus physically impeding fluid flow. We hypothesize that it 

is possible to bypass this barrier by (i) flowing anteriorly or posteriorly around 

attachment sites, (ii) distending the choroid between the vessels, or (iii) tearing the small 

vessels. Further studies are needed to test this hypothesis.  

Human eye dissection was consistent with prior studies 44, 131, 133, which indicated 

that the LPCA pierces the sclera more posteriorly and does not tightly adhere the sclera to 

the choroid, as compared to rabbit eyes. In contrast, SPCAs do tightly adhere choroid to 

sclera in a ring around the ON. This ring likely encompasses the macula, which may 

make SCS delivery to the macula and ON more difficult in humans. Consistent with these 

findings, Olsen et al. found that there were more and “stronger connections” between 

sclera and choroid in the macular region of porcine eyes 2, which is where the SPCAs 

penetrate through the sclera 135. 

Limitations of this study include the use of ex vivo rabbit eyes, inability to 

determine kinetics of particle movement, lack of blood flow in ex vivo experiments, and 

inability to study temporal effects on LPCA’s barrier function. Furthermore, the 

conclusion of anatomy affecting particle spread (expected to be driven by convective 

flow) cannot be applied to distribution of small molecules (expected to be driven by both 

convection and diffusion). These barriers may not affect drugs diffusing within the SCS 
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since they are on different length scales. Factors, such as physiochemical properties and 

clearance, are more likely to affect drug distribution 9, 123. More comprehensive testing of 

anatomical barriers present in the SCS of human eyes is warranted. 

In conclusion, we found that circumferential fluid flow in the SCS was impeded 

by the LPCA in rabbit eyes ex vivo and in vivo. It appeared that multiple tightly clustered 

vessels perforating through the sclera (such as those seen with branches of the LPCA in 

New Zealand White rabbits) result in strong attachment between sclera and choroid, and 

that these strong attachments form a physical barrier to circumferential flow. On the other 

hand, singular large vessels (e.g., vortex veins) had a minor effect on impeding 

circumferential particle spread. Human cadaver eyes exhibited a similar pattern of tightly 

clustered vascular perforations at the SPCAs near the ON, which impeded particle spread 

near the ON. This may make specifically targeting the SCS overlaying the macula and 

ON more difficult. Development of drug delivery and other applications requiring fluid 

flow in the SCS should take these anatomical barriers into account and either accept 

limitations they may impose or develop strategies to overcome or circumvent them. 

  



 

3 DISTRIBUTION OF PARTICLES AND MOLECULES IN THE 

SUPRACHOROIDAL SPACE AFTER MICRONEEDLE 

INJECTION  

3.1 Summary 

The purpose of this study was to determine the effect of injection volume, 

formulation composition, and time on the circumferential spread of particles and 

molecules in the suprachoroidal space (SCS) after microneedle injection into New 

Zealand White rabbit eyes ex vivo and in vivo.  

Microneedle injections of 25 to 150 µL of Hank’s Balanced Salt Solution (HBSS) 

containing 0.2 µm particles and fluorescein were performed in rabbit eyes ex vivo. Spread 

of the compounds within the SCS was visualized via flat mount and 3D cryo-

reconstruction. In the living rabbit, red-fluorescent microparticles and the following 

molecules were co-injected into the SCS: fluorescein, fluorescein isothiocyanate (FITC)-

labeled Discovisc, and FITC-labeled carboxymethyl cellulose (CMC) in HBSS. 

Microparticles of different diameters (0.02 – 2 µm) were also injected in HBSS. 

Fluorescent fundus images were acquired over time to determine area of particle and 

molecule spread, as well as their co-localization. 

We found that increasing injection volume increased area of particle and 

fluorescein spread in the SCS ex vivo. Particles occupied a smaller area than fluorescein, 

suggesting additional barriers to particle flow. In the living rabbit, injection of particles in 

viscous polymeric formulations led to initial localization of particles near the site of 

injection, followed by spreading of polymer and particles together until the formulation 
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polymers were cleared after 2 – 3 weeks for polymers that did not crosslink to form a gel. 

There was no significant effect of particle size on spreading in the SCS.  

We conclude that (i) the area of particle spread generally increased with 

increasing injection volume and was unaffected by particle size, (ii) particles suspended 

in low-viscosity liquid formulations were entrapped in the SCS after injection, whereas 

molecules were not, (iii) increased formulation viscosity delayed particle entrapment in 

the SCS, allowing movement subsequent to injection and (iv) when using polymeric 

formulations that crosslink, particles can be entrapped within the formulation at the site 

of injection.  

3.2 Introduction 

Ophthalmic drug delivery into the potential space between the sclera and the 

choroid (aka. suprachoroidal space or SCS), is a new drug delivery technique actively 

under pre-clinical and clinical investigation2, 7, 8, 81, 118, 119, 127, 136. Unlike traditional 

ophthalmic drug delivery techniques, such as topical eye drops and intravitreal injections, 

SCS injection enables targeted delivery to the choroid, retinal pigment epithelium, and 

retina with high bioavailiability8, 9, 81, 117-119, 123, 126, 130. Additional advantages of SCS 

delivery include increased bioavailability, dose sparing, and avoiding the visual axis. A 

hollow-bore needle with a length of ~1 mm or less (aka. microneedle) can be used to 

reliably access the SCS without piercing the chorioretina8, 81. Performing such an 

injection is similar to an intravitreal injection and has been performed in the outpatient 

clinic setting8, 81, 109. Ongoing clinical trials are assessing the safety and efficacy of 

microneedle injections for indications such as posterior noninfectious uveitis 

(NCT01789320 and NCT02595398)7.  
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When administering drugs via the SCS, it is important to control the area over 

which the drug formulations spread within the SCS. This targeting within the SCS may 

be used to treat diseased tissue while sparing non-diseased tissue. In some cases, it is 

desirable to have drug distributed over a large area of the SCS to broadly deliver drug to 

the chorioretina (e.g., to treat posterior uveitis7). In other cases, it may be desirable to 

localize the drug near the site of injection (e.g., to treat glaucoma)6, 115.  

Previous studies have used the two- dimensional (2D) circumferential spread of 

particles injected into the SCS as the primary metric of distribution6, 8, 17, 81, 128. Though 

many studies have investigated the distribution of particles8, 17, 81, 119, 128 and molecules5, 6, 

8, 9, 124 independently, to our knowledge, no study has examined the distribution of 

particles and molecules injected into the SCS simultaneously, or imaged the distribution 

of polymeric formulation excipients in the SCS. Because of the large differences in 

diffusivity between particles and molecules, distribution of particles and molecules are 

expected to be different.  

The purpose of this work was to investigate particle and molecule distribution 

following microneedle injection into the rabbit SCS. We hypothesize that (i) the area of 

particle spread generally increases with increasing injection volume, (ii) particles 

suspended in low-viscosity liquid formulations are entrapped in the SCS after injection, 

whereas molecules are not, (iii) increased formulation viscosity delays particle 

entrapment in the SCS, allowing movement subsequent to injection and (iv) at very high 

liquid formulation viscosity, particles can be entrapped within the formulation at the site 

of injection.  
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3.3 Materials and Methods 

All reagents and chemicals were purchased from Sigma-Aldrich (St. Louis, MO) 

unless otherwise specified. Red-fluorescent polystyrene particles (Excitation: 580 nm; 

Emission: 605 nm) and green-fluorescent polystyrene particles (Excitation: 505 nm; 

Emission: 515 nm) with diameters ranging from 0.02 – 2 µm were purchased from Life 

Technologies (Fluosphere, Carlsbad, CA). Eyes of pigmented Silver Fox and American 

Blue rabbits (Broad River Pastures, Elberton, GA) and albino New Zealand White rabbits 

(Pel Freeze, Rogers, AR) were obtained within 1 day after euthanasia until use. All in 

vivo experiments were carried out in albino New Zealand White rabbits (Charles River 

Laboratories, Wilmington, MA) and were approved by the Georgia Institute of 

Technology Institutional Animal Care and Use Committee. Practices complied with the 

ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Four 

replicates per experimental group were performed unless otherwise specified. 

3.3.1 Ex vivo injection procedure 

Extraocular tissues were carefully removed from the rabbit ocular globe. To 

simulate a physiological intraocular pressure (IOP) of 10-12 mmHg, a water column was 

raised to ~14 cm and connected to the eye via a 25-gauge needle penetrated through the 

optic nerve17. A microneedle (750 µm in length, 33-gauge; kindly provided by Clearside 

Biomedical, Alpharetta, GA) attached to a 250 µL glass chromatography syringe 

(National Scientific, Rockwood, TN) was used to make injections. Injections were 

performed 3 mm posterior to the limbus at the 12 o’clock position (superior) to be as far 

as possible from anatomical barriers created by the long posterior ciliary artery that 

impede circumferential flow129.  
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Depending on the experimental condition, each injection consisted of 25 to 150 

µL of 0.5% (w/v) red-fluorescent particles (0.2 µm diameter; Excitation: 580 nm; 

Emission: 605 nm) and 0.025% (w/v) fluorescein suspended in Hank’s Balanced Salt 

Solution (HBSS; Gibco, Life Technologies). After each injection, the needle was held in 

place for 1 min to minimize reflux121. The eye was then frozen via submersion in 100% 

ethanol chilled over dry ice 3 min post-injection depending on experimental condition.  

3.3.2 Flat mount to characterize 2D circumferential spread 

After SCS injection and freezing, eyes were prepared to assess the 2D spread of 

particles and fluorescein, as described previously8, 128, 129. The frozen eye was sliced open 

from the limbus to the posterior pole to generate eight approximately equidistant scleral 

flaps. The resulting scleral flaps were splayed open and the frozen vitreous humor, lens, 

and aqueous humor were removed.  

A digital SLR camera (Canon 60D, Canon, Melville, NY) with a 100 mm lens 

(Canon) was used to acquire brightfield and fluorescence images. Camera parameters 

were held constant at shutter speed = 1/15 s and aperture = F/2.8. To acquire the area of 

fluorescein spread, a green optical band-pass filter (520 ± 10 nm; Edmunds Optics, 

Barrington, NJ) was placed on the lens, and the sample was illuminated by a lamp with 

the violet setting of a multicolor LED bulb (S Series RGB MR16/E26. HitLights, Baton 

Rouge, LA). To visualize the location of the red-fluorescent particles, a red filter (610 ± 

10 nm; Edmunds Optics) was placed on the lens, and the sample was illuminated with the 

same lamp switched to green light. The area of green and red fluorescence that was above 

threshold was calculated for each eye using ImageJ (National Institutes of Health, 
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Bethesda, MD). Thresholding was set manually based on visual inspection of background 

signal. 

3.3.3 3D cryo-reconstruction to determine 3D distribution of particles and 

fluorescein 

Rabbit eyes that received a microneedle injection of 25 to 150 µL containing 

0.5% w/v red-fluorescent particles (0.2 µm diameter) and 0.025% w/v fluorescein were 

processed using the 3D cryo-reconstruction procedure (detailed procedure in Section 

4.3.3 on page 87). Briefly, the eye was frozen in chilled ethanol after 3 or 15 min. The 

frozen pigmented eye was sliced with a cryostat, and fluorescence images of the cryo-

block were acquired every 300 µm. Imaging the block reduced apparent drift and 

simplified reconstruction compared with previous methods137, 138. To acquire the green 

fluorescence (from fluorescein), a green optical band-pass filter (520 ± 10 nm; Edmunds 

Optics) was placed on the lens, and the sample was illuminated with blue/violet LED 

light (HitLights). To visualize the location of the red fluorescent particles, a red filter 

(610 ± 10 nm; Edmunds Optics) was placed on the lens, and the sample was illuminated 

with green LED light (HitLights).  

The resulting image stack consisting of only the green or red fluorescence images 

was imported into a custom Matlab (Mathworks, Natick, MA) script. The eye was 

modeled as a sphere and discretized into 100x100 points. For each of these 100x100 

points, a ray originating from the centroid of the eye (determined manually by visual 

inspection) through each point was identified (Figure 4.1B). The intensity along each ray 

was used to find the location of the fluorescence in the SCS (Figure 4.1C). If the ray had 

a segment >25 µm in length with an intensity above threshold, we considered the point to 
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be occupied by the fluorescent species. This procedure was repeated for all 100x100 rays 

to yield a 2D map projection or a 3D surface plot (Figure 4.1D and E). The resulting 

100x100 array was viewed as a surface plot in Matlab, and the thresholded area was 

calculated as a percentage of total ocular globe minus the cornea. Thresholding was 

determined manually by visual inspection. 

3.3.4 Fluorescent tagging of excipient formulation 

To visualize spread of polymer formulation excipients, we fluorescently labeled 

polysaccharides that have been shown to significantly influence spread of particles within 

the SCS128 using previously described methods139. Carboxymethyl cellulose (CMC; 700 

kDa high viscosity, Sigma-Aldrich) has been shown to impede spread of particles, 

allowing for localized delivery of particles that stay near the injection site6, 128. On the 

other hand, Discovisc (Alcon Laboratories, Fort Worth, TX) and hyaluronic acid have 

been shown to promote spread up to 100% of SCS area by a slow process after 

injection128.  

To label CMC, 250 mg of CMC and 10 mg of fluorescein isothiocyanate (FITC) 

was added to 25 mL of 0.1 M NaOH in DI water. The solution was mixed in the dark at 

room temperature (22 °C) for 4.5 days. The solution was then transferred into a dialysis 

tube (30 kDa cutoff, Spectra/Por, Spectrum Laboratories, Rancho Dominguez, CA) in a 

DI water bath. The water bath was changed daily for 5 days to remove unreacted FITC. 

The contents of the dialysis tube were transferred into a 50 mL centrifuge tube and frozen 

prior to vacuum drying. Care was taken to minimize light exposure at all steps to 

minimize bleaching. A similar procedure was performed with Discovisc; 500 µL of 
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Discovisc and 1 mg of FITC were added to 2.5 mL of 0.1 NaOH. The other methods 

were the same as those used for FITC labeling of CMC.  

3.3.5 In vivo SCS injections and image acquisition 

Albino rabbits were anesthetized with isoflurane and treated with proparacaine 

eye drops (Bausch & Lomb, Rochester, NY). All injections were 50 µL in volume and 

performed 3 mm posterior to the limbus at the supranasal quadrant (4 mm nasal to the 

edge of the superior rectus extraocular muscle).  

To determine the effect of polymeric formulation on particle spread, the following 

injections (N=4 eyes per group) were performed: [i] 50 µL of 2% (w/v) red-fluorescent 

particles (0.2 µm diameter) and 0.025% fluorescein in HBSS; [ii] 50 µL of 2% (w/v) red-

fluorescent particles (0.2 µm diameter) and 5% FITC-CMC in HBSS; [iii] 50 µL of 2% 

(w/v) red-fluorescent particles (0.2 µm diameter) and 1x FITC-Discovisc re-constituted 

in HBSS.  

To determine if particles ranging from 0.02 µm to 2 µm co-localize, the following 

injections (N=4 eyes per group) were performed: [i] 50 µL of 1% (w/v) red-fluorescent 

particles (0.2 µm diameter) and 1% (w/v) green-fluorescent particles (0.02 µm in 

diameter) suspended in HBSS; [ii] 50 µL of 1% (w/v) red-fluorescent particles (0.2 µm 

diameter) and 1% (w/v) green-fluorescent particles (0.2 µm diameter) suspended in 

HBSS; [iii] 50 µL of 1% (w/v) red-fluorescent particles (0.2 µm diameter) and 1% (w/v) 

green-fluorescent particles (2 µm diameter) suspended in HBSS; and [iv] 50 µL of 1% 

(w/v) red-fluorescent particles (0.02 µm diameter) and 1% (w/v) red-fluorescent particles 

(2 µm diameter) suspended in unlabeled Discovisc. 
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At predetermined time points, the animals were imaged with a modified RetCam 

II system (Clarity Medical Systems, Pleasanton, CA). Prior to imaging, tropicamide 

(Akorn Pharmaceuticals, Lake Forest, IL), phenylephrine (Akorn Pharmaceuticals), and 

proparacaine (Akorn Pharmaceuticals) eye drops were given. The built-in fluorescein 

attachment was used to capture green fluorescence. For the red fluorescence, green light 

was generated by placing a 575±50 nm bandpass filter (Edmunds Optics) in line with the 

fiber optic line. A red-emission filter (610 ± 10 nm, Omega Optical, Brattleboro, VT) was 

placed over the camera to capture red fluorescence. Animals were euthanized with an 

injection of pentobarbital through the ear vein at the end of the experiment.  

Post-processing of the RetCam images was used to generate a collage for each 

imaging condition, since the camera did not have built-in image stitching algorithms. Co-

localization was determined using a previously described method140. Briefly, the 2D 

correlation coefficient of the red- and green-fluorescent images was calculated, and 

compared against the 2D correlation of 100 randomly assigned image pairs using a one-

sided unpaired t-test. A low p-value indicated statistically significant co-localization 

greater than chance, and a high p-value indicated no significant co-localization. 

3.3.6 Statistical analysis 

Image analysis was performed using Matlab and ImageJ. Statistical analysis was 

performed using Prism (Graphpad, La Jolla, CA). Values are presented as the mean ± 

standard error of the mean (SEM), unless otherwise specified. Two-way ANOVA and 

Student’s t-test analyses (α = 0.05) were performed to determine statistical significance.  
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3.4 Results 

3.4.1 Distribution of particles and molecules immediately after injection into the 

SCS  

The first objective was to test the hypothesis that the circumferential area of 

particle coverage increases with increasing injection volume. We therefore calculated the 

percentage area of the SCS that had red and green fluorescence greater than threshold 

after injection of increasing volumes into the rabbit SCS ex vivo using flat mounts (Figure 

3.1) and 3D cryo-reconstruction (Figure 3.2) measurement methods.  

Consistent with the hypothesis, area covered by fluorescein and particles 

generally increased with increasing injection volume, although the rate of increase was 

larger at lower volumes (Figure 1). A linear fit to the data yielded a poor correlation (r2 = 

0.51 for particles and 0.67 for fluorescein), whereas an exponential fit was better (r2 = 

0.90 for particles), which is consistent with the observation that area initially increases 

and appears to approach a plateau value slightly below 50% area coverage for particles 

and slightly above 50% for fluorescein. We hypothesize that this apparent plateauing 

behavior is due to anatomical barriers that inhibit coverage in the inferior hemisphere, 

especially for particles129.  
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Figure 3.1 – Percentage area of SCS containing injected particles and fluorescein molecules, as 

determined by flat-mount measurement method.  (A) Representative red and green fluorescence flat-mount 

images to visualize the spread of particles (0.2 µm diameter) and fluorescein after microneedle injection in 

ex vivo rabbit eyes. Eyes frozen and processed 3 min after injection. (B) Quantification of percent area 

(mean±SEM, N=3-5 replicates) of SCS covered by red particles or fluorescein. Exponential fits to the data 

are shown. 
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Figure 3.2 – Percentage area of SCS containing injected particles and fluorescein molecules, as 

determined by 3D cryo-reconstruction method.  Eyes frozen and processed 3 min post-injection. (A) 

Representative equatorial map projections of red fluorescence of 0.2 µm diameter particles and green 

fluorescence of fluorescein after microneedle injection in ex vivo rabbit eyes. Injection site indicated by 

yellow arrow. Note that like a Mercator map projection of Earth, there is distortion at the poles (anterior 

and posterior). (B) Quantification of percent area (mean±SEM, N=2-6) covered by red particles or 

fluorescein. Linear fits to the data are shown.  
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Figure 3.3 – Parity plot comparing area calculated from flat mount and cryo-reconstruction methods. 

Pooled data had a slope of 0.91 ± 0.14 (mean ± SEM; r2 = 0.65), which was not statistically different from 

1 indicating methods agree. 

For all injection volumes, the fluorescein occupied a larger area than the red 

fluorescent particles (p<0.0001, ANOVA). The ratio of area covered by fluorescein 

versus particle was 2.05±0.24 (mean±SEM), which did not significantly depend on 

injection was found when comparing the percentage areas of eye covered by fluorescein 

versus particles. There was no discernible pattern in the ratio when comparing high- and 

low-volume injections. This difference in area could be explained by the higher 

diffusuvuty of fluorescein versus particles (which are assumed to transport only by 

convection). However, diffusion of fluorescein for 3 min after injection is expected to 

account for an area increase of only ~20% (based on a calculation assuming a fluorescein 

diffusivity of 4.3x10-6 cm2/s 141 and a covered SCS area of ~200 mm2 in the rabbit eye 

142). Because this small predicted increase is much less than the roughly two-fold 

measured increase, this results suggest, which is less than 2.05. This result suggests that 

there are additional factors at play in the SCS that limit movement of particles relative to 

small molecules (i.e., fluorescein). 
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3.4.2 Distribution of particles and molecules over time after injection into the SCS 

in vivo 

We further investigated the role of formulation and time on particle distribution in 

the SCS. The distribution of red-fluorescent particles suspended with green fluorescently-

tagged formulation excipients in HBSS after injection into the SCS of live rabbits was 

imaged using red and green fluorescence simultaneously. Fluorescence was imaged using 

RetCam imaging, which was preferred to other non-contact fundus imaging methods, 

since it enabled visualization of the posterior pole as well as the far periphery (i.e., the 

injection site). We then calculated the percentage of the SCS area in the composite 

images that had red/green fluorescence values at least 0.1% of the starting concentration, 

which we used as a proxy of true coverage; and determined the incidence of co-

localization of the red and green fluorescence greater than chance. 

To study the distribution of red-fluorescent particles and green-fluorescent 

fluorescein molecules injected in HBSS (Figure 3.4), we measured the SCS area over 

which the particles and fluorescein spread for 21 days after injection in vivo. The particle 

area coverage was constant at all time points from 3 min to 14 d post-injection (p=0.99, 

Sidak’s multiple comparison test), with a small decrease in area at 21 d. In contrast, the 

fluorescein area increased from 3 min to 1 h post-injection before being cleared by 2 d. 

At the 3 min and 1 h time points, fluorescein covered a larger area than the red particles 

(p<0.01, Sidak’s multiple comparison test). Moreover, the time point at which the 

maximum fluorescein coverage was measured was later than the red particle maximum. 

Statistical analysis showed that the particles co-localized with fluorescein immediately 

after injection, but not at later time points. Taken together with the ex vivo data, we 
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conclude that particles suspended in HBSS became immobilized immediately post-

injection even though fluorescein was able to move within the SCS well after the 

injection.  

We next investigated how the addition of viscous formulation excipients affected 

particle distribution over time. When the formulation consisted of red particles suspended 

in 5% FITC-CMC in HBSS (Figure 3.5), particle area coverage increased from 3 min 

until 2 d post-injection (p<0.01, Sidak’s multiple comparison test). Then, from 2 d to 35 

d, there was no significant change in particle distribution in the SCS (p=0.61, Sidak’s 

multiple comparison test). The co-injected FITC-labeled CMC initially followed a pattern 

similar to the particles, increasing in area for the first two days (p<0.005, Sidak’s 

multiple comparison test). However, from 2 d until 21 d, the area of FITC-CMC 

decreased (p<0.005, Sidak’s multiple comparison), and from 21 d until 35 d, there was 

essentially no detectable FITC-CMC in the SCS. The FITC-CMC never occupied an area 

larger than the red particles (p>0.07, Sidak’s multiple comparison test). The maximum 

red particle coverage and maximum FITC-CMC coverage occurred at the same time 

point, i.e., 2 d post injection. The last time point of co-localization was at 4 d. This 

suggests that the particles and FITC-CMC were transported together during the injection 

and for up to 2 days thereafter, after which the particles remained immobilized and the 

FITC-CMC was cleared. 

When the formulation consisted of red particles suspended in FITC-Discovisc 

(Figure 3.6), particle area coverage changed over time. Particle coverage was constant 

from 3 min to 1 h (p=0.98, Sidak’s multiple comparison test), and increased by 2 d 

(p<0.05, Sidak’s multiple comparison test). There was no significant change in particle 
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coverage from 2 d to 21 d (p>0.24, Sidak’s multiple comparison test). The co-injected 

FITC-labeled Discovisc molecules initially followed a pattern similar to the particles, 

increasing in area for the first two days (p<0.005, Sidak’s multiple comparison test). 

