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ABSTRACT 

 This thesis can be divided into two parts: one was to evaluate the effect of integrating 

coproducts of enzyme assisted aqueous extraction of oil from soybean oilseeds, namely soy 

skim and soy insoluble fiber, in corn fermentation when different yeast species are used, and 

the second was to evaluate the efficacy of different chemical preservatives in increasing the 

shelf life of distillers wet grains (DWG), which is a co-product of the corn fermentation 

process and sold as animal feed.  

For evaluating the performance of different yeast species in ethanol production in an 

integrated corn-soy fermentation system, a review of published literature was conducted to 

understand the enzyme-assisted extraction process (EAEP) of oil from soybean.  The review 

paper discusses in detail the evolution of enzymes based extraction process from aqueous 

extraction process and compares the process with conventional solvent-based oil extraction. 

The review indicates that the total time of oil extraction decreased and the oil yield from 

soybean oilseeds increased by 43-45% when enzymes were added to hexane-based oil 

extraction process. In aqueous extraction process, where water is used as extraction medium, 

the oil yield increased from 50% to around 85% when the soybean seeds were crushed using 

milling, flaking or extrusion. Hydrolytic enzymes were added to breakdown down cellulose 

and the protein network that captures oil molecules, which increased the oil yield to 98%. 

Pre-extraction steps such as flaking and extrusion, and enzymes used for extraction and de-

emulsification (proteases and cellulases) are important factors that affect the oil and protein 

yield of EAEP of soybeans. 

Once the process and factors related to EAEP was understood, co-fermentation of 

corn and soy products was carried out while testing the fermentation performance of two 
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yeasts species (Pichia stipitis and Candida shehatae) and comparing it with Saccharomyces 

cerevisiae. Since S. cerevisiae cannot assimilate pentose sugars such as xylose into ethanol, 

P. stipitis and C. shehatae were added to the system. Baseline data were obtained in synthetic 

media with 100% glucose, 100% xylose and glucose-xylose mixture. Further, fermentation 

was carried out for 72 hours in slurry containing just ground corn and water and slurry with 

ground corn, liquid soy skim and soy insoluble fiber. The performance of the three yeast 

species was compared on the basis of ethanol yield, ethanol production rate, ethanol final 

concentration and by-product concentration. It was observed that there was no significant 

difference at p<0.05 between the ethanol yields of the yeasts species and their mixture in 

corn only slurry, the mixture of S. cerevisiae and C. shehatae had the highest ethanol yield 

when compared to others in corn-soy product slurry. Individually, the production rate of P. 

stipitis and C. shehatae was slightly lower but when inoculated along with S. cerevisiae, the 

maximum production rate was comparable to S. cerevisiae.  

Distillers wet grains is a co-product of ethanol production process from corn 

fermentation. These are unfermented ground corn; rich in fat, protein and few minerals. 

Addition of DWG to animal feed at 8-10% inclusion rate increased the total feeding value 

from 100 to 178 according to Klopfenstein et al (2008). Distillers grains are either fed as a 

wet product or dried to 20-30% moisture content. While the shelf life of dry product is higher 

and it is easy to transport, wet product is cheaper since no drying cost is involved. Wet 

product is preferred by livestock producers with farm near an ethanol plant. Since the 

moisture content is as high as 60%, chemical preservatives are used to increase the shelf life. 

The aim of the third objective was to test the efficacy of four commercial chemical 

preservatives and to compare their performance with a new preservative under development. 
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Lactic acid bacteria, yeast and mold and aerobic heterotrophic cells were enumerated on the 

day of addition of preservatives up to day 10. Mold-X and Fungiless were very effective in 

controlling the population of yeasts and mold over the period of ten days. The performance 

of the new product, SHIELD, increased with increasing concentration and it was observed 

that the preservative was the most effective in decreasing the population of aerobic 

heterotrophs.  
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CHAPTER 1. GENERAL INTRODUCTION AND REVIEW OF LITERATURE  

General Introduction 

The demand for energy has been increasing with the population and with changing 

times and climate conditions; demand for an environmentally, socially and politically 

sustainable energy source is increasing (Brown et al., 2012). One of the reasons the US is 

moving towards renewable energy is to decrease the dependency on foreign oil and the 

scientific community of the country has been trying to address this issue with bioenergy for 

some time now. Bioethanol and biodiesel as few of the prime options of renewable 

transportation fuels.  

Bioethanol is produced from biomass like corn, sugar cane, wood, food waste, 

miscanthus and other energy crops. Any biomass containing carbohydrates can be used to 

produce ethanol. Biodiesel, on the other hand, is produced from oil extracted from oilseeds 

such as soybean, canola and jatropha. While the present method of oil extraction has been in 

use for a long time, there is a room for improvement.  

Solvent-based oil extraction is one of the prevalent extraction method present today 

with yields greater than 95% (Campbell et al., 2011). Researchers started looking for 

alternatives when the environmental issues regarding hexane (most commonly used solvent 

for oil extraction) came into light. One of the alternatives is the aqueous extraction process 

where water is used as the extraction and separating medium. Further, the role of enzymes in 

this process was investigated. These processes have shown to achieve yield as high as 99% 

which has additional advantage of separating protein from these oil seeds. While oil is 

extracted from soybeans through enzyme-assisted aqueous extraction process, the coproducts 

of the process are insoluble fiber, consisting of major carbohydrates, and skim which is rich 

in isolate proteins.  
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The insoluble fiber fraction can be further treated to hydrolyze the polysaccharides 

into soluble sugars. Glucose yield of insoluble fiber fraction increased from 2% to 40% when 

the soybean flakes were extruded and the fiber fraction was pretreated (Karki et al., 2012). 

Co-fermenting corn with soybean insoluble fraction and skim, which provides a protein 

source for yeast, has been studied and increased ethanol yield have been observed. Soy skim 

has also shown to increase the fermentation rate and decrease the overall fermentation time 

(Yao et al., 2011). While Bakers’ yeast, Saccharomyces cerevisiae is capable of giving an 

ethanol yield of over 100 mg/L, it is not very efficient in converting pentose sugars like 

xylose into ethanol. Yeasts like Pichia stipitis and Candida shehatae have been investigated 

in past for corn fermentation and have been shown to efficiently reduce pentose sugars into 

ethanol.  

Once corn is fermented and the ethanol is distilled out, the slurry left behind is called 

whole stillage. Whole stillage is high in moisture (85-90%) and is further centrifuged to 

separate the thin stillage out. Approximately half of the thin stillage is sent back to the 

fermentation system as backset. The wet cake left behind is sold to livestock producers as 

animal feed. This cake is rich in proteins and fat and can be either sold as distillers wet grains 

(DWG) or distillers dried grains (DDG). DWG has around 60-65% of moisture in it and is 

susceptible to spoilage due to high water activity and high nutrient content. Livestock 

producers generally mix other forages to DWG to reduce the overall moisture content. 

Chemical preservatives are another way of reducing the spoilage of DWG and extending its 

shelf life. There are various chemical preservatives in the market. While formaldehyde is 

very efficient in reducing microbial growth, it is highly flammable and is carcinogenic. 

Lauric Arginate (LAE) is an antimicrobial majorly used in food products, is derived from 
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natural components and was approved by FDA in 2005 (Barros-Velazquez., 2016). Organic 

acids like benzoic acid, propionic acid, potassium sorbate have shown anti-microbial activity. 

In this thesis, a review was conducted on the enzyme-assisted extraction process 

(EAEP) of soybean oil and was compared to hexane-extraction process. The coproducts of 

EAEP process were fermented along with ground corn and the performance of Pichia stipitis, 

Candida shehatae in converting the mixture of corn and soybean coproducts to ethanol was 

compared to Saccharomyces cerevisiae. Further, the efficacy different chemical preservatives 

in increasing the shelf life of DWG was tested by enumerating colony forming units of lactic 

acid bacteria, yeast and mold and aerobic heterotrophs. 

Literature Review 

Oil extraction- aqueous extraction with enzymes 

Aqueous extraction process is an environmental-friendly alternative to hexane 

extraction as the medium used for extraction is water. In addition, in aqueous extraction 

process (AEP), protein isolates are extracted along with edible oil. The damage done to 

protein is negligible and elimination of solvent makes the process cost effective. Adequate 

treatment of effluent and low oil yield are among few drawbacks of AEP too (Rosenthal et al, 

1996).  

Addition of hydrolytic enzymes at 3%, extracted from A. niger, to AEP of soybeans 

increased the oil extraction yield to 90% (Fullbrook, 1983). The carbohydrase breaks down 

the cotyledon cell wall structure and the membranes. Protease hydrolysis the lipophilic 

proteins and the lipids trapped in the protein network are released. 

Inadequate pre-treatments for rupturing the cell wall of oleaginous materials has 

thought to be the reason of low yield. Flaking and extruding processes are the means to 
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enhance the oil extraction during EAEP where extruding has shown to increase the extraction 

by 23% in AEP (Campbell, 2010). Soybeans have dominated the oilseed industry after World 

War II and in 2014, it represented 59.3% of world’s oilseed production (National Oilseed 

Processors Association, 2015). 

Corn-soybean coproducts fermentation 

Dry-grind corn has been used in industry for ethanol production for a long time. 

Around 14.2 billion bushels of corn were grown in US in 2014 and 35% of it was used to 

produce ethanol. Total of 14.3 billion gallons of ethanol was produced in US in the year 

2014, 3% higher than in 2013. Renewable fuel standard (RFS) program ensures that there is a 

continuous demand for ethanol every year. The volume standard for conventional biofuel has 

reached its maximum since 2015 (Renewable Fuel Standard Program, 2016).While, 

bioethanol industry is working towards achieving the RFS goals, issues like indirect land use 

change impacts have been associated with biofuel production. As engineers and researchers, 

making the process more efficient is our responsibility. Use of Soybean oil-extraction 

coproducts have been proved to significantly increase the ethanol production rate and ethanol 

yield while decreasing the fermentation time(Sekhon et al. 2015).  

Apart from the common yeast, other organisms are being researched upon for their 

fermentation performance. Since the growth rate is higher in bacteria, they have garnered 

more attention than the conventional Saccharomyces cerevisiae for ethanol 

production(Senthilkumar & Gunasekaran, 2005). Metabolically engineered Zymomonas 

mobilis is seen as efficient replacement of baker’s yeast for cellulosic ethanol production. 

The bacterial metabolic pathway has been proved to be more effective in ethanol 

fermentation from sugars when compared to the yeast(Lau  et al., 2010). Though bacteria 
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have been studied to have the ability to digest these sugars, they cannot withstand high 

ethanol concentration making them economically less attractive.  

Xylose makes up 1/3 of the total carbohydrate sugars present in lignocellulosic 

biomass and efficient conversion of xylose will definitely be economically favorable. S. 

cerevisiae cannot efficiently assimilate pentose sugars such as xylose and hence other 

organisms are researched upon for xylose fermentation.  Since yeasts are widely used 

fermentation organism, they are metabolically engineered to get the desired 

characteristics(Pereira et al., 2014). Recombinant strain of S. cerevisiae, where genes for 

endoglucanses, cellobiohydrolases and β-glucosidases were inserted in wild type S. 

cerevisiae and resultant strain was able to produce 1.8g/L ethanol (Du et al., 2011). Among 

other yeast species, Candida shehatae and Pichia stipitis seemed promising for pentose 

fermentation. P. stipitis CSIR-Y633 strain does not produce Xylitol, byproduct of Xylose 

fermentation (Preez et al., 1985). Furthermore, this organism does not require any vitamin for 

xylose fermentation. Though both the organisms are good xylose converters, they have low 

tolerance for inhibitors and sensitive to ethanol unlike S. cerevisiae (Matsushika et al., 2009).   

Preservatives of distillers wet grains 

Along with protein, distillers grains are a good source of digestible neutral detergent 

fiber (NDF; 40-45% in DG), which is an indicator of high energy value product. Gross 

energy of the feed is further classified into digestible energy (DE), metabolisable energy 

(ME) and net energy for lactation (NE) and theses values for DWG are 1.81 Mcal/lb, 1.63 

Mcal/lb and 1.00 Mcal/lb (dry matter) (Schroeder, 2003). Just 30% of distillers wet grains 

can replace a diet consisting alfalfa and corn silage in 1:1 mixed with corn silage and 

soybean meal concentrate. 
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Studies have shown that the feeding value of the diet increased from 100 to 178 just 

by including 10% of wet distillers grains with solubles into the feed. It also increased the 

palatability and condition the feedlot diet (Klopfenstein et al., 2008). In fact, it is reported 

that the energy value of distiller’s grains is 120-180% of corn itself (Vander Pol et al., 2006). 

There is no significant difference in the nutritive value of the wet and dry grains. 

Distillers dried grains (DDG) and distillers dried grains with solubles (DDGS) have extended 

shelf life and can be transported easily to longer distances and hence preferred by livestock 

producers as well as the ethanol plant. The drying step, though, incurs high cost and energy. 

Livestock producers with a farm near an ethanol plant generally prefer distillers wet grains 

(DWG) due to their lower cost. DWG prices are generally lower than usual in summer season 

as their shelf life is shorter when the temperature is high and air is humid. Livestock 

producers stock up when the prices are low and store DWG with other forages like alfalfa to 

preserve it. Storing DWG in 9-12 foot sealed bag can minimize its interaction with 

atmosphere decreasing the microbial growth rate hence extending its shelf life. These sealed 

bags add on to the cost which is estimated to be around $5-$8 per ton of DWG (Schroeder, 

2003). Another alternative is to add chemical preservative before bagging or storing it in silo 

bunkers. 
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CHAPTER 2. RESEARCH OBJECTIVES 

Objectives 

This thesis is written in two folds- first to evaluate the performance of pentose 

degrading yeasts in comparison to Bakers’ yeast in an integrated corn-soy fermentation 

system and to evaluate the effect of chemical preservatives on the shelf life of distillers wet 

grains (DWG). 

Further, the whole study is divided into three clear objectives: 

1. To review the enzyme-assisted aqueous extraction process (EAEP) of soybean and 

compare it with conventional hexane-extraction method; 

2. To compare the fermentation performance of Pichia stipitis and Candida shehatae with 

Saccharomyces cerevisiae in an integrated corn-soy fermentation system; and 

3. To evaluate the efficacy of different preservative in increasing the shelf life of distillers 

wet grains produced in corn ethanol plant 

Thesis Organization 

Chapter 3, 4 and 5 discusses in detail the research goal stated above. Chapter 3 is an 

review of literature of enzyme assisted oil extraction process of soybean and its comparison 

to conventional solvent-extraction process. Chapter 4 is an experimental study where the co-

products from EAEP of soybean were added to corn fermentation and the performance of 

pentose-digesting yeasts namely Pichia stipitis and Candida shehatae was evaluated in 

comparison with Saccharomyces cerevisiae. Chapter 5 is again an experimental study where 

the efficacy of various chemical preservative in prolonging the shelf life of distillers wet 

grains was tested and compared. Chapter 6 is an overall conclusion of the studies conducted 

as a part of my research and the plans for future work. 
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CHAPTER 3. OIL EXTRACTION- FROM SOLVENT BASED TO ENZYME-
ASSISTED AQUEOUS EXTRACTION PROCESS- A REVIEW 

Abstract 

Drawbacks of solvent based oil extraction from oilseeds have led to increased usage 

of aqueous extraction process where water is used as the extraction medium and the basic 

principle of separation of oil is its immiscibility in water (Aqueous extraction process- AEP). 

