
 

 

CHARACTERIZATION OF IN VITRO TRANSCRIBED MRNA FOR OPTIMAL 

EXPRESSION IN THERAPEUTIC APPLICATIONS 

 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Jonathan Lee Kirschman 

  

 

 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Doctor of Philosophy in Biomedical Engineering in the 

Wallace H. Coulter Department of Biomedical Engineering 

 

 

 

 

 

Georgia Institute of Technology 

Emory University 

August, 2017 

  

  

Copyright © Jonathan L. Kirschman 2017 



 

 

CHARACTERIZATION OF IN VITRO TRANSCRIBED MRNA FOR OPTIMAL 

EXPRESSION IN THERAPEUTIC APPLICATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

 

 

  

Dr. Philip Santangelo, Ph.D., Advisor 

Department of Biomedical Engineering 

Georgia Institute of Technology 

 Dr. Garrett Stanley, Ph.D. 

Department of Biomedical Engineering 

Georgia Institute of Technology 

 

 

  

Dr. Krishnendu Roy, Ph.D.  

Department of Biomedical Engineering 

Georgia Institute of Technology 

 Dr. Thomas Barker, Ph.D. 

Department of Biomedical Engineering 

University of Virginia 

 

 

  

Dr. Loren Williams, Ph.D. 

School of Chemistry and Biochemistry 

Georgia Institute of Technology 

  

   

  Date Approved:  July 12th, 2017 

 

  



iii 

 

ACKNOWLEDGEMENTS 

 This PhD work would not have been possible without the kind guidance and 

support from other lab members in the Santangelo lab. My advisor Philip Santangelo of 

course played an important part of my entire graduate career, and I’ll always appreciate 

that he continued to be supportive when unfortunate real life events put me in a tough 

spot. I’d also like to thank Jinmo Gu from the Cho lab at Emory, Clarissa Whitmire from 

the Stanley lab at Georgia Tech, and the folks at Axion Biosystems. Finally, friends and 

family provided unconditional support and encouragement that I could not have done 

without.  

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iii 

LIST OF TABLES vi 

LIST OF FIGURES vii 

LIST OF SYMBOLS AND ABBREVIATIONS x 

SUMMARY xii 

CHAPTER 1: INTRODUCTION 1 
 Background 1 
 Differences between IVT mRNA and endogenous mRNAs. 2 
 Innate immune response to exogenous mRNA 3 

 Tools for mRNA characterization 4 
 Thesis outline 5 

CHAPTER 2: METRICS FOR CHARACTERIZATION OF MESSENGER RNA 7 
 Background 7 

Labeling of exogenous mRNA with MTRIPs 14 

Entry pathway and subcellular localization of L2K transfected and electroporated 

mRNA 15 

 Whole cell RNA uptake and protein expression measured via flow cytometry 17 

 Cytosolic mRNA correlates with protein production 18 

 Stress granule formation negatively correlates with protein production 20 
 Validation of the mRNA labeling protocol for tissue studies in mice 21 

 Conclusion 44 
 Methods 47 

CHAPTER 3: ENGINEERING MESSENGER RNA FOR INREASED STABILITY 

AND PROTEIN EXPRESSION 58 
 Background 58 

Incorporation of modified nucleotides into mRNA attenuates protein expression 

primarily due to stress granule formation. 60 

Protein expression using modified mRNA is dependent on the nucleotide 

sequence 61 

Reduction of cellular innate immune response is possible through co-delivery of 

mRNA with small molecule inhibitors of PKR. 61 
 Optimization of mRNA-delivery vehicle N/P ratio 62 
 Interactions between delivered mRNA and cellular RNA-binding proteins 63 
 Conclusion 80 

 Methods 82 

CHAPTER 4: RNA-BASED EXPRESSION OF OPSINS IN CARDIOMYOCYTES 

AND NEURONAL CELLS 89 



v 

 

Background 89 

Development and verification of mRNA expressing opsins 91 
Functional validation of expressed opsins 91 
Expression of ChR2 in primary rat cortical neuronal cultures 92 

CatCH outperforms ChR2 in NRVMs 93 
Conclusion 103 
Methods 104 

CHAPTER 5: PERSPECTIVES AND FUTURE DIRECTIONS 108 

REFERENCES 114 

 

  



vi 

 

LIST OF TABLES 

Table 2.1: RNA intensity Mean, SEM, and P values for treatments in Fig 2.12 37 

Table 2.2: GFP intensity Mean, SEM, and P values for treatments in Fig 2.12 38 

  



vii 

 

LIST OF FIGURES 

Figure 2.1: mRNA labeling, validation, and transfection into cells using cationic lipids or 

electroporation 23 

Figure 2.2: Agarose gel comparing unlabeled mRNA (RNA) and labeled mRNA  25 

 Figure 2.3: Quantification of degree of labeling of mRNA with MTRIPs by size 

exclusion chromatography. 26 

Figure 2.4: mRNA labeled with Dylight-650 MTRIPs colocalizes with Quasar 570 

labeled FISH probes targeted to the coding region of the mRNA in Hela cells 27 

Figure 2.5: mRNA labeled with MTRIPs and delivered by lipofection allowed 

characterization of delivery route by costaining with Clathrin light chain, Caveolin, or 

ARF6         28 

Figure 2.6: Analysis of lipofection-mediated mRNA uptake pathway via PLA 29 

Figure 2.7: Upon electroporation, mean mRNA intensity scales linearly with increasing 

amounts of transfected cy3b-labeled mRNA 31 

Figure 2.8: Transfection efficiency of HSkMC cells upon electroporation or lipofection 

with labeled modified or unmodified EGFP mRNA 32 

Figure 2.9: Flow cytometry analysis of HSkMCs following electroporation or lipofection 

with labeled 5meC + Pseudouridine or unmodified EGFP mRNA showed differences in 

mRNA uptake and protein expression 33 

Figure 2.10: Imaging and analysis of transfected cells fixed and stained with endocytic 

markers EEA1, CD63 and LAMP1 allows quantification and correlation of cytosolic 

mRNA and EGFP synthesis 34 

Figure 2.11: Imaging of lipofected cells fixed and stained with endocytic markers EEA1, 

CD63, and LAMP1 35 

Figure 2.12: Cytosolic mRNA intensity and protein levels indicated differences in release 

rate as well as differential expression for given amounts of mRNA 36 

Figure 2.13: PKR-dependent stress granule formation correlates with decreased protein 

production and is cell type-dependent 39 

Figure 2.14: Wild-type MEF cells lipofected with EGFP mRNA produced very little 

protein 5 hours post transfection due to extensive SG formation with both modified and 

unmodified mRNA. 41 



viii 

 

Figure 2.15: Visualization of labeled mRNA during IM injection and in extracted tissue 

sections  42 

Figure 2.16: Visualization of labeled mRNA following IM injection in mouse muscle 

tissue sections 43 

Figure 3.1: Incorporation of modified nucleotides into GFP mRNA results in differential 

levels of GFP expression 66 

Figure 3.2: Differences in stress activation between different modified chemistries in 

GFP mRNA  67 

Figure 3.3: Protein expression and SG formation using modified nucleotides in luciferase 

encoding mRNA 68 

Figure 3.4: Effect of codelivery of GFP mRNA and small molecule inhibitors on protein 

expression in Hela cells  69 

Figure 3.5: Effect of codelivery of luciferase mRNA and C16 on protein expression in 

hek293 cells 70 

Figure 3.6: Cytokine analysis of hek293 cells 5 hours post transfection with GFP mRNA  

   71 

Figure 3.7: Protein expression 24 hours post-transfection of hepG2 cells with 1mY GFP 

mRNA formulated at different N/P ratios and PEI derivatives 72 

Figure 3.8: Protein expression 24 hours post-transfection of A549 cells with 1mY GFP 

mRNA formulated at different N/P ratios and PEI derivatives 73 

Figure 3.9: Protein expression 24 hours post-transfection of primary rat cortical neuronal 

cells with 1mY GFP mRNA formulated at different N/P ratios and PEI derivatives  74 

Figure 3.10: Cytosolic mRNA intensity 5 hours post transfection of A549 cells with 1mY 

mRNA and Viromer Red at medium N/P ratio or modified PEI 75 

Figure 3.11: GFP expression following transfection of Hela cells with GFP mRNA 

containing miR sites in the 3’ UTR co-delivered with miRNA mimic constructs 76 

Figure 3.12: GFP expression following transfection of Hela cells with GFP mRNA with 

various 3’ UTR regions 77 

Figure 3.13: Half-lives of GFP expression following transfection of Hela cells with GFP 

mRNA with various 3’ UTR regions 78 

Figure 3.14: Proximity ligation assay between mRNA and HuR shows interaction 

between IVT mRNA and native HuR protein. 79 



ix 

 

Figure 4.1: Opsin expression in Hek293 cells 16 hours post-transfection with ChR2-YFP 

mRNA  95 

Figure 4.2: Functional validation by patch clamping of Hek293 cells 16 hours post-

transfection with ChR2-YFP mRNA 96 

Figure 4.3: GFP expression colocalizes with the neuron-specific nuclear marker NeuN in 

mixed rat cortical neuronal cultures transfected with GFP mRNA 97 

Figure 4.4: Example of ChR2 functional testing in rat cortical neuronal cultures 98 

Figure 4.5: Synchronization of ChR-2 transfected neuron action potentials and excitation                   

   99 

Figure 4.6: Response of ChR2-transfected neurons up to 144 hours post-transfection with 

ChR2 mRNA 100 

Figure 4.7: Excitation intensity comparison between ChR2 and CatCH mRNA-

transfected NRVMs. 101 

Figure 4.8: Maximum beat rate comparison between ChR2 and CatCH mRNA-

transfected NRVMs 102 

Figure 5.1: Example trace of dual expression of ChR2 and JAWS in cardiomyocytes 

allows on/off control of beating 112 

Figure 5.2: Pilot experiment showing protein expression in the rat brain following 

steoreotaxic injection with ChR2 mRNA 113 

 

 

 

  



x 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

 

 

2-AP 2-aminopurine 

5meC 5-methylcytosine 

5moC 5-methoxycytosine 

5moU 5-methoxyuridine 

C16 Imidazole-oxindole  

DNA deoxyribonucleic acid 

dsRNA double-stranded ribonucleic acid 

EGFP enhanced green fluorescent protein 

EIF4E eukaryotic initiation factor 4E 

FBS fetal bovine serum 

FISH fluorescent in situ hybridization 

HPLC high-performance liquid chromatography 

IM intramuscular 

Ifnβ1 interferon-beta 1 

Il1β interleukin-1 beta 

IPS-1 interferon-beta promoter stimulator 1 

IVT mRNA in vitro transcribed messenger ribonucleic acid 

L2K Lipofectamine-2000 

M1Y, 1MY N1-Methylpseudouridine 

MDA5 melanoma differentiation-associated protein 5 

MTRIP multiply-labeled tetravalent ribonucleic acid imaging probes 



xi 

 

  

NF-κB nuclear factor-κB 

OAS 2'-5'-oligoadenylate synthetase 

PAMP pathogen-associated molecular pattern 

PBS Phosphate-buffered saline 

PEI polyethylenimine 

PKR protein kinase RNA-activated 

PLA proximity ligation assay 

PRR pathogen recognition receptor 

qRT-PCR quantitative reverse transcription polymerase chain reaction 

RBP RNA-binding protein 

RIG-I retinoic acid-inducible gene 1 

RISC RNA-induced silencing complex 

RNA ribonucleic acid 

RNP ribonucleoprotein 

SG stress granule 

siRNA silencing ribonucleic acid 

ssRNA single-stranded RNA 

TLR toll-like receptor 

UTR untranslated region 

Ψ, Y pseudouridine, pseudoU 

  

 



xii 

 

SUMMARY 

 

     The use of synthetic messenger ribonucleic acid (mRNA) to express proteins is a highly 

promising therapeutic and vaccine approach that avoids many safety issues associated with 

viral or DNA-based systems. However, in order to optimize mRNA designs and delivery, 

technology advancements are required to study fundamental mechanisms of mRNA uptake 

and localization at the single-cell and tissue level. Here, we present a single RNA sensitive 

fluorescent labeling method which allows us to label and visualize synthetic mRNA 

without significantly affecting function. This approach enabled single cell characterization 

of mRNA uptake and release kinetics from endocytic compartments, the measurement of 

mRNA/protein correlations, and motivated the investigation of mRNA induced cellular 

stress, all important mechanisms influencing protein production. Using protein expression 

and cellular stress as metrics, messenger RNA was rationally designed through 

incorporation of chemically modified nucleotides, variations in UTRs, incorporation of 

cell-type specific micro RNA sites, and co-delivery with small molecules. In addition, we 

demonstrated this approach can facilitate near-infrared imaging of mRNA localization in 

vivo and in ex-vivo tissue sections, which will accelerate mRNA trafficking studies in pre-

clinical models. Last, I demonstrate the effectiveness of this labeling approach through the 

expression of opsins, light-sensitive ion channels, in primary rat cortical neurons and 

cardiomyocytes. Overall, the ability to study fundamental mechanisms necessary to 

optimize delivery and therapeutic strategies was demonstrated, in order to design the next 

generation of novel mRNA therapeutics and vaccines.  
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CHAPTER 1 

INTRODUCTION 

 

Background 

Messenger RNA (mRNA) therapeutics show great potential as a method of gene 

delivery for the expression of therapeutic proteins and vaccines. In vitro transcribed (IVT) 

mRNA is a platform technology, such that both native cellular proteins as well as novel 

protein designs can be specifically determined by sequence, allowing the rapid generation 

of new therapeutic strategies. Compared to DNA-based therapeutics, IVT mRNA has 

distinct advantages in safety, attributable to its inability to integrate into genomes as well 

as the temporary nature of RNA expression. Additionally, by eliminating the intracellular 

transcription step, the amount of protein expressed and the temporal initiation of expression 

is better controlled.  

However, despite the enthusiasm for RNA-based therapeutics based on their 

potential, and even a number of clinical trials in progress, there are barriers which need to 

be traversed before RNA-based therapeutics can successfully be brought to the clinic. Due 

to the lack of intracellular transcription as an amplification step, the amount of protein 

expression is limited by the amount of mRNA delivered to a target cell. Furthermore, a 

successfully delivery strategy must also encompass the effects of innate immune activation. 

Delivering higher amounts of mRNA in order to improve protein expression must account 

for the possibility of activation of cellular defense mechanisms, which is not only 

counterproductive, as one of the consequences is global translational arrest, but this also 
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may trigger unwanted side effects and even cellular apoptosis. Cellular innate immune 

mechanisms have evolved over millennia to combat viruses, and in turn, viruses have 

evolved to counteract these mechanisms. IVT RNA therapeutics must follow this example 

and also evolve in order to successfully function.  

Differences between IVT mRNA and endogenous mRNAs. 

Endogenous mRNA is transcribed in the nucleus and undergoes processing and 

finally export from the nucleus in a highly regulated manner. Much of this regulation is 

performed through the action of RNA-binding proteins (RBPs). Processing involves 5’ 

capping, the addition of a poly-A tail on the 3’ end, removal of introns via splicing, and the 

binding of various proteins to the cap, the 3’-UTR region, and the polyA tail. One of these 

is the cap binding complex, which once in the cytoplasm is involved in initiation of the 

pioneering round of translation through exchange with the initiation factor eIF4e, resulting 

in mRNA circularization and finally the progression to steady state translation. During their 

entire lifetime, endogenous mRNAs are covered in RBPs forming an RNA-protein 

complex, also known as ribonucleoproteins (RNPs). 

 IVT mRNAs do not have a nuclear history, and are instead initially bound only to 

a delivery vehicle or other delivery formulation components. Instead of entering the cytosol 

via the nucleus, they typically enter through the endosomal system (1,2), where they may 

be subject to detection by toll-like receptors (TLRs). Of particular note are TLR3, which 

detects double stranded mRNA (3-5), and TLRs 7/8, which can detect single stranded RNA 

(3,6-8). Currently, it is not clear whether exogenous mRNAs interact with the same RNA 

binding proteins as native mRNAs and if they assemble into RNP complexes in a similar 

manner.         
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Innate immune response to exogenous mRNA   

Exogenous mRNA has been successfully utilized to generate proteins in both cell 

culture and in vivo. In 1998, human dendritic cells were transfected with carcinoembryonic 

antigen-encoding mRNA and shown to stimulate a potent cytotoxic T lymphocyte response 

in vitro (9). This methodology was later adapted to generate an immune response to mRNA 

encoding the HIV Gag protein (10). However, a significant challenge was the induction of 

strong interferon responses, which hindered efficacy of T cell immunity. Additionally, 

exogenous mRNAs complexed with cationic lipids were shown to trigger TLR3, TLR7, 

and TLR8 signaling in cell cultures (4,11). The double-stranded RNA sensors Protein 

Kinase RNA-activated (PKR) and Retinoic acid-inducible gene I (RIG-I) were also shown 

to be induced upon lipid-based transfection of exogenous mRNA (12), though signaling by 

TLR3 was not affected by the PKR-inhibitor, 2-Aminopurine (4).  

Appropriate manufacturing is a critical step in enhancing mRNA effectiveness. 

