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Fate of Volatile Chemicals during Accretion on Wet-Growing Hail 

Ryan Michael 

ABSTRACT 

Phase partitioning during freezing of hydrometeors affects the transport and 

distribution of volatile chemical species in convective clouds. Here, the development, 

evaluation, and application of a mechanistic model for the study and prediction of 

partitioning of volatile chemical during steady-state hailstone growth are discussed. The 

model estimates the fraction of a chemical species retained in a two-phase growing 

hailstone. It is based upon mass rate balances over water and solute for constant accretion 

under wet-growth conditions. Expressions for the calculation of model components, 

including the rates of super-cooled drop collection, shedding, evaporation, and hail 

growth were developed and implemented based on available cloud microphysics 

literature. A modified Monte Carlo simulation approach was applied to assess the impact 

of chemical, environmental, and hail specific input variables on the predicted retention 

ratio for six atmospherically relevant volatile chemical species, namely, SO2, H2O2, NH3, 

HNO3, CH2O, and HCOOH. Single input variables found to influence retention are the  

ice-liquid interface supercooling, the mass fraction liquid water content of the hail, and 

the chemical specific effective Henry’s constant (and therefore pH). The fraction retained 

increased with increasing values of all these variables. Other single variables, such as hail 



vi 

diameter, shape factor, and collection efficiency were found to have negligible effect on 

solute retention in the growing hail particle. The mean of separate ensemble simulations 

of retention ratios was observed to vary between 1.0x10-8 and 1, whilst the overall range 

for fixed values of individual input variables ranged from 9.0x10-7 to a high of 0.3. No 

single variable was found to control these extremes, but rather they are due to 

combinations of model input variables. 
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1. Introduction 

1.1. Background 

Knowledge of the upper tropospheric ozone budget is essential to our ability to 

understand and predict climate change. Ozone concentrations in the troposphere are 

regulated by catalytic cycles involving nitrogen oxides (NOx), hydrogen oxides (HOx), 

and volatile organic carbon (VOC) species. In upper tropospheric regions influenced by 

convection, the budget of NOx and the ratio of HOx to NOy (reactive nitrogen) are not 

well understood, resulting in poorly understood ozone amounts [Jaeglé et al., 2001].  

1.2. Convective cloud systems 

The availability and concentration of ozone precursors in the troposphere are 

significantly affected by the action of convective cloud systems. Convective cloud 

systems significantly influence tropospheric chemistry and chemical deposition to the 

ground by moving trace gas species from the boundary layer to the free troposphere 

through chemical scavenging by cloud hydrometeors. Convective processing of trace gas 

species is an important means of moving chemical constituents rapidly between the 

boundary layer and free troposphere, and is an effective way of cleansing the atmosphere 

through wet deposition. It also brings into the cloud, species that are of a different 

composition, concentration, and origin than the air that ascends from the boundary layer 
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[Barth et al., 2002]. This entrained air can affect local thermodynamics as well as 

chemical and microphysical processes.  

Convective cloud systems have been shown to influence the chemical 

characteristics of the upper troposphere to lower stratosphere region. They contribute to 

the production, transportation, and redistribution of reactive chemical constituents, 

including water, aerosols and long-lived tracers in the upper troposphere to lower 

stratosphere [Dickerson et al., 1987; Gimson, 1997; Lelieveld and Crutzen, 1994; Ridley 

et al., 2004; Yin et al., 2005]. These convective cloud systems can offer a rapid pathway 

for the vertical transport of air containing reactive chemical species from the planetary 

boundary layer to the upper troposphere [Barth et al., 2007; 2001]. Through 

entrainment/detrainment processes, they can facilitate the mixing and dispersal of 

pollutants, and the transport of reactive species over significantly shorter timescales than 

would occur via eddy diffusion or other atmospheric mixing processes [Dickerson et al., 

1987]. At higher altitudes, increases in wind speed may result in longer atmospheric 

residence times of chemical species, thus increasing the probability of their participation 

in photochemical reactions and other atmospheric transformations [Ridley et al., 2004; 

Stockwell et al., 1990; Rutledge et al., 1986]. Thus, convective cloud systems can be 

thought of as chemical reactors, processing atmospheric air and its trace chemical 

constituents. 

However, the potential cleansing effect of deep convective cloud systems on the 

atmospheric boundary layer is countered by negative impacts due to scavenging, 

dissolution, and eventual deposition of acidic species. Effects of acid deposition may 

include reduced buffering capacity of lakes and other surface water systems, forest 
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deaths, reduced visibility, material deterioration, and deleterious health effects such as 

bronchitis and asthma [Cosby et al., 1985; Likens et al., 1996; Dockery et al., 1996]. 

Furthermore, venting of air from the atmospheric boundary layer by convective cloud 

systems may influence tropospheric ozone concentrations due to the migration and 

increased residence times of chemical species that regulates its production. These 

processes may significantly affect the upper troposphere ozone budget, and consequently 

climate change [Barth et al., 2002; Dickerson et al, 1987]. Additionally, as a result of 

these strong convective processes, regional air pollution problems may be transformed to 

global air pollution problems due to the long range transport of pollution plumes 

[Dickerson et al, 1987]. Therefore, an understanding of the microphysical processes 

governing the interaction of trace chemical species and condensed phase in convective 

cloud system is imperative to our determination of their fate, and as understanding of 

tropospheric ozone budget and climate change. 

1.3. Cloud hydrometeors and chemical interactions 

Previous studies have shown that the interaction of cloud hydrometeors with trace 

chemical species may significantly influence the fate of these chemicals, and 

subsequently impact atmospheric chemistry. Hydrometeors refer to the different forms of 

condensed water that constitute convective clouds, and include ice crystals, snow, 

graupel, and hail. Their formation is as a direct result of the moisture, temperatures, 

pressures, and airflow conditions associated with convective cloud systems. These cloud 

hydrometeors provide surfaces for chemical phase changes and reactions, act as 

condensed-phase reactors, and serve as conduits for chemical transport from the 
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atmosphere to the ground, through scavenging and precipitation [Lamb and Blumenstein, 

1987; Rutledge et al, 1986; Santachiara et al., 1995; Snider and Huang, 1998]. 

Interactions of volatile trace chemicals with cloud hydrometeors include absorption, 

condensation, diffusion, vapor deposition, or incorporation into the growing hydrometeor 

[Flossmann et al, 1985; 1987; Pruppacher and Klett, 1997]. Once dissolved in the 

hydrometeor, depending on the characteristics of the phase, the trace chemicals may 

dissociate or undergo further chemical reactions, thus affecting and modifying cloud and 

atmospheric chemical distributions [Barth, 2000; 2001; 2007]. For example, the removal 

of odd hydrogen species due to interactions with cloud hydrometeors has been found to 

significantly affect the oxidizing capacity of the troposphere and contribute to increased 

levels of sulfur species in precipitation [Audiffren et al, 1999; Snider, 1998]. 

Consequently, emphasis has been placed on understanding the interaction of trace 

chemical species with hydrometeors in convective cloud systems through observational 

and modeling studies. These include studies focusing on acid deposition [Barth et al., 

2000; Chameides, 1984; Daum et al., 1984; Kelly et al., 1985], ozone in the troposphere 

[Lelieveld and Crutzen, 1994; Pickering et al., 1992; Prather and Jacob, 1997], and the 

interaction of hydrometeors with other species [Chatfield and Crutzen 1984]. Most of the 

models focused on liquid phase hydrometeors, and chemical species were distributed 

based on processes governing liquid-phase exchanges. Consequently, little is known 

about how microphysical processes involving ice affect chemical fate. 
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1.4. Ice-chemical interactions 

Previous work indicates that ice-chemical interactions may have significant 

impacts on cloud and atmospheric chemistry [Pruppacher and Klett, 1997; Stuart and 

Jacobson, 2003; 2004; 2006]. Many researchers have included limited ice-chemical 

interactions in cloud models [Audiffren et al., 1999; Chen and Lamb, 1994; Cho, 1989; 

Rutledge et al., 1986]. Audiffren et al. [1999], in their two-dimensional Eulerian cloud 

model, utilized the formulations of Lamb and Blumenstein [1987] and Iribarne and 

Barrie [1950] in their parameterization of the entrapment of chemical species in a 

growing ice-phase hydrometeor. Elucidation of the mechanism by which trace chemicals 

and ice interact is important in order to predict chemical fate and to find suitable 

parameterizations for larger scale modeling. 

Recent studies indicate that one microphysical process, the freezing of super-

cooled drops via accretion, may significantly influence the venting of chemicals by 

clouds [Yin et al., 2002, Barth et al., 2007; Cho et al., 1989]. Ice hydrometeors in 

convective clouds may form and grow due to distinct microphysical transformations. 

Three major categories of such transformations exist, delineated by specific 

environmental conditions and giving rise to distinct hydrometer types [Pruppacher and 

Klett, 1997]. These are non-rime freezing, dry-growth riming, and wet-growth riming.  

Non-rime freezing involves the freezing of supercooled droplets without contact 

with an already frozen substrate hydrometeor. This phenomenon is normally associated 

with very low temperatures (< -30⁰C), and the associated ice nucleation may be either 

homogeneous or heterogeneous in nature. Hydrometeors formed via this process 
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generally retain the approximate shape of the original supercooled drop [Hobbs, 1974; 

Pruppacher an Klett, 1997].    

Conversely, riming involves the collision and collection of supercooled water 

drops by solid substrates, which may include, ice crystals, graupel, and hail, due to the 

differences in velocity of the drops and substrate. Riming can be further classified into 

either of two broad categories: wet-growth or dry growth riming. The regime a 

hydrometeor grows in is greatly dependent on specific conditions of drop size, 

hydrometeor speed, cloud water content, and temperatures (of air, drop, and riming 

substrate). Wet-growth riming results in a partially frozen hydrometeor, which may 

contain pockets of water in the hydrometer, or on the surface of the hydrometeor, and a 

surface temperature of approximately 0⁰C. Due to these conditions, drop interference and 

coalescence occurs, resulting in a more dense and transparent structure. Some liquid 

water may be shed from the riming hydrometeor. Conversely, dry-growth riming is 

associated with conditions of lower cloud water content and surface temperatures below 

0⁰C. Due to the low temperatures associated, drop freezing occurs independently, without 

coalescence, resulting in less dense, opaque hydrometeor. Because of the varying 

environmental conditions and processes characterizing the different freezing categories, 

factors affecting volatile chemicals retention in the frozen hydrometeor due to these 

microphysical transformations may differ significantly.  

Several authors have carried out laboratory studies investigating the degree to 

which a volatile chemical species may be retained in the ice phase due to the riming 

process. Consequently, they have characterized a retention ratio, which gives the ratio of 

solute mass in the hydrometeor to that which was originally in the impinging droplet, i.e., 
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the equilibrium concentration [Iribarne et al., 1983; Iribarne and Pyshnov, 1990; Lamb 

and Blumenstein, 1987; Snider and Huang, 1998]. These investigations measured the 

retention efficiencies of gases found in clouds including O2, SO2, H2O2, HNO3, HCl, and 

NH3, and calculated values ranging between 0.01 and 1. Factors that varied among the 

studies were summarized by Stuart and Jacobson [2003] and included temperature, 

droplet and substrate size, solute concentration, pH, and impact speed.  

To address the lack of understanding regarding the factors leading to the observed 

differences in experimentally derived retention ratios, Stuart and Jacobson [2003; 2004; 

2006] developed theory-based retention parameterizations and a mechanistic model under 

conditions satisfying dry growth riming and non-rime freezing. The retention ratio was 

found to be highly dependent on the effective Henry’s constant, drop velocity, and drop 

size. The formation of a complete or partial ice shell was also found to have a significant 

impact on retention. Chemicals with high effective Henry’s constant were found to be 

completely retained. For those with negligible Henry’s constant values, retention was 

found to be highly dependent on freezing conditions. However, the microphysical 

processes determining volatile chemical fate during ice accretion in the wet-growth 

regime remain poorly understood. 

