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Designs and Applications of Surface Acoustic Wave Sensors for Biological and 

Chemical Sensing and Sample Handling 

 
 

Stefan Cular 
 

ABSTRACT 

 
 Acoustic wave sensors have proven useful in many fields as primarily mass 

sensitive devices capable of responding to small environmental perturbations.  The focus 

of this dissertation is the development of a new type of surface acoustic wave device with 

application to material property measurement, and biological and chemical sensing.  This 

device is a combination of three independent acoustic wave devices with these waves 

propagated across the same area, while retaining independence of actuation and sensor 

function.  The development of a complete sensor system, and its use and operation are 

presented for several example cases of chemical and biomarker sensing, and sample 

manipulation.  These include experimental and theoretical studies for organic vapor 

sensing, biological moiety sensing, acoustic streaming to remove loosely bound material, 

and optimization of designs for these applications. 
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Chapter 1 

Introduction 

 

 Acoustic wave sensor systems rely on many components to function as biological 

and chemical sensing instruments.  These devices, although complex, have been used 

successfully for many years for the sensing of chemical species and measurement of 

material properties.  More recent work has utilized them in sensing of biological species.  

In this dissertation, new designs and supporting systems that improve the standards for 

sensing systems are presented.  The total work is described initially as individual 

components from underlying principles through development of the complete system and 

optimization studies as a series of independent papers. 

 

 

1.1 Motivation and Objectives 
 

 This work is motivated by the wide desirability of reliable sensor systems in 

medical diagnostics and in chemical sensing.  In particular, alleviating the need for 

sample handling and manipulation necessary in current biological sensor technologies is 

an important motivation for this work. 
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 Acoustic wave devices have admirable characteristics that make them useful in 

sensor systems including for medical diagnostics.  These sensors are highly portable, 

configurable to many applications, and have high sensitivity [1, 2].  Acoustic wave 

sensors can additionally be utilized as actuators to remove loosely bound material from 

their surface [3-6]. 

 The work presented here is focused on the development of a surface acoustic 

wave sensor design and technique to permit rapid analysis of biological samples 

containing multiple analytes while reducing unwanted effects commonly seen in current 

assay technologies.  At the core of this research is the use of a hexagonal shaped 

transducer for producing acoustic waves to manipulate sensing films as well as for 

enhancing sensing.  Functionality to manipulate the sensing film is part of the design, 

while simultaneously monitoring it for perturbations from analytes [7].  Such a concept 

fits with the current trend to reverse the stereotypical event of having to take a sample to 

a laboratory with taking the laboratory to the material needing analysis [8, 9].  For the 

end-user applications of early biomarker detection described here, the importance of 

having a device capable of operating autonomously from analytical instruments is 

paramount. 

 The outcome of this dissertation work is the demonstration of the feasibility of 

acoustic waves to simultaneously manipulate and sense an analyte-specific film for 

biomarkers.  Objectives for this research are: 

 1. Development of a hexagonal surface acoustic wave sensor capable of 

simultaneously manipulating an analyte specific film and sensing the perturbations to the 

film when exposed to the analyte. 



 3 

 2. Development of sensor electronics and testbed for testing acoustic wave 

sensors without analytical instruments. 

 3. Calibration of the sensor for simple as well as complex test systems 

representative of real biologic fluid samples. 

 4. Development of models for sensor analysis through analytical and finite 

element methods. 

 

 

1.2 Organization of the Dissertation 
 

 This dissertation is organized such that chapter 2 contains general and common 

supporting information for chapters 3-8, which have been prepared as separate 

manuscripts.  The details of each of these chapters are as follows: 

 1. Chapter 2 discusses in general terms what a sensor is and does.  Specific 

details of acoustic wave sensors with an emphasis on surface acoustic wave sensors 

follow.  Background information that describes the physics of sensor operation is 

presented as a brief overview.  For a more thorough understanding of acoustic wave 

sensors one should consult one of a number of excellent books referenced throughout 

chapter 2.  Additionally, chapter 2 has common materials and methods used throughout 

this dissertation research. 

 2. Chapter 3 discusses a new design of surface acoustic wave sensor that has 

three crossing acoustic delay paths.  The crossing of the delay paths allows for the 
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measurement of multiple properties as verified through the use of principal component 

analysis on polymer / organic-vapor sorption experiments. 

 3. Chapter 4 describes the use of acoustic streaming to remove 

nonspecifically bound material from the surface of sensors.  In this experimental study, 

fluorescently labeled proteins are used to both specifically and nonspecifically bind to a 

sensor surface.  The fluorescence intensity is measured using an inverted fluorescent 

microscope, and is qualitatively correlated with removal phenomena. 

 4. Chapter 5 describes the optimization of polystyrene waveguide thickness 

for surface acoustic waves, specifically for shear-horizontal waves that created Love-

waves when an appropriate waveguide is applied to the surface.  In this work, 

experimental and finite elements simulation data are compared.  The simulations used in 

this work allowed for the direct calculation of sensitivity data that were used to compare 

three different interdigital transducer designs. 

 5. Chapter 6 describes a shear-horizontal surface acoustic wave sensor 

utilized for the sensing of interleukin-6 in phosphate buffered saline pH 7.4.  In this 

chapter, the need for biosensors is presented in terms specific for interleukin-6.  

Additionally senor sensitivity is shown through a saturation curve including interleukin-6 

concentrations that are physiologically relevant. 

 6. Chapter 7 describes the use of a surface acoustic wave sensor and actuator 

that simultaneously allows measurements from surface perturbations and stimulates the 

same surface with high intensity waves to remove loosely bound material. 

 7. Chapter 8 expands upon the designs presented in chapter 5 using finite 

element simulations.  Particular to this chapter is a new design approach to increase 
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sensitivity and decrease sensor power consumption.  The designs simulated take the best 

of all previously used concepts for efficient surface acoustic wave transmission, and 

present an optimal design with a low energy loss and high mass sensitivity.  

 8. Chapter 9 summarizes contributions of this dissertation, and provides 

recommendations for future work to further advance the field of acoustic wave sensors. 

 9. The appendices of this dissertation contain extensive details required to 

reproduce presented in this dissertation.  Codes for finite element simulations and data 

analysis, designs of fixtures, designs of surface acoustic wave devices, and analytical 

models are all presented. 
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Chapter 2  

Sensors 

 
 Sensors are common to everyday life, and are developed to make lives better.  

Some of the more common sensor types that come to mind are tactile sensors such as 

touch pads on computers and touch screens.  These devices take an input from the 

environment, the pressing by a finger, and convert it into an electrical signal that is then 

processed to perform an operation by the computer.  This complete system is a sensor 

system. 

 The work described in this dissertation crosses multiple fields of study which will 

be briefly described in this chapter to permit understanding of the work accomplished.  

The topics described cover a biosensor pertinent for biomarker detection, acoustic waves 

in viscoelastic media, and the design aspects of the hexagonal surface acoustic wave 

sensor developed as part of this dissertation work. 

 

 

2.1 Sensors Generalized 
 

 The role of a sensor is to measure a particular analyte and produce a signal that is 

then interpreted by the rest of the system.  Sensors can be thought of as consisting of 

three components, as shown in Figure 1: detection element, transducer and signal 
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processor.  As an analyte comes in contact with the detection element a change occurs 

with the detection element that is converted by the transducer into a signal that is finally 

processed by the signal processor.  Following this general idea of a sensor, one can 

consider the nose as a sensor.  A particular smell (analyte) creates changes in the 

olfactory membrane (detection element).  Nerve cells (transducers) then convert the 

changes into a signal that is carried to the brain (signal processor) for recognition.[1, 8, 9] 

 

 

Figure 1  Schematic layout of a sensor. 

 

 Each of the components in the schematic of Figure 1 can have many different 

aspects.  The detection element is the most important component for a selective sensor 

system.  Particularly, this element should only respond a specific analyte or a group of 

analytes with similar properties.  For the work contained in this dissertation, detection 

elements used are polymers for chemical vapor sensing and anti-bodies for protein 

analyte sensing [7, 10, 11]. 

 For a biosensor to be functional, the sensor must have a selective detection 

element that is specific to a particular analyte in a sample.  Such analytes for this project 

include biomarkers for cardiac trauma.  The biomarkers within this project are specific 

proteins that have been identified to be found in elevated concentrations as a result of the 

illnesses.  Particularly, interleukin-6 is a common biomarker that has been shown to reach 

Detection 
Element 

Analyte Transducer Signal 
Processing 
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significantly high levels in people that have experienced injuries including a cardiac 

trauma. 

 The transducer component can be any of many different devices that have been 

found in traditional analytical techniques such as photometric transducers in spectrum 

analyzers.  Transducers commonly fit into four categories: electrochemical, optical, 

piezo-electric and thermal transducers.  Fortunately, all of the transducers utilize similar 

techniques to attach the detection element to the transducer [9]. 

 Utilizing the transducer, of a sensor system, the signal processing component can 

be anything from a simple circuit and meter to a full computer controlled data acquisition 

system.  Following the schematic in Figure 1 all of the components need to be integrated 

in a compatible fashion  The signal processing component offers the greatest diversity; 

hence, in the schematic it is not directly connected to the transducer [1, 9].  As the 

components are integrated from laboratory bench top to handheld devices, considerable 

work is necessary to develop easy to use interfaces. 

 

 

2.1.1 Biosensors for Biomarkers 
 

 Within the scope of this work, a biosensor is defined as the interface from a 

biological system to an electronic system [12].  Biosensors are typically named for the 

materials and or equipment used.  These devices come in all different types, some 

requiring labeling with fluorescent dyes, isotopes, or other detectable materials and some 

that are label free.  Many biosensors require a basic visual inspection to a large analytical 
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instrument in order to make a determination as described in Table 1 [12-14].  

Additionally, a qualitative comparison of the speed of response and accuracy of the 

systems is provided in the table. 

 

Table 1  Typical detection methods used in biosensors. 

Detection Probe Labeling Data Acquisition Real time Resolution 
ELISA (Enzyme 

linked immunosorbent 
assay) 

Enzyme-linked 
antibodies 

CCD (charged 
coupled device) 

imaging 

No Low 

Isotropic labeling Radio isotope-
labeled analyte 

X-ray film or 
phosphorimager 

No High 

Sandwich 
immunoassay 

Fluorescently 
labeled 

antibodies 

Laser scanning No High 

SPR (surface plasma 
resonance) 

Not necessary Refractive index 
change 

Yes Low 

Non-contact AFM 
(atomic force 
microscopy) 

Not necessary Surface 
topological 

change 

No High 

Planar waveguide Fluorescently 
labeled 

antibodies 

CCD imaging Yes High 

Seldi (surface-
enhanced laser 

desorption/ionization) 

Not necessary Mass 
spectrometry 

No Low 

Electro-chemical Metal-coupled 
analyte 

Conductivity 
measurement 

Yes Medium 

Acoustic wave Not necessary Integrated circuit Yes High 

 

 Further analysis of sensor types is far more quantitative.  Parameters such as 

proportional signal response, hysteresis, response time, signal to noise ratios, selectivity 

and sensitivity all need to be considered to determine which sensor is the most suitable 

for a particular application [1, 8]. 
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2.2 Acoustic Wave Sensors 
 

 Acoustic wave sensors can be found in a multitude of designs specific for their 

respective application.  Perhaps the most common acoustic wave sensor is the quartz 

crystal microbalance.  This device has been used for many years for deposition 

monitoring, and thin film characterization [1, 15, 16].  Although not the topic of this 

dissertation, the quartz crystal microbalance shares with the surface acoustic waves the 

same fundamental principles that uses piezoelectricity to convert electric and mechanical 

signals [1].  These principles are described in this chapter within the context of 

developing a basic understanding of surface acoustic wave sensors. 

 

 

2.2.1 Acoustic Wave Device History 
 

 Approximately 120 years ago the Curie brothers discovered piezoelectricity, 

which is the coupling between elastic deformation and electric polarization that exists in 

certain crystals such as quartz, lithium niobate, and sapphire, just to name a few.  Shortly 

thereafter, Lord Rayleigh, in 1885, demonstrated surface acoustic waves, but it was not 

until the middle of the 20TH century that these two findings were combined.  The key that 

was missing until this time was the invention of interdigital transducers (IDT) by White 

and Voltmer in 1965.  Having the basic concepts of the IDT available allowed for many 

designs to perform signal processing, and thus the beginning of surface acoustic wave 

(SAW) signal processing occurred.  Over time, SAW sensors were realized [17]. 
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 Acoustic wave devices are particularly useful in gas and liquid sensing 

environments due to the relative ease of use and low detection limits (3x10-15 g according 

to Wohltjen (1984)) [1].  There is a problem that plagues acoustic sensors: substrate 

crystals that lend themselves to better sensors often have temperature coefficients that are 

very high, and require additional means to compensate the signal for temperature 

changes. Lithium niobate, for example, has excellent properties such as a coupling 

constant of 0.045 which is many times greater than the traditionally used quartz, but has a 

temperature coefficient of 19 ppm/oC leading to the necessity of more advanced data 

acquisition schemes [2]. 

 SAW devices are extremely common today; they are used in many forms of 

electronics such as band pass filters.  “Every modern television receiver contains at least 

one SAW filter…” [17].  Due to the commercial value of filters, they have been 

developed to a very high level of sophistication for the removal of ideal sensor behaviors.  

As a result, it is necessary to fabricate in house SAW sensors that do not incorporate 

advanced designs to remove the effects of mass loading [18].  These sensors do the 

inverse and amplify the resulting response to a specific analyte.  The resulting response 

of a SAW sensor can be from either an increase in the mass or a change in electric 

properties in the wave’s path which are governed by the devices characteristics [1]. 
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2.2.2 Surface Acoustic Wave Device Theory and Principles 
 

 SAW filter design is a technology that has predominately belonged to the 

communications industry.  In recent history, this industry has developed advanced 

designs through an iterative process to eliminate the effects that are used to make good 

sensors [1].  For this reason it is important to continue the development of SAW devices 

for sensor applications that were not considered by communication companies.  The basic 

SAW device as shown in Figure 2 consists of a pair of IDTs for input and output 

transduction, and a delay path for the acoustic wave to propagate.  The delay path in 

sensor applications is coated with a sensing film that perturbs the propagating wave when 

it is exposed to a specific analyte [2].  The design and layout of the IDTs determines the 

signature response of the SAW devices [1, 18]. 

 

 
Figure 2  Surface acoustic wave sensor layout including input/output signals and IDTs 

and sensing film. 
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2.3 Common Materials and Methods 

2.3.1 IDT Designs 
 

 Three designs of SAW device IDTs were fabricated and tested in this research.  

These designs intended for sensor applications are schematically shown in Figure 3.  The 

first design is a standard double split finger IDT structure consisting of 60 finger pairs, 

delay path of 197 �, and a wavelength of 32 �m.  Such a design provides a narrow pass 

band response that is desirable for a sensor; however, due to the large number of fingers, 

the device displayed a significant amount of internal reflections.  Subsequent and current 

designs have reduced the number of finger pairs by half, but have maintained the same 

delay path length and wavelength to allow for easier comparisons.  

 Of the three designs illustrated in Figure 3, two of them are direct comparisons to 

the original 60 finger pair design.  First, the pruned IDT design is an interesting 

modification that has the same length IDT; however, every other finger pair set has been 

removed.  As expected, the response from this design shows much less internal reflection, 

yet it maintains the desirable narrow pass band.  The second direct modification was to 

remove half of the finger pairs.  This design also met expectations with less internal 

reflections and a wider pass band.  Unfortunately, this design shows a triple transit effect 

that can hinder a sensors signal to noise ratio [19].  The final design as shown in the 

figure is an advanced design that utilizes non-uniform IDT widths to reduce unwanted 

effects and better guide the SAW.  All of these newer designs have additional features 

that include aperturization and gratings to further guide the SAW for brevity, these 
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features provide small improvements to wave propagations from the input to output port 

[18, 19]. 

 

Figure 3  Illustrations of three IDT device designs tested in this work.  From left to right, 

the double split finger (DSF) design, pruned double split finger (PR-DSF), and 

unidirectional design (U-DSF). 

 

 

2.3.2 Acoustic Wave Guiding Layers 
 

 Aside from the typical SAW sensor illustrated in Figure 2, the sensor used in this 

research has two additional features to enhance the sensitivity and resolution of the 

sensor.  The first added component is a guiding layer to trap energy of the SAW near the 

surface to make the sensor more sensitive to surface perturbations.  Even though SAW 

sensors are inherently capable of detecting analytes in solution concentrations on the 

order of ppb by mass, through use of higher frequency (>300 MHz) these higher 

frequency devices have smaller sensing regions that actually are too small to be feasible 
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for a sensor application [20].  For this reason, additional measures such as a adding a 

guiding layer need to be taken to enhance the sensitivity of the lower frequency (100-200 

MHz) devices to reach sensitivities to on the order of 100 ppb by mass [21].  By applying 

an appropriate guiding layer, energy of the SAW is trapped within the layer to act as an 

amplifier to the surface perturbations [20, 22].  Layers that are ideal need to have a lower 

density and lower acoustic velocity than the piezoelectric substrate.  Materials that have 

been utilized in past include polymers such as poly-methyl-metharcylate [21] and 

Novolac [20] and oxides including silicon dioxide [23] and silicon monoxide [24]. 

 

 

2.3.3 Acoustic Streaming 
 

 The second additional feature of the sensor is the use of acoustic energy to 

remove bound material from the sensing film.  It has been shown that a Rayleigh wave 

launches energy longitudinally into the medium above substrate in which the wave is 

traveling [25, 26].  This phenomenon is termed acoustic streaming.  And until recently is 

now being exploited in fluidic applications [4, 27-29].  Typically for SAW sensors, the 

Rayleigh wave is only used in gaseous environments because attenuation of the wave 

from the loss of this energy into a liquid sample.  What was chosen in this research was 

to increase the input energy into the SAW device to not let the wave become attenuated.  

This has the effect of cleaning loosely bound material from the surface at lower energies 

and potentially removing more strongly bound material with higher energy inputs [3, 5, 

27]. 
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2.3.4 Device Fabrication 
 

 The SAW devices were fabricated using a single step photolithographic pattern 

process to prepare the wafers for metallization and liftoff processes.  Included in the 

lithographic processing are specialized steps to enable safe and reliable fabrication such 

as controlled discharges from the pyroelectric crystals after thermal treatments.  Due to 

the unique nature of the crystals used in this work these specialized processing steps were 

developed within the capabilities of the existing facilities.  Since the processing 

techniques were developed and optimized, all current devices are fabricated using these 

recipes.  The processing recipes can be found in 9.2.8Appendix E. 

 

 

2.3.5 Device Testing and Characterization 
 

 SAW device testing and characterization was done immediately after the 

fabrication processing was completed.  First tests include visual analysis and conductivity 

measurements of the IDTs to insure that the necessary processing was complete.  

Following the basic inspections and testing, devices were probed directly on wafer using 

the custom wafer probing fixture shown in Figure 4b.  The measurements taken while 

using the probing fixture include the transmission and reflection scatter parameters and 

time domain measurements. 
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                           (a)                                                                   (b) 

Figure 4  (a) 3d rendering of micro-fluidic test fixture for diced hexagonal SAW devices.  

(b) 3d illustration of whole wafer micro-fluidic test fixture for the hexagonal SAW 

devices. 

 

 

2.3.6 Micro-fluidic Testbed and Fixture 
 

 To facilitate easy testing of liquid phase biological samples, a micro-fluidic test 

fixture has been configured as illustrated in Figure 5.  The sensitivity required for 

detection of many biological markers is on the order of a few nano-grams, which is 

obtainable by many sensors; however, due to the high operating frequencies possible of 

SAW devices, they are the most sensitive [30-32].  The challenge associated with this 

type of mass sensitivity becomes largely a fixture and test parameter issue as any 

variation in fluid flow or pressure will cause a significant sensor response [33].  To 
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address this issue, a precision syringe pump manufactured by Harvard Apparatus was 

used which unlike peristaltic pumps provides a smooth continuous flow with no pulses.  

The equipment shown in the illustration is highly adaptable for all of  required fluid 

requirements from nano-liters to milli-liters [34].  Additionally, making the 

configurability and operation of the testbed simple is a LabView virtual instrument 

interface that controls and records all electronic operations including flow rate, flow 

direction, and valve sample selection. 

 

 

Figure 5  Schematic of micro-fluidic testbed for liquid phase sampling of biologic 

samples. 

 

 Due to the design of the hexagonal SAW a typical fluidic fixture is not feasible, 

so an in house design has been designed and fabricated.  The test fixtures have been 

constructed of acetal and Lexan, which have low moisture absorption, high strength, no 

centerline porosity and are easily machined.  A “pill box” design as shown in Figure 4(a) 

was utilized for even distribution of clamping force (attained with fine threading on both 

the sealing ring and fixture body), with spring-loaded pogo pins contacting the bonding 
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pads of the device.  Fluid inlet/outlet to the central region is permitted via suitable 

plumbing fitting to facilitate liquid phase operation.  The conical region in the middle 

(blue) piece is introduced to increase surface area available for the fluid inlet/outlet 

fittings. 

 Figure 4(b) is a whole wafer probing apparatus that was designed for the purpose 

of being able to test SAW device designs without the need to dice the wafers.  The 

construction consists of metal base plate with two arms spanning the width of the base 

plate with a recess just greater than that of a typical wafer.  The probing is accomplished 

with an acetal piece similar to the one used in the “pill box” designed; however, this 

piece has micro-fluidic channels and chamber as well as an attached circuit board with 

SMA connectors for simple connections to all analytical instruments. 

 

 

2.3.7 Hexagonal SAW Device Operation 
 

 Initial characterization of the sensors was done using an HP 8753ES S-parameter 

Network Analyzer (VNA).  Although the instrument can provide a complete data set 

within a few seconds, it is impractical to consider an analytical tool to be used outside of 

the laboratory.  As a solution, circuitry as depicted in the schematic Figure 6 has been 

developed.  This circuit is constructed such that a single waveform is split into three 

signals, sent through the three delay paths of the hex-a-saw, and finally is measured with 

commercial integrated circuits (Analog RF/IF gain and phase detector [35]), providing 

independent phase and magnitude measurements that can be easily recorded with a Data 
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Acquisition System.  The unique part of this configuration is the use of a power amplifier 

capable of providing enough RF power (few milliWatts) to the SAW to remove proteins 

from the surface.  Note that the configuration as shown in the figure uses two sets of 

IDT’s to more uniformly deliver the RF power to the sensor’s film. 

 

 

Figure 6  Schematic of hex-a-saw configured to simultaneously clean the surface and 

monitor with two delay paths for enhanced sensor response. 

 

 The decision to monitor the phase and magnitude was made in light of the 

necessity for this project to have stable measurements.  Typically, this type of 

measurement is done with large analytical tools, and has been shown by several 

researchers to be as good as or better than measurements utilizing a feedback loop.  The 

more traditional approach of using a feedback loop oscillator circuit with the SAW delay-

line being the limiting factor to the frequency has been used extensively and is well 

known; however, this method is somewhat limited by interference from a number of 

sources including the RF amplifier.  Another drawback to the oscillator configuration is 

only frequency-shift data can be easily collected [1], so less of an image of the sensing 

film interactions is perceived. 



 21 

Chapter 3 

Hexagonal Surface Acoustic Wave Devices for Enhanced Sensing and Materials 

Characterization

 

 The design, fabrication and testing of a hexagonal surface acoustic wave (SAW) 

array device fabricated in Y-cut Z-propagating lithium niobate is presented for non-

destructive evaluation of thin organic films. Propagation along the Y-axis generates a 

Rayleigh mode wave where off-axis propagation excites a mixture of other SAWs.  This 

approach permits rapid and simultaneous extraction of multiple film parameters (film 

material density or thickness, Lamé and shear moduli, sheet conductivity) of a thin film 

material to achieve a more complete characterization than when a single SAW device is 

utilized.  In sensor applications, this capability translates to better discrimination of the 

analyte and possibly more accurate quantification.  The devices are based on a double 

split finger delay-line design with a line width of 4 �m and a delay path of 197 �.  The 

individual delay paths of each hexagonal device intersect in the center of the die 

producing a single region for sensor analysis.  Additionally, the central region where the 

acoustic waves intersect is shorted to reduce the number of modes of waves traversing the 

surface.  Vapor sensing tests were conducted by exposing a poly(isobutylene)-coated 

device to various concentrations of benzene, chloroform, and n-hexane in the range of 0.8 

to 16.6 volume percent.  Measured attenuation and phase angle shifts at a fixed, near-
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center frequency revealed significant, signature-type differences for the three delay-paths 

at each exposure concentration.  These responses can be exploited in constructing better 

sensors and sensor arrays utilizing these hexagonal SAW devices. 