Efficient enzymatic m7G capping of the 5’ triphosphate end reduces or potentially 

eliminates sensing by RIG-I (12). Incorporation of modified nucleosides into synthesized 

mRNA can reduce PKR and 2’-5’-oligoadenylate synthetase (OAS) activation in a 

structure-specific manner in cells as well as improve biological stability (13-15). This was 

further demonstrated by Kormann et al (3) who used mRNA with the partial incorporation 

of 2-Thiouridine and 5-methyl cytidine (5meC) to successfully express proteins in mice 

using intramuscular (IM) injection, tail-vein injection, and intratracheal high-pressure 

spraying. Finally, high pressure liquid chromatography (HPLC) purification of mRNA has 

a profound effect in reducing immune activation and increasing translational potential, thus 

reaction contaminants should be effectively removed during processing (16). For example, 
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HPLC-purified pseudouridine-incorporated mRNAs were used to successfully increase 

serum EPO levels in mice with a demonstrable increase compared to unmodified mRNAs 

(17). Alternatively, unmodified but codon-optimized mRNA and protamine-complexed 

mRNA has been demonstrated as a self-adjuvating vaccine to modulate immune responses 

and has progressed through Phase I and II clinical trials in prostate cancer and non-small 

cell lung carcinoma patients (18-20). How codon-optimized, yet purified, unmodified 

mRNA can avoid significant TLR activation is currently unknown.  

In the field of stem cells, synthetic modified mRNA was successfully used to 

reprogram human cells to pluripotency (21). Synthetic mRNA encoding vascular 

endothelial growth factor-A was also used in a mouse myocardial infarction model to 

induce vascular regeneration (22).  

Tools for mRNA characterization 

 Imaging IVT mRNA at the subcellular level is critical for understanding the 

mechanisms involved in protein expression as well as studying intracellular mRNA 

localization. There are currently very few methods for visualizing IVT mRNA. The most 

common technique is to use an enzymatic linker to covalently bond fluorophores to the 

mRNA (23,24). However, covalent labeling can adversely affect translatability of the 

mRNA, as well as altering dynamics of delivery and localization (25). Conversely, 

incorporation of radioactive nucleotides during synthesis nay allow translatability at the 

expense of difficult handing and limited matching imaging modalities. Hybridization 

labeling methods such as Stellaris FISH probes consist of 20-50 nucleic acid oligos 

containing a single fluorophore each which require several binding sites in order to reach 

levels adequate for detection (26).  
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Thesis outline 

 In order to improve the efficacy of mRNA expression, we first created a labeling 

assay in order to quantify IVT mRNA at the single cell and single molecule level. The 

labeling assay had the requirement to not interfere with protein production or delivery in 

order to become a useful metric. We describe this method in Chapter 2 and  apply it in 

order to understand critical mechanisms regulating IVT mRNA expression. We examined 

IVT mRNA expression in the context of different delivery routes, and measured levels of 

innate immune activation in the form of stress granule formation.  

In Chapter 3, we focused on modify IVT mRNA in three ways: sequence 

modification, chemical modifications, and co-delivery with small molecules. We 

established that certain chemical modification provide higher levels of protein 

production, but do not achieve maximum potential due to lessened but still detectable 

levels of innate immune activation. Co-delivery with small molecule inhibitors allows 

further increases in protein production. Delivery formulation is also important, as it has 

an effect on the pathway into the cell, the amount of mRNA that reaches the cytosolic 

compartment, and interactions between mRNA and cellular machinery. Finally, we found 

that engineering the mRNA sequence can alter interactions with cellular proteins and 

affect the fate of the mRNA.  

In Chapter 4, we applied the mRNA design principles gleaned from earlier 

chapters in order to design mRNA to contribute to the field of optogenetics. We designed 

mRNA encoding light-sensitive ion channels, opsins, which allow control over electrical 
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firing activity in primary neurons and cardiac cells. We successfully expressed opsins and 

were able to verify their function using multi electrode arrays.  

In Chapter 5, we describe future aims regarding effective mRNA delivery and 

expression in more complex applications. We show preliminary data that shows the 

capability of co-delivery of multiple mRNA-expressed opsins which allows effective 

on/off control of cardiac cell beating with different wavelengths of light. We finally show 

mRNA expression and the distribution in vivo following injection into the rat brain. 

These represent some of the future possibilities achievable through the rational design of 

mRNA.  
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CHAPTER 2 

METRICS FOR CHARACTERIZATION OF MESSENGER RNA 

 This work presented here is an excerpt from Kirschman, JL, Bhosle, S, Vanover, 

D, Blanchard, EL, Loomis, KH, Zurla, C, Murray, K, Lam, BC, Santangelo, PJ (2017). 

“Characterizing exogenous mRNA delivery, trafficking, cytoplasmic release, and RNA-

protein correlations at the level of single cells.” Nucleic Acids Res gkx290. 

Background 

The use of exogenous, in vitro synthesized mRNA as an expression vector for 

therapeutic or antigenic proteins is highly promising. Expression of mRNA-encoded 

proteins is transient and more direct than DNA-based vectors, which requires intermediate 

steps such as nuclear localization and transcription. Additionally, mRNA vectors do not 

pose safety risks such as genomic integration, antibiotic resistance, or strong immunogenic 

responses due to a replicating vector (27). 

Exogenous mRNA has been successfully utilized to generate proteins in both cell 

culture and in vivo (9,10). In order to obtain therapeutic levels of protein expression, 

strategies for improving in-vitro transcribed (IVT) mRNA, such as through the 

incorporation of modified nucleosides (3,14,28) and purification methods (16), have been 

the subject of intense study. Despite these improvements, mechanistic studies of mRNA 

delivery, protein production and innate immune activation at the single cell and single 

molecule level are needed. The primary reason why these studies have not been performed 

is the lack of approaches to measure cellular mRNA uptake without compromising 
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translational potential, interactions with cellular proteins or altering the uptake pathway 

(29). Current studies are limited to direct-nucleotide labeling methods and the use of 

mathematical models to approximate mRNA–protein correlations (30,31). 

Lorenz et al. provided evidence that naked mRNA delivered in vitro enters cells via 

receptor-mediated endocytosis and predominantly remains in endosomes (1). Even though 

this mRNA was not functional, which is a significant drawback of direct labeling, this work 

highlighted the importance of tracking the subcellular location of delivered mRNA, and, 

in particular, the number of molecules that reach the cytosolic compartment, the cellular 

site of translation. In the siRNA community, the inability to measure cytosolic levels of 

siRNA has greatly limited the optimization of siRNA-based therapeutics, and only recently 

this barrier was overcome but using low throughput methods such as electron microscopy 

or single vesicle tracking (32,33); the approach presented here for mRNA, allows for a 

more rapid, quantitative assessment of cytoplasmic delivery. 

Given the enormous potential for mRNA therapeutics and vaccines, we developed a 

strategy to address these limitations. Here, we present a general methodology for 

characterizing delivered mRNA at the level of single cells and single RNAs, in vitro and in 

vivo. We first constructed fluorescent imaging probes, multiply labeled tetravalent RNA 

imaging probes (MTRIPs), which bind, via nucleic-acid hybridization, to the 3΄ UTR 

region of synthetic mRNA (34-37). The 3΄ UTR of mRNA was used as a binding site in 

order to preclude any interference with ribosomal loading or progression, and thus prevent 

interference with translation. Due to the small size of the 3΄ UTR of most mRNAs, typically 

∼100nt long, a limited number of probes can be bound to the mRNA thus multi-

fluorophore probes are necessary to ensure adequate brightness. MTRIPs carry 8–10 
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fluorophores per probe and when 2–3 probes are bound to an mRNA, allow for 20–30 

fluorophores per mRNA, making them easily visible with most fluorescent microscopes 

and in tissue. In previous publications, we successfully utilized MTRIPs to visualize 

endogenous mRNAs, viral genomic RNA, as well as plasmid-derived transcripts. Other 

approaches, such as molecular beacons, etc., only contain one fluorophore per probe, which 

given the short 3΄-UTR, would limit labeled-mRNA brightness and thus the detection of 

mRNAs. Labeling of mRNA with MTRIPs, in contrast to covalent incorporation of 

fluorophores, does not significantly affect the behavior or localization of target mRNA and 

does not illicit cellular immune responses (38-42). Finally, this method does not require 

large sequence incorporations into the mRNA itself or co-expression with reporters, such 

as with the MS2 aptamer and MS2-like systems (43). 

In order to use MTRIPs to label IVT mRNA, we optimized binding conditions 

between the mRNA and MTRIP probes through an iterative process where temperature, 

salt concentration, incubation time and filtration method were varied. Heat was applied to 

remove secondary structure in the mRNA. Salt concentration allowed stabilization of the 

hybridization reaction over time. Finally, filtration was used to remove excess probe while 

minimizing loss of mRNA (see Materials and Methods). We labeled in vitro transcribed 

mRNA consistently with approximately two probes per mRNA and verified that they do 

not significantly affect translation. 

We then applied this labeling strategy to perform a mechanistic characterization of 

mRNA delivery in cells. Key mechanisms of importance are noted in Figure 2.1A, 

including mRNA entry pathway, cytoplasmic release, translational efficiency 
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(RNA/protein correlation), and PKR activation. Here, we demonstrate the ability of our 

tools to address these mechanisms. Fully addressing each mechanism across all conditions 

and cell types is beyond the scope of this work, but the measurements presented set the 

stage for future studies. 

We started with entry pathway, followed by whole cell quantification of mRNA 

uptake, and the quantification of the fraction of mRNA released into the cytosolic 

compartment. As a model system, we used primary human skeletal muscle cells (HSkMC) 

in the myoblast stage of development, because IM injection is the most commonly used 

delivery method for vaccine applications and is relevant for therapeutic delivery due to its 

practical nature. 

The entry pathway is a critical metric for assessing the mechanistic action of different 

formulations of cationic lipids, lipid nano-particles and other delivery vehicles. The mode 

of entry can determine downstream interactions with cellular machinery and thus modulate 

the efficiency of protein expression (44). Traditional methods of colocalization analysis 

are very useful but can be hindered by imaging limitations. In specific instances, mRNA 

and an endocytic marker were found to be adjacent with indications of partial encirclement 

but with little or no overlap. In order to clarify the relationship between the mRNA and 

pathways of endocytosis, we hypothesized that a proximity-based assay between delivered 

mRNA and specific endocytic markers would be a more accurate and easily quantifiable 

method for describing the entry pathway used by the mRNA. Therefore, we performed a 

proximity ligation assay (PLA), an ideal strategy for the quantitative assessment of the 

interactions of molecules in the cellular environment (38,45-48). RNA–protein PLA assays 
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have been pioneered by our lab (34,39-41,49). This method allowed us to differentiate 

between clathrin-mediated endocytosis, caveolae-mediated endocytosis and 

clathrin/caveolin-independent pathways in a proximity dependent, and easily quantifiable 

fashion. 

Next, we studied mRNA uptake and expression, which are necessary metrics for 

generating kinetic models for drug optimization and design (30,31) in the context of both 

unmodified and modified nucleotides. To date, studies on mRNA therapeutics or vaccines 

have focused on expression or uptake separately, but were not able to measure these factors 

simultaneously due to limitations in labeling technologies as described earlier. Using 

MTRIP-labeled mRNA encoding for a fluorescent reporter, we measured both total mRNA 

uptake and protein expression per cell using flow cytometry. We extended this 

measurement to include two delivery methods, cationic lipid complexes and 

electroporation, and both unmodified and modified mRNA, using 5-methyl-cytidine 

(5meC) and pseudouridine (Ψ), two commonly used and previously studied modifications. 

Cationic lipids have been in use for over two decades and are known to deliver nucleic 

acids into the cell via clathrin and caveolin-mediated endocytosis (42,50). In contrast, 

electroporation is known to deliver molecules directly to the cytoplasm, where they may 

interact with various cellular structures, such as microtubules or freely diffuse (51). 

Delivery via cationic lipids resulted in two populations of mRNA: mRNA trapped in the 

endocytic compartment, and mRNA released into the cytosol. This allowed us to relate 

protein production and mRNA localization directly for these two prominent delivery 

modalities and as a function of mRNA chemistry. Given cationic lipid delivery is 

complicated by endocytic trapping of mRNA, we next examined the contribution of 
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cytosolic mRNA. The cytosolic fraction of the mRNA, following release from lipoplexes, 

represents, at any particular time, the fraction of delivered mRNA which has the potential 

to interact with translational complexes in order to produce protein (31). 

In order to better assess the amount of translatable mRNA per cell, we specifically 

measured the amount of cytosolic mRNA by using MTRIP-labeled mRNA and performed 

intracellular antibody staining for the endocytic pathway, using multiple markers, in order 

to ensure maximum coverage of the entire system. We were able to measure the amount of 

cytosolic mRNA based on colocalization analysis via high resolution, high dynamic range 

imaging (33) combined with image processing tools. This approach would not be practical 

using single labeled probes as they would not be bright enough to detect cytoplasmic 

mRNA, due to the extremely high dynamic range of signals within the cells. 

Cytosolic mRNA can also bind to innate immune sensors which detect exogenous 

nucleic acids, competing with the translational machinery (52-55). Thus, the copy number 

of mRNA in the cytosol is dependent on both translation initiation and activation of pattern 

recognition receptors, such as Protein Kinase R (PKR) (14,21). In order to better 

understand the contribution to protein production of translation versus innate immune 

activation, we again used an EGFP mRNA variant modified by the complete incorporation 

of 5-methyl-cytidine (5meC) and pseudouridine (Ψ), which is known to reduce immune 

activation (3). Flow cytometry analysis of HSkMCs following lipofection showed an 

increase of EGFP expression in cells lipofected with mRNA incorporating modified 

nucleotides, as well as higher transfection efficiencies. This increase was not observed in 

the case of electroporation. We hypothesized that this was the result of a stress response 
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due to PKR. Interactions between double stranded sections of delivered mRNA and PKR 

trigger phosphorylation of the eukaryotic initiation translation factor 2α subunit (eIF2α). 

This decreases global translation by reducing formation of the ternary complex, stalling 

translation initiation and causing dissociation of ribosomes (56-58). A direct result of eIF2α 

phosphorylation is SG formation, which we used via intracellular antibody staining as an 

indicator for cellular stress upon transfection. We then verified that this was due to PKR 

using siRNA and a PKR-knockout cell line. 

Finally, we verified that this labeling methodology allows for mRNA localization 

without precluding protein expression in vivo. To do so, we utilized the Fluobeam system, 

an in-vivo, near-IR fluorescence imaging system. It consists of a portable and adjustable 

fluorescence excitation and emission detection system, which allows for real-time 

intraoperative imaging during surgery. We imaged mRNA in living mice upon intra 

muscular injection (IM), during post-transfection surgery, and in ex-vivo tissue sections. 

We verified that protein production remained unhindered and that MTRIPs remain on the 

mRNA after intramuscular injection. 

Overall, we demonstrate the ability of our labeled mRNA approach to make critical 

measurements necessary to optimize mRNA delivery and efficacy. Unfortunately, mRNA 

delivery, release and translation are complex, and optimization necessitates the ability to 

make multiple types of measurements, which we demonstrate here. 
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Labeling of exogenous mRNA with MTRIPs 

In order to use MTRIPs (Figure 2.1A) to label IVT mRNA, we designed four 

MTRIPs complementary to the 3΄ untranslated region (UTR) of our in vitrotranscribed 

EGFP mRNA, a 93 bp sequence derived from the mouse alpha globin 3΄ UTR. We 

optimized binding conditions through an iterative process where temperature, salt 

concentration, incubation time and filtration method were varied. We first verified binding 

of probes to the target mRNA via agarose gel, where labeled mRNA exhibited reduced 

migration (Figure 2.2) with respect to naked mRNA or denatured mRNA. Labeling 

efficiency was tested using exclusion chromatography, which resulted in a degree of 

labeling of approximately two MTRIPs per mRNA, based on the difference in fluorescence 

signal between MTRIP-labeled mRNA and the same amount of MTRIPs alone prior to 

filtering (Figure 2.3). We measured the effects of variations in incubation time and 

temperature, and determined that optimal binding occurs through a short, 10 min heat 

induced denaturation of mRNA to remove secondary structures, followed by addition of 

MTRIPs and an incubation overnight at 37°C. We also examined the effect of different 

buffers, including PBS and SSC at multiple concentrations, and found that PBS provided 

an adequate salt concentration to stabilize binding of MTRIPs to mRNA. Finally, filtration 

was necessary to remove unbound MTRIPs. We found that a 200 kD molecular weight 

cutoff filters provided the highest yield of mRNA while removing unbound MTRIPs. 

To demonstrate that MTRIPS remained bound to mRNA upon delivery, HeLa cells 

were lipofected with Dylight 650-labeled mRNA. Cells were subsequently hybridized 

post-fixation with Quasar 570 Stellaris RNA FISH probes specific for the coding region 
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(40). MTRIPs exhibited a high degree of colocalization (Costes overlap coefficient of ∼0.6, 

Manders overlap coefficients m1 and m2 were ∼0.6 and ∼1 respectively) with FISH probes 

compared to controls using mRNA with an identical UTR but a different coding region 

corresponding to Chemokine Ligand 3 (Figure 2.1B, Figure 2.4). 

Electroporation and transfection via Lipofectamine 2000 (L2K) of HSkMCs with 

labeled EGFP mRNA yielded highly distinct distributions of intracellular mRNA. 

