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Abstract

Current automatic speech recognition (ASR) research is focused on recognition of con-

tinuous, spontaneous speech. Spontaneous speech contains a lot of variability in the

way words are pronounced, and canonical pronunciations of each word are not true to

the variation that is seen in real data.

Two of the components of an ASR system are acoustic models and pronunciation

models. The variation within spontaneous speech must be accounted for by these

components. Phones, or context-dependent phones are typically used as the base sub-

word unit, and one acoustic model is trained for each sub-word unit. Pronunciation

modelling largely takes place in a dictionary, which relates words to sequences of phones.

Acoustic modelling and pronunciation modelling overlap, and the two are not clearly

separable in modelling pronunciation variation. Techniques that find pronunciation

variants in the data and then reflect these in the dictionary have not provided expected

gains in recognition.

An alternative approach to modelling pronunciations in terms of phones is to derive

units automatically: using data-driven methods to determine an inventory of sub-word

units, their acoustic models, and their relationship to words. This thesis presents a

method for the automatic derivation of a sub-word unit inventory, whose main compo-

nents are

1. automatic and simultaneous generation of a sub-word unit inventory and acoustic

model set, using an ergodic hidden Markov model whose complexity is controlled

using the Bayesian Information Criterion

2. automatic generation of probabilistic dictionaries using joint multigrams



The prerequisites of this approach are fewer than in previous work on unit derivation;

notably, the timings of word boundaries are not required here. The approach is language

independent since it is entirely data-driven and no linguistic information is required.

The dictionary generation method outperforms a supervised method using phonetic

data. The automatically derived units and dictionary perform reasonably on a small

spontaneous speech task, although not yet outperforming phones.

2



Acknowledgements

There are many people whose influence and support have made the completion of this

thesis possible. Many friends, family and colleagues come to mind when I look back

over the years I have been a PhD student. Thank you to so many who have taken an

interest in what I’ve been doing.

Specifically I would like to thank my supervisors, Simon King and Steve Renals, for

their consistency, support, expertise and patience throughout the years this has taken.

I have learnt a lot from you both.

I would also like to thank my examiners, Rob Clark and Mark Huckvale, for an inter-

esting and enlightening discussion, which enabled this work to come to completion in

a way that has been satisfying.

CSTR has been a great place to work, and I am grateful to all my colleagues there for

making that the case. For your approachability, help and friendship, thank you Korin

Richmond, Joe Frankel, Rob Clark, Mike Lincoln, Peter Bell, Cassie Mayo, Zhang Le,

Avril Heron. In particular I am grateful for many thoughtful and thought-provoking

conversations with Mirjam Wester: thank you.

Without my family this thesis would not exist. Thank you for all your support - I

know you’ve all rooted for me. Thank you Mum, Dad, Hanna and Joanna for providing

childcare at crucial times. Dad, thank you for helping me think through various maths

problems and coding issues along the way.

Finally, thank you Laurence for being so dependable and believing in me. We’ve got a

lot to show for the past few years... what’s next?!



Dedication

This thesis is dedicated to my children, through whom and for whom I have learnt so

much and will go on learning.



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Fiona Couper Kenney)



Contents

1 Introduction 1

1.1 Automatically derived units . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Glossary of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Unit inventory determination within statistical speech recognition 7

2.1 Statistical speech recognition . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Overview of a general ASR system . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Pronunciation variation . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Using different sub-word units . . . . . . . . . . . . . . . . . . . 14

2.3 Deriving units automatically . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Segmentation and Clustering 27

i



3.1 Methods in the literature . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Spectral Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Model-based segmentation and clustering . . . . . . . . . . . . . . . . . 40

3.3.1 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Information criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Bayesian Information Criterion . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 BIC formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Pilot Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.3 Sub-word units for OGI numbers . . . . . . . . . . . . . . . . . . 46

3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Dictionary generation 55

4.1 Methods in the literature . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 A semi-automatic algorithm for dictionary generation . . . . . . . . . . 57

4.3 Multigrams, Joint Multigrams . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Example illustrating joint multigrams . . . . . . . . . . . . . . . 61

4.3.2 Formulation of joint multigrams . . . . . . . . . . . . . . . . . . 63

4.3.3 Implementation constraints . . . . . . . . . . . . . . . . . . . . . 65

4.4 Experiment: Phonetic Dictionary learnt from data . . . . . . . . . . . . 69

4.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ii



4.4.2 Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Acoustic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Speech recognition system based on automatically derived units 84

5.1 Generic experimental procedure . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Initial results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Effect of dictionary generation constraint, v . . . . . . . . . . . . 88

5.2.2 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.3 Treatment of silence . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Modelling silence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Silence experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Silence experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Conclusions 101

6.1 Thesis summary and conclusions . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Dictionary generation . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.2 Automatically generated SWUs . . . . . . . . . . . . . . . . . . . 103

6.1.3 Combining the two methods . . . . . . . . . . . . . . . . . . . . . 103

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . 108

iii



List of Figures

2.1 A typical HMM used to model a segment of speech for speech recognition.

The states are shown by circles, and the observations by squares. The

solid lines with arrows represent allowable transitions between states,

each has a certain probability in the model. The dotted lines represent

observation probabilities. This is referred to as a ‘3 state left-to-right

HMM’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Diagram showing the main steps required in the training of a speech

recogniser, based on sub-word units, u. The dictionary is not essential

in training, if a full transcription is available. The shaded box indicates

the areas of the system which are investigated in the design of a system

based on automatically derived sub-word units. . . . . . . . . . . . . . 11

3.1 Spectrogram of utterance 25.zipcode, text:“oh seven three oh six” . . . 34

3.2 Example plot of the function of the sum of MFCC deltas for OGI num-

bers utterance NU-25.zipcode, text:“oh seven three oh six” . . . . . . . 35

3.3 Boundary locations of segments found by spectral segmentation given

different threshold values. Utterance text: “oh seven three oh six”. . . . 36

3.4 Average number of units per word found by spectral segmentation as pa-

rameters t (threshold) and k (number of clusters) change. Average cal-

culated for each utterance and values normalised as: 1
N

∑N
i=1

|Ui|
|Wi| where

N is the number of utterances, |Ui| the number of units in utterance i,

and |Wi| the number of words in utterance i. . . . . . . . . . . . . . . . 38

iv



3.5 Plots of likelihoods for various values of t as the number of clusters

increases, across different model topologies (number of Gaussian mixture

components in legend) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Illustrating allowing the models to determine segments and clusters: take

a model set (a set of a particular type of statistical model), and connect

the models in the set, such that each model can follow any other model.

Train the large, connected model on acoustic data, and interpret each

sub model as the model of an individual sub-word unit. See text. . . . . 41

3.7 BIC scores for various candidate models trained on 1 dimensional arti-

ficial data. The number of states in each generating HMM is shown in

the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 The HMM topology used to train 3state sub-word units. . . . . . . . . 47

3.9 Best BIC score across unit inventory size (for single state units) for

various numbers of mixture components per state (‘gauss’ in legend). . . 50

3.10 Training data likelihood for a subset of the ergodic models built for

1state SWUs, showing dips in likelihood for larger numbers of mixture

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 Best BIC score across unit inventory size (number of 3state units) for

various numbers of mixture components per state (‘gauss’ in legend). . 52

3.12 Average number of BIC units per word, as number of states increases.

Average is total number of BIC units in training data divided by total

number of words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Histogram of the frequency of each sub-word unit in training data for

the unit inventory achieving the highest BIC score for single state units

(150 units, 30 Gaussian components per state) . . . . . . . . . . . . . . 53

v



3.14 Histogram of the frequency of each sub-word unit in training data for

the unit inventory achieving the highest BIC score for 3state units (200

units, 20 Gaussian components per state). (The x-axis is labelled to 600

due to the fact that there are 3 states per unit, and units were labelled

with every third integer) . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Pseudo code for the semi-automatic algorithm used for dictionary gen-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Joint multigrams example: Probabilities of the five most probable pro-

nunciations for “one” and “seven”. . . . . . . . . . . . . . . . . . . . . 63

4.3 Partitioning a set into w (w = 5) subsets. . . . . . . . . . . . . . . . . . 65

4.4 Relationship between input number of words and units, and number of

partitions required, using equation (u−1)!
(w−1)!(u−w)! (see text). . . . . . . . . 66

4.5 Word error rates for multigram and semi-auto dictionaries, compared

to a hand-written baseline dictionary. The left figure shows results for

dictionaries with pronunciations with probability above P, and the right

dictionaries with N pronunciations per word (Top N). . . . . . . . . . . 81

5.1 For each word, the percentage of times it is correctly recognised in vali-

dation data for single state model and dictionary achieving lowest WER

(200 units, prob sum ≤ 0.75) . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Analysing how pause is modelled by each of the model sets A and B (the

models achieving the lowest WER for single state units and 3state units,

respectively, see text). The plots show the percentage of the use of each

unit that occur during a ’pause’ region. . . . . . . . . . . . . . . . . . . 91

5.3 Best BIC score for ergodic model trained only on speech (silence experi-

ment 2), across model size (number of 1state units) for various numbers

of mixture components per state (‘gauss’ in legend). . . . . . . . . . . 95

vi



5.4 Best BIC score for ergodic model trained only on speech (silence experi-

ment 2), across model size (number of 3state units) for various numbers

of mixture components per state (‘gauss’ in legend). . . . . . . . . . . . 95

5.5 Average number of BIC units per word, as number of states increases,

for models trained in silence experiment 2. . . . . . . . . . . . . . . . . 96

5.6 The correlation between the number of tokens of each word and the

recognition rate of the word (for model and dictionary achieving the

lowest WER). The left plot shows the total amount of training data

(used for the SWU generation), and the right the amount of training

data used in dictionary generation. . . . . . . . . . . . . . . . . . . . . . 98

vii



List of Tables

2.1 A comparison of the systems reviewed in this chapter. All systems re-

quire acoustic training data, word transcriptions, and a prescribed acous-

tic model topology. Requirements beyond these are listed in the final

column, where N indicates that the number of units in the system is

pre-determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 A comparison of the methods used to achieve segmentation and cluster-

ing by various researchers. ’A’ or ’M’ under segmentation refer to broad

segmentation category: acoustic measure and model-based, respectively 33

3.2 Number of states chosen using BIC, for each of the generating models in

the pilot experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Joint multigrams example: 45 possible joint segmentations of input ‘one

seven one’, which consist of 58 unique joint multigrams. . . . . . . . . . 62

4.2 Joint multigrams example: final dictionary with probabilities . . . . . . 63

4.3 Number of ways of partitioning two input streams of length w and u,

comparing figures when stream W is only segmented into individual

words, and when word sequences are allowed. . . . . . . . . . . . . . . . 67

4.4 Handwritten baseline phonetic dictionary for OGI Numbers experiment. 71

4.5 Pronunciation confusions in semi-automatically generated full dictionary 72

4.6 The three thresholds used to generate various dictionaries from a large

dictionary which contains large amounts of variation . . . . . . . . . . . 72

viii



4.7 Statistics for the dictionaries generated semi-automatically. . . . . . . . 73

4.8 Statistics for the joint multigram based dictionaries. . . . . . . . . . . . 75

4.9 Units used in OGI Numbers phone dictionaries experiment . . . . . . . 76

4.10 Word Error Rates for recognition experiments using all dictionaries. . . 80

4.11 Comparing pronunciations in top performing multigram dictionary, top

N 3, with top performing semi-automatic dictionary, top N 1. The upper

table shows the typical case, where, stripped of .pau (pause), the 3 pho-

netic pronunciations in the multigram dictionary are identical to the 1

semi-automatic pronunciation. The lower table lists all seven exceptions

to this rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Variables in the full system, based on units derived using an ergodic

HMM with BIC, and dictionaries generated using joint multigrams. . . . 85

5.2 WER results on validation data for various model sets (column headings

show number of units in model set, with number of gaussian mixture

components per state in brackets) for 3state base models and multigram

dictionaries. Dictionary parameters are shown in the first column, in-

cluding v, the maximum allowed length of unit sequences. . . . . . . . . 86

5.3 WER results on validation data for various model sets (column headings

show number of units in model set, with number of gaussian mixture

components per state in brackets) for 1state base models and multigram

dictionaries. Dictionary parameters are shown in the first column, in-

cluding v, the maximum allowed length of unit sequences. . . . . . . . . 87

5.4 Number of utterances successfully used in dictionary generation for SWU

inventories with one state per unit, out of a possible 10250. . . . . . . . 88

ix



5.5 Analysis of the modelling of pause regions for model sets A and B. The

percentage occurrences of U within a pause region
total occurrences of U in transcription

∗ 100 was calculated for

each unit; those units occurring within a pause region with a frequency

of > 90% are listed here. The units used in the top three pronunciations

of the word <pau> are listed for comparison. . . . . . . . . . . . . . . . 92

5.6 WER results on validation data for various model sets (column headings

show number of units in model set, with number of gaussian mixture

components per state in brackets) for 1state (silence experiment 2) base

models and multigram dictionaries. Dictionary parameters are shown

in the first column, including v, the maximum allowed length of unit

sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Analysis of results for model and dictionary achieving the lowest WER

in silence experiment 2 (200units, 1state per unit, dictionary threshold

n = 1). For each word, the percent correct scores are shown, along with

the number of training tokens of each word in the full training data set,

and the number of training tokens of each word used in the dictionary

generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x



Chapter 1

Introduction

1.1 Automatically derived units

Pronunciation variation in spontaneous speech is considered to be a major limiting

factor on the performance of automatic speech recognition (ASR). In an ASR system,

pronunciation variation is largely modelled by the dictionary and the acoustic models,

where the dictionary may contain pronunciation variants, and the acoustic models

account for variation beyond these. A typical ASR system uses phones1 (or context-

dependent phones) as the sub-word unit: acoustic models are trained for each phone,

and the dictionary defines the relationship between words and phones, thus making

explicit all allowable phone sequences.

Canonical pronunciations of words are very often extremely different to realised pro-

nunciations in spontaneous speech. There is therefore a good motivation to look for

the realised pronunciations and define these in the dictionary, such that the dictio-

nary more closely reflects the data. However, explicitly modelling pronunciations by

extending the dictionary in this way has not led to the gains in recognition perfor-

mance expected (see Strik & Cucchiarini 1999). The reasons for this are unclear. It

is possible that assuming that speech is phone-based is limiting advances in recogni-

tion. Phones are an abstraction, and since human transcribers cannot always agree on
1phones are the acoustic realisations of ‘phonemes’, where phonemes are phonetic units defined to

be discriminative within a language
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the boundaries between phones or even their identity, it can be argued that their use

makes a poor starting point for acoustic modelling. The fact that the unit inventory is

determined independently of the choice of statistical model may also be a cause for the

performance ceiling currently experienced in recognition. A typical system has hidden

Markov models (HMMs) for each phone (or context dependent (CD) phone), but it is

possible that phones are not optimal for modelling by HMMs. Further discussion of

these issues is found in Chapter 2.

Typically a phone set is defined and the data is transcribed in terms of these phones.

Acoustic models are trained on the basis of this transcription. Pronunciation varia-

tion must be accounted for in these acoustic models or in the pronunciation dictionary,

which clearly is also in terms of the pre-defined phone set. Alleviating this dependence

on phones and instead determining the sub-word unit (SWU) inventory automatically

may result in units which more closely reflect the data and so deal with some of the

pronunciation variation. Consider a unit inventory which is learned from data automat-

ically using a likelihood objective function, and a dictionary designed in conjunction

with these units. In such a system, the mismatch between the actual realisations and

the transcriptions (in the dictionary) will be minimised. Descriptions of the pronun-

ciations in the data in terms of the new unit inventory will account for the variation

within the data in a way that phones cannot. Two realisations of the same word whose

differences are not captured in the phonetic dictionary will have different sequences

of automatically derived SWUs. So the variation between the pronunciations can be

captured using the SWUs. Theoretically then, pronunciation variation can be dealt

with in a better way using automatic SWUs.

A process able to automatically construct a unit inventory and dictionary using only

acoustic speech data and word transcriptions could be used to construct ASR systems

for languages that have fewer existing resources than, say, English. This is another mo-

tivation for research into automatically derived units. Many English language corpora

exist which are transcribed at high levels of detail, and there continues to be funding

to collect data in English (among other languages). For languages where transcribed

acoustic data and pronunciation dictionaries exist, it is possible, even straightforward,

to build working ASR systems. However, this is not the case for many of the world’s

languages. Defining the phone set and writing a pronunciation dictionary requires

2



linguistic knowledge, skill and time, and is therefore expensive, and so ASR is not pos-

sible for many languages. Given a way of automatically transcribing, modelling and

describing pronunciations of any speech data, speech recognition becomes possible.

1.1.1 Research Aims

This thesis contains an investigation into methods able to derive sub-word units auto-

matically from data. In any research, is is valuable to consider questions at a higher

level than the details of the investigation, to learn more than specific processes and

results, and compare new systems to what is standard. The following research aims are

considered in this thesis.

• How feasible is it to do ASR in this way? What are the added compu-

tational costs of searching for a unit inventory? How scalable are process which

automatically determine unit inventories? What are the data requirements?

• How well does it work, compared to using phone models? Can a

new method overcome weaknesses of standard methods? Word error rate is the

obvious indicator. Other comparisons include computational storage costs, and

initialisation requirements.

• Finally, it is useful to evaluate the strengths and weaknesses of doing ASR

this way.

The investigation into this aspect of ASR requires solutions to a number of specific

questions. Using an automatically derived unit inventory necessarily affects the acoustic

modelling and the pronunciation modelling of an ASR system. There are a number of

questions which must be answered in order to devise the inventory:

• how many SWUs should the unit inventory have?

• how should the acoustic data be segmented to give the data for each SWU, and

clustered to allow modelling of each SWU?

• what type of acoustic model should be used, and how can the acoustic models

and the unit inventory size be jointly optimised?

3



• how are the SWUs related to words: how are words pronounced in terms of the

SWUs?

1.1.2 Research approach

The above questions are investigated in this thesis, with the goal that any methods

developed to derive a unit inventory will be fully automatic, and model- and data-

driven:

• Fully automatic: the process should be fully automatic from start (raw data,

including a word transcription) to finish (a unit inventory and dictionary relating

words to new units). Manual intervention should not be required at any stage.

• Model-driven: the process should take into account, from the outset, the type of

statistical models that will be used for acoustic modelling. The models themselves

should be involved in segmenting the data. This will avoid the (typical) two stage

process in which the data is segmented according to one criterion (automatically

or manually), and then the segments are modelled. This two-stage process is

unlikely to be optimal. A model-driven method should result in a unit inventory

which fits the data and the model set well - if the model type were to change, the

product would be a different unit inventory.

• Data-driven: Often a unit inventory is chosen independently of the data set. This

is the case when phones are used as the sub-word unit; it is also true when data is

segmented automatically according to a linguistic goal. A data-driven approach

will take into account the particular characteristics of the given data. As for the

model-driven goal above, if a different data set is used, a different unit inventory

would be expected to be found.

1.1.3 Contribution of this thesis

This thesis contains methods which provide answers to all four questions in Section 1.1.1

above. The first three are solved in one simple process involving an ergodic HMM to

simultaneously and automatically determine the unit set, train acoustic models for each

4



unit, and segment and cluster the data. The number of units is determined using the

Bayesian information criterion (BIC). This process differs from that seen in reported

methods of inventory derivation in that it is so compact: in previous reported meth-

ods, units are often derived by iterating between separate processes of segmentation,

clustering and acoustic modelling. In most previous methods, the number of units is

pre-defined. The use of BIC here avoids this design limitation. The question of how to

relate new SWUs to words is answered in this thesis using joint multigrams, providing

a probabilistic dictionary automatically given the unit and word transcriptions. The

product of the combination of these methods is a working speech recognition system.