Hydrolytic enzymes like proteases, cellulases can further facilitate AEP by breaking the cell 

walls of these oilseeds and by breaking the protein network, which releases the oil molecules 

(Enzyme-assisted aqueous extraction process-EAEP). Physical and enzymatic pretreatment 

of oilseeds makes extraction of oil and downstream processing easier and faster when 

compared to solvent-based oil extraction. EAEP can be performed in either single stage or 

two stages. Two-stage EAEP has proven to be useful and economical when the process is 

scaled up to pilot plant since the ratio of oil yield to the amount of enzyme used is higher 

compared to single stage EAEP. The oil, protein and solids yield obtained in pilot plant were 

consistent with those obtained at laboratory scale. This paper focuses on AEP and EAEP of 

soybeans and compares the environmental and economic aspect of these processes to solvent 

based extraction method. It also discusses important factors that affect the oil and protein 

recovery in EAEP process and de-emulsification of oil. In conclusion, AEP and EAEP 

appear to be better alternatives despite low yield (AEP) and high operational cost (EAEP) 

because when compared to solvent-based oil extraction, they are safe and capitally less 

intensive.    

Introduction 

The conventional oil extraction methods used in industries are solvent extraction, 

expeller pressing and hydraulic pressing. The oldest method, Hydraulic pressing, is labor 
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intensive and the use has diminished over the years. Pressing is now combined with solvent 

extraction in a two-stage extraction process. When the raw material cannot be processed 

directly, pre-pressing method helps to prep the material. 

Solvent extraction, on other hand, has proven to be excellent when the extraction 

substrate has low oil content along with high oil content. The commonly used solvent is 

Hexane, and it is separated from the oil by evaporation and distillation (Rosenthal et al, 

1996).  Solvent extraction is the most preferred method when edible oil needs to extracted 

from oilseed because the process is efficient in yielding oil up to 95% or more and recovers 

95% of hexane. Despite all the pros of this process, it is known that Hexane is a highly 

flammable liquid and can pose a health hazard to the workers in the extraction plant. It 

causes severe damage to the nervous system with chronic as well as low exposure for a long 

time. This is where the need for a much safer and eco-friendly extraction process arises. 

Aqueous extraction process is an environmentally cleaner alternative to hexane 

extraction as the only medium used for extraction is water. In addition, in aqueous extraction 

process (AEP), protein isolates are extracted along with edible oil. The damage done to 

protein is negligible and elimination of solvent makes the process cost effective. Adequate 

treatment of effluent and low oil yield are among few drawbacks of AEP too (Rosenthal et al, 

1996).  

Addition of hydrolytic enzymes at 3%, extracted from A. niger, to AEP of soybeans 

increased the oil extraction yield to 90% (Fullbrook, 1983). The carbohydrase breaks down 

the cotyledon cell wall structure and the membranes. Protease hydrolysis the lipophilic 

proteins and the lipids are released. 
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Inadequate pre-treatments for rupturing the cell wall of oleaginous materials has 

thought to be the reason of low yield. Flaking and extruding processes are the means to 

enhance the oil extraction during EAEP where extruding has shown to increase the extraction 

by 23% in AEP (Campbell, 2010). Soybeans have dominated the oilseed industry after World 

War II and in 2014; it represented 59.3% of world’s oilseed production (National Oilseed 

Processors Association, 2015). 

This review paper discusses aqueous and enzyme assisted extraction process of 

soybeans and compares them with solvent extraction method. 

Conventional Oil Extraction Processes 

Solvent extraction is a widely used extraction process due to its high efficiency and 

low cost (Sawada et al, 2014). Once extracted using a solvent (mostly Hexane), the crude oil 

undergoes degumming (to remove phosphatides and gums), alkali treatment (to remove 

metallic pro-oxidants, free fatty acids acids), bleaching (to remove soap particles and 

pigments) and deodorization (to remove off-flavors) (Brekke, 1980) as shown in Figure 3.1. 

Studies have been conducted to test if supercritical fluid specifically Supercritical 

CO2 (SC-CO2) could replace hexane. Oil from full-fat flaked was extracted using hexane and 

SC-CO2 and the yield obtained was 20% and 19.9% respectively. Along with the yield, the % 

free fatty acid, peroxide value and unsaponifiables of SC-CO2 (0.5%, 0.2 and 0.5% 

respectively) were comparable to hexane too. The phosphorus content of oil decreased by 

approximately 10 fold and the chromatography refining loss reduced by 3.8% when SC-CO2 

was used (Friedrich and List, 1982). It was also observed that when the pressure at which 

CO2 is supplied was increased from 5000psig to 8000psig, the extraction efficiency 
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increased. At higher pressures, the solubility of oil in CO2 increased with increasing 

temperature (from 50˚C to 60˚C at 6000psig) (Friedrich et al., 1982).  

Other solvent like isopropanol were studied individually and in combination of 

hexane. After 3 hours of extraction, oil extraction yield of isopropanol was 28%, hexane 34% 

and mixed solvent (isopropanol + hexane) ~ 40%. Various levels of ultrasound waves were 

tested while using hexane and it was observed that increasing intensity, the oil yield 

increased. This is the result of cavities produced by compression and shearing while 

ultrasound waves are passed through the flaked soybeans. The yield was more than 45% 

when ultrasound of intensity 47.6 W/cm2 was used (Li et al., 2004). 

Ethanol was also investigated as a potential solvent. Absolute ethanol could achieve 

the yield of 21% at 60˚C. Ethanol was diluted with de-ionized water at 6% mass basis and its 

yield was greater than 20% only at 90˚C. Protein extraction decreased with dilution (Sawada 

et al., 2014).   

Adding Enzymes to the Solvent-based Extraction 

Sherba et al. (1972) first investigated enzymatic extraction when they fractionated 

Soybean using protease as reported by Rosenthal. Fullbrook then worked on aqueous 

hydrolysis of oilseed followed by addition of solvent and in simultaneous presence of 

solvent. His results showed that oil extraction was more efficient when the solvent was 

present during the aqueous hydrolysis. 

Extraction of oil with mixture of enzymes (Pectinase, Cellulase and Hemicellulase) 

was also conducted where the solvent used was petroleum ether (Olsen et al., 1988). 

Enzymes partially hydrolyze the cell wall and increase the cell permeability. When the 

canola flakes are autoclaved and moisture adjusted and then subjected to enzyme mixture 
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along with different kinds of carbohydrase, yield of canola oil and extraction time varies. It is 

then followed by drying and hexane extraction. Using the enzymes increases the yield by 

45% and the time of extraction decreases comparatively. (Sosulski et al., 1988) 

To enhance extraction of antioxidant, pectin polysaccharide is processed with enzyme 

mixture.  Enzymes have shown to increase the extraction to 7.4 g/kg from 1.7g/kg of raw 

material (dry weight) (Gan et al., 2010). For enhanced extraction of lycopene from tomatoes, 

cellulase and pectinase are used under optimal condition that increased the yield by 2.5 fold. 

(Choudhari et al., 2007)  

Enzymatic treatment along with hexane extraction have been studied for low moisture 

content Soybean. For soybeans with moisture content between 15-20%, cellulose and 

Multifect enzymes were added before solvent extraction and they were added simultaneously 

for soybeans with moisture content lower than 12%. While the total oil extracted from 

untreated sample (only solvent extraction; no enzymes) was 79.50%, it was 84.85% for 10% 

moisture soybean that was treated with enzymes and solvent at 0.75 E/S ratio (Dominguez et 

al., 1995). 

Aqueous Extraction Process (AEP) 

In this process, oil is extracted from the oilseeds with the help of water using the 

principle of dissolution of oil in water. The oilseeds are conditioned, ground and oil is 

extracted by boiling water, which floats on the surface. Oil is removed and dried. Instead of 

boiling water, oil and protein isolates can be separated using centrifuge too. This prevents 

protein denaturation caused by high temperatures.  

Based on the pH of the extraction medium, protein can be collected from solids as 

concentrate or from liquid phase as isolates (Figure 3.2). 
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For extraction of oil from soy flour, temperature, solid-liquid ratio, particle size, 

agitation speed and pH are deciding factors. It is shown that at pH of 4.5, the oil and protein 

yield of AEP of soy flour is very low since at that pH, soy protein have very low solubility. 

The oil and protein yield decreases with increasing particle size too (Rosenthal et al., 1998).  

Mechanism of crushing the soybean grains majorly affects the particle size that in 

turn affects the oil yield. Milling, flaking, milling+flaking (flour from flakes) and extrusion 

were tested and complete cellular disruption was achieved only in extrusion. Light 

microscopy of residual matter after 2 hours of aqueous extraction of flour from flakes 

showed coalesced oil droplets, dissolved proteins and very little residual matter was present 

in extracellular space. In case of extruded soybean, oil droplets were found in the solid 

matrix. The oil yield was 75% for flour from flakes and 68% in case of extruded material 

(Campbell et al., 2009). Combining flaking and extrusion would ensure complete cell 

disruption and increase the oil yield.   

The oil yield of AEP is usually lower when compared to solvent extraction since 

100% recovery of oil from skim is not achieved and some oil stays un-extracted in the fiber 

rich fraction. This problem can be addressed by using subcritical water (water with 

temperature greater than 100˚C but less than 374˚C at pressure between 1-8 MPa; condensed 

form) which can be used to extract proteins since the polarity of water decreases at 

subcritical conditions making the extraction of bioactive compounds easier. Oil yield varied 

from 38.2% to 83.9% in case of extruded soybean flakes and between 4.2% and 50.2% for 

un-extruded soybean flakes when the solids to liquid ratio changed between 1:3.3 and 1:10, 

temperature varied between 66˚C and 234˚C and the extraction time varies between 13 to 47 

mins. Temperature affects the solubility and dissolution of solute in solvent. When heated, 
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the denatured proteins sequester the oil particles and at temperature greater than 150˚C, 

protein extractability was slightly higher in case of extruded flakes. Conditions that increased 

the oil and protein yield in extruded flakes and just the flakes were 150˚C, 66˚C, respectively, 

and 1:11.7 solids-to-liquid ratio for both (Ndlela et al., 2012). 

Enzyme-assisted Aqueous Extraction Process (EAEP) 

Addition of enzymes like cellulase, pectinase or protease to the aqueous extraction 

process for enzymatic breakdown of the cell components makes the process enzyme-assisted 

aqueous extraction process. It has been widely used in past to extract natural pigments, 

flavors, medicinal compounds, polysaccharides and oils. The advantage is accelerated 

extraction, enhanced recovery, energy efficient process and it is eco-friendly process as 

solvent usage is reduced (Puri et al., 2010). Phenolic compounds have been extracted from 

citrus peel using EAEP. The citrus peel was grounded and pre-treated with Cellulase® MX, 

Cellulase® CL and Kleerase® AFP (food grade enzymes). After centrifugation and filtration, 

the filtrate is extracted by evaporation of solvent using rotary evaporator (Li et al., 2006).   

Enzymes have been incorporated in the rural extraction processes too. The copra meal 

was finely milled and slurry with water was prepared. The slurry then was pre-treated with 

enzymes like protease and pectinase from Aspergillus niger, cellulase/hemicellulase from 

Trichoderma reseei and ɑ-amylase from A. oryzae and incubated for 6 hours at 37℃. Water 

floatation technique was used to extract the oil. Extraction Yield reportedly increased by 50% 

when compared to the controls (Kwaku et al., 1997). 

Enzyme mixture depends on the meal that is being used. For peanuts oil, cellulase, 

protease and ɑ-1,4-galacturonide glucanohydrolase has shown to increase the yield by 6-
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10%. Protizyme containing papain, trypsin and chymotrypsin has shown to increase the 

peanut oil yield from 44% to 92% when the shaking speed was 80 rpm (Sharma et al., 2002).  

In the study conducted by Campbell et al. (2009), they compared AEP to EAEP and it 

was seen that addition of a protease (Protex 7L) increased the oil yield of flour from flakes 

and extruded material as tabulated in Table 3.1. 

It was clear with the light microscopy image of protease hydrolyzed residual matter 

that most of the protein was dissolved and the material is loose and amorphous. Cellulase 

was shown to have no effect on oil yield in case of extruded material and this indicates that 

extrusion process ensures complete cell disruption (Campbell et al., 2009). 

In case of study conducted by deMoura et al (2008), soybeans were extruded at 

around 100℃ and 100 rpm screw speed in a twin-screw extruder. The extruded flakes were 

added to water to achieve 1:10 solids-to-liquid ratio. Proteases (Protex 6L-alkaline protease- 

at 0.5 and 1.0% and Protex 7L-neutral protease- at 0.5%) was added at optimum 

concentration, temperature and pH. The slurry was centrifuged to separate out insolubles 

after the extraction and the liquid fraction was processed to separate the free oil. A process 

diagram of the same is displayed in Figure 3.3. 

The authors attributed the high oil yield of Protex 6L (Table 3.2) to better selection of 

soybean variety, extrusion parameters and enzymes. The amount of free oil obtained by 

Protex 6L (0.5%) was twice of the amount obtained from Protex 7L. It was observed that 

conditions favoring protein and oil extraction were similar because protein networks and 

oleosin membrane capture oil particles that are released when the network is broken down. 

High amount of solids were found in skim fraction in case of 0.5% Protex 6L (58%).  
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Factors Affecting Oil and Protein Recovery 

Pre-extraction steps 

Grinding and flaking operation determines the particle size of the oil seed. Smaller 

the particle size, easier it is for water-soluble particles to separate out. Enzyme dissolution 

also becomes easier when the size is small. Based on the moisture content of the seeds, they 

are either ground dry or wet. These operations along with extrusion determine the stability of 

emulsion. In absence of enzymes, the oil recovery dry pellets of soybean was 50%, which 

increased to 60% on grinding the pellets to about 2-3mm in diameter and the oil recovery 

further increased to 75% when the pellets were extruded under water at 100˚C (Lamsal et al., 

2006). 

EAEP of extruded full-fat soy flakes yielded more oil when compared AEP of full fat 

soy flours and separatory funnel procedure was used to quantify the oil in each fractions 

(Lamsal et al., 2007). The free oil obtained by EAEP of extruded flakes was 8 times that of 

AEP of flour (Table 3.3) indicating extrusion and use of enzymes for extraction has 

significant effect on the oil yield. The size of oil droplet produced by extruded flakes was 

2.25 times larger than droplets produced by AEP of soy flour. Increase in size results in 

higher terminal velocity and the oil particles rise up, coalesce making more and more free oil 

available (Lamsal et al., 2007). 

Temperature while extrusion plays a major role in protein extraction and in turn oil 

extraction. High temperature denatures proteins, breaking the protein networks hence 

releasing the oil trapped. At higher temperatures than 100˚C, frothing was observed which 

leads to oil sequestering thereby decreasing the oil yield. Temperature of extruder barrel has 

shown to positively affect the oil and protein yield till 100 ˚C (at 12% moisture content and 
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100rpm screw speed; oil yield 55%) and negatively affect it at temperatures 120˚C (at 12% 

moisture content and 100rpm screw speed; oil yield 45%) and higher (Lamsal et al., 2006). 

It is clear from the data displayed in Table 3.4 that increase in temperature has 

negative effect on the oil and protein yield. Moisture content has positive effect on the 

dependent variables since the diffusion of oil and its release becomes easier. The screw speed 

did not seem to have much effect on the oil and protein yield since at 14% moisture content 

and 100˚C temperature, change in rpm did not matter. 

