
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



PHONETIC BIASES AND SYSTEMIC EFFECTS IN

THE ACTUATION OF SOUND CHANGE

Márton Sóskuthy
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AB STRACT

This thesis investigates the role of phonetic biases and systemic effects in the

actuation of sound change through computer simulations and experimental

methods. Phonetic biases are physiological and psychoacoustic constraints on

speech. One example is vowel undershoot: vowels sometimes fail to reach their

phonetic targets due to limitations on the speed of the articulators. Phonetic bi-

ases are often paralleled by phonological patterns. For instance, many languages

exhibit vowel reduction, a phonologised version of undershoot. To account for

these parallels, a number of researchers have proposed that phonetic biases are

the causal drive behind sound change. Although this proposal seems to solve

the problem of actuation, its success is only apparent: while it might be able

to explain situations where sound change occurs, it cannot easily explain the

lack of sound change, that is, stasis. Since stability in sound systems seems to

be the rule rather than the exception, the bias-based approach cannot provide

an adequate account of their diachronic development on its own.

The problem of bias-based accounts stems from their focus on changes affect-

ing individual sound categories, and their neglect of system-wide interactions.

The factors that affect speech production and perception define an adaptive

landscape. The development of sound systems follows the topology of this land-

scape. When only a single category is investigated, it is easy to take an overly

simplistic view of this landscape, and assume that phonetic biases are the only

relevant factor. It is natural that the predicted outcomes will be simple and de-

terministic if such an approach is adopted. However, when we look at an entire

sound system, other pressures such as contrast maintenance also become rele-

vant, and the range of possible outcomes is much more diverse. Phonetic biases

can still skew the adaptive landscape towards themselves, making phonetically

natural outcomes more likely. However, their effects will often be countered by

other pressures, which means that they will not be satisfied in every case.
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Sound systems move towards peaks in the adaptive landscape, or local

optima, where the different pressures balance each other out. As a result, the

system-based approach predicts stability. This stability can be broken by changes

in the pressures that define the adaptive landscape. For instance, an increase or

a decrease in functional load or a change in lexical distributions can create a

situation where the sound system is knocked out of an equilibrium and starts

evolving towards a new stable state. In essence, the adaptive landscape can

create a moving target for the sound system. This ensures that both stability

and change are observed. Therefore, this account makes realistic predictions

with respect to the actuation problem.

This argument is developed through a series of computer simulations that

follow changes in artificial sound systems. All of these simulations are based on

four theoretical assumptions: (i) speech production and perception are based

on probabilistic category representations; (ii) these category representations

are subject to continuous update throughout the lifetime of an individual; (iii)

speech production and perception are affected by low-level universal phonetic

biases; and (iv) category update is inhibited in cases where too many am-

biguous tokens are produced due to category overlap. Special care is taken to

anchor each of these assumptions in empirical results from a variety of fields

including phonetics, sociolinguistics and psycholinguistics. Moreover, in order

to show that the results described above follow directly from these theoretical

assumptions and not other aspects of these models, the thesis demonstrates

that exemplar and prototype models produce the same dynamics with respect

to the observations above, and that the number of speakers in the model also

does not have a significant influence on the outcomes.

Much of the thesis focuses on rather abstract properties of simulated systems,

which are difficult to test in a systematic way. The last chapter complements

this by presenting a concrete example, which shows how the simulations can

be linked to empirical data. Specifically, I look at the effect of lexical factors on

the strength of contextual effects in sound categories, using the example of the

voicing effect, whereby vowels are longer before voiced obstruents than they

are before voiceless ones. The simulations implemented in this chapter predict

a larger effect in cases where a given vowel category occurs equally frequently

in voiced and voiceless environments, and a smaller difference where one of the
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environments dominates the lexical distribution of the vowel. This prediction is

borne out in a small cross-linguistic production experiment looking at voicing-

conditioned vowel length patterns in French, Hungarian and English. Although

this is only one of many predictions that fall out of the theory of sound change

developed in this thesis, the success of this experiment is a strong indication

that the research questions it brings into focus are worth investigating.
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Now I shall tell of the city of Zenobia, which is wonderful in

this fashion: though set on dry terrain it stands on high pilings,

and the houses are of bamboo and zinc, with many platforms

and balconies placed on stilts at various heights, crossing one

another, linked by ladders and hanging sidewalks, surmounted

by cone-roofed belvederes, barrels storing water, weather vanes,

jutting pulleys, and fish poles, and cranes.

No one remembers what need or command or desire drove

Zenobia’s founders to give their city this form, and so there is

no telling whether it was satisfied by the city as we see it today,

which has perhaps grown through successive superimpositions

from the first, now undecipherable plan. But what is certain

is that if you ask an inhabitant of Zenobia to describe their

vision of a happy life, it is always a city like Zenobia that he

imagines. . .

Italo Calvino, Le città invisibili

(transl. by William Weaver)





INTRODUCTION 1

Consider the brief excerpt from Italo Calvino’s Le città invisibili that serves as

the epigraph for this thesis. Zenobia is mysterious, because the forces that have

shaped it over time are invisible. The city has taken a complex and peculiar

form, in many ways reminiscent of a port city, but there is no water, no ships,

nothing that would explain its present form. Zenobia has emerged organically

through ‘successive superimpositions’, perhaps best seen as chance responses to

the city’s transient, ever changing needs; there is no obvious master plan behind

it. However, despite all the changes, Zenobia has never ceased to function as a

city. Indeed, the inhabitants themselves find no reason to complain about its

peculiarities, and see it as an ideal place. That is to say, the Zenobia that has

emerged through chance exemplifies a state of orderly chaos – orderly to the

extent it needs to be, and chaotic to the extent it is allowed to be.

The development of the city of Zenobia is closely analogous to the way

the sound systems of natural languages evolve. Any sound system will present

the linguist with a treasure trove of peculiarities, which may appear just as

mysterious as Zenobia when taken out of their historical context. Take English

as an example. The vowel systems of essentially all varieties of English are

extremely complex, especially when compared to other languages. They contain

tense and lax vowels, which tend to differ both in quantity and in quality.

The tense vowels themselves usually divide into diphthongs (both rising and

falling) and monophthongs. Most varieties show at least four different vowel

heights, and complex phenomena that result in a number of different values

for frontness. On the other hand, English is quite unremarkable in terms of

consonantal place of articulation contrasts, with only three contrastive values

for oral stops (as opposed to, say, Malayalam with seven different values;

Mohanan & Mohanan 1984).
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We cannot hope to explain why the sound system of English looks the way it

does simply by looking at its present context. Although it is clear that synchronic

facts about human physiology and psychology constrain sound systems in many

ways, they do not fully determine them: there are many other languages spoken

by very similar humans that have completely different sound systems. The

sources of such differences lie not in the present context in which a sound

system is spoken, but in its history. This is similar to the case of Zenobia: certain

features of the city certainly follow from synchronic laws (e.g. the laws of

physics), but there are many other facts that we can only hope to understand

by looking at its development (e.g. the fact that it is essentially a port city

that stands on dry land). Therefore, looking at the present is not enough: we

need to enquire into the history of a sound system if we want to understand its

present shape. This provides us with a specific type of explanation as to why the

system appears as it does by revealing the path through which it has developed.

Granted, this is not the only way we can conceive of explanations, but in the

context of sound systems it has proven immensely useful.

But is there any way we can describe the historical paths that sound systems

walk in a meaningful way? After all, the changes that take place in sound systems

are much like the successive superimpositions that Zenobia has undergone:

seemingly random and haphazard. There is no master plan. We cannot assume

that the people who spoke English five hundred years ago were changing their

sound system in an effort to create the sound system that we see today. The

solution to this issue has been to take a step back, and try to get a sense of the

likelihood of different types of change instead of looking at isolated changes in

specific languages. Indeed, when investigated this way, sound systems reveal

a much more orderly picture.

One particularly successful historical approach to sound systems makes

predictions about the likelihood of changes by focusing on the ‘invisible forces’

behind them: phonetic biases (Ohala 1981, Blevins 2004). Phonetic biases

are those aspects of speech that follow directly from the limitations of the

physical apparatus that we use to produce and perceive speech sounds. For

instance, in some cases vowels may fail to reach their phonetic target due to

the sluggishness of the articulators, resulting in vowel centralisation. The main

contribution of the bias-based approach is the proposal that frequently observed
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changes tend to be exaggerated versions of phonetic biases. To give an example,

vowel centralisation can give rise to patterns of vowel reduction, which apply

much more categorically and have a more visible influence.

This, however, leads to a paradox. Since phonetic biases are seen as gen-

eral properties of the physical apparatus used for speech, they are necessarily

universal to the extent that humans can be said to use the same ‘hardware’

for production and perception. If this was not the case, the bias-based model

could not hope to make predictions about the likelihood of a given type of

change in unrelated languages. However, if the same phonetic pressures are

there in every language, how is it possible that some languages develop them

into robust patterns, while others do not? Even if the predicted likelihood of a

phonetically-based change is low, given enough time, every language should

eventually yield to the phonetic pressures behind it. This is a point that has been

made before in the literature (see e.g. Baker et al. 2011), and it will be explored

in much more detail in later chapters. For now, it will be sufficient to note that

the bias-based approach seems to ‘overpredict’ sound change. Specifically, it

predicts that phonetic biases should result in change in every language where

their conditions are met, even though this is clearly not what we observe in

natural languages.

The paradox described above is part of a larger issue often referred to as the

actuation problem. The following passage from Weinreich et al. (1968) provides

a clear summary of this problem:

[. . . ]What factors can account for the actuation of changes? Why

do changes in a structural feature take place in a particular language

at a given time, but not in other languages with the same feature or

in the same language at other times? This actuation problem can be

regarded as the very heart of the matter.

(Weinreich et al. 1968: p. 102)

One might, of course, argue that the actuation problem becomes irrelevant

when the focus is not on individual changes but on the relative probabilities of

different types of change. In other words, the actuation problem might seem

less worrying if we are not trying to predict exactly when and where a given

change will take place, but comparing different types of change in terms of their

likelihood. This, however, is not a valid argument: even if the goal is not to
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make predictions about specific changes, a theory that implies that the effects

of a given phonetic bias should be visible in every language cannot be right.

Note that there is also another way in which a model of sound change can fail

with respect to the actuation problem: by predicting that sound change will

not take place in cases where it does. A successful model of sound change will

avoid both of these issues by relying on ‘a mechanism of change that does not

underapply (failing to predict cases where change occurs) or overapply (failing

to predict cases where change does not occur)’ (Baker et al. 2011: p. 349).

The main goal of this thesis is to provide a solution to the actuation problem

in the context of bias-based models of sound change. Specifically, the task is

to find a mechanism of change that allows us to capture the cross-linguistic

tendencies predicted by bias-based models, but does not overapply or under-

apply. The solution presented in this thesis is necessarily limited in some ways.

Thus, while the mechanism proposed in the following chapters is shown to

work well for certain types of sound change, it is not possible to fully explore its

implications for all types of change. The main focus is on category-wide shifts

that do not lead either to mergers or splits. This is not to say that this account

makes no predictions with respect to mergers and splits. Indeed, Chapters 5 and

6 will review many such predictions. However, the arguments presented in the

thesis are most directly applicable to changes where the number of categories

remains constant.

The task undertaken here is not to predict when and where sound change

will take place: given the large number of factors that could influence the devel-

opment of a sound system, such a prediction may well be impossible. Instead,

the account presented in this thesis simply aims to increase the predictive power

of bias-based models. This will be achieved by showing how phonetic biases

interact with other – perhaps less obvious – pressures within a sound system

(e.g. the implicit tendency towards contrast maintenance, described in much

more detail in later chapters). One of the most important outcomes of the

investigation presented in the next chapters is that an exclusive focus on biases

is unlikely to yield a truly explanatory account of sound change.

The central argument of the thesis can be summarised as follows. The no-

tion of phonetic bias is not the main reason why bias-based mechanisms fail to

account for cases where no change occurs. The source of the overapplication
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problem lies in the way bias-based models are used to approach specific phe-

nomena. Typically, sound changes are viewed as alterations that affect a given

sound category, or perhaps a set of categories that share a common feature. For

instance, the phenomenon of [u]-fronting could be described as a change where

a back vowel shifts its realisation and becomes a front vowel [u]. By ignoring all

the other categories in the sound system, this approach treats vowel categories

as if they existed in a vacuum – and this is why it runs into problems when

trying to explain how they can resist change.

An analogy will make this argument clearer. Consider the effects of gravity

on physical bodies in a vacuum. If a feather and a hammer are dropped from

the same height in a vacuum, they will accelerate at exactly the same rate, and

hit the ground at the same time. Indeed, this experiment has been successfully

performed on the surface of the moon by astronaut David Scott during the

Apollo 15 mission (which is not to say that the validity of the principle behind

this experiment had not been confirmed before). Nevertheless, anyone who has

ever dropped a feather on Earth will know that this description of the movement

of physical bodies in a vacuum does not carry over to their movement in air. In

a vacuum, both of the objects fall at the same speed because gravity is the only

force affecting them, and there is nothing that would counter their momentum.

However, they fall at different speeds in air because of additional forces like

aerodynamic drag.

Similarly, an approach that investigates sound categories in a vacuum will

overestimate the likelihood of sound change by disregarding the forces that

could hinder it. This thesis places sound change in a more realistic context by

considering it in relation to sound systems rather than isolated categories. I will

show that sound systems are more resistant to changes because their evolution

is determined by a number of different factors, the most important of which are

phonetic biases and a tendency towards dispersion. These factors conspire to

create a complex adaptive landscape, which guides the evolution of the system.

One crucial feature of this landscape is the existence of multiple stable states: a

sound system may come to be arranged in a way that the different pressures

balance each other out, creating an equilibrium. Although a phonetic bias might

make certain stable states statistically more likely, sound systems will often

settle into equilibria that do not satisfy a given phonetic bias. Note that the fact
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that sound systems inevitably move towards such equilibria exposes this account

to criticism based on the underapplication aspect of the actuation problem: it

seems that this model predicts stability even where changes occur. As it will

be seen, this problem is only apparent. The pressures defining the adaptive

landscape (e.g. the functional loads of different oppositions) are themselves

subject to change, which can alter the stable states. When such alterations

occur, the sound system might be knocked out of an equilibrium and move

towards a new state.

In the rest of this thesis, this argument will be developed in a much more

rigorous way by deriving testable hypotheses from first principles. In order to

do this, I will use computer simulations. The evolution of sound systems under

multiple pressures is a complex phenomenon which cannot simply be investi-

gated through thought experiments. Even simple models looking at categories

in a vacuum might produce unexpected results, and surprising outcomes tend

to be the rule rather than the exception when the systems under investigation

are complex. For this reason, every effort is taken to ensure that the under-

lying theory is linked to the argumentation in a systematic fashion. This will

be achieved by exploring the predictions of the bias-based model through a

large set of computer simulations. The arguments about how the system-based

approach to sound change presents a solution to the actuation problem are

based directly on the predictions that emerge from the simulations.

Before presenting an outline of the thesis, I will briefly discuss one further

point related to it: its focus on predictions. In the discussion above, I noted

that the problem with bias-based approaches lies not in their main assumptions,

but in the way these assumptions are employed. Specifically, I argued that the

solution to the actuation problem does not require us to abandon the bias-

based approach altogether, only to shift our attention from sound categories

to sound systems. In a sense, then, the problem is not with the theory, but

with its apparent predictions. The main contribution of this thesis is to amend

and consolidate these predictions by using a systematic method in deriving

them, namely, computer simulations. This, however, creates a paradoxical

situation with respect to the audience that this thesis is aimed at. Since the

focus is on predictions, much of the discussion is fairly abstract and theoretical,

and will likely appeal to theorists who are concerned with similarly abstract
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issues. However, the researchers who will benefit the most from the framework

presented here are those who wish to apply it in the investigation of concrete

phenomena. The predictions discussed in the following chapters may help to

see old phenomena in a new light, and suggest lines of research that have not

been explored before. In an attempt to bring the results of this thesis closer

to researchers focusing on empirical problems, I have included a chapter that

shows how the insights gained through this framework can be put to use in

a cross-linguistic investigation (Chapter 6). Of course, this does not make the

rest of the discussion any less abstract, but it will be sufficient to show that this

approach holds significant promise in the realm of empirical research.

In what follows, I present an overview of the structure of this thesis. The

outline below will also clarify some of the points above by showing how the

thesis will approach them.

chapter 2 presents the problems that form the starting point for the main

argument of the thesis. The first half of the chapter defines two key concepts:

sound change and the actuation problem. The rest of the chapter discusses a

number of theoretical approaches that have important implications for the latter

of these. This includes two slightly different bias-based models, one of which

will serve as the basis of the simulations presented later in the thesis. There

are two further approaches that are considered: functionalist accounts that

attribute a special role to functional load in the actuation of sound change; and

sociolinguistic approaches that see the problem of actuation as inseparable from

the social aspects of language. It will be shown that none of these approaches

can provide a satisfactory answer to the actuation problem, mainly because

they focus on particular aspects of sound change at the expense of others. I

will argue that the system-based view of sound change holds more promise

with respect to the actuation problem, and briefly explain how computational

simulations can help us approach these issues in a more rigorous way.

chapter 3 elaborates on the main theoretical assumptions of the model of

speech production and perception that will serve as the basis of the simulations.

This is a crucial step in the main argument of the thesis: the underlying theory

has to be specified explicitly if we want to explore its predictions. The following
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theoretical assumptions are discussed: (i) speech production and perception

are based on probabilistic category representations; (ii) these category rep-

resentations are subject to continuous update throughout the lifetime of an

individual; (iii) speech production and perception are affected by low-level

universal phonetic biases; and (iv) category update is inhibited in cases where

too many ambiguous tokens are produced due to category overlap. Although

these assumptions are shared with a number of existing bias-based approaches,

special care is taken to provide independent motivation for each them. This is

done by reviewing results from a variety of fields including phonetics, sociolin-

guistics and psycholinguistics. The detailed arguments presented in this chapter

establish the generality of the results discussed in later chapters. While this

thesis can be viewed as a response to certain issues that arise specifically in the

context of bias-based models, the plausibility of its fundamental assumptions

implies that its findings are relevant to other approaches as well.

chapter 4 outlines the technical aspects of the model that serves as the

basis of the simulations, and clarifies a number of controversial points related

to them. The chapter also provides novel answers to two broader research

questions that are significant in their own right. First, I show that exemplar

and prototype-based models of speech production and perception produce the

same general dynamics with respect to sound change. Second, I present a

comparison of multi-agent simulations and simulations relying on an abstract

version of the production-perception feedback loop. The conclusion of this

comparison is that the dynamics of these models are essentially the same with

respect to sound change. These results provide additional support for previous

simulation-based investigations of sound change, and serve as the basis of a

number of decisions relating to the implementation of the simulations in the

following two chapters.

chapter 5 presents the main argument of the thesis based on a large-scale

simulation-based investigation. I introduce the notion of adaptive landscapes

in sound change, and use it to analyse the results of a large set of simulations.

The simulations themselves look at the evolution of artificial sound systems

under a number of different pressures, some of which are varied in order to
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get a better sense of their effects. The conclusion of this investigation is that

the bias-based model can make valid predictions about the actuation of sound

change when applied to sound systems. This chapter also helps to highlight

the role of non-phonetic factors in sound change, such as lexical distributions,

functional load, and individual differences in production and perception. In

fact, one of the most significant predictions that emerge from the simulations

is that shifts in such non-phonetic factors can play a major role in initiating

sound change. The results of the simulations are also linked to sociolinguistic

approaches to sound change. It is shown that the account developed in this

thesis can explain certain aspects of the distinction between changes from below

and changes from above.

chapter 6 illustrates how the predictions of the bias-based model can be

tested by investigating the relationship between lexical distributions and gradi-

ent contextual effects. The specific prediction examined in this chapter can best

be explained through a concrete phenomenon: the voicing effect. The voicing

effect is a nearly universally observed interaction between vowel length and

the voicing of a following obstruent, whereby vowels are longer before voiced

obstruents than they are before voiceless ones. The prediction of the model is

that the voicing effect will be stronger in cases where a given vowel category

occurs equally frequently in voiced and voiceless environments, and weaker

when one of the environments dominates the lexical distribution of the vowel.

In effect, this is a prediction about the likelihood of allophonic splits on the basis

of lexical information. The first half of the chapter shows how this prediction

can be derived from the bias-based model through a set of simulations and

mathematical calculations. The second half of the chapter then tests the predic-

tion on vowel length data from a small cross-linguistic production experiment

involving English, French and Hungarian. The data will be shown to provide

strong support for the prediction, which suggests that the implications of the

systemic approach to sound change are well worth exploring.

chapter 7 concludes the thesis with a brief summary of its main points.





BACKGROUND 2

As it has already been explained in the introduction, this thesis provides fresh

insight into the actuation problem, that is, the question of why sounds change in

certain situations and not in others. This chapter sets the scene for the discussion

in the rest of the thesis by clarifying some of the key concepts and giving an

overview of previous approaches to the actuation problem. The structure of the

chapter is as follows. Section 2.1 is a brief discussion of the notion of sound

change, which serves to delimit the range of phenomena investigated in the

thesis and to illustrate a number of different ways in which sound change can be

conceptualised. Then, Section 2.2 provides an explicit statement of the actuation

problem. Sections 2.3–2.5 outline three possible solutions to this problem: bias-

based, functionalist and sociolinguistic explanations. Each of these solutions is

examined in detail, but they are all found lacking in certain respects. Finally,

Section 2.6 provides a short summary of the system-based approach taken in

the rest of this thesis, suggesting that it can avoid the problems associated with

previous approaches by combining some of their key features.

2.1 DEFINING SOUND CHANGE

On an intuitive level, the notion of sound change seems so straightforward

that it might not be clear why it should be clarified at all. A sound change is

no more and no less than what its name suggests: a change affecting speech

sounds that takes place over a given period of time. However, the task of

defining sound change turns out much more complicated on closer inspection.

There are many questions that a rigorous definition has to answer. First of

all, where do speech sounds exist – in the mental grammars of individuals,

in the shared language of a speech community, or perhaps only in concrete
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utterances? There is no universally accepted answer to this question, and all

of these alternatives have been explored by researchers (see Hale 2003 for

an example of the first approach, Weinreich et al. 1968 for the second and

Croft 2000 for the third). Second, should we include in the definition smaller

gradient changes in the realisation of a given category, or should it be restricted

to changes that affect the phonemic structure of the language? Again, both

approaches have been taken in the past (cf. Bybee 2001 vs. Hoenigswald 1960,

respectively). If gradient changes are included as well, where do we draw the

boundary between sound change and small chance modifications? Finally, is

the locus of sound change necessarily a given sound category, or could sound

change be meaningfully discussed at higher and lower levels as well? Does it

make sense to talk about changes to an entire sound system?

While all of these questions have important theoretical ramifications, only

the last one will be dealt with in any detail. Contrarily to almost all other

concepts in this thesis, the use of the term sound change will be guided by

convenience rather than theoretical considerations. Thus, I will not take a

position on the issue of whether the changing sound categories belong to

mental grammars, communities of speakers or concrete utterances. In a sense,

all of these play an important role in the account developed in the following

chapters, but singling out one of them as fundamental would not help in moving

the discussion ahead. Similarly, the issue of gradience will not be central to

the argumentation of the thesis. In the present account, both phonemic and

non-phonemic alterations are regarded as sound change. As to the point beyond

which a gradient shift should be regarded as sound change, no such cut-off

will be defined. In a strict sense, even very small shifts should be considered

sound change as long as their effects are consistently observed. An informal

distinction will be made between sound changes guided by phonetic biases that

result in small shifts (such as vowel centralisation), and those that yield robust

patterns reflecting the same bias (such as vowel reduction). The term sound

change will be used mainly to refer to the latter of these in the context of the

actuation problem. However, it is important to note that this distinction will

not be afforded any theoretical status (this point is discussed in more detail

in Sections 3.4 and 6.1).

The one aspect of the definition that will be given more attention is the

locus of sound change. As I explained in the previous chapter, one of the main
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innovations of the line of enquiry pursued in this thesis is the shift in focus

from individual categories to sound systems. This does not affect the theoretical

underpinnings of the account. Categories still play an important role in the

model of speech production and perception that underlies the main argument

of the thesis. I also do not wish to claim that sound change cannot be analysed

at the level of sound categories. However, I believe that the exclusive focus on

individual categories that prevails in studies of sound change is not warranted.

Sound systems have much richer evolutionary dynamics than categories in a

vacuum, and this will prove crucial to the present account. Since there is no

a priori reason why sound change should only be investigated with respect

to individual categories, the present account is fully justified in its focus on

systemic changes. Note that the system-based view will only be fully explored in

Chapter 5, where the main argument of the thesis is developed. Chapters 3 and

4 will express their main points in the more familiar language of category-based

models.

It is worth noting that while mergers and splits are considered sound change

in the present account, the simulated changes in Chapter 5 find their closest

parallel in chain shifts. This is due to a simplification in the model adopted in

this thesis, namely that it cannot increase or decrease the number of categories

in a given system. This problem is partly dealt with in Chapter 6, which explores

the predictions of the model with respect to splits, but mergers will not be

investigated in any detail. Although the inability to simulate mergers is a serious

limitation, the model does make some predictions about the likelihood of

situations which might serve as the precursors to mergers. Section 5.3 uses the

example of [u]-fronting to explain how phonetic biases and lexical factors can

determine the probability that a large amount of overlap will arise between two

sound categories. In this sense, the account does capture some properties of

mergers, even if further modifications are needed to fully account for them.

2.2 THE ACTUATION PROBLEM

The previous chapter has already introduced the actuation problem briefly.

However, since this concept plays a central role in this thesis, a more careful

discussion will be necessary. One way to formulate the actuation problem is

to ask why a specific sound change takes place in a given language at a given
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time, but not in a different language or in the same language at a different time

(cf. Weinreich et al. 1968). It is unlikely that we will ever be able to answer

this question with any certainty, given the large number of factors that might

interact in the actuation of sound change. Therefore, if the actuation puzzle is

formulated this way, there is little hope that any model of sound change will

provide a satisfactory solution. There is, however, a somewhat more productive

way of approaching the same issue. The actuation problem can be viewed as a

question about the likelihood of a given change under specific circumstances.

We might not be able to predict exactly when and where a change will occur,

but it should still be possible to investigate the factors that facilitate or hinder it.

This significantly widens the range of models that can be said to be successful

with respect to the actuation problem. Given the focus on the likelihood of

change, such a model will satisfy the following set of criteria.

(2.1) A model of sound change can be said to contribute to the solution of

the actuation problem if

a. it does not overestimate the probability that change should occur;

b. it does not underestimate the probability that change should occur;

c. it contributes to our understanding of the factors that make sound

change more or less likely.

For the purposes of this thesis, ‘overestimating’ or ‘underestimating’ the proba-

bility of change simply means predicting that a given type of change will always

occur or that it will never occur. As it has already been noted, calculating the

precise probability of a sound change in a given language may not be possible.

However, models implying that cross-linguistically variable changes should

always (or never) take place are clearly wrong. Sections 2.3–2.5 demonstrate

how such ‘catastrophic’ instances of overprediction and underprediction can

emerge in models of sound change.

Approaching the actuation problem this way might be seen as a compromise.

If all the factors behind sound change are understood, we should be able to make

accurate predictions about when and where it will occur. While this is certainly

true, it is questionable whether any scientific endeavour can realistically aim to

uncover all the predictors relating to a given phenomenon. Moreover, even if
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the set of relevant factors is finite and possible to explore, simply including all of

them in a model does not guarantee a better understanding of the phenomenon.

This follows from the observation that correlation does not imply causation. We

can construct an excellent predictive model based on correlations among various

factors, but our understanding of the phenomenon will only be improved if

we can show how these factors facilitate or inhibit it. Thus, creating accurate

predictions cannot be our only aim in approaching the actuation problem. In

this sense, focusing on the likelihood of changes is not only a more realistic,

but also a scientifically more justifiable stance.

Note that the issues outlined above are closely related to the question of

stasis versus change in the history of a language. While the foregoing discussion

has focused mainly on change, stability is an equally important property of

sound systems (cf. Lass 1997: p. 303–304). It is not clear whether there can

be stages in the evolution of a language where all aspects of the sound system

remain stable. However, sound change tends to be relatively slow in the sense

that language states several generations apart are usually mutually intelligible

and easily recognised as representing the same language. Moreover, particular

features of a given sound system can resist changes for long periods of time.

For instance, the word initial [θ] in English words like three has remained

unchanged since Proto-Germanic times.1 This is especially interesting given that

many other Germanic languages have lost this sound in their history. While

it might be difficult to estimate how stable a given sound system is over a

certain period of time, it is clear that a successful theory of sound change will

be able to account both for stasis and change (see Milroy 1992: p. 10 for a

similar conclusion).

A further important requirement with respect to the solution to the actuation

problem is that it cannot explain sound change by attributing goal-directed

behaviour to speakers. For example, it has been argued that sound change can

be inhibited in cases where it would lead to the loss of a contrast. This is a

legitimate approach to the actuation problem inasmuch as it focuses on a factor

that can influence the likelihood of sound change. However, Lass (1997: p. 361)

1. There are many dialects of English where this statement would not hold (e.g. Cockney).
Note that it is only the phonetic makeup of this sound that has remained the same – the
appearance of [D] in word-initial position has likely changed its specific role in the system of
contrasts in English.
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argues that such explanations cannot be taken seriously if they assume that the

behaviour of speakers during sound change is guided by ‘intuitions about the

“efficiency” or “optimality”, etc. of their language for its communicational tasks’.

It is not clear where these intuitions would come from, and how they would be

put to use in the course of sound change. We cannot simply propose a causal

mechanism for sound change that is based on vague notions of optimality and

has no independent support. Therefore, in this thesis, extra care will be taken

to ground the proposed model of sound change in well-supported observations

about speech production and perception. Sound change will be seen to emerge

from simple properties of language use, not from goal-directed behaviour.

There are a number of different models that make relatively clear predictions

about the actuation of sound change, and can therefore be evaluated with

respect to the criteria in (2.1). Since these approaches will be the focus of

Sections 2.3–2.5, I only provide a brief outline here. Bias-based models have

already been introduced in the previous chapter. These models view sound

change as the exaggeration of low-level phonetic biases, and can successfully

account for a number of interesting cross-linguistic parallels. While they satisfy

the criteria in (2.1b) and (2.1c), they run into problems when it comes to (2.1a)

– that is, they seem to overpredict sound change. A second class of models – often

labelled functionalist – approach the notion of sound change from a slightly

different angle, by focusing on the interplay between ease of articulation and

communicative efficiency. The main advantage of such approaches is their ability

to account for cases where sound change seems to be inhibited to avoid mergers.

These models appear to do slightly better with respect to the overapplication

problem, given that they can deal with certain cases where sound change fails

to take place. However, we will see that funcionalist models cannot provide a

satisfactory solution to the actuation problem on their own, and that they run

into problems regarding the goal-directedness of sound change. The last type

of approach to be discussed in this chapter comprises sociolinguistic models

which view the actuation problem as a question about the social environment

in which the sound system is embedded. As we will see, such models satisfy the

criteria in (2.1a) and (2.1b), but they are somewhat problematic with respect

to (2.1c). This is because sociolinguistic models tend to focus mainly on the

social aspects of sound change, and they often make no predictions about the

effects of intra-linguistic factors on the likelihood of change.
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2.3 BIAS-BASED MODELS

In this section, two different bias-based models are discussed, one of which is

labelled the leap model (2.3.1) and the other one the nudge model (2.3.2).2 The

models are built around the same general idea, namely that gradient phonetic

biases can lead to more robust patterns through sound change. However, they

implement this idea in rather different ways. Despite their differences, both

of the models will be shown to run into trouble with regard to the actuation

problem, by overestimating the likelihood of sound change.

2.3.1 The leap model

The term ‘leap model’ will be used to refer to the account of sound change

originally proposed by Ohala (1981, 1989, 1993) and further developed by

Blevins (2004, 2006). The reason for choosing this name lies in the nature of

the mechanism of change adopted in these accounts: sound change is seen as

an abrupt shift – that is, a leap – from one phonetic target to a different one.

The description here focuses on Ohala’s original approach, mainly for reasons

of brevity. It should be noted that the arguments in this section carry over to

Blevins’ model relatively straightforwardly, given the general similarity between

her and Ohala’s approach.

The leap model is centred around one specific class of diachronic phenom-

ena: frequently observed sound changes. Ohala (1989) is quite explicit about

this point:

In my own work I impose a (for me) useful restriction: I study those

sound changes attested in similar form in diverse languages. This

helps to guarantee that they will owe something to universal and

timeless physical or physiological factors [. . .] and not to language-

or culture-specific factors.

(Ohala 1989: p. 174)

When looking at such changes, an important observation emerges: they nearly

always have parallels among patterns of synchronic variation (see Blevins 2004

2. The latter term is not my own invention: it was coined by Andrew Wedel in a conversation
about different models of sound change.
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for a more detailed discussion of this point). One of the examples provided by

Ohala (1989: p. 177) concerns aerodynamic constraints on voicing in stops. In

order to produce voicing, supraglottal pressure needs to be lower than subglottal

pressure – otherwise, the air will simply not flow through the glottis. During the

closure phase of voiced stops, supraglottal pressure increases continuously, since

the air cannot escape the oral cavity due to the obstruction. At a certain point,

this increase results in a situation where voicing simply cannot be sustained

any longer. The exact point at which this happens is affected by the place

of articulation of the stop: if the obstruction is in the front (as opposed to

the back) region of the oral cavity, more air can accumulate and therefore

voicing can be sustained for longer. These aerodynamic constraints are reflected

in the sound patterns of numerous languages. Thus, languages with a single

laryngeal category tend to have only voiceless obstruents, obstruent devoicing

is an extremely widespread phenomenon (especially in final position), and back

consonants are more likely to be devoiced than front ones. Although these

are all synchronic observations, there is no doubt that such patterns emerge

through sound change.

Of course, these parallels have been noted by other researchers as well. For

instance, Hyman (1975, 1976) presents an account in which low-level phonetic

forces are seen as the sources of robust language-specific patterns. He uses the

term ‘phonologisation’ to refer to this process. However, such accounts typically

leave the details and the causes of phonologisation unspecified. In this respect,

the leap model improves significantly on previous approaches: it describes an

explicit mechanism through which phonologisation can take place.

Ohala (1989) argues that the variation caused by phonetic biases does

not normally lead to change given that experienced listeners will have learnt

to filter it out. To give an example, when a velar stop is partially devoiced,

the listener will be able to restore the original voiced stop by relying on their

own phonetic experience. They will be aware that velar stops are often only

partly voiced, and will adjust their perceptual expectations accordingly. Ohala

(1989) suggests two ways in which this type of perceptual compensation may

fail, leading to sound change. First, the listener may not apply the appropriate

corrective rule to the token produced by the speaker, and assume that the

distorted variant is the intended target (this is referred to as ‘hypocorrection’
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by Ohala). In the case of partial devoicing in velar stops, this would mean that

the listener interprets the devoiced token as the speaker’s target. This leads to

a mini-sound change. There is also another way for perceptual compensation

to fail: it may overapply, mistakenly undoing phonetic effects that correspond

to the speaker’s intentions. This mechanism is labelled ‘hypercorrection’, and

it provides a straightforward explanation for many cases of dissimilation. For

instance, in Shona, [w] changed to [G] in contexts where it was preceded by

another labial sound: [-bwa] > [-bGa] ‘dog’, [kumwa] > [kumGa] ‘to drink’

(Ohala 1989: p. 188). Ohala suggests that this is due to hypercorrection: Shona

listeners misinterpreted the labiality of the original glide as a coarticulatory

effect due to the preceding labial consonant, and erroneously factored it out.

A few remarks are in order about the general properties of this model. First

of all, it treats sound change as a categorical process: while the synchronic

variation that gives rise to different phonetic variants may be gradient, the

results of misperception are necessarily discrete. That is to say, in Ohala’s

account a phonetically devoiced stop can only be interpreted as voiced or

voiceless, but not as partially devoiced. Similarly, Shona listeners will either

correctly perceive post-labial tokens of [w] or misinterpret them as [G], but

they will not adopt an intermediate form. The changes proposed by Ohala

necessarily proceed in categorical leaps rather than smaller gradient steps.

Another important property of this approach is its avoidance of goal-oriented

explanations. Hypercorrection and hypocorrection are both innocent mistakes

on the part of the listener, who seems to be the victim of sound change, not the

perpetrator. Since perceptual compensation is a well-documented phenomenon

(cf. Section 6.1), and it is plausible to assume that it might fail under certain

circumstances, Ohala’s approach can account for sound change without invoking

ad hoc explanations based on optimality.

The leap model is certainly impressive in its ability to capture the phonetic

grounding of sound change, and it might well be indispensable in accounting

for phenomena like dissimilation and metathesis (see Blevins & Garrett 2004 for

a more detailed discussion of the latter). Nevertheless, the model has a number

of serious flaws as well. First of all, it is not clear to what extent hypocorrection

and hypercorrection can lead to observable instances of sound change. Let us

first discuss hypocorrection. Consider one of the examples provided by Ohala



20 Background

(1989: p. 185). A sound like [t] is likely to undergo some degree of affrication

when followed by a high vowel such as [i], yielding a realisation that could be

transcribed as [tS]. If the listener fails to undo the effect of the context, they

might erroneously assume that the speaker’s original target was [tS]. According

to Ohala, this misinterpretation constitutes a mini-sound change in itself. The

question is whether this mini-sound change has any observable effects. Ohala

seems to suggest that the change is in the underlying representation of the

sound, although he is careful not to use this term. However, not much seems

to change in terms of surface realisations: the speaker originally pronounced

the sound as [tS], and the listener continues to use the same realisation, even

if their underlying representations are now different. Thus, it appears that

hypocorrection may not have any observable effects, which makes it somewhat

questionable as a mechanism of sound change.

We can now turn to hypercorrection. For instance, imagine that the speaker

produces an affricate [tS] followed by an [i], where the affricate is the intended

target. The listener may attribute the affrication to the following vowel, and

reconstruct the target as [t]. Again, this will result in a change in target pro-

ductions, but it is not clear how it will affect surface realisations. Ohala 1989

suggests that the affrication of coronal stops before high vowels is the result

of a universal phonetic bias. Therefore, the listener’s future productions of

the reconstructed consonant should still show affrication in this position. As

a result, hypercorrection may be similar to hypocorrection in that it may not

have observable effects.3

The arguments presented above clearly go against Ohala’s (1989) own

account, who seems to suggest that such reanalyses do have observable effects.

However, Ohala does not seem eager to spell out how exactly such effects arise.

The only relevant mention of changes in phonetic realisation is in a passage

about the emergence of contrastive vowel nasalisation: ‘[i]t is undoubtedly the

case that when the vowel nasalization was taken to be distinctive by the listener

3. Note that the effects of hypercorrection would likely be visible if speakers could differ
in whether they show affrication or not. A listener who does not actively affricate consonants
in their own speech may still be aware that other speakers do, and erroneously interpret the
sequence [tSi] as [ti]. In this case, their own future productions would differ from the speaker’s
original production. However, Ohala (1989) is quite explicit about the universality of such
phonetic tendencies, which speaks strongly against such a scenario.
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it would have an exaggerated quality in his speech vis-à-vis the speech of the

original speaker’ (Ohala 1989: p. 187). The idea of such a phonetic exaggeration

might seem appealing on an intuitive level, but Ohala does not explain why

it would take place. In fact, this proposal seems to go against the idea of

innocent misinterpretation as the source of change. If speakers are aware of fine

details of phonetic realisation, how can they reinterpret a contextual variant

as a target production when the latter are ‘undoubtedly’ more exaggerated

in their realisation than contextual variants? Should they not perceive such

differences in production and use them to distinguish between phonetic targets

and contextual variants? Paradoxically, then, the leap model predicts either

that no observable change will occur, or that hypoarticulation/hyperarticulation

should be blocked due to the listener’s awareness of differences between target

productions and phonetic effects. Even if this criticism is a little too harsh,

the leap model would certainly benefit from a more explicit statement of how

reanalysis leads to changes in surface phonetic realisations.

Another weakness of the model concerns its inability to account for the

spread of a change in a speech community. It could be argued that this is not

a problem: the phonetic initiation of sound change constitutes a legitimate

research area on its own, and does not necessarily have to be studied in con-

junction with the social aspects of sound change. In fact, the leap model could

be viewed as the source of the ‘inherent variation in speech’ that can ‘[assume]
direction and [take] on the character of orderly differentiation’ within the

speech community, leading to community-wide changes (Weinreich et al. 1968:

p. 187). However, on closer inspection, the mechanism of change proposed

by Ohala turns out to be incompatible with such accounts. The reason for this

incompatibility should be obvious if hypercorrection and hypocorrection have

no observable effects (cf. the discussion above): even the most observant speech

community will have trouble picking up on invisible patterns of variation. Yet

this is exactly what Blevins (2004) seems to propose: she claims that certain

changes might ‘slip into a child’s grammar almost unnoticed, providing the seeds

for one source of phonetically based sound change within the wider speech

community’ (Blevins 2004: p. 35; note that Blevins refers to the child’s grammar

since in her account the transmission errors leading to change take place during

language acquisition). I believe it is relatively uncontroversial that children aim
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to approximate the language varieties spoken in their environment as closely

as possible during language acquisition. Therefore, it is highly implausible to

suggest that a child will simply ignore a change that the speech community

can easily perceive and propagate.

Since unobservable changes cannot be propagated, let us assume that

hypocorrection and hypercorrection can lead to exaggerated variants as sug-

gested by Ohala (1989). The question, then, is whether such variants can make

their way into the speech community at large. In principle, this should be pos-

sible. Note, however, that both Ohala and Blevins suggest that the reanalyses

leading to sound change are most likely to occur in ‘inexperienced listener[s]’
(Ohala 1989: p. 186), that is, children acquiring language. If this is the case, it is

very unlikely that a misperception-driven change will take off in the community,

given that young children have virtually no social status, which is essential

for spreading an innovative pronunciation (see e.g. Labov 2002). Therefore,

the leap model cannot easily account for the propagation of sound change in

a speech community.

As it has been suggested earlier in this chapter, the leap model also makes

implausible predictions with respect to the actuation problem. Ohala (1989)

argues that the leap model is about predicting the likelihood of change, but

not when and where a given change will occur – and in this respect it is

highly compatible with the approach to the actuation problem outlined in the

previous section. However, a closer look at the predictions of the model reveals

that it does not satisfy all the criteria listed in (2.1): it greatly exaggerates

the likelihood of change, and therefore it seems unable to account for stasis.

The arguments presented below are based mainly on Baker et al. (2011).

The inevitability of sound change in the leap model follows from the simple

mathematical observation that even low-probability events become highly likely

given a sufficiently long period of time or a sufficiently large sample. Thus, it

might be the case that the probability that hypocorrection or hypercorrection

will take place in a single individual during language acquisition is extremely

low – say, p = 0.01 (i.e. one per cent). But the fact that misapprehension-based

sound change is unlikely to take place in a single individual does not mean that

it will be entirely absent from the speech community. Consider a community

with 10,000 children: in this case, there is a nearly one hundred per cent chance
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that there will be at least 50 children for whom a mini-sound change takes place

(assuming that the probability of change within one child is p = 0.01; this can

be calculated exactly using the binomial distribution, as Baker et al. 2011 do).

The probability of change will be even higher if we look at several generations

of speakers. In fact, no matter how small the probability of a mini-sound change

within a single speaker, the overall probability that at least some speakers will

exhibit such a change in the community always converges to one hundred per

cent as the number of generations or the size of the community is increased

(cf. Baker et al. 2011: pp. 361–364).

It is not clear whether 50 out of 10,000 children are sufficient to initiate a

sound change. However, proponents of the leap model appear to suggest that

these sporadic misperceptions are all it takes for sound change to take off. None

of the works cited above mention a critical threshold for a mini-sound change

to start spreading within a speech community, and these two kinds of change

are often implicitly equated in the actual analyses. As long as the relationship

between mini-sound changes and community-wide changes is viewed in such

simplistic terms, Baker et al.’s (2011) criticism remains valid. If the primary

mechanism behind sound change is misapprehension, it is not at all clear how

any language could resist the effects of a given phonetic bias.

To sum up, the leap model provides an interesting way of capturing parallels

between phonetic biases and the evolution of sound systems, but it appears

unable to account for certain finer details of sound change. In the discussion

above, three particularly problematic areas were identified. First, it is not clear

how hypocorrection and hypercorrection result in changes that are observable in

the surface realisation of a given sound category. Second, the leap model makes

the propagation of sound change appear somewhat of a mystery, partly because

some of the changes it describes have no observable effects, and partly because

the proposed agents of sound change – that is, children – are very unlikely to

have an effect on the speech patterns of a community. Finally, the leap model

makes problematic predictions with respect to the actuation of sound change: it

overestimates the likelihood of change, which makes it unable to account for

stasis, thereby violating the criterion in (2.1a).
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Figure 2.1: A unique object created by artist Daniel Bejar, which consists of a
series of keys obtained through iterative copying ( image by courtesy of the artist).

2.3.2 The nudge model

In this section, I discuss another bias-based approach to sound change, some-

times referred to as ‘usage-based’ modelling. The account presented here is

based mostly on Pierrehumbert (2001, 2002) and Wedel (2006), but there is

a wide range of other works that rely on very similar assumptions, including

Bybee (2001, 2007), Hay & Sudbury (2005), Phillips (2006) and Silverman

(2006, 2012), among others. In this thesis, I relabel this approach as the nudge

model, as it views the effects of phonetic biases on sound categories as small

gradient nudges in a given direction in phonetic space. Since this model will

serve as the basis of much of the discussion in the following chapters, only a

brief outline is given here. Chapters 3 and 4 present the theoretical assumptions

and technical aspects of the nudge model in far greater detail.

Pierrehumbert (2001) argues that many instances of phonetically driven

sound change can be explained if we assume that the effects of weak pho-

netic biases can accumulate in category representations through the so-called

production-perception feedback loop. The following analogy will make this

point clearer. Consider the picture in Figure 2.1, which shows a unique object

created by artist Daniel Bejar.4 This object consists of a series of keys that are

glued together. What is important for our present purposes is the way the keys

were created. The process was initiated by taking the key on the right-hand side,

and making a copy of it – this is the key that can be seen immediately after the

4. Also available on the artist’s website: http://www.danielbejar.com.
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original one. This copy was then copied again, giving the third key. The whole

series was obtained by iterating this procedure over and over again. Importantly,

each copy is nearly identical to the key it is based on, but it is not entirely

the same. The machine that performs the copying introduces small changes at

each step. These changes are relatively consistent: the original outline of the

key seems to be shifted leftward, and some details are lost. By repeating this

procedure many times, the small bias inherent in the machine is amplified into

a robust change. Indeed, it is very unlikely that the key at the far end would

fit into the lock that the original key was intended for.

The production-perception loop in Pierrehumbert’s (2001) account is based

on a very similar mechanism. When an example of a sound category is produced,

it is influenced by phonetic biases, which can cause small but consistent distor-

tions. For instance, any production of a given vowel has a chance of becoming

slightly centralised through vowel undershoot. If this production is then fed

back into the category representation from which it originated, the category

will be nudged towards the centre of phonetic space. Of course, this nudge

will be nearly imperceptible – a single deviant token is unlikely to produce a

large restructuring of category representations. If, however, the phonetic bias

applies consistently, the effects of these nudges can accumulate in category

representations, resulting in robust patterns of change. The mechanism that

gives rise to such changes is essentially identical to the one that led to the

large-scale changes in Bejar’s keys.

This model can answer some of the criticism levelled against the leap

model in the previous section. First, I argued that it is not clear how the leap

model generates observable changes, given that it seems to apply at the level of

underlying representations. This is not an issue for the nudge model: in this case,

it is the phonetic realisation of the category that changes, and not the underlying

label associated with it. Therefore, the shifts emerging through the production-

perception feedback loop are always visible. The second argument I made in the

previous section concerns the propagation of innovative variants in the speech

community. Since the nudge model produces changes in the surface realisations

of sound categories, it avoids the ‘invisible changes’ problem (namely that shifts

which are only apparent at the level of underlying representations cannot be

propagated). Moreover, the feedback mechanism underlying the nudge model
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applies both in children and adults, which means that this approach does

not require the implausible assumption that children are the leaders of sound

change (see Section 3.3 for an overview of the evidence that adult speakers

can change their phonetic representations).5

However, the nudge model does not perform any better than the leap model

when it comes to the actuation problem: it also appears to overpredict sound

change. The reasons for this are fairly straightforward: since the category is

consistently nudged in a given direction by the phonetic bias, it is difficult to

see what could inhibit sound change (see Baker 2008 for a similar point). The

bias-driven simulation in Pierrehumbert (2001) is an excellent illustration of

this point: the simulated category is inexorably nudged forward by the phonetic

bias, and it does not seem clear if its progress could be hindered in any way.

This is because the model in Pierrehumbert (2001) includes no mechanism that

would act against sound change. Thus, this simple version of the nudge model

appears to predict that sound change will take place in every case where a

sound category is affected by a phonetic bias. In this sense, it appears to do even

worse than the leap model, where sound change could at least be delayed by

perceptual compensation. In conclusion, although the nudge model avoids some

of the issues that arise in connection with the leap model, it does not present an

improvement in terms of the actuation problem, as it is also in violation of the

criterion in (2.1a). It should be noted that the deterministic nature of the nudge

model will be illustrated in much more detail in Chapter 4, where the claims

above will be shown to be borne out by the results of computer simulations.

2.4 FUNCTIONALIST MODELS

Functionalist models of sound change are based on the assumption that some

sound systems may function better than others with respect to certain criteria.

Although the set of such criteria does not need to be predetermined, approaches

labelled as functionalist almost always focus on the communicative efficiency

5. The version of the nudge model adopted in this thesis may be insufficient to account for
changes that proceed in large shifts rather than small continuous steps. For instance, changes
like [kw] > [p] are ‘articulatorily discontinuous’ (Hansson 2008), which means that gradual
change is unlikely. Ultimately, a fully explanatory account of sound change may have to include
elements both from the leap model and the nudge model. However, this possibility is not
explored in this thesis.
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of sound systems. The term communicative efficiency is usually used more or

less synonymously with discriminability: a sound system is efficient if most

pairs of lexical items are sufficiently distinct from each other. A dysfunctional

system will exhibit unusually high rates of homonymy, and will therefore be

suboptimal from the point of view of communication. The main idea in func-

tionalist approaches is that sound change may be inhibited in cases where it

would result in dysfunctional sound systems (see e.g. Blevins & Wedel 2009).