The construction of the full system requires minimal initialisation: word boundaries

are not required, which differs from almost all existing methods; the number of units in

the inventory is determined automatically; transcription of the data is only needed at

the word level; and finally, no linguistic interpretation of the acoustic sub-word units

is necessary since the whole process is automatic.

1.2 Outline

The remainder of the thesis is ordered as follows. In Chapter 2, the motivations behind

searching for automatically derived SWUs are further explored, and a review of the

other available methods for deriving SWUs is presented and discussed. In Chapter 3,

the problem of automatic data segmentation is explored. Segmentation and clustering

techniques are reviewed, and a method involving an ergodic HMM to automatically and

compactly generate the data segmentation and unit inventory is presented. Dictionary

generation methods are considered in Chapter 4. A semi-automatic, greedy method

is used to provide a baseline, and a fully automatic method using joint multigrams is

presented. The two types of dictionary are compared using phonetic data. Results and

investigations of the combination of the unit derivation and dictionary generation are

presented in Chapter 5. Finally, there is a concluding chapter.

5



1.3 Glossary of abbreviations

Abbreviations that are used in this thesis are listed here for ease of reference.

ASR automatic speech recognition

BIC Bayesian information criteria

CD-phone context dependent phone

HMM hidden Markov model

HTK hidden Markov model toolkit

SWU sub-word unit
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Chapter 2

Unit inventory determination

within statistical speech

recognition

This chapter contains a brief description of statistical speech recognition, as the con-

text for unit inventory determination. A number of recognition systems which use

automatically derived sub-word units (SWUs) are reviewed, including a discussion of

the challenges involved in SWU generation. The techniques presented in this thesis are

introduced as part of the discussion of existing methods.

2.1 Statistical speech recognition

The goal of automatic speech recognition (ASR) is to transcribe speech automatically

and accurately: to output the text of what was said. It is possible to compare dif-

ferent ASR systems based on the ability of each one to recognise the same speech, by

comparing their output word transcriptions.

In statistical speech recognition, the problem of assigning a word sequence W to an

input observation of speech, X, is posed as maximising the likelihood of the word

sequence, given the speech data.
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Ŵ = argmax
W ∈ W

P (W |X) (2.1)

W is the set of all possible word sequences. P (W |X), the probability of the word

sequence W given the speech X, cannot be directly evaluated. Using Bayes’ Rule1,

equation 2.1 can be rewritten as

Ŵ = argmax
W ∈ W

P (X|W )P (W )
P (X)

(2.2)

P (X) is the prior probability of the speech, which is constant over the maximisation

and so can be ignored. Thus equation 2.2 is reduced to

Ŵ = argmax
W ∈ W

P (X|W )P (W ) (2.3)

P (X|W ), the probability of speech X given a word sequence W , is computed by statis-

tical models. The model set able to calculate probabilities for all combinations of X and

W is referred to as the acoustic model set. The model able to compute probabilities

P (W ) is the language model.

The speech waveforms are not used directly for X, but instead are reduced to a series of

feature vectors, X = x1...xi, by extracting information from the waveform at regular

time intervals. There are many ways to do the feature extraction, for example, linear

predictive coding, filter bank coefficients, mel-frequency cepstral coefficients (MFCC).

See Rabiner & Juang (1993) for an introduction to each of these. Each type of pa-

rameterisation aims to extract information useful to determining speech sounds, while

reducing the effect of other information, such as amplitude and fundamental frequency

(F0), contained within the waveform, but not interesting for speech recognition tasks.

The most common, and the only parameterisation used in experiments reported in this

thesis, is the MFCC.

The word error rate (WER) is the score used to rate and compare different speech

recognition systems. WER is defined as

1Bayes’ Rule states that P (A|B) = P (B|A)P (A)
P (B)
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WER = S+D+I
N ∗ 100,

where S is the number of word substitutions, D word deletions, I word insertions, and

N is the total number of words in the utterance for which the WER is calculated.

2.2 Overview of a general ASR system

The acoustic models are the building blocks of the system. In standard ASR systems,

the hidden Markov model (HMM) is the statistical model used to represent the

acoustics. Alternatives to the HMM are regularly investigated; Digalakis et al. (1991),

Kannan & Ostendorf (1998), Ostendorf et al. (1996), Ostendorf & Digalakis (1991),

Frankel (2003) all present ASR systems where the HMM is not the basic acoustic

model. However, in this thesis, only HMMs have been used.

HMMs were introduced in the 1960s by Baum and colleagues. A good introductions to

HMMs can be found in Rabiner & Juang (1993, chap. 6).

An HMM is made up of states and transitions between states. The states ‘emit’ obser-

vations with a certain probability. The probabilities are modelled using Gaussians or

mixtures of Gaussians. There are many ways an HMM can be organised: given a set

of states, it is possible to allow or disallow any transitions between states, including

self-transition. A typical set-up of an HMM used for speech is shown in Figure 2.1.

In ASR, the HMM is used to model regions of speech, such as words. In a simple word

recognition task, one HMM would be built for each word. It will be trained on tokens

of this word spoken by one or more speakers. Then in decoding, these word models

compete to describe the observed speech, each one able to describe the observations

with a particular probability. The sequence achieving the highest likelihood is the

one which generates the word transcription. It is possible to train the system such

that certain words or word sequences have a higher likelihood. This is done using a

language model.

Training whole word models quickly becomes infeasible as the number of words in-

creases. For a model to exist for each word, many models are required, leading to a

complex and computationally expensive system. To train a useful model for each word
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Figure 2.1: A typical HMM used to model a segment of speech for speech recognition.

The states are shown by circles, and the observations by squares. The solid lines with

arrows represent allowable transitions between states, each has a certain probability in

the model. The dotted lines represent observation probabilities. This is referred to as

a ‘3 state left-to-right HMM’.

it is important to have enough examples of that word among the training data. Avoid-

ing data-sparsity becomes increasingly difficult as the vocabulary of the task increases.

Words which are not well represented will be poorly modelled, and thus the system

will be weak. Instead, smaller ‘sub-word’ units are typically modelled - units which are

repeated across words, and therefore lead to a system with fewer models. In a typical

system, phonetic-based units are used, such as phones, tri-phones, syllables. Phonemes

are sub-word units which are defined to be contrastive units within a language, and

are identifiable by phoneticians. It follows that, since the ear can distinguish different

phonemes (and possibly distinct realisations of them: referred to as phones), and these

distinctions are significant in differentiating words in language, models of phonemes

or phones should provide a good basis for speech recognition. In order to train a set

of phone models, we need training data which is transcribed at the level of the phone

(which can be created automatically given a word transcription and a dictionary). Then

for each phone model, all tokens of that phone are used for training.

The ASR system based on phones rather than words needs to have some way of relating

the phones to words in order to output a word transcription. This relationship is

described in a dictionary (or lexicon). The dictionary is used in decoding to enable

the recogniser to output word sequences rather than phone sequences. The dictionary

also defines all allowable phone sequences within the language, thus constraining the

decoding search: the dictionary provides a pronunciation model.
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lexicon relating w to u

model trained for 
each unit u

e.g. HMMspeech
waveform

(training data)

transcription of v 
in terms of units u

word transcription w

parameterisation
to vectors

Figure 2.2: Diagram showing the main steps required in the training of a speech recog-

niser, based on sub-word units, u. The dictionary is not essential in training, if a full

transcription is available. The shaded box indicates the areas of the system which are

investigated in the design of a system based on automatically derived sub-word units.
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The diagram in Figure 2.2 shows the main inputs and processing steps required to train

an automatic speech recogniser. The choice of sub-word unit, ui, is pre-defined, and

the major output of the training process is a model set, where one model is defined for

each sub-word unit.

2.2.1 Pronunciation variation

The tasks tackled by the ASR community have increased in complexity from the recog-

nition of words spoken in isolation, to carefully read speech, to spontaneous, conver-

sational speech. A lot of the difficulty in recognising spontaneous speech is derived

from the huge amount of variation in the pronunciations of each word. Some of the

variation may be characterised by substitution, deletion or insertion of phones, as well

as various co-articulatory affects and vowel reductions. Modelling the variation is a

major consideration in an ASR system. According to Strik & Cucchiarini (1999), there

are three levels of an ASR system at which pronunciation modelling can take place,

namely the lexicon (dictionary), the acoustic models, and the language model. (Strik

& Cucchiarini (1999) is a review paper of a large number of works in pronunciation

modelling to which the reader is encouraged to refer as an overview of the field.)

Pronunciation variation in the dictionary

The most obvious place where pronunciation modelling takes place is the dictionary.

Pronunciation variation can be modelled by adding variants of words to the dictionary.

The question of how this is done has been tackled in many ways, with variants being

determined using linguistic knowledge, and/or variants being determined in a data-

driven way. A knowledge-based approach uses information gathered from phonetic

and linguistic studies, and incorporates expected variants into the dictionary based on

these studied phenomena. For example, Kessens et al. (1999) investigated adding 5

phonological rules involving either phone insertion or phone deletion to the lexicon,

and saw an improvement in recognition. Wester (2003) compared this approach to a

data-driven approach, and found that the automatic, data-driven method resulted in
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a larger performance gain. Knowledge-based approaches are not reviewed here since

they cannot be used with automatically derived units without some kind of mapping

between the units and phones, since the ‘knowledge’ is in terms of phones. Using a

mapping is undesirable, since it requires a confidence in phones that we do not have

(see Section 2.2.2).

Data-driven methods aim to determine pronunciations which exist in the data and

amend the dictionary to reflect these. In order to collect pronunciation variants from

the data, some form of transcription is required. When manual phone labelling exists

for a corpus, this can be used, but more often the output of a phoneme recogniser

provides the transcription, e.g. Heine et al. (1998), Sloboda (1995), Sloboda & Waibel

(1996), Westendorf & Jelitto (1996). Gathering the various pronunciations for each

word can be done by splitting the phone transcriptions at word boundary locations,

e.g. Sloboda (1995), or by aligning the transcription to a transcription obtained by

expanding the orthography using the dictionary, e.g. ten Bosch & Cremelie (2002),

Wester (2003). An alignment is achieved using dynamic time warping in Heine et al.

(1998), and a viterbi search in Westendorf & Jelitto (1996).

The decision about which pronunciation variants to include tends to be based on a

threshold, e.g. N-best (ten Bosch & Cremelie 2002, Sloboda & Waibel 1996). A neu-

ral network is used in Fukada et al. (1998) to predict alternative pronunciations from

canonical pronunciations, and a threshold on probability of the predictions is used.

Decision trees are used in Riley (1991), Riley & Ljolje (1995), Fosler-Lussier (1999),

Wester (2003) to predict alternative pronunciations by determining the probability of

a realised phone given the predicted (canonical) phone and the context. Choosing the

optimal number of variants per word is difficult, and no metric yet exists for predict-

ing the value of a dictionary, although some attempts have been made, e.g. Wester

(2003). In general, fewer than 2 pronunciations per word is found to be optimal; a

greater number of variants increases the confusability of the dictionary and degrades

performance.
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Pronunciation variation in acoustic models

The acoustic models also model pronunciation variation to some degree. An ASR sys-

tem which uses a dictionary of canonical pronunciations forces the acoustic models to

account for the variation which exists in the data. The inevitable mismatch between

the dictionary and acoustic signal will lead to contaminated acoustic models (as put

by Wester (2002, p.10-11)), and sub-optimal recognition performance. Adding variants

to the dictionary which are present in the data should remove some of this contami-

nation, as the match between the ‘actual’ phone sequences and the pronunciations in

the dictionary increases. Any amendments to the dictionary directly affect the acoustic

models, since it is standard to generate a transcription of the data using forced align-

ment according to the dictionary and data. This transcription is used to retrain the

models. This method is noted to improve recognition scores by, for example, Bacchi-

ani & Ostendorf (1999), Sloboda & Waibel (1996), Wester et al. (1998). Yang et al.

(2002) discovered that in certain cases context independent acoustic models used along

with a dictionary containing variants could compete with context dependent acoustic

models, demonstrating the interaction between the dictionary and the acoustic models,

and pointing to the importance of a data-specific dictionary. Hain (2002) shows that

implicit pronunciation modelling using a carefully constructed single pronunciation dic-

tionary performs at least as well as explicit modelling using multiple pronunciations

per word.

2.2.2 Using different sub-word units

Since phonemes are defined to be discriminative within a language, it is an obvious

choice to use their (perceived) realisations - phones - as the sub-word unit in ASR.

The inventory of phones is a closed set: for different data in the same language, the

same unit inventory will be used. Phones are useful since their relationship to words

is known (it is possible to manually or semi-manually write dictionaries, and off-the-

shelf dictionaries in terms of phones exist), and so they provide a convenient way of

segmenting speech into units smaller than words (avoiding the data-sparsity problem

of whole word modelling). There are weaknesses in using phones for ASR, however.

Co-articulation effects in spontaneous speech are not well modelled by phones, and
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context-dependent models are used to overcome this weakness. The phone sets that

are used are not necessarily valid for real speech, since they make assumptions about the

realisation of speech. The ‘dubious nature of phone transcriptions’ is cited as a reason

for the limited success of pronunciation variation modelling in Wester (2002, p.20),

and the suggestion that other units are devised is made. Another limitation suggested

by Wester, echoing Ostendorf (1999), is the assumption typically made that speech

consists of sequences of phones strung together, as ‘beads-on-a-string’, whereas speech

and language consist of many layers of information, whose sequences are asynchronous.

In investigating automatically derived units, the work in this thesis moves away from

phones, but the ‘beads-on-a-string’ paradigm is still used: the phone beads are simply

replaced by different beads.

Using a pre-defined unit inventory does not allow for a match between the units and

the models. The model type and unit set are chosen independently, and the models

are forced to represent the units. This can lead to contaminated models, as mentioned

in Section 2.2.1. This is particularly true for modelling spontaneous speech. Also

using a pre-defined inventory does not allow for variation (of the unit inventory) in

different types of data - the same phoneset is used for single speaker recognition, and

for spontaneous speech with multiple speakers. There will be more variation in the

second dataset, and it is likely acoustic modelling will be better (more accurate) if

a different unit inventory is used. Some of this variation is captured in phone-based

systems using triphones and parameter tying. However, it is reasonable to believe that

a unit inventory which is devised in conjunction with the acoustic models will lead to

better modelling of the acoustic space for given data.

2.3 Deriving units automatically

The focus of this thesis is the derivation of a unit inventory. In a system where the

unit inventory is not pre-defined, the transcription of the data and the dictionary must

both be generated. They are interdependent and should be jointly determined. The

shaded box of Figure 2.2 highlights these investigated system components.

There are different ways to approach the problem of jointly determining the unit inven-
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tory and the lexicon. An intuitive approach is to consider the problem as three steps,

or three areas which require solutions:

1. The speech signal must be segmented into units in some way, based on some

criteria

2. The segments of speech found must be clustered into units such that the segments

can be labelled, with the segments having the same label being similar in some

way. The result of this step with the output of step 1 is a transcription of the

data in terms of sub-word units.

3. Relationship between each word and sequences of units must be established.

These relationships form the pronunciation dictionary.

Two other significant factors in the design of a unit inventory are

• the size of the unit inventory

• the acoustic models representing each unit

This deconstruction of the problem into three steps is essentially the way in which the

research in this thesis has been approached, and the structure of the thesis reflects this.

This formulation of the problem into three steps implies that a good choice of solutions

to three independent problems will lead to a good unit inventory. However, while it

is possible to devise such a sequential approach, there will be no guarantee of joint

optimality of the units and lexicon if they are not in some way jointly determined,

since they are so interrelated. All methods of unit inventory derivation published to

date involve iterative processes, in order to achieve this joint determination.

There are many facts that are taken for granted in a phone-based system which are

unknown at the outset in training a sub-word unit (SWU) based ASR system. Most

fundamentally, the number of SWUs in the system is not known. Clearly this is never

the case in a phone-based system. The number of units per word is not known, since

there is no lexicon, and indeed the number of units in each token of the same word

may not be the same. Similarly, the length of each unit is not known, and may not

be similar across different occurrences of the same unit. Word boundaries and unit
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boundaries are also unknown. When the output of one process determines one of these

variables, its value will inevitably effect another, and so should be re-computed. In

order to make the search for units and pronunciations tractable, some of these factors

can be fixed. As we will see in the literature review that follows, most systems based

on SWUs fix the number of units in a system, and constrain their search for units by

doing so. The method presented in this thesis requires no such specification.

The type of acoustic modelling is a very important system choice, but is not implied in

the way the problem is broken down into 3 steps, above. It is possible to generate the

segmentation and unit inventory through any of various segmentation and clustering

methods, and then use this segmentation to train acoustic models. This is seen in most

of the systems reviewed in the following section. However, decoupling the acoustic

modelling from the acoustic segmentation is unlikely to be as effective as an integrated

method.

2.3.1 Literature review

In this section, various ASR systems using automatically derived units are described.

Aspects of each system are compared in Table 2.1.

In the late 1980s, IBM researchers developed the concept of ‘fenones’ as sub-word

units to investigate alternatives to phones. Fenones are frame-sized units labelled by a

vector quantizer. These are introduced in Bahl, Brown, do Souza, Mercer & Picheny

(1993) for isolated word, speaker-dependent recognition. An inventory of 200 prototype

fenones was first generated by vector quantization (VQ) of 5 minutes of speech. Then

for each word in the vocabulary, VQ vectors are extracted at regular intervals from

one example of the word. The vectors are compared to the 200 in the inventory,

and each is given the label of the closest (in terms of Euclidean distance) prototype

fenone. This label sequence is the ‘fenonic baseform’ for the word: its pronunciation

in terms of fenones. The fenones are then modelled by Markov models, and trained

using 9 utterances of the same word. This method of sub-word unit generation and

modelling achieved improved word error rates on a small vocabulary isolated word

task, but not on a task with larger vocabulary. It is not surprising that pronunciations

(“fenonic baseforms”) based on a single utterance of a word will not perform well on
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a larger task. Improving the fenonic baseform using multiple training examples was

then implemented: baseforms were created for a number of examples of each word,

and then a single label sequence was chosen using maximum likelihood search across

all baseforms given a model set. The Markov model set was trained using singleton

fenonic baseforms from the first experiment. Using this process to generate baseforms

improved system performance for all isolated word, speaker-dependent tasks attempted,

compared to a phonetic baseline. A further experiment is reported using speech from

multiple speakers, where again the word error rates generally improve on those using a

phone-based system.

The system is extended in Bahl, Bellegarda, do Souza, Gopalakrishnan, Nahamoo &

Picheny (1993) (this paper was published before Bahl, Brown, do Souza, Mercer &

Picheny (1993), but was actually written after) to model pronunciation variation with

more flexibility by modelling using more Markov states.

These methods by Bahl et al. do not require a lexicon generation step since each word

is treated independently to determine the pronunciations. This is only possible in data

where the location of word boundaries is known. There is no justification for the choice

of 200 units in the system. These two pre-processing requirements (word boundaries

and the number of SWUs sought) are typical of the methods that exist for generating

SWUs.

