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ABSTRACT 

 

The cannabinoid system consisting of exogenous and endogenous ligands as well 

as dedicated receptors has been proposed to play a regulatory role in immune functions.  

The exogenous cannabinoid ∆
9
-tetrahydrocannabinol (THC), one of the most widely 

studied marijuana derivatives, has been associated with multiple anti-inflammatory 

properties over the years.  The majority of THC research has centered on the shift from 

Th1 to Th2 responses however, the complexity of inflammation has since increased.  

Recent studies have revealed that epigenome, Th cell subsets, and immunoregulatory cell 

induction, are all known to impact inflammation.  In the current research, we have 

attempted to look holistically at the impact of THC on inflammation, specifically 

addressing its effect on epigenome and regulatory cells such as myeloid derived 

suppressor cells (MDSCs).  In regards to epigenetic regulation, we found that THC 

altered both DNA methylation profiles and microRNA (miRNA, miR) expression in 

immune cells.  THC treatment decreased DNA methylation of key genes, STAT3 and 

arginase1 (Arg1), associated with the induction and suppressive capabilities of myeloid 

derived suppressor cells (MDSCs).  Furthermore, THC treatment triggered alterations in 

miRNA expression in lymphocytes, decreasing the differentiation of Th1, via 

overexpression of miR-29b, and Th17, via reduced miR-21 expression.  Moreover, we 

discovered that THC, a ligand for both CB1 and CB2 cannabinoid receptors, required a 

fully functional CB1 receptor for optimal induction of MDSCs.  Additionally, functional 
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CB1 receptor was necessary for THC to inhibit the Th1 driven proinflammatory 

response associated with host versus graft disease (HvGD) leading to allogenic graft 

survival.  In order to assess THC inhibition of inflammation, driven by Th1 and Th17, we 

also used delayed type hypersensitivity (DTH).  In this model, THC was able to reduce 

both Th1 and Th17 associated cytokines and transcription factors.  We have further 

highlighted the importance of the endocannabinoid (EC) system in immunoregulation 

through the therapeutic use of the endogenous cannabinoid receptor ligand 2-

arachidonoyl glycerol (2-AG) and detection of 2-AG during an ongoing DTH response.   

The impact of endogenous and exogenous cannabinoids and the CB receptors on 

expressed on immune cells on the regulation of immune response is an exciting area of 

research with potential implications in the prevention and treatment of inflammatory and 

autoimmune diseases.  Taken together, our findings demonstrate for the first time how 

cannabinoids can regulate the immune response through alterations in the epigenetic and 

immunoregulatory pathways, thereby controlling inflammation driven by Th1 and Th17 

cells.  Our studies shed new light on how cannabinoid system can be targeted to 

therapeutically prevent and treat inflammatory and autoimmune diseases.
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CHAPTER I: INTRODUCTION 

 

1.1 THE ENDOCANNABINOID (EC) SYSTEM 

The first use of cannabis as an alternative medicine is attributed to ancient China 

and Taiwan both of which used hemp seeds, derived from the Cannabis sativa or 

marijuana plant, as dietary additives (1).  The most well studied cannabinoid extracted 

from marijuana is the aromatic terpenoid ∆
9
-tetrahydrocannabinol (THC) (2).  Once 

exogenous cannabinoids, such as THC, were discovered to act on the immune system, the 

search for possible receptors began in earnest.  The search for cannabinoid receptors led 

to the discovery of the endogenous cannabinoid (endocannabinoid, EC) system (3).  The 

EC system consists of cannabinoid receptors and their ligands.    

After THC was isolated and synthesized, two receptors termed cannabinoid 

receptor 1 (CB1) and cannabinoid receptor 2 (CB2) were discovered, in 1990 and 1992 

respectively, which could bind the exogenous cannabinoid (4); (5).  While additional 

receptors have been found throughout the years, which can use cannabinoids as ligands, 

CB1 and CB2 remain the only dedicated CB receptors.  All receptors associated with the 

EC system are G-protein coupled receptors (GPR) consisting of seven transmembrane 

helices, an extracellular N-terminus, and an intracellular C-terminus (3).  
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 Somewhat controversial is the inclusion of the vanilloid and orphan GPR55 

receptors to the EC system.  The vanilloid receptor, which can be activated by voltage, 

protons, and vanilloid compounds (such as capsaicin), as well as cannabinoids, is found 

in the CNS and on immune cells (6); (7); (8).  However, as many non-cannabinoid 

molecules can act as activators for this receptor, it cannot be considered exclusively as 

part of the EC system.  GPR55 is present in numerous tissues, including the adrenals, 

gastrointestinal tract, and central nervous system, and also affects the G13 peptide (9); 

(10).  The issue with including this receptor in the EC system is that while 

endocannabinoids have been found to activate the GPR55 in transformed human 

embryonic kidney cells (HEK293), these results are not always reproducible (10); (11).  

 The main cannabinoid receptors, CB1 and CB2, have been found to reside in 

various organ systems with CB1 having the highest rate of expression in the central 

nervous system and CB2, in the immune system (12); (13).  However, CB1 receptors 

have also been found in the immune system, in particular on activated T cells, and CB2 

receptors have been found in the CNS as well as other peripheral tissues (13); (14).  

While CB receptors interact with multiple ligands, specificity is maintained through 

structural and conformation requirements.  CB1 receptor binding requires 20-22 carbon 

fatty acid chains, no less than three homoallylic double bonds, and at least five saturated 

carbons at the end of the acyl chain (15).  Additionally, amino acid disparity in binding 

sites, due to single nucleotide polymorphisms, affects CB receptor affinity for individual 

ligands (16), (17), (18), (19), (20).     

Not long after the discovery of the cannabinoid receptors, endogenous ligands, 

which act as lipid messengers derived from cellular membranes, were found (21).  The 



3 

 

first EC discovered, N-arachidonyl ethanolamide (anandamide, AEA), was named 

anandamide from the Sanskrit for “internal bliss” (22). Anandamide was first found in the 

porcine brain in 1992 (3).  In 1995, two independent groups isolated another endogenous 

cannabinoid, 2-arachidonoyl glycerol (2-AG), (23); (24).  Maintenance of EC levels 

occurs through intercellular metabolism via the catabolic enzymes fatty acid amide 

hydrolysis (FAAH) and monoacylglyceride lipase (MAGL), for AEA and 2-AG 

respectively (25); (26); (27). 

Endocannabinoids are synthesized locally as needed rather than being stored 

within vesicles (28).  The synthesis of AEA can occur in two main ways: one is through 

N-arachidonoyl phosphatidylethanolaminephospholipase, which converts 

phosphatidylcholine and phosphatidylethanolamine to N-arachidonoyl 

phosphatidylethanolamine (NAPE), the anandamide precursor (29).  The other accepted 

pathway is through phospholipase C hydrolysis of NAPE and phosphoanandamide, 

which is then dephosphorylated (30); (31); (32).  However, 2-AG synthesis follows 

different pathways one of which involves 2-arachidonate-containing phosphoinositols, 

converted to diacylglycerols (DAGs), are finally hydrolyzed by DAG lipase (31); (32).  

Additionally, 2-AG can be formed from arachidonic acid-containing phosphatidylcholine 

via variable phospholipases and phosphatidic acid phosphatase (31).  Upon synthesis 

these lipid messengers, due to the hydrophobic nature of the molecules, remain 

membrane bound till a high-affinity mechanism allows for cellular uptake to occur (33).     

At first glance, the link between the EC system and immune regulation may 

appear tenuous or limited to neuroimmune disorders inasmuch as the CB1 receptor was 

initially understood to be CNS specific.  However, in depth studies of the Jurkat T cell 
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line has shown that CB1 transcript expression is significantly increased, 29-fold, upon 

CD3/CD28 activation compared to non-stimulated cells (34).  Even non-immortalized 

primary human T cells, isolated form peripheral blood, exhibit an 8-fold increase in CB1 

transcript when activated (34).  This is of great importance in the understanding of 

inflammatory diseases as T cells are a major component of the adaptive immune system 

and are direct mediators of a number of autoimmune diseases. 

1.2 EPIGENETICS AND IMMUNITY 

Epigenetic modifications are heritable changes to DNA which regulate gene 

expression (35); (36).  The emerging field of epigenomics, including histone marks, DNA 

methylation, and microRNA expression, has been gaining attention as a way to fine tune 

the immune response (35); (36).  Histone marks, such as acetylation and methylation, 

regulate gene expression through changes in chromatin remodeling altering DNA 

availability (37); (38).  DNA methylation blocks transcription factor binding, causing 

inhibition of gene expression (39).  Translation of mRNA is also regulated via microRNA 

(miR) target gene binding or degradation (40). 

DNA methylation causes reversible gene silencing through the transfer of methyl 

groups to CpG clusters (41).  DNA methylation can be inherited or created de novo by 

DNA methyl transferases (DNMTs) which transfer metyhyl groups from S-adenosyl-L-

methionine (SAM) to the 5-position on cytosine residues found in CpG clusters within 

the DNA sequence (42). DNMTs can be broken into two groups those that maintain 

methylation patterns and those that alter methylation patterns through increased methyl 

transfers.  DNMT1 is considered a maintenance DNMT as it binds preferentially to 

hemimethylated DNA (39).  De novo metyhylation of CpG clusters occurs via the 
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DNMT3 family, 3a and 3b (41).  It has been suggested that DNA methylation, at both a 

local and global level, is vital to proper cellular function (43); (44).  Specifically, DNA 

methylation has been linked to immune function and immune cell differentiation (45); 

(46); (47).  

microRNA (miRNA, miR) are short strands of RNA, around 20 nucleotides long, 

which originate from non-coding RNA (40).  While non-coding RNA was initially 

considered useless, the role of miRNA as a gene expression regulator was discovered in 

the 1990’s (48).  miRNA most commonly inhibits gene expression through the binding of 

mRNA sequences; however miRs can also bind and degrade mRNA transcripts (40).  

Each miRNA has been predicted to bind numerous targets and therefore regulate the 

expression of various genes (40).  An evolving role of miRNA in relation to immunity 

focuses on the regulation of T helper cell lineage-defining transcription factors and  

downstream targets (49); (50).     

1.3 IMMUNE RESPONSE IN T HELPER CELL DRIVEN INFLAMMATION 

T helper cells can differentiate into proinflammatory, anti-inflammatory, or 

regulatory cells based on lineage specific signals.  Classically, T cell driven inflammation 

has been associated with the Th1 cell subset, and therefore elevated expression of IFN-γ, 

TNF-α, IL-12, and the transcription factor Tbx21 (Tbet) (51).  Additionally, IL-17 

producing cells, known as the Th17 cell subset, have been associated with progression of 

inflammatory disease (52).  Hallmarks of Th17 cell driven inflammation include elevated 

levels of IL-6, IL-17a/f, and the transcription factors TGFβ and IRF4 (51).  While 

proinflammatory signals are necessary to maintain T cell activation and proliferation, 

immune regulatory or suppressive cell responses are also critical.  Immune regulators 
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include T regulatory cells (Treg) and myeloid derived suppressor cells (MDSC), both of 

which are induced by proinflammatory microenvironments (53, 54); (55); (56).  MDSCs, 

a subset of immature myeloid cells, which suppress T cell proliferation via L-arginine 

depletion, are often induced in both acute and chronic inflammatory models (57); (58).  

Host versus graft disease (HvGD, transplant rejection) is primarily a Th1 driven 

inflammatory response initiated by the host against allogenic graft tissue.  Acute HvGD is 

associated with elevated levels of IL-2, IFN-γ, and TNF-α indicative of cytotoxic and 

Th1 T cell activation (59). Interestingly, tolerance of allogenic graft cells/tissue has been 

found to be dependent on T cell subset regulators such as IL-6 levels and MDSC 

recruitment (59); (60). While success of allogenic transplants has increased significantly 

over the years, this is primarily due to severe immune suppression.  The most common 

immune suppressive drugs; corticosteroids, calcineurin inhibitors, anti-proliferatives, and 

mammalian target of rapamycin (mTOR) inhibitors have increased graft survival (61); 

(62); (63); (64); (65).  However, continued usage of these drugs causes side effects 

including immunotoxicity, leukopenia, susceptibility to cancer and/or infectious disease, 

and can even delay functionality of the graft (61); (66); (62); (67); (68); (63).   

Type IV hypersensitivity commonly known as delayed type hypersensitivity 

(DTH, contact dermatitis) is a more complex model of inflammation resulting in 

combined Th1/Th17 activation (69); (52).  The ability of DTH to induce both major 

proinflammatory T helper subsets stems from the activation of toll like receptors (TLR2 

and TLR4) (70);  (71, 72).  It has been shown that activation of TLR2 and TLR4 causes 

secretion of  IL-12 and IL-6, Th1 and Th17 differentiating cytokines respectively (70); 
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(71); (72).  Type IV hypersensitivity is therefore associated with elevated IFN-γ and IL-

17a/f expression (69); (52).   

1.4 RATIONALE FOR USING CANNABINOID TREATMENTS 

As mentioned earlier THC, AEA and 2-AG have all been shown to act through 

the CB1 receptor.  The G-proteins that CB1 receptors activate include Gi, inhibitory 

proteins, which are known to modulate adenylate cyclase (73).  Furthermore, the CB1 

receptor upon activation has been found to increase ceramide, a bioactive lipid implicated 

in cellular differentiation, proliferation, and apoptosis (74).  Additionally, recent findings 

show that AEA (mM) works in a CB1 dependent manner to induce myeloid derived 

suppressor cells (MDSCs), a regulatory cell type which has been shown to inhibit 

inflammatory responses to T cell activation (75).  These data suggest that the EC system 

works through the CB1 receptor to elicit an anti-inflammatory response, upon activation 

of immune cells.   

The anti-inflammatory properties of THC, including suppression of the antitumor 

response, have been well studied (76); (77); (78); (79); (79).  THC has been shown to 

suppress inflammatory responses using various mechanisms such as apoptosis, altering 

the cytokine milieu, and through the induction of regulatory immune cells such as Tregs.  

THC exposure has been linked to cannabinoid receptor dependent apoptosis in splenic 

and thymic T cells, dendritic cells (DCs), and macrophages (80); (81); (82).  In addition 

to apoptosis, THC can induce immunsupression by shifting the cytokine profile from 

proinflammatory (Th1 or Th17) to anti-inflammatory (Th2) (76); (83); (78).  

Cannabinoids have also been observed to decrease lymphocyte driven immune responses 

through the activation of regulatory cells such as Tregs and MDSCs (84); (85); (86); (75).  
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Furthermore, recent findings have shown that THC treatment can also affect epigenetic 

modifications including alteration of histone marks, DNA methylation profiles, and 

miRNA expression (38); (87); (88).    

ECs have also been found to influence the immune response.  Focusing first on 2-

AG, it was found that its addition to anti-CD3 mAb activated T cells inhibited 

proliferation, but only at low cell density (89).  Additionally, in vitro incubation with 2-

AG was found to suppress IL-2 in activated Jurkat T cells at microMolar concentrations 

as well as in primary splenocytes (90); (91).  Looking at the mitogen-induced 

proliferation of T cells, a dose-dependent inhibition was observed when AEA was added 

to in vitro cultures (92).  In another in vitro experiment, it was found that when AEA was 

present at microMolar concentrations, prior to OVA stimulation, it caused decrease in 

IFN-γ production in ConA-stimulated splenocytes (93).  Additionally, AEA treatment has 

also been shown to induce MDSCs in a CB1-dependent manner, and alter miR expression 

in DTH (75); (83).   

1.5 STATEMENT OF HYPOTHESIS AND AIMS 

 There are over 80 autoimmune and inflammatory diseases in which there is no 

cure.  Thus, the current treatment strategy includes use of immunosuppressive drugs that 

have significant toxicity and side effects.  Moreover, chronic inflammation triggers a 

large number of clinical disorders including cardiovascular, neurodegenerative, cancer, 

obesity and the like.  Thus, scientists are working towards understanding inflammatory 

pathways so that better targeted therapeutics can be developed to treat inflammation.  In 

this context, cannabinoid receptor-ligand system which have been discovered on immune 

cells and system, offer novel approaches to regulate inflammation.    
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In the current research, we tested the central hypothesis that cannabinoids regulate 

inflammation through alterations in the epigenetic pathways, including DNA methylation 

and miRNA expression, leading to suppression of proinflammatory T cells and 

enhancement of regulatory T cell and MDSC pathways.  To this end, we assessed the 

ability of THC to enact an anti-inflammatory tone in a wide array of inflammatory 

disease models such as HvGD, allograft rejection, and DTH response and we noted 

consistently, data supporting a role for epigenetic modifications involving DNA 

methylation and miRNA expression.  Additionally, we set out to prove that THC 

treatment inhibits classical, Th1, as well as non-classical, Th17, T helper cell driven 

inflammation, while enhancing MDSCs.  Finally, using the natural ligand for the 

cannabinoid receptors, 2-AG, we determined that the endocannabinoid system does play 

an integral role in regulating inflammatory responses.     
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CHAPTER II: Δ
9
 Tetrahydrocannabinol-mediated Epigenetic Modifications Elicit 

Myeloid Derived Suppressor Cell Activation via STAT3/S100A8. 

2.1 INTRODUCTION 

Myeloid-derived suppressor cells (MDSCs), which were originally observed in 

cancer models, are anti-inflammatory mediators which can be helpful or harmful 

depending on the context.  In cancer models MDSCs inhibit the T cell driven response 

against tumors allowing for cancer growth and metastasis (94); (95).  However, in 

autoimmune diseases, MDSC induction is advantageous, working to reduce proliferative 

T cell inflammation (54); (53); (55); (56).  It is therefore necessary to understand the 

mechanisms which lead to MDSC induction and activation in order to best utilize this 

duality.  MDSCs can be categorized, in mice, into two major subsets granulocytic 

(Ly6G+Ly6C+GR1+CD11b+) or monocytic (Ly6G-Ly6C+GR1+CD11b+) (96).  

Additionally, MDSCs are defined by their ability to suppress T cell responses including 

proliferation (97); (98).  The classic mechanism for MDSC suppression of T cell 

proliferation is L-arginine metabolism via either cytokine-induced nitric oxide synthases 

(iNOS or NOS2) or arginase1 (Arg1) (99).   

As gene regulation is integral for cell function and development, interest in 

dynamic epigenetic modifications has become paramount.  DNA methylation, one of the 
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most common forms of epigenetic regulation, controls gene expression by 

blocking transcription machinery causing reversible gene silencing .  DNA methylation, 

both de novo and inherited, is dependent on DNA methyltransferases (DNMTs) (41).  

DNMTs transfer methyl groups from SAM (S-adenosyl-L-methionine) to the 5-position 

on cytosine residue found in CpG clusters within the DNA sequence (42). DNMT1, binds 

preferentially to hemimethylated DNA and is considered to be the maintenance DNMT, 

and the DNMT3 family, 3a and 3b, is deemed necessary for de novo methylation (41).  

Altered DNMT profiles are often seen in cancer patients suggesting that global 

methylation is vital to proper cellular function though no direct association between 

altered methylation profiles and MDSC induction has been highlighted in these studies 

(43); (44).  Furthermore, DNA methylation has been linked to not only immune function, 

but also to immune cell differentiation (45); (46); (47); (100); (101); (102).  Interestingly, 

MDSCs are not a terminally differentiated immune cell population.  Rather MDSCs are 

considered a heterogeneous mixture of immature myeloid-origin cells which can 

differentiate into DCs or macrophages (103).  It is the plasticity of immature cells which 

suggests that DNA methylation could be playing a role in both MDSC maintenance and 

activation.  However, there is only one recent study indicating that HDAC11 may play a 

role as an epigenetic regulator in MDSC expansion and function (104).   

Δ9-Tetrahydrocannabinol (THC), an exogenous cannabinoid derived from the 

Cannabis sativa plant, has long been known to act as an anti-inflammatory agent  as well 

as suppress antitumor immune response (76); (77); (78); (79); (84).  The 

immunosuppressive  properties of THC, in cancer models, were shown to be, in part, due 

to the induction of Th2 anti-inflammatory cytokines (IL-4 and IL-10) and correlating 



12 

 

decrease of Th1 pro-inflammatory cytokines (IL-2 and IFN-γ) (76); (78).  THC has also 

been shown to induce T regulatory cells (Tregs) (84); (85).  Additionally, recent studies 

from our laboratory have suggested that administration of THC into mice can trigger 

large numbers of immunosuppressive MDSCs (86).   

While it has been shown that THC can alter cytokines and transcription factors 

linked to MDSC differentiation or homing, its role in MDSC expansion and activation 

has not been clearly elucidated (86); (87); (75).  Furthermore, the role of epigenetic 

pathways in the induction of MDSCs by THC has not been determined.  In the current 

study, we investigated the effect of THC on methylation of several genes involved in the 

differentiation and activation of MDSCs, and our data demonstrate epigenetic regulation 

of several of the critical molecules involved in MDSC activation and functions including 

Arg1 and STAT3.  