Importantly, this seems to provide a solution to the overapplication problem

that plagues bias-based models by suggesting ways in which the likelihood of a

change may be reduced. While there is a large number of models that share this

insight, the exact way in which it is implemented differs substantially across

specific approaches. In what follows, I provide a critical discussion of some

of the different functionalist models exemplified in the literature, with special

emphasis on the actuation problem.

Before, however, we turn to the models themselves, it will be useful to

examine a concrete example of functionalist argumentation. Specifically, I

discuss the case of the inhibited Banoni vowel length merger, based on Blevins

& Wedel (2009: pp. 151–154). Banoni (a Western Oceanic language) has a

traditional vowel length contrast, but this contrast is disappearing as a result of

an ongoing merger between the short and the long series of vowels. According to

Blevins & Wedel (2009), this merger applies more or less indiscriminately within

the language, with one important exception: it seems to have spared certain

sets of forms where it would lead to the loss of morphological contrasts. Thus,

bare nouns and first singular possessed noun forms are distinguished solely by

the length of the final vowel. Some examples are [tama] ‘father’ versus [tamaa]
‘my father’ and [kasi] ‘brother’ versus [kasii] ‘my brother’. A similar contrast is

seen between the first and the third person singular transitive verbal suffixes

([-aa] and [-a], respectively). Crucially, the vowel length merger is inhibited

precisely in these two sets of forms, leaving the length contrast unaffected in

a small subset of the language (see Blevins & Wedel 2009 for further details,

especially with respect to the transitive forms). This is a clear example of a

phonetically-driven change that appears to be set back by functional factors.

A number of authors present functionalist analyses where the inhibition of

sound change is portrayed as an act of ‘self-defense’ by the sound system (see

e.g. Martinet 1952, Campbell 1998). Croft (2000) has criticised such approaches
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for reifying languages, arguing that ‘languages don’t change; people change

language through their actions’ (Croft 2000: p. 4). This, of course, is a trivial

point: sound systems and languages cannot exhibit agency in the same way as

speakers do. Precisely because of the triviality of this argument, it is hard to

believe that otherwise careful scholars like Martinet and Campbell would make

such a mistake. I believe that the real problem lies in the fact that they remain

neutral with respect to the low-level mechanisms that lead to the inhibition of

sound change. They are content to observe that the effects of inhibited changes

are often beneficial with respect to the communicative function of language, but

they do not make any assumptions about how this inhibition is implemented

at the level of individuals (although Martinet 1952 certainly acknowledges the

role of individuals in contrast maintenance; cf. Section 3.5). In this sense, their

approach is not explanatory – it observes a parallel between communicative

efficiency and certain types of change, but does not elucidate the causal link

between these two domains.

The issue of linking communicative efficiency and contrast maintenance

through individual-level behaviour has been addressed in a number of different

ways in the literature. One influential approach is based on the idea that speak-

ers have an active role in avoiding dysfunctional language states. For instance,

Flemming (2001, 2004) and Padgett (2003) propose that optimality theoretic

grammars can contain explicit statements to the effect that contrasts should

be maintained (*Merge; Padgett 2003) and that the distance between two

categories should not fall below a certain threshold (the MinDist constraint

family; Flemming 2001, 2004). Importantly, such constraints can interact with

markedness constraints that penalise articulatory effort (not unlike the pho-

netic biases proposed in the present account), thereby giving rise to a rich and

in many ways realistic set of predictions. Since constraints like MinDist and

*Merge are supposedly universal, it is not surprising that contrast maintenance

effects should be observed in a wide range of languages. Furthermore, optimal-

ity theoretic constraints are violable, which means that mergers can and should

take place in certain cases under the effects of markedness constraints. There-

fore, it appears that this type of model does not overpredict or underpredict

phonetically-driven sound changes.

The main problem with such accounts lies in their goal-oriented nature. If

constraints like *Merge and MinDist are to be included in individuals’ gram-
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mars, we have to assume that speakers can ‘groom’ their sound systems through

their application. Moreover, speakers have to be able to calculate various mea-

sures of communicative efficiency such as the distance between two categories

or whether a merger has taken place or not. This clearly goes against the

principle established in Section 2.2, according to which accounts of sound

change cannot be based on vague notions of optimality without independent

support (see also Lass 1997). Constraints such as *Merge and MinDist are

arbitrary. Although they are successful in the sense that they can account for

cross-linguistic differences in sound inventories, neither Flemming (2001, 2004)

nor Padgett (2003) present any evidence that speakers actively employ such

constraints in their production or perception. It appears that these authors see

such constraints as part of universal grammar, and therefore do not require any

evidence for them at all apart from the data that they are meant to explain. In

the present case, this is almost like saying that sound systems tend to maintain

contrasts because it is in the nature of speakers to do so, which – as far as I

can see – is no explanation at all.

It should also be noted that while accounts relying on *Merge and MinDist

might be able to account for synchronic facts about contrast maintenance, it is

not clear how such constraints could influence the evolution of sound systems.

If sound change simply consists in reranking optimality theoretic constraints,

systems where *Merge and MinDist are outranked by markedness constraints

should be just as likely as systems with the opposite ranking. It seems unlikely

that individual constraints could act against constraint reranking. As a result

such accounts are unlikely to contribute significantly to the solution of the

actuation problem.

de Boer (2001) presents an agent-based computational model of the emer-

gence of vowel systems, which also incorporates an account of contrast mainte-

nance. Although the scope of this model is very different from the optimality

theoretic approach described above, the mechanisms used to explain contrast

maintenance are rooted in similar principles: speakers actively promote func-

tional systems. This model simulates changes within a population of agents,

where each agent has their own vowel system. At each iteration of the simula-

tion, a randomly chosen pair plays the so-called ‘imitation game’, where one

of the agents has to imitate a given vowel production by the other agent. If

the imitation game is successful, the imitator shifts their category represen-
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tation closer to the original production by the other agent. If the imitation

game fails, the imitator can either delete one of their categories, or add a new

category, depending on a number of factors. This simple framework leads to

the emergence of surprisingly realistic vowel systems that match many existing

cross-linguistic observations.

Crucially, the imitation game will be more likely to fail when the vowel

system is dysfunctional. Therefore, the fact that convergence between the

agents’ systems is inhibited in such situations (and various repair strategies

are applied) means that the agents are actively avoiding dysfunctional systems.

While this account does not require speakers to evaluate the communicative

efficiency of phonological contrasts, it still attributes a number of goal-oriented

strategies to them. Thus, de Boer (2001) assumes that the agents can keep

track of the ‘success rate’ of a given sound category, add and delete sound

categories and decide whether they should adjust their category representations

based on how successful the imitation game is. Even though de Boer (2001)

claims that ‘no completely unrealistic hat tricks were used to make the sound

system emerge [. . .]’ (de Boer 2001: p. 54), as far as I am aware there is no

evidence that speakers perform any of the actions listed above during speech

production and perception.

There is one final approach that should be mentioned here, which success-

fully avoids most of the problems associated with the accounts described so far.

Labov (1994), Silverman (2006), Wedel (2006) and Blevins & Wedel (2009)

argue that a pressure towards functional sound systems can arise through

non-goal-oriented means as well. This point is described in greater detail in

Section 3.5. The discussion here serves only to indicate that functionalist argu-

ments do not crucially depend on explicit optimisation in speech production

and perception. The approach outlined in the works cited above relies strongly

on the notion of the production-perception feedback loop (cf. Section 2.3.2).

The main idea is that misperceived tokens are less likely to be fed back into

category representations than correctly perceived ones. As a result, areas of

phonetic space where misperception is frequent will be underrepresented in

the production-perception feedback loop. Importantly, the probability of mis-

perception is particularly high when a given token is ambiguous with respect

to its category membership (e.g. a vowel token intermediate between [i] and
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[u] in English). This means that unambiguous tokens will have higher ‘rates of

survival’ in the production-perception feedback loop, and will therefore have

greater influence on category representations. This creates an implicit pressure

for categories to remain well-separated and efficient from a communicative

perspective.

Note that the exclusion of tokens from the production-perception feedback

loop is not a conscious strategy on the part of the listeners. If a token is not

identified correctly, the listener might not even be aware of the category label

that should be assigned to it. When the category label is not known, the token

simply cannot be fed back into the appropriate category representation. The

failure of such tokens to participate in the production-perception feedback

loop is a direct consequence of misperception. The listener has no influence

over this process, and therefore cannot be accused of goal-directed behaviour.

In this sense, the ambiguity-driven model provides a much more satisfactory

explanation for the avoidance of dysfunctional systems.

Functionalist models provide a plausible explanation for why sound changes

fail to take place under certain circumstances. However, functionalism cannot be

regarded as a solution to the actuation problem in itself, as it can only account

for the absence of sound change. It makes no predictions about the likelihood of

change in situations where contrast maintenance is not relevant. Moreover, it is

also not clear how functionalist models can account for cases where a contrast is

neutralised in one dialect but not another. For instance, Weinreich et al. (1968)

describe the case of the neutralisation of a four-way vocalic contrast in Yiddish.

Proto-Yiddish had the following high front and high back vowels: short ı̆, long ı̄,

short ŭ and long ū. As Proto-Yiddish broke up into regional dialects, this contrast

came to be neutralised in many of them. However, the neutralisation seems

to have applied differently across the dialects. Southern Yiddish neutralised

the contrast between back and front vowels leaving the length contrast intact.

North-Eastern Yiddish, on the other hand, neutralised the length contrast but

preserved the back-front distinction. To make matters even more complicated,

some dialects appear to have levelled all of these contrasts, leaving a single i

vowel. In its current form, the functionalist approach cannot say much about

such differences.
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2.5 SOCIOLINGUISTIC MODELS

It appears that neither bias-based models nor functionalist models are capable

of providing a satisfactory solution to the actuation problem. In bias-based

models, the suggested mechanism of sound change overapplies, violating the

criterion in (2.1a). Functionalism seems to suffer from a different problem:

while the pressure towards functional systems is relevant to certain types of

sound change, it is clear that the idea of functionalism on its own cannot fully

account for the actuation of all changes. These issues have long been recognised

by researchers studying language variation and the social aspects of sound

change. Partly in response to the shortcomings of the approaches outlined in

the previous sections, they have proposed a somewhat different solution to the

actuation problem. Specifically, researchers such as Croft (2000), Labov (1994,

2002), Milroy & Milroy (1985), Milroy (1992) have argued that the actuation

of sound change is strongly dependent on social factors, which can counteract

the influence of phonetic and functional pressures.

All of these approaches assume that sound change is a two-stage process.

First, intra-linguistic variation may sometimes result in innovative forms in

certain speakers. Milroy & Milroy (1985) term this ‘speaker innovation’. It is

often suggested that the predictions of bias-based and functionalist models

apply at this level, since the range of forms that can come by through speaker

innovation is determined mainly by intra-linguistic factors. Speaker innovation

in itself does not constitute sound change: the innovative variants also need

to diffuse through the speech community. This is the second stage of sound

change, which is often referred to as ‘propagation’ (see e.g. Croft 2000). It is

at this level that social considerations become relevant: the spread of a change

within the speech community is guided by social factors, which likely include

prestige and social network structure.6

Both stages have an important role in determining the likelihood of changes.

Even phonetically well-motivated innovations may fail to take off within a

speech community if the social conditions do not favour change. Milroy (1992)

6. The exact nature of such factors is the matter of debate within sociolinguistics, and will
not be discussed in any detail in the present thesis. The interested reader is referred to Labov
(2001, 2002) and Milroy (1992), who devote considerable attention to the social motivation of
sound change.



Sociolinguistic models 33

argues that this provides an answer to the overapplication problem in bias-based

models: the effects of phonetic biases are checked by social factors.

Sociolinguistic approaches typically focus on the propagation of sound

change and say very little about speaker innovation. This is not a problem per se:

if speaker innovation and propagation are indeed separate processes, it should

be possible to investigate them more or less independently. The other option is

exemplified by bias-based and functionalist approaches, which focus on speaker

innovation at the expense of propagation. However, Section 2.3.1 showed that

the question of propagation cannot be ignored completely even if the main topic

is speaker innovation. As I argued there, one of the main problems with the leap

model is that it makes unrealistic predictions with respect to the propagation

of sound change. This is a serious problem regardless of whether the focus

is on propagation or not.

The same point also holds for sociolinguistic approaches. It might be possible

to treat speaker innovation and propagation separately, but a successful model

of propagation will also have to be compatible with existing models of speaker

innovation. As it turns out, this is not the case for sociolinguistic models which

assume that sociolinguistic variation simply ‘piggy-backs’ on intra-linguistic

variation. Let us assume that speaker innovations do indeed take place, and are

governed by linguistic factors such as phonetic biases and contrast maintenance.

If this is the case, how is it possible that only a small subset of speakers produce

innovative forms? To make this point clearer, consider the nudge model intro-

duced in Section 2.3.2. This model could arguably serve as the origin of speaker

innovations.7 However, the nudge model predicts that every speaker should

exhibit the same innovations, given the universal nature of phonetic biases and

the inevitability of change in such models (cf. Section 2.3.2). This prediction is

highly problematic: if all speakers show the innovation, why would there be any

need for propagation? The sound change should emerge automatically without

any social conditioning. It appears that combining models like the nudge model

with sociolinguistic models of propagation does not solve the overapplication

problem. The only possible way out of this issue is to assume that speaker

innovations arise through different mechanisms.

7. The leap model is not discussed here given that it does not seem compatible with sociolin-
guistic models of propagation (see Section 2.3.1).
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Baker et al. (2011) propose a solution to the problem outlined above. They

argue that while many phonetic biases are universal, there may be differences in

the extent to which a bias affects the production or the perception of individuals.

For instance, they show that the extent of s-retraction in clusters like [str] in

English is highly variable even across individuals who arguably do not have

a conventionalised pattern of retraction. According to their argument, sound

change may occur when an individual who is particularly strongly affected

by a bias also happens to be in a position where the social prerequisites of

propagation are met. Since such accidental correlations between individual

phonetic factors and social conditions will rarely arise, this mechanism of sound

change does not overapply. Note that Baker et al.’s (2011) model makes an

important prediction: it implies that sound change will only take place in

cases where the strength of a universal phonetic bias differs across individuals.

Currently, this prediction is only supported by a single case (s-retraction in

American English). Therefore, more research is needed to determine whether

this approach is viable.

Even if it is possible to find a model of speaker innovation that is compatible

with the idea of propagation, sociolinguistic models only present a partial

solution to the actuation problem. The social conditioning of propagation might

indeed explain why sound change only takes place in certain cases, which means

that the proposed mechanism does not underapply or overapply. However, the

criterion in (2.1c) is only partially satisfied: while sociolinguistic models shed

light on many social factors that may affect the likelihood of change, they do

not say much about the linguistic factors involved in sound change.

2.6 THE SUGGESTED SOLUTION

None of the models discussed above provide a satisfactory answer to the actua-

tion riddle. Bias-based models can capture parallels between phonetic biases

and robust language-specific patterns, but they overpredict sound change. Func-

tionalist models can account for certain cases where sound change fails to take

place, but they have little to say about cases where functional considerations

are less relevant. Finally, sociolinguistic models may be capable of explaining
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both stability and change, but they make no predictions about the effects of

linguistic factors on sound change.

The account presented in this thesis takes the bias-based model as its starting

point. The reasons for this are as follows. Bias-based models have a clear

explanation for the pervasive parallels between phonetics and sound change. It

is difficult to see how such parallels would emerge if not through phonetically-

driven change. In fact, the success of bias-based models is usually acknowledged

in functionalist and sociolinguistic approaches as well, which tend to include

phonetic biases in some form. Since the actuation problem – as formulated in

Section 2.2 – is about predicting the likelihood of change, it would be somewhat

ill-advised to discard one of the most successful predictors by deeming bias-

based models implausible.

This thesis proposes that the bias-based model is correct in its theoretical

assumptions, and that the main problem lies in the way these assumptions are

typically put to use. The bias-based approaches reviewed in Section 2.3 usually

focus on sound categories in a vacuum, and disregard the potential influence

of interactions among categories. It is not surprising that the predictions of

such a simplified approach fail to capture the subtleties of sound change: sound

categories ‘in the wild’ hardly ever occur on their own, and this has important

consequences with respect to sound change. This thesis breaks with the tradition

of looking at individual categories and proposes to investigate the influence of

phonetic biases on sound systems incorporating multiple categories.

As it will be shown in Chapter 5, the systemic view provides a straight-

forward solution to the overapplication problem (why sounds don’t change;

Section 5.3) and the underapplication problem (why sounds change; Section

5.4). Phonetic biases are only one of the many pressures that affect sound

systems. Together these pressures define a complex adaptive landscape. In the

course of its evolution, the sound system will likely end up in a stable state

where the pressures balance each other out. This stable state need not neces-

sarily satisfy a given phonetic bias, although in many cases it will. Importantly,

the pressures that determine the adaptive landscape can themselves undergo

changes, which can knock the sound system out of stable states. I will also

briefly show that the system-based model is compatible with sociolinguistic
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approaches, and can make interesting predictions about the propagation of

sound change. Of course, these arguments will be presented in a much more

principled way in later chapters.

Note that the individual elements of this account are not new. The interaction

between phonetic biases (often embodied in the notion of ‘ease of articulation’)

and systemic effects (such as contrast maintenance) have been investigated

in a number of accounts, including Martinet (1952) and Labov (1994). The

novelty of the present approach lies in the methods it uses to look at these

interactions and the conclusions it draws with respect to the actuation problem.

As opposed to previous accounts, the predictions with respect to the behaviour

of sound systems are derived directly from a model of speech production and

perception (closely related to the nudge model described in Section 2.3.2). This

model rests on assumptions which are supported by independent evidence from

a variety of fields. Since the predictions of the model with respect to sound

systems are by no means trivial, I will use computer simulations to explore

them systematically.

Computer simulations are a useful tool in situations where the object of

enquiry is a complex system, but they have to be used with caution. It is easy

to build a simulation which is engineered specifically to produce the expected

results, but the scientific validity of such an approach is highly questionable.

The real challenge lies in showing that the simulation is based on independently

plausible principles, and that its predictions derive directly from the under-

lying theory and not from specific details of implementation. Therefore, the

argument presented in the rest of this thesis follows a strict logic. Chapter 3

outlines the main theoretical assumptions that serve as the basis of the present

approach. Each of these assumptions is motivated in detail in order to show

that the underlying theory is well-grounded in existing research. Then, Chapter

4 demonstrates how the principles in Chapter 3 can be implemented in a formal

framework. It is only in Chapter 5 that I turn to the actuation problem itself,

and present simulation results showing that the model advocated in this thesis

provides a coherent and plausible solution.
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This thesis uses computer simulations to investigate changes in sound systems

under the influence of phonetic biases and other pressures. This is not an

uncontroversial undertaking. Computer simulations are undoubtedly useful in

that they make it possible to explore the behaviour of complex systems in a way

that might not be feasible through simple thought experiments. For instance, the

simulations in Chapter 5 allow us to look at the predictions of a complex model

that involves phonetic biases and interactions among multiple categories. The

simulations allow us to derive the predictions of the model from its underlying

assumptions in a rigorous and controlled way. However, in order to build a

simulation, it is crucial that the underlying theoretical assumptions are stated

explicitly and justified in the context of previous research. Otherwise it would

be unclear what the simulations investigate exactly, even if they are intuitively

easy to interpret. Therefore, the present chapter provides a detailed outline of

the theoretical assumptions that serve as the basis of the simulations described

in the following chapters.

The discussion of the theoretical background of the simulations draws

strongly on a distinction between theories and models explicated in Norris

(2005). Norris argues that a computational model in itself does not necessarily

constitute a theory, and it may have little explanatory power on its own (a point

that is also made in Forster 1994 with regard to connectionist models). The

following thought experiment should make this point clearer. Let us assume

that we could construct a machine that is capable of creating a map of all the

synaptic connections in the human brain and transforming this map into a

neural network model that responds to external stimuli in exactly the same way

as human subjects do. This would certainly be a majestic feat of engineering.
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However, there is no way in which the model created by the machine could be

called a theory: simply reproducing the complex interactions that take place

within the brain does not take us any closer to understanding them.

The reason for this is that the assumptions underlying this hypothetical

model cannot be interpreted as useful scientific hypotheses. For instance, let us

take a look at the decision to use a neural network architecture to implement

the transmission of information through synaptic connections. Translating this

decision into a testable hypothesis yields a general statement of the following

form: ‘a neural network model can replicate the responses of human brains.’1

Under a very generous interpretation of this statement, the success of the model

can be taken as an indication that the brain itself utilises a neural network

architecture for processing information. Unfortunately, this conclusion is of

little value given that it contributes nothing to our understanding of the brain

beyond what is already known. Thus, while the decision to use a neural network

is important from an engineering point of view, it does not endow the model

with any explanatory power.

The hypothetical scenario presented above is an example of a model with-

out a theory in Norris’s (2005) terminology. To avoid such dead ends, Norris

urges researchers to take a look at what goes into their models and carefully

distinguish between theoretical assumptions (i.e. those that constitute useful

and testable hypotheses about the area under investigation) and modelling

assumptions (i.e. those that are necessary to make the model work). If both

of these sets of assumptions are made explicit, the model can serve as a way

of linking theory and data by clarifying the empirical predictions of the theory.

However, even when all the theoretical and modelling assumptions are clear, it

may turn out that the results of the simulations follow from the specific way they

are implemented rather than the theory behind them. To avoid such situations,

it is useful to try several different ways of implementing the same theoretical

principles, that is, to vary the set of modelling assumptions while keeping the

theoretical assumptions the same.

1. There is every reason to be skeptical about the validity of this statement: while the
underlying principles of neural network models are inspired by the physiology of the human
brain, a single processing unit in a neural network may often stand for a large assembly of
individual neurons and its behaviour does not necessarily mimic the behaviour of actual neurons
very closely (Forster 1994). As a result, it is not clear whether such a model could be used to
represent neuron-level interactions accurately.
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The distinction between theoretical and modelling assumptions is reflected

in the division of labour between the present chapter and the following one:

the present chapter focuses exclusively on the theoretical underpinnings of

the simulations and the discussion of the details of the models is relegated to

the next chapter. In the present chapter, each of the theoretical assumptions

is discussed at length and justified in the context of empirical research. In the

next chapter, it will be shown that there are a number of different ways of

implementing these assumptions, which all yield very similar results. This is

a strong confirmation of the generality of these results, suggesting that they

follow directly from the underlying theory, rather than the specific modelling

assumptions.

Here is a brief outline of the present chapter. In Section 3.1, I discuss

a general view of speech production and perception as processes based on

multivariate probability distributions, drawing on ideas from Ashby & Alfonso-

Reese (1995) and Kirby (2010). The discussion in Section 3.1 also serves to

identify a number of points within this probabilistic theory of speech production

and perception where further theoretical elaboration is needed. Sections 3.2-

3.5 take up these issues and provide justification for each of the following

four assumptions: (i) speech production and perception are based on more

abstract sound categories such as segments (3.2), (ii) sound categories are

subject to continuous update throughout the life of an individual (3.3), (iii)

speech production is affected by weak but universal phonetic biases (3.4), and

(iv) ambiguous productions resulting from category overlap participate less

in category update (3.5).

3.1 PROBABILISTIC CATEGORY REPRESENTATIONS

All the simulations presented in the next chapter are based on the following

simple assumption: sound categories can be represented as probability distri-

butions over a multidimensional phonetic space.2 The main advantage of this

view of category representations is that it allows us to abstract away from

the details of particular models of production and perception, and lay out a

2. The exact nature of such sound categories will be made clearer later in this chapter. The
specific units that are the focus of this thesis map relatively closely onto the notion of segments,
although they could be interpreted as standing for larger or smaller units as well.
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general conceptual framework for the discussion of the simulations in the next

chapter. Moreover, it also allows us to describe production and perception as

operations over the same stored probability distributions, thereby establishing

an explicit link between these two separate domains (cf. Kirby 2010: 49). Note

that the idea of probability distribution-based production and perception relates

to phonetic realisation and not to phonological patterns. That is to say, the

framework described here and in the following chapter links sound categories

to concrete physical realisations, but it does not say anything about how these

categories interact at a more abstract level. Pierrehumbert (2003) argues that a

probabilistic model of speech production and perception may well be compati-

ble with abstract models of phonological competence. Although this thesis does

not explore such abstract models in any detail, Sections 3.4 and 6.1 do make

the relationship between the current framework and the phonology/phonetics

divide clearer.

To get a better idea of how probabilistic category representations should

be conceived of, consider the two high vowels [i] and [u] in American English.

Figure 3.1a shows the distribution of these vowels along the dimensions of F1

and F2, based on 139 samples for [i] and 138 for [u] taken from Hillenbrand

et al. (1995)’s study of American vowels.3 The main idea is that a learner ex-

posed to these realisations can set up probability distributions representing each

category, as is shown in Figure 3.1b (which only shows the distributions along

F2 for simplicity’s sake). This process will be referred to as the ‘estimation of the

underlying probability distribution of a category’ (Ashby & Alfonso-Reese 1995).

Estimation in this context simply means taking all the available observations

(i.e. tokens of [i] and [u]) and constructing probability distributions that could

plausibly serve as the sources of these observations. This is the equivalent of

learning the phonetic realisation of a sound category. There are many different

ways of performing this estimation, although not all of these are equally accu-

rate. The probability density functions in Figure 3.1b were obtained through a

method called ‘kernel density estimation’ (Silverman 1986; see Section 4.1.1

for a more detailed discussion), but this choice was arbitrary. The exact method

of estimation is not crucial for our present purposes – indeed, the next chapter

will demonstrate that the results of the simulations follow directly from the

3. Available online at http://homepages.wmich.edu/~hillenbr/voweldata.html.
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Figure 3.1: (a): the distribution of American English [i] and [u] along the di-
mensions of F1 and F2; (b): two probability density functions on the dimension
of F2 based on the realisations of [i] and [u] on the left (the distributions were
determined through kernel density estimation).

general assumption of probability distribution-based representations and not

from any particular method of estimation.

The estimated distributions can then be used both for the generation of

new stimuli (i.e. production) and establishing the category of a given stimu-

lus (i.e. perception). Production can be modelled as the random sampling of

the distribution representing a given category (Kirby 2010).4 Of course, ran-

domly drawn samples will be more likely to come from higher density areas of

the probability distributions, which means that larger samples of productions

will mirror the underlying probability distribution. Perception, on the other

hand, is modelled by calculating for each category the probability that a given

stimulus comes from that category and then making either a probabilistic or

a deterministic choice based on these probabilities. To illustrate, consider a

vowel with an F2 value of 2000. The distributions in Figure 3.1b can be used

to calculate the values of the probability density functions associated with [i]

4. As Kirby (2010) notes, this is not a trivial problem in the case of continuous probability
distributions, since the probability associated with any given value of a continuous random
variable is 0. There are, however, a number of ways of obtaining random samples for continuous
random variables as well, some of which are described in Devroye (1986).
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and [u] at F2= 2000: p(2000 | [i]) = 0.000152 and p(2000 | [u]) = 0.000044.

If we assume that listeners are not biased towards either category a priori, the

confidence that they can have in a given category decision will be proportionate

to these values. The exact probabilities can be derived using Bayes’ formula

(where p(ci|x) is the probability that x belongs to category ci, p(ci) is the prior

probability of category ci and n is the overall number of categories):

p(ci|x) =
p(x |ci)p(ci)

∑n
j=1 p(x |c j)p(c j)

. (3.1)

In essence, what this formula says is that an appropriate category label will be

chosen based on (i) which categories are the most likely to be produced at a

given location in phonetic space and (ii) which categories are the most frequent

in general (this is represented by the prior probabilities). In cases where the

categories are equally frequent, p(c) will be equal for all the categories, which

means that the formula in (3.1) can be simplified as follows:

p(ci|x) =
p(x |ci)p(ci)

∑n
j=1 p(x |c j)p(c j)

=
p(x |ci)p(ci)

p(ci)
∑n

j=1 p(x |c j)
=

p(x |ci)
∑n

j=1 p(x |c j)
(3.2)

That is, the probabilities of different category decisions can be obtained simply

by comparing the probability density functions representing the different cate-

gories. In the present case, such a comparison can be done visually as well: the

black line in Figure 3.1b is higher than the grey line at F2 = 2000, and therefore

[i] is a more likely candidate. This is confirmed by applying the equation in

(3.2) to the present case, which yields the following results: p([i]|2000) = 0.78

and p([u]|2000) = 0.22. Figure 3.2 shows the categorisation probabilities for

each category plotted against F2 (the dotted line marks the location along the

x-axis where F2 = 2000). These functions are very similar to the identification

functions based on the results of experiments where subjects are instructed to

perform the same task, that is, assign phoneme labels to different stimuli varied

along a phonetic continuum (e.g. Liberman et al. 1957).

The task of calculating the categorisation probabilities for each category is

not identical to that of making a particular categorisation decision for a given

stimulus (Ashby & Maddox 1993, Kirby 2010). Ashby & Maddox (1993) argue

that the latter process should be treated separately under the label of ‘response
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Figure 3.2: Categorisation probabilities for [i] and [u] calculated on the basis of
the formula in (3.2). The dotted line indicates an F2 value of 2000.

selection’ and distinguish between two response selection rules: deterministic

and probabilistic. A subject with a deterministic response selection rule will

always make the same decision when faced with a given set of categorisation

probabilities: using the example from above, the category label assigned to a

stimulus with F2 = 2000 will always be [i], since [i] has the higher categori-

sation probability. This rule can be described as follows:

(3.3) Given stimulus x and a set of categories C = {ci|i = 1, . . . , n}, respond

ck, where p(ck|x) =max(p(c1|x), . . . , p(cn|x)).

On the other hand, a probabilistic response rule can make different decisions

even when the categorisation probabilities are the same. In this case, the cate-

gorisation probabilities determine the relative frequencies of different responses.

This can be expressed as follows:

(3.4) Given stimulus x and a set of categories C = {ci|i = 1, . . . , n}, respond

ck with probability p(ck|x).

Thus, a subject with a probabilistic response rule will respond [i] about 78

percent of the time when F2 = 2000.
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It should be noted that most existing theories of categorisation, including

exemplar theory (e.g. Nosofsky 1986, 1988) and prototype theory (e.g. Posner

& Keele 1968) can be reformulated in terms of probability density estimation

(Ashby & Alfonso-Reese 1995). In fact, Ashby & Alfonso-Reese (1995) show

that the main difference between such models lies in the way they estimate

the underlying probability distributions for the individual categories, and is

therefore not strictly relevant to the argument developed in the next chap-

ter, which only requires the assumption of some type of probability density

estimation. Since this point is not a trivial one, the next chapter will present

both exemplar and prototype-based simulations to show that they produce

essentially the same results.

Having discussed the role of probability distributions in models of produc-

tion and perception, I now present the four main assumptions of the theoretical

framework adopted in this thesis. The first assumption is a rather general one,

namely that speakers establish sound categories (represented by probability dis-

tributions) based on their experience with speech, and use these in production

and perception. Although this may seem to be a trivial claim, the usefulness of

sound categories has been questioned by some phonologists, especially within

exemplar theory (Bybee 2001, Kirchner et al. 2010), where it has been claimed

that ‘segmentation into a priori phonological units seems contrary to the spirit

of Exemplar Theory’ (Kirchner et al. 2010: 541). I show that such claims are not

justified and that there is good evidence that speech production and perception

are based on sound categories. The second assumption relates to the way the

probability distributions representing a given category are updated: I argue that

sound categories are subject to continuous update throughout the life of an

individual. Again, this claim is not entirely uncontroversial, but there is clear

evidence that category representations can be modified even after a speaker has

learnt the phonology of a given language. The third assumption concerns a dis-

crepancy between the stored distributions and the produced/perceived stimuli.

The claim is that phonetic biases can distort stimuli either during perception or

during production, and that many of these pressures are universal (although

their effects may be relatively weak in individual languages). Finally, the fourth

assumption deals with cases where a stimulus is ambiguous with respect to its

category-membership: such ambiguous instances may fail to contribute to the
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probability distributions representing the categories, resulting in a situation

where non-ambiguous tokens play a more important role in category update,

creating a pressure towards contrast maintenance.

3.2 CATEGORY-BASED PERCEPTION AND PRODUCTION

In this section, I argue that speakers’ production and perception relies on

abstract sound categories established on the basis of their experience with

speech. While such sound categories are widely assumed both in phonetics and

phonology, little has been said about whether this assumption is justified. In

what follows, I provide some evidence for the existence of one specific type

of abstract category, namely phonological segments. This choice is admittedly

somewhat arbitrary, given the wide range of underlying categories that have

been proposed in phonological analyses, including features (Jakobson et al.

1952, Chomsky & Halle 1968), syllables (Kahn 1976), autosegments (Goldsmith

1979) and phonological feet (Selkirk 1980). However, while the notion of

language-specific segment inventories appears to be almost universally accepted

within phonology, most other categories are the subject of debate and are often

challenged on theoretical grounds. Furthermore, it is possible to find relatively

direct evidence for the existence of segmental categories in the psycholinguistic

literature. Such evidence is reviewed less often for features, syllables and other

phonological categories, as these are usually proposed on the basis of more

abstract theoretical considerations.

3.2.1 Alternatives to the category-based view

It might not seem obvious why a concept as generally accepted as that of

segmental categories needs to be justified at all. However, not all researchers

agree on the validity of segments as the basic units of speech production and

perception. Port (2010b) presents evidence from a number of sources supporting

the idea of rich memory representations in speech. Specifically, he argues that

larger chunks of speech such as words and phrases are the only psychologically

relevant units of representation, while units such as phones or phonemes are

only useful when the goal is to describe sound patterns in a community of
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speakers. Most of his arguments are grounded in the extreme variability of the

speech signal. First, he claims that discrete units like features and segments

cannot capture the variation at the level of fine phonetic detail observed in

all natural languages. Moreover, he argues that representations employing

abstract linguistic units go against the observation that speaker-specific details

in memory can aid performance on recognition tasks. Finally, he suggests that

the ubiquitous variability of the speech signal makes any attempt to identify

invariant phonetic features hopeless.

Similarly, Silverman (2006) rejects the idea of segment-based represen-

tations on the grounds that the speech signal does not easily lend itself to

segmentation. He points out that articulatory gestures exhibit a large amount

of overlap, which results in overlapping acoustic cues as well. Furthermore, he

argues that temporally discrete units such as consonants and vowels do not

correspond to any coherent acoustic events, given that most of the information

is concentrated in the transitions between such proposed units (p. 55). Both

Silverman (2006) and Port (2010b) suggest that the popularity of the notion of

segments derives from linguists’ experience in using alphabetic writing systems,

and conclude that segment-like units are merely illusory.

I agree that the notion of segments has to be approached with the same

scientific rigour as less well-established units within phonetics and phonology.

However, I do not think that the arguments summarised above rule out se-

quentially arranged units of organisation in speech. In fact, it seems that both

authors argue specifically against an extreme version of ‘alphabetism’ (the term

has been borrowed from Silverman 2006), and largely disregard arguments

from more moderate proponents of segment-based approaches. It is true that

early generative models of phonology treated speech as consisting of strings

of invariant feature-bundles (e.g. Chomsky & Halle 1968), but this view has

been challenged in numerous ways over the last few decades. Few phonologists

would seriously consider a model that (i) does not allow variation in the realisa-

tion of speech units and (ii) cannot represent any degree of gestural overlap

(and even Chomsky & Halle’s model allows for variation and overlap in perfor-

mance). Pierrehumbert’s (2002, 2003) hybrid model is an excellent example

of how variation can be tied to abstract units through probabilistic modelling

(this model is very similar to the one presented in the previous section); and
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approaches such as articulatory phonology (e.g. Browman & Goldstein 1992)

have demonstrated that overlap among phonetic events can be represented in

models with some degree of abstractness as well. Therefore, while Port and

Silverman make a strong case for detailed storage of whole-word units, I do

not think that the evidence they present is incompatible with the notion of

segments. It is likely that such segments are not invariant or temporally discrete,

but that does not mean they do not exist at all.5

The next section will present some evidence that speech perception and

production are at least partly based on sound categories like segments. However,

there is a more practical reason as well for adopting a category-based model: the

alternatives are not normally presented in sufficient detail for systematic testing.

A brief review of the competing models will help to elucidate this point.

Bybee (2001) argues that sound categories emerge from ‘network connec-

tions built up among stored units’, where the stored units are ‘pronouncable

linguistic forms – words or phrases stored as clusters of surface variants orga-

nized into clusters of related words’ (Bybee 2001: p. 85). Similarly, Lindblom

(2000) suggests that category structure emerges in a network of exemplars as a

side-effect of ‘systematic covariations among stimulus dimensions’ (Lindblom

2000: p. 304) in a multidimensional psychological space (which probably in-

cludes both meaning and phonetic shape). According to Bybee and Lindblom

sound categories do not exist as underlying units of storage: categorical effects

emerge from complex interactions among phonetically detailed memory rep-

resentations of speech events. While I do not want to argue that this view is

necessarily wrong, there is some reason to treat such claims with skepticism.

These assumptions have a certain amount of intuitive appeal, but the lack of

explicit models based on the holistic storage of words makes it difficult to

see what their implications exactly are and how they relate to phonology or

sound change. Bybee (2001) discusses the general outlines of a word-based

model of phonology at length, relying on concepts familiar from experimental

psychology (e.g. ‘connectionist networks’, ‘exemplar theory’, etc.). However, her

5. Port (2010b) himself acknowledges this in the following quote: ‘[o]f course, speakers
might store abstract representations as well, but evidently they are not limited to these. At the
very least, any arguments claimed to support a realtime role for abstract segments will need to
be much more critically evaluated in future than they have been in the past’ (Port 2010b: p.
48).
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discussion lacks the formal rigour that typically accompanies these concepts

(for examples of such formal rigour with regard to connectionist networks and

exemplar theory, see Rumelhart & McClelland 1986, Nosofsky 1988), which

makes it difficult to see whether the theory she advocates does indeed make

the predictions she attributes to it.

There are, however, two recent papers that present computationally explicit

models that do not assume discrete segment-like units. The first of these is

Kirchner et al. (2010), which describes an algorithm that is capable of produc-

ing novel utterances on the basis of a pool of stored word-length exemplars,

which are not segmented into discrete units. The algorithm can successfully

generalise certain phonological patterns to novel stimuli in ways that are similar

to phonological repair mechanisms found in natural languages. For example,

when most of the stored exemplars conform to a pattern where [x] only appears

intervocalically and [k] is found in every other position, a pattern-violating

input with intervocalic [k] will usually surface with a [x] (e.g. [ækæ] is realised

as [æxæ]). Note that the segment-like units in the description above are not

part of the model – they are used purely for descriptive convenience. While

these results are promising, the authors themselves admit that their algorithm is

rather tentative and that it is not strongly grounded in psycholinguistic research

on the mechanisms underlying speech production. Even more problematically,

the fact that the algorithm was specifically engineered to perform phonological

extensions without much regard to previous theoretical results in the field

leaves it open to criticism on the grounds that it is merely a model without a

theory in Norris’s (2005) terms. Therefore, Kirchner et al.’s (2010) algorithm

cannot be taken as a convincing alternative to models based on sound cate-

gories until further links are established with theoretical and empirical work

on speech production.

Another paper that looks into how a model operating without explicit sound

categories can account for certain aspects of phonology is Zuidema & de Boer

(2009). Zuidema and de Boer’s approach is very different from that of Kirch-

ner and his colleagues. They do not make any claims about what they term

‘productively combinatorial phonology’ (Zuidema & de Boer 2009: p. 126),

that is, the cognitive mechanisms behind the patterns of speech production

and perception that segment-like units are meant to capture. Instead, they



Category-based perception and production 49

look at the evolution of a system under pressure for distinctiveness where the

initial signals are random holistic trajectories in phonetic space. One way to

imagine such a system is to think of a language where every morpheme consists

of completely random movements of the articulators. The paper presents an

algorithm that gradually optimises these trajectories for distinctiveness (with-

out any built-in tendency towards segment-based patterns). As the random

trajectories become perceptually more distinct, they are also reorganised in a

way that they all pass through a small number of ‘way stations’ in phonetic

space. The appearance of a limited set of points connected by the trajectories

can be interpreted as the emergence of (superficially) combinatorial phonology,

where the points themselves are the basic units of combination, that is, sound

categories. However, the fact that such structures emerge in these simulations

without category-based storage is not an argument against sound categories

in itself. Indeed, the authors themselves argue that further mechanisms are

needed in order to use these emergent categories in a productive way.6 Thus,

Zuidema & de Boer’s (2009) results are not incompatible with a category-based

view of speech production and perception.

3.2.2 Evidence for sound categories

The previous section has demonstrated that the evidence against segment-

like categories is rather weak and that there are no convincing alternatives

to category-based models at present. However, this in itself does not justify

adopting sound categories as the basic underlying units of speech production

and perception – it remains to be shown that there is substantive evidence for

categories. This type of justification is more often than not completely absent

from discussions of category-based models both in phonology and experimental

psychology. The convenience and the intuitive appeal of the notion seems to

preclude discussions of why underlying categories should be assumed in the first

place. This is nicely illustrated by the following quote from Kornai (1996: 400):

6. In their account, the automatic emergence of superficial combinatorial structure under
pressure for discriminability is simply the first step in an evolutionary scenario, where the
existence of such structures creates an advantage for agents in the population who can better
exploit these structures in their language use. This advantage can then drive the biological
evolution of the speech system towards phonemic coding.
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‘[s]ome [. . .] units, most notably the phoneme, are instrumental in describing

such a broad range of phenomena that their psychological reality can hardly be

disputed.’ As Port (2010b) and Silverman (2006)’s work shows, such arguments

do not stand up to scrutiny: descriptive usefulness and psychological reality

are simply not the same thing. In this section, I review two types of evidence

for segments: statistical and psycholinguistic.

statistical evidence for segments The first set of evidence for sound

categories comes from certain statistical properties of the speech signal. Kornai

(1996) argues that traditional claims about recurrence and discriminability as

the defining properties of segmental categories can be rephrased as statements

about the statistical distribution of sounds in phonetic space. Specifically, he

proposes that recurrence can be redefined as the presence of distinct density

peaks in the overall distribution of speech sounds in phonetic space, and discrim-

inability as the separation of these density peaks. To put it slightly differently,

sound categories can be proposed if we find that phonetic tokens are organised

into well-defined clumps (recurrence) that do not overlap too much (discrim-

inability). Kornai (1996) provides some evidence that this might be the case for

at least some of the sound categories proposed for natural languages by investi-

gating a database of steady-state formant representations of American English

vowels (Peterson & Barney 1952). Since I believe that Kornai’s arguments are

worth discussing in more detail, I will attempt to replicate and develop some of

his results based on a similar but more recent (and phonetically more detailed)

database from Hillenbrand et al. (1995). The discussion of recurrence below

follows Kornai (1996) quite closely, but the argument about the discriminability

of vowel categories in American English is based on novel work carried out

specifically for this thesis.

Kornai uses an unsupervised clustering algorithm to test whether the crite-

rion of recurrence holds for vowels in American English. Unsupervised clustering

techniques can be used to partition a set of unlabelled data points into smaller

clusters by exploiting density peaks in the data set. To put it more simply, unsu-

pervised clustering looks for clumps of tokens in a given data set. Unsupervised

clustering is particularly suitable as a test for recurrence given its reliance on

density peaks. If vowel phonemes satisfy the criterion of recurrence (i.e. each
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vowel phoneme corresponds to a density peak in the overall distribution of

vowel realisations), an unsupervised clustering algorithm should be able to find

the clusters corresponding to the original vowel phonemes in a set of vowel

tokens where the phoneme labels have been removed.

Kornai (1996) looks at F1 and F2 values in a large set of measurements

from Peterson & Barney (1952). He uses a k-means clustering algorithm to

search for density peaks among the F1 and F2 values. This algorithm looks for

a pre-speficied number of clusters, where the number is k (hence the name k-

means). The technical details of the algorithm are not important for our present

purposes – it is sufficient to point out that the behaviour of the algorithm is

heavily dependent on density peaks in the input data set. The output consists

of a classification of the vowel measurements into clusters along with mean

F1 and F2 values for the clusters. Kornai (1996) demonstrates that the k-

means algorithm is highly successful at finding the clusters corresponding to

the original vowel categories in Peterson & Barney’s (1952) data set.

I have replicated Kornai’s results using a similar set of vowel realisations

from Hillenbrand et al. (1995). The unlabelled F1 and F2 measurements are

shown in Figure 3.3 (only productions from men are included in this sample to

avoid issues related to normalisation). The k-means clustering algorithm does

remarkably well at finding the original phoneme clusters, as is shown in Figure

3.4, where the orthographic transcriptions7 indicate the mean values for the

original clusters and the grey dots the mean values for the clusters calculated

by the algorithm. The estimations are extremely accurate for most vowels, even

though the only information the algorithm has about the phoneme labels is

their overall number. This is all the more impressive given the considerable

amount of overlap between some pairs of categories, especially in the front

region of the vowel space, as can be seen in Figure 3.4 (cf. the pairs ‘ih’ vs.

‘ei’ and ‘ae’ vs. ‘eh’). The success of the clustering algorithm implies that the

vowel tokens are indeed organised into well-defined density peaks around the

individual phoneme centres. Therefore, the suggested units, that is, segments

satisfy the criterion of recurrence.

7. The transcriptions correspond to the following lexical sets (cf. Wells 1982): ‘iy’ = fleece,
‘ih’ = kit, ‘ei’ = face, ‘ae’ = trap, ‘eh’ = dress, ‘ah’ = palm, ‘aw’ = thought, ‘uh’ = strut, ‘oa’
= goat, ‘oo’ = foot, ‘er’ = nurse, ‘uw’ = goose.
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Figure 3.3: Male productions of American English vowels from Hillenbrand et al.
(1995) without phonemic labels.
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Figure 3.4: A comparison of the actual means (orthographic transcriptions) and
the estimated means (grey dots) for the phoneme clusters in Hillenbrand et al.’s
(1995) data set; 90% confidence ellipses are also indicated for the original clusters.
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ρ = 0.06 ρ = 0.51 ρ = 1.00

Figure 3.5: Three examples for the calculation of ρ; the dashed lines indicate
the probability density functions, the continuous lines the function from which ρ
is obtained through integration (with the area under the function indicated by
shading); all of these functions overlap in the panel on the right-hand side.

Another criterion proposed by Kornai is that of discriminability, which is

defined as the extent to which the density peaks corresponding to the proposed

phonetic units can be separated in phonetic space. Unfortunately, Kornai’s

arguments for the separability of the proposed phoneme clusters in his data set

are somewhat informal. Therefore, a more rigorous test for separability has to

be devised, especially because of the substantial amount of overlap between

certain phoneme pairs mentioned above. The test I propose below is based on

the idea that the separability of two categories is a decreasing function of the

amount of overlap between their underlying probability distributions. There are

several different methods for estimating the amount of overlap between two

probability distributions. I will use Matusita’s measure (Matusita 1966), which

is defined for the probability density functions fi(x) and f j(x) as follows:

ρ =

∫ ∞

−∞

p

fi(x) f j(x) (3.5)

This measure produces a value between 0 and 1, which increases with the

amount of overlap between the two distributions, reaching 1 only when the

distributions are identical. Figure 3.5 shows three pairs of overlapping probabil-

ity density functions along the dimension of F2 and the function from which

ρ is obtained through integration (that is, by calculating the area under the

function indicated by shading in the graphs).
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Since Matusita’s measure is defined on continuous probability density func-

tions, we first have to estimate the probability distributions underlying the

vowel clusters to be able to calculate the extent to which they are separable.

In this particular case, multivariate normal distributions are used to represent

the individual phonemes. This choice was motivated by the existence of a

closed-form expression for the calculation of ρ for normal distributions, which

makes the present task computationally simple (the interested reader is re-

ferred to Lu et al. 1989 for a presentation of this closed-form expression). The

normal distributions themselves were obtained through maximum likelihood

estimation; the confidence ellipses in Figure 3.4 provide a rough idea of how

they should be conceived of. Although such a representation possibly discards

some information about the shape of the underlying distributions (e.g. it does

not allow any irregularity or ‘bumpiness’ in the probability density functions),

multivariate normal distributions are standardly used in the statistical literature

for similar tasks.

Two multivariate normal distributions were obtained for each of the phoneme

clusters in Hillenbrand et al.’s (1995) data set (using male tokens only): a bi-

variate normal distribution based on steady-state F1 and F2 measurements and

a multivariate normal distribution based on fundamental frequency, F1, F2, F3

and vowel duration. The value of ρ for each pair of phonemes is shown in

the top two matrices in Figure 3.6. The results based on bivariate distributions

using only F1 and F2 measurements (shown in Figure 3.6a) correspond very

closely to what is seen in Figure 3.4. Most clusters are well-separable (i.e. they

have low ρ values), but there is usually a certain degree of overlap between

neighbouring clusters, especially in the case of ‘ih’ versus ‘ei’ and ‘eh’ versus ‘ae’,

which are nearly indistinguishable (i.e. they have ρ values close to 1).