Around the same time, Paliwal and Svendsen devised sub-word units, also for an iso-

lated word single speaker task. In Svendsen et al. (1989) the acoustic segmentation

is achieved using the maximum likelihood (ML) segmentation of Svendsen & Soong

(1987). This method, whose purpose is to group frames with acoustic similarities to-

gether, is discussed in the following chapter, Section 3.1. The clustering of the ML

acoustic segments is then carried out using ‘segment quantization’, which is analogous

to vector quantization. The number of clusters is a pre-determined value, N . Each

of these N clusters of segments is then modelled by an HMM, and as such, a unit

inventory with corresponding model set is defined and trained. Three simple lexicon

generation methods were then applied, the simplest being choosing a pronunciation at

random for each word from the various training utterances of that word. Two further

methods involving clustering of the different pronunciations for each word were also

used. The final system achieved recognition scores comparable to whole-word HMM
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models, which were state-of-the-art at the time.

In Paliwal (1990), the lexicon generation is extended to a probabilistic form. The system

uses the same sub-word unit derivation as Svendsen et al. (1989). For each word in

the vocabulary, a statistical model of pronunciation is trained on all pronunciation

variations of that word in the training data. The model is an ergodic HMM whose

states are the sub-word units of the system. Recognition using this probabilistic lexicon

improves on deterministic lexicons.

Again, we see that both Paliwal and Svendsen et al. require the number of SWUs to

be predefined, and require data with word boundaries.

Maximum likelihood acoustic segmentation is also used in the SWU recognition systems

of Fukada et al. (1996) and Bacchiani (1999). The emphasis of the Fukada et al. system

is lexicon generation which incorporates phonetic knowledge to deal with unseen words.

In order to do this, the inventory of SWUs is used to devise phoneme models, where

a phoneme model is a sequence of SWUs. This is done by aligning the SWUs with

a phoneme transcription, and for each phoneme merging the SWUs used to represent

it in the data (merging the SWU means and variances), to give a sequence of merged

SWUs to represent each phone. Presumably (this is not explicitly stated in the text,

but is essential for the task carried out: a word recognition experiment) a dictionary of

words in terms of phonemes is needed then to make the word models, which are defined

as the concatenation of the phoneme models that make up the word’s pronunciation.

Thus, the acoustic segments are automatically defined, and individually modelled, and

the lexicon jointly uses these and phoneme transcriptions. The recognition results on

a speaker-dependent, spontaneous speech task show slight improvement on an HMM

phoneme-based system. This result shows that the higher level of detail in the acoustic

modelling (SWUs are shorter than phonemes, and in this system there are 120 SWUs,

rather than typically 50-60 phonemes) can benefit recognition. The lexicon generation

method requires an initial phone-based dictionary, and a good phonetic transcription of

the data, so in fact the system is still dependent on phonetic knowledge and expensive

initialisation (if the transcription is done by hand).

The recognition system of Bacchiani (1999) based on automatically derived units uses

maximum likelihood acoustic segmentation, as above, to initialise the acoustic seg-
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mentation of the training data. Rather than clustering at this stage, pronunciation

constraints are introduced, which alter the segment boundaries, and then clustering of

the revised segments leads to the sub-word units. The pronunciation constraints enable

the dictionary to be written directly: the segmentation of all tokens of a particular word

will have the same number of segments (defined to be the median number of segments

for that word following the unconstrained initial segmentation), and the same unit se-

quence. Forcing each token to have the same unit sequence allows the pronunciation of

each word in terms of sub-word units to be immediately known: a separate lexicon gen-

eration step is not required. These constraints enable a pre-clustering of the segments,

within tokens of a word, and further clustering must then be carried out across words

so that sub-word units are re-used across words. This is done using a divisive method,

with maximum likelihood as an objective function. The system showed recognition

results which improved on phone systems for a low complexity system, and comparable

results for higher complexity system on a RM task (which is read speech). Again, word

boundaries are required to enable the system to be trained, and the number of SWUs

pre-determined (the affect of this variable is investigated, but its value is not discovered

as part of the algorithm). No initial lexicon is required, and no phone transcription.

Holter & Svendsen (1997) also uses ML segmentation to derive initial acoustic segments,

which are then clustered into S ‘codebook’ clusters. The focus of the method here is

the labelling of each acoustic segment (from the set of S clusters) in order to constrain

the number of pronunciations for each word, and to use external linguistic knowledge.

Two labelling schemes are proposed, the first to assign similar label-sequences to tokens

of the same word, and the second to assign identical label-sequences to tokens of the

same word. Dynamic time warping is used in the first scheme to search for a reference

token among all examples of a particular word. The reference token is the “utterance

that has the smallest average DTW-distance to all other utterances of that word”,

where utterances are represented as a series of acoustic centroids. The centroids of all

tokens of the word are then aligned to the reference token (using DTW again), and

all segments which end up aligned with the same segment in the reference token form

a cluster. Each cluster is labelled according to the nearest codebook cluster (from

the set of S constructed earlier). In this way all utterances of the same word receive

similar label-sequences, but they do not have to be exactly identical. In the second

labelling scheme, identical labelling for each utterance of a word is sought, by jointly
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searching for the segmentation and labelling such that a criterion is minimized. The

same codebook of labels is used, and a search through a trellis of codewords is carried

out, searching for the path with minimal distance for all utterances of each word. The

recognition task these systems were tested on was simple: a multiple-speaker corpus

containing 20 words, each spoken in isolation. Significant improvement in recognition

rates are seen using both labelling schemes compared to an unsupervised labelling. Both

labelling schemes perform comparably to systems with whole-word or phoneme-based

models - all close to 100%. This paper demonstrates the care needed in constructing

the pronunciations of each word, and shows that linguistic knowledge is not necessary

to achieve segmentation. However, the method is tested on a small task of simple data,

so its value is not known for continuous speech recognition. The requirements here are

again the pre-definition of S, the unit set size, and word boundaries.

The sub-word unit derivation of Hersch (2003) takes a different approach to the 3

steps (segment, cluster, write a dictionary) that we have seen in work so far. The

method used for this system instead begins with clustering of the data using k-means

(it is not made clear what form ‘the data’ is in - frames of feature vectors, perhaps?)

followed by acoustic modelling of the clusters. The trained acoustic models are then

used to generate a segmentation of the data in terms of the clusters. This is unusual,

to derive initial segments after acoustic modelling (although often segment boundaries

are adjusted by trained acoustic models). The number of clusters is then adjusted

by merging clusters if doing so raises the likelihood of the data. The generation of

a dictionary is achieved by representing each word in the dataset by an HMM whose

states emit sub-word units. The word-HMM models are trained on the sub-word unit

transcription generated by the trained acoustic models of clusters. While this dictionary

generation method results in a relatively flexible, probabilistic dictionary, it is restricted

by the initial topology of the word-HMMs since the number of states per word-HMM

has to be predefined. The experimental results for this system are very poor, around

40% WER on the OGI numbers task. This is possibly due to the initialisation of the

sub-word units: just clustering the data frame-wise (if this is in fact what was done)

without looking for segments according to some criteria is unlikely to result in sequences

of frames in the same cluster, resulting in very short segments. Alternatively, the poor

results could be due to the dictionary (word-HMM models) being too flexible for the

task. The dictionary and units are not jointly determined: the SWUs are the product
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of one process with no regard for the subsequent constraint on the number of SWUs

per word.

The approach taken by Singh et al. (2002) (also in Singh et al. (2000)) to derive SWUs

and a dictionary automatically also does not require word boundaries or a specified unit

set size. Instead, the system design is formulated as a maximum likelihood problem to

jointly find the unit set (segments and acoustic models) and dictionary. Its formulation

implies a huge search over all possible word segmentations, unit set sizes, acoustic

model parameters, where the training data likelihood is being maximised. The initial

equation is broken down into a set of equations which are solved using a divide-and-

conquer strategy. The solutions of these equations are used in an iterative process to

estimate models, derive a dictionary in terms of models, and increase unit set size. The

experiment reported on a read speech task (RM) shows the error rates decreasing as

the number of units increase, when tested on training data. Testing on unseen data,

the best error rate is seen using 34 sub-word units. Using both context independent

models and context dependent models, the automatic system could not outperform

a phone-based system. However, the work shows that it is possible to define a unit

inventory and a dictionary with little external data, since no linguistic information is

necessary, including no word boundaries.

2.3.2 Discussion

In this section, comparisons between the approaches reviewed above are made, including

comparing aspects of the systems to the approach of this thesis. In this way, the

approach of this thesis is introduced in the context of research which precedes it.

Fenones (Bahl et al.), among the earliest automatically derived SWUs, are a simple,

data driven, unit inventory and have been seen to improve word recognition. As de-

scribed above, prototype fenones are output by a vector quantizer, and the training

data is then segmented by each frame’s distance from these prototypes. Fenones are

in the same class when they are closer to a particular prototype than to any other

prototype, using some distance measure. Markov models of each fenone are trained

subsequently for use in recognition. This is typical of SWU generation: segmentation

by some means and then acoustic modelling of groups of the segments. This simple
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data driven method can achieve gains in recognition. Theoretically more improvement

is possible if the sub-word unit derivation allows the statistical model to play a part

in determining the units. This is the approach taken in this thesis: jointly, segment

boundaries and the acoustic models for each unit are determined. Instead of segmenta-

tion and clustering providing the decision about which frames of speech to model using

the same statistical model, the models themselves define the boundaries. Segments of

speech are in the same class if they are modelled by the same acoustic model, instead

of being modelled by the same acoustic model because they are in the same class as

determined by a separate objective function.

It is possible that the work using fenones did not continue due to the challenges of

generating a pronunciation dictionary, as is implied in Holter & Svendsen (1997). As

discussed above, fenone generation requires word boundaries, and pronunciations are

sequences of fenones from a single example of each word. This does not allow for

pronunciation variation, and clearly relies heavily on the example of each word being

representative of many occurances of that word. The work using fenones indicates that

using sub-word units that are automatically derived can improve upon the modelling

and recognition power of using phones. Without methods to search for a good prototype

pronunciation, the process is limited, however. The work in this thesis looks at these

problems and presents a method of dictionary generation.

The method presented in this thesis combines segmentation and clustering into a single

step by using an ergodic HMM, followed by dictionary generation using joint multi-

grams. Each state of the ergodic HMM is designated to be a sub-word unit. The

segmentation and clustering step jointly determines segment boundaries, clusters, and

HMM model variables. The Bayesian information criterion is used as an objective func-

tion to determine the number of sub-word units in the system, and the complexity of

the models (in terms of number of Gaussian mixture components per HMM state). The

dictionary generation process is automatic, aligning word transcriptions with sub-word

unit transcriptions, but not requiring word boundary information. The result of this

process is a multiple pronunciation, probabilistic dictionary.

The sub-word unit generation process in this thesis differs from a standard process.

Typically, acoustic models of the sub-word unit set are trained following some kind of

segmentation of the data. For example, the fenone SWU (Bahl et al.) is the output
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of a vector quantizer. Fenones are in the same class when they are closer to each

other than to fenones in another class, using some distance measure. Markov models

of each fenone are trained subsequently for use in recognition. Fenones are a simple,

data driven, unit inventory, and have been seen to improve word recognition. If the

sub-word unit derivation allows the statistical model to play a part in determining the

units, theoretically more improvement is possible.

The task of jointly determining a unit inventory and dictionary is complex, as we

have seen. In order to achieve a match between the unit design and the dictionary,

some iteration between the two tends to be used. Bacchiani iterates between data

segmentation given unit inventory, and unit parameters given segmentation. Singh

et al. iterates between fixing the dictionary and using it to find acoustic models, and

then using the acoustic models to update the dictionary. A further layer of iteration

is also required by Singh, in the search for the number of sub-word units, N . N is

gradually increased, and the units and dictionaries retrained accordingly, while the

increase in N increases the recognition rates of some held out test data. In the BIC-

multigrams approach presented in this thesis, re-estimation of segment boundaries and

model parameters is done using a trained dictionary in order to ensure that the units

and dictionary are matched. This is the only iterative aspect to this process.

Jointly optimising a unit inventory and a dictionary for a particular data set is a highly

unconstrained problem, with many parameters. Typically, to make the problem more

tractable, a number of constraints are employed. In most of the systems reviewed

above, with the exception of Singh et al. and Hersch, the search for sub-word units is

constrained at the outset by pre-defining the number of sub-word units the system will

have. The methods which require this figure to be predefined are focusing on different

aspects of the overall unit inventory derivation, and need the simplification of this con-

straint in order to explore other system parameters, for example word pronunciations,

or the clustering and modelling of segments. However, without allowing the number

of units to be different, it is impossible to tell whether the final trained systems are

optimal for any optimisation criterion. In Hersch, this constraint is not required; in-

stead the size of the unit set is adjusted by merging clusters according to some criteria.

However, the technique requires the number of units per word to be predefined, which is

another way of simplifying the search. As noted above, in Singh et al. (2002) the size of
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the unit inventory is a variable in the system, and the criterion to be met in increasing

the inventory size is the increase in recognition scores for some held out data. In the

BIC-multigrams approach of this thesis, the number of units is not pre-defined, but is

determined on the basis of the BIC value each model set size scores during training.

Another input required by many of the systems reviewed here to constrain the search for

a unit inventory is word boundaries. The early systems (Bahl et al., Paliwal, Svendsen

et al.) were developed on isolated word data, and hence any decisions about searching

for word boundaries was completely avoided. Bacchiani, Fukada et al., Paliwal, and

Holter & Svendsen all require word boundary locations as inputs to their methods,

removing the need to search for possible word boundaries as part of their algorithms.

This constraint is exploited by Paliwal in his deterministic dictionary generation pro-

cess: pronunciations for each word can be collected by splitting the sub-word unit

transcriptions by the word boundaries. Bacchiani requires word boundaries in order to

introduce two pronunciation constraints, which limit another potentially large search

space, for the number of units per word and each word’s pronunciation. The methods

presented in this thesis do not require this knowledge of word boundary locations.

The next chapter fully presents the method of joint unit and model design. Chapter 4

presents the dictionary generation method.
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Author Task Acoustic Requirements /

Modelling Constraints

Bacchiani read speech (RM) HMM word bounds, N

& spontaneous speech

Bahl isolated word Markov model word bounds, N

Fukada isolated word trajectory model word bounds, N , phone

transcription, phone lexicon

Hersch spontaneous speech HMM number of units

(OGI Numbers) per word

Holter isolated word HMM word bounds, N

Paliwal isolated word HMM word bounds, N

Singh read speech (RM) HMM none necessary

Svendsen isolated word HMM word bounds, N

Couper Kenney spontaneous speech HMM none necessary

(OGI Numbers)

Table 2.1: A comparison of the systems reviewed in this chapter. All systems require

acoustic training data, word transcriptions, and a prescribed acoustic model topology.

Requirements beyond these are listed in the final column, where N indicates that the

number of units in the system is pre-determined.
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Chapter 3

Segmentation and Clustering

As outlined in Section 2.3, the problem of designing a unit inventory can be broken

down into the steps of (1) segmentation, (2) clustering, and (3) lexicon generation. This

chapter is concerned with steps (1) and (2). A literature review of methods available

for segmentation and clustering is below in Section 3.1, followed by details of two

experiments investigating different methods of segmentation, in Sections 3.2 and 3.3.

3.1 Methods in the literature

Methods for the segmentation and clustering of speech are required for various tasks,

as well as sub-word unit determination. Such tasks include:

• Speaker segmentation, a task requiring data containing portions of speech spo-

ken by different speakers to be segmented into sections containing speech of one

speaker only, and these sections labelled such that the speech of the same speaker

has the same label. This labelling is achieved through clustering of the segments

found. This task, sometimes called diarization, is used in automatically indexing

data such as news broadcasts or meetings.

• Automatic segmentation into sections containing different background noise con-

ditions, useful for more specific noise modelling.
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• Speech segmentation for language recognition, attempting to group the speech of

each language together from audio data containing multiple languages.

• Automatic discovery of phonetic boundary locations, as a first pass in a hand-

transcription task to make the process faster and cheaper.

There are various methods used to achieve the segmentation and clustering for these

different tasks. As we see in the review that follows, some methods use relatively

separate methods for the two steps, often with an iterative process connecting them.

Others use a more integrated approach, combining the goals of both segmentation

and clustering into one procedure. Table 3.1 contains a summary of the methods of

segmentation and clustering reviewed.

3.1.1 Segmentation

Broadly, the methods of segmentation considered here fall into two categories,

1. Acoustic measure based: some form of measure is defined relating to the acoustic

parameterisation of the signal. This acoustic measure criterion defines where

boundary locations should be placed.

2. Model based: a model type is chosen, and a search is carried out to find the best

segmentation such that, for example, the likelihood of these models is maximised.

There are many ways to design criteria for segmenting speech based on the acoustics

alone. Firstly, the speech must be parameterised into feature vectors. As we briefly saw

in the previous chapter, there are many choices of feature vector types, and for each

type, decisions about dimensionality and frame sizes must be made. Then a method

must be chosen or devised to place boundaries between vectors such that a segmentation

of the data is found. A large number of such algorithms are available.

The methods which can be classed as acoustic measure-based all rely on the generation

of some function of the acoustic vectors (or their derivatives) which is then segmented

according to its shape.
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One way to define boundary locations is to look at a distance between adjacent frames.

This distance as a function of time will exhibit peaks where there is a large distance,

and at these points it is reasonable to place segment boundaries, such that there is not

a lot of variation within a segment. The distance measure must be defined. In Sharma

& Mammone (1996), a Euclidean distance is used during the search for boundaries. A

form of this style of segmentation is also seen in Couvreur & Boite (1999), who apply a

speech segmentation algorithm for a broadcast news speaker segmentation task. In their

work, segmentation is based on acoustic similarity between neighbouring frames: for a

candidate segment boundary, the frames to the right and to the left of the boundary

are modelled by Gaussians, and the distance between the Gaussians computed. This

is carried out across the data. Boundaries are then placed where the distance measure

is at maxima.

Another way of describing this method of segmentation is to define distortion measure,

also based on distance between frames. This is seen in Holter & Svendsen (1997), who

achieve segmentation by a search for segment boundaries which minimize a (within

segment) distortion measure. As with Sharma & Mammone (1996), the measure of

distance is Euclidean.

An alternative to looking directly at the feature vectors, is to consider the shape of

functions of the vectors. For example, in Adami & Hermansky (2003), the trajectories

of f0 and energy are computed, and segment breaks are placed where the trajectory

exhibits peaks and troughs (where rates of change are zero). Segment breaks are also

inserted at starts and ends of voicing. In this particular method, the segments can be

labelled directly from 10 possible classes, each defined by a particular trajectory shape.

Typically this is not possible in methods of segmentation: clustering of some sort has

to be performed. Also for most tasks which require speech segmentation, 10 classes are

not sufficient to capture information relevant to the task.

Another function that can be used in segmentation is the spectral change. One of the

methods proposed in Svendsen & Soong (1987) is to place boundaries at peaks in the

function of first order cepstral coefficients. These peaks relate to positions of rapid

spectral change, and boundaries at these places should lead to stationary segments.
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Svendsen & Soong (1987) also introduce a maximum likelihood (ML) objective function

for finding segment boundaries where a specific distortion measure is minimised such

that the speech within a segment is quasi-stationary. A dynamic programming (DP)

algorithm is used to carry out the search for these boundaries. This is an acoustic

metric based method. This method is used in the segmentation step of Paliwal’s work

(see Paliwal 1990), and also in Fukada et al. (1996). Bacchiani also uses a variation of

this method in Bacchiani (1999), changing the objective function from the distortion

metric, to a Gaussian model likelihood. In this way, Bacchiani converts the algorithm

to a model-based approach to segmentation.