2.2 MATERIALS AND METHODS 

Mice- 

Female C57BL/6 (wild-type, BL6) mice, aged 6-8 weeks and at an average weight of 20 

g, were obtained from the National Cancer Institute (Frederick, MD).  All mice were 

housed in pathogen-free conditions and allowed ad libitum access to filtered water and 

Teklad rodent diet 8604 (normal chow) at the Animal Research Facility located at the 

University of South Carolina School of Medicine.  All experiments were conducted under 

an approved Institutional Animal Care and Use Committee animal protocol.   
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Treatment with THC- 

THC (NIDA-NIH) dissolved in ethanol was diluted in 1xPBS to a concentration of 20 

mg/kg.  THC was administered intraperitoneally (i.p.) into naïve mice.  For depletion of 

S100A8, mice were given an i.p. injection of antiS100A8 (0.01 mg/mouse 8H150) 1 hour 

after THC treatment. 

MDSC Isolation- 

Sixteen hours after THC injection, mice were euthanized and the peritoneal exudate 

collected, three washes of 5 mL of ice cold 1xPBS were injected into the peritoneal 

cavity and after five minutes, with agitation, collected.  The cells were resuspended in 1 

mL then treated with Fc block for 10 minutes and labeled with PE conjugated anti-Gr1 

Abs.  The +EasySep positive PE selection kit procedure was followed to isolate Gr1 

positive cells, as described (105).  After isolation, cells were labeled with FITC-

conjugated anti-CD11b and assessed for purity using flow cytometeric analysis, gating on 

live cells.  To isolate Ly6G and Ly6C positive cells +EasySep positive PE and FITC 

selection kits were used respectively.  Purity of the MDSC subset populations was 

assessed by using duel staining with Alexa Fluor 647-conjugated anti-CD11b.  

Monoclonal Antibodies, Reagents, and Flow Cytometer- 

Antibodies used for flow cytometric analysis (BioLegend) include: Fc block (93), PE 

conjugated anti-Gr1 (RB6-8C5), FITC conjugated anti-CD11b (M1/70), PE conjugated 

anti-Ly6G (1A8), FitC conjugated anti-Ly6C (HK1.4), and Alexa Fluor 647 conjugated 

anti-CD11b (ICRF44).  Briefly, peritoneal lavage cells (10
6
 cells) from BL/6 mice were 

incubated with Fc receptor antibodies (5-10 minutes) and incubated with conjugated 
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antibodies (20-30 minutes at 4°C).  Next, cells were washed twice with 1xPBS/2% fetal 

bovine serum buffer.  The stained cells were then assessed by flow cytometer (FC500; 

Beckman Coulter) and the resulting data analyzed by Cytomics CXP software (Beckman 

Coulter).  Two-color flow cytometric analysis was completed for assessing presence of 

MDSCs in the bone marrow and peritoneal exudates.  Three-color flow cytometric 

analysis was used to profile the MDSC subsets.   

MeDIP-seq-          

Purified genomic DNA was treated with dsDNA Shearase (Zymo Research, Irvine, CA).  

DNA fragments with size from 200bp to 400 bp were purified to construct sequencing 

library using Illumina Chip-seq library preparation kit.  dsDNA was then denatured and 

immunoprecipitated with anti 5-methylcytosine antibody using a MeDIP kit from 

Diagenode (Denville, NJ). Precipitated DNA was purified and sequenced by HiSeq2500 

(Tufts Genomic Core, Boston, MA). The sample before immunoprecipitation was also 

sequenced as input control.   

MeDIP data Analysis-       

MeDIP-seq libraries were sequenced with single-end reads of 50bp. Raw sequencing 

reads were mapped to mouse genome build mm9 using Bowtie software by allowing two 

mismatches in the read (106).  The mapped reads were then filtered and only uniquely 

mapped reads were used for the downstream analysis.   Mapped reads were analyzed with 

MEDIPS software (107), and visualized in IGB genome browser (http://bioviz.org/igb). 

The location of 3kb upstream and downstream of transcriptional start site (TSS) was 

generated using UCSC table browser. The DNA methylation signal of all genes within 
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this region was extracted. The correlations of overall DNA methylation across the whole 

genome and near the TSS site (3kb up and down stream) were analyzed by CEAS 

software (108).    

Methylation specific (Msp) PCR- 

Genomic DNA was isolated using the DNeasy kit (Qiagen) following the manufacture’s 

protocol.  Bisulfite conversion of CpG islands was completed using the Epitect Bisulfite 

kit (Qiagen).  Msp PCR was run with PreMix F (Epicentre) and iTaq DNA polymerase 

(BioRad).  Samples were assessed for expression of DNMT3a (Forward-

5CAGCACCATTCCTGGTCATGCAAA3; Reverse-

5TCAAGGTTTCCTGTCTGGTAGGCA3), and DNMT3b (Forward-

5GCACAACCAATGACTCTGCTGCTT3; Reverse-

5AGGACAAACAGCGGTCTTCCAGAT3) with an annealing temperature of 60°C.  

Additionally methylated (M) and un-methylated (UM) DNA primers were used for 

Arginase1, NOS2, and STAT3 (Table 2.I).  Methylation index ([(M)/(M+UM)]*100) was 

used to assess DNA methylation.  Universal methylated mouse DNA standard (Millipore 

S8000) was used as a control with all primers.  Primers were generated using the Methyl 

Primer Express v1.0 software, and synthesized from IDT DNA technologies. 

Effect of MDSCs on T cell proliferation- 

To study the ability of MDSCs to suppress T cell proliferation, we used the following 

assay as described (75).  Concanavalin A (ConA) activated (2.5 μg/mL) spleen cells, 

from naïve BL6 mice were cultured in triplicate (0.2 mL/well in a round bottom 96 well 

plate) with Mitomycin C inactivated MDSCs for 38-40 hours.  Ratio of MDSCs to T cells 
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was 1:25 (Fig. 2.1 B only) or 1:2.  Sixteen hours before collection and analysis, [
3
H] 

thymidine (2 µCi/well) was added to the cell cultures.  [
3
H] thymidine incorporation was 

measured using a liquid scintillation counter (MicroBeta Trilux). 

Western Blot Analysis- 

Protein was isolated from purified MDSCs using radioimmunoprecipitation (RIPA) lysis 

buffer (Santa Cruz), as described (109).  Five or 10 micrograms of protein was loaded 

and ran on a polyacrylamide gel (12%) at 60 V for 2.5 hours.  Protein was then 

transferred to nitrocellulose at 100 V for 1 hour.  Protein transfer was confirmed using 3 

mL of Ponceau S staining solution.  Nitrocellulose was then blocked in 5% nonfat dry 

milk in TBS.  Nitrocellulose was then probed with antibodies to S100A8 (Calgranulin A 

[M-19] 1:2000), S100A9 (Calgranulin B [M-19] 1:1000), Arginase1 (V-20 1:1000), 

NOS2 (iNOS [M-19] 1:500), STAT3 (C-20 1:200), P-STA (9E12 1:200).  HRP 

conjugated secondary antibodies were used at either 1:1000 or 1:2000 dilutions 

depending on the secondary required.  For control protein bands γ-tubulin (Poly6209) or 

β-actin (Poly6221) were used at a dilution of 1:1000.  ECL substrate (Thermo) was added 

for 1 minute, exposure time varied.      

ImageJ-    

Densitometry was performed on scanned western blot images as well as PCR gels using 

the ImageJ gel analysis tool (110).  Scanned blots and gels were assessed for absolute 

density (AD), as determined by area under the curve, of each experimental and control 

band.  Relative density (RD), for western blots, was determined by dividing the 

experimental band AD by the control band AD for both the protein of interest and a 
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structural protein.  The normalized density ratio (NDR) was then calculated by dividing 

the protein of interest RD by the structural protein RD.   

Cytokine Analysis in Cell Culture Supernatants- 

ELISA MAX sandwich enzyme-linked immunosorbent assay (ELISA) kits (BioLegend) 

were used to assess the level of IL-6, IL-10, and IFN-γ cytokines.  Sandwich ELISA kits 

(MyBioSource) were used to assess S100A8 and S100A9 levels.  Isolated MDSCs from 

the bone marrow or peritoneal cavity (2.5x10
6
 cells/mL) from naïve or THC treated mice 

were cultured in 0.2 mL aliquots in 96-well round bottom tissue culture plates for 16-20 

hours.  Cytokine production was quantified from cell supernatants (stored at -20°C).  

Absorbance was measured at 450 nm using a Victor2 1420 Multilable counter (Wallac).  

qPCR- 

Total RNA was isolated and purified using miRNeasy kit (Qiagen), following 

manufacturer’s procedure.  iScript cDNA synthesis kit (BioRad) was used according to 

manufacturer’s specifications to reverse transcribe cDNA.  qPCR was performed using 

Sso Advanced SYBR Green (BioRad) on a CFX Connect (BioRad).  Samples were 

assessed for expression of βactin (Forward-5GGCTGTATTCCCCTCCATCG3; Reverse- 

5CCAGTTGGTAACAATGCCATGT3), IL-6 (Forward-

5CAACGATGATGCACTTGCAGA3; Reverse-5GGTACTCCAGAAGACCAGAGG3), 

and IL-10 (Forward-5GCTCTTACTGACTGGCATGAG3; Reverse-

5CGCAGCTCTAGGAGCATGTG3).  Primers were synthesized from IDT DNA 

technologies with annealing temperatures of 60°C.   
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Cell Culture with conditioned media or recombinant S100A8 protein- 

Isolated MDSCs were plated with ConA activated splenocytes at a ratio of 1:2 

(MDSC:ConA splenocytes).  Conditioned media was made by incubating isolated THC-

induced MDSCs with phorbol 12-myristate 13-acetate (PMA) and calcium ionophore 

ionomycin (50 ng/mL and 10 μg/mL respectively) for five hours.  Lyophilized S100A8 

protein (MyBioSource mS100A8) was reconstituted in complete RPMI media (1% v/v 

penicillin/streptomycin, 1% v/v HEPES buffer, 10% v/v heat inactivated FBS, and 

0.0002% v/v 2-mercaptoethanol).  2,000 ng of mS100A8 was added at 0 and 24 hours to 

cell culture wells. 

Statistical Analysis-  

Data are shown as mean ± S.E.M.  Student’s t Test was used to compare data between 

two groups. One-way ANOVA with Tukey post-hoc test was used to compare three or 

more groups.  Experimental groups were compared to controls, p < 0.05 was considered 

significant. 

2.3 RESULTS 

T cell suppression is increased in THC-induced MDSCs. 

The largest accumulation of resident MDSCs is located in the bone marrow (BM) 

(99).  It has been shown that MDSCs migrate from this repository to sites of 

inflammation by following chemokine/cytokine signals (99).  Our lab has shown that 

MDSCs will also migrate to the peritoneal cavity after a single THC injection (i.p.) (86).  

Knowing that the peripheral MDSCs are considered active, and therefore T cell 
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suppressive, we first determined if any differences existed between the resident BM 

MDSCs and the THC-induced MDSCs found in the peritoneal cavity.  As such, naive 

C57BL/6 (wild-type, BL6) mice were given a single i.p. injection of THC to cause 

massive induction of MDSC to the peritoneal cavity, as earlier described (86).  Sixteen 

hours after THC treatment, peritoneal lavage was used to collect peripheral THC-induced 

MDSCs.  Resident BM MDSCs from naive BL6 mice were used as controls.  MDSCs 

were purified (>95%) using positive selection magnetic beads.  Flow cytometry was used 

to determine if any differences in MDSC and MDSCs subset populations existed.  The 

naïve BM showed ~51% of Gr1+CD11b+ cells when compared to THC-induced 

peritoneal cells which contained ~83% Gr1+CD11b+ cells (Fig. 2.1A).  Next, we sorted 

the Gr1+CD11b+ cells and stained them further for Ly6G and Ly6C to measure 

granulocytic (Ly6G+Ly6C+Gr1+CD11b+) and monocytic (Ly6G-Ly6C+Gr1+CD11b) 

MDSC subset proportions (Fig. 2.1D).  In order to demonstrate that the THC-induced 

Gr1+CD11b+ cells were in fact T cell suppressive, we tested the levels of INF-γ secretion 

which decrease significantly upon addition of THC-induced MDSCs to activated T cells 

(Fig. 2.1B).  We next assessed the suppressive capabilities of THC-induced MDSCs in 

comparison to resident BM MDSCs.  We found that THC-induced MDSCs were 

significantly more suppressive of concanavalin A (ConA)-activated splenic T cells than 

the resident BM MDSCs (Fig. 2.1C).  With literature suggesting that MDSC subsets can 

have differing levels of suppression we compared independently isolated Gr1+, Ly6G+, 

or Ly6C+ MDSC subsets, Ly6C+ subsets were isolated after positive selection of Ly6G+ 

cells using concurrent PE and FITC positive selection for Ly6G and Ly6C respectively 

(111); (112). The individually isolated pure MDSC subpopulations were then treated with 
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Mitomycin C and added to ConA activated spleen cells at MDSC to spleen cell ratio of 

1:2, to study the ability of MDSCs to inhibit T cell proliferation (Fig. 2.1E).  In all three 

isolation conditions, Gr1+, Ly6G+, or Ly6C+, THC-induced MDSCs showed 

significantly more suppression of T cell proliferation than resident BM MDSCs (Fig. 

2.1E).   

THC-induced MDSCs exhibit differential expression of functional proteins. 

To explain how THC-induced MDSCs exhibited increased suppressive 

capabilities compared to resident BM MDSCs, we next looked at the expression of 

functional proteins.  MDSCs ability to suppress T cell proliferation has been linked to 

elevated expression of L-arginine metabolizers Arg1 or NOS2 (113).  The expression of 

Arg1 was greatly increased in THC-induced MDSCs compared to resident BM MDSCs 

(Fig. 2.2A).  In order to ensure that Arg1 expression was specific to activated MDSCs, 

we looked at BM and splenic MDSCs from naïve mice as well as BM, splenic, and 

peritoneal MDSCs from THC-treated mice.  We found no expression of Arg1 in naïve or 

BM resident MDSCs though peripheral MDSCs in THC-treated mice did exhibit Arg1 

expression (Supp. Fig. 2.1A).  However, NOS2 expression was reduced in THC-induced 

MDSCs isolated from the peritoneal cavity compared to naïve resident BM MDSCs (Fig. 

2.2B).  We also looked at the expression of the S100 proteins A8 and A9 due to the fact 

that while cancer studies have determined that secretion of S100A8 and S100A9 are 

associated with tumor induced MDSCs, no one has linked THC-mediated induction of 

MDSCs to the expression of these S100 proteins (114).  Elevated levels of S100A8, but 

not S100A9, were observed in THC-induced MDSCs when compared to BM MDSCs 

(Fig. 2.2 C&D respectively).  Because STAT3 plays a critical role in MDSC expansion, 
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activation and function we investigated the expression of phosphorylated STAT3 (P-

STAT3) (115); (116); (117).  Interestingly, THC-induced MDSCs showed an increased 

expression of P-STAT3/STAT3, when compared to resident BM MDSCs (Fig. 2.2E).  

STAT3 associated cytokines are upregulated in THC-induced MDSCs. 

It has recently been shown that Arg1 and S100A8 are downstream targets of 

STAT3 (118); (119); (87).  As such, we looked at the spontaneous secretion of IL-10 and 

IL-6, known STAT3 activating cytokines, from MDSCs cultured overnight after 

isolation.  Spontaneous secretion of IL-10 was low from both MDSC populations.  

However, THC-induced MDSCs secreted significantly more IL-10 than did resident BM 

MDSCs (Fig. 2.3A).  This correlated with elevated expression of IL-10 message in THC-

induced MDSCs (Fig. 2.3C).  Spontaneous IL-6 secretion as well as the transcript was 

expressed at higher levels in THC-induced MDSCs when compared to resident BM 

MDSCs (Fig. 3B).  This trend was supported by significantly increased IL-6 message in 

THC-induced MDSCs (Fig. 2.3D).     

THC treatment increases S100A8 secretion. 

Because STAT3 can regulate S100 proteins (119), we next determined the levels 

of S100 proteins A8 and A9.  THC-induced MDSCs showed significantly increased 

S100A8, but not S100A9, secretion when compared to resident BM MDSCs (Fig. 2.3 

E&F respectively). Also, we found that injection of THC systemically increased S100A8 

levels when compared to naïve mice (Fig. 2.3G).   

THC administration alters the methylation profile in MDSCs due to decreased DNA 

methyltransferases. 
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We next determined if THC induces MDSCs through epigenetic regulation.  To 

that end, we first determined if THC could affect methylation by studying global changes 

in genomic DNA methylation patterns.  We found that while overall methylation was 

unaffected by THC treatment, using CEAS software for correlational analysis, the 

methylation at promoter regions was altered when resident BM and THC-induced 

MDSCs were compared (Fig. 2.4 A&B respectively).  Knowing that methylation changes 

could occur due to differential expression of DNA methyltransferases (DNMTs), 

specifically DNMT3a and DNMT3b, which are responsible for de novo methylation, both 

resident BM and THC-induced MDSCs were assessed for DNMT methylation and 

mRNA expression (120); (121).  The methylation at the promoter region for both 

DNMT3a and DNMT3b was increased in THC-induced MDSCs (Fig. 2.4C).  

Additionally, THC-induced MDSCs had significantly reduced expression of DNTM3a 

and DNMT3b compared to resident BM MDSCs (Fig. 2.4D).     

THC decreases the methylation of key MDSC functional genes. 

We next investigated if the increase in Arg1, NOS2, and STAT3 seen in THC-

induced MDSCs resulted from alterations in the methylation of these key genes 

associated with MDSC activation and function.  Using Methyl Primer Express v1.0 

software, individual gene methylation primers were developed for key genes associated 

with the suppressive function of MDSCs (Table 2.I).  Furthermore, universally 

methylated mouse DNA (Methylated Standard-Millipore) was used as a baseline for 

comparisons between resident BM and THC-induced MDSC methylation.  Using (CEAS 

software) we observed that promoter region methylation was decreased at Arg1 and 

STAT3 in THC-induced MDSCs (Fig. 2.5 A&B respectively).  To support the findings 
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from the genomic DNA methylation analysis we used methylation specific PCR (Msp 

PCR).  The methylation index showed that THC-induced MDSCs had deceased levels of 

methylation at Arg1 and STAT3, but not at iNOS, compared to naïve resident BM 

MDSCs (Fig. 2.5C).  Methylation of the S100 proteins, S100A8 and S100A9, was not 

determined as there were no CpG islands found in the promoter regions of these genes. 

Together, these data demonstrated that THC induces immunosuppressive MDSCs 

through hypomethylation of critical genes that regulate MDSC functions.   

S100A8 is important in maintaining a suppressive peripheral MDSC population.    

In order to further elucidate the role S100A8 was playing in MDSC functionality, 

we first created a conditioned medium (CM).  The conditioned medium contained both 

STAT3 activating cytokines, which could enhance Arg1 production, and soluble S100A8.  

CM was created by incubating THC-induced MDSCs in the presence of PMA (50 

ng/mL) and calcium ionophore (10 μg/mL).  Resident BM MDSCs, were then plated with 

or without CM, and ConA-activated splenocytes.  Resident BM MDSCs caused just over 

25% suppression of T cell proliferation in response to ConA compared to THC-induced 

MDSCs which caused 50% suppression (Fig. 2.6A).  However, resident BM MDSCs in 

CM had significantly increased suppressive capabilities, reducing T cell proliferation by 

nearly 70%, compared to BM MDSCs without CM (Fig. 2.6A).   

To further determine the role of S100A8 in vivo, we treated THC injected mice 

with a single dose of S100A8 antibody (8H150).  The mice were then assessed for MDSC 

induction in the peritoneal cavity over 16 hours, via flow cytometric analysis of 

Gr1+CD11b+ cells.  S100A8 Ab caused significant decrease in MDSC accumulation in 
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the peritoneal cavity at the 16 hour time point (Fig. 2.6B).  Furthermore, looking at 

MDSC subsets, we found that upon blocking S100A8, significantly fewer granulocytic 

MDSCs were induced by THC, while no significant reduction was seen in monocytic 

MDSCs (Fig. 2.6 C&D respectively).  Additionally, to ascertain the role of S100A8 in 

MDSC-induced suppression of T cell proliferation, recombinant protein (mS100A8) was 

added to plated resident BM MDSCs in the presence of ConA activated splenocytes.  A 

significant increase in suppression was seen in resident BM MDSCs treated in vitro with 

mS100A8 compared to untreated resident BM MDSCs (Fig. 2.6E).  Furthermore, 

mS100A8-treated resident BM MDSCs were able to suppress T cell proliferation to 

similar level as THC-induced MDSCs (Fig. 2.7C).          

