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ABSTRACT

CHEMICAL INFORMATION BASED ELASTIC NETWORK MODEL: A
NOVEL WAY TO IDENTIFICATION OF VIBRATION FREQUENCIESIN
PROTEINS.

DECEMBER 2008
SHARAD K. RAJ, B.S,, UNIVERSITY OF MUMBAI, INDIA
M.S. UNIVERSITY OF MASSACHUSETTSAMHERST

Directed by: Professor Moon K. Kim

A novel method of analysis of macromolecules hanbgorked upon through this
research. In an effort to understand the dynamiiceazromolecules and to further our
knowledge, pertaining specifically to the low fremey domain and also to elucidate
certain important biological functions associatedhwt, a theoretical technique of
chemical information based Normal Mode Analysis Hazeen developed. These
simulations render users with the ability to getee@nimations of modeshapes as well
as key insight on the associated vibration freqgigsn¢iarmonic analysis using atomistic
details is performed taking into account appropriahlues of masses of constituent
atoms of a given macromolecule. In order to substEnthe applicability of such a
technique, simple linear molecules were first wdrkpon. Subsequently, this technique
has been applied to relatively more complex stmestulike amino acids, namely
Cysteine. Consequently, this approach was exteridethrge macromolecules like
Lactoferrin. Animations of modeshapes from simwolasi suggest a one to one
correspondence with other computational technigwg®orted by other researchers.
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Computed3-factors are also in close agreement with the eéxyaartally observed values
of the same. Hence, as opposed to a simpleo@rse grained model, our method with
right masses and reasonable force fields yieldonlytthe correct modeshapes but also
provides us with useful information on wavenumbtbest can be used to extract useful
information about the frequency domain. Moreoves, @posed to conventional
Molecular Dynamics’ simulations and Laser spectpgcthe proposed methodology is

significantly faster, cheaper and efficient.



TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS.....coiiiiiiiiiiiiee oottt ii
1S T I ¥ I )Y
LIST OF TABLES. ..ottt sttt e e e e e e e et ee e e e e e s s s s e ennne iX
LIST OF FIGURES. ... ceetmme et et e et e e e e e e e e e e e enas X
CHAPTER
1. BACKGROUND OF PROTEINS AND THEIR DYNAMICS...eeiieeieeeeieeeen, 1
I 0] =] 1 1
1.2Protein DYNAMICS.....uuuuuiiiiiiieieeeeeeess e e e e e e e e e eeeee st a e e e e e eeaeanes 11
1.3 Applications of Spectroscopy in Biomolecules...............oovvviiiiiiiennnnnnn. 11
2. CHEMICAL INFORMATION BASED NORMAL MODE ANALYSIS................. 13
P20 R 11 {0 T U Tox 1 o o 13
2.2 LINKING MALTIX.11ttties e e e e e eeee e ettt s s e e e e e e e e e e e e eeeeeeaeennnnn i nnns 15
2.3 Stiffness and Mass MatriCeS.......uuuiiccce e e e e e e e e e eeeeeaees 18
3. MODESHAPE ASSIGNMENT AND FREQUENCY DETERMINATION
IN LINEAR MOLECULES.......ootttiiiiiiiiiiiiiei e n e 20
G300 R [ 0T [V Tod 1 o] o PR TPTR 20

Vi



G728 |V =11 4 To To (0] (o o | Y280 22

3.2.1 Force constants in ACetylene..........eeeeeiiiiiiiiieeeeeeeeeeeeeeeiiiee 22

3.2.2 Optimization of computed force constants............cccccuvvveeees 23
3.3 ReSUItS and AISCUSSIONS.........uuutttt e eeeeeeeeaeeeeeeeeeeesesssssseeieeeeeees 25
3.4 CONCIUSIONS. ..ottt e e e e e 27

4. APPLICATION OF CHEMICAL INFORMATION BASED NMA TO

AMINO ACIDS... ettt e e e e e e e e e e e e s s e s s e nnnnne e e e e e e e e eeeeas 29
v R 1 oo [ 3 ox 1o USSR 29
V2928 \Y 111 g T To (0] (o o | AP RURUUPUTRR 30
A3 RESUIS....eeee e 32
4.2 DISCUSSIONS. ...uiiieeie e e e e ee e ettt ettt eeenne e e e e e e e e et e eeettb b s s e e e e e e e e e e e aaaaaaaaaaaas 36
4.4.1 Force field parameterization.......... .. ooeeeeeeeeeeeeeeeeeeenninnnnn. 36
4.4.2 Sensitivity to the cutoff distance.....ccccceooeeeeiiiiiiiiiii, 38
4.5 CONCIUSIONS. .. ..o 41

5. ANALYSES OF MACROMOLECULES USING CHEMICAL

INFORMATION BASED NMA . .. oot ene e A3
LT AR [ (010 [0 {11 To ] o PR 43
220\ =11 0o To (0] (o o | Y 280U 44
5.3 RESUIS ANd AiSCUSSIONS. .. cuinen et e et e e eens 44

Vil



5.4 SeNSItIVILY @NalYSiS.......cccciiiiiiiiescmmmmm s e e e e e e e e e e e e e e e eee e e e 51
5.5 Computational COmMPIEXItY.........coovviiimmmmmmee e 57

S S o] (o3 [ 1] 0] o 1 TSR 61

6. HYBRID NORMAL MODE ANALYSIS USING CHEMICAL

INFORMATION BASED ELASTIC NETWORK MODEL.....cooicomeeeieeeeeeeeeeeeen 62
0.1 INTrOAUCTION. ..t aneae e aens 62
I8V =11 g oo (o] (o0 V20U UUUPRUTRTRRRPPN 63
0.3 RESUILS aNA QiSCUSSIONS ... .. ieeeee i e e e e e e e e e e e e e e e enaaens 67
0.4 CONCIUSIONS. ..ot eeaaaaans 70
7. CONCLUSIONS AND FUTUREWORK . ..ottt 72
T.1 CONCIUSIONS. . e e e e e 72
T2 FULUIE WOTK. .ottt et e e e e e e e e e e e e e e e naanaennan 73
APPENDICES
A: THE LINKING MATRIX CODE, ALL ATOM NMA .. .o 75
B: ALL ATOM NMA CODE. ... e, 82
C: HYBRID NMA CODKE. ... .o e 84
BIBLIO G R A P HY .. e 91

viii



LIST OF TABLES

Table Page

3.1

3.2

4.1:

4.2:

4.3:

4.4:

5.1:

6.1

6.2:

A list of bond specific force CoNStants......cccccvoeeeeiiiiiiieeeee e, 25
Comparison between experimental and predictedifnegjes...........ccceeeeeevveeeeeenn.. 26

Cartesian coordinates of a nominal Cysteine &iraaised for running
the SIMUIALIONS. ... e e e e e e e e e eeees 31

Comparison between experimental and predictefuiénecies for L-Cysteine........ 32
Computed wavenumbers based on both generalizétdand specific

force constants of 7 x 1@ynes/cm, a non-bonded force constant of

6 x 18 dynes/cm, and a cutoff distance of 8A were applibén computing
VIDration frEQUENCIES. ......cvvvviiiiiiceemmm e e e e e et erree e s s s e e e e e eeea e 34

Computed frequencies of Cysteine based on difteralues of cutoff distance..... 39

Represents a list of atoms observed to have higlesa@f computed
B-factors numbers, their types and the amino abidg tonstitute........................ 49

Represents one of the two clustering schemestoseth HNMA
SIMUIAtiONS ON LACIOTRITIN. .. e e 66

Represents the other clustering scheme usedtllIMA simulations
(o] T = Tox (0] (=1 1 | o 1SRRI 67



LIST OF FIGURES
Figure Page

1.1: Represents the 20 natural amino acids with thegetketter and single
letter abDreVIatioNS. ... .....oooii e 4

1.2: Represents primary protein structure in a sequieha chain of amino acids... ... 5

1.3: Represents the peptide bond between consecutiikeand carboxyl
groups along the backbone.............coo oo 6

1.4: Representation of protein structure as a coarsaeegtalastic network.................... 9

1.5: Representation of the linking matrix of 2BOH ab&ad from aCa coarse
grained model based NMA...........ooo it ceemmmr e e 10

2.1: Represents the sequence of amino acids for Lexctot open form, 1LFH.......... 16

3.1: Schematic of acetylene (a) a ball and stick regmtation of the ENM
model setup using the appropriate values glsesmand spatial coordinates:

(b) a chemical diagram of acetylene........ccccovvvveviiiiiiiiiiii e, 22
3.2: Animation of G=C stretching mode in acetylene...........cccceeeeeviviviveeeeiiiiininnenn. 23
3.3: Optimization of SPriNg CONSLANTS...........coeriiiiiiiiiee e 24

4.1: Modeshape animations of Cysteine with their apoading frequencies
for the first four computed MOES........coeeeiiiiiiiiiiiiiiii e 33

4.2: A plot of normalized wavenumbers versus the mua®ber for the
case of generalized force fields which eluigdadhe observed divergence
at higher modes resulting from a variatiothi@ non-bonded
FOICE CONSTANTS. ... uuiiiiiiiiiiiii it et e e e e e 35

4.3:Plot of the ratio between two consecutive wavenrensilay,, / w against

mode number representing the variance of wawbers in terms of
(o0 (0] j 0 151 ¢= 1 (oL TSP 40

5.1: First three modes for 1LFH obtained from simwla$ using chemical
information based NIMA..........oo i e e e e ae e 45

5.2: First three modes for 1LFH obtained from simwlas using GNMA.................. 46



5.3: A plot showing experimental versus calculafefdctors for Lactoferrin................ 47

5.4: Images of atoms on the outer periphery obtain@t the conformation
of Lactoferrin obtained from PDB.........ccccciiiiiiiiiiiiiiiieeeeeeeee e 50

5.5: Semi-logarithmic plot of computed as well as expentalp-factors
for Lactoferrin from all-atom NMA Simulation................eeiiiniiiiiiiiiiiiiiiiiiiies 51

5.6: (a) Plot of normalized wavenumbers for Lactoferriniagathe mode number...... 52

5.7: First three modes for 1LFG obtained from simwlasi using chemical
information based NIMA ... e e e e e e e 54

5.8: First three modes for 1LFG obtained from simwolasi using GNMA.................. 55
5.9: Represents a plot of run time for generatingdlitileng matrix in all
NMA simulation, showing the variation in thensaas a function of

the number of atoms of the protein......ccoeeeeeveeiiiiii s 59

5.10: Represents a plot of run time for running theatdim NMA simulation
Showing the variation in the same as a gunafdhe number of atoms

(o)1 L= o 10 =1 | o 1S 60
6.1: Schematic of the hybrid elastic network model fa tomplex structure

which contains both rigid domains and flexildep regions...............ccceevvviinnne 63
6.2: A rigid-cluster model of the Lactoferrin Struc®UL.............ooeveviiiviiiiiiineeeeee e 64

6.3: Represents animations of the first three modésirodd by running the
the HNMA simulations 0N LLFH..........uiieeeiiiiiiiiiiiiiiieeeeee e 68

6.4: Represents the animations of the first three madd LFH by running
HNMA simulations on a model defined to haweefClusters...........cccoevveeeeiiiinnnee. 69

Xi



CHAPTER 1

BACKGROUND OF PROTEINSAND THEIR DYNAMICS

1.1 Proteins

The word “protein” is derived from the Greek wonebi@ios, meaning “primary”
or “first rank of importance.” This chapter discasgroteins and their three-dimensional
structures, along with the basic amino acids thatkmown as the building blocks of
Proteins.

Proteins are known to form the very basis of [faey perform a disparate set
of functions and regulate a variety of activitiasall living organisms; from the process
of translation and transcription, i.e. replicatioh the genetic code to transporting
oxygen, and are generally responsible for reguatine cellular machinery and
consequently, the phenotype of an organism. Irnfdha of skin, hair, callus, cartilage,
muscles, tendons and ligaments, proteins hold hegeprotect, and provide structure to
the body of a multi-celled organism. In the formeoizymes, hormones, antibodies, and
globulins, they catalyze, regulate, and protectlibdy chemistry. Proteins accomplish
their task by three-dimensional tertiary and queey interactions between various
substrates such as DNA and RNA, and other prot&inswledge about the structure of
the protein, enables scientists to further probe tan deciphering the observed

phenomenon of protein folding that is associateti wertain specific function.

In order to better understand a protein’s structpremarily, most efforts are
concentrated on the prediction of the sequencén@famino acids that compose any
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given protein. While having the information on tbenstituent amino acids and their

sequence is a necessary but insufficient requirermée reason for this can be observed
from the fact that almost every protein structuas Rnown to exist in not a linear but

complex 3-D structures. It is in this orientatidrat a protein holds the relevance of any
folding that it may go through.

Proteins can be fold into a variety of 3-dimensloslaapes. Experiments to
unfold and refold proteins have shown that the an@ioid sequence itself contains all
the instructions needed for proper folding. Scestacross the world have been working
on trying to understand the basic principles goweyriolding but have predicting a 3-
dimensional structure merely from amino acids’ szgpe remains a challenging task.
Researchers across the world have so far sucdgsstudied and determined the
functions of many proteins using a variety of mehoyet, with the plethora of proteins
that have been discovered post the Genome proj@etmplied that the study of protein
still offers a variety of challenges to better cogipend its biological significance.