Model-based segmentation methods have been used for some tasks also. By model-

based, I mean that the statistical models that will be used in acoustic modelling of

segments are involved in the search for segment boundaries. In Chen & Gopalakr-

ishnan (1998a, 1998b) and Ben et al. (2004), the segments sought are assumed to be

modelled by Gaussians. At an hypothesised segment boundary, Gaussians are trained

for segments either side of the boundary, and the Bayesian Information Criterion is

calculated for each Gaussian. A boundary is placed between two segments a and b if

the change in BIC is negative. In this way, the likelihood of the models are used to

inform the choice of boundary locations. These authors use this method for a speaker

segmentation task. A model-based segmentation method involving BIC is the main

process used in this thesis to derive sub-word units. The use of BIC is different to these

papers, however. This is presented later in this chapter.

It is possible to use other methods for segmentation when the sequence of segments is

known. For example, if we have a phonetic transcription which is not time aligned, we

might use a form of HMM realignment to find and refine the phone boundaries. This

is seen in Ljolje & Riley (1991) and Pellom & Hansen (1998). This method, implicit

in HMM training algorithms used today, is often used in systems which have used an

automatic segmentation technique, but only once initial segmentation and modelling

have been carried out.

Other acoustic segmentation methods include spectral variation function (SVF), as seen

in Petek et al. (1996), temporal decomposition of spectral vectors (Cernocky 1998), and

vector quantization (Bahl, Brown, do Souza, Mercer & Picheny 1993). Descriptions of

these methods are not relevant to this chapter.
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3.1.2 Clustering

In general, the output of the segmentation step is a set of segments for the given data

with no way of relating them to each other. What is needed is an inventory of units,

where a unit represents of a number of segments which are similar in some way. The

clustering should result in segments in one class being more similar to each other than

to those of any other class.

A popular machine-learning approach to this problem is the k-means algorithm. k-

means is a simple algorithm in which the input data is clustered into k (which is

a pre-defined value) clusters. This is done using a distance metric to compare data

points. More detail about k-means appears in Section 3.2, where it is employed as part

of an experiment.

Paliwal (1990) used k-means to cluster his acoustic segments, by first finding the cen-

troid of each segment. Bacchiani (1999) and Fukada et al. (1996) use k-means to

cluster segments by first representing each cluster by the parameters of its Gaussian

distribution.

It is possible to classify many clustering algorithms as ‘bottom-up’ or ‘top-down’, where

the set of clusters is decreased by combining clusters, or increased by dividing clusters,

respectively. Couvreur & Boite (1999) use an agglomerative (bottom-up) clustering

procedure for the speaker segments, combining the contents of the two nearest clusters.

The number of speakers, N, is assumed to be known in their task, and so clustering is

stopped once N is reached. Bottom-up clustering is also seen in Hersch (2003), where

clusters are merged if the overall likelihood is increased by that action. Ben et al. (2004)

and Chen & Gopalakrishnan (1998a, 1998b) use BIC (again - the segmentation method

also involved BIC in these methods) for bottom-up clustering - each cluster (initially

each cluster contains a single segment) is modelled by a Gaussian, and the two nearest

clusters are combined if the combination causes the overall change in BIC score to be

negative.

Sharma & Mammone (1996) report a different approach, in which initially a search for

the optimal number of segments for the given data is carried out, followed by a search

for segment boundaries for this number of segments. The optimal number of segments
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was obtained through a search between a calculated minimum and maximum number

of segments: for each possible number of segments a ‘cluster optimality criterion’ score

is calculated. The optimal number of segments is defined to be where this value is

highest. This optimality criterion requires segment boundaries to be found, which

is done via a dynamic programming search over the acoustic parameter space using a

metric involving the distance between frames to determine the best boundary locations.

These segments are then modelled by a Normal distribution before the optimality

criterion can be calculated. This approach of finding the number of segments first

and then the boundaries is unusual. It was only applied to isolated word recognition.

Vector quantization is used in Cernocky (1998) and Holter & Svendsen (1997).
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Figure 3.1: Spectrogram of utterance 25.zipcode, text:“oh seven three oh six”

3.2 Spectral Segmentation

In order to become better acquainted with the task of speech segmentation, some

experiments are presented here involving a simple acoustic segmentation algorithm.

Segmenting the speech just by looking at the acoustic signal is not a new method, as

seen in the literature review in Section 3.1 above.

The aim in finding sub-word units in a speech signal is to place boundaries such that

between boundaries the signal does not exhibit much variation, while across boundaries

change occurs. The purpose of this thesis is not to look for phonetic boundaries or any

other linguistically motivated unit, but to derive units from the acoustic signal.

One of the segmentation methods introduced by Svendsen & Soong (1987) was spectral

segmentation. This idea is used here. The spectral features of a speech signal are

found using Fourier Analysis. The spectrum is a representation of the signal in the

frequency domain, and provide a characterisation of speech at a particular time point.

A spectrogram is an image of spectra over time. At times when the vocal tract changes

rapidly, the spectrogram image exhibits a change in pattern. The spectrogram in

Figure 3.1 shows how clearly some of these boundaries can be seen.

A common parameterisation of speech is Mel Frequency Cepstral Coefficients (MFCCs).

Usually in modelling applications, MFCC derivatives (deltas) are included, and often

double derivatives also. As noted in Svendsen & Soong (1987), points of spectral change
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Figure 3.2: Example plot of the function of the sum of MFCC deltas for OGI numbers

utterance NU-25.zipcode, text:“oh seven three oh six”

can be located where the the sum of 1st order derivatives as a function of time changes

direction. Boundaries for sub-word units can then be placed wherever these changes in

direction occur. The problem is thus reduced to peak picking.

An example plot of the function of the sum of MFCC deltas is in Figure 3.2, for a file

from the OGI Numbers Corpus. As can be seen there, there are many local peaks in

the function. It is useful to have ways of controlling the number of boundaries placed,

or the minimum duration of a segment. Here this has been achieved using a threshold:

boundaries are placed where the function crosses a particular value. Another way

to control the number of boundaries is to smooth the function before peak-picking.

However, this has not been investigated here. The graphs in Figure 3.3 show the effect

of four threshold (t) values on the segmentation of one utterance: as the value of t

increases, the length of segments increases.

Once an acoustic measure-based segmentation has been achieved, we have speech data

broken into many small segments, but with no relationship between them. Some

method of clustering the segments of speech found must be applied in order for any

modelling to take place. A common form of clustering, as seen in the literature review

above, is k-means clustering. The input to the k-means clustering algorithm is a value

of k (the number of clusters to divide the data into), and a representation of each data

point to be clustered.
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Figure 3.3: Boundary locations of segments found by spectral segmentation given dif-

ferent threshold values. Utterance text: “oh seven three oh six”.

The k-means algorithm, reproduced from Manning & Schutze (2001, chapter 14) is

below:

1 Given: a set X : ~x1, . . . , ~xn ⊆ <m

2 a distance measure d : <mx<m −→ <

3 a function for computing the mean µ : P(<) −→ <m

4 Select k initial centres ~f1, ..., ~fk

5 while stopping criterion is not true do

6 for all clusters cj do

7 cj = {~xi|∀~fl d(~xi, ~fj) ≤ d(~xi, ~fi)}

8 end

9 for all means ~fj do

10 ~fj = µ(cj)

11 end

12 end

Clearly the value of k is not known a priori in this task, and so clustering with various
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values is carried out. The data to be clustered in this case are variable length speech

segments, parameterised as MFCC vectors. The k-means algorithm requires a measure

of the distance between each item, and clusters near items. We need to define a distance,

then, between sequences of vectors, where the lengths of sequences may be different.

Since we assume the spectral segmentation algorithm has found segments of speech

with little within-segment variation, the simplest way of reducing the vector sequence

into a single vector is by computing a mean MFCC vector. Then the distance measure

used can be the Euclidean distance between mean vectors. So for a sequence of 39-

dimensional vectors ~v1, ~v2, ~v3...~vz , one mean MFCC vector ~vR is created, where each

coefficient i of ~vR is the mean of coefficient i in the z original vectors.

There are other choices for how a sequence of vectors can be represented as a single

point. For example, a trajectory of the MFCC vectors of each segment could be used,

and normalised (stretched or compressed) to force each segment to have a trajectory

of the same length. Alternatively each segment could be modelled by a Gaussian, in

which case the Gaussian’s mean and variance would represent the segment, and these

two values used in k-means clustering. The Gaussian mean representing the segment

is the same as the simple mean computed as above for each segment.

There are two parameters, then, in the segmentation and clustering as described here:

the threshold, t, controlling the number of segments, and the number of clusters, k,

which is the number of units. Spectral segmentation and k-means clustering using

various values of t and k was carried out to segment and cluster the training data of

the OGI Numbers Corpus. (Details about this corpus are below, in Section 3.5.3.) The

graph in Figure 3.4 shows how parameters t and k affect the average number of units

per word in this data set.

The outcome of this segmentation and clustering is a unit inventory (with k units, for

various k-values), and a number of segments for each unit (dependent on the value of

t). HMMs can be built for each unit inventory: here, for each unit, a 3-state, left-to-

right HMM was trained on all the segments clustered as part of that unit. The graphs

in Figure 3.5 show that some inventories yield a higher training likelihood, possibly

indicating inventories which fit the data well. The inventory whose trained model set

achieves the highest training likelihood has 60 units (k=60), and the segmentation was

obtained with a threshold t = 6000.
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Figure 3.4: Average number of units per word found by spectral segmentation as pa-

rameters t (threshold) and k (number of clusters) change. Average calculated for each

utterance and values normalised as: 1
N

∑N
i=1

|Ui|
|Wi| where N is the number of utterances,

|Ui| the number of units in utterance i, and |Wi| the number of words in utterance i.
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Figure 3.5: Plots of likelihoods for various values of t as the number of clusters increases,

across different model topologies (number of Gaussian mixture components in legend)
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3.3 Model-based segmentation and clustering

The acoustic segmentation carried out in the section above does not attempt to take into

account the type of statistical model that will be used in the speech recognition system.

The acoustic models representing each sub-word unit are of fundamental importance in

a system, since poor modelling cannot lead to accurate recognition. Therefore it would

be better to allow the use the modelling structure as an input to the segmentation

algorithm as well as the acoustic data, in order that the units found

1. are modelled well by the given model type

2. occur frequently in the given data

So, simply put, the goal of the segmentation step is to find a segmentation of the

acoustic data that best fits the type of statistical model used and the given data.

Having chosen a statistical model type, we want to train a set of these models, allowing

each model to choose which pieces of data to model. The locations where transitions

between models occur will be considered to be segment boundaries. Each of the trained

models will be considered to represent a sub-word unit, automatically derived. This

process enables segmentation and clustering to be achieved simultaneously. Figure 3.6

illustrates this basic model topology, for a generic statistical model. In order to use

this method for generating sub-word units, we need (a) a way of training the connected

set without a transcription, and (b) a way of determining the location of transitions

between models.

There are training and decoding algorithms for the hidden Markov model (HMM) which

meet these requirements ((a) and (b)), providing a way of training the connected model

set, and a way of locating the transitions between models. If (as in Bacchiani (1999) and

Fukada et al. (1996)) each sub-word unit is to be modelled by a single HMM state, the

search for segment boundaries and training of sub-word unit models can be achieved by

embedded training of an ergodic HMM1. This is made possible using existing training

algorithms, and is the main technique used for segmentation and clustering in this

thesis. In training an ergodic HMM, the number of states and initial parameter set
1in an ergodic HMM, all states can follow all other states, i.e. the transition matrix is full
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model
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models
connected

Figure 3.6: Illustrating allowing the models to determine segments and clusters: take

a model set (a set of a particular type of statistical model), and connect the models in

the set, such that each model can follow any other model. Train the large, connected

model on acoustic data, and interpret each sub model as the model of an individual

sub-word unit. See text.

must be specified. As we will see in Section 3.4 below, a criterion must be devised

which enables the number of states used to be chosen in a motivated way, and in the

experiments here, the Bayesian Information Criterion is used. First, though, we will

look at the process for generating the sub-word unit set using an ergodic HMM in more

detail.

3.3.1 Process

The process used to find the set of sub-word units is:

1. Take n HMM states, and connect them as an ergodic HMM.

2. Initialise the mean and variance of each state to be close to the data mean and

variance, but distinct from all other states. The method used to achieve this is

described fully in Section 3.5.3 below.

3. Train the ergodic HMM on all training data, providing the training algorithm

with no transcription information, at either word or sub-word level.

4. The most likely state sequence of the ergodic HMM for each utterance is the sub-

word unit transcription. The training of a single ergodic n state HMM leads to
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a set of n automatically derived sub-word unit models and a transcription of the

training data in terms of these. There is no need for a ‘clustering’ step. Standard

decoding techniques are used to find the most likely state sequence; details are

below.

5. The sub-word unit models are extracted from the ergodic HMM: each state rep-

resenting one sub-word unit. Now we have a set of models and a transcription of

the training data in terms of the model names. With a pronunciation dictionary

in terms of these models, we would be able to carry out a standard recognition

task, i.e. generate a word transcription for acoustic data. The generation of a

dictionary is covered in Chapter 4

Embedded training of ergodic HMM

The outcome of training an HMM are the set of statistics

• the transition probabilities

• the mean and variance of each Gaussian

• the observation probabilities : the probability that observations were generated

by the HMM

HMMs are typically trained using the forward-backward (or Baum-Welch) algorithm,

which (iteratively) maximises the likelihood of observations given models. Details of

the forward-backward algorithm can be found in Rabiner & Juang (1993, chapter 6) or

Jurafsky & Martin (2000, Appendix D) or the HTK2 manual.

This algorithm is used without alteration (as implemented by HTK ) in the experi-

ments of this thesis. Instead of a set of HMMs being trained, as in a standard speech

recognizer, here just one (large) ergodic HMM is trained.
2http://htk.eng.cam.ac.uk/
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Decoding to find the most likely state sequence

Clearly a necessary outcome of any sub-word unit generation process is a transcription

of the data in terms of the new unit inventory - without this, it is not possible to train

a dictionary. For these experiments, where the units are determined using an ergodic

HMM, the transcription of each utterance directly corresponds to the state sequence

through the HMM for that utterance. However, since the state sequence is hidden,

it is only possible to discover the likelihood of any state sequence for an observation

sequence. In many decoding tasks, it is only necessary to find the most likely state

sequence. This is true here; we do this using the Viterbi algorithm.

Details of this algorithm can be found in Rabiner & Juang (1993, page 339), Jurafsky

& Martin (2000, sections 5.9 and 7.3) and the HTK manual.

3.4 Information criteria

As described above, the training of an n state ergodic HMM leads neatly to a set of n

sub-word unit models. How, though, is n determined?

In training statistical models, the likelihood of a model over the training data will

always increase as the number of parameters within the model increases. So an ergodic

HMM with na states will have a higher likelihood than an ergodic HMM with nb states

if na > nb. Maximising this likelihood, then, is not a useful criteria to enable a good

choice of n. In general, as more parameters are used, models become more fitted to the

particular training data. This is referred to as ‘overfitting’; the effect of overfitting is

models that are unable to generalise to different data. Instead of maximising likelihood,

a different kind of criterion must be found to avoid this and make models with more

general use.

Information criteria provide a way to limit the complexity of models by penalising for

large numbers of parameters. Usually the score given to a particular model by an

information criterion is a function of the likelihood of that model minus a penalty term

involving the number of parameters in the model. Thus using such a criterion as the

objective function to be maximised, rather than likelihood, should result in a model
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able to generalise to new data. In our case, the score given to an ergodic HMM with n

states can help us determine the optimal value for the number of sub-word units.

The Bayesian Information Criterion (BIC) has been used for various tasks in speech

processing. One such task is speaker segmentation (or diarization), which involves

splitting input speech into regions by speaker, and clustering these regions such that

each speaker’s speech segments are in the same cluster. (see Ben et al. 2004, Chen &

Gopalakrishnan 1998b). As seen in the literature review above, the approach in these

works is to segment and cluster separately, using BIC in each stage as the criterion for

placing segment boundaries, and merging clusters, respectively.

The task here, of finding acoustic units in speech data, is analogous to speaker seg-

mentation. The search is for regions of the same speech sound in this task, rather than

regions of the same speaker in the diarization task. While there is analogy in the task,

the use of BIC here is different to the uses of BIC for diarization in the literature, where

two processes are employed. Here, segmentation and clustering are jointly performed

by training an ergodic HMM, and BIC is used to choose the number of states in the

ergodic HMM.

The size of the unit inventory is defined by the size of the ergodic HMM. Training the

ergodic HMM provides the parameters for each unit model, and the segment boundaries

for each occurrence of each unit. The use of BIC is not essential to derive units in

this way, however some criterion is needed to determine the optimal number of units:

ergodic HMMs with different numbers of states must be trained and one inventory

chosen in some way. The test of a speech recognition system is in its ability to recognise

words, quantified in the word error rate (WER). The best criteria, then, is the WER

of each inventory; the inventory achieving the lowest WER is considered to be the best

representation of the data. It is costly, in terms of time and computation, to determine

the WER for each ergodic HMM, as a dictionary must be generated for each one, and

recognition tests performed. If some criteria could be employed at an earlier stage of

the process, this would be beneficial. It turns out that the ergodic model providing the

inventory which achieves the lowest WER also achieves a high BIC score. This is seen

in the experiments in chapter 5. This correlation was hypothesised, since information

criteria enable a compact representation of the data to be determined, and such a model

which does not over-fit the data should achieve better recognition rates than one which
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has a large number of parameters tuned to the specific training data. The correlation is

useful since dictionary generation and recognition need only be carried out for models

achieving high BIC scores. In this way, the training requriements of the full system are

reduced.

3.5 Bayesian Information Criterion

3.5.1 BIC formulation

The Bayesian Information Criterion (BIC) was proposed by Schwarz (1978). BIC is

defined as follows:

BIC(M) = log L(X, M)− λ1
2#M log(N)

Where X are data to be modelled, M is a candidate model, N the data set size, and

#M the number of parameters in M . The penalty weight, λ = 1. L(X, M) is the joint

likelihood of the data and the model.

3.5.2 Pilot Experiment

A pilot experiment is presented which demonstrates that BIC is able to determine the

most appropriate model complexity, for artificial data.

Artificial data was generated by sampling from one hidden Markov model (HMM) with

n states, generating data of dimension d. The output distributions of each state were

specified such that the means were far apart. 1000 frames of data were generated.

The purpose of this pilot experiment is to show that maximisation of the BIC criterion

can be used to discover the number of states in the generating HMM.

In order to do this, the artificial data generated was used as training data for a number

of candidate ergodic HMMs. For each HMM, the BIC score was calculated.

The toolkit HTK was then used to train each model on the artificial data. BIC scores

were calculated for each trained model using the joint likelihoods of the data and each
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Figure 3.7: BIC scores for various candidate models trained on 1 dimensional artificial

data. The number of states in each generating HMM is shown in the legend.

model at training. The model achieving the highest BIC score is considered to be the

one that best represents the data. The graph in Figure 3.7 shows the BIC scores for

various candidate HMMs for data generated with n=2,5,8,13 and d=1. Each curve

increases to a maximum and decreases again, which is the expected behaviour of a BIC

curve as the number of model parameters increases. The peak of each curve is close to

the number of states in the respective generating model.

