
University of South Carolina
Scholar Commons

Theses and Dissertations

2014

Effects of cPLA-2 on the Migration and
Proliferation of Human Vascular Smooth Muscle
Cells and the 2-D Migratory Patterns of
Tropomyosin in Femoral and Abdominal Aorta
Tissue
Jaimeson Thomas Powell
University of South Carolina - Columbia

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Part of the Other Medical Sciences Commons

This Open Access Thesis is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Powell, J. T.(2014). Effects of cPLA-2 on the Migration and Proliferation of Human Vascular Smooth Muscle Cells and the 2-D Migratory
Patterns of Tropomyosin in Femoral and Abdominal Aorta Tissue. (Master's thesis). Retrieved from http://scholarcommons.sc.edu/etd/
3171

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/679?utm_source=scholarcommons.sc.edu%2Fetd%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3171?utm_source=scholarcommons.sc.edu%2Fetd%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3171?utm_source=scholarcommons.sc.edu%2Fetd%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu


EFFECTS OF CPLA-2 ON THE MIGRATION AND PROLIFERATION OF HUMAN 
VASCULAR SMOOTH MUSCLE CELLS AND THE 2-D MIGRATORY PATTERNS OF 

TROPOMYOSIN IN FEMORAL AND ABDOMINAL AORTA TISSUE 
 

by 
 

Jaimeson Thomas Powell 
 

Bachelor of Arts 
Gettysburg College, 2007 

 
 

 
 

Submitted in Partial Fulfillment of the Requirements 
 

For the Degree of Master of Science in 
 

Biomedical Science 
 

School of Medicine 
 

University of South Carolina 
 

2014 
 

Accepted by: 
 

Kevin Carnevale, Director of Thesis 
 

Lucia Pirisi-Creek, Reader 
 

Karen Fox, Reader 
 

J. David Gangemi, Reader 
 

Lacy Ford, Vice Provost and Dean of Graduate Studies



ii 

© Copyright by Jaimeson Thomas Powell, 2014 
All Rights Reserved.



iii	
  

ACKNOWLEDGEMENTS 

 I would like to acknowledge the Carnevale Group, including Kevin Carnevale, 

Nyssa Fox, Kristin Stewart, Glenn Augustyn and Hilal Arnouk.  I would also like to 

acknowledge the Fox Group including Karen and Alvin Fox and Jennifer Smith. 

  



iv	
  

ABSTRACT 

 Abstract 1: Platelet derived growth factor BB (PDGF BB) has an important 

influence on smooth muscle cell proliferation in restenosis and atherosclerosis.  Our 

understanding of different signal transduction pathways involved in the response of 

smooth muscle cells to PDGF BB is potentially significant for understanding and 

manipulating these processes.  Prior studies have demonstrated a crucial activation of 

cytosolic phospholipase A2 (cPLA2) in smooth muscle cells to PDGF BB with the 

production of arachidonic acid and prostaglandin E2.  In these studies we investigated the 

role for another PLA2, calcium-independent PLA2 (iPLA2) in comparison to cPLA2 on 

smooth muscle cell migration and proliferation.  Pharmacological inhibitors of cPLA2 

were found to substantially inhibit proliferation, but not migration.  AACOCF3 (cPLA2 

and iPLA2 inhibitor) and 1,2,4-trisubstituted pyrrolidine derivative (cPLA2 inhibitor) both 

inhibited smooth muscle proliferation where Bromoenol lactone (iPLA2 inhibitor) had no 

effect.  None of these inhibitors prevented smooth muscle chemotaxis to PDGF BB in a 

modified Boyden chamber.  In reconstitution experiments, arachidonic acid fully restored 

smooth muscle cell proliferation after treatment with 1,2,4-trisubstituted pyrrolidine 

derivative.  These data demonstrate the distinct role of cPLA2 on smooth muscle cell 

proliferation, which is a critical step in the pathogenesis of restenosis and atherosclerosis. 

Abstract 2: There are major histological differences between normal murine 

aorta and femoral artery.  There are also major differences in the effects of 
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atherosclerosis on these two arteries with aneurysm formation affecting the aorta and 

long complex atherosclerotic lesions affecting the femoral artery, which result in lumen 

narrowing.  Our overall understanding of the different proteins expressed in these two 

arteries is not well understood.  In these studies we investigated the difference in protein 

expression in normal murine abdominal aorta compared to femoral artery.  We found that 

tropomyosin alpha 1 and beta from murine femoral artery migrates to different locations 

on 2D gel electrophoresis.  Further investigation using western blot analysis shows that 

these two proteins migrate to the same location.  We hypothesize that another protein(s) 

is bound to tropomyosin in femoral artery and not in abdominal aorta to form a complex 

that causes the protein to migrate differently on 2D analysis.  
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CHAPTER 1 

EFFECTS OF CPLA-2 ON THE MIGRATION AND PROLIFERATION OF HUMAN 

VASCULAR SMOOTH MUSCLE CELLS 

1.1 INTRODUCTION 

Migration and proliferation of vascular smooth muscle cells (VSMCs) are 

important initial steps in the progression of atherosclerotic lesions, restenosis, and 

transplant vasculopathy.  The common characteristics of vascular responses to balloon 

injury are proliferation and migration of VSMCs and neointima formation in the injured 

arteries.1  Neointimal hyperplasia and restenosis are the major problems limiting the 

long-term efficacy of percutaneous transluminal angioplasty.2  Although the mechanisms 

responsible for the proliferation and migration of VSMCs are not fully understood, 

several factors produced in response to vascular injury have been implicated in this 

process.  One of the major growth factors includes platelet-derived growth factor 

(PDGF).  PDGF is both mitogenic and chemotactic for medial VSMC.3  Denudation of 

endothelial cells after balloon angioplasty results in release of PDGF and other growth 

factors which stimulates VSMC proliferation and migration into the intima resulting in 

intimal hyperplasia.4 

PDGF is a growth factor that plays a role in embryonic development, cell 

proliferation, cell migration, angiogenesis, atherosclerosis and restenosis.5,6  It is a 

dimeric glycoprotein composed of two A (-AA) or two B (-BB) chains or a combination 

of the two (-AB).  Two receptors for PDGF are tyrosine kinase receptors classified as
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alpha and beta type.  Upon activation by PDGF, these receptors dimerize, auto-

phosphorylate several sites on their cytosolic domains, which serve to mediate binding of 

cofactors and subsequently activate signal transduction through the PI3K and MAPK 

pathways.7,8,9  Accumulating data suggest that although this molecule is generally part of 

growth signaling complex, it plays a more profound role in controlling cell migration.  