 

 

3.1 Introduction 
 

 For many years, SAW devices have been used both  individually and in arrays as 

sensors and for materials characterization in a variety of applications ranging from 

gases/vapors to biological systems [1, 36, 37].  Within this broad range of uses for SAW 

devices, is the need for non-destructive testing of thin films.  Current technology is based 

on using dual delay-line configuration with one delay-line used as a reference to 

compensate for environmental changes [1, 38-40].  For basic sensor applications, this 

technique is sufficient; however, it is possible to design simple devices that can achieve 

better sensor characteristics as well as materials characterization possibilities utilizing 

simple device response models derived from perturbation theories [1, 41].  The hexagonal 

SAW device presented in this work is one such example that affords the possibility of 

extraction of multiple film parameters from responses of the multiple delay-lines that 

probe a common region.  It is hoped that this and similar devices can serve as in-situ 

characterization tools in thin film physical and chemical deposition equipment, and 

perform better than the ubiquitous quartz crystal microbalance, which yields film 

thickness information only.  It is conceivable that under specifically optimized 
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conditions, devices or arrays of devices presented here can be relied on to monitor 

deposition processes in such equipment. 

 In sensor applications, multiple parameters extracted from the film can thought of 

as multiple calibration curves and allow for a more unique characterization of the type 

and concentration of the analyte being sensed.  Combined with the array concept, 

significantly more information can be obtained to better characterize the analyte.  Also, 

many acoustic wave devices are specific to the phase in which they operate; for example, 

the successful Rayleigh wave device for vapor sensing is useless in the liquid phase due 

to excessive attenuation [4, 42].  The multiple directions in which the waves are launched 

in the hexagonal device of this device work are different in character, and may allow for 

a common device to be functional in both gas and liquid phases.  In recent work, it was 

shown that Rayleigh wave devices can be utilized in acoustic cleaning of nonspecifically 

bound proteins in biosensor applications [3].  With the possibility of launching shear-

horizontal SAW waves in one direction and Rayleigh waves in another, the hexagonal 

device may well serve as a better biosensor element for liquid phase applications.  Such 

investigations are underway in laboratory, with designs implemented in more suitable 

piezoelectric materials, than the lithium niobate utilized in this work. 

 The results of vapor sorption by poly(isobutylene) (PIB) of this work can be 

interpreted by known sensor response models for SAW device perturbation by 

viscoelastic films [41]. The response of a typical SAW sensor to an external perturbation 

from a viscoelastic film can be expressed by: 
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which is independent of type of wave.  For many determinations, it is convenient to 

assume that the material properties contained in the � and M terms remain constant [37, 

41]. 

 For a thorough derivation and discussion of the use of these equations, see the 

work of Martin et al [1, 41].  Simplifications to this equation can be made by assuming 

the film to be acoustically thin, and not displaying viscoelastic properties.  Roughly, 

when R<<1 in equation the previous equations the polymer film is considered to behave 

as an acoustically thin film; whereas, when R�1 the film behaves as an acoustically thick 

film [1, 41].  Using the relations above, for a typical 100 MHz SAW sensor the 

determination of an acoustically thin or thick can be made using Figure 7. 
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Figure 7  Calculated values of a typical 100 MHz SAW sensor with a polymer film to 

determine if it is acoustically thin or thick. 

 
 One challenge associated with new applications is the interpretation of the device-

response.  Often, SAW devices are used in arrays and when each device produces a 

complex response, the use of data analysis techniques is necessary.  In this work, a 

chemometric technique was applied to the responses of the hexagonal SAW sensor.  

Within chemometrics there are many different techniques that can be used to analyze and 

build models from multivariate data [43, 44].  Principal component analysis (PCA) is 

perhaps one of the most common and robust methods for building linear multivariate 

models from complex data sets.  Commonly, PCA is used for chromatography and other 

analytical techniques that involve spectral type data [43]. 
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 Techniques such as PCA are needed when sensor responses are not accurately 

predictable due to complexity in modeling and the unknown nature of the physical 

phenomena.  The advantage of PCA over other techniques is its ability to map the sensor 

response to a unique set of basis vectors that span the significant space of the data matrix, 

A, without prior knowledge [44].  Empirically, the data can be described by: 

ε+= T
kkVTA  (3)�� 

where Tk is an n x k matrix of principle component scores, Vk is an m x k matrix of 

eigenvectors, and 	 is the unexplained variance.  Based on this model, it is expected that 

each independent variation in the data will produce a principle component in the form of 

a nonzero eigenvector.  The importance of the principle components will be ordered such 

that the first component will be the first column in Vk, which will be the principal 

component explaining the maximum variation.  It is common to begin with >50 variants 

and reduce the data to only two principle components accounting for >99% of the 

variance in the data. 

 Since PCA can reduce data significantly, it is crucial that the data first be of high 

quality, and preprocessing be done to normalize/scale the data. There are many 

transformations that can be used on data to normalize them.  Two of the easiest and most 

fundamental are mean centering and variance scaling [45]. 
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3.2 Materials and Methods 

3.2.1 Hexagonal Device Design 
 

 Several IDT designs have been tested on the route to devices having linear phase, 

low noise, and low insertion loss.  All of the devices designed and tested have been laid 

out using a standardized bonding pad design to increase the ease of probing while on 

wafer.  The overall die size is a 20 millimeter square.  Rotated about the center of the die 

are three identical bi-directional SAW delay paths consisting of an aperture of 47 �, a 

delay path of 197 �, a minimum feature size of 4 �m, with the delay path shorted.  See 

Figure 8 for an illustration of the hexagonal SAW layout.  The first patterns tested 

consisted of a standard double split finger design with 60 finger pairs, designed to have a 

narrow passband.  Subsequent and current designs have considerably fewer fingers.  The 

first technique to improve the SAW filter sensor characteristics was to remove fingers.  In 

the second techniques, the 60 pairs were reduced by pruning to create a ladder structure.  

The final design used employs a weighting technique of using one finger followed by a 

split finger to make up the pair [18, 19].  These three major designs are shown in Figure 

3.  A standard metallization procedure of 100 nm chromium followed by 700 nm gold 

was used for all of the devices. 
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3.2.2 Electronic Characterization Methods 
 

 The hexagonal SAW devices were tested using an Agilent 8753ES S-parameter 

Network Analyzer connected to Mini-Circuits ZASWA-2-50DR switches.  The switches 

were configured to allow measurement of all three delay paths without the movement of 

the probing fixture or cables.  The fixture consists of a custom fabricated acetal housing 

holding spring pins (Ostby Barton Pylon) in a mating pattern to the bonding pads of the 

devices.  Due to the nature of the SAW devices, the hexagonal pattern resulted in the 

ground and signal pins to alternating, providing better than average signal properties 

when compared to other in house designed SAW’s and fixtures. 

 

 
Figure 8  Hexagonal SAW device schematic. 

 

 Measurement of the wave velocity was achieved using the VNA’s built in 

transform function.  This function is a Fast Fourier transform (FFT) that takes the 

standard S21 parameter and converts it to the time domain which shows the fundamental 

and higher harmonics of the SAW device.  While in this measurement domain, the 
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maximum value on the plot is selected; this corresponds to the fundamental frequency of 

the SAW device.  Further analysis such as applying gating to see the effects of bulk 

acoustic waves, triple transient effects, and internal IDT reflections of the different SAW 

devices was done while using the transform function. 

 The decision to monitor the phase and magnitude was made in light of the 

necessity for this project to have stable measurements.  Typically, this type of 

measurement is done with large analytical tools, and has been shown by several 

researchers to be as good or better than measurements utilizing a feedback loop [21, 46, 

47] Rugemer et al., 1999).  The more traditional approach of using a feedback loop 

oscillator circuit with the SAW delay-line being the limiting factor to the frequency has 

been used extensively and is well known; however, this method is somewhat limited by 

interference from a number of sources including the RF amplifier.  Another drawback to 

the oscillator configuration is only frequency-shift data can be easily collected [1], so less 

of an image of the sensing film interactions is perceived.  Additionally, the oscillator 

circuit must maintain oscillation conditions; where as phase measurements can be made 

successfully under non-oscillatory conditions. 

 

 

3.2.3 Polymer Solvent Experiments 
 

 The polymer poly(isobutylene) (PIB) was used for preliminary testing of the 

functionality of the hexagonal SAW devices.  Tape was used to mask off the IDTs to 

prevent excess attenuation.  A 0.5 weight percent PIB chloroform solution was used with 
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a Badger® airbrush to apply thin films from 200-600 nm onto the SAW delay path.  

Following the coating, the polymer was annealed for 20 minutes. 

 The hexagonal SAW was connected to a homebuilt organic vapor dilution system 

capable of delivering four different organic vapors with computer controlled accuracy.  

This dilution setup is described in detail by Upadhyayula, et al [48].  In this work the 

solvents benzene, chloroform, and hexane were used.  The programmed exposure pattern 

consisted of a 1200 second purge followed by 600 second exposures and 600 second 

purges in increasing concentrations of solvent.  The volume percentages of the solvent 

vapor in nitrogen are given in Table 2 

 

Table 2  Concentration (volume percent) of solvents in nitrogen carrier stream. 

Stage Benzene Chloroform Hexane 
1 0.8 1.9 1.4 
2 1.6 3.8 2.8 
3 2.4 5.6 4.2 
4 3.2 7.4 5.5 
5 4.0 9.0 6.8 
6 4.8 10.7 8.0 
7 5.5 12.2 9.2 
8 6.3 13.7 10.4 
9 7.0 15.2 11.5 
10 7.7 16.6 12.7 

 

 

3.3 Results 
 

 The three delay paths of the hexagonal SAW devices were first characterized in 

the VNA and followed by the vapor sorption experiments. 
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3.3.1 Characterization of Devices 
 

 For SAW device characterization, the primary analysis is the transmission s-

parameter (S21).  From this measurement, the amount of power transmitted through the 

delay line band pass filter SAW is plotted against a frequency sweep.  Further benefit 

from analysis was found by applying gating to the response to see the effects from triple 

transit and bulk effects.  Gating was applied to remove faster and slower effects from 

around the fundamental harmonic while monitoring the time domain. 

 

Table 3  Theoretical Rayleigh wave and measured velocities of the three shorted delay 

paths of the hexagonal SAW device on lithium niobate. 

Orientation Euler Angle 
(�, �, �) 

Theoretical 
(m/s) 

Measured 
(m/s) 

(0,90,91) 3542.06 3593.30 
(0,90,151) 3646.81 3721.85 
(0,90,31) 3622.59 3620.73 

 

 The resulting typical S21 responses after applying gating to remove these 

unwanted effects are shown in Figure 9.  Calculations for velocity were made while 

performing the analysis for gating while in the time domain.  As shown in Table 3 the 

measured values for the different delay paths correspond well to the theoretical velocities 

calculated by the Campbell and Jones method for the lithium niobate substrate. 
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Figure 9  S21 measurement of the three delay paths with gating applied having gating start 

and stop values of 1.218 �s and 3.878 �s. 

 
 SAW filter design has been a technology dominated by he communications 

industry.  For many years, the industry has developed advanced designs through an 

iterative process to eliminate the effects that are used to make good sensors.  For this 

reason it is important to continue the development of SAW devices for sensor 

applications.  As shown in Figure 10, are four generation of SAW patterns that have been 

tested in the hex-a-saw configuration.  The first design tested was a standard double split 

finger IDT structure consisting of 60 finger pairs, delay path of 197 �, and a wavelength 

of 32 �m.  Such a design provided a narrow pass band response that is desirable for a 

sensor; however, due to the large number of fingers, the device displayed a significant 

amount of internal reflections.  Subsequent and current designs have reduced the number 
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of finger pairs by half, but have maintain the same delay path length, and wavelength to 

allow for easier comparisons. 
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                                   (a)                                                                  (b) 

 

                                   (c)                                                                  (d) 

Figure 10  Comparison of in house SAW device designs responses as shown with phase 

and magnitude measurements.  (a) S21 parameters of 60 finger pair double split finger 

IDT structure.  (b) S21 measurements of 30 finger pair double split finger IDT structure.  

(c) S21 measurements of pruned 30 finger pair double split finger IDT structure.  (d) S21 

measurements of pruned 30 finger pair combined single/double split finger IDT structure. 



 34 

  

                                   (a)                                                                 (b) 

  

                                   (c)                                                                  (d) 

Figure 11  Comparison of fabricated SAW device designs responses as shown in the time 

domain.  (a) S21 parameters of 60 finger pair double split finger IDT structure.  (b) S21 

measurement of 30 finger pair double split finger IDT structure.  (c) S21 measurement of 

pruned 30 finger pair double split finger IDT structure.  (d) S21 measurement of pruned 

30 finger pair combined single/double split finger IDT structure. 

 

 Of the three other designs as illustrated in Figure 11, two of them are direct 

comparisons to the original 60 finger pair design.  First the pruned IDT design is an 
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interesting modification that has the same length IDT; however, every other finger pair 

set has been removed.  As expected, the response from this design shows much less 

internal reflection, yet it maintains the desirable narrow pass band.  The second direct 

modification was to remove half of the finger pairs.  This design also met expectations 

with less internal reflections and a wider pass band.  Unfortunately, this design shows a 

triple transient effect that can hinder a sensors signal to noise ratio.  The final design as 

shown in the figure is an advanced design that utilizes non-uniform IDT widths to reduce 

unwanted effects and better guide the SAW.  All of these newer designs have additional 

features that include aperturization and gratings to further guide the SAW for brevity, 

these features provide small improvements to wave propagations from the input to output 

port. 
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                                   (a)                                                                  (b) 

 

(c) 

Figure 12  Comparison of one of the fabricated SAW device designs responses as shown 

as both the Logrithmic Magnitude and Phase of the three delay paths that make up one 

SAW.  (a) S21 parameters of 60 finger pair double split finger IDT structure on axis 

propagation.  (b) S21 parameters of 60 finger pair double split finger IDT structure off 

axis 1 propagation.  (c) S21 parameters of 60 finger pair double split finger IDT structure 

off axis 2 propagation. 
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                                   (a)                                                                  (b) 

 

(c) 

Figure 13  Comparison of one of the fabricated SAW device designs responses as shown 

as time domain measurements of the three delay paths that make up one SAW device.  (a) 

S21 parameters of 60 finger pair double split finger IDT structure on axis propagation.  (b) 

S21 parameters of 60 finger pair double split finger IDT structure off axis 1 propagation.  

(c) S21 parameters of 60 finger pair double split finger IDT structure off axis 2 

propagation. 
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3.3.2 Polymer Solvent Results 
 

 The hexagonal SAW device response to varying concentrations of benzene from 

exposures to the polymer film is shown in Figure 14.  The 500 nm PIB film on the 

hexagonal SAW responded to benzene at varying concentrations with differing 

attenuation and phase changes for the three delay paths.  The varying attenuation of the 

device is an indication that the polymer film was behaving as an acoustically thick film.  

Upon calculation of R it is found that the film does fit the guideline for a thick film. 
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Figure 14  Difference measurements from 500 nm PIB on the hexagonal SAW absorbing 

benzene in nitrogen at 25 ºC, of volume percentages 0.9-8.0.  Attenuation (top) and phase 

angle (bottom) 

 

 Similar results are shown in Figure 15 for the solvent chloroform.  Notice in this 

plot the response of the on-axis phase starts to increase, but as the concentration 

increases, the phase response begins to shift in the opposite direction.  This phenomenon 

is more apparent in Figure 16 for the solvent hexane. The cause of the change is that the 

polymer film is acoustically thick and at the higher solvent concentrations, the film 

moduli actually can change significantly [1]. 
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 These vapor sorption data indicate that different wave types are likely propagating 

in the different delay path directions of the hexagonal device.  In this case of YZ lithium 

niobate substrate, the on-axis wave is predominately a Rayleigh wave, but on rotation 

about the center origin, different modes of propagation are found.  Because each delay 

path has its own unique frequency and wave type, multiple sets of equations can be 

solved to extract significantly more information on the coated film than if one device 

were to be used, providing a fuller picture of the film properties. 
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Figure 15  Difference measurements from 500 nm PIB on the hexagonal SAW absorbing 

chloroform in nitrogen at 25 ºC, of volume percentages 2.0-17.2. 
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Figure 16  Difference measurements from 500 nm PIB on the hexagonal SAW absorbing 

hexane in nitrogen at 25 ºC, of volume percentages 1.5-13.1. 

 

 Processed data from Figure 14, Figure 15 and Figure 16 of the extracted and 

normalized maximum sensor response value for the three chemicals across the range of 

concentrations is given in Figure 17. 
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Figure 17  Normalized sensor responses to hexane, chloroform and benzene. 

 

 The pre-processed (normalized) data are shown in Figure 18 where the three delay 

path results for three different solvent vapors are plotted as the normalized change in 

velocity versus the normalized change in attenuation.  From these plots, two observations 

can be made upon inspection.  First, the three delay paths of the hexagonal SAW provide 

unique responses most likely from the variation of wave amplitudes and modes being 

generated.  Second, a complex response of the polymer film is evident by the loops most 

easily observed in Figure 18(a) for the solvent chloroform.  This behavior can be 
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explained by changes in the viscoelastic properties of the polymer film when exposed to 

different concentrations of solvent vapor.   

 The normalized data shown in Figure 18, were processed with the built-in 

function PRINCOMP in Matlab® version 7.0 [45, 48, 49].  This function centered the 

data and performed a PCA; a representative analysis is given in Table I.  In this table, 

98.07% of the data variance from the hexagonal SAW can be represented by the first 

principal component, and the second principal component is uniquely significant for the 

concentration of vapor.  In effect, the PCA has reduced six independent measures and one 

control parameter to two components.  It should be noted that although the 98.07% 

variance in the data are found in the first principal component, there are significant 

contributions to each of the other components by individual variables.  This is shown by 

coefficient being underlined in Table 4 and indicates that the variables are fully 

independent. 
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(c) 

Figure 18  Pre-processed data of the hexagonal SAW response to 20 concentrations of 

hexane, chloroform, and benzene vapors.  Data are shown as the normalized change in 

velocity versus the normalized change in attenuation.  Each of the three plots is for a 

different delay path, (a) on axis, (b) off axis 1, and (c) off axis 2 for the three vapors 
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Table 4  Principal component analysis results. 

 

 

 Based on this analysis, the principal components can be plotted against one 

another to show relationships in the lower dimensional space.  The first principal 

component, combined film properties, is plotted against the second, concentration of 

vapor, in Figure 19.  From this representation of the data, differences in the sensor 

responses between chemicals become easier to see. 

 

 

PC Eigen 
value 

Percent 
Variance 
Explained 

Conc. Phase 
1 

Mag. 
1 

Phase 
2 

Mag. 
2 

Phase 
3 

Mag. 
3 

1 0.63 98.07 0.35 0.37 0.39 0.39 0.38 0.39 0.39 
2 0.01 1.37 0.93 -0.11 -0.14 -0.23 -0.06 -0.17 -0.14 
3 0.00 0.36 -0.10 0.69 -0.06 -0.55 0.34 -0.30 0.01 
4 0.00 0.17 -0.02 -0.25 0.84 -0.11 0.14 -0.38 -0.23 
5 0.00 0.03 0.04 0.40 -0.07 0.66 -0.20 -0.53 -0.28 
6 0.00 0.00 0.02 0.26 0.13 -0.06 -0.12 0.55 -0.77 
7 0.00 0.00 -0.04 -0.29 -0.31 0.21 0.82 -0.05 -0.33 
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Figure 19  PCA component 1, predominately material properties, versus the PCA 

component 2, predominately concentration data. 

 

 

3.4 Conclusions 
 

 The use of multiple SAW modes can provide more information about a sensing 

film as compared to using multiple SAW sensors with a single wave mode.  Additional 

benefits of interrogating one uniform film can be realized, by providing multiple 

measurements for verification of responses.  The use of a hexagonal pattern SAW on 

LiNbO3 makes efficient use of the substrate, while having the potential to yield a clearer 

picture of the interactions of the sensing films with an analyte. 

 PCS was shown for the measurement of the relative measurement of material 

properties of PIB as it absorbs three solvents.  Effectively, the PCA has reduced a six 
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dimension set of values to a three dimension set that is shown in Figure 19.  From this 

analysis, the three solvents show unique principal components indicating that the data 

obtained from the hexagonal SAW are independent for the individual three delay paths 

and provide more information on the polymer film than a single delay line.  Additionally, 

independence of the data is believed to allow one to solve for multiple film parameters 

simultaneously through the use of perturbation models that account for the viscoelastic 

effects seen in the film. 
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Chapter 4 

Removal of Nonspecifically Bound Proteins on Micro-arrays Using Surface Acoustic 

Waves 

 

 Nonspecific binding of proteins is an ongoing problem that dramatically reduces 

the sensitivity and selectivity of biosensors. Ultrasonic waves are generated by surface 

acoustic wave (SAW) devices remove nonspecifically bound proteins from the sensing 

and non-sensing regions of the micro-arrays.  The approach for controllably and non-

destructively cleaning the micro-array interface was demonstrated.  In this work, SAWs 

were generated using 128º YX lithium niobate, chosen for its high coupling coefficient 

and efficient power transfer to mechanical motion.  These waves propagating along the 

surface were coupled into specifically bound and nonspecifically bound proteins on a 

patterned surface of 40 �m feature size.  Fluorescence intensity was used to quantify 

cleaning efficacy of the micro-arrays.  The results have shown that excess protein layers 

and aggregates are removed leaving highly uniform films as evidenced by fluorescence 

intensity profiles.  Selected antigen-receptor interactions remained bound during the 

acoustic cleaning process when subjected to 11.25 mW of power and retained their 

efficacy for subsequent antigen capture.  Results demonstrate near-complete fluorescence 

signal recovery for both the sensing and non-sensing regions of the micro-arrays.  Of 

significance is that this approach can be integrated into existing array technologies where 
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sensing and non-sensing regions are extensively fouled.  This technology will be pivotal 

in the development and advancement of microsensors and their biological applications. 

 

 

4.1 Background 
 

 Current microsensors for protein quantifications rely on optical, acoustic, 

electrochemical, or thermal principles and techniques [32, 34, 46, 50-52].  Response 

discrimination from unwanted signal noise is a deficiency common to all of these 

techniques.  False positive/negative identifications and decreased sensitivity are 

associated with this lack of discrimination, limiting the usefulness of automation [5].  

This is a result of nonspecific binding of proteins over the entire surface of the micro-

array [5, 32].  Unlike chemical sensors that are long-lasting and reusable because of 

known, reversible interactions between the analyte and sensing film, proteomic 

interactions are not as controllable.  Even though biological sensors have known specific 

interactions that are relied on in every biosensor to make determinations, they also have 

nonspecific interactions with nearly every surface.  These nonspecific interactions, 

termed nonspecific binding, occur from a combination of intermolecular forces such as 

ionic, hydrophobic, and van der Waals forces and result in large undesirable effects [1, 

53]. 

 Beyond nonspecific binding, biological sensors are prone to many challenges, 

including toxicity and difficulties with binding of desired proteins to appropriate 

locations.  This has been recognized for some time as one of the most difficult issues 
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found in protein patterning [54, 55].  As sample volumes decrease, nonspecific binding 

becomes a more significant problem as typically rare and expensive samples are tested, 

and statistically valid data are needed.  To address this problem, chemical techniques and 

processes have been developed to reduce nonspecific binding [1, 56].  Another common 

method is to use micro-patterning followed by applying a blocking agent to the non-

patterned regions.  This latter method will not only terminate the active surface groups, 

but also block other proteins from binding where they are desired [56-60]. 

 SAW devices have been used for many years in chemical sensing [1].  Within the 

past few years, these sensors, and more generally acoustic wave sensors, have been tested 

for application in biological sensor applications for the same reasons they were chosen 

for general chemical applications, such as: high sensitivity, ease of integration into 

electronic circuits, and all around robustness [34, 61].  For instance, SAW sensors have 

been used for rapid detection of antigens in foods and fluids [1, 18, 55], operating 

primary as mass sensors. SAW sensors can also be perturbed by temperature, pressure, 

and electrical properties of the sensing film [1], allowing for the possibility of additional 

sensing mechanisms. 

 Surface acoustic wave devices have also been investigated for their ability to 

launch longitudinal waves into fluids.  This phenomena known as acoustic streaming [26] 

can generate very large nonlinear gradients in fluids [29]. To date, the phenomena of 

acoustic streaming has been limited to few applications for example in high-efficiency 

micro-fluidic mixing [4] and in removal of nanoparticles from a surface [28].  

Additionally, Cooper et al has shown rupture event scanning using a quartz crystal 
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acoustic wave resonator to break bonds between materials on surfaces.  In their work, this 

technique has been applied to the detection of herpes simplex virus [62, 63]. 

 In this study, SAW devices were evaluated for their ability to remove proteins 

without disrupting subsequent biological activity for immunoassay applications. Three 

primary experiments focused on testing the hypotheses that: (1) acoustic waves do not 

inhibit the activity of the covalently attached antibody receptor layer after acoustic 

treatment, (2) nonspecifically bound proteins can be removed using surface acoustic 

waves, and (3) specifically bound proteins can also be removed from their receptors using 

acoustic waves.  Collectively, these experiments were performed to determine whether 

surface acoustic waves can be used to enhance signal response by removing weakly 

bound proteins from both the sensing and non-sensing regions for protein micro-array 

applications. 

 

 

4.2 Materials and Methods 

4.2.1 SAW Device and RF Design 
 

 A Rayleigh SAW device was fabricated in 128º LiNbO3 with an electrode pattern 

having 40 double split finger pairs per interdigital transducer (IDT).  The aperture was 38 

� and the center to center IDT separation of the device was 120 � wavelengths.  The 

substrate was chosen for efficient Rayleigh wave generation to produce the acoustic 

streaming phenomenon.  Acoustic wave sensing using Rayleigh wave SAW devices is 
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not suitable for liquid environments, for which shear-horizontal SAWs have been shown 

to be effective. 