2.4 DISCUSSION 

The mechanisms through which THC mediates immunosuppression include 

apoptosis, induction of T regulatory cells (Tregs), and the induction of a switch from Th1 

to Th2 phenotype (80); (78); (77).  Recently, our laboratory made an exciting finding that 

THC can induce massive numbers of MDSCs in vivo via activation of accessory immune 

cells such as mast cells (86); (75).  MDSCs are a heterogeneous and immature cell 

population with an innate plasticity. Recently studies have highlighted this plasticity by 

showing that MDSC subsets can induce either TH17 or iTreg cells (122).  It has also been 

found that MDSCs, which are generally considered beneficial in the tumor 

microenvironment, secrete soluble factors such as nitrous oxide, which can induce 

apoptosis in cancer cells (123).  Together these findings highlight the need to understand 

what factors are associated with MDSC plasticity and it is likely that epigenetic 

modulation may be one of the contributing factors.  As such, the focus of the current 
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study was to further elucidate the mechanisms through which THC induces and maintains 

a peripheral population of highly immunosuppressive MDSCs.  Recently, it has been 

shown that THC treatment can alter gene specific methylation patterns in lymphocytes 

(38).  Consequently we set out to determine the role of altered DNA methylation in the 

context of THC driven recruitment of MDSCs.   

Research showing the involvement of THC in epigenetic modifications is limited.  

However, there is evidence suggesting that THC ingested through marijuana abuse  can 

elicit both indirect and direct effects on gene expression (124); (125); (126); (127); (128); 

(87).  Additionally, studies using SIV-infected (simian immunodeficiency virus) animals 

treated with THC found that up to 50% of all gene expression alterations were due to 

differential DNA methylation patterns (129).  Furthermore, a CB1-dependent link with 

cannabinoid treatment was discovered in the regulation of keratinocyte differentiation by 

inducing DNA methylation (130).  Such findings support the role of CB1 receptor 

agonists, such as THC, in altering DNMT activity resulting in changes in genomic DNA 

methylation patterns as seen in the current study.              

Alteration of DNMT expression correlates directly with changes to gene loci 

specific DNA methylation pattern (131).  Specifically, the changes in the methylation 

profile for transcription factors associated with MDSC activation or function, such as 

STAT3, was of paramount interest to us as elevated expression of STAT3 has been tied 

to increased MDSC-mediated immunosuppression (115); (116); (132); (87).  We found 

that STAT3 levels were significantly increased in THC-induced MDSCs.  It has been 

shown that that STAT3 activation, via IL-6 or G-CSF, is necessary for the expansion of 

functional MDSCs in part due to regulation of NADH oxidase (133).  Consistent with 
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this, we also noted significant increase in IL-6 in THC-induced MDSCs.  Additionally, it 

has been shown that the highly suppressive nature of activated MDSCs, via Arg1 

expression, is STAT3 dependent (117).  With STAT3 playing such an integral role in 

MDSC functionality, the differential expression we observed between resident BM and 

THC-induced MDSCs suggested that resident MDSCs may exist in a naïve or inactivated 

state.  

One of the hallmarks of MDSC function is their ability to suppress T cell 

proliferation.  MDSCs have been shown to inhibit T cell activation and proliferation via 

L-arginine metabolism, oxidative stress, Treg expansion, and cysteine depletion (134); 

(135); (58); (136); (137).  Previously we showed that that THC-induced MDSCs have 

elevated levels of Arg1 expression thereby causing the suppression of T cell proliferation 

through L-arginine depletion (86).  In the current study we also noted that THC-induced 

MDSCs had higher levels of Arg1 when compared to resident BM MDSCs.  

Furthermore, THC treatment has been associated with, a cannabinoid receptor dependent, 

loss of NOS2 activation due to cAMP signal inhibition (138); (139).  This may explain 

why in the current study, why THC-induced MDSC did not exhibit an increase in NOS2.  

Additionally, the S100 proteins, S100A8 and S100A9, have been linked to MDSC 

expansion via the RAGE receptor, in cancer models (114).  In conjunction with reported 

findings, the elevated expression of Arg1 and S100A8 we observed in the current study 

strengthen our claim that a single THC injection generates primed, or activated, 

peripheral MDSCs rather than just recruiting inactivated BM MDSCs to the periphery. 

Although S100A8/A9 has been associated with MAPK and NF-κB signaling 

pathways, these S100 proteins can also be linked to the JAK/STAT pathway (140).  For 
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instance, S100A8 has been associated with STAT3 activating cytokines including IL-10, 

in alveolar macrophages, and IL-6 induction, in PBMCs, creating an indirect association 

with the JAK/STAT signal pathway that we also observed in MDSCs (141); (142).  More 

directly, P-STAT3 is known to have binding sites in the promoter region of S100A8 

(119).  This positive feedback interaction between STAT3 and S100A8 suggests that the 

S100 protein may play a vital role in MDSC function.   

Hematopoietic progenitor cells (HPCs) maintain detectable levels of S100A8, for 

up to one week in culture, even upon differentiation at which point S100A9 expression is 

lost (119).  The role that S100A8 plays in MDSC function, however, has not been 

reported.  It has been shown that S100A8 is involved in granulocyte chemotaxis, and that 

S100A8/A9 secretion allows for MDSC accumulation (143); (114).  A study by 

Hiroshima et al. observed a correlation between elevated S100A8 and Arg1 transcript 

levels, in alveolar macrophages (141).  This finding supports our claim that increased 

S100A8 expression impacts MDSC function as an anti-inflammatory molecule similar to 

IL-10 (144); (145); (141); (146).  TLR activation can also be positively influenced by the 

S100A8 protein (147).  The current study, to the best of our knowledge, is the first one to 

report that elevated S100A8 levels in MDSCs regulate increased Arg1-driven T cell 

suppression.   

A connection between increased S100A9 expression and the accumulation of 

tumor associated MDSCs, has been reported (119).  Cheng et al. determined that CT-26, 

a tumor-cell conditioned media, was able to increase S100A9 expression, in vitro, in 

HPCs which correlated with a loss of DC differentiation (119).  Additionally, Cheng et 

al. were able to show that the MDSCs accumulated via S100A9 overexpression were, in 
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fact, T cell suppressive (119).  While inflammation has been shown to induce MDSC 

recruitment, THC treatment recruits active MDSCs without pro-inflammatory signals 

(86).  Moreover, our studies showed that S100A9 was not induced by THC.    

The ability of THC to alter gene expression via the upregulation of key 

microRNA has also been studied.   A single THC treatment was found to induce miR-690 

overexpression in conjunction with decreased CCAAT/enhancer binding protein 

(C/EBPα), a transcription factor associated with myeloid cell differentiation, in peripheral 

MDSCs (87).  Specifically, over expression of C/EBPα, alone, was sufficient to increase 

the expression of the S100A9 protein, which is known to decrease in mature 

differentiated cells (148).  As such it has been suggested that the attenuation of C/EBPα 

could play a role in maintaining an immature, and therefore functional, population of 

MDSCs upon THC induction (87).    THC causing a reduction of C/EBPα levels, and 

therefore decreasing S100A9 expression, strengthens our claim that a S100A8 driven 

mechanism for THC-induced MDSC activation plays a critical role.  

The mechanism of MDSC activation is one that remains elusive due the variety of 

environmental factors that are known to impact the generation, maintenance, and function 

of these regulatory cells.  The current study attempted to highlight a mechanism by which 

THC caused the induction and activation of primed peripheral MDSCs, depicted in Fig. 

2.7.  After THC treatment, there is decreased methylation of STAT3 leading to an 

upregulation of the transcription factor, as well as STAT3 activating cytokines (IL-10 and 

IL-6), which together leads to increased P-STAT3.  While low levels of IL-10 were 

secreted by THC-induced MDSCs, the ability of THC to activate additional IL-10 

secreting cells such as Tregs further supports that THC plays a role in STAT3 activation 
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(88).  P-STAT3, binds to the promoter region of S100A8 and Arg1, thereby increasing 

the expression of these proteins.  Additionally, upon overexpression of S100A8 and 

Arg1, MDSCs became highly immunosuppressive.  To the best of our knowledge this 

report is the first one to identify gene specific methylation profile of MDSCs following 

THC treatment, and how such epigenetic changes regulate the anti-inflammatory 

properties of MDSCs involving STAT3/S100A8 positive feedback loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

  Table 2.I.  Primer sequences for the Msp PCR analysis of THC-induced and 

resident BM MDSCs. 
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Figure 2.1: THC-induced MDSCS differ from resident BM MDSCs in subset 

proportion and suppressive functionality. 

MDSCs were isolated from peritoneal exudates, at 16 hours after THC injection, and 

naïve BM using positive selection magnetic beads for αGr1, αLy6G, or αLy6C.  MDSCs 

were Mitomycin C treated prior to plating with BL6 spleen cells activated with ConA 

(MDSC:T cell ratios 1:25 and 1:2).  IFN-γ was assessed, in cell supernatants using 

sandwich ELISA kits (Biolegend) after co-culture.  Proliferation of spleen cells was 

assessed 40 hours after stimulation using [
3
H] thymidine (co-cultured for 16 hrs).  A) 

Flow cytometric analysis for MDSC proportion (dot plots gated only on live cells), 

double stained for GR1+CD11b+ cells in naïve BM (left panel) and THC treated 

peritoneal exudate (right panel).  B) Levels of IFN-γ secreted by activated T cells with 

and without MDSC co-culture.  C) Ability of MDSCs to suppress proliferation of T cells.  

MDSCs from naïve BM, or THC-treated peritoneal exudate MDSCs were co-cultured 

with ConA activated splenic T-cells.  D) Flow cytometric analysis of MDSCs from naïve 

BM (left panel), or THC-treated peritoneal exudate (right panel) MDSCs following triple-

staining with CD11b+, Ly6G+, and Ly6C+ cells (dot plots gated on CD11b positive 

cells).  E) Suppression of T cell proliferation by Gr1+, Ly6G+, Ly6C+ cells isolated from 

naïve BM and THC-treated peritoneal exudate co-cultured with ConA activated splenic 

T-cells. Representative data from replicate experiments (mean±S.E.M) * p < 0.05, ** p < 

0.01, *** p < 0.005, **** p< 0.0001 ANOVA/Tukey.  

 

 D E 
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Figure 2.2: THC-induced MDSCs have differential expression of MDSC associated 

proteins compared to resident naïve BM MDSCs. 

Western blot followed by densitometric analysis via ImageJ with beta actin or gamma 

tubulin used for normalization. MDSC-associated proteins including, A) Arginase1, B) 

NOS2, C) S100A8, D) S100A9, and E) STAT3 (P-STAT3), in MDSCs derived from 

naïve resident BM and THC-induced peritoneal exudate.  Representative data from 

triplicate experiments (mean±S.E.M) * p < 0.05, ** p < 0.01, *** p < 0.005, **** p< 

0.0001.   
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Figure 2.3: THC-induced MDSCs exhibit elevated levels of cytokines associated with 

STAT3 activation. 

THC-induced MDSCs and resident naïve BM MDSCs were cultured overnight and cell 

supernatants collected for cytokine analysis using sandwich ELISA kits: A) IL-10, B) IL-

6.  cDNA was isolated from MDSCs for real time (q) PCR analysis: C) IL-10 mRNA, D) 

IL-6 mRNA.  Spontaneous secretion from THC-induced and resident naïve BM MDSC 

culture supernatants: E) S100A8 F) S100A9.  Serum from THC-treated or naïve mice 

were analyzed for S100:  G) S100A8 levels.  Representative data from replicate 

experiments (mean±S.E.M) * p < 0.05, ** p < 0.01, *** p < 0.005, **** p< 0.0001 

Student’s T-Test. 
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Figure 2.4: THC alters the methylation profile of MDSCs. 

Genomic DNA from THC-induced MDSCs (n=5 mice) and naïve resident BM MDSCs 

(n=5 mice) was assessed for genomic methylation via MeDIP-seq.  A) Correlations of 

genome-wide DNA methylation signal (CEAS software) in THC-induced and resident 

BM MDSCs.  B) Correlations of DNA methylation within 3kb up and down stream of 

transcriptional start site (TSS) in THC-induced and resident BM MDSCs.  C) DNA 

methylation near the TSS of DNMT3a and 3B (upper and lower panels respectively).  D) 

PCR for DNMT3a and 3b message in THC-induced and resident BM MDSCs.  
Representative data from replicate experiments.   
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Figure 2.5: THC- induced MDSCs differ from resident BM MDSCs in promoter 

region methylation.  

Bisulfite converted genomic DNA was assessed for promoter region associated 

methylation in THC-induced and naïve BM MDSCs.  A) DNA methylation near the TSS 

of Arg1 in THC-induced and resident BM MDSCs.  B) DNA methylation near the TSS of 

Stat3 in THC-induced and resident BM MDSCs. Methylation specific (Msp) PCR 

products were ran on agarose gel (2%) and densitometry assessed using ImageJ.  A) 

Methylation index for Arg1, NOS2, and STAT3 in THC-induced and resident BM 

MDSCs (fully methylated mouse DNA was used as a control).  Data from replicate 

experiments (mean±S.E.M) * p < 0.05, ** p < 0.01, *** p < 0.005, **** p< 0.0001 

Student's T-Test. 
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Figure 2.6: S100A8 protein impacts both MDSC induction and activation.  

Conditioned medium (CM) was obtained from THC-induced MDSCs cultured for 5 

hours in the presence of PMA and calcium ionophore, and then assessed for suppressive 

capabilities. A) Ability of CM to enhance MDSCs or CM as indicated.  Thymidine 

incorporation was used to detect T cell proliferation and percent suppression when 

compared to controls was plotted.  B-D) Effect of anti-S100A8 Abs on THC-induced 

MDSCs in the peritoneal cavity.  Antibody (8H150) against S100A8 was administered 1 

hour after THC treatment, and assessed for MDSC accumulation.  Data indicate absolute 

cell counts of B) Gr1+CD11b+, C) granulocytic MDSCs (Ly6G+LyC+CD11b+), D) 

monocytic MDSCs (Ly6G-Ly6C+CD11b+) cells in the peritoneal cavity.  E) Effect of 

addition of recombinant S100A8 protein (mS100A8) on ability of MDSCs to suppress T 

cell proliferation.  T cell proliferation was studied by activation using ConA as described 

above.  The cultures received conditioned medium or mS100A8 as indicated.   

Representative data from replicate experiments (mean±S.E.M) * p < 0.05, ** p < 0.01, 

*** p < 0.005, **** p< 0.0001 Student’s T-Test or ANOVA/Tukey.  
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Figure 2.7: Proposed working model for the mechanism of MDSC induction and 

activation by THC 

THC treatment causes hypomethylation of genes associated with MDSC function, such as 

STAT3, allowing for reduced gene silencing.  Additionally, THC treatment increases the 

STAT3 activating cytokines IL-6 and IL-10.  Phosphorylated STAT3 is then able to bind 

the promoter region of S100A8 and Arg1 increasing the suppressive capability of the 

THC-induce MDSCs.  
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Supplemental Figure 2.1: Arginase1 expression specific to peripheral MDSCs in 

THC treated mice. 

Western blot with beta actin used for normalization. MDSC-associated protein A) 

Arginase1 in MDSCs derived from naïve resident BM and spleen (n=5) and THC treated 

mouse peritoneal exudate, BM, and spleen (n=5)
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CHAPTER III: Δ
9
-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response 

via cannabinoid receptor 1 mediated induction of MDSCs. 

3.1 INTRODUCTION 

Host versus graft disease (HvGD), perhaps better known as transplant rejection, is 

primarily a T cell driven process involving recognition of alloantigens that leads to 

rejection of allograft cells or tissue.   Through the use of immunosuppressive drugs, the 

success rate of allogeneic transplants has steadily increased over the years.  However, the 

chronic use of these drugs often results in major complications in the graft recipient.  The 

four major categories of immunosuppressive drugs used today include corticosteroids, 

calcineurin inhibitors, anti-proliferatives, and mammalian target of rapamycin (mTOR) 

inhibitors.  These anti-rejection treatments focus largely on halting the alloreactive T cell 

activation or proliferation in the host.  By causing global inhibition of  T cells, the host’s 

innate immune system becomes severely impaired (61); (62); (63); (64); (65).  For 

instance, cyclosporine, a calcineurin inhibitor, can cause immunotoxicity through the 

destruction of liver tissue (61); (66).  Additionally, anti-proliferatives, such as 

mycophenolate (MMF) and mTOR inhibitors, cause leukopenia and can delay 

functionality of the graft (62); (63). 

Furthermore, use of any severe immune suppressive drug is associated with 

increased risk of infection, bacterial or viral, and cancer.  Specifically, treatment of 

allograft rejection, with current drug options, can result in lymphomas as well as 
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accelerated hepatitis infections (67); (68).  Such severe drug related issues has 

necessitated the continued search for an HvGD treatment which has a better cost to 

benefit ratio.   

Δ
9
-Tetrahydrocannabinol (THC) is one of many cannabinoids derived from the Cannabis 

sativa plant, which was first described in a 1964 paper by Gaoni and Mechoulam (149);.  

THC is a known ligand for cannabinoid receptors 1 and 2 (CB1 and CB2) which were 

discovered in the 1990’s (4, 150).  CB1 and CB2 are G-protein coupled receptors which 

have been shown to be expressed both in the central nervous system (CNS) and the 

periphery, including the immune system (3); (12); (13); (14).  Upon activation, CB1 and 

CB2 receptors are known to modulate adenylate cyclase, both calcium and potassium 

channels, reduce  T cell proliferation, and have been associated with regulation of the 

cytokines leading to a shift from a pro-inflammatory Th1 to an anti-inflammatory Th2 

response (151); (152); (153); (154).  The anti-inflammatory properties of THC have been 

very well characterized by our laboratory and others (77); (155); (156).  Recently, we 

made an exciting observation that administration of THC results in massive induction of 

myeloid derived suppressor cells (MDSCs) (86).  MDSCs are innate regulatory cells 

which are known to reduce T cell driven inflammatory responses in cancer models (57).  

In mice, MDSCs are positive for the cell surface markers CD11b and Gr1 (57).  The 

heterogeneous population of progenitor and immature cells, which make up MDSCs, 

reduce inflammation by producing arginase-1 (Arg-1) and/or iNOS (58).  

Currently THC, under the brand name Marinol, has been approved for medicinal 

use.  Marinol has been used to alleviate pain and nausea associated with cancer
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treatments, stimulate appetite in those with wasting diseases such as HIV/AIDS, and for 

spasticity in multiple sclerosis patients (157).  Furthermore, our lab recently found that 

THC treatment significantly reduces symptomology associated with graft versus host 

disease (GvHD), where the immune cells from the allograft attack recipient tissue, in a 

cannabinoid receptor dependent manor (78).  Based on such studies, we hypothesized that 

cannabinoids may have the potential to be used in transplantation (158).  To the best of 

our knowledge, THC has not been directly tested against allograft rejection in vivo.  Due 

to the fact that immune cells express cannabinoid receptors and produce 

endocannabinoids, studies focused on addressing the role of cannabinoid receptor-ligand 

system may offer novel insights into their mechanism of action in enhancing the survival 

of an allograft.   

In the current study, we found that THC treatment reduces inflammation 

associated with HvGD and causes significant increase in the survival of allogeneic skin 

allograft.  These effects of THC were primarily mediated by its ability to induce 

immunosuppressive MDSCs.  The current study suggests a role for the cannabinoid 

system in the regulation of transplantation immunity and treatment.   

3.2 MATERIALS AND METHODS 

Mice- 

Female C57BL/6 (H-2
b
 wild-type, BL6) mice, aged 6-8 weeks and at an average weight 

of 20 g, were obtained from the National Cancer Institute (Frederick, MD) and used as 

recipients.  Female C3H/HeJ (H-2
k
, C3H) mice, from The Jackson Laboratory, were used 

as donors.  CB1 KO (-/-) mice (H-2
b
 C57BL/6 background) were a gift from Dr. James 
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Pickel, National Institute of Mental Health Transgenic Core Facility.  CB2 KO (-/-) mice 

(H-2
b
 C57BL/6 background) were obtained from The Jackson Laboratory.  The CB1 and 

CB2 KO mice were used at 6 weeks of age and averaged 20 g.  B6D2F1/J (F1 H-2
d/b

) 

mice aged at least 8 weeks with an average weight of 20 g, obtained from The Jackson 

Laboratory, were also used as recipient mice.  All mice were housed in pathogen-free 

conditions and allowed ad libitum access to filtered water and Teklad rodent diet 8604 

(normal chow) at the AAALAC-accredited Animal Research Facility located at the 

University of South Carolina School of Medicine.  All experiments were conducted under 

an approved Institutional Animal Care and Use Committee animal protocol.     

Treatment with THC and Induction of Acute HvGD- 

THC (procured from NIDA-NIH) dissolved in ethanol was diluted in 1xPBS to a 

concentration of 20 mg/kg.  THC or vehicle (ethanol diluted in 1xPBS) was administered 

intraperitoneally (i.p.) at a volume of 0.1mL/mouse, 2 hours prior to allogeneic cell 

injection.    To induce HvGD we used a modified localized HvGD model developed by 

Shevach et al. (159),  which has also been used in other studies (160); (161); (162).  