However, from 2 d until 7 d, the area of FITC-Discovisc decreased (p<0.005, Sidak’s 

multiple comparison), and from 7 d until 21 d, there was essentially no detectable FITC-

Discovisc in the SCS. The FITC-Discovisc never occupied an area larger than the red 

particles (p>0.05, Sidak’s multiple comparison test). The maximum red particle coverage 

and maximum FITC-Discovisc coverage occurred at the same time point, i.e., 2 d post 

injection. The last time point of co-localization was at 2 d. This suggests behavior similar 

to that seen with FITC-CMC, where the particles and FITC-Discovisc were transported 

together during the injection and for up to 2 days thereafter, after which the particles 

remained immobilized and the FITC-Discovisc was cleared, although the FITC-Discovisc 

was cleared faster than the FITC-CMC and, on an absolute scale, the area coverage of 

FITC-Discovisc and co-injected particles was roughly twice as large as the area coverage 

of FITC-CMC and co-injected particles. 
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Figure 3.4 – Spread of particles and fluorescein molecules in the SCS after injection of HBSS formulation 

in vivo.  (A) Representative fluorescent fundus collages after microneedle injection of red-fluorescent 

particles (0.2 µm diameter) and fluorescein in HBSS in the supranasal position in vivo (injection site 

indicated by white arrow). The same animal was imaged for the duration of the experiment. Sup.=superior. 

Nas.=nasal. (B) Quantification of area covered (mean±SEM, N=3) by red-fluorescent particles and 

fluorescein in HBSS. * represents time points where red particle and fluorescein signals co-localize. 
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Figure 3.5 – Spread of particles and fluorescein molecules in the SCS after injection in FITC-CMC 

formulation in vivo.  (A) Representative fluorescent fundus collages after microneedle injection of red-

fluorescent particles (0.2 µm diameter) and FITC-CMC in HBSS in the supranasal position (injection site 

indicated by white arrow). The same animal was imaged for the duration of each experiment. Sup. = 

superior. Nas.= nasal. (B) Quantification of area covered (mean±SEM, N=2-4) by red fluorescent particles 

and FITC-CMC in HBSS. * represents time points where red particle and FITC-CMC signals co-localize. 
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Figure 3.6 – Spread of particles and fluorescein molecules in the SCS after injection in FITC-Discovisc 

formulation in vivo.  (A) Representative fluorescent fundus collages after microneedle injection of red-

fluorescent particles (0.2 µm diameter) and FITC-Discovisc reconstituted in HBSS in the supranasal 

position (injection site denoted by white arrow). The same animal was imaged for the duration of each 

experiment. Sup.=superior. Nas.=nasal. (C) Quantification of area covered (mean±SEM, N=2-4) by red 

fluorescent particles and FITC-Discovisc in HBSS. * represents time points where red particle and FITC-

Discovisc signals co-localize. 
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Considering all of these data (Figure 3.4 – Figure 3.6), the spread of particles 

immediately after injection depended on formulation composition, such that spreading 

went from smallest to largest with: FITC-CMC (8.5%) < FITC-Discovisc (26%) < HBSS 

(30%). At 14 d, the rank list for particle coverage for the tested excipients was FITC-

CMC (20%) < HBSS (27%) < FITC-Discovisc (46%). The maximum area coverage was 

achieved at 3 min when formulated only in HBSS, and at 2 d for FITC-CMC and FITC-

Discovisc. The particles injected with a low-viscosity formulation (i.e. HBSS only) did 

not experience a change in area coverage over time. On the other hand, particles injected 

with viscous formulations (FITC-CMC and FITC-Discovisc) experienced an increase in 

coverage of two-fold when comparing coverages at 3 min and 14 d post-injection. Thus, 

we can conclude that the viscous formulations prolonged particle transport time 

compared with the low-viscosity formulation. There was a strong association between 

transport time compared with viscosity (Figure 3.7). Initial viscosity of the formulation 

was a poor predictor of final spread of particles, possibly due to physical crosslinking of 

CMC143 that effectively increased viscosity after injection and thereby limited spreading 

(Figure 3.8).  
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Figure 3.7 – Plot of transport time (mean±SEM) vs. formulation viscosity. Transport time defined as 

greater of (a) time in which co-localization stops, and (b) time in which particle area stops increasing. 

Linear regression fits data well (r2=0.90)  
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Figure 3.8 – Plot of SCS area coverage (mean±SEM) vs. formulation viscosity. SCS area coverage 

determined from RetCam II collages. Linear regression did not fit data well (r2=0.44) 

Fluorescein in HBSS occupied 66% of the visible SCS, which was the largest area 

of all the fluorescent species injected. In comparison, peak FITC-CMC spreading was 

20% of SCS area, and occurred at 2 d. Peak FITC-Discovisc coverage was 63% and 

occurred at 2 d. Total clearance of the fluorescently-tagged formulation excipients 

occurred by 2 d for HBSS, 21 d for FITC-CMC, and 14 d for FITC-Discovisc.  

Co-localization of particles and the formulation excipients was seen up until 3 

min for HBSS, 4 d for FITC-CMC, and 3 min for FITC-Discovisc. 

3.4.3 Effect of particle size on particle distribution over time after injection into 

the SCS in vivo 

To determine the effect of particle size on distribution, particles of different sizes 

(20 nm – 2 μm) were suspended in HBSS and Discovisc, and co-injected into the rabbit 

SCS in vivo. Injections ysed pairwise combinations of red- and green-fluorescent 

particles of different sizes to determine whether the particles co-localized in the SCS. In 

all cases, the pairs of co-injected particles all co-localized for at least 4 d post-injection 

(Figure 9). With all HBSS conditions, particle area did not change with time (p>0.06, 2-



 78 

 

way ANOVA). For particles in Discovisc, the particle area increased until 2 d for both 

the 20 nm and 2 µm particles.  
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Figure 9 – Quantification of area covered (mean±SEM, N=3-4) after SCS injection with (A) 2 nm red- and 

200 nm green-fluorescent particles in HBSS, (B) 200 nm red- and 200 nm green-fluorescent particles in 

HBSS, (C) 200 nm red- and 2 µm green- fluorescent particles in HBSS, and (D) 20 nm red- and 2 µm 

green-fluorescent particles in Discovisc over time in vivo. The same animal was imaged for the duration of 

each experiment. * represents time points where red- and green-fluorescent particles signals co-localize. 

3.5 Discussion 

Traditional ophthalmic drug delivery techniques, namely topical eye drops and 

intravitreal injections, do not precisely target diseased tissues in posterior segment 

indications. Compared with these conventional routes of administration, suprachoroidal 

delivery enables targeted drug delivery to the choroid, retina, ciliary body, and sclera 

with higher bioavailability5, 6, 8, 9, 81, 115, and can be performed in the outpatient clinic 

setting7, 8, 81. The extent and distribution of posterior-segment diseases are typically not 

uniform. For example, glaucoma treatment requires localization near the ciliary body, 
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which is near the site of microneedle injection6, 115; while noninfectious posterior uveitis 

requires spreading throughout the SCS7. Deposition within the suprachoroidal space can 

be geographically controlled so as to target diseased tissues while sparing non-diseased 

tissues17, 118, 124, 128, 129. This work investigated the distribution of particles and molecules 

injected into the rabbit SCS over time as a function of injection volume and formulation. 

3.5.1 Distribution of particles and molecules injected into the SCS 

One goal of this work was to study the distribution of particles and molecules co-

injected into the SCS of rabbits. We found that, as injection volume increased, 

circumferential area of SCS containing particles and molecules also generally increased. 

However, we were not able to conclude if area increased linearly with injection volume 

or followed an exponential or other relationships. Thus, increasing injection volume was 

a reasonable strategy to increase coverage, but may limit particle spreading across certain 

anatomical barriers129. For example, in rabbits and guinea pigs, anatomical barriers 

prevented particle spread into the inferior hemisphere when injections were made 

superior to the long posterior artery 120, 129. To address this limitation, Kim et al. showed 

that it is possible to achieve particle spread >50% (and up to 100%) by optimizing the 

injection formulation128.  

3.5.2 Distribution of particles relative to molecules 

Another goal of this study was to determine the relative distributions of particles 

and molecules co-injected into the SCS. We found that, with HBSS as the formulation, 

the area covered by fluorescein was larger than the area covered by particles for all 

injection volumes tested. On average, the fluorescein occupied an area twice as large as 

that occupied by particles ex vivo and in vivo. The discrepancy in area covered could be 
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due to either barriers in the SCS that preferentially limit movement of particles or 

increased diffusion of fluorescein in the SCS post-injection relative to the particles. 

Because the contribution of fluorescein diffusion was estimated to increase coverage by 

only ~20%, entrapment of particles is the more likely explanation.  

Because molecules distributed to cover a larger area than particles in the SCS, the 

delivery of molecules may be preferred if the goal is to achieve full coverage of the SCS. 

However, the use of particles (e.g., containing drug molecules for slow release over time7, 

115) may be preferable to injecting free drug molecules, which are usually cleared from 

the SCS within a day6, 8, 9, 120.  

3.5.3 Effect of formulation on distribution of particles  

For the purposes of our in vivo formulation excipient experiments, we defined 

transport time as the greater of (a) the time at which particle area stopped changing and 

(b) the time in which co-localization of particles and formulation excipients stopped. The 

data showed that there was a strong association between transport time and viscosity of 

the liquid formulation, where increased viscosity facilitated longer transport time (i.e., for 

days after the injection). In contrast, viscosity of the formulation had a much weaker 

association with area coverage, probably because certain viscous formulations like CMC 

may become physically cross-linked, effectively increasing viscosity after injection and 

thereby limiting spread.  

3.5.4 Effect of particle size on distribution of particles  

Finally, particles with diameters ranging from 0.02 to 2 µm co-localized within 

the SCS independent of particle size. Furthermore, the size of the particles did not 

influence transport time. Particles of different sizes may be preferred for different 
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applications, such as micron-scale particles to serve as slow-releasing drug delivery 

systems, nanoscale virus particles as gene delivery vectors, and micron-sized cells as cell-

based therapies. This study shows that particles spanning two orders of magnitude in size 

distributed on the SCS to a similar extent with similar kinetics, which should simplify 

design of particle delivery to the SCS. Of course, other particle parameters may also play 

a role, such as particle density, shape, surface properties and composition. 

3.5.5 Study limitations 

Limitations of the study include use of ex vivo rabbit eyes, and shortcomings of 

equipment and measurement methods. There are physiological and anatomical 

differences between rabbit and human eyes. These species differences may or may not 

alter suprachoroidal distribution. For example, as we showed previously129, there are 

different anatomical barriers in rabbits versus humans that affect circumferential particle 

spread. Human clinical trials will be needed to investigate suprachoroidal distribution, as 

it applies to human health. This study used ex vivo eyes for some studies, which may not 

be fully representative of living animals. However, the use of ex vivo eyes made certain 

measurements possible; for example, using ex vivo (and enucleated) eyes allowed rapid 

freezing of the eye to stop particle and molecule movement. The distribution of 

molecules and particles suspended in HBSS was studied in both ex vivo and in vivo rabbit 

eyes, and the results were similar, at least initially post-injection.  

The RetCam II fluorescent fundus imaging system did not have the ability to 

automatically stitch image fields together. Instead, collages were used, and this may have 

introduced errors in the actual coverage of fluorescence (e.g., two neighboring images in 
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the collage may overlap). However, the RetCam allowed visualization into the far 

periphery, which would be difficult with other non-contact fundus imaging modalities. 

3.5.6 Conclusion 

In conclusion, we studied the distribution of particles and molecules co-injected 

into the SCS of rabbits. We found that as injection volume increased, the area the injected 

fluid in the SCS generally increased. Particles did not spread to cover as large an area as 

fluorescein molecules, suggesting barriers to particle movement in the SCS. With high-

viscosity formulations, the transport time of particles was significantly extended (to 2 d), 

and particles were often co-localized with viscous polymer excipients during spreading. 

These studies will aid in the development of formulations that can be injected via 

microneedle to control particle spread within the SCS. 
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4 THICKNESS AND CLOSURE KINETICS OF THE 

SUPRACHOROIDAL SPACE FOLLOWING MICRONEEDLE 

INJECTION OF LIQUID FORMULATIONS  

4.1 Summary 

The purpose of this study was to determine the effect of injection volume and 

formulation of a microneedle injection into the suprachoroidal space (SCS) on SCS 

thickness and closure kinetics. Microneedle injections containing 25 – 150 µL of Hank’s 

Balanced Salt Solution (HBSS) were performed in the rabbit SCS ex vivo. Distribution of 

SCS thickness was measured by ultrasonography and 3D cryo-reconstruction. 

Microneedle injections were performed in the rabbit SCS in vivo using HBSS only; 

Discovisc; and 1, 3, and 5% carboxymethyl cellulose (CMC) in HBSS. Ultrasonography 

was used to track SCS thickness over time. We found that increasing HBSS injection 

volume increased the area of expanded SCS, but did not increase SCS thickness ex vivo. 

With SCS injections in vivo, the SCS initially expanded to thicknesses of 0.43±0.06 mm 

with HBSS, 1.5±0.4 mm with Discovisc, and 0.69 – 2.1 mm with 1 – 5% CMC. After 

injection with HBSS, Discovisc and 1% CMC solution, the SCS collapsed to baseline 

with time constants of 19 min, 6 h and 2.4 d, respectively. In contrast, injections with 3 – 

5% CMC solution resulted in SCS expansion to 2.3 – 2.8 mm over the course of 2.8 - 9.1 

h after which the SCS collapsed to baseline with time constants of 4.5 – 9.2 d. Thus, we 

concluded that with low-viscosity formulations, increasing injection volume has a 

negligible effect on SCS thickness. Increasing injection fluid viscosity had a major effect 

on SCS thickness. SCS expansion is hypothesized to be controlled by a balance between 
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the viscous forces of the liquid formulation and the resistive biomechanical forces of the 

tissue. 

4.2 Introduction 

The suprachoroidal space (SCS) is a potential space found between the sclera and 

choroid. Due to its close proximity to the ciliary body, choroid, retina, and sclera, this 

space has recently drawn attention as a site for targeted drug delivery2, 7, 8, 81, 118, 119, 125, 127, 

placement of glaucoma drainage devices144-147, and implantation of retinal prostheses148. 

As a site of drug administration, delivery into the SCS is noted for high bioavailability at 

targeted tissues in posterior segment diseases, as well as fast clearance by the choroidal 

vasculature8, 9. Access to the SCS is possible via surgical procedures of varying 

complexity2, 117, 118, 124, 126, 130, 149 and microneedle injections that offer greater simplicity 8, 

81. A hollow microneedle with a length similar to the thickness of the sclera can be used 

to reliably access the SCS while preventing penetration deeper into the eye8, 81. 

Microneedle injections can be performed by ophthalmologists in the outpatient clinic 

setting, similar to the intravitreal injection procedure. The safety and efficacy of these 

microneedle injections have been demonstrated in a recent open-label Phase I/II clinical 

trial (NCT01789320) where triamcinolone acetonide suspension was injected into the 

SCS to treat posterior uveitis7; a Phase III clinical trial is ongoing (NCT02595398) to 

further study the efficacy of the SCS injection. 

Although many studies have investigated the circumferential spread of particles 8, 

17, 81, 119, 120, 128, 129 and molecules5, 9, 116, 120, 125 within the SCS, few have studied the third 

dimension: the distensibility of the choroid off the sclera, a.k.a. the SCS thickness. Seiler 

et al. measured the maximum suprachoroidal space thickness over the injection site in ex 
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vivo porcine and canine eyes, and found that there was no difference in thickness with 

three injection volumes, especially once the eyes were inflated to a physiological 

intraocular pressure116. They also determined the 3D distribution of microbubbles in the 

porcine eye116, however, the microbubbles are not expected to distribute the same as 

neutral-density materials17. Patel et al. used a fluorophotometer to assess the SCS 

thickness along the visual axis in rabbits8, 81. Gu et al. used optical coherence tomography 

to study the SCS thickness along the visual axis in guinea pigs120. Since the injection 

occurs in the far periphery (near the limbus), the SCS thickness at the posterior pole may 

not be representative of the entire globe. Kadam et al. showed that the physiochemical 

properties of molecules injected into the SCS affected affinity to certain ocular layers, 

which may indirectly affect measured SCS thickness123.  

These prior studies made measurements of SCS thickness at individual locations 

at individual time points using individual liquid formulations. To provide a more 

comprehensive understanding the distribution of SCS thicknesses and the factors that 

affect SCS thickness after microneedle injection, this study measured SCS thickness at 

multiple locations at multiple time points using multiple different liquid formulations of 

multiple different volumes. More specifically, this work evaluated the effect of increasing 

injection volume and liquid formulation viscosity on SCS thickness at the time of 

injection and over time after the injection.  

We used two companion approaches to report on the distribution of the SCS 

thickness throughout the entire ocular globe (i.e., ultrasonography and 3D cryo-

reconstruction). We hypothesize that for a given liquid formulation, the SCS thickness 

expands to a constant value independent of the volume of fluid injected; that increasing 
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viscosity of the liquid formulation increases the SCS thickness; that SCS thickness may 

continue to expand after injection of concentrated carboxymethyl cellulose (CMC) 

solutions that form physically crosslinked hydrogels that swell; and that SCS thickness 

collapses to baseline over time after SCS injection.  

4.3 Materials and Methods 

All reagents and chemicals were purchased from Sigma-Aldrich (St. Louis, MO) 

unless otherwise specified. Red fluorescent polystyrene particles (excitation: 580 nm; 

emission: 605 nm) with diameters of 200 nm were purchased from Life Technologies 

(Fluospheres, Carlsbad, CA). Eyes of pigmented Silver Fox and American Blue rabbits 

(Broad River Pastures, Elberton, GA) and albino New Zealand White rabbits (Pel Freeze, 

Rogers, AR) were obtained within 1 d after slaughter and stored in a -80°C freezer 

immediately upon arrival. All in vivo experiments were carried out in albino New 

Zealand White rabbits (Charles River Laboratories, Wilmington, MA) and were approved 

by the Georgia Institute of Technology Institutional Animal Care and Use Committee. 

Practices complied with the ARVO Statement for the Use of Animals in Ophthalmic and 

Vision Research. Four replicates per group were performed unless otherwise specified. 

4.3.1 Ex vivo injection procedure 

The conjunctiva, fascia, and extraocular muscles were carefully dissected off the 

rabbit eye. The eye was pressurized to a physiological intraocular pressure (IOP) of 10-12 

mmHg by penetrating a 25 gauge needle through the optic nerve, which was connected to 

a water reservoir raised to ~14 cm above the eye17. A 750 µm-long, 33-gauge hollow 

microneedle (Clearside Biomedical, Alpharetta, GA) attached to a 250 µL glass 

chromatography syringe (National Scientific, Rockwood, TN) was used to make 
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injections. All injections were performed 3 mm posterior to the limbus at the 12 o’clock 

position (superior) to be as far as possible from anatomical barriers that impede 

circumferential flow129. Depending on the experimental condition, each injection 

consisted of 25, 50, 75, 100, or 150 µL of 0.5% (w/v) red-fluorescent particles suspended 

in Hank’s Balanced Salt Solution (HBSS; Gibco, Life Technologies, Carlsbad, CA). 

After each injection, the needle was held in place for 1 min to prevent reflux121.  

4.3.2 Ultrasound imaging to determine SCS thickness 

A high-frequency ultrasound (U/S) probe (UBM Plus, Accutome, Malvern, PA), 

with a minimum axial resolution of 15 µm, was used to generate 2D cross-sectional 

images of the SCS in rabbit eyes ex vivo after injecting volumes ranging from 25 to 150 

µL. An U/S probe cover (Clearscan, Eye-Surgical-Instruments, Plymouth, MN) was 

attached to the UBM Plus to facilitate U/S image acquisition. Three minutes after 

injection, the U/S probe was used to acquire eight sagittal views around the eye (12, 1.5, 

3, 4.5, 6, 7.5, 9, and 10.5 o’clock). Post-processing of the U/S B scans was performed to 

find the thickness from the outer sclera to the inner retina at 1, 5, and 9 mm posterior to 

the scleral spur. The mean, median, and standard deviation for each eye were calculated.  

4.3.3 3D cryo-reconstruction to determine 3D distribution of particles and 

fluorescein 

Microneedle injections of 25 – 150 µL containing red-fluorescent particles were 

performed in pigmented rabbit eyes, as described above. The eyes were frozen 3 min 

post-injection using ethanol chilled to -80°C. Frozen eyes were put into cryomolds loaded 

with Optical Cutting Temperature embedding medium (OCT; Tissue-Tek, Sakura 

Finetek, Tokyo, Japan) and India Ink (Higgins Ink, Leeds, MA). The cryomolds were 
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then half-submerged in liquid nitrogen until the OCT was solid. The eye was removed 

from the plastic mold for sectioning. The pigmentation in the eye and the India Ink in the 

OCT prevented fluorescence from out of plane during imaging (see below). 

Each cryomold was connected to the mount of a cryostat (CryoStar NX70 

cryostat, Thermo Fisher Scientific, Waltham, MA or Leica CM 3050 cryostat, Wetzlar, 

Germany). A digital SLR camera (Canon 60D, Canon Inc., Melville, NY) with 100 mm 

prime lens was positioned on a tripod such that the camera was along the longitudinal 

axis of the cryo-block (to minimize apparent motion of the sample as it was cut and any 

keystoning effect). Camera parameters were held constant at shutter speed = 1/15 s and 

aperture = F/2.8. The camera was placed close enough such that the sample occupied 

>80% of the image sensor.  

One red fluorescent images of the cryo-block was obtained every 300 µm by 

slicing the sample with the cryostat (Figure 4.1). Since the cryo-block was locked in 

place for each image and the camera was stationary, determining the orientation of one 

image relative to other images was simplified compared with other reconstruction 

methods137, 138. To visualize the location of the red-fluorescent particles, a red filter was 

placed on the lens, and the sample was illuminated with green LED light (HitLights, 

Baton Rouge, LA). Care was taken not to shift the camera when connecting the filter. 

After every 300 µm of tissue was removed by the cryostat, the procedure was repeated 

(including imaging measurements) until the entire eye was imaged.  
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Figure 4.1 – Diagram of 3D cryo-reconstruction methods. Microneedle injection of particles suspended in 

HBSS is made in the suprachoroidal space (SCS). (A) Eye is cryo-sectioned. Every 300 µm, fluorescence 

images of the block are taken. (B) Image stack is uploaded to Matlab script. The centroid of the eye is 

identified manually by visual inspection, and 100 x 100 rays originating from the centroid are calculated. 

(C) The intensity along each ray is used to calculate the SCS thickness. (D and E) The SCS thicknesses for 

each of the 10,000 rays are calculated and displayed as either a (D) spherical representation or (E) 2D 

equatorial map representation. Similar to a Mercator projection of Earth, the regions near the anterior and 

posterior pole in (E) are greatly distorted. Injection site indicated with yellow arrow. 

Image stacks consisting of red fluorescence images were imported into a custom 

Matlab (Mathworks, Natick, MA) script. The image stack was preprocessed by spatially 

transforming each image so the four corners of the mold matched up, using the Matlab 

functions ‘cp2tform’ and ‘imtransform’. The spatial transformation accounted for angular 

deviations (e.g., roll around the longitudinal axis of the sample), linear deviations (e.g., 

shifting the camera), apparent changes in sample size due to changes in distance from 

sample to camera (i.e., as the sample was cut), and perspective deviations (i.e., viewing 

the sample from off the longitudinal axis).  
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The eye was modeled as a sphere and discretized into an array of 100 x 100 

pixels. For each of these 10,000 pixels, a ray originating from the centroid of the eye 

through each point was identified (Figure 4.1B). The intensity along each ray was used to 

map the SCS thickness, as determined by the distribution of red particles, in the SCS 

(Figure 4.1C). The SCS thickness was determined by finding the distance between the 

first appearance and first disappearance of red fluorescence, as determined with an 

absolute intensity threshold and the first derivative of the intensity (to ensure an edge). 

This procedure was repeated for all 10,000 rays to yield a 2D map projection or a 3D 

surface plot (Figure 4.1D and E). Note that only SCS thickness per ray was calculated, 

not particle concentration.  

A low-pass filter was used on the 100 x 100 array to remove aberrant signals. The 

resulting array was viewed as a surface plot in Matlab. Key parameters from each sample 

included distribution of thickness (5th, 25th, 50th, 75th, and 95th percentile, mean, and 

standard deviation) excluding thicknesses < 25 µm, thresholded area, and thresholded 

volume.  

4.3.4 Mechanical testing of sclera-choroid attachments 

To assess the mechanical properties of attachments between the sclera and 

choroid, a peel test (modification of ASTM D1876 method150) was performed on 

sclera/chorioretina strips with and without microneedle injection of HBSS into the SCS 

(N=8 per condition). Albino rabbit eyes ex vivo were used for this experiment.  

Either the superior and inferior hemisphere was randomly assigned to receive a 

microneedle injection of 100 µL HBSS. After injection, two sagittal strips – one with no 

injection and one with SCS injection – from the same eye, approximately 10 mm in width 
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and 14 mm in length, were cut from the eye. The actual width was measured with a 

caliper. A scalpel blade was gently run along the edges of the strip to ensure the edges 

were clean. The ciliary body was cut posterior to the scleral spur so the choroid could be 

separated off the sclera. A 5 mm biopsy punch was used to make a hole through the 

cornea. The strip was mounted on a force displacement station (ESM301 motorized 

stand, Mark-10 Corp., Copiaque, NY) with a 50 gF force sensor (Series 5 Force Gauge, 

Mark-10 Corp.). A hook attached to the force sensor was threaded through the hole in the 

cornea, and the ciliary body was clamped to a stationary platform. The force 

displacement station was programmed to pull (i.e., peel) the sclera from the choroid at a 

rate of 60 mm/min. The force readings were collected in real time by the MESUR Lite 

gauge software. The average force per width of sclera/choroid tissue strip was calculated.  