 

 

4.2.2 Silanization of Lithium Niobate 
 

 A 1 vol% (3-glycidoxypropyl)dimethylethoxysilane (Sigma Aldrich) (3-

GPDMS), in toluene for 1 h was used to form the organosilane  film on the lithium 

niobate surface as shown in Figure 20. Prior to this treatment, the SAW devices were 

washed with a typical acetone, methanol, de-ionized water cleaning process to remove 

any photo-resist as well as other surface contaminants.  This general cleaning was 

followed by 2 minutes of air plasma cleaning in a Harrick plasma cleaning system set on 

the lowest setting of 6.8 Watts.  Substrates were rinsed in toluene for 1 minute, dried with 

nitrogen and baked at 125 °C for 1 hour to complete the hydrolysis reaction. 
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(a)                 (b)                    (c)                 (d) 

Figure 20  Covalent attachment of IgG and BSA to LiNbO3 substrates via 3-GPDMS.  (a) 

lithium niobate with organosilane; (b) lithium niobate with organosilane and covalently 

bound IgG antibody; (c) lithium niobate with organosilane and covalently bound IgG 

antibody with specifically bound IgG antigen; and (d) lithium niobate with organosilane 

and covalently bound IgG antibody with nonspecifically bound BSA. 

 

 

4.2.3 Patterning of SAW Devices 
 

 To form a representative micro-pattern array of 40 µm squares on the delay path 

of the SAW devices, a photo-lithographic process was utilized [53].  By patterning the 

IgG proteins, both sensing and non-sensing regions were defined.  The sensing regions 

are shown in Figure 20b, and with the specific antigen capture in Figure 20c.  The non-

sensing region is passivated using BSA as shown in Figure 20d. To achieve this, devices 
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were spin coated with AZ5214 photo-resist for 30 seconds at 3000 rpm. This provided a 

uniform coating of 1.6 µm that was subsequently soft-baked for 20 minutes at 95 ºC.  

Patterning of the photo-resist was accomplished on the bench top with a long wavelength 

UV lamp and a dark field emulsion mask.  Devices were aligned using a custom 

fabricated mask aligner, followed by exposure to UV light for an optimized time of 30 

seconds.  Devices were removed from the aligner and the photo-resist was developed for 

1 minute in a 1:5::400K developer:water solution.  Immediately following the 

development, the devices were rinsed for 2 minutes in de-ionized water to terminate the 

development reaction.  This process was used for both non-treated and organosilane 

treated devices. 

 

 

4.2.4 Deposition of Protein Films 
 

 To assess the impact of nonspecific binding in the sensing and non-sensing 

regions, proteins were fluorescently labeled with Molecular Probes Alexa Fluor kits 

(Invitrogen, Carlsbad A).  Goat anti-mouse IgG (Pierce Chemical Co., Rockford, IL) was 

labeled with Alexa-488 (Molecular Probes, Eugene, OR) and covalently attached to the 

3-GPDMS film.  Mouse anti-rabbit (Pierce Chemical Co., Rockford, IL) was labeled with 

Alexa-594 (Molecular Probes, Eugene, OR.), acting as the specific capture antigen. To 

determine the degree of nonspecific interactions of proteins on the IgG films, BSA was 

labeled with Alexa-488, whereas goat anti-mouse was not labeled in this case. 
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 Following preparation of the 3-GPDMS film (Figure 20a), 6 µl of goat anti-mouse 

IgG (Pierce, Rockford, IL) 0.1 mg/ml in 1X PBS pH 7.2 was applied to the devices for 20 

minutes.  The devices were rinsed using 1X PBS.  The non-sensing regions were blocked 

using 1 mg/ml of unlabeled BSA in 1X PBS pH 7.2, applied for 20 minutes.  To 

demonstrate antigen capture on the sensing regions of the array and potential background 

fouling, mouse anti-rabbit IgG (Pierce, Rockford, IL) 0.1 mg/ml in 1X PBS was applied 

over the entire array for 20 minutes. Subsequently, the devices were sealed in a humidity 

chamber to minimize evaporation. Following the incubation period, the devices were 

rinsed with 1X PBS to remove weakly bound proteins and stored in 1X PBS. 

 For the first protein layer which was directly patterned with the photo-resist, 

acetone was used to rinse away the photo-resist.  The acetone rinse was followed by a 1X 

PBS rinse and immersion in 1X PBS buffer while waiting for the next processing step. 

 

 

4.2.5 Ellipsometry and Thickness Measurements 
 

 Film quality was assessed by measuring the film thickness of each layer using 

ellipsometry.  To quantify the films, silicon wafers were used as substrates in the covalent 

attachment procedure.  These measurements established the baseline properties of the 

films prior to acoustic excitation. 

 Polished silicon (Si) wafers (100, phosphorous doped) were purchased from 

MEMC Electronic Materials Inc. (Spartanburg, SC).  The wafers were cleaned by rinsing 

with de-ionized water then rinsed with acetone, methanol, isopropanol, and de-ionized 
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water.  Residual organics were removed using an UV/Ozone Cleaner (UVOCS, 

Montgomeryville, PA) for 10 minutes. 

 An automated Microphotonics ellipsometer was used (Model ELX-01R, 

Microphotonics Corp., Allentown PA), with an incident angle of 70° and a wavelength of 

6328 �.  Using the vendor’s software, models were developed to measure the individual 

film thickness for each layer.  The surface concentration and hence surface coverage of 

the organosilane and protein films can be calculated from the film’s refractive index 

thickness [64] by: 
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where �0 is the bulk density (g/cm3), d is the thickness of the film (�), Mw is the 

molecular weight of the substance,  n is the index of refraction, A is the molar refractivity 

of the material. For the organosilane, the index was taken as n = 1.44.  For protein, Mw/A 

= 4.12 g/cm3 based on the findings of Vogel et al. [65] and the index of refraction was 

estimated from atom or atom groups [66] and found to be 1.542.  By knowing the 

crystallographic dimensions of IgG, the surface coverage can be computed from the 

cross-sectional area given as 45 nm2 [67].  The estimated cross-sectional area for the 

organosilane was 25 Å2 [68].  
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4.2.6 Acoustic Protein Removal 
 

 Prepared protein patterns on lithium niobate were placed in a lexan micro-fluidic 

cell to permit optical interrogation during acoustic excitation.  The protein microarrays 

were patterned in the central region between the opposing IDTs on the lithium niobate.  

The SAW devices were driven using a Hewlett Packard 8656B frequency generator and 

an ENI 420A RF amplifier.  Power delivered to the SAW devices was calculated to make 

direct comparisons with previous work done with quartz crystal resonators (QCR) for 

removal of nonspecifically bound proteins [5] and SAW streaming to mix samples [4].  

The S-parameters of the SAWs were measured to determine both the return and insertion 

loss using an Agilent E8358A vector network analyzer.  Experimental data with respect 

to the removal of proteins were collected in the form of fluorescent images. 

 

 

4.2.7 Fluorescent Imaging and Processing 
 

 Successful formation of the patterns was verified using an Olympus IX-70 

microscope configured with a Roper Scientific Cool Snap ES® CCD camera.  Images of 

the fluorescently labeled devices were taken outside of the micro-fluidic fixture to 

increase their clarity.   Images were obtained by application of a large drop (~50 µL) of 

1X PBS to a cleaned glass slide and inversion of the coated device onto the slide.  The 

drop of 1X PBS protected the films on the surface of the SAW device. 
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 Images were processed using the MetaMorph® software (Molecular Devices 

Corp., Sunnyvale, CA).  To reduce differences from potential dye photobleaching, 

fluorescent images were taken before and after acoustic excitation using the same 

exposure times.  Background fluorescence was obtained from regions adjacent to the 

fluorescently attached protein.  To facilitate image clarity, bit thresholding was used 

remove low and high level intensities in the images.  After thresholding, equal area 

regions were defined to correspond to the sensing and non-sensing regions.  Sequential 

red and green images were placed in stacks and aligned.  The region number, pixel area, 

threshold pixel area, percent threshold area, and average pixel intensity were recorded for 

analysis. 

 

 

4.3 Results 
 

 First the depositions of organosilane film and protein attachment to it were 

considered.  Secondly, two major issues were investigated for the Alexa-488 labeled goat 

anti-mouse IgG film schematically shown in Figure 20b, first the potential ability of 

acoustic excitation to remove covalently attached proteins, and second possible acoustic 

damage to the proteins that would prevent antibody-antigen binding (Figure 20c).  

Thirdly, for the Alexa-594 labeled mouse anti-rabbit IgG, whether acoustic excitation 

could remove nonspecifically bound proteins (e.g. fouling by BSA) without removing the 

bound mouse anti-rabbit antigen were determined.  Fourthly, whether acoustic excitation 

can remove specifically bound Alexa-594 labeled mouse anti-rabbit IgG were 
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determined.  Collectively, the experiments conducted in this work and the results 

allowed: evaluation of the effectiveness of acoustic waves in removing nonspecifically 

bound proteins, of potentially damaging the desired bonding and attachment of proteins, 

and the possibility of removing specifically bound proteins.  While the objective of this 

work is to fabricate a device that can remove nonspecifically bound proteins, it is 

important to know what levels of acoustic energy can affect specific binding; hence this 

last topic was also investigated. 

 

 

4.3.1 Organosilane and Protein Films 
 

 Ellipsometry was used to verify that an adequate amount of organosilane was 

bound to the lithium niobate substrate (Table 1).  The organosilane film resulted in a 

spacing of 9.4 � between adjacent molecules.  Given that the cross-sectional area of the 

anti-mouse IgG is around 45 nm2, presence of a sufficient amount of organosilane to 

permit high surface coverage of antibody in the patterned regions and BSA in the non-

patterned regions is suggested. 

 Prior to measuring the 3-GPDMS and protein film thicknesses using ellipsometry, 

the complex refractive indices of the bulk silicon and silicon dioxide were determined.  

This was done by measuring the ellipsometric angles 
 and � in air and water using the 

ELX-01R.  Using two sets of 
 and �, the bulk silicon index (nSi), the refractive index of 

SiO2 (nox), and the SiO2 thickness (d0) were determined using a three-layer model.  The 
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values calculated for nSi, and nox were 3.885 – 0.019i and 1.459 at � = 6328 �. The oxide 

thickness d0 ranged from 12 to 22 �. 

 The subsequent 3-GPDMS and protein films were measured using four, five, and 

six layer models with the vendor’s software.  After a 1 h application of 3-GPDMS, 

ellipsometry indicated an average thickness was 4.3 ± 0.5 � (n = 4).  This corresponded 

to a surface coverage of 61.4% or nearly a monolayer of organosilane.  The results are 

shown in Table 5. 

 

Table 5  Ellipsometry determined organosilane and protein film average thickness and 

surface coverage. 

Film Average Thickness 
(Å) 

Surface Coverage 
(%) 

3-GPDMS 4.3 ± 0.5 61.4 
Anti-mouse IgG 33.5 ± 4.0 70.1 
Mouse IgG 37.3 ± 5.3 72.3 

 

 

4.3.2  Protein Activity after Acoustic Excitation 
 

 Protein activity was determined by measuring the fluorescent intensity of the 

Alexa-594 labeled mouse anti-rabbit IgG antigens on two samples.  Sample one consisted 

covalently bound Alexa-488 goat anti-mouse IgG pattern, shown schematically in Figure 

20b; whereas, sample two consisted of the same pattern which was acoustically driven 

using 500 mW for 15 minutes.  This power was estimated to be several times in excess of 

that required to remove nonspecifically bound proteins.  Alexa-594 labeled mouse anti-
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rabbit IgG antigens were specifically bound to both samples.  Fluorescence intensity 

measurements were then conducted on both samples. As shown in Figure 21b, there is 

not a significant decrease in fluorescence intensity for the Alexa-594 mouse anti-rabbit 

IgG bound to acoustically treated goat anti-mouse IgG, in comparison to Figure 21a.  

Thus, the covalently bound antigens do not lose activity upon acoustic excitation. 

 

 
Figure 21  Alexa-594 labeled mouse anti-rabbit IgG binding to goat anti-mouse IgG 

without and with acoustic excitation.  Two samples (a) without acoustic excitation and 

(b) With acoustic excitation for 15 minutes at 500 mW. 

 

 

4.3.3 Removal of Nonspecifically Bound Proteins While Retaining the Specifically 
Bound 

 

 Nonspecifically bound protein removal, while retaining specifically bound ones, 

was shown using covalently bound non-fluorescently labeled goat anti-mouse IgG to the 

microarray-surface.  This change in surface preparation allowed for the use of only two 

fluorophores in all experiments reported in this work.  The antigen, mouse anti-rabbit 
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IgG, was labeled with Alexa-594, and BSA, not used as the blocking agent, was labeled 

with Alexa-488.  Consistent deposition procedures were followed in the all experiments.  

The labeled BSA was applied over the antibody-antigen complex.  The result of the 

nonspecific binding across the entire surface of the sensor was a difficult to distinguish 

microarray pattern.  As the acoustic waves interacted with the protein film, the 

fluorescent intensity of nonspecifically bound BSA decreased significantly while the 

fluorescent intensity of the specifically bound proteins only decreased slightly (Fig. 3).  

This slight decrease in the Alexa-594 intensity is believed to be a result of the reduction 

in multilayers of antigen-antigen nonspecific binding. 

 

 
Figure 22  Non-labeled goat anti-mouse IgG was covalently patterned and bound to the 3-

GPDMS surface followed by acoustic excitation and application of BSA to terminate 

non-patterned regions.  Alexa-594 labeled mouse anti-rabbit IgG (Red) was specifically 

bound. 
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 Figure 23 and Figure 24 indicate nonspecifically bound proteins can be removed 

by acoustic waves, consistent with the observed general trend of a decrease in 

fluorescence intensity with increased applied RF power dose.  The covalently bound 

antibodies labeled with the green fluorophore decreased only slightly, whereas, the 

intensity of the antigen labeled with the red fluorophore decreased from ~65% to ~15%, a 

level nearly equivalent to that of the green labeled antibody as shown in Figure 23.  This 

quantitative analysis was done from the image sequence represented by Figure 24.  In 

Figure 24d, partial recovery of the Alexa-594 labeled mouse anti-rabbit IgG from the 

completely obscured pattern in Figure 24a is shown, indicating that blocking agents such 

as BSA are extremely difficult to remove unless acoustic methods are used.  The use of a 

moderate level (1mg/ml) of BSA to block the un-reacted 3-GPDMS groups, suggests that 

protocols using higher levels are not suitable for subsequent reaction and hence may 

suffer from poor detection efficacy in biosensor applications. 
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Figure 23  Overall intensities of fluorescently labeled proteins versus RF power dose.  

The Green and Red labeled data sets represent antibodies covalently bound to surface and 

the analyte antigens, respectively. The Overall is a combined intensity across the entire 

surface of the microarray being imaged. 
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Figure 24  Grayscale images (pseudo-colored) of 40 �m microarray pattern before and 

after acoustic cleaning.  (a) Antibody covalently bound to the silanized surface prior to 

the acoustic cleaning.  (b) The result of acoustic cleaning on the pattern from image a.  

(c) Microarray pattern of antigen specifically and nonspecifically bound to the blocking 

agent and antibody.  (d) The result of acoustic cleaning showing partial recovery of the 

pattern. 

 

 

4.3.4 Removal of Nonspecific and Specific Proteins 
 

 Previous experiments in this study have shown that it is possible to remove 

nonspecifically bound proteins easily.  With increased exposure to the acoustic waves, it 
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is possible to remove specifically bound proteins also.  Figure 25 shows two major steps 

in the red patterned line.  The first step is believed to indicate the removal of 

nonspecifically bound proteins and the second step the removal of specifically bound 

proteins.  These results are valuable for biological sensors because it is possible to make a 

renewable device with no more than a few minutes of exposure to increased RF power 

doses. 

 

 
Figure 25  Mouse anti-rabbit IgG (red) and goat anti-mouse IgG (green) pattern and non-

patterned intensities versus the RF power dose delivered to the microarray. 
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4.3.5 The Control Experiments 
 

 Control experiments were conducted to represent current practices in microarray 

analysis.  For the controls, substrates were treated identically as the ones tested with 

acoustic cleaning.  The first control experiment was done after the application of the 

fluorescently labeled antigen by vigorously washing the sample in PBS buffer solution.  

The results of the washing are shown in Figure 26; there are a few nonspecific 

attachments of the antigen to the BSA blocking agent in the non-patterned regions that 

appear to have been removed.  Additionally, after the vigorous washing (Figure 26), there 

was an increase slightly beyond the standard deviation in the non-patterned regions’ 

fluorescence intensity. 

 Subsequent control experiments were conducted for each of the processing steps 

and showed similar results.  

 

 
Figure 26  Alexa-594 labeled mouse anti-rabbit IgG bound to goat anti-mouse IgG with 

(b) and without (a) vigorous washing in PBS solution. 
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4.4 Discussion 
 

 One major concern regarding the acoustic cleaning approach was to determine 

whether the antibody receptor films were damaged by the acoustic waves, resulting in a 

reduction of antigen binding efficacy.  However, qualitatively this did not occur, as 

shown in Figure 21. 

 Direct measurement of the amount of mouse anti-rabbit IgG on the lithium 

niobate substrates using ellipsometry was not done.  Nonetheless, the end result was the 

foreground regions showed significant fluorescence from the mouse anti-rabbit IgG.  

During preparation, BSA was used to minimize covalent attachment of anti-mouse and 

mouse IgG in the non-patterned regions.  This permitted evaluation of the ability of 

surface acoustic waves to remove excess mouse-IgG from the non-patterned regions 

blocked with BSA (Figure 23 and Figure 24).  The removal of covalently attached anti-

mouse IgG in the study (Figure 21) was not observed. 

 Further experiments supported the notion that the acoustic waves at the levels 

required for the cleaning do not harm the proteins.  To demonstrate this, the SAW device 

was turned on to stress the specifically bound proteins after each step of the process to 

remove nonspecifically bound proteins.  After each step of binding the proteins and then 

running the device in the acoustic cleaning mode, measurements were made to determine 

whether the proteins were still on the device.  Since the cleanings did not harm the 

proteins, specific binding was still possible as shown in Figure 21; however, the non-

patterned intensity decreased significantly. 
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 The fluorescence measurements in this work demonstrate that it is possible to 

remove nonspecifically bound proteins from surfaces to desirable levels for micro-array 

applications.  However they are not capable of exposing the detailed mechanisms by 

which the surface acoustic waves remove the proteins.  This is evidenced in  inability to 

account for the sudden drops in intensity at specific power doses seen in Figure 22, 

Figure 23, and Figure 25.  Additional computer simulation and experimental studies are 

desirable to expose these mechanisms and such work is underway. 

 Fluorescence assays are widely used in optical detection schemes, for example, in 

micro-dot arrays.  Such arrays represent a large practical application of the device 

described in this paper.  In such cases, this device, fabricated in 128° YX LiNbO3, will 

be immensely useful for removal of nonspecifically bound proteins to significantly 

improve determinations.  While the relative intensities measured in this work are not 

quantitative measures of amounts of proteins removed, they quantify the relative amounts 

of protein removal, which is the level of quantification possible with this device, and is 

adequate for the intended purpose. 

 Unlike the Rayleigh waves generated in the lithium niobate device of this work, 

shear-horizontal SAWs, which can be generated in substrates such as Lithium Tantalate 

(LiTaO3) and langasite, can be utilized in liquid phase sensing [46].  It is possible to 

generate both shear-horizontal SAWs and waves with significant shear-vertical 

components in different directions in such substrates, which opens the possibility of 

simultaneous removal of nonspecifically bound proteins and sensing in the same device.  

Encouraging preliminary results have been found using such devices on LiTaO3 [7].  It 

should be noted that such a device would allow quantification of the protein removal 
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process via measured attenuation or phase shifts of the shear-horizontal SAW mode.  Due 

to damping of the Rayleigh waves, such quantification was not possible in the device 

utilized in this work. 

 Throughout this work, two major challenges were faced.  First, leaks in the micro-

fluidic test fixture caused protein deposition to occur on the electrodes, reducing the 

efficacy of the SAW devices.  Measurements confirmed that the addition of protein films 

across the electrodes increased the return loss of the SAW device from approximately -

14.0 dBm to -1.4 dBm.  The second challenge was establishing a visible pattern from the 

fluorescent emissions of the labeled proteins.  Making a distinguishing measurement by 

inspection was not possible for all experiments; hence, image processing was used to 

systematically enhance the images for visual evaluation.  This was done through the use 

of MetaMorph® software. 

 

 

4.5 Conclusions 
 

 In conclusion, the surface acoustic waves were demonstrated to be a powerful tool 

for the removal of nonspecifically bound proteins on micro-arrays.  This removal method 

has the benefit of reducing background noise attributed to nonspecifically bound proteins, 

while reducing excessively bound proteins forming multilayers in the foreground.  

Principal to this method is the application of surface acoustic waves that actuate the 

interface, thereby permitting selective removal of nonspecifically and specifically bound 

proteins. 
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 Two primary experiments were focused on testing the hypotheses that: (1) 

acoustic waves do not inhibit the activity of a bound protein and (2) nonspecifically 

bound proteins can be removed with surface acoustic waves.  Together, these 

experiments show that surface acoustic waves can be used to enhance sensor response by 

removing loosely bound proteins from the surface. 

 Experimental evidence shows that the acoustic waves do not damage the proteins 

bound to the surface.  This can become a valuable tool for increasing the sensitivity and 

reusability of biological sensors.  As shown through these experiments, optical 

measurements are greatly improved, and the same improvements are expected by 

applying SAW cleaning technology to other common biological sensors. Additionally, 

the potential was demonstrated to remove specifically bound proteins at higher input 

powers for longer exposure times.  As a consequence of this potential, it is believed 

plausible to tune the acoustic waves to selectively remove bound proteins as a tool for 

interfacial interaction measurements. 
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Chapter 5 

Interdigital Transducer Design for Biosensors 

 
 The work presented herein is an experimental and theoretical comparison of 

surface acoustic wave (SAW) interdigital transducer (IDT) designs used to generate 

Love-waves for biosensor applications.  Three IDT designs were investigated for sensor 

properties through improvements to electrical characteristics of the SAW devices by 

reducing second and third order effects. Parameters studied in this work include the 

attenuation and velocity changes due to the addition of varying thickness of a polystyrene 

waveguide. Experimental measurements were made using an S-parameter network 

analyzer with time domain capabilities. Theoretical calculations were conducted using 

coupled field finite element models. Results from both experimental and theoretical work 

are used for the optimization of waveguide thickness to produce a biosensor with greater 

sensitivity and low signal to noise ratio than commonly used designs. The data show the 

unidirectional IDT design both experimentally and theoretically coupled more efficiently 

with the polystyrene waveguide to produce the greatest increase of transmitted energy 

compared with the standard bi-directional IDT designs tested and simulated. 
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5.1 Introduction 
 

 SAW devices are commonly used in communication electronics in the 

commercial world, and used as a mass sensitive element, mostly in the research 

laboratories.  The fundamental operation of this device is the application of alternating 

voltage across pairs of IDTs on a piezoelectric substrate.  The applied voltage deforms 

the substrate to launch a mechanical wave.  The period and other measures of the wave 

are determined by the dimensions and layout of the IDTs [1, 2]. 

 Recent work has shown wide application of SAW devices to sensor applications 

particularly for biological systems [46, 69, 70].  It has been shown that a Love-wave 

SAW sensor can be 20 times more sensitive to perturbations than a typical shear-

horizontal (SH) SAW sensor [46, 71, 72].  Inherent to this great SAW biosensor 

sensitivity enhancement is the generation of Love-waves through application of an 

appropriate material and thickness waveguide.  Theory dictates that for the generation of 

Love-waves for the most sensitive sensor 1) the lowest mode wave is required, and 2) a 

large  ratio of substrate to guiding layer shear wave velocity, density, or both is required 

[73].  Materials tested for Love-wave generation from SH-SAW devices include 

polymers (polystyrene and polymethyl methacrylate) and oxides such as silicon dioxide. 

Initially, these materials have been tested for ease of availability, their well-characterized 

properties, and processing ease.  Because the waveguide material for this project is 

intended for biosensing applications, additional characteristics such as low water 

permeability, non-toxic nature, and robust structure to withstand multiple tests, are 
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required [74, 75].  For these reasons, polystyrene was chosen in this work for creating a 

Love-wave SAW biosensor. 

 In past literature, the only significant SAW IDT design comparisons have been 

for telecommunication applications [76-86], with the most current and advanced designs 

being proprietary information held closely by a few companies.  Fundamental designs 

that could potentially change sensor characteristics significantly include double split 

finger design (DSF) [85], pruned double split finger design (PR-DSF) [18], and 

unidirectional design (U-DSF) [81].  These three designs are illustrated in Figure 3, and 

are described in detail in the design and fabrication section of this chapter. 