These results change rather dramatically when fundamental frequency, F3

and vowel duration are also included in the calculations: suddenly even the

closest neighbours appear as relatively distinct as all the ρ values drop by about

15–75 percent (Figure 3.6b). Thus, while some categories appear inseparable

when only a limited number of phonetic dimensions are considered, this in-

separability turns out to be an artefact of the choice of phonetic dimensions

when other measurements are included as well. Note that this could be a simple

result of including extra dimensions, as the separability of clusters of data
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iy oo ei eh ah uw oa ih uh aw ae er
iy .00
oo .00 .00
ei .12 .00 .00
eh .00 .00 .20 .00
ah .00 .01 .00 .01 .00
uw .00 .33 .00 .00 .00 .00
oa .00 .29 .00 .00 .03 .10 .00
ih .17 .00 .74 .04 .00 .00 .00 .00
uh .00 .03 .00 .01 .30 .00 .15 .00 .00
aw .00 .00 .00 .00 .20 .00 .10 .00 .47 .00
ae .00 .00 .36 .85 .01 .00 .00 .08 .00 .00 .00
er .00 .33 .00 .04 .01 .07 .01 .00 .02 .00 .01 .00

(a)

iy oo ei eh ah uw oa ih uh aw ae er
iy .00
oo .00 .00
ei .08 .00 .00
eh .00 .00 .08 .00
ah .00 .01 .00 .00 .00
uw .00 .20 .00 .00 .00 .00
oa .00 .18 .00 .00 .02 .05 .00
ih .07 .00 .19 .03 .00 .00 .00 .00
uh .00 .02 .00 .00 .23 .00 .11 .00 .00
aw .00 .00 .00 .00 .17 .00 .08 .00 .28 .00
ae .00 .00 .22 .36 .01 .00 .00 .03 .00 .00 .00
er .00 .10 .00 .01 .00 .03 .00 .00 .01 .00 .00 .00

(b)

iy oo ei eh ah uw oa ih uh aw ae er
iy .00
oo .00 .00
ei .11 .00 .00
eh .00 .00 .18 .00
ah .00 .01 .00 .01 .00
uw .00 .26 .00 .00 .00 .00
oa .00 .28 .00 .00 .02 .08 .00
ih .14 .00 .68 .03 .00 .00 .00 .00
uh .00 .03 .00 .00 .24 .00 .12 .00 .00
aw .00 .00 .00 .00 .17 .00 .09 .00 .43 .00
ae .00 .00 .28 .71 .01 .00 .00 .03 .00 .00 .00
er .00 .28 .00 .04 .01 .05 .00 .00 .02 .00 .00 .00

(c)

Figure 3.6: Matrices showing Matusita’s ρ for each pair of vowels in the data set.
The shading is a function of ρ: the higher the value, the darker the cell. (a) is
based on F1 and F2; (b) on fundamental frequency, F1, F2, F3 and vowel duration;
(c) on F1, F2 and three dummy dimensions.
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points always increases as further dimensions are added (this is analogous

to the phenomenon of overfitting in statistics). To control for the increased

number of dimensions, I included a third matrix (shown in Figure 3.6c) based

on F1 and F2 measurements from the data set and three ‘dummy dimensions’

consisting of random numbers between 0 and 1 (these random numbers were

not significantly different across the vowel categories). While the vowel cate-

gories appear more separable in the dummy five dimensional condition than

in the original two dimensional case, the separability is much lower than in

the real five dimensional condition (Figure 3.6b). This means that duration,

fundamental frequency and F3 contribute significantly to the separability of

the vowel categories.

In sum, all of the phoneme clusters are relatively well-separable in the

higher dimensional case, which suggests that the criterion of discriminability

is also satisfied by segments (at least in the case of American English vow-

els). The replication of Kornai’s results along with the refinements presented

above lend statistical support to the plausibility of the segment as a unit of

representation.

psycholinguistic evidence for segments In the rest of this sec-

tion I review two further important sources of evidence for segments: speech

errors and categorical perception. In a reply to Port’s (2010b) criticism of

segment-based accounts of speech production and perception, Fowler (2010)

cites evidence from studies of speech errors as support for the notion of the

segment. Segment substitution errors have long been used to make the point

that segments have a distinguished role in speech production. One of the earliest

studies exemplifying this line of reasoning is Fromkin (1971). After reviewing a

large set of naturally occurring speech errors, Fromkin concludes that ‘[b]y far

the largest percentage of speech errors of all kinds show substitution, transpo-

sition (metathesis), omission, or addition of segments of the size of a phone’

(Fromkin 1971: p. 30). Some of her examples are presented below:

(3.6) a. also share→ alsho share [ clSo Ser]
(anticipation; Fromkin 1971: p. 30)

b. week long race→ reek long race

(anticipation; Fromkin 1971: p. 30)
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c. Spanish speaking people→ . . . speaping people

(perseverance; Fromkin 1971: p. 30)

d. Chomsky and Halle→ Chomsky and Challe

(perseverance; Fromkin 1971: p. 30)

e. keep a tape→ teep a cape

(spoonerism; Fromkin 1971: p. 31)

f. ad hoc [æd hak]→ odd hack [ad hæk]
(spoonerism; Fromkin 1971: p. 31)

Similarly, Shattuck-Hufnagel (1983) claims that the majority of the errors in

her data set involved single segment substitutions. Speech errors are arguably

constrained by the units that mental representation are based on. Thus, the

observation that segment substitutions are the most common type of speech

error strongly suggests that segments play an important role in the psychological

representation of speech.

One potential issue with traditional studies of speech errors (including the

ones referred to above) is that they are based on simple phonetic transcriptions

of naturally occurring speech (Mowrey & MacKay 1990, Port 2010a). This is

problematic inasmuch as phonetic transcription is necessarily constrained by

the perceptual system of the experimenter, and might not provide an accurate

representation of actual speech events. Speech errors that seem to involve

discrete segments might, in fact, be based on more gradient processes that do

not constitute evidence for segmental categories. This is indeed what Mowrey

& MacKay (1990) find in an electromyographic study of muscular activity in

tongue twisters.8 Many speech errors seem to involve intermediate levels of

muscle activity, and Mowrey & MacKay (1990) argue that most of them take

place at a ‘subphonemic’ and ‘subfeatural’ level (Mowrey & MacKay 1990: p.

1310). Frisch & Wright (2002) present another phonetically detailed study

of speech errors based on acoustic analysis. Their findings suggest that while

gradient errors of the kind found in Mowrey & MacKay (1990) are frequent,

categorical errors also occur. In sum, while the evidence from speech errors

is not entirely uncontroversial, it seems that even phonetically detailed data

8. It should be noted that Mowrey & MacKay (1990) used themselves as subjects in their
experiment, which, in my view, is no less problematic than evaluating speech errors based on
potentially biased transcriptions.
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sets provide some support for the idea of the segment as a unit of mental

representation.

Another source of evidence for segmental categories comes from experi-

ments investigating a range of phenomena that can be subsumed under the

broader label of ‘categorical perception’. Categorical perception ‘[. . .] refers

to the experience of discontinuity as a continuously changing series of stimuli

crosses a category boundary, together with the absence of clearly perceived

changes within a category’ (Repp 1984: p. 251–252). There are two important

observations encapsulated within this definition:

(3.7) While phonetic events vary in a continuous phonetic space, speakers

divide this space up in a more or less discrete fashion.

(3.8) Gradient differences within a given area covered by one phonetic

label are less perceptible to listeners than similar differences across

differently labelled areas.

To make these points clearer, let us briefly review the main findings of Liberman

et al. (1957), one of the earliest papers looking at categorical perception.

Liberman et al. (1957) performed two experiments using an 11-step synthetic

continuum of syllables varying only in the place of articulation of the initial

sound, yielding stimuli like be, de and ge (the specific acoustic parameter they

manipulated is the starting point of the F2 formant transition into the vowel).

In the first experiment, they simply asked subjects to label the stimuli as b, d or

g. Although the stimuli were varied continuously, the categorisation responses

were stable for most of the continuum. The subjects’ responses only showed

variation near category boundaries. In the second experiment, subjects were

given ABX stimuli triads, where A and B were always different (by one, two

or three steps along the continuum), and X was identical to one of them. They

were asked to determine whether X was identical to A or to B. The results of this

experiment clearly demonstrate an increased sensitivity to differences between

stimuli close to category boundaries (e.g. stimuli intermediate between be and

de), and decreased performance within categories. Both of the experiments

yielded results that are consistent with the two main observations associated

with categorical perception. The fact that speakers show categorical perception

related to different segments is strong evidence for the segment as a unit of



Category-based perception and production 59

representation. It should be noted that such effects have been found for a wide

range of other segmental contrasts as well, including manner contrasts (e.g.

fricative vs. affricate), contrasts between nasal versus oral consonants and vowel

contrasts (see Repp 1984 for an extensive summary).

A more specific manifestation of categorical perception is the so-called

perceptual magnet effect (Kuhl 1991, Iverson & Kuhl 1995), whereby within-

category discrimination performance decreases near the category prototype.

Note that this effect is related to the one described in (3.8). However, it is clearly

distinct from it, as it looks only at discrimination between pairs of stimuli within

the same category (but not pairs from different categories). The perceptual

magnet effect has also been demonstrated for a number of segmental categories,

although almost all of these categories are vowels (see Feldman et al. 2009 for

a review). This provides further support for the notion of segments.

To sum up, there is substantial evidence both from the statistical distribution of

phonetic events and psycholinguistic experiments that segmental categories are

an important part of the mental representation of speech. Note that I do not

wish to argue that mental representations consist solely of a series of abstract

segments – merely that segments have a certain amount of psychological and

statistical reality. It is perfectly possible that mental representations also involve

phonetically detailed memory traces (as Silverman 2006 and Port 2010b sug-

gest), and that information about the segmental make-up of a given utterance

exists alongside such episodic representations. The evidence presented above

also does not crucially bear on the debate about whether segments are an

integral part of mental representations or if they emerge dynamically from

detailed memories during language processing (as suggested by Bybee 2001).

What is clear, though, is that segments play an important role at some level

of language processing. Finally, it should be noted that the units referred to

as segments in the discussion above are not identical to the types of segments

proposed in early generative approaches to phonology such as Chomsky &

Halle (1968). The probabilistic category representations proposed in Section

3.1 allow for a large amount of variation in the realisation of segments, and

they do not make any a priori assumptions about the sequential arrangement

of segments (i.e. they do not rule out overlapping segments). They are also
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flexible in terms of the phonetic dimensions that they are based on, and it is, in

principle, possible to link them to social, lexical and other types of non-phonetic

information (although this thesis does not explore this possibility).

3.3 THE CONTINUOUS UPDATE OF CATEGORIES

In this section, I review evidence for the claims that (i) the category repre-

sentations belonging to a given sound are subject to continuous update, and

that (ii) such update can occur within the lifetime of a single individual. These

statements are clearly not uncontroversial: throughout the 20th century, many

popular approaches to sound change have assumed that category representa-

tions can only change across generations, and, by extension, that the agents of

sound change are language acquirers. In the first half of this section, I take a brief

look at some representative examples of the latter point of view, labelled ‘ac-

quisitionism’ by Honeybone (2006), Honeybone & Salmons (to appear). This is

followed by an overview of the research on changes to category representations

within individuals, which constitute strong evidence against the strict acquisi-

tionist approach. Finally, I briefly discuss some findings suggesting that category

update is subject to certain conditioning factors that can aid or inhibit it.

Before introducing the debate on acquisitionism, it will be useful to clarify

the notion of changes to category representations, and how this might be con-

ceived of in acquisitionist and anti-acquisitionist approaches. In the previous

sections, it was suggested that knowledge of categories includes probabilis-

tic details. If categories are represented as probability distributions defined

over phonetic space, these details can easily be captured. A change to a cate-

gory representation will then consist in altering the parameters that define the

corresponding probability distribution. For instance, many of the simulations

described in the next two chapters use normal distributions to represent sound

categories. A normal distribution is defined by two parameters: its mean and

its standard deviation. Thus, the category representation will change when

one or both of these parameters are modified. The anti-acquisitionist approach

holds that such changes can affect the category representations of a single

individual, causing an observable (or at least detectable) change in their speech
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Figure 3.7: Changes to the representation of a category after the presentation
of a deviant example (black vertical line). The dark grey line corresponds to the
category before the presentation of the example, and the light grey line after. The
means and the standard deviations of the original vs. changed distributions are
also indicated.

over time even after the critical period.9 Typically, this type of category update

is envisioned as a reaction to examples of a given category that differ signifi-

cantly from those predicted by the speaker’s own representations. Figure 3.7

provides an illustration, where both the mean (µ) and the standard deviation

(σ) of a given category change slightly after the presentation of a deviant ex-

ample (represented by the black line). Of course, this example is somewhat

exaggerated, as a single token is unlikely to cause a clearly observable shift in

category representations. Once the anti-acquisitionist perspective is understood,

acquisitionism needs little explanation. Acquisitionists claim that changes to

category representations are limited to the critical period, and cannot take place

in adult speakers. Since adult speakers are not capable of altering their speech

even if they are exposed to patterns different from their own, sound change

will only be observable across generations.

acquisitionism In the following few paragraphs, I briefly review some

works that adhere to the idea of acquisitionism, starting with Jakobson’s famous

9. This is not equivalent to saying that adults can change their representations just as much
as language acquirers, only that a certain amount of flexibility remains even after the critical
period. Note also that the exact length and nature of the critical period is not particularly
relevant to the present account.
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Kindersprache (Jakobson 1942/1968). This work is not fully committed to acqui-

sitionism, as it suggests that adults can actually adapt to changes in the ambient

language (see e.g. Jakobson 1942/1968: p. 18). Nevertheless, this book already

contains some of the characteristic arguments of acquisitionism, and acquisi-

tionist thinking still seems to be greatly influenced by its claims. Early on in the

book, Jakobson argues that children can initiate linguistic changes by rejecting

‘a certain component of their linguistic inheritance’ (Jakobson 1942/1968: p.

18). This claim forms the basis of a larger investigation, in which Jakobson finds

striking parallels between language acquisition and implicational universals

in the sound systems of the world. To give an example, Jakobson claims that

children acquire coronal and labial consonants before velar ones, which corre-

sponds well with the cross-linguistic observation that velar consonants imply

the presence of coronal/labial ones (i.e. there are no languages with only velar

consonants). Although almost all the parallels suggested by Jakobson have been

found to be problematic (see e.g. Menn & Vihman 2011 for counterexamples),

they continue to be seen as compelling evidence for acquisitionism.

A stronger version of acquisitionism is often presented in generative accounts

of sound change, where children are seen as the primary or even the only source

of sound change. A particularly clear statement of this position is found in Hale

(2003: p. 345):

[. . . W]e believe that “change” is to be conceived of as the set of

differences between the grammar generating the primary linguis-

tic data (PLD) used by an acquirer and the grammar ultimately

constructed by that acquirer.

In this model, sound change is cross-generational by definition: changes only

occur when the learner mistakenly constructs a grammar that is different from

the adult grammar. Such mistakes on the part of the language acquirer are

assumed to result either from distributional imbalances in the limited corpus

of data they have to rely on, or the misinterpretation of performance errors as

grammar-internal effects (Hale 2003: p. 349). Moreover, Hale (2003) clearly

states that the grammars he refers to are ‘unique entit[ies] established at the

end-point of the acquisition process and not subsequently modified during

the lifetime of the speaker’ (Hale 2003: p. 365, fn. 9). Although he acknowl-

edges that speakers are capable of modifying their production by constructing
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additional grammars, he claims that such changes are qualitatively different

from changes introduced during language acquisition. Thus, this model is truly

acquisitionist in that it dismisses changes in the speech of adults as irrelevant

and restricts the locus of sound change to language acquisition.

Although generative treatments of sound change are not always so clear

about the role of language acquisition, this might simply be due to the fact that

acquisitionism is so widely assumed that it is not even necessary to make an

explicit statement about it. Indeed, if first language acquisition is viewed as a

domain-specific process guided by a language acquisition device that ‘turns off’

at the end of the critical period (a standard assumption in generative linguistics;

see e.g. Chomsky 1980), it is difficult to see how any linguistically significant

changes could take place outside the critical period. In other words, it is not

surprising to see that acquisitionism is so widely accepted within generative

linguistics given the close affinity between its main ideas and the standard

assumptions of generative linguistics.

While acquisitionism is particularly popular within generative linguistics, it

is by no means restricted to it. Acquisitionist ideas are also present in approaches

that are more or less agnostic with respect to strong generative assumptions.

In fact, one of the central tenets of variationist sociolinguistics, the ‘apparent

time hypothesis’ is strongly tied to the notion of acquisitionism. Consider the

following quote from Chambers & Trudgill (1980: p. 165–166; as cited in

Harrington et al. 2000):

[. . .] the validity of [studies based on apparent time] hinges crucially

upon the hypothesis that the speech of, say, 40 year olds today

directly reflects the speech of 20 year olds twenty tears ago, and is

thus comparable for diffusion research to the speech of 20 year olds

today [. . .]

That is, the idea that sound change can be investigated by looking at differ-

ent age groups within the same community assumes that individuals’ speech

patterns become fixed at some point during their lifetime – otherwise all age

groups could potentially end up with the same pattern, even if there was an

ongoing sound change.

One final approach that should be mentioned here is the leap model de-

scribed in Section 2.3.1 (see e.g. Ohala 1981, 1993, Blevins 2004, 2006). As the



64 Theoretical assumptions

reader might recall, this approach locates the source of sound change in errors

and reanalyses during the transmission of language (Blevins 2006: pp. 126–

129). Although Greenlee & Ohala (1980) argue that transmission errors can

occur both in children and adults, it is not clear how the blatant reanalyses that

form the basis of this approach could take place in a listener whose representa-

tions are already fully established. Accordingly, Blevins’ work focuses exclusively

on cross-generational transmission. This means that the leap model is clearly

acquisitionist: the learner is seen as the primary agent of linguistic change.

anti -acquisitionism As the preceding paragraphs have demonstrated,

there is a wide range of different approaches within the study of sound change

which argue for some form of acquisitionism. Consequently, the notion of ac-

quisitionism is intimately tied up with a number of further issues including

universal grammar, apparent time and transmission errors. A convincing argu-

ment against acquisitionism would have to engage with each of these, which

is well beyond the scope of the present chapter. Therefore, my goal is not to

argue against the existence of sound changes rooted in language acquisition,

but to show that the strong version of acquisitionism is not tenable: the speech

patterns of individuals can and do change after the critical period.10 Indeed,

this was all that I claimed at the beginning of this section. In what follows,

I describe three different types of changes that can take place in the speech

of an individual (this classification and part of the discussion below has been

adapted from Bane et al. 2010): short-term changes, long-term changes and

‘medium term’ changes.

There are numerous studies investigating short-term changes in the produc-

tion patterns of individuals (e.g. Natale 1975, Gregory et al. 1993, Goldinger

1998, Pardo 2006, Nielsen 2008, Babel 2009; such changes are also sometimes

referred to as phonetic or sociolinguistic accommodation). The general research

themes in these studies are similar: they all investigate rapid changes in the

speech of their subjects that occur as a reaction to some type of input that differs

10. It should be noted that the burden of proof rests on acquisitionists: I do not know of any
convincing empirical investigation that demonstrates a clear change between two generations
that cannot be the result of anything other than some kind of reanalysis or transmission error
during language acquisition. As the rest of this section shows, such investigations do exist for
the anti-acquisitionist position.
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from their own speech. However, the research methods used to investigate this

question differ greatly across the studies. Some of them are conducted in a

controlled laboratory setting, where the input consists of a pre-recorded (and po-

tentially artificially manipulated) list of stimuli (Goldinger 1998, Nielsen 2008,

Babel 2009), while others use more natural data from dyadic conversations (Na-

tale 1975, Gregory et al. 1993, Pardo 2006). The measures used to determine

whether a change has taken place also differ from study to study. Thus, Natale

(1975) and Gregory et al. (1993) look at intensity and pitch, which are both

relatively broad properties of speech; Goldinger (1998) and Pardo (2006) use

perceptual judgments from a separate set of subjects to see if the speech of the

speakers becomes more similar to the input over time; and Nielsen (2008) and

Babel (2009) rely on instrumental measurements of specific acoustic features

such as voice onset time and formant values. Regardless of the techniques

employed, all studies come to very similar conclusions: there are significant

changes in the subjects’ speech, which are clearly related to the input they re-

ceive. In the case of conversational studies such as Natale (1975), Gregory et al.

(1993) and Pardo (2006), the pairs converge to each other over the conversa-

tion, whereas in a laboratory setting, subjects shift their pronunciations towards

the stimuli they are exposed to. This provides a certain degree of support for

anti-acquisitionism, as it shows that individuals’ pronunciation patterns are

not entirely fixed, and can change substantially under the right circumstances.

However, it is not clear whether this type of short-term phonetic convergence

can have lasting effects on the speech of individuals. In order to determine this,

we have to look at long-term studies of changes in individuals.

Although real-time studies of changes in individuals are notoriously difficult

to implement, there is now a solid body of evidence suggesting that such changes

do occur. One particular line of research has been focusing on a phenomenon

whose existence has probably always been acknowledged, but was previously

only supported by anecdotal evidence: the late adoption of non-native dialects.

This typically happens when speakers relocate to a different dialect area, and

receive considerable exposure to the new dialect. To cite an example, Sankoff

(2004) presents a longitudinal study of two Northern English speakers spanning

35 years. While the lexical sets strut-foot and trap-bath have the same

realisations in Northern English dialects, most other dialects have a distinction
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between strut and foot, and some of them also between trap and bath. After

being exposed to dialects where all of these lexical sets are realised differently,

both speakers successfully unmerged strut and foot, and one of them also

trap and bath. Evans & Iverson (2007) also look at long-term changes in

Northern English speakers exposed to Southern English speech (as university

students). They demonstrate gradient shifts in the realisations of the strut

and bath lexical sets over time. A related study by Sancier & Fowler (1997)

shows that a native speaker of Brazilian Portuguese studying in the United

States exhibits gradient shifts in the voice onset time (VOT) of fortis consonants:

her VOT is shorter after spending several months in Brazil, and longer after

spending time in the US. All of these studies suggest that adults are capable

of substantially modifying their speech after being exposed to speech patterns

different from their own.

Perhaps even more relevant is the series of studies conducted by Harrington

and colleagues (Harrington et al. 2000, Harrington 2006, 2007), which inves-

tigates long-term gradient changes in an individual that parallel changes in

the speech community they belong to. These studies focus on Queen Elizabeth

II’s annual Christmas Broadcasts, looking for changes in her vowel realisations

over a period of 50 years. Harrington et al. (2000) and Harrington (2007) find

several changes which seem to mirror shifts that took place in Received Pro-

nunciation: the Queen’s vowel space undergoes a significant expansion along

the dimension of F1, mainly due to the lowering of the trap vowel, and a

compression along the dimension of F2, at least partly due to the fronting of

the goose vowel. Similarly, Harrington (2006) demonstrates that the Queen’s

realisation of the kit vowel in word-final position has become more tense (a

process called ‘happy-tensing’), following a similar shift among speakers of

Standard Southern English. These observations are particularly relevant to this

thesis inasmuch as they show that individuals well past the critical period can

participate in ongoing sound changes through gradient shifts in their category

realisations. The results relating to long-term changes presented in the preced-

ing two paragraphs provide strong support for the assumption that individuals

are capable of updating their category representations.

One final study that should be mentioned here is Bane et al. (2010), which

investigates lasting changes in the speech of individuals at a much finer time-
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scale. Following Bane et al. (2010), I will refer to these as ‘medium term’

changes. The data that serves as the basis of this paper comes from a reality

television show produced in the United Kingdom, and consists of VOT mea-

surements of fortis plosives from four speakers taken regularly over a period of

three months. They find significant changes in VOT as a function of time, which

are related to perturbations in the social dynamics of the group. Interestingly,

the patterns of change observed in this study are non-monotonic in that some

speakers’ VOT shows both increases and decreases within the same three month

period. While the changes reported in Bane et al. (2010) are not simple patterns

of convergence (as opposed to the changes reported in the short-term and

long-term studies discussed above), they clearly demonstrate that adjustments

to category realisations can take place in a continuous fashion, providing further

support for the main claim of this section.

Although the results presented above clearly support the anti-acquisitionist

position (even if they do not rule out the possibility of changes that occur

in acquisition), a few minor qualifications are in order before we move on

to the next section. Most of the studies discussed above find that the extent

of the changes is affected by a number of social and linguistic variables. It

has already been noted that the shifts in VOT reported in Bane et al. (2010)

are conditioned by social perturbations. Pardo (2006) and Babel (2009) also

find that social factors have an important role in predicting whether a subject

will shift towards a new pattern. Pardo (2006) reports that the conversational

role of the subject and their sex affect the extent to which they change their

speech. Moreover, Babel (2009)’s study reveals that convergence towards the

input pattern can be inhibited when the participant has a relatively negative

social attitude towards the speaker who produces the input stimuli. Linguistic

factors also play an important role in the phonetic shifts reported above. Babel

(2009) reports that certain vowels are more likely to exhibit shifts than others,

and that this might be related to the large amount of variability shown by

these vowels. Nielsen (2008) finds that there are no phonetic shifts along the

dimension of VOT when the shifted pronunciation would endanger the contrast

between fortis and lenis obstruents. Word frequency can also affect short-term

changes: according to Goldinger (1998), low-frequency words are more likely

to shift towards the input stimuli than high-frequency words. I believe that these
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conditioning factors will prove crucial in understanding the dynamics of sound

change at a fine-grained level, although many of these effects will need to be

replicated in further experiments to ensure their validity. However, this thesis

looks at the behaviour of sound systems at a much broader level. Therefore,

the conditioning factors on phonetic shifts in individuals will not form part of

the simulations presented in the next chapters.

3.4 PHONETIC BIASES

This section presents an argument to the effect that speech production and

perception are affected by weak phonetic biases that apply universally and

automatically. One example has already been briefly discussed in Chapter 1: it

is widely reported that vowels tend to undergo centralisation in prosodically

weak positions (see e.g. Gendrot & Adda-Decker 2007 for an investigation that

demonstrates this effect for Arabic, English, French, German, Italian, Mandarin

Chinese, Portuguese and Spanish). This tendency is usually attributed to a

phonetic bias that causes vowels to ‘undershoot’ their target articulation when

the vowel is not sufficiently long, or produced with less articulatory energy

(Lindblom 1963; Szeredi 2010). Some type of relationship between purely

phonetic factors and properties of sound systems is almost universally assumed.

A number of hypotheses about the nature of this relationship have already been

discussed in Chapter 2. This might make it somewhat unclear why phonetic

biases need to be argued for in a separate section. The motivation for the

foregoing discussion lies not in the absence of phonetically oriented approaches

to sound change and phonology, but in the lack of rigour with which the notion

of ‘phonetic bias’ is treated. It might not be necessary to argue for the general

role of phonetics in shaping sound systems, but any specific operationalisation

of phonetic biases needs to be presented explicitly and compared to the existing

alternatives. Accordingly, this section starts with an attempt to define phonetic

biases in a clear and concise way, while the rest of the section ties this definition

to existing accounts and provides arguments that support it.

Before I present the definition of phonetic bias adopted in this thesis, it

will be useful to provide a schematic description of the processes of speech

production and perception. The stages identified in this process will be used to
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speaker listener

−→ −→ −→

phonetic
encoding articulation

auditory
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categorisation

Figure 3.8: The late stages of speech production and the early stages of speech
perception.

delimit the range of effects that are called phonetic biases. Since our focus is

on sound categories, only the late stages of speech production and the early

stages of speech perception will be discussed. Processes related to the sequential

order of sound categories will be ignored. The diagram in Figure 3.8 presents

a summary of the relevant processes in production and perception (based on

Kess 1992 and Levelt et al. 1999). The first stage is phonetic encoding, where the

speaker selects a phonetic target for a given category. In the next stage (articu-

lation), this target is transformed into a set of articulatory instructions, which

are carried out by the vocal tract. When the acoustic signal reaches the listener,

it is first transformed into a raw psychophysical representation by the auditory

apparatus in the course of auditory perception. This representation serves as

the input to the last stage, where a number of higher-level processes apply to

find a category label for the stimulus (categorisation). Crucially, while phonetic

encoding and categorisation rely strongly on the mental representation of sound

categories (and will be referred to as higher-level processes), articulation and

auditory perception are both performed automatically, with little intentional

control (and will be referred to as low-level processes).

Since this thesis looks specifically at the role of universal phonetic factors in

sound change, phonetic biases have to be defined without reference to language-

specific category representations. Therefore, the definition is restricted to low-

level processes (that is, processes that apply after phonetic encoding and before

categorisation). Moreover, it is important to differentiate between consistent
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and accidental effects: production and perception are subject to a certain degree

of random noise as a result of the large number of variables affecting them,

but some effects are found consistently in certain environments. For example,

there is always a certain amount of accidental variation in the quality of a given

vowel category, but it is only in non-prominent positions that centralisation

takes place consistently. In this thesis, only the latter effect is termed phonetic

bias. In the following definition, target refers to the output of phonetic encoding,

and percept to the input to categorisation:

(3.9) A phonetic bias is a consistent mismatch between a class of targets and

the corresponding percepts, which results from low-level properties of

articulation or perception.

It is important to note that this definition draws a sharp distinction between

learnt patterns and biases by asserting that the latter come from low-level

processes. This means that phonetic effects can apply at two distinct levels

both in production and perception. In other words, there are two different

kinds of phonetic patterns: high-level and low-level (or learnt and universal,

respectively). The ubiquity of fine-grained cross-linguistic variation in phonetic

realisation along with an ability to produce and perceive fine phonetic details

argues strongly for the existence of high-level patterns (see Pierrehumbert 1999,

Hawkins 2003 and Section 6.1 of this thesis for further discussion). As for low-

level phonetic patterns (i.e. phonetic biases), the recurrence of certain types of

phonetic effects in genetically unrelated languages suggests that they must share

some universal core, even if they differ in their degree and particular details.

The example of vowel centralisation will help to make this distinction clearer.

According to the view presented above, vowel centralisation manifests itself

in the phonetic make-up of different languages in two forms: as a low-level

phonetic bias and a high-level learnt phonetic pattern. Note that I am not

suggesting that some languages exhibit only the low-level pattern and some

others only the high-level one, but that the two patterns exist alongside each

other within the same language. At this point, it will be useful to remind the

reader of the account of sound change that serves as one of the main inspirations

for the arguments developed in this thesis: the nudge model. As it has already

been explained in Section 2.3.2, the nudge model views learnt patterns as
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resulting from the accumulation of the effects of phonetic biases in category

representations. This accumulation is mediated by a feedback loop based on

the process of category update described in the previous section. For instance,

each production of a vowel in a non-prominent environment will be slightly

displaced towards the center of the vowel space through vowel undershoot.

These consistent displacements will be fed back into the representation of the

category, nudging the category representation ever closer to the center of the

vowel space. It is in this sense that a given language can show the effects of

both high-level and low-level manifestations of a given phonetic pattern. The

phonetic target will be chosen in accordance with a learnt pattern of vowel

centralisation (which can be traced to the low-level effect in a historical sense);

and the target will be further displaced towards the centre of the vowel space

through the automatic application of a bias towards undershoot.

The effect of the phonetic bias will never be seen on its own, as all observable

productions of a given vowel category will already carry the influence of both

high and low-level phonetic effects. This is not equivalent to saying that every

language will have phonologised the phonetic bias (at least not if the term

phonologisation is used in the conventional way). A learnt phonetic effect does

not have to be particularly robust and certainly does not have to resemble

categorical phonological patterns. What I am proposing here is simply that the

low-level phonetic bias will inevitably give rise to higher-level patterns through

the production-perception feedback loop. Such high-level phonetic effects may

be relatively weak in many cases, but they will still be learnt. The simulations

presented in the next chapters will illustrate this point in more detail.

The definition of phonetic biases given in (3.9) is compatible with most

existing approaches to the relationship between sound change and phonetics,

even if many of these do not explicitly distinguish between low-level and high-

level effects. Although a comprehensive review of these accounts is outside

the scope of this thesis, I will briefly discuss a few representative examples

below (note that most of these approaches have already been discussed in

detail in Chapter 2). First, Hyman (1976) suggests that phonological patterns

emerge from ‘intrinsic’ phonetic variations, which are ‘the universal, innocent

by-products of [. . .] extrinsic gestures’ (Hyman 1976: p. 407). This is a clear

reference to phonetic biases in the same sense as in (3.9). Ohala (1981, 1993)
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and Blevins (2004, 2006) also trace sound change to ‘language universal factors,

i.e. physiological and psychological factors common to all human speakers at any

time’ (Ohala 1993: p. 238) in their transmission-based account of phonetically

natural changes. Boersma & Hamann (2008) attempt to account for auditory

dispersion in an optimality theoretic framework by invoking a combination of

auditory cue constraints and articulatory constraints. The latter of these are

very similar to phonetic biases in that they embody a tendency towards minimal

effort in articulation, which is clearly a low-level property of production.

Garrett & Johnson (2013) is perhaps even more relevant to the present

discussion, since it not only acknowledges the importance of phonetic biases in

sound change, but also presents a typology of different bias factors. Although

some of their categories are not entirely compatible with the present account

in that they cannot easily be classified as high-level or low-level effects (e.g.

perceptual confusion), two of them correspond very closely to phonetic biases:

aerodynamic constraints and gestural mechanics. It will be useful to briefly

discuss some of the bias factors they list under these headings, as this might

help to make the notion of phonetic bias a little more concrete. Two different

aerodynamic constraints are mentioned in the paper. The first of these has

already been discussed in Chapter 2: stops tend to be devoiced as a result of the

conflict between the low supraglottal pressure required for voicing and the high

supraglottal pressure involved in the production of stops. The second constraint

shifts voiced fricatives towards glide-like articulations as a result of a similar

conflict between the low supraglottal pressure needed for voicing and the high

supraglottal pressure associated with frication. It should be clear that both of

these constraints result from universal articulatory factors that have nothing

to do with high-level aspects of production. Gestural mechanics – the second

type of phonetic bias factor highlighted above – relate to inertial properties of

articulators. The most relevant example given by Garrett & Johnson (2013) is

‘gestural blend,’ whereby ‘the phonetic plan for an utterance places competing

demands upon a single articulator’ (Garrett & Johnson 2013: p. 63). Gestural

blends comprise a wide range of phonetic patterns, most of which are examples

of coarticulation, to use more traditional terminology. Garrett & Johnson (2013)

discuss the example of the fronting of [k] in the sequence [ki] as opposed
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to [ku], which results from the simple fact that the tongue dorsum already

anticipates the front articulation of the vowel in [ki] during the initial stop.

Although the discussion above clearly demonstrates that phonetic biases

play an important role in other accounts as well, the widespread acceptance of

the notion does not justify its use in itself. There are two independent arguments

that can be advanced for phonetic biases. The first of these has already been

alluded to above. The fact that a wide range of phonetic and phonological

patterns are shared among numerous unrelated languages remains somewhat

of a mystery unless we assume that they all follow from the same universal

phonetic sources. This is not to say that the patterns themselves are simple

manifestations of universal biases. As it has been noted above, each language

likely shows the effects of high-level and low-level incarnations of the same

patterns at the same time, which means that probably all phonetic effects have

an important language-specific component as well. Nonetheless, the high-level

pattern and the low-level one are linked to each other in a historical sense, which

explains how a universal phonetic pressure can lead to a wide range of very

similar but still learnt phonetic processes in a variety of different languages.

The second argument is based on the fact that every speech scientist has to

assume certain strong universal phonetic biases regardless of their take on the

role of learning in phonetics. For instance, the oral cavity provides a limited

amount of space in which articulatory manoeuvres can be performed: the

tongue cannot move beyond the palate, nor can it fall through the jaw, which

limits the range of possible vocalic and consonantal articulations considerably.

Moreover, the articulators cannot teleport from one position to another, which

means that there will always be a certain amount of coarticulation between

neighbouring sounds relying on the same articulator. Since these restrictions

result from elementary properties of physics, the assumption of at least some

phonetic biases is inevitable regardless of one’s view of phonetics.

This takes us to the last topic discussed in this section: the strength of

phonetic biases. While there is no doubt that there exist a set of strong biases

resulting from the physiology of the vocal tract, the claim at the very beginning

of this section explicitly refers to weak universal biases. In this thesis, weak

phonetic biases are defined as low-level consistent pressures with clear targets
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(e.g. the centre of the vowel space in the case of vowel undershoot), whose

effects consist in small movements towards these targets without necessarily

reaching them. For example, vowel centralisation creates a clear difference

between vowels in prominent versus non-prominent positions, but it does not

necessarily turn all unstressed vowels into schwas. Contrarily, the physical

boundaries of the vocal tract constrain articulatory movements in an inviolable

way: there is no way in which the articulators can move beyond certain limits.

The strength of biases likely varies on a continuous scale from insignificant to

inviolable. This thesis focuses on weak biases only, given that these are the

phonetic pressures that can lead to sound change, but do not necessarily do

so. The potential effects of bias strength will be investigated in more detail

in the following chapters.11

3.5 THE FILTERING LISTENER

In Section 2.4, I discussed functionalist models of sound change, which focus

on the tendency to maintain contrasts. I noted that many such models are

problematic, since they assume that speakers actively optimise their sound

systems. Near the end of the section, an alternative model was introduced,

which locates the source of contrast maintenance in language use. The main

idea was that productions of a given category that are easily perceivable as

belonging to a different category will play a diminished role in category update,

leading to a pressure for categories to stay well-separated. This hypothesis

about the role of the listener in contrast maintenance will be referred to as

the ‘filtering listener’ approach after Padgett (2011). In what follows, I give a

detailed description of this approach, and cite a number of phenomena where

this type of explanation has proven useful. Although this thesis will not model

any other factors relating to contrast maintenance, I provide a brief overview

of these at the end of the section.

One of the earliest attestations of the filtering listener hypothesis is in

Martinet (1952):

11. The notion of bias strength has been examined in two recent papers by Moreton (2008)
and Yu (2011), but their measures of bias strength are not applicable to the present problem,
since they make no distinction between low-level and high-level phonetic effects.
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For each [phoneme], in a given context at least, there must be an

optimum which we might call the center of gravity of every range

of dispersion, but actual performances will normally fall somewhat

off the mark. In the normal practice of speech, some of them are

even likely to fall very far off. If too dangerously near the center

of gravity of some other phoneme, they may be corrected, and, in

any case, will not be imitated. If not unusually aberrant, slightly

beyond the normal range of dispersion, but not in a direction where

misunderstanding might arise, they would in no way threaten to

impair mutual understanding.

(Martinet 1952: p. 5; emphasis mine)

What Martinet seems to be suggesting is that listeners are capable of somehow

filtering out ambiguous tokens. As it was noted in Section 2.4, Martinet does

not explain how this filtering actually happens, and is therefore often accused

of attributing implicit knowledge of optimal sound systems to speakers (see

e.g. Wedel 2004: p. 129). While I believe that this criticism might be a little

too harsh, I agree that a more rigorous description of the filtering mechanism

is necessary.

Labov (1994) provides a particularly illuminating discussion of how filtering

can take place in a listener. His starting assumption is that ‘[...] it is not the desire

to be understood, but rather the consequence of misunderstanding that influences

sound change’ (Labov 1994: p. 586). In other words, he suggests that the source

of contrast maintenance lies in the misperception of ambiguous productions.

Labov provides the following example for the mechanism he proposes. Consider

a partial vowel system like the one illustrated in Figure 3.9. The three categories

are well-separated in phonetic space, but a single production of /o/ (as in

block) happens to fall within the range of /æ/ (as in cat). It is possible that

the lexical item containing this token will still be recognised, but there is a

small chance that recognition will fail. If such a failure takes place, the aberrant

example of /o/ will not contribute to the ‘pool of tokens’ that determine the

distribution of /o/. This can be rephrased as follows in the terminology of the

present paper: ambiguous tokens might fail to take part in category update.

Labov provides another, slightly modified example as well, which is illustrated

in Figure 3.10. In this case, the categories /æ/ and /o/ are separated by a wider
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/ae/ /o/ /oh/

F
1

F2

Figure 3.9: Three non-overlapping low vowel categories. A single production of
/o/ falls within the range of /æ/, but does not get fed back into the representation
of the category /o/ due to misperception.

/ae/ /o/ /oh/

F
1

F2

Figure 3.10: Three non-overlapping low vowel categories. Even extreme produc-
tions of /o/ will not fall in the range of /æ/, which means that they will be fed
back into the representation of the category /o/.
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margin, which means that the peripheral token of /o/ will likely be perceived

correctly. As a result, it will contribute to category update. These tendencies

have important consequences in each case. In the scenario in Figure 3.9, the

relative position of the three categories is likely to remain the same, given

that /æ/ and /o/ cannot shift any closer to each other without causing a large

number of misperceptions. However, the scenario in Figure 3.10 can easily

lead to change, as both/o/ and /æ/ are free to shift towards each other due to

the large gap between them. It should be noted that the mechanism proposed

by Labov does not assume any goal-directed behaviour promoting contrast

maintenance on the part of the listener: the observed patterns emerge as a

by-product of simple misperception.

Guy (2003) presents a similar account of the interaction of morphological

factors with coronal stop deletion. While a large proportion of final coronal stops

are deleted in monomorphemic words like mist, this proportion is decreased

significantly in words where the final coronal stop marks a past tense form

or a past participle (e.g. missed). Guy locates the source of this difference

in misperception. Past tense forms without a final coronal stop can easily be

mistaken for present tense forms. If they are, they will be added to the listener’s

distribution of present tense forms and will not count towards the past tense

distribution. If this happens regularly, it might create the illusion that the rate

of coronal stop deletion is lower in past tense forms than in monomorphemic

ones, simply because many relevant examples are removed from the corpus

of past tense forms. This leads to the desired result: coronal stop deletion will

occur less in morphologically complex forms than in monomorphemic ones. This

mechanism is not entirely identical to the one described above, even though

its effects are essentially the same: in the former example, the misperceived

token was not added to the representation of either vowel category, while in

the latter case the misperceived token is added to the wrong representation.

Blevins & Wedel (2009) term the former process ‘variant pruning’, and the

latter one ‘variant trading’. The simulations in the next chapters only implement

variant pruning, which might be seen as an unwarranted omission, but this

is unlikely to make a significant difference given that the two processes have

very similar effects.

Wedel (2006) relates the filtering listener hypothesis to an important ob-

servation about lexical access in psycholinguistics: lexical items with a large
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number of close lexical neighbours are harder to retrieve than lexical items in

sparser areas of phonetic space (Luce & Pisoni 1998). Luce & Pisoni (1998)

argue that lexical access involves a competition between lexical items similar

to the stimulus perceived by the listener. If the stimulus activates a densely

populated area of phonetic space, heavy competition among similar items might

‘[delay processing] to the point that the percept will fail to be assigned to any

lexical category at all’ (Wedel 2006: p. 264). As Wedel points it out, overlapping

category representations will often lead to more competition in lexical access,

which will result in higher rates of failure (especially if the contrast between

the categories carries a high functional load; cf. Blevins & Wedel 2009). This

account also points out an important feature of many approaches relying on

the filtering listener hypothesis: their lexical orientation (see e.g. Silverman

2012 for a clear statement of this position). That is to say, most authors sug-

gest that this type of misperception occurs mainly when the neutralisation of

a contrast would create homonyms or near-homonyms. This might well be

the case, but I believe there is no reason to assume that productions leading

to non-neutralising cross-category confusion (e.g. drop pronounced as drap)

cannot be misperceived in a similar way. Unfortunately, there is currently no

conclusive empirical evidence for either a strictly lexical approach or one that

also allows non-neutralising forms to be filtered out.

Although the filtering listener hypothesis is based mostly on indirect evi-

dence, there is a particular finding in the literature that argues strongly for

at least a functionally equivalent mechanism. As it has already been noted

in Section 3.3, Nielsen (2008)’s study of phonetic imitation reports a curious

asymmetry: fortis stops with artificially lengthened VOT are readily imitated by

the subjects, as opposed to fortis stops with shortened VOT, which are not. This

result can be interpreted as a manifestation of the tendency towards contrast

maintenance. Note that imitation in this study was not immediate: the subjects

first listened to all the artificially modified stimuli, and then had to produce

the same (and related) words in a separate block. Thus, Nielsen’s finding is

compatible with the filtering listener account: it is possible that some ambigu-

ous tokens in the listening block did not take part in category update, or were

at least downgraded in some way by the participants, and therefore did not

significantly influence their production.
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Let us now turn to alternative accounts of how contrast maintenance is

achieved in speech. The mechanisms described below will not be incorporated

into the simulations presented in the next chapter, but it will be instructive

to compare them to the filtering listener hypothesis. Perhaps the best-known

alternative hypothesis is Lindblom’s (1990) H&H theory, which sees hyperarticu-

lation and hypoarticulation (the Hs in H&H) as the speakers’ adaptive responses

to various constraints on speech. Hypoarticulation reduces the amount of effort

needed to produce speech, whereas hyperarticulation increases the clarity of

the message being transmitted. It is the latter effect that can result in contrast

maintenance when the production of ambiguous tokens would lead to a signif-

icant loss of information. Crucially, this approach assumes that the source of

contrast maintenance is the speaker, who implicitly monitors the communica-

tive efficiency of the signal, and makes adjustments where necessary (and is

therefore termed the ‘considerate speaker’ hypothesis by Padgett 2011). In this

sense, the H&H approach is much like the goal-oriented accounts described in

Section 2.4. It is arguably less plausible than the filtering listener hypothesis,

which does not assume that speakers actively optimise their speech. However, it

will only be possible to decide conclusively between these two hypotheses once

they have been compared rigorously through empirical methods.

At this point, it is worth mentioning that there is another account that

identifies the speaker as the source of contrast maintenance, but which does

not assume the same amount of communicative awareness. Tilsen (in press)

suggests that while neighbouring sounds can exert coarticulatory pressures

on each other, low-level ‘inhibitory interactions between contemporaneously

planned articulatory targets result in dissimilatory effects, and over time these

effects can prevent speech targets from becoming perceptually indistinct’ (Tilsen

in press). These inhibitory interactions can keep the assimilatory effects of

coarticulation in check. Although Tilsen presents detailed experimental evidence

for this view, further investigation is needed to see whether this approach is

to be preferred to the ones discussed above.

In conclusion, the hypothesis that category update can be inhibited in

situations where the produced variants create ambiguity is widely assumed

in the literature, and is capable of accounting for contrast maintenance in

an elegant manner without requiring explicit optimisation on the part of the
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speakers. There is also a limited amount of empirical evidence for this view from

experiments such as Nielsen (2008), but this evidence in itself is not sufficient

to conclusively determine which approach is best suited to explaining contrast

maintenance. It is, however, important to note that the existence of alternative

explanations is not a major issue for this thesis. While the mechanisms discussed

above have very different sources, their effects are the same: they create a

situation where ambiguous parts of the speaker’s category distributions are

underrepresented in category update. Whether this occurs because the speaker

intentionally avoids such ambiguous productions, or because the listener filters

them out does not crucially alter the dynamics of the systems examined in

the next chapters.

3.6 SUMMARY

The main goal of this chapter was to explain the theoretical assumptions that

form the basis of the simulations presented in the rest this thesis, and to

provide detailed arguments for each of them. This is necessary inasmuch as

the usefulness of a model without a well-motivated theory behind it is highly

questionable. For the sake of clarity, the theoretical assumptions discussed in

this chapter are listed again below:

1. speech production and perception rely on abstract category representa-

tions implemented in a probabilistic way (3.1, 3.2);

2. the category representations of speakers are subject to continuous update

throughout their lifetimes (3.3);

3. speech production and perception are affected by weak phonetic biases

that apply universally and automatically (3.4);

4. productions whose category membership is ambiguous play a diminished

role in category update (3.5).

These assumptions will be the main design features of the artificial sound

systems examined in the remaining chapters. What I intend to show is that the

dynamics of these systems follow directly and inevitably from these principles.

That is to say, the behaviour of the simulations is not simply a result of specific
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tweaks in their implementation, but a substantive prediction of the theory of

category production, perception and update described in this chapter. The task

of presenting the details of the simulations will be taken up in the next chapter.

In order to consolidate the link between the behaviour of the simulations and

the underlying principles, this chapter will also test a number of different ways

of implementing these systems, showing that implementational details do not

crucially impact their dynamics.
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This chapter describes the implementation details of the simulations that serve

as the core of the argument presented in this thesis. These simulations all

look at artificial sound systems whose behaviours are driven by the theoretical

assumptions fleshed out in the previous chapter. The general structure of the

simulations is essentially the same throughout this thesis, although some smaller

details vary across different runs. Those parts of the simulations that can vary

will be referred to as their ‘parameters’. The main focus of the simulations is on

the so-called production-perception feedback loop (Pierrehumbert 2001): they

attempt to capture the evolutionary dynamics of a system where each production

has a chance to influence future productions by being fed back into category

representations. In other words, the simulations look at changes in category

representations over many thousands of iterations of simple speech interactions

consisting of the production of a token and its subsequent perception. Although

these types of simulations have already been examined in some detail by

Pierrehumbert (2001, 2002) and Wedel (2006), the present chapter expands

on these works in two key respects. First, it looks at the ways in which different

types of category representations influence the dynamics of these systems by

comparing implementations based on exemplar and prototype theory. Second,

it provides justification for the idea of simulating an abstract version of the

production-perception loop by comparing single-agent simulations to ones with

larger communities of agents.

The main motivation for the comparisons mentioned above is to show that

the simulation results in Chapters 5 and 6 are direct consequences of the

general principles described in the previous chapter. However, their results are

also important in their own right. They contribute to ongoing debates about

usage-based models of sound change and clarify the fundamental mechanisms

underlying the production-perception feedback loop.
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The usefulness of comparing exemplar-based and prototype-based implemen-

tations can be better appreciated in the light of current trends in computational

approaches to sound change. A significant portion of computational research

within historical phonology has emerged out of the usage-based models advo-

cated in Bybee (2001) and Pierrehumbert (2001), and therefore takes many of

their assumptions for granted. Perhaps the most important of these is the idea

of exemplar-based storage, according to which phonetic categories are repre-

sented by detailed memories of concrete utterances. For instance, an exemplar

theoretic model would represent the category [u] by recording the phonetic

details of all heard instances of this vowel. Although there is a considerable

amount of evidence that speakers do rely on exemplars in their production and

perception (see e.g. Goldinger 1996, 1998, Johnson 1997, Bybee 2001), the

notion of exemplar-based representations has been met with a certain amount

of skepticism among historical phonologists (see e.g. Bermúdez-Otero 2007,

to appear for some criticism). The resistance to the idea of exemplars has the

unfortunate consequence that the important results in works such as Pierre-

humbert (2001) and Wedel (2006) have also been neglected. While I happen

to agree with the hypothesis of exemplar-based storage, I would like to argue

that the results in these papers (and this thesis) do not crucially depend on this

assumption, insofar as they also emerge in more conservative prototype-based

models. This, however, is a non-trivial claim that needs to be investigated sys-

tematically. Through this investigation, I hope to bring the arguments of this

thesis and other computational work closer to researchers who might otherwise

be opposed to some aspects of usage-based models.

The comparison of single-agent and multi-agent simulations is motivated

by the fact that many existing simulations (including the ones referred to

above) are based on a simplified model of speech interactions that might seem

counterintuitive in certain ways. Specifically, they model a situation with a

single ‘soliloquising’ agent, who serves both as the source and the target of the

productions. Although this model has proven useful and instructive in many

ways, it is not clear whether it applies to more natural situations with several

speakers.1 The question is whether a simulation that models speech interactions

1. Wedel (2004) reports on a simulation with two speakers which suggests that at least some
aspects of such models do apply to multi-agent simulations as well.
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among multiple agents produces similar behaviour with respect to the evolution

of sound systems. This is an important issue, since some of the design features

of single agent simulations are somewhat unrealistic. For instance, it is not clear

in what sense a misperception can take place when there is only a single speaker.

