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Abstract

Human languages are not static entities. Linguistic conventions, whose social and communica-
tive meaning are understood by all members of a speech community, are gradually altered or
replaced, whether by changing their forms, meanings, or by the loss of or introduction of al-
together new distinctions. How do large speech communities go about re-negotiating arbitrary
associations in the absence of centralised coordination?

This thesis first provides an overview of the plethora of explanations that have been given for
language change. Approaching language change in a quantitative and evolutionary framework,
mathematical and computational modelling is put forward as a tool to investigate and compare
these different accounts and their purported underlying mechanisms in a rigorous fashion.

The central part of the thesis investigates a relatively recent addition to the pool of mecha-
nisms that have been proposed to influence language change: 1 will compare previous accounts
with a momentum-based selection account of language change, a replicator-neutral model where
the popularity of a variant is modulated by its momentum, i.e. its change in frequency of use in
the recent past. I will discuss results from a multi-agent model which show that the dynamics
of a trend-amplifying mechanism like this are characteristic of language change, in particular
by exhibiting spontaneously generated s-shaped transitions. I will also discuss several empirical
predictions made by a momentum-based selection account which contrast with those that can
be derived from other accounts of language change.

Going beyond theoretical arguments for the role of trends in language change, I will go on
to present fieldwork data of speakers’ awareness of ongoing syntactic changes in the Shetland
dialect of Scots. Data collected using a novel questionnaire methodology show that individuals
possess explicit knowledge about the direction as well as current progression of ongoing changes,
even for grammatical structures which are very low in frequency. These results complement
previous experimental evidence which showed that individuals both possess and make use of
implicit knowledge about age-dependent usage differences during ongoing sound changes.

Echoing the literature on evolutionary approaches to language change, the final part of the
thesis stresses the importance of explicitly situating different pressures either in the domain
of the innovation of new or else the selection of existing variants. Based on a modification
of the Wright-Fisher model from population genetics, I will argue that trend-amplification
selection mechanisms provide predictions that neatly match empirical facts, both in terms of
the diachronic dynamics of language change, as well as in terms of the synchronic distribution

of linguistic traits that we find in the world.






Lay Summary

The languages that we humans speak are constantly undergoing change. Words, sounds, phrases
and complex grammatical patterns fall in and out of fashion, with some of them staying in use
for centuries, others only for a matter of months. The explanations for these changes which are
put forward by laypeople and those by professional linguists are sometimes surprisingly similar,
from talk about ‘lazy’ articulation leading to eroded pronunciation to the fact that changes
are often driven by young speakers as an act of demarcating their linguistic identity. What is
common to most explanations of this kind is that they are typically ‘just so’ stories: accounts
of specific historical changes that are come up with after the fact. This approach to ‘explaining’
changes fails to take into account a fundamental feature of language change, namely that it can
under most circumstances not be predicted.

In this thesis I argue for a framework that can explain why language changes cannot be
predicted, while also accounting for the fact that the types of changes that do occur are very
similar all over the globe. To do this, I follow an evolutionary approach to language change
which assumes two separate mechanisms: the first governs the creation or innovation of new
linguistic forms, such as new words or pronunciations, while the second mechanism is responsible
for the selection of these new forms which help them spread through a language.

Focussing on the second step of selection, I first study the dynamics of a mathematical model
of trend amplification. The model shows how the usage of different language forms changes over
time given two simple assumptions: firstly, that people can track changes in the popularity of
linguistic forms that are used around them, and secondly that individuals prefer to use forms
which they think are gaining in popularity. Under these assumptions, we find that the model
predicts occasional changes in usage similar to what we find in real world language change, but
with no way to predict when exactly those changes are going to occur.

Next, I present fieldwork data collected through a linguistic questionnaire filled out by
inhabitants of the Shetland Islands, found to the North of Scotland. The data shows that its
speakers are aware of changes in the frequency of word order patterns that are currently going
on in the dialect of Scots spoken in their community.

Finally, I study a modification of a mathematical model from population biology that com-
bines the trend-based selection mechanism with innovation pressures that favour one linguistic
form over the other. While it is still not possible to predict the occurrence of particular changes,
the model shows that we can see the effects of the underlying preferences for specific forms, as

long as we track the occurrence of changes over long periods of time.
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“Language moves down time in a

current of its own making.”

(Sapir, 1921, p.160)






Chapter 1

Introduction



2 CHAPTER 1. INTRODUCTION

he fact that human languages appear to have an inherent propensity
to undergo change is well-known to linguists and observant laypeople
alike. But while much quantative data on the unfolding and spread of
individual changes has been collected over the past two centuries, the
underlying mechanisms by which new conventions arise and spread

within individual speech communities, as well as how the micro-level

are still not fully understood. Even though changes of a similar kind
do appear to re-occur across both related and unrelated languages and language families, and
general tendencies in how languages are organised can be found all across the globe, the spo-
radic and haphazard occurrence of changes leads to the diversification of languages rather than
convergence.

One fundamental question regarding language change is why it occurs at all: linguistic
conventions draw their power from the fact that they are shared — both actively used and
passively understood — by a group of speakers. While the initial emergence of a communication
system and the introduction of new meaningful distinctions into an existing one can be of
advantage to its users, most instances of language change do not entail such straightforward
improvements, but rather exhibit circular patterns that leave the languages as expressive as
before the change. Negotiating the replacement of one working convention by another entails
some effort for a speech community for no clear functional-communicative gain. The fact that
languages do undergo change, in combination with what is known about the very directed nature
with which linguistic innovations spread through speech communities have led to a number of
theories, ‘explanations’ and ‘accounts’ of language change.

The first central task of this thesis is to give an overview of the many different accounts
of and approaches to language change that have been proposed in the literature. Although
these different accounts make reference to many different ‘factors’, ‘pressures’ and ‘biases’ that
are thought to be ‘shaping’, ‘driving’ or ‘influencing’ the spread of novel linguistic variants at
the expense of existing conventions, I will argue that many seemingly different approaches are
conceptually very similar in that they all rely on a presumed asymmetry between the variants
in competition. Much work on language change has focussed on identifying asymmetries, pri-
marily by gathering empirical evidence showing that not all linguistic conventions are equally
preferred and that not all language changes are equally likely, both based on the analysis of
historical changes in communities as well as the experimental testing of preferences in individ-
uals. But the relative influence of the many different pressures identified and particularly the
inconsistencies with which those pressures apply or don’t apply at specific points in time is
often left unaccounted for.

The fundamental problem is that, although language changes appear to go down the same
paths over and over again, changes are not predictable in any strong sense. While many of the
identified asymmetries embody strong universal constraints on language change, for example
by identifying unidirectional patterns of change, conclusions are mostly limited to specifying
on the macro-level whether a general type of change is more or less likely to happen to one

language than another, relative to other changes. The question of why a particular change



occurs at all; why it does so exactly when it does (as opposed to earlier, later, or not at all), as
well as how the underlying pressures give rise to the micro-level patterns of its diffusion cannot
easily be explained through universal asymmetries. For decades, linguists have been struggling
to bridge the disconnect between the idiosyncracies of individual language changes that result
in the vast linguistic variation we see in the world today, and the fact that language changes
across the world tend to follow similar trajectories. While it is possible to identify a pool of
possible changes that a language is likely to undergo, languages appear to have some arbitrary
choices over which of those path to go down, and at what point.

In order to address this problem, this thesis takes an explicit evolutionary approach to
language change as change by replication of concrete linguistic conventions. In line with Croft
(2000) T will argue that both the micro- and macro-level dynamics of language change can be
explained by separating out pressures that are responsible for the innovation of new linguistic
variants, which are in some part universal, from the pressures that drive the selection of specific
variants at certain points in time. While there is ample empirical evidence for the functional
pressures behind the innovation of new variants, the exact nature of the mechanism underlying
the selection of variants out of the pool of innovations remains unclear.

The main proposal of this thesis is that the detection and amplification of trends in language
use by individuals constitutes a concrete mechanism which can account for the second step, the
occasional and seemingly arbitrary selection of new linguistic conventions. The thesis will make
use of different tools, in particular computational modelling and sociolinguistic fieldwork on the
perception of language changes in the individual, to argue that trend amplification is not only
a viable candidate for explaining crucial aspects of the dynamics of language change, but that
it naturally complements the many functional and communicative pressures which are known
to influence language change.

Rather than simply contribute another model of language change to an existing pool of
explanations, this thesis is equally concerned with the bigger question of how the task of ‘ex-
plaining’ or accounting for language change(s) is thought about in the scientific literature. In
particular, I will argue that if it is not possible to predict the occurrence of specific changes,
a complete theory of language change should not just limit itself to capturing the more or less
predictable aspects of language change, but also provide an account of just why language change
1s unpredictable. The desire for an account of language change which predicts the unpredictabil-
ity of changes might seem strange at first, but it does not imply that ‘anything goes’: as I will
show based on a model combining the asymmetric innovation of variants with the symmetric
selection mechanism based on the amplification of linguistic trends, a theory that leaves the
temporal prediction of changes at the idiosyncratic micro-level underspecified can nevertheless

allow for concrete, testable predictions at the macro-level.

Outline of the thesis

The remainder of this thesis is structured as follows: Chapter 2 provides an overview of the
vast literature on language change. It covers both the nature of language change as well as the
history of how language change has been studied up until the present day.

Chapter 3 is dedicated to the topic of mathematical and computational models of language



4 CHAPTER 1. INTRODUCTION

change. It offers a critical perspective on the subject of modelling, before presenting in-depth
replications of two existing models of language change: the Utterance Selection Model on one
hand, and a Markov chain model of Bayesian Iterated Learning on the other.

Chapter 4 presents a novel model of trend amplification as an as of yet understudied factor
in language change. Here I augment the Utterance Selection Model with a mechanism for
momentum-based selection, a model of trend detection and amplification in the individual that
was originally proposed to account for cycles in cultural change more generally. Based on multi-
agent modelling I will argue that a mechanism like momentum-based selection can account for
the spontaneous and sporadic nature of the actuation of language change.

Having explored the theoretical dynamics of momentum-based selection, Chapter 5 sets out
to contribute to ongoing quantitative research into individuals’ awareness of ongoing changes
in their community. Beyond anecdotal data, evidence to this end is currently limited to a
few experimental studies on the use of implicit knowledge of sound changes during speech
perception. This chapter provides further evidence by testing individuals’ explicit knowledge
about the direction and progress of three related changes to low frequency syntactic variables
in the Shetland dialect of Scots.

Chapter 6 takes a step back to look at the bigger picture of the many pressures and biases
that have been attested (or at least posited) to influence language change. Using a basic math-
ematical model from population genetics and augmenting it with a simple trend-amplification
mechanism, I will show how the interaction between asymmetric, functionally-driven innovation
pressures and a symmetric selection bias like momentum-based selection can account for both
the micro- and macro-level dynamics of language change that we observe empirically.

Finally, Chapter 7 provides a summary, recapitulating the main arguments as well as point-
ing to potential future work, in particular relating to new research questions raised by the

thesis.
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2.1 Defining language change

Most language users, whether they speak or sign, are aware of the variation found in language.
While linguistic communication is a central (if not defining) part of what makes us human, if
we look at specific conventions such as sounds, words or grammatical patterns, we find vast
variation in the different accents, dialects and languages within a community, across a country,
or across the entire globe (Evans, 2009).

The same variation has not always existed, nor did it come about through abrupt divine
intervention, as the tale of the tower of Babel would suggest. Rather, linguistic diversity is the
result of small incremental changes to a community’s linguistic system which slowly accumulate
over time, first within speakers, then across generations, until eventually descendants of the
same linguistic community speak a variety that would be unintelligible to speakers from a few
generations earlier.

Language itself is a multi-layered phenomenon which can be approached and characterised
in many different ways. While there is no single definition of what exactly language is that
even a fraction of linguistic researchers would agree on, for the purposes of this thesis it will
suffice to define language as the collection of learned, conventional behaviours that members
of a given speech community use to directly communicate with each other. In its most general
sense, language change then is any change to the makeup or distribution of this collection of
conventions, as well as significant changes in their usage frequencies.

Linguistic conventions can be characterised at several levels of analysis, and languages un-
dergo change at virtually all levels of description: the inventory of physical articulation gestures
that form the basis of linguistic communication can change, whether by slightly altering the pro-
duction of existing gestures in a gradual fashion (phonetic change), replacing or dropping them
from the articulatory inventory (phonological changes such as merger and splits), or through
the introduction of new gestures and distinctions altogether (phonologisation). On the level
of meaningful signs, i.e. associations between articulation patterns and specific communicative
functions, both sides of the association can undergo change, with a form becoming associated
to a different meaning, or otherwise the same meaning coming to be expressed using a dif-
ferent form. Going beyond simple meaningful associations, the morphosyntactic patterns in
which a language augments or combines lexical items, such as word order patterns or complex
inflectional paradigms, can change as well.

While most humans are to some degree aware of the changes going on in their communities
on many of these levels without the need for scientific measuring devices of any kind (Labov,
2001; Tagliamonte, 2012), the systematic study of language changes has yielded not just many
different approaches to capturing and describing changes, but also many theories as to how the
simple fact that languages undergo change at all should be explained. The main purpose of the
present chapter is to argue for the relevance of the evolutionary framework of language change
adopted by this thesis, which will be presented in Section 2.5. But in order to get a better
understanding of the motivation behind the approach as well as the underlying phenomenon,
it is worthwhile to have a closer look at the history of both theorical and empirical work on

language change.
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2.2 Explaining language change

Like any empirical science, linguistics (historical linguistics in particular) is not just concerned
with describing natural social phenomena. The goal of scientific enquiry is to gather insights
into how the phenomena at hand can be explained or accounted for, typically by making
plausible claims as to their underlying mechanisms and testing falsifiable predictions made by
those accounts against empirical data. Given the breadth of ways in which language changes
there is a substantial amount of literature on the topic, much of which is concerned with both
the documentation or description of language changes, as well as with providing ezplanations
for the changes at hand. In this section, I will attempt to provide a structured, historical
overview of the main strands of thinking about how language change is explained. While
much has been written about the scientific status of different types of ‘explanations’ in the
epistemological sense (see especially Lass 1980; McMahon 1994 and Newmeyer 1998, ch.3), I
want to draw particular attention to how different approaches to language change and different
types of evidence lead to divergent priorities and no consensus on how (and at what level)

language change can or should be explained.

2.2.1 Early accounts

While descriptions of languages (in the sense of grammars) are already attested in early antiq-
uity, documentation relating to language changes are far more recent (see Jespersen, 1922, ch.I).
In the absence of recordings from earlier stages of a language or a written record of any reason-
able time depth, early linguists had little to work with that would have allowed for a systematic
study of language change. What was required to start investigations in any meaningful way
was to make the inference that dialectal variation that can be observed for many languages was
really a matter of variation that first occurred temporally through local change, and which had
then diffused across geographical space at different rates and in different directions (Chambers
and Trudgill, 1998).

While several earlier sources show that many disconnected scholars inferred this based on
their study of ancient languages like Greek, Roman and Sanskrit (Jespersen, 1922, ch.IT), the
insight is today often credited to the orientalist Sir William Jones (1799), mainly due to the
impact his particular publication had on the quickly expanding field of Indo-European studies.
The diverse varieties of the then still to be established Indo-European language family, which
covered (and still covers) almost the entirety of Europe’s linguistic landscape, were already
thoroughly documented at the time, forming a perfect testbed for the emergent methodology
of linguistic reconstruction.

As soon as historical linguistics had moved from describing superficial similarities between
lexical items or morphosyntactic constructions to positing concrete sound correspondences
based on the idea of the regularity of sound changes (Paul, 1880), the first theories attempt-
ing to explain the correspondences, or rather the changes presumed to have led to the later
correspondences, arose. Before the idea that all languages served some universal functions and

therefore had to obey particular constraints had taken hold within linguistics, the first such ac-
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counts were primarily characterised by creative psychological or even intentionalistic reasoning
behind changes (see also Ross and Durie, 1996, p.14). A particular example is Grimm (1848)’s
attempt to explain the Germanic consonant shift, a regular sound change describing a change
in the articulation of the stop consonants reconstructed for Proto-Indo-European which posits

staged processes of de-aspiration, devoicing and spiration:

By no means do I want to claim that this change occurred without any disadvan-
tage, in some sense sound shifting appears to be barbarism which other, quieter
people abstained from, but this has to do with the immense advancements and de-
sire of freedom of the Germans ..they ventured into the innermost sounds of their
language (p.417, own translation)

From such fanciful ad-hoc accounts which were merely limited by the creative abilities of the
linguistic researcher, explanations moved to the somewhat more accountable domain of phys-
iological factors. Trying to account for the High German consonant shift, Grimm finds that
“experience teaches us that mountain air makes sounds sharp and rough, where the flat land
makes them soft and dull” (ibid, p.828), leading to a theory that traced the sound shift back
to the increased expiration that befell the High German tribes as they settled in mountain-
ous regions. As more and more descriptions and evidence for similar changes across different
languages began to accumulate, linguists started appealing to even more general, mechanistic
explanations. With the field still very much focussed on sound changes but before the advent of
reliable tools for acoustic analysis and therefore reliant on what could be gathered from written

records, Jespersen (1922) contemplated that

at one moment, for some reason or other, in a particular mood, in order to lend
authority or distinction to our words, we may happen to lower the jaw a little more,
or to thrust the tongue a little more forward than usual, or inversely, under the
influence of fatigue or laziness, or to sneer at someone else, or because we have a
cigar or potato in our mouth, the movements of the jaw or of the tongue may fall
short of what they usually are. We have all the while a sort of conception of an
average pronunciation, of a normal degree of opening or of protrusion, which we aim
at, but it is nothing very fixed, and the only measure at our disposal is that we are
or are not understood. (p.166)

While the particular depiction of what might today be thought of as underspecification
or coarticulation effects is rather baroque, the quote exemplifies a general trend in the field
to abandon particular explanations for particular changes in favour of more general linguistic
pressures that apply across languages (see also Bloomfield, 1933, ch.21). This period gave rise
to what is probably the biggest framework for explaining changes whose legacy extends well

into the present day, in what can be referred to as language-internal accounts of change.

2.2.2 Language-internal accounts

The defining feature of language-internal accounts of change is that they explain the occurrence
of changes based on an asymmetry between the language states before and after the change
that is internal to the linguistic system and its acquisition. While there is no strict definition

of exactly what makes an account language-internal, one finds several attempts to delineate
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the approach in the literature, e.g. that “specific changes are thought to be internally caused
when there is no evidence for external causation, i.e. for language contact” (Luraghi, 2010,
p.366). While the matter of distinguishing ‘internal’ from ‘external’ causation is far from simple
when investigated in detail, we find similar definitions across the literature, e.g. handbook def-
initions of internal change as “[aJny change which can be traced to structural considerations in
a language and which is independent of sociolinguistic factors can be classified as internally-
motivated” (Hickey, 2012, p.388). These accounts generally differ from earlier accounts by
not attempting to ground language changes in non-linguistic features of their specific speaker
groups, nor in other external inter-individual or political dynamics that form the basis of social
accounts to be discussed below.

In terms of the scientific treatment of language change, language-internal accounts signified
a transition from the study of particular changes to that of general, universal principles of
change. This move was primarily supported by the methodology of and results obtained from
the systematic study of sound changes. On one hand, the success of the new dogma of the
exceptionlessness of sound changes indicated that language change was not completely erratic,
but followed rule-like patterns. In terms of scientific thinking about language change, this
suggested that it might be possible to discover the underlying mechanical principles of change,
which would turn linguistics from a historical social science to one of more or less deterministic
explanation like in the physical sciences (Sapir, 1929).

The idea that it should be possible to move beyond the mere post-hoc description of changes
to their prediction was not just due to the theoretical framework behind linguistic reconstruc-
tion, but also due to the empirical results obtained from the method. The systematic documen-
tation of sound changes across many languages and language families revealed unidirectional
developments, the catalogisation of which forms part and parcel of any historical linguistics
textbook to this today (see e.g. Campbell, 2013). A prime example are changes in the reali-
sation of phonemes which were copiously attested in one direction, but hardly the other, such
as the frequent frication of voiceless stops, as opposed to the more unusual stopping of frica-
tives. While the identification of these universal asymmetries was perceived as an improvement
over the earlier ad-hoc accounts of individual changes, the lack of a well-defined framework for
describing languages meant that researchers were left with plenty explanatory leeway in their
classification of individual changes, so as to account for them as an instance of some universal
tendency.

In a recursive manner, the observation of general trends or constraints on the direction of
changes gave rise to the postulation of general principles which were then invoked to explain
the very changes they were derived from (Lass, 1980; Haspelmath, 2006). While this approach
certainly helped to identify paths that sound changes were unlikely to go down, it allowed the
occurrence of any individual change to be ‘explained’ by picking from a broad inventory of
possible or ‘likely’ changes that even included ones going in opposite directions, for example
the processes of phonetic assimiliation and dissimilation, both of which would be considered
‘natural’ developments.

While the comparatively ‘simple’ matter of sound change was often maintained to be due to

the gradual accumulation of errors in pronunciation already hinted at above (see e.g. Hockett,
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1958, for a textbook account of the general principle), the rising interest in syntax during the
advent of generativism also resulted in more precise theories of how syntactic changes unfold over
time. While syntax constituted an arguably more complex domain of inquiry than phonetics
or phonology, the basic idea of change as a matter of mislearning, i.e. failing to acquire the
‘correct’ target convention from ones linguistic environment, was transferred from sound to
morphosyntactic changes (Salmons and Honeybone, 2013). The main difference between the
fields was that, with its underlying assumption of an idealised language capacity and particular
focus on the language acquisition device, generativist explanations sought mislearning mainly in
children’s acquisition of a language’s syntactic rules. Given the purpose-specific nature of said
acquisition device, child-based language change was largely explained to be due to changes in
the ‘primary linguistic data’ from which the device is meant to derive a language’s underlying
grammar.

The relative ease with which categorical morphosyntactic changes could be described also
gave rise to a large body of quantitative work related to grammatical parameter setting (Light-
foot, 1991) with concrete claims about its reliance on specific learning cues in linguistic data (Gib-
son and Wexler, 1994). In contrast to earlier work on sound changes which still struggled with
the lack of precise quantitative description of its subject matter, the exact description of specific
cases of syntactic change as well as concrete postulated thresholds for the amount of external
data required to correctly acquire their underlying grammars led to specific models that were
meant to recapitulate specific historical changes, e.g. Yang (2002).

It is interesting to note how the ‘success’ or correctness of an explanation of language change
is evaluated in language-internal accounts of particular changes, as opposed to those oriented
towards the identification of general pressures mentioned above. Given that the causal triggering
of the change is framed to be internal to the language, rather than due to some arbitrary
external, historical factor, the particular language changes under investigation are more or less
explicitly framed as inevitable, rather than accidental. Whether the asymmetry is based on
universal articulation biases or on changes to the learning data (in particular the frequency
of use of morphosyntactic constructions or lexical items, which are for some reason also often
regarded as inevitable language-internal facts), an account (and especially a quantitative model)
of a specific change would be considered ‘wrong’ if it failed to predict the occurrence of the
change.

The fact that there are many models that ‘successfully’ predict the occurence of particular
changes anticipates a criticism of language-internal accounts that will be elaborated on later,
namely that it is always possible to find some asymmetry between the competing language states
that biases acquisition towards the later stage of the language. Although language-internal ac-
counts appear to be in principle falsifiable, the fact that the methodology is geared towards
the identification of successful particular explanations is not merely a theoretical concern (Lass,
1980): the vast majority of published accounts aimed at identifying specific language-internal
causes or triggers for a change do so ‘successfully’ in the sense of correctly predicting partic-
ular historical changes (e.g. Troutman et al., 2008; Ritt and Baumann, 2012; van Trijp, 2013,
among many others). While there are also publications which consider unsuccessful, i.e. his-

torically unattested (competitor) models (e.g. Sonderegger and Niyogi, 2010) or those which
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also consider a model successful even if it underdetermines the direction of changes to some
degree (e.g. Lau, 2016) these are the exception rather than the rule. The construction of quan-
titative language-internal models of specific changes provides a precise account of the supposed
underlying mechanisms responsible for those particular changes, but it offers no generalisability
beyond that one historical event.

Alongside the generative work focussed on explaining grammatical change as internal to
syntax, cross-linguistic typological approaches to language change gave rise to an explanatory
framework similar to that used in sound change. In parallel to the directional tendencies that
had been revealed to guide sound changes, the study of grammaticalisation suggested a similar
pattern where closed-group, bound grammatical morphemes can be traced back to formerly
independent lexical items with specific referential content (Hopper and Traugott, 1993). In
contrast, barely any examples of the development of (bound) grammatical morphemes becom-
ing standalone lexical items can be found across the world’s languages (English ‘ish’ being
one of the rare exceptions). This apparent irreversibility of grammaticalisation (Haspelmath,
2004) lent support to a new set of universal asymmetries due to the unidirectionality of both
semantic and phonetic erosion that is thought to guide morphosyntactic changes. The eternal
cycle of wear of morphosyntactic material and consequent need for replenishment suggested by
grammaticalisation theory also fit neatly with the universal circular nature of language changes
suggested by more descriptive level work by typologists (Hodge, 1970).

The various approaches to language change mentioned so far come from very different camps
of linguistic thinking and cover very different aspects of language change. However, the emerg-
ing unifying principle of language-internal explanations is the conceptually similar approach of
accounting for changes in a mechanistic way due to them being based on some inherent asym-
metry, either between competing linguistic variants, or between the language state before and
after the change. The underlying assumption of all explanations so far is that the acquisition or
use of the original language state is prone to lead to the accidental acquisition or realisation of
the target state. Exactly how this asymmetry is framed depends mostly on the particular the-
oretical approach taken, ranging from talk about pressures (e.g. Nedergaard Thomsen, 2006),
a nod towards deterministic explanation in the natural sciences, over motivations (MacWhin-
ney et al., 2014) and preferences (Fedzechkina et al., 2016) in psychologically-grounded work,
all the way to biases, the latter term used both generally as well as in reference to learning
and inference frameworks in particular. Putting forward such a mechanistic language-internal
account for a particular historical change often implies that that change was in some sense
inevitable, an approach to explaining — in the sense of deterministically predicting — the occur-
rence of specific changes that is still most widespread today in the domain of morphosyntactic
changes (Lightfoot, 2010).

Simiarly, in the study of sound change mechanistic error-based accounts continue to be
popular (see e.g. Garrett and Johnson, 2013, who make specific reference to the importance of
asymmetries between phonetic variants to explain change), now encompassing not just phonetic
changes but also exhibiting an increasing interest in how phonologisation of formerly non-
segmental features gives rise to novel phonemic contrasts (e.g. Kirby, 2013).

While providing insight into the ways and trajectories in which languages change, language-
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internal accounts have long been criticised for underspecifying when changes occur, a conceptual
and scientific issue that has come to be known to historical linguists as the actuation problem.
But before turning to the actuation problem, I will turn to language-internal accounts’ bigger
and bolder modern sibling, based on the characterisation of language as a complex adaptive

system.

2.2.3 Competing pressures and language as a complex adaptive system

The turn towards novel research methods and quest for generalisations across languages has seen
the rise of a new research moniker that frames language as a complex adaptive system (LCAS
for short, see e.g. Steels, 1998, 2000; Smith, 2003; Situngkir, 2004). This general term provides a
catchy name for a wide range of branches of linguistic research which do not necessarily share a
common methodology or evaluation criteria. Rather, it covers approaches within specific fields
that acknowledge the important role of competing factors from a variety of sources (cognitive,
physical or social) while stressing the fact that languages are continuously adapting based on
the needs and requirements of everyday language use in interaction (Beckner et al., 2009).
Just as the transition from early ad-hoc accounts to more theoretically motivated language-
internal explanations was gradual, there is also no clear divide between the LCAS approach
and language-internal accounts, many of which also developed an interest in the intricate inter-
acting factors and competing motivations at play in language change (Vachek, 1962; Berg, 1998;
Nedergaard Thomsen, 2006; Wedel, 2009; MacWhinney et al., 2014). Crucially, when it comes
to the study of language change as a natural outcome of language’s continuous adaptation, the
approach shares with language-internal accounts that its focus is explicitly on the wuniversal
patterns and direction of change (Beckner et al., 2009, p.4-5).

Rather than representing a tight methodological framework, LCAS also stands for an open-
ness towards novel and experimental tools to further our understanding of language use and
change, in particular approaches that go beyond explanations that could be based on mere
‘arm chair reasoning’. In order to get to grips with the kinds of dynamics implied by the word
‘complex’, mathematical and particularly computational modelling have become a popular tool
to investigate emerging and evolving communication systems. Since the entirety of Chapter 3
is dedicated to both the topic of modelling in general as well as replications of some specific
models, I will for now focus on the results obtained from empirical research that is thought to

speak to the adaptive nature of linguistic changes.

Inferring universal pressures from cross-linguistic data

While diachronically-minded linguists have long been grouping and categorising similar changes
to uncover general trends in the paths taken by language change, typologists have arrived at a
similar point but from the opposite direction. Based on comparative work on the synchronic
distribution of linguistic features such as Greenberg (1963), the preponderance of individual
features (or co-occurrence of features) was taken as evidence for some sort of adaptive advantage
to those features or feature constellations (Haspelmath, 2008).

In line with LCAS principles, the adaptive pressures are assumed to be associated with
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language use, which would over time influence the development of languages and consequent
distribution of grammatical properties across the world. One contrast between such typological
approaches and traditional language-internal accounts is the assumed specificity of the pressures
that are thought to steer language change. While language-internal accounts often refer to lin-
guistic concepts and mechanisms that are theory- or language-specific, typological work is based
on more descriptive measures that lend themselves to cross-linguistic comparison (Haspelmath,
2010).

Rather than embodying a simple, qualitative asymmetry between specific competing vari-
ants, typological pressures are typically described in quantitative terms. For example, Zipf
(1935, 1949) popularised (and sought to explain) the finding that, across many languages, the
frequency of a word is inversely proportional to its rank in the frequency table of all words of
that language. Having such a distribution is indicative of some sort of optimisation since, if
more frequently used words are shorter, the average length of signalling decreases overall. While
it has since been shown experimentally that individuals will preferentially produce abbreviated
forms when it is more effective in information-theoretic terms (Mahowald et al., 2013; Kanwal
et al., 2017), a bias for the selective propagation of changes towards such advantageous forms
through larger speech communities has not been demonstrated yet.

An early example of a general, quantative pressure whose effect was postulated to affect lan-
guage change directly is that of a phoneme’s functional load (Martinet, 1955). The phoneme,
typically defined to be the largest non-meaning-bearing unit of linguistic analysis, gains its
function as a linguistic category by providing meaning distinctions at the higher level of combi-
natorially created meaningful signals, or morphemes. In this way, a phoneme owes its existence
to linguistic items at a higher level of organisation which allow it to stand in contrast to other
phonemes, typically in the form of lexical minimal pairs. In the absence of any such minimal
pairs, upholding a phonemic contrast is inefficient in the sense that it would move the lexi-
con away from being a productive system built on re-using a limited set of signals towards an
unstructured inventory of individual holistic lexical items, with as many distinct articulation
gestures in the language as there are morphemes (Spike et al., 2016). In practice, however, it is
possible to find several minimal pairs for most pairs of phonemes in any given human language.
Combining this observation with studies of the reorganisation of sound systems, especially the
merger or contrast loss of formerly distinct phonemes, led Martinet (1955) to propose that a
phoneme’s functional load, i.e. the amount of contrastive function it performs at the level of
the lexicon, would have an influence on whether or not it would be maintained as a contrastive
element relative to other phonemes. The concept fits well under the modern LCAS umbrella,
seeing as it describes a delicate trade-off between competing pressures of reducing the number
of distinct signals maintained by a language against the pressure of keeping distinct phonemes
to allow combinatorial signalling to occur at all. While the direct link between number of
minimal pairs and contrast maintenance has since seen confirmation based on population-level
diachronic data (Wedel et al., 2013), the question of whether the observed pattern satisfies some
externally-optimal equilibrium or whether it is simply based on the peculiarities of individual
human phonemic acquisition still needs to be addressed (Spike, 2016).

More recently, theories speaking to the efficient organisation of language have also taken a
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firm hold in thinking about linguistic structures and inventories at other levels. Based on the
functional typology work referred to above, the availability of large-scale syntactic corpora has
allowed quantitative investigations into the syntactic organisation of languages based on actual
usage data, rather than abstract principles of syntactic description. In particular, studies of the
average syntactic dependency length of data for various languages, which is taken as a measure
of an utterance’s processing complexity, have revealed that many of the correlations between
constituency orders for different syntactic constructions can be explained based on simple pref-
erences or biases towards efficient processing (Futrell et al., 2015) or language ‘utility’ (Jaeger
and Tily, 2010).

While the pressures investigated in all these approaches are typically motivated by general
cognitive principles at the level of the individual, most of the evidence for their existence
is gathered at the very macro-level, often from cross-linguistic data, where those biases are
thought to have expressed themselves over time. The question of whether (and how) individual
biases become manifest in languages on the inter-individual population level is itself a non-trivial
question (Kirby, 1999). The necessity to go beyond macro-level descriptive data to address this
question has long been recognised, and given rise to an experimental framework in the LCAS

spirit, known as iterated learning.

Universal pressures and the Iterated Learning Model

As the name suggests, the Iterated Learning Model (ILM for short) actually started off as
a computational model, primarily to investigate the question of innate biases related to the
compositionality of human languages (Kirby, 2000; Brighton, 2002; Kirby, 2002). Counter the
idea of a strongly innate language capacity that had been dominating most thinking about
morphosyntax since Chomsky’s ‘poverty of the stimulus’ argument, these first computational
efforts at modelling the emergence of languages suggested that weak, domain-general biases in
the individual were enough to yield strong linguistic universals at the population level when
learning and production were iterated, i.e. repeated over generations of learners (Kirby et al.,
2004).

While the iterated learning paradigm has undergone gradual transformation in its scope
and goals since these early models (to the point of encompassing any and all experiments or
models of repeated communication according to some definitions, see Scott-Phillips and Kirby
2010, Box 3), one aspect that still features strongly in most of the model’s incarnations is the
bottleneck. The original conception of the role of the bottleneck was that limiting the amount
of data learners received would force them to generalise from the limited data they received,
causing linguistic signalling systems to become more structured through repeated production
and learning. The effectiveness of the bottleneck was first shown in computational simulations to
lead to the emergence of compositionality (Kirby, 2000) as well as recursion (Kirby, 2002), and
its role in triggering the emergence of compositionality was later confirmed experimentally with
human participants in controlled laboratory experiments (e.g. Kirby et al., 2008; Cornish et al.,
2009; Smith and Wonnacott, 2010). The same effect was also taken to show that, in contrast
to the assumptions of strongly nativist theories of language, subtle biases in the individual can

give rise to strong universal patterns when the learning and production of linguistic systems is
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iterated (Kirby, 1999).

This latter idea has undergone implicit generalisation to other biases not necessarily directly
related to language structure, at the latest with Kirby et al. (2004) who reframed the acquisition
by individual learners as a Bayesian inference process. In the Bayesian framework, the task of
a learner is to infer which of the possible grammars h out of a given grammar hypothesis space
underlie the linguistic data d that they observe in learning. To do so rationally, the learner

computes the posterior probability of all possible languages (hypotheses) given the learning data,

p(d|h) - p(h)
p(d)

The Bayesian learning framework, which has come to dominate much thinking about sym-

p(hld) = (2.1)

bolic cognitive science in the past few decades, offered a natural grounding for iterated learning.
It suggested a direct correspondence between the aforementioned ‘biases’, previously defined as
“everything that the learner brings to the task independent of the data” (Kirby et al., 2004,
p.590), to the prior probabilities p(h) of the competing hypotheses in Bayesian inference. In
this sense, biases could be made explicit simply by skewing the prior probability distribution
over all hypotheses away from a uniform distribution corresponding to no a priori preference
for any particular language. (It should be noted that, just in terms of asymmetries between
competing languages, a bias towards specific hypotheses h can also be introduced by adjusting
the different hypotheses’ data production structures p(d|h).)

Combining several such Bayesian learners in an iterated learning chain would mean providing
the first learner with some input data d from which they first try to infer the underlying
hypothesis by computing their posterior distribution p(h|d). The learner would then become
a ‘teacher’ by producing some of their own data d, either based directly on their posterior,
or from a specific hypothesis chosen based on the posterior, passing this data on to the next
learner and so forth.

Based on interpreting such chains of Bayesian learners as a stochastic Markov model (a
modelling approach that will be discussed in-depth in Section 3.4.1), it is possible to analytically
derive the expected probability of observing any of the different hypotheses at a given point
in time. Griffiths and Kalish (2007) provided a mathematical proof that a chain’s probability
of exhibiting a hypothesis in this Bayesian inference-based version of the Iterated Learning
Model (BILM) should be identical to the prior distribution p(h), a finding which seems to run
counter the empirical evidence which showed an amplification of prior biases. Kirby et al. (2007)
reconciled the two results by showing that, when learners adopt more deterministic strategies
of selecting a hypothesis from the posterior such as choosing the hypothesis with the highest
posterior probability, this will lead prior biases to become exaggerated as learning is iterated,
especially when there are only small amounts of learning data available. While the question of
which hypothesis selection strategy should be used can in theory be derived from experimental
results for specific learning tasks, there is still no conclusive evidence on the matter (Reali and
Griffiths, 2009; Ferdinand, 2015).

The iterated learning paradigm offers an individual-level complement to the macro-level

analyses based on cross-linguistic data discussed above, and suggests a way in which the two
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levels of individual biases and typological distributions can be linked directly (Kirby, 1999;
Kirby et al., 2008). However, especially due to their origin in studies of the emergence of
linguistic systems from scratch, iterated learning models are based on small population sizes,
typically pairs of individuals arranged in chains or dyads, who have to learn from very lim-
ited and highly variable data in which learning biases are thought to express themselves most
strongly (Fedzechkina, 2014). As such, there are still two missing intermediate links between
the two levels, namely the synchronic diffusion of traits through larger populations that al-
ready possess an established communication system, as well as their consequent spread through
diachrony (ibid, p.26). While the role of individual biases on the latter has received support
through studies such as Wedel et al. (2013), what is known about the spread of new linguistic
variants at the micro-level of the population appears to be at odds with the idea of a straight-
forward expression of individual biases across all levels, as I will argue below.

Before I turn to a critique of adaptationist accounts based on universal pressures, however, it
is also necessary to acknowledge another branch of research situated within the LCAS paradigm
dedicated to uncovering the effects of general but not quite universal pressures, and their impact

on language and language change.

Adaptation to environmental pressures

Due to its general nature, the LCAS moniker does not just cover the study of universal pressures
associated with the iterated learning model, but also the investigation of non-universal (yet still
generalisable) pressures and how they affect otherwise unrelated languages and language families
in similar ways. With the advent of large-scale databases on languages such as the World Atlas
of Language Structures (WALS Online, 2013), statistical studies have identified correlational
relationships between linguistic structures and non-universal external, non-linguistic factors —
whether biological or environmental (Ladd et al., 2015).

Among the first and still thoroughly established results of this kind is Dediu and Ladd’s
finding that the distribution of tonal languages in the world shows an unexpectedly large degree
of overlap with the geographical distribution of two genes related to brain size (Dediu and
Ladd, 2007). The authors posit that there might be a causal link between the two, with the
existence of a certain biological substrate biasing language acquisition or processing towards
certain language structures, in this case ones incorporating tone, a bias that would become
exacerbated through iterated cultural transmission.

Many other suggestive correlational patterns have since joined this result, with the purported
causality going either from environmental and social factors triggering changes or adaptations
in linguistic structures (Hay and Bauer, 2007; Lupyan and Dale, 2010), or conversely from
linguistic features to other social behaviours (Chen, 2013). While the lack of concrete evidence
for such effects beyond the stating of statistical macro-level correlations has received much
criticism, it has also been argued to be an opportunity for both deriving and testing concrete
mechanisms by which social and other external factors influence linguistic structure (Roberts
and Winters, 2012; Nettle, 2012; Roberts and Winters, 2013). Specific claims as to how social
scale can affect structural complexity indirectly, for example by changing the degree of input

variability that individual learners receive (Wray and Grace, 2007), have only just begun to be
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tested experimentally, lending no consistent support to any of the hypotheses that have been
proposed so far (Atkinson et al., 2015; Atkinson, 2016).

With this newest branch of research on factors that are believed to be driving language
change we come to the end of one long, more or less continuous arc of approaches that seek
the source of language change in general, mechanistic pressures that are thought to be acting
on languages at all times. Winding back to the early days of language-internal accounts I
will discuss a criticism that has long been hauled at general explanations of language change
and that is equally applicable to their modern, adaptively-minded incarnations: the actuation

problem.