Enzymes used for extraction and de-emulsification 

Since enzymes have shown to increase the oil and protein yield, their concentration, 

pH of the slurry when added and temperature is very important. It is not necessary that every 

enzymes may give good results. Cellulase, for example, have not shown any effect on the oil 

yield of extruded soy flakes. Proteases, on other hand, can degrade the peptides surrounding 

oil molecules called oleosin, making oil extraction easier.  

Kapchie et al. (2008) compared the effect of enzyme cocktail (Pectinase, Cellulase 

and Multifect CX3L) at different concentration and total time of application with the control 

(no enzymes) on oleosomes. Extraction was performed by blending the hydrated soybean 

flour with buffers in a Waring blender.  As the blending time increased, the oil yield in 

control decreased since it created an emulsion in the upper layer after centrifugation.  In case 

of enzyme-assisted extraction, the oil yield increased with increasing blending time. With 

increase in enzyme concentration, the total oil yield increased and the oil content in residue 

decreased (Table 3.5).  

When similar studies were carried out at pilot plant scale, after 10 hours of 

centrifugation, 93% of oil was recovered from the oleosome fraction. The enzyme cocktail 
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used here was slightly different from the laboratory scale: Pectinase, Multifect CX B and 

Multifect CX G. Laboratory scale experiments were performed again with the new set of 

enzymes and the oil yield was found to be 77%. Horizontal decanter centrifuge used in pilot 

plant in comparison to series benchtop centrifuge used in lab-scale was better at mixing and 

re-circulating slurry for maximum oil release. Protein content was highest in supernatant 

after centrifugation (~26%) and the distribution of glycinin and β-conglycinin fractions were 

studied in supernatant, precipitate (oleosome) and initial soy flour and there was a slight 

decrease in % of total mass in supernatant of these protein subunits in pilot plant when 

compared to lab-scale (Towa et al., 2011).  

When 0.5% Multifect Protease enzyme was added to soybean flakes, the oil yield 

increased from 46% to 71% and for extruded flakes, it increased from 56% to 88%. 

Extrusion on its own increased the yield by 10% (Lamsal et al., 2006).  

Protex 6L when added to isolated oleosomes at 0.25% dosage recovered oil lesser (3 

hours of hydrolysis and 30 mins of destabilization time; oil yield of 65%) when compared to 

2.5% of Protex 6L (3 hours of hydrolysis and 30 mins of destabilization time; oil yield of 

85%). The yield increased with increase in hydrolysis and destabilization time. Maximum 

yield of 90% was reached at 2.5% of Protex 6L, 18 hours of hydrolysis and 3 hours of 

destabilization time (Towa et al., 2011). 

Presence of substance like free fatty acids or phospholipids decreases the quality of 

oil and it was studied that while the % of free fatty acid of hexane-extracted freeze dried 

soybean oil was 1.18%, enzyme assisted aqueous extracted soybean oil had only 0.11-0.18% 

of fatty acids. This was because enzymatic hydrolysis occurred at high temperatures and 

basic pH at which the free fatty acids would neutralize and precipitate out when centrifuged. 



22 

These fatty acids affect the oxidative stability index (OSI) of the oil too. While the OSI of 

soybean oil extracted by EAEP was lower (12 hours) than the crude soybean oil (27 hours), it 

was slightly higher when compared hexane extracted soybean oil (9 hours) and almost 

similar to commercial sold soybean oil (11 hours) (Towa et al., 2011). 

When different food grades enzymes (endopeptidase: Multifect Neutral (MN), 

Bromelain (BR) and exopeptidase: exo. C) were tested for their ability to emulsify soy flour 

hydrolysates and the emulsification capacity (gram of oil/gram of protein) decreased from 

1935 (control-no enzyme) to 1702 for MN, 1456 for BR and 1288 for exo. C (Lamsal et al., 

2006).   

While reviewing the literature of oil extraction from soybean, it was learnt that two 

main factors which significantly affect the oil and protein yield of the process where 

extrusion and addition of enzymes as mentioned above. Extrusion mainly ruptures the cell 

wall and makes the proteins available for enzymes (proteases) to breakdown and for water to 

flow and carry the free oil. Cellulases are ineffective when the extraction is preceded by 

extrusion.  

Table 3.6 data shows that the oil yield of 15% moisture soy flakes increases to 90% 

from 60% when extruded at 100rpm at 100˚C before extraction and 0.5% of proteases is 

added while extraction. The solubility of isolated proteins increased when the flakes were 

extruded from 71% to 94% (Jung et al., 2009).  

Downstream Processing 

Generally, in aqueous extraction process, oil and protein are demulsified and then 

centrifuged to separate into layers of aqueous and oil phase. Centrifugation can cause 

creaming at times but it gives complete separation through phase inversion (Rosenthal et al., 
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1996). In EAEP of soybean, the free oil+cream fraction undergoes de-emulsification to 

separate residual skim and to obtain free oil. Centrifugation separates the de-emulsified 

fraction into three distinct layers- free oil layer, intermediate layer and skim layer (Figure 

3.5: Flow diagram of cream de-emulsification (based on de Moura et al., 2008).) (Campbell 

et al., 2010). De-emulsification can be either done physically (freeze-thaw, heating), 

chemically (pH 4.5) or with enzymes (like Phospholipase C, Protex 6L or enzyme cocktail).  

When heating at 95˚C, freeze-thaw, Lysomax/G-zyme cocktail (enzyme cocktail) and 

phospholipase C were tested for cream de-emulsification against the control and except for 

heating, every other treatments were very effective in destabilizing the emulsion. While 

freeze-thawing cause denaturation of soy protein, breaking the emulsion and releasing the oil 

as free oil, Lysomax and phospholipase breaks the ester bond between the fatty acid groups. 

Freeze-thaw yielded around 86% of free oil and phospholipase recovered 73% of oil as free 

oil (Lamsal et al., 2007). Effect of pH was tested on the stability of cream and free oil 

emulsion. Control was held at pH 8, which is the initial cream pH. Yield of free oil increased 

with decreasing pH and maximum (100% free oil yield) was reached at pH 4- 4.5 as shown 

in Figure 3.4. 

LysoMaxTM was compared to Protex 51FP to test its impact on cream destabilization 

and it was observed that Protex 51FP yielded 88% of oil at 0.2% level, which was more than 

twice of what LysoMax TM achieved at the same concentration (Wu et al., 2009). 

According to deMoura et al. (2008), the free oil yield in percentage is calculated as:  

 

 (3.1) 
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Pasteur pipette was used to collect free oil and it was quantifies using hexane 

following procedure mentioned in Lamsal et al. (2007). 

2.5% of Protex 6L (P6L) was used for de-emulsifying cream produced by Protex 6L 

and Protex 7L extraction of soybeans. Maximum free oil yield for Protex 7L-cream was 91% 

and for Protex 6L-cream was 100%. When the pH of cream extracted with Protex 6L was set 

to 4.5, temperature was maintained at 25°C and no agitation was provided, 100% free oil 

yield was achieved (deMoura et al., 2008).  

Cream de-emulsification is an important step in EAEP and enzymes like proteases 

prove to be efficient it destabilizing the cream and separating out skim from the free oil. 

Research has been conducted to integrate EAEP and the de-emulsification step which will be 

discussed in the next section. 

Two-stage EAEP and Scale-up 

According to J. M. L. N. Moura’s referenced paper on scaling up of EAEP, work 

done in past in EAEP of soybeans resulted in high oil and protein extraction yield when the 

solids-to-liquid ratios (1:10) is relatively low and extraction is performed in single stage. 

When scaled up, at same ratio, the water required to too large which leads to large skim 

production. To enhance the protein and oil extraction, the amount of water has to be reduced 

without compromising the efficiency of extraction. This is where two-stage counter-current 

EAEP comes into play. The extruded flakes are processed through two stages of extraction 

and liquid fraction of second stage is recycled to first. Slurry from first stage is centrifuged to 

remove insoluble particle. Liquid phase is further separated into skim and cream as shown in 

Figure 3.6. The insoluble part is fed again into the extractor. Second stage slurry is 

centrifuged and the liquid phase is recycled to first stage (de Moura et al., 2009).  
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The oil content in skim and insoluble decreased slightly in two-stage EAEP, which is 

desirable as it decreases downstream processing efforts. With increase in solid content in 

two-stage EAEP (solids to liquid ratio 1:5), the amount of water used decreased reducing the 

oil content in skim fraction and the extraction efficiency improved by 2%.  

When scaled up from 0.08 kg extruded flakes to 1 kg extruded flakes, the oil, protein 

and solids extraction yield of single stage EAEP remained the same. The amount of oil in the 

skim fraction increased from 14% at laboratory scale to 20% at pilot-plant scale-up. When 

the two stage EAEP was scaled-up, there was slight increase in all the three extraction yields 

and the oil content in skim fraction was higher (Table 3.7). The amount of oil in skim was 

reduced by changing the extraction condition (pH 8.0 for 60 mins) (deMoura et al., 2009). 

Concurrent two-stage EAEP was integrated with Cream de-emulsification with three 

stages in total- two extraction stages and one de-emulsification stage. The enzyme added in 

de-emulsification step was reused in the 2nd stage of EAEP and the enzyme recovered after 

the 2nd stage was recycled in the 1st stage of EAEP (Figure 3.7) (deMoura et al., 2011). 

There was slight decrease in the oil and protein yield when compared to two stage 

EAEP as shown in Table 3.8. Since the first liquid fraction was settled overnight, the weight 

and viscosity increased making it difficult to separate cream. The separated cream needed 

enzymes 1.5 times more than usual. When the amount of protease increase, it results in 

extensive hydrolysis of proteins and there are high chances that new interactions between 

peptides and oil may have stabilized the emulsion instead of destabilizing it (deMoura et al., 

2011). 

The amount of enzyme required in this process is very high and the yield obtained is 

comparatively lower than two-stage EAEP. Although this process was developed to reduce 
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the overall enzyme use, the amount of enzymes required in de-emulsifying 3rd skim is greater 

than the amount required in two-stage EAEP.  

Solvent Extraction v/s AEP and EAEP 

Environmental aspect 

Cheng et al. (2016) conducted environmental impact assessment of soybean oil 

extraction by hexane-based oil extraction method and EAEP. Hexane extraction had an input 

component environmental impact (EI) value of approximately 39 with hexane contributing 

92% to it. EAEP, on the other hand, had an input component impact value of ~10 in a 

multiplying system. The general environment impact (GEI) value of hexane-based extraction 

and EAEP were ~3.5 and 1.0, respectively. 

The output component EI of EAEP was higher when compared to hexane-based 

extraction (~42 and 36) with soy skim contributing 76% to the EI of EAEP. Soy skim, co-

product of EAEP, is produced in large quantity and as mentioned before, contains around 15-

20% of extracted oil. Since the downstream processing of soy skim is difficult, finding a 

commercial use of it can reduce its impact. Hexane-based extraction still had the highest GEI 

of output components (~3.4). 

At the rate of 1 kg of soybean oil produced, the greenhouse gas (GHG) emissions of 

EAEP were higher. Pre-treatment of soybean is an essential step in EAEP for higher oil and 

protein yield and these steps consume electricity three times more than the hexane-based 

extraction method, which drives up the process’s GHG emission (Cheng et al., 2016).  

Economic aspect 

For the years 2010-2014, the total plant direct cost (TPDC) of hexane-based oil 

extraction process accounted for ~44-48% of total capital investment. While startup cost was 
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just ~4%, the working capital accounted for 14.95% of the total investment. In 2015 estimate, 

TPDC takes up 45% of the total capital cost of EAEP with 13% working capital and 4% 

start-up capital. In hexane-based extraction, hexane and soybeans are the two raw materials 

that are used which accounted for 89.75% of total annual operating cost in 2010-2014. At a 

large scale of EAEP, materials contribute 83-88% of the total operating cost: 60.45% 

Soybean, 30.68% enzymes and remaining water and ammonium hydroxide. While hexane-

based extraction is capital intensive, EAEP has higher operating costs. Hexane recovery rate 

is as high as 95%, which reduces annual consumption rate and saves on the operating cost. 

Recycling enzymes can largely improve the economic feasibility of EAEP.  

While soybean oil contributed ~33% toward the total revenue of hexane-based oil 

extraction, it accounts for just 23.84% in EAEP. The economic aspect of EAEP can be 

improved if the coproducts of the process can be sold for integrated corn-soy fermentation.  

Conclusion 

This review shows that the basic understanding of the protein-oil matrix in soybeans, 

the effect of mechanical pre-treatment of soybeans on total oil yield and the process of de-

emulsification of cream has improved with the evolution of the aqueous oil extraction 

process. Addition of proteases helps in breaking down the matrix of denatured proteins of 

extruded soybeans, resulting in release of oil trapped in the matrix. Further, the oil in cream 

fraction can be demulsified either enzymatically or with pH adjustment, a process that is less 

time and energy consuming when compared to degumming process in solvent extraction. 

While solvent extraction just results in crude oil, protein isolates can be recovered in EAEP 

of soybeans along with oil. These soy protein isolates contain many bioactive peptides, 
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which may have therapeutic applications, and Ultrafiltration has been reported to be the best 

method of protein precipitation and separation. 

While the highest reported total oil yield of EAEP has levelled and even exceeded the 

oil yield of solvent-based extraction process (~99%), the free and demulsified oil amounts up 

to only 85%. The oil present in skim fraction is regarded as lost due to the difficulty in 

separation of oil from the fraction and a commercial use of skim fraction need to be 

identified. The process of addition of the coproducts of EAEP of soybeans to corn 

fermentation has been investigated at the laboratory and pilot scale. It is reported that the soy 

skim increases fermentation rate and decreases the amount of water required during 

fermentation. It also adds value to the distillers wet grains produced after the fermentation. 

This result needs to be scaled to the commercial level. 
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Figure 3.1: Combination of solvent extraction and pressing for extracting oil from an oilseed 
(based on Rosenthal, 1996). 
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Figure 3.2: Steps involved in the aqueous extraction process (AEP). Two alternatives are 
provided (based on Rosenthal et al., 1996). 
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Figure 3.3: Flow chart of the enzyme assisted extraction process of soybean where two 
different Proteases were compared (Protex 6L and Protex 7L) (based on de Moura et al., 
2008). 
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Figure 3.4: Free oil yield as the pH of (cream+free oil) fraction changes (from Wu et al., 
2009) 
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Figure 3.5: Flow diagram of cream de-emulsification (based on de Moura et al., 2008). 
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Figure 3.6: Two stage EAEP of Soybean- Flowchart (based on de Moura et al., 2008) 
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Figure 3.7: Integrated concurrent two-stage enzyme-assisted aqueous extraction process of 
soybeans and cream de-emulsification (based on deMoura et al., 2011). 
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Table 3.1: Oil yield (in %) with and without enzymes (Protease- Protex 7L) (Campbell et al., 
2009) 

Oil Yield (%) Soybean Flour from Flakes Soybean Extruded 

Flakes 

In AEP (without enzymes) 75 68 

With Protex 7L 79 88-96 

 
 
Table 3.2: Oil and protein yield of different enzyme treatments on extruded soybean flakes 
along with size of peptides produced (deMoura et al., 2008). All the values are rounded-up. 

 
 
Table 3.3: Distribution of oil, protein and solids in various fraction of AEP of soy flour and 
EAEP extruded flakes (Lamsal et al., 2007). All the values are rounded up. 