 The finite element method (FEM) is a powerful tool for problems that require 

multiple physical sciences to create a full computational solution.  Within this work, 

current practical limitations exist in creating a full SAW device finite element model that 

has all the features of one created experimentally [87-89].  Although such limitations 

might not allow for an exact quantitative comparison of the simulated models with 

experiments, enough information is generated to create useful data that can guide 

experimental studies as well as provide a more comprehensive and thorough 

understanding of the underlying physics [90, 91].  Previous work with FEM of SAW 

devices indicate that small models, of about one fourth the size  of an experimental 

device, provide adequate information to reach meaningful conclusions [87, 92]. 

 In the present work, the comparison of voltages and velocities as functions of 

waveguide thickness of different SAW IDT designs are shown for the generation of 

Love-waves in biosensor applications.  Based on the experimental and simulated results, 
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recommendations for using advanced IDT designs are presented to improve SAW 

biosensor responses. 

 

 

5.2 Materials and Methods 
 

 SAW devices are readily available for communication applications packaged and 

characterized.  For sensor applications, it is necessary to fabricate SAW devices or open 

packaging.  The former was chosen to permit total control of design.  The materials and 

methods used in this study are readily available from suppliers. 

 

 

5.2.1 SH-SAW Design and Fabrication 
 

 SH-SAW devices were fabricated on single side polished 36° YX LiTaO3 3” 

wafers obtained from Sawyer Research.  Wafers were initially cleaned with a solvent 

rinse consisting of acetone, methanol, isopropanol, and de-ionized water, and 

subsequently dried with nitrogen.  Wafers were then processed with a standard 

photolithographic process to pattern the SAW delay lines. A three-layer metallization was 

done with e-beam evaporation without breaking the vacuum.  The deposited three-layer 

metal film consisted of a 10 nm titanium adhesion layer, 70 nm gold, and a 10 nm 

titanium adhesion layer.  Following lift-off processing and quality inspection, wafers 
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were coated with a protective layer of photo-resist and diced by American Dicing, Inc. 

(Syracuse, New York) into individual devices. 

 Delay line SH-SAW devices with a double split interdigital transducer were 

designed for this project to account for the properties of the substrate [93] and reduce 

surface wave reflections and bulk wave scattering [84].  Each transducer consisted of 30 

finger pairs with an aperture of 47 �.  The delay line was shorted with a center to center 

length of 197 �.  These dimensions were utilized in all three designs to limit design 

variations and permit testing using standardized probe pattern 

 The second design tested was the pruned double split finger.  This design 

consisted of a standard DSF 60 finger pair design that had half of the finger pairs 

removed to create a ladder-like structure.  As indicated in literature, this design would 

maintain the lower insertion loss of a standard 30 finger pair DSF transducer, but have a 

narrower pass band.  Additionally, this design reduces the internal reflections that would 

occur for a 60 finger DSF design [18]. 

 The final design employed a weighting technique of using one �/4 finger followed 

by a double split finger with each part �/8 wide to make up one finger pair [18, 19].  Such 

a design generates waves that are directional [81], thus more energy sent across the delay 

path. This design is referred to as a single-phase unidirectional transducer (SPUDT), and 

it has the advantages of low interfering reflections and low insertion loss. [83] 
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5.2.2 Waveguide Application 
 

 Individual devices were washed with solvents to remove the protective photoresist 

coating.  Devices were then placed in an air plasma cleaner (Harrick Plasma 

sterilizer/cleaner) for 30 minutes.  The plasma cleaner ensured all organic contaminants 

were removed to provide the best possible surface for waveguide attachment.  280,000 

molecular weight polystyrene (Aldrich) was dissolved in ethyl benzene (Aldrich) to 

various concentrations giving spin coated thicknesses of 45 – 1,200 nm.  The material 

properties for the polystyrene used are given in Table 6.  Following the spin coating, 

devices were cured for 1 hour at 140 °C.  Witness plates were coated and cured in parallel 

with the devices for additional profilometry measurements.  

 

Table 6  Polystyrene material properties. 

Typical Molecular 
Weight 

2.80 x 105 

Glass Temperature 100.0 °C 

Modulus of Elasticity 3.40 x 109 Pa 

Poisson Ratio 0.33 
Density 1.11 x103 kg/m3 

 

 

5.2.3 Waveguide Measurements 
 

 Waveguides were measured for three characteristics: 1) thickness using a Tencor 

profilometer, 2) insertion loss using an Agilent 8753ES s-parameter network analyzer, 

and 3) acoustic velocity using a time domain function built into the Agilent 8753ES 
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network analyzer.  The combinations of these measurements form a complete picture to 

choose an optimal waveguide thickness. 

 All RF measurements were automated with LabView 7.0 ® and recorded on a 

standard PC through GPIB.  The automation consisted of controlling the network 

analyzer to scan the s-parameters for signal transmission across 1601 points, followed by 

the phase.  The system next switched to the time domain using the built-in function and 

preformed a 1601 point scan of the time domain of transmitted energy to calculate the 

velocity of the acoustic waves.  Additional analysis, non-automated, of selected devices 

was done such as applying gating to measure the effect of bulk acoustic waves, triple 

transit signals, and internal IDT reflections of the different SAW devices while the 

instrument operated in the time domain. 

 

 

5.2.4 Finite Element Model Configuration 
 

 3-D finite element models were used to evaluate IDT designs and guiding layers. 

The transient response of the SAW device to an impulse input applied at the transmitting 

IDT fingers was utilized to study the wave generation and propagation characteristics as 

well as deduce its frequency response. The developed models consisted of a 36° YX 

LiTaO3 substrate 40 � long, 5 � wide and 5 �  deep with IDT’s 2 � long and �/4 wide for 

the split finger design as shown in Figure 27. The periodicity of all IDT designs was 40 

�m, while the transducers were considered to be mass-less elements in this work.   The 

polystyrene waveguide thickness was varied from 0.0 �m to 3.0 �m while using the same 
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material properties as used in the experimental portion.  Tetrahedral elements were used 

throughout the model with 4 degrees of freedom to account for displacements in the x-, y- 

and z-directions as well as voltage.  Elements were formed to ensure the highest density 

on the top center surface of the substrate where the most deformation occurs. 

 The simulations were initiated with an electric impulse of 10 V applied at the 

transmitting IDT fingers over time steps of 0.95 ns.  The simulation was carried out for 

190 ns and interpolation between the 0.95 ns time-steps was used on all data.  The 

simulation time and dimensions of the model were chosen to prevent reflected signals 

from the edges and bottom of the substrate. 

 

  
                                    (a)                                                                       (b) 
Figure 27  (a) Pre-solution 3d meshed split finger IDT design with highest mesh density 

at the top and center of delay path (right side of image).  (b) Displacement vectors at 

middle of delay path at time step 75 showing predominately surface parallel wave 

motion. 
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5.3 Results and Discussion 
 

 Advanced SAW filter design is a technology belonging to the communication 

industry.  For many years, the industry has developed advanced designs through an 

iterative process to eliminate the effects that are sometimes needed to make good sensors.  

As shown in Figure 28, three SAW IDT designs have been fabricated and tested in this 

work.  First analyzed were the frequency responses of the devices, followed by a time 

domain analysis.  
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                                     (a)                                                                     (b) 

 
(c) 

Figure 28  Comparison of fabricated SAW device designs responses as shown magnitude 

measurements.  (a) S21 measurements of 30 finger pair DSF IDT structure.  (b) S21 

measurements of 30 finger pair PR-DSF IDT structure.  (c) S21 measurements of 30 

finger pair U-DSF IDT structure. 
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 The first design tested was a standard DSF IDT structure consisting of 30 finger 

pairs, delay path of 197 �, and a wavelength of 32 �m.  This design was tested as a 

control and basis for comparison with two more advanced designs.  As shown in Figure 

28(a), the DSF design on 36° YX LiTaO3 shows a classical band pass filter response with 

a 4 MHz passband and > 15 dB attenuation for out of band frequencies. The considerable 

second order effects most likely triple transit effects (TTE) are seen as a couple of dB 

sized ripple across the pass band, which can lead to erroneous sensor responses.  The 

final general characteristic of importance, i.e., the linearity of the phase within the pass 

band is not seen in the data presented in Figure 29(a). 
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                                       (a)                                                                    (b) 

 
(c) 

Figure 29  Comparison of fabricated SAW device designs responses as shown with 

measurements of 3 MHz within the pass band.  (a) 30 finger pair DSF IDT structure.  (b) 

30 finger pair PR-DSF IDT structure.  (c) 30 finger pair U-DSF IDT structure. 

 

 The second device design shown in Figure 28(b), PR-DSF, is an interesting 

modification that has the same length IDTs of a 60 finger pair DSF design; however, 

every other finger pair set has been removed resulting in only 30 finger pairs.  As 
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expected, the response from this design shows a pass band of only 2 MHz (half the pass 

band of the DSF design).  The attenuation of the out of band frequencies is approximately 

equal to the standard DSF design.  The second order effects in this design were reduced 

from the DSF design.  Additionally, as shown in Figure 29(b), the phase through the pass 

band is more linear. 

 The final design as shown in Figure 28(c) is the most advanced design tested in 

this study that utilizes non-uniform IDT widths to reduce unwanted second order effects 

and transmit more energy directionally to the output IDT.  The U-DSF design is a 30 

finger pair design; hence, the expected device response was an improved version of the 

DSF design.  As shown in the Figure 28(c), the U-DSF device frequency response shows 

the same general characteristics of the DSF design; however, the second order effects 

reduce as shown by the decreased magnitude of the pass band ripple.  The phase linearity 

as shown in Figure 29(c), is improved from the DSF data; however, it is not as good as 

the PR-DSF design phase linearity. 

 The frequency responses of the three tested designs as shown in Figure 28 can be 

qualitatively compared with the calculated responses of the FEM simulations of the same 

designs.  These data are shown in Figure 30.  The simulations only used 3 finger pairs 

and a much shorter delay path (6 �) in comparison to the experimental devices (30 finger 

pairs and 197 �), the data show similar and expected results.  These results such as pass 

band width can be scaled and correlated with the more common experimental type 

devices.  The simulations are simplified through mass-less electrodes and reduced 

dimensions.  This results in the second order effects not appearing predominately in the 

simulation results.  Additionally, the PR-DSF design response does not correlate as well 
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as the others to the experimental data due to maintaining the same element configuration 

of the modeled substrate throughout all of the simulations. 
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                                    (a)                                                                           (b) 

 
(c) 

Figure 30  Comparison of simulated SAW device designs responses as shown with 

magnitude measurements of the power spectrum as simulated with Ansys.  (a) Power 

spectrum of 3 finger pair double split finger IDT structure.  (b) Power spectrum of pruned 

3 finger pair double split finger IDT structure as simulated with Ansys.  (c) Power 

spectrum of 3 finger pair combined single/double split finger IDT structure as simulated 

with Ansys. 
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 Further analysis of the devices characteristics were done using a built in transform 

function of the network analyzer.  These data are plotted in Figure 31 for the three 

designs tested in this study.  The primary features examined in these data are the second 

order effects consisting primarily of reflections.  The TTE of all of the device responses 

appears at ~ 4.8 �s.  Clearly as shown in the data, the DSF device response has a 

significant TTE peak with ~ 21 dB separating it from the primary SAW signal peak.  The 

difference between the TTE peak of the PR-DSF device response is increased to ~ 35 dB, 

but the primary SAW peak of this device is only at ~ -32 dB.  This is a considerable 

insertion loss for a sensor.  The U-DSF device response shows the difference between 

the primary peak and the TTE peak to be ~ 27 dB. 
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                                        (a)                                                                         (b) 

 
(c) 

Figure 31  Comparison of fabricated SAW device designs responses as shown in the time 

domain.  (a) S21 measurement of 30 finger pair DSF IDT structure.  (b) S21 measurement 

of 30 finger pair PR-DSF IDT structure.  (c) S21 measurement of 30 finger pair U-DSF 

IDT structure. 
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 The data in Figure 32 show three independent responses following the same 

general trend with the addition of polystyrene.  There is an initial increase in attenuation 

followed by a decrease in attenuation to 2-3 dB less than the bare SH-SAW device.  This 

indicates that leaky wave energy is being trapped in the waveguide instead of being lost 

to the environment.  Following the maxima, the attenuation again increases from mass 

loading.  The U-DSF design shows the greatest improvement which correlates with the 

fact the design is not bi-directional as are the DSF and PR-DSF designs.  This means 

there is more energy for the waveguide to trap.  The simpler DSF design has the next 

greatest improvement, and lastly, the PR-DSF design shows very little improvement.  

Other features of the data as shown in the figures include the range of optimal waveguide 

thickness is broadest and best defined for the case of the U-DSF design. 
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                                      (a)                                                                     (b) 

 
(c) 

Figure 32  Comparison of fabricated SAW device designs responses to the addition of a 

polystyrene waveguide.  Experimental data of the transmitted power change as a function 

of polystyrene thickness for three IDT designs.  (a) is the DSF design data.  (b) is the PR-

DSF design data.  (c) is the U-DSF design data. 
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 Comparable simulation data as shown in Figure 33 have the same trends as the 

experimental work shown in Figure 32; however, the value of the optimal waveguide 

thickness is significantly different.  The optimal thickness for the DSFR design found 

through experiment is ~ 0.50 �m.  The value as found from simulation data is ~ 1.50 �m 

as indicated by the significant increase in transmitted energy followed by a saturation 

type response from the addition of more mass on the surface in the form of a thicker 

polystyrene layer.  The difference in the value of optimal thickness of a waveguide is a 

result of the difference in frequency of the experimental and simulated devices as well as 

the limitations of the model such as size. 
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                          (a)                                                                             (b) 

 
(c) 

Figure 33  Comparison of simulated SAW device designs responses to the addition of a 

polystyrene waveguide.  FEM simulation data of the change in attenuation change as a 

function of polystyrene thickness for three IDT designs.  (a) is the DSF design data.  (b) 

is the PR-DSF design data.  (c) is the U-DSF design data. 

 

 The second measure used to evaluate the designs was the device velocity as a 

function of the polystyrene thickness.  These data, Figure 34, show trends expected as a 



 93 

result of the responses in Figure 32.  The order of the IDT design efficiencies as 

determined by the increase of transmitted energy maintained through the velocity 

measurement data.  The U-DSF design developed the most significant dip in device 

velocity due to the polystyrene guiding layer.  The DSF design response shows a 

decrease in velocity; however, since it is not a dip, it is difficult to identify an optimal 

thickness.  The PR-DSF design response showed a slight increase followed by a decrease.  

The reason for the velocity increase is not known, but the poor velocity versus thickness 

response corresponds with the poor attenuation versus thickness measurements of this 

particular design. 

 Simulation data for the change in velocity for the different thicknesses of 

polystyrene are shown in Figure 35.  These data, unlike the experimental, do not show a 

significant change in the velocity across the range of thicknesses studied.  The DSF and 

PR-DSF designs responses show approximately the same decrease in velocity (~ 120 

m/s) at 3 �m.  The U-DSF design data show a slightly greater decrease of ~ 150 m/s, 

which correlates to the greater power transmission shown in Figure 33. 
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                                       (a)                                                                           (b) 

 
(c) 

Figure 34  Comparison of fabricated SAW device designs responses to the addition of a 

polystyrene waveguide.  Change of SAW velocity experimentally obtained as a function 

of polystyrene thickness for three IDT designs.    (a) is the DSF design data.  (b) is the 

PR-DSF design data.  (c) is the U-DSF design data. 
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                             (a)                                                                          (b) 

 
(c) 

Figure 35  Comparison of simulated SAW device designs responses to the addition of a 

polystyrene waveguide.  Change of SAW velocity calculated from FEM simulation data 

shown as a function of polystyrene thickness for the three designs.  (a) is the DSF design 

data.  (b) is the PR-DSF design data.  (c) is the U-DSF design data. 
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 From the simulation data in Figure 33 and Figure 35, the resulting sensitivities of 

the different IDT sensor designs have been calculated.  The sensitivity is based on the 

application of a 100 pg ideal mass applied over a 9.6 x 10-9 m2 area.  As shown in Figure 

36a, the sensitivity of the standard DSF design is significantly better than the DSF 

waveguide device as well as the pruned and U-DSF design without waveguide.  Only the 

optimized waveguide U-DSF design has a greater combined sensitivity as defined by the 

square root of the summation of the squares of the change in velocity and change in 

voltage.  As shown in Figure 36b, the DSF sensor without a waveguide again has a very 

large response to the 100 pg ideal mass, indicating that the acoustic wave is severely 

attenuated by several decibels.  Further inspection of the data shown in Figure 36, shows 

the U-DSFR design to not be easily attenuated and still provide a large response to small 

masses.  It is expected the experimental results would follow the same trend if the same 

precision were possible. 
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                                   (a)                                                                     (b) 
Figure 36  Comparison of in-house SAW device designs responses to the addition of a 

100 pg ideal mass across 9.6 x 10-9 m2 area.  (a) Combined sensitivity as calculated from 

FEM simulation data for the three designs both without (left bars) and with (right bars) an 

optimized waveguide.  (b) Attenuation sensitivity as calculated from FEM simulation 

data for the three designs both without (left bars) and with (right bars) an optimized 

waveguide. 

 

 

5.4 Conclusion 
 

 Measurements from the application of the polystyrene film to the SH-SAW 

devices show that insertion loss and acoustic velocity were both reduced at the optimal 

thicknesses.  These two measurements verified the application of the polystyrene 

waveguide was trapping energy, thus creating Love-waves. 
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 The waveguides were studied based on the three measurements of thickness, 

insertion loss, and acoustic velocity.  The waveguide thickness was used as the reference 

to compare the insertion loss of the devices as well as the acoustic velocity.  The 

maximum decrease was found in attenuation for the U-DSF design to be at ~ 0.50 �m.  

This corresponds to the thickness of the acoustic waveguide that is trapping the 

maximum energy from the LiTaO3 substrate forming the Love-waves.  This maximum 

shows that through the appropriate coating, it is possible to reduce the insertion loss of 

this SH-SAW sensor system by ~ 3 dB leading to lower power consumption of the 

system.  Through the use of time domain measurements, the velocity of the SAW is 

calculated.  At the optimum waveguide thickness (~ 0.5 �m) a minimum is found.  The 

acoustic velocity minimum verifies that the acoustic wave is being slowed down as a 

condition of forming Love-waves. 

 The same IDT designs were simulated using FEM to find the optimal thickness 

for a guiding layer of polystyrene, and calculated an effective sensitivity of the different 

designs.  The FEM solutions were found to qualitatively agree with experimental data.  A 

significant factor for the differences in data is the slightly different frequencies of the 

experimental and simulated devices.  The simplification from experimental to simulation 

namely the reduction of IDTs and the use of mass less transducers that does not allow the 

simulation to account for dispersion associated with the added bulk material is a likely 

source of the additional differences.  Future work is in progress to show the effect of 

transducer mass on the optimization of waveguides and IDT design. 

 Finally, from FE simulation data the effective sensitivity was calculated for the 

different IDT designs tested both with a bare delay path and an optimized waveguide 
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thickness.  Results from the data suggest the efforts applied to advanced IDT designs 

such as the U-DSF one presented in this paper can lead to sensors with significantly 

greater sensitivity as well as greatly reduced power requirements. 
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Chapter 6 

Surface Acoustic Wave Biosensor for Interleukin-6

 

 The development of a biosensor for Interleukin-6 at levels required for 

physiological relevance.  Interleukin-6 is a proinflammatory cytokine involved in the 

body's pathophysiologic response to injury due to various causes, e.g. trauma, burns, 

sepsis, and disease.  The sensor configuration was optimized to provide a substantially 

improved response in comparison with traditional SAW sensors.  The SAW biosensor 

was fabricated in 36° YX LiTaO3 to generate shear-horizontal (SH) waves using the high 

electro-mechanical conversion efficiency of this substrate material.  The biosensors were 

coated with an optimal thickness polystyrene waveguide enabling Love-wave generation 

and increased sensitivity. The biosensor was fabricated using an anti-human Interleukin-6 

biosensor film physically adsorbed to the polystyrene waveguide of the sensor.  Data 

were collected using a homebuilt sensor circuit connected to a multimeter and personal 

computer for data acquisition, and were verified using fluorescent microscopy.  The data 

result in the conclusion that the Love-wave SAW biosensor developed can be efficiently 

used for the sensing of human Interleukin-6. 
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6.1 Introduction 
 

 There are many types of biosensors that have been used for sensing of biomarkers 

[9, 10, 13, 51, 69, 94-99].  Surface acoustic wave (SAW) devices are one type that has a 

proven record to for chemical sensing as well [1, 2, 100-104].  These devices utilize an 

acoustic wave with most of its energy confined near to the surface as a sensing element.  

As the wave propagates across the surface of the sensor, small perturbations to the wave 

can be measured as a change of the acoustic wave’s magnitude and velocity.  Although 

the SAW devices are sensitive to many types of perturbations, the one that is often sought 

and is predominate is mass change on the surface.  Thus, the detection limit of a typical 

SAW sensor is a few picograms.  While working with solutions, detection limit is on the 

order of picograms per milliliter of solution. 

 Biosensing applications such as the one described here require the consideration 

of energy loss to viscous environments the sensor is required to operate in.  SAW sensors 

that can be used in chemical vapor sensing are not viable options for biosensing; 

therefore, a different type of SAW is needed.  As a solution, shear-horizontal SAW 

devices have been found to work well.  The SH-SAW does not contain a vertical 

component of motion, and thus does not lose much energy into viscous fluids that are on 

the sensors surface.  SH-SAW sensors have been used successfully in the detection of 

biomarkers [1, 23, 34, 69, 95, 105-109]. 

 Of particular interest to the work described herein is the SH-SAW sensor that uses 

a thin-film guiding layer to form Love-waves.  The guiding layers commonly used are a 

polymer, oxide, or a combination of the two materials to achieve a desired property [71, 



 102 

72, 107, 110].  With the addition of the guiding layer that meets the conditions that for 

the generation of Love-waves for the most sensitive sensor 1) the lowest mode wave is 

required, 2) the greater the ratio of substrate to guiding layer shear wave velocity, 

density, or both is required [73]. The SH-SAW device can become 20 times more 

sensitive to surface perturbations through the confinement of the wave-energy in the 

guiding layer [22]. 

 To realize, a Love-wave sensor, first the SAW must be of the shear-horizontal 

nature.  This type of wave is found in many common crystalline cuts including quartz; 

however, more recently found piezoelectric crystals and cuts provide higher velocities 

improve sensor characteristics.  36 ° YX LiTaO3 is one such material that produces a 

suitable wave over 4,000 m/s where as typical quartz velocities are around 3,000 m/s [71, 

111, 112].  Not only does this extra velocity give a higher frequency SAW device, but 

also a greater differential between the velocity of the guiding layer and substrate. 

 Interleukin-6 has been known for many years to be an agent in the inflammatory 

process, but until recent studies, the importance and timing of the up-regulation has not 

been known.  Studies both on animal models and human patients show elevated levels of 

IL-6 indicate traumatic injuries, multiple organ failures and ultimately can be used as an 

early indicator (3-6 hours from time of injury) of mortality [113-117].  For these reasons, 

IL-6 was considered to be a good first biomarker to establish a biosensor for cardiac 

trauma.  Healthy adults have IL-6 levels typically < 10 pg/ml and diseased individuals 

have IL-6 levels up to ng/ml levels [117].  When an otherwise healthy individual is 

injured, IL-6 levels can reach 250 pg/ml.  The increase in IL-6 concentration was seen 

within 3 hours of trauma and the level peaked 6 hours after the trauma occurred.  The fast 
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response of the IL-6 can be attributed to being part of a larger cytokine proinflammatory 

response [118]. 

 Although animal models are used to represent human responses, there are some 

distinct differences that are important to consider in developing a biosensor.  Of primary 

concern are the normal and elevated levels of IL-6 found from traumas.  In mice, injuries 

result in IL-6 levels up to 10,000 pg/ml.  Of significance for sensing, mice with IL-6 

levels > 3,000 pg/ml typically had a higher 3-day mortality rate than those with < 2,000 

pg/ml IL-6 [114, 116].  Throughout the studies, IL-6 was found to have a normal relative 

molecular mass ranging from 21 kD to 30 kD depending on the source and method used 

to produce [117], and the assays used in the studies had a sensitivity > 1 pg/ml [117]. 

 

 

6.2 Materials and Methods 
 

 Love-wave biosensors require different parts to be assembled.  The piezoelectric 

substrate provides the basis of all of the SAW work.  In this work, LiTaO3 was used for 

its unique properties of a high coupling coefficient and a nearly pure shear-horizontal 

wave when rotated 36 degrees.  On the substrate, the SAW interdigital transducers are 

patterned and deposited using photo-lithography, and the waveguide at an optimal 

thickness is applied.  The final step to create a biosensor is the functionalization of the 

surface with a biomarker sensitive material.  In the case of this paper, the waveguide 

surface is functionalized with an anti-body. 
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6.2.1 SAW Device Design and Fabrication 
 

 SH-SAW devices were fabricated on single side polished 36° YX LiTaO3 3” 

wafers obtained from Sawyer Research.  Wafers were initially cleaned with a solvent 

rinse consisting of acetone, methanol, isopropanol, and de-ionized water, and 

subsequently dried with nitrogen.  Wafers were then processed with a standard 

photolithographic process to pattern the SAW delay lines. A three-layer metallization was 

done with e-beam evaporation without breaking the vacuum.  The deposited three-layer 

metal film consisted of a 10 nm titanium adhesion layer, 70 nm gold, and a 10 nm 

titanium adhesion layer.  Following lift-off processing and quality inspection, wafers 

were coated with a protective layer of photo-resist and diced by American Dicing into 

individual devices. 