2.2.4 The actuation problem & sporadic language change

Returning to an earlier period of linguistic study, the advent of structuralism that is typically
associated with the publication of Saussure’s Cours de linguistique générale (1916) reset the
focus from establishing historical relationships to the description of individual languages for
their own sake. Where in 19th century linguistics research diachronic concerns still played a
central role, the systematic identification of the various functions served by synchronic language
structures under the new paradigm cast additional doubts on why languages should change at
all:

the more linguists became impressed with the existence of structure of language,
and the more they bolstered this observation with deductive arguments about the
functional advantages of structure, the more mysterious became the transition of a
language from state to state. After all, if a language has to be structured in order
to function efficiently, how do people continue to talk while the language changes,
that is, while it passes through periods of lessened systematicity? (Weinreich et al.,
1968, p.100)

The criticism embodied by the actuation problem is mainly directed at language-internal
accounts, or any other account that attempts to explain changes through inherent asymmetries
between competing variants. While the move from the (over-)explanation of particular language
changes to their framing in the light of universal pressures that allow generalisation meant
progress on the question of why or in which direction languages change, the approach was said

to create “the opposite problem — of explaining why language fails to change.” (p.112).

Why do changes in a structural feature take place in a particular language at a given
time, but not in other languages with the same feature, or in the same language
at other times? This actuation problem can be regarded as the very heart of the
matter. (Weinreich et al., 1968, p.102)

Although there is no precise definition of ‘actuation’ in Weinreich et al.’s seminal paper and
no consistent usage of the term in the literature has emerged since, it is generally understood
to mark the point in time when an incoming linguistic variant starts to see a consistent increase
in its usage at the expense of established competitor variants, i.e. the detectable onset of the

diffusion of a change’.

IThe term ‘actualization’ (with a specific meaning in grammaticalisation theory, see Traugott, 2011, p.24) is
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While language-internal accounts went a long way in terms of identifying general, inherent
instabilities in or asymmetries between two language states, they typically fail to explain the
inactivity of a pressure until its point of actuation, i.e. they offer no theory of why a change
occurs exactly when it does. This concern is aggravated by the fact that the myriad pressures
that have been proposed to act on language provide a large amount of explanatory freedom by
allowing researchers to choose from a whole pool of ‘explanations’ more or less at will. This
fact is also acknowledged by some adherents of the paradigm which make explicit reference to

the fact that the approach makes it difficult to connect specific pressures to particular changes:

No rule or constraint has a motivation in and of itself, but only within the total
system in which it occurs, and crucially, in the history of that system. ..the interplay
of explanatory factors is vastly too complex to allow individual motivations to be
attached to individual grammatical elements. (Newmeyer, 2014, p.313)

Formulated almost 50 years ago, the fact that the actuation problem is still frequently re-
ferred to even in contemporary literature on language change indicates that it is not seen as
resolved. Importantly, the argument applies equally to accounts referring to domain-general
or even external adaptive pressures that are the interest of LCAS approaches, which were also
shown to be geared towards very general explanations of change. Particularly in iterated learn-
ing models we see a strong focus on universal pressures giving rise to universal features such as
compositionality, recursion, expressivity etc. (Brighton, 2002; Kirby, 2002; Cornish et al., 2009;
Smith et al., 2013; Kirby et al., 2015). When there is room for variable expression of biases,
the evolution towards any particular solution is triggered from the outside by experimental ma-
nipulation, whether due to the introduction of a pressure for social marking (Roberts, 2013) or
by varying the relative importance of different language-internal pressures to solve the commu-
nicative problems of the respective experimental tasks (Winters et al., 2015). The dependence
of such changes on external actuation offers no explanation of why any particular bias might
suddenly come to outweigh another one and thus trigger a change in an established, functioning
language.

Within work on particular historical changes, some researchers have alluded to the ‘solving’
of the actuation problem by pointing to currently understudied (and difficult to study) aspects
of language use that might explain why the triggering of changes is so hard to pin down, for
example the role of individual differences in articulation (Baker et al., 2011; Stevens and Har-
rington, 2013). Macro-level work on the general principles of linguistic change acknowledges the
issue of actuation much less. This might not be surprising, given that the general thrust of the
argument often seems to speak against the possibility of any explanation of language change that
goes beyond the account of one individual change and its particular circumstances of actuation.
The macro- vs. micro-level approaches to explaining language change have led to a separation
of concerns, where researchers are either dedicated to explaining which changes actuate, gener-
ally, or otherwise to the question of when specific changes actuate in particular Bynon (1977).
I will propose an approach that simultaneously addresses both those concerns in Section 2.5.

But first we need to discuss another strand of explanations of language change, one primarily

sometimes used interchangably (Andersen, 2008; Kiparsky, 2014).
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informed by fieldwork on the dynamics of the spread and diffusion of linguistic changes through

speech communities.

2.2.5 Social accounts

In the same period of the second half of the 20th century in which typological and gener-
ative work on morphosyntactic change indicated universal trends and directions of changes,
sociolinguistic research painted a wholly different picture of the spread of linguistic changes in
parallel (or rather orthogonal) to language-internal accounts. Studies in what is sometimes also
referred to as the variationist tradition (Tagliamonte, 2015) have shown that there is a vast
amount of variation in language use not just between but even within individuals of one and the
same speech community. What these investigations across different languages and cultures have
confirmed is that linguistic variation is not distributed randomly but in what Weinreich et al.
(1968) call structured heterogeneity, often reflecting the underlying social or political structure
of the community with the usage of specific linguistic variants stratified according to social
characteristics of the speakers such as their age, ethnicity, or socio-economic status (Foulkes
and Docherty, 2006; Tagliamonte, 2012). The importance of linguistic variation for the study
of language change is again based on extrapolating the observed synchronic variation into time,
by recognising that linguistic innovations do not spread evenly across geographical space, or
even within speaker groups.

As was the case with language-internal accounts, it is difficult to find or give a precise
definition of what exactly makes a ‘social account’ In contrast to language-internal accounts,
social accounts are characterised by seeking the ‘reason’ for the adoption or diffusion of a novel
linguistic variant not in (features of) the variant itself but in some external, social factors.
While social accounts of language change are primarily informed by empirical research of the
micro-level of linguistic variation and individual changes, sociolinguistic thinking goes beyond
individual case studies. Similar to the historical development of language-internal accounts,
sociolinguistic research has moved from the documentation and ad-hoc explanation of the so-
cial stratification of particular changes to the postulation of generalisable pressures that are
presumed to hold across languages and cultures.

For the present purpose I will characterise and discuss two types of accounts that encompass
most of the thinking on social influences on language change, the first one referring to mechanics
of social interactions, the other on the more fuzzy topic of the social meaning of linguistic

variation, and how it affects the spread of language change.

Social network accounts

Although it is again hard to find explicit definitions for different types of social accounts, there
exists a relatively clear subcategory of social explanations that stresses the important effects of
social interactions. Inspired by the quantitative study of social networks and work such as the
idea of “weak ties” (Granovetter, 1973), researchers have attempted to reduce the diffusion of
language changes to the underlying distribution of social interactions in a speech community,

an idea clearly formulated very early on by Bloomfield (1933, p.476):
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The inhabitants of a settlement [..] talk much more to each other than to persons
who live elsewhere. When any innovation in the way of speaking spreads over a
district, the limit of this spread is sure to be along some lines of weakness in the
network of oral communication.

The quantitative, rule-like accountability of this “principle of density” of communication
can again be seen to hark back to the ideal of mechanistic causal explanation, this time due to
external, interactional factors (Labov, 2001, p.19). The idea of reducing linguistic diversifica-
tion to discontinuities in the social structures of speech communities has inspired both empiri-
cal (Milroy and Milroy, 1985; Herold, 1997; Trudgill, 2008) as well as theoretical and modelling
work (Nettle, 1999; Silva and de Oliveira, 2008; Stadler, 2009; Gong et al., 2012; Blythe and
Croft, 2012; Pierrehumbert et al., 2014; Renton, 2016; Kauhanen, 2017), some of which I will
return to in the next chapter. However, much empirical data suggests that the relevance of
such a simple mechanism is limited. Labov (2010, ch.6-10) in particular presents overwhelming
evidence from work on the Atlas of North American English as well as the so-called North-
ern Cities vowel shift, showing how the linguistic systems of neighbouring communities with
plentiful cultural and economic contact between them are in fact often diverging in opposite
directions rather than converging. Rather than reducing changes to a simple mechanism of
interaction, these results indicate that the adoption of competing linguistic variants is not just
a matter of automatic mutual accommodation, but that each individual’s choice of change is a

question of the variants’ social meaning in use or, more concisely, a question of prestige.

Prestige accounts

Once again, terminological caution is advised, this time in relation to the many possible pres-
sures referred to by prestige. While prestige is intuitively understood to stand for a social
bias towards something, the word leaves open whether this bias is towards the speech of a
high-status individual, however they may be speaking at the time, or instead towards specific
linguistic variants which might not actually be used by any prestigious individuals, but merely
believed to be (for a more formal distinction, see Sections 3.3.3 and 3.3.4). While early uses of
the word more typically refer to the (linguistic) status of individuals (Tarde, 1903; Fries and
Pike, 1949), today the term is almost exclusively used to refer to variant prestige, a development
that can be traced back to the influence of the idea of the ‘linguistic marketplace’ (Bourdieu,
1977) that has taken a strong hold in sociolinguistic thinking (Le Page and Tabouret-Keller,
1985; Cedergren, 1987; Tagliamonte, 2015).

Unlike the intuitive reading of ‘prestige’ in the sense of an explicit, positive social valuation
of a linguistic variant, the term has gathered additional meanings. The lack of specificity of
the concept and potential to be a catch-all term becomes most evident in the case of “covert
prestige”, taken to be a shared social force that makes (some) individuals inclined to adopt a
linguistic linguistic despite the absence of explicit positive evaluation (or even overt rejection)
of it (Labov, 1966a, p.108, see also Labov 1972). While the gist of prestige is still that linguistic
changes are adopted (and in this sense caused or triggered) based on underlying changes in the

social structure or beliefs of a speech community, Labov (2001) acknowledges that
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the force of Tarde’s explanation [of reducing linguistic changes to underlying social
pressures] may be considerably weakened if the term “prestige” is allowed to apply
to any property of a linguistic trait that would lead people to imitate it. Thus
the fact that a linguistic form has prestige would be shown by the fact that it was
adopted by others. (p.24)

The exact explanatory role of prestige in sociolinguistics today is hard to pin down, not
just due to the many different strands of research approaches present in the field (Tagliamonte,
2015). At least the mainstream approach laid out by Labov (2001), however, is clearly dedicated
to some sort of sociolinguistic reductionism of linguistic choices to underlying social institutions.
Labov explicitly embraces the standpoint of Meillet (1926):

From the fact that language is a social institution, it follows that linguistics is a
social science, and the only variable element that we can resort to in accounting
for linguistic change is social change, of which linguistic variations are only conse-
quences, sometimes immediate and direct, more often mediated and indirect. .. We
must determine which social structure corresponds to a given linguistic structure,
and how in general changes in social structure are translated into changes in lin-
guistic structure. (translation from Labov 2001, p.22-23)

The fact that this position is not taken by all sociolinguists is reflected in debates regarding
whether social valuation exists prior to language use at all, an issue prevalent in the study
of language and identity from which the sociolinguistic account of language change draws.
Bucholtz and Hall for example note that “much work within variationist sociolinguistics assumes
not only that language use is distinctive at some level but that such practices are reflective, not
constitutive, of social identities”, whereas in much of the linguistic anthropology work “identity
is better understood as an outcome of language use rather than as an analytic prime” (Bucholtz
and Hall, 2004, p.376).

While sociolinguistic research has equally contributed to the identification of general, uni-
versal pressures that seem to be guiding language changes (see Labov, 1994, for an exten-
sive summary in relation to sound changes in particular), most contemporary population-level
fieldwork on language variation and change is trying to come to terms with the idiosyncracy
of individual changes. The fact that changes sometimes spread from ‘above’ and sometimes
from ‘below’ the level of conscious awareness (ibid.), from females to males or the other way
around (Trudgill, 1972; Milroy and Milroy, 1985; Eckert, 1989; Labov, 2001; Sundgren, 2001)
challenges the idea that a purely mechanistic theory of language change is possible. But no
matter along which social dimension innovations spread first, a change is only a change if it
is increasingly adopted by a speech community across the board. While research has shown
that language change (or at least the adjustment of variable usage rates) within an individual’s
life span is indeed possible (Sankoff and Blondeau, 2007; Buchstaller, 2015), the canonical case
of change is still regarded to be the incrementation of changes by younger speakers relative
to their parental generation (Labov, 2001; Tagliamonte and D’Arcy, 2009). The fact that this
incrementation occurs along the same social lines from generation to generation has raised a
particular interest in how the structured heterogeneity of sociolinguistic variation is acquired by

children and adolescents.
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Incrementation and age vectors

Most traditional accounts of language change are based on the assumption that linguistic di-
vergence occurs during language acquisition, mostly based on language-internal factors that
make learners ‘mislearn’ or ‘reanalyse’ their linguistic input, which causes them to end up with
a different target language than that spoken by their caretakers (see e.g. Salmons and Honey-
bone, 2013). But quantitative research on infant and adolescent speech has painted a much
more refined picture of the target of child language acquisition (Labov, 1989, 2012). Of par-
ticular relevance is the question of how individuals acquire sociolinguistic variation, and how
this acquisition develops over time. Quantitative studies of the linguistic patterns of differ-
ent pre-adolescent age cohorts has shown that, while children’s usage patterns might mirror
the language use of their caretakers up until about age three or four, learners then exhibit a
pronounced “outward-orientation”: shedding most of the influence of their caretaker speech,
learners instead turn not just towards their peers, but towards the usage patterns in the wider
speech community as a whole (Labov, 2014).

An exemplary case of this behaviour is the data collected from children in the new town of
Milton Keynes, England, which provided a natural testbed for the study of the acquisition of
a local dialect against the backdrop of massive individual variation: the settlement expanded
massively in the 1970s and 1980s, with most residents moving in from other dialect regions (Ker-
swill and Williams, 1994; Williams and Kerswill, 1999). Figure 2.1 shows the distribution of
variable realisations of the GOAT lexical set (the vowel in English ‘goat’, ‘boat’, ‘fold’ etc., see
Wells, 1982) by children of different ages growing up in Milton Keynes, as well as the usage
rates of their caretakers. What is striking about this data is not just the fact that children
appear to switch from imitating their caretakers to imitating the wider community usage at
some point after age 4, but also the accuracy with which children manage to replicate the usage
distributions of the relevant target group.

This same pattern of acquisition is found in a slightly refined fashion in Sankoff and Laberge
(1973)’s study of the acquisition of the future tense marker ‘bai’ in Tok Pisin, which underwent
a change from being stressed to unstressed as it was grammaticalised during the development of
the creole. Figure 2.2 shows rates of secondary stress on ‘bai’ by children, alongside the stress
rates exhibited by their respective caretaker(s), connected by lines. What is evident is not just
that children are producing fewer stressed tokens, but that their stress rates are lowered at
similar rates relative to the stress rates of their caretakers. This has led researchers to propose
that adolescent learners do not just acquire the variable elements of language use according to
social and stylistic constraints to a high degree of precision, but that they also advance changes

in variable usage along their respective “vector of change”:

In the incrementation of change, children learn to talk differently from their parents
and in the same direction in each successive generation. This can happen only if
children align the variants heard in the community with the vector of age: that
is, they grasp the relationship: the younger the speaker, the more advanced the
change. (Labov, 2001, p.344)

While this quote does not speak to the initial triggering or actuation of a change, it does
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Figure 2.1: Phonetic targets of the GOAT vowel for Milton Keynes children by age exhibit increas-
ing alignment to community rather than caretaker speech (data from Kerswill and Williams
1994).

suggest that being able to detect the direction (and rate) of a change could be fundamental to
a mechanism which allows speakers to advance language changes systematically across genera-
tions. Even though the concept of age vectors has been taken up as an explanatory device to
analyse and account for trends in macro-level data (Labov, 2012; Sankoff, 2013; Stanford et al.,
2014; Driscoll and Lape, 2014), direct testing of the underlying assumption,i.e. that “youth
who are engaged in the incrementation of a sound change have some perception of the age
vector” (Labov, 2010, p.369), has been more limited. The most compelling evidence comes
from experimental studies of listener adaptation based on sociophonetic knowledge about on-
going changes: Drager (2005) and Hay et al. (2006) showed experimentally that listeners use
their implicit knowledge about age-specific speech patterns to adjust phoneme boundaries when
classifying vowels depending on the purported age of the speaker, which was manipulated ex-
perimentally.

Even though the concept of age vectors was originally conceived of as applying to both con-
tinuous and categorical changes (Labov, 2001, p.346), in contemporary research it is now mainly
applied to (continuous) phonetic changes. Here, the ‘age vector’ can quite literally be taken to
be a vector in phonetic space. This interpretation can be intuitively derived from traditional
representations of phonetic changes in progress, where arrows are drawn in acoustic (particular
vowel) space to indicate the difference in pronunciations between older and younger speakers
of a community (see e.g. Labov, 2001).

This specialisation of the notion of age vectors is merely a consequence of the fact that most
sociolinguistic research is based on sound changes, particularly ones of a gradual (rather than
categorical) nature, such as the canonical example of vowel shifts. While there is consequently

also a rich research tradition on individuals’ sociophonetic knowledge (Foulkes and Docherty,
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Figure 2.2: Rate of secondary stress on the ‘bai’ future tense marker in Tok Pisin. The relative

difference between the rates of children (circles) and their respective caretakers (triangles)
exhibit a similar pattern of increase across pairs (data from Labov 2001, p.425).

2006), work on sociolinguistic awareness (or indeed sociolinguistic indexicality) in the domain of
necessarily categorical syntactic change is generally underrepresented, a fact that I will address
in Chapter 5.

While a more detailed analysis of this very idea of the amplification of linguistic trends
forms the central part of this thesis, the overview of competing ‘explanations’ of change pre-
sented thus far has painted a rather incoherent and divergent picture of research on language
change. Although the diversity of approaches and results makes it difficult to provide any-
thing like a coherent or comprehensive overview of current opinions, I have already suggested
the existence of something like a fault line dividing the field, characterised by two opposing
views of language change based on distinct research methodologies. While mechanistic and
adaptively-minded accounts draw evidence both from macro-level typological and individual-
level experimental data, sociolinguistic work based on social population-level phenomena stress

the arbitrary, haphazard selection and diffusion of changes.

Rather than simply pick one side and more or less implicitly disregard the other, this thesis is
in pursuit of another higher-level goal, namely to unify these seemingly contradictory approaches
and show that they are in fact compatible. Before pointing to the evolutionary framework in
which the apparent clashes can be reconciled, I will make a final effort to convince even the
staunchest optimist that there truly is a schism in the field that warrants talk about the need of
unification and reconciliation, by discussing a recurring issue on the question of language change
where the differences are as stark as nowhere else: the adaptive nature (or not) of language

change.
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2.3 Language change and language adaptation

In parallel to the specific theories and accounts of language change presented so far one finds
discussion of a more conceptual concern, namely whether language change constitutes language
improvement of some kind. This question of whether language change is in some sense adaptive,
whether universally (by constant adjustment to general pressures on communication systems
or particular constraints of the human language capacity) or with respect to its current con-
tingencies of usage (such as social or environmental factors), is far from settled, or rather it
is assumed to be settled in different ways within different subfields studying language change.
Interestingly, the fault line does not coincide with the traditional boundaries of linguistic dis-
ciplines, such as phonetics, phonology, syntax, etc. Rather, as I have argued, it is largely a
question of research methodology as well as the scope of generalisation aimed for by different
language change researchers.

The opinions held by the two camps — those who hope to gain insight from framing language
change as optimisation towards some goal vs. those sceptical of or categorically opposed to
such a viewpoint — go back far (see Jespersen, 1922, ch.XIV). In light of the necessity to argue
for some kind of asymmetry to explain the shift from one linguistic variant to another, it is
comparatively easier to find explicit arguments for change as improvement or adaptation of the
lingustic system, such as Zipf (1949)’s principle of least effort discussed above. The orthogonal
view that change really is just change, with no particular goal or direction, was in a sense the
default view of many early Indo-Europeanists who, if anything, saw the beauty and perfection
of ancient languages tainted and eroded by unsystematic, haphazard changes (Jespersen, 1922,
ch.IT). As such, anti- (or at least non-)adaptationist arguments per se are found most explicitly

in direct refutations or criticisms of adaptationist claims:

Taking linguistic change as a whole, there seems to be no discernible movement to-
wards greater efficiency such as might be expected if in fact there were a continuous
struggle in which superior linguistic innovations won out as a general rule. (Green-
berg, 1959, p.69)

This point of view was taken even more strongly by researchers not working on cross-
linguistic typology, such as in Postal’s well-known, somewhat more colloquial statement on

syntactic change:

There is no more reason for languages to change than there is for automobiles to
add fins one year and remove them the next, for jackets to have three buttons one
year and two the next, etc. (Postal, 1968, p.283)

Despite very different methodological approaches and research agendas at the time, similar

thinking prevailed at the other end of linguistic inquiry into phonetics:

I do not think sound change creates any significant improvement or defect in lan-
guage. There is sufficient redundancy in language that the message which speech
encodes gets through as well (or no worse) before and after sound change. ...All hu-
man languages manifest asymmetry or disequilibrium in some part of their phonol-
ogy but seem, nevertheless, to function adequately for communication. ..There is
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no need to appeal to ill-defined notions such as “system pressure”, “pattern symme-

” W

try”, “equilibrium”, and the like, nor to maintain that the language is any better or
any more “fit” as a result of these sounds changes. ..It seems languages are never
satisfied! More to the point, it seems that languages are not seeking the satisfaction
of some “ideal” configuration. (Ohala, 1989, p.191-192)

Particularly within the study of sound change, this point of view is now widely accepted
and essentially become textbook knowledge. For example, the entire introductory chapter of

Labov (2001) is dedicated to what he calls the Darwinian paradox:

There is general agreement among 20th-century linguists that language does not
show an evolutionary pattern in the sense of progressive adaptation to communica-
tive needs. ..The almost universal view of linguists is the reverse: that the major
agent of linguistic change — sound change — is actually maladaptive, in that it leads
to the loss of the information that the original forms were designed to carry. (p.10)

The same view is also adopted by Croft (2006), who concludes that “all of the empirical
evidence in language change indicates that social factors, not functional ones, are the causal
mechanisms for the propagation of a change” (p.116).

The list of supporters of the viewpoint that language change is at least to some extent
adaptive is just as long and illustrious, with dedicated arguments for the cause by Jespersen
(1949), Vennemann (1993) and Haspelmath (1999, 2008). Especially within typology one finds
hints of a conclusion on the question of language adaptation counter to that arrived at in
sociolingustics, for example when Wichmann (2015) finds that “Presumably language change
is only to some extent random, and to a larger extent is adaptive” (p.221).

A striking difference of focus in these last two quotes can be found in the ‘causal mechanism’
for the propagation of particular changes, which is evidenced at the micro-level of the diffusion
of changes, versus the ‘adaptive’ nature of language changes that is observed as a synchronic
fact. What becomes evident here is that the idea of an ‘explanation’ of a change depends on

the level at which it is investigated:

There is general agreement that the heart of the study of language change is the
search for causes. It is what we generally mean by the explanation of change. While
we would like to apply to this search the universal principles that govern grammar as
a whole, it is also understood, following Meillet (1921), that no universal principles
can account for the sporadic course of change, in which particular changes begin
and end at a given time in history. The actuation problem demands that we search
for universals in particulars. (Labov, 2010, p.90)

This quote succinctly summarises two different approaches to the question of causation,
or ‘why’ languages change. Firstly, Labov acknowledges that there are in fact two senses
of ‘why’, implying separate research interests with diverging priorities regarding the locus of
‘explanation’ On one hand, for researchers seeking to generalise over language changes, the
‘why’ question is not actually asked of individual changes in particular, but is first posed as
a general cross-linguistic ‘what’ or ‘which’, in order to identify universal guiding principles of
change, such as the unidirectional patterns that have been shown to hold across languages. The

simple ‘why’ then becomes a ‘why that, over and over again?’ which, once a universal pressure
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has been identified, offers an explanation that is taken to generalise to individual instances of
the change, without the need to refer to particular features of those instances. The second sense
of ‘why’ is the one most pressing for the researcher looking at particular changes, and is best
rephrased as ‘why there and then’? This question has to tackle the actuation problem head on,
and can only be answered with particular reference to the specific conditions for the change, so
as to explain why it actuated exactly when it did.

While diverging in their focus of explanation (to the degree of incompatibility), the two
approaches share a common scientific standard: both seek to explain changes in a deterministic
fashion, in the sense of reducing changes to accountable, rule-like development, merely diverging
on whether the underlying mechanism of change is based on micro- or macro-level descriptions
of the change. What I want to propose here is that the two approaches can in fact be unified,
but only by abandoning that very standard of explanation. Counter to Labov (2010, ch.5),
who argues for the existence of language-internal ‘triggering events’ that can account for the
actuation of particular changes, I want to suggest that one has to acknowledge the fact that
individual changes occur at points in time that are, at least to the level of description available
to the linguist, arbitrary and thus unpredictable.

Although this point of view would presumably resonate with many a researcher who is
content with revealing generalisable patterns of linguistic changes, my goal is not to discard
or even play down the actuation problem. What I suggest is to shift the focus away from
the negative, seemingly irrefutable criticism of universal pressures to fail to account for the
idiosyncratic nature of particular changes and their seemingly arbitrary onset. Instead, the
criticism can be transformed into a challenge of constructively explaining the very feature of
language change that is the underlying source of the actuation problem, namely its sporadic
nature. A complete theory of language change should not just offer an explanation of the macro-
level dynamics and general direction of language change, but also provide a concise account of
exactly why the actuation of particular changes is unpredictable.

As T showed above, much headway has been made on the question of how and in what
way languages change in general, generalisations which are based on universal pressures and
asymmetries. If one accepts those pressures which account for the strict uni-directionality of
many changes and that seem to dictate the prevalence of linguistic traits across the globe, how
can there still be room for systematic uncertainty and indeterminacy in language change? Even
though adaptive accounts of language change today are well-motivated and grounded not just
in typological observations but also in theories of individual processing (Kirby, 1999; Jaeger and
Tily, 2010), neither of these two levels are sufficient to conclude that specific changes spread
because they are adaptive. So when Wichmann (2015) writes that language change is to a large
extent adaptive, this statement can be re-read somewhat less intuitively as ‘most changes that
spread through populations happen to be adaptive (but that is not necessarily the causal reason
why they do in fact spread)’

The crucial point is that the mere fact of adaptation, or even evidence for the preferred
spread of adaptive traits, should not be equated with evidence for selection for the adaptiveness
of that trait or structure (Henrich et al., 2008). The intention here is of course not to discard

functional and adaptive pressures completely, but to raise the question of whether they should
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be construed as the pressures which drive the diffusion of linguistic variants through a speech
community in the individual cases. Instead, I want to stress how functional factors actually play
an important role within social accounts of language change, and that by taking an evolutionary
approach that distinguishes separate pressures behind the innovation of linguistic variants and
their subsequent selection, the two viewpoints can in fact be unified (Croft, 2000, 2006).
Before elaborating on the importance of an evolutionary approach in Section 2.5, I will have
to discuss quantitative approaches to language change more generally, as well as the insights into
the dynamics of changes which are relatively well understood thanks to centuries of quantitative

research on historically attested changes.

2.4 Language change: a quantitative framework

So far, the language changes referred to as brief examples for different accounts above were
primarily characterised through qualitative descriptions. Given the vast range of different types
of changes — lexical, morphosyntactic, phonological, phonetic, semantic — it might even appear
ludicrous to speak of ‘language change’ as one phenomenon that should be subsumed by a single
framework. However, quantitative approaches to many different types of historical language
change have made use of similar descriptions to characterise the unfolding of changes. While
historical linguists were the first to be concerned with the wvariation exhibited by languages as
they undergo change from one state to another, the sociolinguistic study of synchronic variation
within the individual set the idea on a more solid footing by introducing the concept of the

sociolinguistic variable.

2.4.1 The sociolinguistic variable

Forming part and parcel of the sociolinguistic or general variationist research framework to-
day, “A linguistic variable in its most basic definition is two or more ways of saying the same
thing” (Tagliamonte, 2012, p.4). In more formal terms, different variants of one of the same
variable have the property that they are “identical in truth value, but opposed in their social
and/or stylistic significance” (Labov, 1972, p.271). The identification of a sociolinguistic vari-
able is always based on one particular language or vernacular, where you can often find one and
the same speaker to be using and mixing the variable’s different realisations, referred to as vari-
ants, in some probabilistic fashion. A canonical example in English is the variable (ing), which
refers to the variation in how the final nasal in the present participle suffix -ing is pronounced,
with the two variants [n] and [g].

While this particular example concerns a phonetic variable which has seen stable variation
in its usage for centuries (Labov, 1989), sociolinguistic variables can equally be constructed for
variable usage in other linguistic domains, and with a particular eye on capturing the unfolding
of language change. In Chapter 5 we will be concerned with syntactic changes that have been
unfolding in Shetland Scots over the past century. One of the variables, referred to as (ynq)),
describes the syntactic realisation of yes/no questions. The variable can be realised by either of

two variants, one being the use of the older, verb-initial sentence order (e.g. “See you him?”),
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the other a relatively newer, Standard English-like formulation employing a sentence-initial
periphrastic ‘do’ (i.e. “Do you see him?”), with both formulations being otherwise identical in
their interrogative linguistic function. By tracking the usage rates of different variants of a
variable over time, for example by counting their relative occurrence in recordings or corpora
at different points, one can capture the temporal dynamics of a change as the novel, incoming
variant (or variants) gradually replaces the outgoing form.

Although language change can be studied on levels other than that of the sociolinguistic
variable (see in particular Croft, 2006, p.98), it is chiefly changes at this lowest level, namely in
the realisation of individual sociolinguistic variables, that will be covered in this thesis. And,
since I have set out to delineate a theory of language change with a particular eye on reproducing
the micro-level dynamics of the diffusion of novel linguistic variants, we should have a closer
look at what is known (or believed) about how individual language changes spread within

communities.

2.4.2 S-shaped curves in language change

When it comes to the question of how language changes unfold quantitatively, it is common
wisdom in the field of historical linguistics (and beyond) that the incoming variant gradually
replaces the outgoing one(s) along an s-shaped trajectory. It should be noted at this point that
the notion of s-shaped curves derives from the study of changes in categorical variants, where the
s-shape describes the development of the frequency of the incoming variants. This should not be
confused with the study of how continuous language changes, i.e. gradual changes to phonetic
realisations, unfold. Simply as a matter of technical feasibility, quantitative investigations of
continuous changes are necessarily much more recent than that of categorical variables which
are largely measurable without technological aids. As a consequence, the work in this thesis
will be limited to studying changes in categorical variables. (For an empirical investigation
of the complex dynamics that can be exhibited by changes in a continuous dimension see
e.g. Fruehwald 2013.)

Even for categorical variants, however, capturing the time course of a change is no simple
matter, since any claim about precise dynamics is inherently limited by the number of time
points throughout the change for which distinct samples can be taken, as well as the respective
size of those samples. The earliest descriptions of language changes were typically not based on
historical data of the same linguistic variety over time but rather on a comparative approach
based on analysing the relationships between relatively idealised and most of all non-variable
grammars of related languages. This method lay at the heart of the first identification of
sound changes through the positing of sound correspondences between languages (Jespersen,
1922, ch.IT), but the simple rule-like description of the changes (e.g. by stating the phonetic
realisation of a phoneme before and after a change) left open how exactly a community switched
from unanimous adoption of one sound or construction to another. As quantitative studies with
an increasing resolution of the time course became more common, the idea of the adoption of

changes along a relatively directed ‘s-shaped curve’ became firmly established in the field:

The process of change in the community would most probably be represented by an
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S-curve. The rate of change would probably be slow at first, appearing in the speech
of innovators, or more likely young children; become relatively rapid as these young
people become the agents of differential reinforcement; and taper off as fewer and
fewer older and more marginal individuals remain to continue the old forms. On an
empirical level, it should be possible to make a comparative study of forms used as
a function of age and other sociological variables. (Greenberg et al., 1954, p.155)

Similar sentiments, again mostly backed up by verbal rather than precise quantitative argu-
ments, are repeated in Lindgren (1953, pp.181+186) as well as later in Weinreich et al. (1968)
and Bailey (1973). Today, it is often assumed that the increased usage levels of incoming
variants from non-existence to complete adoption follow the trajectory of the s-shaped logistic
growth curve (Denison, 2003). The origin of the logistic curve as the idealised, underlying can
be traced back to Altmann et al. (1983), from where it was perpetuated primarily by Anthony
Kroch (Kroch et al., 1982; Kroch, 1989a,b). It should be noted that the amount of empirical
data that motivated Altmann et al.’s use of the logistic function would probably not stand
the test of the quantitative standards expected of empirical research in the present day. The
authors’ main evidence is a data set capturing the decrease in usage of Russian genitive markers
on unit of measurement terms between 1881 and 1910. Taking the 28 data points measuring the
relative rates of dropping the genitive marker from Piotrovskaja and Piotrovskij (1974), who
themselves proposed to capture the shape of the curve by use of some trigonometric functions,
Altmann et al. show good fit of the trajectory by the logistic function which they argue is
also more justified, being an explicit model of growth known from other domains, particularly
ecology (Kingsland, 1982), and not just an arbitrarily chosen function that happens to fit the
empirical data (Altmann et al., 1983, p.106).

While their particular proposition achieved their goal of setting the quantitative study of
language change on a more firm theoretical, mathematical basis, the empirical side of their
argument remains relatively understudied to this day. Figure 2.3 shows the two data sets
from the paper which motivated the use of the logistic function. Firstly it should be noted
that no absolute token counts are provided for either trajectory, neither could any be obtained
from the first publication of the Russian genitive data in Graudina (1964). This means that is
unclear whether some of the strong downward outliers along the trajectory are merely due to
sampling effects or whether they require additional explanation. The second data set capturing
the proportion of Arabic loanwords in Persian (data whose origin is unknown and uncredited)
which, if anything, only encompasses the very early stages of ‘incipient’ growth, is presumably
not expected to ever reach ‘completion’, in the sense of Persian vocabulary being 100% replaced
by Arabic terms. Nevertheless, both data sets receive a superposed fit of a logistic growth curve
that is set to saturate only upon complete diffusion, i.e. ultimate convergence to a proportion
of 1.0 of the incoming variant, by Altmann et al. (1983, p.110+113).

The quantitative study and comparison of growth rates of linguistic changes can be traced
back to Kroch (1989b) who set out to investigate whether the rise of a novel linguistic variant,
in particular the rise of periphrastic ‘do’ in Early Modern English (Kroch, 1989a), differed
across related but different grammatical contexts. Kroch determined the relative rate of dif-

fusion of the novel variant for different subsets of the data by performing a logistic regression
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Figure 2.3: The two data sets which provided Altmann et al. (1983) the empirical basis for
interpreting the s-shaped curves found in language change as logistic growth. (i) increased
dropping of genitive markers from Russian measurement units, data originally due to Graudina
(1964) (i) proportion of Arabic loanwords in Persian, unknown source.

which provides an estimate of the slope of the growth curve as a function of time (Kroch,
1989b, p.215). Comparing the slopes obtained for different grammatical contexts documented
in Ellegard (1953)’s extensive data set on the prevalence of ‘do’, he found no statistical dif-
ference between the growth rates of the novel variant for the different contexts. The contexts
did however differ in their relative timing of actuation, which he took to imply that contextual
effects on changes, including external, stylistic ones, should be constant across time and not
interact with the time course of the change, which is primarily dictated by language-internal
dynamics (Kroch, 1989b, p.206)2.

This original formulation and testing of the ‘constant rate hypothesis’ is still among the
most exhaustive efforts at measuring and comparing different rates of changes quantitatively,
and the idea that the rollout of categorical changes across different linguistic contexts follows a
consistent rule-like pattern has also found tentative confirmation in the study of phonological
change (Fruehwald et al., 2009). Ouly very recently, with the advent of larger corpora of
parsed written texts, has the question of determining the rates of individual language change
trajectories received new attention, with novel and more sophisticated quantitative methods
yielding contradictory results concerning both old established data sets like Kroch’s (Vulanovié
and Baayen, 2007; Vulanovi¢, 2007; Ahern et al., 2016) as well as newly investigated changes (e.g.
Lieberman et al., 2007; Cuskley et al., 2014; Ahern et al., 2016).

But the fact that historical linguistics research is, at least on a quantitative level, largely
not cumulative (Nevalainen et al., 2014, 2016) means that the empirical basis of the logistic

growth assumption has rarely been challenged. The lack of systematic and detailed study

21t should be noted that this conclusion relies on the fact that context effects are measured by the coefficients
of a logistic regression which capture a relative rather than absolute influence on the usage rates, an assumption
that is to my knowledge not motivated beyond the fact that it can easily be captured by logistic regression.
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Figure 2.4: Ellegard (1953)’s data set on the rise of periphrastic ‘do’ which formed the basis
of the Constant Rate Hypothesis (Kroch, 1989b). Data is shown for contexts in which ‘do’
eventually became mandatory, in particular affirmative questions whether transitive (Af£QTr)
or intransitive (AffQIn) as well as negative questions (NegQ) and negative declarative sen-
tences (NegD).

of its quantitative basis means that there are many very basic open questions regarding the
nature and origin of s-shaped transitions, for example whether the particular shape of changes
in usage levels can also be found on the level of the individual, or whether they are actually
only an artefact of linguistic analyses which are typically based on pooled population-level
data (Denison, 2003). Equally, thinking about ways to determine growth rates that are adequate
for the data, e.g. by accounting for the fact that data points sampled from an underlying
quantity that is undergoing incremental growth are not in fact independent as is assumed
by logistic regression, is relatively underdeveloped, and concerted efforts to go beyond the
traditional statistical methods of the field are fairly recent (Kauhanen and Walkden, 2015;
Winter and Wieling, 2016).

The fundamental bottleneck in the study of the micro-level diffusion of historical changes,
however, appears to be the difficulty of collecting adequate amounts of longitudinal data, with
Blythe and Croft (2012) identifying only 18 data sets of language changes that covered complete
s-shaped curves in a large literature survey. Consequently there has, on the whole, not been
a lot of interest in (or rather potential for) the cross-linguistic comparison between individual
trajectories of unrelated changes, a notable exception being Ghanbarnejad et al. (2014)’s study
of exponential vs. logistic growth features in the adoption curves for a number of orthographic
conventions obtained from written texts. Cross-linguistic generalisations, whose results were
covered extensively above, are typically limited to determining what types of changes occur, but

they do not consider the micro-level of how those particular changes unfold over time. I will
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return to this issue in Section 4.4.1 to argue that investigating the unfolding of similar changes
in different languages can provide useful insights into the different accounts of change that were
discussed.

To summarise, despite the fact that the theoretical motivation for the s-shaped pattern of
language changes and the underlying assumption of logistic growth in particular stand on shaky
foundations on closer inspection, both have firmly established themselves as cornerstones of re-
search on language change on the micro-level. By providing a generally accepted, quantitative
‘gold standard’ which different accounts of language change can in principle be tested against,
the s-shaped curve has also become a de-facto criterion to argue for the adequacy of models of
language change on a quantitative level (e.g. Kirby, 1999; Yang, 2002; Blythe and Croft, 2012;
Kauhanen, 2017). Given that historical language changes are one off events which do not typi-
cally allow for repetition in controlled laboratory conditions on the same scale, computational
modelling has emerged as a tool to make explicit the quantitative predictions made by different
accounts. Since this thesis makes extensive use of modelling, Chapter 3 will not just present
the two modelling frameworks used in great detail, but also discuss the role and relevance of
mathematical and computational modelling for thinking about language change more generally.
Before dedicating ourselves to the study of specific quantitative models, however, I will round
off this general review of what is known about language change by elaborating on the general

formal, evolutionary framework which will be pursued for the remainder of this thesis.

2.5 Language change as language evolution

It has often been noted that Darwin’s idea of the gradual evolution and diversification of bi-
ological species was inspired by philological work of the time which described the historical
relationship between different languages (Darwin, 1871). Since then, the field of biological
evolution has developed a large theoretical toolkit for capturing and evaluating the replication
and unfolding of biological populations in a rigorous, quantitative fashion. These scientific
developments have caused researchers in some social and cultural sciences, but especially lin-
guistics, to adopt similar approaches to describe and explain language change (Croft, 2000; Ritt,
2004; McMahon and McMahon, 2005, to list just a few monographs). Crucially, ‘evolutionary’
approaches to language and language change differ immensely in what aspects of biological
evolution they try to import or emulate, as well as how (Croft, 2000). While sometimes biolog-
ical concepts are merely used as a metaphorical basis to explain linguistic processes that they
share some superficial similarity with (e.g. Lass, 1990), others are mainly focussed on applying
existing mathematical methodology to a new field (Borgerhoff Mulder, 2001; Atkinson et al.,
2005; Jager, 2008; Castellano et al., 2009).

The evolutionary approach to language change adopted in this thesis follows the one out-
lined by Croft (2000), which is in turn based on Hull’s generalised analysis of selection. The
fundamental principle of this generalsed analysis is that of defining evolution as change by repli-
cation (Hull, 1988, p.410). As I already alluded to above, language evolution in this sense is
characterised not by any ‘inherent’ change of an entity (such as a ‘language’), but by changes to

the type and distribution of a population of entities that are replicated individually. Whereas in
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biological evolution the replicator (typically assumed to be the genome) and the interactor (the
corresponding phenotype that is central to the replication of the genome) are united in one and
the same biological entity, this is just one special case of ‘evolution’ in Hull’s general framework.
The generalised analysed allows for the replicators and interactors to be separated out, which
is the stance taken by Croft (2000) who characterises language change as a process in which
linguistic structures are replicated by human interactors whenever they engage in linguistic
behaviour.