Work on the human genome has revealed that ther2(a@00-25,000 genes [1].
It is fascinating if not impossible, to believe theonsidering the post-translational
processes which yield close to a 100,000 proteraseasentially made up of just 20
amino acids. Each amino acid consists of a carlimagdid group (COOH), an amino

group (NI—|2), and one of twenty functional (R) groups. ThisgRup, or side-chain,

varies between amino acids from a simple hydrogem an the amino acid glycine to a
complex structure found in tyrosine. Amino aciddypeerize at the carboxylic acid

group of one amino acid to the amino group of teetmo form a peptide. A protein is a



long polypeptide chain. Every protein adopts iidct function and structure from the
unique sequence of the composing amino acids aiddhemical properties. Removing
one amino acid or changing it from the protein sege can significantly alter its
structure and the same would hold true with regaris biological functioning. Since
some of the natural amino acids are not synthedigdtiman metabolic processes, they
are essential diet components. The best food saifirteese nutrients is protein, but it is
important to recognize that not all proteins hagread nutritional value.

The Figure 1.1 shows the essential natural amino acids. As dssclsbove,
there are certain amino acids that are not syrgedsiuring the metabolism process, and
are marked in green. The usual nomenclature isgresent every amino acid with one

and three letter abbreviations.
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Figure 1.1: Represents the 20 natural amino acids with thegetletter and single letter
abbreviations. The ones represented in green aee tthat are not synthesized during

the metabolic processes in the body.

In any given structure of a protein, the amino acude linked together by a

peptide bond. Thé&igure 1.2 below shows an arbitrary schematic representaifoa

given protein structure. The various amino aci@dd tomprise this primary structure are

connected to each other by a chemical bond betwkerC, and nitrogen atoms



Primary pratain stroechura
is e=quenca of a chain of aminc acids

Aming Acid

Figurel.2: Represents primary protein structure in a sequiefha chain of amino acids.

of the carboxyl groups and amino groups of two ecnosve amino acids, respectively,

and this in fact is referred to as a peptide bding. this link of peptide bonds that form

in a proteins what is referred to as the back bdre Figure 1.3 below gives a

representation of a peptide bond in any generahamacids’ sequence for a protein

b, &

structure.

Peptide bonds

\ . .
Serine residue

Alanine residue

Figure 1.3: Represents the peptide bond between consecutiwdeaand carboxyl
groups along the back bone.



As discussed, it can be observed that a givenipreteicture and conformation
are a direct effect of the sequence and the otientaf its constituent amino acids that
ultimately are responsible for the a distinct falglicharacteristics that in turn are the
most crucial factor in any observed biological fuimie associated with a given protein.
This phenomenon facilitates the study of motions mbteins to further our
understanding of folding. This class of researcbfien referred to as protein dynamics.
Numerous researchers and scientists across the aa@lworking on experimental and
theoretical platforms to exploit these interestom@racteristics of proteins. Though this
is a very vast field of research, certain impor&ements of the current work along with
excerpts and an overview of both experimental alb &g theoretical approaches in

practice today, are discussed in the followingisect

1.2 Protein Dynamics

Protein molecules adopt different conformationsemeling upon whether its
active centre is occupied or empty. With the adwéntray structural analysis, usually a
protein’s conformation can be classified as opeth @arclosed conformation. A closed
form is defined as the physical state of a protier it has grabbed an atom. For
example, Lactoferrin is responsible for transpagriion atoms throughout the body. So,
co-ordinates of the form with an iron rich centevuld be classified as a closed form
and vice versa. While X-ray crystallography canegstructural information of the two
forms, more rigorous experimental and theoretieahhiques have been developed to

expand the understanding of dynamics of proteins.



As a number of protein and nucleic acid structunesre been obtained
experimentally and deposited in the Protein DatakBR], biological research areas
such as computational biology, bioinformatics, @natein dynamics have been growing
rapidly. Among the many ways to analyze the dynanticaracteristics of
macromolecules, the conventional engineering disegp such as kinematics and
mechanical vibrations have been proved as a polweduto reduce computational cost
and the generated results have shown a good agneemith the experimentally
observed dynamics of macromolecules. From this, fads convincing that they can
play an important role in developing much more cataponally efficient methods than
traditional molecular dynamics (MD) simulations, asgll as establishing theoretical
foundation for linking the structural informatiorf macromolecules to their biological
functions. MD simulations conventionally have bemre of the most common tools
directed towards the study of protein dynamics.hhie advent of super computers and
a much better estimation of empirical potentialrgies, MD inspite of its computational
burden, remains a very precise and accurate methtiis domain. As MD is based
upon an energy minimization approach, the outpamfrsuch an analysis is highly
dependent on the step size or the interval. Heimcaddition to being dependent on
empirical potential energy function, energy conaéon can be violated in simulations
because of an insufficiently short integration tistep or an inaccurate representation of
the intermolecular forces or the non-bonded intewvas governed by the principles of

Lennard-Jones potential or the electrostatic fopresent in a given proteins.



To overcome these drawbacks various coarse-graipgoaches have been
developed .Amidst many approaches,,a&@arse-grained Elastic Network Model (ENM)
based Normal Mode Analysis (NMA) has been a broadigd as a harmonic analysis
tool. In this approach, any given macromolecule@esented as a spring mass system.
Various atoms that compose any given macromolezdeconsidered as point masses,
and their chemical interactions with the neighbgratoms are represented by linear
massless springs. This representation leads tmgetp of a mathematical model of a
given system which is referred to as an ENM. In ENMis concept of ENM was first
introduced by Tirion and other researchers [3].alronventional @ coarse grained
model, a representativax@tom is selected from each amino acid in the sempieSo far,
as the models considered have been based on mefatese Gy atoms, and thus, though
computationally efficient, they have certain lintibes and limited applications.
Traditionally, the point masses have been considaseunity masses while the spring
constants analogous to the force constants have bggresented using different
schemes mainly; binary assignment: assigning g¢poesent the presence of a bond, or 0
to represent the absence of a bond. This is dot®utiany consideration of the type of
chemical interaction between atoms, i.e. covalehtiyded or non-covalently bonded.
There have also been some assignment schemesdpase incorporating bonded force
constants as a ratio of the non bonded force congiausing a certain cutoff distance to
replicate the real scenario of atomic interactidiys making connections with the
neighboring atoms such that from a given atom,a@hgr atom within a certain range of

distance in the 3-D space would be assigned a faathd This range is defined by the



defined cutoff distance. Hence, this type of anrapgh has worked well in the low
frequency domain, to visualize modeshapes but egiqusly discussed, provide little
information on the frequency associates with theseleshapes. Therefore, the most
profound limitation of a coarse grained NMA tool ikat the set of eigenvalues
computed that represents the wavenumbers of theuganbserved modeshapes does not
possess any physical meaning since only representpha Carbon atoms with unity
mass are used. Also, the linking matrix represgntiie connection of the various alpha
Carbon atoms in accordance with the amino acid esempi for a given protein being

based on a distance cutoff method has proven tgebeanother limiting factor in

computing the wavenumbers.

Figure 1.4: Representation of protein structure as a coarseagtalastic network. The
all atom model (PDB code: 2BOH) is illustrated wahball and stick representation
(right). On the other hand, onGo atoms are selected as representatives and thgy spri
connections between atoms within a cutoff distasf@®A are represented (left).



The Figure 1l.4shows one of the many representation schemes atatry
structure of factor XA in complex with compound "T’he image on the left represents
the model with just th€a atoms connected to each other. Consec@iveatoms here
yield what is referred to as previously mentiondet backbone. This type of an ENM is
utilized to perform NMA. On the other hand, the geato the right is a ball and stick
representation of the same protein, showing allcirestituent atoms. These images were
generated by using RASMOL. By default, Oxygen, ©arkand Nitrogen atoms are
represented by the balls of colors red, white dod,bvespectively. Once NMA is performed
in either case, an eigenvector set is generatetisamsequently, the positional co-ordinates
of the original PDB file are altered to generat@ag®s of perturbation along the computed
eigenvectors to yield animations for various modess. Figure 1.5hows the generated
linking matrix, which gives a representation of ttennectivity of the constituent atoms. It
is densely packed around the diagonal since atoesaund to be connected to other atoms

in its near vicinity.
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Linking hatrix of 2B0OH
|:| L ' T
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100

150

200
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a 150 200 250

Figure 1.5: Representation of the linking matrix of 2BOH dh& from aCa coarse
grained model based NMA.
1.3 Applications of Spectroscopy in Biomolecules.

When atoms and molecules are incident up on bgtrel@agnetic radiation,
absorption, emission, or scattering phenomenonuoh sadiation is observed. These
observed phenomena are quantified to study numesocis atoms or molecules, or to
study their physical processes. The interactionraafiation with matter can cause
redirection of the radiation and/or transitionswestn the energy levels of the atoms or
molecules. A transition from a lower level to atieg level with transfer of energy from

the radiation field to the atom or molecule is edllabsorption. A transition from a

11



higher level to a lower level is called emissioreifergy is transferred to the radiation
field or nonradioactive decay if no radiation isiged. Redirection of light due to its
interaction with matter is called scattering, andynor may not occur with transfer of
energy, i.e., the scattered radiation has a syigtififerent or the same wavelength.
Hence, these observed effects are of great impmetan the study of numerous
molecules and their properties.

Spectroscopy has been widely used in the studyoofiddecules and along with
other significant areas of applications. It candbserved that many such efforts have
been directed towards disparate domains of straictanalysis or in deciphering
biological functions of numerous biomolecules [4_Hman spectroscopy is a very
commonly used methods in the field of spectroscétpyas conventionally been widely
used in fundamental chemistry since vibrationabiimfation is very specific for the
chemical bonds in molecules [10-13]. One of its am@nt biological applications has
been to study changes in chemical bonding wherbstsie is added to an enzyme. In
solid state physics, spontaneous Raman spectroseopysed to, among other
applications, to characterize materials, measurenpéeature, and find the
crystallographic orientation of a sample. In adufitito its applicability in large
molecules and complex biomolecules, in single moés; it is often used to determine

and identify phonon modes.
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CHAPTER 2

CHEMICAL INFORMATION BASED NORMAL MODE ANALYSIS

2.1 Introduction

As mentioned in the previous section, ENM has bestely used for analyzing
macromolecular dynamics in frequency domain [14-2i)chemical information based
NMA, like conventional G coarse grained ENM based NMA, a biomolecule can be
treated as a mass-spring system. Thereby, eachiatamindividual point mass and is
connected to other atoms by virtual springs. lroed@nce with the present methodology,
the positional coordinates of a given macromoleeuéeobtained from the Protein Data
Bank. It is then modeled to be consisting of pamasses, values of which were
consistent with the atomic masses of the constitaéoms. These point masses are
connected to each other by massless springs, espireg the interactions between
different atomic pairs, with values of stiffnessabigous to the force constant between
any two given atoms.

With regard to more complex structures of molecgulesthe scope of the
undertaken modeling scheme and force field paramat®n, the effect of non-bonded
interactions are more dominant than what is obskefee linear molecules due to the
orientation and structural conformation of mostrbadecules, for example, like that for
Cysteine, a certain distance cutoff scheme is a&dopd replicate the non-bonded
interactions. In such a system, the total kinehiergy T and potential energy in

a network of n point masses can be presented as
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T=>Ymfx 0 (2.1)

i=1

V=23 Sk {x0-%, 0% ©0)-% O (2.2)

i=1 j=i+1
where % (t) isthe position of thé" atom attime m, hismass of the” atom,

and k, ; is called “linking matrix” which is defined as

C [x-%]s=!
ki =1C, I<|x -%]<=d, 3P

0 Hxi —xjHZd
where d is a certain cutoff distance such that for a gieom, any atom which is
farther than the distance is considered to noefaeonnection with the atom under
consideration, additionally; is a lower limit omet distance between any two atoms
and it is greater than the average covalent bamgtle c is a non-bonded force constant
that is assigned between any two atoms that argabpgproximate and around the

generally observed covalent bond length. When ¢bimputed distance between two

atoms is observed to be between and , a funcfjon hichwexpresses the force

constant as a function of distance between theatems is used to compute the value to
be assignedln addition to the above mentioned scheme of asségh which is
employed to include non-bonded interactions, bond#dms are sorted and

subsequently, bond specific force constants arégress. In physical terms, this
replicates the actual force fields. We also defihft) as a vector of small displacement

and the global mass matrix for the whole netwgd¢am such that
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% (t)=%(0)+a(t). 2.4)

T=25"M& , (2.5)

Whered = [5'T ,-~-,5HT]T OR®™ . If we assume that the deformations are seall, v

becomes a classical quadratic potential energyifumcThen Eq. (2) becomes

v :%5’TK5. (2.6)

Here K is the stiffness matrix for the whole netwdrkthe end, the equation of

motion for ENM can be simply represented by théfeing equation

Mo +K3=0. 2.7)
The above equation represents a mathematical nwidel consistent spring
constants proportional to the force constants,ltieaguin a global stiffness matrix
and a mass matrixy ~ which represents the massesliwfdual constituent atoms, and

is solved for computing the eigenvectors and thereralues [14, 15].

2.2 Linking Matrix

In order to perform chemical information based ENNe most important task
is to accurately construct the linking matrix. Weliaca coarse grained based NMA,
linking matrix in the current methodology represenbt only the connectivity between
atoms in coherence with the all atom approach,itatso stores the values of the
corresponding force constants. Therefore, we trintorporate both bonded and non

bonded interactions between all the constituenimatoHence, our linking matrix is
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composed of suitable force constants between cathaleonded atoms within an amino
acids and also reasonably approximate force coissthat represent inter and intra
molecular non bonded interactions. In order to gaeethe linking matrix, the positional
co-ordinates of the constituent atoms and alsostmuence of the amino acids is
required, Figure 2.1. This data is obtained from Brotein Data Bank (PDB) which

records the structural data such as that obtaioed X-ray crystallography or NMR.