Electroporation resulted in a large number of lower intensity, dispersed mRNA granules 

while lipofection resulted in a few bright, large granules with a lower number of smaller 

granules dispersed through the cell (Figure 2.1C). 

A strong benefit of using MTRIPs bound to the 3΄ UTR region is that they do not 

significantly inhibit the translation of endogenuous mRNA (34,59). To demonstrate that 

the labeling of mRNA does not affect translation, we measured differences of protein 

production following electroporation of HSkMCs cells with labeled and unlabeled mRNA 

using flow cytometry. Labeled mRNA showed a similar protein expression distribution as 

unlabeled mRNA. The small decrease in protein production is likely attributable to RNA 

loss during the purification step following the labeling reaction (Figure 2.1D). 

Entry pathway and subcellular localization of L2K transfected and electroporated 

mRNA 

We then investigated the entry pathway of labeled mRNA into the cell. Endocytosis 

of mRNA can be detected via co-staining with antibodies against clathrin-light chain, 

caveolin-1 and ARF6 (44,60-62) and subsequent colocalization analysis. These markers 
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were used to differentiate clathrin-mediated endocytosis, caveolae-mediated endocytosis 

and clathrin/caveolin-independent pathways, respectively. We initially used 3D images of 

single cells to determine colocalization between labeled mRNA and relevant pathway 

markers (Figure 2.5). Based on line profiles (Figure 2.5), mRNA delivered by 

lipofectamine colocalized with both clathrin and caveolin, but less frequently with ARF6. 

This was consistent with published transmembrane routes of cationic liposomal delivery 

(42). In order to confirm and better quantify these results, we verified entry pathway using 

a RNA–protein proximity ligation assay. 

The overall PLA process is summarized in Figure 2.6. Briefly, mRNA was labeled 

with V5-peptide-tagged MTRIPs (the peptide is covalently attached to neutravidin) and 

delivered to HSkMCs by lipofection. Cells were fixed 2 h post-transfection. Primary 

antibodies specific for the V5 tag and different endocytic pathway markers, clathrin light 

chain, caveolin-1 or ARF6, were then added, followed by PLA proximity probes, 

oligonucleotide-labeled secondary antibody compatible for PLA. If the mRNA and the 

protein of interest are close to each other (<40 nm), the oligonucleotides are ligated by the 

addition of a ligase. Rolling circle amplification then creates a DNA ‘ball’, which is 

visualized by fluorescence in situ hybridization. This results in very bright (>30 

fluorophores), diffraction-limited fluorescent puncta which are easily detected and 

quantified via microscopy (45). PLA puncta (Figure 2.6B) due to interactions between 

mRNA and endosomal markers were quantified via ‘puncta’ detection and counting, and 

compared to controls including mock transfection and no primary antibody. In the case of 

clathrin-light chain and caveolin-1, statistically significant differences from controls 

indicated that lipofectamine-delivered mRNA interacted with clathrin or caveolin-1, but 
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not with ARF6 (Figure 2.6C). Significantly, this result confirmed observations obtained by 

colocalization and overlap coefficient measurements. 

Whole cell RNA uptake and protein expression measured via flow cytometry 

In order to compare efficiencies of delivery methods, electroporation and 

lipofection, we used flow cytometry, which yields an integration of mRNA signal and 

protein-reporter fluorescence on a per cell basis. We electroporated HSkMCs with 

increasing amounts of labeled EGFP mRNA and observed that between 0 and 1000 ng of 

delivered mRNA, the mean mRNA intensity per cell scaled in a linear fashion (Figure 

2.7). In order to maintain similar protein expression between delivery methods, as well as 

to avoid possible cellular stress response to unfolded protein, in subsequent experiments 

we delivered 200 ng per 100 000 cells. In order to measure EGFP production and 

quantify, at the same time, the mean total mRNA delivered per cell, we transfected 

HSkMCs with 200 ng of labeled mRNA and analyzed cells at 24 h post-transfection via 

flow cytometry. Cells were categorized into EGFP ‘expressing’ and ‘non-expressing’ 

populations, using a threshold of six standard deviations above the intensity of mock 

transfected cells. From this experiment, we found that upon electroporation, up to 90% of 

cells expressed GFP, whereas only 40% of lipofected cells expressed GFP at 24 h post-

transfection (Figure 2.8). Importantly, the mean mRNA intensity within expressing cells 

was 10 times higher upon L2K transfection than electroporation (Figure 2.9A). As 

previously described in Figure 2.1C, it is clear that much of the mRNA delivered via 

lipofection localizes in cytoplasmic vesicles, possibly due to compartmentalization in the 

endosomal system (42,50). Such mRNA likely does not contribute to translation (31). 
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Additionally, we observed that cell-to-cell heterogeneity in protein expression was much 

higher with L2K. 

We repeated the experiment using an EGFP mRNA variant modified by the 

complete incorporation of 5-methyl-cytidine (5meC) and pseudouridine (Ψ), which is 

known to reduce immune activation (3). We determined that the mean mRNA intensity 

within expressing cells was similar to the one measured for unmodified mRNA. The 

mean total protein expression per cell was similar between unmodified and modified 

mRNA upon electroporation, but a significant increase in protein production was 

observed upon lipofection using modified mRNA (Figure 2.9B). 

Cytosolic mRNA correlates with protein production 

The flow cytometry data described in Figure 2.9 indicated an order of magnitude 

increase in total transfected RNA per cell upon L2K transfection compared to 

electroporation. However, levels of protein production were similar, indicating that L2K 

delivered mRNA trapped in the endosomal compartments does not contribute to 

translation. We hypothesized that cytosolic RNA and not total RNA contributed to 

protein production. In order to discriminate and quantify the cytosolic and endocytic 

mRNA populations, we lipofected HSkMCs with modified and unmodified labeled EGFP 

mRNA, and co-stained with endocytic markers at 2, 5, 12, 24 and 48 h post-transfection 

(Figure 2.10, Figure 2.11). We used multiple endocytic markers including Early 

endosome antigen 1 (EEA1), CD63 and Lysosomal-associated membrane protein 1 

(LAMP1), which provide broad coverage of the endosomal compartments (63,64). 

Within single cells, we identified labeled mRNA granules, determined their volume and 
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colocalization with endocytic markers (Figure 2.10B). Large mRNA granules (∼>1 μm3) 

colocalized with endocytic markers or were typically outside the cell, and therefore were 

excluded from further analysis. Smaller RNA granules were classified based on their 

colocalization with endocytic markers. Small granules which did not colocalize with 

endocytic markers were classified as ‘free’ cytosolic molecules (see methods section). 

The quantification of protein expression and cytosolic mRNA per cell over time is shown 

in Figure 2.12A. It is important to note that detected RNA granules varied in intensity; 

this intensity difference reflects the diversity in the number of RNAs per granule. 

By quantifying the sum of intensity of cytosolic mRNA granules at multiple 

timepoints, we were able to examine the release kinetics of mRNA. We observed a 

significant increase of free modified mRNA 5 h post-transfection upon lipofection 

(Figure 2.12A), suggesting a faster release rate into the cytosol from the endosomal 

compartment. These are the first experiments, to our knowledge, that permitted the 

quantification of mRNA cytosolic release upon lipofection. 

The amount of free RNA and GFP expression, on a per-cell basis, can serve as a 

measure of mRNA transfection efficiency. A plot of the sum of GFP intensity versus free 

RNA for electroporation and lipofection (Figure 2.12B) yielded approximately three 

times more cytosolic RNA in electroporated cells than in lipofected cells (see Table 

2.1 for mean, SEM and statistical comparisons). Consistent with the flow cytometry data 

described in Figure 3, we observed that similar levels of mRNA yielded different levels 

of GFP expression. This result was particularly evident comparing the efficiency of 

lipofection of unmodified versus modified mRNA. During lipofection, the use of 
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5meC+Ψ modified mRNA resulted in a significantly higher protein–RNA ratio. 

However, no significant difference was observed using electroporation (see Table 2.1). 

Statistical analysis of correlations between free mRNA and protein expression showed 

that they were statistically correlated (Lipofection: unmodified P = 0.0002 | modified P < 

0.0001 and electroporation: unmodified P = 0.0195 | modified P < 0.0001), though cell-

to-cell heterogeneity was still evident. Additionally, levels of cytosolic mRNA were 

higher upon electroporation but did not result in correspondingly high levels of protein 

expression (Figure 2.12B, Table 2.1). 

Stress granule (SG) formation negatively correlates with protein production 

Differences in protein expression for given amounts of cytosolic mRNA, 

especially between modified and unmodified mRNA upon lipofection, suggested that 

protein production may be affected by innate immune activation (65). In order to further 

understand how changes in mRNA chemistry, as well as delivery method, impacted 

protein production, we used the formation of stress granules as a marker for innate 

immune activation. 

We transfected HSKMCs with unlabeled modified and unmodified mRNA and 

stained for SG markers Ras GAP-binding protein 1 (G3BP) and T-cell-restricted 

intracellular antigen 1 related protein (TIAR), in order to characterize the kinetics of SG 

formation over time (Figure 2.13A). SG formation upon electroporation was readily 

observable with unmodified mRNA (>80% of cells) 1-h post-transfection, and quickly 

diminished to become undetectable 5 h post-transfection (Figure 2.13B). Transfection 

with lipofectamine resulted in ∼20% of cells containing SGs, which diminished only 
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slightly over 24 h. When HeLa cells were transfected with lipofectamine and mRNA, 

higher levels of SGs were observed (>70%), indicating that SG formation is cell-type 

dependent (Figure 2.13C). Transfection with modified mRNA significantly reduced, but 

did not completely eliminate, SGs. Mock transfections did not result in any significant 

SG formation. 

In order to test PKR-dependence of SG formation, we delivered PKR–siRNA into 

HSKMCs, which were then electroporated with unmodified mRNA. One hour post 

transfection, only 8% of cells formed SGs, versus >95% treated with control siRNA (data 

not shown). Then, mRNA transfection by lipofectamine was repeated in mouse 

embryonic fibroblasts (MEF) and MEF PKR–/– cells (Figure 2.13D). Modified mRNA 

slightly reduced the number of MEF WT cells containing SGs from 45% to 40%; as 

expected, MEF PKR–/– transfected cells formed no visible SGs. These cells expressed 

higher levels of GFP overall, with no differences between modified and unmodified 

mRNA (Figure 2.14). This strongly suggested a cell type dependence on stress granule 

formation, and provided further evidence that stress granule formation occurs in a PKR-

dependent manner. 

Validation of the mRNA labeling protocol for tissue studies in mice 

We next examined the applicability of IVT mRNA labeling for in 

vivoexperiments in an IM injection mouse model. We utilized MTRIPs labeled with 

Dylight 680 to visualize the distribution of mRNA upon IM injection in live mice using 

the Fluobeam 700 live fluorescent imaging system. IM injection of mRNA into the 

anterior tibialis muscle of mice showed immediate saturation of muscle tissue with 
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mRNA at the injection site, which remained 16 h post-injection along with fluorescence 

visible in neighboring lymph nodes (Figure 2.15A). Muscle tissue was then extracted, 

fixed and sectioned to visualize mRNA distributions in the muscle. We verified that 

MTRIPs remained bound to mRNA upon injection using FISH, as previously 

performed in vitro, on muscle sections fixed 2 h post-injection. We found that the FISH 

signal highly colocalized with MTRIP signal in tissue sections (Figure 2.15B). 

In order to correlate localization of mRNA with protein expression at the tissue 

level, we combined Cy3b-labeled EGFP mRNA with a PEI-based delivery vehicle and 

injected it into the anterior tibialis muscle. Staining for EGFP showed that the majority of 

protein expression was localized in the perinuclear region of muscle cells and in cells 

present in the interstitial spaces (Figure 2.15C), where most of the mRNA was found. 

Last, we examined Cy3b-labeled mRNA localization in relation with markers for 

cell structure and cell type. Following injection of Cy3b-labeled mRNA, we stained fixed 

sections of muscle with antibodies against CD11b, a marker for leukocytes, as well as for 

vimentin, an intermediate filament marker, which enabled the visualization of striated 

muscle (Figure 2.16). Skeletal muscle cells are the intended target during IM injection, 

while uptake by leukocytes is critical for vaccine applications. Labeled RNA was visibly 

located in the perinuclear region of muscle cells, and also colocalized with CD11b-

marked leukocytes. Red blood cells were visible and indicative of blood vessels, though 

they did not contain labeled mRNA. Overall, these experiments serve as a proof of 

concept that RNA uptake and expression can be assessed for specific cell populations and 

localization within tissues. 
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Figure 2.1: mRNA labeling, validation, and transfection into cells using cationic lipids 

or electroporation. (A) Illustrative diagram of mRNA labeling and delivery. MTRIPS 

are composed of four biotinylated and fluorescently labeled oligonucleotides 

assembled on a Neutravidin core. They bind to IVT mRNA in the 3΄ UTR region. 

Fluorescently labeled mRNA is electroporated or lipofected into cells. Electroporated 

mRNA is immediately available in the cytosol, while lipofected mRNA must first 

travel through endosomes until released. Degradation and sequestration of mRNA 
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reduces final expression of the target protein. Highlighted mechanisms of importance 

include (i) mRNA entry pathway, (ii) cytoplasmic release, (iii) translational efficiency 

(RNA/protein correlation) and (iv) innate immune (PKR) activation. (B) Labeled 

mRNA (green) delivered via lipofection colocalized with Stellaris FISH probe signal 

(red). Line profiles are indicated by white lines. No FISH signal was visible in cells 

transfected with an mRNA containing a different coding region. (scale bar = 10 μm). 

(C) Cationic lipid transfection and electroporation with labeled mRNA encoding 

EGFP resulted in similar levels of protein production (green) but distinct subcellular 

distributions of mRNA (red) at 2 h post-transfection. Upon electroporation, small 

mRNA granules were observed throughout the cell cytoplasm, while cationic lipid 

transfection resulted in few large mRNA granules (scale bar = 20 μm). (D) Flow 

cytometry of EGFP expression using labeled versus unlabeled EGFP mRNA showed 

only a slight reduction in protein expression.  
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Figure 2.2: Agarose gel comparing unlabeled mRNA (RNA) and labeled mRNA 

(RNA-L). Labeled mRNA visibly migrated slower than unlabeled mRNA. Labeled 

mRNA was heated to 95°C in order to denature MTRIPs resulting in recovery of the 

band for unlabeled mRNA as well as an additional band at the bottom of the gel for 

denatured MTRIPs. M indicates Low Range ssRNA Ladder (NEB).  
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Figure 2.3: Quantification of degree of labeling of mRNA with MTRIPs by size 

exclusion chromatography. Dylight-650 labeled mRNA fluorescence was compared 

to the same molar amount of MTRIPs without mRNA. The degree of labeling is 

calculated based on the difference in peak fluorescence of the MTRIPs (~5 min) 

corresponding to the amount of MTRIPs which are bound to the mRNA (~3 min). 

This corresponds to a degree of labeling of approximately 2 MTRIPs per mRNA.  

  



27 

 

 

Figure 2.4: mRNA labeled with Dylight-650 MTRIPs colocalizes with Quasar 570 

labeled FISH probes targeted to the coding region of the mRNA in Hela cells. A 

representative image, line profile (yellow), and Mander’s overlap coefficients are 

plotted (overall Costes, where m1-refers to FISH signal containing MTRIP signal, 

and m2 refers to MTRIP signal containing FISH signal). There was no detectable 

FISH signal above background in controls including vehicle only, an mRNA encoding 

CCL3 containing the same 3’UTR probe binding sites, and a DNA containing the 3’ 

UTR probe binding site only (lower panels).  Images were analyzed in Volocity 

software with at least 15 cells per condition.  
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Figure 2.5: mRNA labeled with MTRIPs and delivered by lipofection allowed 

characterization of delivery route by costaining with Clathrin light chain, Caveolin, 

or ARF6. mRNA appeared associated with Clathrin Light Chain and Caveolin 

containing vesicles, but not with ARF6 (scale bar =11µm). Line profiles as indicated 

by white lines.  
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Figure 2.6: Analysis of lipofection-mediated mRNA uptake pathway via PLA. (A) 

Overall schematic of PLA experiments to quantify interactions between mRNA and 

endocytic markers. A V5 tag is covalently bound to the MTRIPs prior to mRNA 

labeling. Following mRNA delivery by lipofectamine, primary antibodies target the 

V5 tag and either clathrin light chain, caveolin-1, or ARF6. PLA proximity probes 

recognize the primary antibodies and provide the substrate for ligation and rolling 

circle amplification. mRNA–protein interactions result in PLA puncta of 

homogeneous size and brightness. Standard controls include experiments performed 
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without primary antibodies, without mRNA or using MTRIPS without the V5 tag. 

