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ABSTRACT OF DISSERTATION 

 

 

 

MODELING LARGE-SCALE CROSS EFFECT IN CO-PURCHASE 
INCIDENCE: COMPARING ARTIFICIAL NEURAL NETWORK TECHNIQUES 

AND MULTIVARIATE PROBIT MODELING 

This dissertation examines cross-category effects in consumer purchases 
from the big data and analytics perspectives. It uses data from Nielsen Consumer 
Panel and Scanner databases for its investigations. With big data analytics it 
becomes possible to examine the cross effects of many product categories on 
each other. The number of categories whose cross effects are studied is called 
category scale or just scale in this dissertation. The larger the category scale the 
higher the number of categories whose cross effects are studied. This dissertation 
extends research on models of cross effects by (1) examining the performance of 
MVP model across category scale; (2) customizing artificial neural network (ANN) 
techniques for large-scale cross effect analysis; (3) examining the performance of 
ANN across scale; and (4) developing a conceptual model of spending habits as 
a source of cross effect heterogeneity. The results provide researchers and 
managers new knowledge about using the two techniques in large category scale 
settings The computational capabilities required by MVP models grow 
exponentially with scale and thus are more significantly limited by computational 
capabilities than are ANN models. In our experiments, for scales 4, 8, 16 and 32, 
using Nielsen data, MVP models could not be estimated using baskets with 16 and 
more categories. We attempted to and could calibrate ANN models, on the other 
hand, for both scales 16 and 32. Surprisingly, the predictive results of ANN models 
exhibit an inverted U relationship with scale. As an ancillary result we provide a 
method for determining the existence and extent of non-linear own and cross 
category effects on likelihood of purchase of a category using ANN models. 
Besides our empirical studies, we draw on the mental budgeting model and 
impulsive spending literature, to provide a conceptualization of consumer spending 
habits as a source of heterogeneity in cross effect context. Finally, after a 



 
 

discussion of conclusions and limitations, the dissertation concludes with a 

discussion of open questions for future research. 

 

KEYWORDS: Cross category, Co-purchase, Large scale analysis, Multivariate 

probit model, Artificial neural network. 
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Chapter 1. Introduction 

1.1. Cross Effect and Large-Scale Cross Effect 

Many consumers supposedly purchase frosting together with cake mix.  

Research of this and related phenomenon is usually called co-purchase incidence 

(COPI). In general, a market action, such as price discount or promotion of cake 

mix increases its sales. Thus, it is reasonable to speculate that the campaign not 

only increases its own sales, but also increases sales of frosting because many 

consumers supposedly purchase them together. Quantifying such a “spilled” effect 

of marketing campaign among categories is related to cross effect analysis in 

marketing literature (Manchanda et al. 1999). The theoretical and managerial 

implications of cross effect are well acknowledged such as boosting cross sales 

(Manchanda et al. 1999), maximizing overall store profit (Wedel and Zhang 2004, 

Song and Chintagunta 2006,  Leeflang and Parreño-Selva 2012,  Pancras et al. 

2013), and finding new market by identifying cross-selling opportunities (Li et al. 

2005).  

Most existing literature report models of cross effect with pre-specified 

“familiar” categories such as bacon and egg, detergent and softener, coffee and 

tea, and kitchen towel and napkin. The implicit requirement is to have good 

knowledge about complementarity/substitutability between categories. However, a 

modern retailer typically carries hundreds, or thousands of categories. Choosing 

from a list of similar categories for cross effect analysis can be difficult and will 

constrain research findings within the selected categories. For example, here is a 

partial list of similar categories in a grocery database:  
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{ … 

FROSTING READY-TO-SPREAD 

MIXES - CAKE/SPECIALTY - OVER 10 OZ. 

MIXES - CAKE/SPECIALTY - 10 OZ & UNDER 

MIXES - CAKE/LAYER - OVER 10 OZ. 

MIXES - CAKE/LAYER - 10 OZ & UNDER 

FOOD COLORING 

EGG COLORING KITS/DYE 

MIXES - BROWNIES 

MIXES-COFFEE CAKE 

MIXES-DESSERT-MISC. 

MIXES-COOKIE 

MIXES - HUSHPUPPY 

CAKE DECORATIONS & ICING 

MIXES-FROSTING 

MIXES-PIE CRUST 

MIXES-DUMPLING & KUGEL 

MIXES – PANCAKE 

…}.  

There are various categories of cake mix and frosting. Making a choice of 

WHICH mix and WHICH frosting is entered into the cross effect model from this 

list (which is already truncated) is not an easily justifiable decision. Additionally, 

pre-specifying a pair of categories excludes the possibility of pairing categories by 

data-evidence. An ideal model for managers is the one being able to 

simultaneously model all these categories, i.e. large-scale cross effect model. 

Large-scale cross effect is the cross effect over a large number of categories in 

which prior assumptions of possible cross effect is not required. This dissertation 

examines an existing econometric model (MVP) and the artificial neural network 

(ANN) technique as candidates for this ideal model. In so doing, it extends the 

existing literature of cross category research, examines existing models’ 

applications in the big data context, and applies the ANN technique into cross 
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category research to shed light on alternative approaches of modeling cross 

category purchase. 

The first objective of this dissertation is to examine the performance of 

existing and alternative models. At the most general level, the research question 

is: how do the two models perform in large-scale cross effect analysis that 

simultaneously loads a large number of categories without prior assumptions of 

complementarity/substitutability? Examples of prior assumptions include knowing 

that bacon and eggs are commonly used together in a classic American breakfast, 

knowing that detergent and softener are commonly used together to wash clothes, 

and knowing that paper towels and napkins may be substitutes. By relaxing this 

type of prior assumptions, this study allows novel combinations of categories as 

cross effect partners and bases such relationships on data evidence. 

This study examines two models to shed light on the first research question. 

A multivariate probit model (MVP) from existing literature, and an artificial neural 

network (ANN) model customized for the cross effect analysis. Using Nielsen’s 

Consumer Panel and Scanner dataset, this study extracts four datasets 

representing four increasing scales, i.e., four categories, eight categories, 16 

categories, and 32 categories. The two models are fit to each of the four datasets. 

Fitting to same dataset provides a ground for comparing performance. Several 

other tactics are taken to make a fair comparison. Because ANN allows setting the 

desirable level of error in model estimation, this study adjusts it to a specific level 

so that the model’s prediction accuracy is similar to that of MVP model (best 

reachable accuracy is also reported). To reduce the interference of running 
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environment, the same hardware and operating system settings are used to run 

the two models.  

The results show that, at similar prediction accuracy level and using the 

same dataset, the ANN model usually finishes computation using much less time 

and using much fewer computational resources. When scale increases from four 

to eight and 16 categories, computation time of MVP models are about 84, 850, 

and (estimated) more than 19,320 minutes (322+ hours), respectively; while ANN 

models use about 3, 93 and 176 minutes, respectively. The MVP model becomes 

computationally cumbersome when scale increases to 16 categories, while ANN 

model can be computed in three hours on average. When scale increases to 32 

categories, a PC with 16GB memory hits the out-of-memory error in the middle of 

computing the MVP model; while the corresponding ANN model can be computed 

in four hours, on average.  

Practically, the ANN model is simpler in model construction.  

The estimation method of both the MVP and ANN models involves 

stochastic processes. MVP model estimation depends on Monte Carlo Markov 

Chain method which makes random draws from multivariate normal distribution. 

ANN model estimation, when using the gradient descent algorithm, relies on the 

random starting location of each individual weight parameter. To reduce the effect 

of randomness, ten replications runs are conducted for each model-scale pair. The 

variance of the computation time and prediction hit rate are evaluated.  
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The variance of computation time and variance of prediction hit rate among 

ANN replication runs are higher than that of MVP model runs. For ANN replication 

runs, variance of computation time is very high as the scale goes up from four to 

eight and 16. This finding indicates that replication runs are necessary for properly 

applying ANN model to solve business problems because randomness has a fairly 

large impact on ANN model’s estimation. In contrast, the MVP model has relatively 

stable computation time and very tiny variance of prediction hit rate. This result 

indicates that replication runs for the MVP model does not add much value.  

The second objective is to apply ANN technique into large-scale cross effect 

analysis. Instead of simply adopting classic ANN algorithm, this study customizes 

the ANN technique to make it fit to this specific business problem. For example, 

the cross entropy function is customized to weigh false negative error more over 

false positive error because missing a potential customer (false negative) hurt a 

marketing action more than misidentify a non-customer (false positive). However, 

existing ANN research in the business field mainly focuses on comparing 

prediction performance of ANN with that of statistical model. This study goes 

deeper into ANN model’s mechanism and seeks to adapt its learning method to 

specific business problems.  

The last contribution of this study is the introduction of spending habit 

heterogeneity model. Consumers’ heterogeneity in the cross effect literature has 

not been studied in depth. There are few, if any, dedicated studies. Dedicated 

heterogeneity studies are very few, if not none. Consumer demographic and 

historical shopping basket information are used as explanatory variables to 
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consumers’ heterogeneous response in cross effect model. For example, 

Manchanda et al. (1999) regress effect/cross effect of marketing mix on family size 

and total number of shopping trips. Russell et al. (1999) estimate the effect of 

consumers’ average basket size on cross effect. Duvvuri et al. (2007) consider 

fixed effect of income and household size on latent utility. This study focuses on 

consumer’s inherent spending traits. Drawing on the consumer mental budgeting 

model (Heath and Soll 1996, Duvvuri et al. 2007) and consumer impulsive 

spending literature (Rook and Fisher 1995, Vohs and Faber 2007), the spending 

habit heterogeneity model is introduced. This study provides testable propositions 

based on the model, but leaves empirical testing for future research. 

 

1.2.  Theoretical and Managerial Implications  

The large-scale cross effect analysis research is constructed in accordance 

with the business analytics paradigm. Business analytics has been defined 

“evidence-based problem recognition and solving” (Holsapple et al. 2014). This 

study, in accordance, incorporates large number of simultaneous categories into 

model, and (2) leaning on data-driven analysis by relaxing dependence on 

subjective prior assumptions of possible cross effect.  

The big data analytical approach is attracting increasing research interest 

in the business literature. A recent example is the application of adaptive modeling. 

This modeling approach, instead of specifying a fix distribution of dependent 

variables, adjusts distribution specifications based on results of data tests. Cross 
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effect literature has used machine learning (Mishra et al. 2014) and Dirichlet 

process (Li and Ansari 2013) as a component of adaptive model calibration. 

Instead of manually specifying model construct, both Mishra et al. (2014) and Li 

and Ansari (2013) allow varying the model’s hyperparameters – the parameters 

defining the model construct itself.  

These adaptive models are shown as more capable of fitting an information-

rich dataset. However, one practical problem with these models is the significantly 

increased complexity in model specification and estimation. High complexity can 

impede adoption of the adaptive modeling method and, in turn, slow down 

productivity gains from utilizing big data analytics. In general, there is an emerging 

request for large-scale analysis techniques.  

In a retailing context, because of the large-scale and high frequency of 

transactions, a small improvement in accuracy of estimating sales boosts can have 

significant impact on business operations and bottom lines. For example, a 

manager of Walmart could find out that a discount of frosting is not necessary when 

cake mix is on sale because consumers who buy the latter will most of the time 

also buy the former anyway. Avoiding such a discount can mean a notable profit 

gain in large volume sales. A significant profitability improvement by a customized 

discount is demonstrated in empirical studies such as that of Duvvuri et al. (2007). 

In contrast, when cross effect is ignored, managers can make misleading 

inferences about the impact of marketing mix (Russell and Petersen 2000, Duvvuri 

et al. 2007).  
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Ideally, managers can simply load all of the categories (for example, all 

categories in a food section) into a large-scale model and the model can identify 

and quantify cross effects among these categories. By relaxing dependence on 

prior assumptions, this study is able to explore cross effect between novel 

combinations of categories. For example, by including all categories in the product 

group of laundry supplies, managers may find that detergent purchase is 

influenced by promotion of dryer sheets but not much by promotion of liquid 

softeners. This is a made-up example but using prior assumptions to speculate 

cross effect in a set of more than 20 categories is not only difficult but risky. The 

first premise of large-scale cross effect analysis is to relax prior assumptions about 

cross effect partners.  

 

1.3.  Related Research  

This section distinguishes the current study from several related research 

streams.  

1.3.1  Association Rule Mining  

In the data mining research field, the well-known association rule mining 

technique is rooted in finding frequent patterns. Frequent pattern of co-purchase 

is one example of such patterns. Some literature call it frequent pattern mining, or 

market basket analysis. The Support-Confidence framework is the cornerstone of 

association rule mining research (Agrawal et al. 1993, Agrawal and Srikant 1994, 

Kotsiantis and Kanellopoulos 2006, Han et al. 2007). Both the measure of Support 

and Confidence are a type of frequency measure. This study’s research topic, the 
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cross effect analysis, is different from association rule mining from two 

perspectives. 

First, association rule mining literature focuses on finding purchasing 

associations based purely on purchase frequency. Its purpose is to identify which 

two products are highly frequently purchased together. Association rule mining 

strives to reveal “interesting” purchasing associations. For example, it will drop the 

association of cake mix and frosting from the resulting rule list because people 

already know this association and, thus, it is not “interesting”. In contrast, cross 

effect analysis looks into understanding why and how consumers purchase them. 

For example, it can specify that consumers use them together and discount on 

frosting boosts sales of both. Then, it asks the question of how much sales 

managers can reasonably expect from a certain amount of discount. 

This dissertation connects these two research streams. Association rule 

mining can find interesting rules, but does not explain reasons and does not 

quantify cross sales. Existing cross effect literature does the opposite, explaining 

and quantifying but does not look for unexpected associations. This dissertation 

looks at an integrated capability of rule finding and quantifying. Section 1.2 

explains why such an integrated capability is important.  

Second, from the methodology perspective, association rule mining focuses 

mainly on improving computational performance because finishing computation 

within a bearable time is still a main issue. When working on a large transaction 
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database, the rule searching is very time consuming. However, the computation 

time, at least in the published literature, is not a focus of cross effect research. 

1.3.2  Affinity Analysis 

Affinity analysis carried out in the marketing literature is similar to the 

association rule mining research in that it aims to analyze purchase associations 

(Russell et al. 1999, Boztuǧ and Reutterer 2008). In general, marketing literature 

points out that affinity analysis ignores marketing mix and consumer heterogeneity 

and, thus, may be too misleading to be used in marketing decision making (Russell 

and Petersen 2000).  

1.4.  Summary of Research Question  

In summary, this dissertation examines solutions and related concerns to 

large-scale cross effect analysis. Generally, it has two objectives: 

1. To examine computation and prediction performance of a MVP model in 

increasing scale of categories. 

2. To apply and customize ANN technique in large-scale cross effect 

analysis. 

Additionally, by synthesizing the existing literature of consumer mental 

budgeting and impulsive spending, this study conceptualizes the spending habit 

heterogeneity model in the cross effect context. The model is introduced in the 

future research section. Testable propositions are provided.  

Copyright © Zhiguo Yang 2015 
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Chapter 2. Background and Literature 

2.1  The Random Utility Model  

Most cross effect studies take the approach of random utility model 

(McFadden 1973; 1980; 1986). Walker and Ben-akiva (2002) provide review and 

generalization of this model. This model specifies that consumers implicitly 

calculate a utility gain on each transaction. When having an opportunity to 

purchase a specific category on a shopping trip, consumers do purchase if the 

utility gain is positive, and do not purchase at a zero or negative gain. This latent 

utility specification translates consumers’ discrete choice decisions into a 

continuous variable of latent utility. Then this continuous latent utility (𝒖𝑖) can be 

regressed on interesting independent variables (𝒙𝒊) such as price and promotion. 

In general, the random utility model can be shown as below.  

𝒚 =  {𝑦1, 𝑦2, … , 𝑦𝐾}, 𝑐ℎ𝑜𝑖𝑐𝑒 𝑜𝑓 𝐾 categories in a COPI set                               (2.1) 

𝑦𝑖 = {
0 (𝑛𝑜𝑡 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑), 𝑢𝑖 ≤ 0

1 (𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑),                 𝑢𝑖 > 0
                                                                    (2.2)                                         

𝑢𝑖(𝒙𝒊) =  𝜷𝑖𝒙𝒊 + 𝜀𝑖                                                                       (2.3) 

𝑖 ∈ {1,2… 𝐾}    

Note: For simplicity, the general model shown here has omitted the index 

of household h, and shopping trip t. 

Consumers’ choice of purchase among a COPI set is represented by the 

vector variable 𝒚 as shown in equation (2.1). Each element  𝑦𝐾 ∈ 𝒚 is a binary 
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valued variable indicating purchased or not purchased of category K as shown in 

equation (2.2). The conditions of equation (2) shows the mapping from discrete 

choice to latent utility. In short, the model specifies that consumers will purchase 

category K when 𝒖𝐾 > 0 and vice versa. Equation (2.3) represents a multivariate 

regression model. Utility of purchasing a category 𝒊 is regressed to 𝒙𝒊 , a vector of 

independent variables such as price, product display, product featuring, and other 

promotions (including the constant term 1 as the first element). The estimated 

effects are captured in vector 𝜷. The error term captures the unobserved utilities 

of purchasing category 𝒊 .   

 

2.2 Existing Models of Cross Effect  

2.2.1 Utility Correlation and Multivariate Probit Model (MVP)  

Manchanda et al. (1999) specify cross effect as the effect of category A’s 

marketing mix on category B’s purchase utility. In their MVP model, the latent utility 

of a customer purchasing a category is regressed on the marketing mix variables 

of two sources, the focal category and paired category. The latter captures the 

cross effect, i.e., the part of purchase utility allocated to other categories’ attributes. 

The unobserved purchase utility is captured by the error term. The specific feature 

of the MVP model is that it allows correlation among error terms. The unexplained 

co-purchase incidence is captured by the correlation matrix of error terms. The 

model is estimated with two pairs of categories, cake mix and frosting and 

detergent and softener. Their model finds that cross-effect driven by marketing mix 

(price and promotion) is as high as 0.2 for the two pairs of categories.  
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Li et al. (2005) extend Manchanda et al. (1999) and model choices of 

financial products. Consumers’ readiness to buy a financial product is called 

maturity status. They theorize that consumers’ maturity status can be explained by 

variables such as cumulative purchases, average account balance, and 

experience with a type of product. Correspondingly, a financial product can have 

its maturity level indicating fit to different levels of consumer maturity status. By 

adding such a set of explainers into the Manchanda et al. (1999) model, Li et al. 

(2005) show an improved prediction accuracy on a holdout sample. It is also 

acknowledged that Manchanda et al. (1999)’s model outperforms several 

alternative models in this context.  

Duvvuri et al. (2007) use a model similar to that of Manchanda et al. (1999). 

They simultaneously load into their model six categories including the four used by 

Manchanda et al. (1999). But the cross effect partners are pre-specified and are 

not allowed to change during the model estimation. The results show that some 

consumers seem more sensitive to spaghetti’s price than to sauce’s price under 

an independent model, but they become more sensitive to the price of sauce under 

a cross effect model. Such an inverse relationship is surprising. The authors 

explain the results with a mental budgeting model (Heath and Soll 1996).  

2.2.2 Conditional Choice and Multivariate Logistic Model 

Russell and Petersen (2000) model cross-category incidence with a 

conditional choice model. The model assumes that consumers’ latent utility of 

choosing a category in a shopping basket depends on the categories that are 

already chosen. If a cross effect exists, then the data are supposed to show more 
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frequent purchases of such a combination than purchases without that. 

Interestingly, their analysis shows that the size of the cross effect (by price change) 

is pretty small among the four categories they use (paper towels, napkins, facial 

tissue, and toilet tissue.) Their study suggests that cross price effect exists, but 

may not be managerially important because of the small effect size.  

Their model is called a conditional choice model in the sense that the 

concept of cross effect is conditioned on an actual purchase of the cross partner 

(recall appendix A.1 for the model specification). Their model theorizes that the 

cross effect is the extra utility from purchasing another category, given the current 

category is already purchased. This dissertation takes the alternative perspective 

that cross effects do not necessarily rely on actual purchase (recall section 2.4). 