 Fractions Cream Skim Insolubles Free 
Oil 

Oil Yield (%) AEP of full-fat soy flour 45 15 35 2 

EAEP of full-fat extruded soy 
flakes 

60 13 13 16 

Protein Yield 
(%) 

AEP of full-fat soy flour 2 85 19 - 

EAEP of full-fat extruded soy 
flakes 

1 79 23 - 

 Protex 6L 0.5% Protex 6L 1% Protex 7L 

Oil Yield (%) 96 97 93 
Protein Extraction 
Yield (%) 

85 87 73 

Molecular weights of 
peptides yielded 

<30 kDa - >54.1 kDa 

Dry matter extraction 
yield (%) 

77 79 71 
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Table 3.3 continued 

Dry Matter 
(%) 

AEP of full-fat soy flour 12 53 34 1 

EAEP of full-fat extruded soy 
flakes 

15 53 30 4 

 
 
Table 3.4: Effect of temperature of extruder barrel, moisture content of flakes and screw 
speed on oil and protein yield (Lamsal et al., 2006). All the values are rounded up. Bold 
formatted numbers have the highest oil and protein yield. 

Temperature of 
Barrel (˚C) 

Moisture 
content of 
soybean 
extruded flakes 
(%) 

Screw speed of 
extruder (rpm) 

Oil Yield (%) Protein 
Yield (%) 

100 12 100 53 51 
100 12 150 50 54 
100 14 100 55 59 
120 12 100 46 33 
100 14 150 55 54 
120 14 150 42 35 

 
 
Table 3.5: Change in oil yield with the enzyme concentration. Enzyme cocktail used here 
was made of Pectinase, Cellulase and Multifect CX3L (Kapchie et al., 2008). All the values 
are rounded up. 

Oil Yield (%) Control (0% 
enzyme) 

0.6% 
enzymes 
(v/w) 

1.5% 
enzymes 
(v/w) 

3.0% 
enzymes 
(v/w) 

45 secs blending time 36 - - 36 
180 secs blending time 
(1st extraction) 

38  52 59 64 

180 secs blending time 
(2nd extraction) 

7 10 14 14 

180 secs blending time 
(3rd extraction) 

2 1 8 5 

180 secs blending time 
(4th extraction) 

1 1 3 3 

Summation of Yield (%) 
at 180 secs blending 

49 57 82 85 
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Table 3.6: Effects of extrusion and enzymes on oil and protein yield (Jung et al., 2009). All 
the values are rounded-up to next higher whole number. 

Processing prior to 
extraction 

Extraction process Oil yield (%) Protein yield (%) 

Full fat flakes Aqueous extraction 
without enzymes 

60 74 

Full fat flakes Aqueous extraction 
with enzymes (Protex 
7L at 0.5% dosage) 

60 76 

Extruded Flakes Aqueous extraction 
without enzymes 

68 45 

Extruded Flakes Aqueous extraction 
with enzymes (Protex 
7L at 0.5% dosage) 

90 75 

 
 
Table 3.7: Comparison of single stage EAEP to two-stage EAEP and scale-up of two-stage 
EAEP in terms of Oil Yield, Protein Yield and Solids Yield (deMoura et al., 2009). All 
values are in percentage. Bold formatted numbers are higher among respective yields. 

 Type of EAEP Cream Skim Insoluble Total 
extracted 

Oil Yield 
(%) 

Standard single stage 
EAEP 

61 14 4 96 

Two Stage EAEP 85 13 2 98 
Two Stage EAEP-Scale 
Up (pH 8.0, 15 mins) 

76 23 1 99 

Two Stage EAEP-Scale 
Up (pH 9.0, 60 mins) 

86 12 1 99 

Protein Yield 
(%) 

Standard single stage 
EAEP 

1 87 13 87 

Two Stage EAEP 0 91 8 92 
Two Stage EAEP-Scale 
Up (pH 8.0, 15 mins) 

7 87 6 94 

Two Stage EAEP-Scale 
Up (pH 9.0, 60 mins) 

9 87 4 96 

Solids Yield 
(%) 

Standard single stage 
EAEP 

17 56 23 77 

Two Stage EAEP 23 57 20 80 
Two Stage EAEP-Scale 
Up (pH 8.0, 15 mins) 

23 59 17 83 

Two Stage EAEP-Scale 
Up (pH 9.0, 60 mins) 

28 56 16 84 
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Table 3.8: Yields of integrated two-stage EAEP and cream de-emulsification (deMoura et al., 
2011). 

 Cream Skim Insoluble Total 
extracted 

Oil Yield (%) 64 32 4 96 
Protein Yield 
(%) 

8 81 11 89 

Solids Yield 
(%) 

21 59 18 81 
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CHAPTER 4.  COMPARING THE FERMENTATION PERFORMANCE OF 
CANDIDA SHEHATAE, PICHIA STIPITIS AND SACCHAROMYCES CEREVISIAE 

IN AN INTEGRATED CORN-SOY FERMENTATION SYSTEM 

Abstract 

Since xylose is one of the major pentose sugars present in biomass, producing ethanol 

from biomass is economically favorable when xylose is efficiently consumed during the 

fermentation by the microbe. Pichia stipitis and Candida shehatae are two yeasts species 

known to efficiently degrade pentose sugars. Hence, this study compares their performance 

(in terms of ethanol yield, ethanol production rate, ethanol concentration and by-product 

concentration) with industrially used yeast, Saccharomyces cerevisiae in an integrated 

fermentation system where, the coproducts of the enzyme assisted oil extraction process 

(EAEP) of soybeans are mixed with ground corn. Insoluble fiber (IF) and soy skim are the 

two co-products of EAEP of soybean oilseeds which have shown to enhance ethanol 

production rate along with the quality of distillers grains. First, fermentation in synthetic 

media (YPD) was carried out at different initial sugar concentration (100% Glucose, 100% 

Xylose and Glucose-Xylose mixture) to obtain baseline data. Further, the corn-only slurry 

and corn-IF-skim slurry were treated with either (a) S. cerevisiae (active dry baker’s yeast), 

(b) wild-type P. stipitis, (c) wild-type C. shehatae, (d) mixture of S. cerevisiae and P. stipitis 

(1:1) or (e) mixture of S. cerevisiae and C. shehatae (1:1). Additionally, S. cerevisiae was 

added to treatment (b) and (c) after 24 hours of start of fermentation to create treatment (f) 

and (g), respectively. Yeasts in treatment (d) and (e) completely utilized the sugars in 

Glucose-only and Xylose-only synthetic media and had the maximum ethanol production 

rate. Similar results were also observed in Glucose-Xylose media. While there was no 

significant difference between the ethanol yield of the yeast species or their mixture in corn 
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only slurry at 95% confidence interval, mixture of S. cerevisiae and C. shehatae had an 

ethanol yield 4% greater than S. cerevisiae in corn-IF-skim slurry. No improvement in 

ethanol yield or production rate was observed in treatment (f) and (g). Glycerol (by-product) 

concentration in treatment (b) and (e) decreased by approximately 40% and 41%  for corn-

only and 11% and 16% in corn-IF-skim slurry respectively. A 50% decrease in acetic acid 

(byproduct) concentration was observed in corn-only slurry when P. stipitis was added. 

While there was no significant difference in ethanol yield, concentration and production rate, 

the concentration of byproducts decreased in presence of P. stipitis and C. shehatae. 

Surprisingly, in corn-IF-skim slurry, P. stipites and C. shehatae could withstand ethanol 

concentration of ~120mg/ml.    

Keywords: Corn fermentation, Enzyme-assisted aqueous extraction, Ethanol, Modified yeast 

strains. 

Introduction 

According to Economic Research Service of US Department of Agriculture, the 

United States produced 14.8 billion gallon of ethanol in 2015 accounting for 8% of nation’s 

total fuel production and the use of ethanol as fuel slashed 106.4 million metric tons of 

greenhouse gas emissions in 2014. A life cycle analysis study, conducted at Argonne 

National Laboratory, found that the life cycle greenhouse gas emission could be reduced by 

19-48% when gasoline is replaced by corn-ethanol (Wang et al., 2012).  In the US, over 95% 

of all fuel sold contains 10% ethanol. Since one of the major commercial products of biofuel 

technology is ethanol, efficient fermentation of biomass and complete understanding of 

fermentation parameters are of utmost importance.  
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Approximately 90% of corn ethanol is produced from dry-grind corn and 10% from 

wet milling. In the year 2015, 14.7 billion gallons of corn derived ethanol was produced in 

US along with 40 million metric tons of high-protein animal feed (Renewable Fuels 

Association, 2016). Sole dependency on corn for ethanol production makes the ethanol prices 

and annual ethanol production reliant on corn prices and availability. In addition, there have 

been disputes regarding diverting croplands to grow corn for ethanol production, which may 

affect the food supply. Addition of coproducts of enzyme-assisted aqueous soybean oil-

extraction to corn fermentation have been shown to significantly increase the ethanol 

production rate and ethanol yield while decreasing the fermentation time at laboratory scale 

(Sekhon et al., 2015).  

Saccharomyces cerevisiae is widely used to produce value-added product since its 

growth rate is fast, the organism is well studied and characterized and when it comes to 

ethanol production, its yield and the ability to withstand high ethanol concentrations are 

exceptional. Apart from the baker’s yeast, other organisms are being researched upon for 

their fermentation performance. Since the growth rate is high in bacteria, they have garnered 

more attention than the conventional Saccharomyces cerevisiae for ethanol production 

(Senthilkumar & Gunasekaran, 2005). Metabolically engineered Zymomonas mobilis have 

been tested for cellulosic ethanol production. The bacterial metabolic pathway has been 

proved to be more effective in ethanol fermentation from sugars when compared to the yeast 

(Lau et al., 2010). Though bacteria have been studied to have the ability to digest these 

sugars, they cannot withstand high ethanol concentration making them economically less 

attractive.  
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In an integrated corn-soy fermentation, the common yeast is not very efficient in 

digesting few sugars like Xylose. Xylose makes up 1/3 of the total carbohydrate sugars 

present in lignocellulosic biomass and efficient conversion of xylose will definitely be 

economically favorable. Since yeasts are widely used fermentation organism, they are 

metabolically engineered to get the desired characteristics(Pereira et al., 2014). However, it 

was observed that most of these yeasts produced low yield ethanol but Candida shehatae and 

Pichia stipitis seemed promising for pentose fermentation. In fact, P. stipitis CSIR-Y633 

strain does not produce Xylitol, byproduct of Xylose fermentation (Preez et al., 1985). 

Furthermore, this organism does not require any vitamin for xylose fermentation. Though 

both the organisms are good xylose converters, they have low tolerance for inhibitors and 

sensitive to ethanol unlike S. cerevisiae (Matsushika et al., 2009).  Co-culturing these 

organisms may improve the fermentation performance. S. cerevisiae cells have been 

genetically engineered to integrate xylan degradation genes in its D-xylose utilizing pathway 

and as a result, S. cerevisiae was able to convert birchwood xylan to zeaxanthin, a carotenoid 

alcohol, with 0.74 mg/L concentration (Sun et al., 2012). 

This study is designed to compare the fermentation capability of the Pichia stipitis 

and Candida shehatae to Saccharomyces cerevisiae, in an integrated corn-soy system, in 

terms of ethanol yield, ethanol production rate and ethanol concentration. By-product 

concentration is also measured as one of the comparison factor. 

Materials and Methods 

Microorganism  

Pichia stipitis and Candida shehatae plates was obtained from Dr. Zengyi Shao’s lab 

at Iowa State University, Ames, IA which were maintained at 4˚C. Dry S. cerevisiae was 
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procured from Fermentis (Lesaffre Yeast Corp, AL). BactoTM Yeast Extract and BactoTM 

Peptone was procured from Becton, Dickinson and Company, MD and Dextrose was 

obtained from Sigma Aldrich, MO.  For inoculum, cells of the yeast were transferred to 

500ml Erlenmeyer flasks containing YPD media (10g Yeast extract, 20 g Peptone, 20g 

Dextrose in 1L broth) and maintained at 30˚C in an incubator. 

Corn and soy coproducts 

Yellow dent corn was obtained from Honeyville and ground using Fitz Mill (Model 

DAS 06, Fitzpatrick Co., Elmhurst, IL). The composition of corn was 89.9% of solids i.e. 

5.1% of oil, 8.6% protein, 1.1% ash and 74.6% carbohydrates, all on dry basis. Ground corn 

was stored at 4˚C. 

EAEP of soybeans was performed at pilot plant of Centre for Crop Utilization 

Research, Iowa State University, Ames, IA and skim and insoluble fiber were obtained as the 

coproducts of this process. Table 3.1 shows the proximate analysis of skim and insoluble 

fiber and the data were obtained from Sekhon et al. 2015 since same skim and insoluble fiber 

was used for this study. 

α-amylase and glucoamylase enzymes were used for liquefaction and Saccharification 

and were obtained from Novozymes, NC in liquid form. Ammonium sulfate (Nitrogen 

source) was bought from Fisher Scientific, NJ. Commercial grade S. cerevisiae and chlorine 

dioxide (antibacterial) were obtained from Lincolnway Energy LLC, Ames, IA. Cellulase, 

which was added to fermentation to hydrolyze soy fiber, was procured from Bio-Cat, VA. 
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Fermentation medium and conditions 

Study of effect of sugars and ethanol on P. stipitis and C. shehatae 

Lab scale fermentation in autoclaved standard media (For 100ml media: 1g Yeast 

Extract, 2g Peptone and 2g Dextrose; autoclave conditions: 121˚C for 1 hour) was carried out 

with different sugars (100% Glucose, 100% Xylose and Glucose-Xylose 1:1) with (a) S. 

cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) mixture of S. cerevisiae and P. stipitis (1:1) or 

(e) mixture of S. cerevisiae and C. shehatae (1:1) at 30˚C for 96h in an incubator shaker at 

150rpm. Weights were noted as regular interval and the ethanol yield was calculated by mass 

loss (%) (Wang et al., 2009). All experiments were performed in duplicates. 

Integrated corn-soy fermentation 

Liquefaction of corn-only slurry (control) and corn-soy skim-soy insoluble slurry was 

carried out at 85˚C with α-amylase. The flasks were cooled to room temperature and the pH 

was adjusted to 4.5 with 3M sulphuric acid. Further, Saccharification and fermentation were 

performed in Tornado IS6 Overhead Stirring System (Radleys Discovery Technologies, 

Shire Hill, Saffron Walden, UK) equipped with an anchored stirring shaft and six 250mL 

round bottom flasks at 30˚C at 150rpm for 72 hours with (a) S. cerevisiae, (b) P. stipitis, (c) 

C. shehatae, (d) mixture of S. cerevisiae and P. stipitis (1:1) or (e) mixture of S. cerevisiae 

and C. shehatae (1:1).  

The soy products were added to coarsely ground corn in the ratio 1.8:1 and the ratio 

of skim to insoluble fiber was 6.5:1 (Sekhon et al. 2015). Antibacterial (Chlorine Dioxide, 

0.03ml), ammonium sulphate (0.08ml of 0.2 g/g solution, nitrogen source), Pectinase 

(activity 3500 ENDO-PG/g; optimum pH 2-5, temperature 40-65˚C, 0.167g), Cellulase 

powder (activity 75000CU/g; optimum pH 4-6, temperature 30-70˚C, 0.167g), glucoamylase 
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(0.167ml) and yeast (0.167g) were added to the bioreactor. Samples before and after the 

fermentation were collected and ran in HPLC to obtain ethanol concentration. Experiments 

were performed in duplicates. 

The ethanol yield was calculated by mass loss (%) and calculated as gram of ethanol 

produced per 100 grams of carbohydrates in the flask. 