(B) PLA between V5-tagged MTRIPs and caveolin-1 in HSkMCs two hours post-

lipofection resulted in significantly higher numbers of PLA puncta when compared 

to no primary control. (scale bar = 10 μm). (C) The number of PLA puncta per cell 

was quantified for 30 cells per condition for each endocytic marker. Significant 

proximity with endocytic markers and mRNA was detected for clathrin and caveolin 

but not ARF6 when compared to controls. (****P < 0.0001, ***P= 0.0005). 
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Figure 2.7: Upon electroporation, mean mRNA intensity scales linearly with 

increasing amounts of transfected cy3b-labeled mRNA. This ranged up to 1000ng per 

1000000. HSkMCs were electroporated with cy3b labeled mRNA, fixed 30 minutes 

post transfection, and analyzed by flow cytometry. 
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Figure 2.8: Transfection efficiency of HSkMC cells upon electroporation or 

lipofection with labeled modified or unmodified EGFP mRNA. “Expressing cells” are 

characterized by the sum of EGFP intensity greater than 6 times the standard 

deviation of non-transfected cells. Note that this cutoff results in lower detected 

fractions of lipofected cells transfected due to higher cell-to-cell variation of protein 

expression. The percent of GFP expressing cells in HeLa and MEF cells upon 

electroporation or lipofection (data not shown) were typically higher than 90% of 

cells transfected.      
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Figure 2.9: Flow cytometry analysis of HSkMCs following electroporation or 

lipofection with labeled 5meC + Pseudouridine or unmodified EGFP mRNA showed 

differences in mRNA uptake and protein expression. (A) The mean total labeled 

mRNA intensity per cell was evaluated at 24 h post-transfection. Lipofection resulted 

in ∼10 times higher mRNA per cell than electroporation. All comparisons are 

statistically significant based on two-way ANOVA (P < 0.0001) (bars = S.D. of 

population). (B) The mean total EGFP intensity per cell was measured at 24 hours 

post-transfection. A significant drop in intensity was observed upon lipofection of 

unmodified mRNA. Also, protein expression upon lipofection did not correlate with 

the amount of mRNA per cell. Statistical comparisons performed by two-way 

ANOVA with a = 0.05, P < 0.0001 for all conditions except as indicated. Experiment 

was performed in duplicate (bars = S.D. of population). 
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Figure 2.10: Imaging and analysis of transfected cells fixed and stained with endocytic 

markers EEA1, CD63 and LAMP1 allows quantification and correlation of cytosolic 

mRNA and EGFP synthesis. (A) Representative images of 5meC + PseudoU modified 

EGFP mRNA lipofected into HSkMCs and fixed at 24 h post-transfection. Due to high 

dynamic range, the contrast enhancement necessary to visualize small mRNAs 

resulted in large mRNA granules to appear larger. White arrows indicate mRNA 

granules (red) that did not colocalize with endocytic markers (green), indicating 

cytosolic mRNA. (scale bar = 20 μm). (B) Representative images describing the 

protocol for the identification of mRNA granules and endocytic vesicles based on 

voxel intensity in each channel using Volocity software. mRNA granules not 

overlapping with endocytic objects were considered free, cytosolic mRNA (white 

arrows). Here, the number of identified objects shown was simplified for clarity. 
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Figure 2.11: Imaging of lipofected cells fixed and stained with endocytic markers 

EEA1, CD63, and LAMP1. Representative images of 5meC+PseudoU modified EGFP 

mRNA lipofected into HSkMCs and fixed at 2, 5, 12, 24 and 48 hours post-

transfection. White boxes indicate magnified regions. Due to high dynamic range, 

contrast enhancement was necessary to visualize small mRNAs and resulted in 

mRNA granules to appear larger. White arrows indicate single mRNAs (single point 

spread functions) in red which do not overlap with endocytic markers ( blue), 

indicating that the fraction of cytosolic mRNA increases over time. (scale bar = 

20µm). 
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Figure 2.12: Cytosolic mRNA intensity and protein levels indicated differences in 

release rate as well as differential expression for given amounts of mRNA. (A) 

Cytosolic mRNA and GFP intensity per cell at different time points post-lipofection. 

Data were collected from 30 cells per sample (box = median, upper and lower quartile, 

and min/max). (B) Cytosolic mRNA and protein expression correlation per cell based 

on microscopy imaging combining all timepoints. Lines are provided as a qualitative 

measure to show differences in distribution. The distributions between modified and 

unmodified mRNA upon lipofection were significantly different (P < 0.0001) but not 

electroporation distributions (P = 0.6677). All comparisons between mRNA and GFP 

in each distribution were statistically correlated (Lipofection: unmodified P = 0.0002 

| Modified correlated P < 0.0001 and Electroporation: unmodified P = 0.0195 | 

Modified, P < 0.0001). 
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 Table 2.1: RNA intensity Mean, SEM, and P values for treatments in Fig 2.12: 

RNA values Lipofectamine 

(mean+-SEM) 

Electroporation 

(mean+-SEM) 

Significantly 

different? 

(Mann-Whitney 

test) 

Unmodified mRNA 346488 ± 43126 

 

1073724 ± 96611 

 

Yes, P<.0001 

Modified mRNA 398804 ± 44168 

 

1316282 ± 113595 

 

Yes, P<.0001 

Significantly 

different? 

(Mann-Whitney 

test) 

No, P=.4453 No, P=.2346  
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Table 2.2: GFP intensity Mean, SEM, and P values for treatments in Fig 2.12: 

EGFP values Lipofectamine 

(mean+-SEM) x 

10^6 

Electroporation 

(mean+-SEM) x 

10^6 

Significantly 

different? 

(Mann-Whitney 

test) 

Unmodified mRNA 759 ± 102 2826 ± 172 

 

Yes, P<.0001 

Modified mRNA 2977± 313 

 

2402 ± 139 

 

Yes, P=.0046 

Significantly 

different? 

(Mann-Whitney 

test) 

Yes, P<0.0001 No, P=0.0699  
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Figure 2.13: PKR-dependent stress granule formation correlates with decreased 

protein production and is cell type-dependent. (A) HSkMCs were fixed 1 h post-

electroporation with EGFP mRNA and stained for stress granules (G3BP, white). 

Cells with stress granules produced less GFP (green) (scale bar = 20 μm). (B) Kinetics 

measurements in HSkMCs show a brief but strong increase in the number of cells 

with SGs 1 h after electroporation, which rapidly diminishes. The extended SG 

response upon lipofectamine transfection is still detectable 24 h post-transfection. 

5meC + PseudoU reduced but did not completely eliminate SGs. (C) SG formation 

was found to be cell type-dependent. HeLa cells more readily formed SGs upon 

lipofection regardless of mRNA modification. (D) SGs formed readily 5 h post-

lipofection in MEF cells but not in MEF PKR–/– cells, indicating that mRNA sensing 
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by PKR resulted in SG formation. MEF cells 5 h post-lipofection produced extensive 

SGs regardless of mRNA modification. MEF PKR-/- cells produced no detectable SGs 

(bars in B, C, and D = S.D. of triplicate measurements of 100 cells each). 
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Figure 2.14: Wild-type MEF cells lipofected with EGFP mRNA produced very little 

protein 5 hours post transfection due to extensive SG formation with both modified 

and unmodified mRNA. MEF PKR-/- cells produced similar levels of protein 

regardless of modification. These cells did not form stress granules. The SG marker 

TIAR is used for staining of SGs (white) and the mean GFP intensity was quantified 

for at least 30 cells per sample in 40x widefield images using Volocity software. (bars 

= S.D of population, scale bar = 20µm)   
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Figure 2.15: Visualization of labeled mRNA during IM injection and in extracted 

tissue sections. (A) Dylight-680 labeled mRNA (white) was imaged during surgery 

prior to and immediately following IM injection into the anterior tibialis of a live 

mouse using the Fluobeam near-IR fluorescence imaging system. The third panel 

obtained 16 h post-injection shows localization of mRNA to a lymph node. (B) Labeled 

mRNA (red) colocalized with Stellaris FISH probe signal (green), as indicated by the 

intensity line profile (white line). No FISH signal was visible in mock transfected 

tissue (scale bar = 10 μm). (C) Cy3b-labeled mRNA (red) and antibody staining for 

GFP expression (green) imaged in anterior tibialis muscle sections removed from a 

mouse 16 h post-IM injection. Sham delivery (without mRNA) shows comparatively 

low levels of background signal in the GFP channel due to non-specific binding of 

antibodies. 
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Figure 2.16: Visualization of labeled mRNA following IM injection in mouse muscle 

tissue sections. Cy3b-labeled mRNA (red) was imaged in anterior tibialis muscle 

sections removed 16 hours post-IM injection. Immunofluorescence staining for anti-

cd11b (green) and anti-vimentin (white) is shown. Expanded views of white boxed 

areas are single-xy planes and have been contrast enhanced differently for 

visualization. Cells that are CD11b-positive are indicated by arrows, as well as RNA 

located near the perinuclear region of muscle cells. (scale bar =150µm) 
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Conclusion 

A serious concern for the future of mRNA therapeutics is the efficiency of protein 

production in a given organ for a single dose. Delivery vehicles must be designed and 

optimized to ensure efficient delivery of mRNA to target cells and their cytosol, as well 

as to encourage translation. Likewise, the design of the mRNA sequences along with 

delivery formulations must be carefully considered. It is important to modulate the 

negative immune effects of mRNA, based on pathogen sensing mechanisms within 

various cell types. All three of these factors require new tools and methodologies to study 

mRNA uptake and kinetics of protein expression. 

We have developed a labeling strategy for exogenous mRNA, which allows single 

RNA-sensitive detection (∼2 probes and 16–20 fluors per mRNA), without significant 

reductions in the translational potential of therapeutic molecules. Probes were hybridized 

to in vitro transcribed mRNA in controlled conditions, and were purified and 

characterized using syringe filters and size exclusion chromatography. Encoding 

secondary proteins for visualization or co-expression with reporter molecules is not 

required. These probes can potentially be designed against any 3΄ untranslated region. 

UTR regions can also be extended with specific binding sequences for MTRIP binding, 

without affecting the coding region or reading frame of the mRNA. The resulting labeled 

mRNAs are functional in both cells in culture and after in vivo delivery in animal models. 

Labeling of therapeutic RNA allowed fast and accurate screening of RNA formulations 

through compatibility with high-throughput tools such as flow cytometers and plate 

readers. Combining MTRIPs with a proximity ligation assay provided a novel method for 
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defining uptake pathway by discrete quantification of interactions between mRNA and 

specific endocytic markers. For in vivo studies, this methodology enabled the imaging of 

RNA localization in tissue slices co-stained with markers for cell type or target proteins. 

Future mechanistic studies will be performed in order to evaluate the effectiveness of 

different formulations. 

Translation of mRNA occurs in the cytosol, and thus delivery vehicles have the 

two-fold requirement of first reaching the target cells within tissues, and then either 

escaping from an endocytic compartment or entering the cytosol directly. Our results 

indicated that while both lipofectamine-mediated delivery and electroporation of mRNA 

resulted in protein expression, the amount of protein expression was based upon the 

amount of mRNA that reached the cytosol as well as a complex interplay between mRNA 

translation and innate immune activation. Lipofectamine delivery resulted in large 

amounts of mRNA trapped in intracellular vesicles. Measures of protein–RNA 

correlation indicated a higher efficiency of protein production per cytosolic mRNA using 

lipofection. This implied that mRNA were released from the endosome slowly over time, 

and can more readily interact with the translational machinery. In addition, L2K delivered 

mRNA may be protected from degradation during the mRNA assembly process with 

proteins (forming a messenger ribonucleoprotein (mRNP)). Therefore, controlling the 

kinetics of mRNA release may be critical to the optimization of protein production with 

cationic lipids. In contrast, electroporation removed the endosomal escape aspect entirely 

and resulted in a large amount of mRNA entering the cytosol directly. 
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It is also important to note that MTRIPs remain bound to the mRNA in vivo. This 

allows subsequent studies for biodistribution and mRNA trafficking on a whole-animal 

level as well as cell-type specific uptake and expression. MTRIPs can be labelled with 

different fluorophores depending on the imaging application. They can also be labeled 

with radionuclides, such as 64Cu, which would enable the use of position emission 

tomography detection of the mRNA in the deep tissue of live animals. This can be a 

critical aspect of testing mRNA therapeutics prior to translation into humans. 

The presence of stress granules is indicative of PKR activation and translational 

repression via eIF2α phosphorylation, and is linked to abrogating apoptosis (57,58,66). 

Not only does SG formation negatively correlate with the expression of the therapeutic 

protein of interest, but they also influence host gene expression regulation, an undesirable 

side-effect for most therapies. Incorporation of modified nucleotides into mRNA 

substantially reduced this effect, but in a cell-type and delivery-dependent manner. 

Decreased SG levels in HSKMCs compared to HeLa and MEF cells might be due to 

lower overall PKR levels in human skeletal muscle. Electroporation resulted in a strong 

but short-lasting stress response, and thus SGs had a partial effect on the RNA–protein 

correlation. The longer-lasting, SG response observed using lipofectamine is likely due to 

slow release of mRNA from endosomes over time, and, thus, continuous activation of 

PKR and eIF2α phosphorylation. It is also possible that ‘priming’ of the stress response 

occurs through activation of toll-like receptors (TLRs) in the endosomal compartment, 

which does not happen during electroporation (21,66). Results with MEF PKR–/– cells 

indicate that the benefits of mRNA modification primarily stem from reduction in the 
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stress response. Overall, SG formation should be avoided in order not to perturb cell state 

and produce the maximum amount of desired protein. 

The biggest challenge to the development of mRNA therapeutics is efficiency. 

Reduction of eIF2α phosphorylation and efficient delivery of mRNA and subsequent 

release into the cytosolic compartment are instrumental to overcoming this barrier. 

mRNP formation kinetics may also limit protein production but this will be addressed in 

future work using the MTRIP-PLA approach. Overall, this methodology allows for the 

measurements of critical metrics to not only compare prospective mRNAs and their 

formulations, but also in probing the biological mechanisms limiting expression. 

Overcoming barriers of efficiency will enable new mRNA-based therapeutics which are 

safer and more effective. 

Methods 

IVT mRNA and multiply labeled tetravalent imaging probes (MTRIP) labeling 

All IVT mRNAs were synthesized by Moderna Therapeutics (Boston, MA, USA) 

containing identical sequences and included 5΄ capping and polyadenylation. EGFP-

encoding mRNAs either were synthesized without modified nucleosides or with total 

incorporation of 5meC and Pseudouridine. RNA was stored frozen in –80°C and subjected 

to minimal freeze-thaw cycles. MTRIPs were constructed as previously described (35,37). 

A detailed protocol for MTRIPs assembly and characterization was described in 

Santangelo et al. (67). Four oligos complementary to four adjacent sequences spanning the 

mouse alpha globin 3΄ UTR (NM_001083955.1) of the IVT mRNA were generated. 
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Sequences were adjacent due to the small length of the UTR region. Probe sequences were 

as follows: 

 Biotin-T(C6-Amino)-TTTTT-T(C6-Amino)-G-C-A-A-G-C-C-C-C-G-C-A-G-A-A-G-G-

T(C6-Amino) 

 Biotin-T(C6-Amino)-TTATT-T(C6-Amino)-A-G-A-G-A-A-G-A-A-G-G-G-C-A-T(C6-

Amino)-G-G 

 Biotin-T(C6-Amino)-TTTT-T(C6-Amino)-A-C-C-A-A-G-A-G-G-T(C6-Amino)-A-C-A-

G-G-T(C6-Amino)-G-C 

 Biotin-T(C6-Amino)-TTTTTT-C-T(C6-Amino)-A-C-U-C-A-G-G-C-T(C6-Amino)-U-U-

A-U-T(C6-Amino)-C 

Each sequence was analyzed via nucleotide BLAST to ensure minimal off-target 

binding. Sequences were purchased as 2΄-O-methyl RNA-DNA chimeric oligonucleotides 

17–18 bases long with a short 5–7 poly(T) linker and 4 C6-amino-modified thymidines. 

The oligos included a 5΄ biotin modification and were purchased from Biosearch 

Technologies (Petaluma, CA, USA). The oligonucleotides were labeled with Cy3b-NHS 

ester (GE Healthcare) or Dylight 650/680-NHS esters (Pierce) using manufacturer 

protocols. MTRIPs were assembled by incubation with Neutravidin (Pierce) for 1 h at RT 

followed by filtration using 30 kD MWCO centrifugal filters (Millipore). mRNA was 

buffer exchanged into 1× PBS, heated to 70°C for 10 min and immediately placed on ice, 

combined with MTRIPs in a 1:1 mRNA:MTRIP ratio and then incubated overnight at 

37°C. The next day, the labeled mRNA was filtered using a 200 kD MWCO ultrafiltration 

unit (Advantec MFS Inc.) and concentrated by 50 kD MWCO centrifugal filters 
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(Millipore). Alternative filters tested during protocol optimization included 100 and 300 

kD MWCO, but either did not filter unbound MTRIPs successfully or failed to successfully 

retain mRNA. 

Microscopy 

Stress granule (SG) imaging was performed using a Nikon Plan-Apo 40 × 0.95 NA 

air objective on a Nikon Eclipse TE2000 widefield microscope equipped with a 

Hamamatsu C9000-02 EM-CCD camera. All other samples, including tissue slides, were 

imaged using a Zeiss Plan-Apo 63 × 1.4 NA oil objective on an UltraVIEW Spinning Disk 

Confocal Microscope equipped with a Hamamatsu Flash 4.0v2 CMOS camera. The full 

dynamic range of the camera was necessary to capture intensities of large and small 

granules without undersampling or saturating images. All microscopes were controlled by 

the Volocity acquisition software (PerkinElmer). 