For example, suppose that consumers purchase both cake mix and frosting when 

frosting is on sale; but do not purchase cake mix when frosting is not on sale. 

Russell and Petersen (2000) model captures cross effects from only the former 

scenario, because the cross effect is the extra utility for purchasing frosting. The 

model of this dissertation captures cross effects from both scenarios because 

cross effects could exist without actual purchases. This perspective is less 

constrained and allows “informational” cross utility. For example, a promotion of 

flowers may just remind consumers to purchase a box chocolate without 

purchasing the flowers. The Russell and Petersen (2000) model excludes such 

cases. 

Song and Chintagunta (2006) extend the Russell and Petersen (2000) 

model by accounting for demand of competing brands within each category. The 
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result of data analysis, in general, validates the necessity of accounting for cross 

effect in understanding purchase relationships. At the cost of increased model 

complexity, the Song and Chintagunta (2006) model demonstrates an approach of 

directly quantifying the relationship of purchasing among specific brands. The 

results of data analysis show some unexplained observations. For example, the 

data model estimation shows that lowering the price of Tide powder detergents 

increases the sales of liquid detergent.  

Boztuğ and Hildebrandt (2003) adopt the model of Russell and Petersen 

(2000) and test with a German dataset. They find a similar level of cross effect, but 

an opposite direction of the effect of customers’ average basket size on latent utility.   

2.2.3 Consumption Satiation Model 

Kim et al. (2002) propose a model that is rooted in the consumer theory of 

micro economics. The model approximates consumers’ choice of a bundle of 

yogurt products with the principle of consumption complementary/substitution, 

consumer budget constraints, and consumption utility satiation. The model has a 

stronger theory base and is able to model quantity choice with the utility satiation 

theory. However, it puts more constraints on choosing complementary/substitute 

categories. In contrast, this study relaxes the dependence on prior assumptions 

for what categories being chosen.   

2.2.4 Studies Using an Extended Number of Categories 

Chib et al. (2002) examine twelve categories that are deemed as composing 

a classic market basket. Compared with this dissertation, their study does not relax 

the dependence on prior assumptions for choosing related categories. Moreover, 



16 
 

their study quantifies the correlation of utility of purchase, which is different from 

our goal (i.e. to quantify the utility dependency)  They find that ignoring cross effect 

(measured by utility correlation) can bias estimation of marketing mix, and using a 

subset of twelve categories can bias estimation of cross effect. The estimation bias 

issues is acknowledged in literature, such as (Duvvuri et al. 2007, Hruschka 2013). 

Boztuǧ and Reutterer (2008) combine two techniques: cluster analysis and 

cross effect analysis. Cluster analysis theorizes that consumers with similar basket 

compositions would be similar in latent-utility-based decision making processes. It 

first clusters shopping baskets by an extended K-means algorithm, and outputs 14 

basket prototypes, each containing 5 categories. When consumers are grouped 

into basket prototypes, the whole data set can be divided into subsets, and cross 

effect models can be estimated on each of these subsets, as well as on the whole 

dataset. The cross effect model they use is the same as the Russell and Petersen 

(2000) model.  

Artificial intelligence technique is rarely used in cross effect analysis. 

Hruschka (2014) examines a technique called restricted Boltzmann machine in this 

context. They are able to load 60 categories into that machine.  

In terms of scale of categories, Table 2.1 shows some representative 

literature and the scale they used. 
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Table 2.1    Selected representative literature of cross effect   

Paper Model categories 
Data selection 

method 

Research 

opportunities 

(Manchanda 
et al. 1999)  

MVP {Cake mix, 
frosting} 
{Detergent, 
softener} 

2 pairs of 
categories  
-> 205 household (2 
purchase) -> 155 
random 

    -> 17,389 trip 
made -> 3,414 
purchased 

* Performance on 
high dimension 
COPI is not tested 
* Household 
heterogeneity across 

categories is 
proposed for future 
research  

(Russell and 
Petersen 
2000) 

MVL {Paper 
towel , toilet 
tissue, facial 
tissue, paper 
napkins} 

4 categories  
-> 170 households 
    -> 2,578 trips 

* Performance on 
high dimension 
COPI is not tested 

(Kim et al. 
2002) 

Utility 
saturation 

{Strawberry, 
blueberry, 
Pina Colada, 
Plain, Mixed 
Berry} 

5 categories  
-> 332 household 
     -> 2,380 trips 

* Performance on 
high dimension 
COPI is not tested 

(Duvvuri et 
al. 2007) 

MVP {Spaghetti, 
Sauce, 
Detergent, 
Softener, 
cake mix, 

Frosting} 

6 categories  
-> 226 household -> 
126 random 
     -> 16,032 trip -> 
1,656 purchased 

* Research is 
needed to 
simultaneously 
model large number 
of categories 

(Hruschka 

2013) 

Clustering 

+ MVL 

Clustering 28 

categories 
on similarity 
and divided 
into four 
groups 

Random 1,500 

households in IRI 
database  
-> 28 categories (7 
X 4 groups in 
analysis) 
-> 24,074 trips 

* Needing more 

comparison of 
performance and 
validity test between 
small and large 
number of categories 

(Niraj et al., 
2008) 

MVL {bacon, egg} 1 pair of categories  
-> 883 household (5 
bacon purchase)  
-> 467 household (4 
egg purchase) 
    -> 293 restricted 
       -> 42,274 trips 

* Performance on 
high dimension 
COPI is not tested 
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2.3 Modeling Large-Scale Cross Effect  

2.3.1  Parameter Explosion 

Relaxing dependency on prior assumptions leads directly to a parameter 

explosion problem. If category partners are pre-paired for cross effect, such as 

bacon paired with egg, or cake mix paired with frosting, then parameter explosion 

can be avoided because a model takes only two categories. If pairs are not pre-

specified, then a model needs to quantify cross effects between any possible pair 

of categories in a set. This results in a set of relationships between categories of 

any subset. The resulting relationships can be a permutation operation on the 

original set. By limiting the relationships to pairs only, there are 𝑝32
2  = 992 

relationships for a set of 32 categories. If there are two independent variables for 

a category, such as price and promotion, then the number of parameters doubles. 

This is the case for our extracted dataset. See Section 3.3 for details of dataset 

preparation. The model’s performance with increasing category scale has not been 

examined in the existing literature.  

2.3.2  Reliability of Parameter Estimation 

Research finds that co-purchase correlation is identified as insignificant in 

a small scale model, while weakly significant in a larger scale model (Boztuǧ and 

Reutterer 2008) and the effect size is sometimes underestimated (Chib et al. 2002). 

Chib et al. (2002) examine the potential impact by including 12 categories, which 

are identified by prior literature as a classic consumer basket composition. First of 

all, they found that cross-category effect (they call it cross category correlation) 

exists and ignoring it will lead to overestimation of marketing effectiveness. More 

importantly, they found a biased estimation of cross effect on a model of two 



19 
 

categories compared with a model of 12 categories. Their paper is among the few 

empirical studies that look into the impact of increasing number of categories. The 

biased estimation found under small number of categories makes it valuable to 

further investigate impacts of number of categories. More studies are needed for 

further and more deeply understand the impact of category scale on model 

performance.  

Hruschka (2013) compares the performance of a holistic model of 28 

categories with that of four individual models. Each individual model contains 7 

categories. The results show that the four individual models generate biased 

estimations. Additionally, the individual models show insignificant purchase 

correlations that are shown to be significant in the holistic model. The models focus 

on the Pearson correlation measure rather than cross effect.   

2.3.3  Complexity and Effectiveness of Parameters Estimation 

Specifying an econometric model is time consuming and intellectually 

challenging. It involves carefully designing a data collection/preparation method, 

plus making reasonable assumptions of data distribution and relationships 

between variables. Large-scale cross effect analysis apparently increases such 

complexity. First, it needs to deal with big dataset transformations usually at the 

level of millions of records. It would be a difficult experience without large-database 

skills. However, academic business research has a tradition of focusing on 

theoretical development. The data transformation, cleaning, and selection 

processes usually draw very little attention. 
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In terms of parameter estimation efficiency, the multivariate econometric 

model used in cross effect analysis is subject to the “curse of high-dimensionality” 

(Manchanda et al. 1999). The MCMC estimation method is commonly used to 

remedy the difficulty of computing high dimension integrals (Russell and Petersen 

2000, Duvvuri et al. 2007, Hruschka 2014). In general, the MCMC method avoids 

calculating high dimensional integrals by drawing random samples from posterior 

distribution of parameters. The existing literature shows that the MCMC method 

works fine in small scale cross effect models. However, performance of MCMC in 

large dimension problems has not been examined.  Ceperley et al. (2012) 

speculate that the method may be less effective for high dimension problems. This 

dissertation empirically examines MCMC’s performance in high dimension cross 

effect.  

One goal of this dissertation is to examine model performance of MVP for 

large-scale categories. It also examines performance of artificial neural network 

model for large-scale categories. Details of the model specifications and study 

design are provided in Chapter 3. 

Computation time may modestly, linearly, or exponentially increase with the 

increasing number of loaded categories. Information about this relationship has 

theoretical and empirical meanings. First, if the computation time turns out 

prohibitive, then it intrigues researchers to find out reasons and to provide solutions. 

Even if the increase turned out linear or modest, the total computation time may 

be significant because of the large number of categories loading. For example, it 

may be affordable to compute cross effect for four categories in four hours, but it 
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would be prohibitive to compute that for 100 categories in 100 hours, even though 

the time increase is linear.  

Future research may be warranted to improve estimation algorithms and 

improve computing performance so that managers with low profile computing 

power can adopt and benefit from large-scale analysis i.e., the commoditization of 

computing large-scale cross effect. An IBM Whitepaper1 predicted that, through 

2015, 85% of Fortune 500 organizations will be unable to exploit big data analytics 

for competitive advantage. If analytics capability became an enabling component 

in large organizations, then middle or small ones have to build that capability to 

survive. Researchers can contribute to the commoditization of big data analytics. 

In the area of large-scale cross effect analysis, improving estimation algorithms 

and computation performance are always significant contributions. 

 

2.4 Cross Effect Concept Development 

Manchanda et al. (1999) defines it as the effect of marketing mix of one 

category on latent utility of another category. This specification has high 

managerial implications because managers can manipulate marketing mix. This 

definition, on the other hand, does not explain why price change of category A will 

affect sales of category B.  

This study specifies cross effect as the dependency of perceived utility of 

purchasing a category on that of purchasing another category. In general, this 

                                                 
1 IBM Whitepaper (2012) “Business analytics and nexus of information”  
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specification first provides a broader range of cross effect implementation and, 

thus, allows more flexible model specification. The utility dependency specification 

does not contend that marketing mix of A directly impacts sales of B. Promoting A 

increases A’s latent utility. If B’s latent utility is conditioned on A’s, then B’s ut ility 

may increase or decrease depending on the strength and direction of the latent 

utility dependency.  

This specification is theoretically justifiable. A consumer’s perceived utility 

of purchasing a category is not only related to the category’s own marketing mix, 

but also related to the consumer’s perceived utility of purchasing related categories. 

For example, many people when making a cake want to use frosting as well. In 

this case, the utility of purchasing frosting is conditioned on the utility of purchasing 

cake mix. If consumers do not have positive utility of purchasing cake mix (not plan 

to make cake), then their utility of purchasing frosting may significantly decrease. 

Theoretically, such a utility dependency, if it exists, should be reflected in observed 

dependency of decisions of purchasing. 

The root cause to cross effect involves a question of why consumers 

purchase some categories together under a statistically significant frequency. 

Russell and Petersen (2000) articulates the two schools of theory, namely, store 

traffic and global utility. Store traffic theory attributes cross-category incidence 

mainly to store-specific features such as promotions, displays, and bundles. It 

assumes that an individual consumer’s latent utilities from purchasing each 

category is independent from each other. Thus, purchase correlation is only 

observable at the store level, not at the consumer level. The global utility theory 
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suggests that cross-category purchases are results of a consumer’s preference of 

joint-consumption. So, the cross-category purchase is independent of shopping 

store, but is supposed to be subject to consumer heterogeneity. Recent literature 

has found significant consumer heterogeneity in empirical studies. Further, more 

and more papers take into account consumer heterogeneity in modeling cross-

category purchase. These two theories do not necessarily exclude each other in 

nature, but managers are interested in knowing consumers’ heterogeneity. This 

paper takes the global utility view that takes consumers’ consumption utility as the 

major cause of cross-category purchase.  

 

2.5 Consumer Heterogeneity and Spending habit 

Accounting for consumer heterogeneity is necessary in many marketing 

analysis situations (Wind 1978, Kamakura and Russell 1989, Wedel and 

Kamakura 1998). Under various conditions, the result of an analysis can be biased 

or fail to identify expected relationships when heterogeneity is not properly 

addressed (Allenby and Rossi 1998, Fiebig et al. 2010, Dippold and Hruschka 

2013). It is a common practice to incorporate consumer heterogeneity in cross 

effect research (Duvvuri et al. 2007, Niraj et al. 2008, Mehta and Ma 2012, Aguinis 

et al. 2013). However, heterogeneity in cross effect studies typically is correlated 

simply with demographic information or historical transaction information. 

Theoretical investigations in the cross effect research is very limited. One 

exception is that of Duvvuri et al. (2007) which examines consumer budgeting 

theory for possible causes of heterogeneous response in cross effect.  
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Consumer heterogeneity is related to subjects such as market 

segmentation, conjoint analysis, and cluster analysis for the similar objective of 

distinguishing consumer preferences. This study first reviews the heterogeneity 

studies in cross effect literature. Then, it provides a quick overview of market 

segmentation literature for segmentation methods, variable selection, and 

evaluation criteria. Finally, this investigation articulates the heterogeneity model 

used in this dissertation. 

2.5.1 Heterogeneity in Cross Effect Literature 

There are mainly two types of heterogeneity models in cross effect literature. 

One type is represented by Chib et al. (2002) and the other is exemplified by 

Manchanda et al. (1999). 

Chib et al. (2002) capture household-specific heterogeneity and category-

specific heterogeneity with a fix effect model. Their model assumes that each 

household has its own mean utility on each category. The equation (2.4) below 

shows the general model. See Chib et al. (2002)’s model in the Appendix A.1.  

𝑈ℎ𝑡𝑗 = 𝑋ℎ𝑡𝑗𝛽𝑗 + 𝑏ℎ + 𝑐ℎ𝑗 + 𝜀ℎ𝑡𝑗                                                       (2.4) 

The utility, 𝑈ℎ𝑡𝑗 , is attributed to household value 𝑏ℎ , and household-category 

specific value 𝑐ℎ𝑗. 

The model implicitly assumes that households are the same in elasticity of 

marketing mix. The parameter 𝛽𝑗 has a one-dimension index only on category j, 

not on household h. It indicates that the effect of marketing mix of category j is 
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same across all of households. Such a fixed elasticity specification is relatively 

arbitrary because it suggests that a change of marketing mix of a category 

generates a utility change that is the same for all consumers. This specification 

rules out the possibility that consumers perceive different values of a same change 

of marketing mix.  

Manchanda et al. (1999) fit a random effect model of heterogeneity. The 

model assumes that household specific cross effect is normally distributed. For a 

given household, the cross effect value on a category is determined by individual 

characteristics, plus a random error. In segmentation literature, this approach is 

sometime called mixture model (Kamakura and Russell 1989, Wedel and 

Kamakura 1998). The consumers in the data sample are assumed to be a mix of 

different groups. Each group of consumers is assumed as a random draw from the 

“super” population. Thus, a group has its own distribution of the cross effect, which 

may be featured by different mean and variance derived from the “super” 

population‘s overall mean and variance.  

Both Duvvuri et al. (2007) and Manchanda et al. (1999) take purchase 

history as an independent variable, but in different ways. The former includes the 

inventory variable at the level parallel to marketing mix (i.e., the explanatory 

variable of latent utility). The latter considers the purchase history (purchase 

frequency) at the level parallel to demographic variables (i.e., the explanatory 

variables of the heterogeneity). The latter approach is consistent with market 

segmentation literature (Allenby and Rossi 1998). Information of consumers’ 

demographics, social status, and behaviors are better understood when integrated 
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into abstraction of lifestyles (Holt 1997) instead of being used directly to explain 

purchase utility. 

Appendix A.1 summarizes the literature in regards to ways of dealing with 

heterogeneity in cross effect models. It should be noted that the network models 

have been examined for addressing heterogeneity (Yang and Allenby 2003). 

Consumer heterogeneity is highly related to the market segmentation 

research stream, which focuses on addressing consumers’ different preference. 

Depending on the research objectives, there are many ways to segment 

consumers. This study briefly reviews the segmentation approaches in the next 

section.  

2.5.2 Segmentation Method in Marketing Literature 

In the marketing literature, segmentation research is about theories and 

methods to capture heterogeneous consumer needs and preferences. Such efforts 

in general enable marketers to better identify and serve customers with precise 

customization. The value of segmentation has been well acknowledged in both 

academic and industrial marketing research and practices. For example, Currim 

(1981) find that by segmenting customers by their perceived utilities on 

transportation alternatives, analysts can identify important factors that are specific 

to a segment in terms of influencing their choice of transportation alternative. 

These factors would not be identified as important in an aggregated model.  

Market segmentation is rooted in heterogeneity of consumer 

needs/preferences. Smith's (1956) definition was cited by Wedel and Kamakura 
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(1998, page 1), which says “market segmentation involves viewing a 

heterogeneous market as a number of homogeneous markets, in response to 

differing preference, attributable to the desires of consumers for more precise 

satisfaction of their varying wants” and also says “…segments are directly derived 

from heterogeneity of consumer wants…”   

Market segmentation is a relatively mature subject in marketing literature 

(Wedel and Kamakura 1998, page 1, Taylor-West et al. 2008). Classic articles 

include, but are not limited to, Smith (1956), Wind (1978), Punj and Stewart (1983), 

Kamakura and Russell (1989), Jedidi et al. (1997), Allenby and Rossi (1998), 

Straughan and Roberts (1999), Boxall and Adamowicz (2002). Through decades 

of literature accumulation, market segmentation has developed a rich set of 

methods and models. Thus, this dissertation relies on this literature in developing 

its heterogeneity construct.  

This study excludes literature on conjoint analysis (Green and Srinivasan 

1978) and related studies that are based on product attribute utility models. 

Conjoint analysis is recognized as a methodology for developing market segments 

(Wedel and Kamakura 1998, chapter 17). It theorizes that a consumer’s utility of 

purchasing a product is based on a function (usually linear) of the consumer’s 

evaluation of the product’s attributes. In contrast, the cross effect is theorized on 

the utility dependency between categories and, thus, is a higher level aggregation 

than conjoint analysis. In terms of addressing consumers’ heterogeneity in cross 

effect, it is often theorized that consumers are essentially heterogeneous, but the 



28 
 

heterogeneity can be aggregated according to research objectives and data 

availability.  

Punj and Stewart (1983) provide theoretical justification for applying cluster 

analysis to  solving marketing problems. In general, segmentation and cluster 

analysis share a goal of grouping entities such as consumers and companies. 

Practically, cluster analysis is traditionally recognized as a method of market 

segmentation (Punj and Stewart 1983,  Wedel and Kamakura 1998, page 17).  

2.5.3 Spending Habits, the Heterogeneity in This Dissertation 

This study conceptualizes spending habits as a source of heterogeneous 

response to marketing mix. This conceptualization is based on two schools of 

literature: mental budgeting model (Heath and Soll 1996, Duvvuri et al. 2007) and 

impulsive spending research (Rook and Fisher 1995, Baumeister 2002, Vohs and 

Faber 2007).   The mental budgeting model suggests that people conduct implicit 

calculation of purchase utility and make decisions when the calculation results in 

obvious gains/loss of a purchase.  

This study takes the mental budget model further and considers the depth 

of consumers’ mental calculation. People of careful spending habit may be 

accustomed to planned and within-budget spending. Thus, they are more likely to 

do deeper calculation on purchases. At one end of the spectrum are people who 

rarely spend over/under budget, while the other end has people who care little 

about a price tag, but buy things catching their attention. Impulsive spending 

research has a viewpoint backing this idea. The viewpoint suggests that people 
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can be inherent “impulsive buyers” or “not impulsive buyers “(Rook and Fisher 

1995, Youn and Faber 2000). This kind of spending habit (depth of mental 

calculation) is expected to be stable because habits are very hard to change.  