 

  (4.1) 
 

Carbohydrates is contributed by insoluble fiber (IF) and skim along with corn in corn-

IF-skim slurry and hence the total amount of carbohydrates in the flask was calculated as the 

sum of carbohydrates in corn, skim and IF. 

Another set of experiments were performed where in P. stipitis/C. shehatae were 

added to the bioreactor first and S. cerevisiae was added after 24 hours of fermentation. The 

idea behind this experiment was to test if P. stipitis and C. shehatae would consume Xylose 

in the first 24 hours and then S. cerevisiae would consume other sugars, increasing the final 

ethanol concentration. 

Experimental design and statistical analysis 

Baseline data were collected by adding (a) S. cerevisiae, (b) P. stipitis, (c) C. 

shehatae, (d) mixture of S. cerevisiae and P. stipitis (1:1) or (e) mixture of S. cerevisiae and 

C. shehatae (1:1) to synthetic media containing 100% glucose, 100% xylose and glucose-

xylose mixture (1:1) and ethanol yield and production rate was calculated on mass loss basis.  

Simultaneous Saccharification and Fermentation (SSF) was carried in corn only 

slurry and corn-soy skim-soy insoluble fiber slurry with (a) S. cerevisiae, (b) P. stipitis, (c) C. 
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shehatae, (d) mixture of S. cerevisiae and P. stipitis (1:1), (e) mixture of S. cerevisiae and C. 

shehatae (1:1), (f) addition of  S. cerevisiae 24 hours after P. stipitis or (g) addition of  S. 

cerevisiae 24 hours after C. shehatae. Ethanol yield, ethanol production rate, ethanol final 

concentration and by-product concentration (Glycerol, Acetic Acid and Lactic Acid) was 

calculated.  

The ethanol yield data was fit using Monod equation where the specific growth rate 

of microorganisms was replaced by ethanol yield and the concentration of limiting substrate 

for growth was replaced with time of fermentation. 

 

 (4.2) 

 

Where t is the fermentation time in hours and Kt is the time required for ethanol yield 

to reach half of the maximum ethanol yield. Data was linearized using Lineweaver-Burk plot.  

Generated data were analyzed using two-way analysis of variance in JMP Pro 12 

(SAS Institute Inc., ver 12.0.1). Null hypothesis stated that there is no difference in the means 

of ethanol yield, ethanol production rate and concentration of all the treatments and the 

means were compared using t-test at p < 0.05 significance level. 

Results and Discussion 

Study of effect of sugars on P. stipitis and C. shehatae 

The ethanol yield was calculated by mass loss formula and it was assumed that the 

mass loss was due to the production and release of carbon dioxide only. In reality, there was 

some water evaporation from each flask. This was accounted for by keeping a water control 

and adjusting the mass values but the amount of water evaporated from each flask was not 
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exactly the same as water evaporated from the control flask. This is why some of the ethanol 

yield values are greater than 100% and they were assumed as 100% during interpretation. 

Except for treatment (b), ethanol yield reached 100% in every treatment in 100% 

Glucose media (Figure 4.1). At the end of 72 hours, the ethanol yield of treatment (b) was 

~76%. These results are similar to those reported by Gutierrez-Rivera et al where under 

anaerobic conditions; P. stipitis NRRL-Y-7124 could consume only 84.5% of glucose. The 

fermentation efficiency of P. stipitis depends upon the oxygen transfer rate of the culture 

(Taniguchi M., et al, 1997) and since the conditions were anaerobic throughout the 

experiment in this paper, the fermentation performance of P.stipitis may have been affected. 

 Ethanol production picked up at 15th hour of fermentation for all the treatments but 

the production rate of treatment (b) was lower compared to the others (Figure 4.2). In 

treatment (d), the higher production rate and yield can be attributed to S. cerevisiae.  The 

ethanol production rate of treatment (e) was almost twice of ethanol production rate of 

treatment (c). It can be concluded that S. cerevisiae contributed more towards the production 

rate in treatment (e) (Table 4.2). 

In 100% xylose media, treatment (d) and (e) achieved 100% yield (Figure 4.3). While 

it is unclear as to which yeast in the mixture in treatment (d) and (e) was responsible for 

uptake of sugar and production of ethanol, taking into account the ethanol yield of treatment 

(a), it can be said that P. stipitis and C. shehatae also contributed in ethanol production in 

treatment (d) and (e). The ethanol yield of treatment (b) was lower compared to treatment (c) 

which is in agreement with the results obtained by du Preez et al, 1986, where at the same 

initial concentration of xylose, ethanol yield of C. shehatae was 11% more than P. stipitis. 

The ethanol production rate of treatment (c) is also higher than treatment (b). It can observed 
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in Figure 4.4 that in 100% xylose media, the ethanol production rate of S. cerevisiae in is 

boosted in presence of P. stipitis and C. shehatae. duPreez et al (1986), observed that at 37th 

hour of fermentation, C. shehatae produced 37% ethanol yield with initial xylose 

concentration of 50g/L and P. stipitis gave 43% ethanol yield at the end of 48th hour. At 2g/L 

xylose concentration, in this work, the ethanol yield of treatment (c) (C. shehatae) at 37th 

hour was 58% and that of treatment (b) (P. stipitis) at 48th hour was around 30%. The ethanol 

production rate was similar in all the treatments in 100% xylose media (Table 4.2). 

In presence of equal amount of glucose and xylose, treatment (d) and (e) were able to 

achieve 100% ethanol yield (Figure 4.5). The ethanol yield of treatment (a) was lower than 

100% as expected. This is in accordance with the results obtained by Gutierrez-Rivera, B. et 

al. (2011), where they observed than in 70-30 glucose-xylsoe mixture, under anaerobic 

conditions, S. cerevisiae was able to consume just 33% of xylose and 100% of glucose. 

Based on literature, it can be suggested that, in 1:1 glucose-xylose mixture, it is very likely 

that S. cerevisiae would have completely converted glucose to ethanol but partially digested 

xylose. In presence of glucose, the xylose utilization is inactivated in P. stipitis and C. 

shehatae (diauxic lag), until the concentration of glucose falls below a level, which differs 

between organisms. The total yield of treatment (c) is higher than (b) probably because this 

inactivation is partial in C. shehatae (Webb et al., 1990). The yield of treatment (b) exceeded 

the yield reported by Agbogbo et al., (2006). The ethanol production rate of S. cerevisiae 

almost doubled when P. stipitis and C. shehatae were added along with it in treatment (d) 

and (e) (Table 4.2). Co-culturing yeast species with complimentary metabolism have shown 

faster substrate utilization and increased product formation rate (Chen, J. 2011). 
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While the mass loss in the fermentation flask is related to ethanol production, another 

reason for mass loss can be production of xylitol, which produces carbon dioxide in the 

process too. Gutierrez-Rivera, B. et al. (2011) observed that the xylitol production increased 

by two fold when P. stipitis was co-cultured with S. cerevisiae in glucose-xylose mixture. 

Past studies claim that S. cerevisiae are unable to ferment xylose to produce ethanol since in 

absence of oxygen, S. cerevisiae takes up pentose phosphate pathway to metabolize xylose, 

which is very slow. Slow metabolism prevents accumulation of pyruvate and pyruvate is 

essential for efficient ethanol production (Kotter et al, 1992). In this study, it was observed 

that S. cerevisiae was able to consume xylose to some extent. It is possible that commercial 

grade S. cerevisiae are capable of converting xylose to xylitol. This may have caused the 

recorded change in mass of flask.   

The parameters of the modified Monod equation are listed in Table 4.6: Monod 

equation parameters for all the treatments in 100%glucose, 100% Xylose and Glucose-

Xylose mixture media.. These parameters were used to predict the ethanol yield of treatment 

(a), (b) and (c). 

Corn only fermentation 

There was no significant difference observed in the ethanol yield of treatment (a), (b), 

(c), (d) or (e) in corn-only slurry (Figure 4.9) and it ranged between 53-54%. This indicates 

that the performance of treatment (b) and (c) is comparable to (a) in presence of various 

sugars and that they can withstand the ethanol concentration of ~120mg/ml (Table 4.4: 

Carbohydrate, by-products and product concentration analysis before and after fermentation 

in CORN ONLY slurry treated with (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 

cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae . Values are presented as mean ± 
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standard deviation and levels connected by same letter are not significantly different at 95% 

confidence level. (ferm. stands for fermentation)). There is a possibility that S. cerevisiae 

dominated and repressed the growth of P. stipitis/C. shehatae in treatment (d) and (e) and 

hence the yields are similar to treatment (a). There is around 10-12% increase in ethanol 

yield of treatment (a) when compared to the values reports by Sekhon et al (2015). While the 

process in both cases were the same, the change in yield may be a result of difference in 

batch of commercial grade dry yeast.  

Treatment (b) and (c) were in lag phase for 20 hours from the start of fermentation 

and the production rate and hence the microbial growth was steeper in treatment (a), (d) and 

(e) probably due to the presence of S. cerevisiae (Figure 4.8).   

Table 4.4 shows that the final ethanol concentration, after 72 hours of fermentation, is 

slightly higher in case of treatment (b) (120.41±0.53mg/ml). The final concentration of 

glucose, xylose, sucrose, galactose and arabinose in treatment (b) and (c) is lower when 

compared to (a) indicating that P. stipitis and C. shehatae degraded every sugar more 

efficiently than S. cerevisiae. When co-cultured in treatment (d) and (e), the final 

concentration of xylose and arabinose was higher than treatment (a). In general, the final 

ethanol concentration of treatment (b) and (c) was slightly but not significantly higher than 

treatment (a) (P. stipitis: 120.41±0.53mg/ml; C. shehatae: 118.81±2.62 mg/ml and S. 

cerevisiae: 116.13±1.25mg/ml).  The concentration of by products is lower too. The final 

acetic acid concentration was lower in treatment (b) and (c) when compared to (a). Generally, 

yeasts are highly selective of ethanol when it comes to product formation but studies have 

shown they may alter their metabolic pathway to produce other products like glycerol 

(McMillan, 1993). Glycerol is the second common product formed by yeast after ethanol. 
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This coproduct concentration was found highest in treatment (a) (23.86±1.75 mg/ml) and was 

least in treatment (b) and (c) (14.20±0.69 mg/ml and 14.07±0.27 mg/ml). Maximum ethanol 

production rate of all the treatments in corn-only slurry were not significantly different 

(Table 4.3).  

Integrated corn-soy fermentation 

Unlike results reported in Sekhon et al. (2015), addition of soy skim and insoluble 

fiber did not improve the ethanol yield but reduced it slightly (Figure 4.9). This difference 

was noted because of the difference in calculation of ethanol yield in this paper and in 

Sekhon et al (2015). Ethanol yield is grams of ethanol produced per 100 grams of 

carbohydrate present in the slurry. Skim and insoluble fiber also provide carbohydrates 

(26.0% and 88.6% on dry basis, respectively) besides corn and hence total carbohydrates 

provided were taken into account while calculating ethanol yield. Ethanol yield in Sekhon et 

al. (2015) is presented as g of EtOH/100g of dry corn even when soy skim and IF were added 

to the slurry. Ethanol yield of treatment (a) improved slightly when C. shehatae was added to 

it in treatment (e). Treatment (b) was comparable in terms of ethanol yield with treatment (a). 

In presence of 34g/L of xylose and 8 g/L of glucose, P. stipitis has been reported to produce 

37-44% ethanol yield (Agbogbo and Wenger, 2007). In corn, with initial xylose 

concentration of 12.4g/L and initial glucose concentration of 13.1g/L, P. stipitis has an 

ethanol yield of 48%.  

Similar trends like corn-only slurry for ethanol production over time were seen in 

corn-IF-skim slurry (Figure 4.10). The production entered on log phase at 14th hour and the 

maximum ethanol yield was reached by treatment (a), (d) and (e) by the end of 46th hour. 

When compared to the corn-only slurry, the maximum ethanol production rate improved 
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slightly in corn-IF-skim slurry. Addition of soy skim to the slurry have shown to increase the 

ethanol production rate (Yao et al., 2011). Soy skim consists of 57.6% protein, which yeasts 

utilize for their growth in turn increasing the production rate of ethanol.   

S. cerevisiae was added to treatment (b) and (c) after 24 hours of fermentation to 

avoid initial suppression of growth of P. stipitis and C. shehatae which might have happened 

in treatment (d) and (e) (Figure 4.11). The ethanol yield obtained were similar to treatment 

(b) and (c) while there was considerable decrease in ethanol production rate. 

There was almost no ethanol production in first 24 hours in case of P. stipitis but C. 

shehatae’s ethanol yield was around 20%. Both the production increased exponentially with 

addition of S. cerevisiae (Figure 4.12). Similar results were seen in first 24 hours of treatment 

(b) and (c). 

The final ethanol concentration of treatment where S. cerevisiae was added to 

treatment (c) after 24 hours (123.59±3.61g/L) was comparable to ethanol concentration of 

treatment (a) (124.82±4.37g/L). The total ethanol concentration in the Corn-IF-skim slurry in 

treatment (a) increased when compared to corn only slurry by 6.9%. The concentration of 

ethanol decreased in treatment (b) and (c) when compared to their performance in corn only 

slurry and this could be due to the osmotic stress on the yeast species in presence of high 

sugar concentration. The concentration of lactic acid produced by treatment (b) and (c) in 

corn-soy product slurry was high when compared to corn-only slurry. High amount of lactic 

acid may have decreased the overall pH of the slurry, which in turn may have affected the 

growth of P. stipitis and C. shehatae. Like the corn-only slurry, the acetic acid production 

and glycerol concentration of the fermentation system reduced in treatment (b) and (c). 
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Glycerol concentration of treatment (a) was lower when compared to its performance in 

corn-only slurry. 

Overall, there was slight increase in final ethanol concentration of S. cerevisiae when 

soy skim and IF was added to the corn fermentation system. While the performance of P. 

stipitis and C. shehatae in corn-IF-skim slurry was not significant, their addition to S. 

cerevisiae reduced the by-product (lactic acid, acetic acid and glycerol) concentration while 

maintaining the final ethanol concentration 

Conclusion 

Addition of soy skim increase the ethanol production rate and soy insoluble fiber 

provided extra source of carbohydrates. Skim also increased the water-to-solids ratio 

decreasing the viscosity of the slurry resulting in better mixing. While P. stipitis and C. 

shehatae prefer aerobic condition, their fermentation performance in anaerobic corn-soy 

system was comparable to S. cerevisiae Aeration can enhance the growth rate of these 

pentose-degrading organisms in turn increasing the ethanol productivity. While co-culturing, 

different ratios of P. stipitis/C. shehatae and S. cerevisiae should be investigated in this corn-

soy system. 
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Figure 4.1: Ethanol yield of (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in 100% glucose media. The error 
bars represent standard deviation from the mean values and the bars connected with same 
letter are not significantly different. 
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Figure 4.2: Effect of the treatment (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in 100% glucose media on ethanol 
yield. 
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Figure 4.3: Ethanol yield of (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in 100% xylose media. The error bars 
represent standard deviation from the mean values and the bars connected with same letter 
are not significantly different. 
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Figure 4.4: Effect of the treatment (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in 100% xylose media on ethanol 
yield. 
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Figure 4.5: Ethanol yield of (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae  in glucose-xylose (1:1) media. The 
error bars represent standard deviation from the mean values and the bars connected with 
same letter are not significantly different. 
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Figure 4.6: Effect of the treatment (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in glucose-xylose (1:1)  media on 
ethanol yield. 
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Figure 4.7: Ethanol yield of (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae  in corn-only slurry. The error bars 
represent standard deviation from the mean values and bars connected with same letters are 
not significantly different. 
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Figure 4.8: Effect of the treatment (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in corn-only slurry on ethanol yield. 
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Figure 4.9: Ethanol yield of (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae  in corn-soy skim-soy insoluble fiber 
slurry. The error bars represent standard deviation from the mean values and bars connected 
with same letters are not significantly different. 
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Figure 4.10: Effect of the treatment (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in corn-soy skim-soy insoluble fiber 
slurry on ethanol yield. 
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Figure 4.11: Ethanol yield of P. stipitis and S. cerevisiae (added 24 hours after the 
fermentation began) and C. shehatae and S. cerevisiae (added 24 hours after the fermentation 
began) in corn-soy skim-soy insoluble fiber slurry. The error bars represent standard 
deviation from the mean values and bars connected with same letters are not significantly 
different. 
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Figure 4.12: Effect of the treatment (a) P. stipitis and S. cerevisiae (added 24 hours after the 
fermentation began) and (b) C. shehatae and S. cerevisiae (added 24 hours after the 
fermentation began) in corn-soy skim-soy insoluble fiber slurry on ethanol yield. 
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Table 4.1: Proximate analysis of soybean skim and soybean insoluble fiber (Sekhon et al., 
2015) 

Composition 

(db.) 