The present chapter provides a clear solution to this problem by demonstrating

that the general dynamics of the simulated systems are independent of the

number of agents, and that the behaviour of abstract single-agent models is

identical to that of multi-agent implementations in key respects. The most

important consequence of the close parallels between single and multi-agent

simulations is that the former can be substituted for the latter in most situations.

This is a significant finding to the extent that single-agent simulations are

much more tractable, and in some cases their behaviour can be accurately

predicted through mathematical methods without having to run the simulations

themselves. The next two chapters rely heavily on these observations.

Thus, while the goal of the following sections in the narrow context of

this thesis is simply to set the scene for the simulations in the next two chap-

ters, some of their findings have important implications outside this thesis as

well. The structure of this chapter follows straightforwardly from the summary

presented above. Section 4.1 lays out the formal details of the simulations,

discussing a number of different alternatives where necessary. Then, Section

4.2 compares the behaviour of exemplar and prototype models. Finally, Sec-

tion 4.3 investigates the relationship between single-agent and multi-agent

implementations.

4.1 THE STRUCTURE OF THE SIMULATIONS

The simulations reported in this thesis are all based on the same implementation

of the production-perception feedback loop, illustrated in Figure 4.1 (note that

this implementation is almost identical to the one described in Wedel 2006).

Here is a step by step description of this procedure. First, the simulated agent

selects a production target by sampling one of their category representations

(Section 4.1.1). This roughly corresponds to producing a given segmental cat-

egory in the context of a specific utterance. In the next step, this production

target is slightly displaced by one or more low-level phonetic biases (Section
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sampling biases
ambiguity

filter
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token
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Figure 4.1: A schematic outline of way the production-perception feedback loop is
implemented in this thesis.

4.1.2). Finally, the resulting token is fed back into the agent’s category rep-

resentations or discarded depending on whether it is successfully perceived

(Section 4.1.3). Note that the processes referred to above all correspond closely

to the aspects of speech production and perception embodied in the theoretical

assumptions presented in the previous chapter. The following sections describe

each of these steps in detail.

4.1.1 Category representations and sampling

Echoing arguments from Ashby & Alfonso-Reese (1995) and Kirby (2010: pp.

41–45), Section 3.1 suggested that category representations can be modelled

as probability distributions created through a process of density estimation.

As will be shown in the following sections, the notion of density estimation is

particularly useful in the present context insofar as it allows us to treat exemplar

and prototype models in the same conceptual framework. This section focuses

on the ways in which probability distribution-based representations can be

used in production.

Let us first discuss prototype models of category representation. Prototype

models have been developed to account for subjects’ behaviour in categorisation

experiments, where they are asked to assign category labels to stimuli located in

a continuous psychophysical space (see e.g. Posner & Keele 1968). For instance,

subjects might be asked to assign different colours to two or more broad colour
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categories after a training phase with a limited set of stimuli (e.g. Nosofsky

1988). One pattern that emerges almost universally from such experiments

is that subjects can generalise learnt patterns to new stimuli, and that their

category decisions are guided by similarities between the training stimuli used

to establish the categories in the experiment, and the test stimulus they are

asked to label. Thus, if the two categories are blue and red, subjects will likely

label a previously unseen violet2 stimulus as blue, and a pink stimulus as red.

Prototype models explain this behaviour by suggesting that the probability of

assigning a category label to a given stimulus is proportional to the amount of

similarity between the stimulus and a so-called ‘category prototype’. Category

prototypes typically represent the central tendency of all the stimuli belonging

to a given category; in the case of blue, this would be the specific shade of blue

that best represents the broad range of colours normally referred to as blue.

Ashby & Alfonso-Reese (1995) develop a mathematical argument showing

that the behaviour of prototype models is identical to that of a model repre-

senting categories through parametric probability distributions. Although their

original reasoning is based on perception, it readily extends to production as

well. Therefore, the illustration below is based on speech production.

Figure 4.2 shows 25 tokens of the vowel [u] from American English (based

on Hillenbrand et al. 1995) and a parametric probability distribution estimated

from these tokens. Parametric in this context means that the estimation method

makes an a priori assumption about the distribution of the data, and attempts

to find the set of parameter values that create the closest possible fit between

the data and the chosen type of distribution. In the case illustrated in Figure

4.2, the assumption is that the data are normally distributed, which means

that density estimation consists in finding the appropriate parameter values

for a function whose shape is Gaussian (i.e. a normal distribution). Gaussians

can be defined in terms of two parameters: mean and standard deviation.

Therefore, the problem of density estimation reduces to finding the mean and

the standard deviation of the sample (Section 4.1.3 provides more details on

how this estimation is performed for Gaussians). If we assume that productions

of [u] are based on the normal distribution shown in Figure 4.2, we get the type

2. For those, like the author of this thesis, who are a little shaky on colour names: violet is
essentially bluish purple.
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Figure 4.2: 25 tokens of the vowel [u] from American English (grey vertical lines),
the corresponding parametric probability density function (the black curve) and
its two parameters.

of behaviour characteristic of prototype models: most production targets come

from the vicinity of the peak of the distribution (corresponding to the prototype),

and the likelihood of producing a token with a given F2 value falls off as we

move away from this peak.3 Given this parallelism, prototype-based category

representations in this thesis take the form of univariate and multivariate

normal distributions, depending on the number of phonetic dimensions in the

simulation. The probability density function of a univariate normal distribution

is as follows:4

p(x |ci) =
1

σi

p
2π

exp
�

−(x −µi)2

2σ2
i

�

, (4.1)

where p(x |ci) is the probability of producing a form with value x along a specific

phonetic dimension given a category label ci, σi is the standard deviation and

µi the mean of category ci. The multivariate case is more complicated:

3. Of course, this is merely a demonstration – Ashby & Alfonso-Reese (1995) present a
much more structured argument showing that the parallel between parametric probability
distributions and prototype theory follows from basic mathematical principles of density esti-
mation. It should also be noted that the representations proposed here (which are based on
normal distributions with varying means and standard deviations) are more closely paralleled
by general quadratic classifiers (Maddox & Ashby 1993) than by traditional prototype models.

4. While these formulae should be straightforward for those familiar with probability theory,
some readers might find them a little too arcane. However, it should be noted that understanding
the mathematics behind normal distributions is in no way essential for following the arguments
developed in the rest of this thesis, and the formulae have only been included for the sake of
completeness.
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p(x |ci) =
1
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exp
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− 1

2
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TΣ−1
i (x −µ i)

�

, (4.2)

where x = (x1, x2, . . . , xn) is a vector with a separate value for each of n

phonetic dimensions (e.g. F1, F2, F3, etc.), µ i = (µ1,µ2, . . . ,µn) is a vector

containing the means of category ci along each of these dimensions, and Σi is

the covariance matrix of ci (which specifies its standard deviation along each

of the phonetic dimensions and correlations between all pairs of dimensions).

Unless otherwise stated, all prototype-based simulations in the rest of this thesis

model the selection of production targets by sampling the distributions defined

in equations (4.1) and (4.2).

Exemplar models differ from prototype models in that they do not attribute

a distinguished role to the category prototype. Instead, category representations

are seen as sets of detailed memories, where each of these memories can

influence production and perception (Nosofsky 1986, 1988). Much of the

criticism levelled against exemplar theory concerns a corollary of this claim,

namely that speakers are capable of storing a large amount of redundant

information about speech. This is understandable in light of one of the main

guiding principles of early generative phonology, namely that phonological

representations should be as parsimonious as possible given that ‘[. . .] storage

space is at a premium’ (Kenstowicz 1994: p. 60). Proponents of exemplar theory

and related schools of thinking have countered this argument by suggesting that

there is no empirical evidence for such ‘aesthetic principles’ (Coleman 2000:

p. 111). There is, however, solid evidence for the idea of exemplar storage

from experimental psychology, psycholinguistics and related fields (see e.g.

Goldinger 1998).

As I have noted above, it is not my goal here to adjudicate between different

approaches to category storage. Instead, I am aiming to demonstrate that the

question of category storage is irrelevant to the topic at hand (within certain

limits, of course). This requires a comparison between prototype and exemplar

models, which, however, cannot easily be performed unless both of them are

formalised in the same mathematically explicit way. Therefore, let us turn to

the formal details of exemplar models.

Figure 4.3a shows a small subset of the [u] tokens from Hillenbrand et al.

(1995) along with an exemplar-based density function representing them.
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Figure 4.3: (a): 3 tokens of the vowel [u] from American English (grey vertical
lines) and the corresponding non-parametric probability density function (the
black curve); (b): the same for all 25 tokens.

Before explaining how the probability distribution is obtained from the data

points, it will be useful to point out that most approaches to exemplar theory

see the memories representing the tokens themselves as the primary units of

storage (and not the derived probability distribution). This could be visualised

by showing only the grey vertical lines without the curve corresponding to the

density function. However, if speech was based entirely on individual exemplars,

it is not clear how any intermediate productions could occur (or how previously

unheard stimuli could be categorised). Exemplar models overcome this difficulty

by suggesting that there is a certain amount of noise in production: while the

production targets are concrete exemplars, there is always some inaccuracy in

implementing these targets (see e.g. Pierrehumbert 2001). One way to model

this is to add a small amount of Gaussian noise to the target values. This is

where the curve in Figure 4.3a becomes relevant: the addition of Gaussian noise

creates a continuous function, which can be viewed as a probability distribution

defined over the set of all possible outcomes.

As it happens, the method of turning discrete distributions (i.e. individual

exemplars) into continuous ones (i.e. a probability density function) in this way

is a widely used device in statistics, referred to as ‘kernel density estimation’

(Silverman 1986). The basic principle behind this technique should be clear

from the example above: the continuous distribution is obtained by summing

over a set of functions centred around the data points, each of them having
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the same bandwidth or dispersion. Kernel density estimation is not particularly

meaningful in examples like Figure 4.3a with only three data points. Figure

4.3b (based on all 25 tokens) is a much more useful illustration which reveals

the main advantage of this technique, namely that kernel density estimates

can capture irregularities in the distribution of the data that are concealed by

parametric estimates like a normal distribution. This ability derives from the fact

that kernel density estimates do not have a predetermined shape and cannot be

defined through a fixed set of parameters. Because of this, such distributions

are commonly referred to as ‘non-parametric’.

Since exemplar models are essentially identical to kernel density estimates

(see Ashby & Alfonso-Reese 1995 for a more detailed argument), the properties

that make them so popular in experimental approaches can also be traced to

their non-parametric nature: they can successfully model patterns of behaviour

that cannot easily be accounted for if one assumes parametric representations

(e.g. categorisation performance in cases where there are discontinuities in

the structure of a category). Below are the formulae that I will use in the

exemplar-based simulations in this thesis:5

p(x |ci) =
1

∑n
j=1 wj

n
∑

k=1

wkKh(x − xk) (4.3)

Kh(x) =
1

h
φ

�

x

h

�

(4.4)

Equation (4.3) simply says that the representation of category ci in an exemplar

model is the weighted average of n kernels (where n is the total number of

exemplars, and wj is the weight assigned to the jth exemplar), each of which

is centred around a given exemplar. The role of the weights is related to the

notion of category update and will therefore be discussed in Section 4.1.3. The

kernels themselves are defined in equation (4.4), where φ(x) is the standard

normal distribution (i.e. a normal distribution with µ = 0 and σ = 1), and

h is the bandwidth of the kernels. This means that the kernels are Gaussians

with variance h2. Recall that the original reason for adding the kernels was to

5. Only a univariate version is provided, since all the exemplar-based simulations in this
thesis model cases with a single phonetic dimension. It should be noted, however, that this
method extends straightforwardly to multivariate cases as well.
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account for random noise in production. Therefore, parameter h can be seen as

a measure of the amount of production noise in a given simulation.

Modelling production noise through Gaussian kernels has an important

additional consequence. A production model based on sampling a kernel density

estimate will always produce a set of tokens whose expected sample standard

deviation is greater than that of the sample on which the estimate is based.

Appendix A presents a mathematical derivation of this claim. The overestimation

of the variance of a category will necessarily result in a situation where category

variance increases as the production-perception loop is iterated over and over

again. Indeed, this is what Pierrehumbert (2001) finds in her own simulations.

Pierrehumbert considers this a serious issue and proposes a more complicated

sampling mechanism to tackle it. However, variance inflation does not cause

any problems in the simulations presented in this thesis, as the phonetic biases,

the boundedness of phonetic space and ambiguity-related selection pressures

all act against it.

One might also ask whether variance inflation affects prototype models as

well. In a nutshell, the answer is no, at least not in their current form. This is

because the standard deviation of a normal distribution estimated on the basis

of a given sample is equal to the sample standard deviation. This means that

the prototype model of category production described in equations (4.1) and

(4.2) is not noisy in the same way as the exemplar model. Since there is no

reason to assume that a speaker with prototype-based representations should

realise articulatory targets more accurately than a speaker with exemplar-based

representations, a small modification has to be made to the prototype model.

This modification consists in displacing target productions slightly through

the addition of Gaussian noise, just as in the exemplar model. Although this

step might seem somewhat ad hoc, it is not without precedent: Feldman et al.

(2009) use the same strategy in their psycholinguistically grounded model of

speech production. Appendix A shows that adding Gaussian noise to target

productions has exactly the same variance inflating effect as the use of kernel

density estimates in exemplar models.

Below is a summary of the speech production mechanisms proposed for

exemplar and prototype models.
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(4.5) speech production in prototype models:

Production targets are chosen by randomly sampling a normal distribu-

tion (equations (4.1) and (4.2)). A small amount of Gaussian noise is

added to these targets.

(4.6) speech production in exemplar models:

Production targets are chosen by randomly sampling a continuous

kernel density estimate (equations (4.3) and (4.4)).

We can now move on to the next stage of the production-perception loop

illustrated in Figure 4.1, that is, phonetic biases.

4.1.2 Modelling the effects of phonetic biases

This section provides a formalisation of phonetic biases that is compatible with

the simulation architecture in this thesis. I will also briefly discuss a related

notion, namely ‘bias proportion’, the relative frequency of a given biasing

environment within a category. Note that the difference between exemplar and

prototype models is not relevant to phonetic biases, which means that a single

equation will be sufficient.

The implementation described below is a somewhat modified version of the

notion of ‘systematic bias’ proposed in Pierrehumbert (2001). Pierrehumbert

models low-level phonetic effects as small displacements of target productions.

Since phonetic targets are conceptualised as coordinates in a multidimensional

space, this means that a constant is added to each target. The main problem with

Pierrehumbert’s approach is that the same constant is added to all production

targets, regardless of where they are in phonetic space. In other words, the

phonetic bias does not specify a target, only a direction. Since there is no target,

the phonetic category will keep moving in the direction specified by the bias

until it reaches the boundaries of phonetic space.

A more realistic approach to phonetic biases is to model them as point-like

attractors in phonetic space. To make this clearer, consider the case of [u]-
fronting in the context of coronal consonants (see e.g. Harrington et al. 2008,

2011). Harrington et al. (2011) describe the source of this effect as follows:
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‘[. . .] a more advanced constriction for /u/ is likely in a coronal context such as

/tut/ because the tongue body is dragged forward resulting acoustically in a

raised second formant frequency ’ (Harrington et al. 2011: p. 122). There is a

natural limit on the extent to which a high back vowel can undergo fronting

as a result of coarticulation with coronals: it cannot become more front than

the coronal consonant itself. This limit can be modelled as a target location in

an articulatory (e.g. tongue height and frontness) or an acoustic space (e.g. F1

and F2). Realisations of [u] in a coronal context will be consistently displaced

towards this front target location, but the extent of this displacement will be

very small. Moreover, this movement is target-oriented, which means that the

size of the displacement will be smaller when a given production is already close

to the attractor (otherwise the biased production might end up ‘overshooting’

the bias attractor).

There are several different ways of formalising the above model of phonetic

biases. In the simulations presented in this chapter and the next one, I use a

logistic function to implement the displacements towards the target location:

biasi(x) = x + si

�

1

1+ exp
� x−bi

d

�

− 1

2

�

, (4.7)

where x is a vector representing the production target, si is a parameter that

determines the strength of bias i, bi is the location of the bias attractor and d is a

scaling factor (set to 1 in all the simulations in this thesis). Figure 4.4 illustrates

the size and the direction of the displacement caused by a phonetic bias as a

function of where the original production target is in phonetic space (bi = 0

and si = 0.01). This function produces the expected results: when a production

target has a value that is lower than the bias attractor, the function increments

it by a small amount. When the production target has a value that is higher

than the bias attractor, the sign of the function changes, which means that it

now decrements the original value. Note also that the size of the displacement

increases as we move away from the bias attractor, but the logistic function

imposes an upper limit on this increase.6

While phonetic biases apply to specific target productions, their effects can

also be viewed as a transformation of the distribution representing a given cate-

6. This upper limit is 0.005 in the present case, and is given by 1
2
si .
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Figure 4.4: The size and the direction of the displacement caused by a phonetic
bias as a function of position along a given phonetic dimension. Parameter settings:
bi = 0; si = 0.01; d = 1.

gory. Consider the sample of productions that form the basis of the probability

density estimation, and the sample of surface values after the application of

the bias. Since the bias consistently changes the output tokens, the observed

sample will be shifted compared to the original sample. Given the equation in

(4.7), we can calculate the probability distribution of the output values after the

application of the bias as follows (where fi is the probability density function

for category i and bias j(•) is the logistic function representing bias j):

p(x |ci, biasj(•)) = fi(2x − biasj(x )) (4.8)

As an illustration, consider Figure 4.5, where the black continuous line shows

the original distribution and the black dashed line the transformed one (bi = 0.8;

si = 0.5, which counts as unusually high and is only used for expository reasons

here). The simulations in this chapter do not rely on these transformations, but

they will be prove useful in the next two chapters.

Let us now turn to the notion of bias proportion. This concept will be dis-

cussed in substantial detail in Chapter 6, so I only provide a brief outline here.

Most of the phonetic biases discussed in this thesis can be viewed as contex-

tual effects: they only apply to tokens of a given category in the appropriate

environment. Thus, for instance, the phonetic bias responsible for [u]-fronting

only affects vowels in coronal contexts (at least according to Harrington et al.

2011). Some authors (including Harrington et al. 2008, 2011) suggest that
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Figure 4.5: The distribution representing a given category (black solid line) and
the expected distribution of surface tokens (black dashed line) after the application
of a phonetic bias (grey dashed line). Parameter settings: bi = 0.8; si = 0.5.

such contextual effects can cause category-wide shifts, and relate this to the

high lexical frequency of the biasing environment in categories that undergo

the change. For instance, coronal consonants are particularly frequent among

the contexts in which [u] can occur in English, which might explain why it has

undergone fronting in so many different dialects (Harrington et al. 2008). Other

languages might show different distributions, and in some of them [u] will

likely occur less frequently in coronal contexts. This type of lexical frequency is

what I will refer to as bias proportion in this thesis. While Chapter 6 looks at

the influence of bias proportion in detail, the simulations in this chapter and the

following one take an admittedly crude approach to this variable. I will simply

assume that the influence of a phonetic bias is negligible in categories with a

low bias proportion, and model this by exempting them from the application of

the bias. On the other hand, categories with a high bias proportion will not be

exempted, and phonetic biases will affect them in the way described above.

Although this thesis focuses on weak biases like coarticulation, it is necessary

to include a certain class of strong biases as well: the boundaries of phonetic

space (cf. Section 3.4). It would be unreasonable to assume that phonetic

dimensions have no upper and lower bounds: the articulatory and perceptual

systems are subject to physical limitations which determine the range of possible

speech sounds. For example, there is an upper limit on tongue height in vocalic

sounds determined by the position of the palate, and a lower limit determined by

a number of factors including the maximal degree of opening of the jaw. These
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limits are present in the simulations as well. Specifically, production targets

that are outside the range of possible values for a given phonetic dimension are

simply discarded. For simplicity’s sake, the limits of the phonetic dimensions

will be [0,1] in all the simulations in this thesis.

Let us summarise the implementation of phonetic biases presented in this

section.

(4.9) phonetic biases:

Phonetic biases are implemented as point-like attractors that displace

target productions towards themselves. This is modelled by using a

logistic function (equation (4.7)).

(4.10) bias proportion:

The relative frequency of tokens belonging to a given category in con-

texts embodying a specific bias. In Chapters 4 and 5, bias proportion

is implemented by exempting categories with a low bias proportion

from the effects of the bias. Chapter 6 presents a more nuanced

implementation.

(4.11) the boundaries of phonetic space:

Phonetic dimensions are bounded. Productions that fall outside the

boundaries of any dimension are simply discarded.

4.1.3 Category update and ambiguity

This section discusses the last two steps in the diagram in Figure 4.1: the

ambiguity filter and feedback (i.e. category update). In the discussion below, I

reverse the order of these two steps for expository reasons. Since both of these

notions have been argued for at length in the previous chapter, the discussion

below focuses on technical aspects of their implementation.

The mechanism for category update is slightly different for prototype and

exemplar models, owing to the different probability distributions used by these

models. Let us first look at prototype models. As it has already been noted in

Section 3.3, category update consists in changing the parameters that define

the category representations. The implementation of prototype models in this

thesis is based on normal distributions, which means that the parameters that
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change during update are the mean and the standard deviation. Figure 3.7

in the previous chapter illustrates how these modifications can be visualised.

Crucially, the mean will shift towards the perceived stimulus, while the standard

deviation will either decrease or increase depending on how far the stimulus

is from the mean. The formulae below (derived from maximum likelihood

estimators for the parameters of normal distributions) capture both of these

dynamics. I present the univariate case first (n refers to the category before

update and n + 1 after):

µn+1 =
cµn+ x

c+ 1
(4.12)

σ2
n+1 =

c
�

(µn+1−µn)2+σ2
n

�

+ (x −µn)2

c+ 1
(4.13)

Again, the multivariate case is somewhat more complicated:

µn+1 =
cµn+ x

c+ 1
(4.14)

Σ2
n+1 =

c
�

(µn+1−µn)(µn+1−µn)
T+Σ2

n

�

+ (x −µn)(x −µn)
T

c+ 1
(4.15)

Most of the terms in these equations have already been introduced in Section

4.1.1. There are two main differences. First, in this case the terms x and x

stand for the incoming stimuli represented as real numbers and vectors of real

numbers, respectively. More importantly, a new constant is introduced: c. This

will be referred to as the constant of update, and it is inversely proportional to

the amount of influence that a single stimulus can have on the parameters of

the category representation. If c is low, the category representation becomes

very sensitive to incoming stimuli, and undergoes quick changes if these stimuli

deviate from the speaker’s own representations. If c is high, the category repre-

sentation becomes more resistant to incoming stimuli, which makes potential

changes slower.

The update mechanism for exemplar models is somewhat simpler, as it only

requires the addition of a new exemplar to the distribution. Since exemplar

models are non-parametric, the equation below refers directly to a change in
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the probability distribution representing category i (instead of changes to a

limited number of parameters, as in the previous case):

p(x |ci, n+ 1) =
c p(x |ci, n) + Kh(x − xi)

c+ 1
(4.16)

The parameter c plays the same role as in prototype models: it determines the

relative importance of new stimuli (represented by xi).

Importantly, the distribution resulting from several iterations of the pro-

duction-perception feedback loop using equation (4.16) can still be described

by using the weighted kernel density estimate in equation (4.3). In fact, the

weights will be predictable if we know (i) when a given token was produced

and (ii) how many tokens have been produced on the whole. Older tokens

will have a lower weight associated with them and newer tokens a higher

weight. This is analogous to the notion of memory activation in Pierrehumbert

(2001), which starts at a given value for each exemplar when it is added to

the category representation, and steadily declines over time according to an

exponential decay function.

The implementation of the filtering listener hypothesis used in this thesis

is taken from Wedel (2006). The specific filtering mechanism in the models is

called ‘variant pruning’: a certain percentage of misperceived tokens is excluded

from the production-perception loop by not being fed back into the original

category representations. In order to decide whether a given production is

misperceived or not, I will use a simple stochastic mechanism based on cate-

gorisation probabilities. Recall from Section 3.1 that categorisation probabilities

can be calculated using Bayes’ theorem. Since this thesis does not investigate

the role of the absolute frequencies of different categories (e.g. observations

like ‘[i:] is a more frequent sound category than [ ci] in English’), we can use

equation (3.2), which assumes that the prior probabilities of the categories are

equal. This equation is repeated below for convenience:

p(ci|x) =
p(x |ci)

∑n
j=1 p(x |cj)

(4.17)
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The probability of misperception can be calculated simply by subtracting

the categorisation probability for the intended category from the sum of all

probabilities (i.e. 1):

p(¬ci|x) = 1− p(x |ci)
∑n

j=1 p(x |cj)
, (4.18)

where p(¬ci|x) simply refers to the probability that a target production will

not be categorised as ci.

To give an example, let us assume that a language has a three-member

[i]–[u]–[a] vowel inventory. If a production of [i] (x) is slightly closer to [u] than

most typical productions, the categorisation probabilities could be as follows:

p(c[i]|x) = 0.7, p(c[u]|x) = 0.25 and p(c[a]|x) = 0.05. Since misperception in

this situation means that the token is not perceived as [i], the probability of

misperception is p(¬c[i]|x) = 1−0.7 = 0.3. The simulations in this thesis rely on

the probabilistic response rule described in (3.4) in Section 3.1: categorisation

probabilities are used in a stochastic way, yielding misperception 30% of the

time when a token like x is produced.

It might be somewhat unrealistic to assume that misperceived tokens of a

given category never contribute to category representations. Indeed, it is quite

likely that various non-phonetic cues (e.g. pragmatic, semantic, syntactic, etc.)

can help to identify the intended lexical item even if one or more of the sound

categories it contains are misperceived. In such situations, the identity of the

misperceived category might also be restored, and category update will proceed

as usual. Therefore, following Wedel (2006) a further parameter is added to

the model, which determines the extent to which lexical feedback can correct

erroneous category decisions: r, or the rate of ‘hopeless’ misperception (for the

sake of brevity, I will refer to r as misperception rate). For instance, if r is set

to 0.5, a token with a misperception probability of 0.3 will be excluded from

category update with a probability of 0.3× 0.5 = 0.15. This parameter is set

relatively low in most of the simulations in order to get a conservative estimate

of the effects of misperception.7

7. Another possible scenario involves the misperceived token being fed back into the wrong
category representation, a process termed variant trading in Blevins & Wedel (2009). As I
have already noted in Section 3.5, this mechanism will not be investigated here. It should be
noted, however, that even if it was included in the simulations, it would only enhance the
contrast-preserving effect of misperception, and not hinder it (cf. Blevins & Wedel 2009).
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Here is a brief summary of the points discussed above:

(4.19) category update:

In prototype models, category update corresponds to a small change in

the category mean and standard deviation (equations (4.12), (4.13),

(4.14), (4.15)). In exemplar models, category update consists in

adding a new kernel to the probability distribution representing the

category (equation (4.16)).

(4.20) misperception:

Category update is inhibited when an ambiguous token is misper-

ceived and the category decision cannot be salvaged through lexi-

cal feedback. This occurs with a probability r × p(¬ci|x) (equation

(4.18)).

4.1.4 Summary of simulation architecture

In the preceding sections, the following general simulation architecture was

proposed. Production proceeds by sampling exemplar or prototype-based prob-

ability distributions (Section 4.1.1). The resulting production targets are dis-

placed under the influence of phonetic biases modelled as point-like attractors

(Section 4.1.2). The outcomes are then fed back into the original category

representations, unless they are misperceived, in which case there is a small

chance that they will be discarded (Section 4.1.3). These processes are iterated

over and over again in the same order to simulate the production-perception

loop described in Pierrehumbert (2001). We are now in a position to look at

some concrete simulation results. The following sections will investigate the

evolution of categories in models relying on the architecture described here.

4.2 COMPARING PROTOTYPE AND EXEMPLAR MODELS

The motivations for a systematic comparison between exemplar and prototype

models have partly been explained in the introduction to this chapter. The

two arguments given there can be summarised as follows. First, if prototype

and exemplar models can be shown to behave identically, we can conclude

that the results in this thesis follow directly from the idea of probabilistic
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representations, and not the particular way they are implemented. Second, this

comparison can help to bring the main arguments of usage-based modelling

closer to theorists who might be skeptical about the validity of exemplar-based

representations. There is also a third and more practical reason for attempting

to show that exemplar and prototype models are equivalent on an abstract

level. Exemplar models place a huge burden on computational systems by

requiring all exemplars to be used during production and perception. While this

might be less of an issue for a system like the brain, which relies on parallel

processing, it imposes serious restrictions on computer implementations of

exemplar models. Prototype models can be implemented much more efficiently,

and are therefore preferable in situations where their parametric nature does

not affect the outcome of the simulations.

The comparison between the models will be conducted by simulating two

‘benchmark’ phenomena: (i) large shifts in the position of a category under the

influence of a weak bias (Section 4.2.1) and (ii) ambiguity-driven dispersion

(Section 4.2.2). I will show that exemplar and prototype models produce nearly

identical results with respect to these two phenomena. Note that both of these

effects have been discussed in the literature: the phenomenon in (i) has been

described by Pierrehumbert (2001), and (ii) by Wedel (2006) and Blevins

& Wedel (2009). Since the main argument of this thesis builds on some of

the results presented in these papers, the replication of these simulations is

particularly useful in the present context.

4.2.1 Convergence towards the bias

In this section, I look at the effects of a single bias on a single category in a

one-dimensional phonetic space. To give a concrete example, this situation is

not unlike having a single laryngeal category with lead VOT (i.e. [+voice]),
which is affected by a weak pressure towards a more neutral production with

short-lag VOT (i.e. [−voice]). The simulations implement an abstract version

of the production-perception feedback loop, in which there is only a single

‘soliloquising’ agent. This means that all productions are fed back into the same

category representation from which they originate. While this is certainly not

a realistic assumption, the next section will show that multi-agent simulations
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produce exactly the same results. It should also be noted that no misperception

can take place, given that there is only a single category.

In what follows, I provide a brief overview of the parameter settings used

in the simulations. Each simulation starts with a single category initialised

with a mean of µ= 0.3 and a standard deviation of σ = 0.1.8 All productions

of this category are affected by a bias located at b = 0.7 with strength s ∈
{0.05,0.1,0.15,0.2} (multiple values are given since this parameter is varied

across the simulations). The constant of update is set to c = 2000, which

means that individual stimuli have a very small effect on the overall category

representation. The parameter that determines the amount of random noise in

production is set to h= 0.013. Each simulation consists of 500,000 iterations

of the production-perception loop.

100 simulations were run at each of the four different values of s for each

model (i.e. exemplar vs. prototype), yielding 800 simulations on the whole.

Such a large number of runs was necessary in order to ensure that the re-

sults reflect the general behaviour of the models rather than the potentially

misleading outcomes of individual simulations. During each simulation, the

mean and the standard deviation of the category was recorded after every

2000 iterations. Most of the results presented below are based on the trajec-

tories for the mean obtained by looking at changes in the recorded values as

a function of time.

To give the reader a better idea of what the simulations look like, I will

briefly describe two example runs: one based on the exemplar model and

the other one on the prototype model (s = 0.1 in both cases). Figure 4.6

shows the two category representations at a number of different points in

their evolution. Several important observations can be made on the basis of

this diagram. First of all, it is clear that the categories are converging towards

the bias attractor in both simulations, and essentially reach it after about

100,000 iterations. Second, the standard deviations seem to be decreasing

8. Both exemplar and prototype-based simulations are initialised with a normal distribution.
This is done to ensure comparability across the simulations. Although the assumption of an
initial normal distribution for the exemplar-based simulation might be seen as problematic
(since such a distribution is unlikely to emerge naturally in exemplar models), the effect of the
original distribution becomes negligible after a few hundred iterations.
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Figure 4.6: Snapshots of the evolution of a category distribution under the influ-
ence of a bias in an exemplar model (left) and a prototype model (right).
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in both cases.9 Third, the category distributions do not change much after a

certain point: while there are very clear changes in the distributions between

0–100,000 iterations, they seem to remain more or less the same after about

100,000 iterations. Thus, the bias appears to define a stable state for the category,

and the category can be seen as evolving towards this state. The idea of stable

states will be described in much more detail in the next chapter.

Although all of these observations are important, the crucial thing to note

in Figure 4.6 is the close similarity between the exemplar and the prototype

models. The categories seem to be evolving in nearly the same way, with the

means moving towards the bias attractor at the same pace, and the standard

deviations shrinking gradually. Of course, the exemplar model produces a

somewhat irregular distribution, whereas the prototype model stays normally

distributed throughout the whole simulation, but this does not seem to affect

the general dynamics of the models.

This demonstration suggests a clear parallel between exemplar and proto-

type models, but it cannot be regarded as a systematic comparison, given that

only two examples are examined. Figure 4.7 provides a more comprehensive

view of the simulation results by plotting changes in the category means for

four exemplar-based and four prototype-based simulations, each of them with

different bias strengths. Unsurprisingly, stronger biases lead to faster conver-

gence both in exemplar and prototype models. Once again, the two types of

models perform very similarly. However, this claim is still based on isolated

examples, and is therefore not sufficiently general.

A more exhaustive comparison is presented in Figure 4.8, which is essentially

an extended version of the previous figure. Figure 4.8 illustrates the general

behaviour of each set of 100 simulations by plotting 90 per cent confidence

intervals for the means at every point in time. In other words, the bands

9. This goes against accounts of sound change which claim that category variance increases
during ‘new and vigorous’ changes (see e.g. Labov 1994: p. 457). While this might seem prob-
lematic, the next chapter will argue explicitly against the type of overly simplistic simulations
presented here, which means that there is no reason to expect realistic predictions from our
models at this point. It should also be noted that the lack of increase in variance is likely a result
of the absence of independent representations for different phonetic environments. Chapter 6
presents simulations where different phonetic environments are represented through separate
sub-distributions. These simulations show the expected increase in the variance of a category
under the influence of phonetic biases.
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Figure 4.7: The means of the category representations in different models plotted
against the number of iterations. Darker lines indicate higher values of s (i.e. bias
strength).
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Figure 4.8: 90% confidence intervals for the mean values in simulations with
different values of s plotted against the number of iterations. Darker lines indicate
higher values of s.

shown in the figure represent 90 per cent of all the simulations with a given

parameter setting, with the outlines corresponding to extreme values. The

similarity between exemplar and prototype models still holds: in fact, it is

hard to discern any difference between the two sets of simulations. Since this

comparison is based on a large set of simulations rather than just individual

examples, it is a strong argument in favour of the claim that the dynamics of

exemplar and prototype models are essentially the same – at least with respect

to the influence of phonetic biases.

While the generality of the last comparison is clear, it is still based on

eyeballing the bands delineated by the confidence intervals, which cannot be
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Figure 4.9: The distributions of the category means after 500,000 iterations at
different values of s. Darker lines indicate higher values of s.

regarded as a statistically reliable test. In order to be able to use standard statis-

tical tests on the data, I will focus on the simulated category representations

after 500,000 iterations. Specifically, I will compare the distributions of category

means across exemplar and prototype models at each value of bias strength. The

distributions are illustrated in Figure 4.9 (note that these are not the category

representations themselves, but summary representations of all the category

means in each set). As in the previous graphs, the similarity between the perfor-

mance of the exemplar model and that of the prototype model is striking. To

confirm the identity of the distributions across the two models, simple unpaired

t-tests are performed. Since four different comparisons are made (one for each

value of s), it is necessary to control for multiple comparisons. For simplicity’s

sake, I use Bonferroni’s correction. As expected, none of the comparisons turned

out significant at α = 0.05 (note that this holds even without Bonferroni’s

correction). This constitutes statistical evidence for the claim that exemplar and

prototype models perform identically under the influence of phonetic biases.

Bias strength has an important effect on the distribution of possible mean

values. In simulations with higher bias strength, the range of possible outcomes

after 500,000 iterations becomes strongly limited, while a lot more variation

is seen at lower bias strength values. This is easy to see in Figure 4.9, where

the distribution of category means is much more disperse in simulations with

low bias strength. The implication of this finding is that bias strength affects

the extent to which the simulated change is deterministic: although categories

will always tend towards the bias attractor regardless of the strength of the
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bias, they can occupy a much wider range of positions in phonetic space when

the bias is weak.

To sum up, exemplar and prototype models exhibit near-identical dynamics

with respect to the evolution of sound categories affected by phonetic biases.

The two most important patterns observed in the simulations were as follows: (i)

gradual convergence towards the bias attractor and (ii) the existence of stable

states. Both models show these patterns and they realise them in strikingly simi-

lar ways. In some sense, this result is not surprising: the simulation architectures

for the two models were purposely designed in a way that ensures maximal

comparability. However, the models were not artificially modified to produce

identical results. They are both valid and straightforward implementations of

existing models of production and perception, with clear precedents for each

of them (e.g. Pierrehumbert 2001 for the exemplar model and Feldman et al.

2009 for the prototype model). Having seen the behaviour of exemplar and

prototype models under the influence of a phonetic bias, we can now turn to

the phenomenon of contrast maintenance driven by ambiguity.

4.2.2 Ambiguity-driven dispersion

The simulations in this section demonstrate the phenomenon of ambiguity-

driven dispersion in exemplar and prototype models. The simulated systems

consist of two sound categories, which are initialised relatively close to each

other, so that the effects of dispersion can be seen clearly. By way of illustration,

consider a language with two overlapping laryngeal categories, one of them with

a VOT of 10 ms and the other one 20 ms (both of these values can be considered

short-lag VOT). Since this contrast is likely to lead to frequent misperceptions, it

is predicted to undergo enhancement in the present account. As in the previous

section, the focus of this investigation is on the evolution of the categories over

time. Note that no biases were included in the simulations.

The drive behind the dispersion that takes place in the simulated sound

systems is the frequent failure to correctly perceive ambiguous tokens. However,

these simulations are rather unrealistic in the way they implement ambiguity-

based misperception, given that both the speaker and the listener are the

same. It would be very surprising to see someone misperceive one of their
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own utterances, and yet this is exactly what happens below. Although this

simulation architecture is not without precedent (see e.g. Wedel 2006), this

unnaturalness has to be addressed in some way. First, I would point out that

the object of enquiry in these simulations is not a single speaker or listener,

but the production-perception feedback loop itself. Consequently, the fact that

these misperceptions would seem counterintuitive in the context of real speech

interactions does not necessarily imply that they should not be allowed in the

more abstract simulations presented here. This, of course, leads to the question

of whether this abstraction is sufficiently motivated. From a pragmatic point of

view, it certainly is: simulations with only a single agent are computationally

much more tractable than simulations with multiple agents. But this in itself

does not justify using the former type of simulation in the place of the latter. The

next section provides systematic evidence showing that the dynamics of abstract

single agent models are the same as those of multi-agent models, which suggests

that the production-perception feedback loop is a plausible abstraction.

The parameters of the simulations in this section are as follows. The two

categories are initialised at µ1 = 0.45 and µ2 = 0.55, both of them with

σ1 = σ2 = 0.1, which yields a substantial amount of overlap between them.

The misperception rate is varied in three steps between 0.05 and 0.2: r ∈
{0.05,0.1,0.2}. The rest of the parameters are the same as in the simulations

in the previous section, the only difference being that there are no phonetic

biases in this case. Thus, c = 2000 and h= 0.013. A further small difference is

that these simulations are only run for 250,000 iterations, as this is sufficient

to illustrate all relevant aspects of their behaviour. Note, however, that each of

these iterations consists of the production and the perception of both categories,

which means that the total number of production-perception events is actually

2 × 250,000. Similarly to the previous section, 100 simulations were run at

each value of r for each model, yielding 600 simulations overall. The mean and

the standard deviation were recorded after every 1000 iterations.

A summary of two representative simulations is presented in the two series

of graphs in Figure 4.10. The developments illustrated in this figure are in

many ways similar to those described in the previous section. Both simulations

follow the same general dynamic, which in this case is a tendency towards a

higher degree of separation in phonetic space. However, in this case the match



110 Modelling sound change

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

3

exemplar model, 0 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

prototype model, 0 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

2
0
.0

4

exemplar model, 25000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

prototype model, 25000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

2
0
.0

4

exemplar model, 50000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

prototype model, 50000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

3

exemplar model, 100000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

prototype model, 100000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

3

exemplar model, 150000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

prototype model, 150000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0
.0

3

exemplar model, 200000 iterations

phonetic dimension

d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

prototype model, 200000 iterations

phonetic dimension

d
e
n
s
it
y

Figure 4.10: Snapshots of the dispersion of two category distributions in the
exemplar model (left) and the prototype model (right).



Comparing prototype and exemplar models 111

0 50000 100000 150000 200000 250000

0
.2

0
.4

0
.6

0
.8

exemplar model

iterations

p
h
o
n
e
ti
c
 d

im
e
n
s
io

n

r=0.2
r=0.1
r=0.05

0 50000 100000 150000 200000 250000

0
.2

0
.4

0
.6

0
.8

prototype model

iterations

p
h
o
n
e
ti
c
 d

im
e
n
s
io

n

r=0.2
r=0.1
r=0.05

Figure 4.11: 90% confidence intervals for the mean values in simulations with
different values of r plotted against the number of iterations. Darker lines indicate
higher values of r.

between the realisation of this tendency in the two models is not as close as in

the previous section. For instance, the exemplar model seems to tolerate more

overlap between the categories in the first 50,000 iterations than the prototype

model. Moreover, the shapes of the final distributions are somewhat different

in a way that goes beyond the small discrepancies observed in the previous

section (where the output of the exemplar model was essentially a noisy normal

distribution). In the simulations in Figure 4.10, the exemplar-based distributions

develop long tails on the sides opposite the other category, and their modes

seem to be closer together than in the prototype model. This being said, the

evolution of the two categories still appears sufficiently similar to tentatively

conclude that their overall behaviour is the same.

Figure 4.11 plots the general pattern shown by the larger sets of simulations

through 90 per cent confidence intervals calculated for the means. The results

for the two models appear nearly the same, although this is difficult to establish

with a sufficient degree of certainty given the large amount of overlap among

the bands representing different values of r. A clearer demonstration is provided

in Figure 4.12, which shows the distributions of category means in each of the

two models at different values of r. The two peaks in these diagrams correspond

to the two different categories. While the similarities are obvious, there are

clear differences as well. This is confirmed by unpaired t-tests comparing the

means of corresponding categories across the two models at each value of

r: significant differences are found between the distributions when r = 0.05
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Figure 4.12: The distributions of the category means after 250,000 iterations at
different values of r. Darker lines indicate higher values of r.

and when r = 0.1 (but the distributions seem not to differ significantly at

r = 0.2; α= 0.05 in all the tests). It is not clear what the implications of these

differences are. One possible interpretation might be that the categories are

all evolving towards the same stable states, but the speed of this evolution is

slightly different in the two models. If we assume that the categories have not

yet reached their final state, we might observe small differences across the two

models as a result of the different speeds at which they evolve. In any case,

these differences only concern minor details of the emergence of disperse sound

systems, and do not constitute a strong argument against the claim that the

general behaviour of the models is the same.

It might also be instructive to look at changes in the variance of the cate-

gories. Figure 4.13 shows these changes by plotting confidence intervals against

time at different values of r. The difference between exemplar and prototype

models is much more obvious here: the prototype model appears to tolerate a

smaller range of possible standard deviations, and these are considerably lower

than those for the exemplar model. This is confirmed by separate unpaired

two-tailed t-tests comparing corresponding distributions from the two models

at each value of r, which are all significant at a level of p < 0.05 even after

Bonferroni’s correction. These differences should not come as a surprise. While

prototype models can only increase the separation between the two categories

by moving the means apart or decreasing the standard deviation, exemplar

models have a wider range of strategies at their disposal. One such strategy is

to skew the category distributions in a way that fewer tokens fall in the area

between the two categories, as in Figure 4.10.
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Figure 4.13: 90% confidence intervals for the standard deviations in simulations
with different values of r plotted against the number of iterations. Darker lines
indicate higher values of r.

Another such strategy is illustrated in Figure 4.14, which shows two exemplar-

based category distributions in a simulation where the categories are initialised

in exactly the same position (µ1 = µ2 = 0.5, σ1 = σ2 = 0.1; r = 0.2). In this

case, one of the categories (grey line) falls in the middle of a discontinuous cate-

gory representation (black line). These representations guarantee unambiguous

productions, but they look extremely unnatural. Indeed, as far as I am aware no

such categories have ever been reported in natural languages. Note, however,

that this type of situation only emerges if the amount of initial overlap between

the two categories is extremely high (i.e. if the categories have undergone a

near-merger). Moreover, they represent transitional states in the simulations, in

the sense that they always disappear after a small number of iterations, giving

place to more stable distributions like the ones in Figure 4.10. Thus, while such

situations are not ruled out by exemplar models, the probability that they would

be observed in a natural situation is diminishingly small (due to their transient

nature and the infrequency of near-mergers).

In summary, the general dynamics of dispersion in exemplar and prototype

models appear very similar, but the parallels between the models are not as

close as they were in the case of phonetic biases. While both types of systems

are evolving towards well-separated category representations, the realisation of

this tendency is slightly different across the models. In particular, the flexibility

of exemplar-based representations puts less pressure on the standard deviations

and the means of the categories by allowing the emergence of skewed and

irregular distributions. Although it is important to note the existence of these
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Figure 4.14: Two exemplar-based category representations illustrating an unusual
contrast maintenance strategy that can emerge in exemplar models (note that
these are individual category representations and not summary representations of
multiple means).

differences, they do not affect the general argument of this section, namely that

the overall behaviour of exemplar and prototype models is similar enough to

use them interchangeably in simulations.

4.2.3 Summary

The findings reported in Sections 4.2.1 and 4.2.2 have two important conse-

quences, one of them specific to this thesis and the other one more general. Let

us start with the more specific one. Exemplar and prototype models have been

found to produce exactly the same behaviour under the influence of phonetic

biases (Section 4.2.1), and they exhibited only minor differences in the way they

implemented ambiguity-driven dispersion. The fact that the two models lead to

the emergence of the same phenomena is a strong indication that these dynam-

ics follow directly from the theoretical assumptions described in the previous

chapter, and not the way they are implemented. Thus, we have successfully

linked the behaviour of the different models to deeper principles underlying

both of them, showing that the choice between exemplar and prototype-based

representations is a modelling question, not a theoretical one. This has an impor-

tant practical implication for this thesis. Since any general results produced by

prototype models are likely to be replicated by exemplar models as well, there
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is no reason to test both types of representations in each simulation. Therefore,

only prototype-based simulations will be used in the rest of this thesis.

The more general consequence of these findings is that arguments directed

against exemplar-based representations do not necessarily affect the main re-

sults of simulations like the ones presented in Pierrehumbert (2001), Wedel

(2006) and Blevins & Wedel (2009). In fact, rather conservative models of

phonetic realisation based on learnt phonetic targets with some amount of

variation (e.g. Keating 1990b) will likely produce the same results, as long as

the well-supported assumptions presented in the previous chapter are incor-

porated into them. This means that the phenomena described in this section

are quite possibly relevant to a much larger range of theoretical approaches

than traditionally assumed. They should be given serious consideration even by

theorists committed to a more abstract approach to sound change and phonol-

ogy, especially when the objects of enquiry are phonologisation or dispersion

(see e.g. Bermúdez-Otero 2007 for phonologisation and Flemming 2004 for

dispersion).

4.3 SINGLE AND MULTI-AGENT SIMULATIONS

The reasons for conducting a systematic comparison of single and multi-agent

simulations have been detailed in the previous sections, so only a brief overview

is given here. While simulating the production-perception feedback loop without

real interactions among multiple agents is certainly a useful abstraction, it needs

to be shown that this simplified setup does not crucially alter the behaviour

of the model. Therefore, we need to see whether the predictions of single-

agent models are also borne out in simulations with multiple agents. In the

demonstration that follows, the same two benchmark phenomena will be used

as in the previous section: the convergence towards phonetic bias attractors

and ambiguity-driven dispersion.

Before discussing the simulation results, it will be useful to overview the

general structure of multi-agent simulations. In order to model interactions

between agents, each iteration starts by randomly selecting two different agents

from the population. One of these agents acts as the speaker and the other

one as the listener. The modelling of production is the same as in the previous
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simulations: the speaker samples their category representations. These category

representations are subsequently displaced by phonetic biases (if there are any).

At this point, the focus moves to the listener. Whether the token is misperceived

is decided on the basis of the listener’s own category representations. If it is

correctly identified, the listener’s category representations are updated accord-

ingly, but update might not take place if the identification fails (in the same

way as in the single-agent model).

Note that these simulations do not incorporate any social factors: the agents

produce and perceive tokens in exactly the same way regardless of their conver-

sational partners. This is, of course, a simplification. Real speech interactions

depend to a large extent on the identities of the conversational partners (see e.g.

Pardo 2006, Babel 2009). This is not a problem: the simulations below attempt

to establish that single and multi-agent implementations do not differ simply as

a function of the number of agents. Social factors could be added to the multi-

agent simulations, and this would undoubtedly change the overall behaviour of

the model, but this is orthogonal to the question investigated in this section.

The fact that during one iteration only a single agent’s representations are up-

dated means that these systems will evolve slower than single-agent simulations

(at least in terms of computer time). Intuitively, if there are n agents, the simula-

tions are likely to change at 1/n times the speed of single-agent simulations. This

is because it takes at least n iterations for any small change to apply to all the

speakers in the population. As we will see below, this intuition is correct. How-

ever, this should not be interpreted as a prediction about the speed of change

within real communities as a function of population size for at least two reasons.

First, real speech interactions can involve more than two speakers, while the in-

teractions modelled here always have two participants. Second, the speakers in

these simulations always wait for the previous speech interaction to end before

their own interaction starts, whereas in real speech communities conversations

can take place simultaneously. As a result, changes will propagate much faster

in real communities than in the simulations here. This means that the speed

of the changes observed in these simulations does not necessarily make any

predictions about the speed of similar changes in real communities.

All the simulations in this section are based on a population with six agents.

Importantly, all the agents’ production and perception are controlled by the
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Figure 4.15: Changes in the category means of six agents plotted against the
number of iterations in a simulation with a phonetic bias.

same set of parameters, which are mostly identical to those in Sections 4.2.1

and 4.2.2. Thus, they can only differ in their category representations (which

are prototype-based). Two series of simulations are run: one investigating the

effect of a single phonetic bias, and the other one looking at ambiguity-driven

dispersion. The initial category representations are identical for all the speakers,

with µ = 0.3 in the first set of simulations and µ1 = 0.45;µ2 = 0.55 in the

second set (σ = 0.1 for all simulations and categories). No parameters are

varied, which means that only one value of bias strength (s = 0.15) and one

value of misperception rate (r = 0.1) is investigated. The bias-based simulations

are run for 1,500,000 iterations, while the dispersion-based simulations for

750,000 iterations. The remaining parameters need not be stated here, as they

are exactly the same as in the previous sections. Each of the two simulations

was repeated 50 times, yielding 100 simulations on the whole.