4.3.5 SCS collapse rate with different liquid formulations 

The rabbit was anesthetized with isoflurane. Topical proparacaine was given to 

further anesthetize the eye. To study the effect of viscosity on SCS collapse time, one of 

the following formulations was injected: [i] 50 µL of HBSS; [ii] 50 µL of Discovisc 

(Alcon Laboratories, Fort Worth, TX); [iii] 50 µL of 1% carboxymethyl cellulose (CMC; 

700 kDa high viscosity) dissolved in HBSS; [iv] 50 µL of 3% CMC in HBSS; [v] 50 µL 

of 5% CMC in HBSS; and [vi] 25 µL of 5% CMC in HBSS. High-frequency ultrasound 

B-scan was used to determine the rate of SCS collapse. Eight sagittal views over the pars 

plana were acquired: (a) supranasal, over the injection site; (b) superior; (c) nasal; (d) 

supratemporal; (e) temporal; (f) infratemporal; (g) inferior; and (h) infranasal. Image 

acquisition for these formulations occurred for up to 28 d in vivo. 
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Off-line post processing was performed on the U/S views to measure the SCS 

thickness. The U/S probe used has a minimum axial resolution of 15 μm. For each U/S 

view, a line segment 5 mm posterior to the scleral spur and perpendicular to the sclera 

was created (Figure 4.2). The line started at the outer surface of the sclera and ended at 

the inner surface of the retina. The sclera and chorioretina were included in the 

measurement to ensure the line was perpendicular. SCS thickness was then calculated by 

subtracting the tissue thickness from the measured line length. Curve fitting was done to 

determine the rate of SCS collapse.  

 
Figure 4.2 – Calculation of SCS thickness in ultrasound B scans. A line segment perpendicular to the 

sclera and choroid, from the outer sclera to the inner retina, is found. The conjunctiva is excluded from the 

measurement. The tissue thickness is found and subtracted out, resulting in the SCS thickness.  

4.3.6 Determination of SCS clearance kinetics by fundus imaging 

To study the effect of viscosity on fluorescein movement in the SCS, a 50 µL 

microneedle injection of the following formulations were tested: [i] 0.025% (w/v) 

fluorescein sodium (25% AK-Fluor, Akorn, Lake Forest, IL diluted with HBSS); and [ii] 

0.025% fluorescein sodium (25% AK-Fluor, diluted with HBSS) and 5% CMC in HBSS. 

The approximate clearance rate of injected fluorescent material from the SCS was 

found by taking fluorescence fundus images over time in the rabbit eye in vivo. Topical 

eye drops of tropicamide and phenylephrine (Akorn, Lake Forest, IL) were administered 

prior to each imaging session to dilate the eye. A RetCam II (Clarity Medical Systems, 
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Pleasanton, CA) with the 130° lens attachment and the built-in fluorescein angiography 

module was used to acquire the images. Multiple images were taken with the blue light 

output from the RetCam II set at 0.0009, 1.6, and 2.4 W/m2. In an attempt to capture the 

entire interior surface of the ocular globe, nine images were captured: central, supranasal, 

superior, supratemporal, temporal, infratemporal, inferior, infranasal, and nasal. This 

allowed imaging into the far periphery. Imaging was done immediately after injection, at 

1 h, every 3 h for 12 h, and every two days post-injection.  

The total clearance time, which we defined as the first time point in which 

fluorescence was not detectable by visual observation, was determined for all eyes 

injected. 

4.4 Results  

4.4.1 Effect of injection volume on SCS thickness: cryo-reconstruction 

measurement 

We measured the thickness of the SCS and investigated its distribution in rabbit 

eyes after microneedle injection ex vivo using a 3D cryo-reconstruction method. 2D 

mapping of the spread of particles (Figure 4.3A) in the SCS after injection of different 

volumes of fluid indicated that the area of spreading increased with injection volume.  

Quantification of the SCS thickness throughout the area of spreading produced 

histograms (Figure 4.3B) of the SCS thickness for each injection volume. Sites where 

SCS thickness was less than 25 µm were considered to have “unopened” SCS and were 

therefore not included in the analysis. All particle thickness histograms showed a 

characteristic spike at ~160 µm (i.e., the average mode value among the histograms 

collected at all conditions shown in Figure 4.3 is 160±25 µm (mean±SEM), and there 
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were very few portions of the SCS open to smaller thicknesses. This peak value of SCS 

thickness did not significantly change as a function of injection volume (p=0.43, one-way 

ANOVA). This indicates that if the SCS is opened up, it readily expands to a thickness of 

at least ~160 µm. 
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Figure 4.3 – Distribution of SCS thickness after injection of particles suspended in HBSS into the SCS of 

the rabbit eye ex vivo. Ex vivo rabbit eyes were frozen 1 min after SCS injection and analyzed by 3D cryo-

reconstruction. (A) Representative thickness maps of 200 nm particles, where brighter white color indicates 

thicker SCS spreading. Yellow arrow indicates site of injection, at the 12 o’clock superior position. Each 

2D map is an equatorial projection oriented such that anterior (i.e., cornea) is up and posterior (i.e., optic 

nerve) is down. As with 2D map projections of globes, the area represented by pixels at the upper and 

lower poles are distorted. (B) Data from these thickness maps are presented as histograms for different 

injection volumes (indicated on the left side of the figure). Y-axis is counts with every 100 counts marked. 

(C) Box and whiskers represent 5th, 25th, 50th (median), 75th, and 95th percentile of SCS thickness after 

injection (N=3-7 replicates per condition). 
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The median value of SCS thickness was found to be 330±30 µm, which was 

significantly different from the mode value (p<0.001, unpaired t-test) indicating few 

points where the thickness was less than 150 µm. The median SCS thickness was 

independent of injection volume (p=0.15, F test for zero slope), as shown in Figure 4.3C. 

This finding is notable, because injection of larger volumes of fluid can increase the area 

of fluid spread in the SCS and/or the thickness of the SCS. These data indicate that the 

SCS expands to a maximum thickness, and that injection of additional fluid increases 

area of spreading in direct proportion to the volume injected. To further test this 

hypothesis, we plotted area of spreading versus injection volume and found they 

increased in direct proportion to each other (Figure 4.4).  
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Figure 4.4 – Area of SCS coverage with increasing injection volume. Injection volumes ranging from 25 – 

150 µL were performed in ex vivo rabbit eyes and the area of circumferential coverage was determined by 

3D cryo-reconstruction. Values represent mean±SEM. Linear regression performed on data indicated that 

area was directly related to injection volume (R2 = 0.92).  

Finally, the mean values of SCS thickness were found to be 340±40 µm among all 

the conditions tested. The mean values had a slight dependence on injection volume 

(p=0.04, F test for zero slope). The 5th, 25th, median, and 75th percentile SCS thickness 

was approximately constant for injection volumes greater than 25 µL, but the 95th 

percentile increased with injection volume. The fact that there was a spread of SCS 
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thicknesses to values up to a few-fold larger than the median value indicates that SCS 

thickness can be spread well beyond ~ 300 µm in some cases. These sites of greater SCS 

thickness occurred in patches (see bright spots on Figure 4.3A) that were often located 

near the site of injection.  

4.4.2 Effect of injection volume on SCS thickness: ultrasound B-scan measurement 

To validate the SCS thickness measurements calculated by the cryo-

reconstruction method, we conducted additional experiments to measure SCS thickness 

by ultrasound B-scan in the rabbit eye ex vivo (Figure 4.5). This U/S measurement 

yielded a median SCS thickness of 160±20 µm, which was independent of injection 

volume (p=0.67, F test for zero slope) and was about half the value obtained by the cryo-

reconstruction method (i.e., 330±30 µm). The two methods both showed that SCS 

thickness values were independent of injection volume and had a median value of 

roughly 150 – 350 µm. Since the eyes used in the U/S measurement were at room 

temperature and measured in real time shortly after injection and the eyes used in 3D 

cryo-reconstruction were frozen shortly after injection and measured later, still in the 

frozen state, the observed differences in thickness may be due to differences in timing, 

temperature, solid vs. liquid state tissue fluids or artifacts due to freezing. Furthermore, 

the U/S measurement was not able to assess the SCS thickness at the posterior pole, 

which may have biased the results.  
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Figure 4.5 – SCS thickness measured with ultrasound B-scan in the rabbit eye ex vivo.  (A) Representative 

ultrasound B scans. (B) Quantification of median SCS thickness ± SEM based on ultrasound (U/S) and 

cryo-reconstruction methods (N=3-7 replicates). Lines on the graph indicate best fits by linear regression. 

C = conjunctiva; Sc = sclera; SCS = suprachoroidal space; Ch-Re = choroid-retina. Arrows indicate SCS 

thickness. 
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4.4.3 Measurement of force of adhesion between sclera and choroid  

We investigated further why median SCS thickness was constant over the range 

of injection conditions studied. The presence of lamellae that attach the sclera to the 

choroid might explain this constant thickness, as they may limit expansion of the SCS 

beyond a certain thickness. The literature suggests that such lamellae exist1, 37, 149. We 

therefore performed a peel test (modified ATSM 1876, Figure 4.6A) on 

scleral/chorioretinal strips from rabbit eyes that had either received or not received a SCS 

injection of HBSS ex vivo. We found that eyes with previous injection in the SCS 

required only 51% of the force to separate the sclera from the choroid compared with 

eyes having no SCS injection (p<0.005, unpaired t-test, Figure 4.6B). This suggests that 

the process of SCS injection weakens the adhesion strength between the sclera and 

choroid, possibly due to reorganizing, weakening, breaking or otherwise altering fibers 

adhering the sclera to the choroid. Since the force to separate the tissue does not become 

zero after injection, adhesive forces between the sclera and choroid, possibly involving 

connective fibers, may play a role in limiting SCS expansion.  

 
Figure 4.6 – Modified ATSM 1876 peel test performed on scleral/chorioretinal (Sc-Ch-Re) strips from eyes 

that had either received (gray bar) or not received (black bar) a 100 µL SCS injection of HBSS ex vivo.(A) 

A diagram of the experimental setup is shown. (B) Mean ± SEM of the force to separate sclera from 

choroid per width of tissue strip is shown (N=8 replicates). P<0.005 = **, unpaired t-test. 

To further interpret these findings, we examined histological sections for 

anatomical structures within the SCS of rabbit eyes that had either received or not 
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received a SCS injection of HBSS in the live rabbit. With no injection, the sclera and 

choroid were tightly apposed (Figure 4.7A). After injection, the sclera and choroid were 

no longer tightly adhered (Figure 4.7B), even more than one month after injection (Figure 

4.7C). Furthermore, there was evidence of structures that appear to be fibrils connecting 

the sclera and choroid (Figure 4.7B and C). It cannot be determined at this time if these 

fibrils were intact or not. In companion experiments, the SCS thickness measured in vivo 

by U/S 30 min or longer post-injection was found to be indistinguishable from pre-

injection thickness (i.e., zero), suggesting that processes in the living rabbit (e.g., 

intraocular pressure) were able to minimize the SCS thickness in vivo but were unable to 

maintain it after death. This finding further supports the hypothesis that there has been a 

loss in adhesion strength, possibly due to changes to the SCS lamellae. 

 
Figure 4.7 – Representative histological images showing SCS fibrils.  (A) In eyes with no injection, the 

sclera and choroid are tightly adhered. (B) In eyes 30 min after HBSS injection, the sclera and choroid are 

no longer closely adherent. There are SCS fibrils visible, especially when image is transformed to black & 

white (insets). (C) In eyes 1+ mo after HBSS injection, the sclera and choroid are still not adherent. There 

are SCS fibrils visible, especially when image istransformed to black & white (insets). When animals were 

viewed under U/S in vivo, no SCS expansion was visible. Sc = sclera; C = choroid; F = SCS fibril. Scale 

bar = 1 mm. 
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4.4.4 Effect of liquid formulation on SCS thickness and collapse time  

We next evaluated the effect of liquid formulation on SCS thickness, as well as 

the SCS collapse rate over time in the living rabbit (Figure 4.8A). We chose solutions of 

carboxymethyl cellulose (CMC) at different concentrations in HBSS and the commercial 

viscoelastic product, Discovisc® as liquid formulations for this study, because these 

liquid formulations were previously shown to distribute differently in the SCS, compared 

with HBSS128.  

The initial SCS thickness over the injection site varied greatly with choice of 

liquid formulation from 0.43±0.06 mm with HBSS to 2.1±0.1 mm with 5% CMC in 

HBSS (Figure 4.8B and Figure 4.9). The value for HBSS found here in the living rabbit 

eye is larger than what was found above in the rabbit eye ex vivo. This could be because 

the in vivo measurement was made at the injection site, which was the site of maximum 

SCS thickness, whereas the ex vivo measurement was reported as the average SCS 

thickness through the expanded SCS. Use of Discovisc, which had previously been 

reported to initially remain near the site of injection in the SCS128, had a SCS thickness of 

1.5±0.4 mm, which was significantly larger than the value for HBSS (p<0.01, Sidak’s 

multiple comparison test). SCS injection of solutions containing 1%, 3% and 5% CMC in 

HBSS (viscous solutions that have also been reported to localize at the injection site128) 

had initial SCS thicknesses of 0.7±0.1 mm, 1.6±0.2 mm and 2.1±0.1 mm, respectively 

(Figure 4.8B). These data indicate that changing the formulation (to increase viscosity) 

had a larger effect on SCS thickness than increasing injection volume for a given 

formulation. 
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Figure 4.8 – Quantification of median SCS thickness after injection of different liquid formulations as a 

function of time.  (A) Time course of SCS thickness after injection with six liquid formulations. Inset shows 

first 24 h. (B) SCS thickness measured immediately post-injection (θ0) and the maximum SCS thickness 

reached (θmax) when using different liquid formulations. (C) The time constants associated with SCS 

expansion and collapse when using different liquid formulations. All values are mean±SEM (N=4 

replicates) (ns = no significant difference, p<0.05 = *; p<0.0005 = ***, F test) 
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Figure 4.9 – Representative ultrasound B-scan images of the SCS after 50 µL injection of (A) HBSS and 

(B) 5% CMC solution. C = conjunctiva; Sc = sclera; SCS = suprachoroidal space; Ch-Re = choroid-

retina. Arrows indicate SCS thickness. 

We next monitored SCS thickness over time at eight positions around the globe 

for all the formulations tested (Figure 4.10A). After injection of HBSS, the SCS thickness 

over the injection site achieved its peak value immediately after injection and then 

decreased according to a roughly first-order exponential decay, i.e., there was no 

significant difference between SCS thickness immediately post-injection (θ0) and the 

maximal SCS thickness (θmax) (p > 0.99, Sidak’s multiple comparison test, Figure 5B). 

Measurements at other locations around the globe behaved similarly.  

There was also no difference between initial and maximal SCS thickness over the 

injection site for Discovisc and 1% CMC (p≥0.97, Sidak’s multiple comparison test). 

However, the SCS thickness measured at the other sites behaved differently, which is 

consistent with a previous study128. With Discovisc, the decrease in SCS thickness at the 

injection site over time was accompanied by a concomitant increase in SCS thickness at 

adjacent sites in the SCS (Figure 4.10A, 4 h). By 2 d, the SCS thickness throughout the 

entire eye had returned to baseline. In contrast, 1% CMC only expanded the SCS at or 

near the injection site for the entire time course (data not shown). Because Kim et al.128 
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had shown that Discovisc was able to facilitate the distribution of particles throughout the 

SCS and that CMC was able to localize particles near the injection site, we hypothesize 

that the expansion of a region of SCS was necessary for particle deposition in that region.  

With 3% CMC and 5% CMC solutions, θ0 over the injection site was different 

than θmax (p<0.01, 2-way ANOVA) because the SCS thickness initially increased over the 

course of hours after the injection. This expansion of the SCS could be explained by an 

osmotic and hydration effect of the CMC within the SCS, which could draw in water 

from the surrounding tissue to dilute the CMC and cause swelling of the gel. Besides the 

swelling, the behavior of the SCS thickness at other positions (Figure 4.10B) was similar 

to those found with 1% CMC. 

To describe the timecourse of SCS thickness changes after injection over the 

injection site, we used a 2nd order exponential equation that could account for both the 

observed expansion and collapse of the SCS:  

 θ(𝑡) = −𝐴𝑒−𝑡 𝜏𝑒𝑥𝑝⁄ + 𝐵𝑒−𝑡 𝜏𝑐𝑜𝑙⁄ ,  Eq. 4.1 

where t is the time post-injection, θ(t) is the SCS thickness as a function of time, A and B 

are thickness constants, τexp is the expansion time constant, and τcol is the collapse time 

constant (Figure 4.8C). This equation described the data from all the liquid formulations 

well (Pearson coefficient r2>0.76).  
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Figure 4.10 – Time course of SCS thickness following microneedle injection of (A) 50 µL Discovisc and (B) 

50 µL 5% carboxymethyl cellulose in HBSS. Injection was performed supranasal and U/S B scans were 

acquired at eight positions around the ocular globe. Each time point represents the mean of 3-5 replicates. 

X-axis divisions at Inf. = inferior; Nas. = nasal; Sup. = superior; Temp. = temporal. SCS thickness (y-axis) 

marked every 1 mm. 
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Using this equation, we calculated the characteristic times associated with each of 

the liquid formulations. As expected, the liquid formulations that did not cause further 

expansion of the SCS after injection (i.e., HBSS, Discovisc, and 1% CMC), the 

calculated τexp values were all on the order of seconds (Figure 4.8C, left). In contrast, τexp 

values for the 3% CMC and 5% CMC liquid formulations ranged from 2.8 to 9.1 h, and 

there was no significant difference among these τexp values (p=0.77, F test).  

There were significant differences in τcol values among the liquid formulations 

tested (Figure 4.8C, right). With HBSS as the liquid formulation, τcol was 19±3 min. With 

the Discovisc liquid formulation, τcol was 6±2 h, which was significantly different than 

the HBSS value (p<0.005, F test). With all of the CMC liquid formulations, τcol ranged 

from 2.4 – 9.2 days, which were different than HBSS (p<0.0001, F test) but not different 

from each other (p=0.47, F test). It is notable that collapse of SCS containing 1% CMC 

solution (that did not swell after injection) and SCS containing 5% CMC solution (which 

did swell after injection) had comparable τcol values, which suggests that dissociation of 

the crosslinks found in CMC gels143 is the rate limiting step to CMC clearance from the 

SCS resulting in collapse. 

4.4.5 Effect of liquid formulation on clearance of fluorescent molecules from the 

SCS 

We investigated the effect of liquid formulation viscosity on the timescale of 

clearance of fluorescein from the SCS. Using fundus microscopy, we identified how long 

it took for there to be no visual evidence of fluorescein in the SCS. Total clearance of 

fluorescein injected into the SCS in HBSS was 0.33±0.05 d, which was significantly 

faster than the clearance of fluorescein injected in 5% CMC solution, which was 2.7±0.7 
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d (p<0.0005, unpaired t-test, Figure 4.11). This can probably be explained by the long-

lived presence of viscous CMC gel in the SCS (as evidenced by the SCS remaining open 

for many days, Figure 4.8 and Figure 4.10), which can slow diffusion of fluorescein out 

of the SCS. 
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Figure 4.11 – The total clearance time of fluorescein from the SCS after injection in HBSS or 5% CMC 

solution. Total clearance time is defined as the first time point at which fluorescein was not detectable 

under fluorescent fundus exam. All values are mean±SEM (N=3-6 replicates). p<0.0005 = ***, unpaired t-

test.  

4.5 Discussion  

4.5.1 SCS thickness is independent of injection volume 

This study examined the effects of injection volume and liquid formulation on the 

thickness and closure kinetics of the SCS following microneedle injection. We found that 

the SCS was spread to a roughly constant thickness, independent of injection volume. 

The observation was made in the rabbit eye ex vivo using two different measurement 

methods: 3D cryo-reconstruction and U/S B-scan imaging. This result was not 

necessarily expected. Injection of an increasing volume of fluid into the SCS could be 

accommodated by an increase in SCS thickness, SCS area, or a combination of both. Our 

data indicate that the SCS readily expands to a certain thickness, after which additional 

fluid fills the SCS by expanding the SCS area containing fluid without expanding the 
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SCS thickness further. This explanation was supported by demonstration that the area of 

fluid in the SCS increased in direct proportion with the volume injected.  

We and others hypothesized that the constant SCS thickness could be due to 

fibrils running between the sclera and choroid that resist expansion of the thickness of 

this space1, 125. Results from a modified peel test to determine the strength of adhesion 

between sclera and choroid showed that a fluid injection into the SCS as a pretreatment 

reduced, but did not eliminate, the force needed to subsequently separate the tissues. This 

could be explained by a partial weakening of the adhesions between sclera and choroid, 

possibly due to reorganizing, weakening, breaking or otherwise altering the fibrils with 

an injection. We also imaged evidence of these fibrils in the SCS, which was consistent 

with previous reports1, 37.  

Previous studies were inconclusive regarding the relationship between SCS 

thickness and injection volume. Seiler et al. concluded that, in ex vivo canine and porcine 

eyes, there was a difference between the maximum thickness achieved with the smallest 

injection volume tested (250 µL), and higher injection volumes tested (500, 800 and 1000 

µL)116. However, no difference in maximum thickness was seen once the eyes were 

inflated to physiological intraocular pressures116. Moreover, the Seiler study assessed 

maximum thickness, rather than median thickness reported here, and it used much larger 

volumes of fluid, which are much greater than those used in current clinical trials7.  

Gu et al. found that, in guinea pigs, the cross-sectional area of the SCS increased 

with increasing injection volume120. However, as seen in Figure 4.5A of this study, not all 

the SCS was expanded, especially at small injection volumes. Thus, increases in cross-
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sectional area could be attributed to either expanding previously-unexpanded SCS (i.e., to 

enlarge the area of SCS expansion), or increases in SCS thickness.  

4.5.2 SCS thickness depends strongly on injection liquid formulation  

We found that liquid formulation had a major effect on SCS thickness, possibly 

related to fluid viscosity. While HBSS spread over large areas of the SCS, Discovisc and 

CMC solutions were largely retained near the site of injection initially, probably due to 

their high viscosity. This might be explained by the viscous forces resisting spread of the 

injected fluid in the SCS leading to the fluid further expanding the SCS near the site of 

injection in order to accommodate the injected fluid volume. Interestingly, in some cases 

(i.e., 3% CMC and 5% CMC solutions), SCS thickness continued to expand for hours 

after the injection, probably due to the diffusion of water into the hydrogel, which 

resulted in swelling it.  

At later times, SCS thickness decreased and ultimately returned to baseline within 

hours for HBSS and within days to weeks for the viscous solutions. These slow kinetics 

were probably controlled by clearance of the polymer components of the hydrogels from 

the SCS, which was significantly slower for CMC, which forms a physically crosslinked 

gel143.  

4.5.3 SCS thickness controlled by balance between viscous forces of the liquid 

formulation and biomechanical forces of the tissue 

We propose that SCS thickness is controlled by a balance between the viscous 

forces of the liquid formulation and the biomechanical forces inherent to the tissue (such 

as the viscoelastic properties of the sclera and choroid, as well as the viscoelastic and 

failure mechanics of the SCS fibrils). A cartoon of this is presented in Figure 4.12. When 
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fluid first enters the SCS, it can expand the thickness of the SCS at the site of injection 

and/or it can expand the area of the SCS that it occupies. We propose that what 

determines how the SCS expands to accommodate the fluid is based on whether there is 

less physical resistance to increasing thickness or to increasing area. Increasing thickness 

will require overcoming biomechanical forces (e.g., from fibrils connecting sclera to 

choroid) and elastic restoring forces of the sclera and choroid tissues151 13, 151, 152. 

Intraocular pressure differences between the SCS and adjacent tissues may also play a 

role34. Increasing area will require overcoming the viscous forces opposing flow of fluid 

circumferentially in the SCS.  

We further propose that the required force increases with increasing SCS 

expansion in thickness, while the required force of viscous flow within the SCS is a 

function of fluid viscosity and SCS thickness. We hypothesize that when the SCS is fully 

collapsed, the force required to expand the thickness of the SCS is less than the force to 

flow liquid through the adjacent collapsed SCS to expand the area. As more fluid is 

forced into the SCS, the SCS thickness continues to expand until the force required for 

further expansion of thickness of SCS exceeds the force required to flow fluid out into 

adjacent SCS. This switch occurs due to two factors: (i) as the SCS thickness increases, 

the force required to further increase thickness escalates and (ii) as the SCS thickness 

increases, the viscous forces to flow into adjacent SCS decrease because flow through 

wider channels exhibits less resistance to flow.  

