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ABSTRACT 

 

Substance P, a member of the tachykinin family, is found primarily in sensory 

nerves. In the heart, substance P-containing nerve fibers surround coronary vessels, 

making them ideally positioned to sense changes in coronary pressure and/or flow. 

Recent studies have identified substance P as being protective acutely following 

ischemia-reperfusion due to its ability to induce coronary blood vessel vasodilation. In 

addition, studies conducted on non-cardiac tissue have reported substance P to be 

protective against cell death through a mechanism involving activation of anti-apoptotic 

AKT pathway. However, the possibility of substance P being similarly cardioprotective 

has not been reported. Accordingly, the purpose of this study was to test the hypothesis 

that substance P attenuates cardiomyocyte cell death following ischemia/reperfusion. A 

rat isolated heart preparation was used to study the effect of substance P following global 

ischemia/reperfusion, while a rat left ventricular tissue slice culture preparation was used 

to study the effect of substance P in ischemia without reperfusion. Coronary flow was 

significantly increased during reperfusion and LDH release was less in substance P 

pretreated ischemia/reperfusion hearts compared with no-treatment ischemia/reperfusion 

hearts. In the cultured slice preparation, substance P was shown to be effective in 

decreasing hypoxic-induced LDH release, apoptosis (TUNEL), and necrosis (PAS), as 

well as increasing AKT activation (phosphorylation) in a dose dependent manner. 

Inhibition of the substance P receptor (NK1) or p-AKT resulted in an increased release of 
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LDH, apoptosis, and necrosis in hypoxic slices incubated with substance P, thus 

abolishing the protective effect of substance P. These findings indicate that, in addition to 

its coronary vasodilatory effect, substance P is cardioprotective via a cardiomyocyte anti-

apoptotic mechanism.
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CHAPTER 1 

INTRODUCTION 

 

Ischemic heart disease (IHD) is a major health problem in the industrialized 

countries. IHD usually evolves as a result of a pathological imbalance between coronary 

blood supply and myocardial oxygen demand (Shiny KS et al. 2005). The intrinsic 

compensatory reaction to acute myocardial infarction includes neural and neuro-humoral 

mechanisms.  For example, the massive acute increase in catecholamines (Schömig A, 

1990) and specific neuropeptides such as substance P (SP) occur following acute 

myocardial ischemia and infarction suggesting the activation of the sympathetic nervous 

system and cardiac sensory afferent nerves (Franco-Cereceda A 1988, 1989; Milner P et 

al. 1989; Hua F et al. 2004a, 2004b; Zhang and Guo 2006). Specifically, the increase of 

specific sensory neuropeptides, including calcitonin gene related peptide (CGRP) and SP 

(Franco-Cereceda A et al. 1987; Kallner G et al. 1998; Szallasi and Blumberg 1999) 

within the myocardium indicates the involvement of afferent nerves and their 

neuropeptides during acute myocardial ischemia and infarction (Skofitsch and 

Jacobowitz 1985; Sigrist S et al. 1986; Dipette DJ et al. 1987; Franco-Cereceda A et al. 

1987; Lappe RW et al. 1987; Maggi and Meli 1988; Gardiner SM et al. 1988, 1989).  

SP is a prominent member of the tachykinin family of neuropeptides and is 

widely distributed in sensory afferent neurons that have both afferent and efferent 
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functions (Bayliss WM 1901; Franco-Cereceda A 1988; Otsuka and Yoshioka 1993; 

Regoli D et al. 1994). The cardiac effect of SP is mediated by the NK1 receptor (Franco-

Cereceda A et al. 1989; Milner P et al. 1989), a subtype of neurokinin receptors 

possessing a high affinity for SP (Maggi CA et al. 1993), which are present in the heart 

(Schoborg RV et al. 2000).  

Substance P is known to have negative inotropic and chronotropic effects on the 

normal heart (Hoover DB 1990, 2000). The negative effect is due in part to chronic 

TAC1 up-regulation with subsequent myocardial MMP activation, inflammation, 

apoptosis, hypertrophy, fibrosis and cardiac dysfunction (Weglicki WB et al. 1994; 

D'Souza M et al. 2007; Robinson P et al. 2009; Mak IT et al. 2011; Melendez GC et al. 

2011). However, several studies have reported SP to have a protective vasodilatory effect 

following short-term ischemia-reperfusion (Ustinova EE et al. 1995; Wang and Wang 

2005; Zhong and Wang 2007; Ren JY et al. 2011) In addition, an anti-apoptotic effect of 

SP on tenocytes following ischemia via AKT pathway activation has been reported 

(Backman LJ and Danielson 2013). This later observation suggests the possibility that SP 

might also be cardioprotective via a cardiomyocyte mechanism apart from its coronary 

vasodilatory effect. However, this remains to be determined.  

Accordingly, the purpose of this study was to test the hypothesis that SP 

attenuates cardiomyocyte cell death following ischemia/reperfusion. To this end, the 

effect of SP following ischemia/reperfusion was tested in an isolated heart preparation 

and in short term hypoxia without reperfusion experiments using a left ventricular tissue 

slice culture preparation. Accordingly, this experimental design enabled the comparison 
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of the protective effect of SP with and without reperfusion in order to distinguish between 

the vasodilatory and antimyocyte damage capabilities of SP.
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Substance P overview: 

  Substance P is a member of the tachykinin family of sensory nerve neuropeptides, 

which also includes neurokinin A (NKA), neurokinin B (NKB), neuropeptide K (NPK), 

and neuropeptide gamma. Substance P and NKA are found in the central nervous system 

and peripheral afferent sensory neurons and encoded by the TAC1 gene, while NKB is 

restricted to the central nervous system and encoded by TAC3 gene (Brain SD et al. 

2006). The expression of pre-mRNA of TAC1 gene can produce four mRNA isoforms (α, 

β, γ, and δ). Substance P can be encoded by all four isoforms, while only the β and γ 

isoforms give rise to NKA. Accordingly, SP can be expressed without NKA. However, 

both SP and NKA are synthesized, stored, and released together due to the fact that the β 

and γ isoforms are the most abundant (Brain SD and Cox 2006).  

2.2 Substance P Discovery and Localization:  

Substance P was originally discovered in 1931 by Ulf Von Euler and John H.  

Gaddum.  It was initially isolated as an extract from equine brain and gut, and found to 

cause smooth muscle contraction in vitro (Euler and Gaddum 1931). It was named 

substance P where P referred to the powder obtained after the extraction procedure by 
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Gaddum and Schild (1934). Decades later, Lembeck detected high concentrations of SP 

in the dorsal root of the spinal cord and proposed that SP was a neuronal sensory 

transmitter associated with pain transmission (Lembeck F 1953). Later on, Otsuka and 

Konishi found upon electrical stimulation that SP immunoreactivity increased in the 

perfusate taken from the isolated spinal cord of newborn rats (Otsuka and Konishi 1976). 

Today, it is fully documented that SP is released from both the central and peripheral 

endings of primary afferent neurons and acts as a neurotransmitter (Otsuka and Yoshioka 

1993).   

The origin of SP is very diverse. Dalsgaard noticed a marked reduction in SP in 

the right atria of the guinea pig heart upon bilateral removal of the stellate ganglia, and 

upon vagus nerve depletion with capsaicin; while neither intervention affected SP in the 

left ventricle. This suggests separate origins of ventricular SP containing nerves that lie 

outside the stellate ganglia (Dalsgaard CJ et al. 1986). On the other hand, an increase in 

SP in the T4 region of the spinal cord was detected upon left anterior descending 

coronary artery occlusion in rats using microprobes coated with an antibody to SP (Hua F 

et al. 2004). Likewise, studies conducted on spontaneously hypertensive rats (SHR) 

(Aline BP et al. 2005), and dog dorsal root ganglia (Hoover DB et al. 2008) indicate that 

SP-containing neurons from the ventricles probably connect with the thoracic region of 

the spinal cord. Cardiac afferent neurons were traced to the nodose ganglion of the vagal 

nerve and nucleus tractus solitarius (NTS) where 17% of nodose ganglia cells were SP 

positive and only a small subpopulation of cardiac afferent axons in the NTS were SP 

positive (Corbett EK et al. 2005). These studies highlight the diverse origins of SP-
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containing nerves from the heart and the intricacy of the neural networks associated with 

the heart.  

While C-fiber sensory neurons are the predominant source of SP, it is not the only 

source since selective degeneration of C-fiber with capsaicin resulted in an incomplete 

loss of SP (60%) in the rat heart (Holzer P et al. 1982) thus suggesting other sources. It 

was found in the rat heart that only a small population (~5–10%) of coronary artery 

endothelial cells contains SP and is surrounded by non-SP-containing endothelial cells 

(Milner P et al. 1989). These cells respond rapidly to hypoxic conditions by releasing SP. 

In addition to the above-mentioned sources, a few other non-neuronal cells such as 

eosinophils, endothelial cells, and macrophages have also been reported to produce SP 

(Weinstock JV et al. 1988; Linnik and Moskowitz 1989; Pascual and Bost 1990).  

The distribution of SP differs with species. In rats, for example, initial studies 

were unable to detect SP containing fibers in the heart (Hougland and Hoover 1983). 

However, subsequent studies by Papka and Urban revealed SP containing fibers in both 

the atrial and ventricular epicardium and myocardium of the rat heart (Papka and Urban 

1987). In the rat the number of SP producing C-fiber sensory neurons were relatively few 

compared to the guinea pig heart (0.33 pmol/g of SP in the rat heart versus 2.7 - 4.2 

pmol/g in the guinea pig left ventricle) (Wharton J et al. 1981; Holzer P et al. 1982; 

Dalsgaard CJ et al. 1986).  

In mice, SP-containing nerves were found to be most prevalent in the epicardium 

and in ganglia adjacent to the heart hilum, and they were also located in the intrinsic 

nerve bundles and interganglionic nerves (Rysevaite et al. 2011). These nerves were 
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located close to blood vessels and were mainly thin and mixed with choline 

acetyltransferase and tyrosine hydroxylase positive neurons. It was reported that SP 

content in protein extract from mice with myocarditis is far greater than that of uninfected 

mice (2807 pg of SP/mg of protein in myocarditis mice versus 71 pg/mg in uninfected 

mice) (D'Souza M et al. 2007; Robinson P et al. 2009). 