Table 3.2 shows the results of all pilot experiments, and demonstrates that, in these

simple cases at least, BIC is a reliable way of determining the underlying model com-

plexity.

3.5.3 Sub-word units for OGI numbers

An experiment was conducted using speech data from the OGI Numbers Corpus. Er-

godic HMMs with various numbers of states were trained without any labelling infor-

mation, on the training data. The BIC score of each model was calculated, and results

are seen in Section 3.5.4 below.

In standard ASR systems, 3-state HMMs are used to model phonetic units. In order
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data num of states, n, in num of states achieving

dimension, d generating model highest BIC score

1 2 2

1 5 4

1 8 7

1 13 10

2 2 2

2 5 6

13 1 1

Table 3.2: Number of states chosen using BIC, for each of the generating models in the

pilot experiment.

to generate SWUs which also have 3 states, the base topology of the erogdic HMM

must be slightly different, with fewer transitions (for the same number of states), as

shown in Figure 3.8. The same training methods are used for this model. For decoding,

the model must be split into constituent 3state units, rather than single state units.

Following this step, the same decoding procedure is used as for single state SWUs.

Figure 3.8: The HMM topology used to train 3state sub-word units.
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Data

These experiments were conducted using the OGI Numbers Corpus, release 1.33. The

utterances in OGI Numbers were taken from other telephone speech data collections,

and include isolated digit strings, continuous digit strings, and ordinal/cardinal num-

bers.

A division of the corpus suggested in Mariethoz & Bengio (2004) is used, where ut-

terances containing truncated words are removed, and then only sentences containing

the 30 most frequent words are retained. Then using the modulo-5 rule (3/5 training

data, 1/5 validation, 1/5 test), the data is partitioned into 10441 sentences for training,

3582 for validation and 3621 for testing. Our training set was reduced to 10251 files,

removing files containing corrupt data.

Initialisation

The HMM model structure used has n states, with g Gaussian mixture components

per state. Each Gaussian has a 39-dimensional mean and a diagonal covariance matrix.

The number of parameters in each ergodic HMM, #M , is required as part of the BIC

penalty term. It is calculated as follows.

#M = #means + #variances + #transitions + #mixture weights (3.1)

= 39ng + 39ng + n2 + (ng − 1) (3.2)

= n(79g + n)− 1 (3.3)

The means of the states within each HMM must be different initially, to allow training

to happen. If all states are initialised with the same mean, they all end up being

identical after training, since they all attempt to model all of the training data in the

same way. Moving all the dimensions of the mean of each state away from the overall

data mean leads to the means of some of the states not moving at all, due to their

distance from any data. Moving one or two dimensions of each mean allowed all states

to train, so this was used. The distance moved was 1
5σ where σ is the overall variance

of the data.
3http://www.cslu.ogi.edu/corpora/numbers/index.html
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We need S unique 39 dimensional vectors close to the global mean ~µ. Six processes are

used in turn to generate vectors until the total is reached:

1. Generate a new mean by adding σi
5 to one coefficient, i of ~µ. Repeat for all 39

coefficients of ~µ, generating 39 new mean vectors.

2. As above, but subtract σi
5 from one coefficient of ~µ

3. Generate a new mean by adding σi
5 to coefficient i, and σj

5 to coefficient j of ~µ

(i < j)

4. As (3), but subtract σj

5 from coefficient j

5. As (3), but reversing ‘+’ and ‘-’, i.e. subtracting σi
5 from coefficient i, and σj

5

from coefficient j

6. As (4), but reversing ‘+’ and ‘-’, i.e.subtracting σi
5 from coefficient i, and adding

σj

5 to coefficient j

Other ways to initialise the means include (1) directly using S randomly selected data

points and using these points as the means, or (2) using k-means to divide the data

into S clusters and training an HMM state on each cluster. These have not been

implemented here, however, since the perturbation of the means as described led to the

mean of every state moving, i.e. finding data to train on. If the data dimension was

larger, it would possibly be necessary to use an alternative initialisation.

3.5.4 Results

Single state sub-word units

The graph in Figure 3.9 shows the BIC scores for the models with single state units.

The model achieving the maximum BIC score over the OGI Numbers data with an

ergodic model made up of single HMM states has 150 states, and 30 Gaussian mixture

components per state. This is interpreted to mean that in order to model this data

set with single state HMM models for each sub-word unit, 150 such models should be

used.
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Figure 3.9: Best BIC score across unit inventory size (for single state units) for various

numbers of mixture components per state (‘gauss’ in legend).

The noticeable dips in the graph, on curves representing 40, 45 and 50 components per

state, in the range 100 - 200 units are unexpected. The models with lower complexity

(lower numbers of mixture components per state) follow the neat pattern of gradual

increase and decrease of score. The training likelihood of these higher complexity

models is lower than for the lower complexity models with the same number of states,

as seen in the graphs of Figure 3.10. This directly affects the BIC score. The reason

for the decrease in training likelihood may be overtraining, or may be to do with

the way mixtures are split, perhaps leading to some components which are not useful

for training any data. In the training process all mixture weights are floored, so no

mixtures vanish. No errors were noticed during training, nor was any training data

ignored. Further analysis of these phenomena has not been carried out. The purpose

of these trained models within this thesis is to derive SWUs, using BIC to control the

model complexity. Since the focus is on models achieving high BIC scores, these models

with notably lower scores are not further considered.
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Figure 3.10: Training data likelihood for a subset of the ergodic models built for 1state

SWUs, showing dips in likelihood for larger numbers of mixture components.

Three-state sub-word units

The various curves of BIC scores in the graph in Figure 3.11 exhibit the expected shape

of gradually increasing and decreasing, each with a peak. Clearly the model with the

highest BIC score in this set of models has 200 units (600 states), and 20 Gaussian

mixture components per state.

Comparing units

The effect of the different model types on the number of units used to model each word

can be seen in the plots of Figure 3.12. Modelling the data with single state HMMs

leads to a system that has between 10 and 20 units per word. Modelling the data with

3state HMMs instead leads to between 4 and 9 sub-word units per word. For both

model types, the number of mixture components appears to have little effect on the

average number of units per word. However, and again this effect is seen for both model

types, as the number of units in the system is increased, so the number of units per
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Figure 3.11: Best BIC score across unit inventory size (number of 3state units) for

various numbers of mixture components per state (‘gauss’ in legend).

word increases.

The histograms in Figures 3.13 and 3.14 show the frequency of units across the training

data for the models achieving the highest BIC scores for each model type. It can be

seen that, for both the 1state and the 3state units, there is a range of frequencies, but

that each unit is used to model some of the data.

3.6 Summary

This chapter presented two methods for automatic speech segmentation and clustering

to determine a set of sub-word units. The best test of how useful these unit are for

speech recognition is by comparison of word error rates. This is not possible directly:

the recognition system needs a way of relating the units to words. This is covered in

the next chapter: dictionary generation.
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Figure 3.12: Average number of BIC units per word, as number of states increases.

Average is total number of BIC units in training data divided by total number of

words.
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Figure 3.13: Histogram of the frequency of each sub-word unit in training data for

the unit inventory achieving the highest BIC score for single state units (150 units, 30

Gaussian components per state)
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Figure 3.14: Histogram of the frequency of each sub-word unit in training data for the

unit inventory achieving the highest BIC score for 3state units (200 units, 20 Gaussian

components per state). (The x-axis is labelled to 600 due to the fact that there are 3

states per unit, and units were labelled with every third integer)
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Chapter 4

Dictionary generation

In any automatic speech recognition system, a component part is a lexicon describing

the relationship of orthographic words to the system’s underlying sub-word unit. When

the sub-word units used are phonemes or syllables, often an ‘off-the-shelf’ dictionary can

be used since the relationship between words and these linguistic units is understood.

However, when the sub-word unit is automatically derived, the dictionary must also be

derived in some way. In order for the process of unit derivation to be fully automatic,

the dictionary must also be automatically generated from the data. The input data that

is available for use in dictionary generation is two strings of labels: word transcriptions,

and sub-word unit transcriptions. There is no timing information available, so simply

aligning the unit sequences according to word boundary locations is not possible. The

fact that timing information is not required means that data preparation prior to using

this automatic process is relatively inexpensive: the word sequences can be transcribed

in almost real time by a transcriber with good typing skills. However if transcriptions

are required to also have word boundary information, the time taken to achieve the

transcriptions increases substantially.

This chapter addresses this problem of automatic dictionary generation, finding a so-

lution in joint multigrams. The chapter is organised as follows: Section 4.1 presents

methods reported in the literature for dictionary generation and pronunciation varia-

tion modelling. In Section 4.2, an intuitive, supervised method is described, the output

of which is used as a baseline for comparison to the automatic method using multi-

grams, introduced in Section 4.3. Following these theoretical sections, a recognition
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experiment using phoneme-based sub-word units is reported in Section 4.4, in which

dictionaries generated by both methods are used as part of speech recognition systems.

The word error rates reported following this phoneme-based experiment demonstrate

that the automatic method is able to generate dictionaries that are useful for speech

recognition. In fact, the results show that dictionaries generated in this automatic way

outperform those generated in a supervised way. Following this positive result, it is

with confidence that the automatic algorithm can be used as part of a sub-word unit

based system as will be seen Chapter 5.

4.1 Methods in the literature

The section on pronunciation variation modelling (section 2.2.1) reviewed a number

of ways of generating or amending dictionaries automatically to reflect variants in the

data. The purpose of these methods is to extend or amend a phone-based dictionary

by analysing data. Many of the methods require an initial dictionary, used to generate

initial acoustic models and / or phone transcriptions, before variants are found, e.g.

ten Bosch & Cremelie (2002), Yang et al. (2002), Hain (2002), Fukada et al. (1998).

In Wester et al. (1998) the initial lexicon was generated automatically using a text-

to-speech system. In Hain (2002), the quality of the initial dictionary was found to

be important. Most of the methods require word boundaries so that variants can be

collected. Word boundary information can be inferred from phonetic transcriptions in

conjunction with the dictionary if time aligned transcriptions do not exist. Similarly,

Paliwal (1990) relies on exact word boundaries, and Fukada et al. (1996) requires a

phone lexicon and transcription (see Section 2.3.1).

The requirement of one or both of an initial dictionary and word boundaries means that

the dictionary generation methods in the pronunciation variation literature cannot be

applied here.
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4.2 A semi-automatic algorithm for dictionary generation

In order to get a feel for the difficulty of the task of automatic dictionary learning,

and to get to know the data, an intuitive supervised method was used to generate a

dictionary reflecting the data. The output of this algorithm enables a comparison with

any dictionaries produced fully automatically.

A simple algorithm is introduced, described in pseudo-code Figure 4.1, to be used to

try to capture all the pronunciation variation existent in the data. Each utterance has a

word and phone transcription. For each utterance, the word transcription is expanded

word-by-word using the dictionary; these pronunciation options from the dictionary

are aligned one at a time with the phone transcription, searching for a pronunciation

which exists exactly in the phone transcription. Silences and noise are ignored. If this

cannot be done, the utterance is flagged, and a new pronunciation is manually added

to the dictionary for whichever word could not be matched in this way. This process is

continued until there are no utterances which cannot be described by the dictionary.

This is a greedy algorithm, which means that all possible phonemes are assigned to

words ‘earlier’ in the transcription of each utterance. If two consecutive words share

a phoneme, it will be associated with the first word. For example, the phoneme ‘s’ is

shared in the word sequence ‘six six’. The phoneme stream1 ‘s I kc kh s I kc kh s’

would result in two different pronunciations of ‘six’, ‘s I kc kh s’ and ‘I kc kh s’ with

the segmentation ‘s I kc kh s — I kc kh s’. This results in some short pronunciations,

which are the ‘leftover’ phonemes for the second word.

Section 4.4.2 contains details of the dictionary produced using this algorithm for OGI

Numbers data.

4.3 Multigrams, Joint Multigrams

Multigrams are probabilistic models which provide a way of determining repeated sub-

sequences in a string of symbols. The multigram model was introduced in 1995 in
1OGI Numbers is phonetically labelled using Worldbet, which is an ASCII encoding of the Interna-

tional Phonetic Alphabet, see Hieronymous (1993)
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Inputs:

- lexicon containing at least one pronunciation for each word

- speech utterances, where each utterance has a word transcription

and a phone transcription.

1. for each utterance, s:

for each word, d, in the word transcription for s:

lex(d) = the set of pronunciations of d in the lexicon

(ordered by pronunciation length, with the longest first)

for each pronunciation, p, of lex(d):

if p exactly matches the first n phones of the phone transcription

(where n is the length of p):

break

increment count for pronunciation p

if not pronunciation in lex(d) matches phone transcription:

skip any remaining words and flag utterance

2. for all flagged utterances:

manually add pronunciations to lexicon

3. Rerun steps 1 and 2 until there are no flagged utterances,

i.e. all pronunciations are in the lexicon.

Figure 4.1: Pseudo code for the semi-automatic algorithm used for dictionary genera-

tion
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two papers, Bimbot et al. (1995), Deligne & Bimbot (1995) to model sequences of

variable length within symbolic data. An input stream of symbols is broken down

into parts by multigrams to express dependencies and repetitions existing within the

stream. Under the multigram framework, the input stream is seen to be composed of

a series of multigrams, each multigram being a sub-sequence of the input. In this way,

redundancy is removed, and patterns are seen easily: the stream ababab would be more

simply expressed z1z1z1 where z1 is the multigram [ab]. The stream abadeab reduces

to the multigram sequence z1z2z1 where z2 is [ade]. Thus, multigrams compress data

by encoding it using fewer bits than the original string required.

A formal definition of multigrams is given by Deligne & Bimbot (1995):

Let D = s1; · · · ; sm denote a dictionary that contains all the sequences

which can be formed by combinations of 1, 2, · · · up to n symbols of the

language vocabulary. A n-multigram model is fully defined by a set of

parameters Θ consisting of the probability of each sequence si ∈ D :

Θ = (θi)m
i=1 (4.1)

where θi = p(si) and
∑m

i=1 θi = 1

A set of multigrams {zi} is derived by jointly maximising the likelihood of the data

and of the set {zi}:

{zi} = arg max
{zi}

L(O|{zi})L({zi}) (4.2)

For example, given a sequence

A = 1234345634,

in order to formulate multigrams, we have to find all possible sequences of A and collect

them in a dictionary D. If we only allow sequences of maximal length 3, our dictionary

contains the following:

D = {1, 2, 3, 4, 5, 6, 12, 23, 34, 45, 56, 63, 123, 234, 343, 434, 345, 456, 563, 634}

These sub-sequences of digits gain an initial probability by counting their occurrences.

These counts are normalised so the sum of all probabilities is equal to 1, and then we

have the basis of a set of multigram models.
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The fact that multigrams model variable length sequences means that multigrams are

flexible, and able to expose dependencies of variable length in the data. This flexibility

contrasts with the n-gram model where dependencies between symbols are only seen if

they are within n symbols of each other, and n must be externally specified.

Multigrams were used by de Marcken (1996) to segment a phoneme stream as part

of unsupervised language acquisition research, to demonstrate that segmentation of

language, as part of language acquisition, is possible simply through enough exposure

to the language. The multigrams he trained on the phoneme stream output by a trained

HMM-based phoneme recogniser related very well to word boundaries, i.e. to the

segmentation an adult speaker would naturally know. Cernocky (1998), investigating

automatically derived units, used multigrams to find frequently occurring sequences

of his units. He then trained acoustic models of these multigram-units instead of the

original units. The effect of this was a smaller number of units to model, with many of

the units modelling longer sequences of data than those originally found.

Joint multigrams were introduced in Deligne et al. (1995) as an extension to the multi-

grams framework. Joint multigrams have all the properties of multigrams, yet now

modelling co-sequences, variable length sub-sequences of two input streams. Joint

multigrams provide a data driven way of aligning and segmenting two inputs such

that the inputs can be expressed as a series of joint multigram models. The length

of sequences from each stream is variable (a pairing of a sequence, length n, from one

input stream with a sequence, length m, from the other), and joint multigrams are

models of repeated co-sequences across both streams.

Joint multigrams have been used by Bisani & Ney (2002, 2003) for grapheme to

phoneme conversion. A dictionary of phoneme n-grams to grapheme m-grams is created

using joint multigrams to find the relationships between the phoneme and grapheme

sequences in the data. This dictionary is applied to the task of recognition of new

words (words unseen in training data) in automatic speech recognition.

This way of modelling two streams is used in this thesis for dictionary generation. The

two input streams, the words and the sub-word units, are available, and no initial dic-

tionary exists. So joint multigrams are built on the streams, resulting in a probabilistic

dictionary.
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4.3.1 Example illustrating joint multigrams

Before the details of the joint multigrams model are explained, a simple example of how

joint multigrams can be used is presented in this section in order to give the reader

a picture of how they are going to be used. In this example, and in the experiments

that follow, the input stream of words is always segmented into individual words; se-

quences of words are not used in the joint multigrams here. (This is not necessarily a

characteristic of joint multigrams, which are able to be more general. It is instead due

to implementation constraints, as seen in Section 4.3.3 below.)

To illustrate the working of joint multigrams, consider two input streams, W and U ,

W = one seven one

U = w ^ n s E v ^ n w ^ n

Given that there are 3 words, we want to find all segmentations of U (11 units) into 3

partitions. The number of such segmentations is

(u− 1)!
(w − 1)!(u− w)!

=
10!
2!.8!

= 45

Section 4.3.3 below explains how this calculation arises. These 45 segmentations are

shown in Table 4.1. These joint segmentations give rise to 58 distinct joint multigrams

(pairings of a word with a sequence of units), 17 involving the word “one”, and 41

involving “seven”. This implies that there are 17 possible pronunciations for “one”,

and 41 for “seven” in this input data, since our interpretation of a joint multigram is

a word and a pronunciation.
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Figure 4.2: Joint multigrams example: Probabilities of the five most probable pronun-

ciations for “one” and “seven”.

one 0.667 w ^ n

seven 0.333 s E v ^ n

Table 4.2: Joint multigrams example: final dictionary with probabilities

These 58 multigrams are given an initial probability by normalising the count of the

occurrences of each. These initial probabilities were updated over 7 iterations of train-

ing using Equation 4.3, until the probabilities converge. The graphs in Figure 4.2

show the probabilities of the five most probable multigrams for each word (“one” and

“seven”), as they change over training. The correct pronunciation is quickly and clearly

distinguished from the others.

The final dictionary, with probabilities, is in Table 4.2. The segmentation receiving the

highest probability, using multigram probabilities, after training is:

one seven one

w ^ n s E v ^ n w ^ n

4.3.2 Formulation of joint multigrams

Joint multigrams are formulated as follows: Given two input streams of symbols, W

and U , a joint multigram model is fully defined by the set of co-sequence probabili-

ties {p(µi, νj)}i,j such that
∑

i,j p(µi, νj) = 1, where (µi, νj) is a co-sequence, µi is a

sequence from W and νj from U . Streams W and U are assumed to be formed by

the concatenation of two independent co-sequences (µi, νj). The dictionary D in the
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joint multigrams model is of p(µi, νj) for all i, j. The general joint multigram (µi, νj)

is referred to by z.