When injecting HBSS (with a low viscosity comparable to water) into SCS of the 

rabbit, the force balance switches when the SCS is expanded to 150 – 350 µm in the 

rabbit eye ex vivo and to 400 – 500 µm in the rabbit eye in vivo; we can call this thickness 
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the “equilibrium thickness,” because it represents the thickness when the force needed to 

expand thickness equals the forces needed to expand area of the SCS. In this way, SCS 

expansion readily expands to the equilibrium thickness, because increasing SCS area 

requires less force than further increasing SCS thickness. A distribution of equilibrium 

thicknesses is expected, as seen in Figure 4.12, due to variation in the mechanical 

properties of the SCS. 

When injecting Discovisc or CMC, which have higher viscosity than HBSS (e.g., 

>170,000 cP for 1.7% CMC (700 kDa) in HBSS128, 143), the force balance should be 

altered. The force to expand SCS thickness may only be marginally affected by the 

increase in viscosity, because the main resistance to expansion is from the ocular tissues, 

not from viscous flow. In contrast, the force to expand SCS area may be significantly 

affected, because expansion of area requires flow of fluid into narrow channels of SCS 

that becomes increasingly difficult as viscosity increases. Thus, the equilibrium thickness 

of the SCS increases, because expansion of SCS area requires greater force.  

In the case of 3% CMC and 5% CMC solutions, there is an additional force in 

play. After the fluid has been injected and the SCS expanded to its equilibrium value, 

diffusive forces pulling fluid into the CMC gel formed in the SCS cause the gel to 

expand. Because the gel has physical crosslinks, it cannot easily flow through SCS to 

expand area, but instead expands in place, which primarily expands SCS thickness. In 

this case, a new force balance is set up between the expansive swelling force of the gel 

and the resistive biomechanical forces of the ocular tissue. This results in a new 

equilibrium thickness based on the balance of these two forces.  
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Figure 4.12 – Schematic of SCS expansion after injection of fluid.  (1) The SCS is closed before injection. 

(2) Upon injection the SCS expands to an equilibrium thickness (θeq) determined by a balance between 

viscous forces of the liquid formulation and the resistive biomechanical forces of the tissue. This thickness 

is smaller for low-viscosity fluids (θeq in 2a) than for high-viscosity fluids (θeq’ in 2b), due to increased 

resistance to flow. (3) As the injection proceeds, the area of expanded SCS increases to accommodate the 

additional fluid, but the SCS thickness remains constant. (4) After injection is complete, no further growth 

of the SCS usually occurs (4a, 4b(i)), but a gel that continues to swell could further increase SCS thickness 

(θeq” in 4b(ii)) 

4.5.4 Additional comments  

The ability to modulate SCS thickness could have implications on emerging SCS 

technologies, such as targeted drug delivery, placement of glaucoma drainage devices, 

and suprachoroidal retinal prostheses. For example, increasing liquid formulation 

viscosity has a dual effect of expanding the SCS and localizing the circumferential spread 

at the site of injection. This might be useful in treating localized diseases, such as placing 

anti-glaucoma agents in the anterior SCS near their site of action in the ciliary body6, 115 

or localizing anti-cancer agents in the SCS adjacent to intraocular tumors. In another 

application, SCS injections of sodium hyaluronate have been made as an alternative to 

scleral buckling for the treatment of retinal detachment153, 154. As shown in the present 
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study, greater distension and localization are achievable with CMC, which continues to 

expand after injection, compared with hyaluronic acid (i.e., a major component of 

Discovisc), which does not. Perhaps use of CMC as a liquid formulation may yield better 

results. Finally, microneedle injection of a viscous liquid formulation could be made prior 

to surgical implantation of suprachoroidal devices. This could transiently weaken sclera – 

choroid adhesion (e.g., stretch or break SCS fibrils), allowing for easier implantation. 

There was a difference between the ex vivo and in vivo SCS thickness. Ex vivo 

eyes were chosen to remove the confounding effect of fluid clearance from the eye that 

occurs in vivo. Intraocular pressure changes in post mortem eyes were significantly faster 

than eyes in the living rabbit, indicating faster normalization of ocular volume, 

presumably by clearance of fluid. This difference in behavior could be explained by loss 

of tissue integrity (e.g., loss in the biomechanical strength of sclera or SCS fibrils), the 

absence of living process (e.g., choroidal perfusion, intraocular pressure), or 

consequences of these effects (e.g., increased trans-scleral and perivascular drainage).  

Increasing formulation viscosity had a modest effect on the residence time of 

small molecules dissolved in the formulation. This effect could be explained by 

decreased diffusivity through the viscous formulation compared with less viscous 

formulations. Controlled-release polymeric systems115 may be more suitable if the goal is 

drug delivery for one month or longer. 

Limitations of the study include use of ex vivo rabbit eyes in some experiments. 

Species differences between rabbit and human eyes may affect the translation of these 

findings to clinical medicine. Further experiments in human eyes are warranted. The U/S 



 114 

 

was only able to image the far periphery, not the posterior aspect of the eye. This may 

bias the SCS thickness measurements but should not change the general trends observed. 

4.6 Conclusions 

In conclusion, microneedle injection of fluid into the SCS results in distension of 

the choroid off the sclera, which expands the thickness of the SCS. Liquid formulation 

injected into the SCS had a major effect on SCS thickness, where highly viscous fluids 

expanded SCS thickness more than low-viscosity HBSS. Surprisingly, increasing 

injection volume of HBSS had no significant effect on SCS thickness, such that injection 

of increasing volume of fluid was accommodated by increasing area of fluid spread in the 

SCS while maintaining constant SCS thickness. Expansion of SCS thickness in vivo 

ranged from 0.43±0.06 mm after injection of HBSS and 0.7 – 2.8 mm after injection of 

viscous formulations. Injection of CMC solutions led to further expansion of SCS 

thickness over the course of hours after the injection was completed, which could be 

explained by swelling of CMC gel in the SCS. Clearance of HBSS from the SCS 

occurred within 1 h and clearance of Discovisc and CMC took days to weeks.  

These observations could be explained by SCS expansion controlled by a balance 

between the viscous forces of the injected liquid formulation (which increase with fluid 

viscosity) and the biomechanical forces that hold the sclera and choroid together (which 

are unaffected by fluid viscosity or fluid volume). There is evidence that the forces that 

limit expansion of SCS thickness may be in part related to fibrils that bind the sclera and 

choroid and that may need to stretch and/or break to accommodate SCS expansion. These 

findings that affect the extent and duration of expanded SCS thickness and area, may be 
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used to improve control over targeted drug delivery and placement of devices in the SCS 

for therapeutic applications.  

  



 

5 CLEARANCE KINETICS AND CLEARANCE ROUTES OF 

MOLECULES FROM THE SUPRACHOROIDAL SPACE AFTER 

MICRONEEDLE INJECTION 

5.1 Summary 

The purpose of this work was to determine clearance kinetics and routes of 

clearance of molecules injected into the suprachoroidal space (SCS) of live New Zealand 

White rabbits. 

The SCS collapse rate was determined by ultrasonography after microneedle 

injection of Hank’s Balanced Salt Solution (HBSS). Fluorescent fundus images were 

acquired to determine clearance rates of fluorescent molecules ranging in molecular mass 

from 323 Da to 2 MDa and 20-nm green-fluorescent polymeric particles. A microneedle 

injection containing fluorescein in HBSS was performed, and samples were taken over 

time to determine amount of fluorescein on the scleral surface at the injection site, on the 

anterior surface and on the posterior surface, including sites where vortex veins 

penetrated through sclera. Blood was also sampled from the vortex vein. Clearance 

transport was modeled theoretically and compared to data.  

We found that after injection of 50 µL of HBSS solutions, intraocular pressure 

(IOP) spiked and then returned to baseline over a characteristic time of ~5 min. There 

was no significant difference between pressure in the SCS and the vitreous humor. After 

injection, SCS expanded and then collapsed over a characteristic time of ~20 min, which 

provides a measure of the time scale of fluid clearance from the SCS. Characteristic time 

of clearance of molecules from the SCS ranged from 4 h to 26 h, in proportion to 

molecular mass. Total clearance time from the SCS (i.e., below detection limit) ranged 



 

 117 

from 22 h for fluorescein to 21 d for 2 MDa FITC-dextran. Nanoparticles were not 

cleared from the SCS at all. One hour after fluorescein injection, 57% was still present in 

the eye, 14% had transported through the sclera, 6% had been cleared by the choroidal 

vasculature, and 3.8% had refluxed out the injection site or via perivascular leakage 

pathways. These data generally agreed with predictions from a two-dimensional model of 

clearance transport.  

In conclusion, clearance of molecules from the SCS occurred in three regimes: (i) 

on a time scale on the order of 10 min, fluid and molecules were cleared from the SCS by 

pressure-driven reflux out leakage sites across the sclera (i.e., injection site and 

perivascular drainage) and remaining molecules were transported out of the SCS into the 

choroid and sclera, (ii) on a time scale of 1 – 10 h, molecules were cleared from the 

choroid by blood flow and (iii) on a time scale of days up to weeks, molecules were 

cleared from the sclera by diffusion as well as IOP-driven convection. Clearance kinetics 

were strongly dependent on molecular size, where 2 MDa FITC-dextran was cleared 

significantly slower than smaller molecules.  

5.2 Introduction 

Suprachoroidal drug delivery is an emerging route of administration that targets 

diseased tissues in posterior segment diseases, such as age-related macular degeneration 

and uveitis2, 7, 81, 119. Since the suprachoroidal space (SCS) is bounded by the ciliary body, 

choroid, and sclera, significantly higher bioavailability at these tissues can be achieved 

with SCS delivery compared with eye drops or intravitreal (IVT) injections5, 8, 123, 124, 126. 

Due to higher bioavailability, significant dose sparing can be achieved with drugs that 

have their site of action at these tissues6, 9. Fewer ocular side effects are expected due to 
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dose sparing and also because drugs are compartmentalized away from non-target tissues 

(e.g., lens). Furthermore, a short needle, with a length matched to the thickness of the 

sclera (aka, a microneedle), can be used in an outpatient procedure similar to an IVT 

injection7, 8. Indeed, the safety and tolerability of a microneedle injection has been 

demonstrated in a Phase I/II clinical trial (NCT01789320) where triamcinolone acetonide 

was injected into the SCS to treat non-infectious posterior uveitis7. Other indications are 

also actively being pursued. 

When comparing the pharmacokinetics of molecules in the SCS against IVT 

injections, higher levels of injected molecules have been found in the chorioretina with 

significantly faster clearance. Olsen et al. reported that 12 h after SCS injection, higher 

levels of bevacizumab were found in the chorioretina compared with IVT injection9. 

However, at 7 days, bevacizumab was undetectable in the SCS group, but remained 

relatively high in the IVT group. Patel et al. observed a clearance half-life of 3.6 – 7.9 h 

for various macromolecules injected into the SCS8, 81. Tyagi et al. reported that sodium 

fluorescein concentration in the chorioretina was 25-fold higher after SCS injection 

compared with IVT injection; however, 2 h after injection, fluorescein levels in the 

chorioretina were higher in the IVT injection group than in the SCS group124. Similarly, 

Wang et al. found that the elimination half-life of ketorolac was longer with intravitreal 

injections than SCS delivery (3.1 hr vs. 1.2 hr)5. Interestingly, Wang et al. reported a 

lower Cmax in the chorioretina for the SCS group than the IVT group. Gu et al. found that 

the SCS collapsed to baseline levels within 1 h120. To our knowledge, no studies have 

systematically investigated factors that affect clearance from the SCS. 



 

 119 

Although prior studies have investigated the pharmacokinetics of SCS delivery, 

only limited information exists about different routes of clearance from the SCS and their 

relative contributions to clearance. Moseley et al. found that the clearance of Xenon and 

radioactive water injected intravitreally was due to choroidal blood flow11, 155. Indeed, 

Olsen et al. and Tyagi et al. hypothesized that molecules injected into the SCS are rapidly 

cleared by choroidal blood flow9, 123. Abarca et al. demonstrated significantly faster 

clearance of fluorescein from the SCS with choroidal perfusion than without in a 

postmortem porcine model126. Classical experiments performed by Bill et al. in 

elucidating the uveoscleral outflow pathway showed that microspheres injected into the 

anterior chamber were found trapped in the SCS where blood vessels penetrated through 

the sclera41, 43. These particles were able to exit the eye through perivascular drainage 

routes. Since SCS injections expand the SCS and generate a significant pressure gradient 

out of the SCS, we believe the mechanisms elucidated by either Moseley et al. or Bill et 

al. do not provide the complete picture. 

The purpose of this work is to measure clearance kinetics and to identify the 

dominant routes of clearance from the rabbit SCS after microneedle injection. We 

hypothesize that clearance of fluid and dissolved molecules injected into the SCS occurs 

initially through leakage sites across the sclera (i.e., injection site and perivascular 

drainage) and then by trans-scleral transport. Later, clearance from the SCS is by 

diffusion into and clearance by the choriocapillaries. 

5.3 Methods 

All reagents and chemicals were purchased from Sigma-Adrich (St. Louis, MO) 

unless otherwise specified. All experiments were performed in albino New Zealand 
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White rabbits (Charles River, Wilmington, MA) and were approved by the Georgia 

Institute of Technology Institutional Animal Care and Use Committee. Practices 

complied with the ARVO Statement for the Use of Animals in Ophthalmic and Vision 

Research.  

5.3.1 Microneedle injection 

The rabbit was anesthetized with isoflurane and an eye drop of proparacaine 

(Bausch & Lomb, Rochester, NY) was given as a topical anesthetic prior to injection. For 

all experiments, a 50 µL injection was performed in each eye with a 33-gauge 

microneedle approximately 750 µm in length (Clearside Biomedical, Alpharetta, GA) 

and a 1 mL syringe. All injections were made in the supranasal quadrant 3 mm posterior 

to the limbus and 4 mm nasal to the superior rectus muscle. Four eyes were used in each 

group unless otherwise specified. The 50 µL injection occurred in 3 s. After injection, the 

needle was kept in place for 1 min to limit reflux at the injection site.  

5.3.2 Determination of SCS collapse rate by ultrasonography 

High-frequency ultrasound B-scan (U/S; UBM Plus, Accutome, Malvern, PA) 

was used to determine the rate of SCS collapse after a microneedle injection of 50 µL 

Hank’s Balanced Salt Solution (HBSS; Mediatech, Manassas, VA) into the SCS. Three 

sagittal views were acquired: (a) supranasal, over the injection site; (b) superior, 45° 

lateral to the injection site; and (c) nasal, 45° nasal to the injection site. Image acquisition 

occurred every minute for 10 min, and then every 2 min for 1 h.  

Off-line post processing was performed on the U/S views to determine the SCS 

thickness. For each U/S image, a line segment 5 mm posterior to the scleral spur and 

perpendicular to the sclera was found. The line started at the outer surface of the sclera 
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and ended at the inner surface of the retina, which were readily identifiable on the U/S 

images. The sclera and chorioretina were included in the measurement to ensure the line 

was perpendicular. SCS thickness was determined as the length of the line segment minus 

the thickness of the sclera and chorioretina. The characteristic time of SCS collapse was 

determined by modeling SCS thickness versus time as an exponential decay.  

5.3.3 Fluorescent labeling of monoclonal antibody 

Bevacizumab (Avastin, Genentech, South San Francisco, CA) was fluorescently 

labeled with fluorescein isothiocyanate (FITC) using previously described methods40. 

Briefly, 40 mg FITC was added to a 1.0 mL sodium bicarbonate (pH = 9) solution, and 3 

mL of bevacizumab solution (25 mg/mL) was added to the FITC solution and stirred in 

the dark for 2 h at room temperature. The solution was dialyzed against phosphate 

buffered saline (PBS) using dialysis tubing with a cutoff of 30 kDa (Spectra/Cor, 

Spectrum Laboratories, Rancho Dominguez, TX). The PBS was changed daily for 5 days 

to remove unreacted FITC. 

5.3.4 Determination of SCS clearance kinetics by fundus imaging 

To study the effect of molecular radius on clearance from the SCS, a 50 µL 

microneedle injection of the following formulations were tested: [i] 0.025% (w/v) 

fluorescein sodium in HBSS; [ii] 0.5% (w/v) 70 kDa FITC–dextran in HBSS; [iii] 00.5% 

(w/v) 500 kDa FITC-dextran in HBSS; [iv] (w/v) 2 MDa FITC–dextran in HBSS; [v] 

1.5% (w/v) FITC–bevacizumab in HBSS; and [vi] 1% (w/v) 20 nm green-fluorescent 

particles (Excitation: 505 nm, Emission: 515 nm; FluoSpheres, Life Technologies, 

Carlsbad, CA) in HBSS.  
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The clearance rate of injected fluorescent material from the SCS was estimated by 

taking fluorescence fundus images over time. Topical eye drops of tropicamide and 

phenylephrine (Akorn, Lake Forest, IL) were administered prior to each imaging session 

to dilate the eye. A RetCam II (Clarity Medical Systems, Pleasanton, CA) with the 130° 

lens attachment and the built-in fluorescein angiography module was used to acquire the 

images. Multiple images were taken with the blue light output from the RetCam II set at 

0.0009, 1.6, or 2.4 W/m2. In an attempt to capture the entire interior surface of the ocular 

globe, nine images were captured: central, supranasal, superior, supratemporal, temporal, 

infratemporal, inferior, infranasal, and nasal. This allowed imaging into the far periphery. 

Imaging was done 3 min after injection, at 1 h, every 3 h for 12 h, and every other day 

post-injection for up to 28 days.  

The relative concentration of the injected fluorescent molecules was estimated for 

each eye at each time point by comparing the average fluorescence intensity with aliquots 

of known concentrations imaged using the same lighting conditions for calibration. The 

characteristic times of SCS clearance rate and total clearance time were determined by 

modeling these processes as exponential decays in fluorescein concentration in the SCS 

over time. 

5.3.5 Intraocular pressure measurements 

A custom-designed pressure measurement system was used to measure pressure 

in the vitreous humor (VH) and in the SCS after either an IVT or SCS injection. The 

animal was terminally anesthetized with a subcutaneous injection of a ketamine and 

xylazine cocktail. A 33 gauge, 0.5 inch hypodermic needle was penetrated through the 

pars plana into the VH, and a 33 gauge microneedle was penetrated through the sclera 3 
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mm posterior to the limbus to access the SCS. Both needles were connected 

by polyethylene tubing (I.D. 1.14 mm, Becton Dickinson and Company, Sparks, MD) to 

a T-junction (i.e., to switch between the SCS and VH) that was in fluid communication 

with a second T-junction. The second T-junction allowed switching between either a 1 

mL syringe (to inject HBSS into either the SCS or the VH) or a pressure transducer 

(Honeywell 142PC01, Morris Plains, NJ). The pressure transducer was zeroed to the 

height of the eye, and the height difference of the needle openings was also found (<10 

mm height difference). A custom Labview (National Instruments, Austin, TX) script was 

used to record the pressure trace. 

A 50 µL SCS or IVT injection (N=4 per injection site) was made either in the 

SCS or the VH, respectively. The pressure in the SCS and VH was measured by 

switching the T-junction between the two sites every few minutes. The pressure was 

monitored until the pressures had reached their original baseline values from before the 

injection (i.e., ~15 mmHg). After the measurements, the animal was euthanized with a 

lethal dose of pentobarbital injected intravenously. A second set of SCS and IVT 

injections was made in the animal postmortem. In the postmortem measurements, 

pressure was only measured in the tissue space (i.e., SCS or VH) where the injection was 

made. 

The characteristic times of elevated pressure in the SCS and VH were determined 

by modeling these processes as exponential decays in pressure over time.  

5.3.6 Collection of fluorescein by different clearance routes 

For this terminal experiment, the rabbit (N=4 eyes per group) was anesthetized 

with a subcutaneous injection of ketamine and xylazine before microneedle injection; 
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additional injections were given every 30 min to maintain anesthesia. A subcutaneous 

injection of 60 mL saline was also given on the rump to counteract fluid loss. The amount 

of fluorescein exiting the eye by four routes was determined by collecting samples over 

time from the [i] sclera anterior to the equator; [ii] anterior sclera with injection site 

plugged; [iii] sclera posterior to the equator; and [iv] posterior sclera with vortex vein 

transected.  

Prior to the microneedle injection, the conjunctiva in the supranasal quadrant was 

carefully dissected off the sclera. A 50 µL microneedle injection was performed 

supranasally 4 mm nasal to the superior rectus muscle and 3 mm posterior to the limbus. 

In the [i] anterior sclera and [iii] posterior sclera conditions, samples were collected every 

minute for 10 min, and every 2 min for 1 h by swabbing the space with a 1 cm x 1 cm 

paper tissue (Kimwipe, Kimberley-Clark, Irving, TX) for the entirety of time between 

each time point (i.e., one or two minutes). Care was taken to swab only anterior or 

posterior to the equator, depending on the condition. The tissue was then placed in 1 mL 

of HBSS until analysis.  

To determine the amount of fluorescein leaving [ii] the anterior sclera with 

injection site plugged, a similar experiment was performed. Immediately post-injection, 

the site of injection was plugged by carefully applying cyanoacrylate glue (Loctite 4013, 

Düsseldorf, Germany) with a 30 gauge needle to the microneedle hub to seal the gap 

between the microneedle and surrounding scleral tissue. After the microneedle injection 

occurred, the microneedle was left in the eye. Other methods were the same as above. 

For the eyes that had a vortex vein cut [iv], the superior vortex vein was 

transected prior to injection. Heparin (5 mL of 10,000 IU/mL; Hospira, Lake Forest, IL) 
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was given intravenously prior to the start of the experiment to prevent coagulation. The 

vortex vein was found under the nasal edge of the superior rectus muscle. The rectus 

muscle was lifted off the ocular surface to expose the vortex vein. The vortex vein was 

confirmed by verifying its path, i.e., originating from within the sclera and traveling 

posteriorly along the ocular surface towards the optic nerve. A transfer pipette was used 

to collect the blood exiting the vortex vein every 1 min post-injection for 10 min, and 

every 2 min for 1 h. The volume of collected blood collected was recorded and HBSS 

was added to reach a final volume of 2 mL per sample for analysis.  

Immediately after the last time point, all animals were euthanized with an 

injection of pentobarbital through the marginal ear vein. The eyes were enucleated to 

measure the amount of fluorescein remaining in the vitreous humor and within the tissue 

(including the SCS). An incision in the cornea was made so the aqueous humor, vitreous 

humor, and lens could be drained from the ocular globe and collected. The remaining 

ocular tissues (with undisturbed SCS) were collected. The Kimwipe paper tissue and 

ocular tissue samples were placed in HBSS at 4 °C for 2 days to allow the fluorescein to 

diffuse out and equilibrate with the HBSS. It is possible that fluorescein bound to the 

Kimwipe tissue paper but it should have done so equally for all conditions tested. The 

amount of fluorescein in all samples was measured using a multiplate reader (Synergy 

H4, BioTek, Winooski, VY) with parameters set to excitation = 494 nm and emission = 

521 nm.  

Further analysis was performed using Matlab (MathWorks, Natick, MA) and 

Prism (Graphpad, La Jolla, CA) software. The characteristic times of clearance rate via 
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each route were determined by modeling these processes as exponential decays in 

fluorescein concentration over time. 

5.3.7 Data and Statistical Analysis 

Prism and Matlab software were used to perform data and statistical analysis. 

Data were fit to exponential decays to find relevant parameters (e.g., time constant) using 

the formula 𝑦(𝑡) = 𝑌0𝑒(−𝑡 𝜏⁄ ), where t is the time post-injection, y(t) is the SCS thickness 

or fluorescent-molecule fluorescence at time t, Yo is the maximum SCS thickness or 

fluorescent-molecule fluorescence, and τ is the characteristic time constant of SCS 

collapse or fluorescent molecule clearance, respectively. Other data were fit to an 

exponential approach function, N(𝑡) = 𝑁0(1 − 𝑒(−𝑡 𝜏⁄ )), where t is the time post-

injection, N(t) is cumulative amount of fluorescein collected at time t, No is the maximum 

amount of fluorescein, and τ is the characteristic time constant. 

All values are reported either as mean ± standard error of the mean (mean±SEM), 

or mean and 95% confidence interval (mean [95% CI]), unless otherwise specified. One-

way ANOVA analysis was performed to determine statistical significance (α=0.05) 

among multiple conditions. F test was used to compare parameters generated by curve 

fits.  