In guinea pig hearts, the entire coronary arterial system was reported to be 

innervated by SP containing nerves in 1980 (Reinecke M et al. 1980). Later on, it was 

found that plentiful numbers of SP-containing nerve fibers were also present in the atria 

and ventricles (endo-, epi-, and myocardium) as well as the mitral and tricuspid valves 

(Hougland and Hoover 1983). Substance P-containing nerves were reported to be more 

prevalent in the endocardial regions, chiefly around the trabeculae and papillary muscles 

of the ventricles compared to the epicardial regions (Wharton J et al. 1981). More fibers 

were noticed to be at the base of the heart than the apex with no significant difference 

between right and left ventricles (Wharton J et al. 1981; Hougland and Hoover 1983). 

These fibers were found to be associated with branches of the bundle of His in the 

ventricular septum (Wharton J et al. 1981), and also associated with the ascending aorta 

and pulmonary trunk (Hougland and Hoover 1983). Consistent with Hougland’s study, 

Papka and Urban observed SP containing neurons in the epicardium and myocardium of 

the atria, the mitral and tricuspid valves, and in pericellular baskets around intrinsic 

cardiac ganglia as well as the parietal portion of the pericardium (Papka and Urban 

1987). It was reported that SP-containing fibers in the atria were four times as abundant 

as those in the ventricles (Dalsgaard CJ et al. 1986).  
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Substance P was found to be present in the descending coronary and circumflex 

coronary arteries of the dog heart (Brum JM et al. 1986). In cats, SP-containing nerves 

were found in the atrial and ventricular myocardium as well as the endocardium (Zhu and 

Dey 1992). In non-human primates, SP positive areas have been identified in both 

varicose and non-varicose nerve fibers, in the interatrial septum, in the cardiac ganglia 

and musculature and in perivascular networks around blood vessels (Tay and Wong 

1992).  

In the normal heart of humans, few SP-containing neurons mainly around neural 

cell bodies in intrinsic ganglia and in nerve trunks have been reported (Wharton J et al. 

1990). However, in patients with congestive or hypertrophic cardiomyopathy, 

endomyocardial biopsies revealed that SP-containing nerve fibers were located close to 

arterioles, capillaries and veins (Weihe E et al. 1981). Substance P-containing nerves 

were also identified between cardiomyocytes and around blood vessels in atrial biopsies 

taken from patients undergoing open-heart surgery (Rechardt L et al. 1986). They have 

also been found surrounding the adventitia of coronary vessels in atherosclerotic regions 

of human coronary arteries (Laine P et al. 2000). Finally, it has been reported that SP was 

present in nerve fibers in the right atrial ganglionated plexus in patients undergoing 

coronary artery bypass grafting (Hoover DB et al. 2009). 

In summary, the SP-containing nerves in the heart differ among species. 

Generally, SP-containing nerve fibers seem to be located around coronary vessels and in 

the intrinsic ganglia of the heart. In addition to a small number of coronary endothelial 

cells, limited numbers of fibers in normal ventricles appear to be SP positive. However, 

SP levels do increase significantly in the diseased heart.  
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2.3 Substance P Biochemistry:  

Chemically, partly purified SP was found to be soluble in water and alcohol and 

insoluble in ether and chloroform. It was found to tolerate boiling at pH 1 to 7 but was 

rapidly destroyed in an alkaline environment (Euler and Gaddum 1931; Euler USv 1936a, 

1942). Pernow found during electrophoresis, SP traveled to the cathode at pH < 10 and its 

isoelectric point was near 9 (Pernow B 1955). Trypsin and pepsin appeared to destroy the 

biological activity of SP (Euler USv 1936b), while carboxypeptidases had no effect 

(Franz J et al. 1961). Substance P prepared from brain and intestine seemed to show no 

physicochemical or biological differences (Eliasson R et al. 1956). 

In 1971, Chang et al. identified the structure of SP from bovine hypothalamus as 

being an undecapeptide with a sequence: H-Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-

Phe8-Gly9-Leu10-Met11-NH2 (M. Wt. 1347.6 g/mole) (Chang MM et al. 1971), which 

was subsequently introduced as part of the tachykinin family (Erspamer V 1983). 

Substance P is metabolized by several enzymes including: neutral endopeptidase (NEP: 

metalloendopeptidase EC.- 3.4.24.11., (Matsas R et al. 1984)); substance-P-degrading 

enzyme (SP-DE: EC.3.4.24., (Probert and Hanley 1987)); angiotensin-converting enzyme 

(ACE: EC.3.4.15.1, (Skidgel and Erdos 1987)) dipeptidyl aminopeptide IV (DPIV: 

EC.3.4.14.5., (Heymann and Mentlein 1978)); postproline endopeptidase (PEP: 

EC.3.4.21.26., (Blumberg S et al. 1980)); cathepsin-D (EC.3.4.3.23., (Azaryan and 

Galoyan 1988)) and cathepsin-E (EC.3.4.23.34., (Kageyama T 1993)). Despite the fact 

that all of these enzymes cleave SP due to their specific cellular localization in in vitro 

models, it appears that NEP and/or ACE are mainly involved in the cleavage of SP within 

the periphery (Nadel JA 1991). It has been shown that NEP is involved in the metabolism 
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of SP in the brain (Hooper and Turner 1987), spinal cord (Sakurada T et al. 1990) and in 

peripheral tissues (Di Maria GU et al. 1998), while SP is degraded by ACE in plasma 

(Wang LH et al. 1991), cerebrospinal fluid, and substantia nigra. ACE participates in 

degrading SP fragments released from NEP. Together, NEP and ACE catalyze the 

hydrolysis of Phe8-Gly9 or Gly9-Leu10 bonds of SP that leave the peptide missing the 

carboxyl terminal regions needed to bind to the tachykinin receptors (Skidgel and Erdos 

1987).  

2.4 Neurokinin (NK) Receptors:  

The biological actions of SP are mediated by tachykinin (neurokinin: NK) 

receptors. NK receptors belong to rhodopsin-like membrane structure, consisting of seven 

hydrophobic transmembrane domains, connected by extra and intracellular loops and 

coupled to G-proteins (Nakanishi S 1991; Gerard NP et al. 1993; Maggi and Schwartz 

1997). Three types of tachykinin receptors have been described. NK1 receptor exhibits 

preference for SP, while NK2 and NK3 receptors exhibit preferences for neurokinin A 

and neurokinin B, respectively (Regoli D et al. 1994). Still, cross reactivity between 

endogenous tachykinins and NK receptors occur based on receptor availability and/or 

peptides’ concentrations. For this reason SP can activate not only NK1 receptors, but also 

NK2 and NK3 receptors in different tissues (Regoli D et al. 1994). Also a new designated 

receptor NK4 has been proposed (Donaldson LF et al. 1996). The NK1 receptor is found 

in both the central and peripheral nervous system. It is also present in vascular 

endothelial cells, muscle, gastrointestinal tracts, genitourinary tract, pulmonary tissue, 

thyroid gland and different types of immune cells (Saria A 1999; Almeida T et al. 2004; 

Datar P et al. 2004; Satake and Kawada 2006).  
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Regarding NK receptors in the heart, a pharmacological approach has been taken 

to determine the presence of neurokinin receptor subtypes in intrinsic cardiac neurons in 

canines (Thompson GW et al. 1998). The response has been shown to be diverse among 

species. A selective NK-1 receptor agonist, for example, reduced activity of right atrial 

neurons in some animals, while it increased activity in others. It was shown that right 

atrial neuron activity was reduced by selective NK-2 receptor agonist, while selective 

stimulation of NK-3 receptors increased its activity. Hoover and Hancock were able to 

identify SP binding sites in the parasympathetic ganglia located within the epicardial 

connective tissue adjacent to the pulmonary trunk, ascending aorta and right atrium, as 

well as in coronary arteries in the guinea pig heart, but were unable to detect binding sites 

in the atria, ventricles, ascending aorta and pulmonary trunk (Hoover and Hancock 1988). 

Later on, radiographic studies conducted in Wistar rats found SP binding sites on clusters 

of connective tissue cells within the skeleton of the heart, the cusps of the cardiac valves 

and within the adventitia of the great vessels and coronary arteries. While they did not 

find any evidence of SP binding sites on cardiomyocytes (Walsh RJ et al. 1996), genes 

for the NK-1 and NK-3 receptors (but not NK-2) were shown to be expressed in isolated 

neonatal rat cardiomyocytes (Church DJ et al. 1996). Levick’s laboratory was able to 

detect the NK-1 receptor on isolated adult cardiac fibroblasts (Dehlin and Levick 2014). 

NK1 receptors showed high degree of sequence homology among species including man, 

mouse, rat, guinea pig upon using cloned NK1 receptors (Gerard NP et al. 1993).   

2.5 Substance P Actions:  

As a member of tachykinin family, SP is involved in many processes including 

smooth muscle contraction, vasodilation, nociception, and modulation of 
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inflammatory/immune cell functions (Rameshwar P et al. 1993; Kavelaars A et al. 1994; 

Vergnolle N et al. 2001; Azzolina A et al. 2003; Massaad CA et al. 2004). Substance P 

induces vasodilatation via activation of NK1 receptors in large arterial vessels and the 

subsequent release of nitric oxide (NO) from the endothelium (Fiscus RR et al. 1992). 

However, electrical stimulation of sensory nerve endings in rat isolated vessels showed 

the vasodilatory response was induced by the release of CGRP rather than SP (Kawasaki 

H et al. 1988). The CGRP vasodilatory effect being dominant over that of SP has also 

been observed in the mammalian heart.  

2.5.1 Substance P Modulatory Actions on Inflammatory/Immune Cell Function: 

The substance P modulatory activity has been demonstrated presynaptically via 

evoking both inhibitory and excitatory effects on the ganglia upon exogenous SP 

administration in different animal species including: cat spinal cord (Randic M et al. 

1982), chick sympathetic and ciliary ganglion (Dryer and Chiappinelli 1985). It has also 

been demonstrated that peripheral inflammation (Smith GD et al. 1992; Levine JD et al. 

1993) and noxious stimulation could cause an increase in the expression of SP in the 

spinal cord (Oku R et al. 1987; Duggan AW et al. 1988; Schaible HG et al. 1990) and an 

increase in the expression of SP-related genes, preprotachykinin (PPT) mRNA in sensory 

neurons in the dorsal root ganglia (Noguchi K et al. 1988). Moreover, SP can be released 

from the somata of primary afferent neurons  (Neubert JK et al. 2000) with cross-

excitation possible among adjacent neurons (Devor and Wall 1990). It has been reported 

that SP can induce its own release with subsequent release of calcium ion from internal 

stores induced by inositol-1,4,5-trisphophate (Malcangio and Bowery 1999). This 
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autoreceptor role may have been implicated in the pathophysiology of nerve injury, 

noxious stimuli, and inflammation.  