Quantification of cytosolic mRNA 

mRNA quantification was performed using Volocity software in images obtained 

on the spinning disk confocal microscope described above and a 63× objective. Briefly, 

thresholds were set to detect the dimmest mRNA granules (Cy3b), which were near the 

detectable limit of the camera (∼500/65536). All mRNA were identified as objects and 

sorted based on size (greater than or less than 1 μm3) and overlap with endocytic markers. 

Large granules either overlapped with endocytic markers or were found to be outside the 

cell, which was verified by visual inspection. Such mRNAs were discarded from 

subsequent analysis. Smaller granules (<1 μm3) were considered to be cytosolic if they did 
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not overlap endosomal markers. For each cell, the sum of cytosolic mRNA and GFP 

expression was recorded and plotted using Sigmaplot. At least 30 cells were used per 

condition. In detail, in Volocity software, the ‘Find Objects’ function was used to 

automatically select RNA granules using intensity set above background levels. The 

objects found by the ‘find objects’ tool, for a given intensity setting, were verified by visual 

inspection (see Figure 4). A manual threshold was applied to sort objects into populations 

(‘Filter Population’ function) based on size (∼1 μm3). ‘Find Objects’ was applied again to 

generate an object population representing endosomal markers (CD63/EEA1/LAMP1) 

with manual intensity threshold set above background values. All populations were clipped 

and compartmentalized to ROIs which were manually drawn around individual cells. 

Populations were subdivided using the ‘Exclude touching’ and ‘Exclude non-touching’ 

functions between RNA granules of every size and endosome objects. Large and small 

RNA granules touching endosome objects were considered ‘trapped’ RNA granules. Large 

granules in contact with endosome objects, which were extremely rare, were individually 

inspected and removed from analysis as all appeared to be located above the cell. Small 

RNA granules not touching endosome objects were considered ‘free’ mRNA granules. The 

sum of all free mRNA per cell was calculated using the ‘Analysis’ tab in Volocity. Protein 

expression was calculated in Volocity for each ROI as well. At least 30 cells were counted 

in this manner per condition per timepoint. 

Colocalization between pre-labeled mRNAs and Stellaris FISH 

100 ng of unmodified mRNA was pre-labeled with Dylight-650 labeled MTRIPs, 

as previously described. After filtration to remove the unbound MTRIPS, the mRNA was 
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transfected to HeLa cells using Lipofectamine 2000 according to manufacturer's 

instructions. The cells were fixed 5 h post-transfection in 4% PFA and permeabilized in 

70% ethanol at 4°C overnight. The following day we performed FISH using Stellaris FISH 

RNA probes labeled with Quasar 570 (Biosearch) designed against the codon optimized 

coding region. FISH was performed according to the Stellaris protocol. Briefly, cells were 

washed 5 min in wash buffer (10% formamide, 2% SSC). Cells were then incubated at 

37°C in the presence of 200 nM 570-labeled Stellaris probes in hybridization buffer (10% 

formamide, 2% SSC, 10% dextran sulfate, .5% tRNA, 0.5% ssDNA, 0.2% bovine serum 

albumin—BSA) in a humid chamber. After 4 h, cells were washed in wash buffer for 30 

min at 37°C, nuclei were stained with DAPI and coverslips were mounted on glass slides 

using Prolong gold (Life Technologies). Mander's coefficients were measured using Costes 

threshold calculation in >15 cells using Volocity software. Controls consisted of FISH on 

vehicle only-transfected cells, cells transfected with an mRNA containing a different 

coding region (Chemokine ligand 3), and DNA oligos with the same sequence as the 

mRNA 3΄ UTR region. 

For experiments performed in tissue sections, 10 μg of unmodified mRNA was pre-

labeled with Cy3b labeled MTRIPs. After filtration to remove the unbound MTRIPS, the 

mRNA was complexed with a PEI polymer (Viromer Red, Lipocalyx) and injected 

intramuscularly in a Ringer's Lactate (RiLa) buffer into the anterior tibialis muscle of 

BALB/C mice. Controls consisted of an intramuscular sham injection of RiLa buffer. The 

mice were sacrificed and the muscle harvested 2 h post-injection. The harvested tissue was 

fixed in 4% PFA overnight at 4°C, soaked in PBS containing 30% sucrose overnight at 

4°C, and then embedded in optimal cutting temperature solution. The tissue blocks were 
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then snap frozen in isopentane and dry ice. Finally, the frozen tissue blocks were cut into 

∼10 um thick sections with a cryostat and put onto slides to be used for FISH. The tissue 

was fixed and permeabilized in 50:50 methanol:acetone at -20°C for 10 min. Stellaris FISH 

probes labeled with Quasar 670 (Biosearch) were designed matching the probes used for 

the in vitro experiment. FISH was then performed according to the Stellaris protocol. 

Briefly, after methanol:acetone fixation, the tissue was equilibrated in wash buffer (10% 

formamide, 2% SSC). Tissue was then incubated at 37°C in the presence of 20 nM of 670-

labeled Stellaris probes in hybridization buffer (10% formamide, 2% SSC, 10% dextran 

sulfate, 0.5% tRNA, 0.5% ssDNA, 0.2% BSA) in a humid chamber overnight. The next 

morning, tissue was washed in wash buffer for 30 min at 37°C. Finally, the nuclei were 

stained with DAPI and coverslips were mounted on top the tissue using Prolong gold (Life 

Technologies). 

Proximity ligation assays 

Protein/mRNA PLA has been previously described (28,29) and a detailed protocol 

can be found in Zurla et al. (39). Briefly, neutravidin was tagged with a V5 epitope through 

Solulink conjugation technology. A maleimide hynic linker (Solulink) was conjugated to 

the V5 tag, while an S-4FB linker (Solulink) was conjugated to the neutravidin, following 

manufacturer's instructions. After conjugation, the two reagents were mixed with the 

Turbolink catalyst (Solulink) to covalently bind the V5 tag to neutravidin. MTRIPs were 

then assembled as previously described using V5 labeled neutravidin (Na-V5), mRNA was 

labeled as above, and then used for transfection. Two hours post-transfection, cells were 

fixed with 1% paraformaldehyde and permeabilized with 0.2% Triton X in 1× PBS. Cells 
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were then blocked for nonspecific interactions for 30 min at 37°C with PLA blocking 

buffer (0.1% gelatin, 2% donkey serum and 1% BSA in 1× PBS). Primary antibodies 

consisted of rabbit anti-V5 (Abcam), mouse anti-V5 (abcam), mouse anti-caveolin-1 

(Sigma), mouse anti-clathrin light chain (Sigma) and rabbit anti-ARF6 (Pierce). Primary 

antibodies were then delivered (1:1000 V5 Ab and 1:250 ARF6 Ab, 1:500 clathrin light 

chain Ab or 1:10 000 caveolin Ab in PLA primary diluent (1% BSA, 1% donkey serum 

and 0.2% Triton-X in 1× PBS) for 30 min at 37°C. Cells were washed in wash buffer A 

(Sigma) at RT for 10 min. Secondary antibodies for rabbit and mouse antibodies (Sigma) 

were delivered at a concentration indicated by the manufacturer in PLA secondary diluent 

(0.05% tween 20 in 1× PBS) for 30 min at 37°C. This was followed by another 10 min 

wash in wash buffer A (Sigma) at RT. PLA ligation and rolling circle amplification were 

performed as specified by the manufacturer. Finally, cells were washed and mounted on a 

slide with DAPI mounting medium (Sigma). PLA interactions were quantified using a 63× 

(oil) objective on a spinning disk confocal microscope. Thiry cells were measured per 

experimental condition and analyzed by Volocity software. 

Cell culture and transfection 

HeLa cells and Mouse Embryonic Fibroblasts were obtained from ATCC and 

maintained in DMEM or EMEM (Lonza) and supplemented with 10% FBS (Hyclone), 100 

U/ml penicillin and 100 μg/ml streptomycin (Life Technologies). Primary human skeletal 

muscle cells (Promocell) were grown in HSkMC growth media (Promocell) supplemented 

without FBS and only with penicillin and streptomycin as above. Cells were plated the day 

before an experiment in preparation for lipofectamine transfection. Lipofectamine was 
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combined with labeled mRNA in Optimem (Life Technologies) using manufacturer 

protocols. Lipofectamine solutions were replaced by fresh media 5 h post-transfection. For 

electroporation, cells were placed into suspension using trypsin which was subsequently 

deactivated by the addition of media containing serum. Cells were counted, pelleted, and 

re-suspended at a final concentration of 5 million cells/ml in electroporation buffer R (Life 

Technologies) containing 200 ng/10 ul of mRNA. All electroporations were performed 

using the Neon Transfection System (Life Technologies) using a 10 μl reaction size per 

well in a 24-well plate and following manufacturer protocols. Pulse voltage was set to 1100 

V with a pulse width of 30 ms and a pulse number of 2. Media was replaced after 5 h. 

Knockdown experiments for PKR were performed by Neon electroporation with anti-PKR 

siRNA (Smartpool, Dharmacon) 48 h prior to mRNA transfection and knockdown 

efficiency was quantified to be >80% using PCR. 

Immunofluorescence 

Cells were fixed in 4% PFA for 10 min, blocked in 25% BSA and immunostained 

as previously described (47) using appropriate antibodies. Endosomal route markers used 

were caveolin, clathrin light chain and ARF6 (Santa Cruz Biotechnology). General 

endocytic markers used for evaluating cytosolic mRNA were CD63 (mouse anti-CD63, 

Developmental Studies Hybridoma Bank- DSHB), EEA1 (mouse anti-EEA1, BD 

Biosciences) and LAMP1 (mouse anti-LAMP1, DSHB). Stress granule markers included 

G3BP (mouse anti-G3BP, BD Biosciences) and TIAR (goat anti-TIAR, Santa Cruz). EGFP 

was stained using a rabbit anti-GFP polyclonal antibody (Life Technologies). Secondary 

antibodies were purchased pre-conjugated to either Alexa Fluor 488 (Life Technologies), 
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Cy3 (Jackson Immuno) or Alexa Fluor 647 (Life Technologies). Cells were finally stained 

with DAPI for 5 min and mounted on glass slides with Prolong gold. Tissue 

immunofluorescence staining was performed following 4% PFA fixation, paraffinization 

and antigen retrieval with standard protocols using antibodies as above or anti-cd11b 

(Abcam) and anti-Vimentin (Santa Cruz Biotechnology). Tissues were imaged with a 40× 

objective on the Ultraview Spinning Disk microscope using stitching algorithms in 

Volocity. 

Flow cytometry 

Cells were prepared for flow cytometry using warm Versene-EDTA (Lonza) for 5 

min for detachment followed by 10 min fixation in 4% paraformaldehyde at 4°C, multiple 

washing steps and resuspension using FACS buffer (Dulbecco's phosphate buffered saline–

Ca2+–Mg2+ supplemented with 1% FBS and 5 mM EDTA). Dylight-650 labeled mRNA 

was used for flow cytometry experiments, performed using a BD FACS-Canto II flow 

cytometer and analyzed using FlowJo software. Experiments were performed in duplicate 

with >5000 cells per condition. 

Gel shift to demonstrate MTRIPS binding to mRNA 

100 ng of unmodified EGFP mRNA was pre-labeled with Dylight-650 using the 

above protocol. After filtration to remove unbound MTRIPS, the labeled mRNA was 

loaded on a 2% agarose gel and run with constant voltage (50 V for 2 h). As a control, we 

ran naked mRNA (incubated over night at 37°C without MTRIPS) or labeled mRNA boiled 

at 95°C for 10 min. 
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Size exclusion chromatography to assess degree of labeling 

In order to assess labeling efficiency, mRNA and MTRIPs labeled with Dylight-

650 or the same amount of MTRIPs without mRNA was analyzed by size exclusion 

chromatography using an SEC-4000 Yarra column (Phenomenex). Samples were flowed 

using 1× phosphate buffer and analyzed by fluorescence reading in real-time on a 

Shimadzu Prominence HPLC system. 

Mouse experiments 

Mice were injected in the anterior tibialis muscle using 10 μg of Dylight680 or 

Cy3b-labeled mRNA in 40 μl of Ringer's Lactate (RiLa) or with RiLa alone. For in 

vivo EGFP production, 2 ul of Viromer Red (Lipocalyx) delivery vehicle was mixed with 

mRNA. Imaging during surgery was performed using the Fluobeam 700 Near-IR Imaging 

System (Fluoptics). The anterior tibialis muscle was removed 16 h post-delivery, fixed in 

4% PFA and cryopreserved in optimum cutting temperature solution. Staining was 

performed on slices and imaged as described above. All animal handling and experiments 

were performed in accordance with protocols approved by the IACUC at Georgia Institute 

of Technology. 

Statistics 

Significance in proximity ligation assays was determined by running a one-way 

ANOVA on the data, using the Kruskal–Wallis test and Dunn's multiple comparisons test. 

Correlation statistics (Pearson, two-tailed P values), and Mann–Whitney t-tests were 

calculated in Graphpad Prism software. All other data was tested with two-way ANOVA 
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at a = 0.05 followed by Holm–Sidak method for multiple comparison testing. All 

measurements were analyzed with Microsoft Excel, Graphpad Prism, and/or Sigmaplot 13. 
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CHAPTER 3 

ENGINEERING MESSENGER RNA FOR INREASED STABILITY AND 

PROTEIN EXPRESSION  

Background 

This chapter examines making alterations to mRNA in order to effect greater protein 

production or reduced immune responses in cells transfected with IVT mRNA. These 

changes are classified into two categories – sequence and chemical modification. Chemical 

modification occurs through the substitution of modified ribonucleosides during the 

manufacturing process of IVT mRNA, and the subsequent purification of the mRNA to 

remove impurities during production. Sequence modification can take the form of codon 

optimization in the coding region, and the addition of sequences in the 3’ UTR region 

which are intended to interact with trans-acting factors within a transfected cell.  

IVT mRNAs, unlike native mRNAs, will not possess a nuclear history. Native, 

cellular mRNAs are transcribed in the nucleus and undergo post-transcription processing 

such as splicing as well as forming an RNP complex with accessory proteins prior to 

nuclear export. An important example of proteins associated with mRNA during 

processing include the cap-binding complex (CBP80/20), which is exchanged for the 

translation initiation factory eukaryotic initiation factor 4E (EIF4E) within the cytosol 

(68,69). Following export from the nucleus, mRNA is subject to post-transcriptional 

regulation by a large number of proteins and RNP complexes (70).  Native mRNAs may 

also possess advantages for rapid translation through intracellular localization. One 
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example is localization to the endoplasmic reticulum, where ribosomal profiling has shown 

higher levels of translation occurring (71,72). 

Chemical modification of mRNA nucleotides occurs naturally through mechanisms 

such as the addition of a methyl or thiol group to bases (73). Chemical modification of IVT 

mRNA requires the substitution of modified bases during production. An example of a 

common modification is a methylation reaction. Complete substitution is helpful for 

ensuring homogeneity of the final product. In early research on mRNA therapeutics, 

Kormann et al pointed out that pseuoduridine combined with 5-methyl cytodine resulted 

in diminished immune response and higher levels of protein production. Later work by 

Kariko et al showed that HPLC purification of mRNA removed impurities which would 

otherwise result in immune activation. More recently, 1-methyl pseudouridine has 

produced the highest level of protein production (74). Codon optimization was also shown 

to drastically improve protein production, even without the inclusion of any modified 

nucleotides (75). However, it is important to note that these studies were limited to usually 

a single coding region, typically a reporter protein such as luciferase, and some of these 

improvements may not 

IVT mRNA does not follow the same cellular routing and processing as endogenous 

mRNAs. It does not contain a nuclear history, and aside from any conjugated delivery 

vehicle, does not enter the cell with accessory proteins. In comparison, native mRNAs exit 

the nucleus as an RNP complex, with elements which can preserve or bring them to a 

translational complex for subsequent translation. In this chapter, we show that IVT mRNAs 

do interact with trans-acting factors, particularly with the cellular protein HuR, which is 
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involved in mRNA longevity (76,77), and thus can be engineered through sequence 

changes to take advantage of cellular systems of mRNA regulation.   

One method of regulation is to use RNA interference by taking advantage of 

cellular mechanisms to control mRNA copy number through cellular miRNAs and the 

endogenous RNA Silencing Complex (RISC). Through the inclusion of specific miRNA 

binding sites in the 3’ UTR of IVT mRNA, protein production can be decreased in cell 

types with a high copy number of matching miRNAs, but remain the same in cell types 

with diminished miRNA expression. This allows the introduction of cell-type specificity, 

adding another element of control to mRNA expression.  

Incorporation of modified nucleotides into mRNA attenuates protein expression 

primarily due to stress granule formation.  

Following the results in chapter 2 showing decreased stress granule formation and 

thus overall higher protein production following incorporation of modified nucleotides, we 

tested a larger number of chemical modifications. Complete substitution of a modified 

nucleotide with the corresponding nucleotide during the manufacturing process assured a 

homogenous population of mRNAs. These mRNAs were transfected into HeLa cells using 

Lipofectamine 2000 (L2K) which resulted in GFP expression as detected by flow 

cytometry (Figure 3.1).  The presence of stress granules (SG) was evaluating using 

intracellular staining and is presented as the percentage of cells containing SGs (Figure 

3.2). In all cases where protein expression is reduced compared to the best performing 

modified nucleotide, 1-methyl pseudouridine (1mY), formation of stress granules is 

apparent. This clearly indicated a primary mechanism of action for modified nucleotides 
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to have improved protein expression due to reduction in immune sensing, likely by protein 

kinase R (PKR) as shown in chapter 2.  

