
A DYNAMIC CIRCUIT MECHANISM FOR SOCIAL BOND FORMATION IN FEMALE 
PRAIRIE VOLES 

 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 

by 
 
 
 

Elizabeth A. Amadei 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
Wallace H. Coulter Department of Biomedical Engineering 

 
 
 
 
 
 

Georgia Institute of Technology 
Emory University 

 
May 2017 

 
 
 
 
 
 
 
 
 

COPYRIGHT © 2017 BY ELIZABETH A. AMADEI 



A DYNAMIC CIRCUIT MECHANISM FOR SOCIAL BOND FORMATION IN FEMALE 
PRAIRIE VOLES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by:   
 
 

  

Dr. Robert Liu, Advisor 
College, Department of Biology 
Emory University 

 Dr. Joseph Manns 
College, Department of Psychology 
Emory University 

 
 

  

Dr. Larry Young, Co-advisor 
School of Medicine, Department of 
Psychiatry 
Emory University 

 Dr. Samuel Sober 
College, Department of Biology 
Emory University 

 
 

  

Dr. Robert Butera 
School of Biomedical Engineering 
Georgia Institute of Technology 

  

   
  Date Approved:  January 26, 2017 

 
  



To Mom, Dad, Alex and Fabian for your love and support. 



iv 
 

ACKNOWLEDGEMENTS 
 
 
 
 I would like to thank the many people who contributed to this work. These include 

my advisors, Dr. Robert Liu and Dr. Larry Young, and thesis committee members, Dr. 

Joseph Manns, Dr. Samuel Sober and Dr. Robert Butera. These individuals have 

provided extensive mentoring and support over the years, and I am deeply grateful for 

the time and energy they have invested into my professional development. I would also 

like to thank the co-authors of the manuscript encompassing my work. Each person 

made important intellectual and technical contributions that helped me to bring this 

manuscript to fruition. In addition to my advisors, these co-authors are Dr. Zachary 

Johnson, Yong Jun (Jim) Kwon, Aaron Shpiner, Varun Saravanan, Wittney Mays, Dr. 

Steven Ryan, Dr. Hasse Walum and Dr. Donald Rainnie.  

 I further thank Dr. Hans-Peter Lipp for Neurologgers; Dr. Frank Lin for initial 

testing of Neurologgers; Dr. Gordon Berman for methodological feedback and fruitful 

discussions; Gerald Wong for behavioral scoring; Mengqi Zhang, Rasika Tangutoori and 

Rachel Stanford for assistance with implant design and construction; the Liu, Young and 

Rainnie laboratories for training, feedback and helpful discussions; Lorra Matthews and 

the Yerkes animal care and veterinary staff for vole husbandry and care; Garrett 

Feldpausch for custom cage design and machining; and Dr. Jamie LaPrairie and Li-Ling 

Shen for their assistance.  

 Finally, I could not have done this work without the love and support of my family 

– Robin, Bernard and Alex – and my boyfriend, Fabian. Thank you for always being 

there to provide affection and encouragement. 

 This work was funded by an Emory Neuroscience Initiative grant (R.L., L.Y.), 

NIMH R21MH97187 (R.L.), NIMH P50MH100023 (L.Y., R.L.) and NINDS 

1T90DA032466 (V.S.).



v 
 

TABLE OF CONTENTS 
 

 
 
ACKNOWLEDGEMENTS iv    
 
LIST OF FIGURES vi     
 
LIST OF ABBREVIATIONS AND SYMBOLS vii   
 
SUMMARY x 
 
CHAPTER 1.  Introduction 1  
1.1 Prairie Vole Model of Social Bonding 1  
1.2  Neurochemistry of Prairie Vole Social Bonding 3 

1.2.1  Measurement of Neurochemical Release During Social Interactions 3 
1.2.2  Inhibition of Brain Neurochemical Systems 5 
1.2.3  Enhancement of Brain Neurochemical Systems 5 
1.2.4  Neurochemical Influence on Brain Networks 6 

1.3  mPFC and NAcc Anatomy 7 
1.4  mPFC-NAcc Functional Connectivity 8 
1.5  Objectives and Summary 11 
 
CHAPTER 2. Dynamic Corticostriatal Activity Biases Social Bonding in 
Monogamous Female Prairie Voles 13 
2.1 Introduction 13 
2.2 Results 13 
2.3 Methods 36 

2.3.1 Animals 36 
2.3.2  Surgeries 36 
2.3.3  Experiments 38 
2.3.4  Histology 44 
2.3.5  Data Analysis 46 
2.3.6  Statistics 52 

2.4 Collaborator Contributions 57 
 
CHAPTER 3.  Discussion and Future Directions 58 
3.1  OT and DA Modulation of mPFC-NAcc Functional Connectivity 60 
3.2  mPFC Modulation of NAcc Spiking Activity and Plasticity 61 
3.3  Other Brain Circuits Converging in NAcc 65 
 
REFERENCES 67 
 
VITA 75



vi 
 

LIST OF FIGURES 
 
 
 

Figure 1.1  | Laboratory preparations for vole bond formation and assessment 2 

Figure 1.2  | Proposed neural circuits of vole bond formation 4 

Figure 2.1  | Preparations for electrophysiological and optogenetic experiments 14 

Figure 2.2  | Mating enhances low-frequency coherence across multiple brain 
areas 

15 

Figure 2.3  | Behavioral characterization of hit and non-hit subjects 17 

Figure 2.4  | mPFC-NAcc cross-frequency coupling is dynamically modulated 
and behavior-dependent 

19 

Figure 2.5  | Net modulation data for all subjects 21 

Figure 2.6  | Granger causality during mating 23 

Figure 2.7  | Mean net modulation during mating, self-grooming and non-coded 
behaviors 
 

24 

Figure 2.8  | Specificity of correlation between nonhuddling net modulation and 
huddling latency 

25 

Figure 2.9  | mPFC-NAcc cross-frequency coupling correlates with huddling 
latency 

26 

Figure 2.10  | Net modulation during early and late mating and self-grooming 28 

Figure 2.11  | Behavioral specificity of correlation between local change in net 
modulation around mating and huddling latency 

29 

Figure 2.12  | Low-frequency optogenetic stimulation of mPFC-NAcc projections 
biases behavioral preference towards a partner 

32 

Figure 2.13  | Validation of virus injection and optical implant locations 33 

Figure 2.14  | Validation of light-induced electrophysiological responses in mPFC 
and NAcc 

35 

  
  



vii 
 

 
LIST OF SYMBOLS AND ABBREVIATIONS 

 
 
 

α significance level 

Δ change 

AAV adeno-associated virus 

AC anterior cingulate cortex 

aCSF artificial cerebrospinal fluid 

A/P anterior-posterior 

B baseline 

BLA basolateral amygdala 

BNST bed nucleus of the stria terminalis 

cc corpus callosum 

ChR2 Channelrhodopsin-2 

CSDS chronic social defeat stress 

D2R dopamine 2 receptors 

DA dopamine 

DAPI 4’,6-Diamidino-2-Phenylindole, Dihydrochloride 

DNQX 6,7-dinitroquinoxaline-2,3-dione 

EPSC excitatory post-synaptic current 

EPSP excitatory post-synaptic potential 

EYFP enhanced yellow fluorescent protein 

FSI fast-spiking interneuron 

Hud huddling 

Hyp hypothalamus 

IEG immediate early gene 



viii 
 

IL infralimbic cortex 

LFP local field potential 

M mating 

M+ after mating 

M- before mating 

MI Modulation Index 

M/L medial-lateral 

MO medial orbital cortex 

mPFC medial prefrontal cortex 

MSN medium spiny neuron 

NAcc nucleus accumbens 

NC non-coded 

NGS normal goat serum 

NHud nonhuddling 

OT oxytocin 

OTR oxytocin receptors 

P  partner 

P P-value 

Pun P-value (uncorrected) 

PBS phosphate buffered saline 

PBST phosphate buffered saline triton 

PFA paraformaldehyde 

Picro picrotoxin 

PL prelimbic cortex 

PPT partner preference test 

R2 square of Pearson correlation coefficient 



ix 
 

S stranger 

SG self-grooming 

SG+ after self-grooming 

SG- before self-grooming 

shRNA short hairpin RNA 

SHy septohypothalamic nucleus 

T multitaper segment duration 

TTX tetrodotoxin 

VTA ventral tegmental area 

W spectral concentration bandwidth 

  
 

 

  



x 
 

SUMMARY 
 
 
 

Adult pair bonding involves dramatic changes in the perception and valuation of 

another individual (Hazan and Shaver, 1987; Zayas et al., 2015). One key change is that 

partners come to reliably activate the brain’s reward system (Aragona et al., 2006; 

Bartels and Zeki, 2000; Johnson et al., 2016; Ross et al., 2009b; Young et al., 2001), 

though the precise neural mechanisms by which partners become rewarding during 

sociosexual interactions leading to a bond remain unclear. Using a prairie vole model of 

social bonding (Young and Wang, 2004), I show how a functional circuit from medial 

prefrontal cortex (mPFC) to nucleus accumbens (NAcc) is dynamically modulated to 

enhance females’ affiliative behavior towards a partner. Individual variation in the 

strength of this functional connectivity, particularly after the first mating encounter, 

predicts how quickly animals begin affiliative huddling with their partner. Rhythmically 

activating this circuit in a social context without mating biases later preference towards a 

partner, indicating that this circuit’s activity is not just correlated with how quickly animals 

become affiliative but causally accelerates it. These results provide the first dynamic 

view of corticostriatal processes involved in bond formation, revealing how social 

interactions recruit reward systems to drive changes in affiliative behavior.  
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CHAPTER 1 
 

INTRODUCTION 
 
 
 
 The ability to form social attachments throughout one’s lifespan is crucial for well-

being and mental health (NAMHC, 2004). Such attachments include adult pair bonding, 

for which the brain areas activated during pair bond expression have been examined 

using functional magnetic resonance imaging studies in humans (Acevedo et al., 2011; 

Bartels and Zeki, 2000). However, the precise neural mechanisms of pair bond formation 

are technically challenging to study in humans, motivating the use of animal models. 

This thesis takes advantage of the prairie vole (Microtus ochrogaster), a canonical 

rodent model of social bonding (Johnson and Young, 2015; Young and Wang, 2004). In 

the Introduction sections below, I describe the laboratory preparation and previous work 

examining neurochemical mechanisms of vole bonding within the mesocorticolimbic 

reward system. I focus on two anatomically-connected brain areas, the mPFC and NAcc 

(Christie et al., 1987; Gorelova and Yang, 1996; Ross et al., 2009a), for which I detail 

unanswered questions and lay out the objectives of this thesis. 

1.1 Prairie Vole Model of Social Bonding 

 The prairie vole is a socially monogamous rodent that forms life-long bonds with 

partners (Young and Wang, 2004). The first evidence for prairie vole pair bonding came 

from live-trap field studies of prairie voles and meadow voles (Microtus pennsylvanicus), 

a closely-related, but polygamous, vole species. Compared to meadow voles, prairie 

voles were more likely to be captured in male-female pairs as well as re-captured in the 

same pairs over time (Getz et al., 1981). In preliminary laboratory studies, wild-derived 

female prairie voles separately exposed to their breeding partner and a novel male 

showed more mating and less aggression towards the partner (Getz et al., 1981), 

consistent with field observations and motivating the development of laboratory 
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preparations for pair bond formation and expression. Pair bond formation (“cohabitation”, 

Figure 1.1, left) consists of pairing two opposite-sex adults typically for 6 to 48 hours 

(Williams et al., 1992). A subject’s bond with its partner is then assessed using a partner 

preference test (PPT, Figure 1.1, right), in which the partner from cohabitation is 

tethered to one side of a three-chambered arena, while a stranger of same sex to the 

partner is tethered to the other side (Ahern et al., 2009). The relative amount of time that 

the freely-moving subject spends in motionless physical contact (“huddling”) with its 

partner versus the stranger (“partner preference”) is used as an index of bond formation. 

Prairie voles form robust partner preferences, whereas the closely-related, but 

polygamous, montane voles (Microtus montanus) do not (Insel and Hulihan, 1995). 

 
 

 

Figure 1.1 | Laboratory preparations for vole bond formation and assessment. Extended 
male-female pairing (left) can produce a social bond that is assessed using the PPT (right). 
During the PPT, the subject chooses to huddle with the partner from cohabitation versus a 
stranger, and the relative time spent with each individual is measured as an index of the bond. 
Images adapted from Lim et al. (2004) and Ahern et al. (2009).         

  
 
 
 Based on previous work in postpartum females demonstrating mating preference 

for their breeding partner and aggression toward novel males (Getz et al., 1981), 

Williams et al. (1992) tested whether mating facilitates bond formation in females. They 

estrogen-primed a group of ovariectomized females to induce sexual receptivity. A 

second group was left untreated. Both groups were cohabitated with males for 6 hours 

and then tested in a PPT. During the cohabitation, a subset of estrogen-primed females 
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failed to mate and thus were classified as a non-mating, estrogen-primed group. When 

comparing the PPT results across groups, only females that mated within cohabitation 

developed a partner preference, whereas non-mating, estrogen-primed females and un-

treated females did not. Williams et al. (1992) also showed that 24 hours of cohabitation 

is sufficient for partner preference formation even in the absence of mating, indicating 

that mating accelerates bond formation.  

1.2  Neurochemistry of Prairie Vole Social Bonding  

 The availability of closely-related species with different social strategies led to an 

important study by Insel and Shapiro (1992) measuring the distribution of brain oxytocin 

receptors (OTR) in prairie and montane voles. They found significant differences in OTR 

levels in several brain areas, including elevated OTR in the mPFC and NAcc of prairie 

voles. Their findings led to the hypothesis that oxytocin (OT), as well as other 

neurochemicals known to be released during social interactions (e.g. dopamine (DA) 

(Damsma et al., 1992)), act within these brain areas to facilitate bond formation (Figure 

1.2). In this Introduction, I will summarize key studies that measure neurochemical 

release during social interactions leading to a bond, inhibit neurochemical action to 

disrupt bond formation, enhance neurochemical action to accelerate bond formation, and 

examine neurochemicals’ influence on brain networks. 