Croft calls his theory the ‘utterance selection model of language change’, stressing the fact
that language change should not be sought in individual minds or abstract linguistic identities,
but instead in the linguistic utterance as the individual speech act used in a specific context. The
paradigm replicator in linguistic evolution for him are linguistic structures that are contained
within utterances, which he calls linguemes, and which he identifies with the linguistic variant
as studied by variationist sociolinguists (Croft, 2006, p.104).

This new concept of the lingueme as the fundamental entity of linguistic evolution also entails
a specific theory of its replication. Parallel to the concepts of selection and mutation in biological
evolution, Croft distinguishes between two distinct evolutionary pressures, namely those of dif-
ferential replication and altered replication (Croft, 2000). Differential replication describes
changes where the distribution of existing variants changes due to preferential but otherwise
‘correct’ or near-identical copying of existing variants by a human interactor, a process that I
will call selection. Altered replication on the other hand results in the spontaneous production
or innovation of a new variant that is either derived from or otherwise completely independent
of other known variants.

This characterisation of language change as consisting of two separate mechanisms that
can at least to some degree be described independently is not completely new in linguistics.
Jespersen (1922, ch.XV §11) makes an explicit distinction between the question of how sound
changes originate in individual speech as opposed to how they spread to other individuals,
which he frames a matter of imitation, i.e. replication of existing variants. A similar sentiment
is expressed by Weinreich et al. (1968), who trace replicator-based thinking in language change
as far back as Paul (1880). That same micro-level approach is by far not shared by all linguists
working on language change, and it should be noted that this is just as true of research done
under the language as a complex adaptive system moniker, where the term ‘evolution’ is still
often used simply as a synonym for ‘adaptation’ (Croft, 2000).

To highlight the relevance of this replicator-based evolutionary take in the light of the
research results on language change presented so far, it is worthwhile to re-iterate a basic
insight from evolutionary biology regarding the relationship between synchronic distributions
of traits and the supposed underlying pressures that led to those distributions, namely that
“the prevalence of a particular species in a habitat does not necessarily imply that it is any
better adapted to that habitat than its competitors” (Blythe, 2012b, p.2). This quote is a
word of caution against not one but two simplistic assumptions that are often made when
extrapolating from observed adaptations to the supposed selection of those adaptations. The
first is the influence of neutral evolution, i.e. the effect that the random fluctuations inherent in

the replication of a finite number of replicators can have on causing the widespread adoption
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of a trait in the absence of any replicative advantage of that trait. But, given the directed
nature of the adoption of language changes suggested by their s-shaped trajectories, neutral
theories have played only a very minor role in linguistics, a point that I will return to below.
Instead, I want to highlight a second, less obvious concern regarding different possible sources
of asymmetry that might underlie the skewed synchronic distribution of linguistic traits.

From the evidence discussed above we can conclude that language change looks very directed,
but it does so on two distinct levels: firstly, we find unidirectional patterns in the way languages
change, suggesting some consistent asymmetry that, when described at the cross-linguistic level,
makes changes go in similar directions over and over again. At the macro-level we are therefore
concerned with a temporally reduced characterisation of a change that encompasses both the
emergence as well as ultimate adoption of an innovation. Crucially, this sense of direction
should not necessarily be equated with the directedness of the individual trajectories of change
which exhibit the aforementioned s-shaped pattern as the individual competing variants undergo
differential replication.

This distinction might seem far-fetched at first, but it is a central argument of this thesis that
the macro-level sense of direction that one gets from the re-occurrence of similar changes towards
similar adaptive goals and the directedness of the micro-level diffusion of individual variants
that forms the building block of language change are due to fundamentally different pressures.
As already alluded to above, I will argue that the influence of adaptive and functional factors
should be primarily thought of as affecting the domain of innovation, where it is responsible for
asymmetries in the generation of new variants. The selection pressures which are the driving
force behind the directed propagation of individual changes, on the other hand, will be identified
with arbitrary social biases which do not in principle distinguish between linguistic novelties
that are adaptive or maladaptive. Simply due to the fact that selection pressures can only apply
to variants which are already part of the pool of synchronic variation (Ohala, 1989), the reliable
re-occurrence of similar changes can be explained due to their relatively higher likelihood of
being innovated (Joseph, 2013). In the words of Croft (2006),

How is it possible that one can observe language changes that are propagated by a
social mechanism and yet they consistently display unidirectional patterns in cross-
linguistic comparison that are presumably motivated by functional/phonetic factors
in innovation? All that is necessary is that the mechanisms for innovation and
propagation be independent. (p.116)

Importantly, this approach does not completely rule out changes that go in the opposite
direction of any pattern of uni-directionality that might have been identified, but merely predict
that those changes would be much less frequent. Attributing the selection of changes to arbitrary
social pressures simplifies the matter of accounting for such particular, unusual changes that
run counter to universal trends, which would otherwise not just require explanation of why
a universal pressure did not hold in a particular instance, but also the origin of an oddball
selection pressure in the opposite direction.

This separation of concerns in a strict evolutionary account solves the problem of accounting
for both universal trends and particular, idiosyncratic changes, and thus provides a natural

solution for the scientific conundrum encountered not just in linguistics but also in other social
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historical sciences (Blute, 1997). Even though the explanatory power of this approach has been
promoted heavily in particular by Croft (2000, 2006, 2008), the systematic distinction between
innovation and selection pressures has not widely caught on in the field. The clear evidence for
functional asymmetries as presented above in combination with a lack of candidate mechanisms
that could explain the arbitrary and sporadic actuation of particular changes has meant that
this second selection step of language change has either been left unaccounted for, or otherwise
assumed to be driven by the very same language-internal asymmetries (Croft, 2006, p.111). The
main goal of this thesis is to give additional support to the two-step model of language change
by filling in the current gap regarding the second, arbitrary selection step with a symmetric
selection mechanism that nevertheless produces strongly directed transitions whose actuation,
however, is sporadic and temporally underspecified. While thinking about such mechanisms
is rather unusual for the domain of biological evolution, evolutionary approaches to cultural
change more generally have given rise to a wider range of selection mechanisms that are worth

exploring.

2.5.1 Tackling the actuation problem

Virtually all approaches to explaining linguistic changes discussed so far struggle with one and
the same aspect of its dynamics, namely the sudden incrementation or transmission of change
to a part of its grammar following long periods of stagnation or stability. The inability to
account for this sporadic nature of language change is not always acknowledged, and in fact
often outsourced to triggers that fall outside the scope of the specific account of change itself,
whether implicitly in the case of language-internal (as criticised by the actuation problem), or
explicitly in the case of social accounts. While the LCAS paradigm recognises the complexity of
the many interacting pressures that are thought to underlie the spread of specific changes, the
exact nature and dynamic of the transitions from stability to change are hardly ever accounted

for or explained explicitly.

2.5.2 Beyond biological metaphors: regulatory pressures

Beyond the attempts to explain language change in relatively simple mechanistic terms akin
to the straightforward causal explanation of events that is perceived to prevail in some natural
sciences, researchers have also acknowledged the limitations of such models. In particular, it
has been argued that approaches based on the identification or positing of static biases or
inherent asymmetries fail to account for the dynamics of linguistic systems that are in many
respects irregular and non-linear (see e.g. Larsen-Freeman, 1997; Fortescue, 2006). These very
same effects have also been the subject of the quantitative study of cultural change more
generally, particularly in relation to traits of fashion and other arbitrary conventions whose
change cannot be easily attributed to external adaptive pressures (Acerbi et al., 2012). Despite
formal accounts of pressures and mechanisms in which social learning from other individuals
plays a crucial role (see e.g. Boyd and Richerson, 1985), Bikhchandani et al. argue that none
of the well-known social mechanisms such as punishment, conformity or explicit negotiation of

conventions can explain “why mass behavior is often fragile in the sense that small shocks can
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frequently lead to large shifts in behavior” (p.993).

Beyond simple adaptive selection biases that are often associated with the concept of the
biological fitness landscape (Kaplan, 2008; Gerlee, 2015), researchers have been looking for
mechanisms which can reproduce the rapid non-linear transitions found in many cultural do-
mains, where the sudden adoption of novel traits appears to be driven by social bandwagon
effects rather than by the nature of the adopted traits themselves. Rather than relying on ex-
ternal triggers, these fads and fashions can be described as spontaneous cascades of behavioural
change that emerge solely from individual interactions (Hirshleifer, 1995; Bikhchandani et al.,
1998; Goldstone et al., 2008). A specific set of candidate mechanisms behind such cascades
which this thesis will hone in on is that of regulatory pressures (Acerbi et al., 2014), i.e. cul-
turally acquired traits which themselves regulate or steer the acquisition or selection of (other)
cultural traits. Of particular interest here is the idea that features of the temporal dynamics
of the generation and adoption of cultural variants can affect their spread, in a self-reinforcing
fashion. At first sight this type of explanation — that a variant is going to be adopted more
precisely because it is being adopted more — might seem cyclical or tautological, but a mech-
anism based on the detection and amplification of trends exhibits a quantitative behaviour
that matches well onto the dynamics of language change, as I will argue in much more detail
in Chapters 4 and 7. Before we turn to computational modelling as a tool to investigate the
predictions of such a dynamical model of change, however, we shall have a final look at the
origin of the idea that the historical aspect of cultural traits itself can affect their dynamics of

adoption, with respect to linguistic change in particular.

2.5.3 The time dimension in linguistic thinking

While evolutionary approaches as described above as well as the general spirit of reusing con-
cepts and methodologies originally devised to study biological evolution to thinking about
language change have become widespread (Atkinson and Gray, 2005), only few efforts have
been made to move beyond the straightforward models of simple mutation and selection which
are typically known to laypersons outside the field of mathematical and evolutionary biology.
Dixon (1997) represents an early attempt at explaining sporadic change by transferring the
idea of punctuated equilibria to language change, but in the absence of a concrete quantitative
model applicable to linguists, the idea failed to grow beyond its metaphorical basis.

While current work on the incrementation of language changes (see Labov, 2001, ch.14
in particular) by means of amplifying linguistic trends can be traced back to the concept of
age vectors, the idea that the history of linguistic systems beyond just their present state can
influence how individuals change the language can also be found in much earlier work. That
the temporal stratification of a language constitutes a fundamental aspect of a grammar was

for example argued by Fries and Pike (1949):

It is impossible to give a purely synchronic description of a complex mixed system, at
one point of time, which shows the pertinent facts of that system; direction of change
is a pertinent characteristic of the system and must also be known if one wishes to
have a complete description of the language as it is structurally constituted. (p.42)
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While there are isolated attempts at overcoming the strict dichotomy between synchronic
and diachronic linguistics on a formal basis (e.g. Bailey, 1970), the “static paradigm” (p.161) un-
derlying generativist approaches to language largely eradicated thinking about language changes
that went beyond the transition between language states that are described purely synchroni-
cally. Likewise, in evolutionary approaches to language change inspired by work in population
biology, one typically talks about the diffusion of the incoming variants which are, beyond their
initially low frequency, not explicitly assumed to be in any way marked relative to the estab-
lished majority one. Particularly in the sociophonetic literature though, one finds evidence of
the notion of the diffusion of a change (rather than a variant), possibly to be construed as an
incoming variant that is defined relative to an established one. This becomes particularly ap-
parent in Labov (2001)’s notion of age vectors. That this notion survived (or re-emerged) in the
study of sound change is maybe not surprising, since the continuous nature of phonetic changes
lends itself to thinking about changes as incrementing relative to an average pronunciation.
In this sense it is also possible for individual language users to produce even ‘more incoming’
pronunciations by extending the age vector beyond its current level of advancement. This dif-
fers from the incrementation of categorical variants, where the only way for an individual to
advance a change is by increasing the relative usage frequency of the incoming variant.

Showing that the same principle of incrementation can also be effective for categorical vari-
ables is one goal of this thesis, and I will return to this issue both theoretically (in Chapter 4)
and empirically (Chapter 5). Having gained a stronger sense of the historical origin and subtle
continuity of the idea within linguistic thinking, we are now ready to face forwards and tackle
the question of how the many competing accounts and their underlying biases, pressures and
explanations for language change can be evaluated quantitatively. Before doing so, however, we
must have a closer look at the methodology with which the study of such complex phenomena
can be achieved. The next chapter is therefore dedicated to the role that computational mod-

elling can play in elucidating the validity of different accounts beyond verbal argumentation.
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3.1 Why model?

Within the field of language evolution (here meant to encompass both research on the evolution
of the human language capacity, as well as modelling of the type of cultural, linguistic changes
described above), computational models have undergone pronounced trends. During the hayday
of computational modelling, the field first produced a plethora of qualitative and quantitative
models of the evolution of the language faculty (Kirby, 1999; Nowak et al., 2001) as well
as the emergence of linguistic conventions, such as the ‘Naming Game’ (Baronchelli et al.,
2008). Around the same time, similar methodologies became popular to study the dynamics of
language change, i.e. the replacement of already established conventions, both in general (Niyogi
and Berwick, 1995, 1997; Arita and Koyama, 1998; Nettle, 1999; Kataoka and Kaneko, 2000;
Livingstone, 2000; Ritt, 2004; De Oliveira et al., 2005; Niyogi, 2006; Wedel, 2006; Baxter et al.,
2006; Wedel, 2007; Ettlinger, 2007a,b; Fagyal et al., 2010; Blythe and Croft, 2012; Gong et al.,
2012; Otero-Espinar et al., 2013; Séskuthy, 2013; Pierrehumbert et al., 2014; Enke et al., 2016;
Kauhanen and Walkden, 2015) as well as for some specific historical changes in particular (Yang,
2002; Choudhury et al., 2006, 2007; Pearl and Weinberg, 2007; Troutman et al., 2008; Baxter
et al., 2009; Sonderegger and Niyogi, 2010; Swarup and McCarthy, 2012; Ritt and Baumann,
2012; Kirby, 2013; Kirby and Sonderegger, 2013).

In terms of external contributions to the study of language change, mathematicians and
physicists in particular have brought the formal tools from their own domains to bear on
questions of interest to linguists (Castellano et al., 2009; Blythe, 2015). Given the complexity
of the methods involved, such contributions often fail to have a lasting impact on thinking in
the field if they do not form part of a broader linguistically-motivated research programme
which makes it accessible to linguists. Given the relatively abrupt rise of this new methodology,
it is not surprising that this hype was followed by several meta-scientific and review papers
advocating and/or defending the use of computational models (Cangelosi and Parisi, 2002;
Wang et al., 2004; de Boer, 2006; Baker, 2008; Jaeger et al., 2009; Hruschka et al., 2009; Vogt
and Lieven, 2010; de Boer, 2012; Smith, 2016). Since most parts of this thesis are going to
be concerned with computational modelling, it is worth asking: what is the point of having a
computational model?

The primary advantage of a formal model is that it allows (or rather forces) one to step away
from pure arm-chair theorising, which can be difficult to treacherous when applied to complex
phenomena such as languages, which are affected by the interplay of many interacting parts
or language users. Instead of guessing at the effects of micro-level assumptions on the macro-
level dynamics of the system, a computational approach forces the researcher to explicitly lay
out their assumptions about the individual, interacting parts in a quantitatively measurable
(and ideally also well-motivated) way. From there, computational methods take the lead by
determining in an objective way how the transparent assumptions about individual behaviour
culminate in (potentially) complex interactional phenomena in the population.

Probably the earliest example of computational work on the emergence of communication
systems is the so-called Naming Game (Steels, 1995; Steels and McIntyre, 1998; Baronchelli

et al., 2006). In its simplest form a population of agents, each starting off with an empty
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lexicon, has to come to agree on a unique ‘name’ (linguistic form) for a referent or speech act.
In-depth study of the Naming Game and its dynamics showed not only how a population could
come to agree on a shared convention in the absence of any centralised coordination, it also
helped shed light on the types of linguistic preferences or mechanisms that individual agents
should have to enable de-centralised coordination to unfold seamlessly (Wellens, 2012; Spike
et al., 2016). Crucially, given the very simple problem description of the minimal version of
the Naming Game which lacks any risk of referential ambiguity, its outcome is predicted (and
in some cases even proven De Vylder and Tuyls, 2006; Skyrms, 2010) to be the emergence of a
stable communication system. In the absence of any noise or stochasticity, this simple model
does not exhibit continuous, ongoing change that is so characteristic of human language.

Going beyond the initial emergence of a symbolic communication system and closer to more
realistic cases of language change under noisy transmission conditions, Wedel (2004, 2006)
offered a computational investigation of how simple mechanisms of replication can lead to,
amongst other things, phonological category formation as well as contrast maintenance through
change in the phonetic dimension. Inspired by models of evolutionary pressures taken from biol-
ogy, the models were again chiefly a study of general mechanisms from which the aforementioned
universal dynamics of language organisation emerged. When idiosyncratic factors or triggers
of particular changes were concerned, such as in the study of contrast maintenance under the
threat of contrast loss in Wedel (2006), the sudden onset of contrast loss in one dimension is
again applied externally, falling outside the scope of the theory of general, universal mecha-
nisms that forms the basis of demonstrably adaptive changes whose actuation is reactive to an
external trigger.

While computational modelling has also become a standard technique in related empirical
fields such cognitive science, the models of individual behaviour that are of interest to psycholo-
gists are necessarily of a very different character than the multi-agent models typically employed
to study language as a distributed population-level phenomenon. The differences between the
fields are not just limited to the types of models though, they also extend to the exact goals
of modelling and consequently to how models are evaluated. While cognitive models are often
assessed on a quantitative basis (Busemeyer and Diederich, 2010), many models of language
evolution and change have retained a proof of concept like character. This tradition harks back
to original work on the evolution of shared communication systems (Steels, 1995; Kirby, 2000)
where models are primarily judged based on their exhibiting some qualitative feature such as
compositionality, rather than by quantitative comparison to other models or to empirical data.
This development can be attributed to the often close (and sometimes confusing; Haspelmath,
2016) interlacing of questions regarding the evolution of Language, in the sense of the language
capacity, the emergence of universal features of languages (such as duality of patterning) by
cultural evolution, as well as evolutionary approaches to ‘mere’ language change, possibly in
combination with the lack of established corpora of historical changes mentioned previously.

The promise that explicitly spelling out the quantitative assumptions of different mod-
els would bring clarity to the field is consequently not as straightforward as it might seem.
Depending on the precise framing of the same phenomenon, such as the establishment of a

shared communication system in the case of the Naming Game, or the emergence of compo-
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sitional language from repeated interactions, superficially different mechanisms which actually
have very similar effects on a behavioural level can be considered competing explanations for
years (Wellens, 2012; Spike et al., 2016). Especially when models are explicitly dedicated to
comparing the effect of different parameter settings within them, the general dynamics (such
as the basic learning rules or other parameters like population turnover employed in virtually
every social learning model) are often taken for granted, although it is important to note that
much of the dynamics are implicit in these basic assumptions themselves. Without a dedicated
effort to replicate existing models and bring them in direct relation to each other, even com-
putational models can run risk of becoming ideological ‘blackboxes’, counter to their original
intention to make underlying assumptions more transparent. The rhetoric with which compu-
tational models are presented can further aggravate this situation. Particularly when it is of
interest to make computational models more appealing and convincing to the non-modeller, as
is the case when the methodology first spreads to a new field, efforts to portray models as a
tool for revelation and enlightenment (rather than as obfuscating black magic) run the risk of
trivialising either the models themselves, or at least the analyses presented.

The computational models which have stood the test of time are therefore those which are
not one-offs, such as many of the early models which employed bespoke ad-hoc learning rules
that are often not grounded in the general learning literature, but models which have undergone
intense study and analysis from the ground up. For the case of the evolution of novel inventions,
the Naming Game is a case in point (Baronchelli et al., 2008). For the case of language change,
i.e. the continuous replacement of established conventions, probably the most extensive and
well-explored model is the Utterance Selection Model (USM) of language change, which forms

the basis of most of the modelling work in this thesis.

3.2 The Utterance Selection Model

The version of the Utterance Selection Model (USM) discussed here grew out of Croft’s more
general formulation of language change as evolutionary competition between utterances. While
in its original, theoretical formulation in Croft (2000) it is truly full utterances which are under-
going replication, in its mathematical-computational incarnation the USM is best understood
as a quantitative model of the competition between different variants of one sociolinguistic
variable, as described in Section 2.4.1.

At its core, every agent in the USM is completely characterised by its variable use over
variants, specified by the proportions with which each variant is used, all of which together
sum to 1. For sake of simplicity we will limit ourselves to the canonical case of two competing
variants, where the behaviour of an agent 7 can be captured by a single variable 0 < z; < 1
representing its relative usage level of the incoming variant, with that of the competing variant
taken to be 1 — x;.

The primary contribution of the computational USM is that it provides a well-defined and
rich framework to study the dynamics of these internal usage levels as they are influenced by
observing realisations of the same linguistic variable in interactions with other speakers in a

population.
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3.2.1 Model parameters of the USM

Learning rate \

Following an interaction, the agents update their internal frequency according to the following

USM update rule, which is again applied for both agents (Baxter et al., 2006, p.4):

;T Ay

= I 1
o) = A (3.1)

where y; is the subjective perceived frequency of the variable usage rate, whose computation

will be discussed below.

Perhaps the most important model parameter is the agents’ learning rate A, which is by
default assumed to be the same for all agents. What the USM’s update rule in Equation 3.1
does is change an agent’s internal frequency x; by shifting it a small step towards the relative
perceived frequency that it observed in its most recent interaction. The higher the learning
rate, the larger the step towards this target frequency: at A = 0 there is no learning and the
agent remains at their initial frequency forever, as A — oo, the agent approaches a regime in
which they instantly adopt exactly those usage frequencies observed in their last interaction.
While there are instantiations of the USM in which the learning rate for individual agents is not
constant but decreases over time to imitate the effect of increasing rigidity of language use with
age (Baxter and Croft, 2016), this thesis will be concerned with the simpler case of a constant
learning rate that is identical for all agents in the population. Since we are mostly interested
in reliable model behaviour that exhibits gradual assimilation rather than abrupt and erratic
changes in individual usage levels, like most investigations of the USM we will limit ourselves

to low values in the range of A < 0.01).

It should be acknowledged that the particular form of the learning rule was partly chosen due
to its mathematical properties, which make it amenable to analysis using tools from statistical
physics (see in particular Baxter et al., 2006). To get a more intuitive understanding of what the
update rule does in terms of agents’ learning dynamics, it is worth noting that it is equivalent to
defining an agent’s usage levels as an exponentially weighted moving average (EWMA) over its
learning input data series of perceived frequencies . EWMAs themselves are a generalisation
of Bush-Mosteller learning (Bush and Mosteller, 1955) for non-discrete input data points which,
rather than employing a fixed time window to average over, always gives relatively more weight
to the most recent data points, with the absolute contributions of individual learning samples
decaying over time. Upon receiving a new data point y indicating a certain usage level observed

in an interaction, the agent updates their own usage level x according to

=(1-a) z+a-y. (3.2)

This representation of the learning rule makes it clear that the agent’s own usage level
is simply a moving overage over the perceived frequencies it observes in interactions, where

« controls the relative weight of the newest data point toward that moving average. This
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formulation is equivalent to the original USM updating rule in Equation 3.1 given

A

=1 (3:3)
(6%

A= (3.4)

the only difference being a rescaling of the parameter space from A € [0,00) to a € [0, 1], as

shown in Figure 3.1.
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Figure 3.1: Mapping between the a and A parameter spaces, o = 1%\ or A = 1%, respectively.

A =0 corresponds to « =0, A =1 to a = 0.5, and o = 1 to the limit of A — oc.

The USM’s dynamics beyond the simple update rule are controlled by a number of other
parameters which will be briefly introduced here, before their individual effects are explained
in more detail in the following Sections. Firstly, at every point in time a new pair of distinct
agents 7, 7 has to be chosen from the population, which consists of a fixed number of N agents
total. Interacting agents are randomly drawn based on a matrix G which specifies the proba-
bilities of interacting for all pairs of agents. Whenever an agent ¢ with an internal frequency of
use x; is chosen to engage in an interaction with another speaker j, they each produce and ex-
change T tokens of the variable under investigation by taking a sample from the corresponding
Binomial distributions Bin(T, z;) and Bin(T, ;) respectively. Based on the samples n; and n;
taken from each of the distributions, the agents combine the relative frequencies 7+ and % into

perceived frequencies y;,y; according to the following formula:

i
T

In other words, the perceived frequency is based on a weighted sum of the agent’s own

yi = (L= Hyj) - J() + Hyj - (73) - (3.5)

productions and that of their interlocutors, and is calculated separately for the other agent j
by exchanging all the indices i,j. Here the high degree of modularity of the model becomes

evident in the number of parameters, only some of which will be of interest to us here, but
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which it is worth going through in turn.

Population size V

Like virtually all models of language change, the USM is a multi-agent model, i.e. it simulates
a population of agents that engages in interactions. While a dynamic population with changing
population size would be possible, most investigations are limited to assuming a fixed number
of agents N that remain in the population the entire time (again see Baxter and Croft, 2016,
for an exception). This simplifying assumption lends the USM to more general analysis and
enables to connect it to evolutionary models from other domains. In particular, Blythe (2007)
showed the USM’s equivalence to Wright’s island model (1931), where the population size N
corresponds to the number of biological subpopulations or ‘islands’ between which only limited
exchange of replicators takes place. The effect of different values of N on the dynamics of the
USM depend on several of the other model parameters, and will be explored in more detail

below.

Social network structure/interaction probability matrix G

The parameter G is a square matrix of size N x N which specifies the probabilities for every
pair of agents to be chosen to interact with each other, so that the sum over distinct pairs
Z@, ) G;; = 1. This parameter can not just gradually alter the frequency or density of in-
teractions between different agents or agent groups. By setting a specific G;; = 0 one can
completely ‘disconnect’ two agents i, j in the interaction network, thereby creating the same
effect that social network structure has in many other multi-agent models of language change.
As I discussed above, the exact role that networks of social interactions have on the diffusion of
language changes is still debated, with equally conflicting results over whether network struc-
ture matters fundamentally (Blythe, 2007; Fagyal et al., 2010; Gong et al., 2012; Pierrehumbert
et al., 2014; Kauhanen, 2017) or only marginally (Nettle, 1999; Baxter et al., 2008; Blythe and
Croft, 2009; Stadler, 2009), with the results obtained from computational models again largely
dependent on many other underlying assumptions and the particular learning models used.
Since this thesis will not investigate the effect of either network structures or nonuniform
interaction probabilities, we will abdicate the many degrees of freedom bestowed by the this
parameter matrix by always assuming a fully connected network of N agents with equal inter-

action probabilities, setting G;; = ﬁ for all i # j.

Accommodation/alignment matrix H

The parameter H in Equation 3.5 above is a square matrix which specifies the weights that
all ordered pairs of individual agents give to each others’ productions, with H;; € [0,1]. At
the extreme of H;; = 0, agent i completely discards any input it receives from agent j and its
perceived frequency y; is consequently completely determined by its own productions. A value
of H;; = 0.5 would give equal weight to both the speaker’s and the listener’s production in an
interaction. By employing different values in the cells of H (in particular by setting pairs of

agents’ mutual accommodation parameters H;;, Hj; unequal), the matrix can be used to model

7
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asymmetries in adoption structures in a population, as well as increased influence of some
individuals’ usage levels as a form of individual (rather than variant) prestige, a mechanism
that will be explored below.

Beyond using H to introduce individual differences, it is also possible to set uniform accom-
modation behaviour by setting all matrix values H;; to the same fixed constant i € [0,1]. The
degree of accommodation only affects the USM’s dynamics when there are systematic differ-
ences in usage levels within the population, which could be due to inter-individual differences
such as age-stratified populations or differing variant selection biases (Baxter and Croft, 2016)
or otherwise due to clusters or differences in the degree of connectivity in a social network, cases
which have only seen limited investigation so far (Blythe, 2007; Michaud, 2017). Since this the-
sis will not be concerned with inter-individual differences or stratified network structures, all
simulations will be performed so that agents are set to only align with their interlocutor and

not to their own productions, equivalent to h = H;; = 1 for all i, j.

Production sample resolution T

T, a positive integer, is the aforementioned sample size which determines the ‘resolution’ with
which agents can observe the variable use of different variants of an agent with usage rate x in an
interaction by randomly sampling from a binomial distribution Bin (T, x). For sake of simplicity
we will only be concerned with the case of two competing variants, but the definition generalises
to k > 3 variants in which samples are taken from the multinomial distribution Mult(T, Z),
where an agent’s usage probabilities over the k variants are specified by a vector Z of length k—1.

The parameter T is rather unusual, in the sense that no comparable parameter features
in most other computational models of language change. Among the many models referenced
above, most can be assigned to one of two groups based on when and how learning, in the sense
of inferring or updating a linguistic property or system from data, occurs. One group, in which
agents remain in the population and learning occurs incrementally, agents typically receive one
data point at a time for each learning event they are sampled to partake in, for example in
the Naming Game. In the other group of models there is explicit reference to a sample size of
the learning data, but there is typically only one learning event at the beginning of an agent’s
lifetime, such as in the case of the Iterated Learning model. A combination of both, multiple
learning events throughout an agent’s life time each of which with a learning sample of more
than one data point, is not normally considered, but turns out to be a crucial aspect of an
evolutionary model of language change as described above. This has to do with the fact that
the continued differential selection of linguistic variants relies on the existence of variation in the
population, variation which can only be attested in learning samples of sizes T' > 1. This point
will become more apparent when we discuss the core parameter that determines how agents

derive the perceived usage frequencies of variants in interactions, through the bias function f(.).

Bias function f(.)

While the numerical parameters so far all control some aspect of the population or interactions,

the bias function f(.) is where selection of specific variants by individuals comes into play. Its
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n
y T
agent’s subjective perceived frequency. f(.) is simply a function that maps from the frequency

role is to alter the objective relative frequency of tokens produced in the interaction to an
interval (0, 1) to (0,1). While in principle any arbitrary function could be plugged in here, most
analyses are limited to mappings that obey some reasonable criteria, in particular that they are
monotonically increasing within the interval, so that relatively higher objective frequencies are
always mapped to higher (or equal) perceived frequencies (Blythe and Croft, 2012).

Special attention should be drawn to the fact that the bias function is only defined for (0, 1)
and that, per definition, f(0) = 0 and f(1) = 1. These two equivalences are imposed be-
cause f(.) embodies the differential selection mechanism of the USM. While the bias function
can alter the variation observed in individual samples in one way or another, the function must
not indicate the presence of a variant when it is not attested in the sample. More generally,
this constraint also stops the bias function from introducing new variants into the population,
and is thus a strict requirement for any evolutionary model that distinguishes the selection of
existing variants from pressures of innovation through altered replication.

While the USM’s original definition in Baxter et al. (2006) also incorporated parameters for
the spontanous generation of unattested variants, most studies of the model so far have been
concerned with the analysis of the diffusion and selection of traits that are already established
at a low level across the population. With the exception of the final chapter, this thesis will
also primarily be concerned with selection mechanisms, of which many different ones can be

implemented through the function f(.).

3.3 Comparing accounts with the Utterance Selection Model

Having covered the general mechanism of the USM, we can now investigate the predicted
dynamics under the presence (or absence) of different biases. This section recapitulates the
in-depth study of several different USM biases by Blythe and Croft (2012) while contributing
an additional model of asymmetric replicator selection in Subsection 3.3.4. The motivation for
the present analysis is to address the question of which accounts or presumed pressures would
predict s-shaped transitions of variant use (and under which conditions) when compared in
one unified framework, which necessarily also includes a detailed study of the model’s baseline

behaviour in the absence of any pressures.

3.3.1 Neutral evolution

While the USM’s updating rule given in Equation 3.1 is very general and allows for a vast
number of modifications through the additional parameters, it is interesting to analyse the
model’s learning dynamics in the absence of any pressures of either innovation or differential
replication. This neutral evolution condition, so-called because it is based on completely neutral
replication of existing traits from the population according to their current prevalence (Blythe,
2012a), is achieved by using the identity function

fw) =u (3.6)
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as the USM’s bias function, which means that the agents’ perceived frequency y in an interaction

can be directly derived from their interlocutor’s productions, i.e.
N

Yi = ?j . (3.7)

Using this simple assumption, we can investigate when the agents’ internal x value changes

most. Since a lot of the dynamics stem from the basic learning rules, the exact roles of the

basic parameters and their behaviour at different moments in the model should be studied in

detail. Firstly, Figure 3.2 shows the point change away from a internal usage proportion z = 0

for different input data points y as a function of the agent’s learning rate (plots are provided

for both the « as well as the A formulation of the learning rate). The equal spacing between

the curves for different y means that the impact of different input data points is proportional

to their difference to the agent’s internal value x.
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Figure 3.2: Absolute point change to the agent’s usage rate for different learning rates with
the same initial value z = 0 given different input datapoints y. Left: absolute point change
as a function of the learning rate a. Given an x value at one extreme and input data at the
other, the maximum change to x is equal to . Right: absolute point change as a function of
the learning rate A.

In fact, an identical picture emerges in the case of a fixed input data point y = 1 that
is incorporated into different internal values z, as shown in Figure 3.3. Generally, given our
EWMA update rule we find that

Ar=2'-z=an+(1l-a)-z—x=a-(n—1x), (3.8)

i.e. the point change to z is always directly proportional to the difference between the agent’s
current usage level z and the input data y. The USM’s individual agent update dynamics
therefore follow a general learning framework that is free from nonlinearities and which, in
the absence of any biasing, has been shown to be equivalent to several other models of neutral

evolution in biology (Blythe, 2007), and whose dynamics are not significantly affected by setting
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Figure 3.3: Absolute changes for the same input data y = 1 for different values of = given a
range of learning rates « (left) and A (right). Given an x value of 0 at one extreme and input
data y = 1 at the other, the maximum change to x is equal to a.

the neutrally copying agents in many different types of structured networks (Blythe, 2010,
2012b, but see Kauhanen 2017).

Due to the complete lack of asymmetries in the neutral evolution condition its underlying
mechanism, often referred to as “random copying”, has scarcely been proposed to be the un-
derlying force of language change, or even cultural change more generally (Mesoudi and Lycett,
2009). Upon numerical inspection, neutral evolution exhibits its characteristic dynamics which
include “large fluctuations and a tendency for an upward or downward trend to reverse one
or more times before an innovative variant goes extinct or wins out” (Blythe and Croft, 2012,
p.285). Blythe (2012a) in particular argues that neutral evolution should in fact be taken as a
null model against which competing accounts of language change should be compared, as a base-
line similar to those underlying the neutral theory of molecular evolution in biology (Kimura,
1983). Apart from using it as such a null condition for the model presented in Chapter 4, I will
also return to an in-depth study of the dynamics of neutral evolution in Section 3.4. But for
now we will focus on replication mechanisms in the USM that actually implement selection of

some kind.

3.3.2 Replicator-neutral selection

While the term selection is often associated with a preference for particular variants, it really
covers differential replication of any kind, and can therefore also be used to implement symmetric
selection functions which are neutral regarding the different variants or replicators. One example
is the case of frequency-dependent selection biases which can be used to systematically favour
variants not based any inherent a priori property but based on their current attested frequency
in the population, a feature which itself changes over time (Boyd and Richerson, 1985). As the

simplest symmetric, frequency-dependent selection mechanism Blythe and Croft (2012) suggest
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the function

fw=u+a-u-1—u) - 2u-1), (3.9)

where values of the parameter a > 0 lead to a boost of variants whose relative frequency is
already greater than 50%, while settings of a < 0 implement selection in favour of any variants
currently in the minority. The two regimes of this non-linear selection function are displayed
in Figure 3.4a, giving a visual sense of the function’s symmetry: mirroring the plots along the
centre point of both axes yields an identical curve, an indication that, mathematically, the
function satisfies the symmetry criterion f(u) =1 — f(1 —u) (Blythe and Croft, 2012).

What is crucial to understand about the USM is that these mapping functions f(.) affect
the selection dynamics only somewhat indirectly. First of all, according to the definitions above
the choice of resolution parameter T' constrains the points in the [0, 1] range at which f(.) is
actually ever evaluated, namely only at the fractions which can be sampled from the underlying
binomial distribution, i.e. {# |n =0...T}. Particularly at low values, T' can therefore have a
drastic impact on the dynamics. To visualise the effect of this parameter, we can determine the
typical change to an agent’s usage rate x by a specific selection function f(.) for different values
of z,T. To do so we first calculate the mean perceived frequency § over all possible sample

outcomes n ~ Bin(T, x),

N3

T
g=> PmTx)- (). (3.10)
n=0

Using Equation 3.8 we can then determine the average change to an agent’s usage level for
some constant learning rate, which is plotted in Figure 3.4b. The first striking observation
is that, for T = 2, the mean expected change Az is 0 for the entire range of values of x,
i.e. the model is equivalent to the random copying of the neutral evolution condition. This
result can be explained by inspecting the mapping functions directly above: with T' = 2, the
functions are only ever evaluated at 0,0.5 and 1, all values for which they are identical to
neutral copying, i.e. where f(u) = u. For higher values of T', however, both regimes exhibit the
expected influence on the agent’s usage rate, with conformity-copying (left panel) decreasing
the usage of infrequent variants while further boosting the frequency of those which are already
used more than 50% of the time, and the opposite for anti-confirmity copying (right panel).
Generally, the higher T, the stronger the impact of the function f(.), since bigger samples allow
more evidence for variation!, a necessary ingredient for differential replication.

Blythe and Croft (2012) report that with values of a > 0 any minority variants are rapidly
eliminated from the population leading to the fixation of just one variant, while values a < 0 give
rise to stable co-existence of all different variants, with the stability of co-existence dependent on
the community size and learning rate of the individual agents (p.286). These two regimes show
that a frequency-dependent selection mechanism of this kind can be used to implement a bias for
reqularisation (as well as de-regularisation) of competing linguistic variants. However, neither

of these two scenarios lead to directed transitions from the introduction of a novel variant to

n particular, less probability mass on the two homogeneous samples n = 0 and n = T to which f(.) does
not apply.
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(a) The frequency-dependent selection mapping function from Equation 3.9 against the baseline
of neutral evolution, f(u) = u, indicated by the dotted line. (i) conformity copying with a = 1:
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(b) Mean expected change to an agent’s usage level z for different values of T, assuming learning
rate A = 1.

Figure 3.4: The dynamics of frequency-dependent selection as implemented in the utterance
selection model through Equation 3.9.
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its complete adoption, as is the case in language change. While we will revisit the mechanism
of regularisation based on innovation rather than selection in a different evolutionary model in
Section 3.4, we now turn to the dynamics of USM configurations that implement asymmetries

of some kind.

3.3.3 Weighted interactor selection

Rather than rely on asymmetries in the replicators (the linguistic variants) that is implied by
language-internal and variant prestige accounts, the more mechanical social accounts discussed
in Section 2.2.5 seek the cause for the preferential spread of linguistic innovations in features of
the social networks, such as differential interaction densities or the skewed influence of specific
individuals or nodes in the network. As discussed above, at least under the assumption of
pure random copying the social network structure alone is not sufficient to alter the dynamics
of neutral evolution to yield reliable directed transitions. The idea of differential individual
prestige or influence however corresponds to a wholly separate mechanism, namely that of
interactor selection, where the asymmetry leading to the differential replication of variants is
not due to the bias function f(.) but instead determined by the matrix H which controls the
weight given to the samples obtained from different individuals in their interactions with others.

By adjusting the values in H accordingly, one can thus create an interaction structure where
the production levels of some group of linguistically ‘leading’ individuals is preferentially im-
itated by another group of ‘followers’, but not vice versa. Proposals of this kind have been
suggested to influence the diffusion of language changes through different adopter group struc-
tures of varying complexity (Rogers, 1962; Milroy and Milroy, 1985; Labov, 2001; Nevalainen
et al., 2011; Kauhanen, 2017). Blythe and Croft (2012) use the utterance selection model
to investigate the quantitative predictions made by some common assumptions regarding the
structure of adopter groups. Initiating only the ‘leading’ group with high usage rates of an
otherwise not established variant, they find that only a highly unrealistic staging of an entire
chain of adopter groups, with the respective sizes of the groups following an exponential pat-
tern, lead to the adoption of the incoming variant. Having exhausted all other mechanisms of
differential replication, they finally turn to the most direct way in which to affect the model

dynamics, namely through a direct asymmetry between the linguistic replicators.

3.3.4 Replicator selection

The most straightforward way to achieve a directed increase of one variant at the expense of
the other is by implementing a bias function which consistently boosts the perceived frequency
of that variant at the expense of all others. In this way, “f(u) > u for all frequencies u between
zero and one, and hence the listener perceives the innovation to be at a higher frequency than
it was actually produced at, and overproduces accordingly” (Blythe and Croft, 2012, p.291).