It was shown that primary and secondary lymphoid organs have a peptidergic 

innervation with nerve endings in close vicinity to immune cells, which support the 

notion that neuropeptides such as SP act as a link between the nervous and the immune 

system (Felten DL et al. 1985; Stead RH et al. 1987; Fink and Weihe 1988; Weihe E et 

al. 1989, 1991; Bellinger DL et al. 1990; Kurkowski R et al. 1990; Zentel HJ et al. 1991). 

Binding studies have shown that distinct subpopulations of T and B-lymphocytes, as well 

as macrophages possess SP receptors (Payan DG et al. 1984a, 1984b; Hartung HP et al. 

1986; Payan DG et al. 1986; Stanisz AM et al. 1987; Bost KL 1988); and shown that SP 

has been implicated in the modulation of immune responses such as T cell proliferation 

(Payan DG et al. 1983; Payan and Goetzl 1985), immunoglobulin synthesis (Stanisz AM 

et al. 1986; Laurenzi MA et al. 1989; Eglezos A et al. 1990; Pascual DW et al. 1991; Bost 

and Pascual 1992), lymphocyte traffic (Moore TC et al. 1989), macrophage activation 

(Bar-Shavit Z et al. 1980; Bost KL 1988; Pascual and Bost 1990), mast cell 

degranulation, and release of histamine, in addition to mast cell-dependent granulocyte 

infiltration (Fewtrell CM et al. 1982; Lowman MA et al. 1988; Iwamoto I et al. 1992).  

It has been shown that tachykinin release upon stimulation of the peripheral 

endings of primary sensory neurons induces a major proinflammatory response 

represented by neurogenic plasma extravasation (Piedimonte G et al. 1993). This 

response occurs due to SP activation of NK1 receptors located on endothelial cells of 

post-capillary venules (Bowden JJ et al. 1994), and subsequent opening of the gaps 

between endothelial cells and the flux of plasma proteins from the vascular lumen to the 



 

 14 

interstitial space. Substance P induced plasma extravasation is reported in different cases 

such as: cigarette smoking (Lundberg JM et al. 1983), ovalbumin challenge in sensitized 

animals (Bertrand C et al. 1993a, 1993b), or baseline plasma extravasation in NEP 

knockout animals (Lu B et al. 1997). In human, wheel formation was observed in the 

human skin upon intradermal SP injection due to microvascular leakage in postcapillary 

venules (Fuller RW et al. 1987). Furthermore, nasal albumin secretion in man is 

increased after intranasal SP administration (Braunstein G et al. 1991).  

Regarding SP regulation of inflammatory cells in the heart, extensive studies have 

demonstrated that SP is a mediator of neurogenic inflammation and up-regulator of pro-

inflammatory cytokines. In mouse viral myocarditis model, deletion of the TAC1 gene 

prevented the infiltration of inflammatory cells into the heart (Robinson P et al. 2009). 

However, the direct effects of SP on inflammatory cells in the heart have not been 

extensively investigated. In a guinea pig ischemia reperfusion model, SP and renin were 

demonstrated to be released together with evidence of a SP role in stimulating renin 

release from mast cells as determined by the prevention of renin release with NK-1 

receptor antagonist or mast cell stabilizer (Morrey C et al. 2010). Furthermore, it was 

found that SP (100 µM) caused production of angiotensin II by a mixed population of 

isolated rat cardiac inflammatory cells (T cell, mast cells and macrophages) (Levick SP et 

al. 2010), and it also can induce TNF-α production by this mixed population of cardiac 

inflammatory cells (Melendez GC et al. 2011). Studies conducted using a spontaneous 

hypertension (SHR) rat model (Dehlin HM et al. 2013) and an atherosclerosis mouse 

model (Bot I et al. 2010) revealed that SP also activates cardiac mast cells in vivo. To be 

more specific, Bot et al. demonstrated that SP increased mast cell activation in the 
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perivascular region of coronary arteries of mice and the subsequent promotion of 

intraplaque hemorrhages. Considering the necessity of mast cell activation for mast cell 

density to increase (Li J et al. 2012), Melendez found that mast cell density did not 

increase in rats treated with an NK-1 receptor blocker (Melendez GC et al. 2011) 

suggesting a role for SP in mast cell activation.  

There is a discrepancy regarding the mechanism by which SP activates mast cells. 

While Li et al. proposed that SP initiates mast cell activation via the NK-1 receptor in 

dermal tissue (Li WW et al. 2012), Lorenz et al. suggested that SP uptake in mast cells is 

rapid and independent of the NK-1 receptor, resulting in exocytosis of inflammatory 

compounds (Lorenz D et al. 1998). This may be due to the difference in the animal model 

used, and the mode of SP treatment as Li et al. looked at mast cell activation in vivo 

while Lorenz et al. treated cultured mast cells with SP in vitro. Obviously, substance P 

can initiate calcium signaling in mast cells via the PLC pathway, but the downstream 

events resulting in mast cell activation are still unclear in the heart. In macrophages, for 

example, SP causes NF-κB transactivation and release of chemokines via activation of 

the ERK1/2, P38 MAPK, and PI3K-AKT pathways downstream of PKC (Sun J et al. 

2008, 2009). It was also shown that SP causes NF-κB transactivation and subsequent up-

regulation of cytokines via NK-1 receptors in astrocytoma cells (Lieb K et al. 1997). A 

study conducted on hearts from magnesium-deficient rats showed that SP activation of 

the NK-1 receptor regulated the oxidative stress response and neutrophil production of 

neutral endopeptidase (NEP) (Mak IT et al. 2011). Specifically, It was found that NEP 

was decreased in neutrophils from magnesium-deficient hearts. Upon NK-1 receptor 

blockade, superoxide production by neutrophils was dramatically reduced, while NEP 
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activity was partially restored. Considering the role of NEP in degrading SP, substance P 

provides a mechanism of regulating its own level by down-regulating NEP. Studies not 

related to the heart have shown that murine peritoneal macrophages have the NK-1 

receptor, and both IL-4 and IFN-γ causes an increase of mRNA and protein for NK-1 

receptor (Marriott and Bost 2000). Recently it was reported that both IL-4 and IFN-γ are 

increased in the hearts of SHR (Levick SP et al. 2009), which suggests that these 

cytokines, when increased, would provide an environment for NK-1 receptor density to 

increase.  

The role of SP in neurogenic inflammation is well documented in animal models. 

However, its role in humans is unclear. Several clinical trials have shown that using NK-

1 receptor antagonism in inflammation type pathologies is not effective. In patients with 

asthma, for example, dual NK-1/NK-2 receptor antagonist was unable to prevent 

allergen-induced airway responses (Boot JD et al. 2007). NK-1 receptor blockade also 

failed to lower the incidence of post-endoscopic retrograde cholangiopancreatography 

pancreatitis (Shah TU et al. 2012). 

2.5.2 Direct Effects on Cardiomyocytes:  

Substance P containing DRG can interact with cardiomyocytes. Liu Z et al. found 

that in co-cultures of isolated rat DRG and neonatal rat cardiomyocytes, there were 

increasing connections between DRG projections and cardiomyocytes, and more SP (and 

CGRP)-containing neurons were present than in cultures without cardiomyocytes (Liu Z 

et al. 2008). Intriguingly, capsaicin caused more SP (and CGRP) release when 

cardiomyocytes were present in co-culture than in their absence. Regarding a direct effect 
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on cardiomyocytes, only one study has explored the direct effects of SP on 

cardiomyocytes. Church et al. demonstrated that neonatal rat cardiomyocytes express 

genes for both the NK-1 and -3 receptors, but not the NK-2 receptor (Church DJ et al. 

1996). Along with other pharmacologic studies, it was shown that atrial natriuretic 

peptide (ANP) synthesis was induced by both SP (NK-1 receptor) and neurokinin B (NK-

3 receptor). It was shown that SP activates PKC with subsequent prostaglandins release, 

which is necessary for ANP release. However, these experiments were conducted on 

neonatal cardiomyocytes, which may not completely reflect adult cardiomyocytes 

characteristics. Nevertheless, combined with the findings in adult mice in vivo, these 

results suggest that SP can induce hypertrophy via direct actions on cardiomyocytes.  

2.5.3 Direct Effects on Cardiac Fibroblasts: 

 It is well recognized that SP mediates inflammation. Fibroblasts are capable of 

producing chemokines and adhesion molecules, which are associated with inflammation. 

It was found that SP was capable of inducing soluble ICAM-1 (sICAM-1) production via 

cleaving ICAM-1 from adult rat cardiac fibroblasts, through a p42/44 MAPK and PKC 

mechanism (Sapna and Shivakumar 2007). This implies anti-inflammatory properties of 

SP since cleavage of ICAM-1 may affect the amount of membrane bound ICAM-1 

available for interaction with ligands (Tsakadze NL et al. 2004). Furthermore, ICAM-1 

shedding blockers were found to increase monocytic cell adhesion to stimulated 

endothelial cells (Tsakadze NL et al. 2004). These findings seem to contradict the well-

recognized pro-inflammatory role of SP. However, sICAM-1 can induce macrophage 

inflammatory protein-2 synthesis by astrocytes (Otto VI et al. 2002) and alveolar 
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macrophages (Schmal H et al. 1998), as well alveolar macrophage TNF-α synthesis 

(Schmal H et al. 1998).  

Substance P can also induce cardiac fibroblasts to produce PGE2 (Sapna and 

Shivakumar 2007). PGE2 induces rat neonatal fibroblast proliferation (Harding and 

LaPointe 2011). PGE2 was found to be elevated following myocardial infarction 

(LaPointe MC et al. 2004). Although adult rat cardiac fibroblasts proliferate in a process 

involving generation of superoxide in response to SP, these cells reportedly does not 

induce collagen synthesis in response to SP (Kumaran and Shivakumar 2002). The 

effects of SP on MMP production by cardiac fibroblasts have not been reported. 

However, in cultured human lung fibroblasts, SP has been shown to cause reduced 

collagen synthesis, increased collagen degradation and increased levels of MMP-1 

(Ramos C et al. 2007).  It has also been shown that SP increases mRNA and protein 

levels for MMP-1, -2, -3, 7 and -11 as well as TIMP-2 in gingival fibroblasts from 

healthy humans (Cury PR et al. 2008).  

2.6 The Detrimental Effects of Substance P: 

The role of SP in the heart appears to be dependent on disease etiology. 