Cross purchasing is a phenomenon that is expected to be highly related to 

consumers’ budget calculations. In general, at a promotion or price drop, 

consumers buy more. In a case where cross category is considered, consumers 

may have to buy more of both to enjoy the utility of discount or promotion. Whether 

the cross category would be purchased can be associated with flexibility of her 

mental budget, i.e. the spending habit. Indulgent types of mental budgeting are 

hypothesized to be associated with higher cross effect, because the consumer’s 

mental budgeting is allowed larger variance. 

To realize the mental budgeting theory in cross effect model, the first task 

is to define variables that reflects consumers’ types of spending habits. Plausible 

variables should reflect consumers’ degree of mental budgeting. It is assumed that 

the total spending at shopping trips is normally distributed. Thus, large variance of 

trip total spending can reflect indulgent mental budgeting, while small variance can 

reflect conservative mental budgeting. Technically, the variance of trip total 

spending is easy to calculate. The value range is (0, +Inf).  

It is possible that the normality assumption is violated. For example, 

consumers may periodically make a large grocery shopping trip followed by small 

contingent shopping. This type of consumer can have large variance of total 

spending but still be budget sensitive. This study does not expect strong presence 

http://www.jstor.org/stable/10.1086/510228#rf23
http://www.jstor.org/stable/10.1086/510228#rf38
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of such cases in its dataset, because the contingent trips would be excluded if the 

focal categories was not purchased in that trip. Even if the pattern appears in 

individual consumer’s purchasing history, it would not seriously disable our model. 

The random effect heterogeneity model (recall next section) pools consumers by 

their degree of mental budgeting, rather than distinguishing individuals. Pooling 

consumers together largely removes such patterns.  

2.5.4 Data Sparseness, Fixed Effect and Random Effect Model of Heterogeneity 

This study specifies a random effect model for heterogeneity. The choice 

between random and fixed effect model is highly related to data sparseness. The 

two models are explained below. 

The fixed effect approach assumes that each unit is significantly different 

from others in terms of responding to a stimuli, and estimating the unique response 

of each unit is necessary according to research objectives. In contrast, the random 

effect approach assumes that, even though each unit is different from another for 

response to a stimuli, the difference among units is not serious enough to be 

distinguished between every pair of individuals according to research objectives. 

Thus, it is good enough to estimate a general center for all units and a unit’s “extra” 

response is regressed on explanatory variables. In this sense, regression models 

in general are random effect models where individual’s response is not uniquely 

identifiable by the model.  

For example, managers can regress sales change on price change. The 

estimated model can predict sales change caused by a unit change of price. This 
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model represents a random effect of price on sales because it does not distinguish 

individuals for their response, but rather estimates a general center over all 

respondents. In another case, a manager of target marketing wants to estimate 

consumers’ response to a marketing campaign for each individual customer 

because customized promotion can be developed. In this case, individual personal 

information must be used to estimate the different responses. In other words, the 

value of the estimated model lies at the individual’s unique feature that makes 

him/her respond differently; while in the former case, the value lies at the overall 

aggregate level of response.   

The choice between fixed and random effect heterogeneity models 

depends not only on research objectives and theoretical justification, but is also 

constrained by data availability. Consumer’s response to a marketing mix change 

can be very sparse. As explained in (Rossi et al. 2005, page 130), 12 observations 

is very common for a household’s purchase of a category in a year. In such a 

situation, it is necessary to consider the proper level of aggregation, even though 

the individual level of heterogeneity is desirable. 

Data aggregation level is a critical factor for addressing heterogeneity. 

Theoretically, each consumer is unique in consumption preference. But, each pair 

of consumers can also share a certain level of aggregated preference. Marketing 

segmentation literature sometimes labels it segment homogeneity (Wind 1978, 

Wedel and Kamakura 1998). For example, the well-known Maslow’s hierarchy of 

needs depicts the most abstract level of human beings’ needs. People need water, 
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as well as a feeling of love and belonging, but everybody is different in the way 

and strength of those needs.  

Ideally, marketing science would like to model preference as specifically as 

possible. The extreme end of this direction is the ability to predict each individual’s 

personal preference (Wedel and Kamakura 1998, page 1). It appears that 

marketing science is heading in that direction through technology advancement.  

In a statistical sense, to model cross effect to a specific level of consumer 

heterogeneity, the available data are required to contain enough samples for that 

level of preference. For example, in order to confidently cluster consumers’ 

preferences by the factor of family size, enough samples are required for each type 

of family size to represent a set of distinguishable preferences. Data availability 

was pointed out as a potential issue for segmentation validity check (Wind 1978). 

Theoretically a segmentation study should ensure customer identifiability (Wedel 

and Kamakura 1998, page 4). A large database requires choosing a proper level 

of preference aggregation so that important factors are included and preferences 

are properly addressed. In addition, high specificity of preference requires powerful 

computation resources. Thus, the practical way is to model the preference at the 

level that is computationally feasible and includes managerially important factors.  

 

2.6  Artificial Neural Network (ANN) Technique 

This section first introduces ANN model and explains why ANN is 

appropriate in large-scale cross effect analysis. It then reviews several 

representative studies that are related to cross effect analysis. 
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2.6.1  Advantages of ANN for Cross Effect Analysis 

The ANN model has been compared with regression models, especially 

with logistic regression models, from a statistical perspective (Bishop 1995, 

Warner and Misra 1996, West et al. 1997). Many empirical studies suggest 

superior prediction accuracy of ANN over traditional regression models. Wong et 

al. (1997) reviews ANN’s application in business. Paliwal and Kumar (2009) 

provides a review of ANN from a technical perspective. 

This study examines the ANN model in large-scale cross effect analysis for 

several reasons.  

First, the ANN model is a learning model of high adaptive capability 

(Cybenko 1989, Hornik et al. 1989). It is well documented that ANN captures both 

linear and non-linear relationships  (West et al. 1997, Paliwal and Kumar 2009). 

Actually by restricting the number of hidden perceptrons to zero and the activation 

function to direct linear, a neural network downgrades to a linear regression model; 

under the same condition, but as a logistic activation function, it becomes a logistic 

model. Both multiple regression and logistic regression models are special cases 

of generalized linear models. Further, a generalized linear model is a special case 

of a neural network model (Bishop 1995). The advantage of ANN is that it can learn 

model structure from data, in contrast to the traditional approach that analysts are 

responsible for pre-specifying a model structure. This fact suggests that ANN 

needs a large and information-rich dataset to be accurate. The successful 

application of ANN in image recognition and natural language processing is based 

on rich training samples.  
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ANN is a learning model where the model’s structure is not pre-specified by 

the user but is learned from data. This feature fits the assumption that large-scale 

cross effect analysis does not pre-specify which is related to which in a set of 

categories. Because of loading a large number of categories, the large-scale cross 

effect analysis is by nature hard to pre-specify between-category relationships. 

The cross effect is less and less manageable manually when the number of 

categories increase. Utilizing an ANN model’s learning capability is ideal for 

treating this concern. 

Additionally, ANN is able to learn non-linear relationships between IVs and 

DVs, which is usually regulated in regression based econometric models. Finding 

the non-linear cross effect provides new information for decision support.  

Another reason is related to the parameter explosion issue (recall section 

2.3.1). ANN avoids parameter explosion in the cross effect analysis situation. The 

ANN modeling does not require specifying an explicit cross effects variable. But 

rather, the cross effect is captured in the hidden layer that connects inputs to 

outputs. An ideal ANN model requires only inputs and outputs, and the modeling 

procedures is done by a learning process which is transparent to users. Avoiding 

parameter explosion is actually a by-product of delegating model specification to 

an artificial learning algorithm. With a set of learned rules, it can mimic decision 

makers and make decisions based on novel inputs.  

In essence, the training process of ANN resembles training a human being 

with super brain power who can quickly go over millions of past events and build 
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decision rules along the way. Just like human beings, a learned ANN model may 

be able to make accurate predictions without being able to articulate the logic or 

reasoning behind the decision making. With decades of research efforts, 

researchers have made progress in the ANN model’s interpretability such as the 

generalized weights technique (Intrator and Intrator 2001), marginal cross effect 

interpretation of a network (Hruschka 2014), and effect quantification with ANN 

modeling (Xu et al. 2013) 

Finally, model specification and implementation is operationally much 

simpler on an ANN model than on an econometric model (Paliwal and Kumar 

2009). In general, specifying an ANN model is more intuitive and requires less in 

the way of intellectual investments.   

2.6.2  Selected Studies of ANN Application in Marketing Problems  

ANN application in marketing research is growing. Several studies focus on 

applying new techniques in specific contexts. For example, Kim et al. (2005) apply 

an ANN technique in the customer targeting context. Cui et al. (2006) combine an 

evolutionary algorithm (an important ANN training algorithm) and Bayesian 

network to study direct marketing response models. The findings are usually in the 

form of comparing prediction accuracy of ANN to a base model. This study follows 

the literature convention, and applies the ANN technique in the large-scale cross 

effect context which is featured by the multivariate model. Additionally, this study 

examines effects of customizing ANN model configurations to fit the large-scale 

cross effect context. 
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The literature of applying ANN in cross effect analysis is rare, if available at 

all. To give a basic idea of ANN application in marketing literature, several studies 

that are close relatives to cross effect analysis are reviewed. 

Hruschka (1993) compares the regression method with the ANN technique 

in the context of market response (i.e., predicting sales by price, advertising, 

lagged advertising and temperature). The results show that ANN with only one 

layers of hidden nodes generates error (MSE) much smaller than that of the 

regression model. It does not focus on cross effect but it showcases comparison 

work between ANN and regression model.  

West  et al. (1997)  compare ANN with discriminant analysis and logit model 

in the context of consumer choice model. Both simulated and survey data are 

analyzed. The results show that the ANN outperforms the discriminant/logit 

technique when data are non-learn nature; but does not outperform when the data 

are linear in nature.  

Cooper (1999) compares ANN with multivariate statistical models, 

contending that ANN works better when the relation between DVs and IVs is 

unknown. This finding supports this dissertation’s argument that cross effect 

analysis is a complex problem and ANN is a good fit to this problem. 

More recent literature examines feature selection capability of an ANN 

model. Kim et al. (2005) examine application of ANN in selecting proper IVs in the 

context of market response.  Xu et al. (2013) examine ANN’s feature selection 

application and test an ANN model in predicting emergency room arrivals.  
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ANN application in cross effect analysis is not available. This study fills this 

gap and demonstrates ANN’s application in the large-scale cross effect context.  

2.6.3  Prediction Model 

Note that the ANN model is specially designed for prediction purposes. As 

compared with regression models, it relaxes the assumptions of linear 

relationships between DVs and IVs. The logit model actually moves from linear 

regression to the log ratio transformed linear regression. In the same sense, ANN 

moves from log ratio transformed linear regression to the multi-layer compounded 

log ratio transformed linear regression with customizable transformation function. 

Such a model structure escalation can tremendously improve model capability 

because it does not assume linear relationships, nor assume specific distribution 

of DVs and IVs. Costs are (1) loss of relationship traceability, and (2) increase of 

model estimation complexity.  

There are continuous breakthroughs to the latter issue because of the fast 

development of computation capacity. With small searching effort for good 

parameters, the classic Newton-Raphson’s method (gradient decent) works pretty 

well in practice. One of the recent breakthroughs is the application of GPU chipset 

in computing deep neural network that can significantly improve the calculation 

speed (Bergstra et al. 2011). Distributed deep neural network structure is also 

attracting research efforts (Dean et al. 2012).  
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Chapter 3. Model Specification and Study Design  

This chapter specifies two models of large-scale cross effect analysis.  

3.1  MVP Model with Heterogeneous Spending habit  

This study uses a multivariate probit model for large-scale cross effect 

analysis. As with the approach of Manchanda et al. (1999), the model allows 

correlation between utility errors. The main feature of the model is that it allows 

correlation between any pair of categories, rather than just between pre-selected 

pairs.  

This study specifies a two-level hierarchical model. The first level model 

specifies effects and cross effects of marketing mix on the latent utilities of the 𝑘 

categories. The second level model specifies heterogeneity of the effects/cross 

effects captured by a consumer’s spending habit. Tables 3.1 and 3.2 depicts some 

naming conventions used in model specification. 

Table 3.1    Variable naming conventions used in model specification 

Variable form in equation Explanation Example 

Lower case letter scalar variable 𝒚, 𝜷 

Lower case bold letter vector variable 𝒚, 𝜷 

Upper case letter matrix variable 𝜮, 𝑽 

 

 

Table 3.2    Variable abbreviation conventions used in model specification 

Conventional variable abbreviation Explanation 

IV independent variable 

DV dependent variable 

P price 

M promotion  

U utility 

SPD spending variance 

MVN Multivariate normal distribution 
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3.1.1  The First Level of the MVP Model  

In a shopping trip, consumers choose to purchase or not purchase on each 

category in a set of 𝑘 categories. Let vector 𝒚𝑡ℎ  =  {𝑦1, 𝑦2, … , 𝑦𝑘}𝑡ℎ  represents 

choices on each category made by household ℎ at shopping trip 𝑡. The element 𝑦k  

is a binary variable where 1 (or 0) indicates the category 𝑘 was purchased (or not 

purchased). For example, given that the interest is in purchases of bacon and eggs, 

if household ℎ  purchased bacon but not egg at trip  𝑡 , then  𝒚𝑡ℎ  =  {𝑦𝑏𝑎𝑐𝑜𝑛 =

1, 𝑦𝑒𝑔𝑔 = 0}
𝑡ℎ

.  

The value of 𝑦kth  is modeled with a latent utility variable 𝑢𝑘𝑡ℎ as specified in 

equation (3.1).  

𝑦𝑘𝑡ℎ = {
0 (𝑛𝑜𝑡 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒),    𝑢𝑘𝑡ℎ ≤ 0

 1 (𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒),              𝑢𝑘𝑡ℎ > 0
                                           (3.1)                                       

The first level of the MVP model is specified as below (Manchanda et al. 

1999).  

𝒖𝑡ℎ = 𝑋𝑡ℎ𝜷ℎ + 𝜺𝑡ℎ   ;         𝜺𝑡ℎ ~ 𝑀𝑉𝑁(𝟎, 𝛴)                                    (3.2) 

Dependent variable (DV) 𝒖𝑡ℎ is a 𝑘 -dimesion vector represents latent 

utilities of the 𝑘  categories for which cross effects are modeled, so that  𝒖𝑡ℎ =

{𝑢1𝑡ℎ , 𝑢2𝑡ℎ , … 𝑢𝑘𝑡ℎ} . Because the first level model does not account for 

heterogeneity, the estimated effect (vector  𝜷 ), is constant across trips and 
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household. For simplicity, index ℎ and 𝑡 are temporarily omitted and the general 

model has: 

𝒖 = 𝑋𝜷+  𝜺  ;      𝜺 ~ 𝑀𝑉𝑁(𝟎, 𝛴)                                                     (3.2+) 

 Identification problem 

𝒖 is not observed, but rather it is inferred from the observed variable 𝒚. Thus, 

𝒖 is essentially treated as a model parameter. The model allows all positive value 

of 𝒖 when corresponding category is purchased (𝑦 = 1), and allows all negative 

values when not purchased (𝑦 = 0). For a given observation(𝑋, 𝑦), the parameter 

of (𝜷ℎ , 𝛴) cannot be uniquely identified because 𝒖 is free to change in the range 

(0, +Inf) or (-Inf, 0). An approach to make the model parameter identifiable is to 

restrict the error covariance matrix, 𝛴, to be a correlation matrix (Manchanda et al. 

1999, Rossi et al. 2005, Duvvuri et al. 2007). 

 Parameter organization 

The equation (3.2+) in the dimension of 𝑘 categories is broken down as 

shown in (3.3). Note that the breakdown is in the dimension of categories, not the 

dimension of IVs. In other words, each element 𝒙𝑖  in the equation of (3.3) is still a 

vector (i.e., the holder of all IVs of category 𝑖). The element 𝜷𝑖 is a vector, the 

holder of coefficients to vector 𝒙𝑖 .  

[

𝑢1

𝑢2

⋮
𝑢𝑘

] = [

𝒙1 0 0 0
0 𝒙2 0 0
0 0 ⋱ 0
0 0 0 𝒙𝑘

] [

𝜷1

𝜷2

⋮
𝜷𝑘

] + [

  𝜀1

  𝜀2

⋮
  𝜀𝑘

]                                                    (3.3) 
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The matrix 𝑋, the first matrix on the right hand side, is a diagonal matrix. 

Each element 𝒙𝑖 is identical and contains all IVs for the set of 𝐾 categories. The 

result is that coefficients vector  𝜷𝑖  is estimated with same 𝒙𝑖  and different 𝑢𝑖 . 

Writing in the form of (3.3) enables each same-value IV vector 𝒙𝑖 to pick up a 

different coefficient vector 𝜷𝑖. By further extending the term 𝒙𝑖 and 𝜷𝑖, we have the 

following equation. 

𝒙𝑖 =  [1 (𝑝1 𝑚1) (𝑝2 𝑚2) ⋯ (𝑝𝑘 𝑚𝑘)]                                      (3.4) 

   𝜷𝑖 =

[
 
 
 
 
 
 
 
 
𝛽𝑖0

𝛽𝑖1𝑝

𝛽𝑖1𝑚

𝛽𝑖2𝑝

𝛽𝑖2𝑚

⋮
𝛽𝑖𝑘𝑝

𝛽𝑖𝑘𝑚]
 
 
 
 
 
 
 
 

                                                                              (3.5) 

Equations (3.4) and (3.5) show that 𝒙𝑖  is a row vector of 2 ∗ 𝑘 +  1 

dimension, and 𝜷𝑖 is a column vector of 2 ∗ 𝑘 +  1 dimension. The whole 𝜷 vector 

is the combination of  𝜷𝑖  for 𝑖 = 1~𝑘. Thus, the whole 𝜷 has dimension 𝑘 ∗ (2 ∗ 𝑘 +

 1) . To model four categories, the number of 𝛽  is 36. To model 32 categories, 

number of 𝛽 is 2,080. Allenby et al. (2005) state that a model with such a large 

number of parameters was not imaginable short time ago, but computer and Monte 

Carlo Markov Chain (MCMC) simulation method makes such models a 

commonplace today.  

 



42 
 

The deterministic terms can be extended as:  

𝒙𝑖𝜷𝑖 = 𝛽𝑖0 + ∑ (𝛽𝑖𝑗𝑝𝑝𝑗 + 𝛽𝑖𝑗𝑚𝑚𝑗)
𝑗=1~𝑘

                                                      (3.6) 

When 𝑗 = 𝑖,  the coefficient of 𝛽𝑖𝑖𝑝  and 𝛽𝑖𝑖𝑚  captures effect of price and 

promotion on focal category 𝑖. When 𝑗 ≠ 𝑖, the coefficients captures cross effects 

from category 𝑗 to 𝑖.  

Most software packages take advantage of vectorization for computation 

efficiency in parameter estimation. To feed data to such packages, analysts usually 

need to prepare data in the matrix form. More specifically, they need to prepare a 

data matrix of 𝑌 and 𝑋 for a model 𝑌 = 𝑋𝛽. The matrix form in (3.3) is derived from 

the fact that effects of same IVs on different DVs are estimated, and the DVs are 

assumed correlated and follow a 𝑀𝑉𝑁 distributon. 

3.1.2  The second level of the MVP model  

The second level of the MVP model specifies household heterogeneity of 

the first level’s parameters 𝜷𝒉 using a random effect model. 

𝜷ℎ =  𝒉𝒉ℎ𝛄 + 𝝃ℎ  ; 𝝃ℎ~ 𝑀𝑉𝑁(𝟎,𝑉𝛽)                                               (3.7)  

In such a specification, the first-level model must use household as unit. 

The second- level model assumes that the vector 𝜷𝒉  is a multivariate normal 

distribution and the center is determined by household characteristics. Note that in 

this model, the unit is household. The DV is  𝜷𝒉 , and IV is characteristics of 
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household. Index ℎ is omitted and the category dimension is broken down as 

shown in (3.8). 

