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SUMMARY 

A well-functioning immune system is the result of the combined efforts of a multitude of 

different cell types, performing separate but coordinated tasks. The development of new 

techniques that enable the study of individual cells in greater detail ever before has shown 

that cellular heterogeneity exists such that prior classifications of immune cell types 

simply represent coarse binning across a spectrum of phenotypes. Diversity within these 

historically categorized “cell types” has functional consequences and deeper 

characterization of cell heterogeneity within immune cell populations is crucial for a 

better understanding of immune functionality. 

 The challenges of obtaining such a detailed understanding can be divided into two 

problems, namely how to obtain single-cell data in a high-throughput manner and how to 

analyze the data in order to correctly interpret the biological reality. In this work, we 

approached both these questions by taking a multilayered approach to single-cell 

analysis. 

 In two studies, we took advantage of novel microfluidics based techniques to 

collect data of gene expression and cell response. Gene expression analysis was 

performed on primary neutrophils and T cells, populations representing the innate and 

adaptive parts of the immune system. Through parallelized microfluidics-based assays, 

we collected information on a wide range of gene targets, including not only traditional 

surface markers but also intracellular signaling components and other functional markers. 

Our results show that using single-cell gene expression analysis, it is possibly to identify 

subgroups within cell populations and that the prevalence of these subgroups differs 

between individuals. 



 xiii 

 A microfluidic cell trap allowing for the capture and immobilization of non-

adherent cells was coupled with time lapse fluorescent microscopy and tightly controlled 

fluctuations of extracellular cytokine concentrations. This allowed us to investigate 

single-cell T cell response to IL-2 under physiologically relevant conditions. In 

combination with computational modeling, this allowed us to interrogate the existence of 

functional subgroups within immune cell populations and the functional consequences of 

single-cell heterogeneity. 

 The question of how to correctly process and analyze single-cell data is as of yet 

unanswered, despite the fact that such analysis is crucial to correct interpretation of the 

biological information that such data can reveal. Established methods for bulk sample 

analysis, such as normalization to housekeeping genes, are unsuited to single-cell 

analysis due to the inherent noisiness of single-cell gene expression data. In this work, we 

took a systematic approach to analysis of single-cell gene expression data from primary 

neutrophils and T cells. Our results affirm the importance of choosing an analytical 

method that is well suited to the data, especially the method for data normalization.   

 In summary, we took advantage of emerging techniques for single-cell analysis to 

investigate the existence and functional consequences of single-cell heterogeneity within 

immune cell populations. By using a multidisciplinary approach incorporating molecular 

biology, statistics, computational modeling, and microfluidics, we were able to detect the 

existence of different subgroups within neutrophil and T cell populations, adding new 

insight into the effects of single-cell heterogeneity within the immune system. 
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CHAPTER 1  INTRODUCTION  

The response of our immune system is produced by a combination of many different 

functional subsets of cells, working together to enable a systems response against a vast 

range of threats[1]. The development of new techniques for single-cell analysis has 

shown that even within populations of the same immune cell type, variability at the 

single-cell level exists and has functional consequences. With this in mind, it becomes 

clear that detailed studies of single-cell heterogeneity are essential for complete 

understanding of population-level functions. The importance of interleukin 2 (IL-2) as a 

regulation of T cells is well documented at the population level, but has been less studied 

in the context of single-cell response on short time scales. Furthermore, predictions that 

the IL-2 receptor system can enable cells to respond to physiologically relevant 

fluctuating levels of cytokine pose an intriguing possibility that a single-cell approach can 

help to verify. The main objectives of this research were to use a combined approach to 

investigating heterogeneity in immune cell populations by 1) taking advantage of 

emerging techniques, 2) combining this with systems modeling, and 3) investigating 

heterogeneity in cell responses to time dependent immunological stimulus under 

physiological conditions. To address these research objectives, this dissertation has three 

specific aims, which are:  

1.1 Research Objectives and Specific Aims 

Aim 1: Investigate the effect of data analysis methods on single-cell gene expression 

data from primary immune cells. This aim sought to develop a protocol for obtaining 

single-cell gene expression data from primary immune cells, and furthermore to evaluate 

the effect of data analysis methods on single-cell gene expression data interpretation. 

Finally, it aimed to assess whether distribution of cellular subtypes as defined by gene 

expression varies among individuals. Data was collected using microarray quantitative 

real-time PCR on single T cells and neutrophils from healthy donors. Once obtained, the 
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data were analyzed using a combination of analytical methods, and the results compared. 

The working hypothesis was that subclasses of immune cells would be defined not only by 

traditional surface markers but also intracellular signaling components and other 

functional markers. This work is presented in Chapter 3. 

  

Aim 2:  Develop a computational tool to investigate the effect of time dependent IL-2 

stimulus on T cell response. This aim sought to use computational modeling to 

understand the dynamic response of T cells to IL-2 input. By using computational tools, 

we could investigate this in a setting that simulates biologically relevant conditions 

regarding cytokine concentration, in an approach that allows for the incorporation of the 

complexity of cytokine receptor subunit heterogeneity and its contributions to cytokine 

uptake and degradation. This work is presented in Chapter 4. 

  

Aim 3:  Quantify the variability of phenotypic responses to time-dependent 

immunological stimulus. In this aim, the predictions made in Aim 2 were tested 

experimentally by stimulating cells with cytokine and tracking their response. By using a 

microfluidic cell trap in combination with fluorescent microscopy, individual cells could 

be tracked over time and their responses quantified. In addition, the cytokine input that 

the cells received could be tightly regulated, allowing for matching experimental 

conditions to simulated conditions from Aim 2. The work from this aim is presented in 

Chapter 5. 

 

1.2 Significance of results 

Single-cell heterogeneity has recently emerged as an area of interest due to the 

development of new tools that enable analysis of individual cells in a high-throughput 

fashion. The resulting information has brought with it the understanding that cellular 

heterogeneity can have important functional consequences, both for the function of 

healthy biological systems and in disease states. Within the immune system, the 
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discovery of new functional subgroups could further our understanding of how this 

intricate network of cells functions to ensure our safety from external threats. 

 In this work, we took a multilayered approach to investigating the functional 

consequences of single-cell heterogeneity within immune cell populations. We made use 

of single-cell gene expression to collect data from primary immune cells and 

systematically evaluated methods for analyzing these single-cell data. Our results show 

that using high-throughput single-cell gene expression techniques, it is possible to 

identify subgroups within immune cell populations based on markers that are not limited 

to the traditional surface markers. In addition, our systematic testing of data analysis 

methods for inclusion and normalization on the acquired data highlight the importance of 

choosing analytical methods in order to correctly interpret the biological information 

from single-cell data. In particular, our results show that the choice of data normalization 

method will have significant impact on data interpretation. As traditional bulk sample 

methods of data normalization are unsuitable for single-cell data due to the inherent 

noisiness of such data, our conclusion adds further weight to the importance of 

determining the best alternative. 

 In order to explore the functionality aspect of single-cell heterogeneity, we 

developed a computational model that enabled us to explore single-cell response to 

pulsatile stimulus. We used this model to investigate the effects of reported variability in 

expression of IL-2 receptor subunits within T cell populations. By using a computational 

approach, we were able to remove effects of receptor competition and focus on effects of 

variability in the levels of subunits that are shared by other receptors. By using pre-

primed Jurkat cells as our model organism, we also circumvented the effect of IL-2 

stimulus on initializing receptor upregulation. Our model predicted that in for primed T 

cells, the shared IL-2R and IL-2R subunits become limiting factors in cellular response 

to IL-2. In addition to controlling specific aspects of the IL-2 receptor, we also used our 

model system to interrogate cellular response to pulsatile IL-2 stimulus in a 
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physiologically relevant concentration range. Our model predicted that cell-to-cell 

variability in receptor subunit levels would have an effect on cellular response under 

fluctuating conditions, suggesting ranges of pulsatile input and recovery times that would 

be of particular interest to investigate experimentally. 

 Finally, we used a microfluidic cell trap capable of capturing suspension cells to 

experimentally investigate single-cell response to pulsatile IL-2 stimulation, using the 

results from the computational model to inform the choice of input. As with our 

computational model, we used Jurkat cells as our experimental cell type, confirming 

experimentally that these cells exist in a pre-primed state under normal culture conditions 

such that initial activation of receptor expression with IL-2 was unnecessary for cell 

response. By combining the microfluidic cell trap with carefully controlled IL-2 input, we 

replicated our model-predicted pulsatile IL-2 ranges of interest in an in vitro setting. 

Using fluorescent microscopy, we analyzed individual cells longitudinally to determine 

translocation of STAT5, an indication of cellular response that is directly downstream in 

the IL-2 receptor signaling pathway. Our results show variability of response to IL-2 

within  Jurkat populations and suggest both that T cells exist in different states of 

response readiness prior to IL-2 stimulation and that T cells have favored ranges of 

pulsatile IL-2 input where the population response is stronger. Future work can further 

investigate this ideal frequency regime for T cell response to IL-2 in the context of 

biological relevance. Furthermore, the concept of preexisting cell states within immune 

cell populations could be explored by employing single-cell gene and protein expression 

analysis. This would allow for further characterization of cellular subgroups to define 

preexisting cellular states within the population that result in the observed behavior.  
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CHAPTER 2  BACKGROUND 

2.1  Cell Heterogeneity in the Immune System 

The hypothesis that populations of cells contain functional subpopulations has generated 

interest in various biological and pharmacological contexts [2-4]. Such subgroups can be 

defined by cell-to-cell heterogeneity at the genetic level, but also by differences in gene 

expression or epigenetic modifications, and result in functional differences both within  

healthy cell populations and in disease.  Within the immune system, cell-to-cell 

heterogeneity enables the system as a whole to fulfil its role of protecting the organism 

from both external and internal threats. The immune response mounted at the population 

level is the result of a combination of many different functional subsets of cells, working 

together to enable a systems response against a vast range of threats [1]. The immune 

system also needs to maintain immunological memory as well as tolerance towards self-

antigens in order to prevent autoimmunity. In order to fulfil these many demands, 

diversity within immune cell populations is crucial. It enables a wide range of recognition 

and response, both by the existence of immune cells with different basic functions, and 

by maintaining a repertoire of cells with different antigen recognition properties. 

Heterogeneity in cellular expression can also enable complex population-level behaviors 

to emerge from simple single-cell decisions. For example, placing different thresholds on 

cellular activation can translate a digital decision at the single-cell level to a graded 

analog response at the population level [5, 6]. While classification of immune cell 

subpopulations has traditionally been performed based on differences in surface markers 

(a straightforward but incomplete system of classification), recent development of single-

cell analysis techniques has enabled the discovery of hitherto unknown subgroups based 

on more detailed analysis. 
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2.2 Cytokines and Cell-To-Cell Communication 

Cell-to-cell communication within the immune system is essential to enable transmission 

of information between diverse cell populations such that individual cell responses can be 

propagated or suppressed. This enables coordination of systemic responses, as well as to 

tolerance and protection against autoimmunity and immune deficiency [7-10]. One of the 

ways in which immune cells communicate is through the use of cytokine signaling 

molecules (Table 1), small proteins which are produced and secreted by a variety of cell 

types. Cytokines bind to surface receptors to mediate intracellular signaling cascades in 

the target cell, inducing subsequent up- or downregulation of genes. This in turn results in 

further production of cytokines and expression of surface receptors and regulation of the 

cell’s cytokine response by feedback inhibition. Cytokines play an essential role as 

regulators of immune function and cell proliferation and can act in endocrine, paracrine, 

and autocrine fashion to modulate cell behavior. They include the protein family of 

interleukins, the majority of which are produced by helper T cells, among other cells. 

 

Table 1: Cytokines in cell-cell communication within the immune system 
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Table 1 continued. 
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2.2.1 The Role of IL-2 in T cell Functionality 

Interleukin-2 (IL-2) was discovered in 1976 [11] and first characterized as the growth 

factor responsible for T cell proliferation [12-16]. It has been extensively studied in the 

four decades since and shown to have a wide range of additional functions on both T cells 

and other immune cells (Table 1). As the first interleukin discovered, IL-2 ushered in a 

shift in immunological research towards the understanding of how small molecules such 

as interleukins function as major transmitters of signals in intercellular communication. 

Produced and secreted by T cells themselves, IL-2 is an essential part of a functioning 

immune system, most notably through its role as a regulator of T cell responses driving 

immunity and protecting against autoimmunity [7, 17-21]. IL-2 regulates T cell 

differentiation into effector and memory T cells in both an autocrine and paracrine 

fashion [7, 22] and induces proliferation upon interaction with IL-2 specific receptors 

expressed on the cell surface [23].  In addition to inducing upregulation of its own 

receptor, IL-2 functions as a control for other cytokines through modulation of receptor 

levels. While IL-2 affects the expression levels of its own receptor, it also increases 

receptor expression for IL-4 and IL-12 [24], and decreases gp130 [25]. Because of this, 

IL-2 modulates not only cellular responses to itself but also to IL-4, IL-12, and IL-6, 

other interleukins that affect the differentiation of T helper cell subsets, which allow the 

immune system to mount effective antigen-specific responses. By repressing expression 

of the IL-7 receptor, IL-2 suppresses cell survival signals in activated T cells, thus 

contributing to regulation of activation-induced cell death [26]. Through its many roles in 

intercellular communication, IL-2 has shown to be a major regulator of T cell 

functionality; however, the contributions of single-cell heterogeneity to IL-2 response in 

T cells have yet to be fully elucidated. One such source of variability lies in the nature of 

the IL-2 receptor [27], which is a heterotrimeric complex where the different subunits 

(the IL-2 specific IL-2R subunit and the shared IL-2R and IL-2R subunits) exist in 

varying levels on individual cells. This variability in the expressed levels of subunits 
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indicate that differences in IL-2 response capabilities exist between T cells within a 

population. The shared nature of two of the three subunits in a biological system 

introduces receptor competition which adds further complexity to the contributions of 

receptor-level variability to functional differences at the single-cell level. By studying the 

variability at a subunit level in a system devoid of receptor competition, we can 

investigate the effects that the individual IL-2 subunits have on T cell function. As IL-2 

contributes to T cell function, modulation of IL-2 response is of considerable  therapeutic 

interest, and renewed interest has been seen in investigating aspects of IL-2 functionality 

for this purpose. This has been attempted by the use of antibodies targeted against IL-

2R, which can damped undesired IL-2 effects [28-30], and more recently by the use of 

IL-2 analogues such as superkines with increased affinity for IL-2Rb (Levin 2012). Such 

superkines can be used to activate downstream response to IL-2 without the need for IL-

2R expression. The use of IL-2 superkine takes advantage of the heterotrimeric nature 

of the IL-2 receptor, where the IL-2R subunit does not have any effect on downstream 

signaling events as IL-2R and IL-2 do. In addition to IL-2 binding events, the subunits 

are subject to different intracellular trafficking fates upon internalization, a feature that 

contributes further opportunities for modulation of IL-2 function.     

 

Cellular Response to Ligand Fluctuations  

In order to mount a finely tuned response to extracellular cues, cells have the ability to 

respond not just in a binary fashion to bulk input of stimulus, but also in a more tunable 

manner to subtle fluctuations. Examples of physiologically relevant stimuli that are 

released or interpreted in a pulsatile manner include neurotransmitters [31], hormones 

[32], and cytokines [33]. Cells are able to detect rapid dynamic changes in concentration 

of stimulus in their microenvironment, and respond to time-varying ligands below 

saturation levels. Growing interest has developed in studying cellular responses to 
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pulsatile delivery of stimulus input, which can result in downstream temporal effects, 

such as different timing of transcription factor activation [34]. It has been suggested that 

pulsatile stimulation plays a role in a range of biological systems, such as TGF- 

signaling during embryonic development [35] and growth factor-induced ERK signaling 

[36]. Such time-dependent stimulus can result in different cellular response profiles 

compared to continuous input as well as different responses for different pulsatile input 

metrics, such as stimulus pulse length and recovery time [37]. In a biological system, this 

can enable cells to distinguish between variations of input in a relevant dynamic range. 

Studies also indicate that such behavior enables cells to act as bandpass filters, filtering 

out fluctuations outside of this range as noise that does not induce cellular response. For 

T cells, such behavior has been seen in response to extracellular fluctuations of H2O2, 

which induces downstream shifts in the intracellular messenger Ca
2+

 in a manner 

showing T cell sensitivity to stimulus frequency [38]. Of particular interest is the 

response in systems with characteristics that enable cells to distinguish between 

fluctuations in extracellular cues at below equilibrium levels, namely downstream 

processes that are transient and faster than the time required to reach equilibrium for the 

upstream receptor-ligand interaction. This has been proposed as allowing for greater 

sensitivity to rapid changes in the extracellular environment [39]. The IL-2 receptor 

system exhibits such characteristics [40], and has been suggested as a potential system 

where such pre-equilibrium sensing takes place [39]. How T cells respond to oscillatory 

input of IL-2 at the single-cell level remains an important unanswered question. Of 

particular interest is exploring the effect of features of IL-2 fluctuation, such as the 

duration of input pulses, the length of recovery time, and if changes in these metrics 

correspond to altered cell behavior. 
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2.3 Techniques for Analyzing Single-Cell Heterogeneity 

While bulk analysis methods can generate insights into population-level behavior of cells, 

single-cell techniques allow for more detailed knowledge of the complexity of biological 

systems by elucidating the effects of cell-to-cell heterogeneity. In the past few years, 

development of new technologies has dramatically increased the tools available for 

single-cell analysis at the genomics, transcriptomics, and proteomics levels. These new 

techniques enable the collection of information on more targets such as surface markers 

[41] or intracellular [42, 43] or secreted proteins [44]. These expanded capabilities 

present exiting benefits for research in healthy and diseased systems, as well as for drug 

development. 