1.5. Thesis organization 

In this study, I investigate the substrate properties, chemical characteristics, and 

environmental variables affecting chemical retention under conditions of wet growth. 

More specifically, this body of research attempts to answer the following scientific 

questions: 
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• What chemical properties affect chemical retention in hail growing under wet-growth 

conditions? 

• What specific environmental conditions contribute to volatile chemical retention in 

ice hydrometeors for conditions of wet growth? 

• What particle-scale microphysical process influence volatile chemical retention for 

accretion under wet growth conditions? 

Stuart [2002] developed a mechanistic analytical equation for the evaluation of 

volatile chemical retention during steady-state accretion on wet growing hail. The 

derivation is presented again in Section 2.1, by permission of the author, for 

completeness. In this thesis, I develop the expressions for microphysical process 

variables (Section 2.2), and model parameters (Section 2.3) necessary to apply the model. 

Model implementation and testing are discussed in Sections 2.4 and 2.5, respectively. It 

is then applied (Section 3) to understand the likely dependence of partitioning on 

environmental conditions and hail characteristics and chemical species. Results, 

discussions, and conclusions are presented in Sections 4, 5, and 6, respectively. 
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2. Model Development 

This model considers a two-phase (ice and liquid water) hail particle, growing at a 

steady-rate, in a region of sufficiently high cloud liquid water content to satisfy 

conditions for wet growth. Growth is facilitated by the collection of super-cooled water 

drops in the volume swept out by the falling hail particle. The fate of solutes, originally 

dissolved in the impinging drops, is determined by two coupled mass balances; a water 

mass rate balance, and a solute mass balance over the growing hail particle. Expressions 

describing the process governing hailstone development, such as impingement, 

evaporation, and shedding, are derived from cloud microphysics. 

2.1 Retention ratio 

Wet growth is characterized by higher surface temperatures (~0⁰C), higher cloud 

water mixing ratios, and higher rates of drop impingent on the substrate, than the 

conditions associated with the dry-growth regime [Pruppacher and Klett, 1997, p. 659]. 

Under these conditions, impinging drops coalesce prior to freezing on the growing 

hailstone. This may lead to the presence of a liquid water layer (skin) on the surface of 

the hydrometeor and liquid water in entrapped pockets throughout the hailstone [Johnson 

and Ramussen, 1992, Schumann, 1938]. If the skin is thick enough, water can be shed as 

water droplets, due to gyration (rotation) of the hailstone [Garcia-Garcia and List, 1992]. 



Under wet-growth conditions, chemical solutes dissolved in the impacting drops 

may be retained in the growing 

entrapped in water pockets within hail 

can be removed from the growing hail via shed water and through evaporation. Fig

illustrates the processes involved in solute 

Under constant environmental conditions (temperatures, 

content, and velocities), rates

growth will be approximately 

partitioning will be at a constant rate

determining the salinity of sea spray ice, we can write a

during wet-growth: 
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growth conditions, chemical solutes dissolved in the impacting drops 

may be retained in the growing hailstone, in the water film at the surface of the hail,

ntrapped in water pockets within hail ice, or incorporated in the ice structure

can be removed from the growing hail via shed water and through evaporation. Fig

illustrates the processes involved in solute retention during wet growth riming

Under constant environmental conditions (temperatures, pressure, cloud water 

, rates of water flux to the hydrometeor, water shedding, and 

approximately constant. Hence, hydrometeor growth and solute 

a constant rate. Adapting the development of Makkonen

determining the salinity of sea spray ice, we can write a rate balance 

ld h eX F X G X E X S= + +  

Figure 1. Hail growth and solute transfer processes. 

growth conditions, chemical solutes dissolved in the impacting drops 

in the water film at the surface of the hail, 

d in the ice structure. Solutes 

can be removed from the growing hail via shed water and through evaporation. Figure 1 

riming. 

pressure, cloud water 

of water flux to the hydrometeor, water shedding, and ice 

hydrometeor growth and solute 

Makkonen [1987] for 

rate balance on solute mass 

Eqn (1) 
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Here, F is the mass rate of drop collection, G is the mass rate of hydrometeor 

growth, E is the mass rate of solution evaporation, and S is the mass rate of shedding, 

each having units of mass per time. Xd, Xh, Xe, and Xl are the solute mass fractions, e.g. 

gram solute per gram of solution, in the drops (d), evaporated solution (e), hydrometeor 

(h), and surface (and shed) liquid (l). Note that this equation assumes that the liquid-to-

gas mass transfer (evaporation) rate for chemical solute is proportional to that for water 

evaporation. This is a simplification for an open system (low concentrations of water 

vapor and solute in the surrounding air), similar diffusivities in air, similar Schmidt 

numbers, and equilibrium chemical partitioning at the liquid-gas interface. 

It is noted that a water rate balance require S = F – E – G, and subsequent 

rearrangement, results in the following:  

 
( )

( ) ( )
h lh

d h l e l

X X GX G

X F X X G X X E S
=

+ +
 Eqn (2) 

It is recognized that e l
X X is a mass fraction air-water distribution coefficient. In 

terms of the more traditional Henry’s constant, it is equivalent to: 

 
1e l

s

l vl

X

X H

ρ

ρ∗

 
=  

 
 Eqn (3) 

where, H* is the dimensionless effective Henry’s constant in terms of concentration in 

water over concentration in air, l
ρ  is the density of the liquid solution, and s

vl
ρ  is the 

saturation vapor density over the liquid solution. 
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The term h l
X X  can be determined using a solute mass balance on the 

hydrometeor given by: 

 h h l l i i
X M X M X M= +  Eqn (4) 

  i
h h l l l i

l

X
X M X M X M

X

 
= +  

 
 Eqn (5) 

where, Mh, Ml, and Mi represent the total mass, liquid phase mass, and ice phase mass of 

the hailstone, respectively. Since, Xi is the mass fraction of solute in ice, and Xl is the 

mass fraction of solute in the liquid solution, i l
X X is an effective ice-liquid interfacial 

distribution coefficient, which we term ke. It includes the effect of crystal growth rates, 

dendritic trapping, and convectively enhanced solute mass transfer in the liquid [Hobbs, 

1974, p. 600 - 605]. Rearrangement of equation (4) results in: 

 ( )1h
e

l

X
k

X
η η= + −  Eqn (6) 

where, η is the mass fraction liquid water content of the hydrometeor ( l h
M M ). 

To solve for the retention ratio during wet growth riming, we substitute equations 

(3) and (6) into equation (2) and rearrange the terms. The retention ratio or ratio of solute 

mass fraction in the hydrometeor to that in the original impinging drops is then given by: 

 
( )

( ) �*
Shedding

Growth effect

Evaporation effect

1

1
1

e

l
e s

vl

G k

G k E S
H

η η

ρ
η η

ρ

+ −  Γ =
  

+ − + +     
  �������

�������

 Eqn (7) 
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Here, Γ represents the mass rate of chemical accumulation in the hailstone over that in 

the collected liquid drops, given by h d
GX FX , that is, the retention fraction. 

2.2 Microphysical process variables 

To calculate the retention ratio using Equation 7, rates of the microphysical 

processes involved in riming must be estimated. These include mass rates of drop 

collection, water evaporation, hailstone growth, and shedding.  

The rate of drop collection is estimated assuming a spherical particle of radius r, 

moving with a velocity through a region of air of defined liquid water content, and 

sweeping out a volume determined by its cross-sectional area, πr2
. Therefore, the rate of 

impingement is a function of the fall speed of the hydrometeor and the liquid water 

content of the air. Thus, the mass rate of drop collection is given by [Pruppacher and 

Klett, 1997, p.568 – 570] 

 2
a

F r vεπ ωρ=  Eqn (8)  

where, v is the fall speed of the hailstone relative to the drop, r is the hailstone radius, ρa 

is the density of air, ω is the mass fraction  liquid water content of the cloud, and ε is the 

collection efficiency.  

Evaporation is represented as a first-order rate process for mass transfer from 

liquid to air. Assuming a spherical hailstone, and an open system, the mass rate of solute 

evaporation, E, is then [Pruppacher and Klett, 1997, p. 537]: 
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 4
s

vl

v H

P
E rD

R T
π

 
= Φ  

 
 Eqn (9) 

where, s

vl
P  is the saturation vapor pressure over liquid water,  is the universal gas 

constant for water vapor, TH is the temperature of the hailstone, D is the diffusivity of 

water vapor in air, and Φ  is the ventilation coefficient defining convective enhancement 

of evaporation due to hail motion. An open system assumption is used for consistency 

with the simplifying assumption of proportional rates of water and solute transfer. 

The mass growth rate of the hail is the sum of the ice growth rate (Gi) and the rate 

of change of liquid water mass of the hydrometeor (Gw). Thus: 

 i w
G G G= +  Eqn (10) 

where Gi is estimated [after Stuart and Jacobson, 2006] as: 

 ( )24
c

i iG r b Tπ ρ= ∆  Eqn (11) 

Here, ρi is the density of the hailstone, and [b(∆T)
c] is the intrinsic crystal interface 

growth velocity. The form of the interface growth velocity equation and factors, b and c 

are based on experimental data and theory for growth rates of ice in super-cooled water 

[Pruppacher and Klett, 1997, p. 668 – 674]. ∆T = T0 –Tint is the super-cooled temperature 

of the ice liquid interface, where T0 is the equilibrium freezing temperature of water 

(0˚C), and Tint is the ice-liquid interface temperature. As interface temperature are 

expected to be very close to 0⁰C during wet growth, we use a b of 0.3 and c of 2 for the 

classical growth regime [Bolling and Tiller, 1961]. 

vR
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Considering the case of constant liquid water content of the hailstone the rate of 

change of liquid mass of can be determined by: 

 
( )w i

G G
η

η
=

1−
 Eqn (12) 

The mass shedding rate of the growing hail is determined by water mass 

conservation as S = F – G – E, as defined above. 

2.3 Model parameters and assumptions 

Chemical and physical property and process parameters are necessary for 

application of the above equations. Expressions describing properties of water phase 

change, dry and moist air, and water vapor were defined based on available literature. 