[

𝜷1

𝜷2

⋮
𝜷𝑘

] =  [

𝒉𝒉1 0 0 0
0 𝒉𝒉2 0 0
0 0 ⋱ 0
0 0 0 𝒉𝒉𝑘

] [

𝛄1

𝜸2

⋮
𝜸𝑘

] + [

𝝃1

𝝃2

⋮
𝝃𝑘

] ;      [

𝝃1

𝝃2

⋮
𝝃𝑘

] ~ 𝑀𝑉𝑁(𝟎,𝑉𝛽)            (3.8) 

As with the specification in (3.3), the 𝒉𝒉𝑖 vector repeats itself in the diagonal 

matrix in (3.8).  

The interest of the second level model is the parameter 𝛄 and 𝑉𝛽. The 𝛄 

captures the effect of household characters on the parameter  𝜷 . The 

variance/covariance matrix 𝑉𝛽 represents uncaptured variance/covariance of 𝜷.  

Cross effect models specification is complex. Representation in a matrix 

view, as in (3.9), can help us clearly understand the model’s structure. More 

importantly, it helps readers understand data organization, which is critical for 

estimation procedures.   

In the hierarchical model, the second layer IVs, compared with first layer 

ones, are assumed to be an order of magnitude further from DVs. In other words, 

it assumes that the second layer IVs influence DVs only through the first layer IVs. 

The legitimacy of such a specification hinges on scientists’ knowledge and/or 

reasoning processes.  
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3.1.3  Data Sparseness and Alternative Solution 

Data sparseness was discussed in section 2.5.4. Serious data sparseness 

can invalidate parameter estimation. For example, suppose a household makes 

12 detergent purchases in a year. But purchase Information is available for only 

seven of these purchases. The effect of price drops or promotions is not strongly 

present in the several purchase transactions. Thus, the estimated effect can be 

unpredictable. In this situation, the two-level MVP model that depends on individual 

consumer’s shopping history becomes invalid.  

This study examines the problem of individual level sparseness by 

validating the first- level price effect. It is well-acknowledged that, at an aggregate 

level, price is negatively related to demand. This knowledge has been used to 

check models’ face validity (Manchanda et al. 1999, Russell and Petersen 2000). 

It first ignores heterogeneity and runs the first-level model only. A negative effect 

of price on utility is expected. After breakdown is taken into account, the two-level 

model can be run. Data sparseness is deemed present when the two-level model 

does not give a stable negative effect of price on utility.  

When the data sparseness problem is present, the two-level model cannot 

be relied on to address heterogeneity. The alternative solution is to aggregate 

individual level data to a higher level.  
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3.1.4  Bayesian Inference and Monte Carlo Markov Chain (MCMC) Methods  

The MCMC method is thoroughly explained in Rossi et al.’s book (Rossi et 

al. 2005). A brief review of the key parts of this estimation method is provided 

below. 

In the context of large-scale cross effect analysis, the main advantage of 

MCMC is that it avoids the difficulty of calculating high dimension integrals. 

Because latent utility is unobserved in the cross effect model, it is necessary to 

calculate integrals on possibilities of positive utility for a purchase and of negative 

utility for a non-purchase. For a detailed discussion of this problem, see 

(Manchanda et al. 1999).  

The MCMC approach first specifies a statistical distribution for each model 

parameter, called prior distribution or prior. For example, a normal distribution of 

price coefficient as 𝑁(0.02, 0.01) can be used. The mean and standard deviation 

are usually initialized with random numbers. It turns out that the initial value does 

not matter when a data sample is large and strong. Observed data are treated as 

evidence that is used to adjust the prior and derive the posterior distribution or post. 

When the post is available, random samples can be drawn to estimate parameters’ 

values. MCMC is rooted in Bayesian statistics (Rossi et al. 2005). 

Bayesian is a theoretical jump away from ML. If ML seeks maximizing the 

likelihood function Prob(data | θ), then the Bayesian approach adds a wrapping 

layer to the likelihood function as:  

   post(θ | data) ∝ Prob(data | θ) * prior(θ) 
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ML searches for a “best” θ that maximizes the probability function; while 

MCMC wrapping layer forms a probability distribution of parameters from which 

the parameters can be drawn. Drawing random samples from a known distribution 

is much easier than calculating high dimension integrals. 

 

3.2  ANN Model 

This section provides a brief overview of a general ANN model specification. 

It is followed by a section specifying a cross effect ANN model. Finally, several 

configuration options are discussed as approaches of customizing ANN to fit the 

cross effect analysis context and fit specific characteristics of the dataset.  

3.2.1  The General Construct of ANN 

ANN techniques evolved quickly over decades of development. But the 

fundamental theory and principles have remained solid. There is classical literature 

introducing the general ANN model such as Bishop (1995) and Ripley (1996). 

Literature dedicated to comparison of statistical method and ANN is also readily 

accessible (Warner and Misra 1996, Dreiseitl and Ohno-Machado 2002, Kumar 

2005, Paliwal and Kumar 2009). Application of artificial intelligence in business has 

been growing (Hruschka 1993, West  et al. 1997, Wong et al. 1997, Baesens et al. 

2002, Cui and Curry 2005, Xu et al. 2013). Online resources are very rich and 

updated more frequently to the latest technique. For example, the online book by 

Michael Nielsen (Nielsen 2015) explains principles and techniques of ANN with 

vivid examples. The UFLDL Tutorial, contributed by well-recognized ANN 
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researcher Andrew Ng and his colleagues, covers general ANN models and 

techniques (Ng 2010).  

All the resources mentioned above are very consistent in explaining ANN 

principles and general ANN models. A general introduction of ANN construct is 

provided in this section. It adopts two figures from (West et al. 1997) to explain the 

basic idea of NN models.  

 

Figure 3.1    Single neuron perceptron, adopted from (West et al. 1997) 

Figure 3.1 shows the construct of a single neuron. First, the aggregation 

node inside the big circle takes I inputs (𝑥1 to 𝑥𝑖) to calculate an aggregation value. 

The activation function node takes the aggregated value and transforms it to an 

output value. In most ANN implementations, the aggregation is a linear 

combination or weighted summation, which can be noted as ∑ 𝑥𝑖𝑤𝑖𝑖 . Parameter 𝑤𝑖 

is the parameter be optimized using learning algorithm. A commonly used function 

activation function is sigmoid. Sigmoid function is what econometricians called 

logistic function. The big circle containing the aggregation and activation function 
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represents a neuron. Many such neurons can be connected to form a network as 

shown in Figure 3.2. 

 

Figure 3.2    One Hidden Layer NN, adopted from (West et al. 1997) 

Figure 3.2 shows a three hidden neurons (node 𝐻) ANN model. The node 

𝑂 on the right hand side is the output node. The output node can be in the form of 

a neuron or any aggregation and transformation function defined by the model 

designer.  

Multiple layer NN is not considered here for two reasons.  First, one hidden 

layer is capable of capturing non-linear relationships  (Intrator and Intrator 2001, 

West  et al. 1997, Paliwal and Kumar 2009). Second, multi-layer NN is much more 

complicated in terms of choosing training algorithm and optimal structure design 

(Bengio et al. 2009,  Nielsen 2015  Chapter 5). For example, it may be more subject 

to the trap of local optima (Baczyński and Parol 2004), especially when gradient 

descent learning is used. This project focuses on the one-hidden layer ANN model 
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for cross category predictions. A question remaining is how many hidden nodes 

should be chosen. This question is discussed in Section 3.2.4. 

The figure below is the conceptual decision making model in cross category 

context. 

 

Figure 3.3    Conceptual decision making model  

To train an ANN model, one needs to specify a learning algorithm, error 

function, and stopping rule.  The learning algorithm is a process to search for a set 

of optimal parameters that minimize the error function. There is no deterministic 

solution to ANN model. Thus, the learning is in essence a repeating “search” and 

“test” process. The main parameters are the weights, 𝑊𝑖𝑗 , as shown in Figure 3.2. 

 Model Initialization 

Common practice is to initialize the weights as random numbers drawn from 

range 0 to 1. 
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 Learning algorithm 

A learning algorithm takes many rounds to update parameter (weights) 

toward an optimal solution. Back-propagation is arguably the most commonly used 

algorithm. In each round, it feeds data to the ANN model and calculates an error 

with current parameters. Then the parameters are updated using a searching rule. 

In the next round, the new parameters are used to calculate the error. Gradient 

descent (Newton’s method) is usually used to update parameters in each round. 

Equation (3.9) describes the basic gradient descent method. 

𝑤𝑖𝑗
𝑡+1 = 𝑤𝑖𝑗

𝑡 −  𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑡                                                  (3.9) 

In round 𝑡, a set of weights 𝑤𝑖𝑗
𝑡  is either learned from previous round or set 

as the initial value when 𝑡 = 1. 𝐸 is the error function. 
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑡  is the first derivative of 

𝐸 over a weight parameter  𝑤𝑖𝑗
𝑡 . This term represents the gradient descent, the 

change of 𝑤𝑖𝑗
𝑡  leading to largest reduction of error function. The new 𝑤𝑖𝑗

𝑡+1  is 

calculated using formula (3.9). The learning rate parameter 𝜂  controls for the 

speed of parameter updating. A convenient feature of the gradient descent 

learning formula is that the derivative term 
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑡  is usually a known form depending 

on the error function. Thus, it is calculated in each round and used in next round. 

 Error function 

The learning algorithm is designed to minimize an error function. An error 

function is a quantity to measure the difference between true value and estimated 
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value of dependent variables. A commonly used error function is sum of squared 

error and cross entropy error. 

 Stopping rule 

The learning algorithm stops when either the solution converges to a point 

where further rounds of learning would not gain much improvement on reducing 

error; or, the predefined maximum number of rounds is reached without solution 

convergence. The former case results in a success while the latter is a failure of 

learning. 

3.2.2  Cross Effect ANN model  

Figure 3.4 shows the cross effect ANN model. The input layer includes 

nodes of dependent variables (category price and promotion). A 32 categories 

cross-category model includes 64 input nodes. The hidden layer is a one-layer set 

of neurons including a bias node. The choice of the number of hidden nodes is 

discussed in a later section. The output layer has a number of neurons 

corresponding to number of categories.  
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Figure 3.4    the cross category ANN model 

 

3.2.3  Consumer Heterogeneity in ANN 

ANN model places all input nodes in the same layer, namely the input layer. 

Within the literature reviewed, multiple layers of input nodes are currently not 

supported by ANN modeling. In comparison to the hierarchical MVP model, the 

ANN does not pre-specify hierarchical structure between IVs to DVs, but instead, 

learns the distance between IVs to DVs from training data. The distance is 

encoded in the weights parameter and in the structural connections among nodes. 

Appendix B provides an example to explain the mechanism.  

This feature of ANN models free analysts from having to specify a 

hierarchical model. ANN can learn such relationships from training data, assuming 

that the data present enough information.  
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3.2.4  Configuration Tuning for Cross Effect Analysis 

 Cross entropy error function 

An adjusted cross entropy function, as an error function, is used in the ANN 

model. 

Kline and Berardi (2005) reexamine the cross entropy error and mean 

squared error as error functions of the ANN model. Compared with previous 

studies, their work uses more data samples and variables. They found that cross 

entropy function can generate more accurate posterior probability estimation. 

Nielsen (2015, Chapter 3) explains a main advantages of this error function over 

sum of squared error function (i.e., faster learning). The function form of the cross 

entropy error can be expressed as equation (3.10).  

𝐶(𝑦, �̂�) =  
−1

𝑛
∑ [ (𝑦𝑖 ∗ log(�̂�𝑖) + (1 − 𝑦𝑖) ∗ log(1 − �̂�𝑖) ]

𝑛

𝑖=1
                      (3.10) 

The 𝑦 represents observed values of the dependent variable; �̂� represent 

ANN estimated values of dependent variable. The right hand side sums errors of 

each observation and divides the sum of error by the total number of observations. 

Cross entropy error function is another commonly error function. Nielsen (2015, 

Chapter 3) provides details of this error function. 

 Adjusted cross entropy cost function  

The observed dependent variable is binary, either 0 or 1. So mistakes are 

of two types, false positive and false negative. The original cross entropy function 
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treats the two types of error as equally important. The error function is adjusted to 

make the error type of false positive less influential, as shown in equation (3.11).  

𝐶(𝑦, �̂�) =  
−1

𝑛
∑ [ (𝑦𝑖 ∗ log(�̂�𝑖) + 0.5 ∗  (1 − 𝑦𝑖) ∗ log(1 − �̂�𝑖)]

𝑛

𝑖=1
                 (3.11) 

The adjusted function, compared with original function, retains the 

qualification of NN cost function such that (1) it is differentiable and monotonic (2) 

it is positively associated with error amount (Nielsen 2015, Chapter 3). But at the 

same time, it takes false positive error as less important than false negative error. 

This is a nice feature in marketing problems because, practically, losing a sales 

opportunity is much more costly than sending unsolicited mail to unknown potential 

customers. Technically, this adjustment actually sacrifices prediction accuracy at 

points of negative response, in exchange for flexibility of the ANN model to adjust 

its parameters for better prediction accuracy at points of positive response.  

To verify the desirable feature, the ANN model is run with original cross 

entropy and adjusted function separately. The model’s prediction performance is 

compared between adjusted model and base model. It is expected that the 

outcome of the adjusted model tends to have low error rates, as measured by 

Mean of Percentage Error (MPE). See Appendix C for a discussion of MPE. 

Table 3.3 shows the experiment results.  
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Table 3.3    Effectiveness of adjusted cross entropy error 

Model y1+y2+y3+y4 ~ (p1+p2 + p3+p4 + m1+m2 + m3+m4) 

Data Test: 4,322 X 12 Training: 17,284 X 12 

Results 

  Cutoff = 0.5 Cutoff = 0.3 

  Rep-1 Rep-2 Rep-3 Rep-1 Rep-2 Rep-3 

Test data 

MPE 

Original 178.6 329.1 196.5 29.3 275.5 164.6 

Adjusted 183.04 128 183.6 163.38 28.79 33.5 

Training 

data MPE 

Original 324.6 1172 669.3 34.8 1149 308.8 

Adjusted 623.4 116.2 625.7 36.7 22.46 33.68 

 

As expected, the error function MPE favors the adjusted cross entropy 

function in 2/3 replication runs. To rule out possible noise, scores are compared in 

both training and testing data, and using two cutoff scores. As Table 3.3 shows, 

the result is consistent from training data to test data, and from cutoff score 0.5 to 

0.3. Because test data are not used in training procedures, the performance on 

test data indicates the external validity of the trained model. Another observation 

is that the prediction performance of the trained NN model (with adjusted cost 

function) has a smaller score variance among three replications.  

 Learning algorithm 

The resilient back propagation learning algorithm is used in this model. 

Resilient back propagation (Riedmiller 1994, Günther and Fritsch 2010,  Rojas 

2013 page 208) is a revision of the back propagation algorithm. The traditional 

gradient descent algorithm uses a fixed learning rate (recall section 3.2.1). The 

main idea of the resilient method is to use a dynamic learning rate based on recent 

learning speed. This method tends to have better learning performance (Günther 

and Fritsch 2010).  
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 Activation function: logistic function output range 0 to 1 that fits the data 

The observed response variable  𝑦 is coded as 0 or 1, purchased or not 

purchased. Logistic (sigmoid) function fits this coding schema because the logistic 

function, expressed as 𝑓(𝑥) = 
1

1+𝑒−𝑥𝛽, has the output range of 0 to 1. 

 L2 (weight decay) Regularization:  

This is a commonly used technique to control for overfitting. The method 

described in (Nielson 2015, chapter 3) is used to setup the decay parameter based 

on training sample size.  

 Choosing number of hidden nodes 

The available methods of choosing the number of hidden nodes are mainly 

experimental (Lendaris et al. 1993, Bishop 1995 page 170). This question is 

related to the theory of local/national minima of a multilayer network function (recall 

Bishop 1995, page 170 for details). Research on this subject is out of the scope of 

this project. Recent findings of (Baczyński and Parol 2004) are used as the rule. 

They suggest that number of weights should be one order of magnitude less than 

the number of learning facts in order to avoid high risk of over-fitting. Although their 

finding mainly addresses over-fitting on number of hidden nodes, it is assumed 

that when model over-fitting is to be controlled, the mode’s fitting capability is 

guaranteed.  

Specifying an over-capable ANN model (having number of hidden nodes 

more than necessary) not only sets the learning procedure at risk of model over-
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fitting, but also can tremendously increase the requirement of computation power. 

Thus, the rule of  (Baczyński and Parol 2004)  provides a basic idea of choosing 

optimal number of hidden nodes.  

To provide more insights on this matter, this study compares the prediction 

improvement from having 12 hidden nodes to having 16 hidden nodes on 16 

categories model, and from having 12 hidden nodes to having 32 hidden nodes on 

32 categories model. Moreover, prediction outcome is also compared between one 

hidden layer and two hidden layers. The outcome is reported in a later chapter. 

 

3.3  Data  

This study uses the database Nielsen Consumer Panel and Scanner 2 

databases focused on archival data of year 2010 and 11 US cities. Information on 

availability and access to the dataset is available at 

http://research.chicagobooth.edu/nielsen. 

3.3.1  Four Levels of Category Scale 

To test model performance in increasing category scale, a dataset is 

extracted containing a set of categories that are derived from four base categories. 

The four base categories, cake mix, frosting, detergent and softener, are selected 

because they are commonly used in cross effect analysis, such as (Manchanda et 

al. 1999, Duvvuri et al. 2007). For each base category, the model goes upward to 

                                                 
2 Calculated (or Derived) based on data from The Nielsen Company (US), LLC and provided by 
the Marketing Data Center at The University of Chicago Booth School of Business. 
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its corresponding category group and selects all categories for the category group. 

This procedure yields 64 categories. After removing missing data and dropping 

infrequent categories (purchased less than 52 times in a year), a database with 32 

categories remains.  

Four levels of category scale are created. The first level is the base category 

set. Then four more categories are added by randomly choosing one sibling 

category for each base category. This give us the second level of eight categories 

set. Then, this procedure is repeated to form the 16 and 32 categories sets. These 

four levels of category scale provide an approximation to the increasing category 

scale. These four levels are used to conduct experiments on model performance 

of both the MVP and the ANN model.  

3.3.2  Steps and Conditions Used in Data Extraction 

Households meeting following conditions are selected into data sample, (1) 

Nielsen Designated Marketing Areas (DMA code) in one of the eleven cities, (2) 

made at least two purchases of each category in ten categories of the total 32 

categories. 

Trips and purchases are extracted corresponding to the extracted 

households. An observation is a shopping trip consisting of price and promotion 

information of each of the 32 categories, as well as purchase decision on each of 

those categories. The household characteristics are attached to each observation.  



59 
 

3.3.3  Resulting Data Statistics 

There are missing data caused by missing information of price or promotion. 

As a result, when there are more categories loaded into the model, there are more 

chances of missing information. The statistics of valid trip information is shown in 

Table 3.4 below. 

Table 3.4     Data extraction information  

Period 2010 

DMA area (11 cities) New York, Chicago, St Louis, Dallas, Los Angeles, Boston, 
Houston, San Francisco, Seattle, Atlanta, Minneapolis 

Total Number of 
Categories 

32 

Trip information 

Scale of categories Valid trips Valid households Trips/household 

4 21,606 1,705 12.67 

8 19,399 1,611 12.04 

16 19,182 1,603 11.97 

32 18,058 1,566 11.53 

Cause of data 
missing  

Unavailable price and promotion for a specific category and a 
specific store. 

Reasonable 
Trips/household 

Trips of non-purchase of listed categories are dropped. On 
average, household of our dataset make purchase once a 
month for the listed categories. 