1.2.1  Measurement of Neurochemical Release During Social Interactions 

 Given the role of mating in accelerating vole bond formation (Williams et al., 

1992) and the finding that vaginocervical stimulation induces central OT release in 

sheep (Kendrick et al., 1986a)  (see below), Ross et al. (2009a) tested whether mating 

releases OT into the NAcc of female prairie voles. They measured OT dialysates from 

the NAcc of female voles cohabitating with a male. To isolate the effect of mating, 

females underwent a “restricted exposure” phase, in which the male was placed in the 

same cage as the female but separated by a wire mesh to prevent mating, and then a  
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Figure 1.2 | Proposed neural circuits of vole bond formation. mPFC and NAcc receive OT 
and DA projections from the hypothalamus (Hyp) and ventral tegmental area (VTA), respectively. 
mPFC projects glutamatergically to the NAcc. Figure adapted from Young and Wang (2004) and 
McGraw and Young (2010). 

 
 
 
“free exposure” phase allowing mating. Females were categorized by whether they 

mated during free exposure. Specifically in the mating group, the percentage of females 

with detectable (above threshold) dialysate readings significantly increased from the 

restricted- to free-exposure phases, suggesting mating releases OT in NAcc.  

 Gingrich et al. (2000) measured NAcc DA dialysates in mating and non-mating 

female voles freely-exposed to a male. They found a significant increase in DA 

specifically in mating females within the first 15 minutes of cohabitation (compared to a 

15-min baseline period before male exposure), suggesting that mating releases DA in 

NAcc.   

 Central OT and DA release during mating or vaginocervical stimulation has been 

found in other species as well. For example, using microdialysis in male and female rats, 

Damsma et al. (1992) and Pfaus et al. (1995) found a significant increase in NAcc DA 

during mating compared to a baseline time point. Waldherr and Neumann (2007) and 

Nyuyki et al. (2011) found a significant increase in OT at the paraventricular nucleus of 

the hypothalamus, a key site of OT production (Kendrick, 2000), in male rats and female 

rats able to pace their mating behavior. Sampling cerebrospinal fluid from the lateral 

ventricles of cycling female sheep, Kendrick et al. (1986b) found that vaginocervical 
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stimulation significantly elevated central OT levels. These results indicate that the 

mating-induced release of OT and DA is not itself specific to prairie voles. However, 

parallel studies in voles inhibited or enhanced neurochemical action in the NAcc and 

other brain areas to determine how neurochemicals specifically act to facilitate vole bond 

formation. These studies are summarized below.     

1.2.2  Inhibition of Brain Neurochemical Systems 

 The first inhibition studies infused neurochemical receptor antagonists centrally 

or systemically to block neurochemicals’ action during vole bonding. Blocking OTR 

centrally or DA 2 receptors (D2R) systemically disrupted bond formation (Insel and 

Hulihan, 1995; Wang et al., 1999). Subsequent site-specific antagonist studies 

implicated mPFC and NAcc as key sites of neurochemical action. Blocking OTR in either 

mPFC or NAcc or D2R in NAcc disrupted bond formation in mating females (Gingrich et 

al., 2000; Young et al., 2001). Blocking central OTR and NAcc D2R also disrupted bond 

formation in mating males (Aragona et al., 2006; Johnson et al., 2016), thus extending 

results to both sexes. 

 Keebaugh et al. (2015) knocked down OTR expression in NAcc to further test the 

necessity of OT’s NAcc action for bond formation. Juvenile females were injected with 

an adeno-associated virus (AAV) carrying a short hairpin RNA (shRNA) that degraded 

OTR mRNA, thus reducing OTR expression. In adulthood, treated females were 

cohabitated with a partner for 24 hours with mating. In contrast to animals injected with a 

control virus, treated animals failed to show a partner preference, thereby further 

implicating NAcc OTR in bond formation. However, how OTR activation affects neural 

activity in NAcc remains an open question. 

1.2.3  Enhancement of Brain Neurochemical Systems 

 While pharmacological inhibition and receptor knock down studies demonstrated 

the necessity of OT and DA for vole bond formation, other pharmacological and genetic 
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studies enhanced OT and DA function to test these neurochemicals’ sufficiency.  For 

example, Williams et al. (1994) and Insel and Hulihan (1995) found that central OT 

infusion (compared to vehicle, artificial cerebrospinal fluid (aCSF)) accelerated bond 

formation in females even in the absence of mating. Cho et al. (1999) performed central 

OT infusion in both non-mating males and females and found a similar acceleration 

effect in both sexes. To augment OT action within the NAcc specifically, Ross et al. 

(2009b) overexpressed NAcc OTR in females by injecting an AAV carrying the OTR 

gene. Compared to a sham-surgery control group lacking the AAV, treated animals more 

quickly developed a partner preference when tested at multiple time points. Also within 

the NAcc, infusion of the D2R agonist quinpirole accelerated bond formation in both non-

mating females (Gingrich et al., 2000) and males (Aragona et al., 2006). 

1.2.4  Neurochemical Influence on Brain Networks 

 The neurochemical measurement and manipulation studies described above 

established the importance of individual brain areas for social bond formation. More 

recently, Johnson et al. (2016) and Johnson et al. (2017) investigated how OT 

modulates immediate early gene (IEG) expression across brain areas. Males were 

infused with OTA or aCSF vehicle either centrally or within the NAcc and then 

cohabitated with a female with mating. Following cohabitation, the males’ brains were 

removed and expression of the IEG protein Fos, a measure of neuronal activation, 

quantified in multiple areas implicated in prairie vole bonding and social behavior (e.g. 

mPFC, NAcc, medial and basolateral amygdala (BLA)). While OTA and aCSF animals 

showed comparable amounts of mating and investigative behaviors as well as Fos 

expression in individual brain areas, the correlation between brain areas’ Fos expression 

was disrupted in OTA animals, suggesting that OT enhances coordinated IEG 

expression within a network of brain areas.  
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 Neurochemical measurement, inhibition and enhancement studies have been 

critical for implicating mPFC and NAcc in bond formation. Also, the recent IEG studies 

have raised the possibility that mPFC and NAcc become activated together and as part 

of a broader network as animals socially interact. However, these findings provide only a 

static picture of mPFC and NAcc involvement in bond formation. How these brain areas 

are dynamically activated during social interaction leading to a bond has been unknown. 

In this thesis, I address this gap by recording and manipulating dynamic neural activity 

within the mPFC and NAcc of socially interacting female voles. As background to the 

formal objectives of this thesis (Section 1.5 below), I will next briefly summarize mPFC 

and NAcc anatomy and previous work on functional connectivity.    

1.3  mPFC and NAcc Anatomy  

 The mPFC and NAcc are part of the mesocorticolimbic system, composed of the 

VTA, a key locus of DA neurons, and its projection sites (Swanson, 1982; van Huijstee 

and Mansvelder, 2015). These projection sites can be classified into a limbic areas 

including the NAcc, amygdala, hippocampus and cortical areas including the mPFC and 

orbitofrontal cortex (Hearing et al., 2012). This system has been implicated in natural 

reward and reinforcement (Hernandez and Hoebel, 1988; Schultz, 2006), and is also 

recruited by drugs of abuse to elicit pathological drug-seeking behaviors (Adinoff, 2004; 

Bossert et al., 2012).  

 The mPFC has been implicated in behavioral flexibility (Ragozzino et al., 1999), 

attention (Kahn et al., 2012) and decision making (Walton et al., 2002). The rodent 

mPFC consists of four cortical sub-regions (from dorsal to ventral): medial agranular, 

anterior cingulate (AC), prelimbic (PL) and infralimbic (IL) (Hoover and Vertes, 2007). 

These sub-regions are distinguished by their cytoarchitecture (e.g. lamination, cell 

density) (van Eden and Uylings, 1985) and connectivity (Hoover and Vertes, 2007). For 

example, dorsal mPFC (medial agranular, dorsal AC) is more strongly innervated by 
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sensorimotor cortical areas, whereas ventral mPFC (PL, IL) is more strongly innervated 

by limbic areas (e.g. amygdala, limbic cortical areas) (Hoover and Vertes, 2007). Dorsal 

and ventral mPFC also differ in their projection targets. For example, within the NAcc, 

which is divided into core and shell sub-regions (see below), dorsal mPFC more strongly 

innervates the core, while ventral (IL) mPFC more strongly innervates the shell, all 

glutamatergically (Brog et al., 1993; Christie et al., 1987). Within the mPFC, as in other 

cortical areas, a balance of excitation and inhibition exists between excitatory pyramidal 

neurons and inhibitory interneurons (Yizhar et al., 2011).  

 The NAcc plays a key role in selecting motivated behavioral responses to 

environmental stimuli (Floresco, 2015; Ghods-Sharifi and Floresco, 2010; Nicola, 2007). 

The NAcc consists of two primary sub-regions (from medial to lateral): shell and core. 

The NAcc sub-regions differ in their cell morphology, histochemistry and connectivity 

(Heimer et al., 1991; Meredith et al., 1992). For example, while both core and shell 

project to the ventral pallidum, a major limbic output structure (Smith et al., 2009), the 

shell shows a distinguishing projection to the extended amygdala (Heimer et al., 1991). 

The NAcc is primarily an inhibitory structure, in which 90-95% of neurons are GABAergic 

medium spiny neurons (MSNs) (Nicola et al., 2000). The remaining 5-10% are 

interneurons including fast-spiking parvalbumin (FSIs), slow-firing cholinergic and burst-

firing somatostatin/nitric oxide (Nicola et al., 2000; Tepper et al., 2008). MSNs project 

intrinsically to each other (Taverna et al., 2004), as well as externally (Chang and Kitai, 

1985), and receive projections from local interneurons (Taverna et al., 2007). The 

following section will focus on the functional role of mPFC glutamatergic projections to 

the NAcc (mPFC-NAcc “circuit”). 

1.4  mPFC-NAcc Functional Connectivity 

 Functional connectivity will be treated here as general term to encompass the 

following three ways of assaying activation of the mPFC-NAcc circuit and its role in 
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behavior: 1) correlation in electrophysiological activity between brain areas, 2) 

asymmetrical lesions of brain areas across hemispheres to disconnect the projection 

and 3) optogenetic stimulation of mPFC afferents in the NAcc. This section will focus on 

previous work applying these methods to examine the mPFC-NAcc circuit’s function in 

motivated behavior and learning. 

 Gruber et al. (2009a) measured spiking and local field potential (LFP) activity 

from the mPFC and NAcc of rats during lever-pressing for a sucrose reward. LFPs are 

an integrated signal of population activity, thought to reflect synchronized synaptic 

inputs, spike afterpotentials, and subthreshold membrane fluctuations of neurons near 

the electrode tip (Berens et al., 2008). Compared to an active control behavior of 

exploration within the experiment cage, lever pressing enhanced the cross-correlation in 

mPFC-NAcc spiking as well as the cross-spectral density of mPFC and NAcc LFPs at 

low frequencies (delta; 1-4 Hz), two measures of connectivity. Thus, motivated reward-

seeking behavior recruited the mPFC-NAcc circuit, particularly at low frequencies. 

 Block et al. (2007) manipulated mPFC-NAcc connectivity to examine its role in 

attentional set shifting, a measure of behavioral flexibility in which the stimulus 

associated with rewarded behaviors changes over the course of the experiment. In this 

study, rats first learned to use a spatial cue within a maze to choose the path leading to 

reward (“response strategy”). The task design was then updated such that a visual cue 

now predicted the rewarded path whereas the spatial cue was non-informative (“visual 

cue-based strategy”). To test the mPFC-NAcc circuit’s role in shifting behavioral 

strategies, Block et al. disconnected the mPFC-NAcc circuit by asymmetrically lesioning 

mPFC and NAcc across brain hemispheres. Compared to a saline-injected control 

group, mPFC-NAcc disconnected animals acquired the response strategy normally, but 

were selectively disrupted in their switch to the visual cue-based strategy, as indicated 

by a significantly greater number of perseverative errors and trials needed to reach a 
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performance threshold on the visual cue-based task. Therefore, mPFC-NAcc 

connectivity was necessary for flexible adjustments in behavior on this set shifting task.   

 To test the sufficiency of mPFC-NAcc connectivity in modifying motivated 

behaviors, Britt et al. (2012) and Bagot et al. (2015) optogenetically stimulated this circuit 

in conditioned place preference and chronic social defeat stress (CSDS) assays, 

respectively, as described below. Both studies used low-frequency stimulation (6 Hz or 4 

Hz, respectively; no other stimulation frequencies were reported). 

 In the Britt et al. study, stimulation was delivered whenever an animal entered 

one side of the testing arena. Animals’ preference for that location was measured during 

the stimulation session (repeated twice on the two following days) as well as prior to and 

following the stimulation sessions (pre- and probe-tests). mPFC-NAcc stimulation 

enhanced preference for the stimulation location, indicated by a significant effect of 

experiment session on preference for the stimulation-paired location.  

 In the Bagot et al. study, animals underwent a CSDS paradigm in which they 

were repeatedly exposed to an aggressor mouse. They were then implanted with optical 

fibers and the mPFC-NAcc circuit stimulated during exposure to a novel stimulus mouse, 

which normally elicits social avoidance. Compared to control animals without optical 

stimulation, stimulated animals spent more time in social proximity to the stimulus mouse 

and less time in the cage corners, indicating that low-frequency mPFC-NAcc stimulation 

reduced social avoidance and enhanced social investigation. Therefore, both Britt et al. 

(2012) and Bagot et al. (2015) demonstrated that low-frequency mPFC-NAcc activation 

can modify motivated behaviors. 

 These four studies demonstrate that motivated behaviors both recruit and are 

influenced by mPFC-NAcc circuit activation. In particular, low-frequency activity appears 

to predominate during reward seeking and help to shift animals to a new behavioral 

response to a given stimulus in both non-social and social contexts. This motivates 
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asking whether mPFC-NAcc functional connectivity could also play a role in vole pair 

bonding, in which animals become increasingly affiliative towards a partner over the 

course of cohabitation. I investigate this question in this thesis, with the central 

hypothesis that mPFC-NAcc functional connectivity during bond formation helps to 

switch animals to express affiliative behavior towards a partner. 

1.5  Objectives and Summary 

 In this thesis, I investigate the role of mPFC-NAcc functional connectivity in vole 

pair bonding by recording and manipulating this circuit during natural social interactions 

leading to a bond. The specific objectives are to:  

1) Develop experimental preparations for LFP recording and optogenetic manipulation in 

freely-behaving, socially-interacting female voles. 