Briefly, acute HvGD was induced by injecting 2.2x10
7
 C3H spleen cells subcutaneously 

(SubQ).  These cells were split with half injected into the right and left hind flanks, of 

BL6 recipient mice.  The inguinal draining lymph nodes (IngLN) were harvested daily 

for 5 days to study the localized HvGD, following MLR kinetics (163).  THC treatment 

was continued daily until the termination of the study (day 5).  Similarly, cannabinoid 

receptor antagonist SR141716 (5-(4-Chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-

(piperidin-1-yl)-1H-pyrazole-3-carboxamide; CB1 antagonist), SR144528 (N-[(1S)-endo-

1,3,3-trimethylbicyclo [2.2.1]heptan2-yl]-5-(4-chloro-3-methylphenyl)-1-[(4-
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methylphenyl)methyl]-1H-pyrazole-3-carboxamide; CB2 antagonist), and AM-630 (6-

Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone; 

CB2 antagonist)  were dissolved in dimethyl sulfoxide (DMSO) containing 20 µL 

Tween-80 (Sigma-Aldrich) and then diluted in 1xPBS to a concentration of 20 mg/kg, 

cannabinoid receptor antagonist vehicle consisted of DMSO with 20 µL Tween-80  

diluted in 1xPBS.  Receptor antagonists were administered via i.p. injection at a volume 

of 0.1 mL/mouse 1 hour prior to each THC treatment.  Vehicle control groups received 

ethanol (EtOH) or DMSO diluted in 1xPBS to a similar concentration as treatment 

groups. 

Monoclonal Antibodies, Reagents, and Flow Cytometer- 

Antibodies used for flow cytometric analysis (BioLegend) included: Fc block (93), FITC 

conjugated anti-H-2
b
 (KH95), PE conjugated anti-H-2

k
 (15-5-5), Alexa Fluor 488 

conjugated anti-CD3e (145-2C11), PE/Cy7 conjugated anti-CD4 (GK1.5), PE conjugated 

anti-CD8a (53-6.7),  PE/Cy7 conjugated anti-CD25 (PC61), PE/Cy5 conjugated anti- 

CD28 (37.51), PE/Cy5 conjugated anti-CD44 (IM7), PE conjugated anti-CD69 (H1.2F3), 

PE conjugated anti-Gr1 (RB6-8C5), and FITC conjugated anti-CD11b (M1/70).  HvGD 

IngLN and peritoneal exudates were assessed by flow cytometric analysis.  Briefly, 

IngLN cells (10
6
 cells in 25 µL) from BL6 recipient mice were incubated with Fc 

receptor antibodies (5-10 minutes) and incubated with conjugated antibodies (20-30 

minutes at 4°C).  After incubation with conjugated antibodies cells were washed twice 

with 1xPBS/2% fetal bovine serum buffer.  The stained cells were then assessed by flow 

cytometer (FC500; Beckman Coulter) and the resulting data analyzed by Cytomics CXP 

software (Beckman Coulter).  All flow cytometer plots were gated on live cells only. 
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Two-color flow cytometric analysis was performed for assessing persistence of donor H-

2
k
 cells in the recipient IngLN, spleen, and peritoneal exudates.  Three-color flow 

cytometric analysis was used to profile the IngLN response to disease and treatment.  

Two-color flow cytometric analysis was used to look for myeloid derived suppressor cell 

(MDSC) populations in the peritoneal exudate.        

Cytokine and Chemokine Analysis- 

ELISA MAX sandwich enzyme-linked immunosorbent assay (ELISA) kits (BioLegend) 

were used to assess the level of IFN-γ, TNF-α, MCP-1, IL-2, and IL-6 cytokines.  

Sandwich ELISA kit for G-CSF (Abcam) was also used.  Cells from the inguinal lymph 

nodes (IngLN, 5x10
6
 cells/mL) from HvGD mice were cultured in 0.2 mL aliquots in 96-

well round bottom tissue culture plates for 16-20 hours.  To assess MCP-1 and G-CSF 

levels in the peritoneal exudate, a 1 mL of 1xPBS lavage was collected as described 

previously (164). Cytokine production was quantified from cell supernatants (stored at -

20°C).  Absorbance was measured at 450 nm using a Victor2 1420 Multilable counter 

(Wallac).  

Thymidine Analysis of Ex Vivo Proliferation due to Allograft Restimulation- 

Lymph node cells from HvGD BL6 mice collected 10 days after treatment with THC 

injection, were cultured in triplicate (0.2 mL/well in a round bottom 96 well plate) with 

mitomycin C-inactivated C3H spleen cells, for 4 days.  Sixteen hours before collection 

and analysis [
3
H] thymidine (2 µCi/well) was added to the cell cultures.  The 

radioactivity was measured using a liquid scintillation counter (MicroBeta Trilux).  



45 

 

MDSC Isolation- 

Sixteen hours after THC injection, mice were euthanized and the peritoneal exudate 

collected (86).  Briefly, the peritoneal cavity was washed 3x with ice cold 1xPBS (5 mL 

per wash) for 5 minutes with agitation to recover cells.   The cells were resuspended in 1 

mL then treated with Fc block for 10 minutes and labeled with PE-conjugated anti-Gr1.   

The +EasySep positive PE selection kit procedure was followed to isolate Gr1 positive 

cells, as described previously (105).  After isolation cells were labeled with FITC 

conjugated anti-CD11b and assessed for purity using flow cytometeric analysis.   

MDSC Depletion Assay- 

MDSCs were depleted by the i.p. injection of Ly-6G/Ly-6C purified antibody (RB6-

8C5), as described (165).  Depletion antibody was given three hours after every other 

THC treatment in doses of 0.1 and 0.05 mg/mouse.  Control mice received isotype 

matched control Abs.  Mice were euthanized at the end of the 5 day model as outlined 

previously.  Peritoneal exudates were assessed for the presence of MDSCs and H-2
k
 cells 

and IngLN were assessed for cellularity and T cell activation.   

MDSC Adoptive Transfer- 

Isolated THC induced MDSCs (5x10
6
), greater than 95% pure as described earlier (56), 

were transferred into BL6 HvGD mice via an i.p. injection 30 minutes after subcutaneous 

injection of graft cells.  Mice were euthanized 18 or 90 hours after graft injection.  

Peritoneal exudates were assessed for the presence of MDSCs and MDSC chemokines, 

MCP-1 and G-CSF, and IngLNs were assessed for cellularity and T cell populations.   
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Dual Skin Allograft Transplant- 

We performed dual skin grafts on each recipient mouse; one allograft (right graft bed) 

and one autograft (left graft bed).  First, graft skin was obtained from the tail of a C3H 

donor mouse and transferred into the recipient mice, either BL6 or F1.  Secondly, tail 

skin grafts from autologous donor mice were transplanted on to the recipient mice, either 

BL6 donor to BL6 recipient or F1 donor to F1 recipient. Recipient mice were treated with 

THC, or vehicle, 2 hours prior to the skin graft procedure.  Mice were kept in protective 

casts for 9 days following the graft procedure (166).  Grafts were assessed for rejection 

starting on day 9 after graft placement.  Treatment of either THC or vehicle was given 

i.p. every other day for 14 days, and after this point, all treatments were stopped.  For 

assessment of CB1 receptor involvement, the pharmacological antagonist SR141716A 

was given (20 mg/kg) i.p one hour prior to each THC treatment.  Mice were scored as +/+ 

accepted graft, +/- partially rejected graft (less than 50% scabbed over or less than a 

halving in graft size), or -/- fully rejected graft.  For depicting graft survival +/+ and +/- 

skin grafts were considered viable and -/- skin grafts were nonviable.    

Statistical Analysis-  

HvGD experiments (n≥4 mice per treatment group) were repeated 2 or more times to 

ensure repeatability.  Skin graft experiments were run in triplicate (n>7 mice was used for 

statistical analysis).  Data are shown as mean ± S.E.M.  Student’s t Test was used to 

compare data between two groups. One-way ANOVA with Tukey post-hoc test was used 

to compare three or more groups.  Log-rank (Mantel-Cox) test was used to determine 
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significance of survival curves.  Experimental groups were compared to vehicle, p < 0.05 

was considered significant. 

3.3 RESULTS 

THC treatment reduces lymphocyte proliferation in inguinal lymph nodes. 

 To determine if THC could have a therapeutic role in allograft rejection, we 

modified a mouse model of acute HvGD; with a strong and rapid host immune response 

to the graft (159).  As such, the recipient mice (BL6 haplotype H-2
b
) were given a bolus 

(2.2x10
7 

cells) of graft (C3H haplotype H-2
k
) splenocytes subcutaneously two hours after 

THC (20 mg/kg body weight) or vehicle treatment (ethanol diluted in 1xPBS).  Treatment 

was administered i.p. daily (Fig. 3.1A).  Mice were assessed for symptomology of HvGD 

4 days after graft injection, with T cell proliferation and Th1 associated cytokine 

secretion being used as markers of disease induction.  The draining lymph nodes 

(inguinal, IngLN) were collected and assessed for T cell proliferation.  The data showed 

that total cellularity in the IngLN in HvGD mice was significantly decreased with THC 

treatment from the greater than fivefold increase observed in vehicle treated HvGD mice 

(Fig. 3.1B).  Flow cytometric analysis revealed that T cell subset (CD3+CD4+ and 

CD3+CD8+) proportions, were increased in vehicle treated HvGD mice compared to 

naive mice (Fig. 3.1 C&D).  However, HvGD mice given THC treatment showed a 

significant reduction in both T cell populations bringing these T cell numbers back to 

naïve levels (Fig. 3.1 C&D).   

THC treatment suppresses secretion of pro-inflammatory cytokines.    

 Previously our lab group has shown that THC treatment can reduce cytokines and 
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chemokines associated with inflammatory disease models (76, 84).  As HvGD is known 

to be accompanied by increases in Th1 associated cytokines, the impact of THC 

treatment on the pro-inflammatory environment in the IngLN of HvGD mice was 

assessed.  Cytokines well known for their involvement in transplant rejection include 

IFN-γ and IL-2, which are typically expressed at high levels early after receipt of the 

graft, TNF-α, which increases as HvGD progresses, and IL-6, which plays a role in graft 

tolerance by skewing the Th1/Th2 balance (59).  To this end, the IngLN from THC or 

vehicle treated (ethanol diluted in 1xPBS) HvGD mice were collected, 4 days after the 

injection of graft cells, and cultured for 24 hours to assess spontaneous cytokine secretion 

in the draining lymph node microenvironment .  IL-2, a cytokine known to increase T cell 

proliferation and IFN-γ, which is associated with cytotoxic T lymphocyte (CTL) killing, 

were elevated in vehicle treated mice with HvGD but reduced by nearly 50% upon THC 

treatment (Fig. 3.1E left).  Additionally, TNF- and IL-6 (Fig. 1E) were over-expressed 

in vehicle treated HvGD mice; however, a significant reduction was seen in THC treated 

mice.  To ensure that THC treatment was in fact targeting the HvGD T cell response 

rather than ablating naïve T cell function, mice were treated with THC alone, as a control.  

Cell counts in the IngLN (Fig. 3.1B), absolute numbers of CD3+CD4+ and CD3+CD8+ 

cells in the IngLN (Fig. 3.1 C&D), as well as cytokines (Fig. 3.1E) in mice treated with 

THC alone were not changed significantly when compared to naïve mice.  Thus, in 

subsequent experiments, we primarily compared HvGD+Veh versus HvGD+THC 

groups.   

  Inguinal lymph node activation is decreased by THC administration.  

One hallmark of HvGD is that a second transplant with the same haplotype 
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disparity will be rejected by the host more rapidly than the initial graft.  To determine if 

THC could favorably impact this outcome of allograft rejection, HvGD mouse IngLN 

were restimulated ex vivo.  HvGD mice treated with either vehicle (ethanol diluted in 

1xPBS) or THC were rested for 10 days, from the time of the last treatment injection, and 

then restimulated with C3H splenocytes.  Proliferation due to restimulation was assessed 

using [
3
H] thymidine incorporation.  Mice given vehicle treatment showed significantly 

increased rates of proliferation compared to THC treated mice (Fig. 3.2A).  Having found 

that ex vivo restimulation was decreased in THC treated HvGD mice, we next looked at 

the number of FasL expressing cells in the IngLN.  We found that significantly fewer 

cells expressed FasL (Fig 3.2B upper) and that the number of active T cells expressing 

the Fas receptor (Fas) was also significantly reduced (Fig. 3.2B lower) in THC treated 

HvGD mice.  Additionally, T cell activation markers were analyzed to ascertain how 

THC affects proliferation rates after treatment.  To this end, IngLN were collected 4 days 

after graft cell injection from both vehicle and THC treated mice, and evaluated for cells 

positively expressing activation markers.  Expression of CD25, which is found on 

memory T cells and is part of the IL-2 receptor, CD28, a necessary co-stimulatory 

molecule that interacts with CD80/86 on APCs, and CD69, an early activation marker, 

were assessed in HvGD IngLN by flow cytometry.  HvGD mice treated with THC had 

significantly fewer CD25+, CD28+, and CD69+ cells in the IngLN than did the vehicle 

treated mice (Fig. 3.2C).   

THC decreases the inflammatory response allowing for H-2
k
 graft cell persistence. 

 In HvGD, the final step in graft rejection is apoptosis of the graft cells caused by 

CTLs and natural killer (NK) cells (167).  Since THC treatment caused a reduction in the 
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number and proportion of CD3+CD8+ cells and FasL expression, H-2
k
 positive cells 

were evaluated to determine if treatment extended the life of the graft cells.  The draining 

IngLN, spleen, and peritoneal cavity were selected as possible sites of graft cell 

persistence.  While no cells positive for H-2
k
 were found in vehicle treated (ethanol 

diluted in 1xPBS) HvGD mice (Fig. 3.2D) allograft cells were detected in the peritoneal 

cavity of THC treated HvGD mice (Fig. 3.2D).  The H-2
k
+ cells were measurable in the 

peritoneal cavity as early as 16 hours after injection of the graft (Fig. 3.2D).  To analyze 

whether daily THC treatments are sufficiently immunosuppressive to allow for continued 

persistence of the graft cells, the peritoneal exudate was monitored at 24 hour intervals.  

Interestingly, H-2
k
+ cells persisted for the entire 90 hour duration of THC treatment (Fig. 

3.2E). 

THC treatment induces suppressive MDSCs in HvGD mice. 

Our laboratory has shown that high levels of Gr1+CD11b+ MDSCs are induced 

by a single injection of THC i.p. into mice and that such cells are highly 

immunosuppressive (86). To test if THC injection in the current HvGD model also 

triggers Gr1+CD11b+ MDSCs, we harvested the cells from the peritoneal cavity, 18 

hours after graft injection, and stained them for Gr1+CD11b+ expression.  While 

HvGD+Veh (ethanol diluted in 1xPBS) treated mice showed less than 3% MDSCs, 

equivalent to an absolute count around 0.04x10
6
 cells and similar to naïve mice, 

HvGD+THC treated mice showed marked increase in Gr1+CD11b+ MDSC, the 

proportion of which increased to 75%, or 3.2x10
6
 cells, at 18 hours and dropped to 46%, 

or 2.4x10
6
 cells, at 90 hours (Fig. 3.3A ).  As many immature myeloid cells express the 

cell surface markers Gr1 and CD11b we looked at the T cell suppressive property of 
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these double-positive cells to ensure that they were indeed MDSCs (97); (98).  Next, the 

Gr1+CD11b+ MDSCs from the peritoneum of THC treated HvGD mice, isolated at 18 

hours, were purified (greater than 95% purity Gr1+CD11b+ cells) using positive 

selection based on expression of Gr1, as described earlier (56).  Isolated MDSCs were co-

cultured, at various concentrations, in a mixed leukocyte reaction (MLR) with BL6 

IngLN as responders and C3H spleen cells treated with mitomycin C, as stimulators (1:8 

ratio).  Proliferation of the BL6 IngLN cells was measured using thymidine 

incorporation.  Gr1+CD11b+ MDSCs (from here on denoted as MDSCs) significantly 

reduced T cell proliferation in a dose-dependent manner (Fig. 3.3B).  

 Due to the fact that MDSC induction has been associated with inflammatory 

disease, we next set out to show that THC treatment, and not the disease model, was 

driving MDSC recruitment (168); (169); (170).  Previous studies from our lab 

demonstrated that cannabinoid receptor ligand treatment increases the level of MCP-1 

(CCL2), which has also been associated with an increase in MDSCs at the tumor site 

(75); (171).  Additionally, we looked at G-CSF which in our lab has previously been 

shown to be elevated in THC-mediated MDSC induction (86).  To this end, the 

peritoneum exudate was collected, with a single lavage of 1 mL 1xPBS, and assessed for 

cytokine and chemokine levels.  We found MCP-1 and G-CSF were elevated only in 

THC treated HvGD mice (Fig. 3.3 C&D respectively).   

THC induced MDSCs play an integral role in in the amelioration of HvGD. 

 To determine the importance of MDSCs in reducing overall HvGD 

symptomology, we used the anti-Ly-6G/Ly-6C purified antibody (RB6-8C5) to deplete 
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Gr1+ MDSCs.  The depletion antibody was given 3 hours after every other THC 

treatment in decreasing doses of 0.1 and 0.05 mg/mouse.  The IngLN cellularity for 

CD3+CD4+ (Fig. 4A) and CD3+CD8+ (Fig. 3.4B) T cells was significantly increased in 

HvGD mice, which was decreased following treatment with THC and control Ab.  

Interestingly, HvGD+THC mice that received anti-Ly-6G/Ly-6C Ab showed reversal of 

THC effect resulting in increased numbers of T cells (Fig. 3.4 A& B).  Additionally, the 

impact of MDSC depletion on T cell activation markers including CD25, CD28, and 

CD44 was assessed.  Upon treatment with anti-Ly-6G/Ly-6C Ab, we saw a significant 

increase in cells positive for the CD25, CD28, and CD44 activation markers (Fig. 3.4C).  

To ensure that RB6-8C5 depleted the MDSCs, Gr1+CD11b+ cells in the peritoneal cavity 

were analyzed.  RB6-8C5 caused a stark decrease in MDSC proportion in THC treated 

HvGD mice from 67% to about 11% (Fig. 3.4D).  Finally, RB6-8C5 administration along 

with THC treatment resulted in a significant decrease in the number of H-2
k
+ cells in the 

RB6-8C5 group consistent with a decrease in allograft persistence (Fig. 3.4E). 

 Because MDSC depletion decreased the efficacy of THC treatment in HvGD 

mice, we tested if adoptive transfer of THC-induced MDSCs into allograft recipient mice 

would suppress HvGD.  MDSCs were isolated from THC treated mice 18 hours after 

treatment as outlined previously.  Isolated THC-induced MDSCs (5x10
6
), at greater than 

95% purity, were then transferred into BL6 HvGD mice via an i.p. injection 30 minutes 

after subcutaneous injection of graft cells.  Adoptively transferred mice were assessed for 

IngLN cellularity and T cell populations four days after the injection of graft cells.  We 

noted that transfer of MDSCs suppressed the HvGD as indicated by the total number of 

cells (Fig 3.5A) as well as CD3+CD4+ and CD3+CD8+ T cell subsets (Fig 3.5B), 
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although to a lesser extent than THC.  Additionally, we looked at the peritoneal exudate 

for MDSC persistence as well as MDSC homing cytokine levels (18 hours after graft cell 

injection).  When the peritoneal exudate was enumerated for Gr1+CD11b+ cells in 

MDSC transferred HvGD mice, we found that there were significantly reduced numbers 

of MDSCs in the peritoneal cavity compared to the THC treated group (Fig. 3.5C).  In 

corroboration with reduced overall cellularity within the peritoneum, the proportion of 

persisting H-2
k
+ cells was reduced by 50% in MDSC treated compared to THC treated 

HvGD mice (data not shown).  In addition, MCP-1 and G-CSF were undetectable in mice 

adoptively transferred with MDSCs when compared to those exposed to THC which 

showed very high levels (Fig 3.5 D&E).   These data showed that adoptively transferred 

MDSC may be less effective because they may not be able to survive or home.   

THC-mediated reduction of HvGD occurs in a CB1 dependent manner.   