Multigram probabilities are calculated using an iterative maximum likelihood formula,

Equation 4.3. Initialising the probabilities of the multigrams is done by a simple count

of the appearance of each in all possible segmentations. The update equation takes

into account the number of times each multigram exists within a joint segmentation,

and favours segmentations that reuse multigrams.

p(k+1)(µi, νj) =

∑
S∈{S} c(µi, νj ;S)Lk(W,U , S)∑

S∈{S} c(S)Lk(W,U , S)
(4.3)

c(µi, νj ;S) is the number of occurrences of the co-sequence (µi, νj) in S.

c(S) =
∑

i,j c(µi, νj ;S) is the total number of co-sequences in S.

Lk(W,U , S) is the likelihood of segmentation S at the kth iteration, calculated using

the multigram probabilities from iteration k. Lk(W,U , S) =
∏

t zt for multigrams zt in

segmentation S.

An intuitive understanding of Equation 4.3 follows: There are a number of possible

joint segmentations of two input streams, as seen in the ‘one seven one’ example in

Section 4.3.1. The probability of a multigram z is dependent on how often it is seen

among these possible segmentations, and on how likely segmentations that contain it

are. The term c(z;S), the count of multigram z occurring in segmentation S, in the

numerator means that multigram z gains no probability from segmentations that don’t

contain it. On the other hand the model favours segmentations that use a multigram

repeatedly. The sum across all segmentations of the product c(z;S)Lk(W,U , S) is in a

sense “normalised” by the denominator, since the denominator takes into account the

number of multigrams present overall in each segmentation.

Given an input where the two streams are expressed as utterances, it makes sense

to compute these updates utterance-by-utterance. In this case, the update equation

becomes Equation 4.4.
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Figure 4.3: Partitioning a set into w (w = 5) subsets.

p(k+1)(µi, νj) =
1
‖U‖

∑
U

∑
S∈{SU} c(µi, νj ;S)Lk(W,U , S)∑

S∈{SU} c(S)Lk(W,U , S)

p(k+1)(z) =
1
‖U‖

∑
U

∑
S∈{SU} c(z;S)Lk(W,U , S)∑
S∈{SU} c(S)Lk(W,U , S)

(4.4)

Where U is the set of utterances, and ‖U‖ the number of utterances in the data set. S

is a possible segmentation from the set of all segmentations of utterance U , {SU}.

This update equation quickly leads to a converged solution of multigram probabilities.

4.3.3 Implementation constraints

The process of splitting the units into partitionings is a combinatorics exercise. We

are interested in partitionings of u = ‖U‖ units into w = ‖W‖ (the number of words)

partitions. Partitioning a set into w subsets is equivalent to choosing (w− 1) elements

of the set, and putting a partition after each of these elements. The wth partition is

made up of the remaining elements. This is shown simply in Figure 4.3.

The number of ways of choosing these w − 1 elements is

u−1Cw−1 =
(u− 1)!

(w − 1)!(u− w)!

The number of ways is u−1Cw−1 rather than uCw−1 since there will never be a partition

after the last element of the set, so we are searching for (w−1) places to put partitions

among (u− 1) element.

The data in Table 4.3.3, shown graphically in Figure 4.4, shows how the number of ways

of partitioning inputs quickly becomes very large as the number of words increases.
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Figure 4.4: Relationship between input number of words and units, and number of

partitions required, using equation (u−1)!
(w−1)!(u−w)! (see text).

Note that in the figure the y-axis has log scale. Storage of these is required in order

to find multigrams in the input data. The storage method I have used requires u + 2

Bytes per partition stored, i.e. (u + 2) (u−1)!
(w−1)!(u−w)!Bytes. Since this figure can easily

be calculated before processing data for a particular utterance, it is possible to skip

utterances that will create more information than there is space for. In this way, it is

easy to skip utterances that will take too much time to process, if turn around time is

important.

If we remove the constraint of always partitioning the word sequence into individual

words, the number of ways of partitioning the two inputs increases. In this case, we’re

interested in all ways of jointly segmenting two input streams into one or more co-

segments. The number of co-segmentations of a pair of input streams is given by

w∑
i=0

(w − 1)!
(i− 1)!(w − i)!

(u− 1)!
(i− 1)!(u− i)!

(4.5)

for streams of length w and u, where w < u.

In order to limit the number of segmentations found, a further parameter may be

introduced into the model. Prior to doing any segmenting of the unit sequence U , a

limit can be set specifying the maximum length of sub-sequences of this input stream.
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w u number of co-segmentations
individual words only word sequences allowed

2 5 4 5
2 20 19 20
2 35 34 35
2 50 49 50

3 5 6 15
3 20 171 210
3 35 561 630
3 50 1176 1275

4 5 4 35
4 20 969 1540
4 35 5984 7770
4 50 18424 22100

5 5 1 70
5 20 3876 8855
5 35 46376 73815
5 50 211876 292825

6 5 0 126
6 20 11628 42504
6 35 278256 575757
6 50 1906884 3162510

7 5 0 210
7 20 27132 177100
7 35 1344904 3838380
7 50 13983816 28989675

8 5 0 330
8 20 50388 657800
8 35 5379616 22481940
8 50 85900584 231917400

9 5 0 495
9 20 75582 2220075
9 35 18156204 118030185
9 50 450978066 1652411475

10 5 0 715
10 20 92378 6906900
10 35 52451256 563921995
10 50 2054455634 10648873950

Table 4.3: Number of ways of partitioning two input streams of length w and u, com-
paring figures when stream W is only segmented into individual words, and when word
sequences are allowed.
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This threshold value, v, is a variable in the final dictionary generation process, since if

it is set too low, valuable pronunciations will be lost. As v increases, the time taken

to train the multigrams increases substantially, as does the storage requirement during

processing.

There are two occasions where finding a joint segmentation is impossible in this imple-

mentation of joint multigrams, where the word sequence U is always segmented into

individual words:

1. When u < w where u = ‖U‖ is the number of units, and w = ‖W‖ is the number

of words. If there are fewer units than words, there will be at least one word

assigned to 0 units, which is not a valid joint multigram.

2. When v ∗w < u where v is the maximum sub-sequence length of the unit stream,

and u and w are defined as above. If v ∗ w is less than the number of units,

there will be units which cannot be assigned to any word due to the sub-sequence

length constraint. Thus a joint segmentation is impossible.
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4.4 Experiment: Phonetic Dictionary learnt from data

The best way to test the value of a dictionary is by comparing word error rates in

an automatic speech recognition experiment. Such an experiment has been carried

out to determine the success of the automatic method of dictionary generation, using

phonetically transcribed data and hidden Markov models (HMMs) of phones.

4.4.1 Data

These experiments were conducted using the OGI Numbers Corpus, release 1.32. The

divisions of the data are as described in the previous chapter, Section 3.5.3.

This corpus is supplied with hand transcriptions at the phone level and at the word

level. These pairings of transcriptions for each utterance are used as inputs to dictionary

generation processes.

The phone-level transcriptions of this data set are detailed, including many diacritics

to more fully describe the perceived sounds. For these experiments, all diacritics were

removed, since such a detailed labelling was unnecessary for the purpose of testing the

dictionary generation algorithms. The input to both algorithms generating dictionaries

is a simple phone sequence. The effect of this is that some pronunciations apparently

have repeated phones.

4.4.2 Dictionaries

This experiment tests the various phone-based dictionaries built using the processes

described above. Details of these dictionaries follow.

Baseline

The baseline dictionary is a hand written dictionary, written by the author, based

on knowledge of the phoneset and the language. The baseline dictionary is shown in

Table 4.4. Thirty words, each with single pronunciations, are in this dictionary. There
2http://www.cslu.ogi.edu/corpora/numbers/index.html
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is one silence word, <pau>, with null output symbol (indicated by ‘[ ]’). A null output

symbol is used simply so that this word is not scored as part of recognition results.

Semi-automatically generated

The supervised (‘semi-automatic’) algorithm described in Section 4.2 was used to gen-

erate a dictionary from the OGI Numbers corpus.

The output of the semi-automatic process is a very large dictionary with many pro-

nunciations per word, some of which are very rare in the data. The mean number

of pronunciations per word is 15.8, with a standard deviation across the 30 words of

9.97. There are 8 phone sequences shared between pairs of words. These confusions

are shown in Table 4.5.

The large number of pronunciations per word in this dictionary increase the complexity

of decoding, since there are many options available to transcribe each word. It has been

seen in pronunciation variation work, and is again proved in the experiments in this

chapter, that too much variation in the dictionary degrades recognition performance.

Therefore this dictionary is tested by reducing it using thresholds involving pronuncia-

tion probability. Three thresholds were applied with different effects. These thresholds

are listed in Table 4.6.

In each case, the final dictionary has the probabilities of included pronunciations nor-

malised for each word to ensure it is a valid probabilistic dictionary. The effect of these

thresholds on the number of pronunciations per word in each dictionary is shown in

Table 4.7. A number of the threshold values yield dictionaries that are not useable in

the recognition task, when they have no pronunciations for some words. This is seen

in the column ‘missing words’.

Automatically generated: joint multigrams

The joint multigram process described above was used to generate a dictionary using the

OGI Numbers data. The input data was the same as that for the semi-automatic process

above: word transcriptions and phonetic transcriptions, with diacritics removed. For
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<pau> [ ] .pau
eight ei tc th
eighteen ei tc th i: n
eighty ei tc th i:
eleven E l E v & n
fifteen f I f tc th i: n
fifty f I f tc th i:
five f aI v
forty f > R tc th i:
four f > R
fourteen f > R tc th i: n
hundred h ^ n dc d R ^ dc d
nine n aI n
nineteen n aI n tc th i: n
ninety n aI n tc th i:
oh oU
one w ^ n
seven s E v E n
seventeen s E v E n tc th i: n
seventy s E v E n tc th i:
six s I kc kh s
sixteen s I kc kh s tc th i: n
sixty s I kc kh s tc th i:
ten tc th E n
thirteen T 3r tc th i: n
thirty T 3r tc th i:
three T R i:
twelve tc th w E l v
twenty tc th w ^ n tc th i:
two tc th u
zero z I R oU

Table 4.4: Handwritten baseline phonetic dictionary for OGI Numbers experiment.
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words sharing pronunciation pronunciation

fifty == fifteen f I f tc th i:
ninety == nineteen n aI n tc th i:
twenty == one w ^

seventy == seventeen s E v & n th i:
sixteen == seventeen s I kc kh s th i: n
sixty == sixteen s I kc s tc th i:
three == thirty T 3r i:
three == thirty T R i:

Table 4.5: Pronunciation confusions in semi-automatically generated full dictionary

Threshold type Description

1 Top n: Include in the dictionary the top n pronunciations
for each word, ordered by pronunciation probability,
adding the most likely first.

2 Probability above p: Add to the dictionary only pronunciations
with a probability greater than threshold value p.

3 Probability sum less than s: For each word, starting with the pronunciation with
the highest probability, add pronunciations while
the cumulative probability (for that word) remains
less than or equal to threshold value s.

Table 4.6: The three thresholds used to generate various dictionaries from a large
dictionary which contains large amounts of variation
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Dictionary Pronunciations per word Missing

mean st.dev. words

Full dictionary 15.8 9.97 0

Top N 1 1.0 0.00 0

2 2.0 0.00 0

3 3.0 0.18 0

4 3.9 0.40 0

5 4.8 0.67 0

6 5.5 0.99 0

7 6.3 1.36 0

8 7.0 1.77 0

9 7.7 2.18 0

Prob > 0.001 10.6 7.07 0

0.005 7.6 5.69 0

0.010 5.2 3.09 0

0.050 2.0 1.10 0

0.100 1.5 0.62 0

0.500 1.0 0.00 5

Prob sum <= 0.50 1.0 0.00 25

0.75 1.7 0.62 18

0.80 2.4 1.27 17

0.95 4.8 4.63 7

0.97 5.7 5.46 2

0.99 8.0 6.58 0

Table 4.7: Statistics for the dictionaries generated semi-automatically.
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this joint multigram process, no extra information is available, for example pauses are

not treated differently to phones, and no timing information is used.

The full dictionary created is much larger than that of the supervised process. There

is a mean of 8539.2 pronunciations per word in this dictionary. This is due to the fact

that all co-sequences seen during training appear in the dictionary. After computing

and updating their probabilities, many of these receive a probability of zero. The same

three threshold types were then used to produce simpler dictionaries which can be used

in recognition. Table 4.8 shows some of the statistics of these generated dictionaries.

As for the supervised dictionary above, some of the thresholds produced dictionaries

with words missing, which are not useable in the recognition task.

4.4.3 Acoustic Modelling

Hidden Markov models (HMMs) were built for each of the 60 phones in the data set.

This figure includes all the vocal noises and pauses, such as “.laugh” , “.cough” and

“.pau”. The phone set is shown in Table 4.9. The HMM topology used was 3 states per

phone model. The HMMs were initialised with each state having the global mean and

variance of the training data. The training data were parameterised using MFCCs, with

deltas and double deltas, resulting in 39 dimensional data. The number of Gaussians

per state is a variable in the system and has been investigated.

The models were trained using OGI Numbers’ phonetic transcriptions, without any

time information. HTK3 was used to train this model set, using embedded training.

3http://htk.eng.cam.ac.uk/
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Dictionary Pronunciations per word Missing

mean st.dev. words

Full dictionary 8539.2 12183.86 0

Top N 1 1.0 0.00 0

2 2.0 0.15 0

3 2.9 0.34 0

4 3.8 0.59 0

5 4.7 0.90 0

6 5.5 1.23 0

7 6.4 1.57 0

8 7.2 1.92 0

9 8.0 2.26 0

Prob > 0.001 24.2 17.91 2

0.005 12.7 9.01 0

0.010 8.1 5.03 0

0.050 3.6 1.48 0

0.100 2.7 1.03 0

0.500 1.0 0.00 25

0.750 1.0 0.00 30

0.900 1.0 0.00 30

Prob sum <= 0.25 1.0 0.00 25

0.50 1.6 0.74 5

0.75 3.3 2.69 0

0.80 4.3 3.75 0

0.95 16.4 14.93 0

Table 4.8: Statistics for the joint multigram based dictionaries.
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.bn .glot .pv &r 3r d I m r u

.br .laugh .sniff @ 9r dc i: n r( U

.bs .ln .tc ^ A E j N s ux

.cough .ls .vs + aI ei kc n= T v

.ct .ns & > aU f kh oU tc w

.fp .pau &0 >i b h l pU th z

Table 4.9: Units used in OGI Numbers phone dictionaries experiment
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4.4.4 Method

Training

1. Initialise 60 phone- and noise-models with the global mean and variance of the

OGI Numbers training data. All models are 3-state HMMs with 1 Gaussian per

state.

2. Train model set for 3 iterations using embedded training and a non-time-aligned

phone transcription.

3. Extract the centre state of the pause model (‘.pau’) to create a new, single state,

model sp (‘short pause’). This is included to allow breaks between words. It is

an internal model, and as such its use or otherwise in decoding an utterance is

not output. Recognition of short pause is never included in word error rates. The

inclusion of the model significantly improves word error rates.

4. In order to have models with different numbers of Gaussian mixture components,

the single Gaussian components of these trained models are split using the HTK

recipe for ‘mixing up’. The number of Gaussians is increased in increments of

2. Three further training iterations are then carried out imbetween each ‘mixing

up’ stage. The product of this step is a set of models with various numbers of

mixture components trained on phonetic transcriptions.

5. For each dictionary, D, to be used in decoding, a realignment procedure is carried

out. This is in order to ensure that only pronunciations that are in D are in the

training data. Without this step, sub-word unit sequences that do not occur in the

dictionary may be used in training, but cannot be recognised in decoding since the

dictionary is integral to the decoding process. Realignment is necessary despite

the fact that the dictionary generation algorithms attempt to reflect the whole

of the training data, because various thresholds are used to limit the number of

pronunciations per word as listed in Table 4.6. Therefore the final dictionaries to

be tested may not be entirely reflective of the unit sequences seen in the training

data.

The realignment process, carried out using the HTK tool HVite, produces a new

transcription for the data. The process uses the training data’s word transcrip-
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tion, the dictionary, the trained models, and the acoustic training data. The

output is the most likely sub-word unit sequence given these inputs, which for

each word is the best match between one of the pronunciations of the word (from

the dictionary) and the acoustic data.

This new transcription is used to train the models a further 5 iterations, ready

for use in decoding using dictionary D. There is a large number of dictionaries

to be tested, and a large number of models (the output of the previous step is a

large set of possible models), so this step of realignment and retraining results in

many model sets to be tested.

Decoding

To test dictionary D with models with g Gaussians per state, the model set Mg
D is used.

This is the set of models trained in step 4 of the training process, using a transcription

which reflects the pronunciations in dictionary D. The decoding parameters that need

to be determined for each model set and dictionary combination are:

• Beam width: a pruning threshold can be set which removes all decoding hy-

potheses whose probability falls below this threshold value. This has the effect of

speeding up the search.

• Language model scaling factor: Also called the grammar scale factor, this is a

positive value which is used to adjust the contribution made to likelihoods during

decoding of the language model.

• Word insertion penalty: This is a value which is added to the likelihood of each

word through the decoding process, to control the number of insertions in the

recogniser output.

These parameters, particularly the final two, can have a significant effect on recognition

scores, and hence they are tuned over a held-out dataset, the validation data. Once

a peak word recognition result, in terms of word error rate, has been reached across

these variables on validation data, the values are used to generate a final score on test

data, which is previously unseen. In this way, the dictionaries can be compared.
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The grammar used in all decoding tasks is a simple word loop, where each word has

equal probability of following each other word (including itself), and there is an optional

short pause between words.

4.4.5 Results

The results of this phone-based experiment show that joint multigrams provide a good

way of generating dictionaries automatically. Table 4.10 shows word error rate (WER)

results for each dictionary type. The results reported on validation data are the maxi-

mum obtained for each dictionary over a search of the decoding space (as described in

Section 4.4.4) and model sets (number of Gaussian mixture components). The number

of mixture components is reported for each dictionary. The final column in the table

is the WER for each dictionary when tested on unseen test data.

The baseline word error rate (WER) of 8.41% on validation data is a good baseline for

monophone models: it is 0.29% better than the equivalent baseline (trained and tested

on the same data) in Mariethoz & Bengio (2004).

The results for dictionaries generated using the top n and prob > p thresholds are shown

graphically in Figure 4.5. As is easily seen in the graphs, all dictionaries generated

by joint multigrams out-perform semi-automatically generated dictionaries, comparing

threshold by threshold. All multigram-based dictionaries achieve a lower word error

rate than the baseline’s test data score. An absolute gain of 2.08% on validation data

is achieved using multigram dictionaries, which is further increased to 3.44% on test

data. This gain exceeds that achieved using the dictionaries produced in a supervised,

semi-automatic manner, where the improvements on the validation and test data are

1.42% and 2.64% respectively.