2) Measure natural behaviors occurring during cohabitation, including mating, a behavior 

that accelerates bond formation, and huddling, a measure of bond expression (see 

above). Characterize the emergence of huddling behavior over the course of 

cohabitation. 

3) Measure functional connectivity between mPFC and NAcc over the course of 

cohabitation and relate this connectivity to the emergence of huddling behavior. 

4) Optogenetically stimulate this circuit to causally test its role in facilitating bond 

formation. 

 I show that low-frequency coherence, one measure of functional connectivity, 

between mPFC and NAcc is enhanced during mating. To assess how this low-frequency 

connectivity modulates local activity in individual brain areas, I assess cross-frequency 

interactions between brain areas. I find that the phase of low-frequency mPFC 

oscillations modulates the amplitude of NAcc high (gamma)-frequency oscillations, a 

measure of local network activation (Buzsáki and Wang, 2012), suggesting that mPFC 

modulates local activity in NAcc. The strength of this modulation varies across 
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individuals and predicts how quickly animals begin affiliative huddling with their partner. 

To test whether mPFC-NAcc circuit activation causally facilitates bond formation, I 

optogenetically activate this circuit in a social context without mating and find that this 

activation biases later preference towards a partner. These results are consistent with 

the central hypothesis that mPFC-NAcc functional connectivity during bond formation 

helps to switch animals to express affiliative behavior towards a partner. 
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CHAPTER 2 

DYNAMIC CORTICOSTRIATAL ACTIVITY BIASES SOCIAL BONDING IN 
MONOGAMOUS FEMALE PRAIRIE VOLES1 

 
 
 

2.1  Introduction 

 The formation of socially monogamous relationships, or pair bonds, is a complex 

phenomenon occurring in less than 5% of mammalian species (Kleiman, 1977). In the 

monogamous prairie vole, neurochemicals (e.g. OT, DA) (Young and Wang, 2004) act in 

two anatomically-connected (Christie et al., 1987; Ross et al., 2009a) corticostriatal 

areas, the mPFC and NAcc, to establish a selective preference towards a partner 

(Aragona et al., 2006; Young and Wang, 2004). Individual variation in neurochemical 

receptors within this circuit explains differences in affiliative behavior (Aragona et al., 

2006; Ross et al., 2009b). However, little is known about how mPFC and NAcc are 

dynamically activated during sociosexual interactions. mPFC-NAcc communication is 

more generally implicated in an animal’s ability to effectively coordinate its behavior to 

obtain rewards (Floresco, 2015; Nicola, 2007), including gaining new behavioral 

strategies (Block et al., 2007). I therefore hypothesized that mPFC-NAcc functional 

connectivity helps to switch animals to express affiliative behavior towards a partner. 

2.2  Results 

To examine the neural and behavioral specificity of this hypothesis, I developed 

an electrophysiological recording paradigm for freely-moving females during extended 

sociosexual interactions with a male (Figure 2.1a-c). Electrodes were chronically 

implanted (Figure 2.2a-c) in the mPFC and NAcc (hit animals) or an off-target area 

                                                           
1
 Adapted from E.A. Amadei*, Z.V. Johnson*, Y.-J. Kwon, A.C. Shpiner, V. Saravanan, W.D. 

Mays, S.J. Ryan, H. Walum, D.G. Rainnie, L.J. Young and R.C. Liu, Dynamic corticostriatal 
activity biases social bonding in monogamous prairie voles, Nature. In revision. 
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Figure 2.1 | Preparations for electrophysiological (a-c) and optogenetic (d-e) experiments. 
a, Neurologger recording device secured to a female during cohabitation with a male. The 
Neurologger interfaces with a chronic electrode implant targeting the mPFC and NAcc. b, 
Schematic of experimental setup. Simultaneous video and neural recording is synchronized by 
periodic timestamps. c, Summarized ethogram definitions of mating, self-grooming and huddling 
used to score experimental videos. d, Arena used for cohabitation in optogenetics experiments. 
The arena is divided into social, neutral, and non-social zones. Food is placed in the center of the 
neutral zone. The male is contained under a cup in the social zone, and the female, implanted 
with optical fibers, is allowed to freely explore the arena. Optical stimulation is triggered whenever 
she is in the social zone (green hatched area; red circle is visualization of tracking) for up to 1 
hour within the cohabitation period. The social zone is defined as consistently as possible across 
experiments based on physical features of the arena. e, Schematic of cohabitation setup, 
additionally showing how the laser is controlled by video recording to automatically deliver optical 
stimulation when the female is in the social zone.  
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Figure 2.2 | Mating enhances low-frequency coherence across multiple brain areas. a, LFP 
recording sites in “hit” (n = 9) subjects targeting mPFC and NAcc, b, verified with electrolytic 
lesions (scale bar, 500 μm). Anterior/posterior locations of brain sections (units of rat brain atlas; 
see Methods) are indicated. c, Recording sites in “non-hit” (n = 6) subjects with electrodes in 
mPFC and within/bordering BNST. d, Cumulative huddling trajectories of hits and (f) non-hits 
during cohabitation; huddling latencies are indicated by dots color-coded by subject. e, Huddling 
latency is negatively correlated with total huddling duration over full cohabitation (n = 15; R

2
 = 

0.63, P < 0.001). g, Coherence spectra for example hit and (j) non-hit subjects, with insets 
showing low-frequency peaks during mating (5 Hz). h, 5 Hz coherence is significantly modulated 
by behavior in both hits (F2,16 = 35.10, P < 0.001; post-hoc, M vs. SG, t8 = 4.65, P = 0.005; M vs. 
Hud, t8 = 6.73, P < 0.001; SG vs. Hud, t8 = 5.10, P = 0.003) and (i) non-hits (F2,10 = 12.43, P = 
0.002; post-hoc, M vs. SG, t5 = 2.44, P = 0.176; M vs. Hud, t5 = 4.08, P = 0.029; SG vs. Hud, t5 = 
3.08, P = 0.082). Reported coherence P-values are Bonferroni-corrected for multiple comparisons 
(see Methods). Error bars show mean ± s.e.m. SHy: septohypothalamic nucleus. 

. 
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posterior to the NAcc (within or bordering the bed nucleus of the stria terminalis (BNST); 

non-hit animals). Synchronized LFPs and video were acquired during a 6-hour 

cohabitation with a male. Mating, which accelerates bond formation (Williams et al., 

1992), and side-by-side huddling, an index of bond expression (Ahern et al., 2009), were 

assessed as measures of affiliative behaviors during cohabitation. Self-grooming was 

assessed as a self-directed, high-motion control behavior.  

Behaviors were variable from individual to individual, yet not different overall 

between hit and non-hit animal groups (Figure 2.3a). In particular, individuals varied in 

how quickly they began huddling (huddling “latency”), with those that started earlier 

going on to huddle more (Figure 2.2d-f). Accelerated huddling latencies were not simply 

explained by the quantity or timing of mating or self-grooming (Figure 2.3c), motivating 

me to ask whether mPFC-NAcc circuit activation could better explain variability in the 

timing of a switch towards more huddling.  

Low-frequency drive from mPFC to NAcc can alter behavioral responses to 

environmental stimuli (Bagot et al., 2015; Britt et al., 2012), so I analyzed whether 

mPFC-NAcc connectivity increases during social behaviors that promote more affiliative 

responses to a partner. Low-frequency coherence, a common measure of functional 

connectivity, was significantly higher during mating compared to self-grooming and 

huddling (Figure 2.2g-h). Non-hit animals also showed significantly higher low-frequency 

coherence during mating compared to huddling (Figure 2.2i-j), indicating that mating 

generally enhances low-frequency connectivity across multiple brain areas, consistent 

with previous Fos studies in males (Johnson et al., 2016; Johnson et al., 2017).  

To assess how this low-frequency connectivity modulates local activity within 

brain areas, I measured the interaction between low- and high (gamma)-frequency  
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Figure 2.3 | Behavioral characterization of hit and non-hit subjects. a, Number of bouts, total 
duration, and latency for mating, self-grooming and huddling in hit (n = 9) and non-hit (n = 6) 
subjects. No significant differences exist between subject groups (all P > 0.05). b, Latency is 
modulated across behaviors (n = 15; χ

2
(2) = 18.53, P < 0.001, Friedman Test), with mating and 

self-grooming showing shorter latencies compared to huddling but similar latencies to each other 
(SG vs. Hud, P < 0.001; M vs. Hud, P = 0.001; M vs. SG, P = 0.454, Wilcoxon signed-rank). c, 
Measures of mating and self-grooming duration and latency do not correlate with huddling latency 
(n = 15; all P > 0.05). Reported P-values in a-c are Bonferroni-corrected for multiple comparisons 
(see Methods). Boxplots show median and interquartile range. Data points indicated by red cross 
refer to values whose distance from the top or bottom of the box is greater than 1.5 times the 
interquartile range. 
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Figure 2.4 | mPFC-NAcc cross-frequency coupling is dynamically modulated and behavior-
dependent. a, Example raw LFP signals of mPFC (top) and NAcc (upper middle), filtered into 
low-frequency (lower middle) and gamma-frequency (bottom) bands, shows gamma amplitude 
modulation by low-frequency phase. b, Modulation Index (MI) of phase-amplitude coupling for an 
example hit subject showing mPFC-to-NAcc (left) and NAcc-to-mPFC (middle) directions during 
cohabitation. “Net modulation” (right) is the difference in MI between directions. c, Mean net 
modulation for hit (left, n = 9), non-hit (middle, n = 6), or pooled (right, n = 15) subjects shows 
peaks when mPFC low-frequency phase modulates NAcc (or non-hit) gamma amplitude 
(indicated by black rectangle). d, Net modulation values (2-s, non-overlapping windows) sampled 
over a baseline solo period (gold region) and the 6-hr cohabitation for an example hit and (e) non-
hit subject. Values that temporally overlap with mating, self-grooming and huddling behaviors (top 
hashes) are color-coded accordingly. All non-scored values are indicated as “non-coded,” which 
together with mating and self-grooming represent “nonhuddling” values. Cumulative distributions 
of net modulation values coded by behavior are shown in right panel. f, Mean net modulation 
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across subjects during huddling, baseline and nonhuddling behaviors in all hits and (i) non-hits. 
Net modulation varies with behavior in hits (F1.219,9.754 = 9.44, P = 0.010, Greenhouse-Geisser 
corrected; post-hoc, NHud vs. B, t8 = 3.39, P = 0.028; NHud vs. Hud, t8 = 3.17, P = 0.040; Hud vs. 
B, t8  = 1.81, P = 0.322) but not non-hits (F1.027,5.133 = 3.94, P = 0.102, Greenhouse-Geisser 
corrected). g, Pairwise correlations between net modulations for constitutive nonhuddling 
behaviors in hits (M vs. SG, R

2
 =0.70, P = 0.015; M vs. NC, R

2
 = 0.68, P = 0.018; SG vs. NC, R

2
 

= 0.78, P = 0.005) suggest individual variation in how strongly mPFC modulates NAcc. (j) Such 
individual variation was weaker in non-hits (M vs. SG, R

2
 = 0.58, P = 0.240; M vs. NC, R

2
 = 0.64, 

P = 0.172; SG vs. NC, R
2
 = 0.83, P = 0.036). h, Nonhuddling and huddling net modulations were 

not correlated in either hits (R
2
 = 0.10, P = 0.417) or (k) non-hits (R

2
 = 0.06, P = 0.630). Reported 

P-values in f, g, i and j are Bonferroni-corrected for multiple comparisons (see Methods). Error 
bars show mean ± s.e.m. 

 
 
 
oscillations across brain areas (Figure 2.4a). Gamma oscillations reflect local network 

activation (Buzsáki and Wang, 2012), including entrainment of FSIs within the ventral 

striatum (Berke, 2009; Kalenscher et al., 2010; van der Meer and Redish, 2009). In 

contrast, lower-frequency rhythms (e.g. delta, theta) can regulate gamma oscillations by 

phase modulating their amplitude (Lakatos et al., 2005), a phenomenon observed across 

brain areas (Tort et al., 2008). In both hit and non-hit groups, phase-amplitude coupling 

(“net modulation”, Figure 2.4b-c) over the full cohabitation was maximal when low-

frequency mPFC activity (5-6 Hz) modulated high gamma (80-84 Hz) activity in either 

the NAcc or non-hit area, motivating my focus below on this specific oscillatory channel 

for communication between regions.  

Net modulation during the cohabitation and a pre-cohabitation solo baseline 

period were dynamically modulated, most prominently in hit animals (Figures 2.4d-e, 

2.5). Positive values were consistent with Granger causality estimates showing elevated 

low-frequency drive from mPFC to NAcc (versus the reverse) during mating (Figure 2.6). 

Net modulation varied significantly with behaviors in hit animals only (Figure 2.4f,i). Net 

modulation during huddling was low and comparable to its level during baseline (Figure 

2.4f), implying that huddling does not activate this reward-related circuit. Lack of 

activation was not likely from motionlessness, since animals were active and  
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Figure 2.5 | Net modulation data for all subjects.  Net modulation values (2-s, non-overlapping 
windows) sampled over a baseline solo period (gold region) and the 6-hr cohabitation for all hit 
(#1-9) and non-hit (#10-15) subjects. Values that temporally overlap with mating, self-grooming 
and huddling behaviors (top hashes) are color-coded accordingly. All non-scored values are 
indicated as “non-coded,” which together with mating and self-grooming represent “nonhuddling” 
values. Cumulative distributions of net modulation values coded by behavior are shown in right 
panel for each subject. 
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Figure 2.6 | Granger causality during mating. a, Granger causality spectra in the mPFC-to-
NAcc and NAcc-to-mPFC directions for Subject 4. Solid lines show the mean and shaded areas 
show the mid-95 percentile range (2.5 to 97.5 percentiles) of the n = 40 estimates for a given 
brain-area direction (see Methods) b, Comparison of Granger causality at 5 Hz in the two 
directions across hit subjects (n = 9). Granger causality is significantly higher in the mPFC-to-
NAcc direction (t8 = 3.29, P = 0.011). Error bars show mean ± s.e.m. 