PDGF-BB is the highest-affinity ligand for the PDGFR-beta and is the most potent 

stimulator of VSMC migration.10  Stimulation of VSMC with PDGF-BB produces a rapid 

release of arachidonic acid and prostaglandin E2 through the activation of cPLA2.11   

Phospholipase A2 specifically recognizes the sn-2 acyl bond of phospholipids and 

catalytically hydrolyzes the bond releasing fatty acid and lysophospholipid.12  PLA2 

includes four unrelated protein families with common enzymatic activity composed of 

secretory PLA2, cPLA2 which is dependent on calcium, calcium independent PLA2  or 

iPLA2, and lipoprotein-associated PLA2s (lp-PLA2), also known as platelet activating 

factor acetylhydrolase (PAF-AH).  Only cPLA2 is selective for arachidonic acid at the sn-

2 position which can be further metabolized into eicosinoids such as prostaglandins and 

leukotrienes which are categorized as inflammatory mediators.13,14,15,16,17  The exact role 

these PLA2s play in smooth muscle migration and proliferation is currently unknown, 

however it has been proposed that these eicosanoids activate GTPases, which in turn 

activate SMC proliferation and motility.11 

     This study investigates the role of cPLA2 and iPLA2 in migration and proliferation of 

human smooth muscle cells to PDGF-BB in vitro. 
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1.2 METHODS AND MATERIALS 

Tissue Culture and SMC Isolation 

Human arterial vascular smooth muscle cell lines (HAVSMC) were purchased 

from ATCC (CLR-1999) which were obtained from a 11-month-old female aorta.  The 

cells were cultured in HAVSMC Media (FI2K, NaHCO3, Hepes, TEST, ECGS, ITS) 

containing 10% fetal bovine serum (FBS) at 37oC with 5% CO2.  Cells were grown to 

>80% confluence and non-adherent cells were removed. 

Protein Extraction for cell lines 

Cells were treated in their six-well plates with lysis buffer containing NP-40 and 

incubated at room temperature for five minutes.  Lysate was sonicated for fifteen 

seconds, three times.  Cells and lysis buffer were transferred to tubes and spun at 13,000 

rpm for 20 minutes at 4 oC.  Nuclear pellet was discarded. 

Immunofuorescence assay 

For immunofluoresence, human aortic smooth muscle cells were grown in eight 

chamber slides with two wells stimulated with 25ng/ml of PDGF BB for 2hrs.  Slides 

were fixed in HistoChoice (Ameresco, Solon, Ohio) until stained.  Cells were 

permeablized with 0.01% triton X-100 and blocked with 1% bovine serum albumin.   

Primary antibodies were applied to recognize smooth muscle α-actin (mouse monoclonal 

antibody, clone 1A-4) and vimentin (rabbit polyclonal antibody) in the concentration of 

1µg/mL.  All antibodies were purchased from Neomarkers Inc, Fremount, Calif.  After 

washing in PBS three times, fluorescein isothiocyanate-tagged secondary antibodies were 

applied (Santa Cruz Biotechnology Inc, Santa Cruz, Calif). Rabbit anti-mouse 

immunoglobulin G (IgG) was applied to chambers stained for smooth muscle actin 
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5µg/mL, and 5µg/mL of goat anti-rabbit IgG was used for vimentin staining. Negative 

control chambers were stained with secondary antibodies alone. This experiment was 

repeated in triplicate with representative micrographs.  Slides were analyzed with Leica 

Qwin system (Leica, Wetzlan, Germany) by using Image Pro Plus 6.0 software (Media 

Cybernetics, Silver Spring, Md). 

Pharmacological inhibitors 

HAVSMC were washed once in PBS and resuspended in DMEM without serum. 

The cells were treated with the pharmacologic inhibitors and incubated for 1 h at 37°C 

with 10% CO2 before performing the chemotaxis or proliferation assays.  All inhibitors 

were reconstituted in DMSO.  Varying concentrations of Bromoenol lactone (iPLA2 

inhibitor), 1,2,4 trisubstituted pyrrolidine (cPLA2 inhibitor) or AACOCF3 (cPLA2 and 

iPLA2 inhibitor) were added in less than 1/200 inhibitor volume to total volume of 

culture media.  Unstimulated control cells were only stimulated with PBS in DMEM 

without serum. 

Chemotaxis assay  

HAVSMC migration was evaluated using a microchamber technique.37  Human 

recombinant PDGF BB (25 ng/ml) in DMEM with 0.1% BSA was added to the lower 

compartment of the disposable 96-well chemotaxis chamber (NeuroProbe, Gaithersburg, 

MD) in a volume totaling 29 µl. The cell suspension (50 µl of 2 x 106 cells/ml; 1 x 105 

cells/well) was added to the upper compartment of the chamber that had been precoated 

with collagen type 1 for 2 h. The two compartments were separated by a 5-µm pore size, 

polycarbonate, polyvinylpyrrolidone-free filter. The chamber was incubated at 37°C in air 

with 5% CO2 for 90 min. At the end of the incubation, the filter facing the upper 
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compartment was scraped with a sponge and rinsed gently with PBS to remove all non-

migrated cells. The side of the filter with the migrated cells was fixed and stained with 

Hema 3 Stain Set (Biochemical Science, distributed by Fisher Scientific, Pittsburgh, PA). 

Migrated SMC were counted in five high-power fields (x400) using a light microscope. 

All samples were tested in triplicate, and the data are expressed as the mean ± SD.  

Proliferation assay  

5x103 HAVSMC were cultured in DMEM without serum and in the presence or 

absence of various concentrations of AACOCF3, cPLA2 INH, and BEL for 1hr prior to 

stimulation with 25ng/ml of PDGF-BB or 10%FBS (Pos Con) for 48hrs at 37°C in air 

with 5% CO2.  The number of cells were quantified by nonradioactive colorimetric 

WST-1 assay (Roche Applied Sciences, IN) according to manufactures protocol.  Briefly, 

10ul of Cell Proliferation Reagent WST-1 was added to each well and allowed to 

incubate for 4 hours at 37°C in air with 5% CO2.  The plate was shaken for 1 minute and 

read at 440nm on a microplate reader (Bio-Rad, Hercules, CA). 