 

Table 3.5 shows information of the 32 categories that are included in our 

model. 
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Table 3.5    Category List  ( highlighted are the four base categories) 

ID Module code Module description Number of Purchase 

1 1375 
MIXES - CAKE/LAYER - OVER 10 
OZ. 2,451 

2 1372 FROSTING READY-TO-SPREAD 1,685 

3 7012 
DETERGENTS - HEAVY DUTY - 
LIQUID 3,147 

4 7060 FABRIC SOFTENERS-LIQUID 1,109 

5 1343 BREADING PRODUCTS 1,049 

6 1350 CROUTONS 855 

7 1358 
PIE & PASTRY SHELLS-
PREPARED 288 

8 1364 STUFFING PRODUCTS 1,008 

9 1380 MIXES - BROWNIES 1,855 

10 1381 MIXES-MUFFIN 1,340 

11 1383 MIXES-BREAD 692 

12 1384 MIXES-DESSERT-MISC. 217 

13 1386 MIXES-ROLLS & BISCUITS 478 

14 1387 MIXES-COOKIE 880 

15 1389 CAKE DECORATIONS & ICING 378 

16 1395 MIXES - PANCAKE 934 

17 1396 YEAST - DRY 307 

18 1435 COCONUT 79 

19 1436 BAKING CHOCOLATE 326 

20 1437 CHOCOLATE CHIPS & MORSELS 1,009 

21 1469 BAKING POWDER 138 

22 1470 BAKING SODA 305 

23 7003 DETERGENTS-PACKAGED 362 

24 7008 DETERGENTS - LIGHT DUTY 1,759 

25 7015 LAUNDRY TREATMENT AIDS 501 

26 7020 
AUTOMATIC DISHWASHER 
COMPOUNDS 1,264 

27 7025 DISHWASHER RINSING AIDS 152 

28 7041 DETERGENT BOOSTERS 402 

29 7062 FABRIC SOFTENERS-DRY 491 

30 7080 BLEACH - LIQUID/GEL 627 

31 7176 SPOT & STAIN REMOVERS 257 

32 7850 
LAUNDRY & IRONING 
ACCESSORIES 168 

 

Table 3.6 shows a portion of the joint-purchase statistics (Appendix A.2 

shows the complete table). Highlighted are values larger than 99. The highlighted 
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parts show that a category may be co-purchased with many other categories. For 

example, category y1 is most frequently purchased with y2, but many consumers 

purchase it with y9.  

Table 3.6     Part of pair-wise Joint purchase frequency 

* Cells value larger than 99 are highlighted 
 
* Read from row perspective:  
          row y1 in column y1 is 2451, the total number of trips that category 1 is 
purchased 

          row y1 in column y2 is   963, the total number of trips that both category 1 and 2 
are purchased 
          Thus, 963 is part of 2451.  

 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 
y1
1 

y1
2 

y1
3 

y1
4 

y1
5 

y1 
245

1 963 176 56 69 40 30 74 258 121 67 18 51 
12
2 93 

y2 
 

168
5 118 45 52 28 20 52 228 86 48 14 33 

13
7 94 

y3 
  

314
7 337 90 61 16 76 118 115 49 9 31 64 17 

y4 
   

110
9 40 20 17 28 54 35 22 5 14 25 8 

y5 
    

104
9 35 9 61 46 50 25 8 22 21 9 

y6 
     

85
5 6 28 49 25 22 3 11 22 4 

y7 
      

28
8 21 20 14 12 8 7 15 2 

y8 
       

100
8 43 50 27 7 7 39 12 

y9 
        

185
5 89 78 29 37 

14
0 19 

y1
0          

134
0 86 16 26 53 17 

y1
1           

69
2 11 22 63 5 

y1
2            

21
7 4 14 1 
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3.4  Study – 1 Large-Scale MVP and Spending Habit Heterogeneity 

The first study fits the MVP model (section 3.1) to the extracted dataset. 

This study examines performance of computation time, parameter estimation 

reliability, and prediction accuracy under increasing scale of categories.  

3.4.1  Experiments to Study Model Performance with Increasing Scales 

By replicating the MCMC (recall Section 3.1) run 10 times for each category 

scale, a series of performance indicators are measured and examined. 

Computation time is directly measured as the duration from procedure start to end.  

Reliability of a parameter estimation is measured by the variance of the 

parameter’s estimate. Variance in parameter estimations arise because of the 

simulation nature of the estimation method. The parameter estimation of the 4 

base categories under 4, 8, 16 and 32 category scales are tracked. Comparing 

estimation over an increasing scale sheds light on the issue that estimations are 

biased under small scale (Chib et al. 2002,  Boztuǧ and Reutterer 2008). For a 

category in a scale set, its cross effect from any other category is estimated. Then, 

its paired partner is determined by the largest size of estimated cross effect. For 

example, assume that the cross effects from categories B, C, D to A are B->A = 

0.2, C->A = 0.5, and D->A = 0.7. Then A is paired with D as cross effect partners. 

Even though prior assumptions predicts partners for the 4 base categories, the 

model allows partner shifting which means that a category’s cross effect partner is 

different between a small scale model and a large-scale model. A shifting implies 

discovery of new knowledge of additional or unfamiliar complementary/substitution 

consumption in different model scales.  
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Prediction accuracy is measured by extending a prediction hit rate as 

defined by (Manchanda et al. 1999). This measure is discussed in the next section. 

For a given dataset, training data and test data are prepared by taking 85% and 

15% random samples. The model is fitted to the training data, and predictions are 

made with the test data. Model fitting and predictions are repeated 10 times for 

each of the 4 scale datasets (whenever the computation can be finished in a 

reasonable time period). Model prediction accuracy is assessed by the mean and 

variance of prediction hit rates over the 10 replications.   

3.4.2  Prediction Hit Rate, and Measures Used in This Study 

 Prediction hit rate 

Manchanda et al. (1999) introduce the prediction hit rate measure that is for 

prediction accuracy of a market basket composition. The formula is 

1 −
∑ 𝑎𝑏𝑠(𝑡𝑖 − 𝑝𝑖)𝑖

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑝𝑠
                                                               (3.12) 

To explain this measure, suppose we have a market basket profile as 

shown in the Table 3.7 below. 

Table 3.7    Example of market basket composition and predictions 

𝒊 
Basket 
index 

𝒕𝒊 
True number of 
purchases 

𝒑𝒊 
Predicted 
number of 
purchases 

Manipulated 
Worst 
prediction 

Manipulated 
0 prediction 

1 10 12 0 20 

2 20 14 0 5 

3 5 9 35 0 

Total 
35 
𝒕𝒐𝒕𝒂𝒍 𝒕𝒓𝒊𝒑𝒔 

Hit rate = 0.66 Hit rate = 
−𝟎.𝟕𝟏 

Hit rate = 0 
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The first column is the index of baskets. In this example, there are three 

types of baskets. The second column is the true number of purchases of each 

basket. The third column is the predicted number of purchases of each basket. 

The fourth and fifth columns are for the purpose of demonstrating the hit rate value 

range.  

 

As shown in the third column, applying formula (3.12) gets the result:  

1 −
∑ [𝑎𝑏𝑠(10 − 12)𝑖 , 𝑎𝑏𝑠(20 − 14), 𝑎𝑏𝑠(5 − 9)]

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑝𝑠 = 35
= 1 − 0.34 = 0.66 

Manchanda et al. (1999) suggest that the value of this hit rate measure 

ranges from 0 (zero prediction) to 1 (perfect prediction).  

It can be found that this measure theoretically ranges from −1 to 1. As 

demonstrated in columns four and five, one can manipulate the prediction 

composition to make the formula (3.1) output zero or a negative value greater 

than −1. As the fourth column shows, the rule to output the worst hit rate is to 

predict the total trips on the least purchased basket and predict zero on each of 

the other baskets. This results in a hit rate of the range of −1 to zero. If the lowest 

true purchase is zero, then this results in a hit rate of  −1.  

The negative hit rate can be avoided when zero is not allowed in columns 

of true purchases and predictions. However, when the model scale increases, the 

prediction of zero becomes unavoidable. Thus, the negative hit rate is highly 
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possible when the model scale becomes large. We observe the negative hit rate 

in the scale 32 ANN model.  

It is worthy to note that even though this measure can result in a negative 

value, a larger value still indicates better prediction accuracy.  

A major issue is that the prediction hit rate is not a fair measure when it is 

used to compare prediction accuracy between different model scales. The problem 

and solution are elaborated in the next section. 

 Hit Rate lift 

The prediction hit rate is not a fair measure for comparing prediction 

accuracies between models of different scales. A larger scale model has a 

prediction space of much more dimensions, i.e., the number of baskets to predict 

purchases on3 . A larger scale model tends to have more chances to make 

mistakes in predictions as demonstrated below.  

Table 3.8    Hit rate measure on scale 2 and scale 4 model outcomes  

 Scale 2 
true 
purchases 

Naive  
Prediction 

Scale 4 true 
purchases 

Naive  
Prediction 

Basket 1 15 10 12 5 

Basket 2 5 10 5 5 

Basket 3   2 5 

Basket 4   1 5 

Total purchases 20  20  

Total error  10  14 
Prediction hit rate  0.5  0.3 

                                                 
3 A scale 4 model (4 categories) could include 16 possible baskets because it is the combination 

of 4 binary variables (𝟐𝟒). A scale 8 model could include 256 possible baskets (𝟐𝟖). 
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Table 3.8 shown above exemplifies the unfairness of using the hit rate to 

compare prediction accuracy between different model scales. The columns two 

and three show the scale 2 model. Given the true purchases, a naïve prediction 

(simply predicting the average for each basket) can reach a hit rate of 0.5. But for 

the scale 4 model, a similar approach of naïve prediction can only achieve a hit 

rate of 0.3. Comparing hit rate 0.5 with 0.3 and claiming a better prediction 

performance of the scale 2 model than that of the scale 4 model is not fair because 

both the predictions are naïve. 

A fair measure can use the naïve prediction performance as a baseline. 

Because the naïve prediction can always be made and achieve a prediction 

hit rate regardless of model scales. It can be used as the baseline performance 

associated with a specific scale. Follow this logic, the last row of column three and 

five shows that the scale 2 model has a baseline score of 0.5 and the scale 4 model 

has that of 0.3. The baseline score indicates the naïve prediction hit rate 

associated with a specific model scale and dataset.  

A prediction’s performance is then adjusted as the relative value to the 

baseline score (i.e., the hit rate lift). The formula is:  

𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 𝑙𝑖𝑓𝑡 =  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 –  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 4 

                                                 
4 The alternative measure, 

𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 𝒉𝒊𝒕 𝒓𝒂𝒕𝒆

𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 𝒉𝒊𝒕 𝒓𝒂𝒕𝒆
, is subject to the bias of small baseline hit rate. The 

calculated lift rate would be extremely exaggerated when the baseline hit rate is close to zero.  
Additionally, the calculated lift rate would be negative if the baseline hit rate is negative.  
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The hit rate lift reflects that, comparing with the baseline score, how much 

the prediction hit rate is improved. The value range is −2 to +2, and larger values 

indicate larger improvements from its baseline score. Negative values indicate that 

a prediction performance lower than baseline score (it does not beat the naïve 

prediction). The hit rate lift is a fairer measure for comparison between different 

model scales. An example is shown in the table below. 

Table 3.9    Demonstration of hit rate lift 

Scale 2 
true 
purchases 

Naïve 
(Baseline) 
prediction 

Models’ 
prediction 

Scale 4 true 
purchases 

Naïve 
(Baseline) 
prediction 

Models’ 
prediction 

15 10 16 12 5 11 

5 10 4 5 5 4 

   2 5 3 

   1 5 2 

Total error 10 2  14 4 

Hit rate 0.5 0.9  0.3 0.8 

Hit rate lift  0.4   0.5 

Table 3.9 extends the Table 3.8 and exemplifies the calculation of hit rate 

lift (columns three and six). Column three (column six) shows a prediction of the 

scale 2 (scale 4) model, its hit rate, and the hit rate lift. The scale 2 hit rate, 0.9, is 

better than the scale 4 hit rate, 0.8. But the hit rate lift is better in scale 4 than in 

scale 2, as 0.5 over 0.4. Comparing the lift scores indicates that the prediction in 

scale 4 model is able to beat the naïve prediction more than the prediction in the 

scale 2 model. Thus, it has a better prediction capability. 

 Base 4 categories hit rate 

The prediction performance for only the base 4 categories can be calculated 

in any larger scale models. The example shown below in Table 3.10 demonstrates 

the calculation method that aggregate purchase numbers of the scale 8 model into 
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purchases of the base 4 categories. Using this method, this study reports the base 

4 category hit rate in larger model scales. This measure provides information about 

whether the prediction performance is improved by using more categories (more 

information).  

Table 3.10    Calculation of base 4 categories from a scale 8 model 

Basket composition 
of scale 4 
(c1,c2,c3,c4) 

Scale 4 purchases 
(aggregate by the 
base 4 categories) 

Corresponding  
composition of scale 
8  

Scale 8 purchases 

1 
(0,0,0,0) 

30 

(0,0,0,0,      0,0,0,1) 10 

(0,0,0,0,      0,0,1,0) 10 

(0,0,0,0,      0,0,1,1) 5 

(0,0,0,0,      …) 5 

2 
(0,0,0,1) 

20 

(0,0,0,1,      0,0,0,0) 3 

(0,0,0,1,      0,0,0,1) 7 

(0,0,0,1,      …) 10 

3 
(0,0,1,1) 

30 
(0,0,1,1,      0,0,0,0)  17 

(0,0,0,1,      …) 13 

4 
(0,1,1,1) 

… … … 

…. … … … 

   

3.4.3  Parameter Estimation  

The model specified in section 3.1 is implemented by customizing an open 

source R package bayesm (Rossi 2012). R is an open source data analysis tool 

(R Core Team 2014). At this time, a hierarchical MVP model with random effect 

heterogeneity is not yet implemented in the bayesm package. The estimation 

program extends the function rmvpGibbs in the bayesm package. The 

implementation is based on the work of Allenby et al. (2005) and is referred to as 

the model by Duvvuri et al.  (2007). 
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In general, the estimation procedure is a MCMC method guided by 

Bayesian inference statistics. Recall section 3.1.4 for a brief review of this method. 

Rossi et al.’s book is an helpful resource for this subject (Rossi  et al. 2005).  

 

3.5  Study – 2 Large-Scale ANN and Non-linear Effect  

 

The ANN study trains the ANN model specified in section 3.2 with extracted 

datasets. Datasets used in this study are identical to those used in Study - 1. Model 

performance such as computation time, and prediction hit rate are examined under 

increasing scales of categories. Importantly, this study examines non-linear 

relationship between IVs and DVs (recall section 3.5.3) 

The model specified in section 3.2 is implemented by customizing an open 

source R package neuralnet (Günther and Fritsch 2010). R is an open source data 

analysis tool (R Core Team 2014).  

3.5.1  Experiments to Study Model Performance with Increasing Scales  

To examine model computation time and prediction hit rate, this study uses 

a procedure that is exactly the same as that of Study – 1 (recall section 3.4.1). The 

exception is that estimation reliability is not available in this ANN study (recall 

section 3.5.2). 

3.5.2  Nonparametric Model ANN 

ANN models are nonparametric models (Intrator and Intrator 2001,  

Rasmussen and Williams 2006). Thus, the reliability of parameter estimations is 
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not a meaningful concept in the ANN study. Regression models output the beta 

coefficient (i.e., the estimation of the general effect from an IV to a DV). It can be 

expected that a corresponding estimation in the ANN model occurs. However, 

ANN models are stochastic processes in which the resulting solutions are random 

(Rasmussen and Williams 2006). In other words, stochastic processes do not have 

a theoretically unique solution. For example, suppose that ten replication runs for 

an ANN model output ten resulting solutions and the solutions are very different 

from each other. Even though the ten solutions are very different, it is not 

meaningful to claim that the parameter estimation is unreliable, because any of the 

ten solutions are a correct solution to the ANN problem.  

Even though the ANN technique does not provide general effect parameters 

as regression models do, the ANN technique is useful for a broad range of 

applications for which prediction is the man purpose. Examples include, but are 

not limited to, image recognition and natural language processing. 

3.5.3  The Special Feature Reported by ANN Model 

One major advantage of ANN over MVP is the ability to capture non-linear 

relationships. The relationships are learned and embedded in ANN’s structure. For 

example, a linear effect of price change on purchase intent could be that, on 

average, one dollar increase of price is associated with 50 percent decrease of 

purchase probability. A non-linear effect could be that, when the price is 20 dollars, 

one dollar increase of price is associated with a 50 percent decrease of purchase 

probability; when the price is 30, the same price increase is associated with only 
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10 percent decrease; when the price is 40, it is associated with a negligible 

decrease. 

From the example above, an IV may have different regions where the effect 

size and variance may be different. Such regional effects reflect a non-linear 

relationship. To help identify such non-linear relationships, Intrator and Intrator 

(2001) introduce the approach of plotting generalized weights which plots 

calculated generalized weights value over the observed values of an IV.  Such a 

plot shows information of an IV’s regions where the IV has non-linear impact on a 

DV. Managers could use such information, because they can set the value of an 

IV to the desirable positons to optimize their results.   
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Chapter 4. Results of Study One 

This chapter implements Study – 1 and reports findings. 

4.1  Model Runs 

Table 4.1 shows several parameter choices of our MCMC simulation, as 

well as the reasons why these values were chosen.   

Table 4.1    MCMC parameters 

MCMC 
Parameter  

Value Rationale 

Gibbs rounds 20,000 The value is determined by experiments results. 
Experiments for 5000, 10,000, 20,000, 30,000 and 
50,000 rounds are conducted. 20,000 rounds result in 
good enough converge. (Appendix A.3 shows part of 
plots price parameter draws) 

Thinning interval Pick every 
20th of 
draws 

The rule is balance between computation time and 
goodness of randomness. The larger this number, the 
closer the MCMC draws to randomness; but the 
larger this number, the longer the computing time 
needed. Manchanda et al. (1999) uses 5th. 

Burn-in rounds 10000 Manchanda et al. (1999) choose 45,000, 90% of all 
draws. Duvvuri et al. (2007) choose 12,500, 25% of 

all draws. The experiments show that 10,000 works 
well in this study. Appendix A.3 plots draws of price 
effect of the 4 base categories model. In the plotted 
figure, converge presents around or before 10,000 
draws.   

The 4-category model runs ten times on a Windows PC with Inter i7 4510u 

CPU (2 core, 2.6 GHz) and 16GB internal memory. The 8-category model runs 

eight times on the same PC and two times on a clustered dedicated server5 with 

two virtual core CPU and four GBs internal memory. The 16 and 32 category 

models are tried on both machines. Using a personal PC to run the model is to 

ensure that the model is computable on a modern PC. The parameter estimation 

                                                 
5  The server cluster is provided by http://aggregate.org/KAOS. Its usage was sponsored by Dr. 
Goldsmith of the Computer Science Department of University of Kentucky.  
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had similar results from Windows and Linux runs. To make the running time 

compatible, time to finish computing on Windows has been translated into that on 

Linux by matching the relative time needed to finish each single step. 

 

4.2  Model Performance of Increasing Scale 

Table 4.2 shows the summary of performance over 10 replication runs of 

the MVP model. The first two columns respectively show the number of categories 

loaded in a model and the number of parameters to be estimated. When the 

category number doubles the number of parameters increases by 4 times, when 

considering both price and promotion as cross effect IVs. The 3rd column shows 

the average computing resource consumption reported by the Windows Task 

Manager when the estimation procedure is running. The 4th column shows both 

mean and standard deviation of time (minutes) to finish an estimation based on 10 

replications each. The 5th column shows both mean and standard deviation of 

prediction accuracy of the estimated model.  
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Table 4.2    General model performance with increasing category scale 

Scale 
Number of 
parameters 

Resource 
Usage 

Time to 
compute 
in 
minutes a 

Prediction hit rate (recall section 
3.4.2) 

Prediction 

hit rate a 

Hit 

rate lift 

Base 4 
categories 
hit rate a 

4 
4 categories * 
(4*p + 4*m) = 

32 = 25 

2GB Ram, 
15% CPU 

83.87 
(0.95) 

0.83 
(0.0007) 

1.15 - 

8 
8 categories * 
(8*p + 8*m) = 

128 = 27 

4GB Ram, 
20% CPU 

849.54 
(136.28) 

0.79(0.001) 1.30 
0.863 

(0.001) 

16 

16 categories 
* (16*p + 

16*m) = 512 = 
29 

10GB 
Ram, 30% 

CPU 

19320+ 
(322+ 

hours) 

NA NA NA 

32 

32 categories 
* (32*p + 

32*m) = 2048 
= 211 

Hit error of 
Out of 

Memory 
(trying to 
allocate 
16GB 

memory) 

NA NA NA NA 

a: values in this column are shown as mean (standard deviation) whenever applicable. 