 
 
 
investigative when alone. In contrast, net modulation outside of huddling (nonhuddling 

net modulation), consisting of mating, self-grooming and all non-coded behaviors, was 

significantly enhanced compared to both baseline and huddling. Mating, self-grooming, 

and non-coded net modulation, while not significantly different from each other (Figure 

2.7), were instead correlated with each other (Figure 2.4g; no correlation between 

nonhuddling and huddling, Figure 2.4h). This indicates that nonhuddling net modulation 

reflects individual differences in mPFC-NAcc circuit activation, a result not trivially 

explained by variability in electrode placement (Figure 2.8a-b). Importantly, in the hit 

group only, individuals with greater nonhuddling net modulation over the full 

cohabitation, both overall and during individual nonhuddling behaviors, were significantly 

more likely to begin accumulating huddling faster (Figure 2.9a-b), while net modulation 

during huddling itself (consistently low across subjects, Figure 2.4f) did not correlate with 

the huddling latency (Figure 2.8e-f). Therefore, mPFC’s specific modulation of NAcc 

activity explained how quickly individuals became affiliative.  
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Figure 2.7 | Mean net modulation during mating, self-grooming and non-coded behaviors. 
a, The mean net modulation during mating, self-grooming and non-coded behaviors do not 
significantly differ from each other in either hits (n = 9) or (b) non-hits (n = 6) (all P > 0.05). 
Boxplots show median and interquartile range. 
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Figure 2.8 | Specificity of correlation between nonhuddling net modulation and huddling 
latency. a, Mean nonhuddling net modulation is uncorrelated with electrode placement (mPFC 
anterior-posterior (A/P) location or NAcc/non-hit medial-lateral (M/L); units of rat brain atlas) in 
both hits (n = 9) and (b) non-hits (n = 6) (all P > 0.05). c, Mean nonhuddling net modulation is 
uncorrelated with mating and self-grooming latency and total duration in hits and (d) non-hits (all 
P > 0.05). e, Mean huddling net modulation is uncorrelated with huddling latency in hits and (f) 
non-hits (all P > 0.05). 
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Figure 2.9 | mPFC-NAcc cross-frequency coupling correlates with huddling latency. a, 
Mean net modulation during nonhuddling behaviors, both individually (M, SG, NC; right) and 
pooled (NHud; left) during the full cohabitation correlate with the huddling latency in hits (M, R

2
 = 

0.67, P = 0.021; SG, R
2
 = 0.77, P = 0.005; NC, R

2
 = 0.72, P = 0.012; NHud, R

2
 = 0.76, P = 0.007) 

but not (b) non-hits (M, R
2
 = 0.03, P > 0.99; SG, R

2
 = 0.04, P > 0.99; NC, R

2
 = 0.14, P > 0.99; 

NHud, R
2
 = 0.12, P > 0.99). c, Mean NHud net modulation during the first 60 minutes of 

cohabitation also correlates with the huddling latency in hits (R
2
 = 0.74, P = 0.008) but not (e) 

non-hits (R
2
 = 0.05, P > 0.99). d, Taking the mean NHud net modulation within increasing time 

windows from the start of cohabitation shows an increase in correlation strength (R
2
) with 

huddling latency in hits but not (f) non-hits. Shaded regions and vertical dashed bars indicate the 
range and median of the latencies to first mating (purple) and self-grooming (green) across 
subjects. g, Mean baseline net modulation is not significantly correlated with the huddling latency 
in either hits (R

2
 = 0.51, P = 0.096) or (h) non-hits (R

2
 = 0.21, P > 0.99). i, Mean NHud net 

modulation values within 1 min moving windows (stepped by 0.1 min) before (M-) and after (M+) 
the first mating bout of hits and (k) non-hits. Each subject’s values are color-coded by that 
subject’s latency to huddle from the end of the mating bout (latencyM+). j, The change (Δ) in mean 
net modulation from immediately before to after the first mating bout (indicated by line segments 
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in i) negatively correlates with huddling latencyM+ in hits (R
2
 = 0.72, P = 0.004) but not (l) non-hits 

(R
2
 = 0.02, P = 0.766; line segments in k). m, The strength of the correlation between mean 

NHud net modulation and huddling latencyM+ increases from before to after mating and sustains a 
high level for ~2 min in hits but not (n) non-hits. o-p, This increase in hits is maintained, and 
significant (P = 0.002, permutation test on difference in R

2
 (0.75) between bracketed time points), 

when subtracting out the mean baseline net modulation from the values before and after mating. 
q-r, Non-hits show no significant increase in correlation strength (P = 0.233, same permutation 
test as in o-p; observed R

2
 difference of 0.39). s, The change in mean net modulation from 

immediately before to after the first mating bout correlates with the mean NHud net modulation in 
the 15 min after mating in hits (R

2
 = 0.84, P < 0.001) but not (t) non-hits (R

2
 = 0.58, P = 0.080). 

Plotted values in d, f, m-o and q are color-coded by the uncorrected P-value (Pun) of the 
correlation. Reported P-values in a-h are Bonferroni-corrected for multiple comparisons (see 
Methods). 

 
 
 

To determine the temporal emergence of this correlation, I averaged the net 

modulation over increasing time windows from the start of cohabitation. Baseline net 

modulation was moderately, albeit non-significantly, correlated with huddling latency in 

hit animals, potentially indicating an individual’s affiliative predisposition (Figure 2.9g). 

No predisposition was found in non-hit animals where the correlation was low and non-

significant (Figure 2.9h). Nonhuddling net modulation became increasingly correlated 

with huddling latency by 60 minutes into the cohabitation in hit animals (Figure 2.9c-d), 

before most animals began huddling, but after experiencing their first mating bout 

(Figure 2.3b). No significant correlations emerged in non-hit animals (Figure 2.9e-f). 

Hence, even if a weak affiliative predisposition was reflected in the mPFC-NAcc circuit’s 

baseline activation, early cohabitation experience further strengthened this specific 

circuit’s correlation with huddling.  

I next considered which early cohabitation behaviors could drive this 

strengthening. Mating typically occurred quickly (first bout range demarcated in Figures 

2.3b, 2.9d,f), and its net modulation rose during cohabitation in hit animals, unlike self-

grooming, another high net-modulation, early behavior (Figure 2.10). Given that mating 

promotes bond formation (Williams et al., 1992), I tested whether early mating improved  
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Figure 2.10 | Net modulation during early and late mating and self-grooming. a, Mean net 
modulation during mating increases over time in hits (n = 9, P = 0.008) but not (b) non-hits (n = 6, 
P = 0.438). c, Mean net modulation during self-grooming shows no significant change in either 
hits (P = 0.406) or (d) non-hits (P = 0.438). P-values in a-d are Bonferroni-corrected for multiple 
comparisons (see Methods). Mean early and late values for mating are derived from the first and 
last mating bouts. Mean values for self-grooming are derived from early and late self-grooming 
samples matched in number to the first and last mating bouts (see Methods). Boxplots show 

median and interquartile range. 
 
 
 
the circuit’s correlation with huddling. In hit animals only, the change in net modulation 

from immediately before to after the first mating bout predicted the latency to huddle 

from the end of the bout. Animals with larger increases in net modulation around the first 

mating, but not first self-grooming, more quickly began accumulating huddling (hits:  
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Figure 2.11 | Behavioral specificity of correlation between local change in net modulation 
around mating and huddling latency. a, Mean NHud net modulation values within 1 min 
moving windows (stepped by 0.1 min) before (SG-) and after (SG+) the first self-grooming bout of 
hits (n = 9) and (c) non-hits (n = 6). Each subject’s values are color-coded by that subject’s 
latency to huddle from the end of the self-grooming bout (latencySG+). b, The change in mean net 
modulation from immediately before to after the first self-grooming bout (indicated by line 
segments in a) is uncorrelated with the huddling latencySG+ in hits (R

2
 = 0.01, P = 0.787) and (d) 

non-hits (R
2
 = 0.27, P = 0.290; line segments in c). e, The strength of the correlation between the 

mean net modulation and huddling latencySG+ shows no consistent increase in either hits or (f) 
non-hits. g-h, Subtracting out the mean baseline net modulation from the values before and after 
self-grooming confirms no significant increase in net modulation from before to after self-
grooming in either hits (P = 0.164; permutation test on difference in R

2
 (0.27) between bracketed 

time points) or (i-j) non-hits (P = 0.655; same permutation test as in g-h; observed R
2
 difference 

of 0.07). k, The change in mean net modulation from immediately before to after the first self-



30 
 

grooming bout is uncorrelated with the mean NHud net modulation in the 15 min after self-
grooming in hits (R

2
 = 0.24, P = 0.180) and (l) non-hits (R

2
 = 0.55, P = 0.090). m, The change in 

net modulation around the first mating bout (Figure 2.9j,l) is uncorrelated with local behavioral 
parameters (change in self-grooming duration around bout and mating duration within bout) in 
hits and (o) non-hits (all P > 0.05). It is further uncorrelated with the latency to the next mating or 
self-grooming bouts (n,p) and the mean net modulation during the baseline solo period (q,r) in 
hits and non-hits (all P > 0.05). Plotted values in e-g and i are color-coded by the uncorrected P-
value (Pun) of the correlation. 

 
 
 
Figures 2.9i-j, 2.11a-b; non-hits: Figures 2.9k-l, 2.11c-d). Animals’ change in net 

modulation was not simply explained by behaviors during and around mating (Figure 

2.11m,o), and it specifically correlated with the latency to subsequent huddling (as 

opposed to subsequent mating or self-grooming, Figure 2.11n,p). 

 This mating-triggered change in net modulation augmented the circuit’s 

correlation with huddling latency beyond predisposed levels. The magnitude of the 

change was not correlated with baseline levels (Figure 2.11q-r), suggesting a separate 

effect from any predisposition. Moreover, the correlation between local net modulation 

values (averaged over 1 minute) and huddling latency noticeably increased from the 

minute just before to up to ~2 minutes after mating (Figure 2.9m). Subtracting out 

individuals’ baseline mean net modulation confirmed a significant augmentation (Figure 

2.9o-p). No improvement was observed around self-grooming (Figure 2.11e,g-h), nor in 

non-hit animals around either mating or self-grooming (Figures 2.9n,q-r and 2.11f,i-j). In 

hit animals only, net modulation changes around mating, but not self-grooming, 

correlated with the subsequent net modulation, averaged up to the shortest huddling 

latency (i.e. 15 minutes after behavior) (Figures 2.9s-t, 2.11k-l). Hence, mating 

specifically altered both the temporally local and more sustained post-mating mPFC-to-

NAcc circuit activation in a way that predicted subsequent huddling behavior: animals 

whose mPFC’s modulation of NAcc was more strongly boosted went on to huddle faster, 
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thereby pointing to a new physiological source of individual variability in affiliative 

behavior.  

To causally test the mPFC-NAcc circuit’s sufficiency to accelerate huddling even 

without mating, I activated the circuit during a restricted cohabitation that prevented 

mating. This paradigm does not typically lead to pair bonding, as assessed in the 

laboratory by a later PPT (Ahern et al., 2009). In collaboration with Zachary Johnson in 

the Young Laboratory, I virally expressed Channelrhodopsin-2 (ChR2) or a control 

fluorophore (enhanced yellow fluorescent protein (EYFP)) in mPFC projection neurons. 

During the cohabitation, when the female entered a “social zone” containing a caged 

male, I optically stimulated (up to 1 hour) the mPFC-NAcc pathway at 5 or 6 Hz (Figures 

2.1d-e, 2.12a-c, 2.13, 2.14), consistent with the frequency of peak mating coherence and 

net modulation. The ChR2 and EYFP groups showed comparable optical stimulation and 

time spent in each zone (Figure 2.12d), indicating that ChR2 activation did not induce 

coarse behavioral differences during the restricted cohabitation. However, in the PPT the 

following day, the ChR2 group showed significantly greater preference for the partner 

compared to the stranger (Figure 2.12e). Thus, low-frequency oscillatory drive from 

mPFC to NAcc can causally bias the emergence of affiliative behavior. 
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Figure 2.12 | Low-frequency optogenetic stimulation of mPFC-NAcc projections biases 
behavioral preference towards a partner. Example immunohistochemistry showing a, ChR2 
expression in the mPFC (injection site, top image) and b, fibers projecting to the NAcc 
(stimulation site; middle and bottom images; bottom image is magnified view of area denoted by 
red box). ChR2 is tagged with enhanced yellow fluorescent protein (EYFP) for visualization. 4’,6-
Diamidino-2-Phenylindole, Dihydrochloride (DAPI) counterstain shows cell nuclei. c, Example 
whole-cell patch recording in a putative NAcc medium spiny neuron showing excitatory post-
synaptic current evoked by 5 Hz light stimulation (average response to n = 5 pulse trains). 
Responses typically stabilized to 70-80% of initial amplitude. d, (Top) total optical stimulation and 
(bottom) time spent in each zone during cohabitation do not significantly differ between ChR2-
expressing (n = 12) and control subjects (expressing EYFP only, n = 10; one subject missing due 
to data loss during cohabitation) (Stim, Cohen’s d = 0.46, P = 0.298; Social, d = 0.41, P = 0.345; 
Neutral, d = 0.20, P = 0.698; Non-social, d = 0.68, P = 0.102). e, (Top) time spent with partner (P) 
versus stranger (S) during PPT for ChR2 (n = 12) and EYFP (n = 11) subjects. (Bottom) ChR2 
subjects spent significantly greater relative time with the partner compared to stranger (d = 0.94, 
P = 0.034). Boxplots show median and interquartile range. Histology images in a and b prepared 
in collaboration with Zachary Johnson. Patch recording image in c prepared in collaboration with 
Steven Ryan (Rainnie Laboratory). 
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Figure 2.13 | Validation of virus injection and optical implant locations. a, Representative 
coronal sections showing estimated centers of bilateral virus injection and (b) optical implant 
placement for in vivo optogenetics subjects. Virus injection localization was based on minor tissue 
damage at the dorsal-most surface of the coronal section where the injection syringe initially 
entered the brain, the densest concentration of fluorescence and physical tracts of damage left by 
the injection syringe. Optical implant localization was based on physical tracts of damage left by 
the optical implant. Morphology of the corpus callosum was used to determine the 
anterior/posterior position of the injections and implants. c, Virus injection and (d) optical implant 
locations for all in vivo optogenetics subjects. ChR2-expressing subjects (n = 12) are indicated by 
circles with dotted centers. Control subjects (n = 11) are indicated by circles with empty centers. 
Each color is a separate subject, with two circles per subject (bilateral injection and optical 
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implant). All injection center locations fall within the PL and all optical implant locations fall within 
the medial NAcc. MO: medial orbital cortex. In a-d, the anterior/posterior location of each section 
(units of rat brain atlas) is indicated on left-hand side of section. This figure was prepared in 
collaboration with Zachary Johnson. 
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Figure 2.14 | Validation of light-induced electrophysiological responses in mPFC and 
NAcc. a, Representative image of whole-cell patch clamp recording from a prelimbic mPFC 
neuron cell body in slice preparation. Recording electrode (tip denoted with white arrowhead) is 
patched onto a cell, and an optical fiber is oriented towards the cell for optogenetic stimulation. 
cc: corpus callosum. b, Example light-evoked excitatory post-synaptic potential (average 
response to 5, 1ms light pulses; see Methods) in a prelimbic mPFC neuron in the presence of 
tetrodotoxin (TTX; 1 μM) to show a direct effect of light stimulation. c, Whole-cell patch clamp 
recordings were obtained from 7 putative medium spiny neurons (from n = 4 subjects) in the 
NAcc. Anterior/posterior location of each section (units of rat brain atlas) indicated on bottom-right 
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of section. d, Average electrophysiological responses (excitatory post-synaptic potentials 
(EPSPs; cells 1-4) or currents (EPSCs; cells 5-7)) to 5, 1 ms light pulses delivered onto the cell. 
Application of GABAa receptor blocker picrotoxin (Picro; second column) had no consistent effect 
on electrophysiological responses, whereas the AMPA-kainate receptor antagonist 6,7-
dinitroquinoxaline-2,3-dione (DNQX; third column) disrupted them, indicating that 
electrophysiological responses were due to glutamatergic transmission. aCSF: artificial 
cerebrospinal fluid. This figure was prepared in collaboration with Steven Ryan. 