SEQRES 1A 691 GLY ARG £RG ARG SER AL GLN
SEQRES 24 691 PRO GLU ALA THR LS Cvs FHE
SEQRES 3A 691 ARG L¥S VAL ARG GLY FRO FRO
SEQRES 4A 691 ASF SER FRO ILE GLN Cvs ILE

SEQRES BA 691 ARG ALA &SP ALA VAL THR LEU
SEQRES 6 A 691 GLU ALA GLY LEU ALA FRO TR
SEQRES TA 691 ALA GLU VAL TvR GLY THR GLU
SEQRES ga 691 TYR TYR ALA VAL ALA VAL VAL
SEQRES g 691 GLN LEU 5N GLU LEU GLN GLY
SEQRES 1004 691 GLY LEU £RG ARG THE AL GLY
SEQRES 114 691 THR LEU ERG FRO FHE LEU &SN
SEQRES 124 691 PRO ILE GLU ALA ALA VAL ALA
SEQRES 134 691 CYS VAL FRO GLY ALA ASP LYS
SEQRES 144 691 CYS ARG LEU Cvs ALA GLY THR
SEQRES 15 A 691 PHE SER SER GLN GLU FRO TR
SEQRES 16 A 691 PHE LYS CYs LEU LYS AP GLY
SEQRES 174 B9T/ILE ARG GLU SER THE AL FHE
SEGRES 184 69T ALA GLU ARG AP GLU TvR GLU
SEGRES 194 691 THR ARG LYS FRO VAL AP LS
SEQRES 200 691 ALA ARG VAL FRO SER HIS ALA
SEQRES 21 691 ASN GLY LYS GLU AsF AL ILE

SEQRES 228 E91 ALA GLM GLU LYS FHE GLY LS

Figure 2.1: Represents the sequence of amino acids for Lexctos open form, 1LFH.
It has 691 residues and is ordered from left tbotrend top to bottom in an ascending
order.

Subsequently, this information is stored as a dige in MATLAB. The PDB

assigns a numbering scheme for atoms in accordaitbethe sequence of the amino
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acids. This data is then sorted for bothand Nitrogen atoms in order to create the
peptide bond along the backbone. An executabldemsfithen generated which uses the
information on sequence of amino acids and asslgnbonded force constants between
constituent atoms of the Protein. However, whilggrening this assignment, it is often
observed that due to an insufficient resolutiorpossibly due to the orientation of the
crystallized specimen, the PDB can not provide pibsitional coordinates of all the
atoms and this result in some missing atoms andnsistent numbers for atoms in a
given amino acid. As a direct consequence of ftiis, linking matrix assignment is
affected and can be rendered incorrect. For examplhe case of 1LFH, as illustrated
in Fig 1.1, Arganine can be observed to notice thate are 11 constituent atoms.
During the modeling of Lactoferrin, some residuésAoyanine were also observed to
have five atoms. This observation prevailed for ynatiner amino acid residues. And so,
in addition to following a scheme of assignmentfmite constants based on just the
sequence of amino acids, the number of atoms imean @mino acid was also recorded
and utilized at the time for allocating the valuesensure a correct linking matrix. In
addition to the bonded interactions between atanasmolecule, force fields also consist
of non-bonded interactions, and as the name implheEse interactions exist between
atoms which are not linked by covalent bonds. Hetleese non-bonded interactions are
a result of intra molecular and intermolecular é&xcBroadly, force fields can be defined
to be composed of non-bonded interactions of thieviting two types: electrostatic
interactions and Van der Waals interactions. Withiiorce field framework, the Van der

Waals interaction is considered to consist of theha interactions between atoms (or

17



molecules) that are not covered by the electrastateraction. Hence, in addition to the
bonded interactions, non bonded interactions atsul o be accounted for in the linking
matrix. In order to do so, the non bonded forcestam between any two atoms is
expressed as a function of distance between thenexfionential function is employed
into use such that. For a distance less than 2dgnstant value of 6000 dynes/cm is
assigned as the force constant. This is done 1soe $ypical covalent bond lengths vary
between 1.2A to 2A. For a value of the computethdise between 24nd 8A, the force
constant is computed in accordance with the equ##id@) mentioned below:
Fno=F_constant*exp(-(dis-2)) (2.8)
Where,

exp: inbuilt operator in MATLAB to compute® "®

dis: distance between any two atomsaXd X

F_constant= Non bonded force constant.

For a value of distance greater than 8A, the narled force constant was found out to
be significantly small, and so, no spring was assigbetween thg,iand j, atoms in this

scenario.

2.3 Stiffness and Mass matrices

Once the linking matrix has been setup, in aceurdawith a methodology
explained in the previous section, stiffness andsmaatrices have to be then setup to
perform chemical information based NMA. Using thengrated linking matrix the

global stiffness matrix K for the system is complut€he mass matrix M consists of an
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n x n array, of 3 x 3 symmetric blocks, where this total number of atoms in a given
protein. The values of masses are aligned along diagonal, representing the
independence about the three principal co-ordiretes. Once these matrices are
obtained, a matrix S is defined and obtained, $hat

S=M"Y2xKx M~1/? (2.9)
The eigenvalues and the eigenvectors of the m&taxe then computed in accordance
with the Eq. (2.7). The eigenvector set computedsisd to generate the modeshapes,
and the corresponding frequencies of these mo@esasculated from the eigenvalues.

The wavenumber for a given mode is computed betjuation given below:

w, = |24 (2.10)

2xC
Where,
Wn: Wavenumber.
d: Eigenvalue.
C: Speed of light in cm/s.
The eigenvalues' set then computed consists of Bmmézero values, where the first six
eigenvalues correspond to translation and rotadtoout the three principal co-ordinate
axes. Subsequently, animations are generated falt ambitrary perturbations about the

given conformation along the corresponding eigetorsc
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CHAPTER 3
MODESHAPE ASSIGNMENT AND FREQUENCY DETERMINATION IN

LINEAR MOLECULES

3.1 Introduction

Determination of force constants in molecules heenba widely studied subject
[22-26]. For instance, various authors have reploiti@t atomic force constants depend
on the assignment of the vibration spectrum [27-B1$ therefore desirable to examine
the experimental data for vibration assignment thian be utilized to identify bond
specific spring constants that are analogous toefepnstants in molecules. It is noted
that the covalent bonds of molecules are not rigid, are more like mass less pseudo
springs that can be stretched and bent. At orditeanperatures, these bonds vibrate in a
variety of ways, and the vibrational energies oflenoles may be assigned to quantum
levels in the same manner as are their electrdates Transitions between vibrational
energy states may be induced by absorption of gneay example, vibration frequency
of a diatomic molecule can be calculated by EdL)@hich describes the major factors
that influence the stretching frequency of a boetiveen two atoms of masses and

My, respectively.

(e

Wherev is a frequency (ci), f is a force constant, an@ is the speed of light. In the

analogy of a mass-spring system, the force condtasudrresponds to the spring's
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stiffness proportional to the strength of the bdin#ing ny and m,. Although such a
quantum mechanics enables us to determine preorse ftonstants (or fields) by
electronic structure calculation, it is limited small chemical compounds due to its
computational complexity. So it is not feasiblestady macromolecular dynamics using
this methodology. The relationship between elasgtwork and internal coordinates
such as bond angle and torsion angle was alreatyistied elsewhere [19]. One can
directly assign spring constants obtained from [Bdl) to covalent bonds while other
stiffness values of virtual springs should be a@jd$y comparison in frequency domain
between experimental data and the result of NMAetdasn ENM. Here we propose a
novel method based on an amalgamation of experaheitrational frequency with the
computational approach of NMA which incorporatesnaistic details to calculate the
virtual spring constants between various atomsyvdlaate the proposed method, we
study four linear molecules; Acetylene, Cyanogehykene isocyanide and Diacetylene,
and construct their ENMs by assigning computedngpconstants and the appropriate
mass values for atoms, respectively. Then we catiewlibration frequencies and modes
from NMA and compare them with experimental datae§e computed modeshapes can
be assigned to the corresponding frequency speciobtained by spectroscopy
experiment with which so far we have only detectimlation frequencies as a specific

signature identifying only a molecule itself (nts motions).
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3.2 Methodology

In a general 3-dimensional 3D structure, non-bdndoms interactions are
more predominant due to close proximity of atomghe spatial domain. Moreover,
atoms in the same molecule can occasionally bes@meclose to each other, leading to
large values for the non-bonded energy and foessecially Van der Waals', so special
measures are sometimes needed to accommodateffiis. & linear molecule is
favorable for an initial analysis using chemicdbnmation based NMA as the effects of
non-bonded force constants is minimal on modes Ivitwgp simple stretching. This
assumption confers with the theoretical findingscsi simple stretching can be
considered as a strong function of the force congiatween the two atoms involved in

stretching.

3.2.1 For ce constantsin Acetylene
The structure in Fig. 3.fepresents a molecule of acetylene showing the four

atoms; two hydrogen and two carbons, their ori@aagnd the bonds between them.

H-C=C-H

(a) (b)

Figure 3.1: Schematic of acetylene (a) a ball and stick regmtation of the ENM model
setup using the appropriate values of masses aatthlspoordinates: (b) a chemical
diagram of acetylene.
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The balls represent the atoms with their appropriaass values, while tl
sticksrepresent the bond between atoms with the apptepveues of force consta
between themin order to setup the model elucidated above, tstipnal coordiates
of the constituent atoms were obtained from NISZ].[Fig. 3.2 represents the=C
stretching in acetylene. Animation was utilizedrépresent the perturbed position:s
the atoms inthe given mode. With an approach identical to orentioned above
animations weregenerated for both -H symmetric as well as asymmetric stretch
Thereby, thesevere utilized to correlate mode numbers to theideshapes and wa

numbers.

(a) (b)

Figure 3.2: Animation of (ZC stretching mode in acetylene. Weighted eigenvedte
added to its original coordinates to visualize coespion and extension of= C bond
in (a) and (b), respectively.
3.2.2 Optimization of computed for ce constants

Since, wavenumbs are a function of the force constants and mass,aéso,
that the mass values were constant, the force amsstzalues were optimized in ordel
compute wavenumbers in closest agreement to #ratiire as possible. In the case
acetylene, it carbe observed that there are two types of bond azsepted in Fic

3.1(b). Hence, a 3D plot of difference in a wavebemagainst the combination of t

two spring constants utilized for computing it ca@ generated, where difference
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defined as a percentage difference between the weshpand the experimental
wavenumbers. Fig. 3.3 shows an example plot casreipg to G=C stretching mode in
which we can determine the final spring constardsedd on a minimum value of
percentage difference in the wavenumber. Two mionédas plots were generated for C-
H symmetric and asymmetric stretching modes, res@de (not displayed here). Based
on the inference from these plots, the values fwcd constants in acetylene were
computed and tabulated in Table 3.1. An identicalhmdology was then employed into
use for Cyanogen @&C-C=N). Its results are also summarized in the Talle 3.

C-C Triple Bond : Symmetric Stretch

.

1.56 x10
) 8B 155
C-H Single Bond C-C Triple bond

1.8 =

0.5 -

Percentage of Difference

1.6

Figure 3.3: Optimization of spring constants. The variatidrpercentage of difference
between the computed and the experimental wavermsmbeepresented along the Z
axis with respect to the two bonds (i.e. springstants of C= C and C - H bonds along
the X and Y axes, respectively).
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Table 3.1: A list of bond specific force constants. Comparmidm®tween experimental
and predicted frequencies yields specific forcestamts of each pair of atoms. The
obtained force constants can be assigned to apat®gpring constants in ENM.