 Delay line SH-SAW devices employed a weighting technique of using one �/4 

finger followed by a double split finger with each part �/8 wide to make up one finger 

pair [19, 119].  Such a design generates waves that are directional [81], thus more energy 

sent across the delay path. This design is referred to as a single-phase unidirectional 

transducer (SPUDT), and it has the advantages of low interfering reflections and low 

insertion loss [83].  Each transducer consisted of 30 finger pairs and had an aperture of 47 

�.  The delay line was shorted with a center to center length of 197 �. 
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6.2.2 Waveguide Application and Measurement 
 

 Individual devices were washed with solvents to remove the protective photoresist 

coating.  Devices were then placed in an air plasma cleaner (Harrick Plasma 

sterilizer/cleaner) for 30 minutes.  The plasma cleaner ensured all organic contaminants 

were removed to provide the best possible surface for waveguide attachment.  280,000 

molecular weight polystyrene (Aldrich) was dissolved in ethyl benzene (Aldrich) to 

various concentrations giving spin coated thicknesses of 45 – 1,200 nm.  Following the 

spin coating, devices were cured for 1 hour at 140 °C.  Witness plates were coated and 

cured in parallel with the devices for additional profilometry measurements.  

 Waveguides were measured for three characteristics: 1) thickness using a Tencor 

profilometer, 2) insertion loss using an Agilent 8753ES s-parameter network analyzer, 

and 3) acoustic velocity using a time domain transform of the Agilent 8753ES network 

analyzer.  The combinations of these measurements form a complete picture to choose an 

optimal waveguide thickness. 

 All RF measurements were automated with LabView 7.0 ® and recorded on a 

standard PC through GPIB.  The automation consisted of controlling the network 

analyzer to scan the s-parameters for signal transmission across 1601 points, followed by 

the phase.  The system next switched to the time domain and preformed a 1601 point 

scan of the time domain to calculate the velocity of the acoustic waves.  Additional 

analysis, non-automated, of selected devices was done such as applying gating to 

measure the effect of bulk acoustic waves, triple transient signals, and internal IDT 
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reflections of the different SAW device designs while the instrument was in the time 

domain. 

 

 

6.2.3 Antibody Attachment to Waveguide 
 

 Love-wave devices were dried with nitrogen then coated with anti-human IL-6 in 

PBS pH 7.4 and allowed to adsorb the protein for 20 minutes.  After the adsorption, the 

devices were rinsed thoroughly in PBS to remove non-bound proteins.  The time between 

and attachment and use of the sensor was minimized.  Additionally between the 

attachment and use, sensors were kept in a high humidity chamber to prevent degradation 

and loss of activity of the antibodies. 

 

 

6.2.4 Experimental Setup 
  

 Individual biosensors once prepared with the antibody coatings were mounted in a 

micro-fluidic test fixture.  The test fixture served as a union of sensor, analyte solutions, 

and electrical connections to measure the perturbations to the acoustic wave.  All samples 

were allowed to equilibrate to temperature prior to performing the experiments at a 

constant temperature. 

 Love-wave devices were mounted in a micro-fluidic test fixture that had a lexan 

viewing window, spring loaded contacts, RF connectors, and an aluminum heat sink.  
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The lexan viewing window was used to verify no air bubbles interfered with the sensing, 

while the aluminum heat sink added to the temperature stability of the device.  The spring 

loaded contacts connected the Love-wave device with the RF connectors through a 

printed circuit board. 

 The micro-fluidic fixture was supplied fluid at a constant rate of 150 �l/min via a 

syringe pump (Harvard Apparatus PHD 2000) and a 6-way multi-port valve (Scivex) 

used to switch to and from a 0.150 ml injection column.  Additionally all fluids were 

degassed prior to entering the micro-fluidic chamber through the use of a frit (Upchurch 

Scientific).  The sensing chamber has a volume of 6.8 �l. 

 

 

6.2.5 Data Acquisition 
 

 Data from the sensor was acquired using a phase comparator circuit connected to 

a multimeter (Keithley 2010) controlled through a LabView ® interface.  The input signal 

was generated from a signal generator (Rhode&Swarz SMA100A) and split into a 

reference line connected directly to the phase comparator circuit and the sensor line that 

was connect through the Love-wave delay path to the phase comparator.  The frequency 

was chosen to provide a linear phase response close to the design frequency of 130 MHz. 
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6.3 Results and Discussion 
 

 Following the methods described above, the SAW sensors were prepared with a 

polystyrene guiding layer to produce Love-waves for enhanced sensitivity.  Chapter 5 

describes the optimization of these layers for use in sensors specifically an IL-6 biosensor 

described in this chapter.  For the purposes of the IL-6 biosensor, the polystyrene wave 

guide was applied to the SAW sensor slightly thinner than optimal to ensure not 

overshooting and decreasing the sensitivity when antibodies and antigens are attached to 

the sensor surface.  Verification of the thickness of each layer was done on a silicon (Si) 

wafer with a native oxide film of 16.48 ± 3 Å as given in Table 7 as � and 
 values from 

ellipsometer measurements. 

 

Table 7  Ellipsometry data for IL-6 biosensor layers. 

Layer � 
 
SiO2 174.41 10.43 

PS (2,500 rpm) 99.20 20.14 
Biotinylated Anti-

Human IL-6 
110.08 18.64 

Alexa-488 labeled 
Human IL-6 

81.20 29.50 

 

 

6.3.1 Sensor Evaluation 
 

 To evaluate sensor mass sensitivity, BSA was flowed across the sensor at various 

levels that would not saturate the surface.  From these experiments the sensor and 

electronics were found to have a noise level of 0.0034° phase with a mass sensitivity of 
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0.97 to 0.0083 deg. cm2 / �g.  The variation of the mass sensitivity is a result of a large 

range of concentrations tested (6 ng/ml to 60 �g/ml).  The highest concentrations 

exceeded the linear regime of the sensor as shown in Figure 37.  In light of the non-linear 

behavior of the sensor, all responses were repeatable and complete within 20 seconds of 

injection.  Even this slow response can be attributed to transport and diffusion limitation 

of the micro-fluidic test system. 

 

 
Figure 37  Sensitivity determination using BSA at various concentrations from 6 ng/ml to 

60,000 ng/ml. 
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6.3.2 Interleukin-6 Sensing 
 

 The polystyrene coated 36° YX LiTaO3 SH-SAW sensors were prepared 

according to section 6.2.3.  Following the surface attachment, the sensors were inserted 

into the microfulidic test fixture illustrated in Figure 5.  The sensor was given 4 minutes 

to equilibrate to conditions of the micro-fluidic test fixture.  PBS pH 7.4 was used as the 

carrier of antigens.  To control the injections of human IL-6, an injection loop of 0.150 

ml was used. 

 The experimental data shown in Figure 38 is the result of a series of consecutive 

injections human IL-6 into the micro-fluidic system.  The data shown on the right side of 

the graph is the total antigen adsorbed to the surface of the sensor.  Approximations of 

the possible number of antigens able to bond to the antibody surface based on the 

concentrations of the used antibodies to prepare the surface, theoretically, 23 ng total 

mass was possible. 
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Figure 38  Sensor signal response to a series of human IL-6 injections onto one sensor 

element.  The total mass accumulated on the surface is given as the right axis. 

 

 

6.4 Conclusions 
 

 In this study the development of a polystyrene Love-wave surface acoustic wave 

sensor is shown for sensing of interleukin-6 at physiologically relevant concentrations.  

The sensitivity of the sensor and associate measurement electronics used in this work 

were tested using various concentration of BSA.  These results gave the necessary 

parameters to continue the work for IL-6 sensor development.  The finally portion of this 

study verified the polystyrene Love-wave SAW sensor was sensitive enough for the 

necessary level of IL-6 to be physiologically important to animal model studies such as 

mice and can potentially be used in clinical studies. 
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 Further studies are necessary to improve the maximum attachment of antibody 

and antigen to the sensor.  This work can be further expanded to sensing IL-6 in serum. 
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Chapter 7 

Simultaneous Surface Manipulation and Sensing in a Biosensor Using a Hexagonal SAW 

Device 

 

 Presented is the development of a hexagonal surface acoustic wave (SAW) device 

to simultaneously manipulate biological films and sense in biosensors. The objective is to 

improve sensitivity and selectivity.  A hexagonal device fabricated in 36° YX LiTaO3 

allows for propagation of both Rayleigh and shear-horizontal wave modes 

simultaneously.  The high electro-acoustic coupling in this piezoelectric material allows 

for efficient transfer of energy from electrical to mechanical form. 

 The Rayleigh acoustic waves stress the bonds between the sensing film and 

analyte forcing only the analyte with the highest affinity for the sensing film to stay 

bound, while the shear-horizontal (SH) waves are used for sensing.  Additionally, the 

acoustic waves work to efficiently mix the liquid samples flowing through the micro-

channels of the sensor system, reducing the effects of diffusion-limited processes. 

 Results from using a sensing film of anti-mouse IgG covalently bound to the 

sensor-surface and mouse IgG as the analyte in buffer solution have shown improved 

sensor response, determined using fluorescent microscopy.  Manipulation of liquid 

samples was achieved by strongly exciting the piezoelectric substrate with power levels 

of ~12 mW which is significantly greater than the 1 mW used for sensing.  The larger 
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electrical power creates an acoustic wave via piezoelectric coupling that can physically 

force loosely bound species from binding sites, reducing noise that can lead to inaccurate 

measurements. 

 

 

7.1 Introduction 
 
 Surface acoustic wave (SAW) sensors have now been used in many applications 

in both gaseous [1, 40, 120] and liquid environments[95, 101, 121].  The use of a SAW as 

a biosensor implies the device must not inherently be attenuated by the environment it is 

supposed to operate in.  For general purposes, this implication restricts the SAW 

biosensors to SH and a specialized SH-SAW device that creates a Love mode wave from 

a thin film deposited on its surface [71, 111]. 

 SAW sensors have been shown to work well as high sensitivity biosensors; 

however, like all other biosensors nonspecifically bound (NSB) protein interactions can 

cause a less than ideal sensor response and determination [5, 27].  Some possible 

responses seen as a result of NSB proteins include: exaggerated response due to multi-

layers, false responses due to miscellaneous proteins covering the surface, and no 

response due to poor alignment of the functional groups.  Minor improvements to 

biosensor responses can be achieved from thoroughly rinsing, use of ultrasonic baths to 

remove NSB proteins, and pretreatment of the analyte containing fluids.  Each one of 

these processes adds to the complexity and functionality of a biosensor to be operated 

without specialized training in everyday environments. 
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 Developments in acoustic wave applications have shown the functionality of 

nonspecific protein removal with relatively low power consumption thus significantly 

decreasing the uncertainty of the sensors response. 

 

 

7.2 Materials and Methods 

7.2.1 Sensor Device Design 
 

 The hexagonal SAW is a composite of three traditional delay line SAW devices 

rotated about the center of the die, which is approximately 20 x 20 mm.  The individual 

delay line devices are identical bi-directional interdigital transducers (IDTs) with an 

aperture of 47 �, delay length of 197 �, and feature size of 4 �m.  To eliminate unwanted 

waves and eliminate the electrical effect the delay path is shorted.  A standard 

metallization procedure of 100 nm titanium adhesion layer followed by 700 nm gold 

layer was used.  Figure 8 is an illustration of the hexagonal SAW layout.  The IDT 

designs tested included design considerations to improve the phase linearity and decrease 

the phase noise [18, 19]. 

 

 

7.2.2 Micro-fluidic Sensor Fixture and Testbed 
 

 The sensitivity required for detection of many biological markers is on the order 

of a few nano-grams, which is obtainable by many sensors; however, with advances to 
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SAW sensors they are some of the most sensitive devices [30-32].  The challenge 

associated with this scale of mass sensitivity becomes largely a fixture and test parameter 

issue as any variation in fluid flow or pressure will cause a significant sensor response 

[33].  To address this issue, it was decided to use a precision syringe pump manufactured 

by Harvard Apparatus which unlike peristaltic pumps provides a smooth continuous flow 

with no pulses.  The equipment shown in the illustration (Figure 5) is highly adaptable for 

all of  required fluid requirements from nano-liters to milli-liters [34].  Additionally, 

making the configurability and operation of the testbed simple is a LabView virtual 

instrument interface that controls and records all electronic operations including flow 

rate, flow direction, and valve sample selection.  Due to the design of the hex-a-saw a 

typical fluidic fixture is not feasible, so an in house design has been designed and 

fabricated.  The test fixture is constructed of polycarbonate, which has low moisture 

absorption, high strength, no centerline porosity, easily machineable, and can be polished 

to be optically clear.  The micro-fluidic fixture to make electrical connections has a 

printed circuit board with SMA connectors attached.  

 

 

7.2.3 Experimental Procedures 
 

 Although the sensors were designed for biosensor applications additional 

preparation of the sensors’ surfaces were necessary.  Primary to the preparations was to 

insulate the IDTs from the environment meeting three conditions 1) the insulating 

material must not attenuate the SH-SAW, 2) the material must not be highly permeable 
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by water, and 3) the material must permit attachment of antibodies.  Polystyrene (Sigma 

Aldrich) was chosen as a solution.  Coating the sensor was achieved by dissolving 

polystyrene in 2-Butoxyethyl acetate (Sigma Aldrich) to 4 weight percent then spin 

coating to a uniform thickness and annealed at 120 °C for 1 hour.  Following the 

annealing, the sensors where mounted in the micro-fluidic fixture. 

 From a calculated area of the sensor exposed and cross-sectional areas of the 

antibodies used, a concentration of proteins was specified to ensure for 100% coverage of 

the sensor surface without excessive multi-layers of nonspecifically bound proteins.  The 

calculated protein concentration was applied to the surface of the sensor through the 

micro-fluidic fixture for 1 hour to allow adequate surface adsorption to the polystyrene.  

Having the sensor functionalized with an antibody, varying concentrations of antigen 

were flowed across the sensor at a constant 0.15 ml/min.  The antigen concentrations 

were calculated to ensure less than 25 % surface coverage.  To further insure a good 

response of the sensor the pH was maintained at 7.4 through the use of phosphate buffer 

solution (PBS). 

 

 

7.3 Surface Manipulation 
 

 The second task of this project was the use of high amplitude waves to remove 

loosely bound materials from the sensors surface thus improving the sensors abilities.  

The first tests to show the surface was being manipulated were conducted using a Leica 

DMI4000 fluorescent microscope.  With the prepared sensors, fluorescently labeled 
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proteins were excessively adsorbed onto the surface of the device for 1 hour.  Sensors 

where then flushed with 3 ml of PBS.  Following the flushing the devices were subjected 

to high amplitude waves using 5 watt power amplifier (Mini-Circuits).  Calculations were 

done to find the actual power delivered to the IDT was on the order of milli-watts due to 

insertion loss of the device and attenuation of the films on the surface. 

 

7.4 Simultaneous Surface Manipulation and Sensing 
 

 The final task of these experiments was the combination of the high amplitude 

waves manipulating the surface and the use of low amplitude waves for sensing the 

changes of the sensing film simultaneously.  The sensors were first prepared with an 

antibody film as described above, and used to sense a known concentration of antigen in 

solution.  After the sensing test, the sensors were coated with known concentrations of a 

nonspecific binding protein, Bovine Serum Albumin (BSA).  Following the BSA 

application, the sensors were flushed with 3 ml of PBS then subject to high amplitude 

waves while monitoring the changes with a different delay path. 

 

 

7.5 Results and Discussion 
 

 The sensor used in this project is theoretically capable of detecting nano-grams of 

mass change on the surface, the first round of experiments showed that this was the case 

with the detection of low levels of mouse IgG onto a functionalized surface.  A 
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representative data set of the sensing capability is shown in Figure 39.  The first drop on 

the curve is the result of flushing away the excess antibody from the 1 hour adsorption 

process.  Following the first large drop, the antigen is injected and flushed away.  For this 

there are actually two measurements that are significant.  First the phase change while 

injecting the known concentration, and second the phase change seen remaining on the 

surface of the device even after an extensive flushing with PBS. 

 

 
Figure 39  Normalized phase response for the coating of a sensor with anibodies (138 

ng/ml anti-mouse IgG in PBS) followed by the detection of of the antigen (324 ng mouse 

IgG), and the coating of the sensor with nonspecifically binding BSA (500 ng). 

 

 The final responses in Figure 39 are from the addition of BSA to completely coat 

the surface in preparation for testing the removal NSB proteins.  Upon first inspection 
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one will note the magnitudes of the two steps are significantly different from the response 

of the specific antigen.  This is the result of leaving the linear response regime of the 

SAW sensor by applying too much material onto the surface.  For many biosensors this 

would result in discarding the sensor and starting over to make any determination; 

however, this provides this project with a perfect beginning to test the cleaning 

functionality of the hexagonal SAW, such a result is shown in Figure 40. 

 Having coated a sensor’s surface beyond its functioning point is often 

encountered, but more common is not having a pure sample with only one protein.  Such 

a sample requires extensive filtering and/or processing to be able to make a determination 

on the concentration of the desired protein.  The results in Figure 40 address this issue, 

but more specific to this project show that it is simultaneous operation of crossing delay 

paths to sense and manipulate the sensing film is feasible.  The data show the addition of 

a high concentration of BSA to the surface of the SAW sensor followed by the removal 

of some of the BSA remaining on the surface after and extensive flushing with PBS.  The 

removal is achieved through the application of the power amplified signal for 50 seconds 

on a different SAW delay path from the one doing the sensing.  Due to the limitations of 

the current design of the hexagonal SAW more of the sensing delay line is exposed to the 

sample solutions than what the second and third delay paths would be able to manipulate. 
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Figure 40  Normalized phase angle response of sensor to the removal of excess BSA with 

just a flush of PBS followed by the removal of NSB BSA using high amplitude waves of 

a different delay path. 

 

 

7.6 Conclusion 
 

 The development of a hexagonal SAW device was shown to simultaneously 

manipulate biological films and sense the changes using a different acoustic wave across 

the same sensing film.  The results have shown both that low level sensing of proteins in 

solution is possible with this new SAW sensor.  Additionally the sensor has the 

functionality to reduce error in responses by removing NSB proteins and other loosely 

bound material that are common in complex samples.  With further design improvements 

and studies, this device is believed to have wide application to bio-sensing especially 
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where non-purified samples containing many different proteins need to be analyzed 

without the use of technicians and laboratory equipment. 
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Chapter 8 

Effects of Micro-cavities on Shear-horizontal Surface Acoustic Wave Sensors: 

Theoretical Study 

   

 Micro-cavities in delay paths of 36° YX-LiTaO3 surface acoustic wave sensors 

were studied using finite element methods.  Simulation results of �/2, �/4 and �/8 micro-

cavities empty and polystyrene filled were compared to standard delay line shear-

horizontal SAW, optimized Love-wave, and etched grating sensors.  The micro-cavities 

reduced the insertion loss by 19.25 dB from 33.28 dB with a velocity sensitivity 4.83 

times greater than the standard SAW sensor simulated. 

 

 

8.1 Introduction 
 
 Challenges for developing sensors include factors such as sensitivity, power 

consumption and reproducibility.  For surface acoustic wave (SAW) sensors, sensitivity 

is one of the most critical parameters and is often improved by decreasing the operational 

wavelength.[1]  Sensitivity can be improved secondly through the addition of a guiding 

layer to create Love-wave devices.[22, 122]  An analytical solution by Mchale et al. 

showed a theoretical improvement limit to sensitivity of 20 times.[22]  Our finite element 
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(FE) simulations show an improvement of 5.36 times the velocity sensitivity of the Love-

wave sensor over a standard SAW sensor. 

 Power loss for sensors is a growing issue with the increasing demand for personal 

and remote sensing applications for these reasons power usage of a sensor is very 

important.  Ideal SAW delay line sensors have an insertion loss of 7 dB and it is not 

uncommon to work with insertion losses of 20 dB simulated devices had insertion losses 

from 14.03 to 33.28.  Common methods to decrease the insertion loss in SAW devices, 

not particularly sensors, include reflective gratings[18], grooves and corrugated 

gratings[19, 123, 124], and wave-guides[72].  The reoccurring methods in these four 

primary schemes to improve the SAW device power loss is the conversion bulk waves 

into surface waves and entrapment of energy near the surface that would otherwise be 

lost to bulk waves.[18, 25] 

 

 

8.2 Methods 
 
 The micro-cavity devices described herein are a combination known methods to 

improve SAW device characteristics.  First etched substrates with square patterns of �/2, 

�/4 and �/8 dimensions at varying depths to increase the dispersion and bulk to surface 

wave conversion were studied and compared to etched gratings.  The polystyrene was 

added to the micro-cavity simulations to act as an inhomogeneous waveguide for further 

entrapment of wave energy near the device surface.  Last, the device design that gave the 

best characteristics was applied to sensing applications through the addition of an ideal 
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mass to measure sensitivity.  The same mass was added to a standard SAW sensor, an 

optimized Love-wave sensor, and the best etched grating sensor for comparison using a 

combined sensitivity term that accounts for both voltage and velocity perturbations.   

 The base sensor model is 3-D FE model created in ANSYS.  The FE SAW model 

is used to simulate effect of micro-cavities on sensor sensitivity. The transient response of 

the SAW sensor to an impulse input applied at the transmitting interdigital transducer 

(IDT) fingers were utilized to study the wave generation and propagation characteristics 

as well as deduce its frequency response.  The developed models consisted of a 36° YX 

LiTaO3 substrate 40 � long, 5 � wide and 5 � deep with IDT’s 2 � long and �/4 wide with 

a periodicity of 40 �m.  For this work, the transducers were considered to be mass-less 

elements.  Tetrahedral elements were used throughout the model with 4 degrees of 

freedom to account for voltage and particle displacements in the x-, y- and z-directions.  

The formation of the elements was done to ensure a highest density on the top center 

surface of the substrate where the most deformation occurs.  The simulations were 

initiated with an electric impulse of 10 V applied at the transmitting IDT fingers with 

time steps of 0.95 ns.  The simulation was carried out for 190 ns and parabolic 

fitting/interpolation between the 0.95 ns time-steps were used on all data.  The simulation 

time and dimensions of the model were chosen to prevent reflected signals from the ends 

and bottom of the substrate. 

 The models were so configured that the micro-cavities (20 identical per 

simulation) were located in the center of the delay path forming 4 rows of 5 micro-

cavities each as shown in the cross-section of the meshed model in Figure 41.  For 

comparison, grooves (etched gratings) of length �/4 and �/2 with width equivalent to the 
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aperture of the IDT’s and depths the same as the cavities have been simulated.  For 

complete details of the models used including example Ansys script files, see Appendix 

B. 

 Additionally, the micro-cavities and grooves were filled with polystyrene (PS) to 

serve as a waveguide and further enhance the sensor characteristics.  From the theory of 

waveguides, the addition of polystyrene, a material with a lower density and lower 

acoustic velocity than the substrate, was expected to trap more energy at the surface than 

if the device were bare.[22] 

 

 

Figure 41  Cross-section of meshed �/2 x �/2 x �/2 micro-cavity SAW device. 

 

 

8.3 Results 
 
 For the �\4 design data as shown in Figure 42, the �\4 depth filled with PS design 

have 14.26 dB greater energy transmission across the delay path as compared to a plain 
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path.  This design even has an improvement over the Love-wave (LW) design data by 

6.66 dB.  Notably, the �\8 depth not filled with PS is between the �\4 depth filled with PS 

and the LW design data.  From the �\2 design data as shown in Figure 43, the �\8 depth 

filled with PS design has an increase of 5.35 dB over the �\4 design data. 

 

 
Figure 42  Comparison of transmitted energy of the �/4 designs �/4 and �/8 deep that are 

both empty and filled with polystyrene to an optimized Love-wave and a standard SAW 

delay path. 

 



 128 

 
Figure 43  Comparison of transmitted energy of the �/2 designs �/2, �/4 and �/8 deep that 

are empty and filled with polystyrene to an optimized Love-wave and a standard SAW 

delay path. 