The simplest asymmetric linear function used by Blythe and Croft,

flw)=u-(1+by), (3.11)
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with a selection bias applied for all b,, > 0, has an interesting property, namely that it is
asymmetric in two ways: not only does it skew the likelihood of adoption towards one of the
two competing variants, the strength with which this bias is applied also increases for higher
frequencies of the innovative variant, as can be seen in Figure 3.5a(i). To confirm their finding
that “an S-shape is easily obtained through replicator selection” (p.291) with little sensitivity
to the precise selection function used, I will also be investigating a second model of replicator
selection that employs an additive instead of a multiplicative bias which exerts an equally strong

bias across the entire trajectory, i.e.

Flu) =u+b, (3.12)

again capped at the maximum value of 1.0, as can be seen in Figure 3.5a(ii). In order to

achieve a comparable bias strength for the two types of replicator selection, for all later figures

b
2

selection at the midpoint as well as (roughly) equal amplification relative to the neutral evolution

the respective bias values will satisfy b, =

, a choice which results in equivalent strength

condition f(u) = u across the entire trajectory.

From these bias functions f(.) we can again derive the average perceived frequency for dif-
ferent settings of T" as well as the consequent expected change to the agents’ usage frequencies,
which are shown in Figure 3.5b. The asymmetry of replicator selection is immediately evident
from the fact that the expected change is always greater than zero, meaning that the incoming
variant is boosted across the entire frequency range. By solving the differential equations defined
by these functions we can also calculate the average trajectories that would be produced as the
selected for variant spreads through the population, which are shown in Figure 3.5¢ (for an in-
depth explanation of the approach see the appendix to Blythe and Croft, 2012, mathematical

derivations of the results for both models of replicator selection are provided in Appendix A).

While for both models of selection the average changes to z at T = 2 result in growth
patterns that are equivalent to the canonical s-shaped logistic function, the relative intensity of
selection across the trajectory diverges for higher values of T'. For the original, multiplicative
bias model shown in Figure 3.5¢(i), increasing the sample resolution leads to an extended period
of initial growth in which the rate of change increases past the halfway mark at which simple
logistic growth characteristically starts to slow down again, making the growth pattern more
and more exponential as the sample resolution 7" — oco. Consequently, this selection function
predicts the maximum rate of growth, indicated by the peak in Figure 3.5b(i), to occur later
during the trajectory for higher settings of T, along with relatively greater levels of selection

and thus faster transitions given the same bias strength b,,.

A different picture emerges for the additive bias, as shown in Figure 3.5b(ii). While the
overall selection pressure imposed by the bias function also increases for higher 7', the pattern
of selection stays symmetric around the mid-point, with a relative acceleration of transitions
achieved by a greater degree of selection in the other frequency regions. For T' = 2 as well as
T = 3 the selection dynamics can be shown to be identical to logistic growth as displayed in
Figure 3.5¢(ii), with growth rates of 2b, and 3b, respectively (see Appendix A). No general

solution for the average expected trajectory is provided here but, since the function describing
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the mean change to x shown in Figure 3.5b(ii) approaches a constant value throughout the
interval (0, 1) as T increases, we should expect the dynamics to start resembling those of steady

linear growth as 7' — oo.

With this analysis we come to the end of an overview of some of the most relevant results that
have been obtained from the computational version of the Utterance Selection Model originally
due to Baxter et al. (2006). Starting from an investigation of its baseline learning dynamics,
which were shown to implement a model of neutral evolution, we recapitulated the survey
of pressures provided in Blythe and Croft (2012) to determine which evolutionary replication
mechanisms could lead to directed, s-shaped trajectories. Blythe and Croft concluded that only
an inherent asymmetry between variants, implemented as a preference for the innovative variant
that is shared by the majority of interacting agents, can reliably produce directed transitions.
This conclusion can help us rule out some of the proposed pressures which, while not completely
ineffective, do not appear to have the necessary leverage to be the main driving force behind the
adoption of individual language changes, at least as far as one accepts the model’s underlying
assumptions regarding the behaviour of individual agents and their interactions. But, curiously,
the result does not speak to the two biggest contenders to explaining language change: both
language-internal and social, variant prestige accounts are based on an underlying preference for
an innovative over an outgoing variant, as implemented by a replicator selection bias. While this
last Section showed how slightly different assumptions regarding the strength of the asymmetry
and force of the selection pressure across different attested frequencies of the variants can yield
slightly different predictions regarding the resulting trajectories, a look at the quantitative
investigations of language changes presented in Chapter 2 indicated that the empirical data
might be too sparse to make any strong claims or perform conclusive comparisons between
models and data (although see Altmann et al., 2013; Ghanbarnejad et al., 2014).

Despite the fact that the USM features a larger number of parameters than most other
models of language evolution, every single one is both transparent and grounded in the USM’s
dedication to a concrete evolutionary framework (Croft, 2000). The sample resolution parame-
ter T, for example, while unusual in terms of its absence from other models of language change,
is well-motivated by the model’s strict separation of innovation and selection pressures. The
persistence with which the model has been analysed, both via analytical methods and numeri-
cal simulation, means that the meaningfulness of its dynamics (or lack thereof) with regard to
different parameters and parameter combinations are much better understood than for most
other models (Blythe, 2007; Baxter et al., 2009; Blythe and Croft, 2009; Blythe, 2012a; Baxter
and Croft, 2016; Michaud, 2017).

Before I go on to expand the studies of the USM through another selection mechanism
intended to tackle the question of how asymmetries between variants might emerge out of the
replication dynamics itself, I will first introduce a simpler, yet related, modelling framework
that has also been used to investigate s-shaped curves, and which will also resurface again in
Chapter 7.
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(c) Typical average trajectories resulting from applying the mul-
tiplicative and additive replicator biases. For higher T" the mul-
tiplicative bias extends the initial period of exponential growth,
while the additive bias remains symmetric around the mid-point
with fast growth from the very start of the trajectory.

Figure 3.5: Analysis of the selection dynamics for the original, multiplicative (left column) as
well as additive (right column) replicator selection bias.
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3.4 A Markov chain model of neutral evolution

One formal model of neutral evolution (i.e. copying of linguistic traits in the absence of any
replicator or interactor selection) that makes particular reference to the temporal dynamics of
changes is Reali & Griffiths model of regularisation by Bayesian learners (2009; 2010).

At its core, Reali and Griffiths present a model of frequency learning by Bayesian inference.
In their particular framing, an individual is trying to infer the relative frequencies 6; € [0, 1] of
different variants i = 1...n based on some input data as well as prior beliefs about what the
true values of 6; are likely to be. These prior beliefs act as inductive biases and are captured
by the prior, represented by a probability distribution f (5) defined over all possible values of g.

For the simple case of two competing variants, even though the individual is technically
inferring two complementary relative frequencies 6,65, we can limit our analysis to the prob-
lem of inferring 61, since trivially s = 1 — 6;. The model can easily be extended from the
binomial (two-variant) outcome to multinomial outcomes, i.e. with three or more compet-
ing variants but, without loss of generality, I will limit the demonstration to the case of two
competing variants. To simplify notation I will henceforth also simply write 6 to refer to 6.

While any continuous probability distribution over the interval [0, 1] could serve as a prior,
the authors choose the Beta distribution, whose probability density function is defined as

flz;a,8) = (1 - x)ﬁ_l , (3.13)

B(a, )
where B(.) is the Beta function.

Because we are interested in a neutral model that is not a priori biased in favour or against
either of the competing variants, the shape of the prior distribution over the support will have
to be symmetric: the prior probability density of 6 taking a certain value, f(6), should be the
same as its probability of taking the complementary value f(1 — ). This can be achieved by
setting the Beta distribution’s two shape parameters «, 8 to the same value. Consequently the

authors use prior distributions of the form
a a
O ~ Beta(—, =) . 3.14
€ a( 2 ’ 2 ) ( )

with just a single parameter, «, which controls the degree of regularisation. Figure 3.6 shows
the effect of this parameter on the prior distribution. For a value of § = 1 the prior distribution
is uniform: not only is the individual not biased towards any of the variants (the distribution is
symmetric), their estimate of the underlying frequency 6 is not biased towards any particular
frequency region in [0, 1] either. This isn’t the case when § # 1: for values < 1, the inference
of 0 is explicitly geared towards more extreme relative frequencies closer to 0 or 100% usage —
the model implements a regularisation bias. The opposite is the case when > 1 which favours
values of € that are closer to the 0.5 mark. Agents employing such a setting are inclined to
infer more mixed usage of the competing variants than suggested by their learning data alone.

The particular choice of prior distribution (Beta or Dirichlet for the multinomial case) has

elegant mathematical properties: when a learner receives an input sample of size N, where
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Figure 3.6: Examples of Beta distribution priors and posteriors with three different levels of
the regularisation parameter a/2.
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0 < x < N of the tokens were instances of the variant whose frequency # they are trying to
infer, then the posterior is again a Beta distribution, namely
@

2 (3.15)

O|r ~ Beta(x + %,N —xz+

Following this inference step, there is still the question of how the posterior distribution

is translated into actual production behaviour, which provides us with testable predictions of
the model. Here, I will consider three different ways for an individual to generate their own
productions x’ based on the learning sample x that they themselves received. The first two
were also treated by Reali and Griffiths (2009), the third covered by Ferdinand (2015, p.156):

Sampling from the posterior: when generating new productions directly from the posterior,
the probability that a sampling learner produces a particular variant z’ times out of a
total of N productions is distributed according to a Betabinomial distribution with the

same parameters as the posterior distribution in Equation 3.15, i.e.

X’\mwBB(:c—i—%,N—x—i—%,N). (3.16)
Adopting the average of the posterior: instead of sampling from the posterior for every
production, an individual could deterministically select the mean of the posterior distri-

bution, which is
T+ 5

N+a

0 = (3.17)
The productions of a Bayesian learner who deterministally chooses the parameter 0 are

then distributed according to a Binomial distribution,
X'|z ~ Bin(N, ) . (3.18)

While Reali and Griffiths (2009) call this a ‘MAP’ learner, I will refer to this mechanism

of selecting a hypothesis as the averager strategy.

Adopting the mode of the posterior (maximum a posteriori): The posterior distribu-

tion’s mode, where the probability density function is highest, can be found at

r+g—1

_— 3.19
N+a-2" ( )

Orap = arg max f0lz) =

except when x = 0 or x = N, in which case the resulting posterior Beta distribution
is j-shaped, with the mode falling on 0 or 1, respectively. When such a MAP learner
has adopted the mode as their production probability then their own productions are

distributed according to a Binomial distribution with p = 0 4p, i.e.

X/|.%‘ ~ Bm(]\ﬂ QJWAP) . (320)

One way in which the impact of these different ways of sampling data (either directly from
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the posterior or by first deterministically selecting a ) can be exemplified is by visualising the
average production of the different learners based on the input sample they just observed. This
data is shown in Figure 3.7, which maps the different possible input distributions (along the x-
axis) to the average output productions =+ their standard deviation. The identity function x = y,
equivalent to pure probability matching, is shown for reference. In this graphical representation,
a mapping function that leads to increased regularisation should map input proportions between
0 and 50% to even lower output proportions, while input proportions > 50% should yield output
proportions even closer to 100%.

What is evident from Figure 3.7 is that the only method which on average leads to reg-
ularisation at every iteration is the mazimum a posteriori method with @ < 1. None of the
other mapping functions are consistently regularising. Rather, as was pointed out by Ferdinand
(2015, p.176) both data production methods discussed by Reali and Griffiths rely on mecha-
nisms that merely increase the sample variability in either direction, until the system drifts into
a state of categorical presence of one variant only. This contrasts with the regularising map-
ping functions of the Utterance Selection Model shown in Section 3.3.2, which systematically
increase the proportion of whichever variant is currently more prevalent. We will return to a

critique of the present regularisation model in the next section.

3.4.1 Representing Bayesian lterated Learning as a Markov chain

While the model presented above captures frequency learning by Bayesian inference within one
individual, it is interesting to ask how the productions of a sequence of such learners would
develop over time when one individual’s output serves as the learning input of another. To do
this, we can analyse the interactions between repeated learning input and production output
as a Markov chain, a simple modelling tool for understanding systems which can be in one of
a finite number of states that they switch between probabilistically.

More formally, a Markov model can be defined by specifying conditional transition prob-
abilities P(X;y1 = 2/|X; = z) between a number of discrete states x,2’ € S, which we call
the Markov model’s state space. The Markov model is completely described by a function
P:8 xS — [0,1] where the transition probabilities out of any given state have to sum to one,
i.e.

Y PXipn=2|X,=2)=1 VzeS. (3.21)
z'€S

In the case of the Bayesian inference model above, there are two equally valid ways in which
it could be translated into a Markov model, based on how the state space S is construed.
The logical alternation between learning parameter § and production of x tokens of a specific
variant out of IV total productions allows for both a characterisation of the Markov model as
transitioning from one individual’s posterior distribution f(f|x) to another or, alternatively,
from one individual’s number of productions x to the next.

To define the state space, we have to set a fixed size of productions N, from which a new
learner has to infer the underlying production frequency 6.

An example of such a transition matrix for N = 10, = 0.5 is found in Table 3.1. This
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(b) Input-to-mean output mapping when selecting the average of the posterior as the hypothesis.
As pointed out by Ferdinand (2015), the mean output of this model is identical to that of the
sampler shown above, only that the averager exhibits different amounts of sampling error about
this mean, depending on the input frequency.
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(¢) Input-to-mean output mapping when selecting the mazimum of the posterior as the hypoth-
esis (MAP). With § = 1 (middle panel) this strategy is identical to pure frequency matching,
while MAP with § < 1 (left panel) is the only strategy that, on average, leads to regularisation
in one iteration.

Figure 3.7: Input to mean-output mapping for the three ways of producing data from the
posterior and three levels of the regularisation parameter. The three settings of a capture
inductive biases ranging from regularisation (§ = .25, left column) to de-regularisation (& = 5,

2 2 =
right column).
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particular matrix is created based on the assumption that learners sample their data directly

from the posterior distribution they computed from the input they received.

Compare this to Table 3.2, which is based on a chain of learners that deterministically
select the mode 6p;4p of the posterior distribution f(f|x) as their estimate of . Their data
production probabilities are consequently distributed according to a Binomial distribution with

p = 0pap, so the rows of this transition matrix are equivalent to this Binomial distribution.

=0 2'=1 2=2 2=3 =4
rz=0 08379 0.1156 0.0347 0.0099 0.0019
rzr=1 03756 0.3005 0.1932 0.0985 0.0322
r=2 01352 0.2318 0.2659 0.2318 0.1352
r=3 0.0322 0.0985 0.1932 0.3005 0.3756
rz=4 0.0019 0.0099 0.0347 0.1156 0.8379

Table 3.1: Markov chain transition matrix for the Bayesian Iterated Learning model with NV = 4
and «/2 = 0.25. The rows represent the probabilities of producing any of the given samples,
assuming that the production is sampled from the posterior.

=0 2'=1 2/=2 2'=3 a2 =4
z =0 1.0000 0.0000 0.0000 0.0000 0.0000
rz=1 0.6561 0.2916 0.0486 0.0036 0.0001
rz=2 0.0625 0.2500 0.3750 0.2500 0.0625
rz =3 0.0001 0.0036 0.0486 0.2916 0.6561
r =4 0.0000 0.0000 0.0000 0.0000 1.0000

Table 3.2: Markov chain transition matrix for the Bayesian Iterated Learning model with NV = 4
and «/2 = 0.25. The rows represent the probabilities of producing any of the given samples,
equivalent to Bin(z'; N,p = 0aap)

The system that we describe by specifying the transition probabilities between individual
states is a random process called a Markov chain. Stochastic systems of this kind are said to
obey the Markov property, which means that the probability of entering a particular state only
depends on the system’s current state, but not on any other prior states or state sequences that
preceded the current one. This image of a chain maps neatly onto the Iterated Learning model,

where every new learner receives input from their parent generation who they then replace.

Importantly for us, the characterisation of a stochastic system as a Markov chain allows for
straightforward analyses of different kinds. For example, assuming that our system would run
indefinitely, we can calculate the probability of this infinite chain of states to occupy a particular
state in the limit. The so-called stationary distribution m of a Markov chain transition matrix T'

is a probability distribution over its states .S, i.e. it must satisfy

720, mo=1. (3.22)
ses

In mathematical terms, the stationary distribution has the property that performing another
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iteration of the chain must map the distribution onto itself, i.e.

m=m-T. (3.23)

Based on these definitions, it is possible for a given Markov chain to have more than one
stationary distribution. This is generally only the case when the state space consists of sub-
partitions that cannot be reached from each other, as is the case when there is more than one
absorbing state. The stationary distributions of the different systems whose input/mean-output
mapping we visualised previously in Figure 3.7 are shown in Figure 3.8.

The stationary distributions confirm that the parameter o indeed works as intended: when
a/2 < 1, the chains spend most of their time in the extreme states corresponding to categorical
usage of either of the two competing variants. When «/2 > 1, on the other hand, the chains
mostly consist of learners who mix the variants evenly. The behaviour with intermediate values
a/2 = 1 falls in between, with the exact distribution also depending on the type of learners.

The MAP learner, not considered in the original Reali and Griffiths papers, deserves special
attention: as already hinted at above, only this learning strategy looks like a proper requlariser
in the sense that an input proportion will, on average, result in an output proportion that
is in fact more regular than the input. It is also the only learning strategy which, for any
a/2 < 1, does not introduce variation when there isn’t any in the input, i.e. learners who receive
homogeneous input will never spontaneously introduce variation into their output. Figure 3.8c
shows that, as a consequence, chains of such learners will end up in either of two absorbing

states corresponding to categorical usage of a variant, and remain there indefinitely.

3.4.2 Neutral evolution and s-shaped curves

So far our analysis of the stationary distribution limits us to describing the expected state of
a model, but abstracted away from time. One particular claim of Reali and Griffiths (2010)
concerning temporal dynamics is that even the neutral evolution model described by Bayesian
regularisers will produce s-shaped curves. While we would not expect completely symmetric
replication such as produced by neutral evolution to produce particularly directed transitions,
they argue that this depends on which data is considered. In particular, since historical linguists
only (or at least primarily) describe changes which have gone to completion, our assessment of
whether a model produces s-shaped curves should equally be limited to data of this kind. They
consequently go on to analyse only those chains that start off in a state where the first generation
uses one of the competing variants categorically, while the last ends up in the opposite state
where its productions contain only the other variant.

In order to get a better understanding of the underlying dynamics of our Markov model, we
will therefore need to switch to an analysis that allows us to condition the Markov chains to
be in specific states at specific points in time. One tool to do exactly this are Hidden Markov
Models (HMMs). As the name suggests, HMMs are closely related to the Markov models
described above. While in ‘normal’ Markov chains the state sequence is directly visible to the
observer, Hidden Markov Models allow us to specify a certain level of uncertainty over the

model’s state at any given point in time. Of particular importance to is that, instead of just
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Figure 3.8: Stationary distributions of the Markov chain transition matrices.
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randomly generating state sequences, HMMs allow us to make probabilistic inferences about
the most likely states or state sequences that our model is likely to be in.

In what follows, T used R’s HMM package (Himmelmann, 2010) to both replicate and extend
the results reported in Reali and Griffiths (2010). Firstly, Figure 3.9 shows a replication of the
original analysis from their paper. All four subplots show the state probability distribution for
Markov chains of length 50 where the input data presented to the first generation consisted
of 50 instances of only one variant. The probability distribution is represented as a heat map
where, for any specific generation, darker colors indicate a higher probability of being in a state
at that time. The probabilities of all states per generation sum to 1. The particular probability
distributions shown here were calculated for chains of learners which use the inferred mean 6 of
the posterior distribution to sample data for the following generation, but results for learners
sampling directly from the posterior are qualitatively similar.

Subfigures (i) on the left show the development of the chains when conditioning on this
initial state only. These two plots, which differ only in their setting of «, neatly highlight the
contrast between the two different regimes of the regularisation parameter alpha: in Figure 3.9a
we set a = 0.5, corresponding to regularisation. In this setting, chains of learners are drawn
to produce either of the two variants (near-)categorically. Note that, even though the system
starts off with only one variant as its input, the chance introduction of tokens of the competing
variant leads some chains to eventually regularise in the ‘other direction’: whenever tokens of
the other variant accumulate through random sampling, the chains start to be equally drawn
towards the other fully regular state, i.e. categorical usage of the formerly unattested variant.

While even after 50 generations the majority of chains is still at or near the usage frequency
that was presented to the first participant, increasingly chains will start to ‘bunch up’ against
the top-most state corresponding to categorical usage of the other variant. Indeed, in the limit
we should expect the the right-most ‘slice’ of Figure 3.9a(i) to become completely symmetric
around the halfway-mark, as it approaches the Markov chain’s stationary distribution shown
above in Figure 3.8b(i).

In contrast, the left panel of Figure 3.9b with o« = 10 represents the de-regularisation regime,
where individuals prefer to use both variants equally. This is borne out by the fact that chains
of such learners are quickly drawn towards the middle states, indicating mixed usage.

Subfigures (ii) on the right-hand side show the expected distribution of states when condi-
tioning on both the initial and final states of the chain, where the last individual only produces
tokens of the competing variant that was not attested in the first generation’s input data. While
the probability distribution over possible states at most intermediate generations is extremely
wide, Reali and Griffiths point to the average trajectory (shown in white) that is calculated by
computing the average state of all chains at any given generation. They point out that, intrigu-
ingly, the shape of this average trajectory is dependent on the regularisation parameter «. In
particular, the model produces s-shaped trajectories exactly when chains are geared towards
regularising input, which experimental evidence suggests is in fact a feature of human language
learning (Hudson Kam and Newport, 2005; Reali and Griffiths, 2009; Smith and Wonnacott,
2010).

It is crucial to point out here is that this average of all transitions is not necessarily rep-
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Figure 3.9: State probability distribution for all Markov chains of length 50 where the input
to the first generation consists of tokens of only one variant. The dashed white line indicates
the trajectory through the ‘average’ states that the chain is in at any given point in time.
(1) conditioning on the first generation’s input only (%) conditioning on both the first and final
generations’ data.
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resentative of the model’s typical transitions (Blythe, 2012a). In order to get an idea of what
individual trajectories of Iterated Learning chains actually look like, we can simply generate
state sequences of the underlying Markov model randomly and filter them according to the
start and end conditions (see Appendix B for the code).

Figure 3.10 shows three randomly generated chains that fulfill both the start and end condi-
tion specified above. The trajectories were generated using exactly the same parameter setting
as the one underlying the s-shaped average trajectory shown in Figure 3.9. Already here we
can see that individual trajectories are much more noisy, less directed and s-shaped than the

numerically computed ‘average transition’ above suggests.
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Figure 3.10: Three randomly generated Markov chains initiated at 0/N and terminating at
N/N after 50 iterations. (4)learners sampling from the posterior distribution p(é|z). (4) learn-
ers accepting the mean of the posterior as their hypothesis for 6.

What is also evident is that not all of the ‘transitions’ are actually of the length that we
specified: many chains either remain at the initial state for some time, or otherwise converge
on categorical usage of the other variant early and remain there until the remaining generations
have passed. This points to another more general problem, namely that termination after
exactly 50 generations is not actually well-motivated. To understand the dynamics of this model

even better we should therefore take a closer look at the expected duration of transitions.

Expected number of generations for a transition to complete

In order to get a more accurate picture of the typical trajectory exhibited by regularising
Iterated Leaners, we first need to know the likelihood of a transition completing in a given
number of generations. Figures 3.11 shows both the per-iteration probability as well as the
cumulative probability of a chain of Iterated Learners reaching categorical usage of the initially
non-existent, incoming variant over time.

For the averaging learner with parameters § = 0.25 and NV = 50 as above, the chain is most

likely to first reach categorical usage of the incoming variant at the distribution’s mode after
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Figure 3.11: Probability of transitions from categorical usage of one to categorical usage of
the other variant, for learners accepting the mean of the posterior as their hypothesis for 6.
(i) probability of completing first transition after the given number of generations (%) cumula-
tive probability of having completed at least one transition.

149 generations, while on average the first transition takes 444 iterations to complete.

The distribution of the expected duration of a transition by a chain of learners sampling
directly from the posterior distribution is qualitatively similar. Using the same parameter
settings as above, the most likely and mean duration until completion of the first transition are
87 and 310 respectively).

Average trajectory of transitions that have the exact same duration

As pointed out above, the number of generations until a new variant has fixated isn’t actually
representative of the duration of a transition. Since chains might remain at their initial state
for a few iterations before picking up, or also return back to the initial state before picking up
again. If we are interested in the length of the actual transition (i.e. we only start to measure the
duration of a transition when the new variant is first innovated) the distribution of transition
durations looks quite different, as shown in Figure 3.12.

An immediately obvious difference between this and the earlier distribution of transition
durations in Figure 3.11 is that the cumulative probability in subfigure (i) never reaches 1.
Under Reali and Griffiths (2010)’s original condition on the final state only, which allowed all
possible intermediate trajectories, all chains would eventually reach the target state at some
point.

Not so when conditioning on transitions which have to last an exact number of generations:
Figure 3.12 only considers transitions that, from their moment of actuation, actually reach the
target state without ever ‘failing’ (i.e. returning back to the categorical initial state) in between.
For a chain of learners who take the mean of their posterior distribution as their hypothesised

underlying frequency 6, only about 1.46% of initial introductions of a new, competing variant
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Figure 3.12: Probability of having completed a transition in exactly the number of generations
without ever reverting back to the initial state.
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actually lead to successful transitions without any interruptions.

In terms of the distribution of durations of those transitions which are successful, the number
of generations until completion are expectedly much lower than in Figure 3.11 above. For the
averaging learner, the most like exact duration of a successful transition is much lower at
75 generations, with the mean duration at around 135 generations. For the sampler the values

are even lower (mode 36, mean 58).

Figure 3.13 shows the state probability distribution as well as average trajectory of the
Markov chains which are conditioned on introducing the initially unattested variant in the
very first generation, as well as on only tokens of that variant at the maximum number of
generations (and no earlier), without ever returning to the initial state. Results are shown
for both sampling (Figure 3.13a) as well as averaging (Figure 3.13b) learners for two different
representative durations, the most likely duration of a transition (the mode of the distributions
in Figure 3.12) and the (higher) mean duration. The Figure shows that the average of all
transitions, again indicated by the dashed white line, is actually more like an S bent in the
‘wrong’ direction. In other words, unlike what we find in empirical data on language changes,
some of the slowest rates of growth occur at the mid-point of the change, similar to the average

transition of chains of de-regularising learners shown in Figure 3.9b.

What Figure 3.13 also shows up, however, is that even using this arguably more accurate
conditioning on exact start and end points of the transitions as well as on a more realistic
time scale, the average trajectory is still not an accurate representation of a typical trajectory.
Marked by the white dots is one of the most likely individual trajectories that the Markov chain
passes through on its way from the initial to the final state. This trajectory is determined
using the Viterbi algorithm (Jurafsky and Martin, 2008), a dynamic programming algorithm
for Hidden Markov Models that allows one to infer the most likely sequence of states given a
sequence of observations which only reveal partial information about the likely underlying states.
The algorithm can be used for our purposes by providing it with a sequence of observations
that indicate categorical usage of one variant at the start and categorical usage of the other
at the end of the sequence, with a fixed number of observations representing an unspecified
degree of mixed usage in between (the source code as well as a more detailed description of the
approach can be found in Appendix B). The sequence of underlying state transitions which has
the highest overall likelihood of all possible paths given these observations is one that rapidly
crosses the mixed-usage area in 10-15 generations, and remains hovering at near-categorical
usage of either variant for the rest of the time. (It should be noted that the exact position of
this fast transition along the time axis is irrelevant, in fact all transitions parallel to the one
indicated by the dots, i.e. ones with the same shape but actuating at earlier or later generations,

have the exact same probability of occurring.)

To finish our study of the individual transitions generation by this model, we randomly
generate a final set of transitions, limiting ourselves to only those that first complete after
ezactly the specific number of generations, i.e. we exclude ones that reach a frequency of 50
of the incoming variant early and stay there. Three such example transitions can be seen in
Figure 3.14.
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(b) Results with learners accepting the mean of the posterior as their hypothesis for 6, most
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Figure 3.13: State probability distribution for all Markov chains exhibiting a transition with
the exact same duration. The dashed white line shows the average trajectory, while the white
dots indicate one of the most likely transition paths. The duration is set to be equal to (%) the
most likely duration of a transition and (if) the average duration of all completed transitions
respectively, as computed for parameters N = 50, « = 0.5.
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Figure 3.14: Three randomly generated transitions which first exhibit categorical usage of the
new variant exactly after the average number of generations it takes a chain to complete a
transition. The duration of transitions is equal to (%) the most likely and (i) the average
duration of a transition given the parameter settings (N = 50, = 0.5).
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3.4.3 Effect of sample size on the duration of transitions

No matter what the shape of the average trajectory might be, for the sake of cross-validating
the general results of the neutral evolution models as implemented here as well as by the
Utterance Selection Model, we can compare the two models’ predictions regarding how the
expected duration of transitions develops as a function of the ‘population size’.

While in the Utterance Selection Model the ‘population size’ refers explicitly to the size of
the speech community (i.e. it is a measure of the number of interacting individuals), Reali and
Griffiths are more implicit about the precise meaning of their model parameter N. In Reali
and Griffiths (2010) they show that a chain of learners employing a specific sample size N
that accepts the average of the posterior as their hypothesis for the underlying frequency @ is
identical to the Wright-Fisher model of neutral evolution with symmetric mutation rates, an
equivalence that will be discussed more in-depth in Section 6.3.1. Taking the equivalence of
these two models literally would mean that the parameter NV in the present model corresponded
to the population size of a group of Bayesian learners, each of which uses either of the variants
categorically, with the probability of adopting either variant given by 6.

Another way to construe the meaning of parameter NV corresponds to how it is mapped onto
an Iterated Learning experiment on humans in Reali and Griffiths (2009). Here, the model is
fit to a chain of single individuals, each of which first receives and then produces a sample of
N tokens. While not exactly specifying a feature of the individual, the function that N fulfills
in this context is to control the resolution at which the data is presented to and produced by
individual participants in the chain. In this sense, the parameter fulfills a function very similar
to the T parameter of the Utterance Selection Model described above.

On the other hand, the fact that the model does not allow for continuous updating of the
internal representations once they are acquired, but is instead based on a one-time learning
event of sample size N, means that the set of possible posterior distributions p(f|z), as well
as the resolution of possible values of 6 for strategies that adopt one value deterministically, is
completely constrained by IN. As a consequence, the parameter inadvertently acts as something
like a memory capacity of the individual which, unlike the USM’s sample resolution T, also limits
the individual agents’ representational resolution of the frequency distribution they are trying
to acquire.

Whichever way the parameter is to be construed, its setting does not just affect the likelihood
of transitions occurring, but also the transitions’ duration and shape. The parameter’s effect
on the average as well as most likely duration of completed transitions in chains of learners is
shown in Figure 3.15. In all cases, N shows a linear relationship with the time until fixation
for all measures with varying slopes, a result that is in line with findings for expected diffusion

times obtained from other general models of neutral evolution (Kimura and Ohta, 1969).

3.4.4 Summary

To complement the study of various different replication regimes implement in the USM frame-
work earlier, I presented a replication of Reali and Griffiths’s Markov model of neutral evolution

with symmetric innovation, a model that has been used to make concrete claims about the possi-
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Figure 3.15: Mean and mode of the duration of transitions as a function of the parameter N,
with a = 0.5.

bility of s-shaped transitions in the absence of asymmetry between variants (Reali and Griffiths,
2010). However, neither the dynamics of individual transitions, nor a closer investigation of the
average trajectories under different conditioning assumptions suggests that this model of neutral
evolution based on regularising Bayesian learners exhibits curves that are particularly directed,
instead producing noisy transitions with frequent reversals and restarts. Also, in agreement
with other models of neutral evolution, the expected duration of a transition from categorical
use of one variant to categorical use of another increases linearly with the population/memory
size parameter. Another important conclusion regarding modelling more generally is that, when
one is interested in the temporal dynamics of a system it is indispensable to look not only at
the end states or average dynamics as a shortcut, but that a more exhaustive analysis of the

actual dynamics and typical transitions is required.

3.5 Trend-amplification and momentum-based selection

The literature summarised above in Chapter 2 as well as the pressures investigated in this chap-
ter cover the bulk of the established accounts and theories about language change. While the
direct comparison of different pressures in the Utterance Selection Model just recapitulated in-
dicates that an asymmetry between variants is necessary to account for the directed trajectories
found in language change, a survey of the literature shows that there is no universal agreement
on where exactly those asymmetries should be found. Adaptive pressures, most of which can

be characterised as being language-internal, provide good explanations of the macro-level pat-



74 CHAPTER 3. MODELLING LANGUAGE CHANGE

terns of language change found cross-linguistically, but they are subject to a methodological
flaw known as the actuation problem. While general, universal pressures can be invoked to
account for universal properties of human languages, they fail to explain why some linguistic
features are only selected for occasionally in specific languages, thus leading to the actuation of
particular language changes. In other words, none of the selection mechanisms investigated so
far offer a theory of how asymmetries could emerge spontaneously and sporadically, as appears
to be the case in language change. The remainder of this thesis is dedicated to the exploration
of a relatively novel selection pressure that was briefly alluded to previously, namely that of
trend amplification by the individual. In the spirit of an exhaustive model comparison, the next
chapter will investigate the dynamics of such a mechanism, implemented as a momentum-based

selection pressure within the Utterance Selection Model.
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The contents of this chapter are published in:
Stadler, Kevin, Richard A. Blythe, Kenny Smith and Simon Kirby, 2016. Momentum in

language change: a model of self-actuating s-shaped curves. Language Dynamics and
Change 6(2): 171-198. doi:10.1163/22105832-00602005

4.1 Introduction

Human languages are a prime example of a culturally evolving trait: they are made up of
socially learned conventions which are constantly being replicated, and exhibit great diversity
across the globe (Evans, 2009). Important aspects of the dynamics of language change are well-
understood. Firstly, language change is sporadic (de Saussure, 1959; Labov, 2001). Of all the
conventions that make up a single language, at any given point most of them are not undergoing
change, but are replicated faithfully, from basic word order patterns down to the pronunciation
details of individual words. Languages are transmitted robustly over many generations, a
necessary requirement for their use as a tool for communication (Lewis and Laland, 2012).
Secondly, when a convention does change, individuals will gradually replace an established
variant with a new variant. This gradual replacement exhibits directed transitions in the form
of s-shaped curves such as the one shown in Fig. 4.1, akin to the patterns of logistic growth
found in biological evolution (Bailey, 1973; Altmann et al., 1983; Kroch, 1989b; Denison, 2003;
Blythe and Croft, 2012)!. This similarity to the signature of adaptive selection in biology is
puzzling (Labov, 2001, ch.1). Linguistic conventions are arbitrary, which means we should not
expect an inherent advantage in particular linguistic variants, such as which basic word order
is used by a language, or how exactly a distinctive phonemic segment is pronounced (as long
as it maintains its contrastive function). How and why would an entire population of speakers

go about replacing an existing convention with a different one “to say the same thing”?

4.1.1 Language-internal accounts

In order to explain why languages change, many studies have attempted to pin down the causes
of individual changes by systematically comparing the states of the languages prior to and after
a change (Hockett, 1965; McMahon, 1994). While many of the earliest such studies would at-
tribute change to the gradual accumulation of performance and transmission errors alone (e.g.
Jespersen, 1922; Hockett, 1958), the generativist paradigm with its focus on the language acqui-
sition device shifted the attention to child-based language change. Studies of language change
in the generative tradition trace changes back to the re-ordering or simplification of a language’s
grammatical rules (Kiparsky, 1968; Wang, 1969; Bailey, 1973; Lass, 1980; Vennemann, 1983),

IWhile the notion of ‘s-shaped curves’ is notoriously ill-defined, for the purposes of this paper it will suffice
to use Blythe and Croft’s definition as any directed trajectory that does not feature “large fluctuations and
a tendency for an upward or downward trend to reverse one or more times before an innovative variant goes
extinct or wins out” (2012, p.285).
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Figure 4.1: Competition between two syntactic patterns of yes/no questions, as observed in a
corpus of Middle English writing (Ellegard, 1953). The established question syntax (e.g. “Went
he?”) was gradually replaced by its modern variant (e.g. “Did he go?”) along an s-shaped
trajectory.

typically assumed to be due to children’s reanalysis of linguistic parameters based on their lim-
ited linguistic input (see Kroch (2001) and Foulkes and Vihman (2013) for reviews concerning
syntactic and phonological change, respectively). Rather than characterising change as the re-
sult of imperfect transmission, a more recent strand of research regards language as a complex
adaptive system which evolves to fulfill the communicative needs of its speakers, while at the
same time adapting to the constraints imposed by their learning mechanisms (Kirby, 1999;
Steels, 2000; Griffiths and Kalish, 2007; Beckner et al., 2009).

What unites these language-internal accounts is that they all rely on a qualitative difference
between the language states prior to and after the change. This difference can be based on
a variety of factors, such as the languages’ expressivity, processing efficiency, or simply their
stability with respect to error-prone language acquisition. Within historical and variationist
linguistics such explanations of language change have long been criticised on the basis that
they overpredict change (de Saussure, 1959; Greenberg, 1959; Weinreich et al., 1968; Lass,
1980; Ohala, 1989; Croft, 2000; Labov, 2001; Winter-Froemel, 2008). In their seminal paper,
Weinreich et al. succinctly summarised the issue and coined it the actuation problem: “Why
do changes in a structural feature take place in a particular language at a given time, but not
in other languages with the same feature, or in the same language at other times?” (Weinreich
et al., 1968, p.102).

In other words, language-internal pressures by themselves do not account for the sporadicity
of language change: many non-adaptive or suboptimal structures that are claimed to have been
selected against in one language will happily persist in other languages — and when they finally
do change, language-internal accounts often offer no explanation of what triggered the actuation
of the change (de Saussure, 1959; Postal, 1968; Ohala, 1993). While language-internal factors
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offer good predictions of which changes are more likely to occur than others (Jaeger and Tily,
2010; Wedel et al., 2013), they do not explain when or why the stable transmission of language
suddenly caves under functional pressures when it does. To account for the sporadic nature
of language change, many have argued that it is not enough to rely on intra-linguistic factors

alone.

4.1.2 Social accounts

Sociolinguistic research of the past five decades has shown that innovations do not spread uni-
formly across a given speech community, but that the progression of change is stratified based
on factors such as a speaker’s age, ethnicity, or socio-economic status (Foulkes and Docherty,
2006; Tagliamonte, 2012). Social accounts hold that social features of linguistic variants, rather
than their inherent linguistic character, are responsible for driving language change (Sturtevant,
1947; Croft, 2000; Labov, 2001; Croft, 2006). Social accounts of language change are evolution-
ary in nature: they decouple the generation of wvariation from the process of selection which
leads to the diffusion of variants through a speech community. The underlying mechanisms,
however, are very different from biological evolution. While the generation of new variants is
assumed to be driven by linguistic or functional factors, social accounts attribute the ultimate
selection of variants to extra-linguistic social factors (Ohala, 1989; Croft, 2000; Labov, 2001;
Stevens and Harrington, 2013). The ‘division of labour’ between language-internal and social
pressures in this approach can simultaneously account for the arbitrary adoption of one linguis-
tic convention from the pool of variants over another, while at the same time explaining the
crosslinguistic distribution of linguistic features which reflect functional pressures.

Recent work on a mathematical model of language change suggests that only the presence
of a bias which favours the replication of a newly incoming variant can reliably reproduce
the s-shaped transitions observed in language change (Blythe and Croft, 2012). While this
mechanism, known as replicator selection, is in principle also compatible with language-internal
biases, the authors eschew this conclusion. In line with social accounts of language change
they conclude instead that it is the social prestige of a new variant that is responsible for its
preferential replication. Importantly, the sociolinguistic use of the term prestige actually refers
to a content bias: rather than preferentially copying variants used by prestigious individuals,
prestige is simply another name for a bias that, while social in origin, is actually inherent to the
linguistic variant (Sturtevant, 1947; Labov, 2001). Crucially, social accounts do not solve the
underlying logical problem of how a population would agree on the selection of a new variant
if there is no objective advantage to that variant. The choice of the population to attach
preferential prestige to some variant is as arbitrary and requires just as much explanation as
the population’s increased use of one linguistic variant over another. Because variant prestige
is not accounted for within the theory (Meillet, 1926; Labov, 2001) and can only be attributed
post-hoc (Sankoff, 1988; Trudgill, 2004; Maegaard et al., 2013), social accounts are typically
unable to make a priori predictions about whether particular changes are likely to happen or
not. If we saw competing variants as completely identical in terms of both their linguistic and

social value, how could directed transitions come about? To address this question, it is useful
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to consider ideas from the wider domain of cultural evolution.

4.1.3 Replicator-neutral accounts

The evolutionary approach to language variation and change outlined above has also been
adopted widely to study processes of cultural change more generally (Boyd and Richerson, 1985;
Mesoudi, 2011). Interestingly, even though replicator-neutral accounts — where individuals have
no inherent preference for any of the competing variants — have been studied extensively in the
context of cultural evolution (Bentley et al., 2004, 2007), such models have received relatively
little attention in the study of linguistic change (e.g. Trudgill, 2008; Baxter et al., 2009).