5.4 Results 

5.4.1 SCS collapse rate as a measure of fluid clearance rate from the SCS 

We determined the SCS collapse rate in live rabbits after microneedle injection of 

HBSS into the SCS (Figure 5.1). Under typical conditions before injection, the sclera and 

choroid in rabbits were apposed since the SCS is normally collapsed (Figure 5.1A, pre). 
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Upon microneedle injection, fluid was introduced into the SCS, which caused the choroid 

to distend off the sclera. This created a gap between the sclera and choroid when viewed 

under ultrasound B scan (Figure 5.1A, 1 min), which we tracked over time and used as a 

proxy for SCS collapse rate and fluid clearance rate. Since the SCS expansion due to 

HBSS can be measured directly, no tracers or contrast agents were added to the fluid.  

 
Figure 5.1 – SCS thickness over time determined by ultrasound B-scan images acquired during supranasal 

injection of 50 µL HBSS into the SCS of the live rabbit.  (A) Representative B-scans of time course. C/Sc = 

conjunctiva/sclera interface; SCS = expanded suprachoroidal space; Ch/Re = choroid/retina interface. 

Scale bar represents 1 mm. (B) Quantification of SCS thickness (mean only, N = 2-6 replicates) 2 mm 

posterior to scleral spur at three locations. The SEM for all time points ranged from 0.00 to 0.21 mm with a 

mean of 0.06 mm. Reported time constants (τcol) were derived from exponential-decay curve fitting. 

After a 50 µL injection in the supranasal position, we tracked collapse of the SCS 

as a function of time directly over the injection site and also superiorly and nasally 

(Figure 5.1B). The data were fit to an exponential decay (r2=0.62-0.71). One minute after 

the injection, the SCS thickness over the injection site was 470 ± 60 µm (mean±SEM). 

The collapse time constant (τcol) was 19 min [15; 27 min 95% confidence interval]. The 
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SCS expansion was indistinguishable from pre-injection thickness by 40 min post-

injection. There was no significant difference in the curve fits for the measurements made 

supranasal or nasal (p=0.89, F test). Collapse rate of the superior SCS (τ = 5.5 min [3.9; 

9.4 min]) was significantly faster than the other two positions measured (p<0.05, F test). 

This could be due to nearby perivascular drainage routes, but more experiments are 

warranted to explore this hypothesis. 

5.4.2 Clearance rate of fluorescent molecules from the SCS 

We determined the clearance rates of different-sized fluorescent molecules and a 

fluorescent nanoparticle injected as solutions into the SCS of live rabbits. The molecules 

ranged in molecular weight from 332 Da (fluorescein) to 2 MDa (FITC-dextran), which 

corresponds to effective molecular diameters of roughly 1 nm38 to 54 nm156, 157, 

respectively. The nanoparticle measured 20 nm in diameter. Bright-field and fluorescence 

fundus images were acquired for each fluorescent molecule tested over time (Figure 5.2). 

Since the rabbits were albino, the eyes were unpigmented, which made the choroidal 

vessels readily visible beneath the inner retinal vessels (Figure 5.2, pre (brightfield)). 

Furthermore, there was no detectable green autofluorescence with the light level used 

(Figure 5.2, pre).  

After injection, the fluorescent molecules and nanoparticles were visible in the 

SCS (Figure 5.2, 3 min and 14 d); localization in the SCS (i.e., behind the choroid) was 

confirmed by the shadowing of the choroidal vessels over the green fluorescence. Three 

minutes after injection, fluorescein in HBSS and 2 MDa FITC-dextran in HBSS 

distributed similarly in the SCS, occupying 56±6% and 58±7% of the visible SCS 
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respectively (p=0.95, Dunnett’s test). Both fluorescein and 2 MDa FITC-dextran covered 

larger areas of SCS than the nanoparticles (28±6%; p<0.05, Dunnett’s test). 

We further determined the rate of clearance by determining (i) the total clearance 

time and (ii) the clearance time constant (τclearance) calculated using a curve fit derived 

from the normalized concentration of fluorescein over time. We defined total clearance 

time as the first time point post-injection where fluorescence was not detected in the 

fundus images. Representative time courses for fluorescein (Figure 5.2, upper row and 

Figure 5.3A) and 2 MDa FITC-dextran (Figure 5.2, middle row and Figure 5.3B) show 

the rates of clearance and the calculated total clearance time. In the representative images 

in Figure 5.3A and B, the fluorescein is not visible by 1 d, whereas the 2 MDa FITC-

dextran was not totally cleared until 21 d.  

The fluorescence was tracked via fundus examinations with a series of lighting 

conditions, and used to estimate relative concentration of the fluorescent molecules over 

time in the SCS. For each fluorescent molecule, the data were fit to an exponential decay 

(r2 > 0.84; Figure 5.3C). The time constants from the curve fits are shown in Figure 5.3D 

(closed squares), along with the total clearance time (Figure 5.3D, open circles) for all the 

fluorescent species tested.  
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Figure 5.2 – Representative brightfield and fluorescent fundus images of the live rabbit eye before, 3 min 

post- and 14 days post-injection of 50 µL of fluorescein, 2 MDa FITC-dextran, or 20 nm polystyrene 

particles. Three minutes post-injection, the fluorescein and 2 MDa FITC-dextran were distributed 

approximately equally. The microspheres occupied less area than the other formulations. The 2 MDa 

FITC-dextran is still visible 14 days post-injection The particles were visible for at least 2 mo (data not 

shown). Inset depicts fundus image taken under brighter light setting, enabling visualization of regions with 

lower level of fluorescence. All eyes oriented such that up is superior (sup.) and nasal is left (nas.). Fundus 

field of view is 130°. 

Clearance time constant was linearly dependent on molecular diameter (Figure 

5.3D, r2=0.87), varying from 4.3 ±  0.4 h for fluorescein and 26 ± 9.8 h for 2 MDa FITC-

dextran. Total clearance time could also be fit to a line (Figure 5.3D, r2=0.43), but 

appears to show nonlinearity at high molecular size. While clearance time constant had a 

similar value to total clearance time for the smaller molecules, total clearance time was 

bigger for the larger molecules, suggested a biphasic clearance rate for which a fraction 

of the larger molecules persist in the SCS for a long time. The nanoparticle was not 

cleared from the SCS for the duration of the study (> 2 months). Despite differences in 

molecular weight and chemical structure between FITC-dextran and FITC-bevacizumab, 

clearance times were similar due to comparable hydrodynamic diameter of 70 kDa FITC-
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dextran (~12 nm38) and FITC-bevacizumab (~11 nm158), further indicating the dominant 

role of molecular diameter in determining SCS clearance. 

 
Figure 5.3 – Analysis of rates of clearance from the SCS after 50 µL SCS injection with molecules ranging 

from 1 – 60 nm in diameter and a 20 nm polystyrene particle.  (A) Representative fundus collages after 

injection with fluorescein in HBSS. (B) Representative fundus collages after injection with 2 MDa FITC-

dextran in HBSS. (C) Quantification of fluorescein/FITC- concentration with curve fit to an exponential 

decay. (D) Clearance time constant from (τclearance, from curve fit in C) and total clearance time plotted 

against hydrodynamic molecular diameter. All values are mean±SEM (N=3-7 replicates). 
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5.4.2.1 Intravitreal and SCS pressure measurements 

We measured pressure in the VH and suprachoroidal spaces after IVT or SCS 

injection using a custom-designed setup. The VH pressure trace after IVT injection was 

consistent with prior literature, showing a roughly exponential decay in pressure that 

returned to within 10% of baseline value within 15 min17, 98. After SCS injection, the VH 

pressure followed a similar timecourse, returning to within 10% of baseline value by 15 

min too. The VH and SCS pressure traces were within ±1 mmHg of each other 

throughout the length of the experiment.  

Each data set was fit to an exponential decay, from which a pressure-decay time 

constant (τpressure) was calculated (Figure 5.4). Although the pressure-decay time 

constants after SCS injection (~3 min) appear to be smaller than after IVT injection (~5.5 

min), there was no significant difference between any of the four time constants derived 

from the VH and SCS pressure curve fits after IVT or SCS injection in vivo (p=0.98, 2-

way ANOVA). Thus, we conclude that the time course of pressure decay in the eye is the 

same after IVT or SCS injection. We also conclude that there is no significant pressure 

different between the VH and SCS after IVT or SCS injection.  

Injections made postmortem in the companion eye resulted in significantly faster 

depressurization (~ 1 min) than injections in vivo (p<0.05, 2-way ANOVA). Since the 

eye was not enucleated and tissue degradation had likely not yet happened, we believe 

the main difference between the in vivo eye and the postmortem eye is the lack of living 

processes, such as choroidal perfusion. Our data suggest that these living processes have 

a major effect on SCS clearance. With no blood flow through the vortex veins, they are 

likely collapsed upon SCS injection, and therefore, SCS clearance through perivascular 
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drainage routes is expected to be greater postmortem than in vivo, which may explain the 

faster decay in IOP in the postmortem eye. Another possible explanation is that blood 

volume was expelled from the eye upon SCS injection (as there was no resistance to 

venous flow). 
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Figure 5.4 – Pressure measurement in vivo and postmortem after SCS injection of 50 µL HBSS. Pressure-

decay time constants derived from fitting data to an exponential decay. No difference in time constants 

from SCS or VH pressure traces after SCS or IVT injections in vivo. In vivo time constants were different 

than postmortem time constants. All values are mean±SEM (N=4 replicates). 

5.4.3 Route of clearance after SCS injection 

To determine the contributions of different routes of clearance, we collected 

fluorescein from multiple collection sites after SCS injection in vivo (Figure 5.5). 

Fluorescein was collected over the course of 1 h from four sites: [i] sclera anterior to the 

equator; [ii] anterior sclera with injection site plugged; [iii] sclera posterior to the 

equator; and [iv] posterior sclera with vortex vein transected. The cumulative fluorescein 

from these collection sites was determined as a function of time (Figure 5B). The amount 

of fluorescein leaving through the injection site (Figure 5.5B, upper right) was found by 

subtracting site [i] from site [ii]. And the amount of fluorescein leaving through the blood 

(Figure 5.5B, lower right) was found by subtracting site [iv] from site [iii]. Though the 

physiological data is inherently noisy and performing calculations on the data might yield 
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errors, it should nevertheless yield an order of magnitude estimate of the underlying 

processes (which can be compared to a 2D model of transport below).  

The cumulative amount of fluorescein collected at 1 h, as well as the residual 

amounts in the ocular tissues, was calculated and expressed as a function of the total 

fluorescein injected into the SCS (Figure 5.5C). One hour post-injection, 46±18% was 

still within the tissue (e.g., in the sclera, choroid, SCS, etc.); 15±0.3% had passed 

transsclerally to the subconjunctival space (anterior and posterior combined); and 6.3±4% 

was found in the blood. We calculated that 1.3±4% exited via the injection site and 

2.5±0.3% exited via perivascular drainage around the vortex vein. We were unable to 

account for 28% of the fluorescein, though we assume it to be roughly equally distributed 

in the collection sites due to difficulty to achieve efficient fluorescein collection during 

dynamic transport to the scleral surfaces, and the expected efficiency of fluorescein 

extraction from the ocular tissues. 
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Figure 5.5 – Fluorescein collected from four routes out of the SCS after 50 µL SCS injection of fluorescein 

in HBSS.  (A) Representative series of images of eye with the injection site plugged. (B) Cumulative 

fluorescein collected by swabbing anterior sclera after plugging injection site (B upper left), collected by 

swabbing posterior sclera (B lower left), calculated by comparing amount collected from anterior sclera 

with and without plugging injection site (B upper right), and calculated by comparing amount collected 

from posterior subconjunctiva with and without transecting vortex vein (B lower right). All values are 

mean±SEM (N=4 replicates) (C) Quantification of total fluorescein distribution in and out of the eye after 

SCS injection based on data in (B) and analysis of residual fluorescein content in the eye after enucleation.  
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5.5 Discussion  

Microneedle injections enable targeted access to the SCS and can be performed 

with an out-patient procedure similar to intravitreal injections. Due to the high 

bioavailability at the sclera, choroid, ciliary body, and retina achieved with 

suprachoroidal drug delivery, this route of administration is well suited for targeting 

tissues diseased in posterior segment diseases. Ongoing clinical trials are testing the 

safety and efficacy of microneedle injections for the treatment of posterior noninfectious 

uveitis, as well as other indications. Although drug delivery via the SCS is receiving 

increasing attention, little is known about how molecules and fluid are cleared from the 

SCS in terms of clearance kinetics and routes of clearance.  

In this study, we investigated the clearance kinetics of molecules injected into the 

SCS of live rabbits using a microneedle. Previous studies demonstrated decay of IOP 

after SCS injection on a time scale of minutes17, which is expected to correlate with the 

time scale of fluid clearance from the SCS, and reported clearance of various molecules 

from the SCS on a time scale of hours5, 8, 9, 120, 124, 125, both which we corroborated in this 

study. Previous studies have also found that the clearance times after suprachoroidal 

delivery were significantly faster than after IVT injections102. We also found that the 

complete collapse of the SCS occurred by 40 min, which is consistent with previous 

studies120. During the first hour post-injection, approximately half of injected fluorescein 

was cleared from the ocular globe, with approximately half still remaining. The 

remaining fluorescein was not visible by 12 h post-injection.  
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5.5.1 Modeling clearance from the SCS 

We developed a two-dimensional model (2D) of small-molecule transport after 

microneedle injection into the SCS to corroborate our experimental results. A Cartesian 

coordinate system was used such that the x-direction was a ‘radial’ measure into and out 

of the eye and the y-direction was the ‘circumferential’ measure; at small distances (like 

the one used in the model), the curvature of the eye was ignored. The convection-

diffusion equation (Eq. 5.1)159 describes the rate of change in the amount of molecule in a 

control volume, and attributes changes in concentration due to diffusion (first term), 

convective flow (second term), and reaction or clearance (third term). The equation is as 

follows: 

𝜕𝑐

𝜕𝑡
= ∇ ∙ (∇𝐷𝑐) − ∇ ∙ (𝑣𝑓𝑐) − 𝐵𝑐 Eq. 5.1 

where c is the concentration of molecule, t is the time, D is the diffusion coefficient of the 

molecule through tissue, vf is the velocity of flow, and B is a reaction or clearance 

coefficient.  

Due to the complex ocular anatomy across different tissues, an analytic solution 

of the above was not found. Instead, this model utilized a modified random walk 

algorithm160 to study the position and disposition of molecules by displacing the molecule 

at each time point in 2D based on the characteristic diffusional length a molecule would 

move in that time period, as well as additional rules as defined below. We defined the 

regions in the eye corresponding with the choroid, SCS, and sclera, which were set as 0.1, 

0.05, and 0.3mm thick, respectively161 (Figure 5.6A(i)).  

Rules governing molecule movement at each time point (Δt) of the random walk 

algorithm was set as follows. The diffusivity within the choroid and sclera (both of which 
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are limited largely by the proteoglycan extracellular matrix162) was set to 5x10-11 m2/s 

(diffusion coefficient of fluorescein in sclera163, corresponding to a characteristic 

diffusional length of 0.1 mm in 1 min. The diffusivity in the SCS was 5x10-10 m2/s 

(diffusion coefficient of fluorescein in water141) corresponding to a characteristic 

diffusional length of 0.34 mm in 1 min.  

Furthermore, we defined additional behaviors for regions in the model 

corresponding to ocular anatomy and physiology, in particular (region i) the choroid, 

(region ii) the sclera, and (region iii) a drainage pathway through the sclera analogous to 

the injection site (Figure 5.6A(i)). The choroid (region i) was subdivided into an inner 

and outer region, corresponding to the choriocapillaris and Haller’s/Sattler’s layers164, 

respectively. The choriocapillaris31 (as opposed to Haller’s and Sattler’s layers) possessed 

fenestrae capable of clearing molecules, which we modeled with a clearance rate B, 

whereas we assumed that no clearance occurred in Haller’s and Sattler’s layers.  

The sclera (region ii) was able to bind fluorescein (and prevent diffusion or 

convection) with second-order kinetics163, as described by the following equation: 

𝐶𝑏 =
𝐵𝑚𝑎𝑥𝐶𝑓

𝐾𝐷+𝐶𝑓
  Eq. 5.2 

where Cb is the concentration of bound fluorescein, Cf is the concentration of free 

fluorescein, Bmax is the apparent maximum binding capacity of the sclera (experimental 

determined to be 1440 μM by Lin et al.163) and KD is the apparent equilibrium 

dissociation constant (experimentally determined to be 110 μM by Lin et al.163). Since the 

scleral binding of molecules was hypothesized to be mediated by collagen38, no binding 

to the choroid was included in the model.  
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In addition, the sclera had convective flow directed outwards due to the pressure 

drop of the IOP across the sclera. We can find the convective flow rate using Darcy’s 

Law: 

𝑣𝑓 = −
𝐾ℎ

𝜇
∇𝑃 = −

𝐾ℎ

𝜇

𝑑𝑃

𝑑𝑥
  Eq. 5.3 

where Kh is the hydraulic conductivity of the flow pathway medium (10-18 m2 for rabbit 

sclera)35, 165, 166, µ is the viscosity of the fluid (7x10-4 Pa s for water at 37°C)167, P is the 

pressure and x is position in the radial direction. We only considered pressure changes in 

the radial direction and not in the circumferential direction. Because there was no (or 

very little34) pressure differential between the vitreous humor and the SCS, there should 

be little pressure-driven flow into the choroid. The significant pressure drop was 

therefore between the SCS and the extraocular environment across the sclera. We could 

assume the pressure drops linearly across the sclera, i.e., across a representative distance 

of 300 µm 161. We could use the experimental data (Figure 5.4) to describe the pressure 

drop over time as an exponential decay with a maximum of 100 mmHg and a time 

constant of ~5 min.  

There was also convective flow via the drainage pathway (region iii), which had a 

y-dimension equivalent to the outer diameter of a microneedle (i.e., 0.25 mm), and had a 

convective flow two orders of magnitude greater than that in the rest of sclera. 

5.5.1.1 Modeling predictions of clearance from SCS 

At time t=0, 1000 molecules were randomly ‘injected’ into the SCS (Figure 

5.6A(ii)). At each subsequent time point (time step Δt=1 min), molecules were moved 

following the rules described above depending on each molecule’s location at the 
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previous time point (Figure 5.6A). The location and fate of each molecule was recorded 

(i.e., in the eye, outside the sclera, or cleared via choroid).  

After 5 min (Figure 5.6A(iii)), molecules were cleared from the SCS. A fraction 

of the molecules were rapidly convected across the sclera via leakage pathways at the site 

of injection and via perivascular routes (treated in the simulation as a single shunt 

pathway through the center of the sclera, as depicted in (Figure 5.6A(i)). The remaining 

molecules were transported into the choroid or the sclera as the SCS collapsed (in the 

simulation, the SCS did not collapse). Transport into the choroid was exclusively by 

diffusion, since no pressure gradient from the SCS across the choroid was expected. 

Transport into the sclera (i.e., not via leakage pathways) was through a combination of 

diffusion as well as convection driven by the decaying pressure gradient across the sclera. 

Molecules that entered the choroid were eventually cleared by choroidal vasculature. 

Molecules that entered the sclera were eventually cleared across the outer scleral surface.  

Within 15 min after injection (Figure 5.6A(iv)), molecules penetrated deeper into 

the choroid and sclera, and began to be cleared from these tissues. At 1 h (Figure 

5.6A(v)), most molecules within the choroid had been cleared into the bloodstream, while 

molecules in the sclera continued to be cleared. The rate of clearance from the choroid 

was determined by the rate of diffusion of molecules to capillaries and the odds of being 

taken up by a capillary (i.e., the B term). At 4 and 12 h (Figure 5.6A(vi) and Figure 

5.6A(vii)), transported across the sclera continues. The rate of clearance from the sclera 

was determined by the rate of transport to the outer scleral surface by diffusion, as well as 

convection driven by the normal IOP of the eye (i.e., 15 mmHg in the rabbit). Our model, 
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as well as previous literature168, predicted that both of these driving forces may play a 

role in the sclera.  

By 24 h (Figure 5.6A(viii), the clearance process was largely complete. It was 

worth noting that this modeling result was for the low-molecular weight compound 

fluorescein (Figure 5.6A – C). We predict that molecules that do not bind, e.g., ethacrynic 

acid163 (Figure 5.6D) or have higher molecular weight, e.g., 70 kDa dextran (Figure 5.6E) 

were cleared similarly, but with different kinetics, especially for diffusion-based 

processes.  

The snapshots shown in Figure 5.6A were supplemented with continuous time 

course results over the course of one hour (Figure 5.6B) and one day (Figure 5.6C). 

Within 10 min, most molecules were removed from the SCS, a fraction of the molecules 

were cleared from the eye via transscleral leakage pathways and the remaining molecules 

were transported into choroid and sclera. Over the course of hours, molecules were 

slowly cleared from the choroid and sclera. Molecules in the choroid were cleared more 

quickly (i.e., within 1 h, because of the shorter diffusional distances to choroidal 

capillaries that remove molecules via blood flow). Molecules in the sclera were steadily 

removed as they exit the eye, mostly within 24 h.  
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Figure 5.6 - Results from 2D model of molecule transport in the SCS. Transport after SCS injection with 

(A-C) ‘fluorescein’; (D) molecule with no binding, “ethacrynic acid”; and (E) high-molecular weight 

molecule, “70 kDa dextran”. (A) Cross-sectional view of eye showing position of molecules (blue dots) and 

molecules that were cleared in blood (red dots) at different times post injection. Ch=choroid; SCS=suprac 

horoidal space; Sc=sclera. Percentage of particles found in the eye, in the SCS, on the exterior surface of 

the sclera, and in the blood via the choroid (B)within 1 h after injection and (C) within 24 h after injection. 

Summarized fate of (D) small molecule that does not bind sclera and (E) large molecule, 70 kDa dextran.  



 

 143 

The model suggested that the sclera accounted for more clearance than the 

choroid. This could be explained as follows. After injection into the SCS, a molecule 

experienced isotropic transport (recall that there was no pressure differential in the eye 

interior to the sclera) and was thus able to diffuse either circumferentially within the SCS 

or radially (towards the choroid or towards the sclera) at similar rates. Circumferential 

diffusion did not affect clearance very much, but radial transport played a major role in a 

molecule’s eventual clearance route. If the molecule diffused into the sclera, there was 

sufficient diffusive transport and convective flow due to physiological IOP across the 

sclera to ensure clearance of the molecules across the thickness of the sclera. 

Alternatively, if the molecule diffused into the choroid, the molecule had a probability of 

clearing as it diffused through the choroid. If the molecule within the choroid did not 

clear immediately (which is unlikely considering B = 0.05 min-1) it could diffuse towards 

the sclera and consequently become driven trans-sclerally. About one-third of molecules 

that diffused into the choroid initially were eventually cleared through the sclera. 

Exponential curve fits were generated from the model results in Figure 5.6C. The 

percentage of molecules found in the eye was fit to a 1st order exponential decay, which 

yielded a time constant of 3.38 h [3.34, 3.41; 95% confidence interval] (r2=0.98). The 

cumulative percentage of molecules that had entered the blood via the choroid was fit to a 

1st order exponential approach function with a time constant of 0.93 h [0.92, .94] 

(r2=0.99). The cumulative percentage of molecules that had exited the eye via trans-

scleral transport routes was fit to a 1nd order exponential approach with time constants of 

3.84 h [3.80, 3.87] (r2=0.99).  
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Since the time constants of molecule clearance from the eye and the time constant 

of trans-scleral clearance were on the same order of magnitude of hours (with 

intravascular clearance being significantly faster), the model suggested that trans-scleral 

diffusion was the dominant route of clearance. The model generated a clearance time 

constant similar to the time constant of 4.3 h that we found based on fundus imaging 

(Figure 5.2).  

Guided by the experimental data in the context of model predictions, the 

characteristic times of key transport phenomena following SCS injection were 

summarized in Table 5.1.  

Table 5.1 - Characteristic times of transport phenomena in the eye 

Characteristic time 

(order of magnitude) 
Transport phenomena in eye 

1 min 
 SCS loaded with molecules and fluid during 

injection 

10 min 

 Fluid and molecules cleared from SCS by 
convection through leakage pathways 

 Remaining molecules transported into choroid 
and sclera 

 SCS collapses 

 IOP drops to baseline 

1 h  Molecules cleared by choroidal blood flow 

1 - 10 h 
 Molecules cleared from sclera by diffusion and 

convection 

We also modeled the behavior of a small molecule that did not bind to sclera163 and a 

large molecule38, which were summarized in Figure 5.6 D and E respectively. To model a 

small molecule that did not bind sclera, we used experimentally derived values for 

ethacrynic acid163; in particular, we increased the diffusivity to 5x10-6 cm2/s163 and 

decreased Bmax to 5 μM163 (other parameters kept the same as the fluorescein condition). 