 Immune cells express both CB1 and CB2 receptors, as such specific antagonists 

were used in vivo to ascertain whether THC was working preferentially through 

activation of CB1, CB2, or both receptors (13); (78); (28); (75).  BL6 mice were treated 

with CB1 or CB2 receptor antagonist (SR141716 or SR144528 respectively at 20 mg/kg 

i.p.) one hour prior to each THC treatment.  As seen earlier, HvGD+THC mice showed 

decreased absolute cellularity of the IngLN when compared to HvGD+Veh (DMSO+20 

µL Tween-80 diluted in 1xPBS) mice.  Interestingly, HvGD+THC+CB1 antagonist 

treated mice but not HvGD+THC+CB2 antagonist treated mice showed a reversal in 

IngLN cellularity when compared to HvGD+THC mice, thereby suggesting that THC 

was acting through CB1 but not CB2 receptors (Fig. 3.6A).  To further corroborate that 

the CB2 receptor was not involved, we used another CB2 receptor antagonist (AM630) 
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(14), and found that this antagonist was also not able to reverse the effect of THC on 

HvGD (Fig. 3.6B).  As confirmation that THC was working through the CB1 receptor, 

CB1 KO mice were incorporated into the HvGD model as recipients.  Thus, we induced 

HvGD in BL6 wild-type and CB1 receptor KO mice and treated them with THC.  The 

data indicated that THC treatment did not reduce IngLN cellularity in HvGD mice with a 

nonfunctional CB1 receptor compared to THC treated wild-type HvGD mice (Fig. 3.6C).  

Next, we studied MDSC induction in wild-type, CB1 KO, or CB2 KO allograft recipient 

mice and found that the proportion of MDSCs in the peritoneal exudate was 84%, in wild 

type BL6 mice, while CB1 KO mice had 25%, and CB2 KO mice had 63%   (Fig. 3.6D).  

Looking not only at MDSC proportion but also absolute cell counts  we also noted a 

significant reduction from CB1 but not CB2 KO mice, 8.6x10
6
 and 17.1x10

6
 cells 

respectively, when compared to wild-type mice which averaged 16.2x10
6
 peritoneal 

exudate MDSCs (Fig. 3.6E).   

THC significantly extends life of allogenic skin grafts.   

 While all of the data shown above indicated that THC can suppress HvGD, we 

next tested directly whether THC treatment could reduce rejection of complete haplotype 

mismatched skin allografts.  To this end, tail skin from donor C3H mice, kept in place on 

the recipient  mouse using a compression cast in lieu of sutures, acted as a complete 

mismatch allograft (166).  The cast was removed after nine days.  Allograft rejection was 

assessed daily starting on day 9 after transplant, 1 hour after cast removal.  Mice were 

treated with either THC or vehicle (ethanol diluted in 1xPBS) every other day for 14 days 

via i.p injection as described earlier.  The data showed that the skin allograft survival 

curve for THC treated BL6 recipient mice, mean survival >12 days, was significantly 
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extended compared to vehicle-treated mice, mean survival <10 days (Fig. 3.7A).  

Axillary and brachial LNs, from the skin transplant mice, were restimulated with 

mitomycin C treated C3H splenocytes, ex vivo, and proliferation analyzed using 

thymidine incorporation.  THC treated skin graft recipient mice showed significantly less 

proliferation than did vehicle treated graft mice (Fig. 3.7B).  In order to show that the 

protective effects of THC on the skin allograft were not specific towards one MHC 

haplotype, we moved our dual graft model into B6D2F1/J mice which have a different 

haplotype disparity H-2
d/b

 than BL6 mice when compared to the H-2
k
 allograft.  We again 

found that THC treatment was able to significantly extend the skin allograft survival 

curve, mean survival =12 days, compared to vehicle treatment, mean survival <10 days 

(Fig. 3.7C).  Furthermore, having shown that CB1 receptor function was integral in 

reducing the inflammatory response to allograft cells we used the antagonist 

(SR141716A) along with THC treatment in the BL6 skin graft model.  A significant 

reduction in the life of the skin graft was observed upon pharmacologically blocking the 

CB1 receptor, mean survival <11 days, compared to THC treatment without CB1 

receptor antagonist, mean survival =14 days (Fig. 3.7D).    

3.4 DISCUSSION 

While the immunosuppressive properties of THC have been well elucidated, 

whether THC can be used to prevent allograft rejection has not been previously studied 

(172).  Recently, we suggested that activation of cannabinoid receptors may provide a 

novel approach to prevent transplant rejection (158).  THC has been found to affect 

nearly every aspect of cellular immunity including  T cells, natural killer cells, 

macrophages, neutrophils, mast cells, and B-cells (as reviewed throughout the years 
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(155); (173); (174); (175); (77); (3, 155).  It has also been established that THC can impact 

the biasing of T cell differentiation from Th1 to Th2 (154); (176); (177); (88)).  Moreover, 

THC can also induce immunosuppressive cells such as MDSCs and Tregs (86); (88); 

(78)).  Thus, it is worth investigating if THC can suppress allograft rejection.   

In the current study, we found that THC-induced MDSCs may play a critical role 

in suppressing allograft rejection.  This was evident from experiments using the antibody, 

RB6-8C5, which depleted the MDSC in vivo and caused a reversal of the ability of THC 

to ameliorate HvGD. THC-induced MDSCs suppressed the T cell proliferation against 

the allogeneic cells in vitro.  Furthermore, adoptive transfer of THC-induced MDSCs into 

HvGD mice caused significant suppression of HvGD response.  Together, these data 

provided strong support to the fact that THC may suppress allograft rejection through 

induction of MDSCs.  Our laboratory has shown previously that THC treatment triggers 

rapid and massive induction of MDSCs in naïve mice after a single dose (86).  While 

MDSCs were first associated with cancer as part of the tumor microenvironment which 

decreased  T cell based anti-tumor immunity and increased tumor progression, recent 

studies have indicated that MDSCs may also be induced at sites of inflammation (57, 

178); (179).  The suppressive functionality of MDSCs is most commonly attributed to the 

release of Arg-1 or iNOS (58).  THC-induced MDSCs have been shown to be suppressive 

to T cell proliferation in response to both polyclonal and antigen-specific stimuli (86).  

The importance of MDSCs in creating tolerance in grafts was shown recently through the 

adoptive transfer of LPS-induced MDSCs i.v. (60).  The transfer of MDSCs delayed the 

rejection of minor antigen disparity, HY, skin grafts (60).  MDSCs were also present in 
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tolerated grafts including MHC-mismatched kidney transplants in rats (98).  Additionally, 

the suppressive function of MDSCs was deemed vital, as MDSCs unable to produce Arg-

1 via IL-13 treatment were less effective, in ameliorating GvHD in lethally irradiated 

BALB/c mice (180).  However, adoptive transfer of MDSCs was not sufficient to cause 

graft persistence in fully mismatched antigen disparity (60).  In the current study, we 

found that the adoptive transfer of THC-induced MDSCs, suppressed the immune 

response in the LN of mice with HvGD and reduced the total numbers of cells, including 

CD3+CD4+ T cells and CD3+CD8+ T cells, although this was not as effective as 

administration of THC alone.  These data suggested that MDSCs, at least in part, play a 

role in THC-mediated suppression of allogeneic response in the recipient.  THC may be 

more effective in vivo because immunosuppression can be induced through additional 

mechanisms such as induction of Tregs, switch from Th1 to Th2 , apoptosis in activated 

T cells , and suppression of cytokines (88); (78); (154); (176); (80); (181); (84).  

Alternatively, treatment with MDSCs may not be as effective because the cells may not 

be able to maintain an immature, and therefore suppressive, phenotype after adoptive 

transfer or may not migrate to the grafted site to mediate suppression unlike those 

MDSCs directly induced by THC.  We concluded this was due to lack of MDSC homing 

cytokines, such as MCP-1 and G-CSF, which are necessary for MDSC migration and 

retention of suppressive capabilities (182).  The findings of De Wilde et al., which show 

that MDSCs are directly involved in tolerance lend credence to our findings that THC, a 

known MDSC inducer, reduces HvGD symptomology, attenuating acute transplant 

rejection (60).    

In the current study, we noted that THC-mediated effect on allograft response was  
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regulated through CB1 rather than CB2 receptors.  Recently, a study looking at Mixed 

Lymphocyte Reaction (MLR) in vitro found that the CB2 receptor was necessary for 

THC induced T cell suppression (183).  The findings of Robinson et al showed a CB2 

dependent decrease in IL-2 production however the role of MDSCs was not assessed in 

the study (183).  We found that THC was able to significantly reduce the in vivo 

proinflammatory response, including T cell activation and proliferation, to allograft in 

wildtype BL6 mice with functional CB1 and CB2 receptors.  However, when the 

functionality of the CB1 receptor was compromised, either by genetic knock out or 

pharmacological blockade, THC was less effective in inhibiting the proinflammmatory 

response including T cell proliferation.  In contrast, a loss of CB2 receptor function had 

little to no impact on THC mediated immunosuppression.  The observation that CB1 

activation was necessary for HvGD amelioration was explained in part when the role of 

cannabinoid receptors in MDSC induction was observed.  We showed that THC mediated 

induction of MDSCs, in this model, was dependent on a functional CB1 receptor.  

Additionally, THC-mediated shift in T cell differentiation from Th1 to Th2 has recently 

been found to involve both the CB1 and CB2 receptors (154).  Newton et al. found that 

the shift was due to the CB1-dependent decrease in IL-12Rβ1 binding and a CB2-

dependent increase in GATA-3 expression (154).  Together, CB1 and CB2 activation 

creates a simultaneous drop in IFN-γ and rise in IL-4.  The role of CB1 in T cell 

differentiation brings to light the often overlooked involvement of this receptor with 

peripheral immune cells.  While CB2 is expressed at higher levels in naïve immune cells, 

CB1 expression has been found to be elevated upon activation, specifically in T cells (34, 

184).  Furthermore, THC treatment of T cell lines, in lieu of activation, resulted in 
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elevated CB1 levels (185).  Together these findings support our claim that THC is 

working in a CB1 receptor dependent manner.      

In the current study, we found that THC treatment in HvGD mice led to 

significant suppression of proinflammatory cytokines.  In particular THC significantly 

reduced the secretion of IL-2, IL-6, and IFN-γ which are associated with the loss of graft 

function and ultimately lead to allograft destruction.  Our lab has reported that THC 

treatment in an autoimmune hepatitis model can reduce both TNF-α and IL-6 levels in 

serum (76).  Furthermore, THC treatment led to reduced IL-2 and IFN-γ secretion in 

ConA activated splenic T cells (186).  In addition to reducing proinflammatory cytokines, 

necessary for T cell proliferation, THC can also reduce the expression of receptors 

necessary for T cell activation.  We found that THC was able to significantly reduce the 

number of cells expressing CD25, CD28, CD69, and CD44 co-stimulatory and activation 

markers in HvGD mice.  Additionally, THC treatment brought the expression of these T 

cell activation receptors to levels not significantly different from naïve mice.  It has been 

shown that the co-stimulator ICOS, expression and transcription, can be down regulated 

via THC treatment of anti-CD3/CD28 stimulated CD4+ splenic T cells (187).  

Cannabinoid receptor binding has also been found to inhibit T cell activation through co-

stimulator interference.  Focusing on the role of APCs in  T cell activation, a recent study 

found that heat-stable antigen expression was decreased on macrophages upon THC 

treatment resulting in extended  T cell unresponsiveness (103).  Furthermore, CD28 

blockade is known to play a major role in tolerance, though not sufficient to prevent graft 

rejection.  While there has been no direct evidence which ties THC to the depletion of the 

co-stimulatory molecule CD28, it is known that THC treatment inhibits pathways 



60 

 

associated with CD28 binding (139).  CD28 activation is involved in PI3K/AKT and NF-

κB proliferative pathways.  Binding of CD28 to PI3K, PKC-θ, or Grb2 have all been 

suggested as NF-κB activation regulating pathways (188).  NF-κB activation is important 

in graft rejection as recent literature shows that impaired NF-κB activation can be 

correlated to skin graft tolerance (189).  The fact that PI3K subunit p110δ is upregulated 

in transplanted HY-mismatched heart graft tissue suggests that the CD28/PI3K/NF-κB 

pathway could be integral in rejection (190).  It has been known for some time that THC 

treatment inhibits NF-κB DNA binding, and that high levels of IL-10 can suppress PI3K 

binding of CD28 (139); (191).  The research reported here acts as a bridge to these 

concepts.  Additionally, reduced CD28 co-stimulation, as well as THC treatment, has 

been implicated in the development of anergy in mouse lymphocytes (192); (193).  As 

such, we suggest that THC treatment; induces an increase in Th2 cytokines which inhibit 

CD28 binding thereby reducing NF-κB and allowing for graft tolerance.   

 Together, the current study shows for the first time that cannabinoid receptor-

ligand system may play a critical role in allograft rejection.  THC treatment reduced the T 

cell response in the host by dampening the secretion of pro-inflammatory cytokines and 

expression of T cell activation markers.  Additionally, THC treatment resulted in delayed 

graft destruction even in a major histocompatibility complex disparity model of allogenic 

skin transplant.  Induction of highly immunosuppressive MDSCs following THC 

treatment proved to be necessary, at least in part, for THC-mediated attenuation of 

allograft rejection.  We also noted that this effect of THC was dependent on activation of 

CB1 rather than CB2 receptors.  The current study sets the stage for additional studies on 

the cannabinoid system in regulating transplant rejection involving potential 
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manipulation of endocannabinoids, receptors, as well as use of cannabinoid receptor 

select agonists that are not psychoactive.  
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Figure 3.1:  THC treatment ameliorates HvGD.   

C57BL/6 (BL6) mice were given THC or vehicle, ethanol diluted in 1xPBS, (n=5 mice 

per group) 2 hours prior to graft cells (C3H 2.2x10
7
 subcutaneously) and daily after graft 

injection until sacrifice.  On day 4 after allograft injection, T cell populations were 

assessed by harvesting draining inguinal lymph nodes (IngLN) and then triple-staining 

the cells with fluorochrome-labelled antibodies against CD3, CD4, and CD8 antigens.  

IngLN cells, collected on day 4 after allograft injection, were also cultured for 24 hours 

and supernatants harvested to assay the spontaneously produced Th1 cytokines.  (A) 

Schematic of procedure and treatment regimen.  (B) Absolute cell count in the IngLN.  

(C-D) Absolute number of CD3+CD4+ (C) and CD3+CD8+ (D) cells in the IngLN.  (E) 

Spontaneous secretion of IL-2, IFN-γ, TNF-α, and IL-6.  Representative data of 3 

experiments shown (mean ± S.E.M). * p < 0.05, ** p < 0.01, *** p < 0.005, **** p< 

0.0001  Student’s t test. 
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Figure 3.2:  THC treatment reduces lymphocyte activation in the recipient mice and 

allows for allograft persistence.   

IngLNs were harvested from BL6 HvGD mice (n=5 mice per group) 10 days after final 

THC treatment, day 14 after allograft injection.  Next, IngLNs were harvested and 

restimulated in vitro with donor C3H spleen cells (mitomycin C inactivated).  

Proliferation of IngLN cells was assessed 4 days after in vitro restimulation using [
3
H] 

thymidine.  IngLN activation status was determined 4 days after allograft injection by 

individually staining the cells for antibodies against CD25, CD28, and CD69 antigens.  

(A) C3H restimulation in vehicle, ethanol diluted in 1xPBS, and THC-treated HvGD mice 

(data shown as mean ± S.E.M).  (B)  T cell activation marker expression, CD25, CD28, 

and CD69 on IngLN cells (similar results seen in two replicate experiments).  (C) H-2
k
 

cell persistence in recipient mice.  (D) H-2
k
 cell persistence in the peritoneal cavity 

throughout the five days (similar results seen in replicate experiments).  * p < 0.05, ** p 

< 0.01, *** p < 0.005, **** p< 0.0001  Student’s t test. 
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Figure 3.3:  THC treatment induces immunosuppressive MDSCs.  

Cells were isolated from peritoneal exudates (n=5 mice per group) either18 or 90 hours 

after graft injection, and stained for Gr-1 and CD11b stained to identify MDSCs, MDSCs 

were also isolated using positive selection PE-magnetic beads for Gr1.  C3H cells and 

MDSCs were mitomycin C inactivated prior to plating with BL6 IngLN cells.  

Proliferation of IngLN cells was assessed 4 days after MLR stimulation using thymidine.   

(A) Gr1+CD11b+ MDSCs in the peritoneal cavity, at 18 and 90 hours after graft cell 

injection, (similar results seen in replicate experiments).  (B) MDSC suppression of MLR 

against C3H cells (p<0.01, one-way ANOVA and Tukey HSD post-hoc test). (C, D) 

Peritoneal exudates were collected 18 hours after graft injecion (1 mL ice cold 1xPBS) 

and assessed for MDSC homing cytokines, MCP-1 (CCL2) and G-CSF. Representative 

data of replicate experiments shown (mean ± S.E.M).  * p < 0.05, ** p < 0.01, *** p < 

0.005, **** p< 0.0001  ANOVA/Tukey. 
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Figure 3.4:  Role of MDSCs in HvGD modulation as determined via MDSC 

depletion.   

MDSCs were depleted by i.p. injection of Ly-6G/Ly-6C purified Ab (RB6-8C5) or 

isotype matched control Ab (n=5 mice per group).  Depletion Ab was given three hours 

after every other THC treatment in decreasing doses of 0.1 and 0.05 mg/mouse.    

Peritoneal exudates were assessed for the presence of MDSCs and donor H-2
k
 cells, and 

IngLN were assessed for cellularity and T cell activation, day 4 after graft injection.  (A) 

Absolute cell count of CD3+CD4+ T cells in IngLN.  (B) Absolute cell count of 

CD3+CD8+ T cells in IngLN.  (C)  T cell activation marker expression, CD25, CD28, 

and CD44 (right), on IngLN cells.  (D) Proportion of MDSCs in the peritoneal cavity.  

(E)  Allograft cell persistence at the conclusion of the five day experiment.  

Representative data of 3 experiments shown (mean ± S.E.M).  * p < 0.05, ** p < 0.01, 

*** p < 0.005, **** p< 0.0001 Student’s T test or ANOVA/Tukey. 
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Figure 3.5:  Role of MDSCs in HvGD modulation as determined via adoptive 

transfer.   

Isolated THC induced MDSCs (5x10
6
), greater than 95% pure, were transferred into BL6 

HvGD mice (n=5 per group) via an i.p. injection 30 min after subcutaneous injection of 

graft cells.  Mice were euthanized at two time points day 4, for IngLN analysis, and 18 

hours, for peritoneal lavage analysis, after graft injection.  Peritoneal exudates were 

assessed for the presence of MDSCs and the MDSC homing chemokines.  (A) Cellularity 

in the IngLN.  (B) T cell populations, CD3+CD4+ (top) and CD3+CD8+ (bottom), in 

IngLN.  (C) Overall MDSC cellularity of the peritoneal cavity.  (D) MCP-1 levels in the 

peritoneal exudate.  (E) G-CSF levels in the peritoneal exudate.  Similar results seen in 

replicate experiments (mean ± S.E.M).  * p < 0.05, ** p < 0.01, *** p < 0.005, **** p< 

0.0001  ANOVA/Tukey. 
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Figure 3.6:  THC works through the CB1 receptor to ameliorate HvGD.   

BL6 mice (n=5 per group) were given either CB1 or CB2 receptor antagonist 1 hour prior 

to treatment with THC or vehicle, DMSO+20 µL Tween-80 diluted in 1xPBS.  (A) 

Absolute cellularity in IngLN, day 4 after graft injection, using CB2 and CB1 receptor 

antagonists, SR144528 and SR141716A respectively (data shown as mean ± S.E.M).  (B) 

Absolute cellularity in IngLNs, day 4 after graft injection, using CB2 receptor antagonist 

AM630 (data shown as mean ± S.E.M).  (C)  Cellularity on IngLn in BL6 and CB1 KO 

HvGD mice, day 4 after graft injection.  (D) THC induction of peritoneal MDSCs in 

BL6, CB1 KO, and CB2 KO HvGD mice, 18 hours after graft injection (mean ± S.E.M).  

(E) Absolute cell counts of peritoneal MDSCs in BL6, CB1 KO, and CB2 KO HvGD 

mice.  * p < 0.05, ** p < 0.01, *** p < 0.005, **** p< 0.0001  Student’s T test or 

ANOVA/Tukey.   
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Figure 3.7:  THC treatment significantly extends survival of allogenic skin grafts. 

 The dual skin graft method was used to include a technical control (all autograft skin 

transplants survived).  THC treatment was given every other day for two weeks.  (A)  

C3H allograft on BL6 recipient mice: survival of allograft in THC and vehicle (ethanol 

diluted in 1xPBS)-treated mice (mean ± S.D. n=9 vehicle treated mice and an n=9 THC 

treated mice).  (B)  Skin graft rejection mice from panel A were rested ten days (from the 

last treatment) and then the axillary and brachial lymph nodes were restimulated ex vivo 

with C3H splenocytes.  Thymidine assay was used to determine proliferation.  (C)  C3H 

allograft on B6DF1/J (F1) recipient mice: survival of allograft in THC and vehicle-

treated mice (mean ± S.D. n=8 vehicle treated mice and an n=9 THC treated mice).  (D)  

C3H allograft on BL6 recipient mice survival of allograft in THC or SR141716A+THC-

treated mice (mean ± S.D. n=6 SR141716A+THC treated mice; and an n=4 THC treated 

mice).  Log-rank test (survival curves) and ANVOA/Tukey * p < 0.05, ** p < 0.01, *** p 

< 0.005, **** p< 0.0001.  
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CHAPTER IV: Δ
9
-Tetrahydrocannabinol attenuates delayed type hypersensitivity via 

microRNA regulation of Th1 and Th17 differentiation. 