One of the attempts to build a bridge between general models of cultural evolution and
the dynamics of language change is Reali and Griffiths (2010). Starting from a model of pure
neutral evolution by random copying — where individuals replicate the different variants propor-
tionally to their current frequency — the authors add what they frame as an inferential bias for
regularisation. They show that the trajectories produced by this ‘regularising’ neutral model
exhibit s-shaped growth, as long as only those trajectories initiated at 0% use of a novel variant
and terminating at 100% use are considered. Crucially, however, their mathematical model
captures all possible trajectories between those two points, and their result holds only for the
average of all possible trajectories. This idealised trajectory is highly unlike the ‘typical’ transi-
tions produced by their neutral evolution model, which are characterised by a noisy trajectory,
often with many reversals. The strict symmetry of their Markov model also predicts that there
should be as many completed language changes as there are actuated changes that went to
the 50% mark before being interrupted, a situation that does not seem to be the case. These
considerations call into question whether neutral evolution by random copying can provide an
adequate model of the dynamics of language change (Blythe, 2012a).

While in pure neutral evolution models the likelihood of replicating a variant is assumed to be
dependent on that variant’s current frequency alone, another class of replicator-neutral models
that has received increased attention recently considers the effects of temporal information
and memory on the diffusion of cultural traits. Labov (2001) for example suggested that
the systematic incrementation of sound changes across generations could be explained by the
notion of age vectors. He hypothesises that, following an initial stage where learners acquire
the average community usage of linguistic variants, adolescents advance their productions in
line with the age stratification of variable usage that can be observed in the population — in
other words, it presumes that youngsters have a bias against sounding outdated. This idea
was taken up by Mitchener (2011), who framed it in terms of prediction-driven instability:
in his mathematical model, individuals are able to observe the usage levels of a categorical
sociolinguistic variable among the ‘older’ and ‘younger’ individuals in the population. New
individuals entering the population then adopt a usage rate according to the predicted future
use of the variants, by extrapolating from the usage levels of the two groups along an idealised
logistic curve. While the model exhibits spontaneous transitions between the two (or more)
competing language states, it produces trajectories that exhibit rapid growth from the onset

of the change, unlike the gradual uptake observed in empirical data such as shown in Fig. 4.1.
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The individuals’ usage rates also remain fixed after they are initally acquired, leaving open
the question of whether the same mechanism could also give rise to directed changes when
individuals adjust their usage rates throughout their lifetime, as has been observed in linguistic
changes (Sankoff and Blondeau, 2007).

Another general model of cultural evolution based on a similar principle is momentum-based
selection (Gureckis and Goldstone, 2009), which we will study more closely in the remainder of
the current analysis. In this model, an individual’s choice between competing cultural variants
is influenced by the variants’ momentum, i.e. by changes to the variants’ frequency of use in the
recent past. Individuals are assumed to be biased towards variants which have recently seen
an increase in their usage rate, and conversely biased against variants that have been adopted
relatively less frequently in the recent past.

Gureckis and Goldstone test their model on a dataset of the frequency of names given to
children in the US over 127 years. Their prediction for the popularity of a name in a given year,
which is based on the name’s long-term popularity modulated by its short-term momentum,
leads to a significantly better fit of the empirical data than the prediction made by pure random
copying accounts which do not incorporate momentum. Importantly, their model was primarily
intended to be fit to empirical data, but not meant as a generative model of individual behaviour.
The authors rule this out, noting that “if rising names are preferred, which in turn causes them
to rise, then a momentum bias might quickly lead to convergence on a single token” (p.668).
They regard this as a negative property of the model, as they are interested in mechanisms that
exhibit cycles in the popularity of traits, such as found in the realm of fashion (Kroeber, 1919;
Berger and Le Mens, 2009; Acerbi et al., 2012). In language, on the other hand, convergence
on a single convention is the rule rather than the exception, suggesting that momentum-based

selection may be an appropriate model for language change.

4.2 Momentum-based selection

Our main contribution in this work is to investigate the dynamics of momentum-based selec-
tion by integrating it into an existing framework of language change, and evaluating it with
respect to the characteristics of language change we identified above: the sporadic nature of
changes which, once actuated, proceed in an orderly, directed manner. We begin by review-
ing the original formulation of momentum-based selection in Gureckis and Goldstone (2009).
The model is built around tracking exponentially weighted moving averages (EWMAs) of the
relative frequencies of competing cultural traits over time. Given a time series of relative fre-
quencies 77 = (ny,na,ns,...), the weight of each data point towards the moving average, which
we denote n4(t), decreases exponentially over time (hence the name). Given a new datum ny

received at time t, the moving average is updated iteratively using
a(t) =a-ng+ (1 —a) - ig(t—1) . (4.1)

The parameter « € [0, 1] is a smoothing factor that determines both the weight given to

the newest data point, as well as how quickly the data points’ weight decreases over time. At
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time ¢, the relative weight of datum n;_; to the current average is - (1 — )®. The higher a,
the more weight is given to more recent data points. Based on this, the momentum of a variant
at time ¢, m(t), is determined by calculating two EWMAs 7, (t), 71, (t) of the variant’s attested

frequencies (n; ---n:) with two distinct smoothing factors v > «, and taking their difference,
m(t) = i (t) = o (0). (4:2)

Because the higher v gives more weight to recent data points, the moving average 7 (t) corre-
sponds to the more recent popularity of a trait while n,(¢) captures its long-running popularity.
The momentum term m(t) will consequently be positive if a variant has been more popular in
the recent past compared to its long-term popularity, and negative if the variant has been

adopted relatively less frequently in the recent past.

4.2.1 Mathematical properties of momentum

To understand just what is captured by the momentum term m(t), we can investigate the
general dynamics of the difference between two EWMAs 7, (t), 7, (t) based on their param-
eters 7 > «a. The strongest possible trend in changes to relative variant frequency can be
achieved by initialising both EWMASs so that they indicate categorical usage of, say, the out-
going variant (i.e. 74(0) = 74(0) = 0), and then continuously updating both EWMAs with
input data suggesting that, actually, everyone is using the novel, incoming variant categorically
(ie. @ = (1,1,1,...)). Even in this simple case, the dynamics of the momentum term are
complex, as can be seen in Fig. 4.2.

For the underlying EWMASs themselves, the higher the smoothing factor, the faster they
approach the input values (Fig. 4.2a.i), and the more quickly they reflect changes in the distri-
bution too (Fig. 4.2a.ii). The corresponding momentum terms that are derived by subtracting
an EWMA with a high parameter v from a more slowly changing one with a lower parameter «
are shown directly underneath (Fig. 4.2b). What is of interest to us are the different shapes of
these momentum curves: a parameter combination which exhibits a rapidly rising curve will
cause an individual to posit a trend based on just a few suggestive input data points, while a
curve that slopes off slowly means that a momentum bias will persist for a longer time after
the initial detection of a trend.

Both the number of data points it takes to reach their maximum value as well as the am-
plitude of this highest possible momentum value depend on both smoothing factors in complex
ways. The short-term memory parameter «y is of particular importance, as it controls the time
depth at which the momentum term is most sensitive to underlying trends in the data: a high ~
causes the momentum term to immediately reflect short-term variation in the input, while set-
tings of v closer to « lead to more conservative trend estimates which smooth over the noise
present in individual input data points.

The sudden change in trend after 60 data points shown in Fig. 4.2b.ii illustrates this point:
a momentum term based on high v = 0.15 (dotted line), while very quick to reflect sudden
changes in the input, is very unstable. After receiving only five data points of the new input

value n; = 0, the previous sustained upward trend is ‘forgotten’, with the momentum term
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first quickly returning to 0, then going negative to reflect the new, short-term downwards trend
from the series of 1s back to Os.

Generally, assuming an abrupt change in the input values such as above, the number of
iterations that both EWMAs have to be updated with the same constant input value before

the maximum possible difference between the two is reached is

In % A
t a,y) = . .3
mmax( ’Y) a—7 ( )
The maximum possible amplitude of the momentum term at that point is
mmax(aaﬁy) — e_wtmxxlax(ay’}’) _ e_atnlmax(a7'y) . (4.4)

Knowing the mathematical boundaries of the momentum term m(¢) we can now go on to

incorporate the momentum bias into a model of language change.

4.2.2 The Utterance Selection Model of language change

To investigate the dynamics of momentum-based selection as a model of individual behaviour,
we implemented the momentum-based selection bias in the utterance selection model of language
change (USM, Baxter et al., 2006; Blythe and Croft, 2012). Derived from Croft’s evolutionary
theory of language change (2000), the USM provides a well-studied multi-agent framework to
study the dynamics of the competition and diffusion of discrete linguistic replicators, be they
lexical items, constructions, or different categorical variants of a speech sound?.

Two fundamental principles underlie the design of the USM: firstly, the individual agents
use the competing variants proportionally, rather than categorically. In the minimal case with
only two competing variants studied here, an agent’s usage rates can be fully described by a
single number, call it z, in the range [0,1]. While this value can be interpreted as reflecting
some cognitive state of the speaker, it also has a more direct behavioural correspondent: when
an agent is selected to participate in an interaction, their probability of producing the novel
variant is equal to x, while the probability of producing the competing variant is 1 — . This
aspect of the USM is in line with linguistic evidence which shows that human language use
is inherently variable and probabilistic (Kroch, 1994; Labov, 1994; Bybee, 2007; Nardy et al.,
2013).

Secondly, agents continuously tune their own variable usage rate towards the production
rates they observe in interactions with other agents, thus mimicking the human tendency to
align linguistic behaviour with that of interlocutors (Giles et al., 1991; Branigan et al., 2000;
Jaeger and Snider, 2013). This aspect of the USM is in line with the finding that many aspects of
linguistic behaviour do not remain fixed, instead remaining malleable across an individual’s life
span (Kerswill, 1996; Sankoff and Blondeau, 2007; Beckner et al., 2009; Bowie and Yaeger-Dror,
2013; Stanford, 2014). According to the formal definition of the USM (Baxter et al., 2006), an

agent’s current proportion of use of a variant z,(t), is simply an exponentially weighted moving

2For an account of how age vectors can drive change in a continuous dimension such as vowel productions,
see Swarup and McCarthy (2012).
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Figure 4.2: Exponentially weighted moving averages (EWMAs) of the same input data but
with different smoothing factors, as well as their corresponding momentum terms. (a.i) Four
EWMASs with smoothing factors v = 0.15,0.05,0.02,0.01 (from top to bottom) are initialised
at 7, (0) = 0 and repeatedly updated using the same constant input data series 7 = (1,1,1...).
(a.ii) same as (a.i), but with the input data series 7 switching from all 1s to all 0s after
60 data points. (b) Corresponding momentum terms m(t) = f,(t) — fa(t) derived from the
trajectories above, by taking each EWMA and subtracting the value of the EWMA with the
lowest smoothing factor from above (o = 0.01). Line styles correspond to those in (a).
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average (EWMA) of the frequencies of the incoming variant that the agent has observed in their
input over time®. The rate of alignment is controlled by the smoothing factor o of this EWMA,
which can be understood as a learning rate. This learning rate is typically held small (in the
range of 0.01): there is alignment, but the individual frequency adjustments after an interaction
are very small and it takes many interactions for an agent to change their preferred variant.
On top of this basic update rule, a USM agent’s alignment behaviour can be altered by
applying biases to their input data before it gets incorporated into the EWMA. This is where

momentum-based selection comes into play.

4.2.3 Momentum-based selection in the USM

We now explain how to minimally incorporate momentum-based selection into the USM. As-
suming an agent using learning rate a has just engaged in its ¢-th interaction and observed
another agent use the incoming variant with a relative frequency of y, then their own frequency

of use z,, is updated to be

za(t) = a- f(y) + (1 —a)-za(t=1), (4.5)

where f(y) is a function from [0, 1] to [0, 1] which transforms the objective observed frequency y
of the variant into a subjective perceived frequency which the agent then aligns to. Similar to
Gureckis and Goldstone (2009) we can now simply define the perceived frequency f(y) of an
agent in the momentum-based USM as the objective frequency y of a variant observed in an

interaction offset by that variant’s momentum,

fy)=y+b-m'(t) (4.6)

with the exception of
f(0)=0 and f(1)=1. (4.7)

We impose the latter since our focus lies on modelling the diffusion of existing linguistic variants,
independent of how those variants were introduced into the population to begin with. It simply
stops our momentum-biased selection function f(y) from introducing novel, unattested variants,
a constraint that is typical of models of selection generally (see e.g. Boyd and Richerson, 1985).
The positive bias parameter b in equation 4.6 controls the strength with which the normalised
momentum term m/(¢) as defined below in Equation 4.8 influences the perceived frequency.
Should the momentum bias cause f(y) to go below 0 or above 1, it is simply truncated at 0 and 1,
respectively?. Crucially, because the momentum term can be positive or negative (depending
on the direction of the trend), this perceived frequency function is symmetric, which makes it
replicator-neutral: no matter which bias strength b is used, the function does not a priori favour

one of the variants over the other.

3For simplicity of notation we will henceforth omit the “above the variables denoting EWMAs.

4The exact form of the bias function f(x) matters much less than its monotonicity and the fact that f(z) > =
when the momentum term is positive (i.e. when the agent perceives an upward trend) and f(z) < = when it is
negative (indicating a downward trend).
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Since the effect of different strengths of this bias parameter b on the model dynamics is
relevant to our analysis, we have to make sure that its settings are comparable across settings
of the other parameters. This isn’t as straightforward as it might seem, because the range of
values that the original momentum term definition m(t) in Equation 4.2 can take on depends
on both smoothing factors a and ~y, as could be seen in Fig. 4.2. The absolute amplitude of
the momentum curves is of little interest to us; on the contrary, the differences in maximum
possible amplitude distort the effect of the bias parameter b which is supposed to control the
strength with which momentum is applied. To counteract this, we normalise the momentum
term m(t) based on the «,7y used in a given simulation condition. For any given pair of
smoothing factors «,~y, we can scale the momentum term to the [—1, 1] range by defining the

normalised momentum
x4 (t) — xa(t)
mmax (a7 ,‘Y)

m/(t) = (4.8)

To calculate the momentum component in the numerator, the difference between two EW-
MAs, we simply re-use the agent’s own usage frequency, which according to the USM definition
is also an EWMA. To augment the basic USM with momentum-based selection, every agent

simply has to keep track of another z- on top of the long-term estimate z,, it already maintains.

4.3 Results

4.3.1 Analytical approximation

Before proceeding to a full population-based simulation we can establish the general dynamics of
the model by investigating the behaviour of an individual agent set in an idealised, deterministic
production-perception loop (Wedel, 2006). We initialise a single agent to use the incoming
variant at some low level and repeatedly update their two EWMAS x4 (t), 2+ (t) by having them
align to their own proportion of use z,(t) for 100 iterations. As can be seen in Fig. 4.3, nothing
happens: an agent aligning to their own usage rate simply remains at that proportion and, in
the absence of any changes in the input sequence, the momentum term stays 0. To test how the
model reacts to fluctuations in the input we alter the agent’s input by fabricating a data point
which suggests that their interlocutors are actually categorically using the incoming variant (see
Fig. 4.3a). When the agent aligns to this input it leads to a small punctual increase in their
variant use, but the sudden change in the input data also makes the momentum term take on a
positive value (dashed grey line). Following the fabricated data point, the agent again receives
their own samples as input data. But the bias exerted by the momentum term, which makes
the agent’s perceived usage rate higher than their actual usage rate, causes further increases
in their use of the incoming variant. However, the lack of further perturbations causes the
momentum to decay back towards 0, and the agent becomes stationary again at a usage level
not far from their initial setting. If we introduce a second fabricated data point shortly after
the first one, the model’s behaviour changes dramatically: the system enters a regime where the
momentum bias generated by the two fabricated data points affects the perceived frequency of

the agent’s input so much that it causes the momentum term to increase even further, leading
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Figure 4.3: Momentum-based selection dynamics of a single agent’s variable usage rate in
a deterministic production-perception loop, with learning rates o = 0.01,7 = 0.02 and mo-
mentum bias b = 2. At every time step the agent updates their own usage rate (solid black
line) by aligning to their own average momentum-biased production with a sample resolution
of T =5 (indicated by the dashed black line). This stable loop is perturbed by administering
fabricated input data suggesting 100% usage of the incoming variant at the time points marked
by asterisks, demonstrating the two regimes of momentum-based selection: (a) stability: a
single fabricated data point after 100 interactions causes a sudden increase in the agent’s usage
rate (solid black line) as well as the momentum term (dot-dashed grey line, right axis), but the
feedback loop stabilises again. (b) directed transitions: adding another fabricated data point
after 200 interactions raises the momentum term high enough to trigger self-reinforcing runaway
change, giving rise to an s-shaped transition.

to self-reinforcing runaway change (Fig. 4.3b).

This preliminary analysis shows that the momentum-based selection model exhibits two
different regimes, accounting for both periods of stability and of directed change. Capturing
the dynamics of the transition between the two regimes is however not trivial: particularly
the switch from stability to a directed transition depends crucially on both the strength of the
momentum bias as well as random fluctuations in the agents’ input as they sample data from
their interlocutors. We therefore turn to numerical simulations, where the data production and

agent interactions will be driven by stochastic processes.

4.3.2 Numerical simulation

In order to get a fuller picture of the momentum-based selection dynamics we ran simulations

5

with a total of 2,520 parameter combinations®. The six parameters of the momentum-based

USM are summarised below. Only one, the learning rate a, was held constant across all

simulation runs, the other five parameters were varied at the levels given in parentheses:

- «a: the agents’ learning rate (0.01)

- 7: the agents’ short-term memory smoothing factor (0.015,0.02,0.025,0.03,0.35,0.4)

5The source code for running the simulations as well as the analytical approximation are available at http:
//github.com/kevinstadler/momentum
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- T': the Binomial sample size determining the resolution at which agents can observe each

other’s relative usage frequencies (2,3,4,5)

- b: the bias strength with which agents apply the normalised momentum to yield their
perceived frequency of usage (0.5,1.0,1.5,2.0,2.5)

- N: number of agents in the population (2, 5,10, 20, 30, 50, 100)
- xo: initial proportion of the incoming variant used by all agents (0.01,0.02,0.03)

Combining all these possible parameter combinations and running the 2,520 conditions for 48
trials each resulted in a total of 120,960 simulation runs. On top of the conditions listed above,
we also produced simulation runs where we set the bias strength b = 0, which is equivalent to
pure neutral evolution. 24,192 runs from this additional condition provide a baseline that the
dynamics of our momentum-based selection model can be compared against. Every simulation
run proceeds as follows:

Firstly, initialise N agents, setting both their x, and x, to xg. Then, carry out interactions

between agents by repeating the following steps:

1. randomly select two agents i,j from the pool of N agents — we assume that all pairs of

agents have the same probability of interacting with each other.

2. let both agents produce T' tokens of the variable by taking a random sample n;,n; for
each agent from the Binomial distribution B(T, z, ), using the two agents’ respective usage

rates x, at the time of the interaction.

3. calculate the perceived frequencies that the agents will align to, using equation 4.6. For
agent ¢, who will align to j’s productions, calculate f (%) using agent ¢’s current nor-

malised momentum term m/(t); for agent j, calculate f(%%) using j’s m/(t).

4. update both agents’ z, as well as z- by incorporating their perceived frequency according

to equation 4.5.

The simulations were run until every individual in the population had converged to within a
ten-thousandth of a percent of using only one of the two competing variants, or for a maximum

of 200,000 interactions per agent®.

4.3.3 Simulation results

For the sake of our analysis we use a simple definition of what a ‘transition’ is. Taking a fixed
threshold (say 5%), we can define the two extreme areas where the mean population usage
level of the minority variant is below this threshold as the two regions of ‘near-categorical
use’ of either variant. A transition, then, is the period in which the mean usage levels of the
population crosses from near-categorical use of one to near-categorical use of the other variant.

A first striking finding when analysing the simulation results is that changes are rare: of the

6More than 99% of simulation runs had terminated before this time limit was reached.
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Figure 4.4: Successful transitions generated by simulation runs in conditions with and without
momentum-based selection. The graphs show the development of the average proportion of
use of the incoming variant across the population (black line, left axis) from the point where
it crosses the 5% mark until it reaches 95%, alongside the average momentum term during
that period (grey line, right axis). Transitions are aligned at the point where the trajectory
first crosses the 50% mark of incoming variant usage. (a) 20 trajectories randomly drawn
from the 21,909 successful transitions generated by momentum-based selection with momentum
bias b > 1, population sizes N > 5 and various settings of v,T,xzo. (b) all 28 transitions
generated in 17,280 simulation runs with b = 0, equivalent to neutral evolution, with various
settings of v, T, xg and population sizes N > 5. Note the different time scales. The momentum
term, ineffective when b = 0, is shown for reference.

120,960 simulation runs using the momentum bias, only 18,040 (around 15%) ever exhibit a
transition, while the majority of runs simply converge on categorical use of the majority variant.
This result is in line with the observation that the actuation of language change is sporadic:
even when a novel variant is known to the entire population, this alone is not likely to lead to
a community-wide language change.

When we investigate the distribution of transitions across the different parameter settings,
we find that the bias strength b carves the space into two regions with distinct dynamics: while
simulation runs with b > 1 exhibit directed transitions at comparable time scales, the neutral
evolution condition with b = 0 as well as the weak momentum bias setting at b = 0.5 yield both
fewer and temporally less consistent transitions, as shown in Fig. 4.4. The difference between
those two regimes is exacerbated as population sizes become larger, making transitions in the
neutral evolution conditions even rarer and slower.

Beyond this qualitative difference in successful transitions, our earlier prediction regarding
the general directedness of trajectories in the neutral evolution condition are also borne out
by the results: of all simulation runs where the incoming variant ever reaches the half-way
mark (i.e. average 50% usage of both variants across the population), only 55% of trajectories
in conditions with b < 0.5 actually result in the diffusion of the incoming variant. The remaining
half-completed transitions are interrupted and revert back to majority usage of the established
variant. In contrast, in conditions with b > 1.0, 97% of the trajectories that reach the half-way

mark also lead to the population-wide adoption of the incoming variant.
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In contrast to the low-bias conditions which exhibit the dynamics of neutral evolution, con-
ditions with a sufficiently high momentum bias b reliably produce s-shaped transitions between
the two regions of near-categorical use at irregular intervals. before eventually converging on
categorical use of either of the variants. The dynamics are robust under many different param-
eter settings which give rise to highly similar transition dynamics (see Fig. 4.4; the parameters’
much greater influence on the likelihood of transitions occurring is beyond the scope of this
paper). While similar transitions are also found in models driven by replicator selection, an
important difference is that our model has no a priori preference for any of the variants built
in. Instead of having a constant bias applied from outwith the model, the momentum term
provides the opportunity for a bias to emerge dynamically from within the system, as can be
seen from the temporal development of the momentum term in Figs. 4.5. Crucially, rather than
relying on an external trigger, the s-shaped transitions are self-actuating: agents constantly
read weak trends into the random fluctuations in their input but these temporary individual
biases will vary across the population, and more often than not cancel each other out. There is,
however, always the possibility for these weak biases to overlap, which could cause a subset of
agents to slowly shift their variant use in parallel. When this shift is detected by other agents
they will themselves start to amplify it, leading to a self-reinforcing feedback loop. The directed
transitions in a momentum-based model of language change are triggered spontaneously and,
while it is the most likely outcome, changes are not guaranteed to succeed either: even if a
change is actuated, its propagation is not completely inevitable, as can be seen in interrupted
changes such as the one shown in Fig. 4.5b. The dynamics of momentum-based selection pro-
vide an intriguing account of the unpredictability of the actuation of linguistic changes without
the need for an external bias or trigger.

The trajectories shown in Figs. 4.5 are exemplary of the dynamics of momentum-based selec-
tion across the full range of parameter settings we explored. Only for settings of the momentum
bias b close to 0 as well as for short-term smoothing factors -y very close to the learning rate «
do the momentum-based selection dynamics break down, and the model reverts to pure neutral
evolution-like behaviour. In comparison to the prediction-driven model of Mitchener (2011),
the momentum-based selection model shows that it is not necessary for learners to engage in
active prediction of the population’s future state along a particular trajectory. Rather, having
a simple bias based on variant history is sufficient to drive orderly directed changes, and the
transitions generated by our model appear to exhibit a more gradual uptake than the trajecto-
ries reported by Mitchener. We also find that having a bias for regularisation is not absolutely
necessary to guarantee an orderly progression of the changes. In a population of agents who are
continuously updating their usage rates, the momentum bias presented here is robust enough

to drive changes to near-completion.

4.4 Discussion

We have shown that the momentum-based selection model fulfills two defining requirements of a
model of language change: the spontaneous, sporadic actuation of changes, and their progression

in the form of a directed, s-shaped curve. However, other accounts of language change which
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Figure 4.5: Transitions generated by two simulation runs using identical parameter set-
tings (N = 5,b = 2.0, = 2,a = .01,y = .04). The graphs show the development of the
average proportion of use of the incoming variant across the population (black line, left axis) as
well as the average momentum term influencing the agents’ perception (grey line, right axis).
Shaded intervals indicate the range (minimum and maximum values) attested in the popula-
tion. (a) A successful, s-shaped transition typical of momentum-based selection: an initially
noisy momentum value rises high enough to trigger self-reinforcement of the momentum bias (at
around 450 interactions) until it saturates and tails off again (b) Example of a rare, interrupted
transition: despite the onset of a directed shift, the wide range of momentum biases across the
population destabilises the feedback loop, causing the average momentum to break down and
invert, returning the usage frequency of the incoming variant back towards its initial low level.

posit a selection bias in favour of the incoming variant also predict s-shaped trajectories, so
how can we know which account best describes the empirical data? While the progression
of every instance of language change will be influenced by several factors concurrently or at
different times (see e.g. Ghanbarnejad et al., 2014; Stanford, 2014), it is still interesting to
investigate which (if any) of the mechanisms of language change discussed in the introduction
can be identified as the main driving force behind language change. Here, we want to highlight
some of the more subtle differences in the predictions made by different accounts of language
change which would allow us to tease apart the momentum-based, language-internal and social

accounts of language change based on cross-linguistic data.

4.4.1 The two rates of linguistic change

An interesting (and to our knowledge novel) way to evaluate competing theories of language
change is to look at the predictions they make regarding the rates of linguistic change. It is
important to note that ‘rate’ can refer to two different things in the context of language change:
one interpretation of ‘rate’ refers to the probability of a particular change occurring, such as
when talking about different English past tense forms becoming regularised over time (Lieber-
man et al., 2007) or the rate of lexical replacement more generally (Sankoff, 1970; Wichmann
and Holman, 2009; Greenhill et al., 2010; Monaghan, 2014). Rather than referring to the time
frame within which a specific change takes place, this really describes the likelihood of a (type
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of) change, or an actuation probability (Cowgill, 1963). The other use of ‘rate’ refers to the
speed of the transition of one particular change, i.e. it is a measure of the time span from the
introduction of a new variant to its completely replacing an established one. Under the assump-
tion that language change follows an s-shaped pattern, this second rate of change is often taken
to be the growth rate parameter of the logistic function (Pintzuk, 2003), and it is this ‘rate’
that is referred to by the ‘Constant Rate Effect’ observed in syntactic change (Kroch, 1989b).

What is interesting about these two rates of change is that different accounts of language
change make implicit predictions regarding the relationship between them, in particular whether
the likelihood of a change occurring is correlated with the rate at which the change proceeds
once it has been actuated. Under the assumption that the same pressures that lead to the
introduction of more functional or ‘adaptive’ variants are also responsible for their preferred
selection once they have been innovated, language-internal accounts would predict that changes
which occur more often cross-linguistically should also be selected for more strongly in individual
languages. This would translate into faster changes so that, controlling for other factors such
as frequency and size of the speech community, the two rates of change should be positively
correlated. This differs from the prediction made by the momentum-based account: while the
probability of a new variant appearing, and consequently its random actuation from the pool of
variants, is dependent on linguistic factors, these factors are not what drives the diffusion of the
variant. Assuming that individuals apply similar momentum biases to all linguistic variables, a
momentum-based account would therefore predict the speed of individual transitions and the
changes’ actuation probability to be uncorrelated.

The situation with social accounts is trickier: the fact that many different social factors
have been posited to influence the selection of linguistic variants, both positively and negatively,
makes it difficult to derive a general prediction regarding the speed of individual changes. What
determines the probability of actuation is an equally open question: it has been proposed that
the occurrence of changes might be driven by the need to create distinct social identities within
a community (Labov, 2002; Matthews et al., 2012; Roberts, 2013), implying that we should not
expect actuation probabilities to be constant cross-linguistically.

While it is difficult to derive specific predictions regarding the correlation between the two
rates of change from social accounts of language change, many insights into the respective roles
of the different pressures could be gleaned from studying cross-linguistic datasets of changes (see
also Bickel, 2015). The crucial issue is that the three qualitatively very different accounts
discussed here might predict quantitatively similar selection pressures for particular language
changes, making it impossible to distinguish the contribution of the different types of pressures
on a per-change basis. Our understanding of the issue could therefore profit immensely from
investigating the empirical distribution of both rates of change as well as their relationship based

on cross-linguistic data.

4.4.2 Momentum-sensitivity in the individual

While momentum-based selection successfully reproduces the macro-level s-shaped curves that

are characteristic of linguistic change, this raises the question of whether the model makes valid
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assumptions about individuals’ micro-level behaviour (Mesoudi and Lycett, 2009). Firstly, it
is clear that both linguistic knowledge and performance are embedded in diachrony — language
users are sensitive to changes in the frequencies of variants (Jaeger and Snider, 2013) and well
aware of diachronic connotations (Labov, 2001; Guy, 2003; Tagliamonte, 2012), both types of
information that could drive momentum-based selection. In the general cultural evolution lit-
erature it is well-established that frequency-dependent biases are a natural strategy for social
learning tasks, since frequency can be an indicator of the social value of a variant (Boyd and
Richerson, 1985). Similarly, changes in frequency can be a good indicator of the future social
value of a cultural variant (Gureckis and Goldstone, 2009). Laboratory experiments on cul-
tural evolution in humans have provided empirical evidence for the self-perpetuating nature
of trends, where people will amplify trends even against their own personal preferences (Sal-
ganik and Watts, 2008; Willer et al., 2009), suggesting that individuals might also have an
incentive to use metalinguistic information about the history of linguistic variants. While
there is plenty of qualitative and anecdotal evidence on speakers’ explicit evaluation of lan-
guage changes (see e.g. Trudgill 1972; Labov 2001; Guy 2003; Tagliamonte 2012), quantitative
research on the extent of people’s explicit or implicit knowledge about the direction of ongo-
ing changes is just starting. Experimental evidence shows that listeners employ their implicit
knowledge about ongoing sound changes during speech perception (Hay et al., 2006; Drager,
2011), and there is evidence of explicit knowledge both in the area of phonetic (Carrera-Sabaté,
2014) and syntactic change (Chapter 5).

4.5 Conclusion

In this paper we investigated the momentum-based selection model and studied its evolutionary
dynamics. Our analysis shows that this model, where individuals are biased towards variants
which have recently seen an increase in their frequency of use, exhibits two features characteristic
of language change: the spontaneous, sporadic actuation of changes, and their progression in
the form of directed, s-shaped curves.

Crucially, the momentum-based selection mechanism demonstrates that the apparent selec-
tion of a particular cultural variant in a population is not sufficient evidence for any inherent
asymmetry between the variants in competition. Instead, selection biases can be an emergent
property of the system, particularly in the case of social learning where individuals possess meta-
level knowledge about the variants. The human capacity to acquire meta-linguistic knowledge
about ongoing language changes, for example by tracking changes in the variants’ frequencies
of use over time, therefore deserves further study.

Finally, we highlighted the importance of collecting and studying cross-linguistic data sets
of comparable historical changes to test the general predictions made by different accounts of
language change. This strand of research in particular needs to be expanded further in order
to help us gain deeper insights into the respective roles of the myriad pressures involved in

language change.



Chapter 5

Probing momentum-awareness in the

individual

93



94 CHAPTER 5. PROBING MOMENTUM-AWARENESS IN THE INDIVIDUAL

5.1 Introduction

While the degree to which the historical development of languages is inferred and used by lan-
guage learners has long been of interest to sociolinguists (Labov, 1989), empirically this question
has only been tackled relatively recently as part of a general effort to study the acquisition of
sociolinguistic knowledge by individuals (Labov, 2014; Foulkes and Hay, 2015). Of particular
relevance to this thesis is the question of how specific linguistic variants and their relative usage
levels can come to be associated with specific age groups. The concept of ‘age vectors’ captures
the age-based stratification of variable usage, and the idea that individual language users pos-
sess knowledge of the age vectors of their community has been invoked as an explanation of how
language changes are transmitted and increment across generations (Labov, 2001). The model
presented in the previous chapter demonstrated how a similar mechanism, based on tracking
changes to frequency distributions of discrete variants in real time, can equally account for
spontaneous directed transitions of change in a speech community.

While there is an increasing body of empirical evidence on individuals’ knowledge of ongoing
changes which I reviewed in Section 2.2.5, the experimental data presented there was limited
to continuous phonetic changes. Although the fact that this sub-domain of language change
still encompasses the largest part of sociolinguistic research might in part be attributed to
the generativist sovereignty over morphosyntactic research which did not leave much space
for an empiricist-variationist methodology, it is worth noting that the type of sociolinguistic
variable (i.e. whether different variants differ continuously or categorically) influences not just
how the linguist might describe or represent variation, but also how that variation is acquired
by individuals.

In particular, the type of variable impacts on the amount of information on inter-individual
differences that can be extracted from individual realisations of a variable that is observed
in an interaction. While continuous phonetic tokens are potentially very noisy and it might
therefore help to have access to a speaker’s full distribution of realisations to get a complete
picture of their variable usage, given sufficient stratification of variable realisations along a
continuous dimension even a single token can potentially contain enough information to place
the speaker along a cline from ‘more outdated’ to ‘more modern’ in their variant usage. Not only
that, continuous variants allow speakers to sound ‘even more novel’ by extending the change
along that cline and producing variants that ‘overshoot’ even the most advanced novel variants,
productions which can nevertheless be immediately understood as instantiations of the same
innovation.

The same is not true in the case of categorical variants. Firstly, in order to learn about
an individual speaker’s variable usage, one truly need to learn about the overall distribution
of realisations, i.e. the relative frequencies with which the different variants are mixed by the
speaker. Except when different variants are strong social markers which are exclusively used
by non-overlapping speaker groups, very little information can be extracted from individual
productions. Instead, several realisations of a variable by one and the same speaker are necessary
to make strong inferences about a speaker. In combination with the fact that morphosyntactic

variables can only be observed much less frequently than most phonetic and phonological ones, it
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is not obvious that people would be as good at acquiring or making inferences about categorical
variables as they are for continuous ones, like the vowel realisations tested by Drager (2011).

In one of the rare studies investigating age effects for categorical rather than continuous (pho-
netic) traits, Walker and Hay (2011) showed the influence of congruence between ‘word age’ and
‘voice age’ in facilitating lexical access: listeners of all ages exhibited a speed-up in processing
words produced by a voice indicative of an age group, exactly when the word was more likely
to be used by speakers of that age group. Although this experiment speaks to the influence
of perceived age directly, it does not involve a sociolinguistic variable, since the different stim-
uli belong to different semantic domains, rather than being different ways of ‘saying the same
thing’.

The goal of the present work is to extend the body of research on ‘age vectors’, as they
are perceived and used by the individual, to the domain of syntactic change. Since this an
understudied area of research, we will also present a novel questionnaire methodology designed
to help quantify people’s explicit knowledge about ongoing language changes, in particular their
impressions of the changes’ direction.

Here, a disclaimer is in order regarding the term awareness which, in contemporary linguistic
research, is typically used to refer to an individual’s explicit, meta-linguistic knowledge about
their own and their community’s language use (Preston and Robinson, 2005). This knowledge
is consequently described as being “above the level of conscious awareness” (Baranowski, 2013,
p.283) of the individual. While the terminology used in this chapter reflects the fact that the
present methodology is based on participants’ explicit statements about their meta-linguistic
knowledge, it should be noted that conscious awareness is just one possible proxy that allows one
to test individuals’ ability to detect (and potentially amplify) linguistic trends. Although this
chapter is dedicated exclusively to the study of linguistic awareness of changes, the mechanism
of momentum-based language change does not strictly rely on awareness per se, but would
most likely be driven by implicit knowledge which could be tested through more sophisticated
experimental methods such as the ones used by Drager (2005, 2011).

5.2 Quantifying the awareness of syntactic changes

In this work we investigate the human capacity for tracking changes in syntactic variables by
probing speakers’ awareness of three instances of the loss of verb movement in the variety of
Scots spoken in Shetland. Shetland is a group of islands approximately 200km North of Great
Britain with around 23,000 inhabitants across 15 inhabited islands (Shetland Islands Council,
2014, see also Figures 5.1 and 5.2). While Shetland forms part of the United Kingdom, it
was only passed from Denmark to the Crown of Scotland in the late 1400s, and the islands’
linguistic history is correspondingly diverse. Although virtually all toponyms on the island can
be traced back to Viking origins, the Scots settlers who emigrated to the islands following the
annexation to the Scottish Crown brought their own West-Germanic vernaculars with them.
These vernaculars gradually replaced the local Norn language, a North Germanic variety most
closely related to Old Norwegian, which however continued to be spoken on the isles until at

least the 18th century (Knooihuizen, 2009). Today, the primary native vernacular of Shetland
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Figure 5.1: Shetland’s location in the North Sea, showing the territorial waters of the United
Kingdom, Norway and the Faroe Islands as well as ferry links and natural conservation ar-
eas. Projection: Web Mercator. © OpenStreetMap contributors, licensed under the Creative
Commons Attribution-ShareAlike 2.0 license (CC BY-SA).

can be characterised as a variety of Scots, which is itself a continuum of language varieties
spoken throughout the Scottish Lowlands that has developed largely in parallel to (rather than
being derived from) the more well known English varieties that spread from England to many
other parts of the globe (Millar, 2007, p.15).

Due to its insular location and sustained contact with North Germanic languages (Jamieson,
2016), Shetland Scots has retained many linguistic features typical of Germanic languages that
the varieties of English and Scots on the British mainland have long lost. Some examples which
will be evident in the questionnaire examples below are the relatively rich verbal inflection, as
well as the maintenance of a number distinction in the second person pronoun du (cognate with
Middle English thou). The features under investigation in this study are also of the historically
conservative kind, namely the inversion of the verb position in several syntactic contexts, all
of which occur alongside the emergence of periphrastic do (or ‘do-support’). While for most
areas of England the change away from the historically original verb-initial constructions (see
Jamieson, 2015, for a more detailed analysis) can be dated to the period from 1500-1700 (El-
legard, 1953; Kroch, 1989a), the homologous change in Shetland Scots has only been unfolding
over the course of the 20th century (Jonas, 2002). The three related changes currently ongoing
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Figure 5.2: Detail of the Shetland archipelago showing paved roads, ferry routes, airports and
areas of human residence (in red). Ferry connections to the Scottish mainland leave from the
capital town of Lerwick, also the largest settlement. Regular flights to several Scottish air-
ports as well as Bergen (Norway) depart from Sumburgh Airport at the Southern tip of the
main island, with many more airfields for local planes scattered across the archipelago. Projec-
tion: orthographic, centered on 60.345°N and 1.4°W. Map data © OpenStreetMap contributors.
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in Shetland which we investigate in the current work are as follows:

« verb positioning in imperatives, which is changing from a raised verb (surface realisation
VS0) to Standard English SVO structure. An example in Shetland Scots would be “Mak
du dy ain denner!” vs. “Du mak dy ain denner!”, with the latter (incoming) variant akin

to Standard English syntax, i.e. ‘You (sg.) make your (sg.) own dinner!’

e yes/no question syntax: change from a main verb-initial to a ‘periphrastic do’ structure,
e.g. from “Kens du Sarah?” to “Does du ken Sarah?”, with ‘ken’ being the Scots lexeme

for ‘to know’.

e wh question syntax: change from plain WhVS0 with a fronted main verb to a ‘periphrastic
do’ structure, i.e. Wh-"do'-SV0. An example of the two constructions would be old “Whit
gae du him?” to “Whit did du gie him?”, with ‘gie’ /‘gae’ the Scots equivalents of Standard
English ‘give’/‘gave’.

In all three cases, usage of the incoming variants is already common. The two question
variables are more advanced, with younger speakers almost categorically using the incoming
variants (with the exception of a few lexically specific items, see Jamieson 2015). So while
the changes are in a sense nearing completion, all members of the speech community are still
exposed to both outgoing and incoming variants due to their being used frequently by older

speakers.

5.2.1 Methodology

To quantify people’s explicit knowledge about ongoing language changes we adapted a self-
evaluation method originally used to investigate the perception of phonetic changes by Labov
(1966b) and Trudgill (1972), who asked speakers to report their relative usage of several phonetic
variables. We refined the methodology, so that every sociolinguistic variable under investigation
was covered by a one page questionnaire eliciting speakers’ estimates of their own usage, as
well as that of other social groups, alongside other (folk-)linguistic beliefs about the linguistic
variants themselves!. At the top of each questionnaire page, the two competing syntactic

variants were introduced in the following way:

You are probably familiar with these two ways of asking somebody to do something:

“Mak du dy ain denner!” “Du mak dy ain denner!”