Western Blot/SDS-Page  

HAVSMC were washed three times with PBS to remove traces of DMEM and 

10% BCS. The tubes were placed on ice, and the cells were lysed using 200 µl of lysis 

buffer (1% Triton X-100, 150 mM NaCl, 50 mM Tris-HCL, pH 7.4, 1 mM PMSF, and 10 

µl of protease inhibitor mix (Sigma) per milliliter of lysis buffer). After 30 min, the lysate 

was centrifuged for 15 min at 9300 x g. The supernatant was collected, and the protein 

concentration was determined using the Bradford assay (Bio-Rad, Hercules, CA) and 

loaded on a 7.5% SDS-PAGE gel (150 µg of total protein/well). The proteins were 

transferred to a polyvinylidene difluoride membrane (0.2 µm; Bio-Rad) using a TRANS-
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BLOT SD electrophoretic transfer cell (Bio-Rad). The membrane was blocked in 5% 

nonfat milk in PBS and 1% Tween 20 overnight at 4°C and then probed with primary Ab. 

cPLA2
 protein was detected with a 1/1000 dilution of anti-mouse recombinant cPLA2

 

mAb (Santa Cruz), followed by incubation with anti-mouse IgG HRP (1/1000 dilution; 

Transduction Laboratories, Lexington, KY).  

siRNA Transfection 

HAVSMC were plated in six well plates and cultured 37oC with 5% CO2 until the 

cells were 70-90% confluent.  siRNA transfection using a control A sequence, fluorescent 

conjugated control A, and cPLA2 siRNA (h) (Santa Cruz Biotechnology, Inc, CA) was 

carried out according to manufacturer’s protocol.  Briefly, varying concentrations of 

siRNA tested from 60 to 120pM were each mixed with the transfection reagent for 45 

minutes at room temperature, and then added to cells and allowed to incubate 7 hours at 

37oC with 5% CO2.  One milliliter of normal growth medium with 2X FBS was added to 

each well and allowed to incubate for 18-24hours at 37oC with 5% CO2.  This was 

replaced with 1X normal growth media and allowed to incubate for 72 hours.  Cells were 

prepared for either western blot analysis or fluorescent microscopy to determine protein 

inhibition or rate of transfection, respectively. 
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1.3 RESULTS 

 

 

 

 

 

 

 

 

 

PDGF BB induces cPLA2 protein expression, which appears to peak after 2 hours 

of stimulation in SMC (figure 1).  cPLA2 expression continues to 16 hours, and then 

attenuated to its PDGF BB un-stimulated levels at 24 hours (data not shown).  SMC-

Actin was used as a loading control.  Next we investigated the effects on actin 

polymerization in SMC after stimulation with PDGF BB. 

 

cPLA2	
  →	
  

SMA → 

US   30     1      2      5     10 

Figure 1.1.  cPLA2  Protein Peaks at Two Hours in Human Aortic VSMCs After 
Stimulation with PDGF-BB. VSMCs were unstimulated (US) or incubated with 
25ng/ml of PDGF-BB for 0.5, 1, 2, 5, and 10 hours.  100µg of total cytoplasmic 
protein was evaluated by Western Blot for cPLA2 protein (upper panel).  The same 
blot was stripped and reprobed with an antibody to Smooth Muscle Actin (SMA – 
lower panel).    
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Smooth muscle cells were observed in an immunofluorescence assay to reveal 

increased levels of smooth muscle actin polymerization in the PDGF-bb stimulated cells 

at the leading edge of cells.  As a negative control un-stimulated human VSMC stained 

with no primary antibody exhibited no fluorescent staining (figure 2A).  To rule out the 

presence of fibroblasts in the culture the cells were stained with vimentin (figure 2B).  

Normally, un-stimulated SMC stained with smooth muscle actin (SMA) show actin 

staining around areas of anchoring points (figure 2C).  However, after stimulation with 

PDGF BB SMA filaments congregated at the leading edge of SMC (figure 2D).  The 

cells became polarized to indicate movement with the SMA making up part of the 

lamellapodia of the polarized cell.  This actin polymerization was observed in ~70% of 

Neg Con Vimentin

SMA SMA

A	
   B	
  

C	
   D	
  

Figure 1.2. PDGF-BB Produces Actin Polymerization at the Leading Edge of Human 
Aortic VSMCs.  Immunofluorescence of unstimulated VSMC stained with no primary 
antibody (A), vimentin (B), and smooth muscle actin (C).  Stimulation of VSMC with 
25ng/ml of PDGF-BB resulted in polymerization of smooth muscle actin fibers at the leading 
edge of cells (D). 
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the cells within the culture colony.  This demonstrates that PDGF BB plays a role in 

SMC movement.  We next went to investigate if cPLA2 played a role in SMC migration 

to PDGF-BB. 
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Figure 1.3. Pharmacological inhibitors of PLA 2 do not inhibit VSMC migration to PDGF-
BB by in-vitro chemotaxis assay.  Pictures of polycarbonate filter at 400X with the highest 
concentrations of all three pharmacological inhibitors (A).  10% acetic acid was used to 
dissolve the type 1 collagen and DMSO was the diluent for the pharmacological inhibitors. 
VSMCs were cultured in DMEM without serum and in the presence or absence of various 
concentrations of cPLA2 INH (B), BEL, iPLA2 inhibitor (C), AACOCF3 cPLA2 and iPLA2 
inhibitor(D) for 1hr. VSMCs chemotaxis across a type 1 collagen coated polycarbonate filter in 
response to 25ng/ml of PDGF-BB was then measured.  All samples were performed in 
triplicate, and experiments were repeated three times. The results are expressed as the total 
number of migrated cells per well± SD and are from a representative experiment.  
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Inhibition of cPLA2 or iPLA2 with pharmacological inhibitors had no effect on 

smooth muscle cell chemotaxis to PDGF BB in a modified Boyden chamber (figure 3).  