Figures 4.15 and 4.16 show changes in the category representations of each

of the six agents in two example runs illustrating the two different types of

simulations. The results look very similar to those from the simulations in Sec-

tions 4.2.1 and 4.2.2: the categories converge towards the bias in the first case,

and they exhibit dispersion in the second case. Even more importantly, all the

agents’ representations develop in the same way, with some minute individual

differences (these are more visible in Figure 4.16). Thus, it appears that multi-

agent simulations produce the same dynamics as their single-agent counterparts.

However, this statement needs to be investigated more systematically.
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Figure 4.16: Changes in the category means of six agents plotted against the
number of iterations in a simulation with ambiguity-driven dispersion.
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Figure 4.17: 90% confidence intervals for the mean values in single-agent and
multi-agent simulations investigating the influence of a single phonetic bias (s=
0.15).

The pairs of diagrams in Figures 4.17 and 4.18 provide a more compre-

hensive comparison by plotting 90% confidence intervals for single agent and

multi-agent simulations. Figure 4.17 represents bias-based simulations and

Figure 4.18 dispersion-based simulations. The panels on the left are taken from

the prototype-based simulations in Sections 4.2.1 and 4.2.2.10 In order to make

the single and the multi-agent simulations comparable, the number of iterations

shown on the left is precisely one sixth of the number of iterations on the

10. Specifically, they illustrate single bands with specific parameter settings taken from
Figures 4.8 and 4.11. The parameter settings correspond to those used in the simulations in the
present section: s = 0.15 for the bias-based simulations and r = 0.1 for the dispersion-based
simulations.
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Figure 4.18: 90% confidence intervals for the mean values in single-agent and
multi-agent simulations investigating ambiguity-driven dispersion (r= 0.1).

right (250,000 = 1,500,000/6 in Figure 4.17 and 125,000 = 750,000/6 in

Figure 4.18). This adjustment was necessary since – as it has been noted above

– multi-agent simulations evolve n times slower than single-agent ones, where

n is the number of agents. Turning to the comparisons now, the curves on the

left and those on the right look remarkably similar. The only difference is in the

width of the bands: single-agent simulations seem to produce more variable

outcomes than multi-agent ones. The most likely explanation for this difference

is that multi-agent simulations are more resistant to random fluctuations due to

the fact that every small change has to diffuse through the whole population.

Conversely, consistent factors like phonetic biases and misperception do not

need to diffuse, since they have a chance to apply during each speech interaction

regardless of the identity of the agents.

As in the previous sections, it will be useful to provide a statistical compari-

son based on the category means at a given point in time. Figure 4.19 illustrates

the distribution of category means after 250,000 (left) and 125,000 (right) iter-

ations in the single-agent models and after 1,500,000 (left) and 750,000 (right)

iterations in the multi-agent models (once again, relying on the observation

that the multi-agent model evolves six times slower than the single-agent one).

The similarities between the distributions for single and multi-agent simulations

are confirmed by Welch’s t-test for samples with unequal variances: there are no

significant differences between the means that emerge from single versus multi-

agent simulations (i.e. p > 0.05). There is only one exception: the category

on the left in the dispersion-based simulations shows a slight difference across
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Figure 4.19: A snapshot of the distributions of the category means at a specific
point in time in single (dark grey) and multi-agent simulations (light grey) looking
at the influence of biases (left) and dispersion (right).

the two types of simulations, which comes out as statistically significant with

p = 0.025. This is likely a false positive that results from random fluctuations

in the simulations, given that there is no principled explanation for why only

one of the categories should be different. However, this intuition could only be

confirmed by re-running the simulations. I believe this is unnecessary in the

present case, given the otherwise clear parallels between the simulations and

the extremely small size of the difference.

In conclusion, multi-agent models perform nearly identically to single-agent

models both in bias and dispersion-based simulations. The only consistent dif-

ference lies in the amount of randomness shown by the simulations: multi-agent

simulations seem to produce more consistent results than single-agent ones.

In other words, larger populations exhibit more deterministic behaviour in

implementing simulated changes. As for our present goal, the simulation results

presented above provide ample evidence for the claim that the production-

perception feedback loop is a valid abstraction. Since there are no major differ-

ences in the dynamics of models with different numbers of agents, the rest of

this thesis will continue to rely on single-agent simulations.

4.4 CONCLUSIONS

This chapter has given a detailed outline of the model that forms the basis of

the arguments in the next two chapters. Section 4.1 showed how each of the
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theoretical assumptions in Chapter 3 find a direct expression in the simulations

in this thesis and presented all the relevant mathematical formalisms used in

implementing these assumptions. Section 4.2 demonstrated that the choice

between exemplar and prototype-based representations does not crucially alter

the outcome of the simulations, and can therefore be considered a modelling

assumption in the context of this thesis. This is an important result in its own

right, since it suggests that the results of exemplar-based simulations generalise

to other, more traditional frameworks as well. Finally, Section 4.3 compared

single and multi-agent simulations in an attempt to show that simulating an

abstract production-perception feedback loop instead of a more realistic com-

munity of agents is a valid theoretical simplification. While this comparison

found that multi-agent simulations do behave differently in the sense that their

evolution tends to be more deterministic, the overall dynamics of the simula-

tions were the same as those of single-agent simulations. This also confirms

the validity of previous work that has relied on the abstract version of the

production-perception feedback loop.

While the main goal of this chapter was to explain how the theoretical

assumptions in the previous chapter can be implemented, the simulations

in Sections 4.2 and 4.3 have a further important role in the context of this

thesis. In Chapter 2, I presented an argument to the effect that existing models

based on phonetic biases seem unable to answer the question of how sound

systems can remain stable. One of the pivotal points of this argument is the

observation that simple bias-based approaches cannot resist the force of phonetic

biases – they predict that a sound change will take place wherever there is an

appropriate phonetic bias. The simulations in this chapter provide a strikingly

clear confirmation of this point: even though all of the simulations are stochastic

in the sense that production targets are chosen at random, the category means

always seem to settle around the bias attractor. The same is true for dispersion:

when two categories get close to each other, misperception will always ensure

that they start drifting apart. As it has been noted in Chapter 2, this prediction

is clearly wrong: only a certain subset of phonetic biases seem to serve as the

basis of larger changes in any given language.

This issue is addressed in the next chapter, which argues that the problems

associated with bias-based models stem not from their theoretical assumptions,
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but from the way these assumptions tend to be used in analyses of concrete

phenomena. Specifically, the inevitability of sound change in such models is

a consequence of their narrow focus on categories in a vacuum. That is, such

accounts tend to look at interactions between a single category and a single

bias, without giving any consideration to other categories or biases. The next

chapter will show that these issues disappear when the object of enquiry is not

a change in a single sound category, but a change in a sound system.



A SYSTEMIC VIEW OF

SOUND CHANGE 5

The purpose of the previous chapters was to set the scene for the arguments

in this chapter. Let us briefly review the main points of the discussion so far.

Chapter 2 provided an overview of a number of different approaches to sound

change and situated the central research question of this thesis in the context of

the debate about the actuation problem. The main conclusion of Chapter 2 can

be summarised as follows. While there is a clear parallel between phonetic biases

and observed sound changes, bias-based approaches seem unable to account for

the stability of sound systems and therefore cannot give a satisfactory answer to

the actuation problem. The question, then, is whether it is possible to formulate

a theory of sound change that retains the ability to capture the parallels between

phonetics and sound change, but does not run into the same problems with the

regard to the actuation of sound change. Although the chapters so far have not

made an attempt to tackle this issue, the main directions along which a potential

resolution can be formulated have already been sketched out. I have suggested

that the bias-based approach does not have to be abandoned altogether in

search of a more plausible theory; it needs only to be refocused. Specifically,

instead of looking at sound categories in a vacuum, we should investigate the

influence of phonetic biases on sound systems.

At this point, the general argument of the thesis had to be put aside temporar-

ily, since the system-based investigation proposed in Chapter 2 raised important

methodological issues that needed to be addressed. The most worrying of these

is the difficulty of establishing the exact predictions of the bias-based approach

with respect to sound systems. When sound categories are investigated in a vac-

uum, these predictions can be mapped out through simple thought experiments

with a relatively high level of confidence. However, when more complex systems
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are examined, thought experiments become insufficient. Chapter 2 suggested

that this problem can be resolved by using computer simulations. Crucially,

the computer simulations have to be based on a clear and explicit statement

of the theoretical premises of the bias-based approach. This was provided in

Chapter 3. Moreover, it has to be shown that the behaviour of the simulations

follows directly from the theoretical assumptions, and not additional details of

implementation. This task was accomplished in the previous chapter (Chapter

4). With these methodological issues out of the way, we are now ready to return

to the main argument.

This chapter presents a systematic investigation of the predictions of bias-

based approaches with respect to complex sound systems. Since this requires a

more expressive theoretical vocabulary, Section 5.1 will discuss how the notion

of ‘adaptive landscape’ from evolutionary biology can help us appreciate the

complexity of system-wide changes. Adaptive landscapes also put the funda-

mental theoretical questions in this thesis in a new light, which will help us

see the logic behind the simulations in the following sections more clearly. The

simulation results are presented in Section 5.2, where the main focus will be

on how complex sound systems evolve towards stable states in an adaptive

landscape. These simulation results form the basis of the discussion in the rest

of the chapter. Section 5.3 interprets the results against the background of the

seemingly problematic determinism of sound change in bias-based accounts. It

will be shown that this problem turns out to be illusory if we shift our attention

from individual categories to sound systems. Section 5.4 then develops this

argument further, suggesting that the solution to the other half of the actuation

problem (the underapplication problem) also follows from the idea of adaptive

landscapes: if the landscape changes due to external reasons, the sound system

might react with changes too. This is followed by a short discussion of how

this relates to social factors in sound change, and a tentative proposal that the

system-based view predicts the existence of a distinction between changes from

below and above (Section 5.5).

5.1 ADAPTIVE LANDSCAPES IN SOUND CHANGE

The notion of adaptive landscape is a powerful visual metaphor used in evolu-

tionary biology (and, more generally, in any area where the focus is on dynamic
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systems) that makes it relatively easy to reason about the forces that shape

evolution. It was originally proposed by Wright (1932), and has continued to

shape the way we think about evolution to the present date. To understand

adaptive landscapes, we first have to introduce the notion of fitness. Fitness

in biology corresponds to the relative success with which a given character-

istic (a genotype or a phenotype) is able to reproduce itself. A characteristic

with low fitness will quickly die out in a biological population, while a char-

acteristic with high fitness will likely survive for many generations (this, of

course, is a tautology, given that fitness is defined as a function of reproductive

success). Adaptive landscapes relate fitness to the parameters we can use to

describe a specific characteristic (e.g. size, shape, colour, etc.). The idea is that

the parameters define a map of possible characteristics, and fitness provides

a topography for this map.

At this point, it will be useful to look at a simple example: aerial locomotion,

or flight in the animal kingdom (this example is based partly on Dawkins 1982:

p. 45). It is intuitively clear that the fitness of flight as a character should be

quite high under the right circumstances. However, there are numerous ways to

fly, and not all of them are equally efficient. Dawkins provides two examples:

the feathered wings of birds and the skin flap wings of bats. He suggests that

feathers are a high-fitness solution to the problem of flight, while skin flaps

might have slightly lower fitness (probably because skin flaps are not particularly

well-suited to soaring and gliding, although this is not stated explicitly). The

map over which fitness is defined in this case is wing type, which is likely a

complex multi-dimensional characteristic. There are numerous wing types that

are not suitable for flight at all – for instance, stubby fur-covered wings are

not particularly useful when it comes to flying. These have low fitness in this

example, and they constitute the low-lying plains and valleys of the adaptive

landscape. High-fitness solutions like feathered wings and skin flaps are the

hills and mountains. Since skin flaps are less efficient than feathered wings,

they constitute slightly lower peaks. Such lower peaks are called local optima,

while the highest peak is referred to as the global optimum. Importantly, a given

population might get stuck at a local optimum during its evolution, since the

evolutionary steps it would need to take towards the global optimum would

lead through valleys of low fitness. This is likely the reason why we often find

species relying on non-optimal solutions to a given problem.
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Adaptive landscapes have been used before in the description of language

change. For instance, Lass (1997) relies heavily on this notion (in his termi-

nology, ‘epigenetic landscapes’) in describing various types of development in

natural languages. He suggests that language can be viewed as a dynamical

system which moves in a multidimensional phase-space. This phase space can

be characterised by using the terminology of adaptive landscapes. It contains

attractors (peaks), narrow paths linking high-lying areas (ridges) and various

cyclical attractors consisting of multiple states that tend to be recycled over

and over again in the history of a language.1 One of Lass’s (1997) examples

for this approach is the process of grammaticalisation, whereby free-standing

content words become grammatical morphemes. For instance, case markers

often develop ‘along the pathway Noun > Postposition > Clitic > Case marker’

(Lass 1997: p. 295). Thus, the Hungarian elative case marker -ból/-ből ‘from

within’ comes from an earlier postposition belől, which in turn is a suffixed form

of the noun bél ‘inside’ (Lass 1997: p. 296). Importantly, the end point of this

development is an attractor, or a peak in the adaptive landscape. The result-

ing state is stable, since grammaticalised elements hardly ever start walking

backwards along the path described above to become nouns again.

This thesis uses the term adaptive landscape in a similar way. For example,

peaks in the landscape correspond to stable states just as in Lass’ account.

However, the use of simulations allows us substantiate this notion in a more

rigorous way. Consider Figure 5.1, which shows a single distribution from Figure

4.9 in the previous chapter. The grey distribution represents the category means

after 500,000 iterations in 100 different runs of the same bias-based simulation

(with b = 0.7 and s = 0.1). The distribution is centred around 0.7, which is

the location of the bias attractor. As we move away from this point in either

direction, the distribution falls off, meaning that the category mean typically

ends up in the vicinity of the bias attractor by the end of the simulation. In the

previous chapter, I also demonstrated that this is a stable state: once a category

mean gets close to 0.7, it will not stray very far from it. This behaviour results

from the fact that category representations with a mean of 0.7 remain essentially

1. Note that Lass’s (1997) original terminology is the inverse of that used in this thesis. Thus,
the peaks and ridges that I refer to are in fact basins and valleys in his account. Since this is by
no means an essential point, I have changed his terminology to make it more compatible with
the present account.
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Figure 5.1: The distribution of category means in simulations with a single
category and a single bias that have reached a stable state. This distribution can
be interpreted as an adaptive landscape, since the most frequent values are also
the ones that are the most likely to be preserved faithfully in later iterations.

unaffected by the bias, while those with a different mean will necessarily move

towards it (this follows from the definition of biases as a logistic function with a

value of 0 when x = b). To put it slightly differently, categories with a mean of

0.7 are reproduced faithfully in later iterations, while categories with different

means are reproduced less faithfully. If we look at a large number of simulations

– as in Figure 5.1 – the most frequent outcomes will necessarily be those that

are reproduced the most faithfully. In a sense, then, the diagram in Figure 5.1

shows the adaptive landscape for this particular simulation, where the category

means evolve towards the peak over many iterations. Importantly, the adaptive

landscape in this simulation is defined by two factors: the location of the bias

attractor and the strength of the bias (the relevance of the latter becomes clearer

when looking at simulations with different bias strengths; cf. Figure 4.9).

A similar argument could be made for the dispersion-based simulations

in Section 4.2.2 as well: the category means (and standard deviations) are

evolving towards particular stable values that correspond to a peak in an

adaptive landscape defined by the parameters of the simulation (in this case, r, or

misperception rate). Note that I refer to a single peak in the adaptive landscape,

even though Figure 4.12 shows two peaks corresponding to the two category

means. This is because the notion of adaptive landscape is used in relation to

sound systems and not individual categories. Thus, the adaptive landscape for

category means in dispersion-based simulations with two categories is drawn
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over a two-dimensional map, where each dimension corresponds to one of

the category means. Indeed, in the case of dispersion it would be impossible

to talk about the stability of one of the categories without referring to the

other one, given that this phenomenon emerges from the interaction between

categories.

The two examples above provide a clear illustration of the notion of adaptive

landscape as it applies to sound systems, but it will be useful to give a more

explicit definition as well. In this thesis, adaptive landscapes are defined over

sound systems or parts of sound systems. These sound systems will mostly

be represented in terms of category means (as in the examples above).2 The

topology of the landscape is determined by the extent to which different systems

satisfy the various pressures acting on them (such as the effects of phonetic

biases and dispersion). In a sense, these pressures define a measure of optimality

over sound systems, and it is this optimality that is represented by the hills and

valleys of the landscape. The global optimum is represented by a configuration

where all these pressures are satisfied to the extent possible in a given type of

simulation (e.g. the category affected by the bias reaches the bias attractor, or

there is so little overlap among the categories that misperception hardly ever

takes place). There usually exist numerous local optima as well, where only a

subset of the pressures are satisfied, but the journey towards a more optimal

system would lead through a valley of undesirable configurations. As it will

be shown, both global and local optima are characterised by stability, which

follows from the fact that the highest peaks in the landscape are isolated from

each other. Moreover, most of the optimal states can be seen as a balance among

the pressures affecting the system: the system stays stable because the different

forces acting on it cancel each other out. These points will be illustrated in

detail in the next section.

2. This is a somewhat arbitrary choice, given that there are many alternative measures that
could also be used to characterise sound systems. For instance, instead of the means, we could
look at the standard deviations of the categories, or some more abstract measure of the overall
dispersion of the system (e.g. Liljencrants & Lindblom’s 1972 measure of total energy). However,
this arbitrariness is not a real problem in the present context. Adaptive landscapes are merely
a means of making the discussion of complex sound systems more lucid, and not a crucial
theoretical assumption in this thesis. The reason for choosing category means as the characters
over which adaptive landscapes are defined is therefore mostly didactic: they illustrate changes
in sound systems in an abstract but still sufficiently detailed way.
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Note that this approach to adaptive landscapes is not identical to that usually

taken in evolutionary biology. As it has been explained above, the biological

definition of adaptive landscape is built on the notion of fitness, which can be

formalised in a mathematically rigorous way. In contrast, I rely on a much more

intuitive measure of optimality in this thesis. This difference stems from the fact

that the notion of fitness is not directly applicable to sound systems – or at least

not when the object of enquiry is the abstract production-perception feedback

loop with a single sound system and not a collection of sound systems in a

population of agents. The fact that the present use of the term differs from its

common usage has no impact on the main argument of this thesis. The notion

of adaptive landscape is used in a metaphorical way to make the argumentation

easier to follow, but the simulation results do not crucially rely on this metaphor.

A small amount of inconsistency in the descriptive language used to make the

results more transparent will not deduct from the force of the argument.

We are now in a position to restate the criticism of bias-based approaches in

terms of adaptive landscapes. The main problem with the types of simulation

illustrated in the previous chapter is that the adaptive landscapes defined by

their parameters are too simple. In each simulation, there is only a single global

optimum corresponding to the complete satisfaction of a single pressure. The

systems inevitably evolve towards these stable states, given that there is no

alternative. As I have suggested above, this is a consequence of the fact that

these simulations look at categories in a vacuum. The question, then, is whether

this behaviour changes in more complex systems.

The next section is an enquiry into the effects of complexity on adaptive

landscapes. As in the previous chapter, the main tools for this investigation are

computer simulations, but this time the simulated systems contain a higher

number of categories ranging between three and seven. As we will see, this

creates a much more interesting situation with multiple peaks and valleys in the

adaptive landscape. The simulations will look at two central questions related

to these complex adaptive landscapes: (i) whether the systems can really be

seen as evolving towards stable states and (ii) what the main characteristics

of these stable states are.
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5.2 SIMULATING COMPLEX SOUND SYSTEMS

Before giving an outline of the simulation architecture, let me briefly explain

how the simulations relate to the main argument of this thesis. A more detailed

explanation has already been given in Chapter 3, so only the main points are

repeated here. In a description of the role of simulations in investigating self-

organising systems, Wedel (2011) argues that simulations are typically used

‘either as an existence proof that a given structure can arise through interactions

between some defined set of system properties, and/or as a supporting illustra-

tion for verbal or analytic arguments’ (Wedel 2011: p. 135). The simulations in

this thesis have an element of both in them, but they are also somewhat more

ambitious in their scope: they attempt to show that some of the behaviours in

the simulated systems are not simply possible, but follow necessarily from the

theoretical assumptions behind the models. Of course, this is somewhat harder

to achieve than simply showing that a given behaviour can arise under the right

conditions. For this reason, I have gone to great lengths to make the theory be-

hind the simulations as clear as possible and to link the implementation and the

results of the simulations directly to this theory. Moreover, instead of looking at

the results of one or two runs, as is typical in simulation-based research, a large

number of simulations are run with varying parameter settings. By exploring

the parameter space of the model, we can get an idea of how robust the general

dynamics of the system are, and whether they persist despite variations in the

details of implementation. I do not wish to claim that the dynamics discussed in

this chapter arise under every possible combination of parameter settings – in

fact, I am sure that with enough ingenuity and patience, it is possible to tweak

the model into producing counterintuitive outcomes. However, by looking at a

range of different parameter settings and finding the same behaviour, I hope to

convince the reader that – at least under conservative assumptions about the

model parameters – this investigation tells us something important about the

systems themselves and not just about the simulations.

I first introduce the details of the simulations through an example in Section

5.2.1. This example is also used to demonstrate a serious shortcoming of the

modelling architecture employed so far in this thesis: the large-scale investiga-



Simulating complex sound systems 131

tion of complex systems proposed above is not feasible from a computational

perspective unless the simulations are simplified in some way. Section 5.2.2

presents an alternative simulation technique that is indistinguishable from the

model used so far in terms of its dynamics, but is much less time-consuming.

Finally, Section 5.2.3 discusses the results of a large set of simulations, and

summarises their general behaviour with the help of the notion of adaptive

landscape described above.

5.2.1 An example simulation

In order to model complex sound systems, several modifications are made to

the simple setup used in the simulations of the previous chapter. First of all, all

the sound systems investigated in this chapter are located in a multidimensional

space with two axes. These two axes could correspond to a variety of different

phonetic features, but perhaps the most straightforward analogue is the F1-F2

vowel space. This parallelism should not be interpreted too literally, though,

since these abstract systems are not modelled after any particular subsystem in

natural languages. The phonetic space contains a number of phonetic categories

ranging between three and seven; in the example simulation presented below,

this number is five. To make the discussion easier to follow, there is only a single

phonetic bias, which affects a single category. As it has been noted in Section

4.1.2 of the previous chapter, this setup corresponds to a situation where a

sound category exhibits a particularly high bias proportion with respect to a

given bias. This is like the case of [u]-fronting in English, where an unusually

high proportion of the tokens of [u] occur in contexts that favour fronting

(Harrington 2007). The model implements misperception-based asymmetries in

category update in the same way as the simulations in Section 4.2.2.

The list on the next page provides an overview of the initial setup and the

general parameter settings of the example simulation. Note that the simulation

uses prototype-based category representations.
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(5.1) no. of categories: 5

category means: µ= (µ1,µ2) for each category, where µ1 and µ2

are random numbers between [0.1, 0.9]

covariance matrices: Σ=





0.01 0

0 0.01



 for all the categories

variance increase: h2 = (0.013,0.013)

bias: b = (0.85, 0.85), s = 0.005

constant of update: c = 2000

misperception rate: r = 0.1

Let me briefly go through these settings. As it has been noted above, there are

five sound categories. Each of the categories is initiated with randomly chosen

means along both phonetic dimensions, but the standard deviations along the

axes and the covariance are fixed (resulting in globular category distributions at

the beginning of the simulation). A small amount of production noise is added

to the production targets, represented by two-dimensional Gaussians whose

variance is given by h2. There is a single bias located in the upper right-hand

corner of phonetic space (provided that it is plotted as a traditional Cartesian

coordinate plane). The constant of update is set to c = 2000 as in all previous

simulations, and the misperception rate to r = 0.1.

Figure 5.2 shows the evolution of the example system over 1 million iter-

ations. The ellipses represent 95 per cent confidence regions for each of the

categories. The cross shows the location of the bias, while the shading marks

the category affected by the bias (i.e. the category with an unusually high bias

proportion). The following general trends can be observed in the evolution of

the system. First of all, the amount of overlap among the categories decreases

steadily over the course of the simulation. This is not surprising in light of the

simulation results demonstrating ambiguity-driven dispersion in the previous

chapter, and can be considered yet another replication of the effect discussed

in Wedel (2006) and Blevins & Wedel (2009). Second, the categories seem to

use up most of the available phonetic space, but they do not grow beyond a

certain limit. This follows from the interaction of the variance-inflating effect
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Figure 5.2: The evolution of a complex sound system consisting of five sound
categories with a single bias. The ellipses illustrate the category distributions and
the cross the location of the bias. The shaded ellipse represents the category affected
by the bias.
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of production noise and the boundedness of phonetic space. Third, the speed

of the changes in the simulation seems to decrease gradually. To get a sense

of this deceleration, compare the changes between 0–200,000 iterations with

the changes between 800,000–1,000,000 iterations. It is clear that the initial

changes are more dramatic than the ones that take place in later stages of the

simulation. Fourth, and perhaps most important, the biased category never

manages to get close to the bias attractor: it approaches it along the x axis,

but it stays relatively far from it along the y axis. This observation constitutes

the first confirmation of the idea that complex systems behave differently from

simple systems with respect to consistent phonetic biases.

Intuitively, it seems clear that the sound system is navigating a complex

adaptive landscape during its evolution. This adaptive landscape is determined

by a variety of different factors, including the tendency towards dispersion

introduced by misperception, the location and strength of the phonetic bias,

the bias proportions of the different categories (even if bias proportion is

represented in a rather crude way), the limits of phonetic space and the variance-

inflating effect of production noise. The initial random configuration is, of

course, highly unstable: there is a large amount of overlap among the categories,

some parts of the category distributions are ‘cut off’ by the boundaries of

phonetic space, and the biased distribution is not particularly close to the

bias attractor. As the simulation proceeds, the system begins to climb towards

higher-altitude areas of the adaptive landscape, which also brings about an

increase in its stability. This is why the rate of change seems to be falling

gradually.

The range of potential manoeuvres through which the system can increase its

optimality appears highly constrained at every point during the simulation. Only

small changes can take place between two iterations, and the set of movements

available to a given category is limited by the positions of the categories around

it and the boundaries of phonetic space. As a result, the system seems to follow

a narrow ridge of local optima in the adaptive landscape, and cannot simply

jump to the global optimum. Presumably, the most optimal configuration would

be one where the biased category is located in the upper right corner of the

phonetic space near the bias attractor. However, it appears that as the categories

disperse and fill up the available space, the system gets stuck in a local optimum

from which this global optimum is simply not accessible.
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The description above suggests that the complex structure of the adaptive

landscape can indeed create a situation where a phonetic bias does not lead to

sound change. It would be useful to see if this observation can also be made

about the limiting behaviour of the system – that is, whether the system is

permanently stuck in a local optimum, or if it can eventually reach the global

optimum. In order to get a sense of how the system behaves over a longer

stretch of time, the simulation was run for another 3,000,000 iterations. Figure

5.3 shows eight snapshots of the long-term evolution of the system. Two things

should be noted about this diagram. First, the system evidently continues to

change after the initial 1,000,000 iterations. Second, there are no significant

changes to the category distributions after about 3,000,000 iterations (note

that Figure 5.3 illustrates changes after 3,000,000 iterations in slightly more

detail than changes before 3,000,000 iterations). While the system continues

to undergo small random shifts, these shifts are not consistent inasmuch as

they do not result in larger changes over time. This contrasts with the initial

behaviour of the system, where the changes are clearly goal-oriented (even if

this goal-orientation is not ‘built into’ the simulations in the form of an explicit

optimisation algorithm). Returning to the language of adaptive landscapes, the

system seems to reach a local optimum which stands as an isolated peak in the

landscape. Any movement away from this state would result in a significantly

less optimal system, and therefore it is blocked. Again, this blocking follows

from the implicit dynamics of the system, and is not hardwired into the model.

In sum, the complex nature of the adaptive landscape seems to preclude certain

phonetically-driven changes. This is in line with what I suggested earlier in

this chapter, namely that the dynamics of complex sound systems are different

from those of simplified sound systems with a single category. However, this

conclusion needs to be investigated more systematically.

Unfortunately, this type of simulation raises a serious practical problem.

In order to be able to make an educated guess about the limiting behaviour

of the system, I had to run the simulation for 4,000,000 rounds. This took

approximately three and a half hours on my own computer with a 2 GHz

processor and 2 GB RAM.3 Although this, in itself, cannot be regarded as a

3. I have no doubt that many future readers of this thesis will smile and perhaps shake
their head in disbelief. While this computational problem might not present a serious issue for
tomorrow’s computers, this does not diminish the need for a more efficient implementation.
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Figure 5.3: The evolution of the complex sound system in Figure 5.2 over a further
3,000,000 simulations.



Simulating complex sound systems 137

particularly time-consuming simulation, it is clearly not well-suited to a larger

investigation with many runs. Section 5.2.3 presents results from 6000 similar

simulations, which would take nearly two years to run on the same computer

using the current model. While this issue could be avoided by using an expensive

computer cluster, the next section will show that there is no need to use up such

valuable computing resources, given that a much more efficient implementation

is also available.

5.2.2 An alternative simulation framework

The main insight behind the alternative framework presented here comes from

one of the observations in the previous section: the different pressures affecting

the sound system create ridges in the adaptive landscape that allow the system

to move towards areas of higher altitude. Although the movement of the systems

has an element of randomness, the fact that they seem to become stuck at a

certain point in their evolution suggests that consistent changes only occur

along these ridges (otherwise the system should be able to find a way to the

global optimum even after it has reached a local optimum). If this is the case,

the changes in the system are essentially deterministic, in that they follow

paths that depend entirely on the parameters of the simulation. The method

described below makes it possible to explore these paths directly by eliminating

the randomness of the system.

Since one of the fundamental properties of the model used in the simulations

so far is its stochastic nature, it might be difficult to see how it could be

described in deterministic terms. The key step in bridging this conceptual

gap involves increased reliance on probability distributions. Specifically, I will

introduce a distinction between the underlying distribution representing a

category and the surface distribution of tokens that form the basis of category

update (the latter will be referred to as the ‘observed distribution’). Importantly,

the model outlined in the previous chapter allows these two distributions to be

different. These differences come from four main sources: production noise, the

consistent application of phonetic biases, misperception-based asymmetries in

category update and constraints imposed by the boundaries of phonetic space.

Each of these mechanisms can introduce discrepancies between the underlying
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distribution and the observed distribution, and these discrepancies will be

consistent given any specific configuration of sound categories. In fact, the

relationship between underlying and observed distributions is so transparent

that the observed distribution can readily be calculated from the underlying one

using a number of simple mathematical transformations. The details of these

transformations are explained in Appendix B.

The ability to calculate the differences between the underlying and the

observed distributions is extremely useful in the present context. This is because

these differences are the sources of all consistent changes in the system. If

the speaker’s category representations are not consistent with the input they

receive (which is determined by the observed distribution), they will necessarily

undergo changes as a result of category update. In the present model, the input

to the speakers is determined by the observed distribution, which means that

knowledge of the latter will allow us to make predictions about the direction

of change.

We now have all the components necessary to construct a deterministic

simulation architecture where the sound system travels the same path as in the

stochastic simulations used so far. In order to model the evolutionary dynamics

of the system, we need to use the transformation of the underlying distribu-

tion into the observed distribution as a proxy for the production-perception

feedback loop. This can be done by iterating the transformation in a way that

the output of one iteration (i.e. the observed distribution) serves as the input

of the next one (i.e. the underlying distribution).4 To give a concrete exam-

ple, I repeat Figure 4.5 from Section 4.1.2 as Figure 5.4 here. This diagram

shows the observed distribution (black dashed line) corresponding to a cate-

gory representation (black solid line) after the application of a phonetic bias

(note that none of the other transformations are included). In the simulation

framework proposed here, the distribution marked with a dashed line would

become the underlying distribution in the next iteration, and would produce

a new observed distribution that is even closer to the bias attractor. Iterating

this procedure many times would result in convergence to the bias (similarly

to the simulations in Section 4.2.1).

4. Note that since the model used here assumes normally distributed category representations,
the observed distribution has to be recoded as a Gaussian function once all the transformations
have been performed. This is simply a matter of calculating the first moment (i.e. the mean)
and the second central moment (i.e. the variance) of the observed distribution.
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Figure 5.4: The distribution representing a given category (black solid line) and
the observed distribution (black dashed line) after the application of a phonetic
bias (grey dashed line).

Of course, it is not sufficient to simply suggest that this framework produces

the same results as the original model: a demonstration is in order. Therefore,

I have rerun the example simulation from the previous section using the new

model. All the parameter settings were exactly the same as previously (includ-

ing the initial positions of the categories).5 The results are shown in Figure

5.5, where the left-hand side panels illustrate the original simulation and the

right-hand side panels the new simulation. The similarity between the two

simulations is obvious. While there are some small differences in the locations

of the categories, the overall evolution of the two systems is identical. The

developments in the two systems also seem to be linearly correlated in terms

of computational time: the new model seems to change roughly 2000 times as

fast as the original one (at least in terms of the number of iterations). It should

be noted that this is not an isolated result: all the other parallel simulations

I have run have shown exactly the same tendencies (although these will not

be presented here for reasons of brevity).

These results confirm the hypothesis proposed above, according to which

all consistent changes in the system follow narrow paths that are determined

by the pressures acting on the system. While this is exactly what we expected

to see, I believe it is still a somewhat surprising finding. It is in many ways

counterintuitive to see that the overall behaviour of a fundamentally stochastic

5. Except for the constant of update, which does not apply to the framework introduced in
this section. The reason for this is that category update in this case simply consists in replacing
the underlying distribution with the observed one.
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Figure 5.5: A comparison of the original agent-based model described in Section
5.2.1 and the observed distribution-based model introduced in this section.
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system is in fact nearly deterministic. However, one should not forget that

these dynamics are very typical of all types of evolution. Indeed, this is exactly

the reason why we often find the emergence of the same biological trait as a

solution to a given problem among unrelated species – a phenomenon termed

‘convergent evolution’. A particularly popular example of convergent evolution

is the striking similarity between the structure of the eye in vertebrates and

cephalopods (Blevins 2004: p. 48). These two groups of animals have anatom-

ically and functionally similar eyes (so-called ‘camera eyes’), despite the fact

that they do not share an ancestor with this anatomical feature or even its

precursor. Thus, the same characteristic emerged independently in these two

groups. Both in sound change and in biological evolution, the reason for the

apparent determinism of such changes lies in the ruggedness of the evolutionary

landscape. The systems walk narrow paths towards peaks in the landscape, and

cannot significantly deviate from these paths.

Before applying the new simulation technique in a more detailed investiga-

tion of the effects of complexity on the adaptive landscape, let us briefly clarify

how it relates to the stochastic simulations used so far. Although the two models

evidently produce the same results, they should not be equated with each other.

The stochastic simulations model the behaviour of simulated agents in a direct

way, while the deterministic simulation maps the ridges of the adaptive land-

scape following a more abstract procedure. If the influence of random variation

was increased significantly in the stochastic model (by lowering the value of

c, the constant of update), it is likely that the two types of simulation would

sometimes diverge. Nevertheless, the most likely outcomes in the stochastic

simulations would still evolve along the paths predicted by the deterministic

simulations. Since the next section focuses on the structure of the adaptive land-

scape, and not on potential fluctuations due to random noise, we are justified in

using the simulation architecture proposed here. However, it should be borne

in mind that this substitution might not be equally suitable to all situations.

5.2.3 Exploring the adaptive landscape

This section presents the results of a large computational investigation consisting

of 6000 simulations run with a number of different parameter settings. The



142 A systemic view of sound change

aim of this investigation is to see how various internal and external factors

affect the evolutionary dynamics of sound systems. The most important factor

investigated below is complexity, which is operationalised as the number of

categories in the system. Besides complexity, two further factors are examined:

bias strength and misperception rate. The structure of the investigation is as

follows. After describing the parameter settings and the different experimental

conditions used in the simulations, I present a quick tour of the most frequent

outcomes, just to give the reader a sense of the general dynamics of the model.

This is followed by a detailed look at how the different factors interact with each

other in shaping the adaptive landscape, based on large sets of simulations. The

remaining sections of this chapter will be devoted to discussing the implications

of these findings.

The simulations presented below all rely on the procedure outlined in

the previous section. Most of the parameter settings are exactly the same as

in the example run in the previous section. The main difference is that (i)

certain parameters are varied across the simulations and (ii) each combination

of parameter settings is tested in 500 different runs of the simulation with

different initial category locations. This random perturbation of initial category

locations across otherwise identical simulations is necessary to get a sense of

the different pathways of evolution defined by the adaptive landscape. If there

were no such perturbations, all simulations would produce exactly the same

results, given the deterministic nature of the model.

The following parameter settings are investigated: s ∈ {0.001, 0.003, 0.005}
(weak vs. medium-strength vs. strong bias conditions); number of categories n ∈
{3, 5, 7} (small vs. medium-sized vs. large inventory conditions); r ∈ {0.1, 0.5}
(low vs. high misperception rate conditions). The conditions representing bias

strength and the size of the inventory are crossed with each other, giving a

3 × 3 matrix. Since the effects of misperception turned out to be relatively

weak in preliminary simulations (cf. the results below), I have not fully crossed

this factor with all other conditions. The 3× 3 matrix of original conditions

is only tested at a single misperception rate (r = 0.1). This is complemented

by a small additional set of simulations with a misperception rate of r = 0.5,

where the inventory size is kept constant (n = 5) and only bias strength

is varied. Thus, the overall figure of 6000 simulations can be calculated as
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follows: 3× 3× 500= 4500 runs with a low misperception rate and a further

3×500 = 1500 runs with a high misperception rate. The boundaries of phonetic

space, the location of the bias and the amount of production noise are all exactly

the same as in the previous section. Each simulation is run for 5000 iterations,

and only the final state is recorded.

In Section 5.2.1, I suggested that the simulated systems evolve towards

equilibria determined by the locations of local optima in the adaptive landscape.

Although I have shown that there are no qualitative changes in the system after a

certain number of iterations, I have not yet provided a characterisation of these

stable states. Figure 5.6 illustrates a few typical configurations that emerge in

the simulations after 5000 iterations (these are all taken from simulations with

a low misperception rate r = 0.1 and a medium-strength bias s = 0.003). The

first thing to note is that the systems are all highly symmetrical and organised:

the initial random configurations give place to regular geometrical formations

as the sound systems settle into equilibria. This is likely due to the fact that

such symmetrical and systematic arrangements make the best use of phonetic

space both in terms of avoiding category overlap and allowing the categories

to stretch as far as they can. Indeed, very similar orderly configurations are

observed in the contrast-driven simulations of Liljencrants & Lindblom (1972)

and de Boer (2001), which supports the idea that contrast is the main factor

behind these particular patterns of self-organisation. In contrast to the works

cited above, this thesis does not attempt to draw parallels between the observed

outcomes and frequently occurring vowel systems. This is partly because no

effort was taken to model the phonetic space in a way that reflects the structure

of the vowel space in natural languages (as opposed to the works cited above,

which are based on careful implementations of the vowel space). Even more

importantly, the simulations in this section make an abstract point about the

evolution of sound systems as a function of complexity, phonetic biases and

other factors. This point could be translated into more concrete predictions

about vowel systems or other subsystems within natural languages, but such

a translation is not essential to the argument itself.

Let us briefly describe the details of the overall configurations in Figure

5.6 (ignoring the position of the biased category for the moment). Perhaps

the easiest way to do this is to imagine the vowel space as a jewellery box
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Figure 5.6: Typical configurations of categories in stable sound systems after 5000
iterations. The panels at the top illustrate systems with three categories, the panels
in the middle systems with five categories and the panels at the bottom systems
with seven categories. The cross indicates the location of the phonetic bias and the
shading the biased category.
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with a few separate slots in it, and a single category in each slot. In the case

of the three-category system on the left, this jewellery box would contain a

bigger vertically oriented slot stretching from top to bottom on the left-hand

side, and two smaller equal sized slots on the right-hand side. We could fit

the same box around the second three-category system as well if we rotated

it clockwise by 90 degrees. The situation is very similar in the case of five-

category systems: the same jewellery box with a row of three slots and a second

row of two slots could accommodate both systems. The seven-category case

is a little more complicated: here, a box with three columns of 2–3–2 slots

would fit around the first system, but a 3–2–2 box would be needed for the

second one. Although this is a weaker case of isomorphism than in the three

and five-category cases, the two systems are still remarkably similar. Note that

these patterns are extremely robust: in the case of three and five-category

simulations, over 90% of the systems ‘fit in the boxes’ described above; this

figure is somewhat lower for seven-category systems, at around 50–60%.6 The

high proportion of systems that can be described in terms of such a small set

of configurations confirms the idea that the systems converge towards optima:

if these states were not optimal and stable, it would be very surprising to find

so many systems exemplifying them.

Having seen some examples of the general trends in the evolution of these

systems, we are now in a position to undertake a more systematic investigation

of the stable states in the simulations. I begin with a discussion of the influence

of the number of categories on the adaptive landscape. Then, I show how this

factor interacts with bias strength. Finally, I add in the last factor, namely, mis-

perception rate, and take a quick look at how it changes the overall picture.

Since the focus of this thesis is on the role of phonetic biases in sound

change, only one particular aspect of the adaptive landscape will be explored:

the extent to which the biased category approaches the bias attractor. Although

it would be interesting to look at other factors as well – such as the amount

of ambiguity in the systems, or the variance of the individual categories – this

simplified measure will be sufficient for our purposes. The easiest way to get a

6. The lower percentage of seven-category systems that conform to the patterns illustrated in
Figure 5.6 is a result of the fact that there is a third arrangement as well, which takes care of
most of the remaining cases.
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sense of the degree to which a given category converges to the bias is to plot

the distribution of all the biased category means at the end of the simulation

as we did in Sections 4.2.1 and 4.3 in the previous chapter (see Figures 4.9,

4.19 and 5.1). This is slightly more complicated in the present case, given that

the phonetic space is two-dimensional. There are a number of different ways

to visualise statistical distributions over a two-dimensional space. To ensure

that the illustrations are clear, I will use three of these in combination: three-

dimensional density plots, heat maps and contour lines. It should be emphasised

that each of the graphs below illustrates the distribution of a single category

(out of three, five or seven categories) in a set of 500 simulations (with the

same parameters settings, but different initial category representations).

Figure 5.7 shows the distribution of the means of the biased category in

three sets of simulations with varying numbers of categories (the bias is medium-

strength in each case, and the misperception rate is low). Let us first interpret

the two panels at the top. Focusing on the three-dimensional graph on the

left-hand side, there is a very clear peak around the top right corner, and a

small ring of low foothills surrounding it. This means that the biased category

(i.e. the category with a particularly high bias proportion that is shaded in the

diagrams illustrating the sound systems) nearly always occurs close to the bias

attractor at (0.85, 0.85), but in a few exceptional cases it might be located at a

different point around the perimeter of the phonetic space. The panel on the

right provides exactly the same information but in a slightly different form.

The most straightforward way to interpret this diagram is as a topographic

map of the distribution: darker colours represent peaks, and the contour lines

surround areas that are of higher altitude than the numbers written on them

(the numbers themselves are of no importance in the present case).

The five and the seven-category cases look rather different from the three-

category case. It is immediately obvious that the distributions shown in the

second and the third rows are much more varied than the distribution repre-

senting the three-category simulations. In the five-category case, the biased

category still appears to end up nearer the bias attractor than it would if its

behaviour was guided entirely by chance. However, we see a distinct range

of sub-optimal configurations that are not nearly so well-represented in the

three-category simulation. There are two peaks in the immediate vicinity of the
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Figure 5.7: The distributions of biased category means in three (top), five (middle)
and seven-category (bottom) simulations. The panels on the left visualise the
distribution using a three-dimensional density estimate. The panels on the right
use a heatmap and contour plot superimposed on it to plot the same information.
The location of the bias attractor is (0.85,0.85).
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bias attractor, another two slightly lower peaks a little further from it near the

neighbouring corners of phonetic space, and a low hill in the opposite corner.

The seven-category situation is even more complicated, with an overall nine

peaks. Surprisingly, the highest peak in this case is not the one nearest the

bias attractor, but the one in the centre. Nevertheless, the distribution is clearly

heavier around the top right corner, which indicates that the bias still has a

strong influence on the evolution of the system.

What does this tell us about the influence of complexity on the adaptive

landscape? In a somewhat loose sense, the diagrams in Figure 5.7 can be taken

as representative of the adaptive landscape itself. The peaks show local and

global optima, while the valleys in between mark areas corresponding to non-

optimal systems.7 As the number of categories increases, the isolated peak in

the three-category case turns into a range of peaks with complex features and

numerous local optima. In fact, the global optimum in the seven-category case

is not even where the bias would predict it. This is exactly what we suggested

earlier: the influence of phonetic biases on the landscape is strong when there

is only a single category, but as soon as further categories are added in, it

becomes significantly weaker. Since the landscape is now shaped by multiple

different factors, phonetic biases can no longer have their way all the time.

Thus, the implication is clear: complexity brings out the effects of factors that

would remain hidden in a single-category scenario, and diversifies the adaptive

landscape. To put it more succinctly, complexity can counteract the influence

of phonetic biases.

If complexity and biases are indeed antagonistic forces, it will be interesting

to see how they interact with each other. Figure 5.8 illustrates the crossed effects

of bias strength and inventory size through a set of nine heat maps. The influence

of complexity does not appear to change significantly: comparing the rows shows

the same diversification from top to bottom that was observed in Figure 5.7.

This appears to occur independently of bias strength, although the differences

are clearer at lower values of s. Moving on to the effects of bias strength, the

results are by no means surprising. At lower values of bias strength, the effects

7. Of course, these diagrams do not show the entire landscape: they focus on the mean of
the biased category, and do not look at the standard deviation or any of the other categories.
The ‘real’ adaptive landscape is of much higher dimensionality and therefore more difficult to
handle both mathematically and visually.
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Figure 5.8: The crossed effects of bias strength (varied between low and high
horizontally) and inventory size (varied between 3 and 7 vertically). Each diagram
shows a heat map illustrating the distribution of biased category means in 500
simulations.
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Figure 5.9: The entropies of the adaptive landscapes of three-category (dotted
line), five-category (dashed line) and seven-category (solid line) systems as a
function of bias strength.

of the bias become nearly invisible: only the three-category simulations show a

clear pattern, while the five and the seven-category simulations behave almost

entirely randomly with respect to the bias. Conversely, when the bias is relatively

strong, peaks that are further away from the bias are suppressed. Thus, while

the category means in the low bias strength condition fill all the available slots

defined by the tendency towards dispersion (cf. the discussion of symmetric

and orderly configurations above), the range of possibilities becomes severely

restricted in the high bias-strength condition. Note that the peaks themselves

remain more or less the same – it is only their relative heights that change.

While the visual illustration of the combined influence of complexity and bias

strength in Figure 5.8 is intuitively convincing, there is also a more systematic

way to compare these distributions. The key to this comparison lies in the notion

of ‘information entropy’ (Shannon 1948). In a nutshell, entropy is a measure of

how unpredictable a given random variable is. Thus, if a random variable has a

distribution dominated by a single crisp peak (e.g. as in the top right panel of

Figure 5.8), the entropy will be low, since the outcomes are highly predictable.

If, however, the random variable has a distribution with many peaks, its entropy

will be high, since the outcomes are not very predictable. I will not go into the

technical details of calculating entropy – it will suffice to say that entropy can

easily be obtained for discretised versions of the distributions shown in Figure

5.8 (see e.g. MacKay 2003 for more details). Figure 5.9 plots the entropies of the

nine distributions in Figure 5.8. These values support the informal analysis given
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above. Entropy is positively correlated with the complexity of the system, which

means that more complex systems are less predictable. Conversely, entropy

is negatively correlated with bias strength: the stronger a bias is, the more

predictable the outcome of the simulation.

Before concluding this section, let us briefly discuss the influence of misper-

ception rate on the simulations. Figure 5.10 illustrates the combined effects

of bias strength and misperception rate (recall that these simulations are all

based on systems with five categories). Interestingly, the differences across

the low and the high misperception rate conditions are relatively minor. The

overall shape of the adaptive landscape is more or less the same in the two

sets of simulations. The only robust difference seems to lie in the predictabil-

ity of the results: simulations with higher misperception rates produce more

unpredictable outcomes. This is confirmed by a comparison of the entropies

in the two different conditions, as shown in Figure 5.11: systems with a lower

misperception rate appear to have lower entropy with respect to the distribution

of the biased category means. This result might seem a little counterintuitive,

as we would expect the behaviour of the system to become more constrained

when the pressure towards contrast maintenance is strengthened. However, it

should be borne in mind that the diagrams only show one aspect of the adaptive

landscape, namely the convergence of the biased category towards the bias

attractor. It is quite possible that the adaptive landscape as a whole becomes

more rugged (reflecting a higher degree of determinism) when misperception

rate is increased, even as those aspects of the landscape that reflect the influence

of the bias show the opposite trend. In fact, this observation is highly compat-

ible with the overall picture so far. Ambiguity-driven dispersion is one of the

main pressures responsible for the diminished influence of phonetic biases in

simulations of larger sound systems, which means that strengthening it should

make the influence of biases even weaker. The decreased predictability of the

location of the biased category is a direct consequence of this observation.

This concludes our investigation of the role of complexity in shaping the

adaptive landscape. Below is a brief summary of the most significant trends

we have isolated.
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Figure 5.10: The crossed effects of bias strength (varied between low and high
horizontally) and misperception rate (varied between 0.1 and 0.5 vertically).
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Figure 5.11: The entropies of the adaptive landscapes of five-category systems
with a low misperception rate (black line) and a high misperception rate (grey
line) as a function of bias strength.
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(5.2) sounds systems and equilibria:

The simulated systems settle into equilibria at a wide range of parame-

ter settings. The exact nature of these equilibria is determined by the

adaptive landscape.

(5.3) complexity and the adaptive landscape:

The complexity of a sound system – as measured by inventory size –

directly influences the adaptive landscape. More complex systems are

less predictable with respect to the effects of phonetic biases.