 
 
 
2.3  Methods 
 
2.3.1  Animals 

All procedures were approved by the Emory University Institutional Animal Care 

and Use Committee. Experimental subjects (in in vivo electrophysiology, in vivo 

optogenetics, slice recording) were adult, sexually naive female prairie voles (Microtus 

ochrogaster) 76 to 154 days of age at the start of experiments. Animals were taken from 

our laboratory-bred colony derived from wild-caught Illinois stock. When possible, they 

were socially housed in same-sex duos or trios until implant surgeries (if performed), at 

which time they were separated and housed individually. Food (Lab Rabbit Diet HF 

#5326, LabDiet) and water were given ad libitum during a 14:10 hour light/dark cycle. 

Stimulus males used in behavioral experiments were adult, sexually experienced males 

under 1.5 years of age. Partners and strangers used in partner preference tests (PPTs; 

see below) were matched by age (within 61 days) and weight (within approximately 5 

grams) for each female. Stimulus females used to prepare strangers were adult, sexually 

naive, socially housed females under 1 year of age.  

Since this is the first study to my knowledge to apply in vivo electrophysiology 

and optogenetic approaches in behaving prairie voles, the target number of experimental 

subjects was chosen based on published studies in rodents using similar methods (Britt 

et al., 2012; Gruber et al., 2009a; Ross et al., 2009b).  

2.3.2  Surgeries 
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All surgeries were done under isoflurane anesthesia. Anterior/posterior 

coordinates were referenced to Bregma, and dorsal/ventral coordinates were referenced 

to the top of the skull. 

In in vivo electrophysiology experiments, females were ovariectomized to 

homogenize their hormonal state and chronically implanted with electrodes 10 to 20 

days later. Electrodes were individual tungsten microelectrodes (1MΩ, FHC) 

stereotaxically targeted to the left medial prefrontal cortex (mPFC, anterior 2.3 to 2.4 

(median: 2.35) mm, lateral 0.2 to 0.5 (median: 0.3) mm, ventral 2.5 to 2.7 (median: 2.6) 

mm) and either nucleus accumbens (NAcc, anterior 1.8 to 2.0 (median: 1.9) mm, lateral 

0.8 to 0.9 (median: 0.8) mm, ventral 4.6 to 4.8 (median: 4.6) mm) or bed nucleus of the 

stria terminalis (BNST, anterior 1.05 to 1.9 (median: 1.1) mm, lateral 0.8 to 1.0 (median: 

0.95) mm, ventral 4.45 to 4.6 (median: 4.5) mm), which receives direct mPFC 

projections in rodents (Gutman et al., 2012; Vertes, 2004). Electrodes were positioned in 

a fixed implant design (Figure 2.1a) that interfaced with a connector sitting on top of the 

skull. The connector in turn interfaced with the Neurologger recording device during 

experiments (see section 2.3.3 Experiments). A stainless steel ground screw 

(F000CE094, JI Morris) was placed in the right posterior cortex (anterior -2.6 mm, lateral 

-2.5 mm).  

In in vivo optogenetics experiments, females underwent virus injection and 

optical fiber implant surgeries. Animals were bilaterally injected with an adeno-

associated virus serotype 5 carrying either ChR2 tagged with yellow fluorescent protein 

under the control of calmodulin-dependent protein kinase II alpha promoter (AAV5-

CaMKIIa-hChR2(H134R)-EYFP-WPRE-PA, 4-8.5x1012 viral molecules/mL, UNC Vector 

Core) or a control fluorophore lacking ChR2 (AAV5-CaMKIIa-EYFP, 4.4-5.2x1012 viral 

molecules/mL, UNC Vector Core) to the mPFC (anterior 2.4 mm, medial ± 0.3 mm, 

ventral 2.7 mm). Injection parameters were 500 nL per side, 5 min injection time and 5 
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min wait time between the end of injection and retraction of the injector to allow the virus 

to sufficiently diffuse from the injector needle. Animals were assigned to the ChR2 and 

control groups by randomly selecting the number of animals in a given cage that would 

receive ChR2 (either 1 or 2 in cages of 3; cages of 2 had 1 animal in each group by 

constraint) and counterbalancing across cages to produce as equal number of animals 

in each group as possible.  

Approximately five weeks after virus injection, animals were implanted with a 

bilateral optical cannula (200 µm core diameter, 240 µm outer diameter, 0.22 NA, 4.5 

mm fiber length, 1.5 mm pitch, flat tip, Doric Lenses) targeting the medial NAcc (anterior 

1.9 mm, medial ± 0.75 mm, ventral 4.5 mm). The light transmission efficiency of the 

optical cannula was measured prior to implantation (S140C or S121C, PM100D, 

ThorLabs). Experiments started 6 weeks (42.0 ± 1.9 days (mean ± st. deviation)) 

following virus injection to allow for virus expression in mPFC afferents at the NAcc.  

In slice electrophysiology experiments, females underwent the same virus 

injection surgery as described above, but received only ChR2 virus. Recording 

experiments in the mPFC and NAcc started 15 and 40-43 days following virus injection, 

respectively. A longer waiting time was used for NAcc recordings to allow for virus 

expression in mPFC afferents at the NAcc. 

2.3.3  Experiments 

Prior to behavioral experiments, all females (experimental subjects, stimulus 

females) were primed with estradiol benzoate (17-β-Estradiol-3-Benzoate, Fisher 

Scientific, daily injections of 1-2 µg dissolved in sesame oil starting 3 to 4 days prior to 

experiments) to induce sociosexual interest in males (Donaldson et al., 2010). The 

following experiments were performed once on independent experimental subjects). 

2.3.3.1 Local Field Potential (LFP) Recording in Behaving Females During 

Cohabitation with a Male 
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LFPs were recorded from the mPFC and NAcc of behaving females using a 

battery-powered Neurologger (Etholm et al., 2010) chip (1-GB model, New Behavior 

AG). The Neurologger has 8 channels (4 neural data, 2 reference, 1 accelerometer, 1 

infrared synchronization) and samples up to 500 Hz. We chose this over a higher-

sampling rate, multichannel, tethered system due to the social nature and long recording 

duration of our paradigm, and the need to minimize the chance that the partner would 

interfere with recordings.  

Prior to experiments, the Neurologger was programmed with sampling rate and 

data storage parameters and secured onto the connector on top of the animal’s skull 

(Figure 2.1a). The device recorded and stored data during the experiment. It was 

disconnected at the end of the experiment to download data onto a computer for 

analysis. The sampling rate was 199.8 Hz for all subjects except Subject 3 (489.1 Hz). 

Both sampling rates covered an adequate frequency range for data analysis. Subjects 

were habituated to the device for at least one hour on the day before experiments. 

On the morning of experiments, the female was briefly anesthetized under 

isoflurane to secure the Neurologger and then transferred to a clean cage in the testing 

room to habituate for at least 10-15 minutes (up to 1 hour). A stimulus male was also 

brought in to the testing room to habituate. This solo habituation period is referred to as 

the baseline period. At the end of the baseline, the male was added to the female’s cage 

and the animals were cohabitated for 6 hours. Neural and video recording were 

performed throughout the baseline and cohabitation and synchronized using periodic 

timestamps delivered every 100 frames (3.3 seconds) from a Cleversys Topscan system 

running on a 32-bit Dell Precision T3500 computer. These timestamps were transmitted 

as infrared and visible light (LED) pulses that were registered in the Neurologger 

synchronization channel (samples) and the video recording (frames). The sample and 

frame indexes of these timestamps were detected and matched using custom-written 
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code in MATLAB (MathWorks). Experiments were performed under a Faraday cage to 

block 60-Hz electrical noise. 

2.3.3.2  Optogenetic Stimulation in Behaving Females During Suboptimal Cohabitation 

with a Male 

A combined video tracking and optical stimulation system was used to stimulate 

mPFC afferents in the NAcc of socially behaving female voles (Figure 2.1d-e). This 

consisted of a custom-designed, three-chambered Plexiglas arena divided into “social” 

(6” x 6”), “neutral” (center; 6” x 5.5”), and “non-social” (6” x 6”) zones. The social and 

non-social zones contained overturned perforated cups housing a male or remaining 

empty, respectively. A commutator (1x2 FC-FC, 0.22 NA, Doric Lenses) and video 

camera (Prosilica GC, Allied Vision Technologies) were positioned over the neutral 

zone. The commutator interfaced the laser (100 mW, 473 nm, fixed wavelength diode 

module, Cobolt) and a dual fiberoptic patch cable (200 µm core, 220 µm cladding, 900 

µm jacket, Doric Lenses) that plugged into the optical cannula on the female, who had 

free access to the three zones. The female was tracked using an automated video 

tracking system (RV2 Video Processor, Tucker Davis Technologies) that detected a red 

marker positioned directly above her head on the patch cable. Optical stimulation was 

automatically triggered each time she entered the social zone (RV2 Video Processor 

and RZ5D Bioamp Processor, Tucker Davis Technologies, see Figure 2.1d-e) and 

occurred at a frequency of 5 or 6 Hz with pulse duration of 5 ms for as long as she 

remained in the social zone. Output from the optical cannula was approximately 30 mW 

(approximately 15 mW per implanted fiber) based on the output from the patch cable 

and the transmission efficiency of the optical cannula (measured prior to implantation). 

The tracking accuracy for time spent in the social zone (tracked time in social zone 

compared to human scoring) was at least 86.8% over subjects (tracking data for one 
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subject excluded due brief power outage causing data loss during cohabitation, see also 

Statistics). 

On the day of experiments, the female was briefly anesthetized under isoflurane 

to connect the patch cable. She was then transferred to the three-chambered arena in 

the testing room, connected to the commutator, and allowed to habituate for 1 hour. At 

the same time, a non-implanted stimulus female was placed in a second, identical three-

chambered arena in the same room and allowed to habituate. Two stimulus males were 

also brought into the room to habituate. At the end of the habituation, one stimulus male 

(“partner”) was placed and contained in the social zone of the implanted female’s cage, 

and the other male (“stranger”) was placed and contained in the social zone of the non-

implanted female’s cage. This procedure was performed to ensure that the partner and 

stranger stimulus males received the same experience prior to partner preference 

testing. 

Animals were cohabitated for 2.5 to 3 hours total. Within that period, stimulation 

was available for 1 hour starting from the first entrance of the implanted female into the 

social zone (laser disconnected at the end of this period). All subjects could therefore 

receive up to 1 hour of light stimulation, although the majority of animals spent some 

time outside of the social zone during this period and thus were not stimulated for the full 

hour (see Figure 2.12d, top). At the end of the cohabitation, the males and non-

implanted stimulus female were removed and brought back to the colony. The implanted 

female was briefly anesthetized to disconnect the patch cable, placed in a clean cage, 

and returned to the colony. Because two cohabitation experiments were often run in a 

given day (typically starting in morning or early afternoon), the ordering of start times 

was counterbalanced within each experimental group to have similar number of animals 

starting in the morning and early afternoon. 
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The following day, the implanted female was tested in a 3-hour PPT with her 

partner from cohabitation and a stranger stimulus male. In this test, which was 

performed in a different room and cage from the cohabitation, the partner male was 

tethered with a plastic leash to one side of a three-chambered cage and the stranger 

male was tethered to the opposite side, as described previously (Ahern et al., 2009). The 

female, not connected to any optical cabling, was free to move around the cage and 

spend time with the partner and stranger. The amount of time the female spent in low-

motion social contact (huddling) with the partner and stranger was measured with a 

Cleversys Topscan automated tracking system (movement criterion of < 0.04 (Ahern et 

al., 2009) for all subjects) and used to assess the female’s preference for the partner 

(see section 2.3.6 Statistics). The side of the PPT cage on which the partner was 

tethered was counterbalanced within each experimental group to control for the partner’s 

location in the testing room. Fresh bedding (Bed-o’Cobs Laboratory Animal Bedding ⅛”, 

The Andersons) was used in each test. 

2.3.3.3  Combined Electrophysiological Recording and Optical Stimulation in Slice 

Preparations of mPFC and NAcc Neurons of Females  

 Fifteen to 43 days following ChR2 virus injection, brain slices containing mPFC 

and/or NAcc were prepared as previously described (Ryan et al., 2012). Briefly, animals 

were decapitated under isoflurane anesthesia and brains rapidly removed and immersed 

in ice cold cutting solution perfused with 95% oxygen-5% carbon dioxide. Two-hundred 

µm-thick coronal sections containing mPFC and/or NAcc were then cut using a VTS-

1000 vibrating blade microtome (Leica Microsystems). Slices were kept in oxygenated 

cutting solution at 32⁰ C for 1 hour before being transferred to a recording chamber with 

regular aCSF. Slices were imaged using a Leica DM-LFS microscope (Leica 

Microsystems) captured with SimplePCI software (Hamamatsu Corp.) for areas of strong 
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fluorescence within the target region of interest (mPFC or NAcc), and recordings 

performed as follows:   

2.3.3.3.1  NAcc 

 Putative medium spiny neurons were visually identified, patched with a thin-

walled borosilicate glass-patch electrode, and held at -70 mV with either DC current 

injection in current clamp (n = 4 cells) or voltage clamp (n = 3 cells) configuration.  