1,2,4-trisubstituted pyrrolidine derivative (cPLA2 INH) is a specific inhibitor of cPLA2 

which had no significant effect on SMC chemotaxis to PDGF BB from doses of 1nM to 

1µM (figure 3B).  This was also seen for the iPLA2 inhibitor, Bromoenol lactone (BEL), 

using concentrations from 0.01µM to 10µM (figure 3C).  AACOCF3 has been reported to 

inhibit both cPLA2 and iPLA2, but not sPLA2.18,19  AACOCF3 also did not cause 

significant, dose-dependent inhibition of SMC migration to PDGF BB in up to 50µM 

concentration (Figure 3D). 

Pictures of the filter at 400X with the highest concentration of inhibitors and the 

solvent used to dilute the inhibitors (DMSO) show an equal number of cells migrating to 

the other side of the filter (figure 3A).  Therefore, the data shows that inhibition of cPLA2 

and iPLA2 does not significantly affect SMC migration in a modified Boyden chamber 

migration assay.   
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Figure 1.4. Pharmacological inhibitors of cPLA2 suppress PDGF-BB-induced proliferation 
of human aortic VSMCs, which is restored by AA.  VSMCs were cultured in DMEM 
without serum and in the presence or absence of various concentrations of AACOCF3 
(A), cPLA2 INH (B), and BEL (C) for 1hr prior to stimulation with 25ng/ml of PDGF-
BB or 10%FBS (Pos Con) for 48hrs.  The number of cells were quantified by 
nonradioactive colorimetric WST-1 assay (Roche Applied Sciences, IN). All samples 
were performed in triplicate, and experiments were repeated three times. The results are 
expressed as % control OD 450nm of wells not stimulated with PDGF-BB. PDGF-BB 
stimulated cell proliferation after inhibition by 1µM cPLA2 INH was restored by 3µM 
AA (D). *, p < 0.05 
 

Inhibition of cPLA2 with pharmacological inhibitors significantly reduces PDGF 

BB stimulated SMC proliferation (figure 4).  Using the same inhibitors as in the 

migration assays, both AACOCF3 and cPLA2 INH significantly inhibited SMC 

proliferation in a dose dependent manner (figures 4A&4B).  There was a 70 to 85% 

inhibition at their highest doses.  Bromoenol lactone, the iPLA2 inhibitor, did not inhibit 

SMC proliferation induced by PDGF BB even at its highest dose of 10µM (figure 4C).  
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cleavage at the sn-2 position of a phospholipid.  We used AA in a dose dependent 

mannor to restore the inhibition of proliferation in SMC treated with cPLA2 INH and 

stimulated PDGF BB.  Inhibition of SMC proliferation was reconstituted in cells treated 

with cPLA2 INH when the cells were stimulated with arachidonic acid, the principal 

downstream byproduct of cPLA2 (figure 4-D).  It was found that a concentration of 

3.0µM arachidonic acid best reconstituted SMC proliferation.  This indicates that cPLA2 

and its pathway plays an important role in SMC proliferation. 

	
  

Figure 1.5 - Expression of fluoroscein conjugated  siRNA after 72 hours of 
transfection in human aortic smooth muscle cells.  VSMC’s were not transfected and 
treated with PBS as a blank (left).  VSMC’s were transfected with a control A scrambled 
siRNA at 120pM (right) and incubated for 72 hours at 37°C in 5% CO2.  Fluorescent 
microscopy was taken at 200x magnification 
important role in SMC proliferation. 
 

To further our studies of cPLA2 inhibition, we sought to inhibit the expression of 

cPLA2 by using targeted siRNA to cPLA2 in SMC.  First we characterized the number of 

cells and concentration of siRNA to transfect cells.  We used a fluorescein-conjugated 

siRNA at different concentrations to observe the rate of transfection.  Transfection of a 

fluorescein labeled siRNA at 120pM resulted in an 85-95% transfection rate after a 72-

hour incubation period (figure 5C).  This was confirmed in triplicate experiments.  
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Inhibition of cPLA2 in our siRNA model was confirmed via Western Blotting.  Various 

concentrations of cPLA2 siRNA inhibitor revealed that 120pM best inhibited cPLA2 

protein expression (figure 6).  Over several experiments we had a range from 70-90% of 

cPLA2 protein inhibition after 72 hours of transfection with siRNA. 

 

 

 

 

 

 

 

1.4 DISCUSSION 

Our studies characterize the important relative contribution of cPLA2 for 

regulating smooth muscle proliferation to PDGF BB.  Since PDGF is believed to initiate 

a multitude of biological effects through signal transduction pathways such as MAP 

kinase cascade, phosphotidylinositol turnover, and calcium mobilization in different cells 

resulting in cell proliferation and directed migration.10  PDGF stimulation results in edge 

ruffling, calcium mobilization, chemotaxis, and mitogenic effects in different cell lines.6,7  

It has been reported that smooth muscle cell growth and contraction require cAMP 

metabolism and calcium homeostasis to function.20  cPLA2 requires calcium mobilization 

from the endoplasmic reticulum initially to activate. Exactly how these key components 

interact is currently poorly understood.  Because of our interest in the role of cPLA2 and 

iPLA2 in monocyte chemotaxis to MCP-1 during chronic inflammation21,22, we have 

cPLA2 → 

SMA → 

Con A      60pM     120pM 

Figure 1.6 – cPLA2 protein expression after 72 hours of transfection with cPLA2 siRNA of 
human aortic smooth muscle cells.  Western blot of VSMC’s that were transfected with a 
120pM control A scrambled siRNA,  60pM and 120pm of cPLA2 siRNA (upper panel).  The same 
blot was stripped and reprobed with an antibody to Smooth Muscle Actin (SMA – lower panel).    
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turned to investigating the role of these PLA2’s in smooth muscle cell migration and 

proliferation which are essential components in the pathogenesis of atherosclerosis and 

restenosis. 