The order of the two variants was randomised between individuals, in the above example the
outgoing variant is on the left, the incoming one (akin to Standard English “You make your own
dinner!”) on the right. The dialectal spelling of the example sentences is quasi-standardised

on Shetland, and their mixing with the Standard English formulations of the questionnaire is

IThe complete materials of the paper-based questionnaire can be found in Appendix C.
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not unusual. The actual questionnaire consisted of the following five questions (referred to as
Q1 through @5 throughout the text) which were intended to probe different aspects of people’s

explicit knowledge about the changes in question:

Question 1: “How much do you use either of these variants?”
This explicit question regarding speakers’ own frequency of use could be answered on a
5-point scale, with the options labelled ‘I use only (variant 1)’, ‘T use mostly (variant 1)’
‘T use both equally’, ‘I use mostly (variant 2)’ and ‘T use only (variant 2)’, with the order

of the two variants matching those of their initial presentation at the top of the page.

Question 2: “How much do you think are people around you using either of the variants?”
This question could again be answered on a 5-point scale with options ‘People use only (vari-
ant 1/2)/mostly (variant 1/2)/both equally’. This question does not just provide infor-
mation on speakers’ perception of their average interlocutors’ frequency of use, but the
relative difference between the answers to questions 1 and 2 can potentially provide in-
formation on whether speakers think of themselves as being ‘ahead’ or ‘behind’ the curve

of a particular change relative to their speech community.

Question 3: “Which of the two variants do you think is older?”
This (intentionally vague) question is intended to get at speakers’ beliefs or connotations
regarding the ‘age’ of the competing variants, without drawing explicit attention to the
fact that the variable is in fact changing. The three possible answers were ‘(variant 1) is
older’, ‘(variant 2) is older’ and ‘People have always used both’, with the order of the two

variants randomised.

Questions 445: “How much do you think younger/older speakers use either of the variants?”
The final two questions tap into speakers’ awareness of the apparent time development of a
change, with the same 5-point options as above: ‘Younger/older speakers use only (variant
1/2)/mostly (variant 1/2)/both equally’. The order of the two questions was randomised

between individuals.

Data collection proceeded in three stages: first, to pilot the methodology, 8 participants
were asked to complete the paper version of the questionnaire on site in Shetland in January
2015. The pilot questionnaire consisted of just two sociolinguistic variables with the following

example sentences:

1. verb positioning in imperatives: Mak du dy ain denner! vs. Du mak dy ain denner!,
with the latter (incoming) variant akin to Standard English syntax, i.e. “You (sg.) make

your (sg.) own dinner!’

2. negation marking: He didna go vs. He didnoo go — this sociolinguistic variable is not
undergoing change and was added as a control, with ‘didna’ being the negation variant
used categorically in most of Shetland, set against the ‘didnoo’ variant which is categorical
only on the island of Whalsay to the East of Shetland’s main island (see Figure 5.2).

With a population of around 1,000 and close links to the mainland, we expected the



100 CHAPTER 5. PROBING MOMENTUM-AWARENESS IN THE INDIVIDUAL

local ‘didnoo’ variant (as well as its geographical patterning) to be known to all Shetland
locals, an assumption that was borne out by several explicit references to the the variants’

distribution by locals during data collection.

Following the successful pilot, 16 more participants were asked to complete an extended

4-page version of the questionnaire which covered two further variables:

3. yes/no question syntax: Kens du Sarah? vs. Does du ken Sarah?, i.e. “Do you (sg.) know

Sarah?”, with ‘ken’ being the Scots lexeme for ‘to know’

4. wh question syntax: Whit gae du him? vs. Whit did du gie him?, the latter again akin to
Modern English syntax but with the Scots lexical items for Standard English ‘what’ and

‘give’.

These first 24 participants were part of a balanced sample matched for binary gender, age,
and geographic location within Shetland. All participants grew up in and were currently living
in rural locations in Shetland (i.e. outside the island’s main town, Lerwick). Participants had
on average spent 3.7 years living away from Shetland, typically for higher education, work or
training purposes. In all cases, the questionnaire was administered as an exit-questionnaire
following a ~ 40 minute task which involved providing grammaticality judgments for a large
number of examples of the changing variables in question as well as fillers, which was carried out
in pairs (see Jamieson 2015 for a full description of the methodology and analysis of results).

Finally, we created an identical online version of the 4-variable questionnaire which was
advertised via email and social networks. The online questionnaire was self-contained (i.e. not
preceded by the grammaticality judgment task) and provided us with a convenience sample of

another 53 participants from all over Shetland, who completed the questionnaire in April 20152.

5.2.2 Hypotheses & predictions

Based on previous research on both the specific syntactic changes under investigation as well as
sociolinguistic knowledge more generally, we can derive several predictions about what effects
we might expect so see a priori.

Regarding differences between the sociolinguistic variables, prior work on verb inversion in
Shetland as well as the results derived from the acceptability judgments reported in Jamieson
(2015) suggests that the two question variables should pattern differently from the imperatives.
The change in question syntax is more advanced, with younger speaker using the incoming
question variants almost exclusively. Across the population, we would therefore expect generally
higher incoming variant usage for those two variables, as opposed to still relatively mixed usage
of the two imperative variants. This general pattern should be observable to different degrees
across all of our questions related to usage rates, i.e. all questions but Q3.

If our informants are indeed aware of the ongoing changes and their directionality, this should

be evident in their responses to questions 3 through 5. Here, all three changing variables under

2The online version of the questionnaire is still available for reference at http://spellout.net/ibexexps/
kstadler/shetland/experiment.html.
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investigation should pattern differently from the stable negation variable which acts as our
control: since this variable is not undergoing change, it provides us with a baseline for responses
to explicit questions about variant age when variable usage is really patterned geographically
rather than temporally.

In terms of between-participant differences, we can test a number of hypotheses that are
implicit in much contemporary sociolinguistic research: because many studies of sound changes
in progress have found there to be a significant effect of gender (typically with females leading
a change), it has been argued that, primarily due to their position in Western societies, women
might be more sensitive to linguistic cues (Trudgill 1972, but see Eckert 1989; Labov 1990).
While the studies of automatic implicit sociophonetic knowledge discussed above have not
revealed any effect of gender, Carrera-Sabaté (2014) showed that young females were more
explicitly aware of an ongoing sound change in the Lleidata dialect of Catalan. Although no
gender differences have been reported for the current syntactic changes in Shetland, neither in
production nor in terms of grammatical acceptability (Jamieson, 2015), we can still assess the
claim that female speakers might be more sensitive or aware of ongoing changes.

Another interesting question regarding between-speaker differences pertains to how the so-
ciolinguistic knowledge of age patterning might differ between participants of different ages.
For example, in her experiment Drager (2011) found an effect of listener age, where only older
participants’ perception of vowels that were currently undergoing a chain shift were affected by
the perceived age of the speaker whose tokens they were asked to classify. In other words, older
speakers were actively compensating more strongly for the manipulated age difference, with
younger speakers exhibiting less sociophonetic sensitivity, at least in the sense that they were
not actively employing their knowledge of ongoing changes in the classification task. Although
we should consider the possibility that the age of our participants will affect their sociolin-
guistic knowledge of the variables under investigation in this work, it is not possible to derive
a straightforward prediction regarding the presence or direction of an effect from the litera-
ture. While age effects are also attested in the large body of empirical research on language
attitudes (Giles and Billings, 2004), it is not immediately obvious how and whether the quali-
tative evaluation of innovations (often assumed to be primarily negative, see e.g. Labov 2001;
Tagliamonte 2012) corresponds to the quantitative evaluation and perception of changes, with

currently no conclusive results regarding the effect of age on the latter.

5.3 Results

Pooling together the data from the paper-based and online questionnaires, the total number of
responses was N = 77 for the imperative (imp) and negation (neg) variables, and N = 69 for
the yes/no question (ynq) as well as wh question (whq) syntax. Both the locally collected and
online samples had a similar age distribution, with participants ranging from 18 to 73 years,
with a median age of 32.

In terms of the geographical location of our participants there was a bigger difference between
the two samples, as can be seen in Figure 5.3. The balanced sample explicitly excluded speakers

originally from Shetland’s capital Lerwick, home to 7,500 of the islands’ total population of
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Figure 5.3: Origin of questionnaire participants within Shetland, by condition (online conve-
nience sample vs. paper-based controlled sample)

23,000. The Scots vernacular of Lerwick is undergoing a more rapid change towards Standard
Scottish English (SSE) forms than rural variants (Sundkvist, 2011), a development that can
be attributed to the larger influx of speakers of other English varieties due to the capital’s role
as a hub for offshore oil drilling in the surrounding sea. The convenience sample on the other
hand naturally includes a large proportion of Lerwick respondents. However, when it comes to
their questionnaire responses, we did not find the Lerwick participants to pattern differently
from the rest of the population for any of the questions.

Also, despite the fact that we might have expected the on-site participants to be more aware
or sensitive to the questionnaire based on the preceding 40 minute acceptability judgment task
on related syntactic variables, the type of data collection (paper-based on site vs. online) did

not come out as a significant predictor in any of the statistical models reported below.

5.3.1 Assessing the reliability of subjective usage judgments

Before we turn to the actual data analysis, we have to address a central issue of our methodology,
namely the type of data collected and its reliability. While questionnaires are still one of the
standard tools employed in dialectological research, explicit questions about language use have
fallen into disfavour in the quantitative sociolinguistic tradition. One reason for this is that
lay-people’s subjective evaluation of linguistic forms is traditionally not regarded as a reliable
indicator of usage, as overt evaluations are often assumed to reflect the participants’ qualitative
sociolinguistic attitudes rather than people’s actual quantitative usage (Labov, Trudgill, inter
alia). In combination with the increased availability of speech and text data analysis technology
over the past few decades, the relevance of subjective data on language use outside dedicated
areas of research such as language attitudes has all but disappeared. There has, however, been
a recent resurgence in interest in the beliefs that non-linguists have about language variation,
bridging the two fields with its own set of research methodologies often referred to as perceptual
dialectology (Montgomery and Beal, 2011). Rather than completely discarding the opinions of

laypersons on the topic of language, this approach raises a number of own research questions
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regarding how naive speakers’ ‘folk beliefs’ about language are related to language use as studied
by linguists (Preston, 1996).

It is in this domain that broadly sociolinguistic approaches come closer to the method-
ologies still most frequently used to study syntax and syntactic variation, in particular by
means of grammaticality judgments which have over the years been replaced by more grad-
ual acceptability judgments provided by naive native speakers rather than linguistic researchers
themselves (Cornips and Corrigan, 2005). Based on this continuum of related research methods
based on explicit linguistic opinions expressed by speakers, there is also an increasing amount
of literature on the question of actual usage is reflected in acceptability judgments and pro-
cessing preferences (Sorace and Keller, 2005; Featherston, 2005) as well as attitudinal data (see
e.g. Maegaard et al., 2013; Durham, 2014). In order to better understand the nature of the
estimated usage levels obtained through our present methodology it is therefore insightful to
cross-validate the results with other measures. While we have no quantitative production data
available for the three changing syntactic variables in question which are all very low in fre-
quency, we can, however, compare the relative usage rates against the grammatical acceptability
judgments which were collected independently for the 24 participants during the first, on site
phase of data collection (see Jamieson 2015). If the novel methodology presented here is indeed
reliable, we should expect good correlation between the two measures.

Despite the fact that both grammaticality judgments and usage rate estimates were gathered
through explicit elicitation, there are two big differences between the two types of data: firstly,
the usage rate estimates draw explicit attention to the type of speaker that it is envisaged to be
representative of, i.e. the speaker themselves, the ‘average’ interlocutor in their community, or a
‘younger’ or ‘older’ speaker specifically. This framing focusses explicitly on the variants’ use in
a specific context, while the acceptability judgment draws the informants’ attention primarily
to the linguistic variant itself. In this way, a quantitative acceptability judgment does not
distinguish in a principled manner between utterances that the informant would use in their
own production, and what they would accept (or expect) from some of their interlocutors, but
never actually produce themselves.

The second difference is that the usage rates as collected here capture the relative usage of the
two competing variants of a sociolinguistic variable by directly contrasting the two equivalent
forms of a single example sentence. The acceptability judgments on the other hand express
the absolute acceptability of an individual example sentence on a 7-point Likert scale, without
speaking directly to the relative usage of the two competing variants.

In order to assess the reliability of our usage estimates by correlating it with the acceptability
judgment data, we first need to transform the two measures to comparable scales, keeping in
mind those differences. The basic idea here is to convert the absolute judgments per variant
into relative ratings per variable, by comparing the per-variant ratings of the incoming and
outgoing realisations of the same example sentences. Transforming the acceptability judgments
to relative scores can be done in several different ways and boils down to three decisions. While
none of the choices turned out to have a strong effect on the results, it is worth discussing them
to get an idea of how a methodology based around acceptability judgments can be related to

the present questionnaire methodology.
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The first question regards exactly which acceptability judgments should be correlated with
the usage estimates. The acceptability judgment data collected by Jamieson (2015) is more
abundant: each of the 24 informants provided judgments for a total of 49 example sentences
across the three changing variables, covering 17 different verb types, and some of the verbs
were chosen because they are known to exhibit strong lexical effects that affect the choice of
syntactic construction. The two principled ways to limit the lexical effects on the acceptability
measures are, on one hand, to only correlate the judgments for those sentences where the verbs
match those used in the respective example sentences from the questionnaire or, alternatively,
to wash out lexical effects by taking the average acceptability score over all verbs used in the
acceptability judgment task. Both approaches turn out to result in almost identical correlation
coefficients, and even the inclusion of all individual lexical items leads to a highly significant
(if lower) correlation coefficient.

The second decision relates to how the two acceptability judgments for the two competing
variants should be converted into one measure capturing their relative acceptability, akin to
the direct juxtaposition of the “which variant do you use more” measure employed by the
questionnaire. The two most straightforward ways to combine them into one measure is by
taking the difference between the ratings for the incoming and the outgoing variant, either by
subtraction (absolute difference in acceptability) or division (relative difference in acceptability).
Both approaches produce a numeric scale with a neutral centre point occupied by pairs of
judgments where the incoming and outgoing variants were rated to be equally acceptable (0 for
the absolute difference by subtraction, and 1 for the relative difference by division). In terms
of the relative ranking of pairs with differing judgments the two scales only differ marginally,
as can be seen in Figure 5.4 below, where it is relatively easy to identify the matching pairs of
datapoints between the two graphs based on their y-axis position.?

Having transformed the absolute acceptability judgments to a relative acceptability scale,
there is still a third decision to be made, namely which of the usage estimate ratings it should be
correlated with. The separate questions in the questionnaire gathered data regarding different
speaker groups, including the informants themselves as well as several idealised interlocutor
groups. Intuitively, we would expect people’s acceptability judgments to reflect their own
probability of producing the respective variants, and it is indeed only their self-usage estimates
that yield a significant correlation with the derived relative acceptability scores.

The relationship between the reported relative self-usage rates and both the absolute and
relative difference in acceptability reported by the 24 participants in the paper condition are
shown in Figure 5.4. Due to the large number of ties along the 5-point ordinal scale of the
questionnaire we chose Kendall’s 75 to calculate the correlation between the two measures.
We found the strongest correlation between informants’ self-usage estimates and the relative
difference of their acceptability judgments by division, with 75 = 0.22207. This correlation

is significant at p < .01, as determined using the pvrank R package which provides p-value

3The main difference between the two different ways to convert the acceptability judgments concerns the res-
olution of the resulting scale: pairwise subtraction of the 7 possible ranks of the ordinal acceptability judgments
yields a total of 13 possible relative ratings, while the division method results in up to 35 theoretically possible
values, and consequently fewer ties. The impact of choosing either of the two approaches on the resulting corre-
lation coefficients is still only marginal, and our results are not highly sensitive to either choice, as can be seen
below.
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calculation for rank order correlation tests accounting for ties (Amerise et al., 2016).
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Figure 5.4: Correlation between the 24 informants’ reported self-usage rate of the two variants
for the three changing variables (x-axis, jittered) and the relative acceptability derived from
the average acceptability judgments (y-axis), for two ways of calculating the relative preference
of the variants: (a) absolute difference in acceptability, calculated by subtracting the rating of
the outgoing variant from the incoming one (b) relative difference of the incoming vs. outgoing
ratings, calculated by division. The mid-points of the two relative acceptability scales (where
two competing variants are judged as equally acceptable) are indicated by dashed lines.

Having established that the subjective responses that make up our data set pattern closely
with an independent measure of use in the form of acceptability judgments, we can now turn

to analysing our participants’ responses, and the patterns found therein.

5.3.2 Self-estimates of own usage

The first measure elicited from our participants was an estimate of their own usage levels for
each of the linguistic variables in question. The overall data, split by sociolinguistic variable and
informant age, is shown in Figure 5.5. The first impression is that the response distribution
is highly uneven, with the majority of responses falling onto the three categories of our 5-
point-scale that indicate at least 50% usage of the incoming variants.*

As expected, the self-reports on the stable negation variable are patterned by the informants’
geographical location, with the only four informants indicating categorical usage of the more
localised variant all originating from the isle of Whalsay. In contrast, responses for the three
changing variables appear to reflect differences in usage patterns in apparent time, the familiar
phenomenon where the language use of younger speakers is found to be more advanced, i.e. they

exhibit higher usage rates of the new, incoming variants (Wagner, 2012). While the mean age

4Since the control variable exhibits stable variation, there is no ‘incoming’ or ‘outgoing’ variant in this sense.
Instead, we have coded the more frequently used (i.e. geographically more widespread) variant as the ‘incoming’
one.
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Figure 5.5: Distribution of informant age per reported level of own usage for the three changing

variables as well as the stable, geographically conditioned control.

correspond to the five possible responses described in Section 5.2.1, ranging from the leftmost

‘T only use the incoming variant’ to ‘I only use the outgoing variant’ at the very right.
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of respondents tends to decrease for higher reported usage of the incoming variants for the three
changing variables, the same is not true for the stable control variable.

To test our hypotheses we used ordered logistic regression, an extension of logistic regression
that allows for more than two (ordered) response categories. We fit a number of models of
increasing complexity using R’s ordinal package (Christensen, 2015), with participant as a
random effect. The results from these models are shown in Table 5.1: the four coefficients
at the very bottom of the table, present for all models, are equivalent to the intercept in
(generalised) linear models, only that ordinal regression requires n — 1 intercepts to capture
the baseline distribution of responses across the n response levels. The coefficients above it
capture the inferred effect of the various predictor variables on the outcome distribution of self-
evaluation responses along the 5-point ordinal scale. Ordered logistic models can be read like
any regression model, except that the intercepts are given as log odds ratios, and the coefficients
Bi as difference in log odds per unit change in the predictor variable. In other words, with every
unit change in the predictor, the relative odds ratio of responding in a lower vs. a higher
category as given by the intercepts is multiplied by exp(/3;).

Looking at the succession of models in Table 5.1 as well as the pairwise model comparison
between them in Table 5.2, we first find a strong effect of the type of sociolinguistic variable
(model 1): in comparison to the stable negation variant for which the majority of speakers
reported using only the ‘incoming’ variant, the imperatives (varimp) exhibit significantly more
responses in the center of the 5-point scale, with the two question types (varynqg, varwhq)
falling somewhere in between. While we find no evidence for an effect of informant age across
all variables (model 2) there appears to be an effect of gender, with females being more likely to
report increased use of the majority variants (model 3). When taking into account differences
between the different sociolinguistic variables, we do find evidence for an effect of age for the
changing variables only. Rather than using the var term, a 4-level factor that distinguishes all
sociolinguistic variables covered by the questionnaire, model 4 adds an interaction between the
age coefficient and the type of sociolinguistic variable, with the binary stable factor opposing
the three changing variables against the stable negation variable. Even though the model
comparison between models 3 and 4 in Table 5.2 is not significant, the model coefficient Bq4c =
—0.028 means that the relative probability of responding in a higher category is multiplied
by exp(—0.028) = 0.972 for every year that a participant is older. This is equivalent to their
probability of reporting a relatively higher usage level of the incoming variant decreasing slightly
(by about 2.8%). The coeflicient of the age:stable interaction term, which is of a similar
amplitude but in the opposite direction (Buge:stabie = 0.039), implies that this effect of age is
effectively cancelled out for the stable control variable.

Finally, fitting a model with separate interaction terms for each of the four variables (by
substituting the age:stable term with age:var, model 5) does not improve the model fit
significantly, indicating that the presence of the age effect is mostly explained by whether the
sociolinguistic variable is undergoing change or not.

To help visualise the effect of age and aid in interpreting the log odd ratio coefficients, the
empirical responses by age as well as the corresponding predictions made by the ordered logistic

models are shown in Figure 5.6. For this purpose we split the responses we collected into two
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(1) (2) ®3) (4) ®)

age —0.019 —0.020 —0.028* —0.019
(0.011) (0.011) (0.012) (0.016)
stable 1.031
(0.901)
gendermale —0.788* —0.817* —0.838*
(0.359) (0.365) (0.370)
age:varynq —0.005
(0.023)
age:varwhq —0.033
(0.023)
age:varneg 0.030
(0.024)
varynq 1.909*** 1.874%** 1.864*** 1.865*** 2.052*
(0.372) (0.372) (0.372) (0.374) (0.960)
varwhq 1.770%** 1.736*** 1.732%** 1.733%** 2.997**
(0.365) (0.365) (0.366) (0.367) (0.985)
varneg 2.558%** 2.575*** 2.567*** 1.403
(0.414) (0.414) (0.415) (0.979)
age:stable 0.039
(0.021)
only out|more out —3.204*** —3.965*** —4.261%** —4.648%** —4.290%**
(0.450) (0.651) (0.665) (0.711) (0.801)
more out|both —2.282%** —3.036*** —3.336*** —3.713*** —3.366***
(0.348) (0.579) (0.595) (0.642) (0.738)
both|more in —0.996*** —1.747** —2.051%** —2.407*** —2.065**
(0.280) (0.532) (0.547) (0.590) (0.692)
more infonly in 0.884** 0.132 —-0.172 —0.493 —0.135
(0.274) (0.512) (0.522) (0.558) (0.669)
Note: *p<0.05; **p<0.01; ***p<0.001

Table 5.1: Ordered logistic regression model (coefficients and standard errors) of participants’
own usage estimates.

Model Res. df -2LL Test df LR P(>Chi)
(0) 1 287 606.566
(1) var 284 551.283 Ovs1 3 55.282 <.001
(2) age + var 283 548.353 1vs2 1 2.930 .087
(3) age + gender + var 282 543.518 2vs 3 1 4.835 .028
(4) age:stable 4 gender + var 281 540.054 3vs4 1 3.464 .063
(5) age:var + gender 279 537.920 4vsH 2 2.134 344

Table 5.2: Pairwise comparison of the models in Table 5.1.
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(a) Empirical distribution of the self-reported usage levels for the three changing variables,
with the participants split into two age groups (< 32 years, N = 39; > 32 years, N = 38). The
younger the speaker, the more likely they are to report higher usage of the incoming variant.
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(b) Prediction of response distributions of ordered logistic model (4) from Table 5.1 for the
mean ages of the two age groups plotted above.

Figure 5.6: Comparison of empirical own usage reports and corresponding model prediction.

evenly sized age groups, and the distribution of responses per age group and sociolinguistic
variable is shown in Figure 5.6a: despite differing baseline distributions (with imperatives
generally exhibiting a flatter distribution), we can see the general trend of increasing incoming
variant usage for younger speakers. The predictions made by model 4 for the different variables
and a typical member of each of the two age groups are plotted underneath in Figure 5.6b,

showing good agreement with the empirical data.
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5.3.3 ‘Other people’ usage estimates

When it comes to reporting on the linguistic usage levels of other individuals in their speech
community, the overall pattern of responses is similar to the self-usage estimates, but with an
added central tendency or edge-avoiding effect in the responses, as can be seen in Figure 5.7.
This presumably stems from the fact that, when imagining an ‘average’ individual, the in-
formants will model this on the population average, which, given any amount of within- or
between-individual variation, is almost necessarily non-categorical.

Again, we performed ordered logistic regression models with participant as a random effect,
reported in Tables 5.3 and 5.4. In contrast to the self-usage reports, we find no effect of age
for any of the variables (models 142). Instead, the models reveal that the only significant
predictors of the reported usage levels are the type of sociolinguistic variable (model 3) as well
as the participant’s gender, with females again estimating slightly higher usage of the incoming
variant in the community (model 4). Importantly we find no significant interaction between
the type of variable and any of the other predictors, i.e. the effect of gender again pertains to

all four variables, and not just the changing ones (model 5).

age 0.005 —0.002
(0.011) (0.012)
stable —0.560
(0.771)
age:stable 0.023
(0.019)
varynq 1.750*** 1.749*** 1.751%**
(0.404) (0.404) (0.404)
varwhq 1.888*** 1.883*** 1.884***
(0.410) (0.410) (0.410)
varneg 1.491*** 1.487*** 1.222%*
(0.387) (0.388) (0.450)
gendermale —0.832* —1.019*
(0.368) (0.406)
gendermale:stable 0.743
(0.654)
only out|more out —5.821*** —6.045*** —5.294%*** —5.615%** —5. 717
(1.092) (1.120) (1.037) (1.053) (1.059)
more out|both —3.465*** —3.686*** —2.829*** —3.141*** —3.232%*
(0.537) (0.591) (0.408) (0.440) (0.451)
both|more in —1.659*** —1.873*** —0.835** —1.136*** —1.215%**
(0.446) (0.509) (0.289) (0.322) (0.332)
more in|only in 2.471%** 2.300*** 3.825%** 3.519*** 3.464***
(0.469) (0.516) (0.419) (0.421) (0.424)

Note: *p<0.05; **p<0.01; ***p<0.001

Table 5.3: Ordered logistic regression model (coefficients and standard errors) predicting par-
ticipants’ answers to the question “How much do you think are people around you using either
of the variants?”
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(b) Responses to the question “How much do you think are people around you using either
of the variants?”. While the distribution of responses to the imperative question is again
consistently flatter than for the other responses, in comparison to the self-usage estimates
shown in (a) there is a clear shift away from both of the extreme response options, indicating
that individuals perceive the population average to be variable rather than categorical.

Figure 5.7: Comparison of own vs. community-level usage estimates by binary gender.

Table 5.4: Pairwise comparison of the models in Table 5.3.

Model Res. df -2LL Test df LR P(>Chi)
(0) 1 287  507.936
(1) age 286 507702 Ovsl 1  0.234 628
(2) age:stable 284 505.271  1wvs2 2 2.431 297
(3) var 284 478.018 1vs3 2 29.684 <.001
(4) var + gender 283 472.928 3 vs4 1 5.089 .024
(5)  var + gender:stable 282 471625 4vsbH 1 1.303 .254
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The data from the first two questions implicitly contains another piece of information,
namely where the speakers regard their own variable usage to be relative to the community-
level. We measure this by looking at the number of ordinal categories along the 5-point scale
that the self-usage response differs from the reported community-level usage, and subtracting
their ordinal ranks. In this representation of the relative difference, positive numbers indicate
that a speaker reported a relatively higher usage of the incoming variant for themselves than
for the community, and vice versa.

If we look at the distribution of this measure in Figure 5.8, we see that the participants’ age
is a good predictor of this difference between themselves and the community. Ordinal logistic
regression models paralleling those fit to the self-usage reports in Table 5.2 above confirm
this picture: as can be seen in Tables 5.5 and 5.6, the most parsimonious model predicts
the difference between individuals’ reported own and community usage based on the type of
sociolinguistic variable as well as the informant’s age. Although the effect of age is again
greater for the changing variables (compare models 2 and 3), the models indicate no significant

difference between the stable as opposed to any of the changing variables (models 3+4).
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Figure 5.8: Relative difference in number of ordinal categories between participants’ reported
own vs community usage levels of the competing variants, by sociolinguistic variable and age
group. Positive numbers indicate that a speaker reported a higher usage of the incoming
variant for themselves than for the community, and vice versa. While the 5-point response
scale allows for differences of up to £4, no speaker indicated their own usage to be more than
two ordinal categories away from the community level. Younger speakers are more likely to
perceive themselves to be ahead of the community level usage (more red), while older speakers
are most likely to report their usage to be level with the community (white) or behind (blue).

5.3.4 Beliefs about the age of competing linguistic variants

The third question of the questionnaire aimed at eliciting the speakers’ beliefs about the variants

by explicitly asking which they thought was the ‘older’ of the two, with ‘people have always
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) 2 ®3) (4)
age —0.022* —0.027* —0.023
(0.010) (0.011) (0.016)
stable 0.633
(0.745)
varynq 0.883** 0.850* 0.841* 1.481
(0.337) (0.336) (0.337) (0.879)
varwhq 0.677* 0.636 0.624 0.494
(0.336) (0.336) (0.337) (0.881)
varneg 1.305%*** 1.322%** 0.796
(0.343) (0.343) (0.858)
age:stable 0.018
(0.017)
age:varynq —0.017
(0.022)
age:varwhq 0.004
(0.022)
age:varneg 0.013
(0.020)
-2]-1 —3.312%** —4.156*** —4.377*** —4.223***
(0.422) (0.583) (0.627) (0.759)
-1|0 —1.934*** —2.788*** —3.000%** —2.847***
(0.307) (0.504) (0.549) (0.692)
0l]+1 0.432 —0.426 —0.618 —0.461
(0.269) (0.462) (0.500) (0.652)
+1|+2 4.180*** 3.324%** 3.129%*** 3.302***
(0.414) (0.535) (0.568) (0.715)
Note: *p<0.05; **p<0.01; ***p<0.001
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Table 5.5: Ordered logistic regression model (coefficients and standard errors) of the relative
difference between participants’ reported own and community-level usage.

Model Res. df -2LL Test df LR P(>Chi)
(0) 1 287 657.692
(1) var 284 642.109 Ovs1 3 15.583 .001
(2) age + var 283 637.137 1vs2 1 4.972 .026
(3) age:stable + var 282 636.056 2vs 3 1 1.081 .298
(4) age:var 280 635.065 3vs4 2 0.990 .609

Table 5.6: Pairwise comparison of the models in Table 5.5.
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used both’ given as a neutral third option. As can be seen in Figure 5.9, people reliably identify
the outgoing variant as the ‘older’ one for the three changing variables. For the stable negation
variable results are more mixed, but many also report the less widespread ‘didnoo’ variant as
being older.

The ordered logistic regression models reported in Tables 5.7 and 5.8 show that, while
participants generally tend to report the less frequent variants to be older, they are more likely
to do so for the three changing variables (model 3). There is also again a significant interaction
between the type of variable and the age of the informant: older informants are more likely to
identify the outgoing variant as the ‘older’ one, but again only for the sociolinguistic variables
that are changing (models 2-5). Beyond the split between the stable and changing variables,
there was no significant difference between the individual variables (models 3-6), and we also

found no evidence for any effect of gender.
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Figure 5.9: Distribution of responses to the question “Which of the two variants do you think is
older?”, split by sociolinguistic variable and age of the informant. In comparison to the stable
negation variant, where about half of the people considered the geographically more limited
(minority) variant ‘didnoo’ to be older, the response distribution was more extreme for the
three changing variables. Here, around 80% of respondents report the outgoing forms (which
are already the minority forms) to be older, with even fewer answers falling on the majority
variant as well as the “people have always used both” option.

5.3.5 Perception of apparent time differences

The final pair of questions, which ask for the participants’ impression of the relative usage level
of the two competing variants by ‘younger’ and ‘older’ speakers was aimed at helping us to
determine whether individuals can perceive and report apparent time differences in categorical
variables. As can be seen in Figure 5.10, speakers consistently report higher usage of the

majority variants among younger speakers but, surprisingly, this effect is present across all
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) ) ®3) (4) (5) (6)
gendermale 0.494
(0.373)
age 0.007 —0.016 —0.016
(0.012) (0.015) (0.015)
stable 1.404*** —0.751 —0.617
(0.308) (0.789) (0.843)
varynq 0.373 0.320
(0.435) (0.438)
varwhq 0.080 0.028
(0.440) (0.444)
varneg 1.557***
(0.401)
age:stable 0.058** 0.057**
(0.020) (0.020)
outgoing older|always both 1.232%** 1.315** 1.531*** 1.685*** 0.963 1.103
(0.249) (0.490) (0.248) (0.359) (0.604) (0.678)
always both|incoming older 3.251%** 3.332%** 3.727* > 3.891*** 3.254*** 3.403***
(0.355) (0.556) (0.384) (0.472) (0.674) (0.747)

Note:

*p<0.05; **p<0.01; ***p<0.001

Table 5.7: Ordered logistic regression model (coefficients and standard errors) of responses to
the question “Which of the two variants do you think is older?”.

Model Res. df -2LL Test df LR P(>Chi)

(0) 1 288 434.312

(1) gender 287 432.539 Ovs1l 1 1.773 .183
(2) age 287 433.952 0vs2 1 0.360 .549
(3) stable 287 412.654 0Ovs3 1 21.658 <.001
(4) var 285 411839  3vsd4 2 0815 665
(5) age:stable 285 403.374 3vsH 2 9.279 .01
(6) age:stable + var 283 402.723 5vs 6 2 0.652 722

Table 5.8: Pairwise comparison of the models in Table 5.7.
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sociolinguistic variables, including the stable control. While there appears to be a general trend
to attribute the usage of minority variants (whether outgoing or just geographically limited) to
older speakers, the ordinal logistic regression model 2 in Tables 5.9 and 5.10 shows that the ef-
fect is significantly stronger for the three changing variables, but with no significant differences
between them (compare models 3+4). In contrast to the responses to question 3, the age of
our informants does not appear to have a systematic effect on how they perceive apparent time

differences for any of the variables under investigation (models 144).
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Figure 5.10: Relative difference between the reported usage of the two variants between ‘older’
and ‘younger’ speakers, for each of the four variables. The relative difference indicates the
number of ordinal categories that separates an individuals’ responses for the two age groups
along the 5-point scale, where positive numbers (in shades of red) correspond to reporting higher
usage of the majority variant among younger speakers, and vice versa. The most extreme points
of the scale at +4 correspond to reporting the ‘older’ and ‘younger’ speakers to be categorical
users of opposing variants, the mid-point at 0 to reporting the same usage levels for both.

While this might suggest that individuals can accurately perceive and report on apparent
age differences in changing categorical variables, we cannot straightforwardly jump to this
conclusion. Model 5 shows that our participants’ responses to question 3 (i.e. their reported
belief about which if any of the competing variants is ‘older’) is a significant predictor of how
far they reported younger speakers to be ‘ahead’ or ‘behind’ in their relative usage of the
incoming variant. So while all results presented so far show that individuals are clearly able to
(correctly) report on the directionality of the changes under investigation, the exact source of

this metalinguistic knowledge is still in question. We turn to this issue in our discussion.

5.4 Discussion

Having presented the questionnaire data as well as statistical models of the individual responses,
we now turn our attention to the particular research questions and predicted effects discussed
in Section 5.2.2.

5.4.1 Identifying the source of awareness of ongoing changes

The main goal of our research was to quantify if and to what degree individuals are aware of
and able to report on the direction of ongoing changes in their community, with a particular eye

on whether individuals are sensitive to differences in ‘apparent time’, i.e. the traditionally more
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(1) (2) (3) (4) (5)

age —0.011 —0.005
(0.008) (0.010)
stable —1.535%** —0.804 —1.215%**
(0.266) (0.653) (0.274)
varynq —0.432
(0.310)
varwhq 0.052
(0.312)
varneg —1.674***
(0.322)
age:stable —0.020
(0.016)
oldervaralways both —1.325%**
(0.317)
oldervarincoming older —2.316***
(0.575)
-2|-1 —5.109*** —5.445*** —5.590*** —5.697*** —6.176***
(0.673) (0.620) (0.648) (0.730) (0.661)
-1/0 —4.108*** —4.435*** —4.581*%** —4.680*** —5.121***
(0.494) (0.417) (0.457) (0.567) (0.466)
0l]+1 —1.801*** —1.970*** —2.114%** —2.171%** —2.454%**
(0.354) (0.215) (0.284) (0.432) (0.254)
+1|+2 —0.328 —0.301 —0.432 —0.490 —0.636***
(0.327) (0.164) (0.242) (0.402) (0.189)
+2[+3 1.690*** 1.914*** 1.810*** 1.726%** 1.730%**
(0.354) (0.220) (0.275) (0.424) (0.230)
+3|+4 5.397*** 5.689*** 5.591%*** 5.500%*** 5.572%**
(1.049) (1.013) (1.026) (1.077) (1.016)
Note: *p<0.05; **p<0.01; ***p<0.001

Table 5.9: Ordered logistic regression model (coefficients and standard errors) of the relative
difference in individuals’ estimates for ‘younger’ and ‘older’ speaker groups in number of ordinal
categories, a proxy for perceived apparent time differences. Raw data is shown in Figure 5.10.

Model Res. df -2LL Test df LR P(>Chi)
(0) 1 284 820.962
(1) age 283 828.119 Ovs1 1 1.842 175
(2) stable 283 794396 Ovs2 1 35565 <.001
(3) var 281 791.493  2vs3 2 2.904 234
(4) age:stable 281 791.456 2vs 4 2 2.941 .23
(5) stable 4 oldervar 281 764.235 2vs5H 2 30.161 <.001

Table 5.10: Pairwise comparison of the models in Table 5.9.
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advanced usage of incoming variants among younger speakers. While the results presented in
Sections 5.3.4 and 5.3.5 indicate that people have accurate knowledge about ongoing changes,
our data does not allow us to give a definite answer regarding the source of this knowledge.
In principle, beliefs could be based on any or all of (a) meta-linguistic commentary or other
connotations of variants being archaic, (b) impressions of the change in real time, i.e. awareness
of changing speech patterns that accumulate throughout a speaker’s lifetime, or (c) apparent
time differences in variable usage across age groups. The questionnaire was designed with these
different sources of knowledge in mind. In particular, while questions 445 tapped into speakers
knowledge about apparent time differences between speakers, the responses to question 3 offer
a more general window into individuals’ folk-linguistic beliefs about the ‘age’ or novelty of the
competing variants.

As already indicated above, the two measures turned out to be highly correlated: model (5)
in Table 5.9 showed the folk-linguistic belief about variant age is itself a good predictor of
individuals’ perceived apparent time differences, as derived from questions 4+5. Importantly,
the converse is also true: Tables 5.11 and 5.12 report expanded models of individuals’ re-
sponses to question 3, showing that the apparent time differences gathered from the responses
to questions 445 are a good predictor of the responses to question 3. The number of ordinal
categories between the reported ‘older’ and ‘younger’ usage levels (coded as a continous vari-
able apparentdiffN) is in fact a better predictor of the participants’ folk-linguistic belief than
whether the variable is actually changing or not (compare models 1 and 2). What the models
do not suggest, however, is that folk-linguistic beliefs are based on perceived apparent time
differences alone (model 3). Other predictors remain significant, in particular the interaction
between informant age and the type of sociolinguistic variable reported earlier in Section 5.3.4.
Even when the participants’ impression of apparent age differences is taken into account, there
is still a significant effect of informant age on their responses, with older participants less likely
to report the less frequent variant as older for the stable control variable only (compare models 4
and 5).

Based on these results it remains an open question whether people might have inferred their
answer to question 3 independently from a perceived apparent time difference, or if participants
felt led to answer questions 4 and 5 in a way that would post-hoc justify their earlier response,
which was itself based on other (socio-indexical) knowledge. In order to understand the dif-
ferent sources of socio-indexical knowledge that might be at play here, it is insightful to take a

closer look at the responses to our control variable.

5.4.2 Variant age and perceived apparent time differences: evidence from
the control variable

Some more evidence regarding the primary source of inividuals’ knowledge can be glanced from
the responses to our control variable. As the distribution of negation variants on Shetland is
stable, determined by geography rather than by generational change, we would not expect any
information on the history of the two variants to be available to our speakers. Regarding their

answers to the first two questions, the control patterned as expected. Own usage reports were
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1) (2 3) (4) (%)

age 0.002 —0.020
(0.013) (0.016)
stable 1.404*** 0.816* 0.815* —1.229
(0.308) (0.332) (0.332) (0.841)

apparentdiffN —1.124*** —1.002*** —1.001*** —0.984***
(0.185) (0.190) (0.190) (0.190)
age:stable 0.055**
(0.021)
outgoing older|always both 1.531*** —0.234 0.176 0.264 —0.504
(0.248) (0.280) (0.332) (0.618) (0.684)
always both|incoming older 3.727*** 2.199*** 2.675%** 2.764*** 2.075**
(0.384) (0.348) (0.415) (0.678) (0.726)

Note:

*p<0.05; **p<0.01; ***p<0.001

Table 5.11: Extension of the ordered logistic regression model in Table 5.7, adding individuals’
perceived apparent time difference as an additional predictor for their responses to the question
“Which of the two variants do you think is older?”.

Model Res. df -2LL Test df LR P(>Chi)
(0) 1 288 434.312
(1) stable 287 412.654 Ovs1l 1 21.658 <.001
(2) apparentdiffN 287 384.260 0vs2 1 50.053 <.001
(3) stable 4+ apparentdiffN 286 378.250 2vs3 1 6.009 .014
(4) age + stable + apparentdiffN 285 378.222 3vs4 1 0.029 .866
(5) age:stable + apparentdiffN 284 370.925 4vsbh 1 7.297 .007

Table 5.12: Pairwise comparison of the models in Table 5.11.
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predicted perfectly by geographical location, with all four participants indicating categorical
usage of the ‘noo’ variant (coded as ‘outgoing’ in the Figures) coming from the isle of Whalsay.
The estimates of the community-wide usage consequently fell chiefly in the ‘more incoming’ cat-
egory, with no clear internal patterning of responses along any of the participant variables (see
Figure 5.7).