It is interesting to compare the ‘winning’ dictionaries from each dictionary generation

method. The top performing semi-automatically generated dictionary is the top 1,

and the top performing multigrams-based dictionary is the top 3. In comparing the

pronunciations of each of the words in the dictionaries, the typical case is that the

3 pronunciation in the multigrams dictionary have the same basic phone sequence

as the single semi-automatic pronunciation, with the pause label (‘.pau’) in different
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dictionary Validation data Test data
WER (%) mix comps WER (%)

hand written baseline 8.41 46 9.63

semi auto
top N 1 6.99 40 6.99

2 7.01 46 6.88
3 7.02 56 7.07
4 7.66 66 7.48
5 8.41 66 8.2
6 8.73 66 8.48

prob sum <= 0.99 8.83 76 8.56
top N 7 8.87 66 8.49

8 9.46 46 9.02
9 10.08 40 9.94

prob > 0.100 14.82 40 7.83
0.050 15.23 40 8.04
0.010 17.32 40 9.79
0.005 17.95 36 11.02
0.001 18.78 40 11.53

multigrams
top N 3 6.32 40 6.19
top N 6 6.36 70 6.43
top N 5 6.46 60 6.6
top N 2 6.56 40 6.22

prob > 0.100 6.61 40 6.49
prob > 0.050 6.61 46 6.51

top N 4 6.72 46 6.54
top N 1 6.74 50 6.76

prob sum <= 0.750 6.79 60 6.58
top N 7 7.27 56 7.16

prob sum <= 0.800 7.37 50 7.28
prob > 0.010 7.87 40 7.82

top N 8 7.87 46 7.7
top N 9 8.04 40 7.8

prob > 0.005 8.22 66 7.63
prob > 0.001 9.45 66 9.02

prob sum <= 0.950 9.78 50 9.57

Table 4.10: Word Error Rates for recognition experiments using all dictionaries.
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Figure 4.5: Word error rates for multigram and semi-auto dictionaries, compared to a

hand-written baseline dictionary. The left figure shows results for dictionaries with pro-

nunciations with probability above P, and the right dictionaries with N pronunciations

per word (Top N).

places around the phones. Table 4.11 gives an example of this typical case, and the

seven exceptions. This result implies that modelling pauses in the lexicon has a positive

effect on word recognition, which is an unexpected outcome of creating these automatic

dictionaries, where deliberately no special meaning was associated with pause (i.e.

pause was treated in the same way as phonemes in the dictionary generation process).

This may be a data-specific property, since utterances in the OGI Numbers data set

have an average of 5 words, and there are only 30 words in total in the corpus, so most,

if not all, words will appear at the beginning and the end of an utterance, hence after or

before a pause. So while we cannot conclude that pauses should always be modelled in

the lexicon in this way, we can have confidence in the reliable way that joint multigrams

produce a dictionary which reflects the data appropriately and successfully.
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Typical comparison

word multigram dict semi-auto dict

five f aI v .pau
f aI v f aI v

.pau f aI v

Phonetic variations

word multigram dict semi-auto dict

eight ei tc th .pau
ei tc ei tc th

.pau ei tc th

eighty .pau ei tc th i:
.pau ei tc d i: ei tc th i:

ei tc d i:

eleven & l E v & n .pau
.pau I l E v & n & l E v & n
.pau & l E v & n

hundred h ˆ n dc d R I dc d .pau
h ˆ n dc d R I dc d h ˆ n dc d R I dc d

h ˆ n dc d R ˆ dc d .pau

nineteen .pau n aI n tc th i: n
n aI n tc th i: n .pau aI n tc th i: n n

n aI n tc th i: n

twenty tc th w & n i:
tc th w & n i: .pau tc th w & n i:
tc th w & n tc th i:

two tc th u
tc th u .pau tc th u
.pau tc th u

Table 4.11: Comparing pronunciations in top performing multigram dictionary, top N
3, with top performing semi-automatic dictionary, top N 1. The upper table shows
the typical case, where, stripped of .pau (pause), the 3 phonetic pronunciations in the
multigram dictionary are identical to the 1 semi-automatic pronunciation. The lower
table lists all seven exceptions to this rule.
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4.5 Chapter summary

This chapter introduced the problem of automatic dictionary generation and presented

a solution using joint multigrams. The experiment using the phonetic transcriptions

of the OGI Numbers dataset showed that this method is very good: the multigram

dictionaries consistently out-performed the dictionaries created by a supervised method,

evidenced by word error rates.
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Chapter 5

Speech recognition system based

on automatically derived units

This chapter presents experimental investigations into the combination of automatically

derived SWUs and joint multigram-based dictionaries.

5.1 Generic experimental procedure

The ASR systems tested here comprise a set of acoustic models A, one for each SWU in

a unit inventory, and a dictionary relating SWUs to words. The acoustic models were

generated using the ergodic HMM procedure of Section 3.3.1, by embedded training on

all OGI numbers training data. There are S units in an acoustic model set, where theo-

retically S is chosen using BIC. Each unit is modelled by 1 or 3 HMM states, depending

on the set up of the ergodic HMM (see Section 3.5.3), and has G Gaussian mixture

components per state. The dictionary Dv
A for the model set A is generated using joint

multigrams, as described in Section 4.3. During the generation of the dictionary, there

is a constraint on the maximum length of a unit sequence (pronunciation), v. The full

dictionary is reduced using one of the thresholds n, p or s as described in Table 4.6.

These variables of the full system are listed in Table 5.1.

For an acoustic model set A and associated generated dictionary Dv
A, a recognition

experiment is carried out. Dictionary Dv
A is reduced using a threshold, generating a set
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Variables for experimentation

unit derivation - number of states per unit (single or 3 state)

- number of units (theoretically chosen by BIC)

- number of Gaussians per state in HMMs

lexicon generation - v (maximum pronunciation length, in terms of SWUs)

- dictionary reduction method and threshold

(top n, prob > p, prob sum ≤ s)

Table 5.1: Variables in the full system, based on units derived using an ergodic HMM

with BIC, and dictionaries generated using joint multigrams.

of dictionaries {Dv
A(n = 1),Dv

A(p = 0.005),Dv
A(s = 0.5)...} for various values of n, p or

s. The procedure for a recognition experiment with each dictionary is as follows:

• split the ergodic HMM into individual HMMs, one for each SWU. The model for

each SWU is either single state or 3state, depending on the original set up of the

erogdic model.

• realign: generate a transcription of the data by forced alignment using the dic-

tionary and the set of SWU models.

• retrain: use the transcription generated by realignment to further train the acous-

tic models of SWUs.

• decode: use the trained models and dictionary to decode validation data. The

same decoding variables are searched over as described in Section 4.4.4, the lan-

guage model scaling factor, word insertion penalty and beam width.

5.2 Initial results and analysis

Initial experiments were carried out using the 1state and 3state models trained on

all OGI numbers training data, as described in Chapter 3. Joint multigrams-based

dictionaries were built for a variety of these models, and tested in the standard way.

Table 5.3 shows results for model sets comprising single state units and dictionaries
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3state 80units (35g) 120units (30g) 200units (30g)

top N 1 (v10) 50.54 - 29.19
top N 2 (v10) 55.12 41.5 39.3
top N 3 (v10) 57.58 43.71 44.51
top N 4 (v10) 47.09 48.29 50.27
top N 5 (v10) 44.78 49.05 51.64
top N 6 (v10) 48.79 44.56 52.87
top N 7 (v10) 48.31 45.39 55.01
top N 8 (v10) 47.89 45.2 52.32
top N 9 (v10) 46.29 46.57 53.96

prob > 0.001000 (v10) 40.17 35.34 42.86
prob > 0.005000 (v10) 52.49 52.74 64.06

prob sum <= 0.250000 (v10) 49.71 32.11 -
prob sum <= 0.500000 (v10) 28.0 24.66 -
prob sum <= 0.750000 (v10) - 24.96 -
prob sum <= 0.800000 (v10) - 25.45 -
prob sum <= 0.950000 (v10) - 27.17 -

Table 5.2: WER results on validation data for various model sets (column headings
show number of units in model set, with number of gaussian mixture components
per state in brackets) for 3state base models and multigram dictionaries. Dictionary
parameters are shown in the first column, including v, the maximum allowed length of
unit sequences.

trained on each of the model sets. The best word error rate (WER) of 19.81% was

achieved using 200 units and a dictionary with threshold s ≤ 0.75. Table 5.2 shows

equivalent results for model sets comprising 3state HMMs for each unit. The best result

of 22.60% was achieved using 120 states and a dictionary with threshold s ≤ 0.75.

These results are more than double the phone baseline, which is extremely poor. Anal-

ysis follows to determine the causes of these results. The analysis that follows is focused

on the two models which achieve the lowest WER: for single state units, the model set

with 200 units, each with 20 Gaussian mixture components per state (model set A),

and for 3state units, the model with 120 units and 30 Gaussian mixture components

per state (model set B).
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model num utts
v10 v15

100units (30g) 615 5430
150units (30g) 422 4709
200units (10g) 141 2822
200units (20g) 157 3020
200units (30g) 180 3149
250units (20g) 174 3022

Table 5.4: Number of utterances successfully used in dictionary generation for SWU
inventories with one state per unit, out of a possible 10250.

5.2.1 Effect of dictionary generation constraint, v

The maximum allowed length of unit sequences v is externally specified in joint multi-

grams training in order to constrain the number of joint multigrams found, and to

make the search tractable. The effect of this limit is that sequences of units cannot be

considered as pronunciations, if they are longer than v. For the 1state units, the mean

number of units per word across all inventories trained is 15.3 units. For model set A,

this value is 17.7 units. Considering the fact that there are words of various lengths

in the data, longer words will be modelled by more than this figure. Since (due to

computational constraints, memory requirements in particular) the maximum value of

v tested was 15, it is unlikely that these longer words are receiving pronunciations of

appropriate lengths.

If the value of v is such that v ∗ w < u for an utterance with w words and u units,

the utterance cannot be jointly segmented (see page 68 of Section 4.3.3). Thus for

low values of v, much training data is ignored, and the resulting multigram dictionary

may contain no pronunciations for certain words. For this reason, a value of v = 10 is

too small for the 1state models. The number of utterances used to train each 1state

dictionary, out of possible 10250, is shown in Table 5.4.

For the 3state models, the mean number of units per word is 7.5 across all models, and

8.4 for model set B. Since this value is less than the value of v tested, and WER results

for these models did not improve on the 1state models, other causes for the poor results

were sought.
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Figure 5.1: For each word, the percentage of times it is correctly recognised in validation
data for single state model and dictionary achieving lowest WER (200 units, prob sum
≤ 0.75)

5.2.2 Error analysis

In analysing the word confusion matrix for the best result, insertions, substitutions

and deletions are occurring across all words. Figure 5.1 shows the percentage of each

word’s tokens in the validation set being correctly recognised, for model set A. Words

‘eighteen’ and ‘seventeen’ are never recognised correctly in this result. Both of these

words occur infrequently in the training data, and in the dictionary generation process,

most of the utterances containing them were not used, due to the effect of parameter

v discussed above. Only three utterances containing ‘seventeen’ and four containing

‘eighteen’ were used as part of multigrams training. This lack of representation in the

multigrams dictionary training will surely degrade the quality of the pronunciation of

any word, and affect its recognition.
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5.2.3 Treatment of silence

The way silence is treated is an important factor in a speech recognition system. This

was seen in the experiments of Chapter 4, where it became apparent that to achieve

a reasonable baseline one must use a pause model and allow pauses between words

as part of the language model (the way this pause model was set up is described in

Section 4.4.4). In the ergodic model training of Chapter 3 used to derive the units used

in these experiments, no information about pause locations was included. Instead, the

ergodic model was required to find SWUs for silence as well as for speech. A closer

look at what the ergodic model did suggests that silence detection may be an important

pre-cursor to SWU derivation.

Analysis was carried out by comparing the locations of pauses available in the detailed

phonetic transcriptions of OGI numbers data with the locations of the SWUs. The

first thing to note is that in both systems all SWUs are used during a pause location

at least some of the time. The plot in Figure 5.2 shows the percentage of the use of

each unit occurring within a region labelled as ’pause’ in the hand transcription. This

figure is calculated for each unit U as

occurrences of U within a pause region

total occurrences of U in transcription
∗ 100

For a good distinction between pause and speech modelling, we would expect some

number of units to be used in pause regions almost all of the time, thus modelling

pause, and the remainder of the units occurring during a pause region only rarely, as

graphically represented (with hypothetical values) by the dotted green line in Figure 5.2.

This is not seen in these model sets.

Table 5.5 shows the units occurring with a high likelihood during pause regions and

the units used in the pronunciation of pause. It is clear from these data that no clean

pause model has been learned as part of the unit inventory derivation and dictionary

generation: there is very little overlap between the two lists for either model set (6 units

for model set A, and 4 for B). We saw in the phone-based experiments of chapter 4 that

the correct pause pronunciation (‘.pau’) was learned for the pause word (‘<pau>’), so

this is not a problem with the task, and is unlikely to be a problem with the dictionary

generation process. Instead, the inconsistencies between the units used in pause and the

units used to describe the ‘pronunciation’ of pause are likely to be due to the acoustic
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Figure 5.2: Analysing how pause is modelled by each of the model sets A and B (the
models achieving the lowest WER for single state units and 3state units, respectively,
see text). The plots show the percentage of the use of each unit that occur during a
’pause’ region.
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Model A

Units 90% likely to occur 8 12 85 89 93 97
within pause region 101 111 119 123 147 151 159 163

Occurring within top 6 11 12 27 28 33 40 61 67 85 92 97
3 pause pronunciations 101 123 128 129 137 147 151 155 169 192

Model B

Units 90% likely to occur 26 44 65 71 83 122 158 188 233 236 275 293
within pause region 311 317 338 344

Occurring within top 5 53 101 107 143 158 215 266 293
3 pause pronunciations 308 317

Table 5.5: Analysis of the modelling of pause regions for model sets A and B. The
percentage occurrences of U within a pause region

total occurrences of U in transcription
∗ 100 was calculated for each unit; those

units occurring within a pause region with a frequency of > 90% are listed here. The
units used in the top three pronunciations of the word <pau> are listed for comparison.

modelling. It would appear that expecting an ergodic HMM to discriminate between

speech and silence without any prior on the difference between the two acoustic spaces

is too difficult a task.

5.3 Modelling silence

In order to test the hypothesis that the poor initial results are due - at least in part -

to the modelling of silence, new acoustic models were trained, given information about

silence locations.

5.3.1 Silence experiment 1

In silence experiment 1, two models were trained: a 3 state pause model (as in the

phone-based experiment in Section 4.4.4), and an ergodic model constructed as before

(Section 3.3.1), resulting in a SWU inventory. The transcription used to train the two

models preserved the locations of the ‘.pau’ unit from the hand transcriptions, and

compressed all other units to a single label. The ergodic model was then trained using

embedded training on all the data except pause regions, and the pause model on pause

regions.

Recognition results for these new unit inventories does not improve on the original
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models, with a best WER for 1state units of 20.55% for SWU inventory of 160 units

(with 30 Gaussian mixture components per state) (referred to in analysis as model set

C) tested with a dictionary with threshold p > 0.001. The best result for 3state units

is 27.71% WER for SWU inventory of 40 units (with 35 Gaussian mixture components

per state) (referred to as model set D) tested with a dictionary with threshold n = 7.

Analysis of the treatment of silence regions for these model sets exposes similar be-

haviours as noticed in the original models. For the unit inventory with 160 units and

1 state per unit (model C), the pause model is used only 12% of the total time hand-

labelled as pause. The remaining 88% is modelled by all of the units at least some of

the time, with 12 units (including ‘.pau’) occurring during a pause region more with a

frequency of more than 90% (calculated as above, for each unit U as

occurrences of U within a pause region

total occurrences of U in transcription
∗ 100

). This is a similar distribution to the original models. This is typical of the 1state

models trained as part of silence experiment 1.

Regarding the pause unit, ‘.pau’, 98% of its use occurs during a pause region, suggesting

that it is a good model for some of the acoustic space of silence - it is not getting

confused with speech - but it does not account for much of the silence (12%).

The freedom of the ergodic model compared to the pause model must account for this

behaviour. The ergodic model has many more states and transitions than the pause

model, and so is able to consume large amounts of the silence space. The training pro-

cedure (embedded training) only ensures that the sequences of pause and speech found

in the transcriptions are respected, not the locations of the boundaries. Boundaries

are adjusted according to the maximum likelihood objective of HMM training: clearly

many of the states of the ergodic model become better models of silence than the pause

model. This in itself is not a problem; the problem is the lack of distinction for most

of the states between whether they are modelling speech or silence, as discussed in

Section 5.2.3 . Again, if the distribution of modelling of the speech / silence acoustics

by states was as the green dotted line in Figure 5.2, these models would be expected

to perform much better.
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5.3.2 Silence experiment 2

A further experiment was carried out to determine finally whether the units derived

using an ergodic HMM can be modelled by joint multigrams to provide a system achiev-

ing good error rates. To avoid these issues with modelling silence, silence regions were

eliminated, and regions of data containing only speech were used for training. The

procedure to train and use these ‘speech only’ ergodic models was as follows:

• Take the time aligned phonetic hand transcriptions available with the corpus, and

map all noise words on to a single unit, ‘.pau’ and all speech sounds to a single

unit

• Chop the waveform of each utterance to extract regions containing only speech,

and parameterise each speech waveform as 39 dimensional MFCCs

• Follow the standard training process of Section 3.3.1 to train various sets of

automatically derived 1state- or 3state-units and transcribe the data in terms of

the units

• Generate multigram dictionaries for all words in the training data. Append to

the dictionary the transcription ‘.pau’ for each noise word and pause.

• Use the model set and the pause model trained for the phone model experiment

(including ‘sp’ - short pause, the centre state of the pause model - optionally

between words) to do word recognition, in the standard way as described in

Section 4.4.4. Realignment using the dictionary is only carried out on speech

data: the only models realigned are the sub-word units, not the pause model.

The plots of BIC scores following this training configuration are seen in Figures 5.3

and 5.4. These curves clearly follow the expected shape of a BIC curve, with maximal

scores at 200 units for 1state SWUs, and 120 units for 3state SWUs.

The values of the BIC scores for models trained on speech data alone is higher than

for those trained using all training data, as can be seen by comparing the graphs in

Figures 3.9 and 3.11 with those in Figures 5.3 and 5.4, noting the scales on the y-axis.

This is directly due to the higher training likelihood of the models trained on speech
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Figure 5.3: Best BIC score for ergodic model trained only on speech (silence exper-
iment 2), across model size (number of 1state units) for various numbers of mixture
components per state (‘gauss’ in legend).
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Figure 5.5: Average number of BIC units per word, as number of states increases, for
models trained in silence experiment 2.

only. This higher likelihood is indicative of the comparative homogeneous nature of

the data contained in speech-only regions, compared to data across both speech and

silence regions.

The average number of units per word for each of the model types are shown in Fig-

ure 5.5.

Results

The recognition experiments using these speech-only models and dictionaries generated

from them yielded a much improved WER of 11.07% (11.18% on test data), for 1state

SWUs from a unit inventory of size 200units. Table 5.6 shows WER results for all

generated dictionaries on validation data. It is seen that a number of the models

and related dictionaries achieve improved scores compared to all earlier results. This

demonstrates the importance of careful modelling of silence.