Properties of the ice substrate, and super-cooled drop, such as ventilation characteristics, 

were similarly defined. Table 1. lists model parameters, literature references for the 

estimation method, and assumptions applied. 
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Table 1. Methods for estimation of model parameters 

Parameter Method Reference and Assumptions 

Hail Temperature (Th) Assumed equal to 0⁰C 
Latent heat of water melting (Lm) Jacobson [2005, p. 40, Eqn. 2.55] 
Latent heat of water sublimation(Ls) Jacobson [ 2005, p. 40, Eqn. 2.56] 
Latent heat of water evaporation Ls – Lm; Jacobson [2005, p. 40, Eqn. 2.56] 
Saturation vapor pressure over liquid water ( s

vlP ) Jacobson [ 2005, p. 41, Eqn. 2.62] 

Saturation vapor density over liquid water ( s

vlρ ) Jacobson [2005, p. 31, Eqn. 2.25] 

Saturation vapor density over ice Jacobson [2005, p. 43, Eqn. 2.64] 
Water-air surface tension Jacobson [2005, p. 485, Eqn. 14.19] 
Dynamic viscosity of dry air Jacobson [2005, p. 102, Eqn. 4.54] 
Heat capacity of dry air at constant pressure Smith and Van Ness [2001, p. 109, Table 

4.1] 
Partial pressure of water vapor in air (Pa) Jacobson [2005, p. 21, Eqn. 2.27] 
Mass mixing ratio of water vapor in air  Jacobson [2005, p. 32, Eqn. 2.31] 
Thermal conductivity of dry air Jacobson [2005, p. 20, Eqn. 2.5] 
Gas constant for moist air Jacobson [2005, p. 33, Eqn. 2.37] 
Gas constant for water vapor (Rv) Jacobson [2005, p. 22, Eqn. 2.21] 
Molecular weight of moist air Jacobson [2005, p. 31, Eqn. 2.26] 
Density of moist air (ρa) Jacobson [2005, p. 33, Eqn. 2.36] 
Kinematic viscosity of moist air Jacobson [2005, p. 102, Eqn. 4.55] 
Mean free path of moist air Jacobson [2005, p. 506, Eqn. 15.24] 
Effective Henry Constant (H*) Seinfeld &Pandis [1998, p. 340 – 350] 
Heat capacity of moist air at constant pressure Jacobson [2005, p. 20, Eqn. 2.5] 
Diffusivity of water vapor in air (D) Pruppacher & Klett [1997, p. 503, Eqn. 13-

3] 
Heat capacity of (supercooled) water  Pruppacher & Klett [1997, p. 93, Eqn. 3-16] 

Density of (supercooled) liquid water (ρl) Pruppacher & Klett [1997, p. 87, Eqn. 3-14] 

Density of ice (ρi) Pruppacher & Klett [1997, p. 9, Eqn. 3-2] 
Density of hailstone (ρh) ρh =[(η/ρl) + ((1− η)/ρi)]

-1 Weighted 
reciprocal average of ice and water densities. 

Drop terminal fall velocity Jacobson [2005, p. 664, Eqn. 20.9] 
Hailstone fall velocity Pruppacher & Klett [1997, p. 87, Eqn. 10-

175 – 10-178], Jacobson [ 2005, p. 507, 
Eqn.15.26] 

Impact speed of drops and hailstone (v) Assumed equal to vh – vd. 
Reynolds Number for flow around drops Jacobson [2005, p. 664, Eqn. 20.6] 
Reynolds Number for flow around hailstone  Seinfeld &Pandis [1998, p. 463, Eqn. 8.32] 
Prandtl Number Jacobson [2005 p. 532, Eqn. 16.32] 
Schmidt Number  Jacobson [2005 p. 531, Eqn. 16.25] 
Stokes, Nusselt, and Sherwood Numbers Stuart and Jacobson [2004, Section 2.3] 
Ventilation Coefficient (Φ) Pruppacher & Klett [1997, p. 537, Eqn. 13-

52] 
Critical liquid water content (ωc) Stuart and Jacobson [2004, Eqn. 14] 
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Calculations of the parameters listed in Table 1. were based on several 

assumptions. It was assumed that the air is saturated with respect to water. Temperatures 

of the air, hail ice, and super-cooled drop were assumed equal, whilst, hail water 

temperature was assumed equal to the equilibrium freezing temperature. Saturation vapor 

densities and critical water limit for wet growth, as well as, the temperature dependence 

of the chemical specific Henry’s Law constant, and dissociation constants describing pH 

dependence, were calculated using the equilibrium freezing temperature. Here, I used an 

average hail density for simplification which compared well to parameterizations 

developed by Heymsfield and Pflaum [1985] and Macklin [1962] for riming, based upon 

drop radius, a, the temperature of the ice substrate, Ts, and the impact speed of the drops, 

Uimp, (of the form, Y= -aUimp/Ts). Drop fall velocity was calculated as discussed in 

Jacobson [2005, p. 661 - 664]. Hail fall velocity was determined accounting for  the 

inertial effect of the particle given by the empirical drag coefficient, CD, as follows in 

Seinfeld and Pandis [1998, p. 462 - 468], with an initial hail fall speed based on 

parameterizations discussed in Pruppacher and Klett [1997, p. 441 – 444]. Symbols are 

provided in Table 1. for parameters used elsewhere in the text. 
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2.4 Implementation 

Model calculations were performed using Microsoft Excel spreadsheets. 

Statistical ensemble modeling runs were performed using Oracle’s statistical and risk 

analysis software, Crystal Ball
®, to assess impact of variation in the input parameters on 

the modeled retention fraction. The basis of the ensemble runs is the generation of 

random numbers, bounded by the range previously defined for system variables of 

interest. That is, to assess the impact of a particular variable, it is assigned a fixed 

possible range, and all other system variables are assigned random values, by a random 

number generator, bounded by a predefined range determined by the model conditions. 

By choosing regular intervals within its range for the controlled variable whilst 

simultaneously randomly varying the values assigned to the other parameters, any 

statistical dependence between the manipulated variable and system parameters is 

established. Such probabilistic models, involving the element of chance, are called Monte 

Carlo simulations.  

Initial simulations were performed to determine appropriate ranges for trace 

chemical parameters. Additional input parameters included those controlling the 

variability of hail and environmental factors. The range of values assigned to the input 

parameters were based on literature values for conditions applicable to wet growth, and 

each was assumed to confirm to a uniform distribution. 

Chemical input variables are the effective Henry’s constant and the effective ice- 

liquid distribution coefficient. Although the equilibrium ice-liquid distribution 

coefficient,
Dk , is chemical specific, the effective ice-liquid distribution coefficient, e

k , is 
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a strong function of the kinetics of freezing and is less dependent on the specific 

chemical. The equilibrium ice-liquid distribution coefficient is defined as the ratio of the 

solute concentration directly adjacent to the interface in the solid, Cs(i), to the solute 

concentration directly adjacent to the interface in the liquid, Cl(i), as discussed by Hobbs  

[1974, p. 600] 

 
( )

( )
s

D

l

C i
k

C i
=  Eqn (13) 

Following the discussion of Hobbs [1974], the equilibrium ice-liquid distribution 

coefficient describes the extent at which solute molecules are incorporated into the 

growing ice phase and is a direct measure of the distortion imposed by solute molecules 

on the molecular arrangement in the solid. For ionic solutes in water, D
k  is always very 

much less than unity Hobbs [1974]. However, under steady-state conditions, as the solute 

concentration builds up in the liquid phase and diffuse away from the interface, the width 

of this liquid layer next to the interface may change thus affecting the localized 

equilibrium. Thus, it will depend on the rate of freezing, the equilibrium ice-liquid 

distribution coefficient, and the diffusivity of the solute molecules. Therefore, an 

effective ice- liquid distribution coefficient is defined by Hobbs [1974]: 

 s
e

C
k

C∞

=  Eqn (14) 

Here, C∞  is the concentration of the bulk solution at a point far removed from the 

interface. Thus, e
k  considers other processes affecting water-to-ice mass transfer such as 
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crystal growth rates, dendritic trapping, and convectively enhanced mass transfer in the 

liquid phase. However, based on experimental data presented by Hobbs [1974], and other 

sources cited therein, there is little variation in the derived e
k  for varying chemical 

species, with the ranges presented having the same order of magnitude. Hence, I assume 

the same range of values, based on the measured effective ice-liquid distribution 

coefficients, for all species considered. 

To determine the range of effective Henry’s constants to consider, a second 

spreadsheet was used to calculate the pH dependent effective Henry’s constant, H
*, 

accounting for dissociation, for each atmospherically relevant chemical species 

considered. Calculations were based on formulations presented in Seinfeld and Pandis 

[1998, p. 340 – 385] using tabulated values of Henry’s constants, aqueous equilibrium 

constants, and reaction enthalpies given in Table 2. Distributions of H* for each chemical 

of interest were obtained with ensemble simulations in which the pH was allowed to vary 

randomly with a uniform distribution from 2 to 8, and water temperature was assumed 

equal to the equilibrium freezing temperature. The resulting overall species maximum 

and minimum effective Henry’s constant, derived from these simulations, was then used 

to define the range for subsequent calculations of retention. The results are discussed and 

presented in Section 4. 
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Table 2. Chemical properties and thermodynamic data 

§ Chemical properties were taken from Seinfeld and Pandis [1998, Chap. 6, p. 341 – 391], for 
values observed at 298K. 
†
 DHC – dimensionless Henry’s constant, was calculated at the equilibrium freezing temperature 

based on the temperature dependence of the Henry’s constant, and other dissociation constants, 
given by Seinfeld and Pandis [1998, p. 342, Eqn. 6.5]. 
  

Chemical 

§Henry’s 
Law 
Coefficient, 
M/atm. 

Enthalpy of 
Dissolution 
of Henry 
Law 
Coefficient, 
kcal/mole 

1st 
dissociation 
constant, M 

2nd 
dissociation 
constant, M 

†DHC range 
observed 

Sulfur Dioxide, 
SO2 

1.23 -6.25 1.3×10-2 6.6×10-8 6.6 – 8.5 

Hydrogen 
Peroxide, H2O2 

74500 -14.5 2.2×10-12  -  7.2 – 8.6 

Ammonia, NH3 62 -8.17 1.7×10-5  -  5.8 – 10.5 

Nitric Acid, HNO3 210000 -  15.4  -  11.2 – 18.5 

Formaldehyde, 
CH2O 

2.5 -12.8 2.53×10+3  -  5.4 – 12.3 

Formic Acid, 
HCOOH 

3600 -11.4 1.8×10-4  -  2.5 – 9.4 
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This model considers hail growing in the wet-growth regime. Thus, only 

conditions of cloud liquid water content greater than the Schumann-Ludlam limit 

calculated critical water content limit, Wc, for a given set of environmental conditions 

were considered. The Schumann-Ludlam limit, which considers a heat balance on the 

riming substrate, is given by [Stuart and Jacobson, 2004; after Macklin & Payne, 1967, 

and Young, 1993]: 

 
( )

( ) ( )
2

sat

c a o a s i a

m w o a

f
W Nuk T T ShDL

vr L c T T
ρ ρ

ε
 = − + −  − − 

 Eqn (15) 

Here, f is the shape factor of the substrate, ε is the efficiency of collection, v is the impact 

speed, r is the hail radius, Nu and Sh are the Nusselt and Sherwood numbers, 

respectively, ka is the thermal conductivity of air, D is the diffusivity of water vapor, cw, is 

the heat capacity of water, and, Lm and Ls are the latent heats of fusion and sublimation of 

water vapor, respectively. Essentially, the rate per unit area at which heat is being 

dissipated to the environment by convection and evaporation is compared to the rate at 

which it is being added due to freezing of the droplets. Hence, for a given ambient 

temperature, air speed, and particle size, there exists a critical liquid water concentration 

for which all the accreted drops may be just frozen. Exceeding this critical liquid water 

concentration results in excess water remaining unfrozen on the hail, and growth occurs 

in the wet regime. For the purposes of model implementation, a wet growth boundary 

parameter, WB, was calculated for all sets of input conditions considered. If WB was 

positive (ω >Wc, where ω is the cloud liquid water content as given in Table 3.), the 
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results were considered in our analysis. If WB was negative, they were only retained to 

understand the implications of the constraint on the overall results. 

Table 3. Model input variables and ranges 

Name and Symbol Units Range Reference and assumptions 

Hailstone diameter (Dh) mm 1 – 50 Pruppacher and Klett [1997, 
p.71] 

Hailstone liquid water content 
(η) 

[-] 10-4 – 0.5 Maximum observed water 
fraction, Lesins and List [1986] 

Ice interface supercooling (∆T) ⁰C 10-4 – 10 For classical growth regime, 
Pruppacher and Klett [1997, p. 
668] 

Hailstone shape factor (f) [-] 3.14 – 4 Macklin and Payne [1967], 
Jayaranthe [1993] 

Collection efficiency (ε) [-] 0.5 – 1 Assumed close to 1, Lin et. al. 
[1983] 

Cloud liquid water content (ω) gm
-3

 2 – 5 Pruppacher and Klett [1997, p. 
23] 

Drop radius (a) µm 5 – 100 Jacobson, [2005. Tab 13.1, p. 
447] 

Atmospheric pressure (P) mb 200 – 1013 Tropospheric pressures, 
Jacobson [2005, App. B.1].  