4.1 INTRODUCTION 

T helper cell differentiation, has classically, represented distinct T cell lineages 

impacted by cytokine milieu, Th1 (IL-12), Th2 (IL-4), Th17 (IL-6 and TGFβ), and T 

regulatory cells (Tregs- TGFβ), leading to terminally differentiated T cell subsets (51).  

Over the years, it has been shown that interaction between T helper cell subsets, such as 

Th1 and Th2, can regulate the differentiation of other T cell lineages (194); (195).  While 

the Th1, proinflammatory, versus Th2, anti-inflammatory, responses have been clearly 

defined (as reviewed though the years (196); (197); (198); (199); (200) the discovery of 

additional proinflammatory T helper cell populations, such as Th17, has complicated our 

understanding of T cell interactions.  Recent evidence has shown that Th1 secreted 

cytokines, IFN-γ and IL-2, can inhibit Th17 differentiation and that while IL-17a/f 

expression cannot directly inhibit the Th1 responses, elevated levels of TGFβ associated 

with active Th17 cells can (201); (202); (203); (204).   Further muddling these 

proinflammatory cell interactions is the fact that Th17 and Th1 lineages may have some 

overlap due to immune cell plasticity and the emergence of proposed Th17/Th1 and 

“non-classic” Th1 lymphocytes (205); (206); (207); (208); (209).  

Heritable genetic modifications, known as epigenetics, have arisen recently as the 

explanation for selective gene expression (35); (36).    Epigenomics broadly encompasses
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DNA methylation, histone acetylation and methylation, as well as microRNA (miRNA or 

miR) expression.  Evidence now exists which highlights the influence of epigenetic 

modifications on immune cell differentiation and activation (38); (210); (211); (212); 

(88); (213).  miRNA, ~20 nucleotide long strands of RNA, most commonly inhibit gene 

expression through the binding of mRNA sequences  (40).  Each miR can bind numerous 

targets and therefore regulate the expression of multiple genes (40).  Interestingly, 

lineage-defining transcription factors and the downstream targets associated with T 

helper cell subsets have become a major focus for epigenetic modification such as 

miRNA binding (49); (50).     

Inflammation seen in delayed type hypersensitivity (DTH), plays a critical 

protective role against intracellular pathogens.  However, such inflammation, is often 

seen against innocuous non-pathogenic antigens leading to sever damage to the tissue as 

seen during contact dermatitis against nickel or poison ivy.  Classically, DTH was 

considered to be a Th1 driven inflammatory disease; however treatment with anti-IFN-γ 

showed that such mice continue to exhibit signs of DTH (69).  More recently, the 

importance of Th17 cells in DTH disease progression was highlighted in IL-17 knockout 

mice which showed significantly reduced ear swelling in an allergenic contact dermatitis 

model (52).  Thus, depending on the antigen, it is likely that both Th1 and Th17 cells play 

an effector cell role.    

Immune cells are well established to express cannabinoid receptors, while their 

precise role in the regulation of immune response remains unclear.  ∆
9
-

Tetrahydrocannabinol (THC), one of the most well studied bioactive cannabinoids 

derived from the Cannabis sativa plant, has long been shown to reduce T cell driven 
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inflammation via; apoptosis, induction of immuneoregulatory cells, regulation of T helper 

cell cytokines, and even epigenetic modifications (79); (84); (76); (86); (154); (87); (88); 

(38); (214).   Majority of THC research, in regards to inflammation and autoimmunity, 

has centered on the Th1/Th2 axis.  Specifically, we and others, have found that THC 

treatment increases anti-inflammatory cytokines, causing a subsequent drop in 

proinflammatory cytokines such as IL-12, IFN-γ, and TNF-α, and reduced T cell 

activation (154); (186); (79); (84).  THC treatment has also been found to induce Tregs 

which are known to inhibit both Th1 and Th17 lineage differentiation (76); (88); (215).  

Furthermore, THC has been found to significantly reduce cytokines associated with Th17 

differentiation such as IL-6 and IL-17a (216).  Recently, our lab has found that the ability 

of THC to shift the immune response from proinflammatory to anti-inflammatory 

involves, in part, miRNA regulation (87); (88).   

While cannabinoid receptor agonists can attenuate DTH, the role of THC in regulation of 

epigenetic modifications has not been assessed (217); (218); (83).  Furthermore, the 

ability of THC treatment to inhibit both Th1 and Th17 differentiation within a 

hypersensitivity model has not been reported.  With this in mind, we set out to determine 

if THC treatment could inhibit both Th1 and Th17 T cell lineages, in a methylated BSA 

(mBSA) sensitization/rechallenge model of DTH, via miRNA regulation.  Our results 

suggest that THC can attenuate DTH response to mBSA by inhibiting both Th1 and Th17 

cells through reversal of the miRNA alterations brought about during the DTH response.  
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4.2 MATERIALS AND METHODS 

Mice- 

Female C57BL/6 (BL6) mice, aged 6-8 weeks and at an average weight of 20 g, were 

obtained from Harlan Laboratories.  All mice were housed in pathogen-free conditions 

and allowed ad libitum access to filtered water and Teklad rodent diet 8604 (normal 

chow) at the Animal Research Facility located at the University of South Carolina School 

of Medicine.  All experiments were conducted under an approved Institutional Animal 

Care and Use Committee animal protocol.   

Induction of delayed type hypersensitivity (DTH) and THC treatment- 

DTH was induced in C57BL/6 mice using a sensitization/rechallenge method (83).  

Briefly, mice (n=5 per experimental group) were sensitized with a subcutaneous injection 

(100 µL/hind flank) of 1.5 mg/mL methylated BSA (mBSA- Sigma Aldrich) emulsified 

in complete Freunds adjuvant (CFA- Sigma Aldrich).  Six days later, the mice were 

rechallenged with a footpad injection (20 µL/footpad) of 10 mg/mL mBSA in 1xPBS.  

∆
9-

Tetrahydrocannabinol (THC- NIDA-NIH) dissolved in ethanol was diluted in 1xPBS 

to a concentration of 20 mg/kg.  THC or vehicle (ethanol diluted in 1xPBS) was 

administered intraperitoneally (i.p.) at a volume of 0.1 mL/mouse into DTH mice daily 

starting on Day 3.   Percent swelling was measured as [(Thickness(mBSA rechallenged 

footpad) - Thickness(1xPBS rechallenged footpad)) / Thickness(1xPBS rechallenged 

footpad)] * 100.  
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Monoclonal antibodies, reagents, and flow cytometer- 

Antibodies used for flow cytometric analysis (BioLegend) included: Fc block (93), PE 

Cy7 conjugated anti-CD3 (145-2C11), PE conjugated anti-CD19 (6D5), FitC conjugated 

anti-CD69 (H1.2F3), FitC conjugated anti-IL17a (TC11-18H10.1), and PE conjugated 

anti-CD4 (GK1.5).  In short, popliteal lymph node cells (PopLN- 10
6
 cells in 25 µL) from 

rechallenged BL6 mice were incubated with FC receptor antibodies (5-10 minutes) and 

incubated with conjugated antibodies (20-30 minutes at 4°C).  After incubation with 

conjugated antibodies cells were washed twice with 1xPBS/2% fetal bovine serum buffer.  

The stained cells were then assessed by flow cytometer (FC500; Beckman Coulter) and 

the resulting data analyzed by Cytomics CXP software (Beckman Coulter).  Intracellular 

Cytokine Staining Kit (BD biosciences) was used for IL-17a staining per manufacturer’s 

specifications. Briefly, cells were first stained for cell surface CD4 receptor and then 

fixed/permeablized.  Fixed/permeabolized cells were then stained for IL-17a.  Three-color 

flow cytometric analysis was used to profile the lymphocyte activation.  Two-color flow 

cytometric analysis was used to look for Th17 cell differentiation.    

Thymidine analysis of lymph node proliferation- 

Draining lymph node cells from mBSA sensitized mice (1.5 mg/mL in vivo) were co-

cultured in triplicate (0.2 mL/well in a round bottom 96 well plate) with mBSA (40 

mg/mL) for 48 hours.  Sixteen hours before collection and analysis [
3
H]thymidine (2 

µCi/well) was added to the cell cultures.  The radioactivity was measured using a liquid 

scintillation counter (MicroBeta Trilux). 
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Histological assessment of rechallenged footpad- 

Footpads from THC- or vehicle-treated DTH mice were isolated for histological 

examination. Rechallenged feet were cut distal to the ankle and decalcified/fixed in Cal-

Rite (Fisher scientific).  The footpad was then embedded in paraffin and sectioned into 

6µm sections and stained for Hematoxylin and Eosin (H&E) for assessment of edema and 

immune cell infiltration (83). 

Cytokine analysis in cell culture supernatants- 

ELISA MAX sandwich enzyme-linked immunosorbent assay (ELISA) kits (BioLegend) 

were used to assess the level of IL-17a/f, IFN-γ, and TNF-α cytokines.  Cells were isolated 

from spleen and draining lymph nodes of DTH mice, plated at 1x10
6
 cells/well, cultured 

overnight (18-20 hours) for spontaneous cytokine secretion in complete RPMI media (1% 

v/v penicillin/streptomycin, 1% v/v HEPES buffer, 10% v/v heat inactivated FBS, and 

0.0002% v/v 2-mercaptoethanol).  Cytokine production was quantified from cell 

supernatants (stored at -20°C).  Absorbance was measured at 450 nm using a Victor2 

1420 Multilable counter (Wallac).  

qPCR analysis of gene expression- 

Total RNA was isolated and purified using miRNeasy kit (Qiagen), following 

manufacturer’s procedure.  iScript cDNA synthesis kit (BioRad) was used according to 

manufacturer’s specifications to reverse transcribe cDNA. qPCR was performed using 

Sso Advanced SYBR Green (BioRad) on a CFX Connect (BioRad).  Samples were 

assessed for expression of β actin, Tbx21 (Tbet), RORγT, IRF4, Pten, NFκB, IFN-γ, and 

SMAD7.  Primers, as found on PrimerBank (Harvard Medical School), were synthesized 

from IDT DNA technologies with annealing temperatures of 60°C (Table I). 
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microRNA (miRNA or miR) array and array analysis- 

Affymetrix miRNA array version 4, which integrates all mature miRNA sequences in 

miRBase Release 20 (miRBase v20), was used to profile miR expression in the PopLN 

24 hours after mBSA rechallenge in DTH mice. The array identified over 3,000 unique 

mouse miRs as identified in miRBase v20 using the FlashTag biotin HSR hybridization 

technique, as previously described (87).  In brief, log transformation of fluorescent 

intensities obtained from the hybridization was used to generate heat maps.  Hierarchical 

clustering, using Ward’s method, and similarities were measured using half square 

Euclidean distance.  Fold changes in miR expression were obtained from the raw array 

data, and only those miRs with greater than 2.0-fold change were considered for further 

analysis.  miR predicted targets, alignments, and miR SVR scores were determined using 

online databases (TargetScan, microRNA.org, and miRWalk).  Determination of miR 

interaction and pathway analysis was completed using Ingenuity Pathway Analysis (IPA- 

Ingenuity Systems).  Venn diagram construction was done using LucidChart Venn 

diagram maker (https://www.lucidchart.com/pages/examples/venn_diagram_maker). 

miR validation in PopLN cells- 

miR levels were validated using miScript II RT kit (Qiagen), following manufacturer’s 

specifications for 5x miScript HiSpec Buffer.  qPCR was performed using miScript 

SYBR Green (Qiagen) on CFX Connect (BioRad).  Samples were assessed for 

expression of SNORD96A, miR-21a-5p, miR-223-3p, miR-29b-3p, miR-125a-5p, and 

miR-142-5p (Qiagen).   

 



76 

 

miR transfection of primary cells- 

Transfection of primary cells was completed using the HiPerFect Transfection kit 

(Qiagen) following the manufacturer's protocol. Briefly, DTH draining lymph node cells 

were plated (4x10
5
 cells/well) in complete RPMI media.  Transfection, 6 hours at 37°C, 

with mimic (40 ng/well), inhibitor (100ng/well), and negative mimic (Negative Control 

siRNA- 40 ng/well) was done in serum free RPMI media (1% v/v 

penicillin/streptomycin, 1% v/v HEPES buffer, and 0.0002% v/v 2-mercaptoethanol) 

with 6µL HiPerFect transfection reagent.  Transfection complex was added one drop at a 

time into cell culture.  Transfection mimic, inhibitor, and negative mimic were purchased 

from Qiagen.  Twenty-four hours from initial incubation cells were collected, total RNA 

isolated (miRNeasy kit- Qiagen), and cDNA reverse transcribed (miScript II RT kit- 

Qiagen) for miR validation and target gene expression analysis. 

Statistical analysis-  

Data is shown as mean ± S.E.M.  Student’s t-test was used to compare data between two 

groups. One-way ANOVA with Tukey post-hoc test was used to compare three or more 

groups.  Experimental groups were compared to controls, p < 0.05 was considered 

significant. 

4.3 RESULTS 

Hypersensitivity is decreased in THC treated DTH mice 

Delayed type hypersensitivity (DTH) is a T cell driven response to antigens, 

mediated primarily by Th1 and Th17 cells.  In the current study, we used methylated
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BSA (mBSA) as an antigen to induce DTH in the mouse footpads as described previously 

(83).  Briefly, mice were sensitized by injecting mBSA (1.5mg/mL in CFA) into the 

footpads on day 0 followed by rechallenge with mBSA on day 6 (10mg/mL in 1xPBS) 

(Fig. 4.1A).  These mice received 20 mg/kg THC or vehicle (ethanol diluted in 1xPBS) 

on days 4, 5 and 6 after initial sensitization (Fig. 4.1A).  We used relative percent 

swelling of footpad as the primary indicator of DTH response 24 hours after rechallenge 

with mBSA.  THC treatment of DTH mice significantly reduced swelling in the hind 

footpad compared to vehicle treatment (Fig. 4.1B) as well as draining lymph node 

(popliteal lymph node, PopLN) cellularity (Fig. 4.1 C).  Additionally, we looked at 

lymphocyte proliferation, due to ex vivo rechallenge (40 mg/mL mBSA) of sensitivzed 

draining lymph nodes, via [
3
H]thymidine incorporation.  We found that THC treatment 

was able to significantly decrease mBSA induced lymphocyte proliferation compared to 

vehicle treated DTH mice (Fig. 4.1D).  Moreover, histological analysis showed reduced 

swelling in THC-treated mice correlated with a significant decrease in lymphocyte 

infiltration in the rechallenged footpad (Fig. 4.1 E-H). 

THC treatment reduced lymphocyte activation 

  Furthermore, assessment of lymphocyte activation, using the early lymphocyte 

activation marker CD69, in the PopLN showed significant decrease in THC-treated DTH 

mice compared to vehicle (Fig. 4.2A).  As CD69 can be used as an early activation 

marker for both T and B cells we next looked at both CD3+CD69+ T cell and 

CD19+CD69+ B cell populations.  THC treated DTH mice showed a decrease in both 

proportion (Fig. 4.2 B&D) and absolute cell counts (Fig. 4.2 C&E).  We next studied 

Th17 cells by double-staining for IL-17 and CD4.  The gating of such cells revealed that 
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IL-17a producing T cells also showed significant decrease in the proportion and absolute 

numbers in DTH+THC treated mice compared to DTH+Veh mice (Fig. 4.2 F&G).    

THC treatment reduces expression of proinflammatory transcription factors 

To show that THC treatment was inhibiting T helper cell driven inflammation we 

next looked at proinflammatory cytokines which have been linked to DTH including IL-

17a/f, IFN-γ, and TNF-α (219).  We observed significant decreases in spontaneous 

secretion of IL-17, IFN-γ and TNF- in DTH+THC treated mice when compared to 

DTH+Veh treated mice (Fig. 4.3A).  Having seen a decrease in Th1 and Th17 

proinflammatory cytokines, IFN-γ and IL-17a/f respectively, we next looked at lineage-

dependent transcription factors Tbx21 (Tbet for Th1),  and RORγT and IRF4 (for Th17) 

in the PopLN cells (220); (221); (222).  THC treatment significantly decreased the 

expression of both Th1 and Th17 lineage specific transcription factors, compared to 

vehicle treated DTH mice, (Fig. 4.3B).  Finally, we looked at markers of overall 

inflammation including Pten, the PIK3/Akt inhibitor, and NFκB, a transcription factor 

critical for expanding proinflammatory cytokine expression (223); (224).  Interestingly, 

THC treatment of DTH mice caused a significant increase in Pten levels (Fig. 4.3C) and a 

correlative drop in NFκB expression (Fig. 4.3D) when compared to DTH+Veh mice, 

indicative of a reduced inflammatory response.    

Induction of DTH in mice causes miRNA dysregulation 

The importance of miRNA in hypersensitivity was recently highlighted by the 

observance of similarly elevated miRNA expression in both human and mouse allergic 

contact dermatitis skin samples (225).  Using Affymetrix miRNA array version 4 (JHMI 
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deep sequencing & microarray core) we assessed the expression of over 3,000 miRNA in 

the PopLN from naïve and DTH mice.  In order to visualize the miRNA dysregulation 

caused by DTH a heat map was constructed using log transformation of fluorescent 

intensities obtained from the FlashTag biotin HSR hybridization (Fig. 4.4A).  One 

thousand five hundred and twenty-nine miRs were up/down regulated in DTH mice 

compared to naïve; however the expression of only 70 miRNA were altered at greater 

than 2.0 fold change, 51 upregulated and 19 downregulated (Fig. 4.4B).  miR-21 and -

223 were selected from the top upregulated miRNA (Fig. 4.4B) as potential inflammatory 

markers associated with DTH response and validated by qPCR (Fig. 4.4C).  Also, of 

interest, for possible therapeutic targets, were the top downregulated miRs (Fig. 4.4C) of 

which miR-29b, -125a, and -142 were selected and validated by qPCR (Fig. 4.4E).  

THC treatment reverses DTH mediated miRNA dysregulation 

Having validated two upregulated miRs, and three down-regulated miRs as 

markers potentially associated with DTH response, we next set out to determine what 

impact, if any, THC treatment in DTH mice would have on these miRNA expression.  

Interestingly, DTH+THC mice showed a significant reversal of the DTH dysregulated 

miRNA (Fig. 4.5 A&B).  Thus, THC treatment caused down-regulation of miR-21 and -

223 and up-regulation of miR-29b and -142, while having no significant effect on miR-

125a.  Next, we selected 20 miRs, evenly distributed, from the top up- and down-

regulated miRs and using Ingenuity pathway analysis (IPA) tried to connect these miRs 

of interest to Th1 and Th17 differentiation.  In this analysis, we were able to identify 2 

miRs namely, miR-21 that was downregulated, and miR-29b that was upregulated in 
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DTH+THC mice, were connected to the proinflammatory T helper cell activation 

pathway (Fig. 4.5C). 

THC-mediated regulation of miR-21 and -29b inhibits Th1 and Th17 differentiation 

As implicated by the pathway analysis, IFN-γ is a target of miR-29b as indicated 

by the miR SVR score (miRWalk- Fig. 4.6A) and alignment (miRNA.org- Fig. 4.6B).  

Thus THC-mediated upregulation of miR-29b may have contributed to decreased IFN-γ 

induction.  Additionally, SMAD7, a negative regulator of TGFβ signaling, is a strong 

target of miR-21 as indicated by the miR SVR score (miRWalk- Fig. 4.6A) and 

alignment (miRNA.org- Fig. 4.6D) (226).  Thus, THC-mediated down-regulation of miR-

21 may have contributed to increased SMAD7.  Next, we tried to confirm the expression 

of these molecules in the PopLN cells using qPCR.  The data indicated that THC 

treatment of DTH mice was able to decrease IFN-γ (Fig. 4.6C) and increase SMAD7 

expression in PopLN cells (Fig. 4.6E) when compared to DTH+Veh mice. 

THC treatment alters microRNA specific target gene expression 

In order to confirm that the reduced proinflammatory T helper cell differentiation 

was due to the miRNA regulation, we next looked at primary cell transfections with miR-

21 and -29b.  Draining lymph node cells from DTH mice were transfected (HiPerFect- 

Qiagen) with either miRNA mimics or inhibitors (Qiagen) for six hours with target gene 

expression assessed at 24 hours after transfection.  The transfection was performed as 

detailed in our previous publications (212); (87); (227).  We found that miR-29b inhibitor 

significantly increased IFN-γ levels compared to miR-29b overexpression (Fig. 4.6F).  
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Additionally, SMAD7 levels were significantly elevated with miR-21 inhibition 

compared to miR-21 overexpression (Fig. 4.6G). 