2.3.1 Single-Cell Gene Analysis Techniques 

Gene expression analysis was previously limited to population and sample averages 

though the use of bulk samples. The development of techniques that allow for gene 

expression analysis and genome sequencing in single cells now lets us expand our 

understanding of the contributions of variability at the gene level to cellular heterogeneity 

[45]. This allows for the exploration of cell variability in populations, revealing low-

abundance cell types and transitional cell states, and enabling the investigation of 

functional consequences of cellular heterogeneity both in healthy cell populations and in 

diseases [46]. The PCR based RNA-seq method which allows for exploration of gene 

expression heterogeneity is rapidly expanding the capability in both target and cell 

numbers [47]. An alternate quantitative method, CytoSeq, was recently developed by Fan 

et al. and relies on isolation of individual cells into microwells, allowing for interaction 

with barcoded beads labeled with oligonucleotide primers [48]. This allows for the 

amplification procedure for each cell to occur separately in order to limit contamination. 

Two microdrop-based methods, DropSeq [49] and InDrop [50], instead attempt cell 

sample isolation by separating out individual cells into droplets though the use of 
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microfluidic flow control. Although there has been a rapid development of new and 

improved techniques for acquisition of data, the question of how to best analyze single-

cell data remains unresolved. Single-cell data analysis methods need to capture biological 

information while accounting for technical noise. A bulk sample approach which 

assumed every cell to be an average representation of the population is unsuitable for this 

purpose, as it does not adequately take into account the innate cell-to-cell fluctuations of 

both target and housekeeping genes. 

2.3.2 Computational Modeling of Single-Cell Cytokine Response 

Computational modeling is an attractive approach to studying biological systems is, as it 

allows for researcher-determined manipulation of system properties. In the study of 

single-cell functionality, computational models enables targeted investigation of 

characteristics of single-cell dynamics, and this has been applied to a range of questions 

in the area of single-cell cytokine response, including digital signal processing, molecular 

mechanisms and signaling pathway features of cytokine response, and the diffusion of 

cytokine signals during cell-cell communication. A historically rich pathway for 

computational modeling of signaling regulation is the NF-kB pathway. A model 

developed by Tay et al. to study downstream localization of NFB in response to TNF 

stimulation found that, contrary to what a population average indicated, not all cells in a 

population responded to the stimulus [5]. While analog dose dependency could be 

detected at the population level, the single-cell model also allowed for the reproduction of 

digital signaling features made possible by single-cell variability. A different model 

developed for the NFB signaling network in macrophages predicted molecular 

mechanisms that contribute to the single-cell variability upon integration of upstream 

MyD88 and TRIF inputs at NF-kB activation [51]. By incorporating variability of 

cellular mechanisms at the single-cell level, this model was able to quantitatively match 

observed ranges of in vitro responses.  
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 Single-cell modeling has recently been extended to the IL-2 signaling system. A 

computational modeling study identified how IL-2 feedback loops at the single-cell level 

can result in a scalable population-level response, allowing for an immune response that 

varies with antigen dose [52]. Other modeling approaches have focused on the addition of 

three-dimensional spatial description to a model of cytokine response and modulating 

extracellular IL-2 levels to elucidate the importance of IL-2 gradients in cell-cell 

communication in a physiological setting [53]. The ability to precisely manipulation 

single-cell properties and stimulus input makes computational modeling an inviting tool 

for studying single-cell behavior in the context of response to pulsatile IL-2 stimulus.  

 

2.3.3 Methods for Investigating Single-Cell Functionality  

For experimental investigation of single-cell functionality, a proteomics approach is 

useful for detecting heterogeneity through collection of quantifiable single-cell data. 

Fluorescence microscopy is a commonly used technique for single-cell analysis in both 

live and fixed cells. It enables the detection of both cell surface and intracellular targets 

using a variety of methods such as antibody staining and fluorescently labeled proteins. 

In addition, it has the benefit of allowing for quantitative analysis of images, enabling 

both spatial and time-dependent analysis. While the benefits are many, single-cell 

microscopy works best for adherent cell types, which can be easily immobilized. Non-

adherent cells such as T cells are commonly studied using alternative techniques such as 

flow cytometry, which allows for detection of intra- and extracellular targets in a high-

throughput fashion. This enables single-cell measurements without the need for precise 

cell localization; however, it provides only a single snapshot in time of each cell and not 

dynamic information of individual cells. Single-cell mass cytometry assays [41] allows 

for the collection of greatly expanded single-cell information but is likewise limited to 

one time point per cell. In order to overcome the difficulty of obtaining single-cell time 
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course measurements for non-adherent cells, these technical difficulties need to be 

overcome, and the use of microfluidic cell traps offers a solution for collecting 

quantitative single-cell information from live cells in a dynamic setting. A microfluidic 

device capable of immobilizing non-adherent cells allows for capture of dynamic 

information through fluorescent imaging and can be used to deliver desired stimulus in 

order to investigate single-cell response in a direct fashion. In contrast with macro-scale 

systems, the use of microfluidics enables precise manipulation of the cellular 

microenvironment [54]. Whereas the large volumes of macroscale systems hamper rapid 

and uniform changes extracellular concentrations, microfluidic devices can be engineered 

to enable simultaneous delivery of stimulus to cells. The microscale volumes and tight 

control of flow possible microfluidics allow for rapid change of concentration of ligands 

of interest in the extracellular space, mimicking physiologically relevant dynamic 

changes [55]. This make a microfluidics approach well suited for delivery of time-

varying stimuli.     

2.4 Motivations for Research 

The motivation for this research was to explore cell-to-cell variability between 

phenotypic subpopulations existing within immune cell populations by combining 

emerging single-cell techniques such as single-cell gene expression analysis, 

computational modeling, and microfluidic techniques. The goal was to enable a deeper 

understanding of functional cell heterogeneity within the immune system. 
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CHAPTER 3  SINGLE-CELL TRANSCRIPTIONAL ANALYSIS 

AS A TOOL FOR DETECTING IMMUNE CELL SUBGROUPS  

This chapter was adapted from Kippner, L.E., et al., Single cell transcriptional analysis 

reveals novel innate immune cell types. PeerJ, 2014. 2: p. e452. [56] 

3.1 Introduction 

It is becoming evident that established methods, whereby averaging population data 

essentially assumes that all cells within a population are equivalent, are vastly 

oversimplifying cell functionality and obscuring the presence of cellular subtypes [57]; 

however, a more detailed analysis has been hindered by technical limitations. Previously, 

transcription analysis has been constrained to population averages, due to the inability to 

quantify single-cell levels of mRNA with existing techniques, such as such as Northern 

blotting or classical qRT-PCR [58-62]. Major technical advances in single-cell 

measurement systems have now enabled the investigation of such cell-level information 

[63-66]. These advances include high-throughput nanoscale real-time PCR, which allows 

for mapping of transcriptional profiles by highly parallelized assays enabled by 

microfluidics.  

 Standard methods for processing qRT-PCR data are well established; however 

these methods are based on population-averaged data and it cannot be taken for granted 

that the same approaches are optimal for single-cell data. Indeed, single-cell gene 

transcripts have been shown to follow log normal distribution curves [67]; thus, mean 

population averages are heavily influenced by a few cells showing relatively high 

expression levels. As single-cell data is inherently noisy, this must be taken into account 

when choosing analytical methods. For example, housekeeping genes show considerable 

variability of expression at the single-cell level such that standard methods of data 

normalization based on such genes should not be used [68]. In addition, single-cell 
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measurements exhibit noise due to technical variability and this must ideally be 

accounted for without losing variability due to biological function, which is often at 

comparable levels. A particularly important consideration is whether the complete 

absence of signal is due to lack of expression, or to stochastic technical failure.  All 

analytical approaches make assumptions regarding this issue that could have a major 

impact on the conclusions derived from different modes of analysis [68]. 

 The biological motivation for the current study was to assess gene expression 

variability among single leukocytes, and whether the prevalence of distinct sub-types (as 

defined by gene expression) varies among individuals. Neutrophils and T cells were 

selected as representatives of the innate and adaptive branches of the immune system, 

respectively. Recent studies have revealed a close correlation of functional phenotype to 

transcriptional profile [69-71], and we hypothesized that our results would yield immune 

cell subclasses separated not only by traditional surface markers, but also by intracellular 

signaling components, as well as other functional markers. As bimodality in expression 

of individual transcripts may be an indicator of functional heterogeneity [72], we further 

asked whether cellular subclasses were defined by shared bimodality of multiple 

transcripts between cells. To that end, we performed gene expression pattern analysis and 

hierarchical clustering of our cell populations.  We found that genes exhibiting bimodal 

distribution patterns were preferentially assigned to the same cell clusters in our data sets. 

 In overcoming the technical challenges of analyzing single-cell data, we found 

that the decisions made in data processing can have dramatic consequences for the 

interpretation of cellular subpopulations. We systematically explore and recommend 

approaches that can be used in order to consistently analyze multiple single cells from 

multiple donor individuals across multiple genes. Nine alternate methods of data 

exclusion and normalization are considered, and their effect on secondary data analyses, 

such as hierarchical clustering, is assessed. Our results show that analysis and correct 
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interpretation of single-cell gene expression data is dependent on the method chosen for 

primary data analysis, specifically on the method chosen for data normalization [56].  

 

 

3.2 Materials and Methods 

To investigate single-cell gene expression profiles, single cell qRT-PCR was performed 

on primary cells from healthy donors. The workflow for data collection is outlined in 

Figure 1. This was followed by data processing in three steps, which are outlined in 

Figure 2. 

3.2.1 Data Acquisition from Primary Immune Cells 

Extraction and single-cell sorting of primary T cells and neutrophils from donor blood  

Neutrophils and T cells were extracted from 5ml whole blood from 6 healthy donors and 

isolated based on surface marker  expression by negative selection using antibody-coated 

magnetic beads (EasySep neutrophil extraction kit, Stem Cell Technologies, or 

Dynabeads for untouched T cells, Life Technologies). One donor’s neutrophil count was 

too low for further processing, therefore all results presented for neutrophils correspond 

to n = 5. Negative selection was chosen so as to avoid cellular activation due to receptor 

cross-linking. For each purified cell type, flow cytometry sorting with a BD FACS Aria II 

gated by forward- and side scatter was utilized to deposit single cells into a 96-well PCR 

plate preloaded with 5 l of lysis buffer with 0.05U Superase RNase inhibitor (Life 

Technologies) per well. The plates were centrifuged for 1 min at 1000 g in 4ºC and 

immediately frozen and stored at -80 ºC. All donors were individuals enrolled in The 

Center for Health Discovery and Well-Being at Emory Midtown Hospital and provided 

written consent for participation in the study. The protocol for blood collection was 

approved by the Georgia Tech Institutional Review Board (approval #H09364).   
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Single-cell Quantitative Real-Time PCR 

The cellular lysates were converted to cDNA and 96 target genes per cell type were pre-

amplified with a pool of 96 primer pairs targeting genes representing pattern recognition, 

cell-type markers, intracellular signaling, transcription, and immune response (Table 

5Error! Reference source not found. and Table 6Error! Reference source not 

found.). For each donor, amplified cDNA samples from 48 cells of each type were then 

randomized and re-plated across 5 Fluidigm 96x96 microfluidic arrays, in order to avoid 

any plate effects confounding the analysis of single donors.  Gene-specific quantitative 

real-time PCR reactions were performed using the Fluidigm BioMark I nano-scale 

platform. Negative controls (without cDNA) and samples of 10 and 100 cells were used 

as controls for single-cell loading. The mean difference in Ct value between 1 and 10 

cells and between 10 and 100 cells per sample was determined in independent assays, 

providing a measurable control for single-cell loading of each sample. To enable 

reproducible comparison of gene expression between qRT-PCR samples, data is usually 

normalized with respect to data obtained for an internal or endogenous reference gene. 

Housekeeping genes such as -actin and glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) are most often used because their expression levels are expected to remain 

constant. Unfortunately, single cells exhibit large heterogeneity in housekeeping gene 

expression levels, and this method cannot be used as control for reproducible comparison 

of gene expression between single cell samples [73, 74].  
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Figure 1. Data acquisition workflow for collection of single-cell gene expression data.  

Whole blood was collected from healthy donors, and negative selection used to isolate T 

cell and neutrophil populations. Single-cell sorting was then used to deposit one cell per 

well into 96-well plates, pre-loaded with lysis buffer. Following this, cDNA conversion 

and pre-amplification was done in plate, and resulting cDNA samples randomly loaded 

onto microfluidic arrays. qRT-PCR reactions were run simultaneously against 96 gene  

targets per cell. Raw data was obtained as Ct values.  

3.2.2 Data Processing 

Quality Control and Data Exclusion 

Raw data for gene expression were obtained as Ct values between 1 and 40, with lower 

Ct value indicating higher abundance of a given gene-specific product. Missing data 

points were coded as Ct values of 999; such values can either be due to null or very low 

expression of the target gene in question or due to a failed reaction (truly missing data). 

Single missing measures may indicate technical failures, but consistent absence of a 

similar set of lowly expressed transcripts is more likely to imply coordinated loss of 

expression. Downstream methods differ largely with respect to how the missing data is 

handled. Three different sets of criteria were used for data exclusion for each of the two 

(neutrophil and T cell) data sets.  
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A) Supervised Data Exclusion. For the neutrophil data set, an empirical cutoff was set to 

transcripts present in at least 70% of cells, and subsequently to cell samples expressing at 

least 70% of these most uniformly expressed genes. We reasoned that the absence of the 

same set of genes in a common set of cells would imply true absence of expression, and 

used hierarchical clustering to provide a preliminary indication of such clusters of non-

expressed genes. 23 such co-regulated low-abundance genes were identified, for which 

missing values were re-assigned a Ct value of 40 (the maximum number of cycles).  

Subsequently, for 36 genes, sporadic missing data was assumed to represent technical 

error and these values were reassigned to the average Ct for the gene in question in the 

data set. 34 genes were excluded in their entirety. Expression was evaluated for 59 genes 

in 202 cells. Because the T cell data set did not contain a natural cutoff for transcript 

presence, this method of analysis was not implemented for the T cell data.  

B) Data exclusion based on median standard deviation cutoff. All missing data values 

were initially set to Ct 40, and the mean Ct and number of missing data points were 

calculated for all genes. The second and third highest expressed genes in the data set were 

selected and their mean Ct and standard deviation calculated. Note that the highest 

expressed gene in both the neutrophil and T cell data sets were treated as outliers and 

ignored for the purposes of calculating mean Ct, due to expression levels far higher than 

all other genes. Any gene whose average expression was within a cutoff of three standard 

deviations of the mean Ct value for the two chosen genes was included. All cells 

expressing less than half of these genes were then excluded. A plot of the maximum Ct 

across all cells for all 96 genes in the neutrophil data set showed a bimodal distribution of 

maximum Ct values, with a second peak starting at Ct 37 that corresponds to cells 

deemed not to express the target gene. The limit of detection (LOD) was thus set to Ct 37 

for neutrophils, and the LOD Ct was set to 38 for T cells by the same methodology. All 

data values above LOD Ct, including Ct 999, were replaced with 37, and the LOD Ct 

value was then subtracted from all other Ct values, according to the Log2EX method 
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(Log2EX = LOD Ct – Ct [gene]). Consequently, the adjusted expression measure for this 

method is inverted and ranges from 0 to LOD Ct, with more highly expressed transcripts 

having higher values, more in line with intuition and with microarray or RNA-Seq data 

analysis. For the T cell data set, Ct values above LOD were interpreted and analyzed in 

two alternate ways; either as representing no expression of the target gene, with Ct values 

set to 0 or, alternatively, as missing data points due to technical error, with missing values 

replaced with average Ct for the gene (analogous to the supervised data analysis method 

used for neutrophils). Subsequently, entire cells were excluded, if the two gene targets 

with highest expression in our data set were more than three standard deviation units 

lower than the median. Additionally, any genes that were not expressed in any cell 

sample were excluded from the data set. For the T cell data set, 2 genes that were only 

expressed in one cell were also excluded from analysis. This resulted in the exclusion of 

12 neutrophils and 31 genes in the neutrophil data set, and 7 T cells and 63 genes in the T 

cell data set.  Expression was evaluated for 62 genes in 208 cells in the neutrophil data set 

and just 29 genes in 244 cells in the T cell data set.  

C) Inclusion of all data points. All data points were initially included in analysis, with the 

exception of genes not expressed in any of the control samples (cDNA, tRNA, 10-cell 

samples). This excluded 12 genes from analysis in the neutrophil data set and 13 in the T 

cell data set. In addition, any transcripts missing from all samples in an array were 

excluded. This excluded 3 genes in the neutrophil set. LOD Ct was subtracted according 

to the Log2EX method as described above. Expression was evaluated for 81 genes in 220 

cell for the neutrophil data set and 85 genes in 247 cells for the T cell data set. 

Data Normalization 

Three different sets of criteria were used for data normalization for each of the data sets 

generated from the three methods for data exclusion.  
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1) Mean centering. The mean Ct value for each cell was calculated and subtracted from 

each data point for the same cell. This approach removes the dependence of magnitudes, 

allowing for easier visualization and comparison of relative differences in expression 

levels.  

2) Quantile normalization. Gene expression data for each cell was re-ordered by raw Ct 

value, mean Ct values for each cell were calculated, and the original data was replaced by 

the average quantile. This method of rank-order analysis eliminates cell-to-cell 

differences in data density.  