When it came to beliefs about the relative age of the two negation variants in question 3 we
found that, despite the apparent absence of any evidence for it, almost half of the participants
stated that they believed that the geographically limited negation variant was ‘older’ than its
more widespread counterpart, as could be seen in Figure 5.9. This result is puzzling: the geo-
graphical distribution of the two variants is well-known to Shetland inhabitants, an assumption
that was confirmed by the fact that 17 out of 77 participants used the optional comment field
to point out that the variable realisation of negation patterned geographically and not by time,
the dimension investigated by the questionnaire.

The distribution of perceived apparent time differences for our control revealed a similarly
intriguing result: as the negation variable isn’t changing we would have expected the distribu-
tion of difference scores to be centered around the zero mark. While Figure 5.10 showed that
identical estimates for the ‘older’ and ‘younger’ speaker groups was indeed the most frequently
reported result across all our participants, the overall distribution of responses is skewed to-
wards reporting higher usage of the more widespread variant for younger speakers, with almost
no apparent time differences reported in the opposite direction.

This raises the question of why speakers would extrapolate from a geographical pattern to
history, or at least to the historical origin of variants. While there is currently no evidence
that the relative usage of the more localised negation variant is decreasing (Jamieson, p.c.),
it is imaginable that it shares a few meta-linguistic features with the outgoing variants of
the changing variables. As the more ‘local’ variant, it could have gathered connotations of
‘dialectality’ and ‘authenticity’ that are typically associated with older speakers. This (possibly
imagined) prevalent usage among older speakers could in turn give rise to both effects observed
in the responses: firstly, it could be regarded to speak to the variant’s historical primacy (Bailey,
2002), and secondly, the usage pattern by authentic ‘older’ speakers stands in natural opposition
to younger speakers, explaining the reported differences in apparent time, an effect that was
possibly amplified by the ordering of questions in the survey.

As it stands, it is not possible for us to identify the exact pathway of these socio-indexical
connotations. Does ‘authenticity’ speak to both speaker group differences and variant history,
or does one affect the other? While the responses to the changing variables provide evidence
that apparent time differences are perceived independently, we can again not rule out that
the responses to questions 4+5 were influenced so as to provide a post-hoc justification of the
earlier answer regarding the variants’ relative age. Conversely, the presence of seemingly non-
substantiated beliefs about variant age for the control variable might indicate that, when forced
to identify one variant as ‘older’, our participants might attribute historical primacy based on
imagined age stratification even when they know that, synchronically, usage is determined by
geography alone.

To avoid the same problem and aid in identifying the influence of either type of knowledge,
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an improved methodology should therefore randomise the order of questions 3 vs. 4+5 between
individuals.The two randomisations could then serve as separate conditions: measuring the ef-
fect of first explicitly drawing attention to either linguistic history or apparent time differences
between participants would allow us to quantify what effect either meta-linguistic dimension

has on the other.

5.4.3 Between-participant differences: age

Our results revealed several significant effects of the informants’ age on their responses: firstly,
age is a good predictor for participants’ reported self-use of the changing variables, as reported
in Section 5.3.2. In combination with the fact that age did not seem to affect participants’
estimates of the community-level usage, age is consequently a good predictor for how much
the respondents think they are ‘ahead’ or ‘behind’ their estimated community level usage,
as measured by the relative difference between people’s estimated self and community usage
levels (Section 5.3.3). This suggests that individuals can correctly identify where, during an
ongoing change, they are positioned relative to the rest of the community.

While Drager (2011) found that older speakers were more sensitive in their automatic com-
pensation for ongoing phonetic changes, we find no such effect for the explicit reports on syntac-
tic variables. For the changing variables, there is no significant effect of informant age on either

the perceived ‘age’ of the variants or the perceived differences in apparent time (Section 5.3.5).

5.4.4 Between-participant differences: gender

The only significant effects of binary gender were found in the first two questions, i.e. the
reported ‘self” as well as ‘other speakers’ usage levels: females tended to report higher levels of
the incoming variant both for themselves and the population as a whole. This tendency was
present across all four sociolinguistic variables, whether changing or not. The raw data of the
responses split by variable and gender is shown in Figure 5.11.

This gender effect does not translate to a higher difference between perceived self-usage and
perceived community usage, i.e. females do not perceive themselves to be further ‘ahead’ the
community than males do, the answers to both questions appear to be shifted in unison. Also,
despite an often purported increased sensitivity to linguistic changes among females, neither the
identification of the ‘older’ variants (Section 5.3.4) nor the strength of the perceived apparent

time differences (Section 5.3.5) showed significant effects of participant gender.

5.5 Summary & conclusion

In this work, we presented a new methodology to assess and measure quantitatively whether
people can report the direction of currently ongoing changes based on their awareness of the
variable usage levels of categorical sociolinguistic variables. Results from 77 speakers show
that people are reliably capable of reporting apparent time differences within their speech
community, as well as provide evaluations of the age of the different linguistic variants that are

compatible with the direction of the changes. Complementing earlier experimental results on
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Figure 5.11: Raw data for responses regarding self-usage by sociolinguistic variable and binary
gender. For the changing variables, females generally report higher level usage of the incoming
majority variants.

individual speakers’ use of their implicit knowledge of continuous sound changes, we obtained
quantitative evidence for the explicit awareness of changes in three related morphosyntactic
variables which are only attested at very low frequencies in everyday speech. Even though their
low frequency means that we have no quantitative production data to compare to, the absolute
usage levels reported by our informants reflect what is known about the relative progress of the
three changes, indicating that naive individuals can learn about variable usage rates even from
very limited data. While it is possible that explicit socio-indexical commentary on the variants
could be underlying the shared knowledge about the direction of changes, the quantitative
difference in responses between variables as well as the age-stratified distribution of self-usage
assessments within variables suggests that the degree of knowledge about the variants cannot
be straightforwardly reduced to qualitative connotations of specific variants as being ‘older’,
‘more dialectal’ etc.

Connecting the present work to related approaches, I briefly discussed the continuum of
methodologies that are based on eliciting explicit judgments on language and language use
from laypeople. Our extension of a simple and fast survey method originally employed by
Labov (1966b) and Trudgill (1972) falls on a spectrum somewhere between current quantitative
methods employed in syntactic research and the qualitative approaches to variation pervasive
in the study of language attitudes. Our work is best understood as a contribution to the
re-emerging field of perceptual dialectology dedicated to the study of naive language users’
impression of language variation and change. This branch of research embraces the assumption
that subjective evaluations, whether qualitative or quantitative, should not be discarded a priori
but that they can complement and support evidence collected by other means in important ways.
In Section 5.3.1 in particular we showed that subjective reports of relative quantitative usage

correlate well with measures derived from grammatical acceptability judgments.
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In the context of this thesis, the present work represents an empirical contribution to the
study of individuals’ capacity to detect and monitor ongoing changes in their community. As
argued in Chapter 2, the metalinguistic awareness of innovations and changes in the individual
provides a rich source for social biases which could underlie selection mechanisms at play in
language change, such as the momentum-based selection bias presented in the previous chapter.
While we complemented and extended existing work to morphosyntactic, categorical variables
of low frequency, the study of individuals’ sociolinguistic knowledge is still a new topic that will

require much further work, particularly in respect to innovations and changes.
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6.1 Connecting innovation and selection

In its opening chapters, this thesis provided a very general overview of the myriad ‘pressures’
and ‘biases’ that have been proposed to influence language change. Chapter 4 investigated a new
selection pressure based on the idea of trend-amplification, with Chapter 5 contributing to the
existing empirical evidence that such a momentum-based approach is a psychologically viable
candidate mechanism for language change. Having honed in on one particular mechanism, this
final chapter is intended to ‘zoom out’ again to connect the idea of momentum-based selection,
a symmetric mechanism which does not predict any of the competing linguistic variants to
be more prevalent than any other, with other pressures which might be responsible for the
asymmetry underlying the uneven distributions and unidirectional paths that we find in real
language changes. By combining a model of asymmetric innovation of variants with a symmetric
selection mechanism we arrive at a more complete, if more complex, picture of the dynamics of
language change.

Section 6.2 starts off with a recapitulation of the evolutionary framework of language change
and provides theoretical motivations for why momentum could (and should) be relevant for
language change research. In order to get a more systematic grip on different types of pressures,
Section 6.3 will introduce the Wright-Fisher model of biological evolution and investigate it
using the Markov model toolkit that was already used in Section 3.4.1. The main purpose
of this is to allow us to study a toy model of the dynamics and interaction of the two basic
evolutionary pressures, namely the innovation of variants as opposed to their selection. Having
covered the basics of the Wright-Fisher model as well as its predictions regarding the interaction
of the different pressures, Section 6.4 will provide an extension that implements a momentum-
based selection bias. The point of the model is to show how the interaction of asymmetric
innovation and a neutral selection bias like momentum can provide an explanation not just of
the dynamics of language change, but also of the skewed synchronic distribution of linguistic

variants that we observe cross-linguistically.

6.2 Language change, arbitrariness, replicator-neutrality

A core feature of momentum as it was presented in Chapter 4 was that it created directed
selection pressures while being replicator-neutral, i.e. without favouring either of the competing
variants a priori. Why is this particularly relevant to language change? When going back to the
roots of modern-day linguistics, we can uncover a strong theoretical reason for why language
changes should be replicator-neutral. One of the central tenets of Ferdinand de Saussure’s
Course in general linguistics (1916; 1959) is the principle of the arbitrariness of the sign. The
principle states that linguistic signs, i.e. the association of a specific signifier (typically a se-
quence of speech sounds) to a specific signified (an object or concept referred to by using the
signifier) is not ‘motivated’ by any (physical) semblance between the two. The linguistic sign is
arbitrary in the sense that the association between form and meaning is primarily established
on social grounds. According to this definition linguistics is chiefly the study of conventional

as opposed to ‘natural’ associations and, while Saussure was explicitly referring to lexical con-
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ventions, modern approaches to grammar which challenge the categorical distinction between
lexicon and morphosyntax (e.g. Construction Grammar, Goldberg, 1995) suggest that his prin-
ciple can be extrapolated to morphosyntactic constructions (such as syntactic constituent order)
as well.

Even though the principle of arbitrariness has been challenged based on work related to
iconicity and sound-symbolism (see Perniss et al., 2010, for a review), it has maintained its
place as a cornerstone of linguistics to this day (Joseph, 2000). But how is the principle of
arbitrariness relevant to language change? While Saussure’s distinction of the ‘synchronic’
versus the ‘diachronic’ study of language was also the origin of the schism between research on
the two topics that characterised much of 20th century linguistics discussed in Chapter 2, the
arbitrariness of the sign also speaks to diachronic processes. As made explicit by evolutionary
frameworks, the linguistic conventions we find today are there because they have come about
and spread through historical processes, in particular their replication and selection. So, if we
want to maintain that the conventions we find synchronically are in fact arbitrary, we have to
believe that their diachronic development, and in particular any selection of specific conventions
over their competitors, occurred on arbitrary grounds as well (but see Joseph, 2015, p.93 for
an argument why iconicity and arbitrariness are not contradictory to begin with).

Here we find, once again, the diverging priorities of researchers working on language change
on the macro and micro level, as well as the potential disconnect between the two approaches.
While skewed macro-level patterns and distributions across languages will be taken to suggest
some degree of non-arbitrariness or motivatedness in the selection of specific linguistic traits,
researchers working on an individual change (which might or might not conform to the larger
scale patterns) will have very different, particular criteria to determine the presence (or cause)
of selection in their micro-level data. This disconnect between the two explanatory levels of

language change is acknowledged very explicitly by Ohala when he states that

As for the immediate triggers of sound change in a particular language at a particular
time, I will have little to say about them except to suggest that these things are
bound to happen and that it is not so interesting to try to identify them. (Ohala,
1989, p.174)

This dismissal of the (study of) factors responsible for triggering individual changes could
be taken to indicate a certain degree of frustration about the struggle to unify the reliable and
frequently attested large-scale patterns across languages with the idiosyncracy of individual
changes.

Unlike Ohala, I suggest that the shortcomings in the prediction of individual changes can
also be framed in constructive terms, as a test for competing accounts of language change.
What the theoretical arguments presented above as well as the empirical evidence suggest is
that a good theory of language change should predict that changes happen, which changes
are more likely to happen than others, but all the while accounting for the sporadic nature
of changes, i.e. not making overspecific claims about being able to accurately predict which
changes are going to happen where. What this theory should be able to predict is not just

language changes themselves, but also the degree of their unpredictability, i.e. it should have a
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theory of and explanation for its own limitations.

This is exactly the promise made by the evolutionary, replicator-based stance taken by Labov
and Croft which decouples the two processes of innovation of linguistic variants as opposed
to their selection. While the function-driven repeated innovation of similar variants across
languages can account for the distribution or likelihood of different types of changes overall, as
measured by their cross-linguistic ‘actuation probability’, the actuation of specific changes is
explained by arbitrary (social) pressures that explicitly underspecify predictions about whether
a specific change is about to happen in a language or not.

While the advantages of this ‘division of labour’ have long been argued for theoretically, the
approach has not seen wide adoption in the empirical and modelling literature, as I discussed
in Section 2.5. Arguably, this is largely due to the absence of concrete candidate mechanisms
for the second, arbitrary selection step. As was argued in Section 2.2.5, the default account of
socially driven change invokes the concept of sociolinguistic prestige, which is based on asym-
metric selection biases that can only be posited post-hoc on an individual basis. The subsequent
lack of testable predictions made by social accounts that would generalise across changes means
that, on the macro-level, asymmetric social pressures have largely been disregarded at the ex-
pense of equally replicator selection-based functional accounts of language change, which do
however make a priori predictions.

The momentum-based selection account presented in this thesis constitutes a more mecha-
nistic explanation of socially-driven changes beyond ‘prestige’ accounts. With this new mech-
anism in mind, the remainder of this chapter is dedicated to demonstrating based on a toy
model how the interaction between innovation and selection biases more generally, as well as
between asymmetric innovation and momentum-based selection in particular, can satisfy the

requirements of a theory of language change outlined above.

6.3 Modelling the interaction of different pressures

In this section I will present a simple model to investigate how a symmetric momentum bias, a
selection bias favouring trending conventions whether they are beneficial or deterious, interacts
with asymmetric generation of variants. The model is an extension of the Markov model of
Bayesian Iterated Learning that was analysed in-depth in Section 3.4.

To recapitulate, Reali and Griffiths (2009) proposed a model of regularisation by Iterated
Learning. In their model, a Bayesian learner infers the underlying relative frequencies of sev-
eral competing variants based on a sample of productions they observe from a teacher. By
iteratively passing one learner’s output on to the next and analysing the stationary distribution
of this Markov chain, they showed that by setting the parameter « to values that lead indi-
vidual learners to slightly increase the variability of their own productions, the chains end up
regularising the input distribution: over time, the population ends up mostly producing input
distributions where one of the competing variables is used categorically.

Moreover, in Reali and Griffiths (2010) the authors showed that under some circumstances
this model of Bayesian Iterated Learning is equivalent to the Wright-Fisher model of biological
evolution with mutation (see e.g. Hartl and Clark, 2007). The Wright-Fisher model is a general
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tool from population genetics which is used to predict the expected change in the frequency
of competing alleles in a population in the presence or absence of different pressures such as

mutation and selection.

6.3.1 The Wright-Fisher model

In its very simplest form the Wright-Fisher model (for its original formulation see Wright, 1931)
describes the dynamics of competition between two variants in a finite population of size N.
Call the two variants 0 and 1 and their respective absolute frequencies ng and n;. The entire
population of N individuals is replaced at discrete time steps so that it is always the case that
ng +ni; = N. To simplify notation and assuming a constant population size N, we can again
drop the indices referring to individual variants: we will henceforth write n; to mean n; at time

t, from which the frequency of the competing variant can be trivially computed.

The state of the population can be described simply by the relative frequency x of that

variant, i.e.
nt

N (6.1)

Tty =

The Wright-Fisher model assumes that the individual generations of the population as it
evolves over time are mon-overlapping. In other words, the generation makeup at the follow-
ing timestep, n;11, is determined by creating a new population of N tokens, each generated
by replicating a randomly selected ‘ancestor’ from the previous generation. The probability
distribution over the likely frequencies nsy1 in the next generation is consequently distributed

according to a Binomial distribution

nir1 ~ Bin(N, f(xy)) . (6.2)

In the absence of any other pressures, the probability of replicating an instance of a particular
variant is simply equivalent to the relative frequency of that variant in the previous generation,
ie.

fl)==z. (6.3)

The behaviour of this simplest form of the Wright-Fisher model describes the dynamics of
completely neutral drift which was not only fundamental in informing the neutral theory of
genetic evolution (Kimura, 1968, 1983), but still forms an important baseline for evaluating the

presence or absence of evolutionary pressures in empirical data sets to this day.

Without any mechanisms that influence the selection of existing variants or mutations that
would introduce new ones, this is a very simple model of the diffusion of traits through replica-
tion. Before we turn to more complex versions of the Wright-Fisher model which incorporate
the influence of mutation and selection pressures, it is insightful to have a closer look at the sim-
ilarity between diffusion models from biology and the Utterance Selection Model as described

in Section 3.2.
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Relationship to the Utterance Selection Model (USM)

The similarity between Equation 6.2 and the data production function of the USM in Equa-
tion 3.16 is not just superficial: in its most general formulation the Wright-Fisher model is in
fact identical to the trivial case of a single USM agent with a learning rate o = 1 and USM
sample resolution 7" = N that is engaged in a production-perception loop.

More fully-fledged versions of the USM with populations of speakers also find parallels in
more complex models of biological evolution. Blythe (2007) showed how the learning and
alignment dynamics of the USM are in fact identical to Wright’s island model, an extension of
the simple Wright-Fisher model above that is used to study the diffusion of variants between
subdivided populations with limited migration between them (Wright, 1943).

While models of pure diffusion in complex population structures are interesting in themselves
and many results concerning fixation times and fixation probabilities can be derived from them
analytically (see e.g. Imhof and Nowak, 2006; Baxter et al., 2008; Blythe, 2012b; Michaud, 2016),
we shall return to the simpler model of just one population with fixed turnover, which greatly
simplifies the analysis of different innovation and selection pressures that we are particularly

interested in here.

The Wright-Fisher model with mutation

Under the Wright-Fisher model with mutation (henceforth referred to more generally as in-
novation), the probability of producing an instance of variant 0 at the next generation is not
completely equivalent to its current relative frequency z. Instead, with probability uq, any of
the ng type 0 variants present in the population can spontaneously mutate into an instance of
variant 1 during its replication. Conversely, there is a probability of pg that any of the instances
of the other variant (of which there are n;) will spontaneously mutate into one of variant 0.
Under this assumption, the relative probability of producing an instant of variant 1 at the next

generation is
fl@)=a-(1=po)+ (1 —z) p. (6.4)

It is this version of the Wright-Fisher model that is mathematically equivalent to Reali and
Griffiths’s model of Bayesian inference, in particular to the version of the model where the
learners derive a hypothesis from their input sample of size N by deterministically adopting
the mean 6 of the posterior distribution p(0|z) as their production probability. In this case,
the learner’s production behaviour is identical to that of a population of N individuals who are

replicating with innovation rates set to

[e%

RSk (6.5)

#,0 = #,1 =

Reframed in terms of biological evolution, the values of the Bayesian model parameter

that are associated with regularisation behaviour, a < 1, all satisfy the limit of low mutation,
i < 1/N (Tarnita and Taylor, 2014).

The Wright-Fisher model with innovation allows for pressures in favour of specific variants,

by setting the innovation rates @1 # pg. But it does not support selection of variants, as would
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be needed for a replicator or momentum-based selection bias.

The Wright-Fisher model with innovation and selection

To allow selection on top of innovation, we have to move on to the Wright-Fisher model with
innovation and selection, which takes the form
z-(1+s) 1—po)+(1—2)-m

J@) = z-(1+s)+1—x ’ (6.6)

The parameter s > 0 in this equation represents a selection coefficient which causes the
ny tokens of variant 1 that are present in the population to be preferentially selected, i.e. their
likelihood of replication is increased at the expense of the competing variant. In contrast to
the innovation pressures p, the effectiveness of the selection coefficient depends on the current
prevalence of the selected variant in the population. In particular, the selection pressure in
favour of an advantageous variant is completely ineffective as long as no tokens of that variant
are present in the population. In other words, the selection coefficient cannot introduce new
variants. This can be appreciated best when we consider the force of selection in isolation, by
setting the probability of randomly generating new variants pg = @1 = 0. In this case we arrive
at the Wright-Fisher model with selection only,

r+s-x

f(z) = Trs. o (6.7)

6.3.2 Wright-Fisher model dynamics for infinite population size

At this point we can already get a glimpse of how these two different types of pressures differ
in their dynamics as well as how they interact. Assuming an infinite population size, random
sampling effects are completely washed out and we recover an idealised image of the dynamics
of the Wright-Fisher model.

The dynamics of innovation

Figure 6.1 shows the relative impact of innovation and selection under the assumption of an
infinitely large population size. The graphs plot the relative change Az to the frequency of
one of the variants as a function of its current prevalence z in the population. As can be
seen from panels (i) and (ii) in Figure 6.1a the impact of innovation, as measured by how
much it affects the current frequency of variants, is stronger when there are fewer tokens of the
innovated variant in the population. More than anything else, innovation is a pressure away

from homogeneous population states.

The dynamics of selection

The dynamics of selection look very different: from Figure 6.1a(iii) we can see that selection
is ineffective as long as there are no instances of the selected-for variant present, and it acts
strongest when there is most variation — in the case of two competing variants this is when both

variants are equally represented in the population.
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The panels underneath in Figure 6.1b demonstrate how these pressures affect the distri-
bution of variants over time in the limiting case of an infinitely large population, an idealised
condition in which the replication dynamics are unaffected by the noise of random sampling.
Asymmetric innovation pressures lead to rapid spread of the frequently innovated variant ini-
tially, but the growth then tails off towards some asymptotic frequency, which corresponds
to the points in the upper panels where the line indicating the relative change to the variant

frequency crosses the y-axis, i.e. where Az = 0.

In contrast to this r-shaped growth, for the temporal dynamics of the selection pressure
shown in Figure 6.1b(iii) we recover the logistic growth pattern that we also found for the repli-
cator selection regime of the Utterance Selection Model in Section 3.2. Also, unlike innovation
pressures, the function indicating the relative impact of selection in Figure 6.1a(iii) crosses the
Az = 0 line twice, meaning that the selection regime possesses two stable, asymptotic states,
at x = 1 as well as x = 0. Unlike the innovation pressure, the s-shaped growth pattern cannot
escape the variationless state at = 0 but requires some low level of variation in order to ‘kick

in’.
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1 = 0.005, uo = 0.001. (7i4) selection only, s = 0.02.

0) (ii) (iii)

o o o
- - -
x @ _] x @ | x @]
> © > © > ©
(8] (8] (8]
T T T
o o o
L L L
° = v < o
= o 7 = o 7 = o 7
a a K
[SIN SN [SIEN
o o o
3 Q Q
[S) T T T T [S) T T T T S T T T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
generation generation generation

(b) Temporal development of the population given the corresponding pressures from the panels
directly above, assuming initial states « = 0.01 and 0.99.

Figure 6.1: Dynamics of innovation and selection in the Wright-Fisher model.
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The interaction of innovation and selection

Now that we have an idea of when the different types of pressures of innovation and selection
affect the evolution of a system most strongly, we can go on and ask how the two interact,
i.e. what happens when both pressures apply simultaneously?

Assuming the same constant selection pressure as above, there are still three different sce-
narios of interaction to consider. Figure 6.2 shows the infinite population size dynamics as-
suming (i) selection of a variant that is also preferentially innovated, (ii) selection on top of
unbiased (symmetric) innovation, and (iii) selection against a preferentially innovated variant.

In all cases we can see that, while innovation of the selected for variant helps it spread more
quickly open first introduction, innovation of the competing variant actually stops the selection
pressure from taking over the entire population. Only as the innovation rates p diminish towards
zero do we recover the logistic growth dynamics of selection that we saw above, which lead to
complete dominance by the preferred variant in the limit.

While this simple analysis gives us an idea of when innovation and selection are expected
to impact most strongly on an evolving systems dynamics’, understanding the interaction of
these different types of pressures in finite populations requires more in-depth study for which

we will again turn to the Markov model framework.

6.3.3 Innovation and selection in finite populations

While the assumption of an infinite population size allows for an idealised study of the ef-
fects of innovation and selection as well as an idea of when they balance each other out, the
instances of biological and cultural evolution that we can observe empirically all play out in
finite populations, where changes to the distribution of variants over time are subject to random
sampling effects. In order to disentangle the relative roles of the two pressures of innovation
and selection in finite populations, we will make use of some of the same analytical tools that
were already used to study the model of Reali and Griffiths in Section 3.4.1.

Following the same order of pressures as above, we will be investigating their dynamics
using two different tools: firstly, in order to get an idea of the relative frequencies at which the
competing variants are present across time we will again be looking at the stationary distribu-
tions of the Markov chains that correspond to the Wright-Fisher models with the respective
innovation and selection parameters.

Like before, we will focus on parameter combinations which lead the models to preferrably
occupy states of (near-)categorical usage of either of the variants, as is the case for low mutation
rates. Since we are again also interested in the nature of the transitions between those two
extreme states, we will have to move beyond merely looking at the stationary distributions,
since this type of analysis generalises over the temporal aspect of the model dynamics. To get
an idea of the nature of the transitions we will primarily look at the completion probabilities
of actuated changes, as measured by the probability of the incoming variant diffusing through
the entire population. To explain the concept, we will start with the simplest possible model

of pure diffusion in which both of the those pressures are completely absent.
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(b) Temporal development of the population given the corresponding pressures from the panels
directly above, starting at initial state x = 0.

Figure 6.2: Dynamics of the interaction of innovation and selection pressures in the Wright-
Fisher model.
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Diffusion without innovation or selection

In the absence of any innovation of new variants, the two extreme states that correspond to
categorical usage of either variant are absorbing states. Starting off with a population that
exhibits variation, repeated replication of a finite population will eventually lead one variant
to diffuse through the entire population, with all of the other competing variants being elim-
inated. The exact probability of either variant diffusing across the entire population depends
on the initial state of the population. Figure 6.3a shows the probability distribution across all
model states, based on three different initial conditions. This distribution, computed through
numerical simulation, shows that the probability of a variant diffusing is equal to its initial
frequency, a finding that is in agreement with analytical results (Clifford and Sudbury, 1973).

A more efficient way to look at this is by simply considering the diffusion probability of the
incoming variant given a range of initial states, all in one plot. The left panels in Figure 6.3b
show the diffusion probability for pure neutral drift given different starting states of the model
for increasing population sizes. The probabilities lie on the diagonal of the chart in each case,
showing that the result that the probability of diffusion is identical to the variant’s initial

relative frequency is independent of population size.

The dynamics of selection

In contrast to purely neutral diffusion, the presence of a selection bias for individual variants (a
replicator bias) leads to a systematic increase of the selected variant as soon as it is introduced.
How a selection pressure favouring the variant alters the dynamics of diffusion can be seen in
Figure 6.3b. In contrast to the pure diffusion case (s = 0), a positive selection coefficient causes
the relative probability of the selected for variant to diffuse to the entire population to increase
above its baseline probability which is indicated by the dotted line. While a higher selection
coefficient s increases the diffusion probability of the variant, the reliability of the selection bias
in terms of guaranteeing the variant to win out depends crucially on the size of the population:
the smaller the population, the more the dynamics are influenced by random sampling which,
in the absence of mutation, increases the chance of driving even a positively selected for variant
to extinction. Particularly for larger population sizes a sufficiently high selection coefficient can
almost guarantee the diffusion of the variant, as long as it manages to avoid extinction during

the fragile initial low frequency region.

Symmetric innovation as (de-)regularisation

Before considering the case of interacting pressures, we should also investigate the dynamics of
the spontaneous innovation of variants acting by itself. The case of symmetric innovation, where
the probabilities of spontaneously introducing either of the competing variants are equal (ug =
11), was shown to be equivalent to Bayesian Iterated Learning chains of averaging learners by
Reali and Griffiths and an in-depth quantitative analysis of the dynamics under such settings
was provided in Section 3.4. To briefly recapitulate, under moderately low innovation rates the
stationary distribution is similar to the one of the pure diffusion model, only that the non-zero

probability of randomly producing an unattested variant means that variation is never fully
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Figure 6.3: Diffusion outcomes for different population sizes IV and selection coefficients s.



6.3. MODELLING THE INTERACTION OF DIFFERENT PRESSURES 137

eliminated from the system. High innovation rates on the other hand will lead the populations
to mostly consist of an even mix of all possible variants, with the exact cutoff point between
the behaviours depending both on the innovation rate g and the population size N as well as
the relationship of the two (see Section 6.3.1).

A summary of the different regimes of the stationary distribution is shown in Figure 6.4a. It
should be noted that, given the same innovation rate u, the shape of the stationary distribution
depends on the population size (or, in Reali and Griffiths’s framing, the size of the sample
provided to the learner). Calculating the innovation rate based on a regularisation parameter «
which scales with the population size according to Equation 6.5 offers a more reliable way
of picking an innovation rate that leads to the regime of stationary distributions that are of
interest to us, i.e. ones that primarily occupy states of categorical usage of either competing
variant. For the remainder of the analysis we will therefore be specifying innovation rates using
this parameter a.

In order to calculate either variant’s probability of diffusion in a model with innovation,
we have to adjust the definition of diffusion slightly. Whenever there is a non-zero probability
to spontaneously innovate either of the variants, neither of the model states corresponding to
categorical usage of a variant are absorbing states, since even a variant that’s been eliminated
from the population can always be innovated anew and spread to completion. To nevertheless
capture the influence of initial states, we define the diffusion probability of the incoming variant
simply as the probability of first reaching a state of categorical usage of that variant, as opposed
to first reaching a state where the variant is completely unattested, and we will be using this
definition for the remainder of the analysis.

The relative probability of first reaching either state of categorical usage given low symmet-
ric innovation rates is shown in Figure 6.4b. As already indicated in Section 3.4, Reali and
Griffiths’s model exhibits unusual behaviour for a model of regularisation in the sense that the
probability of diffusing to the currently less attested variant is actually slightly raised above

the baseline probability given by neutral diffusion, a baseline which is approached as ae — 0.

Asymmetric innovation as a model of the accumulation of errors

While symmetric innovation probabilities can be conceived of as a bias for regularisation, the
probabilities can also be set unequal to introduce a bias that favours one of the variants over
the other. This is an alternative way to introduce asymmetry between variants, apart from the
selection bias discussed above. This configuration of the Wright-Fisher model parallels one of
the earliest and simplest theories of language change discussed in Chapter 2: the assumption
that a linguistic variant is accidentally ‘misproduced’ as another some of the time, for example
due to coarticulation effects, maps neatly onto a scenario with moderately low mutation rates,
where the innovation probability in one direction vastly outweighs the one in the other.

Such changes through the gradual accumulation of errors are more typically considered
for phonetic changes in a continuous dimension, but the same process could also apply to
categorical variables, such as is the case for syntactic patterns that are in competition. While
models of (syntactic) grammar competition typically consider more complex (external) triggers

for actuation, we can nevertheless study the dynamics of the spread of variants assuming that
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asymmetric innovation probabilities are in place in which the incoming variant is preferrably
innovated, i.e. a1 > «p.

In order to avoid raising the preferred innovation rate to unrealistically high levels, all
comparisons between different degrees of innovation asymmetries will be based on holding the
preferred innovation probability a; constant and setting the opposite rate ag to a diminishing
fraction of the baseline rate. In this way, the degree of asymmetry can simply be expressed by
the fraction a;/ag, with higher numbers corresponding to greater asymmetries.

That even small asymmetries in the innovation probabilities can have a strong effect on the
expected synchronic distribution of variants can be seen from the stationary distributions in
Figure 6.5a, showing domination of the preferrably innovated variant to become increasingly
more likely as its relative likelihood of innovation over competitor variants increases. While
this suggests that asymmetries in innovation could be just as influential as an asymmetric
selection bias, we also find evidence against the strongly directed nature of individual transitions
predicted under the infinite population size assumption in Section 6.3.1. Under this simplifying
assumption it was demonstrated that changes in one direction actuate instantly and are not
s-shaped, but rather exhibit r-shaped or logarithmic growth that starts off rapidly but slows
down as it approaches saturation.

However, a look at the diffusion probability of the incoming variant in Figure 6.5b shows
that the directedness of growth derived from the infinite population size approximation above
is not actually representative of the dynamics of innovation in finite populations. In contrast to
asymmetries through selection, diffusion probabilities do not stray far from the neutral evolution
baseline, suggesting that typical transitions are very similar to those of pure diffusion, i.e. noisy
and far from strongly directed. While the stationary distribution shows that this model is
much more likely to remain in the categorical preferred variant state for a long time, the dif-
fusion probabilities show that it typically takes a large number of initiated transitions before
one actually succeeds in spreading to the entire population, even when the variant has already
managed to spread to a large part of it. At least as long as the innovation rates are relatively
low in absolute terms, even an increase in asymmetry does not significantly raise the probability
of the favoured variant diffusing without interruption.

A comparison of the dynamics of selection and innovation in Figures 6.3 and 6.5 highlights
that, while the expected stationary distributions of these two modes of asymmetry are very
similar in that they predict a strong dominance of the preferred variant, the typical trajectories
of each might differ wildly. The latter point is of particular interest since, as discussed above,
the population size can interact with the effectiveness with which different asymmetric biases
express themselves in the evolutionary dynamics. As a next step we can therefore analyse the
effect that a bottleneck as implemented by a constrained population or sample size has on the

two types of pressures as well as the interaction between the two.

6.3.4 Innovation, selection and the bottleneck in Iterated Learning

As could be seen above, the size of a population plays a crucial rule in how effective different

kinds of pressures are. In the same way that completely neutral diffusion of a variant is much
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Figure 6.5: Dynamics of the Wright-Fisher model with asymmetric innovation rates.
innovation probability of the biased for variants is held fixed at a; = 0.2.

The
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more likely in smaller populations, the relative power of one and the same selection bias declines
the smaller the population gets. This characterisation casts new light on the workings of the
Iterated Learning Model (ILM) that was discussed in Section 2.2.3, particularly on the role of
the bottleneck. One of the core ideas of the ILM is that, by imposing a limit on the amount of
information or learning data that is transmitted between generations of learners, biases become
exacerbated and express themselves more quickly in the linguistic systems produced by iterated

learning chains.

The purpose of this section is to attempt to shed light on the bottleneck result by teasing
apart the relative impact of innovation and selection pressures under the effect of drift. The
motivation for this is that, while several results showing the mathematical equivalence between
Bayesian inference and specific models of biological evolution exist (Reali and Griffiths, 2010;
Harper, 2009), there are still important conceptual differences between the two types of models.
In the Bayesian approach any and all types of bias or pressure are amalgamated in the prior
distribution p(h), as well as to some degree in the production probabilities p(d|h). This formula-
tion does not allow us to distinguish between biases for innovation and selection in a principled

way, as can be done in more biologically-minded frameworks such as the Wright-Fisher model.

Based on Reali and Griffiths’s demonstration of the equivalence between their iterated learn-
ing chain of averaging learners and the Wright-Fisher model, we want to investigate the respec-
tive role that innovation and selection pressures have as a bottleneck is imposed. To do so we
will compare the relative effectiveness of different types of asymmetric biases given different val-
ues of the population/sample size parameter N. We will generally limit ourselves to instances
of the model with low innovation rates which exhibit regularisation behaviour, i.e. a < 1. As
could be seen from the various stationary distributions above, asymmetric pressures in combi-
nation with diffusion through a finite population typically lead to situations where either one
or the other variant prevails in the population. Based on these stationary distributions we can
calculate the average relative frequency that the preferred variant has over the other in terms

of its expected synchronic distribution,

&= Z % e (6.8)

N
i=0
where 7 again refers to the stationary distribution as defined earlier in Equation 3.23. Since we
are only looking at cases with low innovation rates « corresponding to regularising behaviour,
the stationary distributions are bimodal, with the populations mostly remaining in regions
of near-categorical use of either of the competing variants. This means that intermediate
values of Z that we compute do not indicate the frequency at which the selected for variant is
typically present in the population, but rather how much of the time that variant is used near-
categorically, as opposed to its competing variant. If the replication of the two variants was
completely unbiased we would expect the average frequency to be at the 0.5 mark meaning that,
across time, we would find both variants to be equally frequent. The further away the average
frequency moves from this neutral mark, the more effective that bias is at expressing itself in

the expected synchronic distribution of variants. Based on this measure we can now compare
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how the two different types of asymmetric biases are affected by different population/sample

sizes N.

The effectiveness of selection

The first type of asymmetric bias considered here is that of selection, which is implemented
by setting the selection coefficient s > 0. This asymmetric pressure applies on top of some
low symmetric innovation probability corresponding to «/2 = 0.1, which we impose to stop
both variants from simply diffusing to the entire population. As can be seen in Figure 6.6(i),
in smaller populations the impact of selection pressures is increasingly reduced, with the exact
point at which the effect of the bias starts to falter depending on the magnitude of the selection
coefficient. As the population size decreases towards its minimum at N = 1, the expected
frequency of the selected for variant approaches 50%, indicating no preference for either of the
competing variants.

This effect can be explained based on the dynamics of selection demonstrated above: when
modelling discrete (quantitative) traits, selection pressures rely on variation in the population
and act most strongly when variation is highest. As the population size decreases the impact of
neutral drift through random sampling effects increases, diminishing the force of selection that

is reliant on the relatively stable maintenance of variation.
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Figure 6.6: Relative frequency of variants as a function of population size given different regimes
of innovation and selection pressures. (i) selection of symmetric innovation, o = 0.01 (%) asym-
metric innovation only, oy = 0.01 (%) asymmetric innovation with selection against the pref-
erentially innovated variant, ag = 0.01, oy = 0.0005.

The effectiveness of asymmetric innovation

It was shown above that asymmetric innovation rates which favour the spontaneous production
of one of the variants can have a strong effect on their expected synchronic distribution. Fig-
ure 6.5 already indicated that the influence of innovation is robust to changes in population size,
a result that is also borne out by the present effectiveness measure. Rather than being affected
by smaller population sizes, Figure 6.6(ii) shows that systems tend to converge towards some

consistent low usage level of the less frequently innovated variant, with that usage frequency
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dependent on the two innovation rates, but not population size'. In other words, unlike with

selection, asymmetric pressures due to biased innovation appear to be robust to bottlenecks.

The interaction of innovation and selection

While we have discovered a change in the effectiveness of selection pressures for reduced pop-
ulation sizes, neither of the pressures taken individually has seen an increase in how much it
is expressed synchronically, so how can the bias-amplifying effect observed in iterated learning
chains be explained? Figure 6.6(iii) shows the expected frequency of variants based on pressures
of innovation and selection that work antagonistically: while the selection coefficient favours
the incoming variant at the rates indicated, there is also an underlying asymmetry in the gen-
eration of variants that preferrably innovates the competing variant. In this configuration we
see an inversion of the frequency distribution at a population size that is again dependent on
the strength of selection. Where for larger population sizes the selection pressure prevails, the
innovation pressure is more robust and thus wins out whenever a sufficiently small bottleneck
is imposed.

The present analysis of the relative force of innovation and selection pressures sheds the am-
plification of biases in iterated learning in a new light: adopting Reali and Griffiths’s equivalence
between the Wright-Fisher model and iterated learning chains, the imposition of a bottleneck
corresponds to a reduction of population size in the biological sense. Based on our charac-
terisation of the effectiveness of different asymmetric pressures in the Wright-Fisher model I
conclude that, at least when it comes to the general interpretation of bottlenecks causing an
amplification of biases, the biases that see themselves relatively amplified during iterated learn-
ing experiments are more likely of the innovation, rather than the selection type, which see a
decrease in their impact.

Most studies in the Language as a Complex Adaptive System tradition are based on the
assumption that biases which become exacerbated in simulation and experimental settings are
of the selection type (e.g. Kirby 1999, ch.6, Chater and Christiansen 2010), without taking into
account the effect that other evolutionary pressures, in particular innovation and drift, have on
the systems under investigation (see Henrich et al., 2008, p.127-129).

Recall that the original finding of iterated learning models was that the bottleneck triggers
generalisation, i.e. the emergence of new items that are consistent with other known elements
of a production system. In situations where learners have to infer productive systems, such as
reconstructing recursive language (Kirby, 2002) or function learning (Griffiths et al., 2013), the
pressure that is amplified is one towards the systematic innovation of new signals. Especially
when extrapolating the role of the bottleneck to the acquisition of single, holistic traits, our
analysis predicts that the effect seen in experimental work is unlikely to be an amplification of
selection, but rather the relaxzation of other selective pressures that hold in real life language

use, causing asymmetries that are due to preferential innovation biases to prevail.