Detrimental effects of SP have been seen in long-term non-ischemic myocardial 

remodeling and heart failure (figure 2.1.A).  Substance P and the NK-1 receptor are 

increased in a dilated cardiomyopathy mouse model of myocarditis induced by Taenia 

crassiceps parasite injection (D'Souza M et al. 2007). Substance P deficient mice were 

protected from adverse remodeling following infection. In the SP-deficient mice, 

cardiomyocytes were protected against hypertrophy, while the wild type cells showed a 
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27% increase in cross-sectional area. Apoptosis was more evident in the wild type 

cardiomyocytes.  

Similarly to parasite-infected hearts, encephalomyocarditis virus (EMCV) 

infected mice showed dramatic increases in SP, which were correlated with cardiac 

hypertrophy, increased cardiomyocyte cross-sectional area and apoptosis (Robinson P et 

al. 2009). Substance P-deficient mice hearts were protected against all of these adverse 

events. Inflammation and necrosis were evident in EMCV infected hearts with over a 

50% mortality rate after 14 days of infection, while no death occurred after 14 days of 

infection in SP-deficient mice.  

In a model of heart failure secondary to a sustained cardiac volume overload, 

Melendez GC et al. found that deletion of TAC1 protected mice from developing left 

ventricular hypertrophy and ventricular dilatation (Melendez GC et al. 2011). In contrast 

to the wild type, there was no increase in right ventricular mass or lung weight in the 

TAC1−/− mice indicating protection from heart failure. In this model of heart failure, 

mast cell activation is responsible for collagen degradation via MMP activation (Brower 

G et al. 2002; Levick SP et al. 2008). Thus, this cardioprotection was explained by the 

prevention of SP-induced mast cell degranulation, which prevented an increase in TNF-α 

levels, matrix metalloproteinase (MMP) activation and subsequent collagen degradation. 

Cell death was not a significant factor in this model (Melendez GC et al. 2011).   

Weglicki and Phillips found in rats with magnesium deficiency that circulating SP 

levels were elevated (Weglicki and Phillips 1992). Furthermore, they reported that SP 

was increased in the cardiac lesions of magnesium-deficient mice, and upon blockade of 
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the NK-1 receptor, TNF-α and IL-1 levels, but not IL-6 were significantly reduced within 

the lesions (Weglicki WB et al. 1994). Other studies have shown that blocking NK-1 

receptors in hypomagnesemia rats improved systolic and diastolic function as determined 

by fractional shortening and the E/A ratio, respectively (Mak IT et al. 2011). 

  In ischemia reperfusion studies, magnesium deficient hearts seem to respond 

differently from the wild type hearts. Upon blocking NK-1 receptors following global 

ischemia and reperfusion there was an improvement in the developed pressure and 

cardiac work (Kramer JH et al. 1997). Lactate dehydrogenase and lipid hydrogen 

peroxide levels were decreased as well. 

In case of hypertension/pressure overload, little is known regarding the role of SP 

in myocardial remodeling due to hypertension or pressure overload. Dehlin HM et al. 

showed that TAC1 is up-regulated in the SHR heart as blood pressure increases. It was 

also shown that SP induced expression of the fetal genes that are related to pathological 

hypertrophy in the hypertensive heart via NK-1 receptors. Activation of NK-1 receptors 

was shown to be critical for developing cardiac fibrosis. It was suggested that SP 

mediates fibrosis via up-regulation of endothelin-1 since there were functional changes in 

isolated cardiac fibroblasts incubated with SP (Dehlin HM et al. 2013). 

2.7 The Beneficial Effects of Substance P:  

In a rat model where neuropeptide was depleted by capsaicin, there were 

reductions in heart rate recovery, coronary flow and left ventricular developed pressure 

following ischemia reperfusion compared to non-capsaicin pretreated hearts. It is 

important to mention that capsaicin causes the depletion of other sensory nerve 
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neuropeptides including calcitonin gene-related peptide (CGRP). Substance P 

replacement (1 nM–1 µM) caused restoration of contractile function and coronary flow; 

while inhibition of NK-1 receptors prevented these beneficial actions (Ustinova et al. 

1995).  Contrariwise, guinea pig hearts pretreated with NK-1 receptor antagonists or 

capsaicin and subjected to global ischemia followed by reperfusion were found to have 

significantly improved left ventricular developed pressure and left ventricular end 

diastolic pressure (LVEDP) following reperfusion (Chiao and Caldwell 1996). These 

contradictory findings might be related to the fact that the studies were conducted using 

different species with different ischemia/reperfusion durations (rat model with 20 min 

ischemia and 30 min reperfusion versus guinea model with 15 min ischemia and 60 min 

reperfusion).  

However, in ischemia-reperfusion mice models, SP is consistently shown to be an 

important factor in functional recovery of the myocardium during acute reperfusion via 

stimulation of the transient receptor potential vanilloid type 1 (TRPV1) present on 

sensory nerves. Specifically, 40 min of global ischemia followed by 30 min of 

reperfusion in isolated mouse heart preparation using TRPV1 gene deficient mouse hearts 

produced less SP in comparison to the wild type (Wang and Wang 2005). Coronary flow 

and developed pressure were reduced while LVEDP was increased in TRPV1−/− hearts. 

Upon SP (1 µM) treatment prior to ischemia in TRPV1-deficient hearts, the adverse 

responses in LVEDP, developed pressure, and coronary flow were all attenuated. The 

addition of NK-1 receptor antagonist to wild type mice was shown to produce converse 

effects by worsening these functional parameters. Preconditioning of TRPV−/− mice 

through subjecting them to three cycles of 5 min of ischemia followed by 5 min of 
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reperfusion, before 30 min of global ischemia and 40 min of reperfusion was ineffective 

as LVEDP increased associated with reduction in coronary flow, +dP/dt, and developed 

pressure (Zhong and Wang 2007).  

In diabetic rats, the role of SP in ischemia-reperfusion was investigated using an 

isolated heart apparatus and a post-conditioning protocol by which, hearts were exposed 

to 30 min of global ischemia, followed by 5 cycles of 10 s of reperfusion and 10 s of 

global ischemia, before a final 40 minute period of reperfusion. It was found in non-

diabetic rats that LVEDP, +dP/dt and −dP/dt, coronary flow, and developed pressure 

were improved following the post-conditioning protocol while these effects were lost in 

diabetic rats. Since SP levels increased following post-conditioning in the normal heart, 

cycles of SP infusion (1µM) to mimic the post-conditioning protocol in normal heart 

were used in diabetic hearts and were found to be effective in improving cardiac 

functional parameters along with decreases in creatine kinase and cardiac troponin I, 

which indicates a possible reduction in cell death (Ren JY et al. 2011). This would 

suggest that the loss of post-conditioning benefits was because of the decrease in SP in 

the diabetic heart. The SP protective effects in ischemia-reperfusion injury were 

suggested to be due to its potent vasodilatory actions allowing improved reperfusion 

(figure 2.1.B).  

Accordingly, one would expect a reduction in the infarct size in situations where 

the left anterior descending coronary artery is ligated for a short duration and then 

released to allow reperfusion. Still, studies on the effect of SP in ischemia/reperfusion 

model utilizing left anterior descending coronary artery ligation are lacking. Furthermore, 

it is unknown whether reperfusion is required for SP to show its protective effects. If so, 
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SP would be of limited benefit in case of myocardial infarction where there is no 

reperfusion. It is not known what happens to SP levels following permanent myocardial 

infarction. It was reported that following permanent ligation of the left anterior 

descending coronary artery in the rat heart, SP levels progressively increase over the first 

hour (Wang LL et al. 2011). It was also shown in the rat hearts that SP was elevated at 3 

h post-occlusion, and had returned to normal by 6 h (Zhang RL et al. 2012). The use of 

NK-1 inhibitor did not affect the infarct size suggesting that reperfusion is required for 

SP to be protective. However, this study did not measure any functional parameters and 

was conducted after only 3 hrs. of infarction, which leaves many unanswered questions 

regarding the acute effects of SP on cardiac function and the long-term effects on both 

structure and function.  

On the other hand, it was found that SP levels were elevated 24 h after ligation of 

the left anterior descending coronary artery (Amadesi S et al. 2012). This discrepancy of 

SP levels may be due to differences between species or may suggest the existence of a 

biphasic response where SP increases immediately upon alteration of coronary blood 

flow and there is a latent increase of SP upon sustained up-regulation of the TAC1 gene 

(Dehlin and Levick 2014). 

Summary:  

Substance P is a member of tachykinin family of sensory neuropeptide. It is found 

in the central nervous system and peripheral afferent sensory neurons and encoded by the 

TAC1 gene. C-fiber sensory neurons are the predominant source of SP. However, a few 

other non-neuronal cells such as eosinophils, endothelial cells, and macrophages have 
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also been reported to produce SP. In the heart, though, it is shown to be also produced by 

small population of coronary endothelial cells. The distribution of SP in the heart differs 

with different species. It is degraded by various enzymes (predominantly ACE and NEP). 

It induces its effects through neurokinin receptors (preferably NK-1 receptors). It acts as 

a neurotransmitter and is involved in pain transmission, smooth muscle contraction, 

vasodilation, nociception, and modulation of inflammatory/immune cell functions. 

Substance P has detrimental effects on the heart in long-term non-ischemic myocardial 

remodeling and heart failure. It also has beneficial effects in short-term ischemia-

reperfusion.  Most studies investigating the effect of SP following ischemia and short-

term reperfusion have indicated that the protective effect of SP is due to its vasodilator 

properties upon reperfusion. However, other reports were not able to demonstrate this 

mechanism, which opens the possibility of SP having other protective mechanisms.  For 

example, SP was shown to reduce Anti-Fas-induced apoptosis in human tenocytes in 

vivo. This study demonstrated that the anti-apoptotic effect of SP is mediated through 

NK-1 receptors and AKT-specific pathways (Backman and Danielson 2013). The 

possible cardiac cell protective effect of SP in short-term hypoxia without reperfusion has 

not been investigated which is the subject of our hypothesis.  
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Figure 2.1. Schematic indicating the long-term and short-term substance P effects in 
response to altered coronary flow.  
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Animals: 

The study protocol was approved by the Institution of Animal Care and Use 

Committee and conformed to the principles of the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals. Seven-week old male Sprague–Dawley rats 

were purchased from Harlan Laboratories. The animals were housed under standard 

environmental conditions and were maintained on a normal rodent diet and tap water ad 

libitum.  