Solids (%) Oil (%) Protein (%) Ash (%) Carbohydrates 

(%) 

Skim 9.0 6.3 57.6 10.1 26.0 

Insoluble Fiber 15.1 4.7 7.7 4.0 83.6 

 
 
Table 4.2: Ethanol production rate of (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in 100% glucose, 100% xylose and 
glucose-xylose media. Values are presented as mean ± standard deviation and levels 
connected by same letter are not significantly different in the given media at 95% confidence 
level. Numbers that are bold formatted indicate higher ethanol production rate in the 
particular media. 

Media Yeast strain 
Ethanol production rate (g/100g of 
CHO/h) 

100% Glucose 

S. cerevisiae 1.89 ± 0.47 b c 
P. stipitis 0.71 ± 0.30 d  
C. shehatae 1.43 ± 0.06 c 
S. cerevisiae+P. stipitis 2.33 ± 0.56 a b 
S. cerevisiae+C. shehatae 2.39 ± 0.60 a 

100% Xylose 

S. cerevisiae 0.72 ± 0.37 b c 
P. stipitis 0.52 ± 0.35 c  
C. shehatae 1.10 ± 0.05 a 
S. cerevisiae+P. stipitis 1.18 ± 0.58 a 
S. cerevisiae+C. shehatae 1.04 ± 0.47 a b 

Glu-Xyl 1:1 

S. cerevisiae 1.14 ± 0.03 b 
P. stipitis 0.69 ± 0.33 c 
C. shehatae 1.09 ± 0.06 b 
S. cerevisiae+P. stipitis 1.59 ± 0.30 a 
S. cerevisiae+C. shehatae 1.73 ± 0.30 a 
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Table 4.3: Ethanol production rate of (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. 
cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae in corn-only slurry and corn-soy 
product slurry. Levels connected by same letter are not significantly different in the given 
media at 95% confidence level. S. cerevisiae(24h) means S. cerevisiae was added 24 hours 
after the fermentation began. 

Media Yeast strain 
Ethanol production rate 
(g/100g of CHO/h) 

Corn Only 

S. cerevisiae 0.98±0.12a 
P. stipitis 0.62±0.20b 
C. shehatae 0.45±0.28b 
S. cerevisiae+P. stipitis 0.94±0.11a 
S. cerevisiae+C. shehatae 0.94±0.10a 

Corn + Soy 
products 

(Insoluble fiber 
and skim) 

S. cerevisiae 1.42±0.57a 
P. stipitis 0.49±0.43d 
C. shehatae 0.49±0.43d 
S. cerevisiae+P. stipitis 1.27±0.42a b 
S. cerevisiae+C. shehatae 0.94±0.32b c 
P. stipitis + S. cerevisiae (24h) 0.47±0.37d 
C. shehatae + S. cerevisiae (24h) 0.60±0.23c d 
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Table 4.4: Carbohydrate, by-products and product concentration analysis before and after fermentation in CORN ONLY slurry treated 
with (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae . Values are 
presented as mean ± standard deviation and levels connected by same letter are not significantly different at 95% confidence level. 
(ferm. stands for fermentation) 

 
 

Conc. 
(mg/ml) 

Sucrose Glucose Xylose Galactose Arabinos
e 

Lactic 
Acid 

Acetic 
Acid 

Glycerol Ethanol 

Corn 
slurry 
before 
ferm. 

17.1±2.42 
 

13.1±5.63 
 

12.4±2.04 
a 

8.5±3.67 
 

NA   NA NA 1.3±0.24 
 

NA 

After fermentation 
S. 
cerevisia
e 

1.91±1.16 
a 

2.60±0.84 
a 

2.21±0.09 
b 

3.07±0.05 
a 

2.06±0.09 
a 

0.56±0.09 
a 

0.77±0.04 
a 

23.86±1.75 
a 

116.13±1.25 
a 

P. stipitis 0.92±0.42 
a 

1.47±0.67 
a 

1.92±0.50 
b 

2.92±0.26 
a 

1.83±0.48 
a 

0.86±0.25 
a 

0.38±0.02 
c 

14.20±0.69 
b 

120.41±0.53 
a 

C. 
shehatae 

0.86±0.30 
a 

1.60±0.85 
a 

2.14±1.12 
b 

3.04±0.59 
a 

1.93±0.82 
a 

0.75±0.11 
a 

0.50±0.05 
b c 

14.07±0.27 
b 

118.81±2.62 
a 

S. 
cerevisia
e + P. 
stipitis 

1.70±0.65 
a 

1.28±0.38  
a 

2.35±0.61 
b 

3.14±0.32 
a 

2.17±0.54 
a 

0.57±0.11 
a 

0.44±0.17 
c 

16.53±0.75 
b 

117.95±1.94 
a 

S. 
cerevisia
e + C. 
shehatae 

2.12±0.01 
a 

1.00±0.00 
a 

2.42±0.34 
b 

3.18±0.18 
a 

2.35±0.20 
a 

1.63±1.62 
a 

0.73±0.11 
a b 

19.92±5.96 
a b 

114.95±3.32 
a 

77 
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Table 4.5: Carbohydrate, by-products and product concentration analysis before and after fermentation in CORN+SOY PRODUCTS 
slurry treated with (a) S. cerevisiae, (b) P. stipitis, (c) C. shehatae, (d) S. cerevisiae+P. stipitis and (e) S. cerevisiae+C. shehatae. 
Values are presented as mean ± standard deviation and levels connected by same letter are not significantly different at 95% 
confidence level. (ferm. stands for fermentation) 

 

Conc. 
(mg/ml) 

Sucrose Glucose Xylose Galactose Arabinos
e 

Lactic 
Acid 

Acetic 
Acid 

Glycerol Ethanol 

Corn + soy 
Prod slurry 
before ferm. 

33.74±0.5
6 

12.62±0.24 19.38±1.01 
a 

12.13±0.1
5 

NA 0.97±0.02 0.66±0.04 1.45±0.07 NA 

After fermentation 
S. cerevisiae  4.63±0.12 

a 
1.83±1.04 
a 

0.83±0.03 
b 

2.27±0.12 
a 

2.82±0.02 
a 

4.68±0.05 
a 

0.78±0.34 
a 

15.48±1.48 
a 

124.82±4.37 
a 

P. stipitis 2.97±0.01 
a b 

1.69±0.93 
a 

0.67±0.01 
d 

3.03±1.10 
a 

3.26±1.77 
a 

5.52±1.19 
a  

0.49±0.00 
a 

13.76±1.30 
a b 

116.16±2.31 
a b 

C. shehatae 2.84±0.16 
a b 

1.87±1.19 
a 

0.61±0.02 
e 

3.04±1.16 
a 

3.60±1.94 
a 

6.70±1.69 
a 

0.43±0.18 
a 

12.92±0.85 
a b 

109.66±4.66 
b 

S. cerevisiae 
+ P. stipitis 

4.21±0.48 
a 

2.02±1.22 
a 

0.61±0.01 
e 

2.29±0.10 
a 

2.23±0.54 
a 

2.87±3.22 
a  

0.68±0.10 
a 

13.99±1.90 
a b 

122.96±5.34 
a 

S. cerevisiae 
+ C. 
shehatae 

4.00±1.61 
a 

1.48±0.58 
a 

0.60±0.01 
e 

2.95±1.04 
a 

3.87±1.39 
a 

2.54±2.62 
a  

0.64±0.03 
a 

13.24±0.74 
a b 

116.40±2.27 
a b 

P. stipitis+ 
S. cerevisiae 
(24h) 

1.98±1.17 
b 

3.06±0.56 
a 

0.83±0.03 
b c 

3.77±0.14 
a 

3.99±1.16 
a 

2.53±1.73 
a  

0.66±0.7 
a 

14.79±0.34 
a b 

122.21±2.48 
a 

C. shehatae 
+ S. 
cerevisiae 
(24h) 

2.04±0.98 
b 

2.12±0.63 
a 

0.82±0.04 
c 

3.72±0.22 
a 

4.28±1.4
5 
a 

2.85±2.2
4 
a  

0.61±0.1 
a 

12.69±0.93 
b 

123.59±3.61 
a 
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Table 4.6: Monod equation parameters for all the treatments in 100%glucose, 100% Xylose 
and Glucose-Xylose mixture media. 

 

Substrate Treatment 

Maximum 
Ethanol Yield 
(μm, %) 

Time (Km, 
hours) 

Coefficient of 
determination 
(R2) 

100% 
Glucose S. cerevisiae 192.31 62.92 0.9262 

 
P. stipitis -1428.57 -1487.57 0.9898 

 
C. shehatae -1111.11 -882.778 0.471 

 
S. cerevisiae+P. stipitis 270.27 77.97 0.9301 

 

S. cerevisiae+C. 
shehatae 250 67.75 0.9079 

100% Xylose S. cerevisiae -60.97 -120.57 0.904 

 
P. stipitis -70.92 -149.87 0.9465 

 
C. shehatae 138.89 47.39 0.1443 

 
S. cerevisiae+P. stipitis -227.27 -213.11 0.6956 

 

S. cerevisiae+C. 
shehatae -227.27 -238.36 0.7328 

Glucose-
Xylose (1:1) S. cerevisiae 526.32 409.11 0.903 

 
P. stipitis 119.05 98.07 0.2314 

 
C. shehatae 454.54 383.18 0.4255 

 
S. cerevisiae+P. stipitis -5000 -3169.5 0.8878 

 

S. cerevisiae+  
C. shehatae 1250 688.63 0.9252 
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Table 4.7: Monod equation parameters for all the treatments in corn-only and corn-IF-skim 
slurry. 

 

Substrate Treatment 

Maximum 
Ethanol Yield 
(μm, %) 

Time (Km, 
hours) 

Coefficient of 
determination 
(R2) 

Corn-only 
slurry S. cerevisiae 140.84 96.42 0.9859 

 
P. stipitis 476.19 546.85 0.9354 

 
C. shehatae -94.34 -193.15 0.6139 

 
S. cerevisiae+P. stipitis 294.12 254.68 0.8806 

 
S. cerevisiae+C. shehatae 303.03 269.06 0.7893 

Corn-IF-
skim slurry S. cerevisiae 62.89 14.62 0.8838 

 
P. stipitis 90.09 57.81 0.4412 

 
C. shehatae 75.19 38.57 0.6514 

 
S. cerevisiae+P. stipitis 75.75 28.75 0.8687 

 
S. cerevisiae+C. shehatae 136.99 87.07 0.8757 

 

P. stipitis+  
S.cerevisiae(24h) 86.96 54.3 0.7368 

 

C. shehatae 
+S.cerevisiae(24h) 277.78 324.08 0.8396 
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CHAPTER 5.  TESTING THE EFFICACY OF PRESERVATIVES IN INCREASING 

THE SHELF LIFE OF DISTILLERS WET GRAINS 

Abstract 

With increasing concerns regarding the carbon footprint of corn-ethanol production 

plants, there is a need to increase the ethanol yield and to find a market for the coproducts. 

One of the coproducts of dry-grind ethanol production is distillers wet grains (DWG), which 

is rich in proteins, fiber and fats and is subsequently used as animal feed. Since it has over 

60% moisture content, it has a shelf life of 5-6 days. There are chemical preservatives, 

mostly containing organic acids, currently available for reducing bacterial and fungal growth 

in DWG and to increase its shelf life. The objective of this study was to test and compare the 

efficacy of various chemical preservatives by quantifying the microbial growth in DWG in a 

10-day period. Four existing preservatives and multiple concentrations of a new preservative 

were evaluated. Colony forming units (CFU) of lactic acid bacteria, yeast and mold, and 

anaerobic bacteria were counted on agar media specific to each microbe. Measurements were 

taken on day 0, 2, 4, 6, 8 and 10 and the number of CFU of each microbe on day 10 

determined the efficacy of preservatives. The LAB population on day 10 was significantly 

low in two existing preservatives (Fungiless and formaldehyde-based). The population of 

yeasts and mold in Fungiless was 99.94% less than that of control. The new preservative was 

successful in inhibiting the growth of aerobic heterotrophs, even at the lowest concentration 

level, when compared to existing preservatives.   

Keywords: Ethanol, Corn, Distiller’s Wet Grains, Preservatives, Flow cytometer, Bacteria, 

Fungi 
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Introduction 

The primary coproduct of the process of production of ethanol from dry-grind corn is 

distillers grains (DG). These are unfermented, coarse grain particles, which are separated 

from the liquid fraction, called thin stillage, by centrifugation. The wet cake is either dried at 

the ethanol plant to produce distillers dried grains (DDG) or sold wet as animal feed to 

livestock producers (distillers wet grains, DWG). The thin stillage is further concentrated to 

solubles which is either added to the distiller wet or dried grains to produce distillers 

wet/dried grains with solubles (DWGS and DDGS) or sold as concentrated dried solubles 

(CDS). Since carbohydrates from corn kernels is converted into ethanol during fermentation, 

what’s left behind are the unfermented kernels with high amount of proteins, fats, minerals 

and fibers which are fed to animals (Rosentrater, 2011).  

Along with protein, distillers grains are a good source of digestible neutral detergent 

fiber (NDF; 40-45% in DG), which is an indicator of high-energy value product. Gross 

energy of the feed is further classified into digestible energy (DE), metabolisable energy 

(ME) and net energy for lactation (NE) and theses values for DWG are 1.81 Mcal/lb, 1.63 

Mcal/lb and 1.00 Mcal/lb (dry matter) (Schroeder, 2003). Just 30% of distillers wet grains 

can replace a diet consisting alfalfa and corn silage in 1:1 mixed with corn silage and 

soybean meal concentrate (Table 5.1). 

Studies have shown that the feeding value of the diet increased from 100 to 178 just 

by including 10% of distillers wet grains with solubles into the feed. It also increased the 

palatability and condition of the feedlot diet (Klopfenstein et al., 2008).  

There is no significant difference in the nutritive value of the wet and dry grains. 