Experimental Predicted . Computed

Molecule Bond Frequency | Frequency Difference Force

(%) Constants (10
(1/cm) (1/cm)

dynes/cm)
c=C 1974 1974 0.00 15.71

Acetylene C-H 3289(Asym.) 3290 0.03 5.94
C-H 3374(Sym.) 3370 0.12 5.94

C-C 846 846 0.00 6.99

Cyanogen C=N 2150(Asym.) 2150 0.00 17.64
C=N 2330(Sym.) 2424 4.03 17.64

3.3 Results and discussions

As mentioned in the previous section, in our apphp we examine two
chemical compounds; Acetylene and Cyanogen, tt diesermine the force constants
between their constituent atoms. The vibration gamesents for different bonds'
stretching were obtained from NIST. In accordandé the methodology elaborated in
this paper, our ENM based NMA was then performedcoonpute the vibration
frequency of the various stretching modes in bbo#hrmolecules and animations of the
corresponding modeshapes were generated using RASBI@ing constants in ENM
can be considered to be analogous to the bond faynstants and these values for
different bonds represented in Fig. 3wlere adjusted till a reasonably accurate
eigenvalue set was obtained. The predicted fregeenand the computed force
constants for the constituent bonds have been suzedan the Table 3.1. The values

in Table 3.1for the computed force constants have been recadeditilized for setting
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up the ENM model for Ethynyl isocyanide (C3HN) abdacetylene (C4H2) and
subsequently, NMA has been performed. The positiooardinates of the constituent
atoms were also determined from the NIST webpade fgredicted frequency from
NMA along with the experimental data for vibratiassignment has been summarized in
the Table 3.2. It suggests that the computed fooostants give a good prediction of the
frequencies for various stretching modes in Dideay and Ethynyl isocyanide. Various
authors have reported a substantially vast rangeroé constant values in Diacetylene

and Ethynyl isocyanide/Cyanoacetylene. Wu and $B@jhdetermined the value of

Table 3.2. Comparison between experimental and predicteduénecjes. Vibration
modes in Ethynyl isocyanide and Diacetylene aredipted, respectively, using the
computed bond specific force constants listed ibldd and then they are compared
with nominal experimental values obtained experitain

Experimental Predicted Difference
Molecule Bond Frequency Frequency (%)
(1/cm) (1/cm)
C-H 3327 3333 0.19
N=C-C=C-H Cc=C 2079 2085 0.23
(Ethynyl isocyanide) Cc-C 864 850 1.58
C=N 2274 2381 4.74
C-C 2020 2038 0.89
H-C=C-C=C-H Cc=C 2184 2318 6.14
(Diacetylene) C-H 3293 3319 0.79
C-H 3329 3335 0.18

stretching force constant for carbon-carbon sirgted to be 3.58xF0dynes/cm.
Similar low values have been reported by Meiste4,33] (C-C force constant:
3.234x10 dynes/cm), Herzberg [36], and Kovner [37]. A rarafevalues for the C-C

bond have been reported, spanning from 4.Bxdgnes/cm to 6.7xf0dynes/cm
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depending up on the compound containing the borateber, Jones [38] also pointed
out the values for €C, C-H, C-C to be 15.12x1@ynes/cm, 5.82xf0dynes/cm and
7.14x10 dynes/cm, respectively, which are in close agreémith the values obtained
from NMA, but unlike our hypothesis, the author fubetes that these force constants
are specific for Diacetylene. Similarly, TurrellgBreported a force constant of 7.83%10
dynes/cm for C-C stretching in Diacetylene basedaonobserved (Raman active)
symmetrical stretching of 874 ¢hreported by Jones. NMA computes similar force
constants to what have been mentioned in the titexa but unlike some other
contemporary studies, it can be stated, that fqradicular bond, the value of the
corresponding force constant can be unique andsartyof invariance can be attributed
to the surrounding atoms and the interactions Wiém. The closeness of the computed

frequencies to those obtained from experimental deffirms this finding.

3.4 Conclusions

In nature, the force field consists of both bonded non-bonded interactions.
However for a linear molecule, results obtained gesy that stretching modes be
predominantly a strong function of bonded intexatsi and non-bonded interactions
have minimal effects on both symmetric as well agnanetric stretching vibration
modes. This enables us to perform NMA without cdesng these effects, and the
observed outcome does supplement our hypothesia.résult, for linear molecules, the
force constant between any two atoms can be cédculand represented by a unique

number such that it yields the same value of fraquefor a mode as that from
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experiment in any other given linear molecule. Thsthodology can be employed as a
new vibration assignment scheme. Since the modeshepmputed from ENM based
NMA can also be animated, it will enable us to ooly compute vibration spectrum of a
given macromolecule but also visualize the corredpw modeshapes. In the near
future, we will apply this scheme to determine espring constant values of various
bonds engaged in protein structures resulting émtification or prediction of vibration
frequencies and modeshapes, which is one of théimpsrtant topics in computational
structural biology to elucidate biological functiosf a protein from its structural

information.
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CHAPTER 4
APPLICATION OF CHEMICAL INFORMATION BASED NMATO AMINO

ACIDS

4.1 Introduction

Cysteine has been a widely studied amino acid du¢hé¢ availability of
substantial crystallographic data, computationajgnerated low energy metastable
states elucidating the structural details of itnatous possible conformations [40-47],
and the relative simplicity of the orientation dktconstituent atoms. Disparate studies
discussing the vibration spectrum assignment intédys have been conducted and
reported by several authors [48-51]. These effoaige been necessitated by the fact that
vibration assignment is predominantly governedhsy structure of a given amino acid,
which in turn is dependent on the orientation @&f ¢bnstituent molecules. As mentioned
above, in nature, like other amino acids, Cystdias also been found to exist with
different possible conformations, assignment of raque vibration spectrum to a
generalized coordinate set could be consideredeta bather naive approach. On the
other hand, with the structural complexities of tBeamined structures and the
realization of a huge set of possible solutionsptedi with the limited structural
information from experimental techniques such asay-crystallography, accurate
vibration assignment almost seems like a daunéisg.tSome authors have also reported
that a detailed study of the constituent forcedBednd internal coordinates in a molecule

to substantiate a suitable representation of ttranmlecular and intermolecular (e.g. in
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case of dimers) forces can be utilized to compuataiiate vibration frequencies. They
can then be used subsequently for modeling of andrmore macromolecules and other
complex biological systems and simulations canupefor obtaining the results used for
vibration spectrum assignment [52-56]. The low-freacy vibrations are typically

dominated by non-covalent, intermolecular inteti such as electrostatic, Van der
Waals, and hydrogen bonds [57]. These lower mode® falso been observed to be
more global in nature, even in the case of a siagleno acid residue like in large

macromolecules, involving motions between non-bdnclenstituent atoms that can be
characterized to be more complex, arising fromamiolecular interactions. In contrast,
higher modes involve more of individual bond stnétg between a pair or pairs of
atoms, which therefore depends on bonded forcetaatsswhich is a characteristic of
the covalently bonded atoms [58]. Using this apginoaf identifying and distinguishing

bonded and non-bonded interactions, to facilitaselitable and approximate replication
of the naturally existing force fields, we exami@gsteine to simulate its vibration

spectra which yields us with the information to gerte animations of an ordered set of
modeshapes and their corresponding frequenciesdbr to do so, we use the method of
Chemical information based Elastic Network ModeN) to perform the required

simulations for Normal Mode Analysis (NMA).

4.2 Methodology
In accordance with the present methodology, theitipnal coordinates of

Cysteine listed in Table 4.1 were obtained from BBAR9] for determining the initial
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conformation and setting up of the ENM [32]. Thegsteine was modeled to be
consisting of point masses, values of which wemssbent with the atomic masses of
the constituent atoms.

Table 4.1: Cartesian coordinates of a nominal Cysteine siracused for running the
simulations.

Atom Number Atom Positional Co-ordinates in A
X Y Z
1 N 1.559 -0.060 -0.596
2 C 0.088 -0.071 -0.544
3 C -0.402 1.298 -0.579
4 @) -0.132 2.024 -1.528
5 C -0.383 -0.930 0.661
6 S 0.184 -2.644 0.606
7 @) -1.099 1.790 0.302
8 H 1.841 0.464 -1.427
9 H 1.896 0.457 0.219
10 H -0.256 -0.563 -1.455
11 H -1.474 -0.964 0.694
12 H -0.030 -0.497 1.600
13 H -0.397 -2.925 1.803
14 H -1.385 2.621 0.243

These point masses were connected to each othmabsgless springs, representing the
interactions between different atomic pairs, witdlues of stiffness analogous to the
force constant between any two given atoms. Althcageneralized force constant of 7
x 10° dynes/cm was primarily used for representing tbeded interaction, the force
constants for these bonds were computed by othatlesrmolecules (see Table 3.1)

which consisted of the bonds present in Cysteirfee Tise of a generalized force
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constant was prompted by the observed results fgstethe. The output for
wavenumbers for Cysteine with two different inpdiss force constants for bonded
atoms being precise (as that obtained by performiRtA on linear molecules) and a
generalized value were identical. It could be irddrfrom such a result that the absolute
values of wavenumbers were dependent on the ratieedorce constants of bonded and
non bonded atoms. Hence, as long as the model poied a certain order of
difference, the wavenumbers were not altered.

With regard to more complex structures of molecuiesthe scope of the
undertaken modeling scheme and force field paraimat®n, the effect of non-bonded
interactions are more dominant than what is obskfoe linear molecules due to the
orientation and structural conformation of mostrbodecules, like that for Cysteine in
this case, and hence, a distance cutoff schemdoigted to replicate the non-bonded

interactions.

4.3 Reaults

Table 4.2: Comparison between experimental and predicteguéecies for L-Cysteine.

A generalized force constant of 7 xldynes/cm, a non-bonded force constant of 6 x
10° dynes/cm, and a cutoff distance of 8A were applidten computing vibration
frequencies

Molecule | Experimental Frequency (1/cm) Predictesbbency (1/cm)

46 46.79

, 56 55.53

L- Cysteine 71 7164
80 79.81
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As can be seen from the results in Table 4.2, #hgeg for frequencies predicted
from NMA using chemical information based ENM atlenast identical to the ones
reported in the literature. Also, Fig. 4.1 illuses the animations that were generated for

the first four modes. They are identical to the eslthpes obtained from literature.
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Figure 4.1: Modeshape animations of Cysteine with their gpomding frequencies for
the first four computed modes.

Hence, in accordance with the hypothesis put fawathe previous section, it
can indeed be observed from the results summaie@dble 4.3 and Fig. 4.2 that the
lower frequencies, more global modes, are strodgpyendent on the connectivity of the

model which can be determined with the schemerokftields used for experiments.
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Table 4.3: Computed wavenumbers based on both generalizédb@md specific force
constants in addition to the three different valoeson-bonded force constants referred
to as casesA: 6 x 1¢ dynes/cm,B: 6 x 10 dynes/cm,C: 6 x 10" dynes/cm. The
reported values of wavenumbers are in‘cm

Mode Generalizedorce field:s Bond specific force fielc
number Non-Bonded force constar Nonr-bonded force constai
A B C A B C
1 14.80239. 46.799885 | 147.71268 14.80231 46.797360 | 147.63819
2 17.56692. 55.533519 175.07705 17.56674 55527973 | 174.92656
3 22.66412 71.646103 | 225.85293 22.66385 71.637691 | 225.62043
4 25.25473. 79.811407 | 250.87123 25.25397 79.787510 250.11434
5 29.28577. 92.601344 | 292.58799 29.28574 02.600420 | 292.56026
6 34.18213 | 107.93689 337.07549 34.17845 107.82368 334.21111
7 41.01370 129.60908 406.86417 41.01309 129.58895 | 405.97726
8 42.53246 | 134.39418 421.81964 42.53155 134.36587 | 421.04291
9 43.90357. | 138.60770 | 431.86561 43.90188 | 138.55480 | 430.49606
10 46.37501 | 146.16989 | 449.90219 46.37069 | 146.03969 | 447.23690
11 52.42763 165.22290 | 507.20377 52.42386 165.10759 | 504.33031
12 71.58700 | 226.08115 | 705.82637 71.58470 226.00873 | 703.59203
13 86.12148 | 271.88823 | 846.03159 86.11843 271.79187 | 809.44776
14 108.63696 | 343.00923 | 943.10872 | 108.62861 | 342.70692 | 845.27462
15 109.99654 | 346.32475 | 1052.22965 | 109.99027 346.07154 | 938.77414
16 112.03110 353.37691 | 1074.45244 112.00772 352.61071 | 1048.23058
17 119.40967 376.42055 | 1082.83170 119.40309 376.20298 | 1066.80457
18 124.60821 393.78644 | 1162.35693 | 124.60408 393.65527 | 1089.12270
19 140.51610 | 443.77708 | 1203.04040 | 140.50675 443.44271 | 1179.28246
20 152.25091 | 480.75630 | 1235.86804 | 152.24004 | 480.34157 | 1206.61467
21 157.39035 | 496.99075 | 1354.49539 | 157.37909 | 496.60572 | 1242.21809
22 167.84577 | 530.11671 | 1395.68364 | 167.83881 | 529.86208 | 1384.00295
23 178.16827 | 562.21064 | 1502.63037 | 178.15630 | 561.68379 | 1463.38794
24 821.78896 | 841.27398 | 1509.13724 | 709.67779 | 724.99862 | 1489.46931
25 1060.66882 | 1071.85746 | 1554.71295 | 831.85518 | 848.70428 | 1545.70960
26 1262.83811 | 1273.63165 | 1567.58000 | 1085.01729 | 1098.45170 | 1604.31058
27 1469.86460 | 1473.66424 | 1683.45141 | 1382.88598 | 1391.36331 | 1698.37107
28 1512.72566 | 1520.15358 | 1724.99141 | 1553.17555 | 1560.39704 | 1768.00266
29 1639.03640 | 1644.97516 | 1787.33459 | 1960.77000 | 1963.79582 | 1996.25208
30 3485.07810 | 3495.68994 | 3613.03879 | 2263.47440 | 2280.14866 | 2495.85652
31 3521.26915 | 3552.05748 | 3757.08895 | 3096.41343 | 3131.74965 | 3352.32759
32 3537.21469 | 3565.45491 | 3804.37574 | 3155.34070 | 3172.10763 | 3481.56757
33 3541.40325 | 3570.52079 | 3807.81792 | 3258.67877 | 3294.68260 | 3536.42411
34 3578.31956 | 3603.38622 | 3850.75589 | 3297.09956 | 3332.88014 | 3629.61184
35 3588.71682 | 3611.54414 | 3884.92391 | 3331.13215 | 3349.63411 | 3705.08156
36 3615.82413 | 3632.85761 | 3963.33054 | 3722.84972 | 3745.78973 | 3977.60817
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Figure 4.2: A plot of normalized wavenumbers versus the modeber for the case «
generalized forceidlds whict elucidates the observed divergerate higher mode
resuling from a variation in the n-bonded force constants.