3.2 Isolated Heart Experiments: 

For the whole heart ischemia reperfusion experiments, a non-recirculating 

Langendorff Heart preparation was used. Rats were anesthetized with intraperitoneal 

sodium pentobarbital injection (100 mg/kg). The right femoral vein was then exposed and 

heparin (1000 IU) was administered intravenously. After allowing the heparin to 

circulate, the heart was then rapidly excised and placed in an ice-cold Krebs-Henseleit 

buffer where the aorta was isolated for subsequent cannulation. After cannulation, a 

retrograde perfusion was started at a constant perfusion pressure of 60 mmHg with 

Krebs-Henseleit buffer that contains: NaCl (107 g/L), KCl (5.96 g/L), NaHCO3 (32.26 

g/L), MgCl2.6H2O (3.25 g/L), CaCl2.2H20 (5.17 g/L), 10 mM HEPES. The buffer was 
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filtered, maintained at 37°C, and bubbled with 95% O2 and 5% CO2 in advance. Hearts 

were allowed an acclimatization period a 20 min after being un-paced and then, global 

ischemia was induced by turning off the flow of buffer to the heart. Following 30 min of 

ischemia, flow was restored at a perfusion pressure of 60 mmHg for a period of 30 min. 

Coronary flow was recorded throughout the experiment with coronary perfusate collected 

at: baseline (immediately before ischemia), immediately following the initiation of 

reperfusion, 10 min of reperfusion, 20 min of reperfusion, and 30 min of reperfusion. 

Non-ischemic control hearts were continuously perfused for 60 min. Hearts treated with 

SP were given a 1 mL bolus of SP (1µM) 10 min prior to the initiation of ischemia.  After 

finishing the experiment, the hearts were taken down from the Langendorff apparatus, the 

atria and right ventricle were removed, and a transverse section of the left ventricle and 

septum were fixed in zinc formalin for histological analysis. The apex of the left ventricle 

was frozen at -80°C for subsequent western blot analysis. 

3.3 Rat Left Ventricular Tissue Slice Culture and Hypoxia:  

The rats were deeply anesthetized with an intra-peritoneal injection of 

pentobarbital sodium (70 mg/kg) and the hearts removed, washed in cold sterile saline, 

and transferred to Joklik media, Sigma-Aldrich, St. Louis, USA (Joklik+10% FBS, PS, 

AmphoB, gent.).  The LV and septum were separated from the rest of the heart, the LV 

chamber filled with 2.5% agarose (Cat. No.: BP1356-100, Fisher BioReagents, CA, 

USA) that was heated to 40°C in order to keep it liquefied, and inserted within a metal 

cylinder containing agarose.  Once the agarose was solidified, a Brendel/Vitron Tissue 

Slicer (Vitron Organ Slicing Tech., Tucson, AZ) was used to obtain 15 to 20 slices that 

were 250 to 300µm in thickness. 
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The slices were incubated in calcium-free Joklik media at room temperature for 

30 min and then transferred to fresh Joklik media containing 0.2 uM of calcium chloride 

and incubated for 30 min in a culture incubator (37 °C, 95% O2 and 5% CO2).  Next, 

additional calcium chloride was added to obtain a final concentration of 0.4 uM and the 

slices were further incubated for 30 min.  There were two major groups with the slices in 

one group being incubated with three concentrations (30, 100, and 300 nM) of SP (Cat. 

No.: 1156, Tocris Bioscience, Minneapolis, MN, USA) and in the other group the slices 

were incubated with either 100nM SP, 100nM SP with 10uM NK-1 inhibitor, L-732, 138 

(Cat. No.: 0868, Tocris Bioscience, Minneapolis, MN, USA), or 100nM SP with 50uM 

AKT inhibitor, LY294002 (Cat. No.: 9901, Cell Signaling Technology, Danvers, MA, 

USA).  In both groups, the slices were divided randomly and placed into five wells (i.e., 

representing groups: normoxia, hypoxia, and hypoxia with different doses of SP (30, 100, 

and 300nM) in the first group; while normoxia, hypoxia, hypoxia with SP, and hypoxia 

with SP and either NK-1 inhibitor or AKT inhibitor in the second group) with at least 3 

slices per well. 

Tissue hypoxia was induced by placing the slices into pre-deoxygenated, serum 

free Waymouth medium, Sigma-Aldrich, St. Louis, USA (Waymouth+PS, AmphoB, 

gent.) and incubated in 1% O2, 94% N2 and 5% CO2 at 37 °C, for 45 min. Tissue 

normoxia culture was conducted in Waymouth medium with serum, Sigma-Aldrich, St. 

Louis, USA (Waymouth+10%FBS, PS, AmphoB, gent.) and 95% O2, 5% CO2 at 37 °C 

for 45 min. Afterwards, media from each well was collected and analyzed for lactate 

dehydrogenase (LDH) and the slices weighed. Some of the slices from each well were 

snap frozen and stored at -80°C for subsequent biochemical analysis and the remaining 
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slices were fixed in 10% buffered formalin for 24 hr. at room temperature and embedded 

in paraffin and sectioned to a 5 µm thickness for subsequent staining. 

3.4 LDH assay: 

Lactate Dehydrogenase (LDH) is a cytosolic enzyme that is usually released to 

the surrounding media as a result of sarcolemmal membrane rupture. To determine the 

amount of tissue injury induced by hypoxia, the culture media was collected and LDH 

activity in the media was immediately assayed by using LDH cytotoxicity detection kit 

(Cat. No.: 630117, Clontech, Mountain View, CA). The manufacturer’s instructions state 

that the optimal cell concentration should be between 5x103-2x104 cells/well. Therefore, 

we diluted our media 500 times. Three controls were run: 1) Background control (media 

without reaction mixture), 2) Low control (Normoxia), 3) High control (100% dead cells 

using 2% Triton X-100 with the media). Reaction Mixture was made immediately before 

the experiment by adding 250ul catalyst to 11.25ml dye thoroughly mixed in a dark 

room.  Diluted media and controls were run in triplicate using 100ul media plus 100ul 

reaction mixture per well. The plate was covered and incubated at room temperature for 

30 min. The plate was read with a micro-plate reader (VersaMax) at 490 nm wavelength 

and the data collected using Software-Max. The relative LDH activity in the culture 

media was normalized by the tissue weight. 

3.5 Protein extraction and measurement: 

The tissue slices that were snap frozen at -80C were put on ice to melt. The slices 

were added to T-PER buffer (Cat. No.: 78510, Thermo-Scientific, Rockford, IL, USA) to 

which protease-phosphatase inhibitor cocktail and EDTA (Cat. No.: 78440, Thermo-
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Scientific, Rockford, IL, USA) were added. They were then minced in the buffer with 

scissors, vortexed and homogenized (Ultra-Turrax T8, IKA LABORTECHNIK, 

Wilmington, NC, USA). The vortexing and homogenization procedure was repeated and 

the homogenate centrifuged at 10,000g for 5 min at 4o C.  Some of the supernatant was 

used for protein measurement and Western blotting with the remainder was snap-frozen 

in liquid nitrogen.  

For protein measurement, a BCA protein assay kit (Cat. No.: 23227, Thermo-

Scientific, Rockford, IL, USA) was used.  Standard solutions and working reagents were 

prepared according to the manufacturer’s instructions. The tissue slice protein had to be 

diluted ten times to fall within the standards range. All standards, unknowns, and blank 

were run in duplicate via the micro-plate method using 25ul samples per well to which 

200ul of working reagent was added (working reagent was prepared by adding the kit’s 

reagent A to reagent B in a ratio 50:1). The micro-plate was incubated for 30 min at 

37°C, read using a micro-plate reader at 562 nm wavelength and the data were collected 

using Software-Max.   

3.6 Western Blots: 

The gels for Polyacrylamide Gel Electrophoresis (PAGE) were made in the lab 

using a discontinuous buffer system method with the gel separated into two sections (a 

large –pore stacking gel on top of a small-pore resolving gel). The resolving gel (12%) 

was made for 2 gels of 1mm thickness as follows: [4.42ml H2O, 5.2ml 30% 

Acrylamide/Bis (Cat. No.: 161-0156, Bio-Rad, Hercules, CA, USA), 3.25ml 1.5M Tris-

HCl buffer PH=8.8 (Cat. No.: 161-0798, Bio-Rad, Hercules, CA, USA), 0.13ml 10% 
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SDS (Cat. No.: 161-0416, Bio-Rad, Hercules, CA, USA), 65ul 10% APS (Cat. No.: 

17874, Thermo-Scientific, Rockford, IL, USA), 6.5ul TEMED (Cat. No.: 161-0801, Bio-

Rad, Hercules, CA, USA)]. The stacking gel (4%) was made for two gels of 1mm 

thickness as follows: (3.05ml 30% acrylamide/Bis, 1.25ml 0.5M Tris-HCl buffer PH=6.8 

(Cat. No.: 161-0799, Bio-Rad, Hercules, CA, USA), 0.05ml 10% SDS, 25ul 10% APS, 

5ul TEMED).  

Protein samples were thawed and mixed with an equal volume of sample buffer 

[mix 2-Mercaptoethanol (Cat. No.: 161-0710, Bio-Rad, Hercules, CA, USA) to Laemmli 

buffer (Cat. No.: 161-0737, Bio-Rad, Hercules, CA, USA) in a ratio 1:19] and then 

heated to 95oC before loading onto the gel. The running buffer [adding 50ml 10x TGS 

(Cat. No.: 161-0772, Bio-Rad, Hercules, CA, USA) to 450ml of DI H2O] was then added 

to the electrophoresis module.  A protein marker (Precision Plus Kaleidoscope, Cat. No.: 

161-0375, Bio-Rad, Hercules, CA, USA), positive control for p-AKT (Cat. No.: 9273, 

Cell Signaling Technology, Danvers, MA, USA) were also loaded on the gel. The gels 

were run at 100V for 1.5 hr. and then transferred to nitrocellulose membrane using 

transfer buffer [adding 85ml 10x TG (Cat. No.: 161-0771, Bio-Rad, Hercules, CA, USA) 

to 595ml DI H2O to 170ml methanol] at 100V for 1 hr. Next, the membranes were 

washed for 5 min with TBS-T and blocked with 5% non-fat milk in TBS-T for 1 hr at 

room temperature. The membranes were then incubated with primary antibody (Cat. No.: 

4060, Cell Signaling Technology, Danvers, MA, USA) overnight at 4°C on a shaker (p-

AKT antibody 1:2000 5% BSA in TBS-T). The membranes were washed with TBS-T 3 

times for 5 min with TBS-T before incubating it with anti-rabbit secondary antibody (Cat. 

No.: 7074, Cell Signaling Technology, Danvers, MA, USA) for 1 hr at room temperature 
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(1:2000 in 5% non-fat milk in TBS-T). The membranes were washed again 3 times for 5 

min in TBS-T before incubation with ECL (SuperSignal West Pico Chemiluminescent 

Substrate, Cat. No.: 34080, Thermo-Scientific, Rockford, IL, USA) solution for 10 min. 