 

 

 The �/2 width by �/2 length by �/8 depth micro-cavity filled with polystyrene 

showed the greatest energy transmission across the delay path and was chosen for 

comparison to a standard split finger sensor, Love-wave sensor, and �/2 width by �/8 

depth groove grating filled with polystyrene sensor.  Simulation models were created to 

apply a 100 pg mass across 9,600 �m2 center in the delay path of the SAW sensor.  The 

same transient analysis used for initial work was performed on these now ideal-mass-

perturbed sensors.  The resulting data are summarized in Figure 44 as the square root of 

the summation of the squares of velocity and voltage changes as a result of the 100 pg 

mass perturbation.  The data show the �/2 width by �/2 length by �/8 depth micro-cavity 



 129 

array filled with polystyrene to be 1.38 times more sensitive than a standard split finger 

SAW sensor and 1.79 times more sensitive than an optimized Love-wave SAW sensor 

through finite element simulations applying 100 pg ideal mass to the surface of each 

sensor resulting in both velocity and voltage perturbations.  Although the finite element 

models simulated in this work are limited in comparison to experimental dimensions, 

previously shown, the results show clear trends that are found in experimental studies.[6, 

110] 

 

 
Figure 44  Comparison of combined velocity and voltage mass sensitivities of a plain 

single split finger SAW sensor, an optimized 2,200 nm polystyrene Love-wave sensor, a 

�/2 length by �/8 depth groove grating filled with polystyrene, and a �/2 length by �/2 

width by �/8 depth micro-cavity array filled with polystyrene. 
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8.4 Conclusion 
 

 In summary, theoretical studies using finite element methods to study the effects 

of micro-cavities and grooves on SAW propagation were completed for sensor 

applications.  Additionally, the filling of the micro-cavities and grooves with a less dense 

and lower acoustic velocity material (polystyrene) was studied.  The data presented 

compares micro-cavity structured SAW sensors to traditional designs such as a plain 

delay path and an optimized waveguide coating.  The micro-cavity structure data show 

significantly greater energy transmission than the other structures presented in this study. 
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Chapter 9 

Conclusions and Points for Future Endeavors 

 

  The work presented in the previous chapters covered topics including acoustic 

wave theory, material characterization, chemical and biological sensing, and removal of 

nonspecifically bound proteins.  As such, these components and applications are the 

result of research to develop one sensor system that can ultimately be used for the sensing 

of biological moieties with the capability to be reused either through a sensor self 

regeneration or the replacement of sensor element.  Progress towards this goal was made 

through contributions to the scientific community as summarized in the following 

section.  Finally with all work, facets of interest for future research are developed.  Some 

of the key points are explained in the final section. 

 

 

9.1 Summary of Contributions 
 

 Across the work that is presented in this dissertation considerable effort has been 

made to establish a foundation both in available knowledge and physical resources for 

current and future researchers to build from.  Key examples of this work are the 
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development of designs, scripts, programs, and test fixtures necessary to conduct sensor 

research from experimentation to data analysis. 

 A direct contribution resulting in a patent was the development of the hexagonal 

SAW device.  This device was conceived as a new tool for material characterization and 

sensing application.  The device consists of three independent SAW delay paths that 

intersect.  It was shown that the delay paths can operate simultaneous for improved 

chemical determinations and material characterization as verified through the use of 

principal component analysis on polymer / organic vapor sorption experiments.  The 

same design was later used for simultaneous sensing of biological moieties while 

removing nonspecifically bound materials. 

 Prior to testing the hexagonal SAW device for simultaneous liquid phase sensing 

and cleaning, experiments were conducted to show the feasibility of using acoustic 

streaming to remove proteins from surfaces.  Additionally in collaboration with 

Subramanian K.R.S. Sankaranarayanan finite element models created and run to explore 

the physics of acoustic streaming. 

 In an effort to have the best sensitivity both experimental and theoretical studies 

were conducted to find the best IDT design with optimal waveguide thickness to generate 

Love-waves.  IDT designs for sensor applications previously were only very basic due to 

the range of knowledge necessary to develop sensors.  From a thorough search of sensor 

literature, this type of work had not previously been attempted either through 

experimental or simulation methods. 

 A new design approach to increase sensor sensitivity and decrease sensor power 

consumption was created and studied in this dissertation work through the use of finite 
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element model simulations.  The designs simulated based on a microarray etched into the 

delay path of a SAW sensor took the best of all previously used concepts for efficient 

surface acoustic wave transmission, and showed the best sensor in terms of energy loss 

and mass sensitivity.  Part of this study compared the use of Love-waves and etched 

gratings to the etched microarray design proposed.  Additionally, it was shown that the 

use of typical Love-waveguide material to fill the etched patterns further improved the 

desired sensor properties. 

 

 

9.2 Points for Future Endeavors 
 

 This work has encompassed many different disciplines to set up experimental and 

theoretical test apparatuses that can be adapted to support many new exciting endeavors.  

Throughout this work, the designs and equipment used was specified for general use 

instead of specific one time tasks for this reason there are many worthwhile projects that 

can be spun from this ground laying work. 

 

 

9.2.1 SAW IDT Designs 
 

In Chapter 5 three IDT designs were compared both experimentally and through FE 

simulations.  This chapter serves as a basis for this part of the future work.  In essence, 

more IDT designs need to be studied for sensor response to ideal and non-ideal mass 
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loading.  One of the first designs to be studied should be the focused IDT. Other 

interesting designs worth studying are acoustic horns and variations to unidirectional 

designs similar to the one discussed in this dissertation.  For some of the designs, 

analytical models can be developed for further comparison. 

 

 

9.2.2 Microcavity Delay Path Experiments 
 

 Methods to improve sensitivity and reduce power consumption of sensors are 

wonderful topics that form a very large project.  As shown in Chapter 8 modifications to 

the delay path of a surface acoustic wave sensor can produce large changes to sensor 

characteristics.  Further work needs to be done on this topic to experimentally verify the 

findings of the FE simulations.  The work involves creating a mask for the microcavities, 

then etching the pattern into characterized SAW devices.  Sensitivity can be accurately 

determined through the addition of thin metal film experimentally. 

 

 

9.2.3 Simulations of Non-square Microcavities 
 

 In the present work only square microcavities have been studied, but there are 

many designs that can be simulated and experimentally verified.  Designs including 

circles and polygons as the base of the microcavity can be studied with vertical side walls 

and angled sides to form cone and pyramids.  More elaborate designs to reduce 
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reflections and maximize wave propagation can also be investigated.  Designs for such 

cavities can be adapted from optic and RF waveguide theory. 

 

 

9.2.4 Combined SAW – Bulk Acoustic Wave Device 
 

 New devices are always interesting endeavors to pursue.  One such device, proven 

in concept by Don Malocha and students, is to combine a SAW and bulk acoustic wave 

(BAW) device in one [125].  The idea behind this is similar to the hexagonal SAW, have 

more signals thus more information for the sensor.  The plan to develop this device is to 

take the hexagonal SAW and pattern gold electrodes on the back side of the crystal.  Due 

to the thickness, the BAW that can be generated will be about 3 MHZ.  (0.5 mm = 20 

mils)  This will allow the measurement verification of the SAW parameters using the 

BAW.  The BAW can be used for temperature compensation or measurements.  

Unfortunately, the electrode size is not ideal and the backside of current wafers is not 

polished. 

 

 

9.2.5 Combined SAW – Surface Plasmon Resonance Device 
 

 Biosensors ultimately need to be sensitive to extremely small concentrations of 

analytes.  For surface acoustic wave sensors, the sensitivity is dependent on the frequency 

which is a function of the substrate properties.  Sometimes one method is not the best for 
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a task, so the use of another sensor technology is required.  The ability to integrate is 

there for SAW and Surface Plasmon Resonance (SPR).  In the combined system, the 

SAW can be used for sensing or acoustic streaming to move material from the sensor 

surface. 

 Surface plasmon resonances are electromagnetic fields generated on the surface of 

metals through an incident light source.  Once the resonance is established, the refractive 

index can be measured via the angle of the reflected light with a photo-detector.  To 

utilize SPR in a sensor configuration, Figure 45, a thin film of gold is deposited on the 

top side of a substrate through which the light is transmitted to measure changes 

occurring in the sample on the gold surface. 

  

 
Figure 45  SPR sensor schematic. 
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 SPR is a sensitive measurement for thin films on the nanometer-scale that has 

been used recently to measure single biomarker levels as well as to determine binding 

energies of the antibody/antigen interaction involved in such measurements.  Sensitivity 

of SPR is enhanced by selectivity of the sensor film and by the quality of the photo-

detector utilized. 

 The proposed project will integrate SAW and SPR principles on one sensing 

element to enhance analyte identification and quantification from the orthogonal 

information afforded by the two sensing and acoustic streaming principles.  The SAW 

sensor component will be based on the hexagonal SAW device.  This component of the 

proposed device is capable of simultaneously transducing the biochemical concentration 

at the tens of picogram to nanogram/ml levels into a readable signal and of keeping other 

proteins and biomarkers from interfering with the transduction mechanism.  Thus, the 

proposed sensing element will integrate two sensor principles and selective protein 

removal on a single area element.  Combined, it will allow for differential sensing of 

multiple biomarkers, when applied in a biosensor format.   

 The integrated device schematic is shown in Figure 46.  The first milestone for 

the project is the acquisition of theoretical device fundamentals and device fabrication 

details.  This sensor system element will be designed to function on the available 

microscope platform to facilitate the SPR measurements. SAW sensor measurements and 

high-energy Rayleigh wave generation will utilize RF electronics and analyzers.  

Acquisition of these skills and utilization of these techniques will be a second milestone 

for the project.  The third and important milestone will be reached when a successful 
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sensor system element is fabricated and tested.  The fourth milestone is the demonstration 

of differential detection of multiple biomarkers, including data analysis. 

 

 
Figure 46  Integrated SAW-SPR sensor schematic. 

 

 

9.2.6 New Materials:  Langasite and Nano-Crystalline Diamond 
 

 New materials provide a range of repetitive type work that needs to be done to 

characterize the material.  Fortunately, new materials also open new areas of study.  For 

example, Langasite is a material that maintains its piezoelectricity to a very high 

temperature enabling sensing at these temperatures has previously been inconceivable.  

With Langasite sensors need to be made and compared to existing quartz, LiNbO3 and 

LiTaO3 devices.  Some of this work can be done with FE simulations already configured 

by simply changing the input material matrices rotated appropriately. 



 139 

 Diamond has many fantastic chemical and mechanical properties that are being 

leveraged in numerous projects.  For the proposed biosensor, diamond has a dual role for 

both enhanced transduction as well as a biofunctionalization.  Since diamond is just 

carbon atoms, it is by itself biocompatible [126, 127].  Polycrystalline diamond in part 

due to its biocompatibility has been used for biosensors.  Typical micron sized grain 

structured diamond exhibits poor, sluggish sensor responses, while nanocrystalline 

diamond films exhibit improved sensor responses that are indicative of enhanced 

selectivity [128].  Slight modifications to the diamond growth conditions and post-growth 

treatments such as dopping can fine tune the properties of the diamond [129].  

Nanocrystalline diamond has been shown to form covalent bonds with proteins that still 

show full functionality and activity once bound [126, 127, 130]. 

 Nanocrystalline diamond can be plasma treated to increase the surface oxygen 

and hydroxide terminations.  The advantage of this treatment is to be able to choose 

between hydrophilic and hydrophobic surfaces depending on which will provide the best 

surface coverage using a set protein.  General results confirmed using ELISA show that 

the immunoglobulins have a higher binding efficacy with a hydrophilic nancrystalline 

diamond [127, 130].  Once the surface has been modified to be hydrophilic, it is possible 

to use common silane treatments for creating covalent bonds between the diamond and a 

chosen protein [27, 131]. 

 From the devices fabricated and characterized, it is possible then to use the 

devices for an exciting use, namely in-situ material characterization of high growth / 

deposition temperature materials such as nano-crystalline diamond.  The advantage of 
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this work will be the development of a system that can measure material properties of 

things that usually require post-operation metrology. 

 

 

9.2.7 SAW Sensor Circuit Optimization 
 

 To be able to produce a device that is feasibly used in the field for testing, the 

electronics of the sensor described need to be optimized and condensed into a tight 

package.  The most challenging aspect of the optimization will be the power amplifier 

integration and condensing.  This RF component is required to be high power to be able 

to remove materials from the surface of the sensing element.  Typically this component is 

not packaged tightly with other electronics; however, with known SAW properties, the 

power amplifier is only required to be operated for a short period of time which makes 

this a doable task. 

 

 

9.2.8 Fluid Solid Interaction Simulations 
 

 With the available computing resources and developed FE models, the application 

of these to the different IDT designs is a natural progression of work.  Although only 

intuitive results are expected, the work is worthy to further understand the methods to 

tune acoustic streaming for the desired applications of biosensors. 
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 Slightly more complicated to create a model for are the microcavity designs.  

These structures have the potential to create tremendous forces with acoustic streaming at 

the boundaries of the microcavities due to the reflections.  The devices need to be 

simulated both without and will the waveguide material in the microcavity. 
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Appendix A Acoustic Wave Theory
 

 Through out the literature [1, 25, 132, 133] there are a number of variations in 

nomenclature and coordinate definitions for this reason all derivations have been 

standardized to conform to a single notation.  Figure 49 illustrates the motion of the 

Rayleigh (Figure 47a) and shear-horizontal waves typically found in SAW sensors.  

A pure shear wave either horizontal (Figure 47b) or a shear-vertical wave (not 

illustrated) have only have a particle motion in one direction, for example, the SH 

wave’s particle motion is parallel to the x-axis.  Rayleigh waves are distinguished 

from a shear wave in that the particle motion is elliptical having both a shear vertical 

and a longitudinal mode.  Following the coordinate system in Figure 49 the motion is 

both in the z- and y-directions for the Rayleigh SAW.   

 

  
                       (a)                                                                    (b) 

Figure 47  Illustration of Rayleigh (left) and shear-horizontal (right) waves. 
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 By following the general perturbation theory given in literature [25], the 

surface impedance of a SAW can be found from: 
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where the variables in the equations are solely physical properties of the materials.  

Various films and liquid can be coated onto the SAW to make small changes in the 

propagating wave’s properties.  Such changes can be recorded and analyzed through 

the surface impedance when considered as a complex propagation represented by: 
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Figure 48  Four layer model diagram of SAW device needed for biological sensing 

applications in liquid samples while utilizing a guiding layer for enhanced sensitivity. 
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 This model can be more beneficial than just analyzing the behavior of a SAW 

device.  Built into the model is are material properties such as the Lamé, bulk and 

shear moduli, that can be extract through further mathematical derivations based on 

the displacements associated with the different wave modes.  A generalized table is 

given below for an acoustically thin film on a Rayleigh wave device as an example.  

The definitions of the displacement motions are illustrated in Table 8 as well.  This 

shows the changes in the wave propagation are a result of the changes of the waves in 

all directions, for the case of a Rayleigh wave this is limited to y- and z-direction 

motion plane.  For shear-horizontal wave, the motion is further limited to the x-

direction [1, 132, 133]. 
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Table 8  Moduli associated with strain modes generated by SAW  (acoustically thin 

film (R<<1) => E(2)�0) 
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 Within the confines of this project, the perturbation model is developed from 

the basic SAW device through a four layer device as shown in Figure 48.  From the 

substrate up for the biomarker detector the layers are a piezoelectric substrate, an 

insulating guiding layer, an analyte specific layer, and finally the carrier fluid of the 

analyte.  The model for such a system becomes cumbersome; however, the surface 

u

u

u

u
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impedance of the differing films remains a function of just the physical properties of 

the materials.  One assumption that has been made to simplify the solution was 

considering the liquid layer as a solid to avoid the use of the Navier-Stokes equation.  

The thought behind this simplification is the liquid flow rate and volume of liquid are 

very small as well as being constant.  The complex propagation can thus be 

represented as: 
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 The first portion of the derivation is general for all waves.  Following the 

generalized derivation, conditions will be applied to constrain the waves to Rayleigh 
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and pure shear-horizontal waves independently.  To begin this derivation the equation 

of motion is known to be:  

t
v

T
∂
∂=⋅∇ ρ  (A.4) 

 

from which the following expansions are known: 
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Appendix A.1.1 Isotropic Film 
 

For an isotropic film, modifications to these equations can be done where: 

ωj
t

=
∂
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 (A.6) 

 

 

In plane displacement gradients can be considered as follows: 
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Cross film displacement gradients can then be defined: 
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where G and K are the shear and bulk modulus of the material that are complex 

numbers whose real portions represent the storage moduli and the imaginary portions 

represent the loss moduli as shown below: 

GjGG

KjKK
′′+′=
′′+′=
 (A.9) 

Additionally, stress and strain are related through the following equations utilizing the 

material moduli: 

Considering the relationships between the stress (T) and strain (S): 
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( ) ijij SSSST µλ 2332211 +++=    (for i=j) (A.10) 

2
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ij

S
T ⋅= µ    (for i�j) (A.11) 

where � and � are the Lamé constants.  Similar relations can be given using the bulk 

(K) and shear (G) moduli using the following equations: 
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Substituting the displacement gradients into the continuity equation a set of three 

dimensional wave equations are found,  
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Into this set of wave equations, the harmonic solution ( ) ( )kztjeduu −= ωˆ�
 is substituted, 

where d is the distance across the film, ( )dû  is the cross-film displacement, � is the 

angular frequency (� = 2�f), and k is the SAW wave number (k = 2� / � = � / vo). 
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Appendix A.1.2 Wave Propagation Limited to Z-direction 
 
At this point the derivation will be constrained to a wave propagating in the z-

direction implying, motion in the z-direction is longitudinal and in the x- and y-

directions is lateral or shear.  These equations can be further simplified by assuming 

the displacements in a particular direction are zero.  In the case of a Rayleigh wave, 

the displacement in the x-direction is zero thus, 0=
∂

∂
x

ux .   
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In the case of a shear-horizontal wave, displacements only occur in the x-direction 

thus, 
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(A.16) 
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For a Rayleigh SAW coated with a film: 

Rearranging the equations yields the displacement profile: 

( ) ( ) ( )yjByjAyu f
i

ff
i

f
i ⋅−⋅+⋅⋅= ββ cossin  (A.18) 

 

where the superscript f indicates variables associated with the film. 

 

The general solution for the displacement profile is: 
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in other terms, 
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In order to solve for the constants A and B two boundary conditions needed.  The first 

condition infers the displacements from the crystal into the film are uniform.  += 00iu  

Therefore, ff
i BAu +=0 .  The second boundary condition is that the film/air 

interface is stress free.  ( ) .0=hTiy   Therefore, hjfhjf f
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Simultaneously solving these boundary conditions,  
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By substituting A and B into the original equation, and applying the definition of a 

hyperbolic cosine: 
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Now, considering the mechanical surface impedance given for each displacement is 

described by: 
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The cross-film gradients give the interfacial shear stress: 
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where f
iM  represents the stress gradients of the film. 

 

This leads to the interfacial particle velocity: 

( ) ( ) ( )ff
iiii BAujujuv +=== ωω 0)0(0 �  (A.25) 

 

Substituting back, 
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Finally, the perturbation in SAW propagation arising from changes in film changes 

can be determined: 
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where ci is a the SAW film coupling parameter 
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Appendix A.1.3 Liquid loading of the film on the Rayleigh device 
 

 Consideration of the film is that it is isotropic non-piezoelectric.  For liquid 

layers, this assumption is carried through as opposed to using the Navier-Stokes 

relation as during the experiments, the liquid flow rate is very small.  With this in 

mind, the liquid layer in essence is being considered as a solid semi-infinite layer.  

Therefore the wave equation is follows the same method and close to the same 

equations as the above derivation.   

 To begin derivation of the effects of a liquid layer on the SAW, the wave 

equation is: 
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 (A.28) 

where �l is the decay length into the liquid, 	l is the viscosity of the liquid, and 
l is 

the density of the liquid.  Note that the l indicates the liquid layer. 

 The stress of the liquid layer is represented the same as the film solved 

previously with the exception of the notation to indicate the layer is indeed liquid.  

From this point, the mathematics are the same and will not be repeated up to the first 

difference involving boundary conditions.  The boundary conditions in which there 

are three (1) continuity of particle displacement at the substrate/film interface, (2) 
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continuity of stress as the substrate/film interface, and (3) the film/liquid interface at y 

= h can be solved straightforward.  These can be represented as: 
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The boundary conditions lead to three equations with three unknowns: 
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Solving for the three unknowns in terms of the layer properties: 
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By applying Al and Bl to the surface mechanical impedance equation from the 

derivation involving just the film: 
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Finally, by combining the mechanical impedance perturbations from the film and the 

liquid into the complex propagating factor, 
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Appendix A.1.4 Liquid loading of the film on the Shear-horizontal device 
 

 The previous derivation can be applied to shear-horizontal SAW’s through 

analogy.  Since the Rayleigh wave is a composite wave motion consisting of both a 

shear and longitudinal components, all that needs to be done is rotate the reference 
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coordinate system and negate the longitudinal component of motion.  This results in 

the following complex propagating factor: 
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Appendix A.1.5 Liquid Loading on the Shear-horizontal Device 
 
 One variation that is of some interest is the film on the shear-horizontal SAW 

is removed so that it is only exposed to a liquid.  Within the terms of the equations, 

this means h = 0: 
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Appendix A.1.6 Air Loading of the Film on the Shear-horizontal Device 
 

 A second variation of the solution for a shear-horizontal SAW is when the 

device is coated with a film, the left in a vacuum or even air.  This scenario implies 

there are no stress gradients exiting the film making Ml = 0; under these conditions, 

the resulting complex propagation equation is analogous to the one for a Rayleigh, 
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with a rotation of the coordinate system with limiting the displacements to only one 

shearing motion. 

( )�
�

�
�
�

�
=∆

hj
M

c
k

f
x

f
x

f
x

x β
ω

βγ
tanh

0

 (A.36) 

 

 

Appendix A.1.7 Four layers for Biomarker Detection 
 

 With the above derivations, it is possible to do some preliminary work with 

the shear-horizontal SAW sensor.  For example polymer sorption experiments with 

first layer as the polymer and the analyte in low concentration in the fluid layer.  

Within the scope of this work, an additional layer is needed.  From the substrate up 

for the biomarker detector the layers are a piezoelectric substrate, an insulating 

guiding layer, an analyte specific layer, and finally the carrier fluid of the analyte.  

These layers are schematically drawn in Figure 49 and the model will be derived 

below. 
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Figure 49  Layer model diagram of SAW device needed for biological sensing 

applications in liquid samples while utilizing a guiding layer for enhanced sensitivity. 

 

The general solution for the displacement profiles in the four layer model is given by: 
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The four boundary conditions for the solution of the displacement equations are: 
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From the four boundary conditions, four equations are developed: 
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Solving for the constants, 
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where 
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Following the surface impedance procedure given for the three layer model, the 

surface impedance for the four layer geometry is found to be: 
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Appendix A.1.8 Liquid Loading of the Two Film Model 
 

 The only changes from the previous derivation to the current needed are 

changes the boundary conditions for the surface liquid boundary.  For this case, the 

displacement and the stresses are considered to be continuous: 

( ) ( )
( ) ( )2

3
2

2

2
3

2
2

hThT

huhu

iyiy

ii

=

=
 (A.43) 

 

Applying all five of the boundary conditions, give rise to the following equations: 
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Solving for the constants, 
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Following the surface impedance procedure given for the three layer model, the 

surface impedance for the four layer geometry is found to be the same as before with 

the constants solved for with the variation given for the liquid loading: 
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Substituting back the complex propagation becomes:  

( )

�

�

=

=

�
�
�

�
�
�
�

�
��
�

�
��
�

�

+
−+��

�

�
��
�

�

+
−=∆

+=∆−∆=∆

3

1 11

22

11

22

0

3

1000

2222

i ll

ll
f

i
f

i
f

i
f

i
i

i

l
i

f
i

BA
BAM

BA
BAM

c
k

ZZc
v
v

j
kk i

ω
β

ω
βγ

αγ

 (A.48) 

 

 

Appendix A.1.9 Liquid Loading of the Film on the Shear-horizontal Device 
 

 Applying the above complex propagating factor to the shear-horizontal SAW: 
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Appendix B Ansys Simulations Inputs
 

 Many script files have been used for the studies presented in this dissertation.  

This appendix is merely a compilation of sample scripts for the different aspects 

involved with simulation an acoustic wave device.  The commands given here were 

developed with Ansys versions 8 through 11.  Note there are small deviations for the 

different versions for the commands, and deviations also arise from using the 

software on different operation systems, i.e. Solaris and Windows.  Much of this 

work has been adapted from the work of Subramanian K. R. S. Sankaranarayanan. 