Protein expression using modified mRNA is dependent on the nucleotide sequence 

 Schlake et al (75,78) demonstrated that codon optimization of luciferase encoding 

mRNA remarkably increase protein expression compared to incorporation of modified 

nucleotides in luciferase. Common algorithms for codon optimization choose optimal 

amino acid codes based upon species occurrence rates, as well as checking for secondary 

structure and increasing GC content (79-86). However, it cannot be inferred from the data 

presented that this approach universally applies to all sequence and modification 

combinations. We repeated the previous GFP expression and SG testing using luciferase-

encoding mRNA (Figure 3.3). Notably, the incorporation of 5meC or pseudouridine 

produced strong improvements in GFP expression but not luciferase, even in some cases 

resulting in a decrease in expression compared to wild type mRNA. As this work was 

performed in the same Hela cell type, the results indicate that there is likely an interplay 

between factors such as the incorporation of differing amounts of modified nucleotides, the 

spatial locations of modified nucleotides within a sequence, the spatial location relative to 

structures in the mRNA which may be potential binding sites for pattern recognition 

receptors, and possible effects on overall secondary structure in the mRNA. However, 

1mY-modified mRNA continued to show increased expression in both mRNA sequences 

as well as a nearly complete reduction in stress granules.  

Reduction of cellular innate immune response is possible through co-delivery of 

mRNA with small molecule inhibitors of PKR. 
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 For subsequent work, 1mY was incorporated into mRNAs because of increased 

protein expression and reduced immune sensing. However, to test whether protein 

expression could be reduced further through reduction in immune response, we co-

delivered unmodified and 1mY modified mRNA with 2-aminopurine (2AP) and C16, both 

known as inhibitors of PKR (87,88). Protein expression as evaluated by flow cytometry 

showed increased with both 2AP and C16, even in the case of 1mY modified mRNA 

(Figure 3.4). This strongly implies that even incorporation of 1mY does not fully suppress 

immune sensing. When performing a similar test in another cell type and using luciferase 

mRNA (Hek293 cells – Figure 3.5), it is notable that the trends of protein expression 

increase remained the same but the relative differences changed, which may be due to 

differential expression of immune sensing factors and signaling proteins.   

 We performed RT-PCR on hek293 cells transfected with GFP mRNA 1mY and 

unmodified. Levels of IFNB and IL6 showed higher levels with unmodified mRNA 

compared to modified mRNA. For IL6, significant reductions were shown with both 

unmodified and modified mRNA when co-delivered with C16 (Figure 3.6).  

Optimization of mRNA-delivery vehicle N/P ratio 

We also searched for alternatives to l2k delivery in order to find a delivery vehicle 

with transfection capability for in vivo applications. Specifically, polyethylamine 

derivatives are known to be effective in vivo, though effectiveness is largely dependent on 

the ratio of delivery vehicle to mRNA, or nitrogen to phosphate content respectively (N/P) 

(89,90). We performed a protein expression screen for different modified PEI formulations 

in primary rat cortical neurons, A549 cells, Hela cells, and RAW cells using multiple N/P 
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ratios of delivery vehicle and GFP mRNA. Flow cytometry screening showed that certain 

delivery vehicle combinations resulted in higher at expression, though only at specific N/P 

ratios in a cell type dependent manner. These results are shown in Figure 3.7, 3.8, and 3.9 

for HepG2 cells, A549 cells, and primary rat neuronal cells respectively. Notably, protein 

expression differed greatly between different cell types and N/P ratios. Due to its 

commercial availability and overall high levels of protein expression in multiple cell types 

at medium to high N/P ratios, Viromer Red (Lipocalyx, GMBH) was chosen for subsequent 

transfection experiments.  

To better understand why one N/P ratio might perform better than another, we 

labeled mRNA with cy3b and measured the cytosolic sum intensity of mRNA for each N/P 

ratio in mod PEI 4 (Figure 3.10), comparing to our highest overall performing formulation 

in A549s (Viromer Red at medium N/P ratio). Viromer Red showed a higher cytosolic 

concentration which matches with previously measured protein expression, indicating that 

N/P ratio may result in higher cytosolic mRNA levels.  

Interactions between delivered mRNA and cellular RNA-binding proteins 

While it has been shown that IVT mRNA delivered to a cell interacts with pattern 

recognition receptors, it is unknown whether these mRNAs, lacking a nuclear history, can 

interact with regulatory proteins. One cellular system of importance in mRNA regulation 

is the miRNA system and the associated RISC complex. If delivered IVT mRNAs can 

interact with the RISC complex in a sequence specific-manner, it would be possible to 

design mRNAs such that they would be expressed differentially in cell types with different 

levels of miRNA expression. We designed mRNAs with miRNA sites in the 3’ UTR 



64 

 

region. In order to pursue a future goal of neuron-specific expression, miRNA sites were 

chosen using a miRNA known to be low copy number in rat cortical neurons compared to 

other neuronal cell types, miR146a, as well as a miRNA known to be upregulated in 

neurons but not in other neural cell types, miR376a (91). 

To test that miRNA sites were capable of binding to cellular machinery in a 

sequence specific manner in IVT mRNA delivered to cells, we co-delivered them with 

miRNA mimics corresponding to miR146a and miR376a respectively, as well as delivering 

the opposite miRNA sequence as a control. Delivery of matching mimics showed a 

decrease in protein expression but not with mimics of a different miRNA sequence – 

showing that miRNA sites function in a sequence specific manner (Figure 3.11). This 

showed a promising technique for inducing cell-type specificity through careful 

engineering of miRNA sites in the UTR of IVT mRNA; however, it is not known whether 

cellular copy numbers of miRNAs will be sufficient to completely suppress mRNA 

expression.  

Next, we tested if the incorporation of UTR sites from long lived mRNAs could 

yield increased protein production or mRNA longevity. We added the polyprotein UTR 

from the Sindbis virus or the human beta globin gene UTR into the UTR region of GFP 

encoding mRNA already containing the previously used mouse alphaglobin UTR 

sequence. We examined GFP expression in Hela cells for over 120 hours in order to 

determine if the new UTR sequences resulted in greater stability or initial protein 

production. In addition, we tested the miR146a-incorporating RNA sequence. 

Interestingly, the miR146a mRNA performed with higher initial expression compared to 

the others, followed closely by the mRNA with the human beta globin UTR (Figure 3.12). 
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Hela cells do not contain particularly high levels of either miRNA tested, though their 

presence would only decrease expression. Based on comparison of calculated half-lives 

and corresponding confidence intervals, GFP miR146 had a slightly higher half-life than 

the others mRNAs. While the decay rates of GFP expression overall remain similar, the 

increased protein expression in GFP miR146 should not have resulted as compared to wild-

type GFP mRNA. We hypothesized that this was the result of RNA binding proteins related 

to stability binding to the additional sequences in the UTR. Considering that miR146a and 

miR376a are relatively AU rich, we tested for interaction with the RNA binding protein 

HuR, involved in mRNA stability. We performed a proximity ligation assay between HuR 

protein and V5-tagged MTRIP probes bound to the UTR of the mRNA. This resulted in 

notably high interaction between HuR and the mRNA, which was not present in the 

controls (Figure 3.14). However, while no significant statistical differences was found 

between the GFP-miR constructs and GFP alone, it was clear that cellular RBPs interact 

with IVT mRNA.      
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Figure 3.1: Incorporation of modified nucleotides into GFP mRNA results in 

differential levels of GFP expression. Hela cells were transfected with GFP mRNA 

and lipofectamine and analyzed by flow cytometry 12 hours post-transfection. 1-

methyl-pseudouridine (m1Y) presents the highest level of protein compared to wild 

type (unmodified) mRNA. PseudoU, m1Y, and 5moU are significant compared to WT 

(P<0.05).  
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Figure 3.2: Differences in stress activation between different modified chemistries in 

GFP mRNA. Hela cells were transfected with GFP mRNA and lipofectamine and 

analyzed by flow cytometry 12 hours post-transfection. Lower stress granule 

formation from modifications including pseudouridine (PseudoU) or m1Y 

corresponds to higher levels of GFP expression as shown in the previous figure.  
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Figure 3.3: Protein expression and SG formation using modified nucleotides in 

luciferase encoding mRNA. Hela cells were transfected with firefly luciferase mRNA 

and lipofectamine and analyzed by flow cytometry 12 hours post-transfection. 1-

methyl-pseudouridine (1mY) presents the highest level of protein compared to wild 

type (unmodified) mRNA, but pseudouridine alone produces lower protein 

expression due to stress granule formation.   
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Figure 3.4: Effect of codelivery of GFP mRNA and small molecule inhibitors on 

protein expression in Hela cells. Unmodified and 1mY modified GFP mRNA was 

delivered using lipofectamine and analyzed by flow cytometry at 5 hours post-

transfection. While no significant difference was shown between unmodified mRNA 

cases, a significant increase (P<0.05) was detected by one-way ANOVA with multiple 

comparisons between 1mY GFP mRNA delivered with and without C16 inhibitor.  
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Figure 3.5: Effect of codelivery of luciferase mRNA and C16 on protein expression in 

hek293 cells. Unmodified and 1mY modified GFP mRNA was delivered using 

lipofectamine and analyzed by flow cytometry at 16 hours post-transfection. Higher 

levels of protein expression are achieved with C16 in both modified and unmodified 

cases.  
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Figure 3.6: Cytokine analysis of hek293 cells 5 hours post transfection with GFP 

mRNA. Unmodified GFP mRNA results in significantly higher levels of INFB and 

IL6. 1mY mRNA shows reduced cytokine response. C16 has a noticeable effect on Il6 

level reduction but not significant in INFB. Bars indicate SD.  
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Figure 3.7: Protein expression 24 hours post-transfection of hepG2 cells with 1mY 

GFP mRNA formulated at different N/P ratios and PEI derivatives. Viromer Red, the 

only commercially available formulation here, shows significantly higher levels of 

GFP intensity at medium and high N/P ratios compared to low N/P ratio. Mod PEI 1 

shows similar levels of GFP, while mod PEI 2/3/4 show significantly higher protein 

expression than all other formulations but only at a medium N/P ratio. These 

comparisons were made by one-way ANOVA with P<0.05. Bars indicate CV.  
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Figure 3.8: Protein expression 24 hours post-transfection of A549 cells with 1mY GFP 

mRNA formulated at different N/P ratios and PEI derivatives. Medium N/P ratios 

perform statistically better than low or high N/P. Exceptions include mod PEI 5, 

which performed poorly at all ratios, and mod PEI 1, which produced similar protein 

levels between low and medium N/P ratios. These comparisons were made by one-

way ANOVA with P<0.05. Bars indicate CV. 
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Figure 3.9: Protein expression 24 hours post-transfection of primary rat cortical 

neuronal cells with 1mY GFP mRNA formulated at different N/P ratios and PEI 

derivatives. Viromer Red performs significantly better than other delivery vehicles at 

high N/P ratios, though mod PEI 4 at medium N/P performs best overall followed by 

mod PEI 5.  These comparisons were made by one-way ANOVA with P<0.05. Bars 

indicate CV. 
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Figure 3.10: Cytosolic mRNA intensity 5 hours post transfection of A549 cells with 

1mY mRNA and Viromer Red at medium N/P ratio or modified PEI  (mod PEI 4). 

Viromer Red at medium N/P ratio shows a higher level of cytosolic mRNA, compared 

to the other modified PEI. Each dot represents a single cell and flat bars indicate 

mean RNA intensity. Statistical significance evaluated by one-way ANOVA with 

P<0.05.  
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Figure 3.11: GFP expression following transfection of Hela cells with GFP mRNA 

containing miR sites in the 3’ UTR co-delivered with miRNA mimic constructs. Co-

delivery with a miRNA mimic corresponding to embedded miRNA sites results in 

significant reduction in GFP expression, but not when co-delivered with a different 

sequence mimic. Experiment was performed in duplicate. Statistical significance 

evaluated by one-way ANOVA with P<0.05. Bars indicate SD.  
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Figure 3.12: GFP expression following transfection of Hela cells with GFP mRNA 

with various 3’ UTR regions. The UTR region corresponding to the Sindbis viral 

polyprotein UTR, the human betaglobin UTR, or 6x repeats of miR146 binding sites 

was inserted into the existing 3’ UTR of GFP mRNA in addition to the existing mouse 

alphaglobin UTR sequence. Initial protein levels were higher with either the human 

beta globin UTR or the UTR containing miRNA sites. Note that the miRNA site 146 

is not highly expressed in Hela cells. Bars indicate CV.  
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Figure 3.13: Half-lives of GFP expression following transfection of Hela cells with 

GFP mRNA with various 3’ UTR regions. Bars indicate 95% confidence intervals.   
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Figure 3.14: Proximity ligation assay between mRNA and HuR shows interaction 

between IVT mRNA and native HuR protein. GFP encoding mRNA was labeled with 

V5-tagged MTRIP probes and delivered to Hela cells using lipofectamine. Cells were 

fixed and PLA performed 6 hours post-transfection. GFP constructs showed 

significant HuR binding versus delivery of RNA without probes, probes only, vehicle 

only, and no primary antibody controls. No significant difference was found between 

controls or between GFP mRNA and GFP with miRNA sites incorporated in the UTR 

region.  
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Conclusion 

 This study has shown that there is a strong interplay of multiple factors between a 

transfected cell and IVT mRNA. This interplay can be effected by the synthesis of the 

mRNA, where incorporation of modified nucleotides can result in increased protein 

production through the reduction of stress response and other cellular factors related to 

innate immune sensing. However, while 1mY produced the highest levels of protein 

expression for both GFP and luciferase mRNA, observations of protein expression and 

stress granule formation with other chemistries show differential expression between 

sequences. This could be due to differences in availability of modified nucleotides to be 

detected by PRRs, as determined by the number of incorporated nucleotides (i.e. the 

amount of uridines), the location of these nucleotides, and effects on secondary structure 

of the RNA molecule.  

 Even with the stress granule-abrogating effects of 1mY incorporation in IVT 

mRNAs, there still exists a degree of immune activation in a PKR-dependent manner as 

shown when 1mY GFP mRNA is combined with PKR inhibitors. We have shown 

increased protein production and decreased cytokines when mRNA is co-delivered with 

C16 imidazolo-oxindole. Importantly, this opens room for further improvement of the 

mRNA, though it is uncertain whether nucleotide modification alone can achieve this.  

 Another factor greatly impacting mRNA performance is the delivery vehicle. As 

shown in Chapter 2, endosomal versus cytosolic delivery of mRNA results in different 

kinetics of protein production as well as stress response. Furthermore, different 
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formulations of mRNA and delivery vehicle can lead to higher or lower expression. This 

is partially due to the amount of mRNA released to the cytosol, due to the amount of mRNA 

that enters the cell and escapes from the endosome. Delivery vehicles may also alter 

interactions between the mRNA and cellular machinery, such as shielding mRNA from 

detection by PRRs, or by providing spatial localization advantages for forming 

translational RNP complexes. Even within the same class of vehicle, such as PEI 

derivatives, varying the ratio of delivery vehicle to mRNA results in significantly different 

protein expression levels in a cell-type dependent manner. Once again, the themes of one 

size fits all do not apply here, and that mRNA design and delivery must be specifically 

tested for effectiveness in target cells and tissues.  

 It is evident that IVT mRNAs can form translational complexes, activate PRRs, and 

degrade over time; however, it has not been previously shown that IVT mRNA interacts 

with regulatory RBPs in a controllable manner. This study has shown that engineering 

miRNA sites into the 3’ UTR results in reduction of protein expression in a sequence 

dependent manner. This would allow the incorporation of cell type specificity by choosing 

miRNA sites which are diminished in target cells but upregulated in off-target cells. 

Incorporation of these sites into therapeutic mRNAs could reduce off-target effects and/or 

allow for higher doses. Furthermore, it shows that IVT mRNAs are subject to control by 

the RNA silencing complex (RISC). Incorporation of other UTRs such as those from long-

lived mRNAs may impact protein production over time, though this is subject of further 

study.  

Using the proximity ligation assay, we showed that the regulatory protein HuR 

interacts with IVT mRNA. This is additional evidence that mRNA is subject to regulation 
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by RBPs in a similar manner to native mRNAs, though the extent is unknown due to the 

differences between the native mRNA RNP and the relatively less protected IVT mRNA. 

This also opens possibilities for co-expression or codelivery of mRNAs encoding cellular 

host factors, such as protein involved in mRNA stability or that promote translation 

initiation.  This may lead to an increase in the upper limit of protein expression for 

transfected cells.  

In summary, when confronted with the problem of designing mRNA for a given 

task, mRNA needs to be designed based on available knowledge of target cell type, levels 

of innate immune sensing, and possible off-target effects. A formulation must be designed 

through in-depth testing with different mRNA-vehicle ratios as well as inclusion of small 

molecules or other protein-encoding mRNAs. Rational design of mRNA therapeutics will 

be key to achieving therapeutic levels of protein necessary for success in clinical 

applications.   