Air temperature (Ta) ⁰C -30 – 0 Observed wet-growth regime 
limits, Pruppacher and Klett 

[1997, p. 682] 
Effective Henry’s constant (H*) [-] 102.5 – 1018.5 Calculated for pH  range, 

Seinfeld and Pandis [1998, p. 
340-385] 

pH - 2 – 8 Approximate range observed in 
experimental retention studies  

Effective Ice-liquid distribution 
coefficient(ke) 

[-] 10-5 – 10-3 Experimental data and theory, 
Hobbs [1974, p. 600-606] 

 

Air temperature range was assigned based on limits to wet growth for maximum 

hail radius, maximum liquid water content, and minimum pressure as discussed in 

Pruppacher and Klett [ 1997, p. 682]. The pH occurring in the troposphere depends on 

the types and concentrations of dissolved chemical species present. Ranges used were 

based on typical midrange tropospheric pH variation as discussed in Seinfeld and Pandis 
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[1998, p. 345]. Cloud liquid water content range represents values occurring in deep 

convective clouds with high updrafts, as discussed in Pruppacher and Klett [1997, p. 23]. 

The range assigned to mass fraction liquid water content of the hail particle considers the 

higher liquid mass associated with the wet-growth regime. For higher temperatures and 

liquid water contents, the ice fraction assumes a constant minimum of 0.5 [Lesins and 

List, 1986]. Pruppacher and Klett [1997, p. 668], and other sources cited therein, 

discusses the dependence of ice growth rate on bath supercooling with parameterizations 

covering the range 0.5⁰C to 10⁰C. Here, the range assigned for ∆T accounts for lower 

velocities due to higher temperatures associated with the growth regime. The distribution 

coefficient for solute in ice is discussed in text. The collection efficiency is an assumed 

value, chosen between 0 and 1, but greater than 0.5 based on higher liquid water 

concentrations associated with the wet growth regime as discussed by Lesins and List 

[1986]. The range given for the shape factor considers that the substrate assumes 

geometry somewhere between a cylinder and a sphere [Macklin and Payne, 1967] 

An additional constraint on the model was also necessary to ensure consistency 

between the ice growth rate and the mass available for growth. The intrinsic growth rate 

of the ice phase depends predominantly on the ice-liquid interface temperature, ∆T, 

(Equation 11) which is represented as an input variable as there is no way to determine it 

within the scope of this model. Consequently, some combinations of model input 

parameters may result in all the liquid mass on the hail freezing, thus violating the wet-

growth concept. Here I defined an allowable growth rate by considering the amount of 

water mass present on the hail after accounting for evaporation (F – E). A growth rate 

boundary parameter, GB, was then calculated for all sets of input conditions by 
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comparing the hail growth rate (see Equation 10) with the calculated allowable growth 

rate. If GB was positive, [(F-E) >G], the results were considered in our analysis. If GB 

was negative, they were only retained to understand the implications of the constraints on 

the overall results. It must be noted that the GB and WB constraints discussed above were 

applied simultaneously. 
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2.5 Testing 

The validity of the data obtained from derived model parameters was assessed by 

comparison to published data. The temperature dependence of chemical specific Henry’s 

constants was compared to data discussed in Seinfeld and Pandis [1998, p. 340 – 350] 

and other sources cited therein, and was found to be in good agreement. Similarly, 

Reynolds number averaged drop and hail settling velocities were found to compare well 

with data given by Jacobson [2005, p. 507] and, Pruppacher & Klett [1997]. 

The model was checked for conservation of water and solute mass mass balance 

analysis. A mass balance test on hail water mass was conducted by considering the 

fundamental model equation describing the water rate balance around the growing hail 

particle discussed in Section 2., given as, S = F – G – E. Since the rates of impingement, 

growth, and evaporation were independently derived, the mass balance consisted of 

equating the sum of these processes, with the mass rate of drop shedding. Perfect 

conservation of mass was observed for all variations of model parameters that met the 

model constraints. 

A solute mass balance required tracking a defined mass of solute through the 

model logic and ensuring conservation of mass. An initial concentration of trace chemical 

was defined in the air phase, Ca. Its concentration in each medium was subsequently 

derived from the original model equations describing solute mass fraction expressions as 

given in Section 2.1. Thus, the mass fraction of solute in the drops, hail ice, shed liquid 

and evaporated solution, were calculated from the following expressions: 
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Multiplying these solute mass fraction expressions with the appropriate water mass rates 

gives the solute mass accumulation rate in each compartment. Perfect conservation of 

solute mass was observed for all variations of model parameters that meet the model 

constraints. 
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3. Application 

To investigate the dependence of retention on environmental, microphysical, and 

chemical factors, retention ratios were calculated for a range of chemicals of atmospheric 

interest using an ensemble modeling approach. Six trace chemicals were considered, 

namely, SO2, H2O2, NH3, HNO3, CH2O, and HCOOH. Appropriate ranges for H* were 

first calculated for these species as discussed in Section 2.4 using a 100 member 

ensemble. 

With the Effective Henry’s Constant range defined, a modified Monte Carlo 

ensemble modeling approach was then used to determine the dependence of retention on 

input variables. In this approach, a series of ensemble simulations was run for each input 

variable previously defined. The focus variable of each series was held constant at 

discrete values uniformly spaced over the range listed in Table 3. For each of those 

values, a 100-member ensemble was assembled by allowing all other variables to vary 

randomly over a continuous uniform distribution defined by the range of each variable as 

listed in Table 3. Only those results meeting the model constraints were retained in the 

analysis. Resulting output distributions of retention ratios and constraint conditions are 

presented and discussed in Section 4. 
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4. Results 

 The results generated from modified Monte Carlo ensemble runs were categorized 

and presented by type as, hail factors (mass fraction liquid water content of hail, η, hail 

diameter, Dh, hail shape factor, f, ice-liquid interface temperature, ∆T, and hail collection 

efficiency, ε), chemical factors (effective Henry’s constant, H*, and effective ice-liquid 

distribution coefficient, ke), and environmental factors (air temperature, Ta, pressure, P, 

cloud liquid water content, ω, and drop radius, a). 

4.1 Hail factors 

4.1.1. Hail diameter 

Result of the dependence of simulated retention on hail diameter is shown in 

Figure 2(a). The mean simulated retention varied between 0.068 and 0.15 for distinct hail 

diameters, with an overall distribution range of 5.1×10-6 to 0.88. No clear trend is 

observed between the mean or other distribution parameters of the retention ratio and hail 

diameter. Although no clear dependence of retention on hail diameter can be ascertained, 

a trend was observed in the number of ensemble members within model constraints (see 

bold numbers in Figure 2a). The number of valid runs was observed to increase with 

increases in diameter. 

From Equation 8, an increase in hail diameter is expected to result in an increase 

the drop collection rate, F, by increasing the swept volume of drops collected. Hail fall 
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velocity (and hence impact velocity) also increases with hail diameter, also increasing F. 

From Equation 9, it is expected that increasing hail diameter will result in an increase the 

evaporation rate, E, through increased surface area and ventilation, f. Since the particle 

Reynolds number is proportional to its radius and fall speed, greater ventilation is 

expected with increases in diameter, which further enhances vapor and energy transfer 

processes. The hail diameter also affects the critical liquid water content, which indirectly 

affects retention. Finally, hail diameter has effects on shedding due to effects on hail 

motion, but this is not captured in this model. Here, shedding, S, will increase if F 

increases or E or G (mass growth rate) decrease. Hence, overall a complicated 

relationship between hail diameter and retention is expected, due to the counteracting 

effects of F, S, and G on retention (see Equation 7). The lack of observed dependence on 

hail diameter indicates that no one effect dominates. Additionally, the large range 

indicates that other parameters or combinations of parameters are more important to 

controlling retention. 

Results of the dependence of the constraint parameters on hail diameter are shown 

in Figure 3(a) and 4(a). It was observed that as hail diameter increases, the mean of the 

growth rate boundary parameter, GB, increases slightly (i.e. becomes more positive), with 

fewer member runs outside the boundary (less negative values). However, larger 

variability in GB is observed as the hail diameter increases, indicating that as hail 

diameter increases, the influence of other input parameters of the growth rate of the hail 

becomes more pronounced. As previously mentioned, hail diameter is expected to have a 

direct correlation with drop collection rate and water evaporation rate. For the wet growth 

boundary parameter, WB, shown by Figure 4(a), a trend of increasing mean WB 
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parameter with increasing hail diameter is observed. Equation 15 indicates that as hail 

diameter increases the calculated critical water content for wet growth will decrease, thus 

increasing the WB parameter. As hail diameter increases, an increase in the number of 

valid simulation runs is also observed, as well as, a decrease in the variability of the WB 

parameter. This indicates that as hail diameter increases, the influence of the other input 

parameters on the growth regime decreases. 
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Figure 2. The effect of individual hail input variables on retention fraction. The box plots characterize the ensemble 
distribution of simulated results with the abscissa held constant and other parameters varied randomly. The italicized 
value above each box plot provides the number of ensemble member runs that met model constraints. 
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Figure 3. The effect of individual hail input variables on the growth rate boundary parameter, GB. The box plots 
characterize the ensemble distribution of simulated results with the abscissa held constant and other parameters varied 
randomly. The italicized value above each box plot provides the number of ensemble member runs that met model 
constraints. 
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Figure 4. The effect of individual hail input variables on the wet growth boundary parameter, WB. The box plots 
characterize the ensemble distribution of simulated results with the abscissa held constant and other parameters varied 
randomly. The italicized value above each box plot provides the number of ensemble member runs that met model 
constraints. 
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4.1.2. Mass fraction liquid water content of hail 

The effect of hail liquid water content, η, on retention is shown in Figure 2(b). 

Mean simulated retention varied from 7.5×10-3 to 0.27 with increasing η, exhibiting a 

strong dependence of retention on the mass fraction liquid water content of the hail. The 

overall range observed ranged from 6.0×10-8 to 0.99, with no obvious trend in variability, 

or number of valid runs with changes in η. 

From Equation 7, a direct dependence of the retention ratio on η is observed in 

the numerator. This is because as η increases, with comparatively negligible partitioning 

to ice (significantly low ke), more solute can be stored in the liquid (Xl) (see Equation 6). 

However, the retention ratio is also indirectly influenced by η through its effects on hail 

growth, G, and shedding, S. It is expected that increasing η will result in an increase in 

the growth rate of the hail as indicated by Equations10 and 12. Shedding is determined by 

conservation of water mass, so as growth rate increases, shedding decreases (with E 

constant) with the resultant opposite effect on the retention ratio. Since an increasing 

trend of retention with increases in η  is observed, it can be surmised that the direct 

(numerator) effect and/or shedding dominate the growth effect. 

The effect of η on the constraint parameters is shown in Figure 3(b) and 4(b). No 

definite trend is observed between the mean and values of GB or WB and hail water 

fraction. As η increases, an increase in the variability of the GB parameter was observed, 

indicating increasing influence of other input parameters on the growth rate. 

Additionally, for WB, extremely high negative values were observed for some 
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combination of the input parameters, suggesting that there were combinations of input 

parameters that strongly affect the growth regime. 