3) Standardization of the genes. Gene expression data were mean-centered for each cell, 

and then the values for each gene were standardized (converted to z-scores) by mean-

centering and dividing by the standard deviation. Residuals from an ANOVA with Plate 

as the main effect were extracted.  This method adjusts the distribution only of targets 

whose expression differs among plates.  A further centering of residual expression values 

to a mean of zero for each cell ensures that no cells have artificially low or high 

expression of all genes. 

 

Figure 2. Data processing workflow for single cell gene expression data. For data 

processing, three methods were tested for data inclusion in combination with three 

methods for data normalization. Following this, the resulting nine data sets were analyzed 

for biological information by gene expression pattern analysis, detection of cellular 

subtypes by hierarchical clustering, and comparison of individual donor subtype 

representation. 
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3.2.3 Analysis of Gene Expression Patterns 

The single-cell transcript abundance distribution for each gene was determined using 

SAS JMP Pro 10 (Cary, NC). Modality was assessed by Akaike information criteria 

(AIC) score, which was further verified by calculating deltaic, comparing scores of 

bimodality, trimodality and unimodality, as well as visual observation. Genes exhibiting 

bimodality were tracked and cluster membership was determined in the raw data set, as 

well as after data exclusion and normalization methods deemed most suitable, using the 

criteria above, namely exclusion by missing data cutoff and normalization by 

standardization of the genes. In addition, the number of cells included in each cluster was 

determined for each donor. Known gene product functionality was obtained from three 

databases: ToppFun [75] DAVID v6.7 [76, 77], and KEGG Pathway [78].  

 

3.2.4 Analysis of Donor-to-donor Variability 

For each donor, the cell count was determined for each of the cell clusters defined within 

the overall population. Following this, the observed frequencies were compared to 

expected frequency by Chi-square test comparison of the number of cells of each class in 

each of the five individuals relative to the expectation, assuming equivalent proportions. 

 

3.2.5 Comparison of Primary Analysis Methods by Concordance of Cell Clusters 

Combining the methods for data exclusion and normalization generated nine alternate 

sets of processed data for each of the two cell types. Each data set was organized by 

hierarchical clustering as well as k-means clustering by cell, resulting in cell clusters 

based on shared gene expression patterns. Concordance, defined as the percentage of 

cells ascribed to the same cluster, was compared between all combinations of analysis 

methods for both methods of clustering. For hierarchical clustering, data was clustered 

using Ward’s minimum variance method [79], which minimizes the total within-cluster 
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variance. The k-means method of clustering aims to sort data into a pre-defined number 

of clusters, k, with each data point belonging to the cluster with the nearest mean [80]. K-

means clustering was performed on all data sets with k values of 2 or 3 for both 

neutrophils and T lymphocytes. The k values were evaluated using Cubic Clustering 

Criteria (CCC) with external cluster validation. All computations were performed in SAS 

JMP-Genomics v5.0 (Cary, NC). 

 

3.3 Results 

3.3.1 Gene Expression Pattern Analysis 

Bimodal Gene Expression Patterns in Neutrophils 

Gene expression analysis of the raw neutrophil data revealed the existence of different 

expression patterns for genes, such as unimodal distribution of expression (Figure 3A), 

bimodal distribution (Figure 3B), and trimodal distribution (Figure 3C). Of these genes, 

all but one exhibiting bimodal distribution contained clear on/off expression patterns 

amongst the cells. The exception was DDX58, which showed one subgroup with higher 

and one group with lower expression, but no non-expressing cells. The existence of such 

non-expressing cells poses the problem of how to define these data points. One approach 

is to assign all such values the maximum Ct of 40, but this assumes that these data 

represent true missing expression; they could also result from technical errors due to 

failed PCR reactions. If the latter is the case, apparent bimodality with on/off expression 

patterns would in reality represent unimodal distribution with missing data points being 

technical artifacts instead of biologically relevant information. An alternative approach 

for addressing this issue is to look at patterns of missing data within the sets. If missing 

data points from the same genes tend to correlate within the cells, the cause is likely to be 

biological, suggesting that the populations contain cellular subgroups.  



 25 

 

 

Figure 3. Gene expression analysis show bimodal expression patterns. Analysis of gene 

expression revealed varying patterns in both the neutrophil and T cell data sets. Examples 

from the neutrophil data set show A) Unimodal distribution, B) Bimodal distribution, and 

C) Trimodal distribution. A peak at Ct 40 indicates the existence of cells showing no 

expression of the gene.  

Bimodal Gene Expression as an Indicator of Cellular Subclasses 

In order to determine whether the existence of genes with bimodal expression patterns 

signaled the existence of cellular subclasses, the data was clustered based on shared gene 

expression patterns. Clustering showed that, for neutrophils, bimodal genes exhibiting 

on/off pattern tended to be off in the same cells, although they clustered together with 

unimodal genes implying that the differential expression between cell types is not 

restricted to bimodality (Figure 4A). Another potential cause for missing data points is 

low initial concentration of RNA in the sample, owing to inefficient RNA extraction, 

leading to complete loss of signal for the lowest-abundance genes that share the technical 
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inefficiency. In order to address this, we controlled for overall abundance of RNA by 

normalizing the data sets. 

 

Bimodal Gene Expression Patterns in T cells 

Similarly to the neutrophils, the T cell data set contained genes exhibiting bimodal gene 

expression. As seen in neutrophils, T cell genes with bimodal on/off expression patterns 

also tended to be interspersed with unimodally expressed transcripts (Figure 4B). 
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Figure 4. Hierarchical clustering of neutrophil and T cell data showed distinct sub-

populations of cells characterized by shared patterns of gene expression. Hierarchical 

clustering of the pre-processed A) neutrophil and B) T cell data prior to data exclusion 

and normalization show bimodal genes preferentially clustering together. Bimodal genes 

are indicated by B-M, unimodal genes by U. 
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3.3.2 Detection of Neutrophil Subtypes 

 

Hierarchical clustering was applied to the datasets using Ward’s method, which has been 

shown to discriminate clusters efficiently on gene expression datasets [81, 82]. Figure 5 

shows the results of hierarchical clustering with nine different methods combining the 

three methods for data exclusion and three methods for data normalization. The color 

coding (purple, green and orange) shows the degree of concordance of clustering relative 

to the method based on supervised data removal with mean centering (top left). 

Employing exclusion with any of the three methods, followed by either mean centering or 

quantile normalization, three clusters of neutrophils were observed consistently, with 

notable separation of the orange, and most of the green, clusters from the purple one. 

Concordance, defined as the percentage of cells assigned to the same cluster, ranged from 

75% to 100%, prima facie supporting the presence of three cell types in our samples.  

 However, when a plate effect was fit to the standardized gene expression z-scores, 

only two major clusters were observed regardless of the data exclusion method (Figure 

5G), and concordance of the two-way classification of orange versus green/purple cells 

was perfect. This analysis implies that a plate effect caused the splitting of the large 

purple/green clusters observed with the mean-centering and quantile normalization 

methods. That is to say, very low abundance gene expression led to loss of signal on one 

of the plates, generating an artificial signature of co-regulation of some cells.  However, 

the orange cluster remains robustly detected by all methods.  We conclude that there are 

two main clusters of cell types in neutrophils.  There is also a hint of a sub-type within 

the orange cells defined by differential expression of a half-dozen genes, but a larger 

sample will be required to validate this inference. 
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Figure 5. Hierarchical clustering of neutrophil data after nine combinations of primary 

analysis. Data was processed by 3 alternate methods of data exclusion (columns) and 3 

methods of data normalization (rows). Following this, all resulting data sets were 

subjected to hierarchical clustering by Ward’s minimum variance method. The results 

illustrate the effect of primary analysis method on data interpretation. Cells are colored 

by cluster for data analyzed by exclusion by exclusion based on the supervised method 

and normalization by mean centering (top left heatmap). 
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3.3.3 Hierarchical Clustering Verified the Existence of Cellular Subgroups 

Having compared methods for data exclusion and normalization, we opted to focus on the 

analysis method using a two standard deviation cutoff for exclusion with normalization 

by standardization of the genes (Figure 5H). Hierarchical clustering revealed 2 major 

subclasses in both neutrophils (Figure 6A) and T cells (Figure 6B). The more clear 

definition of neutrophil subgroups, as compared to T cells, could be due to different 

levels of bimodality in the gene sets, such that more bimodality in the neutrophil data set 

gives rise to more distinct cellular subclasses. Alternatively, the two data sets could 

incorporate the same level of overall bimodality but differ in the level of co-variation of 

bimodally expressed genes.  Since the expression of many genes on the T cell array was 

too low to detect consistently, the analysis is based on fewer genes which also reduces the 

power to detect clusters.   

 

 More refined clustering of the T cell data was also heavily impacted by the 

decision as to how to handle missing data.   Including genes in the analysis according to 

the 2 standard deviation cutoff, setting missing data to null expression resulted in 6 

clusters of cells irrespective of the data normalization procedure.  In contrast, when 

missing data was assumed to be due to technical error and thus assigned the mean value 

for that transcript, the number of cellular subgroups observed after clustering differed: 

mean centering resulted in 2 large and 6 small clusters, quantile normalization in 7 

clusters, and standardization of the genes in 6 clusters. The all-inclusive method of data 

selection also resulted in differing numbers of cell clusters depending on the 

normalization method, with mean centering indicating 4 cellular subgroups, while 

quantile normalization showed five groups, and standardization of the gene resulted in six 

groups after hierarchical clustering by visual observation. Concordance of cell clustering 

across methods ranges between 70% and 80%, arguing that there are multiple cell states 
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despite the high degree of heterogeneity.  Concordance of the two-state clustering 

indicated in Figure 7B was 95%.   

 

Figure 6. Distribution of bimodal genes in hierarchical clusters after primary analysis. 

Hierarchical clustering of processed A) neutrophil and B) T cell data after data exclusion 

by standard deviation cutoff and normalization by standardization of genes resulted in 

cell clusters defined by shared gene expression patterns. Genes observed to exhibit 

bimodal expression patterns in pre-processed data are indicated by *.  

 

3.3.4 Individual Differences in Donor Representation in Cellular Subgroups 

We next turned to analysis of differences in cellular abundance among donors, and asked 

whether cells from all donors were equally distributed among the observed clusters. The 

results show that the frequency of cells in each neutrophil cluster differed between donors 

(Table 2A, B) with donor 3 having a significantly lower than expected proportion of cells 
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in cluster A, whereas donor 4 has the inverse profile.  Setting the number of clusters to 2 

in the analysis of the standardized data following supervised normalization, the χ
2
 value 

for differences in cell type abundance is 24.5 (p = 6×10
-5

, 4 degrees of freedom) (Table 

2A). 

As the intrinsic variability of T cell populations is greater than that of neutrophil 

populations, it is perhaps not surprising that we found donor-to-donor variability to be 

larger for T cells than for neutrophils. Compared to neutrophils, T cells had considerable 

variability in cell distribution between subgroups.  The counts associated with the 

smallest subgroup were not large enough to establish whether the donors differ, but they 

do suggest divergence for the other clusters. Setting the number of clusters to 2 following 

data normalization, the χ
2
 value for differences in cell type abundance is 36.8 (p = 7x10

-7
, 

5 degrees of freedom) (Table 2C). Sampling of more cells in more donors will be 

required to establish whether these differences correlate with physiological and 

immunological attributes of the individuals. 

 

 

 

Table 2: Donor representation in cellular subgroups. 

A: Neutrophils with 2 Clusters (Supervised STD) 

    

       

Cell Count Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 

Total Cell 

Count  

per Cluster 

Cluster A 4 10 2 17 6 39 

Cluster B 40 31 38 21 33 163 

Total Cell Count  

per Donor 44 41 40 38 39 202 

       

        

 

Table 2 continued. 
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B: Neutrophils with 2 Clusters (2G STD) 

       

Cell Count Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 

Total Cell 

Count  

per Cluster 

Cluster A 40 30 39 21 33 163 

Cluster B 5 10 1 17 12 45 

Total Cell Count  

per Donor 45 40 40 38 45 208 

 

C: T cells with 2 Clusters (2G missing STD) 

   

        

Cell Count Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 Donor 6 

Total Cell 

Count  

per Cluster 

Cluster A 17 33 44 34 28 42 198 

Cluster B 9 10 1 2 20 4 46 

Total Cell 

Count  

per Donor 26 43 45 36 48 46 244 

3.4 Discussion 

To determine whether variation in gene expression correlated with variation in cellular 

phenotype, gene expression data for all genes were analyzed across all cells for 

expression patterns, such as unimodality and bimodality. Patterns differing from the 

prevalent, long-tailed, log-normal distribution may reflect active processes that contribute 

to cell-to-cell variation, which may reflect functional subclasses of cells [71]. Bimodality, 

in particular, can be expected in immune cell populations, due to the possibility that cells 

within such a population may be in states of either pre- or post-activation, with the 

changes in gene expression that this would entail. While bimodal behavior is a potentially 

important feature of gene expression in a population and can reflect true differences 

between subpopulations [72], not all bimodal distributions are likely to reflect biological 

reality in an unprocessed single-cell data set. The risk of excluding true bimodality by 

setting the cutoff too low must be weighed against the risk of including artificial 

bimodality by inclusion of all data points and thus more measurement-derived noise. In 
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addition, it is desirable to differentiate between bimodality due to high versus low 

expression of a given gene and bimodality due to a gene being expressed or not 

expressed.  Finally, technical artifacts such as plate effects can also induce apparent 

bimodality if expression of low-abundance transcripts drops out completely in one plate. 

The occurrence of bimodality of gene expression in both neutrophils and T cells 

leads us to conclude that the cell populations tested contain specific cellular sub-types. 

The results show unambiguous evidence for two cellular subtypes in both the neutrophil 

and T cell populations, possibly with additional subtypes that will require larger datasets 

to validate. The nature of the bimodal genes involved, however, hint at the functional 

nature of the cellular subgroups. For example, the neutrophil cluster represented by low 

TLR4/8, high PAK1, high ITGB2 (subunit of LFA-1) profiles would likely occur when 

extravasation and cell motility is more essential than direct microbial phagocytosis. 

Techniques for collecting single-cell gene expression data have developed rapidly, with 

recent additions of droplet based technologies such as DropSeq [49] and InDrop [50], and 

the use of RNA-seq in particular has expanded rapidly. While the techniques for 

collecting single-cell gene expression data have developed further, no consensus has yet 

been found for how to best analyze the resulting data sets. These large treasure troves of 

information offer enormous potential for new insight, making correct interpretation of 

utmost importance. In this work, we attempted to contribute to this area by systematically 

testing different combinations of data analysis methods in order to compare the resulting 

sets of information. Methods for analyzing population-level data are well established; 

however these are not optimal for single-cell data due to the high variability of gene 

expression between individual cells and the intrinsic noise in single-cell data sets. 

Technical variability obtained during sample processing cannot be fully avoided and for 

single-cell analysis where each cell represents one unreproducible batch, such technical 

noise proposes a challenge for data interpretation regardless of experimental platform 

[83]. Gene expression levels, even of housekeeping genes, can differ 1000-fold between 
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individual cells [67], and analysis of individual single-cell PCR calibration curves do not 

produce reliable values [74]. Comparison of the outputs from the different methods of 

primary analysis tested illustrates the impact of analysis method on subsequent 

interpretation of biologically relevant information such as cellular subtypes within a 

population. Our recommendation is to use standardization methods that allow for fitting 

of technical effects, such as the plate effect that generated two sub-types in the mean-

centering and quantile normalization strategies.  Data exclusion should be aware of the 

possibility that missing data reflects technical failure, but for the most part it seems to be 

due to very low and possibly missing expression.  Replacement of missing data with 

average expression did not unduly impact our clustering at the 2-cell type level, and does 

not appear to be justified. 

Cluster analysis is a natural choice for interpretation of qRT-PCR data. We 

employed two hierarchical clustering methods in order to quantitatively assess the 

robustness of our primary data processing methods. The results obtained by both methods 

of clustering were then compared, and the concordance between clusters, as defined by 

shared cluster assignment for cells, showed that k-means and hierarchical clustering 

approaches influence the conclusions but to a lesser extent than the data normalization 

strategy. The two approaches disagreed as more sub-types were added to the analysis, but 

were in good agreement at k=2 cell types for both neutrophils and T cells. 

An additional question we addressed was whether or not the type of cell would 

have an effect on the concordance, in other words, whether different cell types would 

require different methods of data exclusion and normalization for optimized analysis 

outcome. It should be noted that although the trends are similar in both cell types, 

neutrophils show an overall lower heterogeneity than T cells. While neutrophils can be 

expected to be largely unimodal in in vivo populations, based on traditional cell surface 

markers, T cells can be expected to cluster into known subsets e.g. Treg, Th1, Th2 groups 

on the same basis. The observed higher stability of concordance of neutrophil clusters 
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when compared to T cell clusters is likely affected by these inherent properties of 

neutrophil and T cell populations. It is thus important to consider not only cluster 

robustness when choosing analysis methods, particularly when data represents a 

heterogeneous population, such as the T cell population investigated here. 

 In conclusion, this study shows that using single-cell analysis we can potentially 

detect functional subclasses not previously appreciated within immune cell populations. 