 

 

Appendix B.1 Piezoelectric Material Data 
 

 The material data used in these simulations can be found in many sources then 

rotated accordingly for the appropriate cut angles.  Throughout the data, SI units have 

been used, but in some instances particular Ansys units have been utilized.  The 

material data matrices given in the following sections have been converted to an 

IEEE format that Ansys uses. 
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 First, the full 6 x 3 piezoelectric matrix relative terms x, y, z, xy, yz, xz  

to x, y, z via 18 constants as shown: 

 

e11 e12 e13 

e21 e22 e23 

e31 e32 e33 

e41 e42 e43 

e51 e52 e53 

e61 e62 e63 

 

 The full 6 x 6 elastic coefficient matrix [D] relates terms ordered x,  

y, z, xy, yz, xz via 21 constants as shown below: 

 

C1-C6Terms D11, D21, D31, D41, D51, D61 

C7-C12Terms D22, D32, D42, D52, D62, D33 

C13-C18Terms D43, D53, D63, D44, D54, D64 

C19-C21Terms D55, D65, D66 

 

Appendix B.1.1 36° YX LiTaO3 
 

/COM,ANSYS RELEASE  10.0 

/NOP 

/COM,Internal UNITS set at file creation time = SI   (MKS) 

TBDEL,ALL,_MATL 
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MPDEL,ALL,_MATL 

 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,ALPX,_MATL   , 1,  23.0000000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,DENS,_MATL   , 1,  7450.00000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,PERX,_MATL   , 1, 3.641000000E-10, 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,PERY,_MATL   , 1, 3.796000000E-10, 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,PERZ,_MATL   , 1, 3.633000000E-10, 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,SONC,_MATL   , 1,  4160.10000    , 

 

TB,PIEZ,_MATL   ,,,   0 

TBDAT,   1,  1.4147       , -0.4271       ,  1.4487 

TBDAT,   4,  -0.6449       ,   2.0329      , -0.3232 

TBDAT,   7,  -0.3039       ,   0.2214       ,   -0.8920 

TBDAT,  10,   2.0732       ,  -0.0073       ,   -0.4340 

TBDAT,  13,  -0.4340       ,  -0.0036       ,    2.7216 

TBDAT,  16,   1.7683       ,  -0.4340       ,    0.3337 

 

TB,ANEL,_MATL   ,   1,,   0 

TBTEM,  0.00000000    ,   1 

TBDAT,   1, 2.315200000E+11, 0.7447200000E+11, 0.492400000E+11 

TBDAT,   4,-0.044400000E+11, 0.0591000000E+11, 0.051800000E+11 

TBDAT,   7, 2.737900000E+11, 0.8110000000E+11, 0.028900000E+11 

TBDAT,  10, 0.014500000E+11,-0.0444000000E+11, 2.284600000E+11 

TBDAT,  13, 0.025300000E+11,-0.0687000000E+11,-0.031300000E+11 

TBDAT,  16, 0.935900000E+11,-0.0307000000E+11, 0.094100000E+11 

TBDAT,  19, 0.981900000E+11,-0.0136000000E+11, 0.928300000E+11 

/GO 

/NOP 

/GO 
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Appendix B.1.2 AT Quartz 
 

/NOP 

/COM,Internal UNITS set at file creation time = SI   (MKS) 

TBDEL,ALL,_MATL 

MPDEL,ALL,_MATL 

 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,DENS,_MATL   , 1,  2675.00000    , 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,PERX,_MATL   , 1, 4.43, 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,PERY,_MATL   , 1, 4.43, 

MPTEMP,R5.0, 1, 1,  0.00000000    , 

MPDATA,R5.0, 1,PERZ,_MATL   , 1, 4.63, 

 

TB,PIEZ,_MATL   ,,,   0 

TBDAT,   1,  0.17100000    ,  0.00000000    , 0.000000000     

TBDAT,   4, -0.01870000    ,  0.00000000    , 0.000000000     

TBDAT,   7, -0.15200000    ,  0.00000000    , 0.000000000     

TBDAT,  10,  0.00000000    , -0.07610000    , 0.067000000     

TBDAT,  13,  0.06700000    ,  0.00000000    , 0.000000000     

TBDAT,  16,  0.00000000    ,  0.06700000    ,-0.095000000     

 

TB,ANEL,_MATL   ,   1,,   0 

TBTEM,  0.00000000    ,   1 

TBDAT,   1, 86.74e9, 27.15e9, -8.25e9 

TBDAT,   4, 0,  -3.66e9,  0.00000000     

TBDAT,   7, 102.83e9, -7.42e9,0 

TBDAT,  10,  9.92e9,  0.00000000    , 129.77e9 

TBDAT,  13,  0,  5.70,  0.00000000     

TBDAT,  16, 68.81e9,  0.00000000    ,  2.53e9 

TBDAT,  19, 38.61e9, 0.000000, 29.01e9 

/GO 

/NOP 

/GO 
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Appendix B.2 SAW Configuration 
 

 Common to all simulations described in this dissertation is the general SAW 

configuration.  This consists of a substrate rectangular solid divided into multiple 

pieces and a polymer rectangular solid.  Minor variations of the mesh density were 

necessary for some of the simulations.  These variations were necessary were 

considering advanced IDT and delay path designs. 

 

 

Appendix B.2.1 Common SAW Configuration 
 

/COM ! Set graphic options. 

 

/PNUM,KP,0   

/PNUM,LINE,1 

/PNUM,AREA,1 

/PNUM,VOLU,0 

/PNUM,NODE,0 

/PNUM,TABN,0 

/PNUM,SVAL,0 

/NUMBER,0    

!*   

/PNUM,ELEM,0 

/REPLOT  

/PREP7   

!*   

ET,1,SOLID98 

!*   

KEYOPT,1,1,3 

KEYOPT,1,3,0 

KEYOPT,1,5,0 
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MAT,1,   

MPREAD,'MATLAB_LiTaO3','SI_MPL','',LIB   

MPLIST,1 

TBLIST,ALL,1 

ET,2,SOLID98 

KEYOPT,2,1,3 

KEYOPT,2,3,0 

KEYOPT,2,5,0 

!*   

!*   

MP,EX,2,3400e6   ! POLYMER MODULUS OF ELASTICITY   

MP,NUXY,2,.33    ! POLYMER POISSON RATIO   

MP,DENS,2,1110   ! POLYMER DENSITY 

 

*SET,Substrate_Height , 200e-6   

*SET,Substrate_Length , 1600e-6   

*SET,Substrate_Depth  , 200e-6    

 

*SET,POLYMER_Height ,  0.500e-6 

*SET,POLYMER_Length , 800.0e-6   

*SET,POLYMER_Depth  , 150e-6  

 

*SET,IDT_Width , 10e-6   

*SET,IDT_Length , 75e-6 

*SET,IDT_Z , 0e-6    

*SET,IDT_Offset , 120e-6  

 

BLOCK, -Substrate_Length / 2, Substrate_Length / 2, -

Substrate_Depth / 2, Substrate_Depth / 2, -Substrate_Height, 

0e-6   

 

BLOCK,-POLYMER_Length/2 , POLYMER_Length/2,-

POLYMER_Depth/2,POLYMER_Depth/2,0e-6,POLYMER_Height  

ALLSEL 

VGLUE,ALL 
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/VIEW,  1, 0.601671205170, -0.757983672401, 0.251897823021 

/DIST,  1,  0.388832652656E-03   

/ANG,   1,  -89.0496187725   

/REPLO   

 

LDIV,18,,,2,0 

LDIV,6,,,2,0 

LDIV,20,,,2,0 

LDIV,8,,,2,0 

 

LDIV,17,,,2,0 

LDIV,5,,,2,0 

LDIV,7,,,2,0 

LDIV,19,,,2,0  

 

LDIV,1,,,2,0 

LDIV,2,,,2,0 

LDIV,3,,,2,0 

LDIV,4,,,2,0  

 

LDIV,13,,,2,0 

LDIV,14,,,2,0 

LDIV,15,,,2,0 

LDIV,16,,,2,0 

 

/COM ! POLYMER LAYER DIVISION 

 

LSEL,S,LINE,,20 

LSEL,A,LINE,,18 

LSEL,A,LINE,,15 

LSEL,A,LINE,,13 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,40,0.2, , , ,0  

 

LSEL,NONE 
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LSEL,S,LINE,,19 

LSEL,A,LINE,,14 

LSEL,A,LINE,,17 

LSEL,A,LINE,,16 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,40,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,29 

LSEL,A,LINE,,25 

LSEL,A,LINE,,39 

LSEL,A,LINE,,40 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,40,5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,32 

LSEL,A,LINE,,38 

LSEL,A,LINE,,27 

LSEL,A,LINE,,37 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,40,5, , , ,0  

 

/COM PIEZO TOP SURFACE 

 

LSEL,NONE 

LSEL,S,LINE,,5 

LSEL,A,LINE,,7 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,60,0.2, , , ,0  

 

LSEL,NONE 



Appendix B (Continued) 

 189 

LSEL,S,LINE,,6 

LSEL,A,LINE,,8 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,45,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,28 

LSEL,A,LINE,,26 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,45,5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,30 

LSEL,A,LINE,,31 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,60,5, , , ,0  

 

! BOT 

LSEL,NONE 

LSEL,S,LINE,,3 

LSEL,A,LINE,,1 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,20,0.4, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,2 

LSEL,A,LINE,,4 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,20,0.4, , , ,0  

 

LSEL,NONE 
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LSEL,S,LINE,,34 

LSEL,A,LINE,,36 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,20,2.5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,33 

LSEL,A,LINE,,35 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,20,2.5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,10 

LSEL,A,LINE,,11 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,20,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,9 

LSEL,A,LINE,,12 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,20,5.0, , , ,0  

 

!LSEL,NONE 

!LSEL,S,LINE,,21 

!LSEL,A,LINE,,24 

!CM,_Y1,LINE  

!CMSEL,,_Y1  

!LESIZE,_Y1, , ,4,, , , ,0  

 

!LSEL,NONE 

!LSEL,S,LINE,,22 
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!LSEL,A,LINE,,23 

!CM,_Y1,LINE  

!CMSEL,,_Y1  

!LESIZE,_Y1, , ,4,, , , ,0  

 

ALLSEL 

 

!*   

CM,_Y,VOLU   

VSEL, , , ,       3  

CM,_Y1,VOLU  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

VATT,       1, ,   1,       0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

M,_Y,VOLU   

VSEL, , , ,       2  

CM,_Y1,VOLU  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

VATT,       2, ,   2,       0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

ALLSEL   

MSHK,0   

VMESH,ALL  
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Appendix B.2.2 �/4 Non-filled Resonant Cavity Design 
 

 Although similar to the generalized SAW model, the resonant cavity work 

described in the body of this dissertation has enough differences to warrant the 

addition of this section.  Primary to the differences is the addition of the resonant 

cavities. 

 

/PNUM,KP,0   

/PNUM,LINE,1 

/PNUM,AREA,1 

/PNUM,VOLU,0 

/PNUM,NODE,0 

/PNUM,TABN,0 

/PNUM,SVAL,0 

/NUMBER,0    

!*   

/PNUM,ELEM,0 

/REPLOT  

/PREP7   

!*   

ET,1,SOLID98 

!*   

KEYOPT,1,1,3 

KEYOPT,1,3,0 

KEYOPT,1,5,0 

MAT,1,   

MPREAD,'MATLAB_LiTaO3','SI_MPL','',LIB   

MPLIST,1 

TBLIST,ALL,1 

MP,EX,2,3400e6    ! POLYMER MODULUS OF ELASTICITY   

MP,NUXY,2,.33                   ! POLYMER POISSON RATIO   

MP,DENS,2,1110                  ! POLYMER DENSITY 
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MP,EX,3,82.737e9    ! IDT MODULUS OF ELASTICITY  (Pa) 

MP,NUXY,3,.44                   ! IDT POISSON RATIO   

MP,DENS,3,19300                 ! IDT DENSITY (kg/m3) 

MP,SONC,3,2030     ! IDT Sonic Velocity (m/s) 

 

*SET,Cav_depth , -10e-6   

 

*SET,Substrate_Height , 200e-6   

*SET,Substrate_Length , 1600e-6   

*SET,Substrate_Depth  , 200e-6    

*SET,POLYMER_Height ,  0e-6 

*SET,POLYMER_Length , 800.0e-6   

*SET,POLYMER_Depth  , 150e-6  

*SET,IDT_Width , 10e-6   

*SET,IDT_Length , 80e-6 

*SET,IDT_Z , 0e-6 

*SET,IDT_Height , 1.0e-6    

*SET,IDT_Offset , 120e-6  

 

BLOCK, -Substrate_Length / 2, Substrate_Length / 2, -

Substrate_Depth / 2, Substrate_Depth / 2, -Substrate_Height, 

0e-6   

 

/COM ! Resonant cavities 

BLOCK,15e-6,5e-6,-5e-6,5e-6,0,Cav_depth  

BLOCK,35e-6,25e-6,-5e-6,5e-6,0,Cav_depth  

BLOCK,-5e-6,-15e-6,-5e-6,5e-6,0,Cav_depth  

BLOCK,-25e-6,-35e-6,-5e-6,5e-6,0,Cav_depth  

 

BLOCK,15e-6,5e-6,15e-6,25e-6,0,Cav_depth  

BLOCK,35e-6,25e-6,15e-6,25e-6,0,Cav_depth  

BLOCK,-5e-6,-15e-6,15e-6,25e-6,0,Cav_depth  

BLOCK,-25e-6,-35e-6,15e-6,25e-6,0,Cav_depth  

 

BLOCK,15e-6,5e-6,-15e-6,-25e-6,0,Cav_depth  

BLOCK,35e-6,25e-6,-15e-6,-25e-6,0,Cav_depth  
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BLOCK,-5e-6,-15e-6,-15e-6,-25e-6,0,Cav_depth  

BLOCK,-25e-6,-35e-6,-15e-6,-25e-6,0,Cav_depth  

 

BLOCK,15e-6,5e-6,35e-6,45e-6,0,Cav_depth  

BLOCK,35e-6,25e-6,35e-6,45e-6,0,Cav_depth  

BLOCK,-5e-6,-15e-6,35e-6,45e-6,0,Cav_depth  

BLOCK,-25e-6,-35e-6,35e-6,45e-6,0,Cav_depth  

 

BLOCK,15e-6,5e-6,-35e-6,-45e-6,0,Cav_depth  

BLOCK,35e-6,25e-6,-35e-6,-45e-6,0,Cav_depth  

BLOCK,-5e-6,-15e-6,-35e-6,-45e-6,0,Cav_depth  

BLOCK,-25e-6,-35e-6,-35e-6,-45e-6,0,Cav_depth  

 

/COM ! Resonant cavities volume delete from the substrate 

VSBV,1,2,SEPO,delete,KEEP 

VSBV,22,3,SEPO,delete,KEEP 

VSBV,1,4,SEPO,delete,KEEP 

VSBV,2,5,SEPO,delete,KEEP 

VSBV,1,6,SEPO,delete,KEEP 

VSBV,2,7,SEPO,delete,KEEP 

VSBV,1,8,SEPO,delete,KEEP 

VSBV,2,9,SEPO,delete,KEEP 

VSBV,1,10,SEPO,delete,KEEP 

 

VSBV,2,11,SEPO,delete,KEEP 

VSBV,1,12,SEPO,delete,KEEP 

VSBV,2,13,SEPO,delete,KEEP 

VSBV,1,14,SEPO,delete,KEEP 

VSBV,2,15,SEPO,delete,KEEP 

VSBV,1,16,SEPO,delete,KEEP 

VSBV,2,17,SEPO,delete,KEEP 

VSBV,1,18,SEPO,delete,KEEP 

VSBV,2,19,SEPO,delete,KEEP 

VSBV,1,20,SEPO,delete,KEEP 

VSBV,2,21,SEPO,delete,KEEP 
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ALLSEL   

Vovlap,ALL   

 

/VIEW,  1,  0.601671205170    , -0.757983672401    ,  

0.251897823021 

/DIST,  1,  0.388832652656E-03   

/ANG,   1,  -89.0496187725   

/REPLO   

LDIV,265,,,2,0 

LDIV,266,,,2,0 

LDIV,267,,,2,0 

LDIV,268,,,2,0  

 

LDIV,312,,,2,0 

LDIV,305,,,2,0 

LDIV,306,,,2,0 

LDIV,307,,,2,0 

 

LDIV,308,,,2,0 

LDIV,309,,,2,0 

LDIV,310,,,2,0 

LDIV,311,,,2,0  

 

/COM ! Begin with divisions in X 

 

/COM PIEZO TOP SURFACE 

 

LSEL,NONE 

LSEL,S,LINE,,310 

LSEL,A,LINE,,307 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,60,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,311 
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LSEL,A,LINE,,312 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,20,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,17 

LSEL,A,LINE,,24 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,20,5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,23 

LSEL,A,LINE,,20 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,60,5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,18 

LSEL,A,LINE,,19 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,.2, , , ,0  

LSEL,NONE 

LSEL,S,LINE,,21 

LSEL,A,LINE,,22 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,.2, , , ,0  

 

! BOT 

LSEL,NONE 

LSEL,S,LINE,,266 

LSEL,A,LINE,,268 
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CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,0.4, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,267 

LSEL,A,LINE,,265 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,0.4, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,13 

LSEL,A,LINE,,15 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,2.5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,305 

LSEL,A,LINE,,306 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,.4, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,308 

LSEL,A,LINE,,309 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,14 

LSEL,A,LINE,,16 

CM,_Y1,LINE  
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CMSEL,,_Y1  

LESIZE,_Y1, , ,10,5.0, , , ,0  

 

ALLSEL 

 

!*   

CM,_Y,VOLU   

VSEL, , , ,       2  

CM,_Y1,VOLU  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

VATT,       1, ,   1,       0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

!*   

CM,_Y,VOLU   

VSEL, , , ,3,21,1,0 

CM,_Y1,VOLU  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

VATT,       2, ,   1,       0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

!*   

CM,_Y,VOLU   

VSEL, , , ,1 

CM,_Y1,VOLU  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  
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VATT,       2, ,   1,       0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

 

ALLSEL   

 

MSHK,0   

VMESH,ALL  

 

 

Appendix B.2.3 �/2 PS Filled Resonant Cavity Design 
 

 Particular to this example is the �/2 cavity placement and the cavities have 

been filled with polystyrene. 

 

/PNUM,KP,0   

/PNUM,LINE,1 

/PNUM,AREA,1 

/PNUM,VOLU,0 

/PNUM,NODE,0 

/PNUM,TABN,0 

/PNUM,SVAL,0 

/NUMBER,0    

!*   

/PNUM,ELEM,0 

/REPLOT  

/PREP7   

!*   

ET,1,SOLID98 

!*   

KEYOPT,1,1,3 
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KEYOPT,1,3,0 

KEYOPT,1,5,0 

MAT,1,   

MPREAD,'MATLAB_LiTaO3','SI_MPL','',LIB   

MPLIST,1 

TBLIST,ALL,1 

!*   

!*   

MP,EX,2,3400e6     ! POLYMER MODULUS OF 

ELASTICITY   

MP,NUXY,2,.33                   ! POLYMER POISSON RATIO   

MP,DENS,2,1110                  ! POLYMER DENSITY 

 

MP,EX,3,82.737e9     ! IDT MODULUS OF ELASTICITY  

(Pa) 

MP,NUXY,3,.44                   ! IDT POISSON RATIO   

MP,DENS,3,19300                 ! IDT DENSITY (kg/m3) 

MP,SONC,3,2030     ! IDT Sonic Velocity (m/s) 

 

*SET,Cav_depth, -5e-6 

 

*SET,Substrate_Height , 200e-6   

*SET,Substrate_Length , 1600e-6   

*SET,Substrate_Depth  , 200e-6    

*SET,POLYMER_Height ,  0.500e-6 

*SET,POLYMER_Length , 800.0e-6   

*SET,POLYMER_Depth  , 150e-6  

*SET,IDT_Width , 10e-6   

*SET,IDT_Length , 80e-6 

*SET,IDT_Z , 0e-6 

*SET,IDT_Height , 1.0e-6    

*SET,IDT_Offset , 120e-6  

 

BLOCK, -Substrate_Length / 2, Substrate_Length / 2, -

Substrate_Depth / 2, Substrate_Depth / 2, -Substrate_Height, 

0e-6   
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/COM ! Resonant cavities 

BLOCK,30e-6,10e-6,-10e-6,10e-6,0,Cav_depth 

BLOCK,70e-6,50e-6,-10e-6,10e-6,0,Cav_depth 

BLOCK,-10e-6,-30e-6,-10e-6,10e-6,0,Cav_depth 

BLOCK,-50e-6,-70e-6,-10e-6,10e-6,0,Cav_depth 

 

BLOCK,30e-6,10e-6,30e-6,50e-6,0,Cav_depth 

BLOCK,70e-6,50e-6,30e-6,50e-6,0,Cav_depth 

BLOCK,-10e-6,-30e-6,30e-6,50e-6,0,Cav_depth 

BLOCK,-50e-6,-70e-6,30e-6,50e-6,0,Cav_depth 

 

BLOCK,30e-6,10e-6,-30e-6,-50e-6,0,Cav_depth 

BLOCK,70e-6,50e-6,-30e-6,-50e-6,0,Cav_depth 

BLOCK,-10e-6,-30e-6,-30e-6,-50e-6,0,Cav_depth 

BLOCK,-50e-6,-70e-6,-30e-6,-50e-6,0,Cav_depth 

 

BLOCK,30e-6,10e-6,-70e-6,-90e-6,0,Cav_depth 

BLOCK,70e-6,50e-6,-70e-6,-90e-6,0,Cav_depth 

BLOCK,-10e-6,-30e-6,-70e-6,-90e-6,0,Cav_depth 

BLOCK,-50e-6,-70e-6,-70e-6,-90e-6,0,Cav_depth 

 

BLOCK,30e-6,10e-6,70e-6,90e-6,0,Cav_depth 

BLOCK,70e-6,50e-6,70e-6,90e-6,0,Cav_depth 

BLOCK,-10e-6,-30e-6,70e-6,90e-6,0,Cav_depth 

BLOCK,-50e-6,-70e-6,70e-6,90e-6,0,Cav_depth 

 

/COM ! Resonant cavities volume delete from the substrate 

VSBV,1,2,SEPO,delete,KEEP 

VSBV,22,3,SEPO,delete,KEEP 

VSBV,1,4,SEPO,delete,KEEP 

VSBV,2,5,SEPO,delete,KEEP 

VSBV,1,6,SEPO,delete,KEEP 

VSBV,2,7,SEPO,delete,KEEP 

VSBV,1,8,SEPO,delete,KEEP 

VSBV,2,9,SEPO,delete,KEEP 

VSBV,1,10,SEPO,delete,KEEP 
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VSBV,2,11,SEPO,delete,KEEP 

VSBV,1,12,SEPO,delete,KEEP 

VSBV,2,13,SEPO,delete,KEEP 

VSBV,1,14,SEPO,delete,KEEP 

VSBV,2,15,SEPO,delete,KEEP 

VSBV,1,16,SEPO,delete,KEEP 

VSBV,2,17,SEPO,delete,KEEP 

VSBV,1,18,SEPO,delete,KEEP 

VSBV,2,19,SEPO,delete,KEEP 

VSBV,1,20,SEPO,delete,KEEP 

VSBV,2,21,SEPO,delete,KEEP 

 

ALLSEL   

Vovlap,ALL   

 

/VIEW,  1,  0.601671205170    , -0.757983672401    ,  

0.251897823021 

/DIST,  1,  0.388832652656E-03   

/ANG,   1,  -89.0496187725   

/REPLO   

LDIV,265,,,2,0 

LDIV,266,,,2,0 

LDIV,267,,,2,0 

LDIV,268,,,2,0  

 

LDIV,312,,,2,0 

LDIV,305,,,2,0 

LDIV,306,,,2,0 

LDIV,307,,,2,0 

 

LDIV,308,,,2,0 

LDIV,309,,,2,0 

LDIV,310,,,2,0 

LDIV,311,,,2,0  
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/COM ! Begin with divisions in X 

 

/COM PIEZO TOP SURFACE 

 

LSEL,NONE 

LSEL,S,LINE,,310 

LSEL,A,LINE,,307 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,60,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,311 

LSEL,A,LINE,,312 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,25,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,17 

LSEL,A,LINE,,24 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,25,5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,23 

LSEL,A,LINE,,20 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,60,5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,18 

LSEL,A,LINE,,19 

CM,_Y1,LINE  
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CMSEL,,_Y1  

LESIZE,_Y1, , ,10,.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,21 

LSEL,A,LINE,,22 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,.2, , , ,0  

 

! BOT 

LSEL,NONE 

LSEL,S,LINE,,266 

LSEL,A,LINE,,268 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,0.4, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,267 

LSEL,A,LINE,,265 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,0.4, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,13 

LSEL,A,LINE,,15 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,2.5, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,305 

LSEL,A,LINE,,306 

CM,_Y1,LINE  
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CMSEL,,_Y1  

LESIZE,_Y1, , ,10,.4, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,308 

LSEL,A,LINE,,309 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,0.2, , , ,0  

 

LSEL,NONE 

LSEL,S,LINE,,14 

LSEL,A,LINE,,16 

CM,_Y1,LINE  

CMSEL,,_Y1  

LESIZE,_Y1, , ,10,5.0, , , ,0  

 

ALLSEL 

 

!*   

CM,_Y,VOLU   

VSEL, , , ,       2  

CM,_Y1,VOLU  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

VATT,       1, ,   1,       0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

!*   

CM,_Y,VOLU   

VSEL, , , ,3,21,1,0 

CM,_Y1,VOLU  

CMSEL,S,_Y   
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!*   

CMSEL,S,_Y1  

VATT,       2, ,   1,       0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

CM,_Y,VOLU   

VSEL, , , ,1 

CM,_Y1,VOLU  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

VATT,       2, ,   1,       0    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

 

ALLSEL   

 

MSHK,0   

VMESH,ALL  

 

 

Appendix B.2.4 Single Split Finger Electrode Design 
 

/COM !INPUT IDTs 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-155E-6 - IDT_Offset,-145E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N1,NODE,,NUM,MIN  
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-135E-6 - IDT_Offset,-125E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N2,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-115E-6 - IDT_Offset,-105E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N3,NODE,,NUM,MIN   

  