Previous work has shown that the PDGF BB stimulated AA release from VSMC 

in a calcium dependent manner through the activation of cPLA2.23  Our studies confirm 

that cPLA2 protein is increased after stimulation with PDGF BB (Figure 2) and remains 

elevated above 10 hours.  This could lead to the overproduction of eicosanoids, AA 

metabolites, which play a key role as lipid mediators of inflammation.   PGE2 is released 

rapidly from PDGF BB stimulated VSMC.24  COX-2 metabolizes AA to form PGE2 

which functions to control vascular smooth muscle constriction or dilation, regulate 

calcium movement, and mediate inflammation.25  The exact role of eicosanoids on 

VSMC migration and proliferation is currently unknown. 

Some of the first steps to cell movement are the formation of actin into long 

extending finger- like projections such as filopodia and other broad branching networks 

called lamellipodia in the front of the cell forming the leading edge.26,27  The finger-like 

projections act to sense and explore the local environment where the lamellipodia provide 

a strong foundation over which the cell can move forward.  Stimulation of smooth muscle 

cells with PDGF BB produced a broad branching network of smooth muscle actin at the 

leading edge of the cell forming a lamellipodia structure (Figure I-1D).  This structure 

was seen in 60-70% of cells stimulated with PDGF BB in a culture made up primarily of 

smooth muscle cells without contamination of fibroblasts (Figure 1B- negative vimentin 

staining). 
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Eicosanoids have been implicated to play a role in migration of inflammatory 

cells and cancer cells.28,29,30,31  AA can be converted into various metabolites, such as 

prostoglandins, lipoxins, LTB4, H(P)ETEs via COX-2, cytochrome  P450, or 

lipoxygenase pathways.32,33,34,35,36  LTB4 has been shown to play a role in the migration 

of different cells such as neutrophils and eosiophils.37,38  Lipoxins induce RhoA and Rac 

–mediated actin reorganization in monocyte and macrophage, whereas protoglandin E2 

increases migration of dendritic cells.39,40  We have previously shown that cPLA2 and 

iPLA2 play distinct and separate roles in human monocyte migration to MCP-1.21,22  

However, pharmacological inhibition of both cPLA2 and iPLA2 had no effect on VSMC 

to PDGF BB (Figure 3).  This may be due to differences in receptors and signaling 

between the two different cells, which would be subject to further investigation.  

Therefore, VSMC chemotaxis is not dependent on AA or its metabolites for its migration 

to PDGF BB. 

PLA2 plays a role in growth of several normal and cancerous cell types.41,42,43,44  

Insulin stimulates proliferation of VSMC which partially is dependent on cPLA2.45  Here 

we demonstrate that VSMC proliferation is dependent on cPLA2 and not iPLA2 (Figure 4 

B&C).  Since AACOCF3 is an inhibitor of both cPLA2 and iPLA2 and significantly 

reduced PDGF BB stimulated proliferation of VSMC, but the specific iPLA2 inhibitor 

BEL (Figure 4 A&C) did not, therefore cPLA2 plays more of a role in proliferation.  This 

was confirmed by the specific inhibitor of cPLA2 significantly reducing PDGF BB 

stimulated proliferation of VSMC (Figure 4B).  Since cPLA2 is selective for cleavage of 

AA at the sn2 position of phospholipids, we used AA to see if it would restore cPLA2-

inhibited proliferation of VSMC stimulated with PDGF BB.  Adding back AA fully 
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restored PDGF stimulated proliferation of VSMC after inhibition of cPLA2 (Figure 4D).  

This leads us to conclude that cPLA2 is involved in VSMC proliferation to PDGF BB in 

an AA dependent manor.   

Since pharmacological inhibitors can have other effect than specified, we have 

turned to siRNA as a more specific inhibitor of cPLA2 and plan to repeat both 

proliferation and chemotaxis assay to further confirm our results.   We are currently 

characterizing the doses of siRNA to inhibit cPLA2 in human VSMC.  In fluorescent-

labeled siRNA a conconcentraton of 120pM results in about 90% of cellular transfection 

(Figure 5).  At this concentration there is a about 80% inhibition of cPLA2 protein (Figure 

6).  After characterizing our siRNA to cPLA2 we plan to also do the AA restoration 

experiment to confirm that the proliferation of VSMC is dependent on this enzyme and 

it’s substrate.   

In summary, our studies provide novel insight into the role of cPLA2 in VSMC 

migration and proliferation.  cPLA2 does not play a role in VSMC migration to PDGF 

BB, however, it is essential to PDGF BB stimulated proliferation.  cPLA2’s substrate AA 

is required for the proliferation and is currently being further investigated in addition to 

other metabolic products to determine its exact function.  Since cPLA2 is essential for 

monocyte migration21,22 and VSMC proliferation, two essential components in the 

pathogenesis of atherosclerosis and restenosis, this could possibly lead to a valuable 

target for therapeutics to combat these crippling conditions.
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CHAPTER 2 

THE 2-D MIGRATORY PATTERNS OF TROPOMYOSIN IN FEMORAL AND 

ABDOMINAL AORTA TISSUE 

2.1 INTRODUCTION 

  Arteries are classified into three types according to their size: large or elastic 

arteries; medium arteries; and small arteries or arterioles, which are less than 0.5 mm in 

diameter.46  These types are all continuous with one another.  A characteristic feature of 

arteries, regardless of size, is a well-defined lumen, rounded or oval, maintained by the 

muscularity of the vessel wall. An artery is an elastic blood vessel that transports blood 

away from the heart.  The aorta is the main systemic artery and the largest artery of the 

body, which originates from the heart and branches out into smaller arteries and supplies 

oxygenated blood to the rest of the body.47  The femoral artery is a large artery in the 

muscles of the thigh.  The blood vessels are made of three layers, called from the luminal 

side outward, the tunica intima, the tunica media and the tunica adventitia.48  The tunica 

intima consists of an endothelium and any subendothelial connective tissue that may be 

present.  The tunica media is the layer of concentrically-arranged smooth muscle, the 

autonomic control of which can alter the diameter of the vessel and affect the blood 

pressure. Smooth muscle cells have secretory capabilities, and contain varying amounts 

of collagen fibers, elastic fibers, elastic lamellae, and proteoglycans.49,50  The tunica 

adventitia is made chiefly of longitudinally arranged collagen fibers. 
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Vascular smooth muscle is an involuntary non-striated muscle, found within the 

tunica media layer of large and small arteries and veins.  Smooth muscle may contract 

spontaneously (via ionic channel dynamic) or be induced by a number of physiochemical 