Bimodal patterns of gene expression within the cell populations suggested cellular 

subclasses, and this was confirmed by hierarchical clustering of cells. Emerging 

techniques enabling the study of single-cell transcription levels have made clear the need 

for insight into the appropriate methods of analyzing the data generated. Our systematic 

testing of different methods of single-cell data analysis clearly illustrates the differences 

in subsequent interpretation of the processed data. Importantly, our results highlight the 

necessity of using a method that adjusts for any defined technical effects, and that failure 

to do this will affect the inference of biological properties. Our main conclusion 

regarding the necessity of proper data handling is not platform dependent but should be 

extended to other methods of collecting single-cell gene expression data. Only after 

ensuring appropriate data handling can we be confident that the vast amount of new 

information offered to us by single cell data is correctly interpreted. 
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CHAPTER 4  A COMPUTATIONAL TOOL TO INVESTIGATE 

THE EFFECT OF TIME DEPENDENT IL-2 STIMULUS ON T 

CELL RESPONSE  

4.1 Introduction 

The cytokine IL-2 is an essential part of a functional immune system, playing a vital part 

in promoting tolerance and immunity. Its main role is through a wide-ranging impact on 

the function of immune cells, most notably on T cells, both as a growth factor [11] and as 

a regulator of T cell function [84, 85].  

 The IL-2 receptor (IL-2R) is comprised of three polypeptide subunits, , , and  

[86, 87]. Individually, the three subunits bind IL-2 with low to intermediate affinity [88] 

[89, 90], but upon the stepwise formation of the heterotrimeric receptor complex, their 

combined properties enable efficient ligand capture and subsequent cell response [40, 88, 

91-95]. While the IL-2 specific  subunit contributes a strong affinity for the ligand, the 

 and  subunits with their membrane-spanning domains allow for the initiation of an 

intracellular signaling transduction in response to ligand binding. Receptor-ligand 

interaction results in activation of cytosolic protein tyrosine kinases (PTK), such as 

members of the JAK family [96, 97]. In Jurkat cells, JAK1 and JAK3 associate with 

receptor subunits  and , and initialize a signaling cascade. Downstream of JAKs, 

phosphorylation of cytosolic STAT5 allows for its dimerization and import into the 

nucleus [98-100], where it acts as a transcription factor. The three subunits of the IL-2 

receptor are all expressed in varying numbers among cells of a population [6, 56]; the 

number of receptors available to capture extracellular IL-2 and transduce signal will 

differ between individual cells, which in turn will lead to varying cellular response. 

Consequently, it is to be expected that a population average will not be sufficient to 

capture the range of responses in a cell population. In order to address this issue, I 
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developed a model that enables simulation of cellular response with different levels of 

receptor subunits. In order to experimentally capture the variability in response at the 

single-cell level and collect quantitative data, I employed a microfluidic device capable 

of trapping and arraying non-adherent cells for time-series imaging. This allowed me to 

precisely replicate the modeled cytokine exposure on live cells and to longitudinally track 

protein translocation at the single-cell level using live-cell imaging.  

 IL-2 stimulation of T cells causes de novo synthesis of IL-2R and subsequent 

IL-2 production [101], suggesting that in vivo the main contributor to cell response 

heterogeneity is the  subunit. In this model system, we remove this as the limiting factor 

by basing our model on Jurkat cells (which constitutively produce IL-2), such that the 

cells are primed with all three subunits being present at the cell surface. Under these 

conditions, we explored the rate-limiting steps of receptor complex formation and 

investigated kinetics and expression levels of the IL-2Rsubunits critical for signaling 

response under fluctuating IL-2 conditions. 

 

4.2 Materials and Methods 

We used a computational model in order to investigate the effect of pulsatile IL-2 on T 

cell response. An initial model of T cell proliferation in response to IL-2 was modified to 

represent a system of interest and expanded to include further receptor-level detail, as 

well as to allow for the addition of cytokine input in a pulsatile fashion and the 

interrogation of the downstream response.  

4.2.1 A Model of Jurkat Cell Response to IL-2 

The model simulates cellular response to periodic cytokine stimulus, using Jurkat T cells 

as the cell type of interest and IL-2 as the cytokine. The initial framework for our model 

was a previously published model of cellular proliferation in response to IL-2 [102]. Our 

model was constructed in the MatLab platform, SimBiology, and was adapted to 
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incorporate subunit-level detail of the IL-2 receptor, as well as downstream translocation 

of STAT5 from the cytosol to the nucleus. The volume of the model was customized to 

correspond to and experimental microfluidics setup rather than a cell culture system. The 

time scale was likewise altered to reflect a short (< 1 hour) timescale of interest, rather 

than the two to five days that would be of interest for cellular proliferation. 

Transcriptional processes, both constitutive and IL-2 induced were included in the model; 

however, the longer time scale needed for these processes meant that their impact on the 

model outcome was minimal. The initial steps of the model describe binding of IL-2 by 

the three IL-2 receptor subunits at the cell surface, and the sequential assembly of the 

ligand-receptor complex at the cell membrane (Cs). This is followed by the resulting 

downstream cellular response to signaling by the ligand-receptor complex in the form of 

STAT5 translocation from the cytoplasm to the nucleus. In our model, the signaling steps 

between receptor-ligand interactions and downstream STAT5 translocation are 

represented in a simplified fashion by a logistic delay function (1), where translocation of 

STAT5 is dependent on the number of receptor-ligand complexes present at the cell 

surface.  

 

𝑆𝑟 = 𝑦 + 𝑏 ∗ 𝐶𝑠/(𝑑 + 𝑒−𝑘𝑢1∗(𝑡−𝑡𝑖)) 

(1) 

  

 IL-2 is bound to the three subunits of the receptor by stepwise assembly with IL-

2 strengthening the bond to the ligand allowing first IL-2 and then IL-2 to bind to the 

complex [92]. This step-wise formation of the receptor-ligand complex is represented by 

two steps in our model, with the initial step being the capture of IL-2 by IL-2 and the 

subsequent addition of IL-2 and IL-2 simplified into one step. The IL-2R and IL-2R 

subunits of the receptor were modeled as one combined species, making the assumption 

that they were co-localized prior to complex formation. According to Feinerman et al, 
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[6], adding the association of first IL-2R, then IL-2R did not result in model outcome 

different from that of adding the two subunits simultaneously. We thus considered our 

simplification justified. The numbers of receptor subunits per cell were determined based 

ranges reported in literature [6, 103-105], with both high and low initial levels simulated. 

Upon formation of the receptor-ligand complex at the cell membrane, the complex is 

internalized and the components undergo differential sorting [104]. The model 

incorporates this internalization of the ligand-receptor complex, as well as degradation of 

the IL-2R and IL-2R subunits and recycling of the IL-2R subunit and ligand [104, 

106]. In order to mimic microfluidic experimental conditions, which occur under constant 

flow, recycled IL-2 was modeled as lost from the model system and not available to the 

cell.  

 

Figure 7. Overview of computational model. The model incorporated the formation of 

receptor-ligand complex from extracellular IL-2 and receptor subunits at the cell 

membrane (1-4). The complex is internalized (5) and its components sorted for 

intracellular degradation (8) or recycling (9). The binding of IL-2 by its receptor initiates 
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a downstream signaling cascade that results in translocation of STAT5 from the cytosol 

to the nucleus (13). This is represented by a delay function affected by the number of 

receptor-ligand complexes present at the cell membrane. The model also incorporated 

constitutive (11) and IL-2 induced (12) production of receptor subunits and consecutive 

internalization of unbound receptor (10). Dashed arrows indicate an effect of a species on 

a reaction. Numbers by reaction arrows correspond to process numbers in Table 3. 

 

Downstream steps from surface complex formation to STAT5 translocation were 

modeled in a simplified fashion as a time delay function where the translocation of 

STAT5 was made dependent on the number of receptor-ligand complexes present on the 

cell surface. The rate of the delay was determined by fitting to experimentally obtained 

data from responding cells after constant stimulation with 100 pM IL-2 (Figure 8). 

Values for all model rates are shown in Table 3. 

 

 

 

 

Figure 8. Fitting of delay function for STAT5 nuclear translocation. A logistic 

delay function was fitted to normalized experimental data form the mean of 21 

responding cells (28 % of population). 
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Table 3: Parameter values for computational model. Process numbers correspond to 

number in model overview in Figure 7. 

Parameter Process Definition Value Source 

kon1 1 
Association of IL2R and IL-2 at 
cell membrane 1.40E+07 [6] 

koff1 2 
Dissociation of IL2R-IL2 at cell 
membrane 0.4 [6] 

kon2 3 

Association rate for IL2R-IL2 to 

IL-2R / IL-2R 3.60E-04 
Fitted to model 
parameters 

kr 4 
Cell surface dissociation of 
receptor and ligand 2.30E-04 [40] 

ke 5 
Internalization of receptor-ligand 
complex 6.67E-04 [102] 

kre 6 
Intracellular dissociation of ligand 
and receptor 0.00184 [102] 

kfe 7 
Intracellular association of ligand 
and receptor 1.84E-06 [102] 

kh 8 
Degradation of internalized 
receptor and ligand 5.83E-04 [107] 

kx 9 Recycling  0.0025 [108] 

kt 10 
Constitutive internalization of 
unbound receptor 1.17E-04 [109] 

Vs 11 
Constitutive receptor subunit 
synthesis rate 0.183333 [107] 

ksyn 12 
Enhanced receptor synthesis due 
to receptor-ligand interaction 1.83E-05 [110] 

ku1 13 
STAT5 translocation delay 
steepness constant 2.50E-03 

Fitted to 
experimental data 

ti 13 
STAT5 translocation delay 
inflection constant 2.00E+03 

Fitted to 
experimental data 

b 13 
STAT5 translocation delay scaling 
constant 3.50E-03 

Fitted to 
experimental data 

d 13 
STAT5 translocation delay 
constant 1.80E+00 

Fitted to 
experimental data 

NA  Avogadro's constant in pM 6.02E+11 [111] 

Ve  Total endosomal volume 1.00E-14 [112] 

Vol  Volume of system 2.01E-07 [113] 
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Modeled concentrations of IL-2 

IL-2 concentrations of 10 pm and 100 pM were tested in the model, with 10 pM being the 

canonical threshold for triggering T cell response [114]. In a clinical setting, 

concentrations between 1 and 100 pM are reported as therapeutically relevant [115], 

while concentrations above 100 pM induce undesirable inflammatory responses [116, 

117]. With this in mind, we considered a range of 10 to 100 pM to be biologically 

relevant and these two values were tested in our model. 

Pulsatile input of IL-2 

Model response to pulsatile input of IL-2 was investigated using custom MatLab code, 

which delivered a pre-defined set of IL-2 pulses interspersed by recovery pauses to the 

modeled system. IL-2 was delivered at pulse lengths of 0.5, 1, 2, 3, 4, or 5 minutes 

followed by pause lengths of the same durations. Total simulation time was set to one 

hour for all input settings. 

Model outputs of interest 

Two dynamic model outputs were collected: the total number of receptor-ligand 

complexes present at the cell membrane (Cs), and the nuclear localization of STAT5. 

Under the assumption that only complexes of trimeric IL-2 receptor and bound IL-2 

present at the cell membrane are able to initiate downstream signaling, Cs was used as a 

first indicator of cell response to IL-2. The translocation of STAT5 from cytosol to 

nucleus is a direct downstream effect of IL-2-receptor interaction and was represented in 

the model as the ratio of nuclear to cytosolic STAT5 (Sr). 
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4.3 Results 

4.3.1 Model Simulations Predict Differential Response to Oscillatory IL-2 Input 

Functions 

Our model describes downstream responses of T cells upon binding IL-2, modifying a 

computational framework first developed by Fallon & Lauffenburger [102] to include 

features of interest to us associated with the earliest events of IL-2 receptor ligation. The 

IL-2 receptor is represented as individual subunits, which combine in a stepwise fashion 

upon binding IL-2 to form a heterotrimeric receptor. The receptor-ligand complex is 

assumed to initiate an intracellular signaling pathway, resulting in the translocation of 

STAT5 from the cytosol to the nucleus, which is used as a model output indicating cell 

response. In addition to this chain of events, the internalization and subsequent recycling 

and degradation of the receptor-ligand complex are included in the model, as this affects 

the number of cell surface receptor-ligand complexes available for initiation of cell 

response. The steps between receptor-ligand interaction to STAT5 translocation are 

represented in a simplified fashion by a delay function, where translocation of STAT5 is 

dependent on the number of receptor-ligand complexes present at the cell surface. The 

model allows for tight control of ligand input, simulating addition and removal of IL-2 to 

the extracellular environment. We simulated a range of input combinations in order to 

investigate cellular dynamics in response to pulsatile IL-2 stimulation at below 

equilibrium levels. Each simulation setting represented a one hour time course with 

pulses of 30 seconds to 5 minutes of IL-2 followed by recovery times (pauses) of 30 

seconds to 5 minutes. The model under consideration represented an “average cell” with 

receptor subunit levels defined by values within the mean range reported in literature.  
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Figure 9. Model predicted receptor-ligand complex formation in response to pulsatile IL-

2 stimulation. 

The model predicted variation in maximum numbers of receptor-ligand complexes per 

cell (top) and area under curve for receptor-ligand complexes per cell (bottom) during a 

one hour simulation under different pulsatile IL-2 input conditions. Pulse length is 

indicated by legend and pause length on the x axis. All simulations were run using 100 

pM IL-2. 
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Figure 10. Model predicted ratio of nuclear to cytosolic STAT5 in response to pulsatile 

IL-2 stimulation. 

The model predicted variation in maximum STA5 nuclear translocation per cell (top) and 

area under curve for the ratio of nuclear to cytosolic STAT5 (bottom) during a one hour 

simulation under different pulsatile IL-2 input conditions. Pulse length is indicated by 

legend and pause length on the x axis. All simulations were run using 100 pM IL-2. 

 

The resulting cellular trajectories indicated a range of cellular response depending on the 

IL-2 input, as measured by the maximum number of receptor-ligand complexes present at 

the cell membrane (Figure 9, top), the maximum ratio of nuclear to cytosolic STAT5 

(Figure 10, top), as well as the area under the curve for the trajectory of each of these 
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species (Figure 9, bottom, Figure 10, bottom). The maximum level of cellular response 

varied with length of stimulus pulse and recovery time. Both output metrics showed a 

decrease in peak value as recovery time between IL-2 pulses was increased, with the 

effect of recovery time being less influential as the length of stimulus pulses was 

increased. For both metrics, the response was most highly affected by changes in 

recovery time when pulse time was set to one minute. As pulse length decreased or 

increased from one minute, change in maximum response due to altered recovery time 

decreased. For shorter stimulus pulses, a decrease in maximum response and AUC was 

predicted with longer recovery times. Again, this effect was most marked when pulse 

length was one minute.  

 

4.3.2 Model Results Show Variation in Maximum Cellular Response Depending on 

Receptor Subunit Heterogeneity 

The three receptor subunits of the IL-2 receptor are present at the cell surface in numbers 

that vary between cells in a population. Activated T cells have been found to express the 

subunits of the IL-2 receptor in ranges up to two (IL-2R) and three order of magnitude 

(IL-2R) [6, 56]. Due to this heterogeneity in expression, individual cell response to IL-2 

can be assumed to vary with the availability of subunits. Our model addresses population 

heterogeneity by allowing for simulation of high and low levels of unbound receptor 

subunits at the resting level. Results for cells with 1000 or 1500 IL-2R/ indicate that 

the cells achieve different levels of maximum response, defined by both the maximum 

number of receptor-ligand complexes present at the cell membrane and the ratio of 

nuclear to cytosolic STAT5, to the same input of IL-2.  The difference in dynamic 

response between simulated cells with low versus high initial levels of IL2R/ subunits 

showed a lower overall response level as an effect of lower IL-2R/ subunit levels 

across all input combinations, as compared to cells with higher subunit levels. This was 
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especially apparent for the input settings where the pulse time for extracellular IL-2 

availability was 1 minute and the recovery time between pulses was varied (Figure 11). 

In this input range, cells showed the highest level of sensitivity to cell-to-cell variability 

in subunit levels, with a nine-fold difference in maximum response as recovery pulse 

time increased from 30 seconds to five minutes (Figure 11A). Likewise, response 

dynamics over a one hour simulation time showed a range of response profiles, with cells 

responding to one minute IL-2 pulses and one minute recovery pauses showing the 

largest shift in response curve slope as a result of differences in initial IL-2R level 

(Figure 11B).  

 

Figure 11. Difference in peak receptor-ligand complex formation due to cell-to-cell 

variability in IL-2Rnumbers. Model results showing A) the difference in maximum 

receptor-ligand complexes per cell and B) the change in receptor-ligand complexes per 

cell over time due to variability (high and low initial expression levels) of IL-2R/ 

numbers. Filled lines indicate high and dashed lines low initial subunit levels, 

respectively. The difference in initial subunit numbers affects cell response to pulsatile 

IL-2 input in varying degrees across all combinations of ligand pulse and recovery times. 