4.1.3. Ice-liquid interface temperature 

Figure 2(d) gives  the results of simulated retention on the ice-liquid interface 

temperature, ∆T. Mean simulated retention increased fom 9.0×10-7 to 0.30 with 

increasing ∆T, indicating a dependence of retention on ∆T. The overall range varied 

between 1.1×10-4 and 0.99 with increasing variability as ∆T increased. The number of 

valid runs converely decreased with increasing ∆T (closer to zero) . 

From Equation 11, it is expected that as ∆T increases, the intrinsic growth rate of 

the hail ice will increase, thus increasing the overall hail growth rate, G. From Equation 

7, is is expected that the quantity termed the growth effect will increase with increasing 

G, leading to a subsequent decrease in retention. However, this is countered by the 

indirect effect of shedding. Here, an increase in G leads to a decrease in the shedding 

term, which has a greater influence, and results in an general increase in the observed 

retention. 

The effect of ∆T on the growth rate boundary prameters is shown in Figures 3(d) 

and 4(d). There is no significant dependence observed between the mean or other 

distribution parameter of the GB parameter and ∆T. However, a definite decrease in the 

number of valid model runs is observed as ∆T increases via its direct effect on the 

intrinsic ice growth rate,  subsequently affecting the model constraint directly. For WB  
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no definite trend exists in the mean values, but there is an observed decrease in the 

variability of WB as ∆T increased. 

4.1.4. Hail shape factor 

The dependence of simulated retention ratio on the shape factor, f, is shown in 

Figure 2(c). The mean retention varies from 0.91 to 0.19, with an overall distribution 

range of 1.3×10-6 to 0.95. There is no definite relationship observed between the mean or 

other distribution parameter of the modeled retention ratio and shape factor. 

Since the shape factor only appears in the wet growth boundary constraint, 

Equation 15, it can only influence retention through that constraint. From Equation 15, it 

is observed that  the shape factor influences the heat balance on the riming substrate by 

determinig the enhancement of energy transfer due to the curvature of the interface 

[Macklin, 1964] 

Figure 3(c) gives the effect of the hail shape factor on the growth rate boundary 

constraint. There is no relationship observed between the distribution parameters of the 

growth rate boundary and the the shape factor.  A direct relationship between the shape 

factor and the growth boundary is not expected.  However, large variations in the 

distribution of the GB parameter is observed,  due to combination of effects of the other 

input parameters. 

The effects of the shape factor on the wet growth boundary parameter is given by 

Figure 4(c). The was no trend observed between the shape factor and the distribution 

parameters describing the wet growth boundary. From Equation 15 it is expected that as 

the particle transitions from a cylinder to a sphere, the critical liquid water required for it 
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to remain in the wet growth regime will increase, thus influencing the GB. However, it is 

also affected by the ambient temperature, particle size, and the impact speed. Thus, no 

direct correlation is observed. High variability in the GB simulations is observed with 

higher negative values. There was no variation in the number of valid model runs,  

however. 

4.1.5. Efficiency of collection 

Figure 2(e) characterizes the effect of  the collection efficiency, ε, of the hail on 

the simulated retention ratio. Mean retention ranged from 0.10 to 0.17, and the overall 

distribution indicated possible values ranging from 2.8×10-6 to 0.97. No clear trend is 

observed in the mean or variability of the simulated retention ratio. 

 From Equation 8 it is expected that, as ε increases, the mass rate of drop 

collection increases. As given by Equation 7, the effect of an increase in drop collection 

depends on the relative rates of shedding, evaporation and ice growth. Since no trend is 

observed, no one effect appears to dominate. 

The influence of the collection efficiency on the growth rate boundary is shown 

by Figure 3(e). There is no trend observed between the distribution parameters of the 

simulated  growth rate boundary parameter and the collection efficiency. Also , no trend 

is observed in the variability of the GB parameter with changes in collection effeciency, 

although high overall vairability in the data. This indicates that there is no direct effect of 

the collection efficiency on the constraint. 

Figure 4(e) gives the relationship between the collection efficiency and the wet 

growth boundary parameter. There is no definite trend observed between the collection 
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efficiency and the distribution parameters characterizing the growth regime boundary. 

Additionally, there is no trend observed  in the variability of the GB parameter 

distribution. However, greater negative values is observed  in the distribution. The 

collection effeciency is not expected to significantly impact the growth regime of the 

particle. 

4.2 Environmental factors 

4.2.1. Cloud liquid water content 

The dependence of the simulated retention ratio on the cloud liquid water content, 

ω, is shown in Figure 5(a). The mean of the simulated retention ratio varied between 0.11 

and 0.21. The overall distribution ranges from 1.1×10-6 to 0.96. There is no relationship 

observed between ω and the distribution parameters describing the modeled retention 

ratio. 

The direct effect of an increase in the cloud liquid water content is an increase in 

the rate of drop collection on the hail, as given by Equation 8. Following Equation 7, this 

should result in a decrease in the growth and evaporation effect, and a corresponding 

increase in retention. However, due to the counteracting effects of drop shedding, a 

definite trend is not observed. 

The dependence of the growth rate boundary on cloud liquid water content is 

given by Figure 6(a). There is a perceptible trend observed between the mean of the GB 

parameter and ω, with the GB increasing with increases in ω. However, there is no trend 

observed in the variability of GB or the number of valid model runs. 
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Figure 7(a) shows the relationship between the cloud liquid water content and the 

wet growth boundary parameter. The mean of the WB parameter is observed to increase 

slightly with increasing cloud liquid water. It is expected that parameter to increase with 

increasing cloud liquid water, since it is defined by comparing the calculated critical 

liquid water content of the hail to the actual cloud liquid water content. However, I do 

acknowledge that other parameters, such as the particle size, ambient temperature, and 

impact speed play important role in the calculated critical water content. The distribution 

of the GB parameter showed no obvious trend in variation, but was negatively skewed. It 

is observed that as the cloud liquid water increases, the number of valid model runs 

increases. This is expected, since as mention previously, the boundary is based on the 

comparison of the calculated critical liquid water content with the observed cloud liquid 

water. 

4.2.2. Drop radius 

The dependence of the simulated retention ratio on drop radius is shown by 

Figure 5(b). The mean of the simulated retention ratio is observed to vary from 0.12 to 

0.15. The overall range of variability of retention ratio was between 4.9×10-5 and 1.1. 

There was no significant trend observed in mean or variability of the simulated retention 

ratio with changes in drop radius.  

It is expected that as drop radius increases, it may lead to a decrease in the impact 

speed, due to the decrease in relative velocities of drop and hail particle, and a subsequent 

decrease in the drop collection term in Equation 8. The effect of a decrease in drop 
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collection depends on the relative rates of the other model parameters, E, S, and G, as 

discussed previously.  

The effect of drop radius on the growth rate boundary parameter is characterized 

by Figure 6(b). No trend is observed between the mean or other distribution parameter of 

the GB parameter and the drop radius. Based on the definition of the growth rate 

boundary, there is no indication of a direct relationship between the drop radius and the 

growth boundary parameter. Similarly, though there was some amount of variability in 

the GB parameter, no trend was observed in the variability. Additionally, no trend was 

observed between drop radius and the number of model runs meeting the model 

constraint. 

Figure 7(b) gives the relationship between the wet growth boundary parameter 

and the drop radius. There is no trend observed between the mean or other distribution 

parameter of the WB parameter and the drop radius. From Equation 13, the drop radius is 

expected to impact the critical liquid water content required for wet growth by affecting 

the rate of heat dissipation of the freezing drop. This may result in greater water mass on 

the hail and consequently a decrease in the critical water content required. However, no 

trend was observed indicating a relationship between drop radius and growth regime 

observed. Additionally, no trend was observed in the number of valid model runs. 
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Figure 6. The effect of individual environmental input variables on the growth rate boundary parameter, GB. The box 
plots characterize the ensemble distribution of simulated results with the abscissa held constant and other parameters 
varied randomly. The italicized value above each box plot provides the number of ensemble member runs that met 
model constraints. 

Figure 5. The effect of individual environmental input variables on the retention fraction. The box plots characterize 
the ensemble distribution of simulated results with the abscissa held constant and other parameters varied randomly. 
The italicized value above each box plot provides the number of ensemble member runs that met model constraints. 
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4.2.3. Pressure 

Figure 5(c) characterizes the effect of pressure on the modeled retention ratio. The 

mean simulated retention ratio varied from 0.11 to 0.15, whilst the overall distribution 

had a minimum value of 1.3×10-8 and a maximum value 0.88. There was no clear 

relationship observed between the mean retention and pressure, though the variability 

appears to decrease as pressure increases. The number of valid model runs increased 

gradually, as the pressure increased. 

As pressure decreases, an increase in the diffusivity of water vapor is expected, 

leading to a subsequent increase in solution evaporation as given by Equation 9, and a 
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Figure 7. The effect of individual environmental input variables on the wet growth boundary parameter, WB. The box 
plots characterize the ensemble distribution of simulated results with the abscissa held constant and other parameters 
varied randomly. The italicized value above each box plot provides the number of ensemble member runs that met 
model constraints. 
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decrease in retention. However, it, may also directly lead to a decrease in the shedding 

term and subsequently an increase in the modeled retention ratio. No one effect appears 

to dominate. 

The effect of pressure on the growth rate parameter is shown by Figure6(c). There 

is no trend observed between the distribution parameters describing the growth rate 

parameter and pressure. Greater variability, as well as, an increase in the number of valid 

model runs was observed. 

Figure 7(c) characterizes the effect of pressure on the wet growth parameter. 

There is no clear trend observed between the mean or other distribution parameter 

defining the wet growth boundary and pressure. The variability of the WB parameter 

appears negatively skewed, with extremely large negative values, but there appears to be 

no clear trend in the variability. However, the number of valid model runs showed an 

increase as pressure decreased. 

4.2.4. Air temperature 

The dependence of the simulated retention ratio on the temperature of air is 

shown in Figure 5(d). Whilst the mean retention ratio varied between 0.12 and 0.16, the 

overall range observed varied from 5.6×10-6 to 0.93. There was no apparent individual 

effect on the mean retention fraction due to variation in air temperature. An increase in 

the number of valid model runs with increasing temperature is observed,  

Some anticipated direct effects of temperature on the retention ratio include its 

effect on solution evaporation, by affecting both the diffusivity and the solution saturated 

vapor density. From Equation 9, it is expected that that these two terms would generate 
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opposite effects on solute evaporation. Hence, the relationship between retention and 

temperature is expected to be complex. 

Figure 6(d) shows the relationship between temperature and the growth rate 

boundary. There is no trend observed between the growth rate boundary distribution 

parameters and temperature. Based on the definition of the GB parameter, it is expected 

that, as temperature increases, it may increase the mass rate of solution evaporation, thus 

leading to a decrease in the growth boundary. Additionally, no trends in the variability of 

the distribution of the GB parameter with increases in temperature are observed. There is 

also no observed effect of temperature on the number of valid model runs. 

Figure 7(d) characterizes the relationship between the wet growth boundary 

parameter and temperature. There is a relationship observed between the growth 

boundary parameter and temperature, with the WB parameter increasing as temperature 

increases. From Equation 13, a complex relationship between temperature and the wet 

growth boundary parameter is expected. A definite increase in the number of valid model 

simulations is observed as temperature increased, as well as a decrease in the variability 

of the WB parameter distribution indicating a relationship between the model constraint 

and temperature. 
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4.3 Chemical factors 

4.3.1. Chemical effective Henry’s constant and pH 

Figure 8(a) characterizes the dependence of the simulated retention ratio on the 

effective Henry’s constant, H
*. The mean retention varied between 1.6×10-3 and 0.17, 

whilst the distribution parameters show retention varying between 1.4×10-4 and 0.79. A 

trend is observed between H* and the mean of the simulated retention ratio. An increase 

in retention is observed as the Henry’s constant increases. There is no observed trend in 

the variation of valid model simulations with changes in the effective Henry’s constant. 