The membranes were wrapped with lab wrap and exposed to film.  

The membranes were re-probed by washing with 1x TBS for 5 min, stripped with 

Restore Plus Western Blot Stripping Buffer (Cat. No.: 47430, Thermo-Scientific, 

Rockford, IL, USA) for 5 min, and then twice washed for 5 min with 1x TBS. The 

membranes were blocked with 5% non-fat milk in TBS-T for 1 hr and incubated with the 

primary antibody for housekeeping genes e.g. GAPDH (Cat. No.: SC-20357, Santa Cruz 

Biotechnology, Dallas, Texas, USA) in a dilution 1:1000 in 5% non-fat milk in TBS-T 

overnight at 4o C. They were then washed with TBS-T for 10 min 3 times before 

incubation with a secondary antibody (Donkey Anti-Goat IgG, Cat. No.: SC-2020, Santa 

Cruz Biotechnology, Dallas, Texas, USA) in a dilution 1:2000 in 5% non-fat milk in 

TBS-T for 1 hr at room temperature. Finally, the membranes were washed 3 times with 

TBS-T allowing 10 min for each wash, incubated with ECL solution for 10 min at room 

temperature, wrapped with lab wrap and exposed to film.  

3.7 TUNEL: 

TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to 

determine programmed cell death, i.e., apoptosis. Tissue slices from each group were 

deparafinized and rehydrated. TUNEL staining was accomplished by using an In Situ 

Cell Death Detection Kit (Cat. No.: 11684809910 Roche, Mannheim, Germany) 

according to the manufacture’s instruction. Negative control was established by 
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incubating the fixed and permeabilized tissue in Label solution only (without terminal 

transferase) instead of TUNEL reaction mixture while a positive control was established 

by incubating the fixed and permeabilized tissue with DNase I recombinant for 10 min at 

room temperature to induce DNA strand breaks, prior to the labeling procedure. From 

each slice, all of the apoptotic cells in a field were counted using a fluorescent 

microscope (Zeiss Axiovert 200). The section area was measured using a scanner GS-

800. The number of apoptotic cells was divided by the section area to obtain the number 

of apoptotic cells per mm2.  

3.8 Periodic Acid-Schiff (PAS) Staining: 

Periodic acid acts upon the 1, 2 glycol linkage of carbohydrates in tissue sections 

to produce aldehyde, which can be highlighted with Schiff’s reagent.  Periodic acid-

Schiff (PAS) reagent is used to depict areas of abnormal sarcolemmal permeability that 

occurs early during myocardial ischemia. Accordingly, the PAS positive areas are 

indicative of early necrotic damage. PAS staining was performed with the PAS Staining 

System (Cat. No.: 395B, Sigma-Aldrich, St. Louis, USA), according to the 

manufacturer’s instructions. The tissue sections in each group were deparafinized, 

rehydrated, and oxidized in 0.5% Periodic acid solution for 5 min at room temperature. 

Then the slides were rinsed using several changes of distilled water before immersing 

them in Schiff reagent for 15 min at room temperature. Next the slides were washed in 

running tap water and counterstained in Gill 3 hematoxylin for 90 sec. They were washed 

with running tap water again and dehydrated, cleared, mounted and covered with cover 

slip. In each section, ten fields (200x magnification) were randomly selected and 

photographed. The PAS positive areas were quantified using the software Image-Pro Plus 
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4.5 and divided by the field area. The average percent PAS positive area of 10 fields was 

obtained for each experimental group. 

3.9 Statistical Analysis:  

Results are presented as mean ± SEM. For comparison between groups, one-way 

analysis of variance (ANOVA) was performed, followed by the Tukey post-hoc test. 

Statistical significance was set at a P value < 0.05.
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CHAPTER 4 

RESULTS 

 

In the isolated heart global ischemia-reperfusion (I/R) experiments, there was a 

marked increase in coronary flow after reperfusion following global ischemia in the 

group pre-treated with SP (SP I/R) as compared to the I/R group not pre-treated with SP. 

Figure 4.1A shows the coronary flow to be zero during the 20 min global ischemic period 

for the I/R and SP I/R groups. Upon reperfusion, coronary flow was rapidly increased to 

a value that was 50 % greater than its baseline value in the SP I/R group (figure 4.1B) 

while that in the untreated I/R group was 20% below its baseline value (figure 4.1B).  

Furthermore, coronary flow remained above its baseline value in the SP I/R group during 

the subsequent 40 min reperfusion period while it significantly declined in the untreated 

I/R group to a value that was 50% below its baseline value (figure 4.1B).  

Lactate dehydrogenase (LDH) is a cytosolic enzyme that is released from injured 

cells and is used as a marker of cell death.  LDH levels in the coronary efflux were 

measured during the time course of global ischemia and subsequent reperfusion. Results 

regarding the percent change in LDH activity during the ischemia-reperfusion period are 

provided in figure 4.2. At the end of occlusion and onset of reperfusion, LDH levels were 

increased in the I/R group to 240% above its basal level, while in the SP I/R group, LDH 

levels were increased only 97% above its basal level; the difference between the two 

groups was significant.  Following the washout period, the LDH level in the SP I/R group 
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decreased to the same amount as in the Control group while it progressively increased in 

the I/R group indicating a continuing cell death in this latter group.  

The above results for the onset of reperfusion of a significantly lower LDH in the 

SP I/R group indicate that, in addition to its effect on coronary flow, SP also attenuated 

the degree of myocardial damage that occurred during the no flow ischemic period.  To 

further study this protective aspect of SP separate from its effect on the coronary 

circulation, we made use of the cultured LV tissue slice preparation. This preparation 

allows for the determination of the direct effect of SP on cardiac tissue without the 

interference of other parameters such as coronary flow, loading conditions, and neuro-

hormonal influences. Accordingly, left ventricular slices were divided into five groups as 

follows: normoxia, hypoxia, hypoxia incubated with 30nM SP, hypoxia incubated with 

100nM SP, and hypoxia incubated with 300nM SP. The tissue slice LDH assay results 

are shown in figure 4.3.  As can be seen, LDH activity was significantly increased in the 

hypoxia group (H) (0.00444 ± 0.00016) compared to normoxia group (N) (0.00303 ± 

0.00017). Incubation with SP significantly reduced hypoxia-induced LDH release in a 

dose dependent manner [(0.00321 ± 0.00019 in H30), (0.00308 ± 0.00023 in H100), or 

(0.00291 ± 0.00034 in H300)] indicating its cardiomyocyte protective properties.  

AKT is known to promote cell survival when activated (phosphorylated) via 

inhibiting apoptotic pathways. Incubation with SP in a dose dependent manner increased 

p-AKT in the hypoxic LV tissue slices, as shown in figure 4.4A, indicating that SP 

enhanced cell survival by its ability to activate the downstream AKT pathway.  In figure 

4.4B, p-AKT values are normalized to GAPDH and the fold changes relative to hypoxia 

are calculated. p-AKT progressively increased with SP in a dose dependent manner 
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compared to the untreated hypoxia group [(1.000 ± 0.000 in H) vs. (1.351 ± 0.086 in 

H30), (1.903 ± 0.102 in H100), and (2.170 ± 0.472 in H300)].   

The TUNEL staining results are summarized in figure 4.5.  As can be seen, 

incubation with SP resulted in a progressive decrease in the number of TUNEL positive 

apoptotic cells (figure 4.5A). In figure 4.5B, the number of apoptotic cells per unit area is 

expressed relative to that of normoxia group.  There was a significant increase in 

apoptotic cells in the hypoxia group compared to the N and H300 groups [(1.686 ± 0.202 

in H) vs. (1.000 ± 0.000 in N), or (0.888 ± 0.124 in H300)].  These results indicate the 

capability of SP to directly decrease the number of apoptotic cells in a dose dependent 

manner.  

Periodic Acid-Schiff (PAS) staining was used to determine areas of increased 

sarcolemmal permeability depicting necrotic cell death. In figure 4.6, the hypoxia group 

is seen to have a significant increase in PAS stained areas as compared to normoxia, and 

the SP treated groups [(0.0810  ± 0.0074 in H) vs. (0.0250  ± 0.0020 in N), (0.0394  ± 

0.0034 in H100), and (0.0464  ± 0.0161 in H300)]. Accordingly, part of SP’s 

cardioprotective properties is its ability to attenuate necrotic cell death induced by 

hypoxia.  

From the above results, SP was shown to be effective in decreasing cardiac cell 

death via decreasing cell injury (LDH assay), the number of apoptotic cells (TUNEL), 

necrotic cells (PAS staining), and possibly by activating the cell survival pathway (p-

AKT).  To investigate whether SP activates AKT through the NK-1 receptor and whether 

SP induces cell survival through the AKT pathway, five groups of tissue slices were 



 

 38 

studied as follows: normoxia, hypoxia, hypoxia with 100nM SP, hypoxia with 100nM SP 

and 50uM AKT inhibitor, or hypoxia with 100nM SP and 10uM NK1 inhibitor.  

As shown in Figure 4.7, LDH was significantly less in the hypoxia group 

incubated with 100nM SP (H100) as compared to the hypoxia group [(0.00213 ± 0.00037 

in H100) vs. (0.00432  ± 0.00051 in H)]. While LDH levels in the hypoxia groups treated 

with 100nM SP and 50uM AKT inhibitor or 10uM NK1 inhibitor were less than that in 

the hypoxia group, the reductions did not reach the level of significance [(0.00283 ± 

0.00056 in H100+AKT INH) and (0.00361 ± 0.00051 in H100+NK1 INH) vs. (0.00213 ± 

0.00037 in H100)].  Western blot results of myocardial phosphorylated AKT levels are 

presented in figure 4.8A.  The p-AKT level is seen to be more prominent in H100 group 

compared to other hypoxia groups.  In figure 4.8B, p-AKT values were normalized to 

GAPDH and expressed relative to the hypoxia value.  The H100 group showed a 4-fold 

increase in AKT activation as compared to the H group (4.104 ± 1.539 in H100). 

Inhibiting AKT or NK1 receptors in SP pretreated hypoxia groups prevented this SP-

induced increase [(0.8662 ± 0.3349 in H100+AKT INH) and (1.284 ± 0.4611 in 

H100+NK1 INH)]. These results indicate that the AKT pathway has been activated by SP 

via the NK1 receptor.  