Recording techniques and equipment were as previously described (Ryan et al., 2012). 

Excitatory post-synaptic potentials (or currents) were then evoked with optical 

stimulation via an optical fiber connected to a solid-state laser (Shanghai Laser & Optics 

Century Co.) and oriented towards the cell (200 µm core, 488 nm, 0.9-3.4 mW measured 

at end of fiber). Stimulus trains were either 5 Hz (6 pulses at 5 Hz, 1 ms pulse duration, 

repeated every 4 seconds for a total of 5 pulse trains) or individual light pulses (1 ms 

pulse duration, repeated every 4 seconds for a total of 5 pulses) used to compute an 

average electrophysiological response.  

 Drugs were applied by gravity perfusion at the required concentration in the 

circulating aCSF. Drugs used were picrotoxin (Picro; 10 µM) and 6,7-dinitroquinoxaline-

2,3-dione (DNQX; 20 µM). All drugs were acquired from Tocris and stored frozen as 

concentrated stock solutions in distilled water (dH2O) except DNQX, which was made in 

50% dimethyl sulfoxide. In recordings in the NAcc, Picro and DNQX were added serially, 

in that order, with recordings between applications. Following experiments, mPFC slices 

from the same subjects were stored for histological verification of virus expression (see 

section 2.3.4 Histology). 

2.3.3.3.2  mPFC   

 Recordings in prelimbic mPFC were performed as described above, with the 

exception that the recorded cells were putative pyramidal neurons and maintained at a 

membrane potential of -60 mV. Cells were recorded from in the presence of tetrodotoxin 
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(TTX; 1 µM). TTX was acquired from Tocris and stored frozen as a concentrated stock 

solution in dH2O.  

2.3.4  Histology 

2.3.4.1  In Vivo Electrophysiology 

At the end of experiments, electrode-implanted females were deeply 

anesthetized under isoflurane and electrolytic lesions performed at each electrode site 

(10 µA for 40-45 seconds, Midgard Precision Current Source, Stoelting Co.). The 

animals were then euthanized with carbon dioxide. The brain was removed, stored 1 to 2 

days in 1x phosphate buffered saline (PBS) containing 4% paraformaldehyde (PFA) at 

4⁰ C, and transferred to 1x PBS containing 30% sucrose at 4⁰ C until fully fixed. Forty 

µm-thick sections were prepared on a freezing sliding microtome (Microm). Sections 

were stored in cryoprotectant, mounted on slides and Cresyl Violet-stained. Slides were 

coverslipped and then imaged on an Eclipse E800 light microscope (Nikon Instruments). 

Lesion sites were identified and the section was matched to the most anatomically 

similar plate in the Paxinos and Watson Rat Brain Atlas (Paxinos and Watson, 2009). 

Anatomical landmarks used to match the sections to the atlas included the morphology 

and position of the corpus callosum and anterior commissure. Subjects with NAcc 

electrodes within or on the medial border of the NAcc were included as hit subjects (n = 

9; see Figure 2.2a). Subjects with electrodes posterior to the NAcc (within or bordering 

BNST) were included as non-hit subjects (n = 6; see Figure 2.2c). 

2.3.4.2  In Vivo Optogenetics 

Tissue processing: At the end of experiments, subjects were deeply anesthetized 

under isoflurane and transcardially perfused with 40 mL 1x PBS followed by 40 mL 4% 

PFA in 1x PBS at a rate of approximately 4 mL per minute. Following perfusion, brains 

were rapidly extracted and post-fixed overnight in 4% PFA in 1x PBS and were then 

transferred to 1x PBS containing 30% sucrose and 0.5% sodium azide. Forty µm-thick 
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coronal sections were collected using a freezing sliding microtome (Microm) and were 

stored in 1x PBS containing 0.5% sodium azide until immunohistochemical staining.  

Immunohistochemistry: All sections from both treatments were subjected to 

fluorescent immunohistochemical labeling for EYFP. Sections were washed in 1x PBS 

and blocked with 1x PBS containing 2% normal goat serum (NGS, Fitzgerald) for 1 hour 

before primary incubation with anti-GFP primary antibody (1:1,000, chicken polyclonal, 

Abcam ab13970) in 1x PBS containing 0.2% Triton-X (1x PBST) and 2% NGS for 48 

hours at 4° C. Following primary incubation, sections were washed in 1x PBST and 

incubated in secondary antibody conjugated to a green fluorophore (1:1,000, goat 

polyclonal anti-chicken, Alexa Fluor 488, ab150169) for 4.5 hours in 1x PBST containing 

2% NGS. Sections then underwent final washes in 1x PBS before being mounted onto 

slides. Slides were allowed to dry overnight and were then coverslipped with Vectashield 

Antifade Mounting Medium with DAPI (H-1200, Vector Labs).  

Fluorescent Microscopy: Confocal images were collected using an Orca R2 

cooled CCD camera (Hamamatsu Photonics) mounted on a Leica DM 5500B 

microscope (Leica Microsystems) equipped with a CSU10B Spinning Disk (Yokagawa 

Electronic Corp.) and captured with Simple PCI imaging software (Hamamatsu 

Photonics). Additional fluorescent images were captured using a QI Imaging Fast 1394 

12-bit camera mounted on an Eclipse E800 fluorescent microscope (Nikon Instruments) 

and captured using MCID Imaging software.  

2.3.4.3  Slice Electrophysiology 

 Tissue processing: Following electrophysiological recordings in NAcc, 200 µm-

thick coronal sections containing the recorded slice as well as sections from the same 

subject containing mPFC were stored 1 to 2 days in 1x PBS containing 4% PFA at 4⁰ C, 

and transferred to 1x PBS containing 30% sucrose at 4⁰ C until fully fixed. Immediately 

prior to mounting, sections were transferred into and washed in 0.1x PBS and were 
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directly mounted onto slides. Mounted sections were allowed to dry overnight and were 

then coverslipped using Vectashield HardSet Antifade Mounting Medium with DAPI 

(Vector Labs; H-1500). Dense expression of the ChR2-EYFP transgene in both the 

mPFC and the NAcc was used as a criterion for inclusion and was confirmed at 60x 

magnification using an Eclipse E800 fluorescent microscope (Nikon Instruments) for all 

subjects. acquired from Tocris and stored frozen as a concentrated stock solution in 

dH2O.  

2.3.5  Data Analysis 

Following electrophysiology experiments, subject records (n = 15 total; 9 hit 

subjects, 6 non-hit subjects) were added to a custom relational database (Microsoft 

Excel) used to index animals during analysis. Cohabitation videos were then 

behaviorally scored and the corresponding neural data extracted and analyzed. Subjects 

were labeled as hits (1 through 9) or non-hits (10 through 15). They were ordered by the 

relative anterior/posterior position of their mPFC recording electrode, with “1” being the 

most anterior of the hit group, and “10” being the most anterior of the non-hit group. 

2.3.5.1  Behavioral Scoring 

 An ethogram was developed to define mating, self-grooming and huddling 

behaviors occurring in these experiments (see Figure 2.1c). These were then scored in 

experimental videos (Observer XT10) and matched to neural data using linear 

regression to the most adjacent timestamps (see synchronization procedure described 

above). For consistency and reliability in scoring, two individuals trained on a test video 

and scored the experimental videos blindly to each other. The percent agreement 

between the two scoring records of a given behavior, calculated as the percentage of 

total frames scored consistently for that behavior (i.e. occurring or not), was at least 

97.9% for mating, 94.6% for self-grooming and 92.3% for huddling over all hit subjects 

and 99.5% for mating, 95.8% for self-grooming and 91.1% for huddling over all non-hit 
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subjects. Therefore, we used the intersection of each behavior’s scoring within the two 

records as the measure of that behavior. Contiguous segments of intersected scoring 

are referred to as “epochs” and are used in the following analyses of behavioral scoring.  

2.3.5.1.1  Trials  

Trials were extracted from behavior epochs that were at least 5 seconds long 

and for which the individual scoring records started within 1 second of each other (with 

the exception of huddling, which used a criterion of starting within 5 seconds due to a 

slower onset of the behavior). Trials were defined as the first 5 seconds of the behavior 

epochs. Trials were further restricted to be within the 6-hr cohabitation. The number of 5-

second trials of mating for all subjects were (ordered by ID) 46, 72, 22, 15, 55, 26, 12, 

89, 21, 47, 23, 48, 21, 21 and 24. The number of 5-second trials of self-grooming were 

47, 37, 59, 19, 21, 37, 57 ,17, 34, 49, 73, 58, 42, 42 and 11. The number of 5-second 

trials of huddling were 45, 24, 24, 37, 26, 48, 41, 13, 4, 51, 27, 57, 44, 14 and 25.  

2.3.5.1.2  Rasters 

For cross-frequency coupling analyses, the cohabitation was broken into 2-s non-

overlapping time segments. Time segments fully overlapping within an epoch of mating, 

self-grooming or huddling were labeled as that behavior. All remaining time segments 

were labeled as “non-coded”. Time samples labeled as mating, self-grooming and non-

coded together made up “nonhuddling” time samples. 

2.3.5.1.3  Bouts 

 To capture sequences of a given behavior, the distances between adjacent 

behavior epochs were computed and pooled to create a distribution of distances. A 

single- or two-term natural exponential function was fit to this distribution. Writing the 

exponential function in the form of Equation 1, 

 𝑓(𝑥) =  𝑎 ∗ exp(−𝑏𝑥) + 𝑐 ∗ exp (−𝑑𝑥) (1) 
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the fitted values of a for mating, self-grooming and huddling were 23320, 15222 and 

5347 minutes, respectively. The values of b (first-term decay constant) were 5.315, 

3.089 and 3.481 minutes, respectively. The values of c were 0, 472.6 and 21.17 

minutes, respectively. The values of d (second-term decay constant) were 0, 0.433 and 

0.133 minutes, respectively. For each behavior, the decay constant of the largest 

contributor to the fitted function (5.315, 3.089, 3.481 minutes for mating, self-grooming 

and huddling, respectively) was used as the threshold distance between epochs for 

inclusion within a given bout. 

2.3.5.1.4  Latency 

 Latency was calculated for each behavior as the delay from a given reference 

point within the experiment (e.g. start of cohabitation) to a later reference point within a 

behavior (e.g. bout start).   

2.3.5.1.5  Duration 

 For each behavior, epochs within a given time window (e.g. full cohabitation, 

smaller time windows) were pooled to compute the duration of that behavior.  

2.3.5.2  Local Field Potential Data 

LFP data were extracted for trials of each behavior and inspected for data 

quality. We had previously observed in early testing of the Neurologger that, due to its 

fixed amplification settings, data traces could sometimes hit the upper or lower bounds 

of the visualization range and become clipped at these bounds. Therefore, as a pre-

determined criterion for data inclusion, only those trials whose data were contained 

within the visualization range were used in the following analyses. The total number of 

trials excluded for mating (ordered by ID) were 31, 16, 0, 4, 19, 6, 11, 10, 44, 4, 0, 16, 1, 

4 and 17 (median of 18.8% of original number of mating trials). The total number of trials 

excluded for self-grooming were 19, 8, 35, 32, 39, 9, 21, 22, 23, 36, 41, 30, 70, 28 and 

67 (median of 40.0% of original number of self-grooming trials). The total number of 
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trials excluded for huddling were 2, 1, 4, 4, 6, 2, 0, 0, 2, 0, 5, 0, 0, 0 and 2 (median of 

4.0% of original number of huddling trials). Further, subject 7 had a brief, 12.7-second 

disruption in data recording and so this data segment was excluded from LFP analyses.  

Coherence, Granger causality and cross-frequency coupling were computed 

between brain regions. All analyses were done in MATLAB unless otherwise noted. 

2.3.5.2.1  Coherence 

Coherence analyses were performed using multitaper methods (Mitra and 

Pesaran, 1999) implemented in Chronux (http://chronux.org) (Mitra and Bokil, 2008). 

This consisted of multiplying each data segment by a set of orthogonal Slepian tapers 

(Slepian and Pollack, 1961) that specify a spectral concentration bandwidth (± W). W 

and the segment duration (T) constrain the maximum number of effectively-

concentrating tapers to be less than or equal to 2TW-1. Parameters used here were W = 

2 Hz, T = 1 second, and 3 tapers. Coherence was then calculated as the magnitude of 

the coherency, defined in Equation 2 as: 

 
𝐶 =

𝑆12

√𝑆11𝑆22

 (2) 

where S12 is the cross-spectrum, and S11 and S22 are the individual power spectra of the 

two brain regions. S12, S11 and S22 are averaged over tapers and data trials, as 

applicable (methodology described further in Jutras et al. (2009)). Coherence ranges 

from 0 to 1, where a value of 1 represents a perfectly consistent phase and amplitude 

relationship across tapers and trials.  

Coherence estimates were sampled at 1-Hz resolution from 3 Hz to 242 Hz 

(Subject 3) or 3 Hz to 97 Hz (remaining subjects). This range represents the nearest 

integer above W that is consistent across subjects to the nearest integer below the 

(Nyquist frequency - W).  
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Inter-behavior comparisons: Coherence was compared between 5-s trials of 

mating, self-grooming and huddling (number of trials listed in section 2.3.5.1.1). To 

address the possibility of non-stationarity in the data, each trial was split into 40, 1-

second segments stepped by 0.1 seconds. Coherence was calculated across trials for 

each time segment, giving 40 estimates for a given behavior. These estimates were 

transformed and bias-corrected, as described in section 2.3.6 Statistics. They were then 

averaged to give full-trial estimates of a given behavior. Statistical testing was performed 

on these averages. In addition, the 2.5 to 97.5 percentile range of the 40 estimates was 

extracted as a measure of variability (prctile function in MATLAB). 