IL-2 concentration was 100 pM and total simulation time one hour for all pulsatile input 

combinations. 
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4.4 Discussion 

Based on the reported ranges of subunit levels within T cell populations, including 

previously obtained results for gene expression of the IL-2 receptor subunits in primary T 

cells (Aim 1) [56], we predicted that there would be a range of cellular responses to IL-2 

stimulation within the population, resulting from differences in the availability of 

unbound receptor subunits with which to form signal inducing receptor-ligand 

complexes. With our modeling approach we aimed to investigate this by simulating cells 

with variable levels of individual receptor subunits. A total of 25 combinations of time-

dependent IL-2 stimulus were tested, with pulse time and recovery pauses varied from 30 

seconds to five minutes. Our model predicted that an input of one minute IL-2 should 

result in the comparatively largest range of response profiles within a cell population 

based on initial IL-2R numbers per cell. Within our modeled system, internalization of 

receptor-ligand complex removes receptor subunits from the cell surface, and while IL-

2R is recycled, IL-2R and IL-2R are not. Despite the production of new subunits, this 

makes the two latter subunits rate limiting in the cell’s response to IL-2. Our results 

pinpointed a one minute IL-2 pulse as the input range where this rate-limiting aspect of 

subunit availability had the greatest effect, a conclusion which is illustrated by the 

difference in maximum response between cells expressing high and low levels of IL-2R 

and IL-2R across input settings using a one minute pulse time. Likewise, a comparison 

of the shift in dynamic response for different input settings indicated that a one minute 

range should result in the widest range of intrapopulation response for Jurkat cells 

responding to 100 pM IL-2. Previous models of cellular interaction with IL-2 have 

simulated various aspects of interaction and downstream response, such as cell 

proliferation [102], or IL-2 induced cytokine production [52]. A common thread of the 

majority of studies has been the assumption that population averages of parameters and 

responses adequately represent biological reality. It is becoming more and more apparent 

that the variability of single-cell responses within populations have functional 
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consequences, and that the traditional approach of building models based on the average 

cell in a population fails to adequately capture this complex reality. The growing 

awareness of the importance of a single-cell approach has led to development of models 

focusing on aspects such as single-cell competition for IL-2 which can have population-

level impact on immune function [6].  

 While the Fallon & Lauffenburger model used as our starting point incorporated 

post-binding internalization and trafficking of the receptor and ligand, it focused on the 

commonly used downstream responses of cell proliferation, which occurs on a time scale 

of days after IL-2 stimulation. In contrast, our model simulated an immediate response to 

IL-2, occurring within a time frame of minutes, which can be expected to be unaffected 

by IL-2 induced gene upregulation. This allowed us to make the assumption that the 

individual cell response would be dependent on the initial state of the cell. Our model 

attempts to capture aspects of this variability within a cell population by allowing for 

variability of receptor subunit levels. The added detail of receptor subunits allowed a 

model description that more closely adhered to the realities of differential subunit 

expression in vivo.  

 In conclusion, we have investigated single-cell response to variable pulsatile IL-2 

input, using computational modeling to allow for detailed interrogation of the effects of 

receptor level variability as well as extracellular ligand fluctuations on Jurkat T cell line 

responses. We were limited in our goal of a single-cell approach by the scant availability 

of single-cell parameter values for the processes modeled, but by allowing for cell 

variability within ranges of subunit expression reported in literature, we were able to 

simulate cell heterogeneity at the single-cell level. An intriguing approach to incorporate 

single-cell information into computational models by single-cell parameter estimation 

was recently suggested by Yao et al. [118]. By using Bayesian parameter inference at the 

single-cell level, followed by inferred parameter clustering, these investigators detected 

existing cellular states within their population, explaining previously observed response 
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variability. Further development of our system using such an approach to incorporate our 

experimental information would allow for expanded interrogation of distinct cellular 

profiles. The differences seen in maximum response and in response profiles when using 

varying combinations of IL-2 pulse times and recovery times indicate that Jurkat cell 

response to IL-2 depends in part on these metrics of pulsatile IL-2 stimulus. Experimental 

testing using the model-predicted stimulus setting could shed light on whether this 

simulated behavior corresponds to actual in vitro and/or in vivo cell behavior. 
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CHAPTER 5  QUANTIFYING VARIABILITY OF PHENOTYPIC 

T CELL RESPONSES TO TIME DEPENDENT IL-2 STIMULUS   

5.1 Introduction 

Cell signaling systems often respond to extracellular ligand with exquisite sensitivity to 

minute changes in concentration, and it has been suggested that such pre-equilibrium 

sensing could occur in a system where the downstream response is faster than the time 

needed to reach equilibrium for receptor-ligand interaction at the cell surface, allowing 

the cells to distinguish between pre-equilibrium doses of ligand [39]. Pre-equilibrium 

sensing and signaling (PRESS) has been demonstrated to expand and shift the dynamic 

range of input ligand concentrations for orientation/polarization in chemotactic gradients. 

Based on the kinetics of its receptor-ligand interaction and the downstream processes, the 

IL-2 ligand-receptor system has recently been suggested as potentially regulated by pre-

equilibrium sensing and signaling [39]. Here, we investigated the effects of rapidly 

fluctuating extracellular IL-2 levels on T cell response by subjecting cells to time-varying 

IL-2 input in a regime that is below equilibrium levels and at physiologically relevant 

concentrations. A previously developed microfluidic device allowed for the capture of 

Jurkat cells and the precise delivery of time-dependent IL-2 stimulus to the extracellular 

environment. The model results from Aim 2 were used to determine pulsatile input 

settings for stimulus delivery to the cells and fluorescent imaging was used to track 

fluorescently labeled STAT5-GFP translocation in the cell as a downstream indicator of 

IL-2 response. 

5.2 Materials and Methods 
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5.2.1 Creating a Jurkat Cell Line with Stable Expression of STAT5-GFP 

Cell culture  

Jurkat cells and Human Embryonic Kidney (HEK) 293T cell lines were purchased from 

ATCC and maintained in RPMI-1640 medium without phenol red (Lonza),  

supplemented with 10 % FBS (Sigma), L-glutamine (Fisher Scientific), 1 % MEM non-

essential amino acids (Mediatech), 10 mM HEPES (Mediatech), 1 mM  sodium pyruvate 

(Mediatech), 50 U/mL penicillin and 50g/mL streptomycin (Fisher Scientific) at 37
o
C 

5% CO2.  

Transfection  

For transfection of plasmid containing GFP-labeled STAT5 (Origene Technologies), 

HEK 293T cells were transfected using the Neon transfection system (Thermo Fisher). 

After 2 days of culture following transfection, supernatant containing retrovirus was 

collected and used to transfect Jurkat cells by spinoculation. Following spinoculation and 

recovery, GFP-positive Jurkat cells were collected from the population by sorting using a 

BD FacsAria Fusion cell sorter. STAT5-GFP expressing Jurkat cells were maintained in 

culture as above. 

5.2.2 Cell Response Assay using Microfluidic Devices 

Manufacturing Microfluidic Devices  

Two layer microfluidic devices were fabricated as previously described [113]. Briefly, 

the devices were molded from 10% polydimethylsiloxane (PDMS), assembled, and 

plasma bonded to glass slides to enable imaging. The two-layer design of the device 

allows for immobilization of suspension cells by horizontal flow in one layer and for 

delivery of stimulus to all cells in the trap simultaneously by perpendicular flow from the 

top layer (Figure 12).  
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Figure 12. Overview of microfluidic cell trap. The two layer design allows for 

immobilization of non-adherent cells by horizontal flow and for delivery of stimulus to 

all cells in the trap simultaneously by perpendicular flow from the top layer. Reproduced 

with permission from [38] 

Cell Response Assay in Microfluidic Devices 

Before loading onto the microfluidic device, STAT5-GFP Jurkat cells were resuspended 

in HBSS with 0.5 % FBS and incubated with Hoechst 33258 nucleic acid dye (Sigma) 

and Wheat Germ Agglutinin (WGA) Alexa Fluor 647 membrane stain (Fisher Scientific) 

for 10 minutes at 37
o
C. Following incubation, cells were washed, resuspended in growth 

medium, and loaded into the device using gravity flow. After loading, device inlet tubing 

for the two inlets was connected to growth medium with and without IL-2, and delivery 

was controlled using a custom built pressure box with inlet pressure set to 1 psi. A 
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custom GUI was used to control pinch valves enabling precise delivery of stimulus and 

medium to the trapped cells. Prior studies with fluorescein labeled buffer have 

characterized that the pulsatile properties of this platform are well-matched to the desired 

input function [38]. Cells were exposed to either a constant flow of medium containing 

10 pm or 100 pM IL-2 or to a pulsatile input of 100 pM IL-2, alternating with growth 

medium without IL-2. Model predictions from Aim 2 (Figure 11) were used to inform the 

choice of pulse and recovery times. Time lapse images (Figure 13) were taken in 60 

second intervals in the GFP and DAPI ranges at 20x magnification using a PerkinElmer 

UltraVIEW VoX spinning disk confocal microscope with a Nikon Ti-E camera. WGA 

labeling of the cell membrane was used to visually identify cells during imaging setup in 

order to minimize photobleaching of GFP. Total experimental time was set to one hour, 

to minimize possible effects of IL-2 mediated gene upregulation [119]. 
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Figure 13. Jurkat cells expressing STAT5-GFP trapped in microfluidic deviceFluorescent 

image of Jurkat cells trapped in the microfluidic device. The image was taken at 20x 

magnification, using a GFP filter to capture the intracellular location of STAT5-GFP 

(green) and a DAPI filter to capture Hoechst staining (blue). Hoechst staining was define 

the nuclear area in each cell.  

Quantification of STAT5-GFP translocation 

Images taken during cell stimulation were analyzed using custom Matlab code (see 

Appendix A.7). Images were converted to tif format and then to binary format. In order to 

distinguish between the whole cell and the nuclear compartment, masks were created 

from the binary images to capture areas of interest (cells) for each image field and to 

create areas of interest (cytosol and nucleus) for each cell. Cells of interest were manually 

selected from the masks based on image quality over the course of the experiment. The 

masks where then used to define cells for further analysis in the original image and GFP 

intensity was calculated for the masked areas. Local background GFP intensity was 

subtracted from each individual whole cell and its nucleus at each time point, and the 

ratio of GFP intensity for nuclear versus cytosolic area was then calculated for each cell 



 57 

at each time point. For time points where image quality was deemed too low, data was 

imputed by the mean of the two time points immediately preceding and following for that 

individual cell. The resulting STAT5-GFP ratio data were plotted over time, creating 

dynamic single-cell traces of STAT5-GFP translocation. Cells where the normalized ratio 

of nuclear to cytosolic GFP reached 1.5 or higher for two or more time points during the 

one hour time course were categorized as responders to IL-2 stimulus. 

 

Statistical analysis 

The mean of the maximum ratio of nuclear to cytosolic STAT5-GFP for responding cells 

from all fluctuating IL-2 input settings were tested using one-way ANOVA. 

 

5.2.3 Comparison of STAT5 and STAT5-GFP in Transfected Jurkat Cells 

Cytoplasmic and nuclear lysates were obtained from transfected and sorted cells. A 

Western blot was run using 20 µg of total protein sample from each fraction on a 10% 

SDS-PAGE gel followed by transfer to a PVDF membrane. The membrane was blocked 

with Near Infra-Red Blocking Buffer (Rockland Immunochemicals) and probed using 

anti-STAT5 antibody (BioLegend) at 1:1000 dilution in 4
o
C overnight. This was 

followed by secondary anti-mouse antibody (IR dye 680CW donkey anti-mouse, Li-Cor 

Biosciences) at 1:10000 for 1 hour at room temperature. The membrane was imaged 

using a Licor Odyssey CLx Imaging System and analyzed using Image Studio software 

to quantify the relative intensities of the bands for STAT5 and STAT5-GFP in the two 

cell compartments. 

5.2.4 Relative levels of IL-2RandIL-2R within the Jurkat population.  

In order to investigate relative levels of IL-2R, cells were incubated with antibody 

against IL-2R. 100,000 cells were resuspended in fresh medium and incubated with 

primary antibody against IL-2R(Novus Biologicals) at 1:10 dilution for one hour at 
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room temperature. The cells were then washed three times and incubated for one hour 

with an Alexa 647-labeled secondary antibody (Life Technologies) at 1:200 dilution for 

one hour at room temperature, followed three additional washes. Cells were analyzed in 

two ways: by flow cytometry using a BD LSRFortessa, and by fluorescent microscopy 

using a PerkinElmer UltraVIEW VoX spinning disk confocal microscope with a Nikon 

Ti-E camera. The relative intensity of the Alexa 647 signal was quantified for each cell 

and used to assess the heterogeneity of available IL-2R within the population. In order 

to investigate relative levels of IL-2Rand IL-2R on the same cell, cells were incubated 

with FITC-labeled antibody against IL-2R(BioLegend) and APC-labeled antibody 

against IL-2R. Cells were analyzed using flow cytometry, as above.   

 

5.3 Results 

5.3.1 Jurkat Cells in Culture are Pre-primed to Express IL-2R 

Jurkat cell constitutively produce STAT5, which means that tracking STAT5-GFP 

translocation does not reflect the total STAT5 in the system due to the presence of 

endogenous protein. In order to determine the proportion of GFP-labeled STAT5 in the 

transfected cells, lysates of the cytosolic and nuclear fractions from transfected and sorted 

cells were analyzed by Western blot. The quantified results show that the mean ratio of 

cytosolic GFP-labeled STAT5 to endogenous STAT5 in the population was 0.14 (Figure 

14). The level of nuclear GFP-labeled STAT5 was too low for detection by Western blot, 

but endogenous nuclear STAT5 was present at a ratio of 0.017 to endogenous cytosolic 

STAT5. In addition, individual cell traces of GFP-labeled STAT5 showed its presence in 

both cytosol and nucleus of cells prior to stimulation. Thus, we can consider these cells to 

be “primed” by IL-2 and consequently expressing IL-2R at the cell surface, enabling 
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them to respond to IL-2 without the need for experimentally induced IL-2R 

upregulation. 

 

Figure 14. Relative amounts of STAT5 and STAT5-GFP in nucleus and cytosol.Western 

blot showing STAT5 and STAT5-GFP in the nuclear and cytosolic compartments of 

Jurkat cells prior to IL-2 stimulation. 
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5.3.2 Relative Numbers of Available IL-2Rand IL-2R Subunits Vary within the 

Jurkat Population 

The relative numbers of available IL2-R receptor were compared using flow cytometry 

and fluorescence imaging. We observed a range of subunit expression levels within the 

Jurkat cell population (Figure 15), indicating cell-cell variability spanning three orders of 

magnitude in the number of subunits available for IL-2 interaction.  

 

Figure 15. Expression range of IL-2R and IL-2R protein at the cell membrane. Jurkat 

cells were stained with antibody against human IL-2R and IL-2R . A) The relative 

intensity levels of FITC and Pe_Cy5 indicate the levels of IL-2R and IL-2R, 

respectively, expressed on the same cells. B) The relative Alexa 647 intensity of cells 

indicate the expression range of available IL-2R within the unstimulated Jurkat cell 

population. 
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5.3.3 Cellular Response to Constant IL-2 Stimulation Shows Variability within 

Jurkat Cell Population 

Given the numerous combinations of pulses and recovery times possible to explore 

experimentally, we used the model simulations in Aim 2 to guide the selection of 

stimulatory conditions.  To first explore how constant IL-2 stimulation (i.e. no recovery) 

would yield population-level responses, we subjected trapped cells to a steady flow of 10 

pM and 100 pM IL-2, values that the model indicated would yield a below-saturation 

receptor-ligand complex formation. Cells subjected to 10 pM of IL-2 did not show any 

quantifiable translocation of STAT5-GFP in vitro in the one hour time scale of interest 

(results not shown) and further experiments were thus conducted using 100 pm IL-2. 

When exposed to a constant input of 100 pM, 33 % of cells showed STAT5-GFP 

translocation to the nucleus during the one hour course of the experiment, as indicated by 

increased ratio of nuclear to cytosolic GFP. These results highlight the importance of 

studying single-cell responses rather than relying on population average.  

 

5.3.4 Cellular Response to Time-varying IL-2 Input Shows Heterogeneity in an in 

vitro Setting 

In order to investigate live-cell response to pulsatile IL-2 inputs, Jurkat cells were trapped 

in a microfluidic device capable of delivering tightly controlled stimulus to all trapped 

cells simultaneously [113]. Cells were then exposed to varying IL-2 inputs and STAT5-

GFP translocation was tracked over the course of an hour using fluorescent imaging. 

Pulsatile input settings were informed by the modeled response to inputs of varying 

lengths. Of the modeled responses, pulse and recovery time combinations of 30 

seconds/30 seconds, one minute/one minute, two minutes/30 seconds, and five 

minutes/five minutes were experimentally tested. The model predicted similar maximum 

response for three of these four combinations as indicated by the number of receptor-
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ligand complexes present at the cell membrane, leading us to ask whether the dynamic 

response of the cells would also be similar (Figure 9 and Figure 10, Chapter 4). After 

exposing Jurkat cells to the same pulsatile IL-2 stimulus in vitro, the resulting cell 

response, as indicated by STAT5-GFP translocation to the nucleus, show distinct profiles. 