TUNEL staining results from the normoxia, hypoxia and hypoxia with 100nM SP 

and either 50uM AKT inhibitor or 10uM NK1 inhibitor groups are shown in figure 4.9A. 

The normoxia and hypoxia with 100nM SP groups have a similar number of apoptotic 

cells, which is much less than that in the other groups. In figure 4.9B, the number of 

apoptotic cells per unit area relative to that of normoxia group is shown. Hypoxia or 

hypoxia with 100nM SP and 50uM AKT inhibitor groups show a significant 2-fold 
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increase in apoptotic cell density compared to normoxia, or hypoxia with 100nM SP 

groups [(2.333 ± 0.498 in H), (2.187 ± 0.153 in H100+AKT INH), vs. (1.000 ± 0.000 in 

N), (1.044 ± 0.177 in H100)] indicating that blocking AKT which is a major survival 

pathway abolishes the protective effect of SP.  While the difference between the hypoxia 

group (H) and hypoxia with 100nM SP and 10uM NK1 inhibitor group was not 

statistically significant [(2.333 ± 0.498 in H) vs. (1.930 ± 0.213 in H100+NK1 INH)]. It 

does suggest that blocking SP receptors abolishes its protective effect.  

PAS staining results are shown in figure 4.10. Panel A displays representative 

PAS stained images in which the hypoxia, hypoxia with 100nM SP and 50uM AKT 

inhibitor, or hypoxia with 100nM SP and 10uM NK1 inhibitor groups show much greater 

PAS stained areas compared to the normoxia or hypoxia with 100nM SP groups 

indicating increased necrosis. The percent PAS positive areas for the groups are shown in 

panel B where the H, H100+AKT INH, or H100+NK1 INH groups are seen to have a 

significant increase in PAS positive area percentage compared to N or H100 groups 

[(0.0812 ± 0.0081 in H), (0.0864 ± 0.0135 in H100+AKT INH), (0.0774 ± 0.0069 in 

H100+NK1 INH) vs. (0.0301 ± 0.0035 in N), (0.0379 ± 0.0045 in H100)]. These results 

indicate that SP reduces hypoxia-induced cell necrosis via the NK1 receptor and 

activation of downstream AKT pathways.
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Figure 4.1. Coronary flow response to ischemia-reperfusion (I/R) in 3 groups of rat 
isolated hearts as follows: non-ischemic control, I/R, and SP pretreated I/R  (SP I/R). 
Thirty min of global ischemia was followed by 30 min of reperfusion.  Coronary flow 
was recorded every 10 min and the coronary perfusate collected at: baseline, immediately 
following the initiation of reperfusion, and 10, 20 and 30 min of reperfusion. Non-
ischemic control hearts were continuously perfused for 60 min. Panel A - coronary flow 
during the time course of the experiment. Panel B - % change in coronary flow relative to 
baseline values. All values are mean ±SEM. ∗  p-value < 0.05, n=8-9.  
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Figure 4.2. Percent change from baseline of lactate dehydrogenase activity (LDH) in the 
coronary perfusate during ischemia-reperfusion (I/R) in 3 groups of rat isolated hearts: 
non-ischemic control, I/R, and SP pretreated I/R (SP I/R). All values are mean ±SEM, 
n=8-9.  *p<0.05 vs. control at same time-point, ψ p<0.05 vs. I/R at same time-point. 
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Figure 4.3.  Lactate dehydrogenase activity (LDH) in the media of normoxic and hypoxic 
cultured left ventricular (LV) slices treated with different doses of SP. LV slices of the 
normoxia group (N) were incubated in Waymouth media with 10% FBS in culture 
incubator (37 °C, 95% O2 and 5% CO2) at 37 °C for 45 min., while the LV slices of all 
hypoxia groups: hypoxia alone (H), hypoxia with 30nM SP (H30), hypoxia with 100nM 
SP (H100), or hypoxia with 300nM SP (H300) were incubated in serum-free Waymouth 
media in a culture incubator (1% O2, 94% N2 and 5% CO2) at 37 °C for 45 min. All 
values are mean ±SEM, N=4, *p<0.05 vs. N, H30, H100, or H300. 
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Figure 4.4.  Panel A - Western blot of activated AKT (Ser473 phospho-AKT) in hypoxic 
LV sections incubated with and without SP in a deoxygenated culture incubator at 37 °C.  
(H) 45min hypoxia, (H30) 45min hypoxia with 30nM SP, (H100) 45min hypoxia with 
100nM SP, (H300) 45min hypoxia with 300nM SP. Panel B - Values were normalized to 
GAPDH and then expressed relative to hypoxia values. All values are mean ±SEM, n=4, 
*p<0.05 vs. H. 
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Figure 4.5. Panel A. TUNEL assay photomicrograph results of cultured left ventricular 
slices incubated with SP: (I) normoxia (N), (II) 45 min hypoxia (H), (III) 45min hypoxia 
with 30nM SP (H30), (IV) 45min hypoxia with 100nM SP (H100), (V) 45min hypoxia 
with 300nM SP (H300). Images were taken at 200x magnification.  Panel B shows the 
number of apoptotic cells per unit area of LV sections normalized to the number of 
apoptotic cells per unit area in the normoxia group. All values are mean ±SEM, n=5, 
*p<0.05 vs. N and H300.  
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Figure 4.6. Panel A. Periodic Acid-Schiff (PAS) staining of LV sections subjected to 
hypoxia and incubated with different doses of SP. The pink areas (arrows) represent 
necrotic cell death. (I) normoxia (N), (II) 45min hypoxia (H), (III) 45min hypoxia with 
30nM SP H30 (IV) 45min hypoxia with 100nM SP (H100), (V) 45min hypoxia with 
300nM SP (H300). Images were taken at 200x magnification. Panel B shows the percent 
of PAS positive area in the LV sections. All values are mean ±SEM, n=4, *p<0.05 vs. N, 
H100 and H300. 

(I)$

(III)$ (V)$(IV)$

(II)$

(A) 

N H H30
H100

H300
0.00

0.02

0.04

0.06

0.08

0.10 !

Treatment Groups

PA
S 

po
sit

ive
 ar

ea
 pe

rc
en

tag
e(b) 

(B) 

*"



 

 46 

 

 

Figure 4.7. LDH activity in the media of cultured left ventricular (LV) slices incubated 
prior to hypoxia with SP and inhibitors of AKT and the NK1 receptor. LV slices in the 
normoxia group (N) were incubated in Waymouth media with 10% FBS in a culture 
incubator (37 °C, 95% O2 and 5% CO2) at 37 °C for 45 min. While the LV slices of all 
hypoxia groups [hypoxia alone (H), hypoxia with 100nM SP (H100), hypoxia with 
100nM SP and 50uM AKT inhibitor (H100+AKT INH), and hypoxia with 100nM SP 
and 10uM NK1 antagonist (H100+NK1 INH)] were incubated in serum-free Waymouth 
media in a culture incubator (1% O2, 94% N2 and 5% CO2) at 37 °C for 45 min. All 
values are mean ±SEM, N=4, *p<0.05 vs. H100.  
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Figure 4.8. Western blot of activated AKT (Ser473 phospho-AKT) in left ventricular 
(LV) sections incubated with 100nM SP and inhibitors of AKT and the NK1 receptor 
before subjecting them to hypoxia (H) in a deoxygenated culture incubator at 37 °C for 
45 min as follows: hypoxia + 100mM SP (H100), hypoxia with 100nM SP and 50uM 
AKT inhibitor (H100 + AKT INH), and hypoxia with 100nM SP and 10uM NK1 R 
antagonist (H100 + NK1 INH). Values were normalized to GAPDH and then normalized 
to that of hypoxia. All values are mean ±SEM, n=4, p-value < 0.05. 
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Figure 4.9. TUNEL assay of cultured left ventricular (LV) sections incubated with 
100nM SP and inhibitors of AKT and the NK1 receptor before subjecting them to 
hypoxia (H) in a deoxygenated culture incubator at 37 °C for 45 min as follows: hypoxia 
+ 100mM SP (H100), hypoxia with 100nM SP and 50uM AKT inhibitor (H100+ AKT 
INH), and hypoxia with 100nM SP and 10uM NK1 R antagonist (H100+NK1 INH).  In 
panel A, (I) - normoxia (N), (II) - H, (III) - H100, (IV) - H100+ AKT INH and 50uM 
AKT inhibitor, (V) - H100+NK1 INH. Images were taken at 200x magnification. Panel B 
shows the number of apoptotic cells per unit area for the study groups normalized to the 
number of apoptotic cells per unit area in N.  All values are mean ±SEM, n=4, *p<0.05 
vs. N., and H100.  
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Figure 4.10. Periodic Acid-Schiff (PAS) staining of cultured rat LV sections incubated 
with 100nM SP and inhibitors of AKT and the NK1 receptor before subjecting them to 
hypoxia (H) in a deoxygenated culture incubator at 37 °C for 45 min as follows: hypoxia 
+ 100mM SP (H100), hypoxia with 100nM SP and 50uM AKT inhibitor (H100+ AKT 
INH), and hypoxia with 100nM SP and 10uM NK1 R antagonist (H100+NK1 INH). The 
PAS pink areas (arrows) in panel A represent necrotic cell death where (I) - normoxia 
(N), (II) - H, (III) - H100, (IV) - H100+ AKT INH and 50uM AKT inhibitor, (V) - 
H100+NK1 INH.  Images were taken at 200x magnification. Panel B shows the percent 
of PAS positive area in the LV sections of the groups. All values are mean 
±SEM, n=4, *p<0.05 vs. N., and H100.
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CHAPTER 5 

DISCUSSION 

 

Current evidence has shown SP to have beneficial and adverse cardiac effects 

depending on the pathological setting. In general, it has been reported to be detrimental in 

chronic non-ischemic remodeling such as myocarditis (D'Souza M et al. 2007; Robinson 

P et al. 2009), magnesium deficiency (Weglicki and Phillips 1992), volume overload 

(Melendez GC et al. 2011), and spontaneous hypertension (Dehlin HM et al. 2013), while 

it has been shown to be beneficial in short-term ischemia-reperfusion (Ustinova et al. 

1995). Its beneficial effect is due in part to the ability of SP to produce coronary 

vasodilation. A reduction in coronary blood flow induces acute SP release with 

subsequent vasodilation and short-term improvement of cardiac function (Dehlin HM et 

al. 2013). Substance P is released from sensory nerves that are distributed throughout the 

heart, including the ventricles, atria, valves, and connective linings (Furness JB et al. 