Variation on norbonded force constes under the same connectivity does
affect too much the low mode frequencies (not alisofalues but normalized ones) ¢
their modeshapes. One can also recognize that thesignificant variation on highe
modes due to the simplification of forcenstants for various covalent bonds a
generalized force constant. More precise forcadsiebould be required to accurat
determine the frequencies for higher modes withd@m@nantly local vibrations
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Nonetheless, the observed unique mode number cartillzed to provide us with a
sequentially arranged modeshapes. Namely, althdabghvalues of frequencies for
certain higher modes might not be precise yet, itifermation on sequence of
animations is very useful to give an ordered setofleshapes assorted in ascending
values of their corresponding frequencies. In otherds, the model in itself can provide
the user with a unique mode number below which gpimapof modes cannot take place,
for the given force fields. Animations thereforendze suitably utilized for mode shape

assignment.

4.4 Discussions
4.4.1 Forcefield parameterization

The robustness of the fundamental behavior ohthdeling scheme adopted to
generate the reported results has to be ascerttinedfely assume repeatability and
consistency in the outcome. In order to do so, resiteity analysis is mandatory to
understand the effects of variations in input patmrs on the output. There are
primarily three input variables; bonded and the-bonded force constants as well as
the connectivity of the constituent atoms. As named in the previous section, the
bonded force constants were determined by perfgriNiMA on linear molecules, so as
to evaluate the values for the same by compariegotitput for bond stretching from
that observed from the reported values in theditee. For instance, force constants for
Acetylene and Cyanogen have been reported in thie Bal. Similar methodology was

adopted to compute the force constants of numesthes pair of atoms (not displayed
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here). Hence, the approach adopted during this waak to run simulations with
different combinations of these parameters (i.eogtmize the outcome based on the
proposed hypothesis of using a generalized sebrokffields resulting in Table 4.2).
Firstly, ratios of bonded and non-bonded force tamts were varied by orders of
difference. Subsequently, eigenvector set for tegupbed conditions were compared
and animations for modeshapes were generated tervasny discrepancies. With
regard to the same, normalized wavenumbers wettegléor different test conditions.
Normalized wavenumbers in the scope of this stualyehbeen defined as the ratio of
frequencies of modes to the slowest mode. Thisesigghat, while the first mode is
considered as unity, all the subsequent modesheankte expressed in terms of the first
mode. Similarly, the value of the limiting distanadlized to set up the connectivity
matrix, which replicates the interacting pairs wfras was also varied to further examine
the dependence of the model's behavior. Valuewvibmation frequencies for Cysteine
with different ratios of bonded and non-bonded éoconstants have been summarized in
the Table 4.3. These values were obtained from, lzotfeneralized force constant of 7 x
10° dynes/cm, as well as bond specific force constavitich were obtained by
performing NMA on smaller molecules. These weredusecombination with different
non-bonded force constants of 6 ¥ 8ynes/cm, 6 x 10dynes/cm and 6 x 2@lynes/cm.
Several researchers have developed and postuléterknt techniques of force field
determination for such analyses [60, 61]. In additio the above reported values, Fig.

4.2 illustrates the plot of normalized wavenumhensus the modenumbers.
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Though the absolute values of normalized wavenumbare of little
significance since they are merely ratios of afl thode frequencies with respect to the
first, slowest mode, yet, the plots generatedlastiated in Fig. 4.2 provide insight in to
model's behavior. Such an analysis was requiredlbstantiate the effect of variations in
non-bonded force constants as well as to estathlesborrectness of the scheme adopted.
Moreover, animations suggest that these induceitiars in the input parameters do
not alter the modeshape up to a certain criticadlenaumber of 23 as that suggested by
the plot in the Fig. 4.2. This observed charadiers the model can be attributed to the
variations induced by the ratio of bonded to the-bonded force constants, as a result
of which, only the absolute values of wavenumbererewrendered different. This
analysis suitably explained the effect on outputpeeters by such intended variations
in the inputted values, and facilitated the use af generalized force field
parameterization scheme in addition to the spetifien-bonded force constant of an
exponentially decreasing function, and vyielded lteswhich were analogous to

experimentally found values.

4.4.2. Sensitivity to the cutoff distance

As mentioned in the previous section, in additieunderstanding the effect of
force field parameterization used, it was impertig identify and replicate the non-
bonded pairs of atoms. In order to do so, a cedaioff distance was used to determine
the contacting pairs, and subsequently represéntirtithe linking matrix. The results

obtained from such an analysis have been summarizeé Table 4.4.
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Table 4.4: Computed frequencies of Cysteine based on diffeveies of cutoff

distance. Underestimation of non-bonded interastiovith relatively short cutoff
distance results in unrealistic lower frequenciéglevhigher modes are less sensitive to

non-bonded interactions.

Mode Cutoff
niimhe 3A 5A 8A
1 0.149821 | _46.62114 | _46.79988 .
2 19.92291 | 5550620 | 55.53351 Sensitiveto Cutoff
3 35.77210.| 7156289 | _71.64610.
4 4870777.|__78.42166 | 7981140
5 61.38338 | 92.54358 | 92.60134.
6 90.85837.|_106.80068 | 107.93689
7 105.37311 | 129.13367 | 12960908
8 112.99359 | 133.32645 | 134.39418
9 119.60961 | 137.93373 |_138.60770
10| 132.18906 | 146.03084 | 146.16989
11| 143.68788 | 165.10328 | _165.22290
12| 18042715 | 22573195 | 226.08115
13| 25220133 | 27176223 | 271.88823
14| 29251475 | 34237258 | 343.00923
15| 30983133 | 346.10146 | 346.32475
16 | 323.66368 | 350.04940 | 353.37691
17 | 33083554 | 376.08829 | 376.42055
18 | 36095314 | 393.51494 | 393.78644
10| 40232391 | 44352789 | 443.77708
20| _431.09252 | _480.48718 | _480.75630
21 | 461.39941 | 496.79803 | 496.99075
22 | 509.86790 | 529.97408 | 53011671
23| 525.99783 | 561.88023 | 562.21064
24 | 835948406 | 841.195905 | 841273981 Insensitive to Cutoff
25 |1070.192281 | 1071.850569 | 1071857468
26 | 1272.792792 | 1273.611250 | 1273.631650
27 [ 1472.984176 | 1473.639862 | 1473.664242 A
28 | 1519518035 | 1520.148893 | 1520.153586
29 | 1644.223534 | 1644.973737 | 1644.975163
30| 3490.111614 | 3495.089660 | 3495 689946
31 | 3546.749467 | 3551.817114 | 3552.057489
32 | 3549.325707 | 3564.792005 | 3565.454913
33 | 3565.681246 | 3570.519510 | 3570.520791
34 | 3508.220896 | 3603.125237 | 3603.386225
35 | 3604.031512 | 3611.543399 | 3611.544141 \/
36 | 3628.020041 | 3632.857604 | 3632.857618
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In addition to computing the wavenumbers, animatidos the correspondin
modeshapes were generated to understand the effieatcertain cutoff value on tt
model's behavior. While the wavenumbers for cutaiues of 8A and 5A are almc
identical, thes values are different for a cutoff value of 3A.iSTbbserved finding ca
be attributed to the fact that global motions agpehdent on n-bonded acting pair:

and in turn, on the linking matrix which represeihts connectivity.

2.5
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Figure 4.3: Plot of the ratio between two consecut wavenumbersa,,, / w against

mode number representing tvariance of wavenumbeita terms of cutoff distant.

Since the first norzero mode with a cutoff ofA is unrealistically small, thcomputed
value of w, /@, was discarded and the arbitrary number of 1 isagtchosen to mat
scales.
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As for the higher modes, the values tend to corevefgpwn in both Table 4.5
and Fig. 4.3 as these vibrations can be charaeteaz more local vibrations pertaining
to bond stretching and bending. Hence, this resulnuch in agreement with the
proposed hypothesis. As discussed; higher modeshvdainsist of more local vibrations
are less dependent to non-bonded intra-atomic actiens. Hence, as expected, the
sensitivity analysis with different values of cutafistance yields disparate linking
matrices so that the modeshapes can be also difféoe the lower modes while

subsequent animations suggest that the higher nimmdielentical.

4.5 Conclusions
Our implementation of a chemical information badeNM approach for

performing NMA simulations has been applied to €yst with results that are
comparable to that observed from reported valué¢sirodd from terahertz spectroscopy
[62]. The results obtained for both, animationsval as the corresponding frequencies
suggest a favorable trend, and the proposed hygisthe supported by the precise
determination of frequencies and modeshapes fofitsiefew slower modes. Though
other researchers have also predicted and repealees for vibration frequencies of
Cysteine through experimental as well as theoredigproaches, they all seem to exhibit
a common trend of lack of information for frequessclower than 100ctand thereby a
poor resolution in the slow frequency domain [63-88oreover, for Cysteine, it has
been observed that the computed frequencies agednfdindamental modes, and in fact,

are not characterized by lattice vibrations as psed by some authors [62]. A deviation
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in these results for higher modes was an expecatembime due to the use of approximate
force fields. Hence, because of the excellent utww that NMA provides to compute
results comparable with that obtained from Terahspectroscopy, it is imperative to
analyze the behavior of such a modeling scheme mite precise force fields. While a
more accurate force field parameterization, acaogrior both bonded and non-bonded
interactions will facilitate a better predictiondbrational frequencies in amino acids in
a manner elucidated for Cysteine, the statistiegh dor macromolecules suggest that a
majority of biological functions are observed ire ttow frequency domain and can be
associated with a conformational change. This waasult in a more appropriate
connectivity matrix, and as the results suggest,cttnnectivity is a crucial factor in the
determination of low modes. Understanding theseamaters is a worthy effort for

exploiting the possibility of implementation of $uan analysis.
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CHAPTER S
ANALYSISOF MACROMOLECULESUSING CHEMICAL INFORMATION

BASED NMA

5.1 Introduction

Lactoferrin has been a widely studied Protein. Ruability to bind iron, and its
natural anti-bacterial, anti-fungal and anti-vipabperties render it useful for a number
of product applications [66-70]. Numerous studievehbeen conducted for vibration
spectrum assignment in Lactoferrin [71-73]. Advahceesearch focusing on
spectroscopy methods for enhanced signals has dm®tucted on human and animal
Lactoferrin to better comprehend its biological dtians for varied applications [74-76].
The current methods of vibration spectrum assigtnidée Raman and Infrared
spectroscopy lack significant information on freqcies lower than a 100 émOn the
other hand, there is little data available on iiisration frequencies and techniques
facilitating the visualization of its numerous inmant modeshapes. In the current scope
of its study, most widely used computational teghes, like Normal Mode Analysis;
models with reduced degrees of freedom, in additionsimplistic approach of
generating an Elastic Network Model are used. # been statistically been observed
that most of the important biological functions associated with more global, local
modes. Animations from current NMA methodology dat provide the users with an
ordered set of modes and their corresponding fregjes, but still suffice in assisting

biologists in associating these modeshapes withesomcial biological functions.
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Results obtained from analysis of linear molecalesvell as simple amino acids prompt
a possible applicability of all atom NMA for largeacromolecules, like Lactoferrin that
has been used in this study. In a manner similthabelucidated for the case of simple
linear molecules as well as Cysteine, simulatioesevalso performed for Lactoferrin’s
two forms; 1LFH and 1LFG. While animations from Bum analysis show a one to one
correspondence with modeshapes obtained from ctiomah harmonic analysis, it is
observed that a model with reduced degrees of dreedften yields in swapping of
modes. This observed effect is overcome by undegake mentioned approach of an

all atom Normal Mode Analysis.

5.2 Methodology

Fundamentally, setting up the model for performthgmical information based
NMA for Lactoferrin is identical to the approachopded for previous, simpler cases.
Due to the relative complexity of Lactoferrin, amt@nation scheme has to be
incorporated. As discussed in chapter 2, the keyuirements for the undertaken

modeling scheme involve setting up the mass masiwell as a linking matrix.

5.3 Results and Discussions

Figure 5.1 illustrates the modeshape of the fgstond and third modes of the
open form of Lactoferrin (1LFH) obtained from theirmations subsequent to the NMA
simulations. Figure 5.2 represents the animati@emted using a,NMA. Results

from both suggest a one to one correspondence.
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Figure 5.1: First three modes for 1LFH obtained from simwa$ using chemical
information based NMA. They all suggest the globadtion of what is commonly
referred to as the head and the two lobes.
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Figure 5.2: First three modes for 1LFH obtained from simwas using ¢ NMA. They
all have been represented using RASMOL in a wineéaepresentation
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B-factor

As opposed to certain rigid cluster NMA modelingnesmes [14-16], while in
the current approach, no distinction has been défithe constituent residues can be
classified into certain flexible and rigid domaireading to a hinging motion of the
defined lobes. In addition to the outcome of theawdations reported, th@-factors
computed from NMA simulations have been plottednglavith the experimentally

obtained values from the Protein Data Bank.
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Figure 5.3: A plot showing experimental versus calculaieféctors for Lactoferrin. The
calculated values are represented by the blue And, the red line represents the
experimentally reported values obtained from thad?n Data Bank.
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From Figure 5.3, a good agreement in the valuethef3-factors yet again
affirms the suitability of using an all atom NMA thedology. With regards to thg
factors, there are some interesting characteristias have been observed, and can be
associated with the model's behavior; primarilye tibserved peaks are found for atoms
in the outer periphery of the main cluster. It daexplained because we use spring
constants now instead of unity, so these spectbma are connected to other atoms
through stronger bonded force constant, and weakbomded force constants to other
non-covalently bonded atoms. This directly altéws $tiffness matrix and causes much
greater amplitude fop-factors for these specific atoms. With regardshi® observed
peaks, that is extremely high values of compugef@dctors, as mentioned, can be
attributed to the orientation of the structure actoferrin. Certain atoms were found to
be on the outer periphery, and constitute the aragids that are generally observed to
be hydrophilic like Arganine and Glutamic acid, aedd to be orient along the outer
periphery. As a result, the atoms that constithese residues, due to greater values of
mutual distances with other atoms, not only haveimmal non bonded interactions. This
is an effect that gets induced in to the ENM by\vhkie of cutoff distance and also the
values for non bonded force constants between stmims. Hence, in the chemical
information based ENM, these typical atoms are eesd such that they have strong
covalent bonds and weak non bonded force consta@hts. results in a much higher
value ofp-factors for these specific atoms. The Table Sptesents a set of such atoms
that were identified in Lactoferrin, and their stiwral details, elucidating their

orientation are represented in Figure 5.4.
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Table5.1: Represents a list of atoms observed to have
high values of computefgifactors numbers, their types
and the amino acids they constitute.