(5.4) bias strength and the adaptive landscape:

Bias strength acts against complexity: the stronger a phonetic bias, the

more resistant it will be to the entropy-increasing effects of complexity.

(5.5) misperception rate and the adaptive landscape:

Misperception rate and bias strength are antagonistic forces: the influ-

ence of phonetic biases becomes less visible as misperception rate is

increased.

In the rest of this chapter, I use these results to re-evaluate the issues raised

at the beginning of this thesis, and propose a partial solution to the actuation

problem.

5.3 WHY SOUNDS DON’T CHANGE

After a lengthy and rather technical argument based on simulation results, it

is time to revisit the main question of this thesis. This question is summed up

rather succinctly in the title of this section. In the interest of accuracy, perhaps

a further clause should be added to this question: ‘why sounds don’t change

when phonetic pressures predict that they should’. The answer to this question

has two main components. First, the previous section has shown that when

sound categories are investigated in the context of a sound system, the structure

of the adaptive landscape becomes quite elaborate. This is important: Section

5.1 argued that the main reason why bias-based models fail to account for

cases where sound change does not take place is that their approach to the

adaptive landscape is overly simplistic. If an investigation focuses on a single
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bias and a single category, it might indeed come to the problematic conclusion

that the category will necessarily evolve towards the bias attractor, given that

this is the only stable state that exists in the adaptive landscape. When entire

sound systems are considered, this problem disappears, since not all of their

stable states necessarily correspond to phonetic bias attractors. Note that this

argument relies strongly on the assumption of stable states, which comprises

the second component of the answer. The complexity of the landscape in itself

does not necessarily imply that the system will never find a way to an optimum

where a given phonetic bias is satisfied. However, what we observed in the

simulations in the previous section was that the local optima stand as isolated

peaks in the adaptive landscape, meaning that once a sound system has reached

one of them, it will not move any further. Combining these two observations, we

can give a clear answer to the original question: a given sound change may fail

to take place because sound systems evolve in complex adaptive landscapes and

often settle into equilibria that are not optimal in terms of phonetic biases.

This is not to say that phonetic biases have no effect on sound systems at all:

bias attractors can skew the adaptive landscape towards themselves, making cer-

tain stable states more likely than others. The simulated systems in the previous

section provide a clear demonstration of this claim. Although the phonetic bias

was not always satisfied, the overall distribution of the outcomes was such that

the biased category often ended up close to the attractor. Therefore, this account

successfully captures the parallels between phonetic biases and phonological

patterns. Since phonetic biases are universal, they will exert the same influence

on the adaptive landscapes of all sound systems. This means that – in a statisti-

cal sense – we will likely encounter more languages satisfying a given bias than

we should expect to if cross-linguistic distributions arose purely by chance.

It should now be clear that the results discussed above provide a resolution

to the paradox that inspired this investigation: phonetic biases find a parallel

in phonological patterns not because they cause sound change directly, but

because they skew the adaptive landscape that determines stable patterns. Since

phonetic biases are not the causal drive behind sound change, there is no reason

to expect them to be transformed into phonological patterns in every case. Thus,

contrarily to what critics of bias-based approaches have suggested (cf. Section

2.3), such models do not make false predictions with respect to the actuation
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problem. This, however, crucially hinges on applying this framework to entire

sound systems rather than sound categories in a vacuum.

Although this approach is successful in retaining the merits of bias-based

analyses while avoiding problematic predictions with respect to the actuation of

sound change, it raises two important questions. The first of these is about what

kind of changes push a system towards a stable state, while the second one is

about how it can move away from it once it is there. In this section, I will only

tackle the first one, since it is relatively easy to answer. The second question is,

in fact, a restatement of the actuation problem in terms of stable states. As such,

it requires a complex answer, which will be provided in the next section.

What kind of changes lead to the emergence of a stable state? Surprisingly,

the answer is that it simply does not matter. A stable state guarantees that a

system will stay there, but it does not specify how it should get there. The crucial

point is that unstable systems will necessarily be evanescent, and therefore not

consistently observed across languages, as opposed to stable states, which will

frequently be seen due to their resistance to change. This, in itself, accounts

for cross-linguistic frequency distributions, and there is no need to appeal to

the specific changes that lead to the distributions.

It will be useful to link this argument to existing accounts of sound change

as well. The discussion above has demonstrated the emergence of stable states

guided by an adaptive landscape in simulations based on a clear set of plausible

assumptions about speech production and perception. Any framework that

accepts these assumptions will predict the same overall tendencies. In the very

least, this encompasses those mathematically explicit implementations of the

nudge model (cf. Section 2.3.2) which served as the basis of the simulation

architecture developed in this thesis (Pierrehumbert 2001, 2002, Wedel 2004,

2006). The predictions also carry over to broader usage-based frameworks

like Bybee (2001), Phillips (2006) and Silverman (2006), even if these works

differ from the present thesis in the specific way they conceive of category

representations. More generally, the results have implications for other bias-

based frameworks as well, such as the leap model (cf. Section 2.3.1; Ohala 1981,

Blevins 2004, 2006). Note that in Section 2.3 I criticised these works for their

problematic implications with respect to the actuation riddle. Importantly, the

discussion above has shown that these problems can be avoided if we translate
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the predictions of these models into the language of adaptive landscapes. In

other words, much of what is proposed in these models may well be correct,

but when claims are made about ‘the likelihood of a given sound change’, they

should be reinterpreted as claims about ‘the likelihood of a given stable state’.

The arguments above have been developed through simulations in a some-

what artificial context. Although special care was taken to ground the simula-

tions in concrete proposals about speech production and perception, it will still

be useful to illustrate the predictions of the model through an example. This

demonstration will also help to make the link between adaptive landscapes and

actual sound systems clearer. Since the phenomenon of [u]-fronting has already

been discussed to a certain extent, I will continue to use this example below.

For reasons of simplicity, the discussion is restricted to high vowels.

Let us start with a scenario where there are three contrastive high vowel

categories, which will be referred to as i, y and u. I am purposely using ortho-

graphic representations instead of IPA transcriptions, as the following discussion

focuses on the predicted realisations of the vowels, which might vary depending

on a number of factors. The main question is, what are the stable states pre-

dicted by the model? The answer will naturally depend on certain facts about

the language under investigation. This is because the adaptive landscape is

shaped not only by universal factors such as bias strength and the boundaries

of phonetic space, but also by language-specific factors such as bias proportion

and misperception rate. Section 4.1.2 has already explained the role of bias

proportion: if a given category such as u exhibits a particularly high number

of forms exemplifying the bias responsible for fronting (in this case, these are

forms where u appears in a coronal context; cf. Harrington et al. 2008, 2011), it

will be more strongly affected by the bias. The influence of misperception rate

might be less obvious, given the somewhat artificial way it has been used in the

simulations so far. Misperception rate was defined as a general parameter of the

simulations, although it should probably be more appropriately interpreted as a

characteristic of pairs of sounds. Specifically, misperception rate is likely to be

influenced by the extent to which two categories play a role in distinguishing

lexical items from each other. To use more established terminology, misper-

ception rate should arguably reflect the ‘functional load’ of a given opposition

(see Wedel 2006 and Blevins & Wedel 2009 for a similar argument): ‘hopeless’
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misperceptions are more likely to occur when many lexical distinctions hinge

on a given contrast.

Returning to the example of [u]-fronting, there are three possible outcomes

in a language with three high vowels. First, if the bias proportion is relatively

low (i.e. u does not often occur in a coronal context), or the misperception

rate of the u–y pair is particularly high, the stable state is predicted to be one

where u does not front. This is the state that we observe in languages like

German, Hungarian or French (at least in terms of the inventory; the lexical

distributions referred to above have not been tested systematically for these

languages). The second outcome is as follows: if the bias proportion is relatively

high while the misperception rate of the u–y pair is somewhat lower, the stable

state will be one where the u is fronted, but distinct from y. These realisations

could be transcribed as [u] and [y], respectively. This situation is exemplified

by Swedish and Norwegian, where there are two high rounded vowels in the

front and central area of the vowel space (again, it is not clear whether the

lexical distributions mentioned above hold in these languages). Finally, if the

bias proportion is high and the misperception rate is unusually low, it is possible

that the stable state is one where u and y have fallen together.8 Since such cases

only involve two contrastive categories, this stable state is indistinguishable

from situations where only two initial categories are assumed.

Having seen the possible stable states for three vowel systems, we can now

discuss the two vowel case (i.e. only an i–u contrast is assumed). Since fronting

in itself cannot bring about a merger between i and u (given that they differ both

in backness and rounding), there are only two scenarios in this case. First, if the

bias proportion is low or if the misperception rate of the i–u pair is extremely

high, the stable state will be one where these two vowels are kept as far apart

as possible. An example for such a language is Spanish, where u is realised as

a back rounded vowel. Conversely, if the bias proportion is higher and/or the

8. Note that this is a situation that the model used in this thesis cannot adequately represent.
While it is possible for two category distributions to occupy the same area in phonetic space,
the number of categories is fixed for the entire duration of the simulations, which means that
mergers and splits cannot occur. This situation could be addressed by allowing the model to
merge category representations that are sufficiently close to each other. However, this thesis
does not explore this possibility, given that it would greatly increase the complexity of the
simulations, making them much less tractable.
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misperception rate is relatively low, the stable state will be one where the u

is fronted (as in English or in Japanese).

Before moving on to the next section, it will be useful to briefly clarify

some aspects of this example. First of all, this is meant as an illustration of

how the notion of stable states and adaptive landscapes applies to a concrete

example, not a substantive analysis of the phenomenon. I am not attempting

to derive the observed language types with respect to [u]-fronting from facts

about lexical distributions (although I believe that such a project would be

worth pursuing), merely fleshing out certain broad predictions of the model. It

is quite likely that the case of [u]-fronting is complicated by other factors, which

would also need to be incorporated into a full analysis. Second, I have been

careful to consistently use the term ‘stable states’ rather than ‘sound change’

when referring to the predicted configurations of high vowels. In line with the

discussion above, the claim is not that fronting will be more likely to occur as a

sound change under certain conditions, but that a random language observed

at a given time is more likely to be in a stable state with a fronted [u] if the

adaptive landscape favours such a configuration.

5.4 WHY SOUNDS CHANGE

The previous section identified an important question related to the approach

outlined above: how can sound systems escape the pull of stable states? The

finding that bias-based models predict stability rather than change was pre-

sented as a crucial step forward in a debate where such models have been

criticised for predicting too much change. Although this is a legitimate answer

to the question of why sound change does not occur, it leads to a different,

but equally worrying issue. If all sound systems evolve towards equilibria, and

they stop changing once an equilibrium has been reached, why do we see any

changes at all? According to the account presented so far, every sound system

should eventually become stuck in a stable state. However, exactly the opposite

situation seems to hold: as far as I am aware, no known sound system is com-

pletely immune to change. It appears, then, that critics of bias-based models

have correctly identified the actuation problem as their weak point, but they

have been focusing on the wrong issue. The problem is not that bias-based

models predict too much sound change, but that they predict none at all.
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This section will demonstrate that this problem is merely illusory. While

phonetic biases cannot be responsible for the actuation of changes on their own,

the bias-based account does not rule out other factors as the sources of change.

In the rest of this section, I discuss one such factor: the dynamic nature of the

adaptive landscape. We will see that the problematic conclusion that sound

change should never occur is an artifact that results from our strongly simplified

approach to the environment in which sound systems exist.

In the discussion so far, the adaptive landscape has been treated as entirely

static. The parameters of the simulations were kept constant for their entire

duration, and I described the map of stable states defined by these parameters

as if it was a timeless entity. However, there is every reason to assume that this

approach is wrong: the adaptive landscape must change dynamically, since the

factors that determine its shape cannot be conceived of as static. For instance,

both misperception rate and bias proportion have been treated as essential

components of the model. Since these factors depend on lexical distributions,

they are necessarily sensitive to changes in patterns of lexical usage. If, for

some reason, the functional load of a given opposition becomes diminished,

the misperception rate of the relevant pair of categories will also be decreased.

Similarly, if there is a rise in the frequency of words where a given category

occurs in a biasing context, the bias proportion of the category will be increased.

When the pressures that form the basis of the adaptive landscape undergo

changes, it is inevitable that the landscape will be affected as well. This has

important implications for sound change: any restructuring of the adaptive

landscape can give rise to changes in the sound system if the locations of the

stable states are altered, or if a local optimum becomes suboptimal. To put

it more simply, changes in the factors that determine the adaptive landscape

may lead to sound change.

Perhaps an analogy will make the above argument clearer. Imagine a tennis

ball dropped on a slope. It will likely keep bouncing downwards as long as it does

not encounter any major obstacle. However, at some point it will necessarily be

forced to stop either because it reaches the bottom of the slope or because it hits

an obstacle that it cannot pass. Once the ball has stopped, the laws of physics

guarantee that it will remain stationary, provided that the slope itself remains

the same. But this provision might not necessarily hold: although the landscape

in which the ball was moving around might seem static, it too can undergo
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changes. For instance, an earthquake or a landslide could completely reshape

the slope on which the ball was let loose, which might lead to a situation where

the ball starts moving again, until it finds a new stable state. This is precisely

what happens to the adaptive landscape in which sound systems are located: the

factors that determine it can themselves undergo changes, setting off seismic

events that might knock the sound system loose. It is quite likely that such

seismic events occur with very high frequency within language (and this is

where the analogy breaks down), in effect creating a ‘moving target’ for sound

systems (to borrow a term from Christiansen & Chater 2008).

Although the dynamic nature of the adaptive landscape might seem entirely

trivial, it has rather surprising implications for the actuation problem. Phonetic

biases are traditionally seen as the causal drive behind sound change, while

‘external’ factors such as functional load are viewed as secondary variables that

can only hinder or facilitate change (but do not cause it). The view advocated

here turns this relationship upside down. Phonetic biases are largely static, so

they cannot in themselves bring about the shifts in the adaptive landscape that

lead to sound change. However, other factors such as lexical distributions can

themselves undergo changes, and reshape the adaptive landscape in a way

that knocks the sound system out of a stable state. Therefore – in a somewhat

loose sense – external factors might have a larger role in initiating changes

than phonetic biases.

This view, however, is still not entirely satisfactory. The claim that the

relationship between external factors and phonetic biases is reversed in this

approach betrays a dogged insistence on identifying a single source for sound

changes. Perhaps the most important contribution of the discussion of adaptive

landscapes so far is the discovery that it is possible to talk about multiple factors

in sound change without singling out any of them as the primary driving force

behind change. Phonetic biases and external factors determine the adaptive

landscape together, which in turn defines the set of possible changes; this means

that neither of them really causes sound change any more than the other. In

fact, the best strategy in this situation might be to avoid referring to the ‘cause

of sound change’ altogether.

The real difference between phonetic biases and other factors lies in the

extent to which their effects are persistent. In this thesis, phonetic biases are
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viewed as universal, which means that they always influence sound systems

in the same way. Since the effects of phonetic biases are consistent, there is

always a possibility that a sound system will arise that satisfies a given bias. For

instance, the functional load of an [i]–[u] contrast in a given language might be

high for many centuries, but as soon as it starts falling, there is a good chance

that the effects of a bias towards fronting will soon become visible. In this sense,

phonetic biases are like patient predators: they lie in wait for as long as they

have to, but when an opportunity finally arises, they are prepared to take it. On

the other hand, the effects of lexical factors are completely accidental. From the

point of view of a sound system, we have no more reason to expect a decrease

in the functional load of a contrast than an increase. The contrast between

phonetic biases and other factors explains both the cross-linguistic frequency

of certain patterns and the large amount of variation observed among the

languages of the world. The stable states in the adaptive landscape consistently

show the influence of phonetic biases (which leads to parallels between phonetic

and phonological patterns), but whether a system ends up in a position where

it satisfies a given bias depends to a large extent on a combination of accidental

factors (which creates cross-linguistic variation).

In the rest of this section, I provide a more detailed discussion of a small

subset of the factors that can bring about shifts in the adaptive landscape. I show

how the factors themselves might undergo large-scale shifts and – whenever

possible – provide examples from the literature supporting the claim that they

have an effect on sound change. The main focus is on misperception rate and

bias proportion, but I also briefly mention other factors such as the emergence

and the loss of sound categories and individual differences in production and

perception.

misperception rate This is one of the most discussed external factors in

sound change, although such discussions typically focus not on misperception

rate itself but the related notion of functional load. Chapter 3 has already given

a summary of the role of misperception in contrast maintenance, which will

not be repeated here. In the paragraphs below, I focus on the questions of how

misperception rate can change, and whether there is evidence for a connection

between misperception rate and sound change.
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As it has been noted above, misperception rate likely depends on the func-

tional load of a given contrast. To put it very simply, if two categories distinguish

a high number of minimal pairs or near-minimal pairs, a large amount of over-

lap between them is likely to cause a lot of misperception (the nature and the

exact role of this type of misperception has already been discussed in Section

3.5). Conversely, if the contrast does not play a major role in distinguishing

lexical items, misperceptions will be less likely even if the two categories overlap

with each other. This means that the question of how misperception rate can

change is really about how the number of minimal and near-minimal pairs

can increase or decrease.

The most straightforward (and, for our purposes, least significant) source

of such fluctuations is simply through random changes in the way individual

lexical items are used. This could, of course, include a vast number of completely

haphazard shifts (like the decline in the use of once fashionable words like

groovy, and the rise of new expressions like LOL), and is therefore unlikely to

have a systematic effect on misperception rate. However, given enough time, it

is perfectly possible that such random shifts could eventually boost or suppress

the misperception rate of a given pair of sound categories. A more systematic

source of changes in misperception rate is lexical borrowing. For example, the

categories [f] and [v] were in complementary distribution in Old English, with

[v] appearing between voiced sounds and [f] everywhere else. For all intents

and purposes, the functional load of this pair of sounds can be regarded as

zero. In later periods, a relatively large number of lexical items with initial

[v] (and other combinations that previously did not occur in English) was

borrowed into English from French and Latin, which resulted in a significant

increase in the functional load of the [f]–[v] pair. Another, even more systematic

source of fluctuations in misperception rate is morphology. If a particular pair of

sounds come to be systematically reused in affixes with different morphological

functions, its functional load can undergo a significant increase – and if these

suffixes are lost, the functional load of the contrast will fall too.

One of the most important sources of shifts in misperception rate is, in

fact, sound change itself. When a given pair of sounds undergo a merger, new

minimal and near-minimal pairs may be created, increasing the functional load

of contrasts between other categories in the words affected by the merger. To
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give an example, pairs of words like thin and fun have become minimal pairs

through the merger of [θ] and [f] in certain varieties of English, which boosts

the functional load of the vocalic opposition seen in these words. Conversely,

when a sound category undergoes a split, former minimal pairs might become

more distinct, decreasing the functional load of contrasts involving other sounds

within the affected words. For instance, pairs of words like tool and tomb are

no longer minimal pairs in varieties of English where [u]-fronting is inhibited

before [l] but not elsewhere (cf. Labov 1994), and this reduces the functional

load of the consonantal contrast exemplified by them.9

A particularly illuminating example of such shifts is provided by the phe-

nomenon of secondary splits (Hoenigswald 1960; also referred to as ‘transpho-

nologisation’ in Kirby 2010). In this case, two contextual variants of a sound

category created through a split become contrastive after the conditioning envi-

ronments are merged. For instance, Hyman (1976) and Kirby (2010, in press)

describe a two-step development that has taken place in a number of southeast

Asian languages like Pekinese. Syllables like [pá] and [bá] with a high tone

first split into [pá] and [bǎ] (reflecting the influence of a phonetic bias creating

F0 differences between voiced and voiceless pairs). In the second stage, the

initial voicing contrast was lost, making the opposition between high and rising

tones in pairs like [pá] and [pǎ] contrastive. What is particularly important in

this case is the subtle interplay between the misperception rates of the initial

consonant pairs and the tonal categories: the tonal split reduced the functional

load of the contrast in the initial consonants, which subsequently merged, in-

creasing the functional load of the new tonal contrast. Kirby (2010) and Hyman

(1976) both note that this is by no means an exceptional scenario: ‘in many

instances, phonologization of one feature is accompanied by dephonologization

of another’ (Kirby 2010: p. 15). It is almost as if the merger was a consequence

of the reduction of the functional load of the original contrast – which is exactly

what the present account would predict (a similar analysis is presented in Kirby

2010). Therefore, secondary splits seem to support the idea that changes in the

lexical factors shaping the adaptive landscape can lead to sound change.

9. In this section, the term minimal pair refers to words which differ in a single sound at the
level of surface realisations. Thus, tool [tul] and tomb [tum] are not considered minimal pairs
even if the contrast between [u] and [u] is predictable. The reason for restricting the definition
to surface realisations is that this level is the most relevant to misperception.
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While the typical patterns of development seen in secondary splits provide

strong intuitive support for the role of misperception rate in sound change,

there are two recent studies by Wedel et al. (submitted, in press) that argue

the same point in a statistically more rigorous way. Wedel and colleagues have

looked at pairs of merged and unmerged vowels in phonetically annotated

corpora from eight different languages, and compared these two sets in terms

of their functional load (and a number of other factors). Both studies have

found a significant relationship between functional load (as measured by the

number of minimal pairs between two categories) and the likelihood of mergers:

on average, the merged vowel pairs have a lower functional load than the

unmerged ones (or at least likely had a lower functional load before the merger

took place, even though this is difficult to verify on the basis of present-day

corpora). Given the link between misperception rate and functional load, this

result can be considered as further evidence for the role of misperception rate

in sound change.

bias proportion The following discussion of bias proportion is necessarily

much shorter than that of misperception rate, partly because the potential

sources of shifts in bias proportion are essentially identical to those for mis-

perception rate, and partly because there is much less support for the claim

that bias proportion influences sound change. Thus, similarly to the case of

misperception rate, changes in bias proportion can result from accidental shifts

in patterns of lexical usage, extensive borrowing, morphologisation and de-

morphologisation and sound changes affecting the environments in which the

relevant sounds occur. As for the supporting evidence, the next chapter presents

a detailed look at how bias proportion can influence splits relying on data from

a cross-linguistic production experiment. Since the results of the experiment are

clearly in favour of the claim that bias proportion has visible effects on sound

systems, there is no need to present a detailed discussion in this section.

There is, however, a series of studies by Jonathan Harrington and colleagues

(see e.g. Harrington 2007, Harrington et al. 2008, 2011) that are worth men-

tioning here. As it has been noted above, Harrington (2007) suggests that the

ubiquity of [u]-fronting among various dialects of English might be explained

by the high frequency of coronal sounds among the contexts in which [u] can
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appear. Based on frequency counts from the CELEX lexical database, Harring-

ton (2007) suggests that [u] is preceded by coronals over 70% of the time

(although it is not clear whether this calculation relies on type or token frequen-

cies). A more general investigation in Harrington et al. (2011) finds a related

cross-linguistic tendency (based on data from the UCLA Phonological Segment

Inventory Database; Maddieson 1984). Looking at languages that have both [i]
and [u] in their vowel inventories, it appears that consonants articulated with

the tip of the tongue make up a significantly higher proportion of the consonant

inventories of these languages than consonants with other active articulators.

While this evidence does not necessarily mean that such languages also show a

higher bias proportion with respect to [u]-fronting, it is a promising first step

towards such a result. Harrington et al. (2011) speculate that the observed

tendency might at least partly explain why [u]-fronting is a frequent occurrence

among the languages of the world, while other phenomena like [i]-backing

are rarely found. These empirical investigations provide support for the claim

that bias proportion influences sound systems, even if this support is somewhat

weak due to the nature of the evidence they examine.

the emergence and loss of sound categories The simulations

in Section 5.2.3 demonstrated that the number of categories in a given sound

system is one of the main determinants of the adaptive landscape. While the

computational model in this thesis cannot adequately represent changes in the

number of categories, there is no doubt that such changes do occur in natural

languages. The fact that the simulations cannot replicate such effects in their

present form does not mean that we cannot infer any relevant predictions from

them. It is intuitively clear that the addition or the loss of categories should

bring about changes in the adaptive landscape, and that these changes can

have visible effects on sound systems.

As an illustrative example, consider a set of developments that took place in

a number of innovative Canadian English dialects, collectively referred to as the

Canadian Shift. According to Clarke et al. (1995), all short front vowels have

undergone lowering in these dialects (i.e. [i]→ [E]→ [æ]→ [a]), with some

additional backing in the trap lexical set and a certain degree of lowering and

centring in the strut lexical set. Clarke et al. (1995) argue that this followed the
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merger of the lexical sets cot and caught, which left the low central region of

the vowel space (previously occupied by the cot vowel) empty, triggering a drag

chain. Therefore, it appears that a large set of changes can be traced to the loss

of a single contrast (note that Clarke et al. 1995 also make a connection between

this merger and a somewhat similar pattern of shifting in California).

The Canadian Shift illustrates a situation where it is the loss of a contrast

that triggers changes – but acquiring a new contrast could have similarly

dramatic effects. One way such a new contrast could emerge is through a

secondary split. Secondary splits have already been exemplified above in the

context of misperception rate. Another example comes from the Middle English

lengthening of short vowels in open syllables (as described in Labov 1994: p.

332). Since long [a:] had previously undergone backing, the lengthening of

short [a] (and the subsequent loss of its conditioning environment through

apocope) created a new sound category. Although it is not clear whether the

emergence of this category triggered any changes on its own, the new long vowel

in words like name and made certainly had an important role in determining

the adaptive landscape navigated by the Great Vowel Shift in later periods.

Another potential source of new categories is borrowing, which, however, will

not be described in detail here. It will be sufficient to note that a new contrast

created through borrowing could have essentially the same effect as a contrast

emerging through secondary splits.

individual differences A relatively new line of research within historical

linguistics focuses on individual differences in production and perception in

the hope of finding clues to the actuation problem. The rationale behind this

approach is that phonetic patterns that are checked by other pressures in the

speech community might be amplified in certain individuals, potentially leading

to sound change under the appropriate social conditions. Baker et al.’s (2011)

study of s-retraction in American English has already been mentioned in Section

2.5. Their main finding is that there is a large amount of variability in the extent

to which specific individuals exhibit the phonetic bias responsible for retraction.

As it has been noted in Section 2.5, Baker et al. (2011) suggest that patterns like

s-retraction might lead to large-scale sound changes if speakers with an extreme

production pattern happen to have a high amount of social influence. This is
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because a listener might (i) misinterpret a purely phonetic pattern as a target for

production and (ii) imitate this target in their own production due to the social

influence of the speaker. Yu (in press) presents a slightly different account, where

individual differences lie in perception: certain listeners are better at ‘undoing’

the effects of phonetic biases through perceptual compensation, while others

seem to perform worse at the same task. Interestingly, the ability to compensate

for the effects of biases correlates significantly with a set of personality traits

(notably the Autism Quotient, or AQ): speakers who compensate less also tend

to have the personality profiles of leaders in sound change.

Although the accounts summarised above differ from the present approach

in many of their assumptions, the general idea of individual differences in

production and perception can be translated into the framework in this thesis

as well. For instance, the differences reported by Baker et al. (2011) find a

straightforward expression in the notion of bias strength. While the simula-

tions in this and the previous chapter did not explore the possibility that the

agents might differ in their parameter settings, we can still speculate about the

potential effects of such differences. Having two agents with different prop-

erties in terms of production and perception breaks the unity of the adaptive

landscape: the pressures that influence the development of the sound system

will not be the same for the agents. Unfortunately, the precise influence of this

type of heterogeneity cannot be established without rigorous testing through

simulations and experimental methods. However, it is likely that the existence

of interpersonal variability will in itself keep the sound system in flux, especially

if the proportions of speakers with different individual patterns are also chang-

ing. Therefore, although we might not be sure how exactly the existence of

individual differences affects the location of stable states, the overall effects will

be the same as for the other factors discussed above: the stability predicted by

the bias-based model can be broken by individuals with different patterns.

There are likely many more factors that could have a similar influence on the

adaptive landscape, but this short list will suffice for our present purposes.

Before presenting the conclusions of this section, I would like to highlight

a theme that came up repeatedly in the discussion above. In analysing the

potential influence of different factors, it was often noted that changes can be
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triggered not only by shifts at different levels such as the morphology and the

lexicon, but even within the sound system itself. Secondary splits and changes

that occur in reaction to mergers like the Canadian Shift are particularly clear

illustrations of this point. This is perfectly in line both with the simulation

results in this chapter and with the verbal arguments about the systemic view of

sound change that have been put forward in this section and others. Although

it is possible to describe changes affecting specific sound categories as isolated

events (e.g. [æ] > [a]), such descriptions will often come short of capturing the

rich set of interactions that take place within the sound system. Splits, mergers

and shifts will often have far-reaching consequences for the development of a

sound system, either by creating non-optimal configurations or by reshaping

the adaptive landscape in less predictable ways (e.g. by changing the functional

loads of different oppositions). Therefore, a fully explanatory account of sound

change will focus not on individual categories, but on the sound system as a

whole. If such a view is adopted, changes that set off chain reactions within the

sound system will be seen as natural pathways for sound change.

To sum up, the bias-based view of sound change can capture both of the

main types of development seen in the evolution sound systems: stasis and

change. Stasis is accounted for by the discovery of stable states within the

adaptive landscape. Sound change, on the other hand, is predicted to occur

when the adaptive landscape itself undergoes restructuring under the influence

of external factors. The main significance of these findings is that they provide

a satisfactory solution to the actuation problem, by identifying a mechanism

of sound change that does not predict too much or too little sound change (cf.

(2.1) in Section 2.2). Moreover, the solution proposed here has two further

important advantages. First, it can account for the parallels seen between

phonetic biases and more robust patterns by suggesting that biases can skew the

adaptive landscape, making the emergence of certain stable states statistically

more likely. Second, it clarifies the role of external factors in sound change by

suggesting that they are not secondary variables that can only inhibit or facilitate

already existing tendencies, but fundamental forces that can in themselves

lead to change. I have also provided a brief review of some of these factors:

misperception rate (or functional load), bias proportion, the emergence and loss

of sound categories and individual differences in production and perception.
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We have seen how each of these can change the adaptive landscape and thereby

contribute to the actuation of sound change. However, one external factor

is still missing from this list, despite its widespread recognition as a basic

element of sound change: the social aspect of language. The last section of this

chapter addresses this omission by relating the arguments presented so far to

sociolinguistic accounts of sound change.

5.5 THE SOCIAL ASPECTS OF SOUND CHANGE

There is a rich body of evidence showing that sound changes in progress tend

to be conditioned by social variables such as age, gender, social class, and finer

properties of social networks (see e.g. Labov 1994, 2001, Milroy & Milroy 1985).

For example, Labov (2001: ch. 5) demonstrates that the fronting of the vowel in

the mouth lexical set in Philadelphia is highly sensitive to social factors. In the

speech community under investigation, a range of phonetic values are observed

between [æo] and [e:o]. The choice of a given variant is conditioned both by

age and social class. There is a strong negative correlation between age and

the extent of fronting (i.e. younger speakers produce more fronted variants).

A more complex non-linear correlation is observed between social class and

fronting. Working class speakers produce generally more fronted variants with

a slight increase from lower working class towards upper working class. The

extent of fronting falls sharply between working class and middle class, and

shows a steady decline as we move from lower middle class to upper class.

Similar relationships have been demonstrated for a wide range of different

changes from numerous languages.

Although social factors are clearly an integral part of sound change, so far

I have made no effort to link the predictions of the approach pursued in this

thesis to sociolinguistics. This is not a problem in itself: even if social factors

cannot be omitted from a comprehensive account of sound change, this does not

mean that all aspects of sound change are equally dependent on them. However,

the present account has a number of non-trivial implications for sociolinguistic

approaches to sound change that should be discussed in some detail. Specifically,

the view presented in this thesis implies that not all changes behave in the same

way with respect to social factors. Two different types of change are predicted:
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convergent changes, where a whole speech community is moving towards a

given pattern and divergent changes, where different parts of the same speech

community are evolving in different directions. Since the focus of this thesis is

not on the social aspects of sound change, the discussion below will necessarily

be brief and speculative. Nevertheless, the arguments presented here could

serve as important pointers for future research.

As it has been noted in Section 2.5, sociolinguistic approaches propose that

the actuation problem can only be solved if we focus on the propagation of sound

change (see e.g. Weinreich et al. 1968, Milroy 1992). Accounts based solely on

phonetic biases predict that sound change will overapply. However, the process

through which a given change spreads through a community provides an extra

layer of control that can potentially check the effects of blind phonetic variation.

The view of sound change developed in this thesis challenges this assumption,

inasmuch as it removes the need to include a sociolinguistic component in the

solution to the actuation riddle. When the bias-based approach is applied to

sound systems rather than individual categories, both stasis and sound change

are predicted to occur. Thus, this account provides a solution to the actuation

problem without referring to social dynamics.

The claim here is not that social factors have no role in determining sound

change, only that they are not solely responsible for the actuation of changes.

The question, then, is how such factors interact with the system-based view

presented above. In this section I review two possible scenarios, which only

differ in the way the adaptive landscape is correlated with social factors. In

both cases I will assume that the social structure of the speech community is

complex. Members of the community can vary along different social dimensions

and they form networks that determine the extent to which different parts of

the community are connected to each other. The difference is that in one case

the factors that define the adaptive landscape are identical for all speakers,

while in the other case they may differ across sub-groups within the speech

community. As we will see, sound change is predicted to proceed along rather

different lines in these two hypothetical scenarios.

Let us first look at the case where the adaptive landscape is uniform across

the entire speech community. This means that all speakers share the same

sound system and the same patterns of lexical usage. Moreover, there are no
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particularly striking patterns of individual variation – or if there are, these do

not correlate with social structures. Since the adaptive landscape is identical for

all speakers, the stable states are also shared. Therefore, if a sound change is

underway in the community, its direction will be the same for all the speakers.

For this reason, such changes will be termed ‘convergent’. The reason why all

speakers evolve along the same lines is that the source of sound change in

the model advocated in this thesis is language use. That is, changes emerge

from speech interactions among speakers through the application of phonetic

biases, misperception and other factors. Since these factors are shared among

all speakers, their effects will be largely the same across the speech community.

Indeed, this is what we saw in the multi-agent simulations in Section 4.3.

Importantly, the fact that the entire speech community is evolving towards

the same stable state does not necessarily mean that it will be homogeneous

with respect to the speech patterns of individuals. The simulations in Section

4.3 are somewhat misleading in this respect, since they illustrate changes in a

community without any social structure. If a more realistic network structure

was imposed on the simulations, it is likely that a certain amount of diversifi-

cation would emerge within the community. This would not affect the stable

states within the adaptive landscape, but the speed at which different sub-

groups converge towards these states would likely differ. Moreover, another

small modification might also enable the model to account for the age-grading

often seen in sound changes in progress. Baker (2008) discusses a simulation

where the agents can differ in terms of their age, and where older speakers –

while capable of changing their speech patterns – are more resistant to innova-

tions. This model produces realistic results with respect to age grading. Thus,

the assumption that speech representations become somewhat more rigid as

speakers age (which is relatively uncontroversial) can lead to the appearance

of age-grading even without any social factors.10

To sum up, convergent sound change may show sociolinguistic patterning

as a function of social network structure and age. Note that these patterns

arise automatically from language use, and not from the speakers’ desire to

express their social identity through their speech. Moreover, even if there are

10. Note that the claim is not that older speakers do not change their representations, only
that such changes are somewhat more pronounced in younger speakers.
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differences within the speech community, the direction of the change is uniform:

eventually, all the sub-groups within the community will converge to the same

stable state.

Although this discussion is purely hypothetical, convergent sound change

finds an important parallel in empirical studies: changes from below (Labov

1994). Labov provides the following description:

Changes from below are systematic changes that appear first in

the vernacular, and represent the operation of internal, linguistic

factors. At the outset, and through most of their development, they

are completely below the level of social awareness. [. . .] Changes

from below may be introduced by any social class, although no

cases have been recorded in which the highest-status social group

acts as the innovating group.

(Labov 1994: p. 78)

Perhaps the most important element of this description is the statement that

changes from below are driven by internal, linguistic factors. This echoes the

observation regarding convergent changes according to which they emerge

from language use and are not sociolinguistically motivated (although they may

show a certain amount of sociolinguistic patterning). Therefore, it appears that

the model presented in this thesis correctly predicts the existence of a particular

type of change that is widely observed in natural languages.

Let us now turn to the second scenario, in which different sub-groups within

the speech community differ with respect to the shape of the adaptive landscape.

It is not difficult to imagine how such a situation may emerge. For instance, a

certain group within the community might start using a given set of content

words (e.g. slang expressions), or even function words and fillers (e.g. the

words like and so in some varieties of American English), which are not used

by other groups. Alternatively, certain groups of speakers may have stronger

contacts with other languages and dialects, which could result in group-specific

patterns of borrowing. A third source of such differences is individual variation:

following Baker et al.’s (2011) account, it is possible that unusual patterns of

individual variation are better represented in a given sub-group. Such intergroup
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differences may all contribute to the diversification of the adaptive landscape

across the speech community. As a result of this diversification, different sub-

groups will have different stable states, which may in turn lead to divergent

changes within the same community.

This divergence will likely occur along the same lines that are traditionally

observed in sociolinguistic studies (e.g. social class, social network structure).

Importantly, the differences that emerge as a result of this diversification may

become salient markers within the speech community (see e.g. Rácz to appear

for an analysis of the conditions under which a variable can be regarded as

sociolinguistically salient). Under the right circumstances, such markers may

be adopted by other groups as well within the speech community, leading to a

change from above, to use Labov’s (1994) terminology. This will typically arise

when one of the groups is seen as more prestigious than the other groups (e.g.

when it has higher social class; Labov 1994). Thus, similarly to the case of

convergent changes, divergent changes have clear parallels in empirical studies

of sound change.

In sum, the model presented in this thesis seems to predict the existence of

two different types of change with respect to social conditioning. Convergent

changes may be influenced by social factors, but they lead the entire speech

community towards the same stable states. Divergent changes, on the other

hand, lead to diversification within the speech community, which can serve

as the basis of further sociolinguistically motivated shifts. These two types of

change find relatively clear parallels in changes from below and changes from

above, respectively. Once again, I should emphasise that the discussion above is

highly speculative, and should be treated with a certain amount of caution. The

arguments presented above should be tested through computer simulations in a

rigorous way just like the main argument of this thesis. Moreover, the parallels

between the types of change suggested by Labov and the changes predicted by

the model advocated here should be made more explicit. Unfortunately, the

elaboration of these arguments falls outside the scope of the present thesis.

However, even this brief discussion is sufficient to demonstrate that the system-

based view of sound change can interface with sociolinguistics in a meaningful

way.
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5.6 SUMMARY

This chapter presented the main argument of this thesis, which can be sum-

marised as follows. Bias-based models that investigate sound categories in a

vacuum make false predictions with respect to sound change: phonetic biases

result in deterministic shifts, failing to account for cases where no change occurs.

The simulations in this chapter showed that this behaviour is an artifact of the

simplified view taken in these approaches, and that a radically different picture

emerges when such models take a more realistic approach to sound change.

Specifically, shifting the attention from individual categories to sound systems

furnishes us with a plausible solution to the actuation problem, without making

it necessary to discard the main predictions of the bias-based model. Thus, when

the bias-based model is applied to an entire sound system, the pressures that

result from the interaction of categories and phonetic biases create a complex

adaptive landscape, which determines the evolution of the system. One essential

feature of this adaptive landscape is the existence of multiple local and global

optima. Once an evolving system finds itself on a peak in the adaptive landscape

(corresponding to an optimum), it will stop changing, even if it does not satisfy

all phonetic biases. It was also shown that phonetic biases consistently skew the

adaptive landscape, thereby making it statistically more likely that the effects

of a given bias will be visible in a given language (even if not all languages

show them). The emergence of multiple stable states in the system solves the

problem of overapplication. Moreover, it was also shown that under the right

circumstances the system is predicted to undergo changes. When the adaptive

landscape is reshaped through significant changes in the factors defining it, the

sound system will likely follow suit. Finally, I argued that the system-based

view can make plausible predictions about the sociolinguistic aspects of sound

change, although these predictions need to be investigated in more detail.

Since the arguments in this chapter have mostly been framed in abstract

theoretical terms, the reader might wonder what their implications are for

empirical approaches to sound change. As pointed out earlier, one of the main

goals of this thesis is to sharpen the predictions of the bias-based approach.

After all, it is difficult to provide an insightful analysis of a phenomenon when

we cannot be sure what the theory actually predicts. The simulations and verbal
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arguments presented in this chapter bridge the gap between theory and data

by demonstrating how different factors can influence the possible outcomes of

sound change in a bias-based model. Perhaps the most important implication

of this investigation is that it strengthens the case for looking at ‘external’

conditioners in sound change. As Section 5.4 explained, these could include

lexical factors, changes in the number of categories or individual differences.

Of course, this is not to say that such factors have never been investigated:

for instance, Labov (2002) suggests (similarly to what has been proposed in

Section 5.4) that mergers can have an effect on chain shifts, and Wedel et al.

(submitted, in press) have demonstrated that functional load may have an

influence on the likelihood of mergers (these are both empirical investigations;

theoretical hypotheses relating to the same issues have existed for a much longer

time). However, the present thesis goes even further by claiming that shifts

in the factors determining the adaptive landscape can be just as important in

predicting changes as phonetic biases themselves. In other words, such factors

are not secondary components of explanatory accounts of sound change, but

crucial predictors in themselves.

The next chapter presents further empirical support for this view by taking

a detailed look at one such factor, namely, bias proportion. I show that bias

proportion makes an interesting prediction about allophonic splits. Much in the

same way as in the present chapter, this prediction is derived from the main

theoretical assumptions introduced in Chapter 2 (and one further assumption

described in detail in Section 6.1). The chapter then discusses a cross-linguistic

study of the effects of voicing on vowel length, and shows that the prediction

about splits is borne out by the data. These results are crucial in that they

demonstrate how the abstract arguments developed in this chapter find a direct

application in the study of sound change.





LEX ICAL FACTORS IN

CONTEXTUAL EFFECTS 6

The main goal of this chapter is to substantiate the arguments presented in

the rest of this thesis. Chapter 5 demonstrated that the system-based approach

offers a plausible solution to the actuation riddle. It was shown that both stasis

and sound change can be accounted for if we focus on sound systems rather

than isolated categories. The main reason for the success of this approach is

that sound systems are affected by a much richer set of pressures than sound

categories in a vacuum, and are therefore less vulnerable to the effects of

phonetic biases. I suggested that there is a wide variety of factors that could

influence the evolution of a sound system, including lexical distributions, an

increase or a decrease in the number of categories and individual differences.

Although I briefly discussed some studies that have found such factors to have a

significant influence on sound systems, I presented no systematic investigation

of any one of these factors. That is to say, although the predictions of the system-

based approach are clear, none of these predictions have been tested so far.

To show how the approach taken in this thesis can inform empirical investi-

gations, I present an in-depth study of one particular prediction of the model

(the prediction itself will be discussed below). This will be done in two steps: I

first demonstrate how the prediction derives from the underlying theory and

then test its validity through a small cross-linguistic study. The prediction will

be shown to be supported by the data. While this finding certainly strengthens

the main argument of this thesis, the primary goal of this investigation is not to

adduce uncontroversial evidence for the system-based approach. Indeed, such

an effort is well outside the scope of this thesis given the wide-range of factors

that would need to be investigated. This relatively small study serves only to

demonstrate that the predictions of the model can be explored in a systematic
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way and that investigations along these lines promise to contribute significantly

to our understanding of sound change.

Before discussing the prediction itself, it should be noted that the study

described in this chapter will focus on individual categories. This may appear to

go against the idea developed in the previous chapter according to which sound

change can be discussed more successfully when the focus is on sound systems.

As it turns out, this contradiction is only apparent. It is true that individual

instances of sound change should not be analysed in a vacuum, as this might

result in implausible conclusions with respect to the actuation problem. However,

this chapter focuses not on specific cases of sound change, but on a general

factor that may contribute to the likelihood of change. Although such factors

may sometimes manifest themselves at the level of the sound system, there is

no reason to assume that they cannot be specific to individual categories. In

fact, the phonetic biases examined in the previous chapter only affected a single

category, but this did not defeat the purpose of the system-based approach.

Therefore, we are fully justified in focusing on category-specific effects even

if such factors will likely be only part of the story when it comes to specific

instances of change.

Let us now turn to the prediction that serves as the basis of this chapter.

This prediction is about the relationship between lexical distributions and the

strength of contextual effects. The lexical factor in the focus of this investigation

is bias proportion. In Section 4.1.2, I noted that certain biases may only apply

to a subset of the forms exemplifying a given category. Whether a form belongs

to this subset or not is determined by the phonetic environments embodied in

the form. One example for such a bias is the fronting of high back vowels next

to coronal consonants (cf. Harrington et al. 2008). This bias affects a subset of

all the forms containing [u], namely those in which it is preceded or followed

by [t], [d], [tS], [l], [n], [j] or any other coronal consonant; forms in which this

condition is not met do not exhibit this type of fronting. I suggested that the

proportion of eligible forms within a category partially determines how much

influence a given bias can have on it. For instance, a category where only 10

per cent of all forms are eligible is going to be much less affected by the bias

than one where 90 per cent of the forms are eligible. It is this quantity that

I referred to as bias proportion.
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There is another important prediction tied to bias proportion, and this is

what the present chapter will focus on. Consider the partitioning of the set of

forms containing the vowel [u] induced by the fronting bias. The set divides

into two subsets: forms that are affected by the bias and forms that are not.

Importantly, the former subset will contain examples of [u] that are articulated

further to the front than those in the latter one. To put it more formally, the

two sub-distributions within the overall category [u] will have slightly different

expected values, with the biased sub-distribution being closer to the bias attrac-

tor. The appearance of this gap between the two sub-distributions is a simple

consequence of the fact that eligible items are consistently displaced towards

the bias attractor, whereas ineligible items are not.

The prediction relates to the size of the gap between the sub-distributions.

There are two possible ways to approach this issue depending on how one con-

ceives of the internal structure of category representations. The first approach is

exemplified by the simulations in Chapters 4 and 5, where no internal structure

is assumed: production and perception are based on a single distribution repre-

senting the whole category. To return to the example of [u]-fronting, a model

of this type chooses production targets for both the coronal and non-coronal

sub-distributions by sampling the distribution of all forms with [u]. The only

difference is that the target productions in coronal forms are subsequently dis-

placed by the bias, while no such displacement occurs in non-coronal forms (see

Section 4.1 for a detailed description of this model). Therefore, when the two

sub-distributions have no representational independence, any difference in their

expectation dynamics is due solely to the mechanical application of the bias. To

use the terminology introduced in the previous chapter, the difference between

the two contexts lies not in the underlying but in the observed distributions. In

sum, this model predicts only a small gap between the two sub-distributions,

whose size is a simple function of the strength of the bias.

The second approach differs from the first one in that it posits a cer-

tain degree of representational independence for the two sub-distributions.

In other words, the differences between sub-distributions are already apparent

at the level of underlying distributions. Let us take the example of the coronal

fronting bias again. In this second type of model, production and perception

are both based at least partly on the relevant sub-distributions: the coronal
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sub-distribution plays a greater role in determining the target production for

a coronal token than the non-coronal sub-distribution and vice versa for non-

coronal tokens. Moreover, perception is also influenced by sub-distributions,

introducing context-specific effects in categorisation (these are discussed at

greater length in Section 6.1). Since the sub-distributions are independent to a

certain extent, the influence of the fronting bias can accrue over many iterations

in the representation of coronal forms, but not in that of non-coronal forms. This

leads to an increase in the size of the gap between the two sub-distributions.

To put it slightly differently, when the two sub-distributions are represented

separately, differences in their expectation dynamics result not only from the

mechanical application of the bias but also from the production-perception

feedback loop. Therefore, this model predicts a larger gap between the two

sub-distributions than the previous one.

There is good evidence from experimental studies that the second approach

is more plausible than the first one: it appears that speakers routinely rely on sub-

distributions both in their production and perception (these studies are reviewed

in the next section). We are now in a position to return to the relationship

between bias proportion and contextual effects. When we combine the model

outlined in the previous chapter with the idea of independent sub-distributions,

the following prediction emerges. The gap between the sub-distributions will be

wider when the proportion of biased and non-biased items is balanced within

the category, and narrower when either biased or non-biased items are over-

represented. Since this predicted correlation is the main topic of this chapter,

it is repeated below as Prediction 1:

Prediction 1 Sub-distributions are further apart in categories with a balanced

bias proportion than they are in categories with an unbalanced bias proportion.

Unfortunately, it is difficult to discuss this prediction in detail until the necessary

formalisms have been introduced. However, I will attempt to explain briefly

(and in rather impressionistic terms) why such a relationship between lexical

factors and the size of the gap within the category should exist. There are two

main forces that determine the internal dynamics of a category: the different

sets of biases that affect each sub-distribution and the internal cohesion of

the category (the source of this cohesion is discussed in Section 6.3). These

forces act against each other: the biases pull the sub-distributions apart, while
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the internal cohesion of the category draws them closer together. Under the

right circumstances, the two forces will balance each other out, leaving the

sub-distributions in an arrangement where there is no pressure for them to

move either apart or towards each other. The size of the gap between the

sub-distributions in such an equilibrium is determined by the relative strengths

of the biases and the cohesive forces acting on the category. It is at this point

that lexical factors come into play. The degree of cohesion within categories

is strongly affected by the bias proportion: when eligible and ineligible items

are equally frequent, the sub-distributions have a high degree of independence

(and therefore less cohesion), but when there is an imbalance in the frequen-

cies, the less frequent sub-distribution loses its independence (increasing the

overall cohesion within the category). As a result, categories with a balanced

distribution of eligible and ineligible items show a higher degree of separation

between the sub-distributions than do categories with a skewed distribution.

The rest of this chapter looks at Prediction 1 in more detail. As a first step,

Section 6.1 provides justification for the assumption of partially independent

sub-distributions within categories. This is necessary, since much of the work

presented in the rest of the chapter takes this assumption for granted. Section

6.2 then gives a detailed description of vowel length differences before voiced

and voiceless obstruents. This voicing effect is used to anchor the discussion

of contextual effects in a concrete phenomenon. In Section 6.3, I present a

formal model of the separation of sub-distributions within categories, and show

how Prediction 1 emerges from this model. Both simulations and mathematical

calculations are used to explore the behaviour of sub-distributions. Then, Section

6.4 presents a small cross-linguistic study looking at the voicing effect, which

finds support for Prediction 1. Section 6.5 concludes the chapter with a brief

discussion of its main points.