1984). It is released from some coronary endothelial cells as well. Substance P acts via 

the NK-1 receptor, which is located on intrinsic cardiac ganglia, cardiac fibroblasts, and 

coronary endothelial cells. There is little evidence to support the existence of NK-1 

receptors on cardiomyocytes and there are no reports indicating a direct effect of SP on 

cardiomyocytes; however, one study has indicated that genes for NK-1 receptors are 

expressed on isolated neonatal cardiomyocytes (Church DJ et al. 1996). 
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In the current study, we hypothesized that SP participates in cardioprotection 

through protective cellular mechanisms as well as through its capability to cause 

vasodilation. To investigate this hypothesis, a global ischemia-reperfusion rat isolated 

heart preparation protocol and a hypoxic rat left ventricular slices culture protocol were 

utilized and LDH, p-AKT, apoptosis, and ischemic areas were determined. The 

significant findings clearly demonstrate that SP induces its cardioprotection via coronary 

vasodilation and a direct effect on cardiomyocytes. Coronary flow was significantly 

increased in rat hearts pretreated with SP and subjected to global ischemia-reperfusion 

compared to rats subjected to ischemia-reperfusion without SP pretreatment.  This is 

consistent with the already described vasodilatory effect of SP on the coronary circulation 

(Ustinova et al. 1995; Wang and Wang 2005; Ren JY et al. 2011). 

LDH activity was significantly decreased in the Sub P I/R group compared to I/R 

group at the onset of reperfusion. Ren JY et al showed that diabetic hearts displayed a 

significant increase in other cell injury markers such as cardiac troponin I and creatine 

kinase due to the decrease in CGRP and SP release in diabetic hearts (Ren JY et al. 

2011). However, in our study, LDH did not show a significant difference between with 

and without SP during the mid and late stages of reperfusion. This may be due to the fact 

that SP causes a vasodilation-induced increase in coronary flow, which increases the 

susceptibility to reactive oxygen species and consequent more release of LDH compared 

to I/R without SP. Also, sudden reperfusion could be a double-edged sword in that it 

could induce cell death per se (Braunwald and Kloner 1985; Piper HM et al. 1998; 

Yellon and Hausenloy 2007). Previous studies have showed that reperfusion of ischemic 

tissues is often associated with microvascular injury, mainly due to increased 
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permeability of capillaries and arterioles with subsequent increased diffusion and 

filtration of fluid across the tissues. Following reperfusion, more reactive oxygen species 

but less nitric oxide are produced by the activated endothelial cells, and the imbalance 

results in consequent inflammatory response (Carden and Granger 2000).  

To avoid the influence of coronary flow on the cardiac tissue, we used a cultured 

LV tissue slice protocol, which has several advantages as follows: 1) myocardial cells 

retain their 3-D structural integrity, intercellular interactions and extracellular 

attachments; 2) ability to perform multiple perturbations on tissue from an individual 

heart thereby minimizing biological variability; 3) relatively long-term effects of a 

perturbation can be investigated under highly controlled conditions; and 4) the 

myocardial response to perturbations is solely intrinsic in that it is void of factors, such as 

circulating inflammatory cells, cytokines, variations in the neuro-hormonal background, 

and variations in preload, afterload and contractility.  

 In the cultured tissue slices, LDH significantly increased in the untreated hypoxia 

group compared to the other groups; incubation with SP significantly decreased the LDH 

levels in a dose dependent manner. The relative reduction in LDH release upon SP 

treatment is less evident in the cultured slices (H30, H100, or H300: H) compared to that 

of the isolated heart (SP I/R: I/R) which may indicate that SP’s protective effect is more 

obvious when there is reperfusion due to its vasodilative properties. Nevertheless, the 

abovementioned slice results clearly indicate that SP has a protective effect independent 

of its effect on coronary flow.  
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AKT, also referred to as protein kinase B, is phosphorylated into its active form 

after stimulation with SP (Koon HW et al. 2004) and plays an important role in 

controlling the balance between cell survival and apoptosis (New DC et al. 2007). 

Activated/phosphorylated AKT (P-AKT) promotes cell survival and inhibits apoptosis by 

inactivating pro-apoptotic members of the Bcl-2 family (preventing cytochrome C 

leakage from the mitochondria), by decreasing expression of caspases and by increasing 

the expression of anti-apoptotic Bcl-2 family members (Yang ZZ et al. 2004; New DC et 

al. 2007). 

Since the media of normoxia group contains 10% FBS which is known to induce 

AKT activation (Tari and Lopez-Berestein 2000), we omitted the normoxia group from 

our statistical analysis. P-AKT was progressively increased over two folds in the H300 

compared to the hypoxia without SP group. This clearly indicates that with SP 

incubation, AKT is activated and improves cell survival by preventing apoptosis. 

Backman and Danielson demonstrated in their study of apoptosis in tenocytes that the 

anti-apoptotic effect of SP is mediated through NK-1 receptors and AKT-specific 

pathways (Backman and Danielson 2013). Substance P was also shown to activate AKT 

in human colonocytes mediating anti-apoptotic responses (Koon HW et al. 2007). 

To study apoptotic cell death, the Terminal deoxynucleotidyl transferase dUTP 

nick end-labeling (TUNEL) assay was used. It detects DNA fragmentation due to the 

apoptotic signaling cascade.  There was a significant increase in apoptotic cell density in 

the hypoxia group compared to normoxia and hypoxia group incubated with 300nM SP. 

The number of apoptotic cells increased in the hypoxia group by more than 150% than 

that in the normoxia group. Incubation with increasing concentrations of SP resulted in a 
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progressive decrease in apoptotic cells compared to hypoxia group. This clearly indicates 

that SP decreases apoptotic cardiac cell death. These findings are consistent with 

previous reports of the anti-apoptotic effect of SP in hyperoxic-induced lung injury 

(Huang B et al. 2014), retinal cells in diabetic rats (Yang JH et al. 2013), spinal cord 

injury (Jiang MH et al. 2013), human tenocytes (Backman LJ and Danielson 2013), bone 

marrow recovery after irradiation (An YS et al. 2011), and intestinal tissue regeneration 

post irradiation injury (Kang MH et al. 2009). Consistent with our findings are those 

reported by Melendez GC et al who used TAC1 knockout mice to study the effect of SP 

in mice with a sustained cardiac volume overload.  While they found SP to induce 

adverse myocardial remodeling via mast cell activation, the number of apoptotic cells 

was less in wild type compared to TAC1 knockout mice (Melendez GC et al. 2011).  

Periodic Acid-Schiff staining was used to delineate areas of necrotic death. The 

results clearly show that in the hypoxia group, the PAS stained area was significantly 

larger than that in the normoxia and hypoxia incubated with SP groups. Thus, SP reduces 

cardiac necrotic cell death during short-term hypoxia. To investigate whether it induces 

its effect through NK-1 receptors and whether activating AKT is the proposed 

mechanism beyond its cellular actions, we used NK-1 and p-AKT inhibitors.  While there 

was a strong trend for both inhibitors to negate the beneficial effects of SP, the 

differences did not reach the level of statistical significance.  This may be due to the 

doses used for both NK1 and p-AKT inhibitors not being sufficient to block all binding 

sites of SP and p-AKT inhibition respectively or the sample size was too small. 

According to our data, sample size needs to be increased to 6 rats per group to get 

statistically significant values with a power over 0.8. 
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Inhibition of AKT or NK1 receptors in SP incubated hypoxia slices resulted in a 

marked reduction in AKT compared to the hypoxic group incubated with SP alone.  In 

fact, the levels of AKT activation in the slices incubated with the inhibitors were similar 

to that in the untreated hypoxic group. The overall p-value is significant; however, it was 

insignificant between head-to-head comparisons between any two groups. Again, many 

factors affect the significance level such as: sample size, SP dose, NK1 inhibitor dose, or 

p-AKT inhibitor dose.  The results of Yang L et al lend additional support to the 

hypothesis.  They demonstrated that SP promotes diabetic epithelial wound healing via 

AKT activation. Upon using NK-1 receptor inhibitor, all the healing effects of SP were 

abolished (Yang L et al. 2014).  

Hypoxia, hypoxia with 100nM SP and 50uM AKT inhibitor, or hypoxia with 

100nM SP and 10uM NK1 inhibitor groups showed a significant increase in apoptotic 

cells compared to normoxia or hypoxia with 100nM SP groups. This clearly supports our 

hypothesis that SP reduces cell death through activation of the AKT pathway. Consistent 

with our findings is a study by Koon HW et al.  They found human colonocytes 

pretreated with AKT inhibitor followed by SP treatment showed a significant increase in 

apoptotic cells compared to colonocytes pretreated with SP alone [Koon HW et al., 

2007].   Also the hypoxia, hypoxia with 100nM SP and 50uM AKT inhibitor, or hypoxia 

with 100nM SP and 10uM NK1 inhibitor groups showed significantly larger PAS stained 

areas compared to normoxia or hypoxia with 100nM SP treatment groups. These 

combined results indicate that SP treatment reduces cell necrosis induced by hypoxia 

while blocking the SP receptor or its downstream AKT pathway resulted in increased cell 

necrosis. 
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 In summary, the findings of this study demonstrate for the first time that SP 

exhibits cardioprotective effects independent on its effects on coronary flow. Apoptotic 

and necrotic cardiac cells were significantly decreased in hypoxic LV sections upon 

incubation with SP in a dose dependent manner.  It is also the first time that SP, via NK-1 

receptors, activates the AKT pathway in cardiac tissue has been reported and that the 

cardioprotective effect of SP is due to its ability to induce AKT activation.  While, the 

results of this study indicate a potential clinical application for SP administration in 

patients with angina pectoris or acute myocardial infarction, additional studies are 

required to further investigate its molecular mechanisms.  For example, does SP induce 

activation of AKT via phosphorylating the second activation site (Threonine 308) on the 

AKT molecule, does SP have an effect on the other anti-apoptotic pathways such as the 

Ras-Raf-Erk pathway, and is Foxo1, a downstream molecule of AKT, involved?  

 

Perspective:  The results herein that SP activates AKT via NK-1 receptors to enhance 

cardiac cell survival are schematically summarized in Figure 5.1.  These findings indicate 

the potential of SP to protect the heart in early stages of ischemic heart diseases and in 

particular during the surgical procedure to restore blood flow to an ischemic area.  
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Figure 5.1. A schematic of the pathway by which substance P induces its cardio-
protective effect.  Substance P acts through NK-1 receptors to activate downstream AKT 
pathway with subsequent inhibition of cell death.  The NK-1 inhibitor and AKT inhibitor 
acting on NK-1 receptors and AKT, respectively, prevent AKT activation 
resulting in reduced cell survival. 
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