Additionally, no trend in the variation of the retention ratio distribution is observed, as H* 

is increased. 

From Equation 7, it is expected that as the effective Henry’s constant increases, 

the evaporation term decreases, that is, the evaporate-to-liquid solution chemical mass 

rate ratio decreases, thus resulting in an increase in retention. However, it is also 

recognized that drop shedding, which also depends on the solute evaporation term, plays 

a large role in determining the retention fraction, where, as the evaporation term 

decreases, it leads to an increase in the shedding term, and a subsequent reduction in 

retention would result. As an increasing trend is observed, it is expected that the direct 

effect of evaporation dominate that of shedding. It must be noted that the effective 

Henry’s constant is significantly dependent on pH. The range used for effective Henry’s 

constant model simulations were derived based on the dependence of the effective 

Henry’s constant on pH as shown by Figure 8(c). As the figure shows, the effective 

Henry’s constant for acidic species (HNO3, SO2) increases by orders of magnitude as pH 
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increases from 4 to 7, whilst, the opposite effect is seen for basic species (NH3). Hence, 

since retention is affected by H*, it is also significantly affected by pH. 

Figure 9(a) shows the effect of the effective Henry’s constant on the growth 

boundary parameter. There is no trend observed by the distribution parameters 

characterizing the model constraints and H*. Additionally, no trend was observed in the 

variation of the growth boundary. There was no effect of H
* on the number of valid 

model runs observed.  

The effect of the effective Henry’s constant on the wet growth boundary 

parameter is shown by Figure 10(a). There is no trend observed in the mean of the wet 

growth boundary or any of the other distribution parameters describing the GB parameter 

with variations of H*. Large negative values were observed in the minimum distribution 

parameter but there was no definite trend in the variation observed. 
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Figure 9. The effect of individual chemical input variables on the growth rate boundary parameter, GB. The box plots 
characterize the ensemble distribution of simulated results with the abscissa held constant and other parameters varied 
randomly. The italicized value above each box plot provides the number of ensemble member runs that met model 
constraints. 

Figure 8. The effect of individual chemical input variables on the retention fraction. The box plots characterize the 
ensemble distribution of simulated results with the abscissa held constant and other parameters varied randomly. The 
italicized value above each box plot provides the number of ensemble member runs that met model constraints. 
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4.3.2. The effective ice-liquid distribution coefficient 

The effect of the effective ice-liquid distribution on the simulated retention ratio is 

shown in Figure 9(b). The mean simulated retention varied between 0.087 and 0.14, 

whilst the minimum and maximum distribution parameters varied between 5.2×10-6 and 

0.95. There is no trend observed between the mean or other distribution parameters 

characterizing the simulated retention ratio and the effective ice-liquid distribution 

coefficient. 
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Figure 10. The effect of individual chemical input variables on the wet growth boundary parameter, WB. The box 
plots characterize the ensemble distribution of simulated results with the abscissa held constant and other parameters 
varied randomly. The italicized value above each box plot provides the number of ensemble member runs that met 
model constraints. 
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 From Equation 7 it is expected that as ke increases, both the numerator and 

denominator will increase. However, due to the magnitude of ke, (~10-4
), it has little 

influence. 

The effect of ke on the model constraints is characterized by Figure 10(b).There 

was no trend observed by the distribution parameters characterizing the model constraints 

and ke. There was no trend observed between the number of valid model parameters 

observed and variation in effective ice-liquid distribution coefficient. 

The effect of the ice-liquid distribution coefficient on the wet growth boundary 

parameter is given by Figure 11(b). There was no trend observed in the mean of the WB 

parameter and ke. Similarly, no trend was observed in the variability in the distribution 

parameters, however, greater negative (minimum) values were observed. 

4.4 Summary of results 

Table 3 provides a summary of the parameters investigated and their observed 

effect on the retention ratio as given by the simulations conducted. The ice- liquid 

interface temperature, ∆T, hail liquid water fraction, and the chemical’s effective Henry’ 

constant, were found to individually affect retention, with retention increasing as each of 

the parameters were increased. The cloud liquid water content, ω, and collection 

efficiency, ε, showed possible inverse relationship with the retention ratio. All the other 

parameters do not alone appear to have a clear relationship with the retention ratio. 

Maximum values of retention observed were clearly not resulting from any particular 

model parameter, but rather from a combination of model parameters. Finally, retention 

ratios greater than 1.0 were observed for certain combinations of conditions. 
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Table 4. Dependence of simulated retention fraction on input variables 

Parameter 
Effect 
Description 

Range of 
Ensemble Means 

Overall Range 

Interface supercooling, ∆T 
Large, direct, 
monotonic 

9.0×10-8 – 0.30 1.1×10-8 – 0.99 

Mass fraction hail liquid water 
content, η 

Large, direct 7.5×10-3 – 0.27 6.0×10-8 – 0.99 

Chemical’s effective Henry’s 
constant, H*

 

Large, direct, 
levels off 

1.6×10-3 – 0.17 1.4×10-4 – 0.79 

Cloud liquid water content, ω 
Very small, 
non-monotonic 

0.11 – 0.21 1.1×10-6 – 0.96 

Hail shape factor, f 
Very small, 
non-monotonic 

0.091 – 0.19 1.3×10-6 – 0.95 

Hail diameter, Dh 
Very small, 
non-monotonic 

0.068 – 0.15 5.1×10-6 – 0.88 

Collection efficiency, ε 
Very small, 
non-monotonic 

0.10 – 0.17 2.8×10-6 – 0.97 

Effective ice-liquid distribution 
coefficient, ke 

None 0.087 – 0.14 6.2×10-6 – 0.95 

Air temperature, Ta None 0.12 – 0.16 5.6×10-6 – 0.93 

Atmospheric pressure, P None 0.11 – 0.15 1.3×10-8 – 0.88 

Drop radius, a none 0.12 – 0.15 4.9×10-5 – 0.92 
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5. Discussion and Limitations 

The model presented explores the partitioning of volatile chemical species during 

rime freezing under wet growth conditions. In an attempt to understand and predict the 

retention of atmospherically relevant gases, I investigated the environmental factors, and 

hail and chemical properties influencing this process. 

The ice-liquid interface supercooling was found to be the most important forcing 

variable for solute retention during wet growth of hail. Experimental studies have found a 

direct relationship between retention and supercooling under mixed wet and dry growth 

conditions [Lamb and Blumenstein, 1987; Iribarne et al, 1990; Snider et al., 1992]. In 

this study, retention was found to increase as supercooling increased (lower interface 

temperatures) The ice-liquid interface temperature determines the intrinsic growth rate of 

the hail ice, but more importantly, it is influenced by the generated heat of freezing 

released by impinging drops, and its dissipation. This model assumes that the hailstone is 

growing in a cloud containing super-cooled water droplets with temperature equal to that 

of air. Since both the freezing of deposited water droplets and the condensation of water 

molecules are always accompanied by the release of latent heat, it is evident that through 

the period of growth, the temperature of the hail will be greater than that of the 

surrounding atmosphere [List, 1963(a); 1963(b)]. At steady-state growth, the temperature 

of the interface is such that the rate of heat liberation due to the deposition and freezing 

of water equals the rate of heat dissipation from the ice-liquid interface. Therefore, 
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processes that facilitate the removal or transfer of the heat of freezing released, contribute 

to the increased growth of the hail. These include the movement of the hail particle 

through the air, which increases ventilation processes and the increase in the available 

surface area for heat transfer, as well as, lower ambient temperatures. For the growth rate 

of ice in supercooled water, we used the parameterizations of Bolling and Tiller [1961] 

for the intrinsic crystal growth rate. Since the growth rate of ice is heat dissipation 

limited, an energy balance on the growing hail would be a better representation of the hail 

growth process. 

Results from our model simulation find that retention of volatile solutes in hail 

was also significantly impacted by the mass fraction hail liquid water content of the 

growing hail particle. For conditions of high hail liquid mass fraction, high retention 

ratios were generally predicted by the model. Therefore, conditions contributing to higher 

hail liquid mass fraction may result in higher degrees of retention being observed. With 

higher liquid water content, more solute can be retained in the liquid water portion of the 

hail. Additionally, an overall hail particle can often contain layers formed during 

alternating wet and dry growth [Pruppacher and Klett, 1997, p. 73]. Since much of the 

solute is retained in the liquid during wet growth, it is expected that rate of formation of a 

surface ice layer during the transition to dry growth will be important to final retention. 

For dry growth conditions, a surface layer of ice was found to be important to trapping 

solute at higher concentration than would be expected from ice-air equilibrium solute 

partitioning [Stuart and Jacobson, 2003, 2004, 2006]. However, in this model, the hail 

liquid mass fraction is explicitly set. In reality, it should be dependent on conditions such 

as temperature, impingement rates, and shedding rates. Shedding has been determined by 
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a mass balance on the water mass on the hail. However, this parameter has proven to be 

very influential in the determination of the effect of many other model parameters on the 

fraction retained. Thus, to elucidate the direct and indirect effects of parameters such as 

the hail mass fraction, and hail diameter on retention, an explicit representation of this 

process is required in future work, where drop shedding is a function of drop 

impingement, hail motion, and properties of the water phase. 

Chemical Henry’s constant was found to be the third important determinant of 

retention fractions, with higher fractions observed for higher effective Henry’s constants 

(more soluble, less volatile chemicals). This is consistent with previous findings for dry 

growth conditions and experiment studies discussed therein [Stuart and Jacobson, 2003, 

2004]. However, under wet growth conditions, the chemical Henry’s constant (and pH) 

are likely less important than for dry growth conditions, with only a low mean value of 

retention (0.2) simulated for the highest considered effective Henry’s constant. Hence, 

under wet growth conditions, the chemical identity is not expected to be as important to 

determining partitioning as for dry growth. The range generated for use in the modified 

Monte Carlo simulations was based on observed variation of H* with changes in pH 

(over the range 4 – 7).  

There was no direct relationship observed between the effective ice-liquid 

distribution coefficient and the retention ratio. Distribution coefficients for chemical 

species in ice occur over the range 10-3 – 10-5 [Hobbs, 1974]. Subsequently, model 

simulations indicate the effects of the ice-liquid distribution coefficient may not be 

influential to solute retention. This may be considered advantageous since the effective 

ice-liquid distribution coefficient is poorly characterized. 
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Overall, the issue of co-dependence and indirect effects on retention through 

independently varied hail parameters decreases our confidence in findings for the 

environmental variables (cloud liquid water content, air temperature, atmospheric 

pressure, and drop radius). The environmental variables may affect the hail liquid water 

content and/or the interface supercooling temperature, which were found to significantly 

force retention. Hence, to better understand the impacts of environmental variables, it 

will be important to calculate these two hail variables within the model, rather than set 

them independently as input variables. This will require calculation of the shedding rate 

independent of the water mass balance and a heat balance calculations. For the other hail-

related parameters (collection efficiency, hail shape factor, and hail diameter) and for the 

effective ice-liquid chemical distribution coefficient, no clear effect was observed on 

retention. Hence, it is less important to represent their dependence on environmental 

conditions or consider their effects on retention. As collection efficiency, hail shape 

factor, and the ice-liquid distribution coefficient are poorly understood themselves and 

would be difficult to calculate from physical (non-empirical) principles, this result is 

helpful to future micro- and cloud-scale modeling. Also, the very small impact of hail 

diameter on retention is important to the applicability of this model. Since hail diameter 

has no effect on retention, the assumption of a constant value is appropriate. Other model 

variables have no discernable effect alone on the retention fraction. These include hail 

diameter and cloud liquid water content. However, since many of these parameters will 

determine the hail liquid mass fraction, and the effective ice-liquid distribution 

parameters, in reality the full influence of these parameters on the fraction retained is not 

captured by the model. 
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Finally, despite high predicted maximum values for all ensemble simulations (of 

0.9 - 1), the means for all ensembles were much lower, with the highest mean predicted at 

0.3. Hence, no single variable was found to be responsible for simulated maximum values 

of retention. Rather, combinations of favorable input conditions were needed to generate 

retention fractions greater than 0.3. Further investigation of variable combinations that 

lead to the high observed values is needed. 
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6. Conclusions and Implications 

This investigation developed and explored the process of wet growth riming, and 

its effect on the retention of trace atmospheric gases in growing hailstones. From cloud 

microphysics literature, expressions representing the important process occurring at the 

particle scale, such as solution evaporation and drop collection, were developed. Model 

parameters and calculated variables were checked and found to be consistent with 

previously established experimental and theoretical values. The model was checked for 

conservation of water and solute mass, and was consistent for all conditions satisfying 

model constraints. 