On average, the scale 4 model takes about one hour and 24 minutes to 

finish computing with standard deviation of about one minute. The scale 8 model 

takes about 14 hours and ten minutes with standard deviation of two hours and 26 

minutes. The scale 16 model is estimated to require more than 322 hours to finish 

computing. The memory use of the estimation procedure is not constrained. In 

such a case, it will hit an out-of-memory error when the available memory is not 

ideal.  Whenever the out-of-memory error does not occur, it indicates that the 

estimation runs with enough resources. The out-of-memory error is reached when 

running scale 32 model. Thus, the scale 32, model is not computable with practical 

resources. Category scale 4, 8 and 16 are all computable. However, the scale 16 

will take too long to finish (about a week), so it is treated as not feasible. When the 

number of categories doubles from four to eight, computing time increases about 
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ten times; from eight to 16, it increases about 22 times. In general, the resources 

and computing time are exponentially increasing with category scales, and scale 

16 model takes too long to finish computing with a modern (2015) personal 

computer. 

The last three columns of Table 4.2 show the model prediction accuracy 

measured by the three types of hit rates (recall section 3.4.2). Generally, when the 

prediction spaces increase from 16 (24 for scale 4) possible baskets to 256 (28 for 

scale 8) possible baskets, the prediction hit rate does not dramatically deteriorate. 

The hit rate lift of 1.30 in the scale 8 model is better than that of 1.15 in the scale 

4 model. It suggests higher capability of the scale 8 model because it improves 

more from its naïve prediction. Additionally, if considering only the base 4 

categories, the prediction hit rate is improved from 0.83 (the scale 4 model) to 0.86 

(the scale 8 model). It suggests that scale 8 model can provide more information 

to the estimation and improves the prediction hit rates on the base 4 categories. 
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Table 4.3    Own/Cross Effect estimation (average of 10 runs) 
Id Categor

y 
Sc-
ale 

Intercept OP OM CPi CP CMi CM 

1 

mixes - 
cake/lay
er - over 
10 oz. 

4 -1.307a 
(0.211b) 
3c 

-26.41 
(3.449) 3 

1.799 
(0.344) 3 4 

9.122 
(1.601) 3 3 

-1.329 
(0.344) 3 

8 -1.001 
(0.243) 3 

-36.563 
(4.686) 3 

1.966 
(0.416) 3 4 

7.284 
(1.706) 3 7 

-1.643 
(1.044) 1.7 

2 frosting 
ready-
to-

spread 

4 -1.877 
(0.338) 3 

-4.815 
(1.479) 3 

4.358 
(0.812) 3 1 

-17.678 
(2.461) 3 4 

-1.447 
(0.678) 2.6 

8 -2.096 

(0.445) 3 

-15.975 

(2.663) 3 

5.02 

(1) 3 1 

-23.09 

(3.352) 3 5.2 

1.489 

(1.358) 1 

3 deterge
nts - 
heavy 
duty - 
liquid 

4 -0.258 
(0.054) 3 

-1.766 
(0.236) 3 

1.138 
(0.155) 3 2 

-1.915 
(0.408) 3 2 

-0.346 
(0.174) 2.2 

8 
-0.392 
(0.068) 3 

-3.003 
(0.277) 3 

1.239 
(0.134) 3 1 

1.746 
(0.422) 3 7 

-0.649 
(0.325) 2 

4 

fabric 
softener

s-liquid 

4 -0.15 
(0.172) 0 

-14.858 
(2.485) 3 

3.273 
(0.601) 3 2 

-6.064 
(1.641) 3 1 

-1.635 
(0.619) 3 

8 -1.738 

(0.426) 3 

-18.909 

(3.221) 3 

4.706 

(0.891) 3 2 

-8.169 

(2.628) 3 1 

-2.184 

(0.924) 3 

5 
breading 

products 

8 
-4.709 

(0.927) 3 

-1.211 
(0.579) 

2.5 

8.398 

(2.014) 3 1 

9.787 

(2.974) 3 1 

-1.363 

(1.042) 1 

6 
croutons 

8 -0.378 
(0.335) 0 

-16.582 
(2.668) 3 

2.419 
(0.773) 3 2 

11.213 
(2.738) 3 3 

-1.339 
(0.619) 2.8 

7 pie & 
pastry 
shells-
prepare
d 

8 

-2.669 
(0.736) 3 

-5.26 
(1.385) 3 

3.33 
(1.434) 3 4 

10.335 
(3.527) 3 8 

1.331 
(0.935) 1 

8 stuffing 

products 

8 -3.642 

(0.969) 3 

-3.735 

(1.237) 3 

4.086 

(1.189) 3 1 

8.047 

(2.9) 3 4 

-1.908 

(1.123) 2 

a: average parameter value of 10 runs  
b: average standard deviation the parameter value of 10 runs 
c: average significance level of 10 runs.  
        0-> not significant at alpha = 0.1 level  
        1-> significant at alpha = 0.1 level  
        2-> significant at alpha = 0.05 level 

        3-> significant at alpha = 0.01 level. Highlighted as bold is not significant at 0.01 level.    
OP: own price effect 
OM: own promotion effect 
CPi:  corresponding category of largest cross price effect 
CP: cross price effect from CPi 
CMi: corresponding category of largest cross promotion effect 

CM: cross promotion effect from CMi 

Table 4.3 shows the parameter estimation as an average of the 10 

replication runs. First, the estimation has face validity in that the effect of a 

category’s own price on latent utility is negative, and the effect of its own promotion 

is positive, for all categories (column OP and OM). This is consistent with the 
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traditional wisdom that price drop and/or product promotion increases probability 

of purchase. 

For every category, the price effect (column OP) is consistently larger for 

scale 8 than for scale 4. This result suggests that consumers of 8 categories 

baskets are more sensitive to price change than those of 4 categories. If a manager 

makes predictions of category 8 customers using category 4’s models, the 

prediction would be inaccurate. 

The results support the objective of this study. It shows that relaxing prior 

assumptions of pairing categories for cross effect analysis leads to discovery of 

new knowledge. The frosting takes the cake mix as the cross price partner, but the 

mix takes softener as partner. This finding indicates that the prior assumptions of 

cross effect is partially correct. Demand on frosting is sensitive to price change of 

cake mix, but demand of cake mix is more sensitive to price change of softener. 

Apparently, there is a direction for cross effect.  

Comparing OP with CP, the OP of cake mix remains a higher value for both 

scale 4 and scale 8, but the CP has lower value for both scales. This finding 

suggests that the demand of cake mix is mainly influenced by its own price, but 

less influenced by the cross price effect. So its demand is more autonomous.  In 

contrast, the OP of frosting remains at a lower value and CP has higher value for 

both scale 4 and scale 8. This suggests that frosting is a complementary category 

which means that its utility is influenced more by its cross price, rather than by its 

own price. Using this approach, the result indicates that the softener is an 
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autonomous category because its OP is larger than CP. Detergent is a semi-

complementary category because its OP and CP are at a similar level. This finding 

is consistent with that of (Duvvuri et al. 2007) in that consumers can be sensitive 

to price change in one category, but at the same time not sensitive to that of the 

complementary category. 

Using this methodology managers will be able to identify such 

complementary categories as well as autonomous categories. It is more effective 

to promote the autonomous categories because their price not only influence its 

own demand, but also influence its complementary category’s demand.  

Another observation is that the impact size of frosting OP tremendously 

increases from 4.8 to 15.9, an increase of more than 300%, when the model scale 

increased from 4 to 8. In contrast, the cake mix OP is -26.4 in scale 4 and -36.5 in 

scale 8, the impact size increases less than 100%. The change is about 1/3 of the 

former. An implication is that when managers want to do promotion on frosting, 

they could refer to a scale 4 or a scale 8 model. If the consumer is a scale 4 

consumer, a higher level of promotion is needed in order to have the same impact 

as that to scale 8 customers. Another takeaway is that frosting is the only category 

that has this large increase of price impact size. Combining the finding of 

autonomous and complementary categories, this finding may suggest that 

complementary categories tend to have highly different price impact between the 

scale 4 and scale 8 customers.  
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The cross category partner remains the same from scale 4 to scale 8 for the 

base categories except for category 3. Detergent shifts its partner from frosting to 

cake mix, and its CP changed from −1.9 to +1.7. It suggests that, in terms of cross 

price effect, frosting is the influencer to detergent in scale 4 model. But in the scale 

8 model that takes into account categories 5, 6, 7 and 8, cake mix would be the 

influencer to detergent. Understanding the different influence structure helps 

managers better identify consumers’ motivations in scale 4 and scale 8.  

Table 4.4    Parameter estimation dispersion of 4 categories and 8 categories  model 

Category Scale 
Average CV of 10 runs 

Intercept OP OM CP CM 
mixes - cake/layer - over 

10 oz. 
4 

0.16 0.13 0.19 0.18 0.26 

 8 0.24 0.13 0.21 0.23 NAa 

frosting ready-to-spread 4 0.18 0.31 0.19 0.14 0.47 

 8 0.21 0.17 0.20 0.15 NA 

detergents - heavy duty - 

liquid 
4 

0.21 0.13 0.14 0.21 0.50 

 8 0.17 0.09 0.11 0.24 0.50 

fabric softeners-liquid 4 NA 0.17 0.18 0.27 0.38 

 8 0.25 0.18 0.20 0.33 0.43 

a: NA indicates that the average level of significance over 10 runs is less than 0.05. 
When the parameter is not significantly different from 0, the CV become misleading4.  
OP: own price effect 
OM: own promotion effect 
CP: cross price effect 
CM: cross promotion effect 

Table 4.4 shows coefficient of variation (CV) of the major model 

parameters6. CV is a statistical measure of distribution dispersion7. One advantage 

of CV is that variables with large or small means can be compared on the 

dispersion of their distribution. Thus, it can be used to compare estimation 

                                                 
6 Formula is  

𝟏

𝟏𝟎
∑

𝝈𝒊

𝒂𝒃𝒔(𝝁𝒊)
𝟏𝟎
𝒊=𝟏 .  𝝁𝒊 is a parameter, and 𝝈𝒊 is its standard deviation. 

7 http://www.ats.ucla.edu/stat/mult_pkg/faq/general/coefficient_of_variation.htm 
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reliability between scale 4 and 8. This measure has been used in business studies 

such as that of Shechtman et al. (2005). If CVs in scale 8 are generally larger than 

that in scale 4, this may suggest that scale 8 has large variance of parameter 

estimations. Table 4.4 shows that CV value in scale 4 is not generally smaller than 

that in scale 8. For example, category cake mix and softener, estimation seems 

more reliable for scale 4 because all CVs are smaller than or equal to CVs of scale 

8. For categories frosting and detergent, scale 4 does not have consistently lower 

CVs.  

In general, the results show that Increase of category scale does not 

significantly affect the reliability of parameter estimation at least in the range of 

scale 8.  
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Chapter 5. Results of Study Two 

This chapter implements study – 2 and reports findings. 

5.1  Model Runs 

Table 5.1 shows the ANN parameters. Reasons to choose these values are 

discussed in Section 3.2.  For a general description of ANN model, Recall section 

3.2. A general ANN model can been seen in Figure 3.4 of section 3.2.2. 

Table 5.1    Summary of ANN model configurations 

ANN Parameter  Value Main reason 

Error function Cross entropy function adjusted 
to favor over-prediction against 
under-prediction 

(1) Faster Learning than sum of 
squared error 

(2) Fit marketing problem 

Activation 
function 

Logistic Fit choice encoding (0, and 1)  

Learning 
algorithm 

Resilient backpropagation  Dynamic learning rate based on 
current learning speed 

Hidden nodes Scale 4: 4, scale 8: 8, scale 16: 
12, scale 32: 12 

Optimal learning capability 
based on findings of (Baczyński 
and Parol 2004) 

The model is run on both a Windows PC and a Linux clustered server with 

the approach being the same as MVP model estimation in Chapter 4. 

5.1.1  Convergence 

The stopping rule discussed in section 3.2.1 is to check model convergence. 

Another complementary technique is to monitor error tracking in the course of 

learning steps. Table 5.2 shows an error tracking plot of the 4 model scales. Each 

model scale has 10 replications, and the error tracking was plotted for one of the 

replications. To make it easy to read, part of the whole plot is clipped to show the 

turning point of convergence.  



82 
 

The plot tracks the error value at every 1000 steps. The error is calculated 

for both training data and test data. An indication of a good learning outcome is 

that both the training and test error go down quickly at the beginning and then slow 

down until training error converges. In contract, an indication of a suspicious 

learning outcome is anything different from a good learning pattern. Table 5.2 

shows an example of good learning in scale 4, 16 and 32, but an example of 

suspicious learning in scale 8. Analysts have to make a decision about whether to 

accept or reject the suspicious learning outcome. A case of suspicious learning 

suggests that one or both of the training and test error function fell into a “bumpy” 

area where the convergence is not stable. This result suggests unstable 

predictions. Thus, the learned model is at high risk of non-generalizability.  

The reason underlying a result of suspicious learning varies. A fact is that 

reduction in training error is not guaranteed at any learning step for the following 

reason. Each weight parameter represents a dimension of the error function. 

Changing a parameter value will change the location of the error function. Different 

locations of the error function could invert the calculated gradient descent on a 

weight parameter. Thus, simultaneously updating all weights, even though toward 

the gradient descent direction in each individual dimension, does not guarantee 

minimization of an error function.  
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Table 5.2    Selected error tracking plot  
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5.2  Model Performance with Increasing Scale 

Table 5.3 shows the summary of performance over 10 replication runs of 

the ANN model. The first two columns, respectively, show the number of 

categories loaded in the model and number of parameters to be estimated. When 

the category number doubles, the number of parameters increases by four times 

when considering both price and promotion as cross effect IVs. The third column 

shows the average computing resource consumption reported by the Windows 

Task Manager when the estimation procedure is running. The fourth column shows 

the mean and standard deviation of time (minutes) to finish an estimation based 

on ten replications. Columns 5, 6, 7 and 8 show the prediction accuracy measures 

(recall section 3.4.2 for the discussion of these measures).  

Table 5.3    General model performance with increasing category scale (a) 

Scale 
Number of 
parameters 

Resource 
Usage 

Time to 
compute 
a 

Prediction hit rate (recall section 
3.4.2) 

Hit rate a 
Hit rate 
lift 

Base 4 
categories hit 
rate a 

4 

(4*p + 4*m) * 
(4+1) hidden 
nodes * (4+1) 
output nodes = 
200 

0.12GB 
Ram, 32% 
CPU 

2.92 
(1.64) 

0.82 
(0.004) 

1.15 - 

8 

(8*p + 8*m) * 
(8+1) hidden 
nodes * (8+1) 
output nodes = 
1296 

0.13GB 
Ram, 32% 
CPU 

92.60 
(36.46) 

0.73 
(0.01) 

1.23 0.83 (0.05) 

16 

(16*p + 16*m) * 
(12+1) hidden 
nodes * (12+1) 
output nodes = 
5408 

0.16GB 
Ram, 32% 
CPU 

176.27 
(198.68) 

0.55 
(0.01) 

1.04 0.88 (0.01) 

32 

(32*p + 32*m) * 
(12+1) hidden 
nodes * (12+1) 
output nodes = 
10816 

0.24 GB, 
32% CPU 

247.73 
(207.90) 

-0.30 
(0.04) 

-0.02 0.31 (0.16) 

a: values in this column are shown as mean (standard deviation). 



86 
 

Holding the error rate fixed at 0.05, on average, the scale 4 model takes 

about three minutes to finish computing with about 1.6 minutes standard deviation. 

The scale 8 model takes about one and half hours with standard deviation of 36 

minutes. The scale 16 model takes about three hours with standard deviation of 

three hours and 18 minutes. The scale 32 model takes about four hours and eight 

minutes with standard deviation of three and half hours. When memory use is not 

constrained, the estimation procedure and models of all the four scales do not hit 

an out-of-memory error. All four scales can be computed within a few hours. In 

general, the resources and computing time do not exponentially increase with 

category scales in the current model setting.  

The prediction hit rates keep decreasing. For scale 32, this measure 

becomes unusable. The hit rate lift shows that the rank of model capability is scale 

16, 8, 4 and 32. In scale 4, 8, and 16, the larger the scale, the higher the model’s 

prediction hit rate lift. But the scale 32 probably had a low signal to noise ratio and 

the ANN model is “confused” so that the outcome model cannot beat even the 

naïve prediction. Note that each model is run at least 10 times with random number 

as starting weights. Additionally, if considering only the base 4 categories, the hit 

rate is increasing from scale 4 to 8 and 16. This result supports the idea that 

including more relevant categories to model can provide useful information and 

improve prediction accuracy. But again, with too many (32) categories the model 

can be overloaded and confused.  

The failure of the scale 32 model may be attributed to insufficient model 

capability, because the number of hidden nodes is set by a rule from the literature 
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(recall section 3.2.4 for the rule used). The number of hidden nodes are set  to the 

upper limit of the rule suggested by (Baczyński and Parol 2004). The rule may not 

robust enough to cover a very large-scale problem like the scale 32 model in this 

study. To verify this issue, a test run is conducted to use 32 hidden nodes instead 

of the original 12 hidden nodes. This test takes about 15 hours to finish the 

computation and its hit rate reaches about 0.47 with lift of 0.75. This is evidence 

that the 12 hidden nodes ANN has insufficient capability to model the scale 32 

model. Even though using 32 hidden nodes improves the model hit rate, the lift 

rate is still the lowest. Additionally, the base 4 category hit rate reaches 0.80 which 

is highly improved from the 12 hidden nodes model (0.31). But again, the score is 

still lower than the scale 4 model’s (0.82).  

 

5.3  Non-linear Relationship 

To study non-linear relationships between IVs and DVs in the cross effect 

analysis context, we use the Generalized Weights concept introduced by Intrator 

and Intrator (2001). The formula to calculate the Generalized Weight of an IV to a 

DV is 

wi =
∂ log (

o(x)
1 − o(x)

)

∂xi
                                                                  (5.1) 

The function 𝒐(𝒙) indicates the output of a NN model given a set of inputs  𝒙. 

The calculated quantity, 𝑤𝑖 , is the first derivative of log-odds of output value over 

an input variable 𝒙𝒊.  
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To better understand this quantity, one needs to take the approach of 

interpreting logistic regression8. The odds ratio 
𝑜(𝑥)

1−𝑜(𝑥)
  is the ratio of the probability 

that an even happens over that it does not happens. For example, if 𝑜(𝑥) 

represents the probability that a category y1 is purchased, then an odd-ratio 1.16 

means that the probability that y1 is purchased is 16% = (1.16-1) higher than the 

probability that it is not purchased. The logistic regression model as shown in 

equation (5.2) takes the logarithm of this odd-ration, called logit function, as the 

dependent variable. The logit function maps a probability space 𝑜(𝑥) ~ (0, 1) to the 

value space of (−𝐼𝑛𝑓, +𝐼𝑛𝑓) which embodies a classic non-bounded continuous 

dependent variable, but at the same time remains the function’s monotonicity and 

continuity. Specifically, the odds term  
𝑜(𝑥)

1−𝑜(𝑥)
 transforms the value range (0, 1) 

to (0, +𝐼𝑛𝑓), and the log term log(𝑝) transforms (0,+𝐼𝑛𝑓) to (−𝐼𝑛𝑓,+𝐼𝑛𝑓). In such 

a specification as shown in equations (5.3) and (5.4), the regression parameter 𝑏 

cannot be directly interpreted as the linear impact on odds, but instead the 

transformation 𝑒𝑏  is. 