6.1 SUB -DISTRIBUTIONS WITHIN CATEGORIES

In the introduction to Chapter 3, I highlighted the importance of carefully stat-

ing the theoretical assumptions underlying a given computational model. The

necessity for such statements derives directly from the role of computational

models: they are created with the aim of validating scientific theories by linking
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abstract theoretical concepts to concrete data sets. They can only fulfill this role

if the underlying theory is made explicit. It was also noted that the theoretical as-

sumptions of the model have to be supported by evidence from outside the data

set to avoid circularity. The present chapter proposes to enrich the set of funda-

mental assumptions presented in Chapter 3 with a further assumption, namely

that sound categories are made up of partially independent sub-distributions.

The main goal of this section is to elaborate on this assumption and to present

evidence for its validity from the phonetic literature.

When this thesis claims that speakers and listeners rely on sub-distributions,

the following are meant. First, speakers store probabilistic representations of

certain subsets of tokens from a given category, in much the same way as they

form probabilistic representations corresponding to the categories themselves.

These representations are learnt and phonetically detailed, just like the over-

all category representations used in the simulations in the previous chapters.

Second, speakers use these sub-distributions in generating production targets.

Third, listeners rely on their own stored context-specific sub-distributions in

perception.

All three of these claims are investigated in this section. I first attempt to

clarify the concept of sub-distributions by relating it to the phonetics/phonology

divide that is often assumed in discussions of speech representations. Then

I discuss the notions of learning and phonetic detail, arguing that they are

both essential in order to understand the behaviour of context-specific sub-

distributions. This position receives support from a review of findings from

production and perception studies. Finally, I present a brief argument to the

effect that sub-distributions within a given category are independent, but only

within certain limits.

sub -distributions and phonetics/phonology This thesis assumes

that information about context-specific sub-distributions is already available at

the level of lexical representations. That is, a given category in environment A

will be represented differently from the same category in environment B. The

main difference between traditional modular approaches to phonetic realisation

(see e.g. Keating 1990a, Bermúdez-Otero 2007) and the present model is that

in the latter one context-specific differences are not derived procedurally. As
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Figure 6.1: Diagrams (Ia) and (Ib): traditional modular approaches to phonetic
implementation can represent contextual differences in the realisation of a category
in two different ways; (Ia) is a phonological alternation, whereas (Ib) is a phonetic
alternation; Diagram (II): the present model represents both phonological and
phonetic alternations in the same way.

a result, it makes no sense to distinguish between phonetic and phonological

effects in the present model. In what follows, I attempt to make the contrast

between these two views clearer, and also to briefly assess their predictions.

Consider the example of the voicing effect. The basic observation is that

vowels tend to be longer before voiced obstruents than they are before voiceless

ones. This observation holds for a large number of languages from a variety

of different language families (see the next section for a more detailed de-

scription). Modular approaches to phonetic implementation can represent the

voicing effect on two different levels: the level of phonology and that of pho-

netics. This is illustrated in Figure 6.1 (based partly on Bermúdez-Otero 2007).

The diagram in (Ia) shows a phonological alternation, where a single lexical

representation is transformed into two different phonological representations

before the application of phonetic rules. In the case of the voicing effect, this

would mean that phonological rules act on discrete features to create two

categorically different representations in voiced and voiceless environments

(e.g. [+long] and [−long]). The diagram in (Ib) illustrates a different situation:

phonology leaves the original input intact, and it is only at the level of phonetics

that contextual differences emerge. Since phonetic rules create gradient output
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(cf. Bermúdez-Otero 2007), a phonetic approach allows substantial overlap

between vowel length distributions in voiced versus voiceless environments.

Some authors (e.g. Hyman 1975) suggest that this two-way distinction is

reflected in cross-linguistic data as well: some languages (e.g. English) have

phonologised the voicing effect and therefore show a much more pronounced

length difference across voiced and voiceless contexts than others (e.g. French),

where phonologisation has not taken place. This suggests that a clear binary

distinction should be observed between languages where the pattern is phono-

logical and those where it is phonetic. As it turns out, this prediction is not

supported by the data. There is gradient cross-linguistic variation in the size of

the voicing effect that does not correspond to a phonology/phonetics division

in any straightforward way (see Section 6.2). More generally, the review of

production patterns presented later in this section shows that such a simple

division cannot account for the gradient patterns of cross-linguistic variation

characteristic of a wide array of contextual effects. If, however, the phonol-

ogy/phonetics distinction does not correspond to any systematic differences in

the realisation of contextual effects, it becomes unclear why such a distinction

should be assumed at all.

These considerations suggest that the simple model illustrated in diagram

(II) of Figure 6.1 might be sufficient to account for contextual differences in the

realisation of a category (see also Pierrehumbert 2001, 2002 for a similar view).

The diagram shows that contextual differences in this type of model emerge

simply through linking different sets of forms (the dots) within a category (the

ellipsis) to different areas of phonetic space. Since contextual differences do not

arise procedurally in this model, there is no branching of representations as in

diagrams (Ia) and (Ib). Different groups of forms within a category are already

assigned to separate sub-distributions at the level of the lexicon. I do not intend

to suggest that every type of sound pattern can be accounted for in this simple

framework – and the evidence presented in this section is certainly not sufficient

to back such a claim. However, the simple contextual effects investigated in

the present chapter do not seem to motivate a multi-levelled model. In the

absence of good arguments for such models, the simpler approach advocated

in this thesis is preferable.
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learning and phonetic detail The foregoing discussion has the follow-

ing implications with regard to learning and phonetic detail. Sub-distributions

have to be learnt in the course of language acquisition, or otherwise there could

be no cross-linguistic differences in the size of contextual effects. Moreover,

sub-distributions have to be capable of representing phonetically detailed in-

formation, as this is necessary to capture gradient differences in the size of

contextual effects across languages. In what follows, I give a brief overview

of previous approaches to these questions, especially where they differ from

the views advocated here.

Learning and phonetic detail tend to be intimately tied together in discus-

sions of contextual effects. Some amount of each clearly has to be allowed in any

model of speech: a model without learning would not be able to represent even

categorical differences across languages, and a model without phonetic detail

would be incapable of accounting for even the smallest amount of gradient

variation. However, it has been suggested that there is a crucial disjunction

between learning and phonetic detail: learning only occurs at the level of

phonology and gradience at the level of phonetics. Models relying on these

assumptions were especially popular in the early days of generative linguistics.

For instance, Chomsky & Halle (1968) suggest that phonological rules operating

on discrete representations account for all language-specific aspects of speech,

while phonetics operates in a completely universal and mechanical fashion to

translate such representations into continuous signals (see Keating 1984 for a

thorough review of this position).1 This view is not compatible with the position

taken in this thesis: I propose that lexical representations are directly mapped

to phonetic space, which entails that learning and phonetic detail coexist at

the same level.

While the disjunctive approach to learning and phonetic detail still has some

proponents (Hale et al. 2007), it has become somewhat of a minority view over

the last few decades. There is a long research tradition in phonetics showing that

phonetic detail is, in fact, learnt and language-specific (Keating 1984, 1990a,

1. Chomsky & Halle (1968) also propose phonetic detail rules as part of grammar, and
these can introduce a certain amount of gradience before the application of universal phonetics.
However, they are quite explicit about relegating most contextual effects including coarticulation
to the level of universal phonetics (cf. Keating 1984).
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Kingston & Diehl 1994), and this view is gaining wide-spread acceptance within

the phonological community as well (see e.g. Morén 2003, Bermúdez-Otero

2007, Blaho 2008, Boersma & Hamann 2008). This line of research is perfectly

compatible with the present approach in terms of learning and phonetic detail,

although it is clearly distinct from it in another area, namely the assumption

of multi-levelled representations.

evidence for sub -distributions Let us now turn to the evidence for

the claim that learnt and phonetically-detailed sub-distributions are used in

speech. I show that (i) contextual effects show cross-linguistic variation and

that (ii) this variation is gradient in a way that does not support a simple

division between phonetics and phonology. I start by discussing evidence from

production studies. This is followed by a brief review of perception studies.

Cross-linguistic differences in production have been investigated extensively,

and there is a wealth of evidence suggesting that context-specific effects – such

as coarticulation – are learnt and language-specific. Some of this evidence is

reviewed in Pierrehumbert (1999), who makes the following conclusion with

regard to cross-linguistic variability:

[. . .] I believe that every thorough study which has looked for

a difference between two languages in details of phonetic imple-

mentation has found one. These differences concern both detailed

outcomes for analogous phonemes in the most analogous available

positions, and — to an even greater extent — principles of allophonic

variation in context.

(Pierrehumbert 1999 p. 114; emphasis mine)

Of particular importance for our present purposes is the statement that allo-

phonic variation also shows differences across languages, which is clearly in

line with the view that knowledge of sub-distributions is acquired through

learning.

In what follows, I present a few specific examples for such cross-lingustic

variation. Studies of vowel nasalisation before nasal consonants have found

that the temporal and spatial extent of nasalisation can be vastly different

across languages. For instance, Beddor & Krakow (1999) claim that while
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nasalisation is present for 80 per cent of the duration of pre-nasal vowels in

English,2 Thai speakers only exhibit 45 per cent nasalisation in the same context.

Montagu (2007) reports even lower numbers for Parisian French, where the

temporal extent of nasalisation is between 24–45 per cent, depending on vowel

quality. Note that these findings exhibit gradient variation, inasmuch as the

average percentages are distinct across the three languages. Such differences

cannot simply be explained by assuming a distinction between phonetic and

phonological patterns.

Patterns of vowel-to-vowel coarticulation have also been found to vary quite

substantially across languages. Beddor et al. (2002) show that there are sys-

tematic differences between English and Shona both in the production and the

perception of vowel-to-vowel coarticulation. One example is the observation

that carryover coarticulatory effects between neighbouring vowels are stronger

in English than in Shona. Another relevant investigation of vowel-to-vowel

coarticulation is presented in Choi & Keating (1991), who demonstrate that

English, Polish, Bulgarian and Russian each show different degrees of coar-

ticulation. A summary of their cross-linguistic findings is presented in Figure

6.2 (taken from Choi & Keating 1991: p. 83). Similarly to the case of vowel

nasalisation, the cross-linguistic variation observed here is gradient: the data do

not seem to support a binary distinction between phonological versus phonetic

patterns. Note that some of these differences might be due to the fact that Polish,

Bulgarian and Russian all have palatalised consonants, which could block the

interactions between neighbouring vowels. However, this still does not explain

the differences among these three languages.

Sibilant-vowel interactions also exhibit a considerable amount of variation

across languages. Hoole et al. (1993) present the results of an experiment

using both articulatory and acoustic measures. They show that German, French

and English are all different both in their context-independent realisations

of [s] and [S] and the effects that the neighbouring vowels have on these

sibilants’ articulatory and acoustic properties. Moreover, they find significant

differences even between different dialects of the same languages. One finding

2. Based on a study investigating nasals in the speech of speakers from Michigan (Tanowitz &
Beddor 1997). Some other studies have found different percentages: for example, Solé (1992)
reports 100 per cent nasalisation in American English.
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Figure 6.2: The degrees of anticipatory and carryover vowel-to-vowel coarticula-
tion in English, Polish, Russian and Bulgarian. The measurements are based on
differences in F2 between the first vowels in /abi/ vs. /aba/ (anticipatory coarticu-
lation) and the second vowels in /iba/ vs. /aba/ (carryover coarticulation).

that demonstrates language-specific effects relates to the direction of coartic-

ulation: German and English seem to favour carryover coarticulation, while

French favours anticipatory coarticulation. Although Hoole et al. (1993) do not

explicitly note this, a glance at their graphs and statistical results also suggests

that the amount of anticipatory coarticulation in [s] is much smaller in English

than in the other languages.

Let us now turn to the phenomenon of perceptual compensation. Percep-

tual compensation is a cognitive process, which is part of a more general

phenomenon referred to as ‘perceptual constancy’ or ‘subjective constancy’ in

cognitive science. Broadly speaking, perceptual compensation is the process

whereby humans filter out the influence of the context in which a given object or

event occurs, which allows them to see it as unchanged regardless of variation

in the external conditions. There are many straightforward examples for this

in the field of visual perception (see Palmer 1999 for a thorough review). For

instance, it is through perceptual compensation that the reader of this thesis

sees the paper that this thesis is printed on as white regardless of whether they

are looking at it in a park in broad daylight or in a dimly lit office.3 Visual

3. I urge the reader to test this claim themselves, if broad daylight and a park are available.
Unfortunately, readers using an electronic device to display the thesis will have to provide their
own piece of white paper.
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Figure 6.3: Optical illusion illustrating perceptual compensation in visual percep-
tion. The reader should hold the paper relatively close to their eyes and fixate on
the cross in the middle. The circle on the right will appear brighter, even though it
is exactly the same colour as the one on the left.

illusions provide another source of illustration for perceptual compensation.

Consider the circles in Figure 6.3. They appear to be of different colours, but

they are not. The source of the illusion is the context in which they appear.

The viewer has implicit knowledge of the fact that everyday objects are usually

brighter in a bright environment and darker in a dark environment. Building

on this observation, our cognitive system attempts to control for the ambient

light levels, and makes the circle on the left appear darker and that on the right

lighter. This is the essence of perceptual compensation.

The very same phenomenon also occurs in speech perception. Mann & Repp

(1980) show that when speakers of English are played a sound intermediate

between [s] and [S], they are more likely to perceive it as [s] when followed

by [u], and as [S] when followed by [a]. This situation is completely analogous

to the case of the circles in Figure 6.3. The subject has implicit knowledge

of the fact that coarticulation makes sibilants sound more [S]-like before an

[u] and more [s]-like before an [a] (this can been attributed to the effect of

lip-rounding on the spectral centre of gravity). The perceptual system attempts

to control for the effects of the phonetic environment, making the stimulus

sound more [s]-like before [u] and more [S]-like before [a] (in the same way

that it makes the circle appear lighter in a dark environment and darker in a

light environment). Crucially, perceptual compensation can only take place

if the listener has knowledge of the differences in the acoustic properties

of the pre-[a] and pre-[u] sub-distributions. This would not be possible if

these differences came by through automatic and universal processes without
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any reliance on the listener’s previous experience. Therefore, the existence

of perceptual compensation is evidence for learnt sub-distributions. Similar

effects have been demonstrated for vowel-to-vowel coarticulation (Beddor et al.

2002), the effect of vowel height on fundamental frequency (Hombert 1978)

and numerous other context-dependent phenomena (see Sonderegger & Yu

2010 for a brief overview).

Moreover, Sonderegger & Yu (2010) find that there is a close correspondence

between speakers’ production of different sub-distributions and their behaviour

in perceptual compensation: the former can be used to predict the latter with

relatively high accuracy. Specifically, phonetic details from the speakers’ pro-

ductions such as the means and dispersions of different sub-distributions are

indicative of the amount of perceptual compensation that they display. Thus,

the knowledge of contextual effects that forms the basis of perceptual com-

pensation has to include phonetically detailed information as well. Otherwise,

the observed parallelism between the amount of perceptual compensation and

gradient features of production could not exist.

the partial independence of sub -distributions At the beginning

of this section, the sub-distributions contained within a given category were

claimed to be only partially independent. This means that while speakers store

information about specific sub-distributions, their behaviour in production and

perception can be affected by other sub-distributions as well. For instance, when

the speaker produces a vowel in a voiced environment, the sub-distribution

corresponding to vowels in a voiceless environment might also play a role

in choosing a production target. This assumption is necessary in order to

account for the coherence of sound categories: there seems to be a limit to

the extent that a single category can be realised differently as a function of

the context it appears in. In other words, the sub-distributions corresponding

to different environments do not typically drift apart in phonetic space ad

infinitum (cf. Bermúdez-Otero 2007). The small-scale computational experiment

described in Section 3.2 supports this claim. It was shown that an unsupervised

clustering algorithm can approximate categories with surprising accuracy. Since

the clustering algorithm relies on the assumption that the categories are not
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discontinuous, this close approximation is only possible if the categories show

a considerable degree of cohesion.

In sum, the results of existing production and perception studies argue strongly

for the view that context-specific effects in the realisation of sound categories

are learnt and phonetically detailed. Moreover, the data reviewed in this section

do not support a categorical distinction between phonological and phonetic

patterns. Therefore, this thesis is justified in assuming that contextual effects

are encoded at the level of lexical representations in the form of separate sub-

distributions. Moreover, I have also presented some arguments to the extent that

these sub-distributions are only partially independent. These assumptions are

substantiated in the mathematically explicit model presented in Section 6.3.

6.2 THE VOICING EFFECT

In the rest of this chapter, I use the example of vowel length differences across

voiced and voiceless contexts to give more substance to the theoretical concepts

under discussion. The present section provides some background to this phe-

nomenon and attempts to deal with a number of potential problems so that the

central argument of the chapter can be presented without major digressions.

I first give a brief description of the phenomenon, clarifying some of its more

controversial aspects and reviewing potential explanations for its occurrence.

The second half of the section explores the cross-linguistic variability in the size

of the voicing effect, and lists some factors that contribute to this variability.

A difference in the average lengths of vowels preceding obstruents that are

traditionally spelt or transliterated using the letters 〈b〉/〈d〉/〈g〉 as opposed to

〈p〉/〈t〉/〈k〉4 has been observed in a wide variety of languages: Modern Stan-

dard Arabic (Hussein 1994), Assamese (Maddieson 1977), Bengali (Maddieson

1977), English (Peterson & Lehiste 1960, Chen 1970, Mack 1982, Laeufer

1992), French (Mack 1982, Laeufer 1992), Hindi (Maddieson & Gandour 1976),

Lithuanian (Campos-Astorkiza 2007), Spanish (Zimmerman & Sapon 1958),

4. Although this effect extends to fricatives, affricates and stops at different places of articula-
tion as well, I only use 〈p〉/〈t〉/〈k〉 versus 〈b〉/〈d〉/〈g〉 for illustrative purposes.
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Swedish (Elert 1964, Buder & Stoel-Gammon 2002).5 The observed direction

of this tendency is always the same: vowels preceding 〈b〉/〈d〉/〈g〉 are longer

than those preceding 〈p〉/〈t〉/〈k〉. Note that I have purposely avoided referring

to the actual phonetic properties of the conditioning environment. There is

good reason to be cautious: the phonetic categories that condition this length

difference can be quite different cross-linguistically. Thus, French, Lithuanian,

Spanish and Modern Standard Arabic contrast prevoiced and plain voiceless

obstruents; English and Swedish contrast optionally prevoiced and voiceless

aspirated obstruents; and Hindi, Assamese and Bengali have a four-way laryn-

geal contrast involving prevoiced and voiceless obstruents that come both in

plain and aspirated forms.

active/passive voicing and aspiration The latter two language

types show that the voicing effect can also appear in languages where the

laryngeal contrast is not solely based on prevoicing. This raises the following

question: is there a single mechanism underlying the patterns of vowel length

variation observed in the languages listed above, or are there several different

mechanisms related to different types of laryngeal contrast? I will attempt

to answer this question by taking a closer look at languages where voicing

and aspiration co-occur. Moreover, I will also briefly discuss the behaviour

of vowels preceding passively voiced consonants (e.g. nasals), as this might

provide further evidence relating to the question at hand.

As it has been noted above, there are two different types of languages

where voicing and aspiration are both used in laryngeal contrasts. The first

type comprises languages like English and Swedish, which contrast only two

different laryngeal categories, but use different combinations of closure voicing

and aspiration to signal this contrast depending on stress, foot structure and

position within the word. Both languages show relatively complex patterns

with respect to voicing, so I will focus on a smaller subset of forms that are

particularly relevant from the perspective of this thesis: monosyllabic items

(this is because the stimuli for the experiment described in Section 6.4 are also

5. Maddieson (1977), Hussein (1994) and Campos-Astorkiza (2007) cite many more exam-
ples, which are omitted here either because they come from very small studies that are not
robust enough in a statistical sense, or because I could not verify them.
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all monosyllabic). If the vowel is followed by an obstruent in a monosyllabic

form, the obstruent will necessarily be in final position. As it turns out, the

role of aspiration is greatly diminished in this position. To see why this is the

case, let us compare initial, medial and final obstruents (based on Ladefoged &

Johnson 2010, Ringen & Helgason 2004, Helgason & Ringen 2008). Aspiration

plays a crucial role in word-initial contrasts in both languages: in this position,

English typically contrasts partially prevoiced or plain voiceless consonants

with voiceless aspirated ones, and Swedish consistently prevoiced consonants

with voiceless aspirated ones. In medial position, the nature of the contrast

depends strongly on foot structure. While prevoicing seems to occur more or less

invariably, postaspiration is typically only found in cases where the obstruent

is in the onset of a stressed syllable. In final position, no postaspiration is seen

in either language, while closure voicing appears consistently in Swedish and

optionally in English.6 Since there is no aspiration in final position, it appears

that the source of the vowel length differences in monosyllabic forms is the

same in languages with a simple contrast based on prevoicing and languages

like English and Swedish. Vowel length in these forms is determined by voicing,

not by aspiration. While this analysis is by no means comprehensive, it will be

sufficient for the purposes of this thesis, given that the empirical investigation

presented in Section 6.4 is also restricted to monosyllabic forms.

The second type includes languages like Hindi, Assamese and Bengali, where

both voicing and aspiration can be used to distinguish obstruents from each

other, yielding a four-way contrast (e.g. [p]/[ph]/[p]/[bh]). The presence of

voicing and aspiration in these languages is independent of position within

the word. Aspirated stops occur in word-final contexts as well, which means

that these languages provide us with an opportunity to look at how various

combinations of voicing and aspiration affect vowel duration. Maddieson &

Gandour (1976) show that both voicing and aspiration increase the length of

the preceding vowel in Hindi. Thus, vowels in voiced aspirated contexts are

the longest, followed by vowels in voiceless aspirated and voiced unaspirated

contexts, with vowels in voiceless unaspirated contexts being the shortest.

6. It should be noted that Swedish exhibits preaspiration in word-medial and word-final
position in the 〈p〉/〈t〉/〈k〉 series – however, it is not entirely clear how this phenomenon is
related to postaspiration in terms of its articulation and potential phonetic effects on preceding
vowels.
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Maddieson & Gandour (1976) interpret this observation as follows: the effect

of aspiration is independent of the voicing effect, and voicing and aspiration

have a cumulative influence on vowel length.

Let us now turn to the issue of passive voicing. If the voicing effect is

simply a function of the presence or absence of vocal-fold vibration, vowels

preceding sonorants – especially nasals – should also be longer than vowels

preceding voiceless obstruents. Indeed, Lisker (1974) claims that nasals and

voiced stops behave identically with respect to the voicing effect, although he

does not provide any evidence to back this claim. While the effects of passive

voicing on vowel length have not been investigated in detail, there are a few

studies that report on vowel length in pre-sonorant environments. Zimmerman

& Sapon (1958)’s results suggest that vowel length before nasals is intermediate

between the durations measured in voiceless and voiced obstruent environments

in Spanish. The same paper finds inconsistent effects in English: [m] seems

to pattern with [b] as opposed to [p], but alveolar nasals show the same

intermediate effect size as the nasals in Spanish. Conversely, Peterson & Lehiste

(1960) report that nasals and voiced stops are indistinguishable in terms of their

effects on the duration of the preceding vowel. Note that neither Zimmerman &

Sapon (1958), nor Peterson & Lehiste (1960) present any statistical analysis

of their data. A somewhat earlier paper by House & Fairbanks (1953) presents

observations that are also supported by statistics. Their findings suggest that

nasals affect vowels in a way that is similar to voiced obstruents, but the amount

of incremental duration is somewhat smaller than that for voiced obstruents.

In sum, these studies do not provide conclusive evidence for grouping nasals

with voiced obstruents.

The following conclusions can be made based on this short review of the

factors that could plausibly interfere the voicing effect. It seems that there is,

in fact, a single mechanism behind the variation in vowel length in all the

languages listed above (at least when the focus is on monosyllabic forms, as

in this thesis). In languages where both aspiration and voicing can occur in

word-final position, this mechanism is supplemented by another effect related

to aspiration. Moreover, it seems useful to restrict the definition of the voicing

effect to obstruents, as sonorants behave ambiguously with respect to their

influence on the length of the preceding vowel.
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the source of the voicing effect Having reviewed some of the more

problematic aspects of the voicing effect, let us now turn to its phonetic motiva-

tion. Two main types of explanation have been proposed for this phenomenon:

articulatory and auditory. Both of these locate the source of the voicing effect in

low-level phonetics and therefore make it a phonetic bias in the terminology of

this thesis (cf. Section 3.4). The next section relies heavily on this assumption,

as it describes a simulation based on the idea that the voicing effect has its

roots in a phonetic bias.

Since Lisker (1974), Maddieson & Gandour (1976) and Kluender et al.

(1988) all reject articulatory accounts after extensive review and criticism, I

only consider these approaches briefly here. The present review is based mostly

on Kluender et al. (1988). Belasco (1953) proposes that the voicing effect is

the result of a tendency to use a constant amount of ‘articulatory force’ within

a syllable. In his account, voiceless obstruents require more force than voiced

ones, which is compensated for by shortening the preceding vowel before

voiceless obstruents. Besides the completely ad hoc nature of this explanation,

there are many arguments that speak against such an account. For instance, it

predicts even greater shortening before aspirated consonants, which arguably

require more force than unaspirated ones (Maddieson & Gandour 1976). This

prediction is clearly wrong. A different approach is exemplified by Chomsky

& Halle (1968). They suggest that ‘[v]owels are lengthened in front of voiced

consonants to allow time for laryngeal adjustments needed to maintain glottal

vibration during oral constriction or closure’ (Kluender et al. 1988: p. 154).

As there is no evidence that such adjustments occur, but there is evidence for

adjustments before voiceless stops (Lisker 1974), this approach is also unlikely

to be on the right track. The third account suggests that the length difference

follows from the greater speed of the closing gesture in voiceless obstruents.

This speed difference is argued to result from the fact that more muscular energy

is needed to contain the ‘higher intraoral pressure [. . .] during the production

of a voiceless stop or fricative’ (Kluender et al. 1988: p. 155). Unfortunately,

this account suffers from the same problem as Belasco’s (1953): aspirated

consonants should be preceded by even shorter vowels due to the higher rate of

airflow entailed by aspiration (Maddieson & Gandour 1976).
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Javkin (1976) and Kluender et al. (1988) attempt to avoid the shortcomings

of articulatory accounts by locating the source of the voicing effect at the level

of auditory perception. Javkin (1976) suggests that the boundary between a

vowel and a voiced obstruent is less clear than that between a vowel and a

voiceless obstruent. Consequently, listeners are likely to perceive part of the

voiced portion of the consonant as belonging to the vowel. Kluender et al.

(1988), on the other hand, argue that the voicing effect serves to enhance

another cue to laryngeal contrasts, namely the length difference between voiced

versus voiceless obstruents. The gist of their proposal is that speakers use the

voicing effect to make the short closure interval of voiced obstruents appear

even shorter by lengthening the preceding vowel, and vice versa for voiceless

obstruents. There is some reason to favour Javkin’s (1976) account over that

of Kluender et al. (1988). Davis & Summers (1989) have shown that closure

duration is an unreliable cue to voicing in obstruents following unstressed

vowels. Kluender et al. (1988) would predict that in such cases no vowel length

differences should be observed either, as there is no cue to enhance. This,

however, is wrong: the durations of unstressed vowels are also influenced by

the voicing of the following obstruent (Davis & Summers 1989). Therefore, the

following tentative conclusion can be made about the source of the voicing

effect: the length differences between vowels occurring before voiced versus

voiceless obstruents are likely to be the result of low-level auditory processes

along the lines proposed in Javkin (1976).

variation in the size of the voicing effect In the rest of this

section, I present an overview of the cross-linguistic and language-internal

variation in the size of the voicing effect. As it has been noted above, the voicing

effect has been observed in numerous languages. Some authors have used the

available data to draw cross-linguistic comparisons with regard to the size of

the effect (e.g. Chen 1970, Keating 1984, Hussein 1994). Although the validity

of such comparisons has been questioned on the grounds that cross-linguistic

investigations typically do not control for all confounding factors (Laeufer 1992,

Hussein 1994), there are some findings that seem to emerge consistently from

studies of the voicing effect:
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1. The size of the voicing effect is greater in English than in most other

languages (Chen 1970). This has been demonstrated in a statistically

rigorous way for French versus English (Mack 1982) and Arabic versus

English (Hussein 1994).

2. Some languages show very little or no voicing effect. Swedish and Arabic

exhibit a relatively small length difference compared to other languages

(Elert 1964, Buder & Stoel-Gammon 2002, Hussein 1994), and Polish and

Czech show no length difference at all (Keating 1984).

Similarly to the cases cited in the previous section, the observed minimally

three-fold distinction in the size of the voicing effect does not support models

that attempt to derive such differences from the phonology/phonetics divide. It

could be argued that the English pattern is phonologised while the rest of the

languages show a phonetic effect. However, it is not clear why the languages

with a ‘purely phonetic’ pattern should show further differences in the size of

the effect. This is also the conclusion that Hussein (1994) arrives at after a

much more detailed review of cross-linguistic variation in the voicing effect.

Besides these cross-linguistic differences, the size of the effect can also vary

within the same language. Two different types of language-internal variation

have been reported in connection with the voicing effect: contextual variation

and vowel-specific patterns. As for contextual variation, there are numerous

segmental and prosodic factors that can interact with the voicing effect in a

given language. Only two of these are mentioned here: stress and the phonetic

properties of the following obstruent (the interested reader is referred to Laeufer

(1992) and Hussein (1994), who present much more detailed reviews of these

factors). Davis & Summers (1989) find that the size of the voicing effect in

English is greatly reduced in unstressed syllables as compared to stressed ones.

In fact, the voicing effect is weakened to the point of statistical insignificance

for some speakers in certain environments. The manner of articulation of the

following stop has also been claimed to affect the size of the voicing effect:

House & Fairbanks (1953) have found that there is a greater length difference

before fricatives than before stops. Since these effects can obscure the influence

of voicing on vowel length, experimental investigations have to make sure that

they control for them.
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The second type of language-internal variation is conditioned by the identity

of the target vowel: certain vowels are more strongly affected by the voicing

effect than others. For instance, Laeufer (1992) suggests that ‘the effect of

obstruent-voicing [is] smaller for inherently shorter vowels than for longer

ones’ (Laeufer 1992: p. 412). According to Laeufer, this effect has been found

for English and French as well.7 Campos-Astorkiza (2007) reports an even

more intriguing vowel-specific effect. Lithuanian has a symmetric vowel system

with three vowel heights and a distinction between front versus back vowels,

which yields six different vowel qualities. The high and the low vowels come in

contrastive short-long pairs: [i]∼[i:], [U]∼[u:], [E]∼[æ:] and [a]∼[A:]. However,

the length contrast exists only marginally in the case of mid [ c]∼[o:] (where

the short member of the pair only appears in recent loanwords; cf. Campos-

Astorkiza 2007: p. 32), and the front mid vowel [e:] has no short pair at all.

Campos-Astorkiza shows that the voicing effect is stronger in mid vowels than

it is in high and low vowels, and is particularly robust in the case of [e:]. She

suggests a causal link between the structure of the Lithuanian vowel inventory

and the vowel-specific differences in the size of the voicing effect: mid vowels

allow more contextual variation in duration precisely because they are not

involved in the length contrast exhibited by high and low vowels. Although

this section does not examine the effects of contrast, vowel-specific patterns of

variation are exploited heavily in Section 6.4, where I look at the influence of

lexical factors on the size of the voicing effect in different vowels.

Let us briefly go through the main points of this section. It has been shown that

both voicing and aspiration can affect vowel length. However, the effects of

aspiration are more visible in languages where aspiration and voicing function

independently of each other, like Hindi, Assamese and Bengali. The length

differences in languages with an English-like system of contrasts seem to be

conditioned mostly by voicing, at least in monosyllabic forms. Moreover, there

is no strong evidence for grouping sonorants either with voiceless or voiced

obstruents, which suggests that the variation in vowel duration is a function of

active voicing. A review of potential explanations for the voicing effect suggests

7. Although French has no lexical contrasts based on vowel duration, length differences arise
as a function of aperture.
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that it stems from low-level properties of auditory perception, and therefore its

origins lie in a phonetic bias. There is also a large amount of cross-linguistic

variation in the size of the effect, which is evidence for its learnt nature. Finally,

the size of the voicing effect is subject to variation even within the same language

depending on the context and the target vowel, which means that these factors

have to be considered carefully in any investigation of the phenomenon.

6.3 SIMULATING THE BEHAVIOUR OF SUB -DISTRIBUTIONS

We are now in a position to return to the prediction outlined in the introduction

to this chapter, which is repeated below for convenience:

Prediction 1 Sub-distributions are further apart in categories with a balanced

bias proportion than they are in categories with an unbalanced bias proportion.

In order to see how the discussion presented so far in this chapter links to this

prediction, let me remind the reader of the general research strategy pursued

in this thesis. One of the cornerstones of this strategy is the requirement that

predictions should be obtained in a formally rigorous way. Specifically, the

researcher has to formalise the assumptions underlying their approach and then

derive predictions from the resulting formal system. When the formalisation of

the problem is simple and tractable, deductive logic and thought experiments

can be sufficient to produce testable predictions. However, when the formal

system is complex – as in the present case – more advanced methods are needed.

Computer simulations provide one way of linking a theory to its predictions.

Mathematical models are another alternative, although such solutions are not

always available. The present chapter uses both.

The role of the first half of this chapter was to outline the underlying assump-

tions in as much detail as possible, and to set the scene for the presentation of

the formal system and the simulations. I reviewed a substantial body of evidence

suggesting that sub-distributions within categories are used in production and

perception, and that they are learnt and phonetically detailed. The present sec-

tion is the link between the theory and its predictions: it builds a formal model

of the behaviour of sub-distributions and uses simulations and mathematical

modelling to derive Prediction 1. Although this prediction is applicable to any
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situation involving sub-distributions within a category, the model is presented

specifically through the example of the voicing effect described in the previous

section. This is useful not only because it anchors the argumentation in a famil-

iar phenomenon, but also because it provides directly testable predictions with

regard to the voicing effect. Section 6.4 presents a small cross-linguistic study

of the voicing effect that attempts to verify these specific predictions.

The structure of this section follows straightforwardly from the logic of

the approach described above. Section 6.3.1 explains how the assumption of

sub-distributions can be incorporated into the model of speech production

and perception developed in Chapter 4. Then, Section 6.3.2 uses a computer

simulation to demonstrate how sub-distributions shift apart over time under

the influence of different phonetic biases. Finally, Section 6.3.3 presents a

simple mathematical model that shows how Prediction 1 emerges from the

assumptions underpinning the model.

6.3.1 Modelling sub-distributions

In Chapter 4, I outlined a model of the production and the perception of pho-

netic categories that relies on probability distributions. The main idea was

that production consists in sampling probability distributions, while percep-

tion is based on a Bayesian choice rule, which uses the same distributions

to derive categorisation probabilities. It was also demonstrated that the dy-

namics of simulated sound systems are essentially the same regardless of the

exact nature of these probability distributions (within certain limits, of course).

Since parametric probability distributions are computationally less demanding

than non-parametric ones, I continue to use normal distributions in modelling

production and perception.

Sub-distributions can be incorporated into production by introducing a small

amount of added complexity into category representations and the sampling

method. Specifically, I will represent each sub-distribution within a category by a

Gaussian mixture component, and the overall category by a mixture distribution

(cf. Kirby 2010, in press). To make this more concrete, let us compare this

type of representation to the one used in Chapters 4 and 5. Consider the

distribution of duration values associated with the goat vowel in the speech
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Figure 6.4: (a): a parametric category representation corresponding to the goat
vowel in SSBE; (b): a mixture distribution corresponding to the goat vowel in
SSBE, including sub-distributions in voiceless and voiced contexts.

of a speaker of Southern Standard British English (the data are taken from

the experiment described in Section 6.4). A production model without sub-

distributions would have to use a single normal distribution to represent the

whole category, as shown in Figure 6.4a.8 The approach based on mixture

distributions also relies on normal distributions, but they play a different role:

they represent the sub-distributions within the category (Figure 6.4b). Thus,

in the present case, the goat vowel before voiceless and voiced obstruents is

represented by two separate Gaussians (indicated by the solid and the dashed

grey lines, respectively). The overall category representation is obtained by

summing and renormalising these two Gaussians, which yields the mixture

distribution represented by the solid black line in Figure 6.4b.

Similarly to the original model, the selection of a production target is based

on sampling the overall distribution corresponding to a given category. This

seems to lead to a problematic result: if tokens of the goat vowel come from

the same mixture distribution regardless of whether they stand before a voiced

or a voiceless obstruent, there is no way of accounting for learnt differences

in the production patterns associated with different sub-distributions. For this

reason, an additional detail has to be introduced. The distribution that serves

as the basis of production is not just a simple sum of the mixture components,

8. This is not a full model of production, as it only handles a single phonetic dimension: that
of vowel length. However, it is sufficient for our present purposes, given our focus on durational
differences among vowels in different phonetic contexts.
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Figure 6.5: (a): a weighted mixture distribution where the Gaussian corresponding
to the goat vowel in voiced contexts counts more heavily than the Gaussian for
the vowel in voiceless contexts (e.g. the word toad); (b): a weighted mixture
distribution for the same vowel where the voiceless distribution counts more heavily
(e.g. goat).

but a weighted sum, where the sub-distribution corresponding to the phonetic

context of the target vowel (the target sub-distribution) counts more heavily

(this solution is inspired by Pierrehumbert 2002). For instance, the voiceless

distribution has a greater role in determining the production target for a word

like goat, and the voiced distribution has a greater role in determining the target

for a word like toad. This is illustrated in Figure 6.5.

We can now discuss the formula for the sampling distribution that serves

as the basis of production in this revised model. The general formula below is

valid for any case where category C occurs in environment a:

p(x |C , a) =
i p(C , a)N (x |µa,σ2

a ) +
∑

b∈B p(C , b)N (x |µb,σ2
b )

i p(C , a) +
∑

b∈B p(C , b)
(6.1)

This is a weighted mixture of |B|+ 1 Gaussian components (given in the form

N (x |µ,σ2), where µ is the mean, and σ the standard deviation), where B

is the set of all sub-distributions excluding the target sub-distribution. The

weights are as follows: i p(C , a) for the target sub-distribution, and p(C , b) for

any other sub-distribution that is not in the target environment. p(C , a) and

p(C , b) are the prior probabilities of the sub-distributions, which correspond
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to their relative frequencies within the category. Parameter i represents the

extra weight that the target sub-distribution has in determining the production

target. To give an example, if i = 20, the target sub-distribution will be 20

times more important in calculating the production target than any other sub-

distribution. This parameter has a strong effect on the amount of independence

that each sub-distribution can have. When i = 1, the target sub-distribution

plays no special role in predicting the production target, and therefore the

model behaves identically to the one presented in Chapter 4. However, as

i→∞, the target sub-distribution comes to dominate the mixture distribution,

and the sub-distributions become fully independent (i.e. they do not interact in

predicting production targets). Intermediate values of i result in cases where

sub-distributions have a limited amount of independence: productions are more

strongly affected by the target sub-distribution, but the other sub-distributions

also have a chance to contribute (cf. Figure 6.5).

To make this somewhat more concrete, here are the formulae for calculating

production targets (in this case, duration values) for a vowel category (C) in

voiced (vd) and in voiceless contexts (vl). Note that the prior probabilities have

been replaced by w and w − 1, which indicate the proportions of tokens in

contexts vd and vl, respectively (i.e. w corresponds to the bias proportion).

p(x |C , vd) =
i wN (x |µvd ,σ2

vd) + (1−w)N (x |µvl ,σ
2
vl)

i w + (1−w)
(6.2)

p(x |C , vl) =
wN (x |µvd ,σ2

vd) + i (1−w)N (x |µvl ,σ
2
vl)

w+ i (1−w)
(6.3)

Equation (6.2) corresponds roughly to Figure 6.5a and equation (6.3) to Figure

6.5b.

Once a target production has been chosen, the relevant phonetic biases

apply to it. The implementation of biases in the following simulations is very

similar to that in Chapters 4 and 3: a phonetic bias is a displacement of the

target production towards a given point in phonetic space. However, this chapter

introduces a simplification into the formal definition of biases. Previously, I used

logistic curves in their implementation (cf. 4.1.2), while in this model, a bias

is simply a linear function. The purpose of this simplification is made clearer

in Section 6.3.3, where the new definition is used as part of a mathematical
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model to derive Prediction 1. The following formula shows how a given target

production x is displaced under the influence of a bias at location b1 with

strength s1:

bias(x , b1, s1) = x + s1 (b1− x) (6.4)

By way of example, consider the case of a vowel produced in a voiced context.

Let us assume that the target duration is x = 0.15 s, and that a lengthening

bias applies because of the following voiced obstruent, with b = 0.4 s and

s = 0.1. The bias moves the target production closer to b by exactly a tenth of

the distance between the two of them, which means that the stimulus perceived

by the listener is at x = 0.175 s.

The modelling of perception is less relevant in the present case, as the

simulations in the following sections look at isolated vowel categories. Therefore,

I only describe the mechanism for category update, but not the mechanism for

making categorisation decisions (cf. Section 4.1.3). The interested reader is

referred to Sonderegger & Yu (2010), who provide a detailed discussion of how

sub-distributions can be built into models of categorisation.

The main idea for category update remains essentially the same as in Chap-

ters 4 and 3: the perceived token is incorporated into the representation of

the appropriate category. Since the model under discussion is parametric, this

consists in (i) shifting the mean towards the new stimulus, and (ii) increasing or

decreasing the variance, depending on how far the stimulus is from the mean.

The crucial innovation in the sub-distribution based model is that the changes

only affect the relevant mixture component, and not the others. For example, if

the stimulus is a vowel in a voiced environment, only the voiced sub-distribution

is updated, but not the voiceless one. The formulae for updating the mean and

the variance of a mixture component can be written as follows (n stands for the

old distribution and n+ 1 for the updated distribution):

µn+1 =
cµn+ x

c+ 1
(6.5)

σ2
n+1 =

c [(µn+1−µn)2+σ2
n] + (x −µn)2

c+ 1
(6.6)
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In the above equations, x represents the new stimulus, and c is the constant of

update that determines the extent to which x can change the representation

of the component. A low value of c yields a system that changes quickly under

the influence of new stimuli, whereas a high value of c results in a system that

is more resistant to changes. Note that these formulae are exactly the same

as those provided in Section 4.1.3.

6.3.2 The separation of sub-distributions

Having seen how sub-distributions can be incorporated into our model of

production and perception, we can now attempt to simulate changes in sub-

distributions over time. The main goal of this section is to see how patterns

specific to given phonetic contexts can emerge under the influence of weak

phonetic biases. Specifically, I investigate the emergence of the voicing effect

in vowel categories. This will help us get a better sense of how Prediction 1

arises from the present model.

The simulations in this section are closely related to those presented in

Chapter 4: they mimic the diachronic evolution of sound categories through an

abstract production-perception feedback loop (cf. Pierrehumbert 2001, Wedel

2007). Each simulation contains only a single agent, who doubles as both

speaker and listener. This agent generates productions based on their category

representations. Admittedly, this situation is unrealistic in the sense that real

speech interactions typically involve more than one speaker. However, Section

4.3 demonstrated that single and multi-agent models do not differ significantly

in terms of their general dynamics and expected outcomes. Since single-agent

simulations are computationally more tractable, they are preferable to more

complex implementations in cases like the present one. Indeed, the tractability

of the abstract production-perception feedback loop will prove crucial for the

mathematical calculations presented later in this chapter.

A further parallel with the simulations in previous chapters lies in the idea

that patterns like the voicing effect result from the repeated interaction of

phonetic biases and the production-perception feedback loop. The phonetic

bias responsible for the voicing effect is assumed to be weak: it cannot cause

and immediate shift in sound categories. However, when a category or a sub-
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distribution is repeatedly exposed to a phonetic bias, more robust changes will

occur (cf. the discussion of the nudge model in Section 2.3.2). This means that

context-specific patterns like the voicing effect can arise over time due to the

fact that different sub-distributions are exposed to different sets of biases.

Let us now look at the structure of the simulations in more detail. As it has

been noted above, the simulations contain only a single agent. This agent draws

productions from a single one-dimensional category representation with two

sub-distributions that are affected by slightly different sets of biases. This setup

is analogous to the production of a vowel occurring before voiced and voiceless

obstruents. To make this parallel explicit, the following discussion refers to the

overall category as the vowel, the sub-distributions as voiced and voiceless, and

the predicted values as the duration of the vowel.9 As in all previous simulations,

the produced tokens are fed back into the agent’s category representations (note

that no misperception will occur, since there is only a single category).

Production targets are predicted using equations (6.2) and (6.3) for the

voiced and voiceless sub-distributions, respectively. The simulated vowel occurs

equally frequently in voiced and voiceless environments. Therefore, parame-

ter w – the proportion of tokens followed by voiced obstruents (i.e. the bias

proportion) – is set to 0.5. Parameter i is arbitrarily given as 15, which means

that the sub-distributions have a limited amount of independence. Both of these

parameters are examined in more detail in the next section. The initial values

for the means (µ) of the sub-distributions are varied across the simulations, but

their initial standard deviations (σ) are always the same: 0.05 s.

There are two phonetic biases in these simulations: a lengthening bias that

affects vowels before voiced obstruents, and a shortening bias that affects all

vowels. The lengthening bias represents the phonetic origins of the voicing effect.

It is inspired by Javkin’s (1976) account of the phenomenon, who suggests that

the voicing effect arises from a low-level perceptual illusion, whereby listeners

interpret the glottal pulsing during the closure phase of voiced obstruents as part

of the preceding vowel, making it appear longer than it actually is. The general

shortening bias is meant as a reflection of the principle of minimal effort, which

9. Note that there are no sub-distributions corresponding to following sonorants. Sonorants
have been excluded as their exact role in the voicing effect is little understood, and they do not
clearly pattern with either voiced or voiceless obstruents (cf. Section 6.2).
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ensures that vowels do not become arbitrarily long. The tendency to shorten is

modelled as a bias attractor at b1 = 0.1 s, and the voicing-related lengthening

bias as one at b2 = 0.5 s. Both biases have the same strength: s1 = s2 = 0.05.

Category update proceeds along the lines specified in equations (6.5) and

(6.6). The constant of update is set to c = 1000. Unless otherwise specified,

the simulations consist of 50,000 iterations of the production-perception loop,

which corresponds to the production of 25,000 vowels in a voiced context and

25,000 vowels in a voiceless context.

The first simulation illustrates the separation of the voiced and voiceless sub-

distributions over time. Both sub-distributions are initialised at µvd = µvl = 0.1.

Figure 6.6 contains visualisations of their evolution. The top six panels are

snapshots of the simulation at different points in time, while the bottom panel

illustrates the entire simulation by plotting the 5% and 95% quantiles of the

two sub-distributions against the number of iterations. There are two important

observations that can be made on the basis of these graphs. First, it is clear that

the two sub-distributions become separated as the simulation progresses. In fact,

the outcome of this simulation is qualitatively quite similar to the distributions

of voiced and voiceless tokens shown in Figure 6.4b (although there are clear

differences as well). Second, the sub-distributions do not seem to change their

positions significantly after about 25,000 iterations. Of course, this is not to

say that they remain completely stationary, but the observed changes are small

and inconsistent, especially when compared to the shifts seen during the first

25,000 iterations. It seems that the sub-distributions move towards stable states.

This is, of course, not surprising, given that similar equilibria emerged in all

the simulations discussed in the previous chapters.

To test whether it is reasonable to assume stable states, two further sim-

ulations were run. The first of these is simply an extension of the previous

simulation, with 500,000 iterations instead of 50,000. This simulation is illus-

trated in Figure 6.7, which shows quite clearly that the sub-distributions do

not change significantly after the initial phase of the simulation. The second

simulation is intended as a demonstration of the fact that the initial location

of the sub-distributions is not relevant in determining the target locations

that they move towards. For this simulation, I changed the initial µ values to

µvd = µvl = 0.3 s. Figure 6.8 shows that the stable states remain the same: even
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Figure 6.6: The separation of the voiced and the voiceless sub-distributions. The
first six panels show the sub-distributions at different points in time. The dashed
vertical lines mark the locations of the biases. The bottom panel uses 5% and 95%
quantiles to illustrate changes over the course of the simulation (light grey: voiced;
medium grey: voiceless; dark grey: overlap).
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Figure 6.7: The evolution of the voiced and voiceless sub-distributions over
500,000 iterations.
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Figure 6.8: The evolution of the voiced and voiceless sub-distributions under
altered initial conditions.

though the sub-distributions start from different locations, they end up in the

same regions as in Figures 6.6 and 6.7.

The similarities among the stable states in different simulations are clearly

visible in the figures that I have provided. Nevertheless, it will be useful to

compare the simulations in a statistically more rigorous way as well. In order to

do this, I re-ran the second simulation (µvd = µvl = 0.1; this will be referred

to as the low-initial-value condition) and the third one (µvd = µvl = 0.3; the

high-initial-value condition) 100 times each, and recorded the means of the

voiced and the voiceless sub-distributions (µvd and µvl) after 100,000 iterations

for each simulation. The resulting 400 measurements (2 sub-distributions × 2

conditions × 100 repetitions) were compared separately for the voiced and the

voiceless sub-distributions across the two conditions. The box plots in Figure
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Figure 6.9: (a): a comparison of µvd values after 100,000 iterations in the low-
initial-value and the high-initial-value conditions; (b): the same comparison for
µvl values. Note that vertical view range is not the same in the two box plots.

6.9 serve to illustrate these comparisons. The results are clear: the means of

the sub-distributions take on the same values in the high-initial-value and the

low-initial-value conditions. This means that the stable states are not affected

by the initial locations of the categories. These observations are confirmed by

two-tailed t-tests, which found no significant differences between the conditions

(voiced: t = 0.2493, p = 0.8034; voiceless: t = −0.9675, p = 0.3345).

The previous simulations have shown that (i) sub-distributions drift apart

when they are affected by different sets of biases and (ii) regardless of their

initial locations, the sub-distributions end up in the same stable states. The

first result needs little commentary: this is exactly what we expected to find

based on the partial independence of sub-distributions and the fact that only

voiced tokens are subject to the lengthening bias. The second result can be

explained relatively straightforwardly using the terminology of the previous

chapter. Section 5.2.3 showed that complexity has an important influence on the

structure of the adaptive landscape that determines the evolution of the sound

system. Since the simulations in this section are all based on a single category,

the adaptive landscape will be simple, with only a single stable state. This

stable state is determined by two main factors: phonetic biases and the internal

cohesion of the category (which follows from assumption of mixture-based

category representations). Note that these pressures act against each other:

phonetic biases push the sub-distributions apart, while the internal cohesion of

the category pulls them closer together. The next section will show that there
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are a number of further parameters that play an important role in predicting

the stable states.