Atom Number| Atom type | Residue name and number
253 N Arganine-30

254 C

255 N

256 N

676 N Arganine-86

1374 O Glutamic acid-178
3851 C Arganine-500
3852 N

3853 N

3929 O Glutamic acid-511

Another interesting observation from the plot Bfactors is that, the NMA
simulations are performed on an isolated molect@ileaatoferrin. This is the primary
reason for the observed peaks. As opposed tottigiseported values @tfactors in the
PDB are experimental values that are obtained faoalysis of a crystal and not of an
isolated molecule as in the simulations. As a tesfulhese, the peripheral atoms would
be surrounded by similar atoms from the neighbotiagtoferrin molecule. As a result

of this, there would be more non bonded interastiora real system.
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3. Arganine500 4. Glutamic acid 511

Figure 5.4. Images of atoms on the outer periphery obtainedmf the
conformation of Lactoferrin obtained from PDB. THeNM represents the
connections of these atoms with the surroundinmsato

Figure 5.5 shows the plot of the computed valuep-fafctors from NMA simulations

and the experimental values on a semi-logarithrmédes This is done so to observe the

proximity of the trend shown by the computed ad aglthe experimental values.
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Figure 5.5: Semi-logarithmic plot of computed as well as expemtal 3-

factors for Lactoferrin from all-atom NMA simulatio
5.4 Sensitivity Analysis

As in the case for amino acids, a similar sengjtimnalysis of studying the
effect of changes in the input parameters on thelai'® behavior in the case of
Lactoferrin has also been carried out. To estalthshrobustness of the model, the non-
boned force constants were varied between, 600sdymeto 60000dynes/cm. Moreover,
the connectivity matrix was also altered by chagginhe cutoff distance that in turn

altered the linking matrix and the overall stiffaexf the system.
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Figure 5.6. (a) Plot of normalized wavenumbers for Lactoferrin iaga the mode
number.(b) Normalized wavenumbers for Lactoferrin from modeniers 145 to 194,

elucidating the convergence up to the"1@ode.

A plot for normalized wavenumbers was then gendratea manner similar to

the one adopted for Lactoferrin as reported in Fagu6 (a) and (b). It is interesting to

note however that through this analysis, macronubdscinsinuate a greater sensitivity
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to the connectivity in the low frequency domain.irftplies that as long as the total
connectivity, which is determined by the definedoffudistance is not altered, the
animations suggest no change in the modeshapesh8utigh frequency, more local
modes, show a greater dependency on the absolute ofaforce constant, both bonded
as well as non-bonded assigned between atoms.diticadto the results for 1LFH as
illustrated in this section, simulations for 1LFGene performedOn comparing the
modeshapes and wavenumbers in both these casesithations for 1LFG, like in the
case for 1LFH show one to one correspondence wiéh existing literature. The

animations for 1LFG for all atom case have beenmsarized in Figure 5.7.
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Figure 5.7: First three modes for 1LFG obtained from simwolasi using chemical
information based NMA. They all suggest the globadtion of what is commonly
referred to as the head and the two lobes.
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Figure 5.8: First three modes for 1LFG obtained from simwolasi using ¢ NMA. They
all have been represented using RASMOL in a wineéaepresentation.
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Subsequent to running all atom simulations for 1L E&coarse grained model
was simulated and animations were generated tatascehe credibility of the new
modeling scheme. These animations for all-atom NAA G NMA are represented in
Figure 5.7 and Figure 5.8, respectively. As cagd®n from the animations, they are in
agreement. Moreover, these animations were als@amd with results generated in
another lab that is involved in study of biomolesu(Bahar Lab: School of Medicine,
University of Pittsburgh) which uses an Anisotropietwork Model to explore the
relationship between dynamics and function for mamyteins [77, 78]. Like the £
coarse grained model, it uses Elastic Network noglogy and represents the system in
the residue level. The macromolecule is thus reptesl as a network, or graph. Each
node is the & atom of a residue and the overall potential ispbnthe sum of harmonic
potentials between interacting nodes.

With regards to the wavenumbers, the one hindranttecomparing computed
wavenumbers with spectroscopy data is that thelabtai experimental frequency
assignment does not provide us with the same résolas that obtained from full atom
NMA. Therefore, the focus in this work has been inoorporating the sensitivity
analysis scheme to stress upon the fact that magdeshare not altered in the low
frequency domain, and the ratios of wavenumbersal®@ unaffected by variations in
the input, indicating that once the lowest frequeiscobtained, it can be matched with
the results from full atom NMA, since it would mesealing up and down the inputted
force constants. So, until the inputted force camist that exactly replicate the real

physical system are obtained, these normalizede@dees can be utilized for exploiting
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model's characteristics as opposed to absolutenmaveers; like in the case of Cysteine,
where in such a scaling was done once the lowesenwenmber was obtained and
subsequently, the higher wavenumbers were detednime matching the lowest

wavenumber from simulation.

5.5 Computational complexity

A full atom NMA requires a far more computatiorddort than a conventional
Ca coarse grained model. These simulations have sobégn computationally
prohibitive due to the high number of degrees-ekffom required to capture motions of
large structures. Understandably, the primary thfiee between the two methods is the
linking matrix. While in a @ NMA, the linking matrix only represents a binaghsme
of assignment, 1’s indicating the presence of adlbaomd O’s representing the absence of
the same, the linking matrix in an all atom NMA wesquired to store specific
information of force constants between all intaragpairs of atoms. Hence, this directly
prompted the identification of intramolecular irgetions within a residue and also the
peptide bond between carboxyl and the amide grotipgeracting amino acid residues.
While employing this assignment scheme into usdaiteaberrations were observed,
due to absence of positional co-ordinates of @latoms of Lactoferrin in the PDB file,
possibly due to a poor resolution. As a direct eguence of this, a given residue was
found to consist of different number of atoms. Egwample, Arganine was found to have
5 as well as 11 atoms. Initially, this caused inpgeroassignment of force constants and

rendered the entire linking matrix wrong. Hence, oercome this, in addition to
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identifying the amino acid, a distinction of numlsératoms in the same was introduced.
Apart from the challenge of assigning appropriated constant, determination of the
same was also an involving task. As explained ie fitevious chapters, NMA
simulations were performed on simple linear molesub determine the force constants
between numerous acting pairs of atoms. Once alpdssible types of bonds present in
Lactoferrin were identified, these simple linearlecoles were selected depending on
the presence of the required bond.

So far we have discussed the ground work thatreqired in computing the
inputs. In addition to this, understandably, fulorma NMA required much more
computational effort. Significantly large dimenssoaf input matrices; mass (3n x 3n),
linking (n x n) and stiffness (3n x 3n) were obs&tvAs opposed to conventional NMA,
which required only 691 & atoms, one from each amino acid, full atom reauire
handling of approximately 5300 atoms. The dimeraites of the matrices were
significantly affected by this. Performing invensiand other matrix operations on such
huge matrices required special inclusions in thaecdn order to give an estimation of
run times for various simulations as a functionthed number of atoms of the system,
simulations for different proteins were run, in erdo generate their linking matrices
and also the NMA simulations. The run time for takkse simulations was recorded in
MATLAB, and using regression, a polynomial expreaswas determined to compute
the computational time for both, the linking matai well as the NMA simulations. This
was done so, since these two codes of simulatiegsine the most of computational

effort that goes into such an analysis. By runrdifterent simulations, these runtimes
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were recorded and plots have been generated tarstadé the relationship between
number of atoms of a system and the proportiomad tior performing its simulations.
This would enable user to predetermine the comjouiat effort and time that would go

into such an analysis.

Plot of run times for Linking matrix
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Figure5.9: Represents a plot of run time for generatingditileng matrix
in all atom NMA simulation, showing the varat in the same as a
function of the number of atoms of the protein
The Figure 5.9 shows the values of runtimes obslewtsle generating linking
matrices for different Proteins with disparate nemlof atoms. As mentioned, in
MATLAB, using regression a polynomial expressionsvadbtained to compute the time
required for generating the linking matrix of agivprotein with ‘N’ atoms, such that;
L (t) =0.0000009603711 xM0.17050365 x N — 564.5358 (5.1)
Where,

L (t): Time to generate the linking matrix

N: No. of atoms in the given protein.
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Principally, though conventional NMA is analogowsall atom NMA but the
run times of the simulations are significantly di#nt. This is due to the fact that matrix
operations like the computation of stiffness mafrixm linking matrix requires more
time in its computation. Also, the equation 2.9dlwes multiplication of stiffness matrix
and mass matrices of the orders of 15300x15300sabdequent computation of the
eigenvector and eigenvalue sets from the ‘S’ matiilke Figure 5.9, runtimes of NMA
simulations were also recorded to express themmdymomial in ‘N’, and a plot was
generated as illustrated in the Figure 5.10.

P (t) = 0.0017685 x R 1.951 x N + 746.48 (5.2)

Where,

P (t): Time to run all atom NMA simulation

N: Number of atoms in the given protein.

Plot of run times for all atom NMA
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Figure 5.10: Represents a plot of run time for running theatdim NMA
simulation, showing the variation in the saasea function of the number of
atoms of the protein.

60



The eigenvector set in particular, computed frobmdm NMA was also over
2GB of memory. Hence, while these simulations cdo#d performed on a personal
computer with 6GB of ram, MATLAB version 7.8 wagjuired so that the huge input

and output matrices could be dealt with.

5.6 Conclusions

Through the output computed from our analysisait be deciphered that an all
atom model based NMA indeed provides much largésrimation pertaining to the
biologically relevant and important low frequencgntain. With the incorporation of
atomistic details, the modeling scheme tested etéer representation of the actual
Lactoferrin’s behavior. While in the scope of therrent study, results have been
established for Lactoferrin alone, with information the structural details of other
biomolecules available on various databases likeRtotein Data Bank, the modeling
scheme is sufficiently flexible to incorporate aolserved aberrations by assigning
specific values for force constants in the linkimgtrix, if any. Further insight into the
complex field involving the determination of prezidorce fields would result in
enabling the undertaken modeling scheme to havetterbinput, thereby enabling its
users to determine even more precise wavenumbebe afbserved modeshapes. It can
thereby be proposed that by comparing this dath vesults from other experimental
and computational approaches like spectroscopyifignt information that would help
in elucidating the biological function of a macrdewule can be explained using

chemical information based NMA.
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CHAPTER 6
HYBRID NORMAL MODE ANALYSISUSING CHEMICAL INFORMATION

BASED ELASTIC NETWORK MODEL.

6.1 Introduction

In large macromolecules, slower more global motiamesobserved to consist of
collective motions of the constituent atoms. Ineothvords, the globally collective
motions of the system are dominantly ruled by a téwhe slowest modes. Statistical
mechanics also predicts that the contribution ® ¢brresponding eigenvalue occurs
naturally favorable in the low-frequency modes. sThieans that the low frequency
modes are naturally favorable to occur. Informafimm such unison motion of a large
set of atoms can be used to identify certain rapahains and flexible loops within a
conformation. This implies that certain residuesiprotein act as hinges about which
the collective motions of atoms take place. Knogkdf such dynamic behavior of the
system can be incorporated in the way that a prasemodeled. This understanding has
lead to the development of a Hybrid Normal Mode lksia (HNMA). In this
methodology, broadly, the constituent atoms ofaigin are classified to be either a part
of a cluster or independent point masses in théiadpdomain. Hence, clusters are
defined, consisting of certain fixed number of asorand these clusters are modeled to
be connected to neighboring clusters by certainnddf point masses. A pictorial

depiction of such a methodology is given in Figare.

62



Point Masses

Rigid Clusters

Spring
Connection

Figure 6.1: Schematic of the hybrid elastic network model fag tomplex structure
which contains both rigid domains and flexible laegions.

6.2 Methodology

In accordance with the concept of HNMA and to innpé@t a modeling technique that
affirms the stated concept, the one essential guésite is to identify rigid clusters and
point masses in a protein. This is done by studiegwo conformations of Lactoferrin.
Since the PDB provides the Cartesian co-ordinaftéiseoconformations, a technique of
Windowed Root Mean Square Distance (WMRSD) is useatlassify the atoms as either
point masses or a part of a cluster defined. Algmomany rigidity algorithms and
theories have been introduced so far, there isnstilinique way to define rigid clusters
and point masses with given structures. In thigeodnfirst, rigid-clustering starts with
the static comparison between two end structures.céh also count on the structural
information defined by previous literature or expentally observed rigid cluster
domains. Next, the WRMSD is measured to definedriguster set. As expected, a

certain window size is defined; such that, at aegiwnstance, a set of residues are
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compared in both the conformations are compared.ekample, a window size of 10
would imply that the positional co-ordinates of t@nstituent atoms within the same
residues in both the conformations would be contpafes the name suggests, it is a
square root of the mean of the squares of therdiffee between the co-ordinates of the
same atoms from both the conformations. This esaldeto identify flexible and rigid
parts. The residues that experience greater valudsplacement have a high value of
WMRSD. Similarly, certain residues that undergo kwaues of displacements can be
considered as hinges, about which the hinging matikes place. Hence, the size of
windows should be small enough not to lose locakifflility of structures. For
Lactoferrin, Windowed RMSD results suggested thatould be broadly classified to
consist of three rigid domains:

Head, Right lobe, and Left lobe.