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-95E-6 - IDT_Offset,-85E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N4,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-75E-6 - IDT_Offset,-65E-6 - IDT_Offset 

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N5,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-55E-6 - IDT_Offset,-45E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N6,NODE,,NUM,MIN    
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/COM !Output IDTs 

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,45e-6 + IDT_Offset,55e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N7,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,65e-6 + IDT_Offset,75e-6 + IDT_Offset   

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N8,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,85e-6 + IDT_Offset,95e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N9,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,105e-6 + IDT_Offset,115e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N10,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,125e-6 + IDT_Offset,135e-6 + IDT_Offset 

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N11,NODE,,NUM,MIN  
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,145e-6 + IDT_Offset,155e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N12,NODE,,NUM,MIN  

 

ALLSEL   

CPLIST,ALL,,,ANY 

 
 

Appendix B.2.5 Double Split Finger Electrode Design 
 

/COM !INPUT IDTs 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-155E-6 - IDT_Offset,-150E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N1,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-145E-6 - IDT_Offset,-140E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N2,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-135E-6 - IDT_Offset,-130E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N3,NODE,,NUM,MIN   

  



Appendix B (Continued) 

 210 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-125E-6 - IDT_Offset,-120E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N4,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-115E-6 - IDT_Offset,-110E-6 - IDT_Offset 

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N5,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-105E-6 - IDT_Offset,-100E-6 - IDT_Offset 

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N6,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-95E-6 - IDT_Offset,-90E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N7,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-85E-6 - IDT_Offset,-80E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N8,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 
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NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-75E-6 - IDT_Offset,-70E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N9,NODE,,NUM,MIN   

  

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-65E-6 - IDT_Offset,-60E-6 - IDT_Offset 

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N10,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-55E-6 - IDT_Offset,-50E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N11,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-45E-6 - IDT_Offset,-40E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N12,NODE,,NUM,MIN    

 

/COM !Output IDTs 

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,40e-6 + IDT_Offset,45e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N13,NODE,,NUM,MIN    
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,50e-6 + IDT_Offset,55e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N14,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,60e-6 + IDT_Offset,65e-6 + IDT_Offset   

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N15,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,70e-6 + IDT_Offset,75e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N16,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,80e-6 + IDT_Offset,85e-6 + IDT_Offset 

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N17,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,90e-6 + IDT_Offset,95e-6 + IDT_Offset 

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N18,NODE,,NUM,MIN  
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,100e-6 + IDT_Offset,105e-6 + IDT_Offset   

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N19,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,110e-6 + IDT_Offset,115e-6 + IDT_Offset   

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N20,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,120e-6 + IDT_Offset,125e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N21,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,130e-6 + IDT_Offset,135e-6 + IDT_Offset 

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N22,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,140e-6 + IDT_Offset,145e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N23,NODE,,NUM,MIN  
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,150e-6 + IDT_Offset,155e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N24,NODE,,NUM,MIN  

 

ALLSEL   

CPLIST,ALL,,,ANY 

 

 

Appendix B.2.6 Pruned Double Split Finger Electrode Design 
 

/COM !INPUT IDTs 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-235E-6 - IDT_Offset,-230E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N1,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-225E-6 - IDT_Offset,-220E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N2,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-215E-6 - IDT_Offset,-210E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N3,NODE,,NUM,MIN   
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-205E-6 - IDT_Offset,-200E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N4,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-155E-6 - IDT_Offset,-150E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N5,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-145E-6 - IDT_Offset,-140E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N6,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-135E-6 - IDT_Offset,-130E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N7,NODE,,NUM,MIN   

  

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-125E-6 - IDT_Offset,-120E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N8,NODE,,NUM,MIN    
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-75E-6 - IDT_Offset,-70E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N9,NODE,,NUM,MIN   

  

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-65E-6 - IDT_Offset,-60E-6 - IDT_Offset 

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N10,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-55E-6 - IDT_Offset,-50E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N11,NODE,,NUM,MIN    

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-45E-6 - IDT_Offset,-40E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N12,NODE,,NUM,MIN    

 

/COM !Output IDTs 

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,40e-6 + IDT_Offset,45e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N13,NODE,,NUM,MIN    
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,50e-6 + IDT_Offset,55e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N14,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,60e-6 + IDT_Offset,65e-6 + IDT_Offset   

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N15,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,70e-6 + IDT_Offset,75e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N16,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,120e-6 + IDT_Offset,125e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N17,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,130e-6 + IDT_Offset,135e-6 + IDT_Offset 

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N18,NODE,,NUM,MIN    
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,140e-6 + IDT_Offset,145e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N19,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,150e-6 + IDT_Offset,155e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N20,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,200e-6 + IDT_Offset,205e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N21,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,210e-6 + IDT_Offset,215e-6 + IDT_Offset 

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N22,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,220e-6 + IDT_Offset,225e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N23,NODE,,NUM,MIN  
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,230e-6 + IDT_Offset,235e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N24,NODE,,NUM,MIN  

 

ALLSEL   

CPLIST,ALL,,,ANY 

 

 

Appendix B.2.7 Unidirectional Electrode Design 
 

/COM !INPUT IDTs 

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-155E-6 - IDT_Offset,-145E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N1,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-138.333E-6 - IDT_Offset,-133.333E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N2,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-128.333E-6 - IDT_Offset,-123.333E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N3,NODE,,NUM,MIN   
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-116.666E-6 - IDT_Offset,-106.666E-6 - IDT_Offset 

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N4,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-99.999E-6 - IDT_Offset,-94.999E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N5,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-89.999E-6 - IDT_Offset,-84.999E-6 - IDT_Offset 

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N6,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-78.332E-6 - IDT_Offset,-68.332E-6 - IDT_Offset   

CP,1,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N7,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-61.665E-6 - IDT_Offset,-56.665E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N8,NODE,,NUM,MIN  
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-51.665E-6 - IDT_Offset,-46.665E-6 - IDT_Offset   

CP,2,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N9,NODE,,NUM,MIN   

 

/COM !Output IDTs 

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,46.665e-6 + IDT_Offset,51.665e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N10,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,56.665e-6 + IDT_Offset,61.665e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N11,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,68.332e-6 + IDT_Offset,78.332e-6 + IDT_Offset   

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N12,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,84.999e-6 + IDT_Offset,89.999e-6 + IDT_Offset 

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N13,NODE,,NUM,MIN    
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NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,94.999e-6 + IDT_Offset,99.999e-6 + IDT_Offset 

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N14,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,106.666e-6 + IDT_Offset,116.666e-6 + IDT_Offset 

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N15,NODE,,NUM,MIN  

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,123.333e-6 + IDT_Offset,128.333e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N16,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,133.333e-6 + IDT_Offset,138.333e-6 + IDT_Offset   

CP,3,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N17,NODE,,NUM,MIN    

 

NSEL,S,LOC,Z,IDT_Z,IDT_Z 

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,145e-6 + IDT_Offset,155e-6 + IDT_Offset   

CP,4,VOLT,ALL    

NLIST,ALL, , , ,NODE,NODE,NODE   

*GET,N18,NODE,,NUM,MIN    

ALLSEL   

CPLIST,ALL,,,ANY 
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Appendix B.2.8 Surface Load Applied for Sensitivity Calculation 
 

 The importance of sensor sensitivity can be calculated many ways indirectly; 

however, with the power and ease of simulations available at this time, the addition of 

an ideal mass was added to various Ansys simulations for direct calculations of wave 

perturbation due to an exact mass. 

 

NSEL,S,LOC,Z,0,0  

NSEL,R,LOC,Y,-IDT_Length/2, IDT_Length/2 

NSEL,R,LOC,X,-IDT_Offset/2, IDT_Offset/2   

 

F,ALL,FZ,-9.81e-13,,,    ! This 100 pg over the area of 9600e-

12 m^2 

 

Appendix B.2.9 Impulse Function Applied to IDTs 
 

 This script applies a voltage impulse to the IDTs and must be configured 

appropriately to apply the load to the proper IDT groups. 

/PREP7   

 

*DEL,_FNCNAME    

*DEL,_FNCMTID    

*SET,_FNCNAME,'IMP95'    

! /INPUT,..\Ansys\Imp1e-9.func 

*DIM,%_FNCNAME%,TABLE,6,3,3 

! 

! Begin of equation: (TIME) 

%_FNCNAME%(0,0,1)= 0.0, -999 

%_FNCNAME%(2,0,1)= 0.0 

%_FNCNAME%(3,0,1)= 0.0 
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%_FNCNAME%(4,0,1)= 0.0 

%_FNCNAME%(5,0,1)= 0.0 

%_FNCNAME%(6,0,1)= 0.0 

%_FNCNAME%(0,1,1)= 1.0, 99, 0, 1, 1, 0, 0 

%_FNCNAME%(0,2,1)=   0 

%_FNCNAME%(0,3,1)=   0 

! End of equation: (TIME) 

! 

! Begin of equation: 100 

%_FNCNAME%(0,0,2)= 1.0e-9, -999 

%_FNCNAME%(2,0,2)= 0.0 

%_FNCNAME%(3,0,2)= 0.0 

%_FNCNAME%(4,0,2)= 0.0 

%_FNCNAME%(5,0,2)= 0.0 

%_FNCNAME%(6,0,2)= 0.0 

%_FNCNAME%(0,1,2)= 1.0, 99, 0, 100, 0, 0, 0 

%_FNCNAME%(0,2,2)=   0 

%_FNCNAME%(0,3,2)=   0 

! End of equation: 100 

! 

! Begin of equation: 0 

%_FNCNAME%(0,0,3)= 1, -999 

%_FNCNAME%(2,0,3)= 0.0 

%_FNCNAME%(3,0,3)= 0.0 

%_FNCNAME%(4,0,3)= 0.0 

%_FNCNAME%(5,0,3)= 0.0 

%_FNCNAME%(6,0,3)= 0.0 

%_FNCNAME%(0,1,3)= 1.0, 99, 0, 0, 0, 0, 0 

%_FNCNAME%(0,2,3)=   0 

%_FNCNAME%(0,3,3)=   0 

! End of equation: 0 

!-->    

 

/COM ! Apply the loads. 

D,N1,VOLT,0  

D,N2,VOLT,0  
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D,N3,VOLT, %IMP95% 

D,N4,VOLT, %IMP95% 

D,N13,VOLT,0 

D,N14,VOLT,0 

 

 

Appendix B.2.10 Analysis Configuration and Run 
 

 The analysis used in these simulation is a full transient one with x, y and z-

displacements along with voltage as variables.  The below script configures and runs 

this simulation with a time step of 0.95 ns for a total of 190 ns. 

!/GRA,POWER 

!/GST,ON 

!/PLO,INFO,3 

!/COL,PBAK,ON,1,BLUE  

!/REPLOT,RESIZE   

/FILNAME,saw,0 

/SOLU    

!*   

ANTYPE,4 

!*   

TRNOPT,FULL  

LUMPM,0  

!*   

NLGEOM,0 

SSTIF,0  

NROPT,AUTO, ,    

EQSLV, , ,0, 

PRECISION,0  

MSAVE,0  

TOFFST,300,  

!*   
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!*   

OUTPR,BASIC,NONE,    

/GST,1,0 

!*   

OUTRES,NSOL,ALL, 

ERESX,DEFA   

!*   

SOLCONTROL,ON,1, 

!*   

!*   

TIME,190.0e-9 

AUTOTS,-1    

DELTIM,0.95E-9, , ,1   

KBC,1    

!*   

TSRES,ERASE  

!*   

TIME,190.0e-9 

AUTOTS,-1    

NSUBST,200, , ,1 

KBC,1    

!*   

TSRES,ERASE  

TIMINT,1,STRUCT  

TIMINT,1,ELECT   

!*   

TINTP, ,0.25,0.5,0.5,0.5,-1  

NEQIT,25,    

/STATUS,SOLU 

SOLVE    

SAVE 

FINISH   
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Appendix C Experimental Control and Data Collection and Analysis
 
 The construction of a sensor testbed was a time consuming effort necessary 

for the development of this dissertation.  In this appendix, the automation of the 

equipment used will be described with the intent to not teach LabView and or 

instrument automation, but rather to illustrate key principles required for a successful 

development. 

 

Appendix C.1 LabView 
 

 LabView is an object oriented programming environment that allows for easy 

creation and modification of instrument control programs.  This software and type of 

programming is ideally suited for research environments with multiple persons using 

one setup.  LabView allows one to go from editing a program to running it without 

the need for debugging or compiling.  This greatly accelerates the development time 

and allows for programs to be quickly modified for new test parameters without 

having to learn hundreds of lines of code. 

 Every operation in LabView is represented by a different block that has inputs 

and or outputs as shown in Figure 50.  Operations include everything from basic 

mathematics and logic to complex operations such as instrument communication.  

Often times the more complex operations have been developed and embedded into 

blocks that have multiple inputs and outputs.  That can easily be connected to other 

operating blocks. 
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Figure 50  Example LabView program illustrating case structures and operation 

blocks. 

 

 The structure of these programs is intuitive in that case structures (for and 

while loops, and sequences) appear as boxes.  Every operation contained within the 

case structure will run the number of times as defined by the case structure argument.  

The case structures as in any programming language can be placed inside one another 

allowing for complex programs to be written as shown in Figure 50. 

 

Appendix C.1.1 File preparation for Data Collection 
 

 As important as data collection is, it is difficult to keep track of numerous files 

and continually develop name schemes for experiment data.  To make life simple, it is 

possible with LabView to program a routine to save data based on the time and date.  
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An example of this is shown in Figure 51 in which the time is taken from the 

computer, formatted appropriately, then sent inside a case structure where column 

labels are added and the file is saved.  Through this simple process, every time the 

program is run, a new uniquely named file is generated with appropriately labeled 

data.  The data collected from the instruments is saved to the same file that was 

uniquely generated with the same set of block shown in Figure 51 on the right side 

(inside the case structure). 

 

Figure 51  Example of automated file naming and labeling of data labels. 

 

 

Appendix C.1.2 Instrument Control 
 

 The development of controls for each instrument follows the same procedure.  

The instrument functions and controls first need to be understood, which allow for 

easy programming, and second the device control code needs to be integrated with the 

data processing and saving.  At this point, knowledge of the instruments and the 

command sets supplied by the manufacturer is assumed to be the case. 
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 As shown in Figure 50 a Keithley meter is the instrument that is 

communicating with the LabView program.  The operation is as follows: 

1. The instrument address and the data query command are sent to the send 

command. 

2. The instrument address, number of bits of data to collect, and a no error 

signal are sent to the receive command. 

3. The data returned from the receive command is sent to processing where 

tags are removed. 

 

This general process is done for each instrument that is involved with a particular 

experiment.  As mentioned previously, command blocks can be grouped inside case 

structures and these will then run simultaneously.  Data collected from the individual 

instruments can be displayed through graphs or text outputs, and or the data can be 

stored in the fore mentioned formatted text file.  An important note for displaying and 

recording data is to ensure the data is in the proper format throughout all of the 

operations.  A simple check for this is to look at the style of the connecting lines for 

uniformity. 

 

 

Appendix C.2 Matlab Analysis of Data 
 
 The extracted voltage time data from the Ansys simulations was used for 

many different calculations including sensitivity calculations.  The data from Anys is 
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in the form of a tab delimited text file with time and voltage data as measured on the 

output IDTs.  This data was imported into Matlab for all calculations. 

 Experimental data was measured using an Agilent 8753ES and stored directly 

to space delimited text files for processing.  The 8753ES had the time domain option 

installed, so no post-processing was necessary to convert to the time domain. 

 

 

Appendix C.2.1 Finding Maximum Voltage 
 

 Following the data import into Matlab, the voltage was plotted against time, 

Figure 52.  From this graph, it is possible to determine the peak of maximum voltage; 

however, due to the rather large time step used in the simulation, the data points are 

too sparse to pick just one.  As a result parabolic fitting was used as shown in the 

below example: 

 

parabolicfitting(DSFBare(116:120,2)) 

x = 1:0.01:5; 

y = a_0 + a_1 .* x + a_2 .* x .^ 2; 

[maxDSFBare,I] = max(y) 

IDSFBare = (116 + I*.01) 
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Figure 52  Example of time domain simulation data. 

 

 

Appendix C.2.2 Finding Wave Velocity 
 

 Velocity of the wave can be found through a simple calculation that is 

dependent on the IDT structure for dimensions.  The following example code is for 

the determination of the velocity of the double split finger design: 

 

veloDSFBare = veloc(DSFBare,IDSFBare); 

 

which runs the following function: 
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function [veloc] = veloc(data,I) 

 

IR = round(I) 

if IR == I 

    veloc = (100e-6 + 120e-6 + 120e-6 + 100e-6) / data(I,1); 

elseif IR <= I 

    veloc = (100e-6 + 120e-6 + 120e-6 + 100e-6) / data(IR,1); 

    velocp1 = (100e-6 + 120e-6 + 120e-6 + 100e-6) / 

data(IR+1,1); 

    veloc = veloc + (velocp1 - veloc) * (I - IR); 

else 

    veloc = (100e-6 + 120e-6 + 120e-6 + 100e-6) / data(IR,1); 

    velocm1 = (100e-6 + 120e-6 + 120e-6 + 100e-6) / data(IR-

1,1); 

    veloc = veloc - (veloc - velocm1) * (IR - I); 

end 

 

 

Appendix C.2.3 Time Domain to Frequency Domain Conversion 
 
 The analysis of all data can be done with only time domain data; it is 

convenient for discussions to display the data in the frequency domain, Figure 53.  

The conversion of the data was done with a Fast Fourier Transform (FFT).  The 

following code is an example of what was used to call the FFT for the double split 

finger design: 

 

[dBFreqDSFBare,f2DSFBare,SubstepsDSFBare,fftvoltDSF,ivoltDSF]= 

freqconverter(DSFBare); 

 

which calls the frequency converter function given below: 
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function [Db_power_spectrum,f2,Substeps,fftVoltage,ivolt] = 

freqconverter(data) 

 

SystemVoltage = data(:,2);  

TIME = data(:,1); 

srate = 1/TIME(1); 

Substeps = size(TIME,1); 

f = srate*(0:((Substeps/2)-1))/Substeps; 

MSystemVoltage = fft(SystemVoltage,Substeps*5); 

PMSystemVoltage = MSystemVoltage.* conj(MSystemVoltage) / 

Substeps; 

fftVoltage = fft(SystemVoltage.*hanning(Substeps),2 * 

Substeps); 

f2 = [0:2 * Substeps-1]*srate/(2 * Substeps-1);           

Power_spectrum = fftVoltage .* conj(fftVoltage)/ Substeps; 

Db_power_spectrum = 20*log10(abs(Power_spectrum(1:Substeps))); 

fftvoltshort = fftVoltage(1:175); 

ivolt = ifft(fftvoltshort); 

ivolt = ivolt(1:175) ./ hanning(175); 
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Figure 53  Example of time domain data converted with FFT. 

 
 

Appendix C.2.4 Finding the Minimum Insertion Loss 
 

 Having converted the time domain data into the frequency data, the same 

calculations can be redone in this new domain.  The first of which is the locating of 

the minimum of insertion loss.  Like the time domain data, this data is sparse and 

selecting one of the direct values produces poor results.  The data is thus fitted 

parabolically as shown in the example below: 

 

parabolicfitting(dBFreqDSFBare(30:36,1)) 

x = 1:0.01:7; 

y = a_0 + a_1 .* x + a_2 .* x .^ 2; 

[maxdBFreqDSFBare,IFDSFBare] = max(y)
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Appendix D Schematics

Appendix D.1 Device Designs 
 

 
Figure 54  Double split finger IDT design for 32 �m � with a metalized / shorted 

delay path. 
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Figure 55  Pruned double split finger IDT design for 32 �m � with a metalized / 

shorted delay path. 
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Figure 56  Unidirectional IDT design for 32 �m � with a metalized / shorted delay 

path. 

 

 
Figure 57  General hexagonal SAW layout for 32 �m � with a metalized / shorted 197 

� delay path. 
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Figure 58  General hexagonal SAW bond pad center locations using symmetry. 
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Figure 59  3” hexagonal SAW wafer cut paths. 
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Appendix D.2 Fixture Designs 
 

 
Figure 60  Hexagonal SAW layout pill box test fixture. 
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Figure 61  Hexagonal SAW probing lid for micro-fluidic applications. 
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Figure 62  3” wafer probing fixture. 
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Figure 63  Modified probing fixture arms accounting for circuit board. 
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Figure 64  Wafer probe fixture lid clamps. 
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Figure 65  Probe lid for easier microscopy. 
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Appendix E Photolithography Recipes 
 

Appendix E.1 4 �m Features Using Negative Photoresist 
 

This recipe utilizes Shipley NR9-1500PY photoresist. 

 

1. Turn on oven and set to 120 °C 

a. Turn on nitrogen, vacuum pump and lamp of mask aligner. 

b. Turn on the controller for mask aligner 

2. Solvent clean wafers  

a. Acetone, methanol, isopropanol, DI, nitrogen dry 

3. Dehydration bake at 120 ° C for 20 minutes  

a. Avoid metal contact with wafers after heated. 

4. Allow wafers to cool. 

5. Spin wafers 4,000 rpm for 40 seconds 

Table 9  Configuration of spin coater #2. 

Recipe #3    

RPM1 – 500 RPM2 - 4000 RPM3 - 4000 RPM4 - 4 

Ramp1 – 10 Ramp2 - 5 Ramp3 – 1 Ramp4 -  

Time1 – 10 Time2 - 40 Time3 - 0 Time4 -  

 

6. Bake the wafers at 120 °C for 20 minutes 
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a. Avoid metal contact with wafers after heated. 

7. Set oven to 100 °C 

8. Immerse wafers in DI to discharge electric build up 30 seconds 

9. Dry wafers with nitrogen 

a. Wafers may now be handled with metal 

10. Clean mask with solvent rinse, if resist does not come off use RD6 for 15 

minutes. 

11. Align major wafer flat so that it is parallel to one set of IDT’s  

12. Expose to pattern with mask aligner 

a. Karl Suss MA56 mask aligner parameters: 

• Constant power source 275 watts => 6.5 mW/cm2 

• Program #6 

• Hard Contact 

• Negative resist 

• Prealignment – single 

• First mask – no 

• Alignment gap – 50 �m 

• Number of contacts – 1 

• Alignment check – no 

• Exposure time – 5.3 seconds 

• Hard contact delay – 5 seconds 

• Wedge error compensation – 3 point 
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13. Bake the wafers at 100 °C for 30 minutes 

a. If last batch of wafers turn off lamp and mask aligner when placing 

wafers into the oven.  When wafers are pulled out of the oven turn off 

nitrogen to mask aligner. 

14. Allow wafers to cool 

15. Develop photoresist in RD6 for 20 seconds 

a. Remove from solution at t = 15 seconds 

b. Immerse wafers in DI for 1 minute 

c. Rinse wafer with flowing DI 

d. Use fresh developer for each wafer 

16. Oxygen plasma clean wafers for 5 minutes on low power setting in Harrick 

plasma cleaner/sterilizer. 

17. Deposit 100 � Ti, 800 � Au, 100 � Ti 

18. Lift off in acetone. 

a. Use ultrasonic bath to enhance lift off. 

19. Solvent rinse 

20. Oxygen plasma clean wafers for 5 minutes on low power setting in Harrick 

plasma cleaner/sterilizer. 

21. Test for shorts.  If they exist repeat lift off, solvent rinse, and oxygen plasma 

clean. 
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Appendix E.2 4 �m Features Using Positive Photoresist 
 

1. Clean with acetone, methanol, isopropanol, and water. 

2. Dry wafer baking in oven (15-30 minutes) or on hot plate (1-2 minutes). 

3. Set spinner to 30 seconds at 3500-4000 rpm with a ramp of 500rpm/sec. 

4. Coat with HMDS to help adhesion.  This may not be needed if really clean 

and dry. 

5. Spin coat at set time. 

6. Let stand for about 1 minute. 

7. Puddle photoresist in the center of the wafer covering about ½ the total 

surface area.  Shipley 1813 will give approximately 1.3 um thickness.  Be sure 

not to pipette the resist from close to the bottom or edges. 

8. Spin at the set time. 

9. Inspect for any flaws due to dust, moisture, old photo resist. 

a. If flaws are discovered rinse with acetone, DI water. 

b. Dry and bake 15-30 minutes 90oC in oven. 

10. Soft-bake 90-110oC for 10-20 minutes in oven or 1-2 minutes on hotplate.  It 

is crucial to remove all of the solvent. 

11. Expose to mask.  Approximately 8 seconds for Shipley 1813 1.3 um thick. 

12. Place in chlorobenzene for 1 minute.  This should create a 300-500 nm 

overhang to be taken advantage of in liftoff processing. 

13. Blow dry with nitrogen.  Do not use water! 

14. Develop in MF-319 with agitation for 30-45 seconds. 
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15. Rinse with DI water for 2 minutes. 

16. Dry with nitrogen. 

17. For lift off skip the hardbake. 

18. Deposit metal 100 Å of titanium followed by 800 Å of gold. 

19. Liftoff in acetone for 5 minutes or longer and use ultrasonic bath if necessary. 

20. Rinse with acetone, methanol, isopropanol and DI water. 

21. Blow dry with nitrogen 
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