agents (hormones, drugs, neurotransmitters - particularly from the autonomic nervous 

system), and also mechanical stimulation (such as stretch).51,52,53,54  In blood vessels 

smooth muscle contracts slowly and may maintain the contraction (tonically) for 

prolonged periods.  The sliding of myosin and actin filaments, known as the sliding 

filament mechanism, causes smooth muscle contraction. The energy for this to happen is 

provided by the hydrolysis of ATP.55  Myosin functions as an ATPase utilizing ATP to 

produce a molecular conformational change of part of the myosin and produces 

movement.  Movement of the filaments over each other happens when the globular heads 

protruding from myosin filaments attach and interact with actin filaments to form 

crossbridges.56,57   

Tropomyosin is an alpha helical coiled coil rod shaped protein dimer that binds 

end to end along F actin filaments in muscle.58  Tropomyosin is an actin-binding protein 

that regulates actin mechanics.  Tropomyosin, along with the troponin complex, 

associates with actin in muscle fibers and regulate muscle contraction by regulating the 

binding of myosin.59  High molecular weight Tropomyosin can bind 7 actin monomers.  

In resting muscle, tropomyosin overlays the myosin binding sites on actin and is "locked" 

down in this position by troponin T (tropomyosin binding troponin) and troponin I 

(inhibitory troponin).  Upon release of calcium from the sarcoplasmic reticulum calcium 

binds to troponin C (calcium binding troponin).  This "unlocks" tropomyosin from actin, 

allowing it to move away from the binding groove.  Myosin heads then access the 
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binding sites on actin.  Once one myosin head binds, this fully displaces tropomyosin and 

allows additional myosin heads to bind, initiating muscle shortening and contraction.59.60   

Once calcium is pumped out of the cytoplasm and calcium levels return to normal, 

tropomyosin again binds to actin, preventing myosin from binding.   

 

2.2 METHODS AND MATERIALS 

Tissue Collection 

Abdominal aorta and femoral artery tissue was excised from 8-week-old C57-

Black mice.  Mice were euthanized in CO2 chamber according to protocol before tissue 

collection. Bilateral femoral arteries were collected in 1cm sections distal to the iliac 

crest.  Abdominal Aorta tissue was collected in sections distal to the heart and proximal 

to the renal artery.  The tissue was transported in DMEM and then snap frozen in liquid 

nitrogen and stored at minus 80°C. 

Protein Extraction for Artery Tissue 

Artery tissue extract was snap frozen in liquid nitrogen and dounce homogenized 

for 30 seconds.  200 µl of lysis buffer was added to the homogenizer (1% Triton X-100, 

150 mM NaCl, 50 mM Tris-HCL, pH 7.4, 1 mM PMSF, and 10 µl of protease inhibitor 

mix (Sigma) per milliliter of lysis buffer).  Mixture was dounce homogenized again for 

30 seconds.  After 30 min, the lysate was sonicated three times for 15 seconds and then 

centrifuged for 15 min at 9300 x g.  The supernatant was collected, and the protein 

concentration was determined using the Bradford assay (Bio-Rad, Hercules, CA).   
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Histological Sections/Staining 

Aortic tissue dissected from C57-Black mice and placed into 10 mL DMEM for 

paraffin embedding.  Hematoxylin and eosin stained slides from abdominal aorta and 

femoral artery specimen were examined by light microscopy at 400X.  Embedding and 

staining method details are given in the Armed Forces Institute of Pathology's 

'Laboratory Methods in Histochemistry’(AFIP Cite). 

Western Blot/SDS PAGE 

100mg of protein extract were loaded on a 7.5% SDS-PAGE gel (100 µg of 

lysate/well). The proteins were transferred to a polyvinylidene difluoride membrane (0.2 

µm; Bio-Rad) using a TRANS-BLOT SD electrophoretic transfer cell (Bio-Rad).  The 

membrane was blocked in 5% nonfat milk in PBS and 1% Tween 20 overnight at 4°C and 

then probed with primary Ab.  cPLA2
 protein was detected with a 1/1000 dilution of anti-

mouse recombinant cPLA2
 mAb (Santa Cruz), followed by incubation with anti-mouse 

IgG HRP (1/1000 dilution; Transduction Laboratories, Lexington, KY).  This Ab 

recognizes a distinct cPLA2 protein band running at 110 kDa and co-migrates with 

recombinant cPLA2. 

Two Dimensional Gel Electrophoresis 

The protein extracted from the mice was quantified by the Bradford assay, with 

the loading quantity being 500mg per sample.  2-D was performed with a horizontal 

isoelectric focusing (IEF) system (Bio-Rad, America), using pre-cast pH 4–7 

immobilized linear-gradient strips (170 mm) for the first dimension, and 12% sodium 

dodecyl sulfate polyacrylamide gels (SDS-PAGE) for the second dimension.  The SDS-

PAGE was run in a Multi-gel casting chamber (Bio-Rad, America).  Initial active 
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rehydration was set for 14 h at 50 V, IEF performed with the following voltage program: 

250 V (linear over 1 h), 1000 V (rapid over 2 h), 10,000 V (linear over 5 h), 10,000 V 

(rapid for 60,000 V h), 500 V (rapid over 1 h).  The limit electric current was at 

50 µA/strip and the whole course was controlled at 20 °C.  Prior to the 2-dimensional gel 

separation, the IPG strips were equilibrated for 2 × 15 min with gentle shaking in 6 ml of 

SDS equilibration buffer [Tris–Cl, pH 8.8 (50 mM), urea (6 M), glycerol (30%, v/v), SDS 

(2%)]. DTT (2%, w/v) was added in the first step and iodoacetamide (2.5%, w/v) in the 

second equilibration step.  The second-dimensional SDS-PAGE with a 12% running gel 

was performed firstly at a constant current of 5 mA/gel for 2 h and then at 30 mA/gel till 

the bromophenol blue reached the bottom of the gel.  After electrophoresis, the gels were 

stained with GelCode Coomassie Blue Stain (Pierce, America) overnight.  After being 

de-stained, spots in the gels were excised. 