We observed that cells exposed to IL-2 pulses of intermediate length (one and two 

minutes) followed by short recovery times (one minute and 30 seconds, respectively) 

(Figure 17 and Figure 18) responded more quickly than either cells exposed to short 

pulses with short recovery times (Figure 16) or cells exposed to long pulses and long 

recovery times (Figure 19). No statistical significance was found between the mean 

maximum ratio of nuclear to cytosolic STAT5-GFP for the responding cells between the 

four IL-2 input groups. The means of the AUC for the responding cells showed statistical 

significance using a one-way ANOVA with post hoc Tukey test (p = 0.0211), with 

significant difference of the mean seen between the 1 minute pulse 1 minute pause group 

and the 2 minute pulse 30 second pause group (p = 0.213) and the 5 minute pulse 5 

minute pause group (p = 0.0417). Collectively, the results suggest that individual cell 

responses to pulsatile IL-2 stimulus vary within Jurkat cells, and that the response 

profiles are affected by variation in pulse length of recovery time, with a stronger and 

faster response occurring at intermediate pulse times compared to both short and long 

pulse and recovery times.  
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Figure 16. Nuclear translocation of STAT5-GFP upon short pulses of IL-2. Nuclear 

translocation of STAT5-GFP in Jurkat cells exposed to pulsatile input of 100 pM IL-2 

with 30 s pulses and 30 s recovery pauses. Responding cells (top) show an increased ratio 

of nuclear to cytosolic GFP over to course of one hour. Cell traces were normalized to the 

initial time point. Pulses (blue) and pauses (white) are indicated along the x axis. 
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Figure 17. Nuclear translocation of STAT5-GFP upon 1 minute pulses of IL-2. Nuclear 

translocation of STAT5-GFP in Jurkat cells exposed to pulsatile input of 100 pM IL-2 

with 1 minute pulses and 1 minute recovery pauses. Responding cells (top) show an 

increased ratio of nuclear to cytosolic GFP over to course of one hour. Cell traces were 

normalized to the initial time point. Pulses (blue) and pauses (white) are indicated along 

the x axis. 
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Figure 18. Nuclear translocation of STAT5-GFP upon 2 minute pulses of IL-2. Nuclear 

translocation of STAT5-GFP in Jurkat cells exposed to pulsatile input of 100 pM IL-2 

with 2 minute pulses and 30 second recovery pauses. Responding cells (top) show an 

increased ratio of nuclear to cytosolic GFP over to course of one hour. Cell traces were 

normalized to the initial time point. Pulses (blue) and pauses (white) are indicated along 

the x axis. 
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Figure 19. Nuclear translocation of STAT5-GFP upon long pulses of IL-2. Nuclear 

translocation of STAT5-GFP in Jurkat cells exposed to pulsatile input of 100 pM IL-2 

with 5 minute pulses and 5 minute recovery pauses. Responding cells (top) show an 

increased ratio of nuclear to cytosolic GFP over to course of one hour. Cell traces were 

normalized to the initial time point. Pulses (blue) and pauses (white) are indicated along 

the x axis. 
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Table 4: Responding cells and average nuclear/cytosolic STAT5-GFP maximum and area 

under the curve for four time-dependent IL-2 stimulus settings.  

Condition 30s/30s 1m/1m 2m/30s 5m/5m 

Responding cells (%) 30 53 37 45 

Average max norm ratio responders 2.7 ± 0.76 1.8 ± 1.02 2.1 ± 1.40 2.3 ± 0.88 

AUC non-responders 56.2 50.72 57.2 56.2 

AUC responders 98.5 ± 13.2 152.12 ± 159.3 71.8 ± 32.0 81.1 ± 21.5 

 

5.4 Discussion 

Our experimental microfluidic setup permitted investigation of single-cell responses to 

IL-2 in a controlled setting, by simultaneously collecting response data from multiple 

cells within a population through the use of arrayed cell traps, orthogonal buffer flow, 

and longitudinal imaging. When subjected to a constant input of 100 pM IL-2, the cells in 

the population showed a range of responses, with one third of cells showing a clear 

translocation of GFP-labeled STAT5 from the cytosol to the nucleus over the one hour 

time course. This range of responses to a uniform ligand condition highlights the 

importance of studying single-cell responses within populations rather than relying on 

population averages in order to fully understand the functionality of immune cell 

populations. The heterogeneity observed here suggests that varying levels of IL-2 

receptor subunits at the single-cell level can have functional consequences with regards to 

filtering dynamic IL-2 cues in the extracellular environment. 

 The initial resting ratios of nuclear to cytosolic STAT5-GFP in Jurkat cells 

indicate that STAT5 is present in their nucleus prior to experimental IL-2 stimulation, 

albeit at levels markedly lower than in the cytosol. This presence of nuclear STAT5 is 

presumably due to the effects of IL-2 exposure in culture, where Jurkat cells 

constitutively produce and release IL-2. This constitutive response to IL-2 results in a low 

level of downstream response with phosphorylation and translocation of cytosolic 

STAT5. Our population-averaged probing of both unlabeled and labeled STAT5 shows 
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that the vast majority of STAT5 exists in the cytosol prior to IL-2 stimulation. We note 

also that based on our fluorescent images, the relative amount of STAT5-GFP in the 

nucleus varied between cells at resting state. No correlation (R
2
 = 0.15) was found 

between resting ratio of nuclear to cytosolic STAT5-GFP and the level of the IL-2 

induced response for individual cells.  

 Cell-to-cell variability in signaling is commonly thought of as the result of 

accumulation of variation in protein at each level of a biochemical cascade. An alternate 

hypothesis to explain this variability states that rather than being caused by random 

variations in gene expression, it is caused by cellular convergence to specific attractor 

states within cell state space [118]. Such clustered heterogeneity could indicate the 

existence of distinct kinetic profiles within the cell population, allowing for the 

fulfillment of different functional needs. The possibility that distinct cellular response 

states coexist in genetically identical cell populations prior to stimulation is an intriguing 

pendant to the discussion of cell-to-cell heterogeneity within immune cell populations. 

Our results show distinct phenotypic subgroups within our cell population, with different 

response profiles to identical inputs. High responder cells showed initiation of 

quantifiable STAT5-GFP translocation rapidly after the initial IL-2 pulse for the two 

intermediate pulse times of one and two minutes, indicating that these pulse times in 

combination with their respective recovery periods of one minute and 30 seconds provide 

a favorable input to fast cell response to extracellular IL-2. Interestingly, both shorter (30 

seconds) and longer (five minutes) pulse and recovery times resulted in a slower 

initiation of STAT5-GFP translocation for high-responding cells. This raises the 

possibility that the existence of different cell states within the population enables the cells 

act as filters to initiate response within a preferred range of cytokine fluctuation while 

filtering out IL-2 input pulses that fall outside this range.  

 The dynamics of receptor-ligand interaction in the IL-2 system, coupled with the 

relative speed of the downstream processes, suggests that this system could allow cells to 
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distinguish between fluctuating pre-equilibrium (below steady-state) levels of ligand [39]. 

Our experimental design let us test this prediction by enabling us to tightly control 

extracellular IL-2, in a manner that let us investigate the effects of a pulsatile IL-2 input 

on the receptor-ligand complex dynamics in Jurkat cells. We exposed cells from the same 

population to IL-2 stimulus at varying range of combinations of stimulus pulse and 

recovery times, while simultaneously tracking downstream response for individual cells 

using fluorescent imaging of STAT5-GFP. The results provide a distribution of different 

response profiles within the population for all input settings. Interestingly, our results also 

show differences in the onset of cell response and the spread of response strength as the 

pulsatile input was varied. Notably, short IL-2 pulses of 30 seconds followed by short 30 

second recovery times showed a population profile similar to that seen when both IL-2 

pulses and recovery times were long (5 minutes). In contrast, intermediate pulse and 

pause times showed a faster onset of downstream response in the population, 

accompanied by a wider range of single-cell response profiles. This indicates that Jurkat 

cells do indeed respond to pulsatile IL-2 input in a manner that is able to distinguish 

between pulsatile variations in extracellular IL-2 levels at below steady-state 

concentrations. This is consistent with the prediction that the kinetics of the IL-2 

receptor-ligand pair enables increased cellular sensitivity to fluctuating cytokine levels.  

 In an in vivo context, T cell response to IL-2 happens in a system subject to many 

control switches, such as a priori upregulation of IL-2R, and ligand competition both 

within the T cell population and between other cell types. By using a cell line which is 

pre-primed for IL-2R expression, we did not have to account for the need for IL-2R 

recruitment in order to initiate IL-2 response in the cells. In addition, our experimental 

setup allowed for precise control of IL-2 exposure while minimizing the number of 

biological control switches. Thus, our results indicate cell response to IL-2 stimulation in 

a context where the main contributors to cells response were IL-2 delivery and 

preexisting cell state of the responder cell. 
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 Previously published data report a range of expression of IL-2 receptor subunits 

within T cell populations [6, 56]. While the expression levels of IL-2R are known to be 

affected by IL-2 due to priming of cells which initiated IL-2R upregulation, we used a 

cell line that is constitutively primed to express IL-2R. This allowed us to ask how 

levels of other IL-2 receptor subunits might alter cell responsiveness under primed 

conditions. In order to investigate the effects of initial cell-to-cell variability in receptor 

level, we modeled cells with high or low levels of these subunits and found that under 

primed conditions, the level of IL-2R and IL-2 became an indicator of cellular 

responsiveness to IL-2 as measured by downstream translocation of STAT5.  

 In conclusion, we have investigated single-cell responses to variable pulsatile IL-

2 input, using a microfluidic platform in combination with time-lapse fluorescent 

imaging. Our results indicate that cell response profiles vary with varied pulsatile input at 

pre-equilibrium levels. By using microfluidics, we were able to investigate both specified 

cell-cell variability and the spatiotemporal effects of controlled IL-2 stimulation. This 

approach helped to increase our understanding of how cell-to-cell variability affects the 

range of cytokine responses within an immune cell population. Our experimental setup 

allowed us to focus on the cellular response at the single-cell level, in a manner that 

complemented the model developed in Chapter 4, by highlighting the variability of the in 

vitro cell response within a population using model-informed input settings. The 

difference in response onset time seen in populations responding to varying combinations 

of IL-2 pulse times and recovery times indicate that Jurkat cells have a preferred range of 

extracellular IL-2 fluctuations in which a cellular response is initiated quickly, while cells 

are slower to respond and show lower response levels outside this fluctuation range. 

Further investigation into this filtering behavior could increase our understanding of how 

variability within immune cell populations enable a systems response within preferred 

fluctuation ranges and whether these ranges correspond to in vivo conditions. 
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CHAPTER 6  CONCLUSIONS AND FUTURE DIRECTIONS  

6.1 Conclusions 

In this work, we have explored cellular heterogeneity in immune cell populations and the 

dynamics responses to stimuli based upon this heterogeneity. Our approach incorporated 

both computational and experimental approaches, taking advantage of technical progress 

in the area of single-cell gene expression analysis and microfluidics. In Aim 1, we 

showed that gene expression variability within immune cell populations can be used as an 

indicator of novel subgroups. Our data also illustrated the importance of the choice of 

analytical methods in interpreting single-cell transcriptomic data. While gene expression 

variability can predict functional differences between immune cell subgroups, cellular 

function is often defined by a cell’s interactions with other cells. In order to address this, 

we studied single-cell responses to IL-2, one of the most important signaling molecules in 

the context of T cell functionality. Through computational modeling, we sought to 

investigate the effects of cellular heterogeneity on response to IL-2. A microfluidic 

device enabling the capture and imaging of suspension cells in combination with tightly 

regulated IL-2 stimulus allowed us to test model predicted ranges of interest for pulsatile 

IL-2 input. This combinatorial approach allowed us to achieve a more detailed view of T 

cell response to biologically relevant fluctuations in extracellular cytokine. 

 

Single-Cell Gene Expression Analysis of Primary Immune Cells 

Our initial study (Aim 1) examined heterogeneity in primary immune cell populations, 

and asked the question whether single-cell gene expression analysis could help in the 

discovery of distinct subgroups. Our results indicate that this approach can enable the 

detection of  distinct cellular subgroups within populations, enabling grouping based on 

both cell surface markers and intracellular targets such as transcription factors and 

signaling proteins. 
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Interpretation of Single-Cell Data 

Our systematic testing of analysis methods for single-cell gene expression data (Aim 1) 

showed the effect that methods choice can have on interpretation of this data type. This 

illustrates the importance of choosing a data analysis method that is suitable for single-

cell data. Since the completion of our study which was carried out using the Fluidigm 

qRT-PCR system, newer technologies have been developed, allowing for larger sets of 

single-cell gene expression data to be collected in parallel. The expanding capabilities of 

RNA-seq in particular provide an improved dynamic range as compared to microarray-

based techniques and RNA-seq has become a leading technology of choice [120, 121].  

Despite the rapid progression of technologies that enable collection of such data, to date 

there is no consensus on the best analytical method. More work is needed in this area in 

order to establish standards for data analysis, taking into account that a one-size-fits-all 

approach may not be attainable for this type of data. As illustrated by our two data sets, 

representing two different populations of primary immune cells, characteristics, such as 

expected population variability based on previously known subgroups and function may 

be important factors to consider. Comparative studies incorporating more cell types and 

data sets of larger size would be useful for establishing standard data analysis methods. 

Although our study was carried out using data from the Fluidigm platform, the 

importance of establishing proper data analysis methods for single-cell gene expression 

data holds true across technologies. Technical variability is unavoidable and the as each 

cell in single-cell data represents one unique batch, bulk-based methods for minimizing 

technical noise such as implementation of technical replicates cannot be employed. This 

means that technical variability must be taken into account for sample processing of all 

single-cell gene expression data in order to ensure correct data interpretation. 

 

Computational Modeling of T cell Response to IL-2 
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We developed a model to investigate the dynamic response of T cells to pulsatile IL-2 

input. The model expanded on previously developed models by incorporating subunit 

level detail of the IL-2 receptor, as well as by interrogating the initial response to 

cytokine at the single-cell level during the course of one hour, a time scale that 

minimized effects of IL-2 induced upregulation and enabled us to investigate what effect 

preexisting cell states within a population had on IL-2 response. Furthermore, the model 

focused on a cellular environment scaled to a microfluidic experimental setup, allowing 

us to replicate the model input in vitro at the single-cell level, rather than using a more 

conventional bulk population approach. The model also enabled us to specify both cell-

to-cell variability and pulsatile input of extracellular IL-2 available to the cells. The 

results offered new insights into the effects of cell-to-cell variability within immune cell 

populations on the response to fluctuations of extracellular cytokine levels.  By 

incorporating subunit detail and the stepwise formation of the receptor ligand complex, 

we added more information that corresponded to the kinetic steps involved in mediating 

cell signaling in vitro. It could be argued that even more steps need to be added in order 

to fully model all known steps of complex formation. However, we feel that the 

simplification we included with regards to the IL-2R and IL-2 subunits was justified 

based on previously published models which compared the effect of including or 

excluding the individual IL-2R binding step and found the different negligible. The first 

of our two model outputs, receptor-ligand complex number, was not experimentally 

verified as methods for such verification such as antibody binding were thought to 

interfere with the binding steps. A downstream response was added to our model in the 

form of STAT5 nuclear translocation, which was represented by a single delay function. 

STAT5 translocation provided a model output which could be experimentally validated; 

however it is an indirect measurement of upstream receptor-ligand ligation events. While 

the modeled STAT5 translocation step was fitted to experimental data, this was a 

simplification of a multistep phosphorylation cascade, and additional steps based on 
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dynamic experimental data from the intermediary steps could be useful in order to further 

improve the timing aspect of modeled predictions of translocation.  

By taking a deterministic approach to incorporating cell-cell variability, we could specify 

initial receptor subunit settings at the single-cell level and predict downstream effects. An 

alternate approach would be to allow for setting initial single-cell values in a stochastic 

manner. This aspect could be added to the model by allowing for sampling within a 

known range of expression for model species of interest, e.g., by experimentally 

determining the numbers of receptor subunits within the cell population of interest and 

allowing for sampling within this dataset.  

 

Using Microfluidics to Investigate Single-Cell Response to IL-2 

We next sought to explore T cell response to IL-2 input experimentally. By using a 

previously developed microfluidic cell trap along with a tightly controlled stimulus 

delivery setup, we were able to capture the dynamic behavior of individual cells from the 

same population. By using this method, we were able to stimulate cells with biologically 

relevant concentrations of IL-2, rather than large doses, eliminating the risk of cell 

toxicity. It also allowed us to tightly regulate the time of stimulus delivery, rather than 

rely on diffusion in a larger culture volume.  

 

Heterogeneity in T cell Response to IL-2 

The Jurkat T cell line was transfected to stably express a fluorescently labeled target 

protein downstream of the IL-2 receptor. Fluorescent microscopy allowed us to track 

cellular response to the stimulus in real time and custom Matlab code for image analysis 

let us quantify this response to compare individual cell behavior. This approach enabled 

us to gain new insight into the variability of cell behavior within an immune cell 

population, hinting at the possibility of preexisting cellular states within the population 

that enable variability in response to an identical stimulus. Our measured levels of IL-
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2R expression within the Jurkat cell population prior to stimulation indicated a 

preexisting variability in subunit levels available for ligand binding; however a direct 

correlation between subunit levels and downstream response could not be verified on the 

individual cell level due to technical limitations. Our experimental platform allowed for 

measurement of subunit level by on-chip antibody staining, but this method was not 

optimal due to the risk of antibody binding interfering with receptor-ligand formation. An 

alternate method for directly quantifying receptor subunit levels in the responding cells 

would be useful in order to experimentally verify our conclusion that IL-2R is a rate-

limiting factor in the response of pre-primed T cells to IL-2. Cells expressing 

fluorescently labeled protein or a comparison of cells with up- or downregulated receptor 

subunits could provide such a method. 

 

T cell response to Pulsatile IL-2 Stimulus 

By combining the microfluidic cell trap with customizable input pulses, we investigated 

Jurkat T cell response to pulsatile IL-2 input under model-informed stimulus settings. 

Our results indicated that the cells had a preferred range of pulsatile IL-2 stimulus input 

in which downstream response was increased. While we did not test other stimuli, a 

previously published study found a preference for a frequency of 2.78 mHz in Jurkat cell 

response to fluctuating H2O2 [38]. Together with our results showing a preference for 

input pulses of one minute, this indicates that Jurkat cells exhibit different bandpass 

filtering characteristics for different stimuli. Our results also show not only a frequency 

preference but also an effect on cell response to IL-2 due to different lengths of cell 

recovery between stimulus pulses. 
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6.2 Future Directions 

6.2.1 Single-Cell Gene Expression as a Tool for Detecting Distinct Subgroups of 

Immune Cells 

In our work, we showed that high throughput gene expression analysis can be employed 

to discover distinct subgroups of immune cells that are separated by markers other than 

the traditional surface markers. With the rapid development of more sophisticated 

techniques for single cell genomics and transcriptomics [47-50], future work using this 

approach is sure to include even greater level of detail. Our comparison of cellular 

subgroup representation between individuals showed a difference between healthy 

donors. The inclusion of more cell types in the search could further our understanding of 

individual differences in immune system functionality and a complementary 

consideration when choosing gene targets makes it possible to infer systems level 

information regarding the communication between different cellular subgroups. While we 

compared only healthy individuals, this approach could also be useful to determine 

causes of dysregulation in disease states, which would be beneficial for the development 

of accurate disease models. In addition this approach should of interest for drug 

development research due to the implications of single-cell heterogeneity in differential 

response to treatment.     