Methods  

IVT mRNA and multiply labeled tetravalent imaging probes (MTRIP) labeling 

All IVT mRNAs were synthesized in lab from plasmids purchased from Life 

Technologies. Plasmids contained a T7 promoter followed by the mRNA sequence 

including a Kozak consensus sequence, gene sequence of interest, and the mouse alpha 

globin 3’ UTR in addition to other UTR sequences (miRNA sites x6, Sindbis polyprotein 

UTR, human beta globin UTR, etc. A NOTI restriction site was inserted following the 

mRNA sequence in order to allow overnight digestion to linearize plasmids creating a 5’ 

overhang for transcription. The digested DNA template was then purified using the 
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QIAquick PCR purification spin column (Qiagen). The T7 mScript Standard mRNA 

production system was used to generate mRNA (Cellscript). A cap-1 structure as well as 

an enzymatic poly(A) tail was added using manufacturer’s instructions. mRNAs either 

were synthesized without modified nucleosides or with total incorporation of modified 

nucleotides. All nucleotides were purchased from Trilink. Purification steps were carried 

out using the RNeasy midi kit (Qiagen). Following transcription, mRNA was treated with 

Antartic phosphatase (New England Biolabs) for 30 minutes to remove residual 

triphosphates, and quantified on a Nanodrop 2000 (Thermo Scientific). RNA was stored 

frozen in –80°C and subjected to minimal freeze-thaw cycles.  

For cytosolic mRNA quantification, mRNA was labeled with MTRIPs. MTRIPs 

were constructed as previously described (17,19). A detailed protocol for MTRIPs 

assembly and characterization was described in Santangelo et al. (38). Four oligos 

complementary to four adjacent sequences spanning the mouse alpha globin 3΄ UTR 

(NM_001083955.1) of the IVT mRNA were generated. Sequences were adjacent due to 

the small length of the UTR region. Probe sequences can be found in Chapter 2 methods.  

Each sequence was analyzed via nucleotide BLAST to ensure minimal off-target binding. 

Sequences were purchased as 2΄-O-methyl RNA-DNA chimeric oligonucleotides 17–18 

bases long with a short 5–7 poly(T) linker and 4 C6-amino-modified thymidines. The 

oligos included a 5΄ biotin modification and were purchased from Biosearch Technologies 

(Petaluma, CA, USA). The oligonucleotides were labeled with Cy3b-NHS ester (GE 

Healthcare) or Dylight 650/680-NHS esters (Pierce) using manufacturer protocols. 

MTRIPs were assembled by incubation with Neutravidin (Pierce) for 1 h at RT followed 
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by filtration using 30 kD MWCO centrifugal filters (Millipore). mRNA was buffer 

exchanged into 1× PBS, heated to 70°C for 10 min and immediately placed on ice, 

combined with MTRIPs in a 1:1 mRNA:MTRIP ratio and then incubated overnight at 

37°C. The next day, the labeled mRNA was filtered using a 200 kD MWCO ultrafiltration 

unit (Advantec MFS Inc.) and concentrated by 50 kD MWCO centrifugal filters 

(Millipore). Alternative filters tested during protocol optimization included 100 and 300 

kD MWCO, but either did not filter unbound MTRIPs successfully or failed to successfully 

retain mRNA. 

Microscopy 

Stress granule (SG) imaging was performed using a Nikon Plan-Apo 40 × 0.95 NA 

air objective on a Nikon Eclipse TE2000 widefield microscope equipped with a 

Hamamatsu C9000-02 EM-CCD camera. All other samples, including tissue slides, were 

imaged using a Zeiss Plan-Apo 63 × 1.4 NA oil objective on an UltraVIEW Spinning Disk 

Confocal Microscope equipped with a Hamamatsu Flash 4.0v2 CMOS camera. The full 

dynamic range of the camera was necessary to capture intensities of large and small 

granules without undersampling or saturating images. All microscopes were controlled by 

the Volocity acquisition software (PerkinElmer). 

Quantification of cytosolic mRNA 

mRNA quantification was performed using Volocity software in images obtained 

on the spinning disk confocal microscope described above and a 63× objective. Briefly, 

thresholds were set to detect the dimmest mRNA granules (Cy3b), which were near the 
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detectable limit of the camera (∼500/65536). All mRNA were identified as objects and 

sorted based on size (greater than or less than 1 μm3) and overlap with endocytic markers. 

Large granules either overlapped with endocytic markers or were found to be outside the 

cell, which was verified by visual inspection. Such mRNAs were discarded from 

subsequent analysis. Smaller granules (<1 μm3) were considered to be cytosolic if they did 

not overlap endosomal markers. For each cell, the sum of cytosolic mRNA and GFP 

expression was recorded and plotted using Sigmaplot. At least 30 cells were used per 

condition. In detail, in Volocity software, the ‘Find Objects’ function was used to 

automatically select RNA granules using intensity set above background levels. The 

objects found by the ‘find objects’ tool, for a given intensity setting, were verified by visual 

inspection (see Figure 4). A manual threshold was applied to sort objects into populations 

(‘Filter Population’ function) based on size (∼1 μm3). ‘Find Objects’ was applied again to 

generate an object population representing endosomal markers (CD63/EEA1/LAMP1) 

with manual intensity threshold set above background values. All populations were clipped 

and compartmentalized to ROIs which were manually drawn around individual cells. 

Populations were subdivided using the ‘Exclude touching’ and ‘Exclude non-touching’ 

functions between RNA granules of every size and endosome objects. Large and small 

RNA granules touching endosome objects were considered ‘trapped’ RNA granules. Large 

granules in contact with endosome objects, which were extremely rare, were individually 

inspected and removed from analysis as all appeared to be located above the cell. Small 

RNA granules not touching endosome objects were considered ‘free’ mRNA granules. The 

sum of all free mRNA per cell was calculated using the ‘Analysis’ tab in Volocity. Protein 
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expression was calculated in Volocity for each ROI as well. At least 15 cells were counted 

in this manner per condition per timepoint. 

Proximity ligation assays 

Protein/mRNA PLA has been previously described (28,29) and a detailed protocol 

can be found in Zurla et al. (39). Briefly, neutravidin was tagged with a V5 epitope through 

Solulink conjugation technology. A maleimide hynic linker (Solulink) was conjugated to 

the V5 tag, while an S-4FB linker (Solulink) was conjugated to the neutravidin, following 

manufacturer's instructions. After conjugation, the two reagents were mixed with the 

Turbolink catalyst (Solulink) to covalently bind the V5 tag to neutravidin. MTRIPs were 

then assembled as previously described using V5 labeled neutravidin (Na-V5), mRNA was 

labeled as above, and then used for transfection. Two hours post-transfection, cells were 

fixed with 1% paraformaldehyde and permeabilized with 0.2% Triton X in 1× PBS. Cells 

were then blocked for nonspecific interactions for 30 min at 37°C with PLA blocking 

buffer (0.1% gelatin, 2% donkey serum and 1% BSA in 1× PBS). Primary antibodies 

consisted of rabbit anti-HuR. Primary antibody was delivered (1:1000 V5 Ab and 1:5000 

HuR Ab in PLA primary diluent (1% BSA, 1% donkey serum and 0.2% Triton-X in 1× 

PBS) for 30 min at 37°C. Cells were washed in wash buffer A (Sigma) at RT for 10 min. 

Secondary antibodies for rabbit and mouse antibodies (Sigma) were delivered at a 

concentration indicated by the manufacturer in PLA secondary diluent (0.05% tween 20 in 

1× PBS) for 30 min at 37°C. This was followed by another 10 min wash in wash buffer A 

(Sigma) at RT. PLA ligation and rolling circle amplification were performed as specified 

by the manufacturer. Finally, cells were washed and mounted on a slide with DAPI 
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mounting medium (Sigma). PLA interactions were quantified using a 63× (oil) objective 

on a spinning disk confocal microscope. Thirty cells were measured per experimental 

condition and analyzed by Volocity software. 

Cell culture and transfection 

HeLa cells, A549s, and Hek293s were obtained from ATCC and maintained in 

DMEM or EMEM (Lonza) and supplemented with 10% FBS (Hyclone), 100 U/ml 

penicillin and 100 μg/ml streptomycin (Life Technologies). Cells were plated the day 

before an experiment in preparation for lipofectamine or PEI transfection. Lipofectamine 

was combined with labeled mRNA in Optimem (Life Technologies) using manufacturer 

protocols. For Viromer Red and other PEI derivates, transfections were carried out using 

manufacturer protocols in a similar manner to lipofectamine transfections, except using 

provided buffers in place of Optimem. 

Immunofluorescence 

Cells were fixed in 4% PFA for 10 min, blocked in 10% Donkey Serum and 5% 

BSA and immunostained as previously described (47) using appropriate antibodies. 

General endocytic markers used for evaluating cytosolic mRNA were CD63 (mouse anti-

CD63, Developmental Studies Hybridoma Bank- DSHB), EEA1 (mouse anti-EEA1, BD 

Biosciences) and LAMP1 (mouse anti-LAMP1, DSHB). Stress granule markers included 

G3BP (mouse anti-G3BP, BD Biosciences) and TIAR (goat anti-TIAR, Santa Cruz). 

Secondary antibodies were purchased pre-conjugated to either Alexa Fluor 488 (Life 
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Technologies), Cy3 (Jackson Immuno) or Alexa Fluor 647 (Life Technologies). Cells were 

finally stained with DAPI for 5 min and mounted on glass slides with Prolong gold.  

Flow cytometry 

Cells were prepared for flow cytometry using warm Versene-EDTA (Lonza) for 5 

min for detachment and resuspension using FACS buffer (Dulbecco's phosphate buffered 

saline–Ca2+–Mg2+ supplemented with 1% FBS and 5 mM EDTA. Flow cytometry 

experiments, were performed using a BD Fortessa flow cytometer and analyzed using 

FlowJo software. Experiments were performed in duplicate with >5000 cells per condition. 

Statistics 

Significance in proximity ligation assays was determined by running a one-way 

ANOVA on the data, using the Kruskal–Wallis test and Dunn's multiple comparisons test. 

All other data was tested with two-way ANOVA at a = 0.05 in Graphpad Prism software. 
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CHAPTER 4 

RNA-BASED EXPRESSION OF OPSINS IN CARDIOMYOCYTES AND 

NEURONAL CELLS 

Background 

This chapter presents an application of mRNA design for the expression of opsins, 

or optogenetic proteins, using mRNA in neurons and cardiomyocytes. Opsins are light-

responsive ion channels which can be used for the control of action potentials in cells that 

exhibit electrical activity. They are currently in use for the scientific study of brain and 

cardiac electrical function (92-94). Other uses may include the generation of model systems 

for testing of new drugs and therapeutics.  

The current use of opsins is limited by the vectors of expression. The primary 

expression vector for opsins includes viral vectors such as Adeno-associated Virus (AAV) 

(95,96). This results in limitations inherent to the individual virus used – this can include 

permanence of expression, the induction of a strong innate and adaptive immune response, 

possible integration into the genome, and difficulty in controlling localization . 

An mRNA expression vector allows transient expression of an opsin with fewer 

safety risks. This enables a new set of optogenetic studies which can include repeated, 

alternating, or combined dosing with one or multiple opsins. Since opsins can be excitatory 

or inhibitory, transfection with both allows new combinations of opsin expression leading 

to the ability to form control networks.  
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Examples of opsins commonly used in neuron experiments include the excitatory 

opsin, Channel-rhodopsin II (ChR2), activated with pulsed blue light, and the inhibitory 

opsin JAWS (97), activated by constant orange or red light . For proper characterization of 

cells transfected with opsins, in addition to protein expression, another metric, function, is 

required to properly optimize the use of mRNA as an expression vector.  

Functional characterization was performed with the use of a multi-electrode array 

(MEA). An MEA device uses electrodes to measure the field potential of nearby cells. 

Changes in field potential, such as spiking activity in neurons and cardiomyocytes, can be 

detected in an amplitude and location-specific manner depending on the pickup electrode. 

The MEA device used, a Maestro from Axion Biosystems, allows the simultaneous 

measurement and light excitation of 16 electrodes per well in a 48 well plate. While 

spontaneous activity occurs in both rat cortical primary cells and neonatal rat ventricular 

myocytes (NRVMs), functional expression of an opsin such as ChR2 can be measured as 

a synchronization event between electrical activity and pulsed light excitation from the 

LEDs embedded in the Axion Lumos device.   

After verification with primary rat cortical cells and primary rat cardiomyocytes 

using an MEA device, it was necessary to measure function and expression in an in vivo 

system, injection of mRNA directly into the rat cortex. Injection can be performed by the 

use of a neurosyringe, but must be performed using small volumes to avoid damage. 

Additionally, while expression can be evaluated using immunohistochemistry in brain 

slices fixed post-transfection, function must be evaluated in the live animal via an electrode 

coupled to a fiber optic used for excitation.  
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As a future aim of this work, various delivery methods for therapeutic mRNA as 

alternatives to direct injection will be tested, with the goal of reducing invasiveness and 

thus translatability. These methods can include intranasal inhalation, ultrasound-guided 

transfection, intrathecal injection, and release from implanted devices. Alternatively, there 

are pathological states, such as traumatic brain injury, which can lead to permeability of 

the blood brain barrier to more traditional delivery methods such as IV or intramuscular 

injection.  

Development and verification of mRNA expressing opsins 

In order to develop a platform for opsin expression using IVT mRNA, we first 

generated mRNA corresponding to the sequence for Channel Rhodopsin II (ChR2), a blue 

light excitable ion channel which allows the controlled firing of action potentials in cells 

which exhibit electrical activity. ChR2 was initially chosen due to its widespread use in 

optogenetics studies.  We codon optimized the coding region and embedded it in the same 

5’ and 3’ UTR cassette including the mouse alpha globin 3’ UTR as used in studies in 

chapters 2 and 3. mRNA was formulated with the PEI-derivative Viromer Red based on 

results in chapter 3. Following the IVT process, we transfected Hek293 cells to ensure that 

the protein expressed and was localized to the cellular membrane (Figure 4.1) in a similar 

manner to that shown using pDNA transfection by Lin et al (95).  

Functional validation of expressed opsins 

Though we confirmed protein expression of ChR2 in cells, it was necessary to 

perform functional validation of the expressed protein. We first transfected HEK293 cells 

with ChR2 mRNA and 24 hours later used intracellular patch clamping performed by the 
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Forrest Lab at Georgia Tech to read changes in membrane potential. Patch clamping results 

showed response in membrane polarization to blue light excitation (Figure 4.2). The 

response amplitude (~200pA) and waveform was consistent with published results using a 

DNA-based ChR2 expression vector in Hek293 cells (95).   

Expression of ChR2 in primary rat cortical neuronal cultures 

Channel Rhodopsin 2 is the most commonly used opsin for optogenetic studies in 

the field of neuroscience. In order to show that mRNA-based expression was possible in 

neurons, we transfected primary rat cortical neural cells obtained from E18 Embryonic rat 

cortex using GFP-mRNA and Viromer Red. Using antibody staining with a nuclear marker 

which is neuron specific, NeuN, we observed that some cells contained both GFP 

fluorescence and NeuN nuclear staining, indicating that rat cortical neurons were being 

transfected (Figure 4.3).   

We then performed a more robust functional assay using a multi-electode array 

(MEA) on an Axion Maestro-Lumos system. This system consisted of 16 electrode 

readouts per well multiplexed to a 48 well simultaneous measurement format, with fully 

controllable and synchronized 4-color LED excitation per well. The MEA approach is 

particularly suited to testing opsin function because although it is single-cell sensitive, it 

has the capability of broad spatial detection using multiple electrodes as well as excellent 

throughput.   

An example of an MEA reading of neurons expressing ChR2 and responding to 

blue pulsed excitation light is depicted in Figure 4.4. We transfected rat cortical neurons 

three weeks post-plating on an MEA plate with ChR2 mRNA using 2000ng, 4000ng, and 
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6000ng of mRNA while maintaining the same delivery vehicle to mRNA ratio. In order to 

issues of excitation absorption by the YFP tag, we used mRNA encoding ChR2 with a V5 

epitope tag sequence included. We measured electrical response to LED stimulation from 

24 to 144 hours post-transfection. At 24 hours post-transfection, wells in all replicates 

showed action potential stimulation synchronized with blue light excitation pulses (Figure 

4.4). 2 out of 3 wells responded to excitation at 48 and 72 hours post-transfection, with 

complete lack of response at 144 hours. This indicated that the opsin has a relatively long 

half-life. We also calculated the synchronization of excitation and neuronal firing. We 

found that the response rate, the percent of excitation signals which resulted in a 

synchronized neuronal network firing event, was best with 4000ng of mRNA (Figure 4.5). 

Complete synchronization was not achieved which is indicative of the need to increase 

levels of ChR2 expression, which was possibly affected by the presence of multiple cell 

layers and cell types thus reducing the ability of the mRNA formulation to reach neurons. 

The percent of wells which responded to light at each time point is shown in Figure 4.6, 

showing a decrease over time.  

CatCH outperforms ChR2 in NRVMs 

Opsins are also used for research in cardiac cell types. Pacing cardiac cells allows 

the screening of new drugs in a simulated pacing environment, where the effect on beat 

frequency and waveforms can be measured. While neurons continued to be a primary 

focus, the higher transfection efficiency in cardiomyocytes (90% vs 50%, data not shown) 

allowed better screening for opsin improvement. We transfected neonatal rat ventricular 

myocytes (NRVMs) with ChR2 and a modified ChR2 with a single amino acid substitution, 

CatCH (98). NRVMs were plated on MEA plates and the next day were transfected with 
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ChR2 or CatCH mRNA at difference concentrations in triplicate wells using Viromer Red. 