The model predicted that half-life of “ethacrynic acid” in the eye to be 4.8 min with 

complete clearance by 25 min (Figure 5.6D). These values were similar to the SCS 
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collapse time (which could be viewed as a proxy for clearance of water from the SCS). 

Comparison of these characteristic times to those for fluorescein showed the dramatic 

effect that binding could have on clearance rates.  

The clearance of a large macromolecule was modeled by using values experimentally 

determined for 70 kDa FITC-dextran38. In particular, we decreased the diffusivity to 

5x10-8 cm2/s (by assuming the experimental derived scleral permeability of 1.5x10-6 

cm/s38 was at steady state across the thickness of the sclera), decreased the choroidal 

clearance rate to 0.005 min-1 (since larger molecules should have more difficulty passing 

through the fenestrae of the choriocapillaris31), and decreased the binding affinity Bmax to 

1000 μM38 while keeping the other parameters the same as the fluorescein condition. The 

model predicted that the half-life of this macromolecule to be 5.2 h and the total 

clearance time to be 3.8 d. Both values were within two-fold of the values we found 

experimentally. For all three model molecules tested, the dominant route of clearance was 

via trans-scleral transport with a lesser contribution from intravascular clearance. 

5.5.1.2 Sensitivity analysis of model predictions 

To provide greater insight into the transport phenomena, we performed sensitivity 

analysis on the model to determine the relative contributions of different parameters to 

the overall clearance in the eye (Figure 5.7). In general, the model predicted that small 

changes (within 1 order of magnitude) in parameter values did not significantly change 

the model results. The rank order of parameter sensitivity was, from most sensitive to 

least: diffusivity of the molecule in the SCS and in the tissue (Figure 5.7A), scleral 

binding capacity (Figure 5.7B) and equilibrium dissociation constant (Figure 5.7C), 

vascular clearance rate (Figure 5.7D), scleral hydraulic permeability (Figure 5.7E), size 
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of leakage sites (Figure 5.7F), τpressure (the rate at which elevated IOP dissipated, Figure 

5.7G), and baseline physiological IOP (Figure 5.7H). Since the model suggested that the 

rate limiting step in SCS clearance was the trans-scleral transport, it stood to reason that 

the parameters that modified the trans-scleral transport rate affected the clearance time 

constant and total clearance time the most. Nevertheless, as evidenced by the graphs in 

Figure 5.7, the clearance time constant was a linear combination of the trans-scleral and 

vascular clearance time constants. 

Diffusivity (D) had the greatest effect on clearance times (Figure 5.7A); for 

example, reducing D (the diffusivities of fluorescein) by one order of magnitude to one-

tenth the diffusivity of fluorescein (0.1xD) resulted in a doubling of the clearance time 

constant. Intuitively, changes in diffusivity will have a significant effect on clearance 

time since the characteristic time for a molecule to move across the sclera (300 μm in the 

radial dimension) increases with the diffusivity. As seen in Figure 5.7A and in our 

experimental results (Figure 5.3D), the model correctly predicted nonlinearity in the 

clearance time at 0.01x D. Experimental data suggested that the nonlinearity occurs at 

>500 kDa, which should be ~0.01x D based on the Stokes-Einstein equation.  

Scleral binding of molecules (as modulated by Bmax and KD; Figure 5.7B and C, 

respectively) also had a major effect on clearance times. Intuitively, increasing scleral 

binding effectively behaved like a decreased diffusivity by drastically slowly molecule 

transport. However, scleral binding affected molecule transport on short time scales 

(before saturating the sclera) whereas diffusivity equally affected transport at all times. 

Unlike the results seen with changing D, changes in Bmax and KD had a biphasic effect 

whereby small changes resulted in almost no change in clearance time but a large change 
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caused a disproportionate increase in clearance time. This could be due to changes in the 

binding saturation point of the sclera.  

The choroidal clearance rate had a moderate effect on characteristic clearance 

time constant and a minor effect on total clearance time (Figure 5.7D). At high clearance 

rates by choroidal vasculature, the choroidal perfusion contributed at most 50% of total 

clearance of molecules from the eye. We reasoned that this 50% makes sense since 

molecules leaving the SCS have an approximately 50% chance to enter the choroid (as 

opposed to the sclera). With clearance rates set to low or nonexistent (time constants 

excluded in Figure 5.7D), most or all molecules left via trans-scleral pathways, which set 

an upper limit on the clearance time (i.e., it takes ~25 h for all molecules to leave the eye 

trans-sclerally).  

The scleral hydraulic permeability (Figure 5.7D) and size of the leakage pathways 

(Figure 5.7E), had a moderate effect on clearance time. These parameters were indirectly 

related to trans-scleral transport. Parameters that increased the convective flow rate 

(τpressure and physiological baseline IOP) had a modest effect on clearance time. This 

suggested that convective flow through the sclera was not a major contributor to 

clearance.  
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Figure 5.7 – Sensitivity analysis of parameters used in two-dimensional model of molecule transport from 

the SCS. Parameters were varied at least one order of magnitude from the value used in the model (value 

used in base condition highlighted in gray). The clearance time constant (black square) and time to clear 

99% (open squares) of molecules are plotted against each variable. In addition, the time constants for 

intravascular clearance (τblood, triangle) and trans-scleral transport (τsclera, open circle) were also found. 

Note that the y-axes of the first three graphs (A-C) are on a different scale than the others (D-H).  
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Of the parameters tested, diffusivity and size of the leakage site could be changed 

by optimizing formulation or microneedle injection technique, respectively and thereby 

modulate clearance rate. Diffusivity was the most sensitive variable and changes by an 

order of magnitude could change the clearance time constant from 5 min to 18 h. The 

Stoke-Einstein equation indicated that diffusivity could be modulated by changes in 

formulation viscosity and the molecular radius (which is in turn a function of molecular 

weight). In addition, using a smaller-bore microneedle did have a moderate effect on the 

clearance times. On the other hand, changes in physiological parameters (e.g., 

physiological IOP, scleral hydraulic conductivity, and clearance rate) did not drastically 

change the behavior of the model, and clearance changed by less than 2-fold with up to 

10-fold changes in the parameter value. Thus, the model may be applicable to other 

species, like humans.  

5.5.1.3 Additional comments on the model 

A limitation of the model was that it only investigated in two dimensional 

transport using Cartesian coordinates, although the actual clearance process occurred in 

three dimensions in spherical coordinates. This limited the ability of the model to predict 

distribution. To simplify the model, variation in SCS area and thickness were not 

accounted for, as these additional considerations would complicate the model with 

dynamic boundary conditions. Many other simplifying assumptions were also employed, 

such as no convective flow simulating the process of injection, no aqueous turnover via 

uveoscleral outflow16, and no influences of biomechanical tissue properties. Despite these 

limitations, model predictions were in general agreement with experimental data.  
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Previous studies had hypothesized that clearance from the SCS is predominantly 

due to either choroidal perfusion9, 124, 126 or perivascular leakage routes43. However, as 

shown in the present study, a combination of routes was utilized in clearing the SCS. 

Some studies showed that molecular clearance into the choroid was important9, 126. Other 

studies demonstrated the importance of perivascular drainage routes43. Furthermore, 

periocular injections into the subconjunctival space revealed that transscleral diffusion 

was possible, albeit in the opposite direction of transport in this study35, 36, 40, 104, 125.  

To our knowledge, this was the first study to provide experimental and 

computational evidence of the relative contributions of different routes of clearance from 

the suprachoroidal space. In particular, we identified pressure-driven flow through 

leakage routes (e.g., perivascular leakage routes and reflux out the injection site) and 

transscleral transport; and diffusion-mediated transport across the sclera and into the 

choroid for intravascular clearance. We also identified the time scales and relative 

contributions of each of these routes of clearance for the first time.  

5.5.2 Effect of molecular size on residence time  

We found experimentally and computationally that increasing molecular radius 

had a major effect on clearance time. Fluorescein (~1 nm in diameter38) was cleared by 

24 h, while 2 MDa FITC-dextran (~50 nm in diameter156) was not fully cleared until 21 d. 

The prolonged residence time did not increase as a linear function of molecular mass, but 

was dramatically longer above a threshold of ~106 Da. The difficulty for very large 

macromolecules to pass through the fenestrae of the choriocapillaris and through the 

extracellular matrix of the sclera is the likely explanation for this behavior.  
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As shown in this study, the bulk of clearance occurs via diffusion across the 

sclera, as well as through the choroid into choriocapillaris. The physiological upper limit 

of pore size of the choriocapillaris is estimated to be ~6 nm31. Thus, the hydrodynamic 

radius of 2 MDa FITC dextran is much larger than the choriocapillaris pore size. Because 

macromolecules are not rigid and are constantly changing shape, even 2 MDa FITC-

dextran is eventually able to adopt a conformation that allows passage through the 

fenestra of a choriocapillary. On the other hand, small polystyrene microspheres (20 nm 

in diameter), which are rigid and are not able to adopt different conformations, were still 

visible upon fundus examination 2 months after injection8, 128. Diffusion across sclera is 

the other main mechanism for clearance. Experimental studies and theoretical analysis 

have shown that scleral permeability decreases as a steep function of molecular mass91, 

169. 

5.5.3 Implications for drug delivery 

The findings in this study may be instructive for controlling drug delivery via the 

SCS. The observation that pressure-driven flow occurs through leakage sites indicates the 

importance of minimizing leaking from the site of injection (e.g., by keeping the 

microneedle in place after injection). It also suggests that there are diminishing returns on 

increasing injection volume; larger volumes lead to larger IOP which lead to more loss of 

fluid through pressure-driven flow through leakage pathways.  

Most molecules injected in the SCS are cleared into the systemic circulation via 

the choriocapillaris or transsclerally into the subconjunctival space. Drugs cleared via the 

choroid can interact with possible drug targets in that tissue, and possibly diffuse across 

the retinal pigment epithelium into the retina, where additional drug targets are also 
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located. Drugs cleared across the sclera (or via leakage pathways) do not enter the 

choroid or retina, and therefore do not reach targets in those tissues. 

Residence time in the SCS depends on what is injected. It has previously been 

reported that molecules are cleared from the SCS within one day and that particles are not 

cleared at all5, 8, 9, 81, 120, 125. This study corroborated those findings, which suggest that 

extending the residence time of drugs in the SCS requires their incorporation into 

particulate controlled release systems115. However, this study also suggests a new 

approach, which involves the use of drug molecules of very high molecular mass, 

possibly by conjugation to a large polymer, incorporation into a biodegradable polymer, 

use of a prodrug or other strategies46, 170-172.  

5.5.4 Limitations 

There were several limitations to this study. There are anatomical and 

physiological differences between rabbit and human eyes. Human clinical trials will be 

needed if these findings are to be applied to human medicine. However, sensitivity 

analysis indicates that changes in hydraulic conductivity and scleral thickness did not 

have major effects on the results of the model. Another possible concern is that we have 

an incomplete mass balance from the fluorescein collection experiments (i.e., 28% 

unaccounted for in Figure 5). While we assume that incomplete capture was equally due 

to all the collection routes, it is possible this collection was biased (i.e., unequal loss of 

fluorescein from the different routes, especially the intravascular route that was most 

difficult to collect). Since this study was performed with fluorescent tracer molecules and 

not a real drug, pharmacokinetic studies with drugs of interest are needed.  
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5.5.5 Conclusions 

In summary, we used live New Zealand White rabbits to study molecular 

clearance from the SCS after microneedle injection. We identified that clearance occurs 

in three regimes. (i) There was immediate loss of fluorescein from pressure-driven 

leakage at the injection site and via perivascular routes associated with vortex veins on a 

time scale of minutes which accounted for a few percent of clearance from the SCS under 

the conditions of this study. The remaining molecules were transported out of the SCS 

and into the sclera or the choroid where they formed depots. (ii) Concentration-driven 

diffusion into the choroid and subsequent clearance of the choroidal depot by 

choriocapillaries took place on a time scale of an hour. (iii) Diffusion and physiological 

IOP-mediated convection across the sclera cleared the remaining fluorescein from the eye 

over the course of hours. These experimental data were supported by a two-dimensional 

model of small-molecule transport in the eye. Increasing the molecular radius of injected 

molecules significantly slowed the rate of clearance. These experiments will guide 

development of strategies to better control drug delivery via the SCS. 

  



 

6 SUSTAINED REDUCTION OF INTRAOCULAR PRESSURE BY 

SUPRACILIARY DELIVERY OF BRIMONIDINE-LOADED 

POLY(LACTIC ACID) MICROSPHERES FOR THE 

TREATMENT OF GLAUCOMA 

This work has been published in Journal of Controlled Release115. 

6.1 Summary 

Although effective drugs that lower intraocular pressure (IOP) in the management 

of glaucoma exist, their efficacy is limited by poor patient adherence to the prescribed 

eye drop regimen. To replace the need for eye drops, in this study we tested the 

hypothesis that IOP can be reduced for one month after a single targeted injection using a 

microneedle for administration of a glaucoma medication (i.e., brimonidine) formulated 

for sustained release in the supraciliary space of the eye adjacent to the drug’s site of 

action at the ciliary body. To test this hypothesis, brimonidine-loaded microspheres were 

formulated using poly (lactic acid) (PLA) to release brimonidine at a constant rate for 35 

days and microneedles were designed to penetrate through the sclera, without penetrating 

into the choroid/retina, in order to target injection into the supraciliary space. A single 

administration of these microspheres using a hollow microneedle was performed in the 

eye of New Zealand White rabbits and was found to reduce IOP initially by 6 mm Hg and 

then by progressively smaller amounts for more than one month. All administrations 

were well tolerated without significant adverse events, although histological examination 

showed a foreign-body reaction to the microspheres. This study demonstrates, for the first 

time, that the highly-targeted delivery of brimonidine-loaded microspheres into the 
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supraciliary space using a microneedle is able to reduce IOP for one month as an 

alternative to daily eye drops. 

 
Figure 6.1 – Graphical description of rationale to target ciliary body. Higher bioavailability achievable 

with supraciliary injection of briomindine-loaded microspheres compared with topical eye drops. 

6.2 Introduction 

Primary open-angle glaucoma is a leading cause of blindness in the United States, 

affecting nearly 2 million individuals with an annual cost of $2.9 billion 50, 51. Glaucoma 

is the most common form of optic neuropathy, where loss of retinal ganglion cell axons 

permanently disrupts transmission of visual information from the retina to the brain 1, 49, 

50. Over decades, patients experience a painless and gradual loss of vision starting from 

the periphery and eventually claiming central vision 1, 53. Intraocular pressure (IOP) is the 

only modifiable risk factor 52, 173 and reducing IOP prevents the progression of glaucoma-

related vision loss 53, 54.  

IOP is mediated by the balance of aqueous humor production and aqueous humor 

removal 13. Aqueous humor is a clear liquid that is secreted by the ciliary body. Clearance 

of aqueous humor occurs through either the trabecular meshwork into the episcleral veins 

or the uveoscleral outflow pathway into the suprachoroidal space 13, 16. Medical and 
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surgical therapy for glaucoma seeks to control IOP by reducing production of aqueous 

humor and/or increasing clearance of aqueous humor 4, 53. Topical eye drops, such as 

timolol, latanoprost, and brimonidine, are commonly-used FDA-approved medical 

therapies for glaucoma patients. Brimonidine is an α2-adrenergic agonist that both 

decreases aqueous humor secretion by the ciliary body and increases aqueous humor 

clearance 174. Because topical eye drops can have low bioavailability through the cornea 

(<5%), some regimens call for multiple eye drops per day to ensure sufficient drug 

dosing (e.g., brimonidine eye drops are prescribed three times per day) 4, 175.  

6.2.1 The need for improved patient adherence with administration of IOP-

lowering drugs 

Patient adherence to topical eye drops is low, estimated to be only 41% to 76% 4, 

55-58, 176. Due to the chronic nature of glaucoma and the rigorous administration schedule, 

it can be difficult for patients to administer their eye drops on a regular basis. Since any 

loss of vision is permanent, increasing patient adherence to the regimen will preserve 

functional vision and decrease progression to blindness 4.  

Patient adherence to the eye drop regimen can be increased through methods, 

such as memory tools that remind patients, and improved formulations that do not require 

refrigeration or require simpler administration regimens 4. But perhaps the most attractive 

method to improve eye drop adherence is through the use of controlled-release drug 

delivery systems that obviate the need for the patient to take eye drops at all. While 

brimonidine-loaded drug delivery systems for the management of glaucoma have been 

studied before 177-180, we seek to determine the efficacy of a targeted controlled-release 
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system delivered using a microneedle adjacent to brimonidine’s site of action in the 

ciliary body. 

6.2.2 Injections targeting the supraciliary spacing using microneedles 

The supraciliary space is the anterior-most region of the suprachoroidal space. 

The suprachoroidal space is a potential space in the eye found between the sclera (the 

fibrous collagenous layer that contains the eye) and the choroid (the rich vascular 

network that supplies nutrients to the outer retina). The suprachoroidal space has been 

explored as a site for ophthalmic drug delivery in preclinical and recent clinical studies 

(e.g., NCT01789320 and NCT02255032) 2, 5, 7-9, 17, 36, 81, 97, 116-118, 123, 124, 126, 127, motivated 

by higher bioavailability compared with topical eye drops 8, 81 and the ability to target 

drug delivery to the choroid that lines the suprachoroidal space, the adjacent retina or, 

most recently, the ciliary body that forms its most anterior boundary.  

Injections are targeted to the suprachoroidal (and supraciliary) space using 

individual hollow microneedles with a length matched to the thickness of the sclera and 

conjunctiva that enable access to the suprachoroidal space with a procedure comparable 

to an intravitreal injection, which is a method of ophthalmic drug delivery regularly 

performed in the outpatient clinic setting 8, 81, 88. Microneedle injections in the 

suprachoroidal space were originally designed as a treatment for posterior-segment 

diseases. This study seeks to treat glaucoma, which is currently treated with therapies 

targeted at the anterior-segment, by targeting drug delivery to the supraciliary space 6. 

In our initial study, a bolus microneedle injection of glaucoma drugs (including 

brimonidine) into the supraciliary space was able to reduce IOP with significant dose 

sparing compared with topical eye drops 6. Furthermore, fewer ocular side effects are 
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expected since the drug is compartmentalized in the suprachoroidal space away from 

other non-target tissues (e.g., lens, cornea, etc).  

In this study, we hypothesize that IOP can be reduced for one month after a single 

microneedle injection of brimonidine formulated for sustained release using PLA into the 

supraciliary space of the eye. Brimonidine was chosen because it is an FDA-approved 

IOP-lowering agent currently prescribed to glaucoma patients 174, 175, 181 and is 

pharmacologically active in the rabbit 6, 177-180. Due to increased bioavailability, a 

microneedle injection into the supraciliary space should reduce the dose needed, 

compared with topical eye drops, thereby allowing a relatively small injection to contain 

sufficient drug for extended therapy. The successful implementation of this technique 

could enable a sustained-release treatment for glaucoma patients without the need to 

administer topical eye drops.  

6.3 Materials and Methods 

6.3.1 Materials 

Brimonidine tartrate, poly-lactic acid (PLA) with an inherent viscosity (i.v.) of 

0.20 dL/g (free acid terminated, RESOMER® 202H), and polyvinyl alcohol (PVA, 80% 

hydrolyzed, MW ~9,000-10,000) were purchased from Sigma Aldrich (St. Louis, MO). 

PLGA (75:25, i.v. = 1.13 dL/g, ester terminated) was purchased from Durect (Cupertino, 

CA). All solvents used were HPLC grade and were purchased from Fisher Scientific 

(Waltham, MA), and unless otherwise noted, all other chemicals were purchased from 

Sigma Aldrich. 
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6.3.2 Removal of low molecular weight acids from PLA 

PLA (~5 g) was dissolved in 10 mL CH2Cl2 at room temperature and then added 

to a stirring ddH2O bath maintained at 60°C. After evaporating CH2Cl2 for 3 h the 

aqueous phase containing water-soluble, low molecular weight acids was removed while 

the water-insoluble, higher MW polymer remained as a solid in the vessel as a result of 

the organic solvent evaporation. The resulting higher MW polymer was dried under 

vacuum and stored at -20°C until use 182. 

6.3.3 Microsphere preparation 

Microspheres were prepared using oil-in-water (o/w) emulsion solvent-

evaporation methods. First, brimonidine and the selected polymer(s) (Table 6.1) were 

dissolved in 1 mL CH2Cl2. Two mL 5.0% (w/v) PVA was added and vortexed to create 

the o/w emulsion, which was then poured into a stirring bath of 0.5% (w/v) PVA to allow 

for CH2Cl2 evaporation and microsphere hardening. After 3 h, the hardened microspheres 

were screened to 20-45 µm using sieves, washed with ddH2O, then lyophilized and stored 

at -20°C for future use. 

Table 6.1 – Microsphere formulation parameters

Formulation 

Name 
Polymer 

Polymer Concentration 

(mg/mL-CH2Cl2) 

Theoretical w/w 

Loading (LT) 

800PLA PLA 800 6.00% 

1000PLA PLA 1000 5.00% 

800PLA-T 
PLA hot-water 

treated 
800 6.25% 

PLA/PLGA 
50 : 50 Blend 

PLGA : PLA 
500 10.00% 

6.3.4 Scanning electron microscopy 

Prior to imaging, lyophilized microspheres were mounted using double-sided 

carbon tape and coated with a thin layer of gold under vacuum. Scanning electron 
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microcopy (SEM) images were then taken using a Hitachi S3200N scanning electron 

microscope (Hitachi, Japan). Images were obtained using EDAX software. 

6.3.5 Determination of brimonidine loading and encapsulation efficiency 

Prepared microspheres (~5 mg) were dissolved in 1 mL acetonitrile. The resulting 

solution was filtered and analyzed for brimonidine content by ultra-performance liquid 

chromatography (UPLC), as described below. Percentage loading and encapsulation 

efficiency were calculated using Equations 6.1 and 6.2, respectively. 

%
𝑤

𝑤
𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐿𝐴) =

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑟𝑖𝑚𝑜𝑛𝑖𝑑𝑖𝑛𝑒

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑠𝑝ℎ𝑒𝑟𝑒𝑠
𝑥 100 Eq. 6.1 

% 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝐸𝐸) =
𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔
 𝑥 100 Eq. 6.2 

6.3.6 In vitro release kinetics of brimonidine 

Microspheres (~5 mg) were suspended in 1 mL phosphate-buffered saline + 

0.02% Tween 80 (PBST, pH 7.4) at 37°C under mild agitation. As brimonidine tartrate is 

highly water soluble183, 1 mL of release media was sufficient to ensure sink conditions 

for the duration of release. Microspheres were separated from media at each time point 

by centrifugation at 8,000 rpm for 5 min. Then, release media was completely removed 

and replaced at 1, 3, 5 and 7 days and weekly thereafter for 7 weeks. Release media was 

assayed for brimonidine content by UPLC, as described below. 

6.3.7 Brimonidine quantification 

Brimonidine content in loading solutions and release media was determined using 

a UPLC system (Waters, Milford, MA). The mobile phase was composed of 40 : 60 

(acetonitrile : ddH2O) and the flow rate was set to 0.5 mL/min. Samples and standards 

prepared in either acetonitrile or PBST were injected (8 µL) onto a C18 (Acquity BEH 
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C18, 1.7 µm, 2.1 x 100 mm) column maintained at 30°C. Brimonidine was detected at 

254 nm.  

6.3.8 Microneedle fabrication 

A 27-gauge (OD = 0.41 mm; ID = 0.21 mm) hypodermic needle (Becton 

Dickinson, Franklin Lakes, NJ) was used as the starting material. The needle was 

shortened to ~1.5 mm in length by cutting the needle using a cordless rotary tool (Dremel 

800, Robert Bosch Tool Corporation, Mount Prospect, IL). The bevel was produced by 

grinding the shortened needle at a 60° angle against the sanding band attachment of the 

rotary tool. A constant stream of water was flowed through the needle bore to prevent 

heat buildup and the metal from melting. This was done under a stereoscope to ensure the 

needle length was 750 ± 50 µm. If the needle was too long, the process was repeated; if 

the needle was too short, the plastic hub was carefully removed with a razor. Each needle 

was inspected for needle length, absence of metal shavings, and sharpness. If needed, the 

needle was filed with sandpaper and/or electropolished (ESMA E399, South Holland, 

IL), as previously described 8. 

6.3.9 In vivo experimental treatment groups  

All in vivo experiments were carried out in albino New Zealand White rabbits 

(Charles River, Wilmington, MA) and were approved by the Georgia Institute of 

Technology Institutional Animal Care and Use Committee. Practices complied with the 

ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Although 

bioavailability and distribution of brimonidine is affected by presence of pigment in the 

eye, albino rabbits were used to facilitate visualization of microspheres and since an 
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albino rabbit animal model was used in a previous study 6, 184. The treatment groups are 

listed in the Table 6.2. 