Distillers dried grains (DDG) and distillers dried grains with solubles (DDGS) have extended 
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shelf life and can be transported easily to longer distances. The drying step, though, incurs 

high cost and energy. Livestock producers with a farm near an ethanol plant generally prefer 

distillers wet grains (DWG) due to their lower cost. DWG prices are generally lower than 

usual in summer season as their shelf life is shorter when the temperature is high and air is 

humid. Livestock producers stock up when the prices are low and store DWG with other 

forages like alfalfa to preserve it. Storing DWG in 9-12 foot sealed bag can minimize its 

interaction with atmosphere decreasing the microbial growth rate hence extending its shelf 

life. These sealed bags add on to the cost, which is estimated to be around $5-$8 per ton of 

DWG (Schroeder, 2003). Another alternative is to add chemical preservative before bagging 

or storing it in silo bunkers. 

The wet cake, which comes out of the plant, has minimum microbial content as the 

temperature and pH changes drastically before, during and after fermentation and the heat 

treatment kills undesirable microbes. DWG comes out at around 80°C and the pH is usually 

lower than 4, condition at which only few yeasts and molds can survive. Spoilage can begin 

when DWG is exposed to the processing equipment or while it is being transported or at the 

storage (Kung, L. Jr.). Due to its high nutrient and moisture content, DWG is susceptible to 

microbial growth once it comes out of the plant. At 1% treatment level, Sorbic acid have 

shown to extend the storage time of DG. After 21 days of storage, around 0.4 grams of dry 

matter was lost to spoilage by microorganism when 1% sorbic acid was added. For fungal 

cells, weak organic acids act as uncoupling agents. Potassium sorbate could extend the shelf 

life of DG to 9 days only at the same level of application. Ammonia is another preservative 

but a critical concentration level must be achieved for it to be effective. When ammonium 

hydroxide was added at 1%, dry matter loss reached to 0.4 g within a week. Carbon dioxide 



84 

can also act as preservative but it has to be stored in an airtight container with DG which 

would again incur high cost. It was observed that adding preservatives at lower levels 

resulted in more spoilage than not adding then at all (Nofsinger et al., 1983). A mixture of 

various organic acids, which can stay un-dissociated at pH below 4, can also be used at once 

and has shown to be effective than just one active ingredient. Kemin Industries tested a 

particular combination of organic acid and it was found that just using 6 lbs of that 

preservative increased the shelf life from 7 to 20 days and using 18 lbs ensured that no molds 

were visible until 27 days (Kung et al., 2003). Salmonella in animal feed has been a problem 

for a long time since it indirectly affects humans when they consume meat coming from the 

animal, which was fed Salmonella, affected feed. Propionic acid at pH 6.8 added at 10% 

level can cause one log reduction of Salmonella after 7 days of incubation. It was observed 

that in oilseed meals like soybean meal, which has moisture content as high as 13%, less than 

1% application of formaldehyde resulted in greater than 2 log reduction of Salmonella 

(Wales et al., 2010). 

Lactic acid bacteria (LAB) are considered probiotic to animal health due to their 

ability to inhibit the growth of spoilage microorganism in feed. Weak organic acids such as 

lactic acid and acetic acid, hydrogen peroxide and reuterin are few of the antimicrobial 

substances produced by LAB (Brashears et al., 2005). LAB also facilitate the conservation of 

free amino acids and labile proteins in forages (D’Mello, 2001).   

Yeast and Mold growth in distiller’s wet grains is highly undesirable; the toxins, like 

Aflatoxin, Fumonisins, Citrinin produced by them, can cause digestive and reproductive 

problems in animals and they can compromises their immune function. If grown 
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considerably, they can increase the pH level resulting in conditions favorable for growth of 

other spoilage organism (Sperber and Doyle, ed.)  

Aerobic heterotrophic bacteria such as Staphylococcus aureus produce toxins that can 

cause mastitis in cows and bumblefoot disease in chickens. It can also produce toxins, which 

damage the cell membranes of red and white blood cells (Otto, 2015). Along with animals, 

these bacteria can cause deadly disease in human too. 

Development of microbial population in DWG with moisture content of 53-54% (wb) 

has been studied and it was observed that the total number (bacterial and fungi) increased 

from 4*105 colony forming units (CFU) per gram of dry mass of DWG to 109 CFU/g of 

DWG. Lactic acid bacteria (LAB), aerobic heterotrophs (bacteria and fungi) and yeasts and 

mold population was enumerated on Day 0 to Day 10 and exponential increase was observed 

over time. While the LAB number stayed at 5X105 CFU/ g of dry DWG on Day 10, aerobic 

heterotrophs and yeast and mold was found to be greater than 108 CFU/g of dry DWG 

(Lehman and Rosentrater., 2007).  

In this study, various commercially available chemical preservative of animal feed 

were tested and compared with a preservative at developmental stage based on the microbial 

population of LAB, aerobic heterotrophs and yeasts and mold at the end of Day 10.  

Materials and Methods 

Distillers wet grains and sampling 

DWG was collected from Golden Grain Energy, Mason City, Iowa in summer of 

2016. It was transported in a clean 5-gallon airtight bucket and stored in -20°C until used. 

Chemical preservatives were added to 300 g of DWG and kept in an open plastic container in 

the lab with room temperature between 22-24°C. Samples were taken on Day 0, 2, 4, 6, 8 and 
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10 and the entire content of the container were mixed thoroughly before sampling (Lehman 

and Rosentrater, 2007). Water lost due to evaporated was noted and corrected every day.  

Chemical preservatives 

Mold-X liquid 65 is a mold inhibiting buffered liquid manufactured by Agresearch 

Inc., Illinois. This preservative is combination of various organic acids like Propionic Acid, 

Acetic Acid, Benzoic Acid, Phosphoric Acid and Propylene Glycol (product information 

sheet). The recommended usage level is 1-3 lbs per ton of animal feed. Experiments for this 

paper were carried out as 2 lbs of Mold-X per ton of DWG.  

Fungiless is yellow-colored fungicide marketed by Vedeqsa, Spain and has two active 

ingredients- Natamycin and ethyl N-lauroyl-L-arginate monohydrochloride (LAE). The 

combination results in reduction of amount of each component required to prevent the 

growth of yeasts and molds. Fungiless was applied to DWG at the rate of 2 g of Fungiless to 

1 kg of DWG and the concentration of Natamycin and LAE is 833.3 ppm and 210 ppm at 

this level of dosage. 

Silo-King is used for grain and forage treatment and manufactured by Agri-King, 

Inc., Illinois. While Silo-King is widely researched and used for silage and forage, due to the 

presence of organic acids, it was tested for DWG too. The active ingredients of this 

preservative are potassium sorbate and butylated hydroxytoluene. The application rate for 

silage and haylage with moisture content between 60-70% is 0.2-0.5 lbs per ton and for this 

study, 0.5 lbs per ton of DWG was used. 

Formaldehyde based preservative is a mixture of Formaldehyde (mixed with a 

solvent-methanol), Propionic Acid and D-Limonene. The application level of this liquid 
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preservative is 2 kg per metric ton of DWG. Formaldehyde usually breaks down into formic 

acid and carbon monoxide. 

The sample to be tested is identified as Hydri-Maize Defender L-310, also known as 

SHIELD. It will be referred as SHIELD henceforth. This chemical preservative is developed 

by Hydrite Chemical Co. and consists of LAE as the active ingredient at 10% level.  

Cell counting by Agar plating 

Collected samples were diluted serially in 1X Phosphate buffered saline and plated in 

duplicates at 10-1 to 10-6 dilutions. Three agars were used: OxoidTM deMan-Rogosa-Sharpe 

agar (MRS) for Lactic Acid Bacteria, OxoidTM Di-cholran Rose Bengal Chloramphenicol 

agar (DRBC) for Yeasts and Molds and OxoidTM Plate Count Agar (PCA) for Aerobic 

Heterotrophs (Lehman and Rosentrater, 2007). All the agars were procured from Thermo 

Fisher Scientific, MA. 100mg/L of Chloramphenicol was added to DRBC before 

autoclaving. MRS plates were maintained at 37°C for 2 days, DRBC and PCA plates were 

maintained at 23°C for 7 days and 2 days, respectively. Cells were enumerated and expressed 

in Colony forming units (CFU) per gram of DWG (Lehman et al., 2007). 

Experimental design and statistical analysis 

Distillers wet grains were treated in 10 different ways (a) Control, (b) 100 ppm 

SHIELD, (c) 150 ppm SHIELD, (d) 200 ppm SHIELD, (e) 3% (w/w) SHIELD, (f) 5% (w/w) 

SHIELD, (g) Mold-X, (h) Fungiless, (i) Silo-King and (j) Formaldehyde-based preservative. 

Samples were collected on Day 0, 2, 4, 6, 8 and 10 from each treatment and the number of 

colony forming units of lactic acid bacteria, yeasts and mold and aerobic heterotrophs were 

enumerated. The independent variables were the type of preservative and time and the 

dependent variable was the CFU/g of DWG. 
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CFU data of each microbe for each preservative were analyzed and the means were 

compared using t-test at p<0.05 in JMP Pro 12 (SAS Institute Inc., ver 12.0.1). Null 

hypothesis stated that there was no difference between the means of CFU/g of DWG of lactic 

acid bacteria or aerobic heterotrophs or yeasts and mold in different preservatives over time. 

Results and Discussions 

Based on the data of Control, it was observed that the shelf life of procured DWG 

was 5 days. There was an exponential increase in CFU/g of DWG of LAB, yeasts and molds 

and aerobic heterotrophs after day 5 in control. Figure 5.1 shows the growth of lactic acid 

bacteria from day 0 to day 10 in every treatment. Growth of LAB was greater than control in 

treatment (b), (c), (d) and (i) on Day 6 and by Day 10, they were equal to the control. There 

was no noticeable growth in treatment (f), (h) and (j) until Day 10. The lowest CFU/g of 

DWG of LAB on day 10 was in treatment (h) and (j) with no significant difference between 

the two at 95% confidence level. Treatment (h) contains natamycin and LAE. Natamycin is 

poly-unsaturated organic compound produced by Streptomyces natalensis during 

fermentation and it is used as an antibiotic. While it is mostly used against yeasts and mold, it 

has no antibacterial activity (Stark and Tan, 2003). LAE is a stable antimicrobial food 

preservative and is known to act on the cell membrane of gram positive and negative bacteria 

and yeast and mold inhibiting their growth (Kawamura and Whitehouse, 2008).  At very low 

minimum bactericidal concentration, LAE has been shown to create larger inhibition zone for 

bacteria such as Listeria monocytogenes when compared to salts of organic acids namely 

sodium citrate, sodium lactate or sodium diacetate. Since natamycin has no antibacterial 

properties, LAE in treatment (h) must be the major cause in inhibited growth of LAB. In 

treatment (j), formaldehyde is the main active ingredient with antimicrobial activity. 
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Formaldehyde’s action of denaturing the cell membrane proteins and the nucleic acid of 

bacteria and fungi inhibits their growth, which was observed in the Figure 5.1.  

Figure 5.2 compares the performance of various concentration of the new 

preservative, SHIELD, from day 6 to 10, time after the typical shelf life of DWG. It is 

evident that as the concentration increases, the efficiency of the preservative in inhibiting the 

growth of LAB increases. Since SHIELD contains 10% LAE, the antimicrobial activity 

increases with the concentration of LAE. 

Figure 5.3 shows the change in CFU of yeasts and molds per gram of DWG when 

treated with treatment (a) to (j). Similar to LAB, the yeasts and mold grow exponentially 

over time in control. CFU of yeasts and mold were the least in treatment (h) by a factor of 

103 in comparison with other treatments. Natamycin is an efficient antifungal agent, which 

binds to a sterol present in the cell membranes of fungi, without which they cannot survive. 

This specific binding blocks the growth of fungi without permeating the membrane 

(Welscher et al., 2007). The power equation line of treatment (a), (b), (c) and (d) indicates 

accelerated growth of yeast and mold after day 9. It was expected that the presence of 

potassium sorbate in treatment (i) would inhibit yeast and mold growth but the growth in 

treatment (i) was higher than that of control. It has been observed that while potassium 

sorbate is moderately effective in inhibit microbial growth, at 0.25% level, dry matter loss 

was higher than the control. The loss decreased with increase in the preservative level 

(Nofsinger et al., 1983). Treatment (g) had moderate performance in inhibiting the growth of 

yeast and mold. Treatment (g) is a mixture of various organic acids and due to their ability to 

penetrate bacterial cell wall disrupting the homeostasis, organic acids are used in food and 

feed preservation. Weak organic acids like Benzoic acid, present in treatment (g), are shown 



90 

to inhibit the growth of yeasts such as Saccharomyces cerevisiae by blocking their membrane 

trafficking pathways (Hazan et al., 2004). 

The performance of different SHIELD concentration in comparison with control is 

illustrated in Figure 5.4. There is no significant difference between the performance of 

treatment (b) and (c). Increasing the preservative concentration by 50-100 ppm did not show 

significant difference in final CFU/g of DWG data. Treatment (f) was the most effective 

among all and its yeast and mold population on day 10 was only 40% of the population in 

control sample.  

Besides agar plate counting, one obvious indicator of mold growth is the moldy 

smell. After day 6, moldy smell was prominent in treatment (a), (b), (c), (d) and (i). Due to 

the mold growth, the DWG particles started sticking together and mixing it uniformly before 

sampling became challenging.  

Figure 5.5 shows the growth of aerobic heterotrophs over time in DWG in treatment 

(a) to (j). The most common aerobic heterotroph observed on the PCA plate was 

Staphylococcus aureus. While the growth of aerobic heterotrophs was highest in control, the 

exponential equation line of treatment (g), (h) and (i) showed accelerated increase from day 

6. One of the active ingredient in treatment (g) was Propionic acid, which is industrially used 

to inhibit the growth of bacteria and mold. It was expected that propionic acid would inhibit 

the growth of S. aureus but its presence in treatment (g) and (j) was less effective than 

presence of LAE in treatment (b) to (f). Nofsinger et al. (1983) obtained similar results, 

where increase in the level of propionic acid increased the dry matter loss. 

Treatment (h) proved to be the least effective amongst all, even in presence of 

potassium sorbate. The amount of active ingredient is as important as its mode of action in 
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inhibiting the microbial growth. The day 10 CFU of LAB and yeasts and mold in treatment 

(h) was higher than the day 10 data of control. The small quantity of preservative may have 

selectively inhibited specific microbes resulting in growth of others hence application of 

smaller quantity of preservatives may have adverse effect than not adding it at all.  

Conclusion 

Distillers wet grains are a value added coproduct of corn-ethanol production process. 

Since their nutritive value and energy content is high, they are fed to farm animals along with 

other forages. At 60% moisture level, spoilage microorganisms such as yeast and mold and 

aerobic heterotrophs can grow quickly. Chemical preservatives containing weak organic 

acids, esters and bacterial fermentation products like natamycin have shown to inhibit the 

growth of microbes increasing the shelf life of DWG. The shelf life of DWG can be 

increased to 10 days when strong preservatives like Fungiless and Formaldehyde-based are 

added to it. Use of formaldehyde may not be advisable since it is carcinogenic in nature.  

With just 10% active ingredient and at 5% (w/w) application level, the new 

preservative was able to decrease the yeast and mold population by 60% and aerobic 

heterotroph population by 94% when compared to control on day 10. The new preservative 

has the potential to match the performance of its competitors when used at appropriate 

concentration and addition of organic acids would possibly enhance its efficiency. 
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Figure 5.1: Growth of lactic acid bacteria over time when different chemical preservatives 
were added to distillers wet grains (60% moisture content on wet basis) at room temperature. 
Error bars represent standard deviation from mean. Dotted lines represent the best fit. Refer 
Table 5.3 for significant values. 
 