2.3.5.2.2  Cross-Frequency Coupling  

Cross-frequency coupling was computed using the Modulation Index (MI) metric 

developed by Tort et al. (2010) (code courtesy of Dr. Adriano Tort and Dr. Teresa 

Madsen). The MI quantifies the extent to which low-frequency phase of one signal 

modulates higher-frequency amplitude of another. Briefly, the two signals are filtered in 

low and high-frequency bands and then Hilbert transformed to obtain the phase and 

amplitude envelope, respectively. This gives matched phase and amplitude values that 

are then binned into 20° phase bins. Amplitudes are averaged within each phase bin, 

giving a distribution of amplitudes over phase bins. This distribution is normalized to the 

sum of averaged amplitudes. The MI is computed as the normalized Kullback-Leibler 

distance of this distribution from a uniform (flat/unmodulated) distribution.  

The MI was computed over the course of the experiment for each subject (“MI 

raster”). The baseline and cohabitation periods were broken into 5-s or 2-s non-

overlapping time segments. 5-s segments were used to analyze the spectrum of the MI, 

and 2-s segments were used to relate the MI to behavior (see below). The MI was 

computed on each segment in two directions: 1) mPFC low-frequency phase modulating 

NAcc (or off-target) gamma amplitude and 2) NAcc (or off-target) low-frequency phase 
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modulating mPFC gamma amplitude. This consisted of switching which signals were 

low- or high-frequency filtered (filtering done using EEGLab package for MATLAB 

(Delorme and Makeig, 2004), eegfilt function).  

5-s time segments (MI spectrum): MI was computed at multiple combinations of 

phase and amplitude frequencies. Phase frequencies ranged from 3 to 21 Hz, with 

integer spacing and bandwidth ± 0.5 Hz. Amplitude frequencies ranged from 32 to 84 

Hz, with spacing of 4 Hz and bandwidth ± 2 Hz. To measure the relative strength of MI in 

the mPFC-to-NAcc direction (“net modulation”) at a given phase/amplitude frequency 

combination, the MI computed for the NAcc-to-mPFC direction was subtracted from that 

of the mPFC-to-NAcc direction. The net modulation was averaged across all time 

segments and hit animals to identify the frequency combination producing maximal net 

modulation. The same analysis was performed on non-hit animals. 

2-s time segments (MI and behavior): Net modulation was computed at a phase 

frequency of 5 Hz and amplitude frequency of 80 Hz. These time segments were 

matched to raster time samples coded as specific behaviors (see section 2.3.5.1.2) and 

averaged across values coded as the same behavior to estimate the net modulation 

during that behavior. Averages were taken over the full cohabitation as well as shorter 

time segments (e.g. within first or last mating bout). 

2.3.5.2.3  Granger Causality  

Granger causality was computed with parametric methods (Brovelli et al., 2004; 

Dhamala, 2014) implemented in code by Dr. Stijn de Waele and Dr. Nathan J. Killian 

and adapted to use by Varun Saravanan and Elizabeth Amadei. Granger causality tests 

the degree to which previous values of one time series improve the prediction of a 

different time series (Granger, 1969) and was used here to assess the directional 

influence of one brain area over another’s activity (Gregoriou et al., 2009) during mating. 

Granger causality can be formulated in the frequency domain by fitting and frequency-
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transforming a bivariate autoregressive model to the two time series (Brovelli et al., 

2004) (here, mPFC and NAcc LFPs during mating). The power of each time series can 

then be estimated and decomposed into an intrinsic component and a causal component 

contributed by the other time series. Granger causality is computed as the natural log of 

the ratio of the total power (intrinsic + causal) to the intrinsic power. 

To fit the autoregressive model, the average values of the time series were 

subtracted out to produce means of 0 and model parameters estimated using the Nuttall-

Strand method. The model order was selected using the Combined Information Criterion 

(de Waele and Broersen, 2003). 

Granger causality was compared in the mPFC-to-NAcc and NAcc-to-mPFC 

directions during mating (see section 2.3.6 Statistics). As in the coherence and power 

estimates, 5-second trials of mating were split into 40, 1-second segments shifted by 0.1 

seconds. Granger causality was computed on each segment (see below) at integer 

frequencies from 0 Hz to 244 Hz (Subject 3) or to 99 Hz (all other subjects), and then 

averaged over segments to get a full-trial estimate. The 2.5 to 97.5 percentile range of 

the 40 estimates was extracted as a measure of variability. The upper bound of the 

frequency range represents the nearest integer below the Nyquist frequency. 

Granger causality was calculated using a bootstrapping procedure. Briefly, for a 

subject with n trials of mating, n segments matched in time were extracted from the 

trials. 1000 artificial sets of n segments were generated by randomly selecting with 

replacement from possible segments. Autoregressive model parameters were averaged 

across segments in each set, and these average values used to compute Granger 

causality in the two directions. The actual Granger causality values were defined as the 

mean over all sets. 

2.3.6  Statistics 
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Statistical tests used a significance level (α) of 0.05 (* P < 0.05, ** P < 0.01, *** P 

< 0.001). Statistical analyses were performed separately on hit (n = 9) and non-hit (n = 

6) groups.  

Correlation analyses used the Pearson correlation (corr in MATLAB) and report 

R2 and P-values. Linear regression was performed using the function polyfit in MATLAB. 

In tests of paired samples, a two-sided Lilliefors test (lillietest in MATLAB) was 

used to test the normality of the difference between samples. This test was also used to 

test the normality of individual groups for ANOVAs. Since this test is less sensitive to 

small sample sizes, data were also visually inspected for any obvious skew. Parametric 

(t- and ANOVA) tests were used when justified by these analyses.  

The Bonferroni method was used to correct for multiple comparisons. The 

number of corrections and other figure-specific statistical methods are described below. 

P-values are uncorrected unless otherwise specified. 

 Figure 2.2: To compare mPFC-NAcc coherence between mating, self-grooming 

and huddling, the 40 within-trial coherence estimates for each of these behaviors were 

first Fisher-transformed. They were then bias-corrected for different sample sizes (here: 

number of trials of each behavior), as described in Bokil et al. (2007). Upon averaging 

these 40 estimates to get a full-trial estimate, the peak frequency of mating coherence 

was determined for each subject (ranged from 4 to 6 Hz), and the mode of these 

frequencies across subjects (5 Hz) was used for inter-subject comparisons. The effect of 

behavior on coherence was tested using a one-way repeated measures ANOVA with 

behavior as the within-subject factor (SPSS). Sphericity was verified using Mauchly’s 

Test (SPSS, W = 0.60, P = 0.167). The difference in coherence between 1) mating and 

self-grooming, 2) mating and huddling coherence and 3) self-grooming and huddling at 5 

Hz was tested for significance using a post hoc two-tailed paired t-test (ttest in 

MATLAB), with correction for 3 comparisons.  
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The same analysis was performed on non-hit animals, with coherence evaluated 

at 5 Hz. Sphericity was verified using Mauchly’s Test (W = 0.62, P = 0.380). 

 Figure 2.3: The number of bouts, duration and latency of mating, self-grooming 

and huddling were compared between hit and non-hit groups using Wilcoxon signed-

rank tests (signrank in MATLAB). P-values were corrected for 9 comparisons.  

 The effect of behavior on latency was tested using a Friedman Test due to 

violations of normality. The difference in latency between 1) mating and self-grooming, 

2) mating and huddling and 3) self-grooming and huddling was tested for significance 

using a post hoc Wilcoxon signed-rank test, with correction for 3 comparisons. 

 Correlations between huddling latency and mating and self-grooming duration 

and latency parameters were corrected for 8 comparisons. 

 Figure 2.4: The effect of behavior (huddling, baseline, nonhuddling) on mPFC-

NAcc net modulation was tested using a one-way repeated measures ANOVA with 

behavior as the within-subject factor (SPSS). Sphericity was violated (Mauchly’s Test; W 

= 0.36, P = 0.028) and so the Greenhouse-Geisser correction was applied. The 

difference in net modulation between 1) nonhuddling and huddling, 2) nonhuddling and 

baseline and 3) huddling and baseline was tested for significance using a post hoc two-

tailed paired t-test (ttest in MATLAB), with correction for 3 comparisons. The same 

ANOVA analysis was performed on non-hit animals, with Greenhouse-Geisser 

correction applied due to violation of sphericity (Mauchly’s Test; W = 0.05, P = 0.003). 

 Pairwise correlations between net modulation during specific behaviors (mating, 

self-grooming, non-coded) were corrected for 3 comparisons. 

Figure 2.6: To compare Granger causality in the mPFC-to-NAcc and NAcc-to-

mPFC directions, Granger causality values in each direction were obtained for each 

subject at 5 Hz, the same frequency used in coherence comparisons. The difference of 
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the two directions (mPFC-to-NAcc - NAcc-to-mPFC) across subjects was tested for 

significance using a two-tailed paired t-test. 

Figure 2.7: Net modulation during mating, self-grooming and non-coded 

behaviors were compared to each other using Wilcoxon signed-rank tests.  

 Figure 2.9: Correlations between huddling latency and net modulation during 

mating, self-grooming and non-coded behaviors were corrected for 3 comparisons.  

 Correlations between huddling latency and nonhuddling net modulation during 

the baseline period, first 60 minutes of cohabitation and full cohabitation were corrected 

for 3 comparisons.  

 A permutation test was used to test whether the correlation between huddling 

latency and nonhuddling net modulation significantly improved from before to after 

mating. The before time point was that immediately before mating. The after time point 

was that which produced the highest correlation between net modulation and huddling 

latency within 2.5 min after mating (see Figure 2.9o,q; bracket indicates before and after 

points). Briefly, for each time point (before or after), net modulation values were 

randomized across subjects (using datasample in MATLAB) and then correlated with the 

huddling latency (kept in subject order). The difference in R2 (abs. value) between these 

correlations was then computed. This re-sampling procedure was repeated 1x106 times 

to produce a permuted (null) distribution of R2 differences. A two-sided P-value was 

obtained as the proportion of shuffled R2 differences that were greater than the observed 

value.  

Figure 2.10: To calculate the mean net modulation during early and late mating 

for each subject, net modulation values coded as mating were taken from that subject’s 

first and last mating bouts, respectively, and then averaged. The number of values within 

the first bout were (in subject order): 19, 41, 38, 25, 62, 24, 22, 101, 84, 36, 20, 22, 10, 

21 and 31. The number of values within the last bout were (in subject order): 48, 52, 24, 
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26, 70, 34, 35, 57, 38, 45, 33, 33, 20, 24 and 25. To calculate the mean net modulation 

during early and late self-grooming for each subject, net modulation values coded as 

self-grooming were taken from that subject’s start (moving forward) or end (moving 

backward) of the cohabitation. The number of self-grooming values were matched to that 

subject’s first and last mating bout (listed above), respectively. The difference of early 

and late mean net modulation for each behavior across subjects was performed using a 

Wilcoxon signed-rank test and Bonferroni-corrected for 2 comparisons.  

 Figure 2.11: The same permutation test described for Figure 2.9 was used to test 

whether the correlation between huddling latency and nonhuddling net modulation 

significantly improved from before to after self-grooming. 

Figure 2.12: In optogenetics analyses, the relative time spent with the partner in 

the PPT (partner time minus stranger time) was compared between treatment 

(expressing ChR2) and control (expressing control fluorophore lacking ChR2) groups 

using a permutation test. This test was chosen due to normality violations in group and 

residual values (discouraging an ANOVA approach). The permutation test involved 

calculating the effect size (Cohen’s d (Cohen, 1992) (abs. value)) of the difference 

between treatment and control groups in the relative time spent with the partner. This 

observed Cohen’s d was then compared to a permuted distribution of Cohen’s d values 

created by randomly assigning data values without replacement to treatment and control 

groups (using randperm in MATLAB). The re-sampling procedure was performed 1x106 

times. A two-sided P-value was obtained as the proportion of shuffled Cohen’s d values 

that were greater than the observed value. 

 The same permutation approach was used to compare the total duration of 

optical stimulation as well as time spent in the social, neutral and non-social zones (see 

Figure 2.1d) during cohabitation between treatment and control groups. Due to a brief 

power outage after the optical stimulation period for one control animal, video and 
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tracking data for that subject was lost even though it received normal stimulation. 

Therefore, the number of control subjects used in the optical stimulation and zone 

analyses is one less than that used in the PPT analyses described above (n = 10 as 

opposed to 11). 

2.4  Collaborator Contributions 

 The main collaborators on this work were Dr. Zachary V. Johnson (Z.V.J.), Yong 

Jun Kwon (Y.K.), Aaron C. Shpiner (A.C.S.), Varun Saravanan (V.S.), Wittney D. Mays 

(W.D.M.), Dr. Steven J. Ryan (S.J.R.), Dr. Hasse Walum (H.W.), Dr. Donald G. Rainnie 

(D.G.R.), Dr. Larry J. Young (L.J.Y.) and Dr. Robert C. Liu (R.C.L.). My and each 

collaborator’s contributions are summarized below. I adapted the Neurologger to a vole 

preparation and designed and performed in vivo electrophysiology experiments, which 

motivated an optogenetics approach; optogenetics experiments were designed and 

performed by Z.V.J. and me, assisted by Y.K.; Z.V.J. validated viral techniques and 

performed optogenetics surgeries and histology; S.J.R. and I designed slice 

electrophysiology experiments; Z.V.J. performed all surgeries and histology for slice 

electrophysiology experiments; S.J.R. performed slice electrophysiology experiments, 

supervised and assisted by D.G.R. and me, respectively; I, Z.V.J., Y.K., S.J.R., H.W., 

A.C.S., V.S. and W.D.M. analyzed data; I drafted the manuscript of this work (citation in 

footnote on page 13); Z.V.J., A.C.S., Y.K., S.J.R., H.W. and V.S. contributed to the 

writing; R.C.L. and L.J.Y. edited the manuscript and supervised all aspects of this work. 
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CHAPTER 3 

DISCUSSION AND FUTURE DIRECTIONS 
 
 
 

 Previous studies in prairie voles have identified the mPFC and NAcc as important 

for bond formation (Johnson and Young, 2015; McGraw and Young, 2010; Young and 

Wang, 2004), but how these brain areas are dynamically activated during social 

interactions leading to a bond has been unknown. In this thesis, I addressed this gap by 

performing detailed behavioral scoring, electrophysiological (LFP) recording and 

optogenetic manipulation in freely-behaving, socially-interacting female voles. LFP 

recordings revealed elevated low-frequency (<10 Hz) coherence, a measure of 

functional connectivity, between mPFC and NAcc during mating, a behavior that 

accelerates bond formation (Williams et al., 1992). This enhancement was also 

observed in a second (control) group of animals with electrodes targeting the mPFC and 

BNST, indicating that mating elevates low-frequency connectivity across multiple brain 

areas.  