Results generated from model simulations indicate that the most important forcing 

variable for solute retention during wet growth is the ice-liquid interface supercooling. 

The modeled retention faction for wet growing hail was also found to be largely 

dependent on the mass fraction of liquid water present on the hail particle. The 

chemical’s Henry’s constant was found to have significant impacts on retention, largely 

influencing the mass of chemical in the evaporated solution. Results also indicate that the 

effective ice-liquid distribution coefficient does not significantly affect retention. 

Shedding was observed to be an important process affecting the retention ratio and needs 

to be explicitly represented in future work. Direct effects of hail and drop sizes on the 

retention ratio were not observed. 
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This body of work provides a valuable insight into the hail properties, chemical 

properties, and environmental conditions important to predicting the fate of volatile trace 

gases, of atmospheric interest, due to their interaction with the growing ice phase. It is 

hoped that the insights gained can be used to develop better parameterizations of 

retention for cloud modeling studies. 
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Appendix A. Retention Model Calculations  

Table A. Retention model calculations5 

Input Conditions Symbol Units Input  Input  Formula Range Reference 

Air temperature Tair C -2.00E+00 -2.00E+00 input parameter (15, -49) C 0 to -30C 

Tair K 2.71E+02 2.71E+02  
Pressure P mb 8.00E+02 8.00E+02 input parameter (265, 1013) mb 1013 mb to 200 mb 

P atm 7.90E-01 7.90E-01  

pH 4.00E+00 4.00E+00 Try 4 to 7 

H+ concentration 1.00E-04 1.00E-04  

 
Input trace chemical characteristics HNO3 HNO3 NH3 Table 6.2  

Trace chemical molecular weight MW g/mol 6.30E+01 1.70E+01 Table 6.A.1  
Henry's law coefficient (@298 K) H M/atm 2.10E+05 6.20E+01 Table 6.A.1 S&P, pg 341 

1st equilibrium constant at 298K K1 M 1.54E+01 1.70E-05 Table 6.3 S&P, Pg 391 

2nd equilibrium constant at 298K K2 M 0.00E+00 0.00E+00 Table 6.4 S&P, Pg 391 

Enthalpy of dissolution for Henry's Law 
Coefficient ∆H kcal/mol -8.17E+00 Table 6.4 

S&P, pg 342 

Enthaply of 1st Equilibrium DH_1eq kcal/mol -1.73E+01 8.65E+00 
=Ha(T1)exp[∆Ha/R(1/T1-

1/T2)] 
S&P, pg 345 

Enthalpy of 2nd Equilibriium DH_2eq kcal/mol 0.00E+00 0.00E+00 
=K298exp[-∆H/R(T-1-298-

1)] 
S&P, pg 345 

Henry's law coefficient @ freezing temp HA M/atm 2.10E+05 2.18E+02 " 
Eq 6.5 

1st equilibrium constant at eq. freezing 
temp. K1 M 2.19E+02 4.50E-06 input parameter 

temperature depenendence of K 
from Appendix 6 

2nd equilibrium constant at eq. freezing 
temp. K2 M 0.00E+00 0.00E+00 

" 

Water equilibrium constant @ 298K Kw M 1.00E-14 1.00E-14 
(1+Ka1/[H+] + 
Ka1Ka2/[H+]2)  

Enthalphy of water equilibrium DHw kcal/mol 1.34E+01 1.34E+01 
HA(1+Ka1/[H+] + 

Ka1Ka2/[H+]2)  

Water equilibrium constant @To Kw M 1.29E-15 1.29E-15 KH*RTo  

Dissociation factor 2.19E+06 3.50E+05  
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Appendix A. Continued 

Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 

Overall Henry's constant KH* M/atm 4.60E+11 7.61E+07 
as follows form S&P,  Eq 6.24, 

p346 

Dimensionless  Henry's Constant H* Cwtr/Cair 1.03E+13 1.71E+09 input parameter 104 - 1016  

 

 

Effective ice-liq distribution coefficient keff [-] 1.00E-03 1.00E-03 input parameter 10-3 - 10-5 
Hobbs, 1974, pp 604 

 

Input Drop characteristics input parameter  

Cloud liquid water content ω g/m3 3.00E+00 3.00E+00 (0.3, 5) g/cm3 
Borovikov et al., 1963, 

Pruppacher & Klett, 

g/cm3 3.00E-06 3.00E-06  

Drop radius (mean volume) a µm 5.00E+00 5.00E+00 (5, 100) mm Jacobson, 2005. Tab 13.1, p. 447 

a mm 5.00E-03 5.00E-03  
a cm 5.00E-04 5.00E-04  

Mean volume diameter Dd mm 1.00E+01 1.00E+01 input parameter  
Dd cm 1.00E-03 1.00E-03 input parameter  

Input Hail  Characteristics input parameter  
(Mass fraction) liquid water content of 
hail η - 5.00E-01 5.00E-01 (1e-4,0.5) 

Lesins and List, 1986 

Ice substrate temperature Tice C -2.00E+00 -2.00E+00 
Varies between 0 and -20 

Hail diameter Dh mm 2.00E+00 2.00E+00 1 to 50 mm Prupaccher & Klett, 1997 

mm 2.00E+03 2.00E+03 
input parameter:  for 

cylinder=pi; for sphere = 4 

 

cm 2.00E-01 2.00E-01 input paramter  

Hail radius r cm 1.00E-01 1.00E-01 input parameter  

Shape factor in equation F 4.00E+00 4.00E+00 (3.14,4) 
Macklin and Payne, 1967; 

Jayaranthe, 1993 

Collection efficiency E 1.00E+00 1.00E+00 1.00 Lin et al., 1983 
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Appendix A. Continued 

Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 
Super-cooled delta temp of ice-liq 
interface ∆Tint °C 2.00E+00 2.00E+00 vt drop, calculated below (0,Tair) 

Hobbs, 1974, pp 604 - 605, 
Pruppacher and Kett, 1998, 

vt hail, calculated below  

Ventilation Characteristics =vt hail - vt drop  

Air velocity over drop u_d cm/s 3.25E-01 3.25E-01 Jacobson Eq 20.9 pg. 664 

Air velocity over hiail u_a-s cm/s 6.91E+02 6.91E+02 Jacobson Eq 20.9 pg. 664 

Impact speed u_i cm/s 6.91E+02 6.91E+02 constant  

constant  

Constants constant  

Universal gas constant R Latm/mol K 8.21E-02 8.21E-02 constant (hPa=mb) Jac. Appendix Table A10, pg 712 

Universal gas constant R cal/mol/K 1.99E+00 1.99E+00 constant Jac. Appendix Table A10, pg 712 

Universal gas constant R 
g/cm2/s2/mol/

K 8.31E+07 8.31E+07 constant 
Jac. Appendix Table A10, pg 712 

Universal gas constant R cm3mb/mol/K 8.31E+04 8.31E+04 constant Jac. Appendix Table A10, pg 712 

Gas constant for water vapor Rv cm3mb/g/K 4.61E+03 4.61E+03 constant Jac. Appendix Table A10, pg 712 

Gas constant for dry air Rdry cm3mb/g/K 2.87E+03 2.87E+03 constant Jac. Appendix Table A10, pg 712 

Gas constant for dry air Rdry J/g/K 2.87E-01 2.87E-01 constant Jac. Appendix Table A10, pg 712 

Avogadros number A molec./mol 6.02E+23 6.02E+23 constant Jac. Appendix Table A10, pg 711 

Boltzmann constant k g cm2/s2/K 1.38E-16 1.38E-16 Jac. Appendix Table A10, pg 711 

Gravitational acceleration g m/s2 9.83E+00 9.83E+00 -- Jac. Appendix Table A10, pg 711 

g cm/s2 9.83E+02 9.83E+02 Jac. Appendix Table A10, pg 711 

Properties of H2O phase change Eq 2.55, f(Tinf)  

Equilibrium freezing temperature To C 0.00E+00 0.00E+00 Eq 2.56, f(Tinf)  

Equilibrium freezing temperature To K 2.73E+02 2.73E+02 Ls-Lm  

Latent heat of fusion at To Lm cal/g 7.97E+01 7.97E+01 Eq 2.62, f(Tair) Jac, p. 40 (2nd ed) 

Latent heat of ice sublimation at To Ls cal/g 6.77E+02 6.77E+02 " Jac, p. 40 (2nd ed) 

Latent heat of water evaporation at To Lv cal/g 5.98E+02 5.98E+02 n/V=P/RvTa  
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Appendix A. Continued 

Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 

Saturation vapor pressure over liquid at
air temperature Psat_a mbar 5.28E+00 5.28E+00 n/V = P/RvTw 

Jac, p 41 

Saturation vapor pressure over liquid at 
To Psat_w mbar 6.11E+00 6.11E+00 " 

" 

Saturation vapor density over liquid at 
Tair rair g/cm3 4.22E-06 4.22E-06 Eq 2.64 /Rv(Tinf+a) 

assume atmosphere is saturated 
w/ respect to water 

Saturation vapor density over liquid at 
To rsat,w g/cm3 4.85E-06 4.85E-06 Eq 14.19, f(Tair)  

Ice sat vapor density at Tair rsat,i g/cm3 4.14E-06 4.14E-06 
" 

Ice sat vapor density at To rsat,i g/cm3 4.85E-06 4.85E-06 
Jac, p 43 

Water-air surface tension sw/a dyn/cm 7.59E+01 7.59E+01 Eq 4.54, f(Tair) 
Jac, p 485 

Table 4.1, f(Tair)  

Properties of dry air Eq 2.5, f(Tair)  

Dynamic viscoscity of dry air hdrya g/cm/s 1.71E-04 1.71E-04 
Jac, p 102 

Heat capacity of dry air at constant 
pressure Cp,da cal/g/C 2.39E-01 2.39E-01 

Smith and Vanness, p 109 

Thermal conductivity of dry air ka cal/cm/s/C 5.65E-05 5.65E-05 calculated above Jac, p. 20 

εpv/(pa-pv)  

Properties of moist air Rdry(1+0.0608qv)  

Density of water vapor in air rair g/cm3 air 4.22E-06 4.22E-06 =R/Rm  

Mass mixing ratio of water vapor in air wv g/g 4.13E-03 4.13E-03 =Pa/RmT 
Eq 2.31 

Gas constant for moist air Rm cm3mb/g/K 2.88E+03 2.88E+03 Eq 2.37 

Molecular weight of moist air Ma g/mol 2.89E+01 2.89E+01 ha/pa 
Eq 2.26 

Density of moist air ra g/cm3 1.03E-03 1.03E-03 Eq 2.36 

Dynamic viscoscity of moist air ha g/cm/s 1.71E-04 1.71E-04 calculated above 

Kinematic viscoscity of moist air na cm2/s 1.67E-01 1.67E-01 rv/RvTa 
definition 

Mean free path of moist air la cm 7.47E-06 7.47E-06 Eq 8.6 
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Appendix A. Continued 

Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 
Heat capacity of moist air at constant 
pressure Cp,ma cal/g/C 2.40E-01 2.40E-01  

Partial pressure of water vapour in air Pair mbar 5.28E+00 5.28E+00 = 0.211(T/To)1.94(Po/P) Eq 2.27 

 

Properties of water vapor  

Diffusivity of water vapor in air Dv cm2/s 2.63E-01 2.63E-01 calculated above Eq. 13-3 

 

Properties of liquid water in supercooled drop = (n=0, n=6 ∑anT
n  

Supercooled drop temperature Tw_s C -2.00E+00 -2.00E+00 =(n=0, n=4  ∑anTn)  

Supercooled drop temperature Tw K 2.71E+02 2.71E+02  

Density of supercooledwater rw g/cm3 1.00E+00 1.00E+00 Eq 3-14 

Heat capacity of water cw cal/g/C 1.01E+00 1.01E+00 calculated above Eq 3-16 

calculated above  

Properties of hail liquid water (during freezing (at 0C)) = (n=0, n=6 ∑anT
n  

Water temp. Tw C 0.00E+00 0.00E+00 calculated above  

Water temp. Tw K 2.73E+02 2.73E+02  

Density of water rw g/cm3 1.00E+00 1.00E+00 P&K p. 87 

Saturation vapor density above liquid rsat,w g/cm3 4.85E-06 4.85E-06 calculated above  

 

Properties of ice substrate  

temperature of ice substrate Td C -2.00E+00 -2.00E+00  

temperature of ice substrate K 2.71E+02 2.71E+02 input paramter  

kv (DT)c  

Properties of Bulk Hail  

Density of Hail (Calculated) ρh g/cm3 9.57E-01 9.57E-01 0.1 (Heymsfield) to 1 g/cm3 

Intrinsic ice growth velocity cm/s 1.20E+00 1.20E+00  
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Appendix A. Continued 

Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 

Caculation of hail density - problematic, 
need to explore  

Y = -avimp/Ts u m/sC 1.73E+01 1.73E+01  

Bulk density of rimed ice g/cm3 1.05E+00 1.05E+00 Heymsfield parameterization P&K, p 661; 

Bulk density of rimed ice (for compare 
only) g/cm3 1.18E+00 1.18E+00 0.11(-B)^0.76 

P&K, p 661; Macklin and Payne, 
1962( p 41) 

Density of pure ice g/cm3 9.17E-01 9.17E-01 Eq 3-2, f(Tice) P&K, p79 

Denisty of hail (calculated) g/cm3 9.57E-01 9.57E-01 ((h/rwtr + (1 -h)/rice)^-1 weighted reciprical average 

 

Terminal Fall Velocitiy Calculations  
For Hail Partice  
Schmidt Number Sc - 6.32E-01 6.32E-01 υa/Dp eq 16.25 

Knudsen Number Kn - 7.47E-05 7.47E-05 λa/ri eq 15.23 

Bond Number NBo - 4.95E-01 4.95E-01 eq 20.8 

Physical property number NP - 5.75E+11 5.75E+11 
eq 20.8 

X for polynomial fit X - 1.28E+01 1.28E+01 eq 20.7 

Y for polynomial fit Y - 4.10E+00 4.10E+00 " 

Cunningham Slip -flow Correction 
factor G - 1.00E+00 1.00E+00 =1+Kn[A+Bexp(-C/Kn)] 

eq 15 .30 

Initial Termial Fall Speed (slip flow) Vest cm/s 1.22E+04 1.22E+04 eq 20.4 

Initial Reynolds Number (slip Flow) Reest - 1.47E+04 1.47E+04 eq 20.5 

Reynolds Numbers Regimes  
Reynods Number- Slip Flow - 1.47E+04 1.47E+04 eq 20.6 

Reynolds Nnmber Continiuum (sphere) - 7.47E+02 7.47E+02 eq 20.6 
Reynolds Number Continuum (non-
spherical) - 8.30E+02 8.30E+02 

eq 20.6 

 

Final Reynolds Number (Hail particle) Refinal - 8.30E+02 8.30E+02 eq 20.6 

Final Fall Speed ( Hail particle) Vfinal cm/s 6.91E+02 6.91E+02 eq 29.9 
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Appendix A. Continued 

Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 

 
For Drop  
Schmidt Number Sc - 6.32E-01 6.32E-01 eq 16.25 

Knudsen Number Kn - 1.49E-02 1.49E-02 eq 15.23 

Bond Number NBo - 1.29E-05 1.29E-05 
eq 20.8 

Physical property number NP - 5.51E+11 5.51E+11 
eq 20.8 

X for polynomial fit X - -3.08E+00 -3.08E+00 eq 20.7 

Y for polynomial fit Y - -6.46E+00 -6.46E+00 " 
Cunningham Slip -flow Correction 
factor G - 1.02E+00 1.02E+00 

eq 15 .30 

Initial Termial Fall Speed (slip flow) Vest cm/s 3.25E-01 3.25E-01 eq 20.4 

Initial Reynolds Number (slip Flow) Reest - 1.95E-03 1.95E-03 eq 20.5 

Reynolds Numbers Regimes  
Reynods Number- Slip Flow - 1.95E-03 1.95E-03 eq 20.6 

Reynolds Nnmber Continiuum (sphere) - 1.86E-03 1.86E-03 eq 20.6 
Reynolds Number Continuum (non-
spherical) - 2.74E-161 2.74E-161 

eq 20.6 

 

Final Reynolds Number (drop) Refinal - 1.95E-03 1.95E-03 eq 20.6 

Final Fall Speed (drop) Vfinal cm/s 3.25E-01 3.25E-01 eq 29.9 

 
Turbulent enhancement to heat and water vapor transfer from hail  

Gas Phase  

Prandtl number 
(molecular mom./heat transfer) Pr 7.25E-01 7.25E-01 ηaCp/ka 

Eq 16.32 

Schmidt number (water vapor) Scv 6.32E-01 6.32E-01 υa/Dv 
Eq 16.25 

Stokes Number w/o Cd Ns 2.25E+00 2.25E+00 rwUDd
2 / 9maDs Eq 4-11 

24/CDRe for drop 1.00E+00 1.00E+00 Eq 8.32 



 

79 

Appendix A. Continued 

Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 

Stokes Number w Cd Ns 2.25E+00 2.25E+00 =Ns 24/CDRe 
after P&K, p 573 and S&P, p. 

487,465 

Nusselt No - smooth cylinder (Avila) Nu_o 1.30E+01 1.30E+01 c RemPrn 
Incopera and Dewitt, 1996, 

p.345, Eqn 7.47 

Nusselt No - smooth cylinder(Incopera) 1.47E+01 1.47E+01 for smooth cylinder 
Incopera and Dewitt, 1996, 

p.345, Eqn 7.47 

Nusselt No (heat) - riming cylinder Nu 2.55E+01 2.55E+01 Eqn 9 

Sherwood No (water vapor) - smooth Sh_o_v 1.24E+01 1.24E+01 like Nu Eqn 5 

Sherwood No (water vapor)- riming Sh_v 2.43E+01 2.43E+01 Eqn 9 

Ventilation coeff (water vapor) f - 1.21E+01 1.21E+01 Sh/2  

 

Determination of Schumann-Ludlam limit for wet vs dry growth  
Efficiency of collection E 1.00E+00 1.00E+00 same as Lin et al., 1 

Shape factor in equation F 4.00E+00 4.00E+00 
For clyindr = pi ; For a sphere = 

4 

Critical liquid water content W_c g/cm3 2.09E-06 2.09E-06 heat balance, Ts=0 

Critical liquid water content W_c g/m3 2.09E+00 2.09E+00  

Growth regime Wet Wet =πr2vω* eff collection  
=4πrDF(Psat/RTh - Pa/RTa)  

Water mass rates  
Mass rate of drop accretion F g/s 6.51E-05 6.51E-05  
Mass Rate of water Evaporation E g/s 2.53E-06 2.53E-06  
Intrinsic ice growth g/s 1.44E-01 1.44E-01 =4πr2Kv(∆tint)crice  
Allowable ice growth g/s 3.13E-05 3.13E-05 =η/(1-η)*Gm  

Mass rate of ice crystal growth Gm g/s 3.13E-05 3.13E-05 =Gm + Lw 
Eq 6.17 (Stuart 2000, PhD 

Dissertation, p135) 

Mass rate of change of liquid water in 
hail Lw g/s 3.13E-05 3.13E-05 

assumes constant liquid water 
content in hail 

Mass Growth rate G g/s 6.26E-05 6.26E-05 
derived from initial model 

equation. 

Mass Growth check 6.26E-05 6.26E-05  

Mass Rate of Drop Shedding S g/s 0.00E+00 0.00E+00 F-E-G 
assumes constant liquid water 

content in hail 
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Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 

 
Calculation of Retention  
keff 1.00E-03 1.00E-03  
1-keff 9.99E-01 9.99E-01  
h 5.00E-01 5.00E-01  
1-h 5.00E-01 5.00E-01  
1/H* Cair/Cwtr 9.69E-14 5.86E-10  
rL g/cm3 1.00E+00 1.00E+00  
rVLsat g/cm3 4.85E-06 4.85E-06  
rL /  rlVsat 2.06E+05 2.06E+05  
n G/F 9.61E-01 9.61E-01  
m E/F 3.88E-02 3.88E-02  

 
numerator  
h + keff (1-h) 5.01E-01 5.01E-01  

 
denominator  
1-n-m  (shedding effect) -1.04E-16 -1.04E-16  
n(h+keff(1-h))  (growth effect) 4.81E-01 4.81E-01  
m(1/H*rL / rvl) (evaporation effect) 7.75E-10 4.69E-06  

 
total denominator 4.81E-01 4.81E-01  

 

Retention ratio Г - 1.04E+00 1.04E+00 =h+ke(1-h) / 1-[1-h-ke(1-)]n-[(1-1/H*(rL / rvl
sat)]m 

 

Mass Balance Testing  
Water Mass Balance Check g/s 0.00E+00 0.00E+00 Should be zero 

 
Solute mass balance  
Average mixing ratio of chemical in air pptv 5.00E+01 5.00E+01 Seinfeld & Pandis, pg 61 

Ca g/cm3 1.12E-13 3.02E-14 =pptv/1e12*P/RT*MW  
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Table A. Continued 

 
Input Conditions Symbol Units Input  Input  Formula Range Reference 

 
solute mass fraction_drop Xd g_chem/g_wtr 1.15E+00 5.15E-05 =Ca*H/rwtr  

solute mass fraction_hail Xh g_chem/g_wtr 1.20E+00 5.36E-05 =GXd  

solute mass fraction_shed liquid Xl g_chem/g_wtr 2.40E+00 1.07E-04 =Xh/(h+keff(1-h)  
solute mass fraction_evap sol'n Xe g_chem/g_wtr 4.79E-08 1.29E-08 =Xl*(1/H)*(rl/rvlsat)  

 

solute mass in via accretion Xd*F g_chem/s 7.52E-05 3.35E-09  

solute mass out via shedding Xl*S g_chem/s 0.00E+00 0.00E+00  

solute mass out via evaporation Xe*E g_chem/s 1.21E-13 3.27E-14  

solute mass accumulation in hail Xh*G g_chem/s 7.52E-05 3.35E-09  

solute mass balance check check g_chem/s 0.00E+00 0.00E+00 should be zero 

 

retention check 1.04E+00 1.04E+00  
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