Although this section does not directly address the question of how Predic-

tion 1 emerges from the model, the findings discussed above suggest a way

forward. We can use the same general research strategy as we did in the previ-

ous chapters: instead of looking at entire simulations, we can try to calculate

the stable states for the voiced and voiceless sub-distributions, and see how they

are affected by bias proportion. Our expectation is that the gap between the

target locations will be large when voiced and voiceless tokens occur equally

frequently, and small when one group is significantly more frequent than the

other. If this expectation is confirmed, we can conclude that Prediction 1 is a

direct consequence of our theoretical assumptions.

6.3.3 Predicting the effect of bias proportion

In this section, I investigate the influence of bias proportion on the stable

states towards which sub-distributions converge over time. Specifically, I look

at the influence of parameter w (introduced in equations (6.2) and (6.3) in

Section 6.3.1) on the outcome of the model. There are two possible ways of

investigating how changing the value of a parameter affects the behaviour of

the model. The first approach was exemplified in the previous section, where a

large number of simulations were run to see whether the initial location of the

sub-distributions affects their limiting behaviour. Unfortunately, this method can

be extremely time-consuming, due to the number of simulations that have to be

run, and it can become unfeasible if more than one parameter is investigated.

There is, however, a second option. In some cases, mathematical models can be

used to predict the outcomes of the simulations without implementing them

computationally. In the present case, this would consist in deriving the stable

states for the sub-distributions from the formulae in Section 6.3.1. As it turns

out, such a prediction is possible. Therefore, this section takes the second,

mathematical approach to the question outlined above.

The main idea behind this approach is easy to summarise and requires

no mathematical formalism. As it has been noted in the previous section, the

voiced and the voiceless sub-distributions are affected by different sets of
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Figure 6.10: (a): the voiced sub-distribution (black) and the observed distribution
(grey) after the application of the bias at 0.5 s; (b): the voiced sub-distribution
(black) and the corresponding sampling distribution (grey solid), which is a
mixture distribution consisting of both the voiced and the voiceless sub-distributions
(dotted grey). Note that the expected values (the dashed vertical lines) move in
both cases.

biases, which are modelled as small displacements towards given points in

phonetic space. Following the method described in Section 5.2.2 and Appendix

B, these displacements can also be viewed as transformations of the relevant

sub-distributions. The observed distribution of phonetic outcomes differs from

the underlying distribution as a result of phonetic biases. This is illustrated

in Figure 6.10a, where the black curve shows the original representation of

the voiced sub-distribution, and the grey curve the transformed distribution.

The horizontal line at 0.5 s represents the lengthening bias. Note that this

transformation can also be characterised in terms of the expected values of

the distributions (indicated by the dashed lines): the expected value of the

voiced sub-distribution shifts towards 0.5 s under the influence of the bias. The

cohesive force that keeps the sub-distributions together can also be described

in a similar way. Since production is based on a mixture that contains both

the target sub-distribution and other sub-distributions within the category, the

expected value of the observed distribution is different from the target sub-

distribution. For instance, the production of a voiced token involves not only

the voiced sub-distribution but also the voiceless one. The expected value of the

sampling distribution is intermediate between the expected values of the two
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sub-distributions. This is shown in Figure 6.10a, where the black curve shows

the voiced sub-distribution, the dotted grey curve the voiceless sub-distribution,

and the solid grey curve their mixture. Once again, the vertical lines indicate

the expected values of the distributions.

Importantly, the biases and the cohesive forces induce shifts in opposite

directions. It is easy to imagine a situation in which the sub-distributions are

arranged in such a way that the shift in expected values due to the influence

of other sub-distributions is subsequently cancelled by the shift caused by the

bias. In such a situation, the expected value of the observed distribution is

exactly the same as that of the underlying distribution, which means that the

sub-distribution remains stationary. This is, in fact, what we observed in the

previous section, where the category settled into an equilibrium after a certain

number of iterations. Since both types of shifts can be predicted mathematically,

we can use equations to find this specific arrangement of the voiceless and

voiced sub-distributions.

To give the reader the option of skipping the technical details of this ap-

proach, I have relegated all mathematical formalisms to Appendix C. The

formulae for predicting the target locations for the voiced and the voiceless

sub-distributions are presented in (C.10) and (C.11). The parameters in these

formulae have all been described in Section 6.3.1. Note that target location

and stable state are both operationalised as the expected mean of a given

sub-distribution – this is the quantity that we are trying to predict (similarly

to Chapters 4 and 5). In the following discussion, all results are derived using

these formulae and the formula for calculating the size of the gap between the

two sub-distributions given in (C.12).

We can now address the question of how bias proportion affects the stable

states of the sub-distributions. The most straightforward way of doing this is to

explore changes in the value of the parameter corresponding to bias proportion

(i.e. w, or the proportion of vowel realisations in voiced environments), while

keeping all other parameters fixed. The values of the fixed parameters come

from the simulations in the previous section; thus, i = 15, b1 = 0.1, s1 =
0.05, b2 = 0.5, s2 = 0.05. The value of w is varied continuously between 0

and 1. Figure 6.11a plots the stable states predicted by (C.10) (voiced sub-

distribution; light grey line) and (C.11) (voiceless sub-distribution; dark grey
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Figure 6.11: (a): mathematically predicted target locations for the voiced (light
grey line) and the voiceless sub-distributions (dark grey line), and predictions from
simulations (circles), plotted against bias proportion; (b): the size of the predicted
gap between the voiced and the voiceless sub-distributions as a function of bias
proportion.

line) against bias proportion. To ensure that the predictions are valid, I have

also included estimations of the target locations based on simulations (indicated

by light and dark grey circles).10 The simulated values are remarkably close to

those predicted by the mathematical model, which suggests that (C.10) and

(C.11) can be used reliably in determining the target locations for the sub-

distributions. There are several things to note about this graph. First of all, the

voiced sub-distribution always has slightly higher duration values regardless

of bias proportion. This is because the biases remain active regardless of the

amount of independence that the two sub-distributions have. Small differences

in the expected values of the sub-distributions arise even when their lack of

representational independence does not allow for such differences to be encoded

in the underlying probability distributions. Moreover, both sub-distributions

move towards higher duration values as the proportion of voiced items is

increased. The reasons for this are as follows: (i) the influence of the lengthening

bias (which only affects voiced items) grows as the proportion of voiced items

10. These simulations were identical to the first simulation described in the previous section,
with the exception of parameter w, which was varied in small steps between 0 and 1. The target
locations were estimated by finding the regions of phonetic space that were most frequently
visited by each sub-distribution in the course of a given simulation (i.e. the modes of the
stationary distributions of the means).
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is increased and (ii) the two sub-distributions are never entirely independent,

which means that they move together even if the biases affecting them would

dictate otherwise. To put it more simply, the voiced sub-distribution pulls the

voiceless one along at higher bias proportion values.

Turning now to the gap between the two sub-distributions, the following

observation can be made. The size of the gap varies as a function of bias pro-

portion, being larger towards intermediate values of w and smaller at extreme

values. This is demonstrated even more clearly in Figure 6.11b, which plots the

distance between the target locations against bias proportion. This finding is in

agreement with Prediction 1, and thus concludes a lengthy argument, whose

aim was to derive this prediction from the theoretical assumptions presented in

Chapter 3 and Section 6.1 of the present chapter. To highlight the importance

of this result, I repeat it below in a more explicit form.

(6.7) bias proportion and the size of contextual effects

The size of a contextual effect is larger when the proportion of forms

that exhibit the bias responsible for the effect is close to the proportion

of forms without the bias. This follows from the following theoretical

assumptions:

a. production and perception are probabilistic and category-based

(Sections 3.1, 3.2)

b. categories are continuously updated (Section 3.3)

c. production and perception are affected by low-level phonetic bi-

ases (Section 3.4)

d. speakers rely on learnt and phonetically detailed sub-distributions

(Section 6.1)

Note that this conclusion has to be qualified slightly in view of the fact that

the point of greatest separation between the two sub-distributions is not at

w = 0.5, but instead at w = 0.394.11 The reason for this is that the two sub-

distributions are affected by the biases in an asymmetric fashion: the voiceless

sub-distribution is affected only by b1, while the voiced sub-distribution is

affected both by b1 and b2. A full explanation of how this asymmetry leads to

11. Readers with an esoteric turn of mind will be disappointed to hear that this proportion is
not identical to the golden ratio, although it is certainly very close to it.
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Figure 6.12: The influence of parameter i on the relationship between bias pro-
portion and the size of contextual effects. Darker lines correspond to higher values
of i. The parameter is varied between 1 and 46 in steps of 5.

the observed results is well beyond the scope of this thesis. Let us only note

that the exact shape of this curve can vary as a function of the way the biases

are defined, but shows the same overall pattern: an initial increase followed

by a decrease in the size of the gap.

The formulae in Appendix C make it easy to investigate the effects of

different parameter settings on the sub-distributions. Therefore, let us briefly

discuss the role of parameter i in Prediction 1. Figure 6.11b shows how changing

the value of i affects the relationship between bias proportion and the size of

the gap between the sub-distributions. The darkness of the lines represents the

value of i: darker lines correspond to higher values. The value of i is varied

between 1 and 46 in steps of 5. Since higher values entail higher degrees of

independence, it is not surprising to see that the overall distance between

the sub-distributions increases monotonically as a function of i. It should also

be noted that increasing the value of i beyond a certain level diminishes the

influence of bias proportion on the size of the gap (this is demonstrated by the

increasingly wide plateau around intermediate values of w). Again, this is a

relatively straightforward result: if the sub-distributions have a high degree of

independence to begin with, a balanced bias proportion cannot enhance it much

further. In such cases, the effects of bias proportion are only seen at extreme

values of w, where it acts against the independence of the sub-distributions.

Although Prediction 1 has implications for any contextual effect that derives

from phonetic biases, the present section offers a narrower interpretation as
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well. The model presented above has been developed through the example of

voiced and voiceless sub-distributions within vowel categories. Therefore, under

a very literal interpretation, its predictions can be taken to relate directly to the

voicing effect. Prediction 1 becomes a statement about vowel categories with

different proportions of voiced versus voiceless forms, which can be investigated

experimentally by looking at production data from natural languages. The next

section takes up this task and presents evidence for the validity of this prediction

from a small cross-linguistic production study.

6.4 AN EMPIRICAL STUDY

Based on the simulation results in the previous section, the following prediction

can be made about the size of the voicing effect (cf. Figure 6.11):

Prediction 2 The voicing effect is stronger in vowel categories where the relative

frequencies of voiced and voiceless contexts are balanced than in vowel categories

where they are unbalanced.

Note that this prediction does not say anything new: it is simply a more specific

instantiation of Prediction 1. The notion of bias proportion is translated into

frequencies, and the abstract statements about sub-distributions are related to

observable aspects of vowel categories. Since all the individual components of

this prediction are easily quantified, it can be tested experimentally. In order

to conduct such a test, two types of data have to be collected: the relative

frequencies of voiced and voiceless obstruent environments for different vowels

and duration measurements for both environments. The first type of data can be

obtained relatively easily from phonologically transcribed frequency dictionaries.

The second type of data requires a controlled production experiment focusing

on the duration of vowel categories in voiced and voiceless environments.

This section presents a small cross-linguistic experiment that includes both

frequency counts from corpora and production data. The main goal of this

experiment is to test the validity of Prediction 2. The experiment focuses on

three languages: English, French and Hungarian. Section 6.4.1 describes the

procedure used to obtain the relevant frequency counts for these languages.

Then, Section 6.4.2 provides an outline of the production experiment and

presents its main results. The implications of the findings will be discussed in
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the concluding section of this chapter along with a summary of the chapter’s

key arguments.

6.4.1 Estimating bias proportion from corpus data

In the context of the voicing effect, the bias proportion of a given vowel category

refers to the ratio of tokens with a following voiced obstruent to all tokens with

a following obstruent. This value can be estimated from corpus data. To give

an example, let us look at the token frequencies of forms containing the face

vowel (realised as [ei] in Southern Standard British English) in the English

subsection of the CELEX lexical database (Baayen et al. 1993; the frequency

counts have been normalised to 1 million words). The overall token frequency

of forms in which the face vowel occurs before voiced obstruents is 6,284; for

voiceless obstruents, the frequency count is 12,211. We can now estimate the

bias proportion by solving 6,284 / (6,284 + 12,210), which gives 0.34.

This estimation was performed for an overall 23 vowels from the three

languages. The choice of vowels is described in more detail in Section 6.4.2

below (the vowels themselves can also be seen in Figure 6.13 below). The

frequency measurements were taken from the following sources:

• the CELEX lexical database for English (based on an 18 million word

corpus of English)

• the Lexique database for French (New et al. 2001; based on a 31 million

word corpus of French)

• a frequency dictionary for Hungarian described in Grimes (2006) (based

on a 188 million word corpus of Hungarian)

All three of these databases contain phonological transcriptions, which can be

used in a straightforward way to search for vowels in specific environments.

To ensure consistency across the frequency measurements and the production

experiment, I restricted the frequency counts to items in which the target vowel

is followed by an obstruent within the same syllable. This was necessary since

all the stimuli in the production experiment are monosyllabic, which means

that the target vowels are always followed by tautosyllabic obstruents (see the

next Section for more details).
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Figure 6.13: The estimated bias proportion values for the vowels from English,
French and Hungarian.

Figure 6.13 presents the estimated bias proportions for the vowels grouped

by languages. Although the proportions vary quite widely within each language,

it is evident that the region representing high values is underrepresented in

this sample. This means that any findings about the durations of voiced and

voiceless sub-distributions at higher bias proportion values will have to be taken

with a pinch of salt, due to the scarcity of relevant data points. The overall

proportion of voiced codas is 0.48 in English (an almost balanced proportion),

0.38 in French and 0.33 in Hungarian. Note that these proportions are not

particularly meaningful in themselves, as they depend mostly on idiosyncratic

facts about lexical distributions. For instance, [U] has a high bias proportion in

English. This is likely due to words like could, would and should (with voiced

coda consonants), which are very frequent. On the other hand, [ v] has a low

bias proportion. This might be due to the word but (with a voiceless coda

consonant), which, again, is of very high frequency.

We can now move on to the description of the production experiment. The

proportion values estimated in this section will be used to predict the size of

the gap between the voiced and voiceless sub-distributions in different vowel

categories.
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6.4.2 The production experiment

Before giving a description of the methods, it is worth looking at the reasons

for choosing English, French and Hungarian in a little more detail. The first

criterion for selecting the target languages was the availability of phonetically

annotated frequency dictionaries, which served as the basis of the estimation

of bias proportion values. Clearly, languages without such resources are not

suitable for the present experiment. The second criterion was the existence of

non-neutralised laryngeal contrasts in coda position. This was motivated by the

experiment’s focus on vowel length before tautosyllabic obstruents, which, in

turn, rests on the observation that length differences are more pronounced in

this context than they are before heterosyllabic consonants (Laeufer 1992). The

three languages that this experiment focuses on all conform to these criteria.

It should be noted that English is a less obvious candidate due to the fact that

both voicing and aspiration are used in implementing the contrast between

fortis and lenis consonants. However, in Section 6.2 I argued that aspiration

plays little role in signalling the laryngeal contrast in coda obstruents. While

English does tend to partially devoice final obstruents, prevoicing still seems to

be a more reliable cue to the laryngeal contrast than aspiration in this position.

Thus, the voicing effect in languages like English is likely to be closely related

to the effect seen in French and Hungarian.

participants The experiment had six participants: two native speakers of

Southern British English, two native speakers of French and two native speakers

of Hungarian. Special care was taken to recruit participants from the same

dialect regions. Thus, both English speakers were from the vicinity of London,

both French speakers from the vicinity of Paris and both Hungarian speakers

from Budapest. The sample of speakers is relatively balanced in terms of gender:

there were two male speakers (one English and one Hungarian) and four female

speakers (one English, one Hungarian and two French). All participants had

been resident in Edinburgh in the United Kingdom for at least a year at the time

of the experiment. There is a possibility that the long-term exposure to English

has interfered with the sound patterns of the Hungarian and French speakers.

However, it is highly unlikely that this interference would have affected vowel-
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specific patterns in the realisation of the voicing effect, given the high degree

of dissimilarity among the vowel systems of these languages. It should also

be noted that the results of the experiment did not show any obvious signs of

convergence (cf. Figure 6.15, which shows the strength of the voicing effect for

all the vowel categories from all three languages).

materials The materials for each language consisted of existing medium-

frequency monosyllabic words in which the target vowel was followed by a word-

final obstruent. Polysyllabic items were deliberately avoided in order to make

sure that stress and the syllabic status of the following consonant (tautosyllabic

vs. heterosyllabic) do not interfere with the voicing effect. Although there is

no reason to expect that these factors would significantly alter the general

patterns reported below, they would likely obscure the results to some extent.

The overwhelming majority of the target words was of the shape CVC with

a small number of CCVC items. The words were embedded in the following

carrier phrases: I say the word for English, Je dit le mot for French and Azt

mondom, for Hungarian (the meaning is the same for all three sentences).

As it has been noted in Section 6.4.1 above, there were 23 vowels in the

experiment: 10 from English [i, u, i, U, E, 6, e, o, æ, v], 6 from French [i, u, y, E, c,

a] and 7 from Hungarian [i:, u:, e:, a:, o:, y:, ø:]. The choice of vowels in French

was relatively straightforward: these are the only six non-nasal stressed vowels

that are adequately represented in the environments that this study investigated.

The decision procedure was somewhat more complicated for Hungarian. The

seven vowels presented above comprise the full set of long vowels in the

language. Short vowels were excluded since a previous unpublished study on

short [6] and [o] found no consistent length differences. It was expected that

long vowels may show more robust contextual effects, since they can lengthen

without encroaching on the region of phonetic space occupied by short vowels.

Finally, the English set includes both lax [i, U, E, 6, æ, v] and tense [i, u, e, o]
vowels. Since length is not the only (and perhaps not even the primary) cue

to the tense-lax distinction, it was assumed that the inclusion of both types of

vowels would not interfere with the results.

Each vowel category was represented by 20 tokens in the experiment: 10

in voiced contexts and 10 in voiceless contexts. Whenever possible, the list of



222 Lexical factors in contextual effects

english french hungarian

+voi −voi +voi −voi +voi −voi

cor seed 2 beat 2 vide 2 gîte 2 híd 5 szít 5
deed 3 sheet 3 bide 3 site 3

vel league 5 beak 2 figue 3 chic 3 híg 3 sík 3
peak 3 ligue 2 pic 2 víg 2 csík 2

Table 6.1: Example items with an [i] vowel quality from the three languages in the
production experiment. cor stands for ‘coronal’ and vel for ‘velar’. The columns
next to the words indicate the number of times the word occurs in the experiment.
Note that all the columns add up to ten.

tokens was compiled so that it contained both velar and coronal consonants

in postvocalic position. Note that the number of tokens does not equal the

number of different words: every word was repeated at least twice in order to

obtain a sufficient number of tokens. By way of illustration, Table 6.1 presents

the full set of tokens representing the vowels [i], [i] and [i:] from English,

French and Hungarian, respectively.12 In order to make segmentation easier,

initial sonorants were avoided. In the few cases where there were no suitable

obstruent-initial words, forms beginning with nasals and occasionally laterals

were used.

The overall number of target tokens for the different languages is as follows:

200 for English, 120 for French and 140 for Hungarian. The list of items also

contained monosyllabic sonorant-final fillers: 100 for English, 60 for French

and 70 for Hungarian.

procedure Participants were seated in a sound-proofed booth with a com-

puter screen and a microphone, and instructed to read out the sentences on

the screen at a comfortable pace. Once they indicated that they were ready,

they were presented each item in the experiment one by one in random order

(the randomisations were different across the participants). Halfway through

the experiment, they were asked if they wanted to have a short break. The

12. The IPA transcriptions and the glosses for the French and Hungarian words are as follows:
vide [vid] ‘empty’, bide [bid] ‘belly’, figue [fig] ‘fig’, ligue [lig] ‘league’, gîte [Zit] ‘shelter’, site [sit]
‘site’, chic [Sik] ‘chic’, pic [pik] ‘peak’, híd [hi:d] ‘bridge’, híg [hi:g] ‘thin (e.g. soup)’, víg [vi:g]
‘merry’, szít [si:t] ‘fan up a fire’, sík [Si:k] ‘plane’, csík [tSi:k] ‘stripe’.
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whole procedure took between 15–25 minutes depending on the language

and the subject.

The participants’ productions were recorded using a Shure SM7B cardioid

dynamic microphone and saved as 44kHz wav files.

analysis In order to take duration measurements, the target vowels had to

be extracted from the produced tokens. Segmentation was performed manually

in praat (Boersma & Weenink 2009) by inspection of the waveform and the

spectrogram. In most cases, both consonants were obstruents, and the beginning

and the end of the target vowel could be established with relatively high

confidence by looking for (i) the low frequency periodic noise typical of voicing

and (ii) clearly visible formant structure. Both of these cues had to be present for

identifying a portion of the word as part of the vowel. As a result, the aspiration

following the release of voiceless consonants and closure voicing during the

following consonant were excluded from the length measurements.13 In the

case of preceding nasals, the segment boundary could also be seen quite clearly:

the appearance of high-amplitude formants after the release of the nasal was

abrupt and easy to locate. Laterals presented somewhat more of a challenge,

as the major cues for the C–V boundary in this case are gradual changes in

formant values and intensity. However, the beginning of the vowel could still be

identified with acceptable confidence in most cases (and only a small number

of tokens had initial laterals).

Following the manual segmentation of the target tokens, a praat script

automatically exported duration values for the vowels and saved them in a

database along with further information about each token. This yielded an

overall 922 data points (some of the vowel tokens had to be discarded due

to production errors or uncertainties in segmentation). The duration values

were subsequently standardised for each speaker (i.e. recoded as the number

of standard deviations from the sample mean for that speaker) to account for

between-speaker differences in tempo. The statistical tests reported in the next

section were all performed on these standardised values.

13. In English, a small number of tokens were slightly preaspirated. The aspirated portion
was also excluded from the length measurements.
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Figure 6.14: The size of the voicing effect in English, Hungarian and French. The
cells separated by vertical lines indicate different speakers. Within each cell, the
box on the left corresponds to vowels in a voiceless context, and the box on the
right to vowels in a voiced context.

results The box plot in Figure 6.14 illustrates the size of the voicing effect

in the three different languages. All the subjects show robust differences across

the two environments (which are significant by one-tailed t-tests at a level of

p < 0.005), with the vowels in voiced contexts being longer than the vowels in

voiceless contexts. This suggests that the voicing effect is present in all three

languages. There are also differences in the robustness of the effect: the size

of the gap is much larger in English than it is in Hungarian and French. This

is, of course, what one would expect based on the overview in Section 6.2:

English is often cited as a language where the voicing effect is particularly

robust, and comparisons with languages like French have repeatedly confirmed

this observation.

Let us now turn to the interaction between bias proportion and the voicing

effect. Figure 6.15 shows the difference in duration between the voiced and

the voiceless sub-distributions for each vowel category in the experiment. The

direction of the effect is always the same: the vowel is longer in voiced than

in voiceless contexts (otherwise the plot would contain negative values as

well). The dashed line is a smooth curve based on local polynomial regression

(loess), and is intended as an indication of the general trend in the data

set. A comparison of this curve with those in Figures 6.11b and 6.12 reveals
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Figure 6.15: The strength of the voicing effect as a function of bias proportion. The
x axis corresponds to bias proportion, and the y axis to the durational difference
between the voiced and the voiceless sub-distributions. The dashed line is a loess-
smoothed curve.

that the observed interaction between bias proportion and the voicing effect

corresponds closely to the predictions of the model presented in the previous

section. The length differences are relatively small when the vowel categories

occur predominantly in voiceless contexts, they become greater when the two

contexts are balanced in terms of frequency, and begin to fall again as the voiced

context comes to dominate the category. Even the location of the turning point

(w = 0.452) is relatively close to that predicted by the model (w = 0.394).

These results strongly suggest that Prediction 2 is valid, but they do not

constitute statistical evidence for it. In order to perform a more rigorous test,

Prediction 2 has to be translated into a form that allows us to use standard

statistical techniques. This is relatively easy: Prediction 2 is a statement about

an interaction between the effect of voicing and bias proportion. As such, it

can be incorporated into multiple regression analyses as an interaction term.

The only challenge in this case is that this interaction is non-linear: between

w = 0 and w = 0.45, an increase in bias proportion enhances the voicing effect,

but when w > 0.45, this relationship is reversed (as discussed above). One

way to account for this reversal in a regression model is to use a technique

called breakpoint regression. The details of this method are described in Baayen

(2008), so I only give a very broad summary here. The main idea is to fit a

different regression line to each half of the data set within a single model. In

other words, we need a regression line for vowel productions that have a bias

proportion of w ≤ 0.45 and another regression line for vowel productions with
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Estimate Std. Err. t-value p(> |t|)
(Intercept) 0.353 0.098 3.586 0.0005*
voi=yes 1.545 0.090 17.115 < 0.0001*
V.height −0.354 0.032 −10.987 < 0.0001*
PoA=vel −0.025 0.051 −0.499 0.6182
voi=no:prop:w-low −0.066 0.303 −0.219 0.8270
voi=yes:prop:w-low 3.122 0.304 10.279 < 0.0001*
voi=no:prop:w-high −1.746 0.527 −3.310 0.0010*
voi=yes:prop:w-high −4.829 0.532 −9.081 < 0.0001*

Adjusted R2: 0.4193; p < 0.0001

Table 6.2: The results of the multiple regression looking at the effects of bias
proportion on the size of the voicing effect.

w > 0.45. This can be achieved by including an interaction with an indicator

variable that shows whether w ≤ 0.45 or w > 0.45 (see Baayen 2008: p. 216–

217 for more detail). To simplify matters, these regression lines will be marked

as w-low and w-high.

The regression model was set up as follows. The dependent variable is

duration (given in z-scores), and the terms in the model are voi (whether the

following consonant is voiced or not), prop:voiced:w-low/high (the interac-

tion term that represents the influence of bias proportion on the size of the

voicing effect), and two variables included for control: V.height (a three-valued

variable ranging through low–mid–high represented as 1–2–3) and PoA (the

place of articulation of the following consonant represented as a nominal vari-

able). The results are presented in Table 6.2. The following observations can be

made on the basis of these findings. First, the effect of voicing (voi) is highly

significant. This further strengthens the conclusions made in connection with

Figure 6.14. Second, vowel height (V.height) has an important role in deter-

mining duration values: the lower the vowel, the higher the duration. This result

has been reported for a variety of languages in the literature (see e.g. Keating

1984), and is thus not particularly suprising. Third, and most important, the last

four rows of the table confirm the suggestions about the validity of Prediction 2:

the coefficients that represent the influence of bias proportion on the size of the

voicing effect are all significant with the exception of voi=no:prop:w-low.
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Figure 6.16: The durations of all the tokens in the experiment grouped by voicing.
The solid lines are Loess-smoothed curves for each context (light grey: voiced; dark
grey: voiceless).

To make this clearer, Figure 6.16 plots all 922 duration measurements

against bias proportion, and shows separate loess-smoothed curves for the

vowels in voiced (light grey) and voiceless (dark grey) environments. The two

lines correspond to voi=yes:prop:w-low/high (light grey) and voi=no:prop:w-

low/high (dark grey). Looking at voiceless tokens, Table 6.2 and Figure 6.16

indicate that the duration of vowels before voiceless consonants is not strongly

correlated with bias proportion when w ≤ 0.45, and starts to fall slightly after

w = 0.45. As for voiced tokens, there is a sharp rise in duration values up to

w = 0.45, and a similarly sharp fall after w = 0.45. The net effect of these

tendencies is a wider gap between voiced and voiceless sub-distributions in

categories with a balanced bias proportion, and a narrower gap at extreme bias

proportion values, in line with Prediction 2.

Figure 6.16 also highlights an area where the results are only in partial

agreement with the predictions of the model. Since the curves in the figure

illustrate the observed locations of the voiced and voiceless sub-distributions as

a function of bias proportion, they can be compared to the predicted curves in

Figure 6.11a. The predicted curves can be described as follows.

1. The target durations rise monotonically as a function of bias proportion

for both the voiced and the voiceless sub-distributions. This means that

vowel categories with a high bias proportion are expected to have higher

durations on the whole than categories with a low bias proportion (this is

also noted in Section 6.3.3).
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2. The curves are not parallel: they start together, become separated around

intermediate bias proportion values and then come together again as w

approaches 1. This is the behaviour described in Predictions 1 and 2:

the size of the gap between the sub-distributions is larger when the bias

proportion is balanced.

The empirical curves show the second effect, but not the first one. That is to

say, the overall duration of the category does not seem to increase at higher

bias proportion values. Note, however, that bias proportion values of over 0.5

are strongly underrepresented in this sample: only 4 vowel categories out of

23 have w > 0.5. This means that we cannot make any reliable conclusions

about vowel categories with a high bias proportion. Importantly, it is precisely

these categories that appear to go against the model predictions outlined above.

Thus, we can make the following conclusion about the relationship between

the predicted and the observed curves: the model predictions are supported

at w ≤ 0.5, while the results are inconclusive at w > 0.5. The fact that the

predictions of the model are borne out by lower bias proportion values is an

important result in its own right. However, it is clear that this experiment will

need to be extended in future research in order to see whether higher bias

proportion values are also in agreement with the model.

6.5 CONCLUSIONS

The results presented in the previous section are in agreement with the specific

claim about the voicing effect in Prediction 2 and the more general statement in

Prediction 1. The strength of the voicing effect was found to vary as a function of

how balanced the bias proportion of a given category is. At low bias proportion

values, the voiced and the voiceless sub-distributions are relatively close to

each other in terms of vowel length. At intermediate bias proportion values

the sub-distributions are significantly further apart. Unfortunately, higher bias

proportion values are underrepresented in the data set, which means that it

is not possible to make any reliable conclusions about their influence on the

sub-distributions. While more work is needed to fully confirm the validity of

Predictions 1 and 2, the results above are certainly promising.
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This brings the main argument of the present chapter to its conclusion. The

structure of this argument was as follows. First, I argued that production and

perception are influenced by phonetically detailed knowledge about context-

specific sub-distributions within categories. This assumption served as the basis

of a formal model of the production-perception feedback loop. This model

was used to show how the prediction about the influence of lexical factors on

the behaviour of sub-distributions (Prediction 1) follows from the theoretical

assumptions underpinning the present approach. It also gave rise to a more

specific prediction relating to the voicing effect (Prediction 2). The fact that both

of these predictions are in agreement with the data demonstrates the viability

of this approach and lends support to the underlying theoretical framework.

The argument summarised above has several important implications for

the study of sound change. The most specific of these relates to allophonic

splits. Although this term was avoided in the above discussion, it is clear

that the changes in sub-distributions investigated here are closely related to

allophonic splits. In a sense, the predictions discussed in this chapter are about

the likelihood of allophonic splits: balanced bias proportion values increase the

probability that a given category will undergo a split. While the present chapter

did not investigate how this effect is manifested in complex sound systems, it is

likely that its overall influence is very similar to that of bias strength. That is,

categories with balanced bias proportion values will be more likely to split, but

the sound systems containing these categories will often settle into equilibria

where other factors make splits impossible.

It should be noted that the present model cannot fully account for splits.

First, as in previous simulations, the number of categories is fixed, which

means that splits cannot create new contrasts. This is clearly problematic, given

that contrasts do sometimes arise as a result of splits. More importantly, the

model may not even be able to fully capture the behaviour of allophonic (non-

contrastive) splits. The description of the simulation results in Sections 6.3.2

and 6.3.3 clearly indicates that the parameter settings of the model define an

upper limit on the amount of separation that is tolerated within a given category.

The sub-distributions converge towards this limit over time, but the current

model does not predict any further separation once this limit is reached. There
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is no indication that allophonic splits are bound in the same way: different

allophones of a given sound often go down divergent paths in their evolution

and become completely independent over time. However, it was not my goal

here to predict every aspect of allophonic splits. The main goal of this chapter

was to demonstrate how specific predictions can be derived from the theoretical

framework that I argued for in this thesis. The framework could be extended

to capture further properties of splits, but this is by no means necessary for

our present purposes.

Another implication of the argument in the present chapter relates to the

general approach to sound change adopted in this thesis. I have argued through-

out the thesis that looking at the evolution of sound systems through a simulated

production-perception feedback loop can yield many insights into the nature

of sound change beyond those that already exist in the literature. The present

chapter is a particularly clear demonstration of this. To my knowledge, the

specific relationship between bias proportion and the size of contextual effects

assumed here has not been discussed elsewhere in the literature. The fact that

the predictions of this model were confirmed by experimental results is a strong

argument for its overall validity. I suspect that many more such discoveries

can be made by carefully exploring the behaviour of simulated systems and

comparing them to patterns observed in natural languages.

Finally, this chapter is a good example of the methodological approach

advocated in this thesis. The foundational idea of this approach is that compu-

tational simulations can serve as a way of linking abstract theoretical concepts

to concrete predictions. All of the studies presented in this thesis rely on this

assumption to some extent, but none of them apply it quite as successfully as the

present one. The predictions that emerge from the computational model in this

chapter can be presented in a very explicit form, and are easy to verify through

empirical methods. I believe that this research strategy is a useful model for

future investigations of the theoretical predictions of abstract frameworks.
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This thesis proposed a solution to the actuation problem in the context of

bias-based models. The original issue that motivated this investigation was the

inability of bias-based models to account for stability in sound systems, despite

their success at capturing cross-linguistic regularities governing sound change. I

argued that the problematic predictions of bias-based models derive not from

their theoretical assumptions, but from the way they are typically used in studies

of sound change. Specifically, the mechanism of sound change in bias-based

models tends to overapply because the situations that are usually investigated

involve categories in a vacuum. The solution I outlined in this thesis is to shift

our attention from single categories to sound systems, where the effects of

phonetic biases can be counteracted by systemic pressures.

I suggested that system-based approaches can make more accurate predic-

tions about sound change because of the complexity of the adaptive landscape

in which sound systems exist. When the only pressure affecting a sound system

(or a single category) is a phonetic bias, it is natural that the outcomes will

be simple and deterministic. However, when other pressures such as lexical

distributions and functional load are added in, the range of possible outcomes

becomes much more diverse, and phonetic biases will not necessarily be satisfied

in every case. This was confirmed by the simulations in Chapter 5, which demon-

strated that the effects of phonetic biases can be suppressed as the complexity

of the system is increased.

I also noted that sound systems move towards peaks in the adaptive land-

scape, or local optima, where the different pressures balance each other out.

As a result, the system-based approach predicts stability. It was shown that this

stability can be broken by changes in the pressures that define the adaptive

landscape. Thus, an increase or a decrease in functional load or a change in

lexical distributions can create a situation where the sound system is knocked
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out of an equilibrium and starts evolving towards a new stable state. In essence,

the adaptive landscape can create moving targets for the sound system. This

ensures that both stability and change are observed.

Although the arguments summarised above describe sound systems in rather

abstract terms, the simulations I used to investigate them are rooted in concrete

and plausible assumptions about speech production and perception. These

assumptions are as follows: (i) speech production and perception are based on

probabilistic category representations; (ii) category representations are subject

to continuous update throughout the lifetime of an individual; (iii) speech

production and perception are affected by low-level universal phonetic biases;

and (iv) category update is inhibited in cases where too many ambiguous tokens

are produced due to category overlap. All of these assumptions were shown

to be supported by independent evidence, which is a strong argument for the

general validity of the results derived from them. The simulation architecture

used in the thesis is a direct implementation of these principles. To make this

point clearer, Chapter 4 demonstrated that certain implementation details of

the simulations can be altered without substantially changing their outcomes.

Thus, prototype and exemplar models were shown to make essentially identical

predictions. Moreover, the abstract model of the production-perception feedback

loop used in the thesis did not perform significantly differently from a more

realistic model with multiple agents.

Of course, many simplifications had to be made in order to be able to present

the main argument of the thesis in a principled and rigorous form. Perhaps the

most obvious of these is the decision to keep the number of categories constant

for the entire duration of the simulations. The main result of this restriction

is that the model cannot provide a fully satisfactory account of mergers and

splits (although it can capture some aspects of both; cf. Chapters 5 and 6). It is

likely that there are many other situations where this simple architecture cannot

be applied without modifications. This, however, is not a major problem. The

main strength of this approach lies not in its ability to account for individual

changes, but in the rich set of predictions that it makes about cross-linguistic

patterns in sound change.

The shift from isolated sound categories to sound systems brings about

a change in the way different predictors of sound change are viewed. While
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bias-based accounts traditionally focus on phonetic biases, the approach here

moves the emphasis to other factors that are often treated as secondary in the

literature. The system-based view predicts that lexical distributions, functional

load and individual differences in production or perception may be just as

important in the actuation of sound change as phonetic pressures. Although

some of these factors have been studied as mechanisms that may inhibit or

facilitate sound change, the present approach suggests that their role extends

beyond that: they may play a fundamental role in initiating changes. This has

important implications for the study of sound change. Even if the phonetic

roots of sound change may seem easier to study due to their constancy across

different languages, non-phonetic factors should be given equal consideration.

We will only be able to fully understand sound change if we explore the set of

possible predictors and carefully assess their roles.

Chapter 6 of this thesis is a demonstration of how the role of non-phonetic

factors can be investigated. This was done by focusing on the influence of

bias proportion on the size of allophonic splits within categories. The logical

structure of the first half of the chapter was much like that of the rest of the

thesis. After an overview of the underlying principles of the model, I presented

a simple simulation architecture that was used to explore its predictions. The

main prediction that emerged is that allophonic splits will be more robust when

the proportion of biased versus non-biased environments is balanced for a given

category. This prediction was then tested by looking at the magnitude of the ef-

fect of voicing on vowel length in categories with different bias proportions. The

data that served as the basis of this investigation came from a small production

study involving English, French and Hungarian. A statistically significant corre-

lation was found, which means that the predictions of the bias-based approach

are borne out by this particular data set. The contributions of this small study

are two-fold. First, it finds an interesting effect that has not been discussed

elsewhere in the literature. Second, it illustrates how the abstract framework

investigated in this thesis can be translated into substantive predictions, and

how these predictions can be tested empirically. The success of this preliminary

endeavour shows that the approach advocated in the previous chapters can

contribute significantly to our understanding of sound change.





APPENDIX : VARIANCE

INFLATION A

In what follows, I provide mathematical derivations of the claims about the

variance-inflating effects of (i) kernel density estimation and (ii) adding Gaus-

sian noise to a parametric distribution.

The discussion of kernel density estimation below is based mostly on Hansen

(2009). We start with a sample of observations X = {x1, x2, . . . , xn}. The kernel

density estimate of this sample can be written as follows (using equations (4.3)

and (4.4)):
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We are interested in the variance of this distribution. In order to calculate it,

we first have to obtain the first and the second moments of this function. The

calculation of the first moment is shown below, using the following change

of variables: u = (x − x i)/h.
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Note that
∫∞
−∞ uφ(u)du = 0, since the left-hand side of the equation refers to

the mean of a standard normal distribution, which, by definition, is 0. If all the

weights are the same, the first moment of the distribution is the sample mean;

otherwise, (A.2) is equivalent to the mean of a discrete probability distribution,

which in this case consists of exemplars with different activation levels (for the

notion of activation levels, see Pierrehumbert 2001 and Section 4.1.3 of this

thesis). The second moment can then be calculated as follows:

∫ ∞

−∞
x2 f̂ (x)d x =

∫ ∞

−∞

1
∑n

j=1 w j

n
∑

k=1

x2 wk

h
φ

�

x − xk

h

�

d x

=
1

∑n
j=1 w j

n
∑

k=1

∫ ∞

−∞
(xk + uh)2wkφ(u)du

=
1

∑n
j=1 w j

n
∑

k=1

wk

�

x2
k

∫ ∞

−∞
φ(u)du+ 2 hxk

∫ ∞

−∞
uφ(u)du

+ h2

∫ ∞

−∞
u2φ(u)du

�

=
1

∑n
j=1 w j

n
∑

k=1

wk x2
k + h2 (A.3)

In this case,
∫∞
−∞ u2φ(u)du is the variance of a standard normal distribution,

which is 1 by definition. We are now in a position to calculate the second central

moment (i.e. the variance):

∫ ∞

−∞
x2 f̂ (x)d x −

�
∫ ∞

−∞
x f̂ (x)d x

�2

=

=
1

∑n
j=1 w j

n
∑

k=1

wk x2
k −
�

1
∑n

j=1 w j

n
∑

k=1

wk xk

�2

+ h2 =
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=
1

∑n
j=1 w j

n
∑

k=1

wk x2
k −
�

1
∑n

j=1 w j

n
∑

k=1

wk xk

�2

=

= σ̂2
X + h2 (A.4)

The term σ̂2
X refers either to the variance of the original sample (if all the weights

are equal) or to the variance of the discrete probability distribution representing

memory activation values. We can thus conclude that kernel density estimation

inflates the variance of the sample by h2, which is the variance of the Gaussian

kernel used in modelling random noise in production.

The second point that needs to be dealt with in this appendix is the effect

of adding random noise to a normal distribution. This is a much more trivial

task, given the following identity describing the sums of normally distributed

random variables (where X ∼ N (µX ,σ2
X ) and Y ∼ N (µY ,σ2

Y )):

X + Y ∼N (µX +µY ,σ2
X +σ

2
Y ) (A.5)

That is, the mean and the variance of a random variable that results from

adding two independent normally distributed random variables are simply the

sums of the means and the variances of the original random variables. Since

adding Gaussian noise to a production target coming from another Gaussian

distribution (i.e. the category representation) is equivalent to summing two

normally distributed random variables, the size of the variance inflation will

be equivalent to the variance of the Gaussian noise function, which, again,

could be represented by h2.

The above derivations should make it clear that there is a clear correspon-

dence between variance inflation in non-parametric density estimates and

parametric density estimates with Gaussian noise: in each case, the size of the

inflation is the same as the variance of a Gaussian function. Since the simu-

lations in this thesis use Gaussians to represent noise both in exemplar and

prototype models, we can conclude that the dynamics of variance inflation are

the same in these two models.





APPENDIX : THE OB SERVED

DISTRIBUTION B

This brief section explains how the observed distribution for a given category

can be calculated from the underlying distribution if we know the location of

all the other categories and the parameters of the model. There are four factors

that can affect the observed distribution: variance inflation through production

noise, phonetic biases, ambiguity-driven dispersion and the boundaries of pho-

netic space. Each of these are discussed below. Note that only the univariate

case is described, but the method extends straightforwardly to multivariate

distributions as well.

The influence of production noise on the observed distribution is easy to

model, and has already been discussed in Appendix A. The following equation

can be used to calculate the observed distribution based on (i) a normal distri-

bution representing the original category ci (with parameters µi and σ2
i ) and

(ii) a Gaussian noise function (with a variance of h2):

p(x |ci, h2)∼N (µi,σ
2
i + h2) (B.1)

That is, the mean of the observed distribution is the same as that of the original

one, while the variance is increased by h2.

The shifts caused by phonetic biases have been described in Section 4.1.2.

The equation for calculating the observed distribution is repeated below (where

fi is the probability density function for category i and bias j(•) is the logistic

function representing bias j):

p(x |ci, bias j(•)) = fi(2x − bias j(x)) (B.2)
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When the original category is represented by a normal distribution, this corre-

sponds to a small shift in the mean of the distribution towards the bias attractor,

and a small reduction in the variance.

The effects of ambiguity-driven misperception can be predicted by con-

structing a fitness function from the function that specifies the probability of

misperception. As it has been noted in Section 4.1.3, the probability that a token

is fed back into the original category representation is higher if it is unambigu-

ous, and lower if it is ambiguous. The function that specifies the ‘survival rate’

of tokens for a given category ci can be written as follows:

fs(x) = 1− r p(¬ci|x), (B.3)

where fs(x) denotes the survival function, r is the misperception rate and

p(¬ci|x) is the probability of misperception (cf. Section 4.1.3). The observed

distribution is obtained by multiplying the original distribution by the fitness

function and re-normalising:

p(x |ci, fs(•)) =
fs(x) p(x |ci)

∫∞
−∞ fs(x) p(x |ci) d x

(B.4)

The boundaries of phonetic space are modelled by discarding tokens outside the

boundaries, which relies on the same principle as the ambiguity filter. Therefore,

equation (B.4) also applies to this case. The fitness function for the boundaries

of phonetic space is a simple rectangular window:

fs(x) =

(

1 if a ≤ x ≤ b

0 otherwise,
(B.5)

where a is the lower boundary of phonetic space and b the upper boundary.

These functions yield a series of transformations that define the observed

distribution, when applied in the following order: (B.1) (variance inflation)

→ (B.2) (phonetic bias)→ (B.4) using (B.3) (ambiguity filter)→ (B.4) using

(B.5) (boundaries of phonetic space).



APPENDIX : TARGET

LOCATIONS C

Let us start by deriving the expected values of the sampling distributions for

vowels in voiced and voiceless environments (this corresponds to the shift

illustrated in Figure 6.10b). The random variables for vowels in voiced/voiceless

contexts are denoted X vd and X vl , respectively. Using the formulae in (6.2) and

(6.3) and the definition of expected value, the following formulae can be

obtained (Es[X ] stands for the expected value of the sampling distribution

belonging to a target sub-distribution X ):

Es[X vd] =

∫ ∞

−∞
x

i wN (x |µvd ,σ2
vd) + (1−w)N (x |µvl ,σ

2
vl)

i w+ (1−w)
d x =

=
i w E[X vd] + (1−w)E[X vl]

i w+ (1−w)
(C.1)

Es[X vl] =

∫ ∞

−∞
x

wN (x |µvd ,σ2
vd) + i (1−w)N (x |µvl ,σ

2
vl)

w+ i (1−w)
d x =

=
w E[X vd] + i (1−w)E[X vl]

w+ i (1−w)
(C.2)

These formulae use the parameters introduced in Section (6.3): i stands for the

extra weight that the target sub-distribution has in determining the production

target and w is the proportion of tokens in a voiced context within the overall

category.

The next step involves deriving the other type of shift in expected values due

to phonetic biases (cf. Figure 6.10a). Let us assume a bias b with strength s, and
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a hypothetical sampling distribution X with an expected value of E[X ]. Since

the bias is essentially a linear transformation of a random variable, the following

can be written (based on equation (6.4); Eb[X ] represents the expected value

of a sampling distribution X after the application of biases):

Eb[bias(X , b, s)] = E[X + s(b− X )] =

= E[X ] + E[s(b− X )] =

= E[X ] + s b− s E[X ] =

= s b+ (1− s)E[X ] (C.3)

The question we are trying to answer is as follows: what are the values of

E[X vd] and E[X vl] at which the expected values of the observed distributions

calculated from X vd and X vl (through the application of (C.1)/(C.2) and (C.3))

are also E[X vd] and E[X vl], respectively? In other words, what are the target

locations at which the sub-distributions are not predicted to move any further

under the influence of the biases and the cohesive forces within the category?

To mark the target locations off from simple expected values, they will be

represented by Et[X vd] and Et[X vl]. The equations in (C.4) and (C.5) express

the question above in formal terms. Note that the expression related to the

voiced sub-distribution contains two biases (b1, the shortening bias, and b2,

the lengthening bias), while the one related to voiceless sub-distributions only

a single bias (b1).

Et[X vd] = s1 b1+ s2 b2+ (1− s1− s2)
i w Et[X vd] + (1−w)Et[X vl]

i w+ (1−w)
(C.4)

Et[X vl] = s1 b1+ (1− s1)
w Et[X vd] + i (1−w)Et[X vl]

w+ i (1−w)
(C.5)

These equations can be rearranged so that Et[X vd] and Et[X vl] each appear

only on one side.
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Et[X vd] =
i w (s1 b1+ s2 b2) + (1−w)

h

s1 b1+ s2 b2+ (1− s1− s2)Et[X vl]
i

i w (s1+ s2) + 1−w
(C.6)

Et[X vl] =
i (1−w) s1 b1+w

h

s1 b1+ (1− s1)Et[X vd]
i

i (1−w) s1+w
(C.7)

Crucially, we are seeking a combination of Et[X vd] and Et[X vl] values at which

both equations hold. Therefore, we need to rewrite each of them in the following

way. In equation (C.6), we substitute (C.7) for Et[X vl], and in equation (C.7),

we substitute (C.6) for Et[X vd]. This yields the following equations.

Et[X vd] =
i w (s1 b1+ s2 b2) + (1−w)(s1 b1+ s2 b2)

i w (s1+ s2) + 1−w
+

+
(1−w)(1− s1− s2)

i (1−w) s1 b1+w
�

s1 b1+(1−s1)Et[X vd]
�

i (1−w) s1+w

i w (s1+ s2) + 1−w
(C.8)

Et[X vl] =
i (1−w) s1 b1+w s1 b1

i (1−w) s1+w
+

+
w (1− s1)

i w (s1 b1+s2 b2)+(1−w)
�

s1 b1+s2 b2+(1−s1−s2)Et[X vl]
�

i w (s1+s2)+1−w

i (1−w) s1+w
(C.9)

The last step in deriving the formulae presented in Section 6.3.3 is a simple

algebraic transformation: the equations are rearranged so that their subjects –

Et[X vd] and Et[X vl] – only appear on the left hand side. The resulting formulae

are shown on the next page in landscape format, along with a derived formula

for calculating the gap between the two sub-distributions.



Et[X vd] =

�

i (1−w) s1+w
�

(i w+ 1−w)(s1 b1+ s2 b2) + (1−w)(1− s1− s2)(i (1−w) +w) s1 b1
�

i (1−w) s1+w
��

i w (s1+ s2) + 1−w
�−w (1−w)(1− s1− s2)(1− s1)

(C.10)

Et[X vl] =

�

i w (s1+ s2) + 1−w
�

(i (1−w) +w) s1 b1+w (1− s1)(i w + 1−w)(s1 b1+ s2 b2)
�

i (1−w) s1+w
��

i w (s1+ s2) + 1−w
�−w (1−w)(1− s1− s2)(1− s1)

(C.11)

Et[X vd]− Et[X vl] =

�

i (1−w) +w
�

(i w+ 1−w)s1s2(b2− b1)
�

i (1−w) s1+w
��

i w (s1+ s2) + 1−w
�−w (1−w)(1− s1− s2)(1− s1)

(C.12)
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