[L1I 11 I |

Windowed BMSC[Arsirom]

0 100 200 300 400 600 600 700
Residue number

Figure 6.2: A rigid-cluster model of the Lactoferrin struotui(a) Lactoferrin is assumed
to have three rigid clusters: head (green), ledtl¢yv), and right (red) lobes. Two lobes
are opened and closed by the hinge motion aroum@OTénd Val250. RMSD between
corresponding clusters in each conformation isldisa in (b)
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The Figure 6.2a shows the schematic of a hybridehéat Lactoferrin with
three clusters. The Figure 6.2b on the other havesghe WMRSD values that were
used to define these clusters. These rigid domaiasconnected to peripheral point
masses, which in turn are connected to other poiases in the neighboring rigid
domains. The Tables 6.1 and 6.2 discuss the wasich the clusters have been defined.
In accordance with the underlying principle, thestérs are connected to each other by
point masses, it was essential to define theset poasses. Hence, to represent the
connection between two clusters, certain atombeainterface of any two given clusters
were considered as individual atoms based on aicertitoff distance. In order to do so,
for a given cluster, the distances between its atfsom all the atoms of the interfacing
cluster were computed. A certain predeterminedftdistance was then used. For a pair
of atoms, i.e. an atom from one cluster and therst@tom from another cluster, any
distance less than this cutoff distance’s valueh libe atoms were classified as point
masses. In the case with three clusters, the atittince used wasié while in the case
of five clusters the & was the value of cutoff distance used. Based erctitoff scheme,
the number of point masses in the cases with taneefive clusters was determined to
be 560 and 1255, respectively. Use of such a distatoff scheme and from the
knowledge of flexible domain from WMRSD calculatiorenabled the modeling of
Lactoferrin to be composed of both rigid clustepsrmected by point masses. Once, the
point masses and clusters were identified, theesponding linking and the mass

matrices were adjusted to accurately represenetheced DOF model.
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Table 6.1: Represents one of the two clustering schemestoseth HNMA simulations
on Lactoferrin. Specific clusters with their cohstint amino acids and corresponding
atoms numbers are listed.

Cluster Residue # Atom # #Atoms in a cluster  #Point
masses
Right lobe 1-90 1-710 1115 560
251-320 1950 - 2497
Left lobe 91-250 711 - 1949 1054
Head 321-691 2498 - 5341 2615

In order to perform HNMA simulations, the stiffnessid the inertia matrix were
generated and subsequently, the equation of metasidetermined [18]. The primary
efforts in determining key input parameters wereseafially concentrated on
determining force constants as explained in Chahtand also in generating the linking
matrix. Moreover, once the atoms were classifiedit®r point masses or to be a part of
a cluster, a sequential rearrangement was reqamddall the input parameters like the
mass and the linking matrices had to be reordeveshdtch the new sequence of the
assorted set of atoms. Subsequently, the inerdatanstiffness matrices of the reduced
DOF system had to be generated in order to perfdNiA simulations. The results for
the modeshapes from such a clustering have beensg8isd in the next section. In
addition to the tested clustering scheme, anotbkerse with five clusters was also
carried out. This is represented in the Table Bsing the clustering scheme mentioned

in the Table 6.2, HNMA was performed again to obse¢he outputs of modeshapes.
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Table 6.2: Represents the other clustering scheme usedntédiNMA simulations on
Lactoferrin. Specific clusters with their constithbeamino acids and corresponding
atoms numbers are listed.

Cluster Residue # Atom # # Atoms in a cluster #Poin
masses

Right lobe 1 1-90 1-710 532 1255

Right lobe 2 251-320 1950 — 2497 1180

Left lobe 91-250 711 - 1949 364

Head 1 321-520 2498 — 3966 1035

Head 2 521-691 3967-5341 975

6.3 Results and discussions
Once the HNMA simulations with the initial clustegi scheme were run,

animations of first few lowest modes were generaibgse have been represented in the
Figure 6.3 below. On comparing these results vhighresults from that obtained from all
atom NMA and coarse grained model, it was estabtistmat these modeshapes were
rendered incorrect. While the real values of eigdues suggested that the code used for
HNMA simulations was correct, it directly impliedat the outputs were sensitive to the
input parameters. It could be observed that the wayhich the clusters are defined

governs the dynamics.

67



1st Mode

@
°
&
=
o
c
(]

3rd Mode

Figure 6.3: Represents animations of the first three moddaiméd by running the
68

HNMA simulations on 1LFH.



1st Mode

2nd Mode

3rd Mode

Figure 6.4: Represents the animations of the first three maafelLFH by running
HNMA simulations on a model defined to have fivaesters.

In order to substantiate this hypothesis, a newsteting scheme as that

elucidated in Table 6.2 was undertaken to obsehee variation in the output of
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modeshapes. The results obtained from HNMA simaatiwith such a clustering are
represented in the Figure 6.4. So, while the maajesh were indeed different from that
obtained with a scheme of using three clustersih@t do not match with the results
obtained from all atom or coarse grained modelctviiave been verified to give results
that match with those obtained from existing mougland analysis schemes. This is
understandable because, based on a clustering sctiben inertia and the stiffness
matrices are altered. Hence, while the code ddasresal and positive eigenvalues and
eigenvectors, it can be observed that the way iitiwthe clusters are defined in this
study do not replicate the flexibility of the resfstem and so significantly affect the

dynamics of the system.

6.4 Conclusions

In this part of the research, the possibility ahgsa Hybrid Elastic Network
Model, which is mathematically more rigorous anchpatationally much more efficient
method of modeling than the all atom ENM. SubsetiyeNMA simulations have been
performed. This is done so, as the results fromieadon of a hybrid model to coarse
grained models have yielded useful results perigito the low frequency domain and
have been successfully implemented to animate théeshapes. A general code that
incorporates atomistic details has been succeggjalherated as a part of this research,
and the observed real and positive eigenvaluesestighgat with a better clustering, a
better replication of the real physical system barput in place to further exploit if the

HNMA can give comprehensive results for modeshagseshat achieved by all atom
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NMA. As a part of this study, the clustering und&gn was based on results from
WMRSD calculations as explained in the previoudises. As the results summarized
in this chapter can be utilized to establish theetielency of the outcome on the way in
which these rigid clusters are defined such thealldlexibility is not lost, more study
would be required to be carried out in this domi@nbe able to further exploit the
clustering schemes and ultimately the way in whighnumber and size of each cluster

is defined.
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CHAPTER 7

CONCLUSIONSAND FUTUREWORK

7.1 Conclusions

The step by step approach of application of chenidarmation based NMA
suggests that an all atom based ENM modeling schengefeasible option for the
analysis of large macromolecules and to study tbgiramics pertaining to the low
frequency domain. While the results from the analyd simple linear molecules
suggest that with appropriate representation aefdields, modeshapes can be identified
along with the corresponding vibrational frequesci® more complex structures, like
amino acids and proteins, due to the effect of Immmed chemical interactions between
various molecules, the current methodology doesigeoaccurate identification of
modeshapes, and the distribution of the correspgndliequencies which has been
explained by the concept of normalized wavenumbeéesice, in simple molecules, this
approach can be used as a vibration spectrum assignscheme, and in large
macromolecules, this enables us to generate anreordget of modeshapes, with
animations that provide insight into their globadtions which is of great significance in
the study of their dynamics to decipher any possiliological function or
conformational changes associated with the saméh Wie unique ability of this
technique to generate results pertaining to thguigacy domain renders it as a good
approach to be coupled along with results from mooe experimental approaches,

thereby enabling us to exploit greater informatmut of the existing data at hand.
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Moreover, the entire set of simulations that weamguired during this research has been
generated on personal computers. This impliesahabmpared to some more expensive
methods like Molecular Dynamics, chemical informmatbased NMA is computationally
less expensive, also, by incorporating more ateenttails than a Ccoarse grained
model, an all-atom modeling scheme is much moreeieit to the actual physical
system. As a result, this methodology has beerbledtad as a good intermediate
approach that presents a fine balance of accurfatye @utcome while also providing its

users with the relative ease of computational e#iad time.

7.2 Future Work

While the current methodology has shown much begtgults than the existing
methodologies, there are broadly two domains wherehis work can be further
improved upon. Firstly, with a more precise foredd parameterization, more accurate
results for wavenumbers can be expected. But thiddvprimarily alter the analysis of
small molecules. In macromolecules, the sensitiaiglysis suggests invariance to these
input parameters as illustrated by the normalizademumbers. Secondly, more rigorous
mathematical modeling can be employed to furtheluce down the computational
effort required for these calculations. As mentehnthe major inputs in an-all atom
modeling scheme are values of masses and repriésenté force fields. Hence, the
force constants used for this study were develdpeperforming NMA simulations on
linear molecules. While comparisons with literatw@ggest that these values are in

reasonable agreement with the reported valuesthgetesults for absolute values of
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wavenumbers obtained at the amino acids’ or ateprst level indicate that by
incorporating more precise force fields, accuratpturing the chemical interactions
among all the atoms in a given macromolecule woeddllt in even better results. With
regards to the computational effort, as it has beleserved and discussed, the low
frequency modes are more global in nature. Heegjmplies that these modes involve
a large number of atoms to move together in syrscaAesult, like a Hybrid Normal
Mode Analysis has been applied tq €oarse grained models, a similar successful
application of defining these rigid domains in dhatom modeling scenario would
greatly reduce the time involved in performing #hesnulations. By defining such rigid
clusters, some flexibility of the system is lostdaso, identification of such rigid
domains is a crucial parameter that can affecotltieome. Hence, further work utilizing
certain existing techniques like Windowed Root M&juare Distance (WRMSD) will
assist in obtaining this objective. As a resultitfar work on these two described factors

is essential if not imperative to enhance the frtpplicability of such a methodology.
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APPENDIX A

THE LINKING MATRIX,ALL-ATOM NMA

clear all

clc

format long

load resity

load atomno

load ca % Ca position
load n % N position
load a

i=1;

%bonded interaction coefficient
NC=7e5;% dynes/cm
N2C=7e5;

NH=7e5;

CH=7e5;

CC=7e5;

C2C=7e5; % double bond
CO=7e5; % single bond
C20=7e5; % double bond
CS=7e5;

%non-bonded interaction coefficient
nb=6e3;

cutoff=2; % lower cutoff
lim=15; % upper cutoff
least=1e-12;

%based on LFH%
m=size(a,l1);
rn=size(atomno,1);

%sparse linking matrix
k=sparse(zeros(m));

% for i=1:m

% i

% k_initial(i,i+1:m)=1e-12;
% end

% save k_initial k_initial

% checkl=k_initial+k_initial;
% load k_initial

% k=k+k_initial;

%non-bonded interactions
for g=1.m-1
g
for h=g+1:m
dis=norm(a(g,:)-a(h,:));
if dis<=cutoff
k(g,h)=nb;
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elseif dis<=lim
k(g,h)=nb*exp(-(dis-2));
end
end
end
% k_non_bond=k;
k_non_bond=k+k';
save k_non_bond k_non_bond
%peptide bond
for I=1:rn-1
k(ca(l)+1,n(I+1))=NC;
end

stack=[1];
i=1;

for t=1:rn
t
if resity(t,:))=="GLY' & atomno(t,1)==
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
i=i+4;
stack=[stack;i];
% break;
else if resity(t,:)=="ARG' & atomno(t,1)==11
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+6,i+7)=NC;
k(i+7,i+8)=NC;
k(i+8,i+9)=NC;
k(i+8,i+10)=N2C;
i=i+11;
stack=[stack;i];
% break;
else if resity(t,;)=="ARG' & atomno(t,1)==5
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
i=i+5;
stack=[stack;i];
% break;
else if resity(t,:)=="SER' & atomno(t,1)==6
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
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%

%

%

%

%

k(i+4,i+5)=CO;
i=i+6;
stack=[stack;];
break;
else if resity(t,:)=="VAL' & atomno(§2=7
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+4,i+6)=CC;
i=i+7;
stack=[stack;i];
break;
else if resity(t,:)=="GLN' & atom(id)==9
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+6,i+7)=C20;
k(i+6,i+8)=NC;
i=i+9;
stack=[stack;i];
break;
else if resity(t,:)=="CYS' &aahno(t,1)==6
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CS;
i=i+6;
stack=[stack;i];
break;
else if resity(t,:)=="AL& atomno(t,1)==5
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
i=i+5;
stack=[stack;i];
break;
else if resity(t,:)==8N' & atomno(t,1)==8
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=C20;
k(i+5,i+7)=NC;
i=i+8;
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stack=[stack;i]
% break;
else if resity=PRO" & atomno(t,1)==7
k(i,i+1)=NC
k(i+1,i+3€;
k(i+2,i+3320;
k(i+1,i+43€;
k(i+4,i+53€;
k(i+5,i+63€;
k(i,i+6)=NC
i=i+7;
stack=[#7k
% break;
else if restiye="GLU" & atomno(t,1)==9
k(i,=INC;
k(i+2)=CC;
k(i+23)=C20;
k(i+t4)=CC;
k(i+45)=CC;
k(i+56)=CC;
k(i+67)=CO;
k(i+68)=C20;
i=i+9;
stacgtack;i];
else ifitgd,:)=="GLU' & atomno(t,1)==5
KIL)=NC;
«{i,i+2)=CC;
+2ii+3)=C20;
«{ii+4)=CC;
+5i;
cka[stack;i];
% break
else ifitgd,:)=="THR' & atomno(t,1)==7
KIL)=NC;
«i,i+2)=CC;
+2ii+3)=C20;
«{i,i+4)=CC;
+4,i+5)=CO;
+4ii+6)=CC;
1,
cka[stack;i];
% rebk;
elseasity(t,:)=="LYS' & atomno(t,1)==9
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+6,i+7)=CC;
k(i+7,i+8)=NC;
i=i+9;
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%