MALDI TOF/TOF MS and MS/MS Analysis and Database Searching 

The differential-expressed protein spots were excised from gels, rinsed by Milli-Q 

sterile water three times, and then de-stained with 25 mM NH4HCO3/50% ACN until the 

gel pieces were completely de-stained.  The de-stained gel pieces were washed with 

100% acetonitrile for 5 min and then dried.  The dried gel pieces were rehydrated with 

20µg/20µL trypsin in (Promega Corp., Madison, WI, USA) solution for 30 min.  The 

excess liquid was removed and the pieces of the gel were immersed in 25 mM NH4HCO3 

containing 10% acetonitrile at the 37 °C overnight.  The digests were desalted with Ziptip 

(C-18, Millipore, Bedford, MA, USA) according to the manufacturer's instructions and 

subjected to analysis using MADLI TOF/TOF MS.  Single MS and tandem mass 

spectrometer (MS/MS) experiments were performed by using a Bruker Ultraflex MALDI 
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TOF/TOF mass spectrometer (Bruker Daltonics, America).  The MS and MS/MS spectra 

were searched within the MASCOT (MASCOT, Matrix Science, America) database 

system. 

 

2.3 RESULTS 

 

Hematoxylin and eosin stain of our C57-Black6 mice show obvious histological 

differences between the abdominal aorta and femoral artery.  Most notably are the 

differences between elastic tissue expressions.  External to the inner epithelial layer, the 

abdominal aorta exhibits multiple thick elastic bands spanning the entire arterial wall, 

whereas the femoral artery exhibited a more anatomical separation of internal and 

external elastica separated by a thick elastica free media separating the muscular layer 

from the serosa.

A	
   B	
  

Figure 2.1.  Hematoxylin and eosin stain of C57 black 6 mouse abdominal aorta (A) at 
100x magnification and femoral artery (B) at 400x magnification.  Note the multiple 
thick elastic bands throughout the entire wall of the aorta (black arrow) compared to the 
femoral artery which only has an inner elastic lamina (green arrow) and much smaller outer 
elastic lamina (blue arrow) separating the muscular layer from the serosa. 
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When the histologically different abdominal aorta and femoral artery tissues were 

run through 2-D gel analysis, it was noted that a large protein (observed as spots 1 and 2 

in figure 2) migrated to a significantly different location in the two gels.  The abdominal 

aorta spot (figure 2 – 1) migrated to the same isoelectric focused spot, but migrated on 

the SDS gel to ~39kD.  The same isoelectric spot on the femoral artery migrated to on the 

gel to ~80kD.  This suggested that a protein within the two arteries was isoelectrically 

identical, however, was much larger in size in the femoral artery

A	
   B	
  

2	
  

1	
  

Figure 2.2.  Tropomyosin migrates to different locations in murine abdominal aortic 
tissue compared to femoral artery.  2D gel of 150µg of whole C57 Black 6 abdominal 
aortic tissue (A) and femoral artery (B) extract run on 3-10 IPG strip and then a 4-20% SDS 
page gel and stained with Coomassie blue33.  The abdominal aorta spot (spot 1) was at about 
39kD where the femoral artery spot (spot 2) was located at the molecular weight of about 
80kD.   



 24 

 

	
  

Figure 2.3.   Analysis of the protein spot from a 2D gel (the red circle from figure 2-2B):  MS 
spectrum (A) and MS-MS spectrum (B) showing peak 1243.81 corresponding to peptide 
IQLVEEELDR.  Interpretations of both the MS and MS-MS spectra agreed that the protein was 
Tropomyosin alpha-1 and beta chain.  The probability score (mowse) was 107 for MS and 90 for 
MS-MS.  Scores >80 are statistically significant.  
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Initial mass spectrometry analysis of the two differing spots between the 

abdominal and aorta tissue revealed that this spot was indeed Tropomyosin.  Probability 

scores from MASCOT search (Matrix Science) of 107 and 80 for MS and tandem 

MS/MS, respectively, indicate statistically significant results.  Both Tropomyosin alpha-1 

and beta chain isomers were discovered in the peptide analysis, which is a typical 

racemic mixture for natural state proteins.   

 

 

 

 

 

Western blotting analysis, which subjected the protein samples to denaturing SDS 

buffer prior to gel electrophoresis, exhibited a different Tropomyosin migratory pattern.  

In both the abdominal aorta and the femoral artery, tropomyosin migrates to its 

appropriate 36-38kD.  This indicates a 40-50kD change in the migration of femoral artery 

Tropomyosin between western blotting and two-dimensional gel analysis, further 

suggesting the presence of a bound protein(s) in the femoral artery. 

Figure 2.4.  Murine Tropomyosin from femoral artery and abdominal aorta 
migrates to the same location on Western blot.  200ug of total protein from femoral 
artery (FA) and abdominal aorta (AA) were evaluated on an 8% SDS PAGE Gel and 
blotted for murine tropomyosin with a polyclonal antibody which detects both alpha and 
beta isoforms. 

FA AA 



 26 

	
  

Figure 2.5 – Two Dimensional Gel Analysis of Tropomyosin in the Femoral Artery.  
Migration of Tropomyosin was observed around 75kD  
 

Two dimensional gel analysis was repeated with femoral artery tissue extracted 

from C57-Black6 mice.  Tropomyosin again migrated to ~75kD, suggesting a protein is 

bound to the Tropomyosin isomer in the femoral artery.  This spot was excised from the 

gel and analyzed via MS and tandem MS/MS analysis.  
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Figure 2.6 – MS Analysis of 75kD 2-D Gel spot (figure 5 – A) performed on Bruker MALDI 
TOF/TOF and analyzed with Matrix Science MASCOT Search Engine.  
 

Excision of the 75kD spot was done in two sections because of the size and dimer 

nature of the spot.  Figure 6 above shows the upper section of the spot on the femoral 

artery two-dimensional gel.  This spot confirmed the identity of Tropomyosin I (TPMI).  

The probability score of this identification was 38 (scores >40 are considered statistically 

significant).  The mass of this TPMI identification was 32kD still suggesting that a 

protein within the spot was hindering the proper migration of Tropomyosin to its 32-

35kD location. 
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Figure 2.7 - MS Analysis of 75kD 2-D Gel spot (figure 5 – A) performed on Bruker MALDI 
TOF/TOF and analyzed with Matrix Science MASCOT Search Engine. 
 