Table 6.2 – Summary of in vivo experimental treatment groups 

Treatment 

Group 
Fluid Carrier Description 

SC-HBSS 50 µL of HBSS Supraciliary delivery of saline 

SC-CMC 
50 µL of 5% (w/v) 

CMC in HBSS 
Supraciliary delivery of CMC 

SC-blank 
50 µL of 5% (w/v) 

CMC in HBSS 
Supraciliary delivery of blank microspheres 

SC-low dose 
50 µL of 5% (w/v) 

CMC in HBSS 

Supraciliary delivery of brimonidine-loaded 

microspheres (20-45 µm) [low dose] 

SC-high 

dose 

100 µL of 5% (w/v) 

CMC in HBSS 

Supraciliary delivery of brimonidine-loaded 

microspheres (20-45 µm) [high dose] 

Top N/A Topical delivery of brimonidine 

Before the injection procedure, animals were anesthetized with a subcutaneous 

injection of ketamine and xylazine. An eye drop of proparacaine (Akorn, Lake Forest, IL) 

was given 5 min prior to the injection. The eye was proptosed to facilitate injection. A 

hollow microneedle with a length of 750 µm (see Figure 6.3) and a 250 µL glass 

chromatography syringe (National Scientific, Rockwood, TN) were used to make 

injections 3 mm posterior to the limbus.  

To ensure delivery near the ciliary body, the total injection volume was divided 

into multiple injections of 10-20 µL each. Injections were spaced approximately equally 

around the limbus while avoiding the extraocular muscles. To inject a total volume of 50 

µL, three injections of 16.7 µL each were made supranasal, supratemporal, and 

infranasal. To inject 100 µL, five injections of 20 µL each were made; the same 3 

injection sites, as in the 50 µL dose, were used with an additional 2 injections 

infratemporal and temporal. The fluid carrier was 5% (w/v) carboxymethyl cellulose 

(CMC; average Mw 700 kDa; Sigma-Aldrich) in Hank’s buffered salt solution (HBSS; 
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Mediatech, Manassas, VA). For all groups, only one eye per rabbit received treatment; 

the contralateral eye did not receive any treatment during the study. 

For the supraciliary delivery of HBSS group (SC-HBSS), a total of 100 µL of 

HBSS was injected into the supraciliary space. For the supraciliary delivery of CMC 

group (SC-CMC), 50 µL of 5% (w/v) CMC in HBSS was injected. For the supraciliary 

delivery of blank microspheres group (SC-blank), 50 µL of 30% blank microspheres 

(w/v) and 5% (w/v) CMC in HBSS was injected. For the low-dose delivery of 

brimonidine-loaded microspheres group (SC-low dose), 50 µL of 30% brimonidine-

loaded microspheres (w/v) and 5% (w/v) CMC in HBSS was injected into the 

supraciliary space. For the high-dose delivery of brimonidine-loaded microspheres group 

(SC-high dose), 100 µL of 30% brimonidine-loaded microspheres (w/v) and 5% (w/v) 

CMC in HBSS was injected into the supraciliary space. The total injected volume was 

increased from the SC-low dose to SC high-dose because particle concentrations higher 

than 30% (w/v) particle in 5% CMC clogged the 27 gauge microneedle. 

After the injection, animals were monitored until mobile. If there was significant 

redness, inflammation, or irritation, a steroid/antibiotic ointment was applied to the eye. 

If the animal looked agitated or in pain after the procedure, 200 µL of buprenorphine was 

given subcutaneously. Animals were euthanized with an injection of pentobarbital 

through the marginal ear vein at the end of the experiment. The eyes were enucleated and 

some were processed histologically. 

For the topical delivery group (TOP), brimonidine eye drops (0.15% Alphagan, 

Allergan, Irvine, CA) were administered 3 times per day at 8:30 am, 2:30 pm, and 8:30 

pm unilaterally to the upper conjunctival sac without anesthesia. 
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6.3.10 Intraocular pressure monitoring 

For the animals that received a microneedle injection, IOP was measured in both 

eyes with a TonoVet (iCare, Vantaa, Finland) rebound tonometer between 10 am and 2 

pm. To measure IOP, the animal was removed from the cage and restrained in a towel for 

at least 5 min. IOP was measured at least 3 times in both eyes. If there was significant 

variation between recordings, additional time was given to acclimate the animal to its 

surroundings before attempting to measure IOP again. The baseline IOP was established 

by measuring IOP daily for a week prior to the injection. IOP was not taken on the day of 

injection because the ketamine cocktail used had a significant impact on IOP 6. IOP was 

monitored on 1, 3, 5, 7, 10, 14, 17, 20, 24, 27, 30, 33, and 43 days post-injection. 

Animals that received topical eye drops had their IOP measured at 4 pm daily for a week 

using the same methods.  

The rebound tonometer had been calibrated 6 mo prior against a rabbit whose eye 

was in fluid communication to a water column eye different heights6. The rebound 

tonometer reported values that were offset by 3 mmHg with no slope adjustment.  

6.3.11 Histology 

After the animals were euthanized, some eyes were enucleated and immediately 

fixed in 10% formalin. The eyes were serially sectioned, and sections were stained with 

hematoxylin-eosin (H&E) or periodic acid Schiff (PAS). Light microscopic examination 

was performed on all histologic sections for any signs of anatomical changes and foreign 

body reaction. Histological sections were photographed at 20× magnification (DP 71; 

Olympus, Tokyo, Japan).  
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6.3.12 Statistical analysis 

All values are mean ± standard error of the mean (SE), unless otherwise specified. 

Time traces of IOP were calculated in two ways: by finding the difference from the 

average IOP pre-treatment and by finding the difference between the treated and 

contralateral eyes. Repeated-measures ANOVA was used to compare the time course 

data. The dose-response curve was generated by calculating the area under the curve 

(AUC) using the trapezoid rule. Fisher’s Least Square Difference test (α = 0.05) was 

performed to determine statistical significance for individual time points. 

6.4 Results  

6.4.1 Characterization of brimonidine-loaded microspheres 

Our first goal was to encapsulate brimonidine into microspheres for sustained 

release for up to one month (Figure 6.2). We initially encapsulated brimonidine in free-

acid terminated PLA (800PLA), which resulted in low efficiency and high initial burst 

(24-hour release; Figure 6.2). This is probably because brimonidine is highly water-

soluble, which caused leaching of brimonidine into the aqueous phase during 

microsphere formulation, leading to poor loading 185. The highly water-soluble nature of 

brimonidine also probably contributed to high initial burst due to rapid dissolution of 

poorly encapsulated, surface-associated drug. Initial burst is generally an undesirable 

property of controlled-release formulations, as it may cause exposure to toxic drug levels.  
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Figure 6.2 – Representative SEM images of four microsphere formulations: (A) 800PLA, (B) 800PLA-T, 

(C) 1000PLA, (D) PLA/PLGA. Scale bars represent 10 µm. (E) Brimonidine release from four polymer 

microsphere formulations in vitro. The media was PBST (pH 7.4, 37ºC). Data are expressed as mean ± SE 

(n = 3 replicates per group). 

To improve loading efficiency and decrease initial burst from microspheres, we 

employed three alternative formulation strategies for encapsulation of brimonidine: (i) 

increasing PLA concentration to 1000 mg/mL (abbreviated 1000PLA), (ii) blending PLA 

with PLGA (PLA/PLGA), and (iii) treating the PLA to remove low molecular weight 

acids (800PLA-T). The first two strategies increased brimonidine loading and decreased 

initial burst, believed to be due to a denser polymer matrix, which is more efficient in 

trapping the molecule during microsphere formulation 186. Although these formulations 

improved loading and burst, the long-term release from these microspheres in vitro was 

incomplete through five weeks and was thus deemed unfavorable (Figure 6.2).  

To further optimize the brimonidine release kinetics, we removed acidic 

monomers and oligomers to improve polymer stability during storage and effectively 

increase molecular weight of the bulk PLA. It has been shown that biodegradable 

polymers may contain 10-20 µmoles of acid per 100 mg of polymer following synthesis. 

Furthermore, the lactic acid monomers and oligomers formed during polymerization may 

catalyze the degradation of the polymer during storage, leading to a decline in PLA 

molecular weight and a buildup of additional acidic byproduct 182. Higher molecular 
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weight polymers create a denser matrix during microsphere manufacturing, leading to 

more efficient encapsulation 182. 

This final formulation was prepared with the same free-acid terminated PLA 

202H as used in our initial formulation. However, prior to microsphere manufacturing, 

we stirred the dissolved polymer in a hot water bath to remove low molecular weight, 

water-soluble acids; a strategy that been used successfully in the past to encapsulate the 

peptide leuprolide with high efficiency and resulting in low initial burst 182. Using these 

methods, we were able to greatly improve brimonidine loading in PLA to achieve 85 ± 

0.4% efficiency (Table 6.3) These microspheres also exhibited reduced initial burst in 

vitro (8.0 ± 1.3 %) as compared to the initial 800PLA microspheres (16.5 ± 0.2 %). 

Although this formulation did not achieve complete drug release at the end of the 

experiment, it was more than 75%.  

Table 6.3 – Characterization of brimonidine encapsulation in microspheres. Data expressed as mean ± SE 

(n = 3). 

Formulation 

Name 
Description 

Loading 

(w/w %) 

Encapsulation 

Efficiency (%) 

Initial 

Burst (%) 

800PLA 
Starting PLA concentration at 

800 mg/mL 
2.3 ± 0.1 38 ± 1 16.5 ± 0.2 

800PLA-T 

Starting PLA concenration at 

800 mg/mL. Heat treatment to 

remove low molecular weight 

acids 

5.3 ± 1.3 85 ± 0.4 8.0 ± 1.3 

1000PLA 
Starting PLA concentration at 

1000 mg/mL 
3.3 ± 0.3 67 ± 6 1.8 ± 0.3 

PLA/PLGA Blending of PLA and PLGA 5.3 ± 0.7 53 ± 8 1.2 ± 0.1 

6.4.2 Targeted injection localized to the supraciliary space 

Our next objective was to target injection of the brimonidine-loaded microspheres 

to the supraciliary space adjacent to the ciliary body. Microneedles (750 ± 50 µm in 

length) were fabricated for this study (Figure 6.3). We and others have seen that injection 
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of larger volumes leads to spread over a larger area of the suprachoroidal space 6, 119, 120, 

128. To localize our formulation at the site of injection at the supraciliary space, we 

wanted to minimize the injection volume and therefore needed to give multiple injections 

in order to deliver the target dose. Histological images were acquired for all supraciliary 

microsphere injection groups (SC-blank, SC-low dose, and SC-high dose) to assess the 

degree of localization of the particles at the injection site. These images showed that the 

injected particles were localized at the anterior suprachoroidal space, which is bordered 

by the ciliary body (Figure 6.4), which we call the supraciliary space.  

 
Figure 6.3 – Hollow microneedle measuring 750 µm in length is shown opposite a 50 µL drop from a 

conventional eye dropper. Scale bars represent 1 mm 

 
Figure 6.4 – Representative histological image of a section from the rabbit eye showing brimonidine-

loaded microspheres suspended in 5% (w/v) CMC/HBSS 46 days after injection into the supraciliary space. 

Scale bar indicates 500 µm.  

Injected particles 

Ciliary body 

Sclera 
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To further image supraciliary injection, we added 1% (w/v) red-fluorescent 

microspheres (1 µm diameter) to blank microspheres injected into the supraciliary space 

at multiple locations around the limbus. Sixty-nine days after injection, fluorescence 

imaging of eyes cut radially from the posterior pole to the limbus and then splayed open 

similarly show localization of the injected microspheres at the sites of injection in the 

anterior suprachoroidal space near the ciliary body (Figure 6.5). This result is consistent 

with previous reports that a low volume injection of CMC was able to be localized in the 

anterior suprachoroidal space 6.  

 
Figure 6.5 – Representative fluorescence image showing localization of red-fluorescent microspheres to 

the supraciliary space. Eyes were enucleated and imaged 69 days after injection of 1% (w/v) fluorescent 

polystyrene microspheres (1 µm diameter; ex: 580 nm, em: 605 nm; FluoSpheres, ThermoFisher Scientific, 

Waltham, MA) and 5% (w/v) blank microspheres suspended in 5% (w/v) CMC in HBSS. Bright-field image 

(A) displays the interior surface of rabbit eye. The center of the sample is the anterior segment, and the 

distal ends of the “petals” form the posterior pole. Each petal contains, from superficial to deep, the sclera 

(white), choroid, and retina. Fluorescence image (B) of same eye shows microspheres localized to the 

anterior suprachoroidal space.  

6.4.3 Effect of supraciliary delivery of brimonidine-loaded microspheres on 

intraocular pressure 

Next, our goal was to inject brimonidine-loaded microspheres into the 

supraciliary space of rabbit eyes to reduce IOP for one month. The rabbits had a baseline 

IOP of 12.2 ± 2.1 mmHg (mean±SD). As a positive control, brimonidine was given 

topically (TOP group) in the form of the clinical product Alphagan®, which was 

administered topically three times per day for five days to mimic chronic use. This dosing 

C
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regimen corresponds to approximately 75 µg of brimonidine administered per eye drop 

and 1,125 µg of brimonidine administered over the course of five days.  

In the TOP group, we saw a consistent IOP drop of 2 – 4 mm Hg in the treated 

eye (one-way ANOVA, p = 0.003, Figure 6.6A) with a magnitude similar to those 

reported previously for the length of the treatment 187. Five days after stopping eye-drop 

administration, the IOP of the treated eye had returned to baseline (Fisher’s LSD test, p = 

0.86). The IOP of the contralateral eye in the TOP group also showed a significant 

reduction (one-way ANOVA, p = 0.03, Figure 6.6A) with a magnitude similar to the 

treated eye (two-way ANOVA, p = 0.26, Figure 6.6B). Because the body weight of the 

rabbits (2-4 kg) was more than an order of magnitude less than a human, it is likely that 

the brimonidine that cleared from the treated eye (that was administered a human dose of 

drug) was sufficient to cause an effect on the contralateral effect, either through a 

systemic cardiovascular effect or a contralateral therapeutic effect 188.  

Guided by this positive control, we next injected brimonidine-loaded 

microspheres into the supraciliary space. To improve localization of delivery to the 

ciliary body by avoiding flow of the injectate away from the injection site, the 

microspheres were formulated with CMC to increase viscosity, and the total material 

injected was divided into multiple small injections (10-20 µL) at multiple locations 

around the eye, as was done previously to localize to the supraciliary space6. We 

delivered 15 mg (SC-low dose, containing 0.45 mg of brimonidine, Figure 5C-D) and 30 

mg (SC-high dose, containing 0.9 mg of brimonidine, Figure 6.6E-F) of microspheres 

into the supraciliary space. To control for the effect of the injection of microspheres, we 
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also injected 15 mg of blank microspheres (SC-blank) as a negative control (Figure 6.6G-

H). 
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Figure 6.6 – Effect of brimonidine delivery on IOP in the rabbit eye. Change in IOP from baseline over 

time for topical brimonidine eye drops three times per day (A), brimonidine microspheres (low dose) (C), 

brimonidine microspheres (high dose) (E), blank microspheres (G) , HBSS only (I), and 5% (w/w) CMC 

(K). Difference in IOP between treated and contralateral eye over time for topical brimonidine eye drops 3 

per day (B), brimonidine microspheres (low dose) (D), brimonidine microspheres (high dose) (F), blank 

microspheres (H), HBSS only (J), and 5% (w/w) CMC (L). Data are expressed as mean ± SE (n = 3-6). 
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Both groups that received brimonidine-loaded microspheres (i.e., SC-low dose 

and SC-high dose) experienced a decline in IOP of the treated eye of as much as 6 mm 

Hg when compared to the contralateral eye (repeated-measures ANOVA, p = 0.025 and 

0.002, respectively). It is notable that the contralateral eye showed no significant change 

in IOP (repeated-measures ANOVA, p = 0.92 and 0.73, respectively), which is consistent 

with localization of the drug to the site of injection. The SC-low dose group showed a 

reduction in the IOP of the treated eye for 14 days after the injection (Fisher’s LSD test, p 

= 0.005). The SC-high dose group showed a reduction in the IOP of the treated eye for 33 

days (Fisher’s LSD test, p = 0.03). These data are consistent with our central hypothesis 

that IOP can be reduced for one month after a single injection of brimonidine formulated 

for sustained release in the supraciliary space. 

In the negative control (SC-blank), the “treated” eye had an IOP reduction of 3 

mm Hg compared to the contralateral eye 3 days after injection (one-way ANOVA, p = 

0.02), which returned to baseline within 5 days (Fisher’s LSD test, p = 0.35). This effect 

seen in the negative control might be due to an inflammatory response caused by the 

injection, reduced aqueous humor production due to disruption of the ciliary body, or 

increased uveoscleral outflow due to stretching of the ciliary muscles 189, 190.  

6.4.4 Effect of fluid carrier on intraocular pressure 

To further elucidate the cause of IOP reduction in the SC-blank group, we 

examined the effect of the injection technique and fluid carrier on IOP. We injected 

HBSS (SC-HBSS, Figure 6.6I-J) or 5% (w/v) CMC in HBSS (SC-CMC, Figure 6.6K-L) 

into the supraciliary space to monitor their impact on IOP. There was a change in IOP 

from baseline for both SC-HBSS and SC-CMC groups that was evident immediately after 
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injection (Fisher’s LSD test, p = 0.01), but was no longer evident at the next 

measurement 2 days later (Fisher’s LSD test, p = 0.84). Possible explanations of this brief 

IOP reduction include: increased uveoscleral outflow due to ciliary muscle stretching, a 

short inflammatory reaction causing blood-aqueous-barrier breakdown and decreased 

aqueous humor production due to ciliary body distention. Further studies are needed to 

explore this phenomenon. 

There was no difference between treated eyes of SC-CMC (Figure 6.6C-D) and 

SC-blank groups (Figure 6.6G-H) (repeated-measures ANOVA, p = 0.22). This result 

shows that blank microspheres had little intrinsic effect on IOP. Therefore, the IOP 

reduction in the treated eye seen in the SC-low dose and SC-high dose groups is believed 

to be due primarily to the effect of brimonidine release from the microspheres. 

6.4.5 Integrated pharmacodynamic response of treatment groups 

As a characterization of the integrated pharmacodynamic responses, we 

determined the area under the curve (AUC) for all treatment groups by integrating the 

difference in IOP between the treated and contralateral eyes over time (Figure 6.7). The 

expected response of the brimonidine eye drop (TOP) regimen extrapolated over 30 days 

was 70 mmHg-days (Figure 6, dotted line). Unlike the other values presented in Figure 6, 

the response was calculated by finding the IOP reduction of the treated eye minus the 

IOP of the baseline (i.e., before eye drop application) over the course of one day of eye 

drop application, and extrapolating the effect by 30 days There was no statistical 

difference between the SC-blank group and the SC-HBSS group (Fisher’s LSD test, p = 

0.99) or the SC-CMC group (Fisher’s LSD test, p = 0.93). The SC-low dose group also 

did not reach statistical significance compared with the SC-blank group (Fisher’s LSD 
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test, p = 0.38) because there was considerable variation in the response among the five 

animals in the SC-low group. There was a significant response with the SC-high dose of 

brimonidine-loaded microspheres compared with the SC-blank group (Fisher’s LSD test, 

p = 0.017).  
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Figure 6.7 – Integrated pharmacodynamic response of treatment groups. Values were calculated by 

determining the area under the curve for differences in IOP between the treated and contralateral eyes 

(data from Figure 6.6) for each animal. Bars represent mean values. Dotted line indicates the expected 

response achievable with brimonidine eye drops. * = p<0.05. 

The high-dose brimonidine-loaded microspheres were necessary to ensure a 

consistent sustained effect for one month. All animals in the SC-high dose group had a 

sustained reduction in IOP for at least three weeks. On the other hand, there was 

appreciable variation among the responses of the six animals in the SC-low dose group. 

Out of the six rabbits in the SC-low dose group, one rabbit experienced no IOP drop in 

the treated eye and another had the strongest response out of all the rabbits tested. This 

variation in IOP response is possibly due to inter-animal differences in sensitivity to 

brimonidine or the microspheres releasing at the lower limit needed for a pharmacologic 

response. Since an increased dose resulted in a prolongation of the effective duration, the 
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release rate from the microspheres might have decreased after 14 days, suggesting 

nonlinear drug release rate.  

6.4.6 Initial safety assessment 

During the experiment, rabbits were inspected on a daily basis by veterinary staff 

and/or study investigators. The microneedle injection site was barely visible immediately 

post-injection (Figure 6.8A) and was not visible 1 day post-injection (Figure 6.8B). Some 

rabbits had mild redness 1 day after injection, and were subsequently treated with an 

antibiotic/steroid ointment. Three days after injection, all eyes were quiet and there were 

no signs of redness or irritation, or apparent distress in the rabbits. No serious adverse 

events were noted, and the rabbits at least maintained their weight from pre-injection. 

Assessment of visual acuity and visual fields were not performed on the rabbits though 

we would be unlikely to detect any deficit since the injection was localized to the far 

periphery of the suprachoroidal space. 

 
Figure 6.8 – Representative images of the rabbit eye 5 min (A) and 1 day (B) after microneedle injection. 

Microneedle injection site marked with arrow. 

To further assess the safety of brimonidine-loaded microspheres in the 

supraciliary space, we performed histology on the enucleated eyes. The slides were read 

by a board-certified ocular pathologist. All eyes that received a supraciliary injection 

demonstrated separation of the suprachoroidal space at the anterior region (Figure 6.9). 

However, further studies are required to determine if this might be an artifact from the 

histology process. 

A B 
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Figure 6.9 – Representative histological images after microneedle injection of HBSS only (SC-HBSS, A) 88 

days post-injection; blank microspheres (SC-blank, B) 46 days post-injection; and brimonidine-loaded 

microspheres (SC-low dose, C) 69 days post-injection. No inflammatory cells were noted in the SC-HBSS 

group (A inset), whereas accumulation of macrophages was seen in eyes that received SC-blank (B inset) 

and SC-low dose (C inset), as indicated by the darkly-stained nuclei (arrows) among the voids of where the 

microspheres were. The microspheres and associated foreign-body response could also be seen in the site 

of microneedle puncture across the sclera, indicated by the yellow arrow, and in the subconjunctival space 

69 days after injection (D). Scale bars indicate 500 µm. 

Due to the histologic/staining process, the PLA microspheres were dissolved 

leaving behind voids where the microspheres were located. There was significant foreign 

body response among the microspheres in the supraciliary and subconjunctival space 

(Figure 6.9). We hypothesize this response may be due to the acidic byproducts of the 

PLA microsphere degradation or impurities in the microsphere from the fabrication 

process, because previous injections of polystyrene microspheres did not cause 

inflammation 8, 81. The foreign body response was present in both blank (Figure 6.9C) 

and brimonidine-loaded microspheres (Figure 6.9B), which further suggested that the 

accumulation of macrophages was due to the presence of microspheres (i.e., and not due 

to the drug itself). The presence of the PLA microspheres and associated foreign-body 

A 
Separation 

Sclera 

Ciliary body 

C 
Particles 

S

Ciliary body 

B 

D 

Particles  

S

Ciliary body 



 

 177 

reponse also appeared at the injection site (Figure 6.9D, arrow) 191. Nevertheless, it is 

important to note that the eye did not look inflamed and the animals did not show signs of 

pain, irritation or distress. Further experiments are needed to investigate this. 

We were not able to observe the time frame of complete microsphere degradation. 

The PLA microspheres were still present 46 and 69 days after the injection (Figure 6.9B-

D). It is important to note that all brimonidine was released by these times (as seen with 

the in vitro drug release). As the degradation rates of this polymer are well known 192, 193 

and certainly much slower than the release rate of the drug, especially in vivo, and intact 

microspheres remained at the end of the release experiment, we did not explore the 

erosion and degradation behavior of the microspheres further. Now that we have initial 

proof-of-principle data on the success of in vivo delivery, further formulation work on 

PLGA microspheres for brimonidine and related drug molecules is warranted.  

The inability of the injection site to heal was concerning. A delayed healing 

response may be due to the release of byproducts from the particles that delayed healing, 

or the mass effect of the particles. This hole through the sclera may be a risk for 

infection, although it is expected the conjunctiva healed over the wound limiting access 

to the wound. 

6.5 Discussion  

Current glaucoma medical therapies are dominated by topical administration. Due 

to the low bioavailability of eye drops, typically less than 5% of the drug penetrates into 

the eye and reaches the target site (i.e., ciliary body) 4. The remaining 95% of the drug 

enters systemic circulation and can cause side effects throughout the body 4. For example, 

brimonidine use causes dry mouth in 33% of patients 194. Because of the low 
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bioavailability of drug at the ciliary body, patients are often required to administer 

multiple eye drops daily. Patient adherence suffers due to the complexity and rigor of the 

treatment required to control glaucoma 55-58, 176, 195, 196. It is estimated that adherence with 

use of topical eye drops is as low as 41% 4, 196.  