4.4 DISCUSSION 

While cannabinoid receptor agonists have been shown to reduce type IV 

hypersensitivity associated with DTH the role of THC as an epigenetic regulator of 

proinflammatory T helper cell differentiation has not yet been fully elucidated in this 

model (217); (218); (83).  To this end, we investigated the effect of THC on mBSA-

induced DTH response which is mediated primarily by Th17 and Th1 cells, specifically 

addressing how THC may downregulate the transcription factors and cytokines that 

promote such T cell activation.  Furthermore, we also investigated how THC can induce 

miR expression so as to alter the expression of some key regulatory pathways that impact 

Th17 and Th1 differentiation.    

The natural compound THC found in marijuana is well known for its 

immunoregulatory properties.  Specifically, in regards to T cell activation, THC treatment 

has been shown to reduce secretion of proinflammatory cytokines, including IFN- and 

TNF-, and suppress proliferation of T cells via apoptosis and/or induction of regulatory 

immune cells such as Tregs and MDSCs (79); (84); (76); (86); (154).  As such, THC has 

been shown to be highly effective therapeutically in numerous models of T cell driven 

inflammatory disease including inflammatory lung injury, autoimmune hepatitis, and 

allogenic hematopoietic cell transplantation (88); (76); (78).  To this end, we studied the 

effect of THC on type IV hypersensitivity in mice. This hypersensitivity is involved in 
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inducing contact dermatitis against a wide range of antigens such as those found in 

poison ivy and metals such as nickel.  

DTH as type IV inflammatory reaction against antigens plays a critical role in 

protection against infections with intracellular pathogens.  However, chronic DTH 

response can also trigger significant tissue damage.  Moreover, contact with non-

infectious antigens such as nickel or poison ivy can also trigger a robust DTH response 

leading tissue damage.  In such instances, there is need for the use of anti-inflammatory 

and immunosuppressive drugs to attenuate T cell activation.  Understanding that DTH 

response is complicated by the fact that both Th1 and Th17 cell subsets have been shown 

to contribute to the overall pathogenesis associated with disease progression is necessary 

for developing therapeutics (228).  The ability of THC to act as an inhibitor of Th1-

driven inflammation, which we saw in the current study, has been well documented in 

other models such as cancer and autoimmunity (229); (84).  However, the role of THC as 

a Th17 inhibitor has been more indirect focusing, instead, on THC-mediated Treg 

induction as the main modulator of Th17 regulation (76); (88).  Nonetheless, in the 

current study we show a direct inhibition of Th17 differentiation via a derepression of 

SMAD7, a known inhibitor of the Th17 lineage, which occurs upon THC treatment of 

DTH mice (226).  Although there is no direct evidence to show that THC can inhibit Th1 

and Th17 differentiation simultaneously, recently cannabinoid receptor agonists were 

shown to reduce concurrent Th1/Th17 cell differentiation (230). This corroborates our 

findings that THC treatment of mBSA-induced DTH response reduces the secretion of 

Th1/Th17 activating cytokines, IFN- and IL-17a/f, and lineage specific transcription 

factors, Tbet and RORgT. 
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Epigenetic modifications, including miRNA expression, have been linked to 

fundamental biological processes including, but not limited to, cellular differentiation and 

proliferation (225); (231).  As such, dysregulation of miRNA seen in disease models, 

including psoriasis, multiple sclerosis, and rheumatoid arthritis, has become a topic of 

major interest for possible therapeutic targets (232); (233); (234).  In the current study, 

we identified two miRNA and two target genes as possible therapeutic modalities: miR-

21 with its target SMAD7 and miR-29b with its target IFN-.  miR-21 has been identified 

to play a critical role in multiple inflammatory models, including allergic contact 

dermatitis, rheumatoid arthritis, and experimental autoimmune encephalomyelitis, for the 

regulatory role it plays in Th17 differentiation (225); (235); (226).  As suggested by 

Vennegaard et al. who saw elevated levels of miR-21 in the skin of mice with allergic 

contact dermatitis, we observed greater than 2.0 fold increase in miR-21 expression in 

mice with DTH response, when compared to naïve controls.  Furthermore, miR-29b has 

been shown to be necessary in the regulation of Th1differentiation in mice, and 

implicated in various inflammation models (236); (237); (238); (239).  We observed a 

downregulation of miR-29b greater than 2.0 fold in mice with DTH when compared to 

naïve controls, indicating a loss of restriction in the Th1 cell lineage and therefore 

promoting their differentiation. 

We suggest in this study that the ability of THC to impact T helper cell 

differentiation stems from its ability to act as an epigenetic regulator.  While only limited 

research exists on the role THC plays in the regulation of epigenetic modifications, this 

research base is growing.  THC treatment has been found to alter DNA methylation 

patterns in diseases which elicit inflammatory response such as, simian 
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immunodeficiency virus (SIV), and even in regulatory immune cells, including myeloid 

derived suppressor cells (MDSC) (129); (214). The role of THC in histone mark 

regulation, both acetylation and methylation has only recently been studied by Yang et al. 

in T helper cell subsets (38).  Additionally, research centered on THC-mediated 

alterations of miRNA profiles is severely limited (88); (240); (87).  Thus, to more fully 

understand what role THC treatment is playing in T helper cell differentiation, we looked 

at the ability of THC to alter miRNA expression changes seen due to DTH.  Interestingly, 

we saw a complete reversal of DTH-induced upregulation of miR-21 and -223 as well as 

downregulation of miR-29b, -125a, and -142.  Having shown that THC treatment reduced 

Th1 and Th17 specific cytokines and transcription factors, we focused in on miR-21 and -

29b, and using transfection of primary cells proved direct targeting of SMAD7 and IFN- 

messages, respectively. 

In conclusion, the current study suggests that the elevated levels of IFN- seen in mice 

with DTH potentially caused by an increase in miR-21 expression and subsequent 

decrease in SMAD7, may induce increased Th17 differentiation (Fig. 4.7).  However, 

with THC treatment, miR-29b, an inhibitor of IFN-, was overexpressed indirectly 

downregulating miR-21, and thereby derepressing SMAD7 (Fig. 4.7).  In short, THC 

treatment was able to effectively inhibit Th1 and Th17 lineages in the DTH model of 

hypersensitivity.  Together these findings suggest that THC can be used therapeutically in 

type IV hypersensitivity as well as autoimmune models where Th1 and Th17 cells have 

been implicated in disease progression.  Furthermore, our findings that THC regulates T 

helper cell differentiation via altered miRNA expression are vital to fully elucidating the 

role cannabinoid receptor agonists play in adaptive immunity.  
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Table 4.I.  Primer sequences for qPCR analysis of gene expression in popliteal 

lymph node cells. 

Gene Primer Sequence (5’-3’) 
Annealing 

Temp 

β actin 
Forward GGC TGT ATT CCC CTC CAT CG 

60°C 

Reverse CCA GTT GGT AAC AAT GCC ATG T 

Tbet 
Forward AAC CGC TTA TAT GTC CAC CCA 

Reverse CTT GTT GTT GGT GAG CTT TAG C 

RORγT 
Forward CAA GTT TGG CCG AAT GTC C 

Reverse CTA TAG ATG CTG TCT CTG C 

IRF4 
Forward GTC TCA CGG GTG CTT TCT GT 

Reverse GGC TGG GCA TTC TCA CGA TA 

Pten 
Forward CCT TTT GAA GAC CAT AAC CCA CC 

Reverse GAA TTG CTG CAA CAT GAT TGT CA 

NFκB 
Forward ATG GCA GAC GAT GAT CCC TAC 

Reverse TGT TGA CAG TGG TAT TTC TGG TG 

IFN-γ 
Forward GCG TCA TTG AAT CAC ACC TG 

Reverse GAG CTC ATT GAA TGC TTG GC 

SMAD7 
Forward GCA TTC CTC GGA AGT CAA GAG 

Reverse CCA GGG GCC AGA TAA TTC GT 
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Figure 4.1: THC treatment reduces lymphocyte driven inflammation associated 

with DTH. 

Mice (n=5 per experimental group) were sensitized, subcutaneously 1.5mg/mL of mBSA 

in CFA.  Sensitized mice were treated with THC (20mg/kg) or vehicle, on days 4, 5, and 

6 after sensitization.  Mice were rechallenged (10mg/mL mBSA) via a foot pad injection 

on day 6. Swelling was measured as: 

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑚𝐵𝑆𝐴 𝑓𝑜𝑜𝑡𝑝𝑎𝑑−𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑓𝑜𝑜𝑡𝑝𝑎𝑑

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑓𝑜𝑜𝑡𝑝𝑎𝑑
𝑥100%.  (A) Schematic of model and 

treatment regimen.  (B) Relative percent swelling compared to naïve mouse footpad (for 

each hind paw foot pad).  (C) Absolute cell count of draining lymph nodes (per mouse).  

Lymphocytes from mBSA-sensitized mice were rechallenged with mBSA, 40 mg/mL, 

and then cultured for 48 hours. In the last 16 hours of culture, the cells were pulsed with 

2µCi of [
3
H]Thymidine. (D) The cells were harvested and analyzed for Thymidine uptake 

using a β-Scintillation counter.  Histopathological analysis of mBSA rechallenged (DTH) 

footpad.  The footpad was then embedded in paraffin and sectioned into 6µm sections 

and stained for Hematoxylin and Eosin.  Mice were sensitized with mBSA, treated with 

either vehicle (E&G) or THC (F&H), and rechallenged with either vehicle (E&F) or 

mBSA (G&H). The footpad was isolated and fixed/decalcified in Cal-Rite.  Vertical bars 

represent Mean+/- SEM.  ANOVA/Tukey  * p<0.05  ** p<0.01  ***p<0.001  

****p>0.0001 



87 

 

 

Figure 4.2: THC treatment reduced lymphocyte activation. 

DTH-induced mice were treated with THC or vehicle as described in Fig 1 legend.  (A) 

Absolute cell counts CD69+ lymphocytes (per lymph node). (B) Flow cytometry 

histograms showing CD3+CD69+ T cells and (C) absolute cell counts (per lymph node).  

(D) Flow cytometry histograms showing CD19+CD69+ B cells and (E) absolute cell 

counts (per lymph node).  Cells from the LN were cultured for 4 hours in the presence of 

PMA, Ionomycin, and Golgi Plug and stained for IL-17a secreting cells. (F)  Flow 

cytometry histograms showing CD4+IL17+ T cells and (G) absolute cell counts (per 

lymph node).Vertical bars represent Mean+/- SEM.  ANOVA/Tukey  * p<0.05  ** 

p<0.01  ***p<0.001  ****p>0.0001 
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Figure 4.3: THC treatment reduces inflammatory cytokines and transcription 

factors. 

DTH-induced mice were treated with THC or vehicle as described in Fig 1 legend. Cells, 

mBSA-sensitized in vivo, were cultured overnight without mBSA to analyze spontaneous 

cytokine secretion.  (A) Culture supernatants were analyzed for pro-inflammatory 

cytokines IL-17, IFN-γ, and TNF-α via ELISA MAX kit (Biolegend). (B-D)  cDNA was 

isolated from the PopLN of and analyzed using qPCR.  (B) Analysis of pro-inflammatory 

T cell transcription factors Tbet, RORγT, and IRF4, (C) Analysis for PIK3/Akt regulator 

Pten, and (D) Analysis of transcription factor NFκB.  Vertical bars represent Mean+/- 

SEM.  Student’s t test  * p<0.05  ** p<0.01  ***p<0.001  ****p>0.0001 



89 

 

 

Figure 4.4: DTH reaction causes changes to microRNA expression in immune cells. 

Lymphocytes from popliteal lymph nodes (PopLN) of naïve and DTH mice were 

assessed for miR expression.  (A) Heat map highlighting the microRNA dysregulation 

between naïve and DTH samples (n=5 per experimental group). (B) Venn diagram 

depicting the up and down regulated microRNA (greater than 2 fold).  (C) IPA ingenuity 

analysis of top up and down regulated microRNA.  (D-E) qPCR validation of 

microRNAs of interest (D) miR-21-5p and miR-223-3p (E) miR-29b-3p, miR-125a-5p, 

and miR-142-5p.   Vertical bars represent Mean+/- SEM.  Student’s t test * p<0.05  ** 

p<0.01  ***p<0.001 ****p>0.0001 
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Figure 4.5: THC treatment reverses DTH-mediated alterations in microRNA 

expression. 

DTH-induced mice were treated with THC or vehicle as described in Fig 1 legend. (A-B) 

cDNA was isolated from DTH+Veh and DTH+THC PopLN for validation of microRNA 

array using q-PCR (A) Analysis of miR-21-5p and miR-223-3p (B) Analysis of miR-29b-

3p, miR-125a-5p, and miR-142-5p.  (C) IPA ingenuity software was used to determine 

interactions between miR-21-5p and miR29b-3p and the pro-inflammatory T cell 

pathway.  Vertical bars represent Mean+/- SEM.  Student’s t test * p<0.05  ** p<0.01  

***p<0.001 ****p>0.0001  
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Figure 4.6: THC treatment alters microRNA-specific target gene expression.  

DTH-induced mice were treated with THC or vehicle as described in Fig 1 legend. cDNA 

and protein was isolated from DTH+Veh and DTH+THC PopLN for validation of target 

gene message using q-PCR.  (A) Predicted  or experimentally observed miRNA target 

genes (TargetScan and miRWalk).  (B and D) Schematic illustration of differentially 

regulated miRNA (B) miR-29b and (D) miR-21 targeting the 3’-UTR of potential target 

genes (microRNA.org). (C and E) q-PCR validation  of microRNA target gene message 

(C) IFN-γ and (D) SMAD7. Draining lymph nodes, from DTH mice, were transfected for 

6 hours and then cultured overnight (18 hours).  (E-F) Validation of pro-inflammatory T 

cell gene targets (E) IFN-γ and (F) SMAD7. Vertical bars represent Mean+/- SEM.  

Student’s t test or ANOVA/Tukey * p<0.05  ** p<0.01  ***p<0.001  
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Figure 4.7: Schematic of the role microRNA plays in mBSA induced DTH. 

mBSA induced DTH is classically associated with elevated Th1 and Th17 response, and 

increased expression of miR-21.  Th17 differentiation is increased via miR-21 inhibition 

of SMAD7.  THC treatment of DTH mice causes a decrease in the proinflammatory 

response through microRNA regulation, increasing expression of miR-29b (inhibitory of 

IFN-γ) and decreasing miR-21 expression.  Thus THC treatment reduces IFN-γ 

production and inhibition of IL-17 regulation via SMAD7 derepression. 
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CHAPTER V: Endocannabinoid 2-arachidonyl glycerol inhibits inflammation associated 

with delayed type hypersensitivity via reduced T cell response 

5.1 INTRODUCTION 

The endocannabinoid (EC) system consists of cannabinoid (CB) receptors (CB1 

and CB2) as well as the endogenous ligands for these receptors, called endocannabinoids 

(EC) (3).  Anandamide (AEA) and 2-arachidonyl glycerol (2-AG) the first discovered 

ECs remain the most widely studied to this day (23); (24).  2-AG has been proposed as 

the "true natural ligand" for CB receptors for three main reasons: multiple synthesis 

pathways, elevated tissue expression, and agonist activity at both CB receptors (241).  2-

AG can be formed along a degredative pathway from inositol phospholipid hydrolysis via 

multiple phospholipases (PL) and diacylglycerol lipase (31); (32).  Additionally, 2-AG 

can be synthesized from arachidonic acid-containing phosphatidylcholine via variable PL 

and phosphatidic acid phosphatase (31).  Increased pathways for biosynthesis explains 

why, unlike AEA which is only present at high levels in the brain and uterus, 2-AG is 

well expressed in numerous tissues (242); (243); (23); (244); (245); (246).  Furthermore, 

2-AG exhibits both binding affinity and efficacy for CB1 and CB2 receptors making it a 

full agonist for the CB receptors (247).   

The notion that the EC system plays a role in immune response has long been 

apparent, with CB2 constitutively expressed on immune cells and the expression of CB1 

upregulated upon activation in T cells (13).  Type IV hypersensitivity (delayed type 
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hypersensitivity, DTH) is driven by proinflammatory T helper cell subsets, Th1 and Th17 

that produce IFN-γ and IL-17 respectively (69); (52); (248).  Moreover, a study using 

2,4-dinitroflurobenzene to induce ear dermatitis found increased ear weight to correlate 

with elevated 2-AG levels (249).  Also, mice deficient in CB receptors were found to 

exhibit increased response to contact hypersensitivity (217).  In contrast, mice lacking 

Fatty Acid Amide Hydrolase (FAAH) that express heightened anandamide levels showed 

decreased response to contact hypersensitivity (217).   These data clearly suggested a role 

for endocannabinoids in suppressing the DTH response in vivo.  Nonetheless, there is 

also evidence to suggest that endocannabinoid levels increase during inflammation or 

autoimmune disease, a finding that has been used to indicate that endocannabinoids may 

in fact promote inflammation (217).   

There are no studies that have measured the levels of endocannabinoids in 

immune cells during naïve and activation stage and tried to correlate that with the levels 

found during an ongoing immune response.  In the current study, we investigated the 

levels of ECs, particularly 2-AG in naïve and activated T and B cells using mBSA as an 

antigen which triggers not only DTH response mediated by Th1 and Th17 cells but also 

B cells to produce antibodies.  The data suggest that 2-AG is produced at higher levels 

upon T and B cell activation and systemically during the DTH response but that 2-AG 

plays a regulatory role in trying suppress inflammation rather than promote it.     

Here we demonstrate that exogenous treatment with 2-AG can reduce 

inflammation seen in DTH via inhibition of T cell activation and proliferation. 
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5.2 MATERIALS AND METHODS 

Mice- 

Female C57BL/6 (BL6) mice, aged 6-8 weeks and at an average weight of 20 g, were 

obtained from Jackson Laboratories and used as naïve controls in each experiment.  All 

mice were housed in pathogen-free conditions and allowed ad libitum access to filtered 

water and Teklad rodent diet 8604 (normal chow) at the Animal Research Facility located 

at the University of South Carolina School of Medicine.  All experiments were conducted 

under an approved Institutional Animal Care and Use Committee animal protocol.   

T and B cell isolation-  

Single cell suspension from the spleens of BL6 mice was plated for 1 hour at 37°C, for 

removal of adherent cells.  Cells in suspension were gently aspirated and resuspended in 

complete RPMI media (1% v/v penicillin/streptomycin, 1% v/v HEPES buffer, 10% v/v 

heat inactivated FBS, and 0.0002% v/v 2-mercaptoethanol).  Nylon wool column, wetted 

with complete media, was then loaded with single cell suspension and incubated 1 hour at 

37°C.  T cells were isolated based on nonadherence as elute and wash from nylon wool 

column  (250).  B cells adhering to the nylon wool were isolated by compression of 

incubated nylon wool, using sterile syringe plunger and complete medium.  Purity 

(greater than 90%) was checked using flow cytometer.       

Endocannabinoid extraction- 

Briefly, endocannabinoids were extracted from sample with internal standards 

(deuterated endocannabinoids (Cayman Chemical) AEA-d4 (10ng/mL), 2-AG-d5 
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(20ng/mL), and PEA-d4 (200ng/mL) diluted in 50:50 (methanol:water) and 

(phenylmethylsulfonyl fluoride) PMSF in acetonitrile.  Samples were diluted in 0.1333% 

TFA ultra purified water, to 20% (v/v) acetonitrile, and ultracentrifugation used to 

separate out cellular debris.  Samples are then cleaned using SPE columns (Bond Elute 

C8).  Briefly, ultracentrifugation supernatant was loaded onto the activated SPE column, 

the elute was discarded, and then the column was cleaned using 20% acetonitrile, the 

elute was discarded.  The endocannabinoids were eluted using 80% (v/v) acetonitrile in 

0.1333% TFA ultra purified water and evaporated to dryness.  All samples were stored at 

-80°C. 

Liquid chromatography/Tandem Mass spectrometery -(LC/MS/MS)- 

Sample, resuspended in 100uL 80% (v/v) acetonitrile, was injected in a volume of 10 µL 

on to a  C18 reverse phase analytical column (particle size 5 µm 2.1 x 150 mm ES 

Industries #06601-12-54-45318).  Endocannabinoids were eluted using a linear binary 

gradient flowing at 200 µL/min on a Waters Acquity HPLC system.  The gradient solvent 

composition began at 50% A: 50% B (solvent A: water/acetonitrile (95:5) with 1% 

ammonium acetate and 0.1% formic acid; solvent B: methanol with 1% ammonium 

acetate  and 0.1% formic acid ) and increased to 0%A: 100%B over 28 minutes.  The 

Mass spectrometer (Waters Premier XE triple quadrupole) was operated in multiple 

reaction monitoring (MRM) mode using positive ion electrospray ionization.  The 

electrospray probe was held at 3 kV.Optimized mass spectrometer operating parameters 

for quadrupole mass spectrometer with electrospray ionization source in tandem with 

liquid chromatography (Micromass Quattro-LC, Waters) are listed in Table I.  Waters 

Masslynx software was used for analysis.   
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Induction of delayed type hypersensitivity (DTH) and 2-AG treatment- 

DTH was induced in C57BL/6 mice using a sensitization/rechallenge method (Jackson et 

al 2014 (83)).  Briefly, mice were sensitized with a subcutaneous injection (100 µL/hind 

flank) of 1.5 mg/mL methylated BSA (mBSA- Sigma Aldrich) emulsified in complete 

Freunds adjuvant (CFA- Sigma Aldrich).  Six days later, the mice were rechallenged with 

footpad injection (20 µL/footpad) of 10 mg/mL mBSA in 1xPBS.  2-Arachidonoyl 

glycerol (2-AG- Cayman Chemical) evaporated under a stream of nitrogen was dissolved 

in ethanol (20mg/mL) and then diluted in 1xPBS to a concentration and used in mice at a 

concentration of 40mg/kg.  2-AG or vehicle (ethanol diluted in 1xPBS) was administered 

intraperitoneally (i.p.) at a volume of 0.1 mL/mouse into DTH mice daily Day 4 - Day 6.  