The best WER of 11.07% was achieved using a SWU of 200 units, each unit being

modelled by single state HMMs with 20 Gaussian mixture components per state. The

dictionary generated from this SWU achieving this best score was generated using the

threshold n = 1, i.e. the dictionary contains the most likely single pronunciation for

each word. While this WER is a large improvement on the scores reported for other

model sets in this thesis, it is still worse than the phonetic baseline of 9.63% (this

baseline is for monophone models and a handwritten dictionary, see Section 4.4). This
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1state (silence exp 2) 80units 120units 200units 240units
(40g) (30g) (20g) (20g)

top N 1 (v15) 18.71 13.32 11.07 24.59
top N 2 (v15) - 15.54 11.9 21.89
top N 3 (v15) 20.6 23.91 15.01 -
top N 4 (v15) 19.68 19.28 16.73 20.4
top N 5 (v15) 22.26 22.02 16.55 22.05
top N 6 (v15) - 22.39 17.26 21.83
top N 7 (v15) - 24.01 - 21.65
top N 8 (v15) - 24.86 - 21.7
top N 9 (v15) 22.84 25.39 - 19.6

prob > 0.001 (v15) 27.17 38.28 28.48 29.91
prob > 0.005 (v15) 29.56 36.54 25.85 -
prob > 0.010 (v15) - 28.75 22.81 -

prob sum <= 0.75 (v15) 20.92 29.73 - -
prob sum <= 0.80 (v15) 20.75 27.17 - -
prob sum <= 0.95 (v15) 20.61 21.77 - -

Table 5.6: WER results on validation data for various model sets (column headings
show number of units in model set, with number of gaussian mixture components
per state in brackets) for 1state (silence experiment 2) base models and multigram
dictionaries. Dictionary parameters are shown in the first column, including v, the
maximum allowed length of unit sequences.
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Figure 5.6: The correlation between the number of tokens of each word and the recog-
nition rate of the word (for model and dictionary achieving the lowest WER). The left
plot shows the total amount of training data (used for the SWU generation), and the
right the amount of training data used in dictionary generation.

is likely to be due in part to the problem of data-sparsity when generating the dictionary

automatically, caused by the dictionary threshold v as noted in Section 5.2.2 for the

initial experimental results.

The number of training tokens of each word in the data appears to play a significant

role in the recognition rates of words. The data in Table 5.7 shows the percent correct

scores for each word for the ‘winning’ model set (200 SWUs, each with 20 Gaussian

mixture components per state) and dictionary (threshold n = 1). Some of these scores

are poor, notably ‘seventeen’ and ‘fourteen’, recognised correctly 0% and 4.5% of the

time, respectively. These two words occur in the training data infrequently. The first

graph in Figure 5.6 shows the relationship between the percent correct scores and the

number of training tokens of each word in the training data. It is clear from this plot

that there is a high correlation between the amount of training data for each word and

the word’s recognition rates. Since the dictionary generation process does not use every

utterance, it is possible that pronunciations are learnt for some words based on smaller

amounts of data. The second plot in Figure 5.6 shows the relationship between the

percent correct scores and the number of training tokens of each word used to train

the dictionary. This graph exhibits a slightly different shape, showing some words were

correctly recognised a high proportion of the time without a lot of training data. This

distinction implies that there is a higher dependency on the amount of training data

available for acoustic modelling than on the amount used to generate pronunciations.
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word percent correct num training tokens num training tokens
used in dict. gen

seventeen 0.00 60 55
fourteen 4.50 58 55
seventy 13.50 128 92
sixteen 14.30 74 66
nineteen 38.50 162 84
eighteen 46.70 72 58
fifty 48.10 209 140
twelve 50.00 89 59
ninety 52.20 216 76
fifteen 56.70 70 58
sixty 57.10 133 104
forty 62.40 319 159
eighty 62.50 154 38
eleven 65.80 111 76
ten 71.90 130 51
thirty 83.00 436 107
thirteen 84.00 67 56
eight 86.00 3480 309
four 89.10 4158 1009
hundred 90.00 172 110
oh 90.80 3158 156
twenty 92.00 565 360
nine 93.10 4631 968
zero 94.50 2484 585
one 96.00 5722 1131
seven 96.10 4760 2173
three 96.30 4344 769
two 97.00 5567 927
five 97.50 4056 1164
six 98.20 3732 1472

Table 5.7: Analysis of results for model and dictionary achieving the lowest WER in
silence experiment 2 (200units, 1state per unit, dictionary threshold n = 1). For each
word, the percent correct scores are shown, along with the number of training tokens
of each word in the full training data set, and the number of training tokens of each
word used in the dictionary generation.
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5.4 Summary

Directly combining the SWU inventories of Chapter 3 with joint multigram dictionar-

ies did not lead to promising results. Investigating the modelling of silence among the

SWUs showed there was a lack of distinction between speech and silence modelling.

Most SWUs were being used to model both speech and silence, and those SWUs mod-

elling silence with a high likelihood were not reflected in the ‘pronunciation’ of pause

in the learned dictionary.

Revising the training method to include a 3-state pause model to train on the regions

transcribed as pause, with the same ergodic HMM training on speech gave no im-

provement. The same inconsistencies were seen: in the embedded training process the

boundaries between pause and speech regions were significantly altered, with the pause

model only accounting for 12% of the pause regions, and most of the SWUs occurring

during a pause region some of the time.

Finally, forcing the ergodic model to only generate SWUs for speech was achieved

through cutting each utterance at speech / silence boundaries and training the ergodic

HMM on speech only. This process led to a much improved WER of 11% for single

state SWUs.
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Chapter 6

Conclusions

6.1 Thesis summary and conclusions

The investigations described in this thesis result in a method for the automatic de-

termination of sub-word units for use in automatic speech recognition. In particular,

solutions to the following questions were presented:

• how many SWUs should the unit inventory have?

• how should the acoustic data be segmented to give the data for each SWU, and

clustered to allow modelling of each SWU?

• what type of acoustic model should be used, and how can the acoustic models

and the unit inventory size be jointly optimised?

• how are the SWUs related to words, or how are words pronounced in terms of

the SWUs?

All solutions are automatic and data-driven.

6.1.1 Dictionary generation

The method presented for automatic dictionary generation involves joint multigrams.

Joint multigrams (JMs) are co-segmentations of sequences of data from two data

streams. Co-segmentations receive a probability according to how often they occur
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in the data. This framework can be directly applied to streams of words and SWUs,

with the product being a probabilistic dictionary. There is no dependence in using this

method on linguistic knowledge, including word boundaries. No initial dictionary is

required.

Phone based dictionaries

Experiments using JM dictionary generation to automatically discover phonetic pro-

nunciations from hand transcribed data confirm that JMs expressed as a probabilistic

dictionary can be useful for ASR. In these experiments (see Section 4.4), a JM-based

dictionary, generated fully automatically, achieved a lower WER than a canonical dic-

tionary baseline (6.19%, improving on 9.63%). These results were also compared to

dictionaries generated from the data in a supervised manner, and the JM based dic-

tionary also outperformed these (the lowest WER achieved by a supervised dictionary

was 6.88%).

The WER results of this phone-based experiment confirm again what has been con-

cluded from pronunciation variation research: as the number of pronunciations in the

dictionary increases, the accuracy of recognition decreases. This is easily seen in the

graphs of Figure 4.5 on page 81.

Impact of parameter v on dictionary generation

A full set of joint multigrams is initialised by finding all co-segmentations of two data

streams. In practice, this search must be constrained in some way, since the number

of all pairings of all possible segmentations of two streams gets very large very quickly

as the length of the streams increases (see Equation 4.5 on page 66). Instead, the

maximum number of units in a sub-sequence of each of the streams is externally defined

prior to JM initialisation, to make the search feasible. In experiments reported in this

thesis, the word stream is always segmented into individual words, i.e. the maximum

length of sub-sequences of words is 1. The maximum length of sub-sequences of units is

a variable, v. The value of v can have a significant impact on the dictionaries generated.

If v is too small, co-segmentations may be impossible for some utterances: precisely if

the product of v and the number of words is less than the number of units in an utterance
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(see page 68). This can lead to words in the dictionary receiving no pronunciation, and

rendering the dictionary useless. This is not encountered using phonetic data, with

v = 10. However, for many of the SWU inventories generated, 10 or even 15 was not

enough to ensure coverage. If v is too large, the computational cost in terms of time

and memory requirements can make the process infeasible or impossible. Experiments

in this thesis use a maximal value of v = 15 due to the computational constraint.

6.1.2 Automatically generated SWUs

A sub-word unit generation method was presented in which an ergodic HMM is trained

using available training data, and the individual states of the HMM are defined to be the

SWUs representing the data. This method is simple, data-driven and automatic. The

process requires no information other than the parameterised acoustic data, and initial

HMM topology (number of states, and number of mixture components per state). It is

desirable that the number and complexity of SWUs is derived automatically. For this,

the Bayesian information criterion (BIC) is employed. BIC scores are calculated for

trained ergodic HMMs with different numbers of states and various numbers of mixture

components per state, and the model(s) achieving maximal BIC scores are assumed to

be optimally modelling the data.

The number of HMM states per sub-word unit was either 1 or 3. To derive SWUs

with 1 state per unit, a straightforward erogdic HMM was trained. To derive SWUs

with 3 states per units, some of the transitions of an ergodic HMM are disallowed,

leading to an HMM topology as shown simply in Figure 3.8 on page 47. This variation

was introduced to mimic the typical topology used for phone modelling: one 3-state

left-to-right HMM for each phone.

SWU inventories derived in this way cover the data with a near-uniform distribution:

no single unit models a large proportion of the data, and all units model some data.

6.1.3 Combining the two methods

The combination of the two methods provides a SWU inventory, model set, transcrip-

tion of the data in terms of SWUs, and a probabilistic dictionary relating words to
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SWUs. The dictionary generated for a particular SWU inventory contains entries for

all possible co-segmentation of training utterances, and must be reduced to be useful.

Reduction is carried out according to one of three thresholds, n, p or s as listed in

Table 4.6 on page 72.

The importance of careful silence modelling

Recognition results following this combination of procedures were initially poor, with

best WERs of 19.81% and 24.66% on validation data for the 1state and 3state models

respectively. The reason for this unexpectedly poor outcome was hypothesised to be

due to the indiscriminant treatment of silence by the ergodic HMM. It was noticed

that the states of the HMM used to model silence were also used to model speech in

most cases, whereas it is expected that less overlap is necessary for good modelling of

either acoustic space. Further, the pronunciations generated for the pause word in the

automatically generated dictionaries do not closely reflect the units that model pause

frequently.

Training two models, one for speech (ergodic HMM as before) and one for silence (3-

state model, as for phone-based experiments) did not improve on these results. The

models were trained using embedded training, and it was seen that states of the ergodic

model were still being used to model regions of silence, so the distinction between speech

and silence models was still not clear.

Finally, to ensure that the ergodic HMM (and thus the SWUs) is modelling only speech,

the speech portion of each utterance was cut out of the waveform, and only that data

used to train the ergodic HMM and dictionary. A pause model trained for the phone-

based experiment was added to the SWU inventory in order to carry out recognition.

This procedure achieved a much improved WER of 11.18% (on test data) for single

state SWUs.

This result shows that an important pre-requisite in generating SWUs automatically

using an erogdic HMM is some silence detection, such that the SWUs focus on modelling

speech. This requirement is implicit in most of the existing SWU generation methods,

since word boundaries are used in the procedures, thus allowing the modelling to ignore

silence. The system of Singh et al. (2002) does not require word boundaries, but no
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mention of the treatment of silence is included in the paper.

Potential system weaknesses

The combination of the two methods does not yet outperform phones (11.18% WER

compared to 9.63% for phones on test data). Some possible reasons for this follow:

• The search for units and pronunciations is unconstrained. Perhaps some tighter

constraints to limit the number of pronunciations per word are necessary to

achieve better pronunciation modelling. Examples of such constraints are seen in

the procedure of Bacchiani (1999).

• Word sequences are not included in the acoustic model training. Word sequences

are of course vital in the dictionary generation phase; not using them as part of

the SWU generation is a loss of a potential information source. Including this

information into the SWU generation is not necessarily straightforward, however.

• The constraint on the maximum number of units per word used in dictionary

generation (parameter v) is not included in the search for SWUs. This mismatch

means that in many cases, dictionaries generated are missing words, due to the

joint multigrams process being unable to use utterances containing those words,

for the specific reasons noted in Section 4.3.3. This is discussed in Section 5.2.1.

6.2 Discussion

Returning to the higher level research aims, we now consider what new understanding

has been obtained through this thesis.

Firstly, how feasible is it to do ASR in this way? This thesis shows that it

is possible to do ASR based on automatically derived sub-word units. A full system

can be trained and used for recognition based on automatically derived units. The

task chosen to demonstrate this is a small vocabulary continuous speech corpus. Is

it feasible to do ASR using this method on large vocabulary tasks? It is not possible

to assess from these experiments how feasible large vocabulary ASR might be using

this system design. There is nothing theoretically limiting in the processes to mean

105



that large vocabulary ASR is impossible. Unit derivation using ergodic HMMs needs

careful initialisation as the number of states increases so that each state becomes a unit

modelling some proportion of the data. This is possible just by taking data points as

the initial means for each state.1 Training of the ergodic HMM takes more time as

the number of states increases, as may be necessary for data with more variety, but

the extra time required is not restrictive. The dictionary generation process requires

a large amount of disk space, increasing as the number of words in the vocabulary

increases. While JMs are not theoretically limited by the amount of data in either

stream, in practical terms this may be a constraining issue in changing the task to

large vocabulary.

How well does it work? As we have seen, this automatically derived unit inven-

tory and dictionary do not achieve an improved word recognition rate compared to a

standard phone-based system. However, the initial data requirements of the ASWU

system are fewer and involve a lot less knowledge. A phone-based system includes a

large amount of acquired linguistic knowledge in the pronunciation dictionary and/or

phonetic transcriptions. The approach taken in this thesis requires only a word tran-

scription along with the acoustic data, and correctly recognises 4 out of 5 words using

only this information. When including silence detection, 9 out of 10 words are correctly

recognised. What can we learn about phone-based systems from this? What does lin-

guistic knowledge add to the ASR system? There are two factors that are present in the

phone-based system which are lacking in the SWU system which are likely to account

for the difference in performance between the two.

1. Word identity is used during training in a phone-based system, not just phone

identity.

In a phone-based system, there is discrimination between words from the outset:

the dictionary is known to contain different pronunciations for words that are

different. The acoustic model training should reflect this, such that different words

are generated by different sequences of acoustic models. In this ASWU generation

process there is no equivalent objective explicit in the training: nothing about the

way the units are found guarantee discrimination between words. Given that this

is fundamental in speech recognition, it is interesting that without using word
1See Section 3.5.3 on page 48 for comments on ergodic HMM initialisation.
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information it is possible to correctly recognise nearly 9 out of 10 words.

2. Co-incidence of word bounds and sub-word unit bounds is ensured in a phone-

based system, by design.

As well as the explicit discrimination between words that is in a phone-based

system, there is also a (implicit or explicit) knowledge of word boundaries. The

existance of a dictionary prior to training implicitly defines where word boundaries

are. Phonetic transcriptions or pronunciations also ensure that the sub-word unit

boundaries coincide with word boundaries. Again, there is no equivalent feature

in the automatic unit derivation process.

It is important to note that these factors do not relate to phones, but to words. It

is not possible to conclude that the sub-word unit choice of phones is the significant

factor in the system performance. It is likely that a constraint disallowing identical

pronunciations for different words, and the use of information about word boundaries

would result in better recognition rates in the automatic system. If this were tested

by including word boundaries into the SWU generation process, and the rates were to

increase, we could conclude that the knowledge of word bounds is significant to the

performance of phone-based systems. This is different to concluding that the use of

phones is the best choice for ASR.

Many of the strengths and weaknesses of using automatically derived sub-word

units have been discussed already. To summarise, the main strengths of the approach

of this thesis are

• The process is data driven, allowing different data to be represented by different

SWU inventories easily

• There are few pre-processing or initialisation requirements

• It is portable to new languages easily, without requiring linguistic knowledge in

the new language

The main weaknesses are

• The cost of dictionary generation in terms of time and compute power
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• Words which are seen infrequently in training are poorly recognised (see Sec-

tion 5.2.2)

6.3 Directions for future work

• Match the constraint on the number of units in a pronunciation, v, with the SWU

generation process, to avoid having to reject utterances in dictionary generation

as described in Section 4.3.3. This could be achieved using a duration constraint

on the HMM states (minimum duration) which is calculated on-the-fly according

to the length of a given utterance and the number of words it has.

• Investigate the use of these automatically determined units for other tasks. The

requisites of only acoustic data and word transcriptions (with some silence de-

tection / silence boundaries) mean that the processes developed here can easily

be ported to other domains and languages, without the need for linguistic knowl-

edge of the target language, or detailed transcriptions. Experiments testing these

methods on data in other languages is an interesting avenue for future work.

• Allow inclusion of multi-words in dictionary. Strik & Cucchiarini (1999) notes

that modelling within-word and cross-word variation is likely to be necessary

to improve recognition of spontaneous speech. The pronunciation modelling in-

vestigation of Kessens et al. (1999) and Sloboda & Waibel (1996) indicate this

outcome. Allowing multi-words is a way of introducing a slightly higher linguistic

structure to the pronunciation modelling. The multigrams framework is easily

adapted to allow multi-words: all that is required is the relaxation of the con-

straint that the word sequence is always segmented into individual words. In

deMarcken’s use of multigrams for dictionary generation (de Marcken (1996) ),

word sequences were allowed, and multi-word entries were automatically discov-

ered, such as ‘national football league’ and ‘goldman sacks’, which are likely to be

spoken ‘as one word’. This amendment to the process is unlikely to yield much

gain on the OGI numbers task, since the data just contains 30 words, without

many common word sequences. However, on a large vocabulary task, the inclu-

sion of multi-words is likely to have a significant impact on performance, due to

the high frequency of certain phrases in natural speech.
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• Allow longer pronunciations in the dictionary. The dictionaries used for the initial

experiments, with 1state HMMs per ‘BIC-unit’ were generated using between 27%

and 53% of the training data. Other utterances could not be used due to the effect

of the constraint on unit sequence length v. (See Section 5.2.1.) Since at best

only half of the training data was used, there will is likely to be a discrepancy

between the dictionary and the acoustic models. Obviously there is a realignment

so the transcription matches the dictionary, but some of the potential modelling

power of the unconstrained unit derivation is likely to have been lost. Extending

the maximal allowed pronunciation length was not carried out in this thesis due

to computational constraints. The memory requirements in the initialisation of

joint multigrams in my implementation tended to exceed availability when the

constraint on the unit sequence lengths was relaxed. With more efficient coding

and storage, these experiments would be possible: the constraints are not inherent

within the joint multigrams framework.

• Investigate the use of multigrams for predicting pronunciations in terms of SWUs

for words not present in the training data. The multigrams framework has been

successfully used for grapheme to phoneme conversion in Bisani & Ney (2002,

2003). Theoretically the multigrams framework allows this directly: alongside

the modelling of the pronunciation of words by SWUs using joint multigrams,

pronunciations of letters and groups of letters could be modelled. So the JM

dictionary generation process would carry out two parallel tasks, one for learn-

ing frequently occurring sequences for whole words, and the other for learning

frequently occurring sequences for letters.

• Investigate reducing the computational cost of JM training. The largest expense

is in the initialisation of the dictionary, where every co-sequence of words and

pronunciations is collected and counted. This process gives the initial probabilities

(normalised counts) for each word-pronunciation pairing. Before these initial

counts exist, it is not possible to prune pronunciations, since there is no criteria for

doing so; every co-sequence seen in the training data must be stored somewhere.

In these experiments with OGI Numbers data it became necessary to use hard

disk space along with virtual memory for storage, as the memory requirements

became too large. The initialisation process then must repeatedly access these
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stored data, costing more time. As compute power continues to increase, these

problems will decrease. However, a more efficient representation of the word and

unit pairs would aid the reduction of the computational cost of training.
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