 I then examined how low-frequency mPFC-NAcc connectivity modulates local 

activity in each area using a cross-frequency coupling analysis (“net modulation”). A key 

finding was that individual subjects varied in the strength of their net modulation. This 

could not be explained by individual variability in the exact electrode placement within 

mPFC and NAcc nor the amount or timing of mating and self-grooming – behaviors 

during which individual variability in the net modulation was most prominent. Instead, net 

modulation within the mPFC-NAcc, but not the mPFC-BNST, circuit correlated with 

animals’ latency to begin huddling, a key affiliative behavior that emerges over the 

course of cohabitation.  

Additional analyses showed that the correlation between mPFC-NAcc net 

modulation and huddling latency emerged over time, largely coinciding with the timing of 
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the first mating bout. This led me to focus on the change in net modulation from before 

to after mating, which I found to predict both subsequent net modulation over a 

sustained post-mating period as well as the latency to huddle triggered from the end of 

the mating bout. Indeed, the correlation between net modulation and huddling latency 

improved from immediately before to after mating. Together, these results indicate that 

the mPFC-NAcc circuit is recruited during social bond formation and that individual 

variability in its activation, particularly after the first mating event, relates to how quickly 

animals become affiliative.  

 These electrophysiological results raised the possibility that stimulating the 

mPFC-NAcc circuit could accelerate the emergence of affiliative behavior. To test this, I 

optogenetically stimulated mPFC afferents in the NAcc during a restricted cohabitation 

paradigm without mating, which would normally not produce a social bond, as measured 

by the PPT. Optical stimulation was delivered at the same low-frequencies (5-6 Hz) at 

which I previously observed enhanced coherence and net modulation. A control group 

lacking the excitatory opsin was used to control for light delivery and experience in the 

experimental cage. When tested on the PPT the following day, treatment animals spent 

significantly greater relative time huddling with their partner versus the stranger, 

indicating that mPFC-NAcc circuit activation increased animals’ preference towards the 

partner. Together, these electrophysiological and optogenetic results are consistent with 

the hypothesis that the mPFC-NAcc circuit becomes activated during social experience 

with a partner to switch animals towards increased affiliation. 

 These results raise three conceptual implications for future research that will be 

discussed below. These are the functions of 1) neurochemicals OT and DA in 

modulating mPFC-NAcc functional connectivity, 2) mPFC drive to NAcc in modulating 

NAcc spiking activity and plasticity in a social learning context, and 3) other brain circuits 

in vole bond formation. 
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3.1  OT and DA Modulation of mPFC-NAcc Functional Connectivity 

  Previous pharmacological and genetic manipulation studies in voles have 

implicated the central action of OT and DA, particularly within the NAcc, in facilitating 

bond formation. For example, central OT infusion (Williams et al., 1994) and 

upregulation of NAcc OTR (Ross et al., 2009b) accelerates bond formation, as does 

infusion of a D2R agonist into the NAcc (Gingrich et al., 2000). However, these 

approaches provide a static picture of OT and DA activation in mPFC and NAcc and are 

not technically suited to measuring the dynamic activity of these brain areas during 

natural social interactions. Given that bond formation requires a shift towards increasing 

affiliation and that, within this thesis, I demonstrate that the strength of mPFC’s 

modulation of NAcc activity correlates with how quickly animals become affiliative, one 

hypothesis is that OT and/or DA increase the strength of mPFC-NAcc functional 

connectivity to accelerate vole bond formation.  

 This hypothesis could be examined by combining electrophysiological recording 

with manipulations of neurochemical systems in socially-interacting animals. For 

example, neurochemical action could be blocked in mPFC and/or NAcc using site-

specific infusion of an OTR or D2R antagonist (Gingrich et al., 2000; Young et al., 2001) 

or shRNA downregulation of neurochemical receptors (Keebaugh et al., 2015). In 

complement, neurochemical action could be enhanced by infusing the neurochemical 

(e.g. OT (Williams et al., 1994)) or its agonist (e.g. D2 agonist (Gingrich et al., 2000)) as 

well as upregulating neurochemical receptor expression in individual brain areas (Ross 

et al., 2009b). Whether 1) neurochemical inhibition during cohabitation delays affiliative 

behavior and reduces mPFC-NAcc functional connectivity and/or 2) neurochemical 

enhancement accelerates affiliative behavior and increases mPFC-NAcc functional 

connectivity could both be tested. The delay or acceleration of affiliative behavior could 

be assayed using the cohabitation “huddling latency” metric included in this thesis. This 
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would capture the emergence of affiliative behavior during bond formation. Additionally, 

it could be validated against a subsequent PPT, which was not performed in this thesis 

for simplicity but is the traditional metric for assessing bond formation performed after 

cohabitation (Ahern et al., 2009). It would be useful to compare both metrics to 

determine their consistency and relationship to brain activity. 

 Inter-subject variability in neurochemical receptor expression is another avenue 

for investigating the influence of neurochemicals on mPFC-NAcc circuit activation. There 

is substantial inter-subject variability in NAcc OTR expression that has previously been 

associated with maternal behavior and pair bonding in prairie voles (Barrett et al., 2015; 

King et al., 2016; Olazábal and Young, 2006). For example, Olazábal and Young (2006) 

showed greater maternal behavior (e.g. licking, grooming and hovering over pups) in 

females with high NAcc OTR expression. King et al. (2016) discovered a single 

nucleotide polymorphism within the OTR gene that predicted NAcc OTR expression and 

partner preference formation in males. Barrett et al. (2015) exposed females to early life 

isolation and found that individuals’ NAcc OTR expression correlated with the strength of 

their partner preferences in adulthood, a measure of resiliency to early life stress. These 

studies raise the possibility that individual variation in NAcc OTR expression and/or OTR 

genotype correlates with mPFC-NAcc functional connectivity, which can be tested in 

future studies by combining electrophysiology with standard autoradiography and 

genotyping approaches. Such a study would be scientifically significant in potentially 

linking individual variability across the dimensions of anatomy or genotype, brain activity 

and behavior.   

3.2  mPFC Modulation of NAcc Spiking Activity and Plasticity 

 This thesis uses LFP gamma activity as a measure of local network activation 

(Buzsáki and Wang, 2012) and finds that mPFC low-frequency (~5 Hz) oscillations 

directionally modulate gamma (~80 Hz) activity within NAcc (net modulation). A key 
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question is how the various NAcc cell types fire relative to the gamma rhythm. Striatal 

FSIs and MSNs can phase-entrain their firing to LFP gamma in behaving rats (Berke, 

2009; Kalenscher et al., 2010), raising the possibility that mPFC rhythmically modulates 

the excitability of multiple cell types during vole bonding. Indeed, brief high-frequency 

(bursting) mPFC stimulation in anesthetized rats both depolarizes MSNs and increases 

the firing of FSIs (Gruber and O'Donnell, 2009; Gruber et al., 2009b). During mPFC 

stimulation, MSNs are also inhibited due to local network interactions, which can refine 

(even prevent) their firing despite being depolarized (Gruber et al., 2009b).  

 How mPFC modulates the firing of NAcc cell types and their interactions during 

social reward and learning remains an open question of scientific interest. For example, 

Kalenscher et al. (2010) recorded LFPs and spiking activity from the NAcc of rats 

running on a triangular task to obtain food or liquid rewards that were baited at three 

locations. A subset of units, termed “task-related”, altered their firing rate during or 

before animals’ reward site visits. Compared to non-task-related units, a greater 

proportion of task-related units phase-locked their firing to a LFP gamma oscillation 

measured during the task. Whether a similar population of neurons are activated during 

social interactions in voles and alter their firing relative to social reward (e.g. before or 

during mating) could be examined by electrophysiological recording of spiking activity in 

socially-interacting voles. Further, a role for mPFC in modulating NAcc unit entrainment 

to gamma oscillations could be investigating by combining electrophysiological recording 

with optogenetic stimulation of mPFC afferents.  

 In testing the local effects of mPFC input, it would be particularly relevant to 

examine its frequency-dependence. Both this thesis and previous work (summarized in 

introduction (Bagot et al., 2015; Britt et al., 2012; Gruber et al., 2009a)) appear to 

converge on low frequency (<10 Hz) mPFC drive as being functionally relevant for 

motivated behavior and behavioral switching. How specific this frequency is in exerting 
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such behavioral effects and why it does so, in terms of the activity of NAcc cell types, 

their interactions, and/or synaptic plasticity during behavior, remains unclear. 

Interestingly, Berke (2009) identified FSIs that entrain their firing to both high-gamma 

(~80 Hz) and low-frequency (~8 Hz) oscillations, raising the possibility that low-

frequency mPFC drive is ideally suited to recruiting local NAcc populations. Whether 

altering the frequency of mPFC drive to NAcc in a vole bonding paradigm (e.g. by 

varying the optogenetic stimulation frequency of mPFC afferents in NAcc) disrupts the 

entrainment of NAcc neurons as well as subsequent affiliative behavior could be tested. 

 A related question is whether mPFC drive to NAcc during bond formation 

mediates local plasticity within the NAcc. The NAcc has been proposed to consist of 

functionally-distinct neuronal ensembles that are activated by specific cues and contexts 

and bias the resulting selection of behaviors (Floresco, 2015; Pennartz et al., 1994). 

Ensemble representations can be acquired through experience. For example, Cruz et al. 

(2014) tested whether an ensemble representation existed for a context paired with 

cocaine delivery. Rats were trained to self-infuse cocaine within a given context (A). This 

behavior was then extinguished in a second context (B). Rats were then re-exposed to 

the A or a novel context (C), and the Daun02 inactivation method (Koya et al., 2009) 

used to label and inactivate neurons activated by this exposure. While neuronal 

inactivation was still in effect, animals were re-exposed to A to test for reinstatement of 

drug seeking. The exposure to context A versus C enabled the experimenters to test 

whether inactivating the specific population of neurons associated with context A 

disrupted animals’ drug seeking behavior in that same context. Indeed, only animals 

whose context A-associated neurons were inactivated showed disrupted reinstatement 

compared to vehicle-infused animals, suggesting that the drug-paired context and its 

associated behavioral response were encoded by a specific ensemble of NAcc neurons.  
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 This study motivates the hypothesis that, over the course of vole bond formation, 

the partner and associated affiliative behavior towards the partner acquire an ensemble 

representation within the NAcc. Transgenic approaches are still being adapted to the 

prairie vole, and so the Daun02 inactivation method and other re-activation methods 

(e.g. fos:tTA/TRE (Liu et al., 2012; Okuyama et al., 2016)) are not yet feasible in voles. 

However, an IEG approach in which cells are co-labeled for two members of the Fos 

family of transcription factors, the IEG c-Fos and the IEG product ΔFOSB (Conversi et 

al., 2008; Cruz et al., 2013; Mattson et al., 2008), could be a first step to investigate this 

question. In this approach, repeated neural activation such as which occurs across 

learning trials (e.g. repeated cocaine-context pairings to induce locomotor sensitization 

(Mattson et al., 2008)), causes ΔFOSB to be expressed and accumulate in cells. An 

acute testing session (e.g. single exposure to the drug paired context) causes c-Fos to 

be activated, which is then co-labeled with ΔFOSB using in situ hybridization and 

immunohistochemistry, respectively. Co-labeling has been used to identify neurons 

activated during locomotor sensitization to a cocaine-paired context (Mattson et al., 

2008). A similar approach could be attempted in voles to identify neurons activated by a 

bonded partner. This would involve quantifying ΔFOSB from bond formation (either from 

one cohabitation or multiple cohabitation “sessions”) and c-Fos from the PPT. The 

amount of co-labeling could then be related to animals’ performance on the PPT, with 

the hypothesis that animals with stronger partner preferences show greater ΔFOSB/c-

Fos co-labeling, suggesting a neuronal ensemble encoding the partner. The role of the 

mPFC could be examined through low-frequency optogenetic stimulation of mPFC 

afferents in the NAcc during cohabitation, shown in this thesis to shift animals’ 

preference towards the partner in the PPT. 
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3.3  Other Brain Circuits Converging in NAcc 

 In addition to mPFC input, the NAcc also receives glutamatergic afferents from 

the hippocampus (Phillipson and Griffiths, 1985), which may also be recruited during 

vole bond formation. For example, Okuyama et al. (2016) implicated ventral 

hippocampal projections to the NAcc shell in social recognition memory. Specifically, 

they familiarized mice to a conspecific and then tested their recognition memory in a 

social discrimination test, in which each freely-moving subject was exposed to the 

familiarized conspecific as well as a novel conspecific (restrained under cups). Mice 

typically spend more time interacting with a novel conspecific, and so the relative 

amount of time spent close to the familiarized versus novel animal was quantified as a 

measure of social memory. As expected, control animals with intact ventral 

hippocampal-NAcc connectivity spent significantly longer with the novel animal 

compared to the familiar. However, optogenetic inhibition of the ventral hippocampal-

NAcc circuit in the full cage or specifically during interaction with the familiar animal 

abolished the preference for the novel animal. This result was specific to the social 

discrimination test, as circuit inhibition did not disrupt preference for novel objects or 

contexts. How this circuit may be activated during vole bond formation to promote a 

memory for the partner could be investigated using electrophysiological recording and 

optogenetic manipulations.  

 The BLA provides an additional glutamatergic input to NAcc (Phillipson and 

Griffiths, 1985). This circuit has been implicated in the expression of cue-evoked 

motivated behaviors (Janak and Tye, 2015). For example, Stuber et al. (2011) found that 

optogenetic inhibition of BLA afferents in the NAcc of mice disrupted cue-evoked licking 

behavior for sucrose. Ambroggi et al. (2008) further showed that pharmacological 

inactivation of BLA in rats disrupted tone-evoked lever pressing for sucrose as well as 

cue-evoked firing in NAcc. Whether the BLA-NAcc circuit is necessary for the expression 
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of affiliative behavior in pair bonded voles could be tested using optogenetic or 

pharmacological inactivation.    

 In summary, my studies exploit an ethologically-relevant paradigm (vole bond 

formation) to reveal dynamic neurobiological processes underlying natural social 

behavior. These studies in the vole system now open the door to exciting future 

investigations to better understand the brain circuits and mechanisms that support 

complex prosocial behaviors as they naturally unfold through social interactions.   
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