Percent swelling was measured as [(Thickness(mBSA rechallenged footpad) - 

Thickness(1xPBS rechallenged footpad)) / Thickness(1xPBS rechallenged footpad)] * 

100.  

Monoclonal antibodies, reagents, and flow cytometer- 

Antibodies used for flow cytometric analysis (BioLegend) included: FC block (93), anti-

CD3 (145-2C11), anti-CD19 (6D5), and anti-CD69 (H1.2F3).  Popliteal lymph node cells 

(PopLN- 10
6
 cells) from DTH BL6 mice were incubated with FC receptor antibodies (10 

min) and incubated with conjugated antibodies (20-30 minutes at 4°C).  After incubation, 

with conjugated antibodies, cells were washed twice with 1xPBS/2% fetal bovine serum 

buffer.  The stained cells were then assessed by flow cytometer (FC500; Beckman 

Coulter) and the resulting data analyzed by Cytomics CXP software (Beckman Coulter).  

Three-color flow cytometric analysis was used to profile the lymphocyte activation.   
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Cytokine analysis in cell culture supernatants- 

ELISA MAX sandwich enzyme-linked immunosorbent assay (ELISA) kits (BioLegend) 

were used to assess the levels of IL-2, IL-6, IL-17a/f, IFN-γ, and TNF-α cytokines.  Cells 

were isolated from spleen and draining lymph nodes of DTH mice, plated at 0.8x10
6
 

cells/well, cultured 24 hours for cytokine secretion in complete RPMI media (1% v/v 

penicillin/streptomycin, 1% v/v HEPES buffer, 10% v/v heat inactivated FBS, and 

0.0002% v/v 2-mercaptoethanol) with phorbol 12-myristate 13-acetate (PMA) and 

calcium ionophore ionomycin (50 ng/mL and 10 μg/mL respectively).  Cytokine 

production was quantified from cell supernatants (stored at -20°C).  Plasma was assessed 

for IgG levels using sandwich ELISA (Abcam).  Absorbance was measured at 450 nm 

using a Victor2 1420 Multilable counter (Wallac).  

Cell proliferation assays- 

Spleen cells from naïve mice were co-cultured in triplicate (0.2 mL/well in a round 

bottom 96 well plate) with ConA (2.5µg/mL) or LPS (5µg/mL) to stimulate T and B cell 

proliferation, respectively.  Splenocytes from DTH mice rechallenged in vivo were 

assessed for spontaneous proliferation.  In some experiments, 2-AG was added at the 

time of cell seeding at increasing doses (0.9, 1.9, and 2.9 µM).  Sixteen hours before 

collection and analysis, [
3
H]thymidine (2 µCi/well) was added to the cell cultures.  

Radioactivity was measured using a liquid scintillation counter (MicroBeta Trilux). 

Statistical analysis-  

Data were shown as mean ± S.D.  Student’s t-test was used to compare data between two 

groups. One-way ANOVA with Tukey post-hoc test was used to compare three or more 
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groups.  Experimental groups were compared to controls, and p < 0.05 was considered 

significant. 

5.3 RESULTS 

Basal levels of the endocannabinoid, 2-AG increases in lymphocytes upon activation 

While endocannabinoid levels have been previously measured in secondary 

lymphoid organs (245, 246), to the best of our knowledge, the levels in various immune 

cells during naïve and activation stages have yet to be determined.  As such, we isolated 

naive T and B cells from BL6 mouse spleens, and using LC/MS/MS, quantified basal 

levels of AEA and 2-AG in these cells (Fig. 5.1A).  We found that AEA levels, while 

detectable were minimal and were significantly lower than 2-AG in both T and B cells 

(Fig. 5.1B).  For this reason, we focused our studies only on 2-AG.  In order to quantify 

changes in 2-AG expression/secretion in activated T and B cells, we activated 

splenocytes with the mitogens Concanavalin A (ConA) or the endotoxin 

lipopolysaccharide (LPS), which activate polyclonally, T and B cells respectively, and 

measured the levels of enocannabinoids within the cells as well as in the culture 

supernatants.  Upon activation, significantly higher levels of 2-AG were found in 

activated T and B cell supernatants than in the activated cells themselves (Fig. 5.1C-D).  

Moreover, activated B cell culture supernatants had much higher levels of 2-AG than 

supernatants from activated T cell cultures.   

To ensure that the elevated endocannabinoid levels were biologically relevant, we 

used methylated bovine serum albumin (mBSA) to induce DTH hypersensitivity, which 

is associated with proinflammatory T cell response (69); (52); (248).  The DTH response 
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following injection of mBSA into footpads led to significant swelling in the hind 

footpads of mice (Fig. 5.1E) as well as increased cellularity in the draining popliteal 

lymph nodes (PopLN) (Fig. 5.1F).  Interestingly, when we measured 2-Ag levels in the 

plasma of the DTH mice, we saw a significant increase in 2-AG levels when compared to 

naïve mice (Fig. 5.1G), AEA levels remained low although detectable (data not shown).  

To confirm that the PopLN cells were actually getting activated, we analyzed them for 

activation markers such as CD69, which was significantly enhanced in mBSA injected T 

and B cells (Fig. 5.1 H&I).   

2-AG treatment reduces inflammation associated with DTH 

Because cannabinoids are immunosuppressive, the increase in endocannabinoids 

following activation of immune cells suggested a negative feedback loop aimed 

controlling the hypersensitivity response.  To that end, we tested if exogenous treatment 

with this endocannabinoid could inhibit inflammation in higher concentrations would 

suppress DTH response.  As such, DTH mice were treated with 2-AG (40mg/kg i.p.) 

once daily on days 4-6 (Fig. 5.2A).  Interestingly, we found that 2-AG treatment was able 

to significantly decrease footpad swelling (Fig. 5.2B).  Also, the total number of activated 

T cells (CD3+CD69+) and B cells (CD19+CD69+) in the PopLN were significantly 

decreased in 2-AG treated mice compared to vehicle controls (Fig. 5.2 C).  In order to 

more fully elucidate how 2-AG was reducing the mBSA induced hypersensitivity we next 

looked at spontaneous cytokine secretion of PopLN cells of DTH mice.  We assessed 

classical Th17 and Th1 proinflammtory cytokines triggered by mBSA antigen during the 

DTH response.  Cytokines associated with Th17 activation, IL-17a/f (Fig. 5.2E), and 

differentiation, IL-6 (Fig. 5.2H), were significantly decreased in DTH+2-AG treated mice 
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compared to DTH+Veh mice.  Furthermore, Th1 secreted cytokines including IFN-γ (Fig. 

5.2F) and TNF-α (Fig. 5.2G) were also significantly reduced in DTH+2-AG mice, 

compared to controls.  Additionally, we saw IL-2 levels significantly decrease with 2-AG 

treatment indicative of reduced T cell activation and proliferation in the draining lymph 

nodes (Fig 5.2I).  Because mBSA, can also trigger Ab response (248), we measured IgG 

levels in the plasma and found that treatment with 2-AG caused significant decrease in 

IgG levels when compared to vehicle controls (Fig. 5.2J) 

2-AG modulates DTH disease parameters via inhibition of T cell proliferation 

We next determined if 2-AG acts directly on T and B cells.  To that end, we 

cultured the PopLN cells from mBSA immunized mice in the presence of 2-AG or 

vehicle.  We observed a dose- dependent suppression of spontaneous lymphocyte 

proliferation of antigen-activated cells as well as Con-A activated T cells and LPS 

activated B cells in the presence of 2-AG when compared to vehicle controls (Fig. 5.2K-

M).  These data suggested that 2-AG was acting directly on activated T and B cells to 

suppress lymphocyte activation and proliferation.   

5.4 DISCUSSION 

Recently, we hypothesized that endocannabinoids may play a critical role in the 

regulation of inflammation associated with autoimmune diseases (251).  Our laboratory 

and others have found that exogenous treatment of autoimmune inflammation with AEA 

can attenuate inflammatory disease (252); (253); (76); (254); (83).  However, research on 

2-AG in inflammatory models is mostly limited to increasing basal levels via inhibition 

of the 2-AG degredative enzyme, MAGL (255); (256).  One exception being a study 
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which found that exogenous 2-AG increased the neuroprotection and decreased the 

mortality in mice bearing experimental autoimmune encephalomyelitis (257).  However, 

there are no studies that have investigated the levels of 2-AG in naïve and activated 

immune cells and correlated that with inflammation.  As such, we set out to test the levels 

of endocannabinoids during inflammation.  We chose mBSA as an antigen because it 

triggers DTH reaction that can be measure clinically as footpad swelling as well as lymph 

node activation.  In addition, this antigen has been shown to activate not only both Th1 

and Th17 cells but also antibodies (258); (83).     

The EC system has been associated with immune response due to the fact that 

cannabinoid receptors are expressed on immune cells and that measurable EC levels have 

been detected in secondary immune organs (246); (245).  Our findings show that basal 

levels of AEA and 2-AG can also be found in naive T and B cells.  Traditionally 

endocannabinoids are considered to be synthesized as needed, from the lipid membranes, 

rather than stored (28).  However, EC binding of the cannabinoid receptors has been 

associated with release of signal molecules such as ceramide, a bioactive lipid, which 

regulates cellular differentiation, proliferation, and apoptosis (74).  This suggests that 

basal levels of endocannabinoids may be necessary for regulation of basic cell function.  

Furthermore, we found that 2-AG levels were significantly elevated in cell supernatants 

of activated T and B cells, and in the plasma of DTH mice.  These findings suggest that 

2-AG may be synthesized upon activation by T and B cells, and are consistent with other 

studies demonstrating elevated systemic 2-AG levels in various disease models 

associated with inflammation, including hepatic ischemia-reperfusion injury, obesity, and 

post-traumatic stress disorder (259); (260); (261).   
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While Mimura et al. recently observed that 2-AG levels correlated with ear 

weight gain, due to dermatitis, in a CB2 dependent manner (249), we found that not only 

does the 2-AG levels increase during DT H in vivo but also, exogenous administration of 

2-AG was able to suppress the inflammation associated with the DTH response.  

Exogenous 2-AG has been shown to inhibit the proliferation of T cells, in vitro, to anti-

CD3 mAb stimulation (89).  Furthermore, activated Jurkat T cell, as well as primary 

splenocyte secretion of IL-2 was suppressed in vitro upon co-culture with 2-AG (90); 

(91).  The role of 2-AG in regards to B cells is more complicated due to the fact that 2-

AG, at nM concentrations, can stimulate chemotaxis and chemokinesis in 

B220+CD19+IgD+IgM+ spleen cells via CB2 receptor binding (262).  However, in LPS 

activation of B cells, in vitro, 2-AG caused decreased proliferation at µM concentrations 

(89).  This evidence supports our claim that exogenous 2-AG treatment can be inhibitory 

to inflammation associated with type IV hypersensitivity.   

The conflicting data surrounding the effect of 2-AG on immune regulation 

suggests that 2-AG concentration is vital for eliciting an anti-inflammatory response.  

Our findings highlight the concept that anti-inflammatory properties of 2-AG are dose or 

threshold-dependent as shown in our proliferation studies.  We observed that 2-AG at the 

lowest dose caused minor or nonsignificant (NS) suppression of lymphocyte proliferation 

while higher doses ablated DTH and ConA induced T cell proliferation.  It should also be 

noted that in vivo, 2-AG levels are regulated by a serine hydrolase, monoacylglycerol 

lipase (MAGL), which is the main enzyme responsible for inactivating 2-AG in vivo 

(256).  This may account for the fact that to induce significant anti-inflammatory effects, 

it is necessary to administer higher concentrations of exogenous 2-AG.    
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Together, the current study suggested that endocannabinoids such as 2-AG may 

play a critical role in the regulation of immune response.  Also, treatment with 2-AG can 

be used to decrease T and B cell-dependent immune response.  The use of 2-AG to 

suppress DTH may be useful to against contact dermatitis.  Additionally, these findings 

also suggest that 2-AG can be used therapeutically to treat various models of Th1 or 

Th17 driven inflammation, as seen in a number of autoimmune diseases. 
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Table 5.I. Optimized MRM tuning parameters. 

 MRM  

Transitions 

Cone Voltage 

(V) 

Collision 

Energies (eV) 

Dwell 

 (sec) 

AEA 348 > 62 30 18 

 

 

60 

 

AEA-d4 352 > 66 30 18 

2-AG 396 > 379 15 20 

2-AG-d5 401 > 384 15 20 

O-AEA 
(loading control) 

348 > 62 30 18 

PEA-d4 
(extraction control) 

304 > 62 30 18 
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Figure 5.1:  Lymphocyte activation both in vitro and in vivo causes dysregulation of 

endocannabinoid levels. 

T and B cells isolated from naïve C57BL/6 spleens (n=2) using nylon wool column 

separation after adherent cell exclusion (purity determined using anti-CD3 and anti-CD19 

labels by flow cytometry.  (A) Raw chromatogram for naïve T and B cells after 

LC/MS/MS detection.  (B) Quantified AEA and 2-AG levels in naive lymphocytes.  (C-

D) Spleens were collected from naïve C57BL/6 mice (n=4) and activated with ConA 

(2.5µg/mL) or LPS (5µg/mL) then plated at a density of 1.5x10
6
/mL.  Endocannabinoid 

2-AG levels quantified, after (C) ConA activation and (D) LPS activation using 

LC/MS/MS detection.  Delayed type hypersensitivity (DTH) induction, 24 hours after 

rechallenge, was determined using disease parameters including footpad swelling and 

lymphocyte activation.  Plasma was collected and assessed for EC levels (n=5 per 

treatment group).  (E) Relative percent swelling compared to naïve mouse footpad (for 

each hind paw foot pad).  (F) Popliteal lymph node absolute cell counts (per mouse).  (G) 

Circulating 2-AG levels in plasma. (H-I) Absolute cell counts (H) CD3+CD69+ activated 

T cells and (I) CD19+CD69+ activated B cells.  Representative data from replicate 

experiments; Student’s T test or ANOVA/Tukey * p<0.05  ** p<0.01  ***p<0.001 

****p>0.0001 
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Figure 5.2: Endocannabinoid 2-AG reduces lymphocyte driven inflammation. 

2-AG treatment (40 mg/kg) or vehicle (ethanol diluted in 1xPBS) was given on days 4-6 

after sensitization.  Disease parameters, as described previously, were assessed (n=4 per 

treatment group). (A) Schematic of model and treatment regimen.  (B) Relative percent 

swelling compared to naïve mouse footpad.  (C-D) Absolute cell counts (C) CD3+CD69+ 

T cell activation and (D) CD19+CD69+ B cell activation.  Cytokine secretion was 

assessed by plating splenocytes with PMA and Ca Ionomycin. (E-I) Secreted levels of (E) 

IL-17a/f, (F) IFN-γ, (G) TNF-α, (H) IL-6, and (I) IL-2.  (J) Plasma collected 24 hours after 

mBSA rechallenge and assessed for IgG levels.  (K-M) Splenocytes were stimulated with 

(K) mBSA rechallenge (10 mg/mL in vivo), (L) ConA (2.5ug/mL), or (M) LPS 

(5.0ug/mL), treated with 2-AG, and co-cultured with 2uCi of [
3
H]thymidine to assess 

proliferation.  Representative data from replicate experiments; Student’s T test or 

ANOVA/Tukey * p<0.05  ** p<0.01  ***p<0.001 ****p<0.0001   
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CHAPTER VI: SUMMARY AND CONCLUSION 

In the current study, we examined the ability of THC to act as a regulator of 

epigenetic modifications.  We first focused on immuneregulatory MDSCs. While there 

have been studies showing that THC treatment can alter miRNA expression in MDSCs, 

no studies have determined the impact of DNA methylation in these cells (87).  We found 

that while global methylation patterns, when compared to naïve bone marrow resident 

MDSCs, were not significantly altered in THC-induced MDSCs, methylation at specific 

loci was.  Specifically, methylation was decreased for Arg1 and STAT3 in THC-induced 

MDSCs indicative of increased suppressive function. 

Next, we looked at the impact of THC on epigenetic modifications in T cells.  

While research on THC-mediated epigenetic modifications in T cells is severely limited 

what does exist has focused on inhibition of classical, Th1, inflammation (88); (240); 

(38).  As such, we assessed THC-mediated miRNA regulation in the draining lymph 

nodes of DTH mice which exhibit both Th1 and Th17 proinflammatory signals (69); (52).  

We found that miRNA dysregulation due to type IV hypersensitivity was regulated back 

to naive levels with THC treatment.  In particular, miRNAs associated with 

inflammation, such as miR-21, were decreased, and anti-inflammatory miRNAs, 

including miR-29b, were overexpressed in THC treated DTH mice. 
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It has been shown that THC can inhibit Th1 driven inflammation, however its 

ability to attenuate transplant rejection, a well-established model of Th1 inflammation, 

has not been elucidated (158).  We found that THC treatment significantly reduced Th1 

proinflammatory cytokines, including IFN-γ and TNF-α.  Furthermore, THC treatment 

increased survival of both cellular and full thickness skin allogenic grafts in a CB1 

dependent manner.  We determined that CB1 receptor activation by THC resulted in the 

mobilization highly immune suppressive of MDSCs.  Interestingly, THC induction of 

MDSCs proved necessary for continued allograft survival in our model of HvGD. 

The ability of THC to regulate Th17 response has been correlative focusing on 

THC-mediated Treg induction rather than direct Th17 inhibition (76); (88).  As such, we 

used a type IV hypersensitivity model, which is representative of non-classical Th1/Th17 

driven inflammation, to determine if THC can directly inhibit Th17 lineage 

differentiation.  Interestingly, we found that associated cytokines, lineage specific 

transcription factors, and absolute numbers of Th1 and Th7 subsets were significantly 

reduced in DTH+THC mice compared to DTH+Veh mice.  We showed a direct link 

between THC treatment and regulation of both Th1 and Th17 differentiation via miRNA 

regulation.  Specifically, THC treatment of DTH mice increased IFN-γ targeting miRNA 

miR-29b, halting Th1 response.  Concurrently, THC treatment reduced miR-21 

expression freeing SMAD7, a regulator of TGFβ mediated TH17 differentiation. 

The literature shows that endocannabinoids, the endogenous ligands for the 

cannabinoid receptors, are often elevated in inflammatory models including 

autoimmunity and hypersensitivity (263); (264); (259); (260); (261); (249).  This 

evidence in the past was associated with the endocannabinoids exacerbating 
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inflammation, in particular 2-AG.  However, this ideology conflicted with the wealth of 

data surrounding the exogenous cannabinoid THC.  To this end we used exogenous 2-

AG, a full agonist for both CB1 and CB2 receptors, therapeutically in a DTH model.  We 

found that 2-AG, like THC a partial agonist at CB1 and CB2 receptors, reduced 

inflammation associated with type IV hypersensitivity.  Specifically, we observed that 

exogenous treatment with 2-AG reduced lymphocyte activation, the secretion of 

proinflammatory cytokines, and proliferation.  Furthermore, we found that the anti-

inflammatory properties seen in DTH were closely mirrored in ConA T cell stimulation.  

Together, these data suggested that 2-AG was inhibiting hypersensitivity in a T cell 

specific manner.        

 The current findings suggest that cannabinoids can inhibit a wide range of 

inflammatory pathways.  Additionally, the therapeutic use of CB receptor agonists seem 

to be particularly useful as an anti-inflammatory treatment due to the ability of the 

cannabinoid to attenuate inflammation via multiple pathways.  Specifically, we have 

shown that THC inhibits Th1 and/or Th17 driven inflammation through epigenetic 

modulation, regulation of T helper cell differentiation, and induction of T cell suppressive 

MDSCs.  We have further highlighted the importance of the EC system in 

immunoregulation through the therapeutic use of 2-AG in DTH.  Taken together, our 

findings suggest that cannabinoid system plays a critical role in the regulation of 

inflammation, thereby offering unique targeting opportunities to treat a wide array of 

clinical disorders associated with chronic inflammation.      
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