𝐥𝐨𝐠𝐢𝐭(𝒐(𝒙)) =  𝐥𝐨𝐠 (
𝒐(𝒙)

𝟏 − 𝒐(𝒙)
) =  𝒂 + 𝒃𝒙                                        (𝟓. 𝟐) 

𝒆
𝐥𝐨𝐠(

𝒐(𝒙)

𝟏−𝒐(𝒙)
)
= 𝒆𝒂+𝒃𝒙                                                           (𝟓. 𝟑) 

                                                 
8 Refer to Introduction to SAS.  UCLA: Statistical Consulting Group, 

from http://www.ats.ucla.edu/stat/stata/faq/oratio.htm and 

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/odds_ratio.htm 

(accessed June 15, 2015). 

 

http://www.ats.ucla.edu/stat/stata/faq/oratio.htm
http://www.ats.ucla.edu/stat/mult_pkg/faq/general/odds_ratio.htm
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𝒐(𝒙)

𝟏 − 𝒐(𝒙)
= 𝒆𝒂+𝒃𝒙                                                           (𝟓. 𝟒) 

 

With these explanations of log-odds in logit models, the generalized weights 

shown in equation (5.1) can be interpreted as to how the change of log-odds is 

associated with the change of 𝑥𝑖. If the 𝑥𝑖 is linearly related to the log-odds, then 

this quantity of generalized weights tends to be less variant (Intrator and Intrator, 

2001).  
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Figure 5.1    Selected plot of generalized weights. 

Figure 5.1 is the plot of generalized weights from training outcome data. 

The X axis is the price observations for each category. The p1 indicates price of 

category 1, and p2 is price of category 2, and so forth. (refer to section 3.3 for 

category name). The Y axis is the calculated generalized weights for each data 

point.  
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Inspecting this plot reveals several relationships. First, when p1 is in the 

range of (−1, 0), the generalized weight of p1 on y1 has the largest variance with 

a mean around −1. This implies that when 𝜇 −  𝜎 ≤ 𝑝1 ≤  𝜇, the purchase odds-

ratio is not linearly related to price change. From the plot, one can see that, only in 

this area, when price drops the price effect on utility quickly becomes high; in 

contrast, when price is in the area of above average, the effect of price drop on 

odds-ratio does not change much. A managerial implication is that price drop will 

work well to largely boost sales when the current price is not higher than average 

price.  

As a contrast, the generalized weights of p4 on y1 are mostly falling in the 

range of 0 to 1. It indicates that the effect is much more linear. Price drop of p4 

would have a similar effect, no matter if p4 is higher or lower than its average.  

These findings can be interpreted from two perspectives: the data analysis 

perspective and the managerial perspective. It could be the case that consumers 

who generate the purchases when the price is in discount range are budget buyers 

who are inherently sensitive to price discount. When price is high, these 

consumers tend to drop out of the purchase population and the insensitive buyers 

remains. Such a speculation can generate new research questions.  

From the managerial perspective, the ANN model is able to provide 

generalized weights plots on all IVs to DVs. Viewing such a chart can give 

managers a quick view about which category is important in terms dropping price 

or putting out advertisements.  For example, as shown in Figure 5.1, a manager 
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who want to boost sales of category one can decide to exclude p4 to p8 as good 

candidates for offering discounts, because the a discount of p1 to p3 seems more 

effective at attracting new purchases. 
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Chapter 6. Discussion 

 The findings of this dissertation contribute to cross effect research 

from three perspectives.  

6.1  General Comparison between the ANN and the MVP 

First, performance of existing models in the context of large-scale data is 

examined. Existing research for similar objectives is very limited.  

Data experiments shows that the widely used MVP model becomes hard to 

compute when 16 categories are simultaneously estimated. In contrast, the 

alternative ANN model can finish computing in a reasonable time.  

Figure 6.1 plots the number of model parameters and computation time over 

model scale for both the ANN and MVP model. 

 

Figure 6.1    Number of parameters and computation time 

The major findings of comparing the MVP and ANN model for performance 

are shown in Table 6.1.    
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Table 6.1    General Performance of the ANN and the MVP model 

Performance  ANN MVP Discussion 

Computation 

time 

Is able to compute 

scale 4, 8, 16 and 
32.  

Is able to compute 

scale 4, 8. But 
requires more than 
322 hours in scale 16, 
and hits out of 
memory error in scale 
32.  

To be able to utilize the 

calculation efficiency of 
vectorization, the 
MCMC algorithm needs 
to expand the data 
structure into a diagonal 
matrix form. This form 
exponentially increases 
the memory use for 
matrix manipulation. A 
modern PC with 16 GB 
memory hits an out-of-
memory error for trying 

to compute a model of 
32 categories. 

Resource 
needed 

Does not 
significantly 
increase with 
number of 
categories loaded 

Memory requirements 
are doubled when the 
number of categories 
doubles. 

Parameter 
reliability 

NA Variance of parameter 
estimation remains 
small. It is not 
guaranteed that larger 
scale tends to have 

larger variance. 

In general, the ANN model is more adaptable to increasing category scales. 

Managers willing to utilize large-scale cross effect analysis can enjoy the scalability 

of the ANN model. However, resource requirements of the MVP model increase 

exponentially when the scale increases from 4 to 8 and16.  

Table 6.2 compares mechanism of the ANN and the MVP model.   

Table 6.2     Operational feasibility 

Mechanism  ANN MVP 

Computation 
time 

Analysts can adjust the result 
error level to balance the 
prediction accuracy and 

computation time. 

Computation time is at most 
determined by the size of training 
data.  

Estimation 

method 

Both are stochastic. But the ANN has less constrains in searching for 

an optimal solution. The MVP relies on the assumption of normal 
distribution of DVs and errors. 

Operational 
Complexity 

Compared with the ANN, the MVP needs more time and intellectual 
effort.   
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6.2  Findings of the MVP Model Estimation 

Because the large-scale cross effect model estimates cross effects 

between any two categories it provides an opportunity to discover evidence-based 

cross effect partners that may be non-intuitive. As shown in section 4.1, identified 

by the highest cross effect score, category frosting is paired with cake mix, but 

cake mix is paired with softener. If the model had only allowed the pairing between 

cake mix and frosting, then managers will have missed the fact that consumers’ 

utility on cake mix is actually more influenced by the price of softener than by the 

price of frosting!  

A Large-scale dataset includes more categories. Thus, it provides more 

information to the model, which is then able to identify partners miss-specified in a 

small scale data model. For example, the results shown in section 4.1 reveal that 

detergent is most influenced by the price of cake mix in the scale 8 model; but it is 

most influenced by frosting in the scale 4 dataset. This finding extends findings 

from existing literature such as Duvvuri et al. (2007) and Hruschka (2013) which 

report that estimations are biased in small scale models. Findings of this study 

suggests that, not only is the estimation is possibly biased in different scales, but 

also the cross effect partners may be misidentified. A large-scale cross effect 

model provides a more complete view of the interdependency between many 

categories. 

The model also provides information about whether a category is more self-

price-determined or cross-price-determined. For example, the results show that 

the utility of frosting is more influenced by the price of its cross effect partner, rather 
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than its own price. The other three categories are self-determined in that their 

utilities are more influenced by their own prices. It implies that there are 

autonomous categories and complementary categories. Large-scale cross effect 

analysis is a promising method to identify such categories. Existence of 

relationships between seemingly unrelated entities requires an open mind. 

However, existing marketing literature shows promise. For example, Carpenter et 

al. (1994) find that product attributes that are not intuitively relevant to consumers’ 

decision making can actually influence consumers’ decision making.  

6.3  Data Sparseness and Its Impact on the MVP and ANN Models  

Data sparseness will invalidate any data-driven model. The MVP model will 

simply give an unpredictable outcome when there is not enough evidence for a 

relationship.   

ANN requires good training samples to have a good learning outcomes. By 

good, it is meant that the model must be consistent with frequent reinforcement of 

the correct relationship. In this sense, ANN fits best to the relationship that is 

complicated, but not profound. But, with insufficient correct examples to show to 

NN, effective learning will not happen and the ANN is easily degraded by noisy 

samples. In other words, in a sparse data situation, labeling a noisy sample to 

differentiate it from interesting samples may be important to NN training. At this 

time, there is not a tactic that has been developed on this matter in business 

research. Data sparseness is very common in business research. Thus, this 

research contributes to machine learning applications in business.  
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6.4  Non-linear Relationship, and the General Effect of an ANN Input 

The non-linear relationship provided by ANN has managerial implications, 

but is also a new approach for identifying regional effects of IVs. Regional effects 

indicate that the effect of an IV is not constant along the IV’s value range, but rather 

the effect is relatively constant in a region of the IV’s value range. Knowing regional 

effects provides better understanding of the IV’s effect. Regression models 

assume a general effect of IVs on DVs, and do not directly provide regional effect 

estimations. Research about moderation and mediation is related to regional effect 

in that it studies how the level of an IV’s effect is influenced by the value of another 

IV. However, if the IV itself has a regional effect, a regression model captures only 

its general effect. Creating dummy variables to represent regions require 

knowledges of the regions before estimation.  

The MVP model is a regression model. Just as the way that a regression 

coefficient is interpreted, the estimated effect of an IV in the MVP model is 

assumed independent from that of other IVs. This assumption allows the 

expression of an IV’s general value. It is valid to make a prediction of marginal 

change of DV by providing value change of a single IV. In contrast, ANN does not 

assume independence between IVs’ effects. Thus, there is no specification of the 

general effect of an IV, but rather the effects of IVs are always interdependent. 

Thus, there is not prediction on a DV change by only providing one single IV value 

because ANN needs a combination of IVs to make a prediction of DV value.     
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The outcome is that the MVP has a parameter matrix; but the ANN does 

not. In essence, the ANN relaxes an assumption that IVs are independent from 

each other. This feature is very useful in situations where IVs are not independent.  

6.5  Complexity of MVP and ANN models 

Fitting data to both the MVP and ANN models requires a different mindset. 

In general, ANN requires relatively less effort. Ease of specifying ANN falls in three 

areas. Model construct is relatively easier to understand because it follows normal 

flow of learning, thoughts of training and testing, and the logic of human 

intelligence. When presented in graph form, the ANN model is easy to understand 

as a process of layered feeding forward data flow. Further, it does not rely on 

probability distribution theory. It uses a logistic function for value transformation 

purposes only. The user can initiate ANN just by remembering some rules of 

setting up parameter values. Finally, the implementation is easier in that 

programmers can take the algorithm description and write program code to run it. 

In contrast, using the MVP model requires deep understanding of probability 

distribution theories such as multivariate normal, Bayesian statistics, random 

sampling and the Markov Chain model.  
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Chapter 7. Conclusions, Limitations and Future Research 

7.1  Conclusions and Limitations 

This dissertation extends cross effect research in two areas.  

The first is extension to the big data analytics context. Cross effect research 

studies interactions of latent utilities that influence consumer behavior. It has high 

relevancy in business. With the trend of big data analytics, this research can play 

an increasingly important role in terms of modeling consumer behavior by 

integrating large-scale categories. Most of the existing MVP models take the 

approach of pre-specifying cross effect partners. To advance model development , 

this study relaxes that constraint and allows evidence-based pairing of cross effect 

partners. This approach technically needs many more tests of possible cross 

effects and, thus, can become computationally cumbersome. But, the benefit is 

that it fits the paradigm of a data-driven approach. The data analysis, reported in 

previous sections, shows that pre-specified cross effect partners based on prior 

assumptions can be very different from the partners identified by data evidence.  

Second, an alternative approach, ANN modeling, is examined. ANN’s 

construct and learning mechanisms are customized to fit the specific problem. The 

ANN model fits the cross effect context because the nature of cross effect analysis 

is a three layer decision making model (recall Figure 3.3). Using far less time and 

resources, the ANN model is able to finish computations and have prediction 

performance similar to that of the MVP model. Additionally ANN can be used for 

large-scale cross effect analysis where MVP models cannot be used. 
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The advantages of ANN include faster computation, prediction orientation, 

easy to implement, and providing information on non-linear relationships between 

IVs and DVs. A disadvantage is that a general effect of each IV on a DV cannot be 

extracted (recall section 6.4 for discussion of this issue). This limitation goes 

against conventional expectations of the need for understanding an IV’s general 

effect. Another disadvantage is that an ANN model may be less robust because it 

is case driven. The prediction performance of a trained ANN depends on quality 

and quantity of the training samples.   

This study has several limitations as described below.  

First, this study extends the MVP model. Its performance in large-scale 

cross effect is examined. This study finds that, compared with the ANN model, the 

MVP model has disadvantages in computation time and resource requirements. 

The main reason is that the MVP model relies on the MCMC method and needs to 

utilize the vectorization operations to improve computational performance.  

A limitation is that the other econometric model, multivariate logistical model 

(MVL), used in the cross effect literature has not been compared in this dissertation. 

The MVL model usually does not assume multivariate normal distribution, but uses 

customized softmax probability such as the model in Russell and Petersen (2000). 

The Russell and Petersen (2000) model has a deterministic estimation process 

and, thus, avoids the requirement of calculating high dimension integrals. 

Compared with the MVP model, the MVL does not explicitly take into account 

interdependence of purchase utility among categories, but rather treats the cross 
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effect as an outcome of the conditional choice probability model. This dissertation 

takes the perspective that the cross effect phenomenon is more about interactions 

in latent purchase utilities than about dependency of purchase decisions. Section 

2.4 provides detailed discussion. In short, the Russell and Petersen (2000) model 

is constrained to cross effects that occur only when the partner category is 

purchased and, thus, does not allow “informational” cross effect. 

The main objective of this study is to introduce and examine large-scale 

cross effect. A direction of future research identified by this study is to extend the 

heterogeneity analysis in large-scale effects. A conceptual model extending 

heterogeneity research is advanced for this purpose and is described in section 

7.2.2. The extracted data in this dissertation turn out to be not sufficient for a 

household-level heterogeneity analysis. Practically, the data sparseness problem 

largely constrains the applicability of household level analysis (recall section 3.1.3), 

and single level models with extended capability are more practically useful 

(Duvvuriet al. 2007). Considering the scope of this dissertation, the testing of the 

conceptual model is left for future research. 

7.2  Future Research 

There are several specific future research directions. 

7.2.1  Theory of Cross Effect between Unfamiliar Pairs of Categories 

A theoretical question that remains unanswered in cross effect research is 

whether cross effect is possible between seemingly unrelated categories. For 

example, Ainslie and Rossi (1998, p. 94) question the approach of modeling 
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unfamiliar categories, and express the skepticism that change in ketchup prices 

would impact the demand of canned tuna.   

Some studies follow this line of thought. For example, (Manchanda et al. 

1999) did not find significant cross effect between such a unfamiliar pair as cake 

mix and detergent. However, the way they did it is different from the large-scale 

model in this study. They first run a small scale pre-test to verify that there is no 

cross effect between cake mix and detergent. Then, in the following models, they 

constraint the cross effect as being none. Results of this study reported in this 

dissertation, as may be expected, show that behaviors of cross effect can be very 

different when estimated in a small vs. large-scale datasets. 

Some studies have an open mind and search for alternative findings. For 

example, Duvvuri et al. (2007) find that consumers can be sensitive to price 

change in one category, but at the same time not sensitive to that of the 

complementary category. Their results are consistent among all the three pairs of 

categories, cake mix and frosting, detergent and softener, and spaghetti and sauce. 

Their findings can be an indicator of very strong budgeting effect, because 

consumers’ response to price change leads to spending change, and that 

spending change must be compensated by adjusting spending on another 

category under a constraint budget. In such a case, a budget-sensitive consumer 

facing a price increase of ketchup up can result in a decreased purchase of tuna 

fish.  The case explained above is theoretically possible and an expected 

observation because of the strength of budgeting effect on consumption behavior.  
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7.2.2  The Spending Habit Heterogeneity Model and Propositions 

Combining theoretical discussions in section 2.5 and 3.1, this study forms a 

conceptual model of spending habit in cross category decision making.  

 

Figure 7.1    Conceptual model of spending habit heterogeneity 

This model extends the mental budgeting component in the original cross 

effect model. The mental budgeting component is examined by Duvvuri et al. 

(2007). This study extends the component and introduces the concept of depth of 

budget calculation and spending habits. This model theorizes the presence of 

mental budgeting component of consumers’ decision making processes in a cross 

effect context. The existing literature focuses on complementarity and utility, but 

the mental budgeting component has been ignored.  

This model generates several propositions. In section 2.5.3, a variable is 

proposed to measure consumer’s spending habit level (i.e., variance of total 

spending per trip). The higher the variance the lower the mental budgeting 

calculation. The two propositions about impact of mental budgeting on cross effect 

are: 
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Proposition-1: variance of trip total spending is negatively related to consumers’ 

cross price effect. 

Proposition-2: variance of trip total spending is positively related to consumers’ 

cross promotion effect. 

Lower mental budgeting is reflected by higher variance of spending. When 

mental budgeting is low, the consumers are less sensitive to budget overdraw. 

Suppose categories A and B are cross effect partners and the cross effect is 

negative and significant. At a price drop of A, the consumers are likely to buy more 

A. The cross effect predicts that they buy more B as well. It may result in 

consumers overspending. In this chain of logic, then whether the consumers who 

buy more B will also depend on their mental budgeting level. If the consumers are 

low mental budgeting ones, they are more likely to buy B. In contrast, when mental 

budgeting is high, the consumers tend to buy only A, the discounted category, 

because buying the other category will overdraw the budget. Similar logic is 

applied to cross effect of promotion.   

7.2.3  ANN Incorporating Existing Knowledge 

ANN learns everything from the training data. This fact, on one hand, utilizes 

data-driven discovery, but on the other hand, allows biased outcomes if the data 

are seriously contaminated. It also burdens the learning procedure because the 

existing knowledge has to be re-learned from data. One possible research 

direction is to customize ANN for the purpose of enabling knowledge embedding. 
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For example, the hierarchical relationship between IVs can be pre-specified before 

ANN training.  

Another direction is to focus on business knowledge discovery. ANN 

application in hard science mainly is to close the gap between artificial intelligence 

and human intelligence, such as recognizing object concept from digital image, 

and natural language processing. In business research, it is more interesting to 

discover unseen patterns. ANN’s application is thus, to extend human intelligence 

capability. In short, if ANN in hard science is to make human-like machines, then 

ANN in business is to make super intelligent humans who can read reports 1000 

times faster, and engage learning patterns in seconds by reading through big data 

rather than in years by life experience. 

7.2.4  Evolutionary Learning Algorithm 

Gradient descent learning is used to train the ANN model. An alternative 

learning method is the evolutionary algorithm. Baczyński and Parol (2004) point 

out that the gradient descent algorithm is subject to the trap of local solutions, 

especially for training multi-layer ANN models. The large-scale cross effect model 

contains multiple outputs that are expected to be correlated and it contains multiple 

sources of inputs that are expected to interact. Generally, the context of large-

scale cross effect is complex and, thus, the surface of the error function can be 

bumpy because the error function can reflect the complexity of the learning 

problem. In business research, ANN techniques have not been widely studied in 

the cross effect context. In this study, a basic ANN model is demonstrated with the 

commonly used gradient descent learning algorithm. A future research opportunity 
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is to train ANN with evolutionary learning algorithms and examine the impact on 

prediction performance. 

7.2.5  Impact of Data Preparation on Research Findings and Drawing 

Conclusions  

Academic business research has been focused on theoretical advancement; 

and the impacts of data preparation on research findings have not been attractive 

to research efforts. However, the trend of big data analytics calls for research in 

this area. When preparing a dataset there are places where choices have to be 

made for excluding certain types of data. The impact of such decisions on the 

resulting dataset, and the impact of this dataset on analysis outcomes and on 

conclusions drawn, have not been studied fully- except in the investigation of the 

category scale effect. Several research questions can be asked in this area. For 

example, consumers entered in a dataset have to meet the requirement that they 

must make at least ten purchases of each category in the list. Choosing consumers 

with ten or more purchases and those with five or more purchases can generate 

two very different datasets. Then does the analysis lead to a different outcome? 

Does it lead to different conclusions to be drawn? Answering such questions can 

help managers avoid misleading analysis. It also help researchers avoid drawing 

misleading research conclusions.   