6.2.2 The Existence of Cellular States within T cell Populations 

The results from our study of T cell response to IL-2 hint at the possibility of distinct 

cellular states existing in T cell populations. Future work should aim to characterize pre-

existing cell states within T cell populations and how these affect immune response. 

Single-cell genomics [122], mass cytometry [123], and kinetic parameters search [118] 

have recently been employed to defined single-cell states, each method capturing a 

different aspect of such subclassification of populations. A future computational 

modeling approach could be taken to assess the existence of attractor states within T cell 
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populations such as developed for calcium responses in ATP-stimulated epithelial cells. 

Following the methods of Wollman and colleagues [118], deterministic models of IL-2 

signaling could be individually optimized for parameters that yield single cell dynamics 

by inferring the full distribution for each parameter through Bayesian approaches. 

Clustering of the resulting parameter sets could reveal groupings of numerical values that 

explain responder/non-responder behavior. Finally, the addition of primary cell 

information would serve to further compare the functional consequences of such cellular 

states within the adaptive immune system where direct comparisons between parameters 

and proteomic information are possible. 

6.2.3 Preferred Range of Pulsatile IL-2 Stimulus for Optimal Cell Response 

Our computational model predicted different cellular responses to pulsatile IL-2 based on 

the duration of stimulus pulses and recovery times that the cells were exposed to. Our 

experimental testing of these predictions confirmed that cell response will vary with 

pulsatile IL-2 input and also indicated the existence of a preferred range of IL-2 

fluctuations in which the cells exhibited more rapid and stronger downstream response to 

IL-2, independent of concentration. While we did not explore a wide range different IL-2 

concentrations, this aspect could be investigated using our experimental platform to test 

the latter prediction. Future work should also explore this observed behavior to get a 

more detailed view of this effect and to determine its biological relevance. Questions of 

interest include whether the observed range of IL-2 fluctuation is of physiological 

importance, a question that could be investigated by determining IL-2 fluctuations in 

vivo. Whether cell secretion of IL-2 by IL-2 producing cells matches the preferred 

fluctuation seen in our responding cells could be experimentally tested using an 

experimental platform such as one developed by the Tay group which allows single cell 

measurement of dynamic cytokine secretion [54]. Additionally, the downstream effects of 

the observed response could be investigated to determine whether up- or down regulation 
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of genes influenced by IL-2 response will differ in correlation with the heterogeneous cell 

behavior seen, and what implications this will have for immune system functionality on a 

longer time scale. An experimental platform that allows for collection of both cell 

response and single-cell transcriptomics data from individual cells would be a useful tool 

for investigating this downstream effect. 
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APPENDIX 

A.1. Appendix for Chapter 3 

A.2. Target Genes for Single Cell qRT-PCR 

Table 5: Target genes for qRT-PCR of primary T cells. 

Gene 
name Gene Product 

AKT3 Akt3 

ATP2B1 PMCA 

B3GAT1 CD57 

BCL2  Bcl-2 

CAMK4 Calcium/calmodulin-dependent protein kinase type IV 

CCR5 C-C chemokine receptor type 5 

CCR7 C-C chemokine receptor type 7 

CD27 CD27 

CD28 CD28 

CD3D CD3 delta 

CD4  CD4 

CD40LG CD40 ligand 

CD8B CD8, beta 

CDKN2A  Cyclin-dependent kinase inhibitor 2A, p16ink4A 

CREB1 CAMP responsive element binding protein 1 

CTLA4 CD152 

CXCR3 Chemokine (C-X-C motif) receptor 3 

CXCR4 Chemokine (C-X-C motif) receptor 4, CXCR4 

CXCR6 Chemokine (C-X-C motif) receptor 6 

CXCR7 Chemokine (C-X-C motif) receptor 7 

DUOX1 Dual oxidase 1 

DUSP2 Dual specificity protein phosphatase 2 

DUSP3 Dual specificity protein phosphatase 3 

FAS  CD95 

FASLG Fas ligand 

FCAR CD89 

FYN Proto-oncogene tyrosine-protein kinase Fyn 

GLRX2 Glutaredoxin 2 

GZMB Granzyme B 

HIF1A Hypoxia-inducible factor 1-alpha, HIF-1alpha 

IFNGR1 Interferon gamma receptor, IFN gamma receptor 

IL10  Interleukin-10, IL-10 

IL10RA Interleukin-10 receptor, alpha, CDw210 

IL10RB Interleukin-10 receptor, beta 

IL12RB2 Interleukin 12 receptor, IL-12 receptor 

IL17A Interleukin 17, IL-17 

http://www.proteinatlas.org/ENSG00000171791
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IL18R1 Interleukin 18 receptor 1, IL-18 receptor 1 

Table 5 continued. 

IL1R1  CD121a (IL-1RI and IL-1RII) 

IL2  Interleukin-2, IL-2 

IL21R Interleukin-21 receptor, IL-21 receptor 

IL2RA CD25 

IL2RB Interleukin-2 receptor, beta, Interleukin-15 receptor 

IL2RG Interleukin-2 receptor, gamma, CD132 

IL4R Interleukin-4, IL-4 

IL6 Interleukin 6, IL-6 

IL7R Interleukin-7 receptor, alpha, IL-7 receptor 

ITK IL2-inducible T cell kinase 

JAK1 Janus kinase 1 

JAK3 Janus kinase 3 

KLRC1 Killer cell lectin-like receptor subfamily C, member 1 

LAG3 CD223 

LAT Linker for Activation of T cells, LAT 

LCK Lymphocyte-specific protein tyrosine kinase 

LTA, TNFB Tumor Necrosis Factor beta, TNF beta 

MAP3K5 Apoptosis signal-regulating kinase 1 

MAPK1 Mitogen-activated protein kinase 1, ERK2 

MAPK9 Mitogen-activated protein kinase 9, JNK2 

MPO Myeloperoxidase 

NFE2L2  Nuclear factor (erythroid-derived 2)-like 2 

NPAT CD245 

NRAS N-Ras 

ORAI1 Calcium release-activated calcium channel protein 1 

PIK3CD PI3K, catalytic, delta polypeptide 

PLCG1 PLC gamma 

Prf1 Perforin 1 

PRKCQ PKC theta 

PTEN Phosphatase and tensin homolog, PTEN 

PTPN1 Protein-tyrosine phosphatase 1B, PTP1B 

PTPN11 Tyrosine-protein phosphatase non-receptor type 11, SHP-2 

PTPN22 Protein tyrosine phosphatase, non-receptor type 22, LYP 

PTPN6 Src homology region 2 domain-containing phosphatase-1, SHP1 

RAC2 Ras-related C3 botulinum toxin substrate 2, Rac2 

RPP38 p38 

SH2D1A 
SH2 domain-containing protein 1A, sphingolipid activator protein-1, 
SAP 

SOD2 Superoxide dismutase , SOD2 

SOS2 SOS-2 

STAT3 Signal transducer and activator of transcription 3, STAT3 

STAT5a Signal transducer and activator of transcription 5A, STAT5a 

STAT5b Signal transducer and activator of transcription 5B, STAT5b 

STAT6 Signal transducer and activator of transcription 6, STAT6 

STIM1 Stromal interaction molecule , STIM1 

TCRG Tcell Receptor, gamma, TCR gamma 

TERF1 Telomeric repeat-binding factor 1, TERF1 

http://www.proteinatlas.org/ENSG00000115594
http://www.proteinatlas.org/ENSG00000116044
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TGFB1 TGF beta 1 

Table 5 continued. 

TGFBR2 TGF beta receptor 2 

TLR4 Toll-like receptor 4, TLR4 

TLR5 Toll-like receptor 5, TLR5 

TLR7 Toll-like receptor 7,TLR7 

TNF, 
TNFA Tumor Necrosis Factor alpha, TNF alpha 

TNFRSF8 CD30 

TNFRSF9 4-1BB, CD137 

TRAF6 TNF receptor associated factor 6, TRAF6 

TXN2 Thioredoxin 2, Trx2 

VAV1 VAV1 

WNT3 WNT3 

ZAP70 Zeta-chain-associated protein kinase 70, Zap70 

 

Table 6: Target genes for qRT-PCR of primary neutrophils. 

Gene name Gene Product 

AKT1 V-akt murine thymoma viral oncogene homolog 1 (AKT1) 

AQP9 Aquaporin 9 

B2M MHCI beta microglobulin 

BCLAF1 BCL2-associated transcription factor 1 

BIN1 Bridging integrator 1 

BTK Bruton agammaglobulinemia tyrosine kinase 

C5AR1 Complement component 5a receptor 1 

CASP8 Caspase 8 

CASP9 Caspase 9 

CD14 CD14 

CD4  CD4 

CD46 CD46 

CD83 CD83 

CDC42 CDC42 

CSF2RA CD116 

CTNNB1 Beta-catenin 

DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 

DICER1 Dicer 1, ribonuclease type III 

DYRK1A Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A 

EIF2AK2 Eukaryotic translation initiation factor 2-alpha kinase, PKR 

EIF4B Eukaryotic translation initiation factor 4B 

EIF4G1 Eukaryotic translation initiation factor 4 gamma 1 

ELK1 ETS domain-containing protein Elk-1 

FBXL5 F-box and leucine-rich repeat protein 5 

FCGR1A CD64 

FCGR2A CD32 

FCGR3B CD16b 

FOS c-Fos (FBJ murine osteosarcoma viral oncogene homolog) 

http://www.proteinatlas.org/ENSG00000049249
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GRB2 Growth factor receptor-bound protein 2 

Table 6 continued 

GSK3B Glycogen synthase kinase 3 beta 

HERC5 Hect domain and RLD 5 

HERPUD2 
Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain 
member 2 protein  

HIF1A Hypoxia-inducible factor 1-alpha 

HLA-A MHCI alpha chain 

HLA-DRA HLA class II histocompatibility antigen, DR alpha chain 

HNRPK Heterogeneous nuclear ribonucleoprotein K 

HSD17B11 Hydroxysteroid (17-beta) dehydrogenase 11 

HSPB1 Heat shock protein beta-1, Heat shock protein 27 (Hsp27)  

IFIT1B Interferon-induced protein with tetratricopeptide repeats 1B 

IFIT2 Interferon-induced protein with tetratricopeptide repeats 2 

IFNGR1 Interferon gamma receptor 1 

IL17RD Interleukin 17 receptor D 

IL1B Interleukin 1, beta 

IL2RB Interleukin 2 receptor, beta 

IL6R IL-6 receptor 

IL8 IL-8 (CXCL8) 

IL8RA IL-8 receptor, alpha (CXCR1) 

ILK Integrin-linked kinase 

IMP3 U3 small nucleolar ribonucleoprotein protein IMP3 

IRAK1 Interleukin-1 receptor-associated kinase 1 

IRF1 Interferon regulatory factor 1 

CD44 CD44 

ITGAL CD11a (Integrin alpha L chain0 

ITGAM Integrin Alpha-M (CD11b) 

ITGB2 CD18 ( Integrin, beta 2) 

MAPK3 Mitogen-activated protein kinase 3 

MBOAT7 Membrane bound O-acyltransferase domain containing 7 

MCL1 Myeloid cell leukemia sequence 1 (BCL2-related) 

MYD88 Myeloid differentiation primary response gene (88) 

NDEL1 NudE nuclear distribution gene E homolog (A. nidulans)-like 1 

NFKB1 NF Kappa B 

NUMB NUMB homolog 

OASL 2'-5'-oligoadenylate synthetase-like 

OCIAD1 OCIA domain containing 1 

OR2W3 Olfactory receptor, family 2, subfamily W, member 3 

PAK1 Serine/threonine-protein kinase PAK 1 

PDPK1 3-phosphoinositide dependent protein kinase-1 

PHC2 Polyhomeotic homolog 2 

CREB cAMP response element-binding protein 

PIK3CG 
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma 
isoform 

PTEN Phosphatase and tensin homolog 

PTPN11 Tyrosine-protein phosphatase non-receptor type 11  

RAC1 Ras-related C3 botulinum toxin substrate 1 
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RHEB GTP-binding protein Rheb (Ras homolog enriched in brain) 

Table 6 continued. 

RHOA Ras homolog gene family, member A 

SAE1 SUMO1 activating enzyme subunit 1 

SAMD9L Sterile alpha motif domain containing 9-like 

SELENBP1 Selenium binding protein 1 

SELL CD62 ligand 

SERINC3 Serine incorporator 3 

SHC1 SHC-transforming protein 1 

SP3 Sp3 transcription factor 

SRF Srf serum response factor  

STK17B Serine/threonine kinase 17b 

STX3 Syntaxin 3 

STXBP3 Syntaxin binding protein 3 

TLR4 Toll-like receptor 4 

TLR6 Toll-like receptor 6 

TLR8 Toll-like receptor 8 

TRAF6 TNF receptor-associated factor 6 

TRIM33 Tripartite motif containing 33 

TSC1 Tuberous sclerosis protein 1 

TSEN34 tRNA splicing endonuclease 34 homolog 

WASPIP WAS/WASL interacting protein family, member 1 

ZDHHC18 Zinc finger, DHHC-type containing 18 

ZFAND5 Zinc finger, AN1-type domain 5 
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A.3. Gene and Cell Exclusion by Primary Analysis Method 

Table 7: The numbers of cells and genes excluded for each combination of primary 

analysis methods. 

      Neutrophils   T Lymphocytes 

Raw Data   Raw Data   

Cells 220 Cells 251 

Genes 93 Genes 94 

Supervised 

 

2 Control Genes: 

Average   

Cells 202 Cells  244 

Genes 59 Genes 38 

2 Control Genes 

*   

2 Control Genes*: 

Missing   

Cells  208 Cells 244 

Genes 62 Genes 38 

All Inclusive   All Inclusive   

Cells 220 Cells 247 

Genes 81 Genes 94 
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A.4. Hierarchical Clustering of T cell Data 

 

 

Figure 20. Hierarchical clustering of T cell data after nine combinations of primary 

analysis. 

The primary data analysis method chosen affects the subsequent results for T cells.  
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A.5. Appendix for Chapter 4  

A.6. Computational Model  

Table 8: Model species. 

Name Initial value Definition 

L 100 Ligand 

Cs 10 Receptor-ligand complex at cell surface 

Ri 300 Intracellular receptor (lumped parameter) 

Li 0.01 Intracellular ligand 

Ci 1 Internalized Cs 

Ld 1 Degraded ligand 

Y 4.22E+09 System volume 

A 14996.3 IL-2Ralpha 

BG 1500 IL-2RBetaGamma (limped parameter) 

LA 1 A binding L 

 

Table 9: Model reactions. 