 

 

Figure 5.2: CFU per gram of DWG of lactic acid bacteria from day 6 to day 10 when the new 
preservative, SHIELD, was added to distillers wet grain at various concentration (treatment 
(b) to (f)): 100 ppm, 150 ppm, 200 ppm, 3% and 5% (w/w) levels. Error bars represent 
standard deviation from mean.
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Figure 5.3: Growth of yeasts and molds over time when different chemical preservatives 
were added to distillers wet grains (60% moisture content on wet basis) at room temperature. 
Error bars represent standard deviation from mean. Dotted lines represent the best fit. Refer 
Table 5.4 for significant values. 
 
 

 

Figure 5.4: CFU per gram of DWG of yeasts and mold from day 6 to day 10 when the new 
preservative, SHIELD, was added to distillers wet grain at various concentration (treatment 
(b) to (f) ): 100 ppm, 150 ppm, 200 ppm, 3% and 5% (w/w) levels. Error bars represent 
standard deviation from mean. 
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Figure 5.5: Growth of aerobic heterotrophs over time when different chemical preservatives 
were added to distillers wet grains (60% moisture content on wet basis) at room temperature. 
Error bars represent standard deviation from mean. Dotted lines represent the best fit. Refer 
Table 5.5 for significant values. 
 
 

 

Figure 5.6: CFU per gram of DWG of aerobic heterotrophs from day 6 to day 10 when the 
new preservative, SHIELD, was added to distillers wet grain at various concentration 
(treatment (b) to (f) ): 100 ppm, 150 ppm, 200 ppm, 3% and 5% (w/w) levels. Error bars 
represent standard deviation from mean. 
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Table 5.1: Nutrient level required in dairy diet, standard diet and 30% DWG (Schroeder, 
2003). 

Nutrients Requirement for 

dairy farm animals 

Standard Diet (50% 

alfalfa+50%corn 

silage+ soybean meal 

and corn concentrate) 

30% 

distillers 

wet grains 

Crude protein 18.0 18.0 18.0 

Rumen un-

degradable protein 

6.3 6.3 6.3 

Calcium 0.66 0.66 0.66 

Phosphorus 0.38 0.40 0.50 
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Table 5.2: Colony forming units of lactic acid bacteria, aerobic heterotrophs and yeasts and mold on day 10 in presence of different 
preservatives. Values are presented as mean ± standard deviation and levels connected by same letter as not significantly different.  

 

Preservative Type 

Concentration of 

active ingredients 

( ppm) 

CFU of Lactic Acid 

Bacteria/g of DWG 

CFU of Yeasts and 

Molds/g of DWG 

CFU of Aerobic 

Heterotrophs/g of DWG 

Control (no 

preservative) - 6.75E+09 ± 6.36E+08 a 6.93E+09 ± 1.27E+08 b 8.58E+11 ± 5.78E+10 a 

SHIELD 

100 7.02E+09 ± 2.55E+08 a 6.30E+09 ± 5.09E+08 c 1.03E+11 ± 6.36E+08 c d 

150 6.30E+09 ± 0.00E+00 a b 6.26E+09 ± 6.36E+07 c 7.52E+10 ± 2.42E+09 d 

200 5.22E+09 ± 2.55E+08 c d 5.49E+09 ± 1.27E+08 d 6.50E+10 ± 4.84E+09 d 

2913 (3% w/w) 4.77E+09 ± 3.82E+08 d 5.13E+09 ± 3.82E+08 e 1.04E+11 ± 2.23E+09 c 

4762 (5% w/w) 3.02E+09 ± 5.73E+08 e 2.79E+09 ± 1.27E+08 g 5.00E+10 ± 1.91E+09 d 

Mold-X 999 5.76E+09 ± 5.09E+08 b c 4.38E+09 ± 1.65E+08 f 3.88E+11 ± 8.67E+10 b 

Fungiless 1996 4.69E+06 ± 1.78E+05 f 4.35E+06 ± 2.29E+05 i 3.35E+11 ± 1.16E+10 b 

Silo King 350 7.02E+09 ± 2.55E+08 a 8.91E+09 ± 1.27E+08 a 4.29E+11 ± 2.89E+10 b 

Formaldehyde-based 

preservative 1996 

7.05E+04 ± 2.13E+04 f 1.71E+09 ± 1.16E+10 h 2.00E+11 ± 5.78E+09 c 

98 
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Table 5.3: Colony forming units (CFU) per gram of distillers wet grains of lactic acid 
bacteria in presence of chemical preservatives over time. Levels connected by same letter are 
not significantly different. Uppercase letters are associated with difference in CFU/g of 
DWG according to preservatives and lowercase are associated with difference in CFU/g of 
DWG according to time. 

Preservative  Time (in days) CFU/ g of DWG 

Control                                         A B 

0                               c 1.62E+03 
2                               c 2.20E+04 
4                               c 7.71E+04 
8                               b 4.88E+09 
10                             a 6.75E+09 

100 ppm SHIELD                           A 

2                               c 4.52E+05 
4                               c 4.75E+06 
8                               b 5.22E+09 
10                             a 7.02E+09 

150 ppm SHIELD                           A B 

2                               c 2.71E+05 
4                               c 4.65E+06 
8                               b 5.40E+09 
10                             a 6.30E+09 

200 ppm SHIELD                           A B 

2                               c 2.18E+05 
4                               c 2.78E+06 
8                               b 4.83E+09 
10                             a 5.22E+09 

3% SHIELD (w/w)                         A B 

2                               c 3.83E+04 
4                               c 3.19E+06 
8                               b 2.36E+09 
10                             a 4.77E+09 

5% SHIELD (w/w)                         A B 

2                               c 1.89E+04 
4                               c 6.36E+04 
8                               b 5.77E+06 
10                             a 3.02E+09 

Mold-X                                          A B 

2                               c 7.84E+03 
4                               c 2.97E+04 
8                               b 1.35E+09 
10                             a 5.76E+09 

Fungiless                                       B 

2                               c 4.68E+03 
4                               c 2.07E+04 
8                               b 1.72E+06 
10                             a 4.69E+06 

Silo King                                        A 

2                               c 3.08E+04 
4                               c 3.47E+06 
8                               b 5.58E+09 
10                             a 7.02E+09 
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Table 5.3 continued 

Formaldehyde-based                 B  

2                               c 2.79E+03 
4                               c 1.17E+03 
8                               b 3.03E+04 
10                             a 7.05E+04 

 
 
Table 5.4: Colony forming units (CFU) per gram of distillers wet grains of yeasts and mold 
in presence of chemical preservatives over time. Levels connected by same letter are not 
significantly different. Uppercase letters are associated with difference in CFU/g of DWG 
according to preservatives and lowercase are associated with difference in CFU/g of DWG 
according to time. 

Preservative  Time (in days) CFU/ g of DWG 

Control                                         A B 

0                               c 5.40E+02 
2                               c 1.07E+06 
4                               c 2.06E+06 
8                               b 4.59E+09 
10                             a 6.93E+09 

100 ppm SHIELD                           A 

2                               c 6.34E+04 
4                               c 4.04E+06 
8                               b 4.82E+09 
10                             a 6.30E+09 

150 ppm SHIELD                           A B 

2                               c 5.08E+04 
4                               c 3.93E+06 
8                               b 4.59E+09 
10                             a 6.26E+09 

200 ppm SHIELD                           A B 

2                               c 2.99E+04 
4                               c 3.03E+06 
8                               b 5.04E+09 
10                             a 5.49E+09 

3% SHIELD (w/w)                         A B 

2                               c 2.90E+04 
4                               c 3.21E+06 
8                               b 4.46E+09 
10                             a 5.13E+09 

5% SHIELD (w/w)                         A B 

2                               c 1.59E+04 
4                               c 4.52E+06 
8                               b 7.17E+06 
10                             a 2.79E+09 

Mold-X                                          A B 

2                               c 6.24E+03 
4                               c 2.93E+04 
8                               b 7.79E+06 
10                             a 4.38E+09 
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Table 5.4 continued 

Fungiless                                       B 

2                               c 2.05E+03 
4                               c 1.77E+04 
8                               b 4.45E+06 
10                             a 4.35E+06 

Silo King                                        A 

2                               c 4.99E+04 
4                               c 5.40E+06 
8                               b 6.93E+09 
10                             a 8.91E+09 

Formaldehyde-based                 B  

2                               c 3.06E+03 
4                               c 3.67E+03 
8                               b 3.25E+06 
10                             a 1.71E+09 

 
 
Table 5.5: Colony forming units (CFU) per gram of distillers wet grains of aerobic 
heterotrophs in presence of chemical preservatives over time. Levels connected by same 
letter are not significantly different. Uppercase letters are associated with difference in 
CFU/g of DWG according to preservatives and lowercase are associated with difference in 
CFU/g of DWG according to time. 

Preservative  Time (in days) CFU/ g of DWG 

Control                                         A  

0                               c 2.70E+09 
2                               c 5.85E+09 
4                               c 6.66E+09 
8                               a b 5.92E+11 
10                             a 8.58E+11 

100 ppm SHIELD                           B 

2                               c 2.70E+05 
4                               c 1.32E+09 
8                               a b 5.31E+09 
10                             a 1.03E+11 

150 ppm SHIELD                           B 

2                               c 3.76E+04 
4                               c 5.08E+06 
8                               a b 6.03E+09 
10                             a 7.52E+10 

200 ppm SHIELD                           B 

2                               c 5.43E+04 
4                               c 4.37E+06 
8                               a b 5.58E+09 
10                             a 6.50E+10 

3% SHIELD (w/w)                         B 

2                               c 4.98E+04 
4                               c 3.79E+06 
8                               a b 3.74E+09 
10                             a 1.04E+11 
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Table 5.5 continued 

5% SHIELD (w/w)                         B 

2                               c 3.42E+04 
4                               c 1.65E+06 
8                               a b 2.79E+09 
10                             a 5.00E+10 

Mold-X                                          A B 

2                               c 5.58E+09 
4                               c 5.85E+09 
8                               a b 3.06E+11 
10                             a 3.88E+11 

Fungiless                                      A B 

2                               c 5.54E+09 
4                               c 5.40E+09 
8                               a b 2.90E+11 
10                             a 3.35E+11 

Silo King                                       A B 

2                               c 5.63E+09 
4                               c 5.94E+09 
8                               a b 3.51E+11 
10                             a 4.29E+11 

Formaldehyde-based                 B  

2                               c 5.88E+03 
4                               c 5.79E+03 
8                               a b 7.20E+09 
10                             a 2.00E+11 

 
 
Table 5.6: Coefficient of determination and the equation of growth of lactic acid bacteria in 
distillers wet grains over time. ‘x’ is the time variable. 

Preservatives R2 Equation 
Control 0.8418 182.43 x9.66 
100 ppm of SHIELD 0.9481 1108.10 x9.27 
150 ppm of SHIELD 0.9466 927.38 x9.32 
200 ppm of SHIELD 0.9368 819.48 x9.26 
3% SHIELD (w/w) 0.9225 416.21 x8.54 
5% SHIELD (w/w) 0.8150 305.25 x6.98 
Mold-X 0.7345 361.21 x7.85 
Fungiless 0.7484 1729.00 x3.74 
Silo King 0.8800 1301.60 x8.91 
Formaldehyde-based  0.8062 351.16 x2.69 
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Table 5.7: Coefficient of determination and the equation of growth of yeast and mold in 
distillers wet grains over time. ‘x’ is the time variable. 

Preservatives R2 Equation 
Control 0.9531 598.84 x9.50 
100 ppm of SHIELD 0.9610 240.19 x9.99 
150 ppm of SHIELD 0.9543 222.84 x10.06 
200 ppm of SHIELD 0.9393 179.13 x10.17 
3% SHIELD (w/w) 0.9316 160.02 x9.31 
5% SHIELD (w/w) 0.8988 268.53 x7.71 
Mold-X 0.2851 31642.00 x3.84 
Fungiless 0.0382 62833.00 x0.99 
Silo King 0.6307 89092.00 x6.12 
Formaldehyde-based  0.6686 46.68 x6.97 

 
 
Table 5.8: Coefficient of determination and the equation of growth of aerobic heterotrophs in 
distillers wet grains over time. ‘x’ is the time variable. 

Preservatives R2 Equation 
Control 0.8683 5.0*108.e1.34x 
100 ppm of SHIELD 0.3593 8.0*106.e1.39x 
150 ppm of SHIELD 0.3378 8.5*105 .e1.70x 
200 ppm of SHIELD 0.3326 1.0*106.e1.65x 
3% SHIELD (w/w) 0.2663 5.5*105.e1.50x 
5% SHIELD (w/w) 0.2375 4.8*105.e1.42x 
Mold-X 0.7534 2.0*106.e2.36x 
Fungiless 0.7400 2.0*106.e2.35x 
Silo King 0.7485 2.0*106.e2.40x 
Formaldehyde-based  0.8739 2.2 .e4.31x 
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CHAPTER 6. GENERAL CONCLUSION AND FUTURE WORK 

General Conclusion 

Aqueous extraction process and enzyme assisted aqueous extraction process have few 

advantages over solvent-based oil extraction process. Environmental aspect, economics and 

efficiency of the AEP and EAEP of soybeans have been discussed in this thesis. Since, the 

yield is the major issue in AEP and EAEP, more work needs to be directed towards solving 

this problem. The downstream processing of both the aqueous methods can be made more 

economical by recycling the water and enzymes. Important parameters mentioned in the 

thesis such as pre-treatment steps, extraction enzymes and de-emulsification enzymes should 

be taken into consideration while optimizing the process. Scaling up single stage EAEP as 

well as the two stage results in similar oil, protein and solids extraction yield as in laboratory. 

Steady-state oil extraction can be achieved in second trial when enzymes is added in the first 

stage of extraction.  

It was observed that not only could S. cerevisiae digest xylose to some extent, P. 

stipitis and C. shehatae were able to digest glucose and xylose and withstand ethanol 

concentration similar to S. cerevisiae. Integrating soy products to corn fermentation gave 

value to the skim fraction of EAEP of soybeans, which contained a part of oil extracted from 

the soybeans. While insoluble fiber provided additional carbohydrates, the overall ethanol 

yield did not improve much. In presence of P. stipitis and C. shehatae, the by-product 

concentration decreased. Role of these pentose-degrading yeast species in integrated corn-

soy fermentation system can further be investigated.  

The high moisture distillers wet grains are susceptible to microbial growth and 

chemical preservatives can be added to decrease spoilage and to increase the storage time of 

this animal feed. Along with esters and organic acids, fermentation products of some bacteria 
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have shown antimicrobial activity, which is taken advantage of in chemical preservatives. 

DWG, when produced, is at high temperature and at low pH, providing unfavorable 

conditions for growth of spoilage microorganisms. It is often sold to livestock producers 

within a day of production and the chances of contamination are high while transportation 

and storage. Preservatives are added before storing DWG in silo bunkers and forages like 

alfalfa can be added to reduce the overall moisture content. It is very important to note that 

adding appropriate amount of preservative is the key. Addition of too little preservative can 

be detrimental than not adding it at all. 

Future Work 

For future work, different ratio of combination of P. stipitis or C. shehatae and S. 

cerevisiae could be investigated in corn-soy bio-refinery. The insoluble fiber and soy skim 

could be pre-treated before adding it to ground corn. 

The efficacy of the new preservative can be improved by combining it with mixture 

of organic acids. Mixing dry forage such as alfalfa to DWG before adding the preservative 

can decrease the overall moisture content. This is how livestock producers usually store high 

moisture products.   
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