%

%

%

%

stack=[stack;i];

break;

el§resity(t,:)=='"PHE' & atomno(t,1)==11

k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=C2C;
k(i+5,i+7)=CC;
k(i+6,i+8)=CC;
k(i+8,i+10)=C2C;
k(i+7,i+9)=C2C;
k(i+9,i+10)=CC;
i=i+11;
stack=[stack;i];
break;

else if resity(t,;)=='"MET' & atomno(t,1)==8

k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CS;
k(i+6,i+7)=CS;
i=i+8;
stack=[stack;i];
break;
else if resity(t,:)=="ILE' & atomno(t,1)==8
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+4,i+6)=CC;
k(i+5,i+7)=CC;
i=i+8;
stack=[stack;i];
break;
else if resity(t,:)=="ASP' & atomno(t,1)&=
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CO;
k(i+5,i+7)=C20;
i=i+8;
stack=[stack;i];
break;
else if resity(t,:)=="LEU' & atomno(t738
k(i,i+1)=NC;



k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+5,i+7)=CC;
i=i+8;
stack=[stack;i];
break;
else if resity(t,:))=="TYR' & atomno(t,1)==12
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=C2C;
k(i+5,i+7)=CC;
k(i+6,i+8)=CC;
k(i+7,i+9)=C2C;
k(i+8,i+10)=C2C,;
k(i+9,i+10)=CC;
k(i+10,i+11)=CO;
i=i+12;
stack=[stack;i];
break;
else if resity(t,:)=="HIS' & atomno(t,1)==10
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=NC;
k(i+5,i+7)=C2C;
k(i+7,i+9)=NC;
k(i+6,i+8)=N2C;
k(i+8,i+9)=NC;
i=i+10;
stack=[stack;i];
break;
else % TRP
k(i,i+1)=NC;
k(i+1,i+2)=CC;
k(i+2,i+3)=C20;
k(i+1,i+4)=CC;
k(i+4,i+5)=CC;
k(i+5,i+6)=CC;
k(i+5,i+7)=CC;
k(i+6,i+8)=N2C;
k(i+8,i+9)=NC;
k(i+7,i+9)=C2C;
k(i+7,i+10)=CC;
k(i+9,i+11)=CC;



k(i+11,i+13)=C2C;
k(i+10,i+12)=C2C;
k(i+12,i+13)=CC;

i=i+14;
stack=[stack;i];
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
% end
save stack stack
k=k+k";
k1=k;
save k1 k1

81



APPENDIX B
ALL-ATOM NMA CODE

clear all

clc

format long

load k1 %Linking Matrix
load M

load a

data=a;

m=size(data,1);

GP=sparse(zeros(3*m));
fori=1:m-1
[
for j=i+1:m
if k1(i,j)>0
dx=data(i,:)'-data(,:)";
GP(3*(i-1)+1:3*,3*(j-1)+1:3*))=k1(i,j)*dx*dx'/norm(dx)"2;
end
end
end
GP=GP+GP’;
save GP GP
K_R=-GP;
disp('GP saved’)

fori=1:m
i
temp=zeros(3);
for I=1:m
temp=temp+GP(3*(i-1)+1:3*i,3*(I-1)+1:3*);
end
K_R(3*(i-1)+1:3%i,3*(i-1)+1:3*)=temp;
end

save K_ R K_R
S_R=M*K_R*M;

save S RS R
disp(K_ R M S_R saved)

clear all
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clc

format long
disp(‘computing eigenvalues and the eigenvectors')
load S R

load a

load M

n=3*size(a,l);
KK=full(S_R);

1

[v,d]=eig(full(KK));
disp('stepl done’)
d=diag(d);
[d,index]=sort(d);
fori=1:n
new_v(:,i)=v(;,index(i));
end

Vx=M*new v,

save Vx Vx -V6

save d d

disp('step2 done’)

for i=1:n

wn_Ifhr_gen(i,1)=sqrt(d(i))/2/pi/3e10; %#ok<AGROW>
end

save wn_Ifhr_gen wn_lIfhr_gen
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APPENDIX C
HYBRID NMA CODE

clear all

clc

load an

load k1n

load nc

load mn

% load mass1

load ctofmassl1
data=an;
k1=k1n;
m=size(data,1);

num_of_pm=560; %adjustment
num_of cluster=5; %adjustment

offset=3*num_of_pm;
offsetl=6*num_of cluster,;
offset2=offset+offsetl;

for i=1:num_of_cluster
eval(['load c',num2str(i)])
end

KT=zeros(offset2);
MT=zeros(offset2);

count=0;

%%%%%%%%%% Point Mass NMA %%%%%%%%%%%%%%%%
GP=sparse(zeros(offset));
for i=1:num_of pm-1
for j=i+1:num_of_pm
if k1(i,))>0
dx=data(i,:)'-data(j,:)";
GP(3*(i-1)+1:3*i,3*(j-1)+1:3*))=k1(i,j) *dx*dx'/norm(dx)"2;
count=count+1;
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end
end
end
GP=GP+GP'
save GP GP
disp('GP saved')
KP=-GP;

for i=1:num_of pm
temp=zeros(3);
for I=1:num_of _pm
temp=temp+GP(3*(i-1)+1:3*,3*(I-1)+1:3*]);
end
KP(3*(i-1)+1:3*i,3*(i-1)+1:3*)=temp;
end

for r=1:1028

for c=r+1:1029
KP(c,r)=KP(r,c);

end

end

save KP KP

disp('KP saved)

%break

KT(1:offset,1.0ffset)=KP;

h=1;

for i=1:num_of pm
MT(3*i-2:3*1,3*i-2:3*1))=mn(i,1)*eye(3);

end

%%%%%%%% % %% %%%%ENd of Point mass %%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%Rigid cluster nma %%%%%%%%%%%%%%%%%
KC=zeros(offsetl);
MC=zeros(offsetl);

for i=1:num_of cluster-1 % first summation symbol

eval(['num_samplel=size(c',num2str(i),",1);1)
eval(['ca=c',num2str(i),";']) % the first cluster
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for j=i+1:num_of_cluster % second summation kgin
eval(['num_sample2=size(c',num2str(j),]1);'
eval(['cb=c’,num2str(j),";']) % the secondstar

for v=1:.num_samplel %third summation symbol
alpha=ca(v,1); % residue number of the piEnt
for w=1:num_sample2 % fourth summation symbol
beta=cb(w,1); % actual residue numbethef second
point
if k1(alpha,beta)>0
gap=data(alpha,:)-data(beta,:);
Y=gap™gap/(norm(gap)"2);
Q=Q4(i,v,j,w); %%check here
S=kl(alpha,beta)*Q*Y*Q;

Ma=S(1:6,1:6);
Mb=S(1:6,7:12);
Mbt=S(7:12,1:6);
Mc=S(7:12,7:12);

KC(6*(i-1)+1:6*,6*(i-1)+1:6*)=KC(6*(i-1)+1:6*i,6*(i-1)+1:6*i)+Ma;
KC(6*(j-1)+1:6%},6*(j-1)+1:6*))=KC(6*(j-1)+1:6*},6*(j-1)+1:6*))+Mc;
KC(6*(i-1)+1:6*,6*(j-1)+1:6*))=KC(6*(i-1)+1:6*i,6*(j-1)+1:6*))+Mb;
KC(6*(j-1)+1:6%},6*(i-1)+1:6*)=KC(6*(j-1)+1:6*},6*(i-1)+1:6*i)+Mbt;
end
end
end
end
end

%%% compute M matrix
mi=zeros(6);
mm=zeros(3);
for i=1:num_of_cluster
eval(['num_sample=size(c',num2str(i),’,1);1)
eval(['ca=c',num2str(i),";']) % the first cluster
for v=1:num_sample
alpha=ca(v,1);
rhat=(data(alpha,:)-ctofmassl(i,:))*1e-8jexgth scale conversion
mm=(rhat*rhat*eye(3)-rhat*rhat)*mn(alpi,

% mm=mm-+a,
mi=[eye(3)*mn(alpha,1) zeros(3);zeros(3) %% %%
% mi=mi+Db;

MC(6*(i-1)+1:6%,6*(i-1)+1:6*))=MC(6*(i-1)+1:6*i,6*(i-1)+1:6*)+mi:
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end
end

KT(offset+1:0ffset2,offset+1.0ffset2)=KC,;
MT (offset+1:0ffset2,offset+1:0ffset2)=MC;

save KC KC
save MC MC
save MT MT
disp(KC MC MT saved’)

%%%% %% %% % %% % %% %% %%Hybrid NMA %%%%%%%%%%%
KH=zeros(offset2);
MH=zeros(offset2);

for i=1:num_of _pm % first summation symbol - pomass
for j=1:num_of_cluster % second summation syimbigid cluster
eval(['num_sample=size(c',num2str(j),TL);’
eval(['cb=c',num2str(j),";'])
for w=1:num_sample % thrid summation symbmsidues in cluster
beta=cb(w,1); % actual residue numlb¢h® second point
if k1(i,beta) >0
gap=data(i,:)-data(beta,:);
Y=gap"gap/(norm(gap)"2);
Q=Q4N(,w); %%check here
S=k1(i,beta)*Q™*Y*Q;

Ma=S(1:3,1:3);
Mb=S(1:3,4:9);
Mbt=S(4:9,1:3);
Mc=S(4:9,4:9);

KH(3*(i-1)+1:3*,3*(i-1)+1:3*)=KH(3*(i-1)+1:3*,3* (i-1)+1:3*)+Ma,;
KH(3*(i-1)+1:3*,6*(j-1)+1+offset:6*j+offset)=KH(3*(i-1)+1:3*,6*(j-
1)+1+offset:6*j+offset)+Mb;
KH(6*(j-1)+1+offset:6*j+offset,3*(i-1)+1:3*)=KH(6*(j-1)+1+offset:6*j+offset,3*(i-
1)+1:3*)+Mbt;
KH(6*(j-1)+1+offset:6*j+offset,6*(j-1)+1+offset:6*foffset)=KH(6*(j-
1)+1+offset:6*j+offset,6*(j-1)+1+offset:6*j+offsetMc;
end
end
end

end
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KT=KT+KH,;
%%%%% Eliminate Truncation Error to Make The Matsiymmetric %%%%%%%%

for r=1:1046
for c=r+1:1047
KT(c,r)=KT(r,c);
end
end

save KT KT

%break

x1=MT"(-1/2);

for r=1:1046
for c=r+1:1047

x1(c,r)=x1(r,c);

end

end

save x1 x1

clear all

load KT

load x1

ST=x1*KT*x1;
for r=1:1046
for c=r+1:1047
ST(c,r)=ST(r,c);
end
end

save ST ST
disp('KT MT ST saved)

%%%%%%%%%%%%End of hybrid NMA %%%%%%

clear all

clc

load an

load k1n

load nc

load mn

% load massl

88



load ctofmassl
data=an;
kl=kl1n;
m=size(data,1);

num_of pm=560; %adjustment
num_of cluster=5;  %adjustment

offset=3*num_of pm;
offsetl=6*num_of_cluster;
offset2=offset+offsetl;

load ST

load x1
[v1,d]=eig(full(ST));
save vlivl

save d d

[Y,l]=sort(diag(d));

v_sort=[];

for i=1:0offset2
v_sort=[v_sort;v1(;I(i)1;

end

V_sort=v_sort

d=Y;

v=x1*v_sort;

save v_sort v_sort

save vV

savedd

for i=1:0offset2
wn_Ifh(i,1)=sqrt(d(i))/2/pi/3e10;

end
save wn_Ifh wn_Ifh

%%%%%%%%%%%%% converting into Cartesian coordint@s)0%%%%%%%
for w=1:0offset2
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for i=1:num_of_cluster
eval(['load c',num2str(i)])
eval(['c=c',num2str(i),";])
k=size(c,1);
cdelta=v(6*(i-1)+1+offset:6*i+offset,w);
trans=cdelta(1:3,1);
orient=cdelta(4:6,1);
R=expm(Jmat(orient));
for j=1:k
data_new(c(j),:)=(data(c(j),:)-ctofmass1(i,R)*ctofmassl(i,:)+trans’
end

end

% %

for i=1:num_of_pm

data_new(i,:)=data(i,:)+v(3*(i-1)+1:3*i,w)";

end

% %

fori=1:m
deltal(3*(i-1)+1:3*,w)=(data_new(i,:)-dataj,;

end

%

end

% % Grandschmidt and convert to original orderdamparison %%
save deltal deltal

delta2=gramschmidt(deltal);

save delta2 delta2

eig_converter('delta2’)
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