Process Equation 

null -> L (koff1 * LA)  * Y * Vol / NA 

null -> Cs (kon2 * LA * BG) 

null -> Ri (kt * BG + kre * Ci) 

null -> Li ((kre * Ci ) / (Ve *NA)) 

null -> Ci (kfe * Li * Ri + ke * Cs) 

L -> null kon1 * L * A * Y / NA 

Cs -> null (kr * Cs) + (ke * Cs) 

Ri -> null (kfe * Li * Ri + kh * Ri) 

Li -> null ((kfe * Li * Ri ) / (Ve *NA)) + (kx * Li) 

Ci -> null (kre + kh) * Ci 

null -> A (koff1 * LA) + (ksyn * Cs) + Vs + (kx * Li) 

A -> null (kon1 * L * A) + (kt * A) 

null -> LA (kon1 * L * A) + (kr * Cs) 

LA -> null (koff1 * LA) + (kon2 * LA * BG) 

BG -> null (kon2 * LA * BG) + (kt * BG) 

null -> BG kr * Cs + Vs 
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A.7. Appendix for Chapter 5 

A.8. Code for Image Analysis Step 1 Data Acquisition 

%%% Linda's code for analyzing gfp in both whole cell and nuclei 
%%%%STEP1 - ENTER FILE NAME FOR RESULTS FILE 
%Indicate what filename you would like to save the results as: 
clear  
Filename = 

['20170208_100pM_1min1min_Jurkat_gfp_XY2_',datestr(now,30),'.mat'];  

  
%%% Tell the code what images to use for analysis.  
if ~exist('NbImages', 'var') 

     
    %%%%STEP2 - ENTER NUMBER OF IMAGES IN YOUR SERIES 
    NbImages = 62;                          %number of images 
    Im = cell(1,NbImages);    %cell(n) returns an n-by-n cell array of 

empty matrices for the gfp images 
    Im2 = cell(1,NbImages);   %returns array for the DAPI images 

     
    %%%%STEP3 - CHANGE PIXEL RANGE IF NECESSARY 
    % This defines the size of indivudual cells to be detected 
    pixelarearange = [30,900];              %Range of pixel area 

values, used below with bwareafilt  

     
    

%%%%%******************************************************************

****** 
    %%%If unsure how to filter sizes by pixel range, uncomment below, 

and the cells' sizes will be graphed: 
%     Area1 = regionprops(bw,'Area'); 
%     Area1e = extractfield(Area1,'Area'); 
%     figure() 
%     hist(Area1e,100) 
%     title('Histogram of ALL Cell Sizes') 
%     xlabel('Cell Area Size (in pixels)') 
%     ylabel('Count') 
    

%**********************************************************************

******** 

  
    %%%%STEP4 - MAKE SURE FILES ARE READ IN CORRECTLY NAMED  
        % Put a %d in place of the changing number in the file names 

e.g. trapt01xy1.tif becomes 'trapt0%dxy1.tif' 
    FNAMEFMT1_1 = 'T0000%dC01Z001.tif'; %Change these to reflect tif 

images from Volocity export. First 9 images in gfp set 
    FNAMEFMT1_2 = 'T0000%dC02Z001.tif'; % First 9 images in DAPI set 

     
    FNAMEFMT2_1 = 'T000%dC01Z001.tif'; % Image 10-99 in gfp set 
    FNAMEFMT2_2 = 'T000%dC02Z001.tif'; % Image 10-99 in DAPIset 

     
    FNAMEFMT3_1 = 'T00%dC01Z001.tif'; % Image 10-99 in gfp set 
    FNAMEFMT3_2 = 'T00%dC02Z001.tif'; % Image 10-99 in DAPIset 
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    for i=1:9                                     % For the first 9 

images  
      Im{i} = imread(sprintf(FNAMEFMT1_1,i));     % Fluorescent images 

of first color (eg gfp) 
      Im2{i} = imread(sprintf(FNAMEFMT1_2,i));    % Second color (eg 

DAPI) 
    end 

     
    for i = 10:NbImages                        % For images 10-99 
      Im{i} = imread(sprintf(FNAMEFMT2_1,i));  % Gfp images 
      Im2{i} = imread(sprintf(FNAMEFMT2_2,i)); % DAPI images 
    end 

  
%     for i = 100:NbImages                        % For images 100-999 
%       Im{i} = imread(sprintf(FNAMEFMT3_1,i));  % Gfp images 
%       Im2{i} = imread(sprintf(FNAMEFMT3_2,i)); % DAPI images 
%     end 

  
end 

  
% Adjust contrast to help pick out cells in binary image 
Imadjust = imadjust(Im{2});             %For images in fist color (gfp) 
%Imadjust = imadjust(Im{2},[0 1],[]);   %Additional sensitivity 

definition 
Imadjust2 = imadjust(Im2{2});           %For images in the second color 

(DAPI)  

  
[level EM1] = graythresh(Imadjust);     %Get the threshold from 

graythresh function 
bw = im2bw(Imadjust,level);             %Convert to binary 
bwclearborder = imclearborder(bw);      %Clear any objects on the 

border of image e.g. half cells 
bwclear = bwareafilt(bwclearborder,pixelarearange);            %Remove 

spots not in pixelrange 

  
[level2 EM2] = graythresh(Imadjust2);     %Get the threshold from 

graythresh function of the second set of images 
bw2 = im2bw(Imadjust2,level2);            %Convert to binary 
bwclearborder2 = imclearborder(bw2);      %Clear any objects on the 

border of image 
bwclear2 = bwareafilt(bwclearborder2,pixelarearange);          % Do the 

same for second set of images 

  

  
figure %Comment out after printing 
imshow(bwclear) % Plot the whole cells found 
title('Binary Img w Sizes Filtered (whole cell gfp)') 

  
figure %Comment out after printing 
imshow(bwclear2) % Plot the nuclei found using DAPI 
title('Binary Img w Sizes Filtered (nuclei)') 

  
% You must convert a binary image into a label matrix before calling 
% regionprops to get the stats of interest. Here, we use the bwlabel 

function to do this. 
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% L returns label matrix with labels for objects (bright areas) 
% num returns the number of connected components 
[L, num] = bwlabel(bwclear);    %Original code, gfp full cells (as 

opposed to gfp for just nuclei) 
[L2, num2] = bwlabel(bwclear2); %Areas defined as nuclei 

  
for ii=1:NbImages 
    % Boundingbox: smallest square that contains whole area of interest 
    % Note: now the two defined areas are applied to the same image 

set! 
    stats = 

regionprops(L,Im{ii},'MeanIntensity','MinIntensity','MaxIntensity','Cen

troid','BoundingBox','Extrema','Area');   %intensities in full cell for 

gfp i.e whole cell 
    stats2 = 

regionprops(L2,Im2{ii},'MeanIntensity','MinIntensity','MaxIntensity','C

entroid','BoundingBox','Extrema','Area'); % intensities in the nuclear 

area for gfp i.e. nucleus 
end    

  
%%% End here to print initial masks and manually choose the cells to 
%%% analyze before continuing 

  
%%% STEP 5 MANUALLY UPDATE THE MASKS TO REMOVE UNWANTED CELLS AND 

CREATE NEW MASKS 

  
% Step 5a Open first mask (bwclear) and choose all cells to analyze 
hh = figure  
imshow(imcomplement(bwclear)) %Invert colors to make it easier to see 

crosshairs 
[x,y] = ginput(11); %Specify how many areas will be chosen from the 

bwclear mask  
for k = 1:length(x)  
 for i = 1:length(stats) 
    distance(i) = sqrt((x(k)-stats(i).Centroid(1))^2+(y(k)-

stats(i).Centroid(2))^2); %find cell closest to clicked pixel 
 end 
  [val ind] = (min(distance)) 
  indmat1(k) = ind; 
end 
close(hh) %Close the image after the specified number of bad points are 

chosen 

  
%Now do the same for the nuclei (bwclear2), choosing desired areas 

manually 
hh = figure 
imshow(imcomplement(bwclear2)) 
[x,y] = ginput(11); %Specify how many points will be chosen from the 

bwclear2 mask 
for k = 1:length(x) 
for i = 1:length(stats2) 
    distance(i) = sqrt((x(k)-stats2(i).Centroid(1))^2+(y(k)-

stats2(i).Centroid(2))^2); 
    end 
    [val ind] = (min(distance)) 
    indmat2(k) = ind; 
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end 
close(hh) 

  
%%% Step 5b Update masks to exclude the chosen areas 
numcells1 = length(stats); %For whole cell  
numcells2 = length(stats2); %For nuclei 

  
goodimg1 = ismember(bwlabel(L),indmat1); %Define updated mask as only 

goodimg1 for whole cells 
goodimg2 = ismember(bwlabel(L2),indmat2); %Define updated mask as only 

goodimg2 for nuclei  

  
% Optional: make figures to show new masks and overlays  
% figure 
% imshow(goodimg1) 
% figure 
% imshow(goodimg2) 

  
figure 
imshow(imfuse(goodimg1,goodimg2)) % QC: Image of overlaid masks of good 

cells in gfp with good nuclei 
title('Overlaid masks') 

  
% Optional: Apply new masks to first images as test   
% testimg1 = Im{1,1};    %Grabbing the original gfp image (i.e. non-

binary) 
% testimg1(goodimg1==0)=0; %Applying the mask of only good cells 

(goodimg1) 
 [L3, num3] = bwlabel(goodimg1); %Get updated label from mask 2  
% stats3 = 

regionprops(L3,testimg1,'MeanIntensity','MinIntensity','MaxIntensity','

Centroid','BoundingBox','Extrema','Area');   %do a regionprops on 

original gfp image using mask 2 

  
% testimg2 = Im{1,1};    %Grabbing the original first gfp image (i.e. 

non-binary) 
% testimg2(goodimg2==0)=0; %Applying the mask of only good nuclei 

(goodimg2) 
 [L4 num4] = bwlabel(goodimg2); %Get updated label from mask with 

chosen objects 
% stats4 = 

regionprops(L4,testimg1,'MeanIntensity','MinIntensity','MaxIntensity','

Centroid','BoundingBox','Extrema','Area');   %do a regionprops on 

original gfp image using mask 2 

  
L5 = (L3-L4); %Create a mask of cells' cytosol by subtracting nuclear 

area from whole cell 

  
%%% STEP6 APPLY UPDATED MASKS TO IMAGE SERIES. SUBTRACT BACKGROUND 

  
% for ii=1:NbImages    % Optional: If interested in whole cell area 
%     stats5 = 

regionprops(L3,Im{ii},'MeanIntensity','MinIntensity','MaxIntensity','Ce

ntroid','BoundingBox','Extrema','Area'); %intensities in full cell for 

gfp i.e whole cell 
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%     MeanIntensityCell(:,ii) = extractfield(stats5,'MeanIntensity')';   

%This takes the value from the structure and makes a vector 
%     BoundingBox(:,ii) = extractfield(stats5,'BoundingBox')'; % 

Boundingbox: smallest square that contains whole area of interest 
%     MinIntensityCell(:,ii) = extractfield(stats5,'MinIntensity'); 
%     MaxIntensityCell(:,ii) = extractfield(stats5,'MaxIntensity'); 
%     CentroidCell(:,ii) = extractfield(stats5,'Centroid'); 
%     ExtremaCell(:,ii) = extractfield(stats5,'Extrema'); 
%     AreaCell(:,ii) = extractfield(stats5,'Area'); 
%      
%     % Subtract background for each cell 
%     for i = 0:num3-1         
%         j = i*4+1;                          %Bounding box has 4 

values for every object: 1. x coordinate 2. y coordinate 3. x width 4. 

y width 
%         ycoord(i+1) = round(BoundingBox(j+1));   %Find the y value 

for all bounding boxes   
%         xcoord(i+1) = round(BoundingBox(j));     %Find the x value 

for all bounding boxes 
%         Back(i+1,ii) = mean(mean(Im{ii}(ycoord(i+1)-

2:ycoord(i+1),xcoord(i+1)-2:xcoord(i+1)))); %Take the average of pixel 

intensities from the top left, a 3x3 pixel square 
%         BackSubMeanIntensityCell(i+1,ii) = MeanIntensityCell(i+1,ii) 

- Back(i+1,ii); % subtract background for each cell       
%      end 
% end      

  
 for ii=1:NbImages  %For cytosol   
    stats5 = 

regionprops(L5,Im{ii},'MeanIntensity','MinIntensity','MaxIntensity','Ce

ntroid','BoundingBox','Extrema','Area'); %intensities in cytosolic gfp 
    MeanIntensityCyt(:,ii) = extractfield(stats5,'MeanIntensity')';   

%This takes the value from the structure and makes a vector 
    BoundingBox(:,ii) = extractfield(stats5,'BoundingBox')'; % 

Boundingbox: smallest square that contains whole area of interest 
    MinIntensityCyt(:,ii) = extractfield(stats5,'MinIntensity'); 
    MaxIntensityCyt(:,ii) = extractfield(stats5,'MaxIntensity'); 
    CentroidCyt(:,ii) = extractfield(stats5,'Centroid'); 
    ExtremaCyt(:,ii) = extractfield(stats5,'Extrema'); 
    AreaCyt(:,ii) = extractfield(stats5,'Area'); 

     
    % Subtract local background for each cell 
    for i = 0:num3-1         
        j = i*4+1;                          %Bounding box has 4 values 

for every object: 1. x coordinate 2. y coordinate 3. x width 4. y width 
        ycoord(i+1) = round(BoundingBox(j+1));   %Find the y value for 

all bounding boxes   
        xcoord(i+1) = round(BoundingBox(j));     %Find the x value for 

all bounding boxes 
        Back(i+1,ii) = mean(mean(Im{ii}(ycoord(i+1)-

2:ycoord(i+1),xcoord(i+1)-2:xcoord(i+1)))); %Take the average of pixel 

intensities from the top left, a 3x3 pixel square 
        BackSubMeanIntensityCyt(i+1,ii) = MeanIntensityCyt(i+1,ii) - 

Back(i+1,ii); % subtract background for each cell       
     end 
end  
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 for ii=1:NbImages %For nuclei 
    stats5 = regionprops(L5,Im{ii},'BoundingBox'); %intensities in full 

cell for gfp i.e whole cell  
    stats6 = 

regionprops(L4,Im{ii},'MeanIntensity','MinIntensity','MaxIntensity','Ce

ntroid','BoundingBox','Extrema','Area'); %intensities in the nuclear 

area for gfp i.e. nucleus 
    MeanIntensityNucleus(:,ii) = extractfield(stats6,'MeanIntensity')';   

%This takes the values from the structure and makes a vector 
    BoundingBox(:,ii) = extractfield(stats5,'BoundingBox')'; %Note: 

using box for Cell here so background area will be same 
    MinIntensityNucleus(:,ii) = extractfield(stats6,'MinIntensity'); 
    MaxIntensityNucleus(:,ii) = extractfield(stats6,'MaxIntensity'); 
    CentroidNucleus(:,ii) = extractfield(stats6,'Centroid'); 
    ExtremaNucleus(:,ii) = extractfield(stats6,'Extrema'); 
    AreaNucleus(:,ii) = extractfield(stats6,'Area'); 

     
    % Subtract background using SAME background coords as for 

corresponding cell! 
    for i = 0:num4-1         
        j = i*4+1;                          %Bounding box has 4 values 

for every object: 1. x coordinate 2. y coordinate 3. x width 4. y width 
        Back(i+1,ii) = mean(mean(Im{ii}(ycoord(i+1)-

2:ycoord(i+1),xcoord(i+1)-2:xcoord(i+1)))); %Take the average of pixel 

intensities from the top left, a 3x3 pixel square 
        BackSubMeanIntensityNucleus(i+1,ii) = 

MeanIntensityNucleus(i+1,ii) - Back(i+1,ii); % use same areas of 

backgound for nuclei as for whole cell background subtraction         
    end 

     
 end 

  
 % QC: Print the matrix sizes before continuing to ensure they are the 

same 
 %size(BackSubMeanIntensityCell) 
 size(BackSubMeanIntensityCyt) 
 size(BackSubMeanIntensityNucleus)   

  
 %%% STEP 7 GO TO LK_Step2 file to normalize data and create figures 

  
save(Filename)  % Save results with the name specified at the beginning 

of this file 

  

A.9. Code for Image Analysis Step 2 Data Processing 

 
%Linda's code for data processing of data from image analysis 
clear all; close all; clc 

  
%Insert file name to load from previous step of image analysis, but do 

not include '.mat' 
File = '20170222_100pM_1m1m_Jurkat_gfp_XY1_20170223T174840',;  
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ExpLength = 62; % Enter length of the experiment in minutes 
Fs = 1;     % Enter sampling rate in minutes 
FileToLoad = [File,'.mat']; %Identify the variables you want to bring 

in. File will have saved all variables from Step1 

  
Matobj = matfile(FileToLoad);   %Load in specific file 

  
BackSubMeanIntensityCyt = Matobj.BackSubMeanIntensityCyt;     % 

Intensity for cytosol 
%BackSubMeanIntensityCell = Matobj.BackSubMeanIntensityCell;     % 

Intensity for whole cells 
BackSubMeanIntensityNucleus = Matobj.BackSubMeanIntensityNucleus;   % 

Intensity for nuclei 
BackSubMeanIntensityRatio2 = 

Matobj.BackSubMeanIntensityNucleus./Matobj.BackSubMeanIntensityCyt;%Get 

ratio of gfp intensity for nucleus vs cytosol 
%Labeled with period listed followed by date BackSubMeanIntensityCorr 

was 
%created and finally, the date in which the file was created 
OutputFilename = [File,'_',datestr(now,30),'.txt'];  
SaveFilename = [File,'_',datestr(now,30),'.mat']; 

  
Time = 0:Fs:ExpLength;  %Create your time vector 

  
cellnumber = size(BackSubMeanIntensityCyt,1); 
length = size(BackSubMeanIntensityCyt,2);  
Cminmaxeachnorm2 = zeros(cellnumber ,length);  

 
for i = 1:cellnumber 
   M = BackSubMeanIntensityRatio2(i,1:length); %take the 

nuclear/cytosol ratios for all the time point 
   Mnorm = minmaxnorm(M); 
   Cminmaxeachnorm2(i,:) = (Mnorm); % Normalized 
end 

  
NbImages = size(BackSubMeanIntensityRatio2,2); 
for i = 1:NbImages 
    

NBackSubMeanIntensityRatio2(:,i)=BackSubMeanIntensityRatio2(:,i)./BackS

ubMeanIntensityRatio2(:,2); 
end 

 
% Make figures. Plotting nuclear and cytosolic gfp over time allows for 

QC 

 
figure 
plot(BackSubMeanIntensityCyt') 
xlabel('Frame') 
ylabel('gfp intensity') 
title('Cyt gfp 20170222 100pM IL2 1min pulse 1min pause XY1') 

  
figure 
plot (BackSubMeanIntensityNucleus') 
xlabel('Frame') 
ylabel('gfp intensity') 
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title('Nuclear GFP Intensity 20170222 100pM IL2 1min pulse 1min pause 

XY1') 

  
figure 
plot(BackSubMeanIntensityRatio2') 
xlabel('Frame') 
ylabel('Nuclear/Cyt gfp Ratio') 
title('Nuclear/Cyt GFP Intensity Ratio 20170222 100pM IL2 1min pulse 

1min pause XY1')   

  
figure 
plot(NBackSubMeanIntensityRatio2') 
xlabel('Frame (min)') 
ylabel('Nuclear/Cyt gfp Ratio') 
title('Normalized Nuclear/Cyt GFP Intensity Ratio 20170222 100pM IL2 

1min pulse 1min pause XY1')  

  
save(SaveFilename) 

  
%%%function to accompany this file. Make a file with it in the same 

folder. 
% function Mnorm = minmaxnorm(M) 
% a = min(min(M)); 
% b = max(max(M)); 
% Mnorm = (M-a)/(b-a); 
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