CatCH-transfected cells exhibited electrical response to 15 times less light than ChR2 at 

24 hours post-transfection (Figure 4.7). Furthermore, when interrogated with excitation 

rates of 1hz, 2hz, and 3hz, CatCH transfected cells were able to be driven at higher beat 

rates (3hz) up to 72 hours post-transfection (Figure 4.8) compared to ChR2 transfected 

cells. As the amount of mRNA and structure of the opsin are very similar, this can be 

inferred as due to enhance sensitivity – fewer opsins per cell were necessary to drive 

cardiac action potentials. When opsin expression is low, such as at timepoints several days 

following transfection, cardiac cells could only be driven at the slower rate of 1hz 

successfully. 
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Figure 4.1: Opsin expression in Hek293 cells 16 hours post-transfection with ChR2-

YFP mRNA. Live cells were imaged on a widefield microscope using a YFP filter set 

and 10x / NA 0.25 objective.     
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Figure 4.2: Functional validation by patch clamping of Hek293 cells 16 hours post-

transfection with ChR2-YFP mRNA. Live cells were imaged in both fluorescence and 

DIC and patch clamped to obtain membrane potential measurements. Excitation with 

blue light at 5% intensity on from 1.8 to 3 seconds, as shown as a blue bar, indicates 

a distinct change in membrane potential. This work was conducted with Corey 

Landry from the Forest Lab at Georgia Tech.   
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Figure 4.3: GFP expression colocalizes with the neuron-specific nuclear marker NeuN 

in mixed rat cortical neuronal cultures transfected with GFP mRNA. NeuN (red) 

marks the nuclei of neurons. GFP is visibly expressed in neurons, though other cell 

types are visible and may or may not express GFP. Cells were fixed and stained at 24 

hours post-transfection and imaged with a 40x 1.2NA objective on an Ultraview 

Spinning Disk microscope.   
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Figure 4.4: Example of ChR2 functional testing in rat cortical neuronal cultures. The 

screen displays waveforms detected in 16 electrodes in a single well of a 48 well plate. 

The blowup shows arrows which represent pulsed blue light. White and red dots 

indicate detected action potentials synchronized with the expression. Red dots in 

particular indicate neuron burst activity. Note that spontaneous firing activity also 

occurs without stimulus.  
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Figure 4.5: Synchronization of ChR-2 transfected neuron action potentials and 

excitation. The response rate is calculated by the number of time-synchronized action 

potentials corresponding to an excitation pulse. An excitation of 100% light pulsed 

for 5ms was used to stimulate action potentials, with a 3 second delay between pulses. 

Response rates are shown along with SD for 3 wells per condition. Three amounts of 

mRNA were used in order to find an optimal delivery amount.  
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Figure 4.6: Response of ChR2-transfected neurons up to 144 hours post-transfection 

with ChR2 mRNA. Rat cortical neuronal cells were transfected with 6000ng of ChR2 

mRNA and assayed via MEA daily until no response was detected from excitation 

light at 6 days post transfection. Percent of 3 transfected wells responding are plotted 

at each time point.  
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Figure 4.7: Excitation intensity comparison between ChR2 and CatCH mRNA-

transfected NRVMs. NRVMs were transfected one day after plating on MEA plates 

with either ChR2 or CatCH mRNA. The sensitivity of the opsin to excitation light is 

inversely proportional to the percent LED power required to evoke a response. 

CatCH shows the highest sensitivity at 24 hours post transfection, where it responds 

to 5% intensity LED light. This is 15 times the LED power required for ChR2.  
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Figure 4.8: Maximum beat rate comparison between ChR2 and CatCH mRNA-

transfected NRVMs. NRVMs were transfected one day after plating on MEA plates 

with either ChR2 or CatCH mRNA. They were driven at 1hz, 2hz, and 3hz via LED 

pulsing. Responses were recorded here if all 3 replicate wells were able to beat at the 

indicated rates using maximum intensity excitation light. CatCH is able to sustain 

higher frequencies throughout the time course.  
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Conclusion 

 The expression of opsins using mRNA provides an alternative to viral vectors for 

use in optogenetic studies involving neurons, as well as drug testing with cardiomyocytes. 

We successfully expressed functional ChR2 in primary rat cortical cells, and verified by 

immunostaining that neurons were transfected. Using patch clamping and an MEA, we 

verified function by using light stimulation to trigger action potentials. However, one 

difficulty is in the transfection efficiency even when using Viromer Red which showed 

positive expression in our screening in Chapter 3. One difficulty is the multiple cell types 

present in neuronal ex vivo cultures. Delivery is not as efficient due to multiple layers of 

cells as well as a large amount cells present 3 weeks after plating. This increases the 

proportion of non-dividing cells to neurons with time. However, following digestion and 

plating, neurons require substantial time to form networks capable of signaling, thus cannot 

be transfected immediately post-plating. These difficulties mimic some of the challenges 

for in vivo delivery. Further optimization will be required to realize higher transfection 

efficiencies and the future goals of expression in vivo.  

 Compared to neurons, cardiac cells transfect efficiently with mRNA, with longer 

expression times up to 144 hours post-transfection and higher light sensitivity based on 

MEA measurements.   CatCH performs which much higher sensitivity than ChR2, though 

the literature reveals that there is a tradeoff in terms of higher reset times. This was not an 

issue for the time scales used in our experiments. Also, compared to neurons, a lower 

amount of mRNA was necessary for light response (500ng versus 4000ng), which again is 

attributable to the difficulty in access to the cultures as well as transfecting neurons in 

general. With the success of the opsin transfections in cardiomyocytes, though requiring 



104 

 

further validation, it is possible to express multiple opsins, or perform repeated dosing, due 

to the controllable and temporary nature of using mRNA as an expression vector.   

Methods  

In vitro transcription of opsin-encoding mRNAs 

All IVT mRNAs were synthesized in lab from plasmids purchased from Life 

Technologies. Plasmids contained a T7 promoter followed by the mRNA sequence 

including a Kozak consensus sequence, gene sequence of interest, and the mouse alpha 

globin 3’ UTR. Gene sequences used were sequences for opsins ChR2, CatCH, and JAWS. 

ChR2 sequence was obtained from Genbank AF461397. CatCH was generated from the 

same sequence with the single amino acid substitute as outlined by (Kleinlogel 2011). 

JAWS sequence was obtained from Genbank KM000925.1. All sequences were codon 

optimized using the Life Technologies Geneart website. A NOTI restriction site was 

inserted following the mRNA sequence in order to allow overnight digestion to linearize 

plasmids creating a 5’ overhang for transcription. The digested DNA template was then 

purified using the QIAquick PCR purification spin column (Qiagen). The T7 mScript 

Standard mRNA production system was used to generate mRNA (Cellscript). A cap-1 

structure as well as an enzymatic poly(A) tail was added using manufacturer’s instructions. 

mRNAs either were synthesized without modified nucleosides or with total incorporation 

of modified nucleotides. All nucleotides were purchased from Trilink. Purification steps 

were carried out using the RNeasy midi kit (Qiagen). Following transcription, mRNA was 

treated with Antartic phosphatase (New England Biolabs) for 30 minutes to remove 
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residual triphosphates, and quantified on a Nanodrop 2000 (Thermo Scientific). RNA was 

stored frozen in –80°C and subjected to minimal freeze-thaw cycles.  

Rat cortical neurons and NRVM cells 

Cryopreserved rat cortical cells from rat E18/E19 embryonic neuronal cells were 

purchased from Lonza (R-CX-500) and immediately stored in the gas phase of liquid 

nitrogen. 1 day prior to plating on 48 well Lumos MEA plates (Axion Biosystems), plates 

were coated with sterile filtered 0.1% PEI solution in borate buffer using 5ul per well. 

Plates were incubated for 1 hour at 37C then washed 4 times with deionized water and left 

to dry overnight. The next day, plates were again coated with 5ul of laminin solution 

(Sigma), comprised of Neuron media and laminin at 20ug/ml. Neuron media consisted of 

Neurobasal medium (Life Technologies) supplemented with 5% fetal bovine serum, 1% 

penicillin-streptomycin, 2% B-27 supplement (Life Technologies), and 2mM l-glutamine 

(Life technologies). Following the addition of laminin, water was added to the space 

between wells to reduce evaporation. Plates were incubated for 2 hours at 37C. At the same 

time, rat cortical cells were removed from liquid nitrogen and thawed at 37 degree for 2.5 

minutes. Media was added gently followed by mixing by swirling. Cells were pelleted at 

400g for 5 minutes and resuspended at approximately 200,000 cells per 5ul. Laminin 

coating was aspirated and immediately replaced with 5ul media containing cells. Plate was 

then incubated in 37C for 1 hour prior to gentle addition of 300ul media per well. Media 

was exchanged every other day.  
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NRVM cells were a generous gift from the Cho Lab in the biomedical engineering 

department at Emory University. Provided media was exchanged every two days. 

Measurements could begin immediately the day after plating.  

Immunofluorescence 

Cells were fixed in 4% PFA for 10 min, blocked in 10% Donkey Serum and 5% 

BSA and immunostained as previously described (47) using appropriate antibodies. 

Primary antibodies included rabbit anti-GFP (Life Technologies) and mouse anti-NeuN 

(1B7, Abcam). Secondary antibodies were purchased pre-conjugated to either Alexa Fluor 

488 (Life Technologies), Cy3 (Jackson Immuno) or Alexa Fluor 647 (Life Technologies). 

Cells were stained with DAPI for 5 min and mounted on glass slides with Prolong gold.  

Transfections with Viromer Red and opsin encoding mRNA 

All cells were transfected with Viromer Red (Lipocalyx) and mRNA using an 

adaptation of manufacturer protocols. For each well to be transfected, 500ng of mRNA was 

added to 25ul of buffer red. Simultaneously, 25ul of buffer red was added to 0.2ul of 

Viromer Red reagent. Each tube was mixed by pipetting then combined, mixed again, and 

incubated for 15 minutes at room temperature. The mixture with total volume ~50ul was 

then added to wells already containing normal media and cells. For increased amounts of 

mRNA, the ratio of delivery vehicle and mRNA remained constant. A total volume of 50ul 

of transfection formulation per well was maintained regardless of mRNA amount.  
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Electrophysiology by MEA 

 Electrophysiology measurements were performed using a Maestro MEA system 

(Axion Biosystems) with the capability of simultaneous readout from 48 wells, with 16 

electrodes per well. This was coupled with the Lumos device (Axion Biosystems), which 

possesses 4 fully programmable LEDs per well and sits on top of the Maestro system. 

Lumos MEA 48 well plates were used for all experiments. The system was set to 37 degrees 

prior to recordings, and was supplemented with gas containing 5% CO2 with regulated 

flow. Baseline measurements were taken prior to each recording, which consisted of 5 

minutes recording from electrodes without any light excitation. Light excitation and 

recording control were performed with Axis software (Axion Biosystems). Recordings 

were taken for a total of 30 minutes per time point from all wells. The neuron or cardiac 

cell real-time optical stimulation modes were used for each respective cell type. Recordings 

were analyzed through visual counting during playback. For excitation pulses, neurons 

were excited at 100% blue LED intensity using a 5ms pulse and 3 second duration between 

pulses for at least 50 pulses. For NRVMs, a range of intensities was used including 1%, 

5%, 10%, 25%, 50%, 75%, and 100% with pulse width 10ms and periods corresponding 

to 1hz, 2hz, and 3hz.    
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CHAPTER 5 

PERSPECTIVES AND FUTURE DIRECTIONS 

 

This work investigated factors which affect the expression of therapeutic proteins 

and highlights areas where mRNA can be improved in order to facilitate translation to the 

clinic.  Chapter 2 outlined an imaging metric for the identification of the cytosolic fraction 

of delivered mRNA which provides superior resolution compared to whole-cell methods 

of mRNA-protein correlation. This method of labeling mRNA without affecting translation 

allowed the comparison of delivery methods between a cationic lipid delivery vehicle using 

the endocytic pathway to enter cells compared to electroporation, which is a direct-to-

cytosol route. We highlighted the importance of balancing the correct delivery vehicle with 

considerations for kinetics of mRNA transport via the respective pathway, sensing by 

innate immune sensors, and the subsequent formation of stress granules. By reducing stress 

granule formation through the use of modified nucleotides, we showed that significant 

improvement in protein production could be made, though this functioned in a delivery and 

cell type dependent manner.  

Chapter 3 built upon the previous chapter on mRNA characterization by examining 

methods to improve the function of mRNA through improvement of protein production, 

reduction of innate immunity, and by testing the ability for IVT mRNA to interact with 

cellular machinery involved in RNA regulation. A number of chemical modifications were 

compared for both GFP- and luciferase-encoding mRNA. The result was that chemical 

modifications to a large degree performed by abrogating the formation of stress granules 

due to reduced sensing by PKR in a sequence dependent manner. The best performing 
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chemistry, 1mY, showed the highest level of protein expression for both genes as well as 

no detectable stress granules. However, we found via co-delivery with a small molecule 

PKR inhibitor that protein expression was increased even with 1mY incorporation into 

GFP mRNA, indicating that there were still levels of innate immune sensing and thus room 

for improvement. We also found that N/P ratio is highly important for protein production 

which was likely related to the amount of mRNA reaching the cytosol. However, the best 

formulations varied between delivery vehicle and cell type.  

We then tested the effects of sequence modifications in the 3’ UTR region of the 

mRNA. We incorporated miRNA sites and found that these sites resulted in significantly 

reduced protein expression in cells containing matching sequence miRNAs. A future goal 

of this work is to examine the relation of the copy number of miRNA sites on the mRNA 

and host miRNAs present in target knockdown cells. These mRNAs can then be tested in 

a mixed-cell culture to determine if the cell-type specificity is able to achieve adequate 

knockdown.  

We also tested incorporation of different UTR regions from long lived mRNAs 

including the Sindbis virus polyprotein (99) and human beta globin gene . Unexpectedly, 

changing the UTR showed differences in initial protein production, which was increased 

for GFP mRNA containing the human beta globin UTR or miRNA sites. One possible 

reason for this was the increase in binding sites for the regulatory protein HuR. We 

performed PLA to examine the association between delivered IVT mRNA and HuR and 

found that IVT mRNA interacted with HuR. Though differences between mRNAs with 

modified UTR regions were not apparent, this was the first direct data showing interaction 

between IVT mRNA and proteins involved in mRNA stability. 
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In Chapter 4, we applied knowledge from the previous chapters on mRNA design, 

using 1mY as a modified chemistry as well as formulation with a delivery vehicle at an 

optimized N/P ratio. We expressed ChR2, an important opsin commonly used in 

optogenetic research, and subsequently the improved version CatCH, in both primary rat 

cortical neuronal cultures and primary rat cardiomyocytes. As an alternative to viral 

vectors, mRNA-based expression of opsins can be used to express opsins in a fast and 

temporary manner, which expands the range of optogenetic experiments possible. One 

future aim is to expand the optogenetic toolbox through dual expression of multiple 

mRNAs for both excitation and inhibition, thus building a control system. As a pilot 

experiment, we tested the cruxhalorhodopsin JAWS in conjunction with ChR2 in iPS-

derived cardiomyocytes, showing that cardiac cell activity could be turned on and off in 

the same cells (Figure 5.1).     

A future goal of this work is to achieve functional expression of these opsins in 

vivo. However, delivery is a major challenge. As a preliminary experiment, we delivered 

ChR2 encoding mRNA to the rat cortex via stereotaxic injection with a neurosyringe. 

Antibody staining for the V5 tag on the protein showed positive expression of the protein 

near the injection site (Figure 5.2). However, this will require further refinement to achieve 

functional expression. One issue is damage due to the injection. In vivo experiments using 

viral vectors to express opsins typically allow up to a month for expression before an 

experiment can be performed, allowing the brain to heal damage from the injection. 

Another issue is delivery, as volume limitations result in difficulties in getting enough 

mRNA-delivery vehicle to the target area, and keeping it there long enough for adequate 
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transfection to occur. A future goal of this work is to test different delivery vehicles as well 

as targeting methods such as ultrasound to achieve appropriate transfection as well as 

reduce off-target effects. Overall, we demonstrate the ability to study fundamental 

mechanisms necessary to optimize delivery and therapeutic strategies, in order to design 

the next generation of novel mRNA therapeutics and vaccines.  
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Figure 5.1: Example trace of dual expression of ChR2 and JAWS in cardiomyocytes 

allows on/off control of beating. 500ng each of ChR2 and JAWS mRNA were 

delivered to cardiomyocytes in an MEA plate. The next day, cells were paced using 

pulsed blue light stimulation (blue arrows). At the same time, orange light was used 

for several seconds (orange bar) to prevent cardiomyocytes from beating. This shows 

function of both opsins in a dual transfection.   
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Figure 5.2: Pilot experiment showing protein expression in the rat brain following 

steoreotaxic injection with ChR2 mRNA. The injection location is depicted by yellow 

arrows in the left panel. Protein expression (green) is visible along the injection site 

and along the left ventricle. Nissl stain (red) is used to show neuronal cell types as well 

as provide contrast. Left panel and right side blow up was taken with 5x objective on 

a Zeiss LSM 710 confocal microscope. Lower panel was taken at 20x magnification.  
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