The second excisional section of the 75kD spot again revealed the identity of 

Tropomyosin I (TPMI).  This spot however, also revealed the presence of Tropomyosin 

II (TPMII) or beta chain Tropomyosin.  The MASCOT search score for TPMI was 128 

(scores >40 are considered statistically significant) and 76 for TPMII.  The mass of these 

proteins was still within the 33-36kD range.  To further elucidate the phenomena of the 

75kD migration, we sought to identify a specific peak within these MS spectra by tandem 

MS/MS analysis. 

1243.670

832.276

1727.907

2045.0271399.782

1538.7231314.783
1959.999

1616.845

1460.758

1073.559

894.441
1891.945

2169.996 2411.165

04-­‐03-­‐09\2\1S R ef

0

1000

2000

3000

4000Int
en

s.	
  
[a.

u.]

800 1000 1200 1400 1600 1800 2000 2200 2400
m/z



 29 

 

Figure 2.8 – MS/MS Analysis of 75kD 2-D Gel spot (figure 5 – A) on peak 1758.838 performed 
on Bruker MALDI TOF/TOF and analyzed with Matrix Science MASCOT Search Engine. 
 

MS/MS analysis of all relevant peaks only confirmed one statistically significant 

protein, which is shown above in figure 8.  Peak 1758.838 was successfully identified as 

Tropomyosin I (TPMI), with a MASCOT score of 104 (scores >40 are statistically 

significant).  These data suggest that no other proteins within the 75kD were correctly 

identified as a source of the 40-50kD discrepancy between the 2-D gel and Western 

analysis of femoral artery tissue. 

 

2.4 DISCUSSION 
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blot analysis.  After stripping and linearizing the proteins, tropomyosin migrated to the 

same location between FA and AA with a molecular weight of 38kD(figure 4).  This led 

us to conclude that tropomyosin may have had other protein attached to it in the FA that 

was not present in the AA. We are currently investigating the hypothesis that 

tropomyosin has other proteins bound to it in FA that are not present in AA. 

  In addition to calcium and actin, tropomyosin has also been shown to bind to a 

number of other proteins in both striated and smooth muscle fibers.  The following table 

summarizes previous discoveries of Tropomyosin binding proteins.  Of the possible 

proteins listed below: 

Table 2.1 Proteins that have been shown to bind to Tropomyosin 
Protein kD

a 
Function Reference 

Calponin 34 Unknown Childs & Watson, 1992 
CEACAM1 44.

6 
Adhesion protein Schumann et al, 2001 

Endostatin 20 Unknown MacDonald et al, 2001 
Enigma 65 LIM  Guy et al, 1999 
Gelsolin 
(sub-domain 
2) 

82 To regulate gelsolin severing 
function? 

Koepf & Burtnick 1992, 
1993; Maciver et al, 
2000 

S100A2 10 Unknown Gimona, et al, 1997 
Troponin 22.

5 
Calcium binding protein  

Smooth 
muscle actin 
(SMA) 

42 Intermediate filament  

 

CEACAM1, SMA, and possibly calponin are of the proper molecular weight to be 

within the range of 35 to 45 kDA when added to the molecular weight of tropomyosin 

(36kDa alpha 1, 38kDa Beta) will give a total of about 70 to 85kDa where we find the 

tropomyosin spot on 2D analysis in FA.  The largest, densest spot on FA and AA 2D gels 
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is about 45kDa on each blot (figure 2), and this turned out to be actin (data not shown), so 

we don’t believe the change in tropomyosin molecular weight for FA is solely due to 

actin.  Other proteins are being investigated. 

Table 2.2 Secondary proteins found in Tropomyosin MS analysis 
Protein Mass (Da) 
Retinol dehydrogenase 13 36411 
Polycomb group RING finger protein 3 28028 
Gamma-tubulin complex component 5 117903 
Zinc finger protein 706 8492 
Zinc finger protein GLI3 171549 
DNA-directed RNA polymerase I SU RPA1 193987 
Bone morphogenetic protein 3b 52457 
Serine/threonine protein kinase SMG1 409840 
 

First, we analyze the smaller peaks found around tropomyosin (peak 1243.81 in 

figure 3A) in the MS spectra of FA that were not found in the AA to point to clues 

around the identity of possible associated proteins.  Table 2 show the proteins identified 

by of smaller peaks in the FA spectra that were not found in AA.  None of these proteins 

match the known proteins that bind to tropomyosin in Table 1.  Possible proteins from the 

list in Table 2 that would add up to 70-85kDa with the mass of tropomyosin would be 

retinol dehydrogenase 13, bone morphogenetic protein 3b, and serine/threonine protein 

kinase SMG1.  Since this does not prove that tropomyosin is associated or bound to any 

of these proteins, we have moved to immunoprecipitation to pull down tropomyosin in 

both FA and AA and search of any bound proteins in FA that are not found in AA.  

(Reference table II-2) 

Currently, we are performing immunoprecipitation assays using a polyclonal 

antibody that recognizes both tropomyosin beta and alpha 1 in both murine FA and AA.  

Our goal is to identify other bands in the FA that are not found in AA.  We will excise 
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these bands and analyze them by MS and MS/MS analysis.  This will hopefully allow us 

to identify the bound proteins in FA that are causing the higher migration of tropomyosin 

alpha 1 and beta on 2D electrophoresis.  This may turn out to be a known protein or a 

possible protein that has been not associated with tropomyosin in the past.  Other 

possibilities include a combination of heterodimers or homodimers made up in 

tropomyosin alpha 1 and beta that are conglomerated in FA and not in AA.  This could 

lead to investigating different contractile properties of FA compared to AA in mice.   

Subcellular differences in major arteries are not well characterized, but may lead 

to major differences in function between different arteries.  We have confirmed that 

microscopically there is a greater amount of elastic tissue in the AA compared to the FA 

(figure 1).  Additionally, there are clear differences at the subcellular level in the 

contractile protein tropomyosin alpha 1 and beta between FA and AA on 2D analysis.  

The exact nature of these differences is under investigation.  We hypothesize that 

tropomyosin alpha 1 and beta have different protein complexes bound to tropomyosin 

alpha 1 and beta in FA that are not present in AA.  This may lead to distinctive functional 

characteristics that are found in FA and not present in AA. 
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