7.3  General Conclusion 

In general, this dissertation extends cross effect research and examines the 

MVP model and the ANN model in the large-scale cross effect context. The 

perspective of evidence-based knowledge discovery makes this dissertation fit into 
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the big data analytics research. The findings shed light on the model performance, 

operational feasibility, and prediction accuracy with increasing category scales. It 

demonstrates several techniques to customize the ANN model according to the 

feature of large-scale cross effect analysis. This study can spawn many future 

research directions as discussed in section 7.2.  

Specifically, there are several major findings. First, in the large-scale cross 

effect context, the ANN model is more scalable than the MVP model. The MVP 

model can be estimated only in the scale 4 and 8, but the ANN can be computed 

in all the 4 scales, 4, 8, 16, and 32. Second, to properly measure prediction 

accuracy for different model scales, this study introduces the measures of hit rate 

lift and base categories hit rate. Both are normalized measures that can be used 

to compare models of different scales. Third, this study customizes ANN’s 

configurations to make it fit to the large-scale cross effect analysis context such as 

the biased cross entropy error function. Fourth, this study finds that, in general, the 

base 4 categories prediction hit rate is better in larger scale models such as in 

scale 8 (both MVP and ANN) and 16 (ANN only) models. But when the model scale 

is too large, such as 32 (ANN only), the estimated prediction model becomes 

useless in terms of prediction because it cannot reach the hit rate from a naïve 

prediction. Even though using 32 hidden nodes can largely increase the ANN 

model’s capability, the resulting model performance still cannot outperform smaller 

scale models. 

Generally, the large-scale cross effect analysis fits the big data analytics 

paradigm that emphasizes evidence-based problem solving. Applications of the 
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MVP and the ANN model have their own advantages and disadvantages. With 

large and rich datasets becoming increasingly available, research on and 

applications of large-scale models and techniques are highly relevant from both 

academic and industrial perspectives.  
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Appendix A.1    Representative cross effect (CE) literature 

Literature Categories Heterogeneity General model 

(Mancha
nda et al. 
1999) 

Grocery 
(Cake mix, 
frosting), 
detergent, 
softener in 
chain 
stores 

Random effect 
Captured by 
household 
demographic 
variables 
 

𝝁𝒉𝑱𝒕 = 𝜷𝒉𝑱𝟎 + 𝜷𝒉𝑱𝟏 ∗ 𝑶𝒘𝒏 𝑬𝒇𝒇𝒆𝒄𝒕 +  

              𝜷𝒉𝑱𝟐 ∗ 𝑪𝒓𝒐𝒔𝒔 𝑬𝒇𝒇𝒆𝒄𝒕 +  𝜺𝒉𝑱𝒕  

                   𝜺𝒉𝒕~𝑴𝑽𝑵(𝟎, 𝚺) 
 
CE: 

𝜷𝒉 = 𝑫𝒉 ∗ 𝝁 + 𝝀𝒉, 𝒉 = 𝟏 𝒕𝒐 𝑯 
𝜷𝒉 = {𝜷𝒉𝟎 , 𝜷𝒉𝟏 ,𝜷𝒉𝟐 }, 𝝀𝒉~𝑴𝑽𝑵(𝟎,𝚲) 

(Russell 
et al. 
2000) 

Grocery 
4 
categories 

of paper 
products 

A fixed effect 
model of CE 
heterogeneity 

because CE is 
estimated each 
HH k is 
estimated* 
 

𝑼𝒊𝒌𝒕 = 𝜷𝒊 + 𝑯𝑯𝒊𝒌𝒕 + 𝑴𝑰𝑿𝒊𝒌𝒕

+ ∑ 𝜽𝒊𝒋𝒌 ∗ 𝑪𝒋𝒌𝒕 + 𝜺𝒊𝒌𝒕
𝒋≠𝒊

 

𝑪𝒋𝒌𝒕 → 𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆 𝒐𝒓 𝒏𝒐𝒕 𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆  𝒐𝒇 𝒋 

𝑴𝑰𝑿𝒊𝒌𝒕 = 𝜸𝒊 ∗ 𝐥𝐨𝐠 (𝑷𝑹𝑰𝑪𝑬𝒊𝒌𝒕) 

𝑯𝑯𝒊𝒌𝒕 = 𝜹𝟏 ∗ 𝐥𝐨𝐠(𝑻𝑰𝑴𝑬𝒊𝒌𝒕 + 𝟏) + 

                 𝜹𝟐 ∗ 𝑳𝑶𝒀𝑨𝑳𝒊𝒌  

𝜺𝒊𝒌𝒕  ~ extreme value distribution. 
 
CE: 

𝜽𝒊𝒋𝒌 = 𝜹𝒊𝒋 + 𝝓 ∗ 𝑺𝑰𝒁𝑬𝒌  

(Chib et 
al. 2002) 

12 grocery 
items in a 
“typical” 
basket 

Fixed effect  
Captured by a 
household 
specific constant 
term (𝒃𝒉) and a 

household/categ
ory specific 
constant term 
(𝒄𝒉𝒋 ) 

 

𝒁𝒉𝒕𝒋 = 𝑿𝒉𝒕𝒋
′ 𝜷𝒋 + 𝒃𝒉 + 𝒄𝒉𝒋 + 𝜺𝒉𝒕𝒋  

 
heterogeneity: 
𝒃𝒉, 𝒄𝒉𝒋  

(Li et al. 
2005) 

Choices of 
Financial 
investment 
products 

Random effect 
regressing 
parameters are 
regressed on 
household 
demographic 
and social status 
variables 

 

𝑼𝒊𝒋𝒕 = 𝜷𝒊|𝑶𝒋 − 𝑫𝑴𝒋𝒕−𝟏| + 𝜸𝟏𝒊𝒋𝑪𝑶𝑴𝑷𝑬𝑻𝒊

+ 
            𝜸𝟐𝒊𝒋𝑶𝑽𝑬𝑹𝑺𝑨𝑻𝒊 + +𝜸𝟑𝒊𝒋𝑺𝑾𝑰𝑻𝒊𝒕

+ 𝜺𝒊𝒋𝒕  

 
Heterogeneity: 
𝜷𝒊 = 𝝁𝟎 + 𝝁𝟏 ∗ 𝑬𝑫𝑼𝑪𝑨𝑻𝒊 + 𝝁𝟐 ∗ 𝑺𝑬𝑿𝒊 + 

          𝝁𝟑 ∗ 𝑨𝑮𝑬𝒊 + 𝝁𝟒 ∗ 𝑰𝑵𝑪𝑶𝑴𝑬𝒊 + 𝒆𝒊 
𝜸𝒌𝒊 = 𝝎𝟎𝒌 + 𝝎𝟏𝒌 ∗ 𝑬𝑫𝑼𝑪𝑨𝑻𝒊 + 𝝎𝟐𝒌

∗ 𝑺𝑬𝑿𝒊 + 
          𝝎𝟑𝒌 ∗ 𝑨𝑮𝑬𝒊 + 𝝎𝟒𝒌 ∗ 𝑰𝑵𝑪𝑶𝑴𝑬𝒊 + 𝝃𝒌𝒊 

(Wedel 
and 
Zhang 
2004) 

3 
subcategor
ies of 
orange 
juice  

-- 𝐥𝐧(𝒒𝒓,𝒕,𝒄) =  𝝁𝒓,𝒄 + 𝐥𝐧(𝒑𝒓,𝒕) ∗ 𝑨𝒓,𝒄 + 

                        𝒙𝒓,𝒕,𝒄 ∗ 𝚪𝒓,𝒄 + 𝒔𝒓,𝒕 ∗ 𝒌𝒄 + 𝝍𝒄(𝒕)

+  𝜺𝒓,𝒕,𝒄 

 



111 
 

(Song 
and 
Chintagu
nta 2006) 

2 
categories 
of 
detergent 
and 2 
categories 
of softener 
in 50 chain 
stores 

Address the 
inter-collinearity 
with instrumental 
whole sale 
prices 

Derived from (Chib et al. 2002) 

(Duvvuri 
et al. 

2007) 

ACNielsen, 
6 

categories 
grocery,   
HH made 
at least 
one 
purchase 
in each of 
the 6 
categories  

Same as (2), but 
with different 

variables 

Utility for J categories:  
𝒖𝒊𝒕 = 𝜶𝒊 + 𝑿𝒊𝒕 ∗ 𝜷𝒊 + 𝝐𝒊𝒕 

𝑿 ={price, promotion, inventory} 
 
𝝐𝒊𝒕~𝑴𝑽𝑵(𝟎,𝚺𝒖) 
𝜶𝒊𝒕~𝑴𝑽𝑵(𝒁𝒊𝜶, 𝚺𝒂) 

𝜷𝒊~𝑴𝑽𝑵(𝝁𝜷 , 𝚺𝜷) 

(Boztuǧ 
and 
Reutterer 
2008) 

Large 
number of 
grocery 
categories 

-- 𝑼𝒊𝒏𝒕 =  𝜷𝒊 + 𝜹𝟏𝒊 ∗ 𝐥𝐧(𝑻𝑰𝑴𝑬𝒊𝒏𝒕 + 𝟏) + 𝜹𝟐𝒊

∗ 𝐋𝐎𝐘𝐀𝐋𝒊𝒏  
                +𝜸𝒊 ∗ 𝐥𝐧(𝑷𝑹𝑰𝑪𝑬𝒊𝒏𝒕 ) + 𝝃𝒊

∗ 𝑫𝑰𝑺𝑷𝑳𝑨𝒀𝒊𝒏𝒕  

                +∑ 𝜽𝒊𝒏𝒕 ∗ 𝑪𝒋𝒏𝒕 + 𝜺𝒊𝒏𝒕
𝒋≠𝒊
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Appendix A.2    Pair-wise Joint purchase frequency 

 
* Cells value larger than 99 are highlighted 

* Read from row perspective:  
          row y1 in column y1 is 2451, the total number of trips that category 1 is purchased 
          row y1 in column y2 is   963, the total number of trips that both category 1 and 2 are purchased 
          Thus, 963 is part of 2451.  

 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 

y1 2451 963 176 56 69 40 30 74 258 121 67 18 

y2  1685 118 45 52 28 20 52 228 86 48 14 

y3   3147 337 90 61 16 76 118 115 49 9 

y4    1109 40 20 17 28 54 35 22 5 

y5     1049 35 9 61 46 50 25 8 

y6      855 6 28 49 25 22 3 

y7       288 21 20 14 12 8 

y8        1008 43 50 27 7 

y9         1855 89 78 29 

y10          1340 86 16 

y11           692 11 

y12            217 

 

 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23 y24 

y1 51 122 93 63 31 7 33 123 7 17 12 94 

y2 33 137 94 45 17 8 21 71 2 12 14 64 

y3 31 64 17 80 19 7 20 50 9 13 29 274 

y4 14 25 8 38 4 4 11 21 2 15 34 124 

y5 22 21 9 39 11 1 9 26 5 7 10 44 

y6 11 22 4 33 4 1 3 14 1 5 1 42 

y7 7 15 2 14 5 3 8 20 3 0 0 22 

y8 7 39 12 21 15 6 20 33 4 7 8 37 

y9 37 140 19 60 13 2 18 72 5 12 17 90 

y10 26 53 17 63 8 5 8 35 4 11 13 74 

y11 22 63 5 30 5 2 4 20 3 7 8 34 

y12 4 14 1 9 3 0 3 7 0 0 3 8 
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 y25 y26 y27 y28 y29 y30 y31 y32 

y1 28 59 4 16 38 41 10 5 

y2 22 41 4 17 23 32 7 1 

y3 82 198 17 98 137 111 45 23 

y4 36 76 9 64 73 55 19 8 

y5 10 34 3 7 11 15 5 1 

y6 8 27 7 3 7 12 4 3 

y7 3 12 0 0 0 6 2 0 

y8 7 26 2 7 18 8 4 3 

y9 26 54 6 13 24 26 10 5 

y10 17 57 6 20 20 14 9 2 

y11 12 31 2 7 14 16 5 1 

y12 2 3 1 1 1 2 1 1 

 

 y13 y14 y15 y16 y17 y18 y19 y20 y21 y22 y23 y24 

y13 478 19 5 11 9 2 6 19 3 6 2 24 

y14  880 17 44 7 3 14 42 2 7 13 43 

y15   378 10 5 4 12 18 4 5 2 12 

y16    934 5 2 8 24 5 9 11 53 

y17     307 0 4 16 9 3 1 11 

y18      79 8 19 1 0 0 4 

y19       326 39 5 8 5 23 

y20        1009 10 15 2 36 

y21         138 20 0 5 

y22          305 5 19 

y23           362 41 

y24            1759 
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 y25 y26 y27 y28 y29 y30 y31 y32 

y13 6 20 2 8 3 5 3 1 

y14 13 23 0 10 5 12 4 2 

y15 3 11 2 2 2 4 1 1 

y16 11 40 2 5 17 12 8 6 

y17 2 7 1 3 3 3 0 0 

y18 2 3 1 0 0 0 0 0 

y19 0 7 0 0 5 2 2 1 

y20 6 24 2 8 15 8 8 3 

y21 2 2 1 0 2 4 3 0 

y22 4 9 3 4 3 3 5 1 

y23 13 27 2 10 23 17 0 0 

y24 43 139 22 45 65 48 28 3 

y25 501 34 3 15 23 25 11 11 

y26  1264 44 40 44 39 24 4 

y27   152 5 2 2 5 2 

y28    402 16 26 8 5 

y29     491 18 7 2 

y30      627 10 1 

y31       257 4 

y32        168 
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Appendix A.3    Price parameters draws of the four base category 

The four plots shows the price parameter draws for the four base categories.  
 
The plot at top-left is for cake mix, y1,  
                    top-right is for frosting, y2,  
                    bottom-left is for detergent, y3, and  
                    bottom-right is for softener, y4. 
 
Each plots contains four sets of draws as shown by the legend. The series of “1” 
represents the effect of category-1 price on purchase utility.  
 
For the purpose of readability, the plots show only 100 random samples of total 1000 

draws (took every 20th of total 20000 draws).  
 
Y axis is the value of parameter 
 
X axis is indices of draws. 
 
R is number of rounds to run 
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R=20000 
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R=30000 
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R=50000 



121 
 

 



122 
 

Appendix B Inputs dependency in ANN 

The equations below provides a simple form of an ANN with 2 input 

nodes, 𝑥𝑎 , 𝑥𝑏 , 2 hidden node ℎ1, ℎ2 , and one output node 𝑦, with logit activation 

function. 

h1 = logit (w(x1h1) * 𝑥𝑎 + w(x2h1) * 𝑥𝑏) 

h2 = logit (w(x1h2) * 𝑥𝑎 + w(x2h2) * 𝑥𝑏) 

Y = logit [ w(h1y1) * h1 + w(h2y1) * h2] 

Assume that 𝑥𝑎 is household information IV, 𝑥𝑏 is price IV, and 𝑦 is DV of 

probability to purchase. The main effect is 𝑥𝑏 on 𝑦. The heterogeneity is captured 

by moderation effect of 𝑥𝑎 on the main effect. In the ANN model shown above, the 

effect of 𝑥𝑏 on 𝑦 is the integrated path value of w(x2h1), w(x2h2), w(h1y1) and w(h2y1). 

Even though the path value of w(x2h1) and w(x2h2) is independent from the value of 𝑥𝑎, 

the path value of ℎ1 and ℎ2 are dependent on value of 𝑥𝑎. In such a case, the effect 

of 𝑥𝑏 on 𝑦 is not independent from the value of 𝑥𝑎. Putting the 3 equations together 

forms: 

Pr(𝑦 = 1|𝑋) = 

𝐿𝑂𝐺𝐼𝑇 [ 
w(h1y1)

1 + 𝑒−[ 𝑤0+ w(x1h1)  ∗ x𝑎 + w(x2h1)  ∗ x𝑏 ]
+ 

w(h2y1)

1 + 𝑒−[ 𝑤0+ w(x1h2)  ∗ x𝑎  + w(x2h2)  ∗ x𝑏 ]
 ].  

This model is capable of learning a relationship that the effect of 𝑥𝑏 to 𝑦 is 

dependent on the value of 𝑥𝑎. For example, the impact of x𝑏 on Prob (y = 1) can 
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be high when right hand side LOGIT function is around the value 0.5; but the effect 

would be low when the LOGIT is around 0 or 1. The LOGIT value is dependent on 

the value of x𝑎.  
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Appendix C Mean of Percentage Error (MPE) 

A measure of model prediction performance is defined as shown in equation 

(6.1), i.e., the Mean of Percentage Error (MPE). 

𝟏

𝑩
∑

|𝒕𝒃 − 𝒑𝒃|

𝒑𝒃

𝑩

𝒃=𝟏

  , 𝒃 ∈ 𝐁 𝐭𝐲𝐩𝐞𝐬 𝐨𝐟 𝐛𝐚𝐬𝐤𝐞𝐭 𝐢𝐧 𝐚 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐟𝐢𝐥𝐞        (𝟔. 𝟏)  

Given a dataset of 𝐵 baskets that 𝑡𝑏 is the true number of purchases of a 

basket 𝑏 ∈ 𝐵. The term 𝑝𝑏 is the prediction of 𝑡𝑏 from a prediction model. 

The MPE is a slightly revised version of the Mean Absolute Percentage 

Error (MAPE) described in (Armstrong and Collopy 1992). The MAPE can be 

written as  

1

𝐵
∑

|𝑡𝑏 − 𝑝𝑏|

𝑡𝑏

𝐵

𝑏=1

,                              𝑀𝐴𝑃𝐸 𝑜𝑓 (Armstrong and Collopy 1992) 

According to (Armstrong and Collopy 1992), the features of MAPE are (1) 

unit-free which cancel out the effect of large unit over small unit of 𝑡𝑏, (2) heavier 

penalty on case of  𝑝𝑏 >  𝑡𝑏 than that of 𝑝𝑏 <  𝑡𝑏. Our MAE measure replaces the 

denominator of MAPE from 𝑡𝑏 to 𝑝𝑏.  This adjustment makes MPE punishing false 

negative predictions much more than false positive predictions. This feature fits 

marketing context better because, in general, false negative of prediction is more 

costive than false positive. For example, false negative can lead to losing a sales 

opportunity because of failure to identify a customer; while false positive may lead 

to sending mails to unresponsive customers because of mistakenly identifying a 

customer. At many times, the former case is more costive to business.  
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Here is an example to illustrate how MPE works. Suppose there is only one 

basket. If the basket has true purchases of 1000, and the prediction is 500, then 

the MPE is |1000 – 500|/500 = 1. In contrast, if purchases is 500, but prediction is 

1000, then the calculation has |500 – 1000|/1000 = 0.5. The former has a higher 

MPE because missing 500 sales opportunities is heavier punished than over-

predicting by 500 sales. Beside this feature, this measure takes off scale effect 

(unit-free in (Armstrong and Collopy 1992)).  

When a prediction is zero, the MPE will run into dividing by zero error. To 

avoid it, cases of prediction zero are omitted from MPE calculation. First of all, by 

examining the prediction outcomes, we find that prediction of zero happens at most 

times on cases of true zero. The cases that prediction is zero and true number is 

not zero are very rare, and when it happens, the true number at most times are 1. 

When the true number is zero, ignoring these cases makes no differences to MPE 

because the prediction error is zero anyway and should be ignored from MPE. 

When true number is not zero, ignoring these cases will less count prediction errors. 

However because number of cases is very small, and the prediction error made is 

also small, ignoring them will not largely change the result of model comparison 

using MPE.  

Taking average over number of basket types, 
1

𝐵
, makes it category scale 

free that models’ performance of four categories, 8 categories and 16, 32 

categories can be compared. This measure is used to compare general model 
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prediction performance in the increasing category scales in both the study of MVP 

model and ANN model. 

After ignored the predictions of zero, the range of the MPE measure is zero 

to positive infinity. Zero means a perfect prediction that made no mistakes. Infinity 

error happens when the true number is very large but the prediction is very small. 

For example, a basket is purchased 100 thousand times in transaction databases, 

but is predicted 1 purchase only. Then error is 99999. Such a large error simply 

means that the model makes very inaccurate prediction. We can roughly interpret 

it as number of predictions mistakenly made by the model for each prediction of 

purchase of a basket. With such an interpretation, a reasonable range of MPE is 

from 0, prefect prediction, to 1, very bad prediction.  
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