Glaucoma therapy delivered in a highly-targeted manner to the ciliary body could 

reduce side effects by lowering the required dose. Supraciliary delivery allows the highly 

targeted delivery of glaucoma drugs to the ciliary body with significant dose sparing 6. 

This dose sparing translates into a lower daily dose as well as fewer side effects. In this 

study, we delivered 0.9 mg of brimonidine loaded into slow-releasing polymeric 

microspheres as a single injection and demonstrated an IOP reduction for more than one 

month in the treated eye. The amount of brimonidine delivered via commercial eye drops 

three times per day for an equivalent time would result in a 7.5-times greater dose. 

Consistent with the lower administered dose, IOP reductions in the contralateral eye were 

not seen with the brimonidine-loaded microspheres groups compared with the topical eye 

drop administration. This increase in bioavailability during controlled release of 

brimonidine is lower than previously reported for bolus delivery of brimonidine in the 

suprachoroidal space6. We hypothesize that this may be due to the strong binding affinity 

of brimonidine to a2 adrenergic receptors 181, 187 and the fast clearance from the SCS 5, 9. 

With a bolus injection, brimonidine is expected to bind all available receptors and causes 

a biological response for up to 12 h 6. However, with a controlled release system, 

brimonidine is continually released in small quantities, and this must overcome the 

clearance of brimonidine from the SCS. Because of its strong binding affinity, not all the 

brimonidine release will be able to bind receptors since the receptors are already 



 

 179 

occupied by previously released brimonidine. This brimonidine is essentially ‘wasted’, 

which may at least partially explain the lower than expected dose sparing. To our 

knowledge, this is the first time that controlled-release drug delivery systems for the 

management of glaucoma have been injected into the supraciliary space. 

In this study, we have shown reduced IOP for one month, however further 

optimization of microsphere formulation and injection procedure could increase the 

duration of effect and further reduce the required dosage. Since glaucoma patients 

typically make regular visits to the eye clinic every 3 - 6 months, we envision an 

outpatient procedure performed by an ophthalmologist consisting of a single supraciliary 

microneedle injection of glaucoma drugs encapsulated within microspheres to adequately 

control IOP for the next 3 - 6 months. This would obviate the need for the patient to 

administer eye drops multiple times per day, and thus drastically raise patient adherence. 

Future studies will address the development of microparticles that release glaucoma 

drugs for 3 – 6 months and their use in the eye.  

Histology sections showed foreign body response due to the presence of 

microspheres in the supraciliary space. This may be due to impurities in the microsphere 

fabrication process, or particle degradation byproducts, though further studies are needed 

to determine the cause. Nevertheless, the animals did not show signs of distress or 

redness in the eye. Furthermore, the microspheres persisted in the supraciliary space 

despite complete drug release. Further studies are required to improve the 

biocompatibility of materials injected into the supraciliary space.  

The success of our approach is based on the combination of two advances: the 

development of sustained-release brimonidine microspheres and their placement adjacent 
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to the drug’s site of action in the ciliary body using microneedles. Roughly zero-order 

release of brimonidine with minimal burst effect was achieved by formulating the drug 

into PLA microspheres using PLA which was first treated to remove acidic monomers 

and oligomers to improve polymer stability during storage and effectively increasing 

molecular weight of the bulk PLA used for formulation. The resulting PLA microspheres 

had higher molecular weight and a denser matrix, which enabled efficient encapsulation, 

slow and continuous release with minimal burst in the first day. By increasing the PLA 

molecular weight or using an ester end-capped PLA in future studies, the release rate 

could be extended further, perhaps to achieve the target of 3 – 6 months of sustained 

release. Using different biodegradable polymers, such as poly(trimethylene carbonate), 

could reduce the inflammatory response to the microspheres because this polymer does 

not produce acidic byproducts during its degradation by surface erosion 197, 198. Other 

polymers might also biodegrade in a time frame matched to the drug release. 

Placement of the sustained-release microspheres in the supraciliary space served a 

number of functions. First, forming a drug depot adjacent to the ciliary body enabled dose 

sparing, which is not only of interest to reduce side effects, but also enables a smaller 

injection to contain enough drug for a longer duration of effect. Second, the supraciliary 

space is not in the visual axis and therefore should not affect vision the way eye drops or 

intravitreal injections can 97, 199.  

Third, injection into the supraciliary space is expected to be safe and 

straightforward to perform on an outpatient basis. This is because the microneedle used 

for injection inherently targets the supraciliary space due to its length and the injection 

procedure is almost identical to how current intravitreal injections are routinely 
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performed, except for using a shorter needle. Studies in animals and humans have shown 

that microneedle injections into the suprachoroidal space have been well tolerated 2, 7, 119, 

124, 127.  

Finally, the supraciliary space is believed to be a safe place to deposit drug 

formulations. The sclera and choroid are not tightly attached and thereby form a potential 

space that can be temporarily expanded without apparent long-term adverse effects 7, 9, 119, 

136, 146, 199-202. Sustained-release formulations placed into the suprachoroidal space of 

animals and humans have been well tolerated 7, 118, 124, 127  
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7 CONCLUSION  

Patients experiencing ocular pathology and/or disease can have devastating loss of 

vision and blindness, and consequently significant loss in quality of life203-206. Although 

many medications exist, delivering these drugs to the site of disease in a spatially and 

temporally controlled manner is challenging due to the eye’s small size and unique 

barriers. Traditional ophthalmic drug delivery techniques, namely topical eye drops and 

intravitreal injections, are not able to target specific tissues within the eye, resulting in 

low bioavailability at the diseased tissue(s) and/or possible side effects due to drug 

affecting non-target tissues.  

The suprachoroidal space (SCS) is a potential space found between the sclera and 

the choroid. Due to its proximity to the choroid, this space is an attractive site of drug 

delivery for posterior segment diseases because high bioavailability within the choroid 

and retina can be achieved9, 125. Thus, a lower drug dose can be used to achieve similar 

efficacy compared with traditional routes of administration6. Furthermore, the drug is 

compartmentalized in the SCS away from non-diseased tissues, which is expected to 

result in a more favorable side effect profile9, 125. Because of these reasons, drug delivery 

to the SCS has been achieved through invasive procedure and/or surgery2, 116-118, 130.  

A microneedle injection enables reliable and more efficient access to the SCS8, 81, 

compared with previous methods2, 117, 118, 130. The length of the microneedle is matched to 

the thickness of the conjunctiva and sclera so the microneedle is physically unable to 

penetrate deeper into the eye (i.e., through the choroid and retina). When fluid is injected 

at this position (deep to the sclera but superficial to the choroid), it will flow 

circumferentially within the SCS, bathing the choroid in drug. Furthermore, microneedle 
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injections can be performed in the outpatient clinic setting by ophthalmologists, and are 

well tolerated7. 

7.1 Kinetics of Suprachoroidal Space Delivery using Microneedles 

To aid in the rational design of drug delivery strategies utilizing the SCS, we 

studied the distribution and clearance of particles and molecules, as well as a controlled 

release system, injected into the SCS using a microneedle. First, we identified anatomical 

barriers to circumferential spread within the SCS. We studied the circumferential spread 

of particles and molecules co-injected into the SCS, as well as the effect of viscous 

formulations on distribution. Then, we investigated the SCS thickness and the effect of 

injection volume and formulation on this parameter over time. Next, we examined 

clearance kinetics and the routes of clearance of molecules injected into the SCS. Finally, 

we developed and tested a controlled release drug delivery system within the SCS for the 

treatment of glaucoma.  

7.1.1 Distribution in the suprachoroidal space  

The first three studies described the distribution of molecules and particles 

injected into the SCS of rabbits and humans using microneedles. We found anatomical 

barriers (the long posterior ciliary arteries in rabbits ex vivo and in vivo and the short 

posterior ciliary arteries in human cadaver eyes) that prevented circumferential particle 

spread within the SCS. Particles injected in close proximity to these vessels did not 

spread isotropically like particles injected far from these anatomical features. We posited 

that this behavior was due to a physical barrier within the SCS caused by a multitude of 

vessels that bound the sclera and choroid together tightly. In contrast, the human long 

posterior ciliary artery did not bind the sclera and choroid tightly, and was not expected 
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to form a barrier to spread. Instead, we found that the short posterior ciliary arteries in 

humans are morphologically similar to the long posterior ciliary arteries in rabbits, and 

we showed that these vessels also limited spread. Furthermore, solitary large attachments 

(i.e., the vortex vein) did not result in altered particle distribution. If the goal is to target 

the optic nerve and/or macula in human patients, further studies in live human subjects 

are warranted.  

We studied the distribution of particles and molecules co-injected into the SCS of 

ex vivo and in vivo rabbits. The purpose of this study was to ascertain if particles and 

molecules that were co-injected distributed differently. With particles suspended in 

HBSS, we found that, as injection volume increased, the area of particle spread increased, 

though the area of molecule coverage was greater than that of particles. Particle 

entrapment could be ameliorated by increasing formulation viscosity. Akin to Stoke’s 

Law, the viscous liquid formulation could form a ‘sheath’ around the particle and 

influence its interactions with the walls of the SCS. We also found that particles ranging 

from 20 to 2,000 nm in diameter also co-localized, suggesting particles of varying sizes 

behave similarly. 

We next investigated amount of distension between the sclera and the choroid, 

which we termed the SCS thickness. We found that increasing injection volume of HBSS 

did not change the thickness. We looked into why this might be the case, as the injected 

fluid could spread circumferentially or increase SCS thickness. We provide evidence that 

there are SCS fibrils that bind the sclera and the choroid, and that these fibrils limit the 

expansion of the SCS. Changing the viscosity of the formulation injected had a major 
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effect on SCS thickness, presumably since the viscous formulation could overcome the 

biomechanical forces of the tissues. 

From these three studies, we provide a model of how fluids and particles 

distribute in the SCS. The volume of fluid injected attempts to distribute itself within the 

SCS so as to minimize forces. Fluid can distribute circumferentially and/or increase the 

SCS thickness. Low-viscosity formulations are unable to overcome the biomechanical 

forces of the tissue beyond a certain SCS thickness, and thus fluid is distributed in a disc-

like region within the SCS that has a near-constant thickness. Initially, high-viscosity 

formulations resist flow and are able to overcome the tissue biomechanics, resulting in a 

localization of the fluid at the site of injection with an expanded SCS thickness. Over 

time, the viscous formulation may imbibe water to balance the increased osmotic forces 

of the fluid. This will cause swelling of the fluid at the site of injection. Alternatively, the 

viscous formulation can creep circumferentially in the SCS. Regardless of formulation, 

there are anatomical barriers in the SCS that physically limit circumferential flow 

(probably of a convective nature). These anatomical barriers are formed by tight 

adhesions as vessels traverse the sclera to anastomose with the choroid. If there is a 

solitary adhesion (as in the rabbit vortex), the effect is small and limited to just around 

the vessel. If there are many adhesions (as in the rabbit LPCA), an entire region can be 

blocked off. We hypothesize that these barriers are to convective flow so it may be 

possible to diffuse through or around them.  

Particles injected as a suspension within these formulations appear to be carried 

by the formulation. The viscosity of the formulation influences when the particles ‘fall 

out’ of suspension. ‘Falling out’ may be due to gravitational, electrostatic, or 
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morphological effects of the particles or rheological changes of the fluid. Since the 

viscosity of the formulation can change in the SCS over time due to dilution, prediction 

of particle transport time may be challenging.  

7.1.2 Clearance from the suprachoroidal space 

The second overall goal of this thesis was to study the clearance of molecules 

from the rabbit SCS in vivo. We began by investigating the rate of SCS collapse after 

microneedle injection of different liquid formulations. The rate of collapse varied from 

40 min to 14 days depending on formulation composition. Surprisingly, some viscous 

formulations expanded within the SCS well after the injection. This phenomenon was 

likely due to the viscous gel imbibing water from the local tissue environment to equalize 

osmotic (and hydration) pressure143.  

We then determined the rate of clearance of fluorescent molecules ranging from 

400 Da to 2 MDa. Whereas, small molecules (e.g., fluorescein) cleared from the SCS 

within 12 h, very large macromolecules were still in the SCS at 21 d. These very large 

macromolecules had significantly delayed clearance from the SCS likely due to the 

macromolecule being larger than the fenestrae of choriocapillaris31. Since clearance time 

of 2 MDa FITC-dextran matched the clearance of monoclonal antibodies injected 

intravitreally, this might be a viable strategy for controlled release in the SCS. 

Microspheres with similar dimensions as 2 MDa FITC-dextran were still visible in the 

SCS after 2 mo8. The macromolecule has deformable shape compared with the rigid 

microsphere, so clearance of 2 MDa FITC-dextran should still be possible.  

We set out to determine the route of clearance from the SCS. Previous studies 

have hypothesized the route of clearance as intravascular clearance from the SCS9, 126. 
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We collected fluorescein from different routes after microneedle injection. Contrary to 

those previous studies, we identified three regimes of clearance: (i) initial leakage of 

fluorescein from the injection site and perivascular leakage sites; (ii) pressure-driven 

trans-scleral movement of fluorescein, and (iii) diffusion into the choroid and subsequent 

intravascular clearance. These results were corroborated with a one-dimensional 

mathematical model of the SCS and surrounding tissues. 

7.1.3 Controlled release systems within the suprachoroidal space 

Due to the fast clearance from the SCS, we hypothesized that microparticle-based 

controlled-release drug delivery system could be used to extend time between dosing. We 

showed that such a system injected into the anterior SCS had a therapeutic effect for up to 

1 mo.  

However, this system achieved dose sparing of ~13% of the topical dose, which 

was not as much as the 1% of the topical dose achieved with bolus injections into the 

suprachoroidal space adjacent to the ciliary body (i.e., the supraciliary space)6. We 

hypothesized that this may be due to the strong binding affinity of brimonidine to a2 

adrenergic receptors and the fast clearance from the SCS. With a bolus injection, 

brimonidine was expected to bind all available receptors and cause a biological response 

for up to 12 h. However, with a controlled-release system, brimonidine was continually 

released in small quantities, and this must overcome the clearance of brimonidine from 

the SCS. Because of its strong binding affinity, not all the brimonidine release would be 

able to bind receptors since the receptors were already occupied by previously released 

brimonidine. This brimonidine was essentially ‘wasted’, which may at least partially 

explain the lower than expected dose sparing.  
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Using a more hydrophobic drug (such as latanoprost) might shrink this 

discrepancy in dose sparing between bolus and controlled release delivery. For example, 

suspensions of triamcinolone acetonide have been shown to release drug in the SCS for 

up to 2 mo2, 7, 119, 127. Another approach to have controlled release in the setting of fast 

clearance might be a drug delivery system that releases bursts of drug periodically. Drug 

would only be released during these bursts and not between the bursts. The periodicity of 

these bursts would match the time of efficacy for the drug encapsulated.  

7.2 Role of Formulation on Kinetics 

7.2.1 Liquid formulation  

Changes in formulation can have a dramatic effect on distribution, both 

circumferentially and in SCS thickness. In particular, we studied the effect of injection 

volume and formulation viscosity on distribution. Increasing injection volume had a 

reasonable effect on circumferential spread and a negligible effect on SCS thickness. On 

the other hand, increasing formulation viscosity had the dual effect of initial localization 

at the injection site, as well as increased SCS thickness. Depending on the formulation 

composition, the formulation could remain localized (for example, if the formulation 

contains physically cross-linked polymers) or it could spread. We are unsure of the 

mechanism by which viscous formulations spread, though we hypothesize it is associated 

with the biomechanical properties of the tissue.  

We achieved increased viscosity by adding high molecular weight 

macromolecules to the formulation. It would be interesting to find out if viscous 

formulations achieved with low molecular weight species would behave similarly.  
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7.2.2 Polymeric microparticles 

We and others have shown that polymeric microparticles distribute in the SCS 

and are resistant to clearance. We provide evidence that particles ranging from 20 nm to 

2,000 nm behave similarly. Even the smallest particles in this range are thought to be too 

large to fit through the fenestrae of the choriocapillaris. Thus, they are resistant to 

clearance. 

The fabrication and composition of microspheres suitable for the SCS need to be 

optimized. Although the brimonidine-loaded microsphere system was efficacious for up 

to 1 mo, the microspheres seemed to cause a significant foreign body response in the 

SCS. This might be due to the fabrication process (e.g., incomplete removal of solvent) or 

the materials used. Since the SCS is exposed to the choroidal vasculature (which is one of 

the densest vascular beds in the body), there is the strong possibility of a potent immune 

response. Furthermore, we have an incomplete understanding of the immune system in 

the SCS. Perhaps a detailed study of immune responses to materials in the SCS is 

warranted.  

Particles suspended in liquid formulations do not travel as far as the formulation. 

A theory on why this is has been presented above. This behavior might be modifiable by 

changing properties other than size.  

7.3 Limitations of the Studies 

The bulk of the studies were performed in albino New Zealand White rabbits, and 

there are inherent anatomical/physiological differences between rabbits and humans. The 

rabbit animal model was used because ocular dimensions of rabbit eyes are similar to 

humans while enabling visualization of fluorescence within the SCS. The use of smaller 
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animals (e.g., rats and mice) would be significantly more difficult since a shorter 

microneedle would need to be developed, which might decrease reliability81, 105. Larger 

animals (e.g., pigs and monkeys, for which Georgia Tech has no housing facilities) would 

require significantly more cost and study coordination. Thus, the rabbit is a good animal 

model to study suprachoroidal delivery. 

Despite limitations of the rabbit model, we believe the results of these studies are 

relevant to human health. For example, scaling microneedle dimensions is sufficient for 

reliable microneedle injections in rabbits and humans. Injection volumes should also be 

able to scale with respect to eye size. Some species-dependent parameters were deemed 

unimportant. For example, the scleral permeability of rabbits is different from that of 

humans, but sensitivity analysis indicates this parameter contributes very little to overall 

clearance.  

To study kinetics, fluorescent tracer molecules were used as proxies for drugs. 

While parameters such as molecular radius can be matched, other physiochemical 

properties (such as partition coefficient and protein affinity) cannot be matched. It is 

possible these physiochemical properties also play a role in clearance123. Thus, studies 

with drugs of interest should be performed to determine their kinetics.  

7.4 Final Note 

These studies provide an in depth look at the kinetics of microneedle injections 

into the SCS, and lay the foundation for future developments in suprachoroidal delivery 

as a route of administration that targets diseased tissues in posterior segment indications.  
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8 FUTURE DIRECTIONS 

This work investigated the kinetics (e.g., distribution and clearance) of molecules 

and particles injected into the SCS using a microneedle. In particular, we showed that (1) 

SCS thickness can be modulated with different excipient formulations; (2) particles 

become entrapped in the SCS to a greater extent relative to molecules; and (3) very large 

macromolecules (2 MDa) have significantly slower clearance times relative to smaller 

molecules. Since the bulk of this work was performed in rabbits, correlation in human 

subjects is also warranted. We will briefly discuss applications based on these findings, 

and possible ways forward. 

8.1 SCS Thickness can be Modulated with Liquid Formulation 

With low viscosity formulations (e.g., HBSS), the SCS reaches a constant 

thickness irrespective of injection volume. With high viscosity formulations (e.g., 5% 

CMC in HBSS), the SCS can reach a maximum thickness of ≥3 mm. Though this 

phenomenon has limited practicality in ophthalmic drug delivery, it can be useful in 

modulating biomechanical properties of the eye, including aqueous humor production 

and/or clearance, axial length of the eye, and re-apposition of the choroid with the retina 

(to treat retinal detachment).  

We showed that intraocular pressure (IOP) dropped after the injection of a viscous 

formulation (with or without the drug, brimonidine). This could be due to disruption of 

the ciliary epithelium causing decreased aqueous humor production, stretching of the iris 

root causing increased uveoscleral outflow, or stretching of Schlemm’s canal causing 

increased aqueous humor outflow. Examination of the mechanism of this IOP reduction 

is warranted. A combined drug-device implant, wherein the implant could reduce IOP via 
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biomechanical effects as well release glaucoma medications, could be developed to treat 

glaucoma. Suprachoroidal drainage stents (see CyPass® micro-stent144, 147, 201 or iStent® 

Trabecular Micro-Bypass145, 207), which are biomechanical devices that function under 

similar principles, require surgery whereas the proposed drug-device implant could be 

injectable in an outpatient setting. 

Refractive errors caused by myopia are due to misalignment of the retina relative 

to the focal plane of the eye1. Typically, myopia is caused by an increased axial length of 

the eye. We propose treating myopia by injecting a semi-permanent viscous formulation 

into the SCS to shift the retina (and choroid) forward so the focal plane of the eye lies on 

the retina.  

A retinal detachment is a medical emergency where the retina detaches from the 

choroid, and can result in irreparable loss of retinal cells1. Typically, a scleral buckle is 

surgically placed around the ocular globe in an attempt to re-appose the retina to the 

choroid208. A suprachoroidal bleb could be used, instead of a scleral buckle, to achieve 

the same goal. And indeed, such a surgical procedure has been attempted with positive 

results153, 154, 209. We propose a procedure to treat retinal detachments by injecting a 

viscous formulation into the SCS to re-appose the retina to the choroid. Since time is of 

the essence with a retinal detachment, a microneedle injection is advantageous over other 

methods because it can be performed in the clinic or the emergency department, and 

would not require surgery. A follow-up surgical intervention could be performed if 

needed.  
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We noted some ischemia caused by the CMC bleb. This might be useful to 

prevent or control choroidal blood vessel growth (as in the case of choroidal 

neovascularization or retinopathy of prematurity.  

8.2 Strategies for Controlled Release Treatments of Posterior Segment Diseases 

Many therapeutics to treat posterior segment diseases are monoclonal antibodies 

(mAbs) that bind up soluble proteins or polypeptide24, 68, 210, 211. For example, wet age-

related macular degeneration is treated with monthly intravitreal injections of mAbs 

against vascular endothelial growth factor (VEGF)68, 69. Since we and others8, 9 have 

shown that macromolecules on the order of 150 kDa clear from the SCS within 1 d, 

controlled release of these macromolecules has been proposed124. Most controlled release 

systems rely on the encapsulation of the therapeutic agent in polymeric microspheres or 

monolithic implants. However, encapsulation can affect the stability and functionality of 

mAbs212, 213. Furthermore, we have shown that microspheres do not distribute well in the 

SCS relative to molecules. 

Improving the formulation through the addition of viscous excipients should 

improve distribution of particles. Another approach might be to inject a solution of mAbs 

dissolved in a viscous solution. This should slow down the diffusion rate of mAbs to 

achieve some level of controlled release. And another approach might be to conjugate 

mAbs together to create very large macromolecules. 

8.3 Visualization of SCS Injections in Human Subjects 

Most of these studies were carried out in the in vivo and ex vivo albino New 

Zealand White rabbit eye, and species differences with humans are enough to warrant 

further experimentation. It was possible to visualize and track the kinetics of fluorescein 
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(and derivatives) in the SCS of albino rabbits since there was no pigment in the retinal 

pigment epithelium and choroid. However, most humans (and other model animals) are 

not albino and thus visualization with this method would not work. We propose the use of 

indocyanine green214 (or other fluorescent molecules with excitation/emission in the 

infrared spectra) as a marker of fluid distribution in the SCS. A near-infrared (NIR) dye 

should be visible regardless of the presence of visible-light pigment. Furthermore, 

indocyanine green is an FDA-approved molecule and there are ophthalmic imaging tools 

that have optics to visualize this molecule215.  

8.4 Future Outlook of Suprachoroidal Delivery 

Microneedle injections into the suprachoroidal space (SCS) enable reliable and 

efficient access to the SCS8, 81. The SCS is an emerging route of administration to treat 

ocular disease affecting the posterior segment and ciliary body. This work investigated 

distribution and clearance of particles and molecules injected into the SCS using a 

microneedle. We showed that distribution of particle suspensions are limited by 

anatomical barriers129; that particles spread to a lesser area than molecules; that clearance 

of molecules is by a combination of reflux, trans-scleral transport, and choroidal 

clearance; that very large macromolecules are cleared slower; and that controlled-release 

polymeric drug delivery systems in the SCS are efficacious115 but did not achieve the 

dose sparing seen with bolus injections6. From these experimental results, we generated 

theories to describe SCS kinetics.  

The knowledge gained from this thesis should aid in the rational design of 

formulations and injection strategies to attain better targeting within the SCS. Some ideas 

are highlighted in this chapter. At the same time, others are advancing the acceptability of 
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SCS injections in human medicine. Based on encouraging results from a Phase II clinical 

trial that tested the safety of a microneedle injection of triamcinolone to treat posterior 

uveitis (NCT02255032), a Phase III clinical trial (NCT02595398) is actively recruiting to 

determine the efficacy of this system in the clinic. Overall, the future for microneedle 

injections into the suprachoroidal space is bright. 
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