Hdentical results are obtained when using a set mutation rate u rather than the population size-dependent
regularisation rate «, assuming the same asymmetry between innovation of the two variants. While the same
absolute level of p leads to more temporal instability in smaller populations, the mean value of the stationary
distributions only depends on the ratio between the two innovation rates.
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At this point two more caveats regarding modelling are in order: firstly, it should be noted
that this result regarding the ineffectiveness of selection pressures does not just hold for asym-
metric selection as implemented by the Wright-Fisher model’s selection coefficient s. In other
words, the analysis does not rely on the unusual configuration of directly antagonistic innova-
tion and selection pressures. Symmetric selection pressures, such as the frequency-dependent
regularisation biases proposed for the USM in Section 3.2 as well general confirmity pressures,
are equally affected by the imposition of a bottleneck. So while iterated learning can help reveal
human biases in directed innovation, the methodology does not so far speak to how these inno-
vations manage to overcome conformity pressures to help them spread through real language
communities.

Secondly, the present analysis of the dynamics of selection is based on the discrete replicator
view implied by evolutionary approaches such as the USM proposed by Croft (2000). It should
be noted that the nature of selection in this framework, as a process that merely favours the
replication of instances of a variant that are already present in the population, is not the only
possible way to frame selection. In fact, the model predictions might look very different if we
considered continous rather than discrete replicators (e.g. Wedel, 2006, akin to the modelling
of quantitative traits in biological evolution), or if we considered the effect of guided variation, a
cultural selection pressure proposed by Boyd and Richerson (1985, pp.136) that is independent
of the amount of variation present in the population.

So while other analyses are possible, which of these theoretical models of selection comes
closest to reality is a matter that can only be established empirically, a task for which an effort
must be made to more systematically disentangle the mechanisms of innovation and selection
in experimental work on humans. The approach in this chapter was taken both because it is
based on a concrete model of iterated learning (Reali and Griffiths, 2009), but also because it
offers a clear explanation of the exact nature of the asymmetric biases that are amplified by a
bottleneck, whether that bottleneck is construed in terms of limited learning input sample or

population size.

6.4 Momentum-based selection in the Wright-Fisher model

The analysis of the Wright-Fisher model with different asymmetric pressures above confirmed
the theoretical criticisms presented earlier: while asymmetries due to either accumulation of
error or selection express themselves in the synchronic distribution of traits as expected, the
investigation of the diffusion probabilities indicated that, under most conditions, selection pres-
sures would not allow dispreferred traits to spread, while innovation pressures by themselves
would only ever exhibit noisy trajectories far from the directed transitions we normally see in
language change. In other words, universal innovation and selection alone seem too strong a
predictor to account for particular, as opposed to universal, language features, as I argued for
in the the discussion of the actuation problem in Section 2.2.4.

The momentum-based selection model presented in Chapter 4 on the other hand promised
to account for the sporadic nature of language changes, as well as their spontaneous actuation.

The multi-agent model presented in the earlier chapter considered selection only, without taking
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into account the effect that innovation, and in particular asymmetries in innovation probabil-
ities, might have on the macro-level dynamics of the model, such as the expected synchronic
distribution of competing traits. To flesh out the predictions of these interactions, I will there-
fore present a modification of the Wright-Fisher model that incorporates a simplified version of

the momentum-based selection mechanism.

6.4.1 A Markov model state space for momentum

So far, we have used the Wright-Fisher model to explore the quantitative dynamics of the well-
known pressures of innovation and selection, both of which have direct parallels in biological
evolution. The logical next step is to investigate how these results compare to a trend-amplifying
bias such as the one implemented by momentum-based selection. On the face of it, the idea of
momentum and the assumptions of a Markov model discussed in Section 3.4.1 seem at odds: to
reiterate, the Markov assumption states explicitly that the probability of transitioning into a
particular state must only be influenced by a system’s current state, not by any previous states
or state trajectories.

The Markov model framework itself is oblivious to the structure of a model’s state space and
the ‘meaning’ of individual states in terms of how they are interpreted by the modeller. In order
to represent a population of N individuals (or memory size of N tokens), Reali and Griffiths
constructed a space of N + 1 states. Just looking at the level of connectivity between states,
this state space might seem unstructured: all states had non-zero (if very small) transition
probabilities to each other, forming one fully connected graph. But on top of this homogeneous
structure there was a semantically meaningful organisation of states: each state corresponded to
a certain memory state of an agent, with corresponding transition probabilities corresponding
to the ‘proximity’ to the other states in terms of the usage rates they represented, as shown in
Figure 6.7a.

Starting from this basic pattern of connectivity, we can construct a Markov model that lends
a sense of time to the model state space. In order to augment the with a momentum bias, we
simply multiply the number of states: for every state of the Reali and Griffiths model which
represents a certain prevalence x of variant 0, we create two additional states, representing the
same value of x, but with copies of the state that indicate positive and negative momentum
terms m.

A schematic visualisation of the shape of this state space is shown in Figure 6.7b. While
the number of states of this momentum model is almost threefold in comparison to the baseline
model, the pattern of transitions is actually not much more complex. In particular, the model
is not fully connected: every state has exactly N outward transitions, exactly one each to every
level of x = 0...N. The semantics of these three parallel states determines which of them a
given previous state will transition into: all transitions from states with a lower to a higher x
go into the m = 1 state, transitions from higher to lower values of = go into the m = —1 state,
and only transitions from identical values of = enter the state with m = 0, indicating stagnation
and therefore the absence of a trend.

In order to affect the dynamics of the system, the probabilities of transitioning between
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X = 0 1 2 3 4 )
(a) State space of the Reali and Griffiths (2009) Markov model with N = 5.

m=1
m=20
m=-1

(b) State space of the Markov model with N = 5 and a momentum bias b > 0.

Figure 6.7: Schematic visualisation of the Markov model state space. Colouring of the edges
indicates relative probability of the transitions, with darker edges representing more likely
transitions.
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different levels of x are affected by the value of the momentum term: for the middle row
with m = 0, the probabilities of producing a given = are equivalent to the Reali and Griffiths
model, which means they correspond to the Wright-Fisher model with innovation only, as in
Equation 6.4.

For the upper and lower rows in the diagram, corresponding to a positive (top) or nega-
tive (bottom) momentum term, the momentum affects the probabilities of producing a certain
number of x tokens by exerting a selection pressure on the variant that is currently ‘trending’,
i.e. whose frequency = has increased at the last time step. To this end the transition proba-
bilities out of a state with m = 1 are calculated according to the Wright-Fisher model with
innovation and selection as given in Equation 6.6, with the selection coefficient s in favour of
the incoming variant 1 set to a fixed constant. Conversely, the transition probabilities for states
with m = —1 are controlled by the same equation, only that the same selection coefficient is
selecting variant 1. Note how, as long as the innovation probabilities are equal, this system is
again symmetric, and thus replicator-neutral. Even though there are clear paths of directed
selection, e.g. towards higher values of = along the top of the state space, these paths are mir-
rored exactly on the other side. A concrete example of a Markov chain transition matrix for

such a momentum model is given in Table 6.1.

6.4.2 The interaction of momentum and innovation

So how do the dynamics of this momentum selection model differ from the original innovation-
only version of the Wright-Fisher model? A direct comparison of the two models’ stationary dis-
tributions for various settings of the regularisation parameter « and momentum bias strength b
is shown in Figure 6.8. While a population size of N = 80 only allows for 81 different states
in terms of the frequency distribution of the competing variants, the corresponding momentum
model possesses 241 states. To aid interpretability, the stationary distributions are therefore
grouped by the absolute frequency x of the variants, with the stationary probability of states
with the same frequency but different momentum values stacked on top of each other. The
three colours indicate the momentum: the red portions show the probability of being in a state
with positive momentum, where productions are biased towards higher levels of z, while the
blue sections express the same but for negative momentum. The white sections of the bars
represent the probability of being in a state with a momentum of 0, resulting in sampling that
is not biased towards either variant.

In order to confirm that this specific model of selection works as expected, we can set the
momentum bias to b = 0, in which case we recover exactly the same stationary distribution as
the Wright-Fisher model with innovation only, as shown in Figure 6.8a. Despite the selection
bias being ineffective in this model, the colour indication of the momentum term is still infor-
mative: it shows how much of the time the model remains at a given proportion, resulting in a
momentum term of 0 as indicated in white. As the impact of the momentum bias is increased,
the probability of remaining in a state of mixed usage of variants decreases, as can be seen in
Figure 6.8a.

So how does the model with a momentum bias differ from a simple model of regularisation



=0- 2'=0= 2'=0+ 2'=1- 2 =1= 2'=1+ 2'=2—- 2'=2= a'=2+ 2’ =3- 2/=3= a2 =3+

r=0— 0.0000 0.9524 0.0000 0.0000 0.0000 0.0468 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000
z=0= 0.0000 0.9524 0.0000 0.0000 0.0000 0.0468 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000
z =0+ 0.0000 0.9524 0.0000 0.0000 0.0000 0.0468 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000
r=1-— 0.3656 0.0000 0.0000 0.0000 0.4371 0.0000 0.0000 0.0000 0.1742 0.0000 0.0000 0.0231
r=1= 0.2892 0.0000 0.0000 0.0000 0.4444 0.0000 0.0000 0.0000 0.2276 0.0000 0.0000 0.0389
=1+ 0.2189 0.0000 0.0000 0.0000 0.4329 0.0000 0.0000 0.0000 0.2855 0.0000 0.0000 0.0627
T =2— 0.0627 0.0000 0.0000 0.2855 0.0000 0.0000 0.0000 0.4329 0.0000 0.0000 0.0000 0.2189
r=2= 0.0389 0.0000 0.0000 0.2276 0.0000 0.0000 0.0000 0.4444 0.0000 0.0000 0.0000 0.2892
T =2+ 0.0231 0.0000 0.0000 0.1742 0.0000 0.0000 0.0000 0.4371 0.0000 0.0000 0.0000 0.3656
T =3— 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0468 0.0000 0.0000 0.0000 0.9524 0.0000
r=3= 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0468 0.0000 0.0000 0.0000 0.9524 0.0000

=3+ 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0468 0.0000 0.0000 0.0000 0.9524 0.0000

Table 6.1: Markov chain transition matrix with momentum, N = 80, « = 0.1,b = 0.3. The sign at the end of the name of the state indicates
whether the state’s momentum is positive (upward-trending), negative (downward-trending) or neutral (stagnant).
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af2=1
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(a) Without a momentum bias (b = 0) the stationary distribution is identical to Reali and
Griffiths (2009)’s averaging learner (compare Figure 3.8b). The differentiation between the
triples of states representing the same variable frequency but different momentum values
(colour-coded as red for positive, blue for negative, and white for no momentum) makes the
temporal dynamics of the model more explicit, but the extra states do not otherwise change
the dynamics of the original model.

a/2=0.25

a/2=0.5 af2=1

0.00 0.05 0.10 0.15 0.20 0.25

0.00 0.05 0.10 0.15 0.20 0.25

0.00 0.05 0.10 0.15 0.20 0.25

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
X X X
(b) With a momentum bias of b = 3, the model naturally avoids states corresponding to
mixed usage of the competing variants, as it preferentially sweeps through this middle region
in a directed fashion. The higher the momentum bias, the less time the model spends in
regions of mixed usage of the two variants.

Figure 6.8: Stationary distributions of Markov chains with momentum in a population of
N = 10 for various regularisation parameters o and momentum bias strengths b.
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through symmetric selection of the more frequent variant? To appreciate the temporal dynamics
of the momentum-based Wright-Fisher model we have to again move beyond simply looking at
its stationary distributions and instead consider the likelihood of actuated transitions to diffuse
to the entire population, as was done in the analyses above. In the absence of momentum-based
selection shown in Figure 6.9(i) we again recover the same dynamics as for simple symmetric
innovation (compare Figure 6.4b), where the diffusion probabilities do not stray far from the
neutral evolution baseline. This changes drastically with the introduction of a momentum
bias shown in Figure 6.9(ii) and (iii): the panels show the probability of diffusing based on
the model states with the given frequency that correspond to a positive momentum term,
i.e. trajectories that have come to occupy the relative frequency of that variant as part of a
recent rise in frequency. Trajectories that start off with positive momentum have significantly

higher completion probabilities, even at low initial frequencies of the variant.

Interestingly, this effect is slightly reversed for states corresponding to near completion. As
was shown above, changes in variant frequency due to selection pressures slow down as the
variant starts to prevail in the population. The increased likelihood of stagnation towards the
end of transitions in combination with the simplistic ternary distinction of momentum based on
the direction of change at the last time step in the present model means that, the initiation of a
momentum-driven trend in the opposite direction becomes more likely as the changes slow down
near completion. This artefact of the current toy model would therefore be greatly alleviated
by a more gradual measure of trends that captures directedness on a greater time depth, such

as the one implemented in Chapter 4.
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Figure 6.9: Probability of an actuated transition completing as a function of the initial fre-
quency of the variant, assuming that the variant has positive (upwards) momentum. Innovation
probabilities of both variants are equal, with «/2 = 0.1.

A fact that is possibly not immediately appreciated about the present diffusion probability
plot is that the increased average likelihood of completion actually holds for both of the compet-
ing variants. In the earlier analysis of the general Wright-Fisher model it was sufficient to only
plot the completion probabilities of the incoming variant. The likelihood of the other variant
succeeding was simply the complement of the probability for its competitor, meaning that an
increased success rate of one variant was automatically associated with a decrease in the other.

Under the present model on the other hand we are particularly interested in the completion
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probabilities of directed transitions which have positive momentum. When taking this temporal
dimension of our model into account while calculating the respective diffusion probabilities for
either variant, we are therefore not actually computing those probabilities based on the same
initial state, but based on the two corresponding states with positive and negative momentum
respectively. The important consequences of this point will become even more apparent when
we consider the case of momentum-based selection applying on top of asymmetric innovation

rates.

6.4.3 Momentum and asymmetric innovation

In the simple Wright-Fisher model with asymmetric innovation rates discussed earlier, the pref-
erentially innovated variant was shown to dominate the dynamics, with the model by remaining
in a state of categorical usage of that variant most of the time. However, this bias towards one
variant was not strongly evident in the dynamics of individual transitions, where even strong
asymmetries resulted in only slight increases in the diffusion probability of the preferred variant
at the expense of competing variants, indicative of rare and noisy transitions between the two
extreme states.

While Figure 6.10a shows that having symmetric momentum-based selection on top of asym-
metric innovation biases does not significantly alter the expected synchronic distribution of
variants, the probabilities of diffusion out of states with positive momentum draw a picture of
a very different dynamic. Figure 6.10b shows the probability of successful diffusion for both
of the competing variants across different initial frequencies. While in the case of asymmetric
innovation without a momentum bias (b = 0) an increase in one variant’s diffusion probability
entails a decrease in that of the other, the presence of a momentum bias actually raises the
likelihood of successful transitions above the neutral evolution baseline for both of the variants,
albeit at slightly different rates. That there is still a difference between the diffusion probabil-
ities of the two variants throughout can be explained by the asymmetry in innovation, since
the less frequently generated variant is still slightly more likely to have its actuated transition

interrupted by the spontaneous generation of instances of its competitor variant.

6.4.4 Momentum, asymmetric innovation and the synchronic distribution
of variants

After having considered several different pressures and combinations of pressures in this chapter
we found that, based on the Wright-Fisher model as a simplified model of cultural evolution,
only the presence of biases for the spontaneous innovation of new variants in combination
with a symmetric selection bias such as momentum-based selection was able to capture both
asymmetries in synchronic distributions while at the same time producing directed transitions
towards the categorical usage of both preferred as well as less frequently attested variants.
Even though the present model of the interaction between asymmetric variation and momentum-

based selection is highly simplified, it is interesting to get an idea of the degree to which the
momentum-based selection bias projects asymmetries in innovation onto population-level dis-

tributions of variants. In other words, assuming that individual language changes are driven by
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Figure 6.10: Dynamics of momentum-based selection with asymmetric innovation probabilities

for different strengths of the momentum bias b, with oy = 0.2, a3 /g = 10.
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replicator-neutral trend-amplification mechanisms, to what degree should we expect innovation
biases that we find in individuals to be reflected in cross-linguistic distributions? To investigate
this relationship, Figure 6.11b plots the relative synchronic frequency of the two competing
variants as a function of an increasing difference in their innovation probabilities. Here, we re-
turn to the direct specification of the innovation rates u, since we are actually interested in how
one and the same probability of spontaneously producing a variant interacts with population
size, rather than trying to model a specific regime of (de-)regularisation.

Figure 6.11b(i) shows the effect of increasing the parameter N, indicating population size in
the biological framing of the Wright-Fisher model, or otherwise the size of the learning sample
in Reali and Griffiths’s model of iterated learning. In either case, the argument will correspond
to a measure of how precisely variable usage of competing variants can be represented, either
as distributed knowledge across the population or within the individual. While we find a linear
mapping from innovation asymmetries to predicted synchronic frequency for all population
sizes, the strength of this mapping decreases with increasing population size so that, assuming
the same absolute level of innovation rates, we should find asymmetries in innovation to be
relatively less expressed in larger populations.

Figure 6.11b(ii) shows how different baseline rates of innovation for both variants affect the
degree to which any asymmetry should be reflected in synchronic data. The results indicate
that, the less likely spontaenous innovations in a specific trait occur, the more should any
asymmetries in those innovation probabilities be manifested in synchronic data.

While general trends can be derived from the present models, caution should be taken in
attempting to derive empirical predictions about social factors such as community size from
them directly. To be more precise, the predictions shown here are based on the assumption that
innovation rates are constant across populations, which is not necessarily the case since innova-
tion might itself be affected by external pressures. A momentum-based selection account thus
offers another explanation of how environmental and sociocultural factors that differ between
societies can affect the evolution of their linguistic systems, but through steering the innovation

of novel variants and traits, rather than by causing the selection of specific variants directly.
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Figure 6.11: Expected synchronic distribution of variants given asymmetric innovation proba-
bilities with momentum-based selection (b = 1).



Chapter 7

Summary, conclusion & outlook

In this thesis I have adopted an evolutionary approach to language change and argued for its
importance in explaining and reconciling some seemingly contradictory results and scientific
standpoints regarding the nature of and mechanisms behind language change. Following a
broad overview of different explanations and accounts of language change as well as formal
models of change in particular, I introduced and analysed the dynamics of a new model of the
momentum-based selection of linguistic variants in Chapter 4. The fieldwork on individuals’ ex-
plicit awareness of ongoing syntactic changes in Shetland presented in Chapter 5 contributed to
existing evidence regarding the acquisition of sociolinguistic knowledge about language changes,
knowledge which represents a fundamental ingredient of a mechanism based on detecting and
amplifying trends in language use. Finally, in Chapter 6 I investigated a simplified model of
momentum-based selection in combination with an independent pressure for the innovation
of new variants. While the importance of distinguishing between pressures of innovation and
selection entailed by an evolutionary approach has been emphasized by other researchers on
language change (particularly Croft, 2000), I hope to have demonstrated practically how this
separation of concerns can synthesize the explanation of both the universal patterns found in
language changes as well as the particular nature of the sporadic and unpredictable actuation
of individual changes.

The momentum-based trend amplification mechanism that formed the core of this thesis
allows for the neutral but directed selection of variants from the pool of synchronic variation,
a pool whose internal distribution is heavily affected by functional motivations (Ohala, 1989).
This reconciliation of the functional origin of many language changes with their ultimately
arbitrary selection and adoption by a community is summarised neatly by Labov (2001) when

he states that his comprehensive studies of sound changes

made it clear that linguistic change in progress is heavily constrained by the physical
environment in which it takes place, and by structural factors that limit the course
of change. At the same time, it is argued that the forces that move and motivate
change, and are responsible for incrementation and transmission across generations,
are largely social in nature. (p.498)

While this framework of thought is widely accepted within micro-level sociolinguistic work,
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I have argued that similar evolutionary approaches have not been fully adopted by the wider
language change research community. The relevance of distinguishing universal asymmetries in
innovation from those in selection was diminished by the lack of a concrete neutral selection
mechanism that could account for the arbitrary selection of linguistic innovations without having
to refer to concepts like sociolinguistic ‘prestige’ which can only be attributed post-hoc. I
hope to have filled this conceptual gap in the evolutionary, two-step model of language change
with the momentum-based selection mechanism, a candidate mechanism which can sporadically
trigger a population to adopt linguistic innovations. The dynamics of the model exhibit directed
transitions that are indicative of the selection of the incoming variants, irrespective of whether
the innovations are actually functionally superior, inferior, or simply neutral with respect to
the existing variants.

While Labov speaks of “largely social” forces that move and motivate actual language
changes, I have presented momentum-based selection as a highly mechanistic pressure in this
thesis. This is not to say that the two types of mechanism are necessarily contradictory, or
that they are even distinct. The apparent disconnect between the two should not be regarded
as an unbridgable gap, but rather as an opportunity for research into whether much arbitrary-
seeming social variation could in fact be reduced to a more mechanistic explanation such as
the one presented in this thesis, and thus maybe even provide a mechanistic grounding for the
concept of sociolinguistic prestige.

For example, the sociolinguistic literature has seen repeated claims about specific speaker
groups (in particular females as well as the more ‘socially mobile’ middle classes, see e.g. Labov
2001, p.501) to be leading linguistic change, at least as far as the primarily available data
from language changes in Western societies is concerned. While this pattern has already been
proposed to reflect a relatively greater stake in the ‘social marketplace’ of linguistic conventions
by those groups, the momentum-based selection mechanism raises the question of whether an
increased sensitivity to changes could not just have to do with social status, but could also be
explained due to those individuals’ position in their social network which allows them a better
overview of the state of language (as well as current linguistic ‘trends’) in their community. A
comparison between the stratified diffusion of language changes through real social communities
with the predictions made by momentum-based selection in structured social networks could
yield further insights into the relevance of such mechanisms.

Rather than simply contribute another model of language change to aid the field take a
step towards some well-defined goal post on its course to ‘explaining’ language change, I hope
that my review of the diverse accounts and approaches to language change in Chapter 2 has
succeeded in pointing out that there are in fact wildly differing opinions on the position of these
very goal posts. I argued that different subfields of language change research are concerned
with explaining very different aspects of change, from the emergence of language universals
over probabilistically predictable socio-culturally influenced features to the unpredictability of
particular, idiosyncratic changes. In trying to adjust and unify the position of the goal posts,
by pointing out the complementary nature of the approaches when viewed in an evolutionary
framework, I also hope to have raised awareness regarding the scientific end goal for a theory of

language change as an area of research that straddles the social and historical sciences (Blute,
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1997). In line with Weinreich et al.’s original formulation of the actuation problem (1968), I
have argued that a complete theory of language change should not just be limited to correctly
predicting the predictable aspects of the phenomenon, but also provide an explicit account or
explanation of the unpredictable nature of language change (p.186).

While in this thesis I have chiefly focussed on computational modelling as a tool for scien-
tific enquiry, I hope to have highlighted the need for more empirical, particularly quantitative
research into how language changes actually unfold in communities, as well as how different
individuals participate in language changes over time. Although I have brought forward theo-
retical arguments for why a replicator-neutral selection mechanism such as momentum-based
selection can go a long way in explaining both the universal patterns of language changes as
well as the constant diversification of languages, there is still much need for empirical evidence
for such a mechanism. Particularly on the micro-level of the individual, the nature of sociolin-
guistic knowledge is just becoming a focus of research, and many more results on this matter
can be expected in the coming years from work within the framework of perceptual dialectology
as well as from experimental methods such as the one used by Drager (2011).

On the macro-level of historical changes and the cross-linguistic comparison of similar
changes, I have pointed out a divergence in research goals as well as a relative lack of cumulative
work within any unified framework. In Section 4.4.1 I argued that different researchers have
approached the quantitative question of the rate of language change on two very different levels,
where work in diachronic typology (such as Bickel, 2015) is interested in the probability of a
certain type of change to occur on a macro-level, whereas traditional historical linguistic work
hones in on the speed with which a particular change diffuses through a population. While
there has generally been much talk of adaptation and selection in language change, quantita-
tive evaluations of how much the selection of linguistic structures actually plays a role within
particular historical changes has been minimal, as I argued in Section 2.4.2.

With respect to the cross-linguistic actuation probabilities of similar changes, the evolution-
ary approach to language change shows that the synchronic prevalence or preference of certain
linguistic structures does not necessarily have to do with them being selected for based on their
adaptive features. Instead, I hope to have demonstrated that many asymmetries in language
change, including the unidirectional patterns found in domains ranging from sound change to
grammaticalisation, might instead be due to the preferred innovation of specific variants. Sep-
arate from these asymmetries in the direction of language changes due to innovation, I showed
how selection mechanisms based on social learning, such as the trend-amplification dynamics of
momentum-based selection, can yield directed transitions that, while superficially indicative of
an asymmetry between variants, are based on biases which are only temporary and emergent

from the dynamics of social learning.
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188 APPENDIX A. DERIVATION OF REPLICATOR SELECTION TRAJECTORIES

The mathematical appendix to Blythe and Croft (2012) lays out how one can analytically
derive the average trajectory resulting from the differential replication of variants according to
some biasing function f(.) as a function of some of the USM’s other parameters, in particular
the learning rate A\. These analyses rely on a number of simplifying assumptions, most impor-
tantly the homogeneity principle, which “requires two speakers to have the same probability
of using an innovation at any point in time (after an initial relaxation)” (p.2). Although this
principle has only been proven to hold for the case of random copying (Blythe, 2010) some of
our assumptions, such as the mutually strong weighting of the agents’ productions through a
single high accommodation term h as well as the densely connected network specified by the
interaction matrix G, go a long way towards satisfying the criterion, which essentially states
that there should be no systematic differences between the different agents’ usage levels across
the population.

In combination with the mean-field assumption that, “at any given time, a speaker’s usage
frequency is well-represented by its mean value” (p.3), in other words disregarding the influence
of random fluctuations due to sampling effects, the dynamics of the population can then be
described as a deterministic function of time!.

In particular, given a bias function of the general form f(u) = u+ \- g(u) the mean change
to the average usage frequency = of the population in one interaction is:

A2

(@ =) = 5 9()) + OO

where (g(7)) represents the weighted mean value of g(.) over all possible sample productions
n ~ Bin(T, z). To abstract away from the number of interactions to a time scale that generalises
across different learning rates and population sizes we take one interaction to last A/N time

units (see Baxter et al., 2006, 2009), which yields the deterministic mean-field equation

Lalt)y=2-(g(2)

In other words, the average trajectory is simply dependent on the average of the function
g(u) over the distribution of token productions for a given current population mean z. Assuming
that tokens are produced independently, this is a binomial distribution with n =T and p = «,
which is the probability distribution P(.) referred to in all equations below. Filling in the
two different replicator biases (original multiplicative and additive) and solving the differential

equations for them we can thus deduce the average trajectories of the biases for different T'.

A.1 Multiplicative replicator selection

To recapitulate,

fluy=u-(14+b)=u+u-b

IFor an alternative approach that uses stability analysis to determine the influence of random fluctuations,
see Renton (2016).
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_bu

which means that

Assuming that b is sufficiently small so that g(%) = %% for all n < T (i.e. that the biased
value (14 b) - T=1 never exceeds the maximum of 1 which is true as long as b < —=L7), we can

write the average of g(u) as:

where the final transformation is simply a reformulation of the weighted mean of the Bino-
mial distribution for all n < 0...7 — 1. Invoking the deterministic mean-field assumption we

can substitute the average population usage = for () to find

(o(m)) = 21 a7 )

and thus
d 2b T_1
il - (1=
Salt) = Ta(l — T
and
1 2b
dr(t) = —dt
(1 —2T-1) z(t) A
Integrating
/(l_'_ xT—2 )= 2bt
r 1—gT-1 A
we find
In|z| In|l—a"7t 271)t+
nl|x —7T-1 — c.

Choosing ¢ so that z(0) = zo,

Infl— it

:1 —
¢ =In|xg| T
T
C=—"7—F.
(a5

Returning to the original equation and solving for x

|| — Cexp?t/*

[T

x = Cexp?/*|1 - gcT_1|ﬁ
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271 — oT-1 exp(2bt/)\)(T71)(1 — 2T

2711+ 071 eXp(zbt/A)(Tq)) — OT 1 oxp@t/N(T-1)

CT—1 exp(26t/N)(T-1) cT-1

T-1 _ _
- 14+ (CT-1 exp(th/)\)(T—l) 1= exp—(th/A)(T—l) :

x

T—1
. . — xr .
Substituting CT—1 = T ‘;T,l from above we arrive at
—a]

T—-1

z (2bt/X)(T—1)
T-1 1*(;0T_1 P
€ = 21
1+ 17(‘;5_1 exp(2bt/N)(T=1)

T-1

211 — Zo
(1 _ mOT’l) exp(—2bt/,\)(T—1) —l—mOT*l
Zg
o(t) = ——

(T + (1= 2)T1 eXp—g(T—l)bt/A)Til )

For T' = 2 this reduces to

o
xo + (1 — mp) exp—2bt/A

x(t) =

which is equivalent to logistic growth with r = 2b/\ .

A.2 Additive replicator selection

Performing the same steps for

Flw) =u+b
we obtain
(w="2
g =N

Under the same assumption that Z=% + b never exceeds 1 we find
T

T-1
(2} = 3 3 Pln) = S11— P(T) = PO)] = £ [1 ~ 2" — (1 - 2)"]

which yields the differential equation

d 2% .
ax(t) = l1-z"—-(1-2)")
1 2b

For T'=2 and T = 3 only the integral can be solved as
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1 2bt
—(1 — log(1 — = —
(0g(2) ~log(1 — ) = 3" + ¢
- f - _ echT eXp2th/>\ )
Substituting
C =expl = 0
1-— Xo
in
C eXPthT/)\
T CexpWT/x 11
we derive
Zo

z(t) = .
®) zo + (1 — o) exp—2btT/A
For these two sampling rates, the additive replicator selection dynamic is thus equivalent to

I . _ 2T
logistic growth with growth rate r = =%~.
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Appendix B

Markov model code

R/markovchain.R

suppressMessages (library (markovchain))

library(magrittr)

newchain <- function(unnormalisedmatrix, name, states=ifelse(sapply(colnames
(unnormalisedmatrix), length, USE.NAMES=FALSE), colnames(
unnormalisedmatrix), rownames (unnormalisedmatrix)))
new("markovchain", name=name, states=states, transitionMatrix=unname (

unnormalisedmatrix/rowSums (unnormalisedmatrix)))

statenames <- function(N)

as.character (0:N)

# ps = binomial production probability in that state
binomialsampling.markov.matrix <- function(ps)
new("markovchain", name="Binomial sampling", states=statenames(length(ps)
-1), transitionMatrix=t(sapply(ps, function(p) dbinom(0:(length(ps)-1),
length(ps)-1, p))))

# transition probabilities out of a state are organised in rows:

**

x[i,j] := P(i -> j) where i, j in [1, length(ps)]

**

also by definition rowSums(binomialsampling.markov.matrix(...)) == 1

# assume (deterministic) selection of the mean of the posterior distribution
bilm.transition.matrix.average <- function(N, alpha)
new("markovchain", name=paste("BILM by averaging with alpha", alpha, sep="
="), states=statenames(N), transitionMatrix=t(sapply(0:N, function(x)

dbinom(0:N, N, (x + alpha/2) / (N + alpha)))))

# assume (deterministic) maximum a posteriori calculation of theta
bilm.transition.matrix.map <- function(N, alpha)

# catch abnormal modes: when x=0 (or x=N) then alpha<l (or beta<l) and the
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#

# mode is simply O (or 1)

new("markovchain", name=paste("BILM by averaging with alpha", alpha, sep="
="), states=statenames(N), transitionMatrix=t(sapply(0:N, function(x)
dbinom(0:N, N, pmax(0, pmin(l, (x + alpha/2 - 1) / (N + alpha - 2)))))))

assume sampling from the posterior Reali & Griffiths 2009 (p.321)

bilm.transition.matrix.sample <- function(N, alpha) {

mx <- sapply(0:N, function(target)choose(N, target)x*beta(0:N+target+alpha/
2, 2*%N-0:N-target+alpha/2) / beta(0:N + alpha/2, N - 0:N + alpha/2))

new ("markovchain", name=paste("BILM by sampling from the posterior with
alpha", alpha, sep="="), state=statenames(N), transitionMatrix=mx/

rowSums (mx) )

calculate the Wright-Fisher model mutation rate equivalent to the BILM's N

# and alpha. the bracketing in the paper itself is garbled and there's a '/'

# missing somewhere, the correct version of the transformation can be found

on

# the top of page 5 of the supplementary material of Reali & Griffiths 2010

N.alpha.to.u <- function(N, alpha)

alpha / (2 * (alpha + N))

# mO and ml are mutation probabilities of spontaneously generating variants.

**

b is a replicator bias (fitness advantage of variant 1 over 0) in (-inf,

inf)

repl.mut.eq <- function(N, alpha0=0, alphal=alphaO, mO=N.alpha.to.u(N,

#
}

alpha0), mi=N.alpha.to.u(N, alphal), b=0, ks=0:N) {
# apply selection (discrete replicator equation)
# Wright-Fisher http://www.stats.ox.ac.uk/~etheridg/orsay/selection.pdf
if (b < 0) {
biasedks <- (N-ks) * (1 + abs(b))
1 - (biasedks*(1-m0) + ks*ml ) / (biasedks + ks)
} else {
biasedks <- ks * (1+b)
(biasedks* (1-m0) + (N-ks)*ml ) / (biasedks + N - ks)

alternatively: Fermi-style selection coefficient: b in (-inf,inf)
(see also http://web.evolbio.mpg.de/~traulsen/paper/05.pdf)

biasedks <- ksxexp(b)

# limiting to [0,1] necessary because exp() causes overflow with negative
b

pmax (0, pmin(1l, ( biasedks*(1-m0) + (N-ks)*ml ) / (biasedks + N - ks)))

#repl.mut.eq(5)
#repl.mut.eq(5, 0.1)

#

a higher mO means more pressure for x -> 0
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#repl.mut.eq(5, 0.1, 0)

repl .mut.matrix <- function (...)

binomialsampling.markov.matrix(repl.mut.eq(...))

plotstationary <- function(markovchain, st=steadyStates(markovchain),
absorbingstates=ifelse(missing(markovchain), 1, dim(st) [1]), xlab="x"
names.arg=0: (dim(st) [2]-1), ...)

barplot (st/absorbingstates, xlab=xlab, names.arg=names.arg, space=0, ...)

averagefrequency <- function(markovchain, st=steadyStates(markovchain)[1,],
N=length(st)-1)
sum(0:N/N * st)

# advantage of variant 1 over O, as derived from the stationary distribution
advantage <- function(m, nstates=1, maxmomentum=1, nmomentumstates=nstatesx*
(1+2*maxmomentum) , stationary=steadyStates(m)) {
vifreq <- averagefrequency(st=colSums(matrix(stationary, nrow=
nmomentumstates)))
vifreq / (1 - vifreq)
}
# sum(stationary[1l,(ncol(stationary)-nmomentumstates):ncol(stationary)]) -

sum(stationary[1,1:nmomentumstates])

# transition matrix fiddling
makestickytop <- function(m, N=dim(m) [1]-1)
rbind(m[-(N+1) ,], c(rep(0, N), 1))

makestickybottom <- function(m, N=dim(m) [1]-1)
rbind(c (1, rep(0, N)), m[-1,1)

# compute the development of the Markov chain probability distribution for
the
# specified number of iterations. initstate is a vector of length N and
# transitionmatrix an NxN matrix (with rows summing to 1)
markov.chain <- function(transitionmatrix, generations=2500, initstate=c(1,
rep(0, dim(transitionmatrix)-1)), exactduration=FALSE) {
if (exactduration) { # use actuation as initstate, see below
return(markov.chain.exactduration(transitionmatrix, generations))
}
out <- matrix(nrow=generations+1l, ncol=length(initstate))
out[1,] <- initstate
for (i in 2:(generations+1))
out[i,] <- out[i-1,] * transitionmatrix

invisible (out)
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o }

100

11 # construct markov chain probability matrix

12 markov.chain.exactduration <- function(transitionmatrix, generations) {
103 # fixate once chain reaches N/N or reverts back to 0/N

104 onetimetransitions <- transitionmatrix[] %> makestickytop %>%

makestickybottom %>} newchain

105 # determine generation 2 start state (just after the initial pickup)
106 transitionjustpickedup <- c(0, transitiommatrix[1,-1])
107 data <- markov.chain(onetimetransitions, generations-1, initstate=

transitionjustpickedup)

108 # clear out all the chains that reverted back to the 0/N state

109 data <- cbind(rep(0, generations), datal[,-1])

110 # prepend generation O initstate

111 rbind (c(sum(transitionjustpickedup), rep(0, dim(transitionmatrix)-1)),
data)

112 # rowSums (data) isn't actually equal (and neither is

113 # rowSums (apply.conditioning(data)), meaning the sticktop/bottom approach
is

114 # actually leeching? would actually *cutting* the state space by two
states

115 # be a more valid approach?

s}

117
us # return per-generation completion probabilities for the given markov chain

19 completionprobabilities <- function(transitionmatrix, exactduration=FALSE,

D IS
120 data <- transitionmatrix %>%
121 makestickytop %>} # only count first transitions
122 newchain %>
123 # exactduration=TRUE causes markov.chain to use actuation as a start state
124 markov.chain(exactduration=exactduration, ...)
1256
126 diff (datal, dim(transitionmatrix) [1]])

127}

128

120 # return the mode and average duration of completions of this markov chain

130 completionstats <- function(transitionmatrix, ...) {

131 data <- completionprobabilities(transitionmatrix, ...)

132 c(mode=which.max (data), mean=weighted.mean(0:(length(data)-1), data))

13}

13 #completionstats(bilm.transition.matrix.average (20, .05), 100)

135 #completionstats(bilm.transition.matrix.average (20, .05), 100, exactduration
=TRUE)

136

137 plotcompletionprobabilities <- function(transitiommatrix, ylim=NULL, ...) {
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ps <- completionprobabilities(transitionmatrix, ...)

tightmargin(pty="s", mfrow=c(1, 2))

plot(ps, type="1", xaxs="i", yaxs="i", xlab="generation'", ylab="
probability of first transition completing", main="(i)", ylim=ylim)

"
B

plot (cumsum(ps), type="1", xaxs="i yaxs="i", ylim=0:1, xlab="generation"
, ylab="probability of having exhibited a transition", main="(ii)")

invisible(ps) # for postprocessing

# numerically compute the probability of a chain succeeding from the given
# initial state (specified as an index of the transition/state matrix)

successprobability <- function(transitionmatrix, initstate, precision=.99,

stepsize=500) {

transitionmatrix %<>), makestickytop %>% makestickybottom %>% newchain

population <- rep(0, dim(transitionmatrix))

population[initstate] <- 1

while (population[1] + population[length(population)] < precision)
population <- markov.chain(transitionmatrix, generations=stepsize,
initstate=population) [stepsize,]

population[dim(transitionmatrix)]

# merge the absorbingstates of the transition matrix together into one

absorbing state that only transitions to itself

mergeabsorbingstates <- function(m, absorbingstates) {

if (length(absorbingstates) == 1)
return(m)

# take subset of transition matrix, only leave one state for all states

ma <- m[-absorbingstates[-1], -absorbingstates[-1]]

# merge (sum) the final absorbingrows columns together for every row

ma[,absorbingstates[1]] <- rowSums(m[-absorbingstates[-1], absorbingstates
ID)

# make new merged absorbing state only transition to itself

ma [absorbingstates [1],] <- 0

ma[absorbingstates [1], absorbingstates[1]] <- 1

return (ma)

plotcompletionprobabilitiesperstart <- function(transitionmatrix,

maxmomentum=0, nstatestomerge=1 + 2*maxmomentum, N=dim(transitionmatrix)
/nstatestomerge-1, freqs=0:N, add=FALSE, pch=ifelse(add, 4, 3), ...) { #
4 x, 3+, 1o

# squash top/bottom states together into two absorbing states

print (N)

m <- mergeabsorbingstates(transitionmatrix[], l:nstatestomerge)

transitionmatrix <- newchain(mergeabsorbingstates(m, (nrow(m)-
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nstatestomerge+1) :nrow(m)))
if (maxmomentum == 0)
startindices <- 1+fregs
else
# indices of states which have positive momentum
startindices <- c(1, 1+freqs[-c(1, length(freqs))]1*3, dim(
transitionmatrix))
ps <- sapply(startindices, function(i) successprobability(transitionmatrix
, 1))
if (add)
points(freqs, ps, pch=pch, ...)
else {
plot (freqs, ps, pch=pch, xlab="initial frequency", ylab="probability of
diffusion", ylim=0:1, ...)
abline(a=0, b=1/N, 1lty=3)

#graylevels=round (0.75*length (hmmargs$hmm$States)) / round (0.75*ncol (data))
plotchain <- function(data, xlab="generation", ylab="frequency", graylevels
=24, ...)
image (data, x=0:(nrow(data)-1), y=0:(ncol(data)-1), xlab=xlab, ylab=ylab,
col=gray(graylevels:0/graylevels), breaks=c(0, 1.5 7 (-graylevels:0))*max(
data), ...)

# typesetting
formatalpha <- function(alpha)
bquote (alpha/2 ~ "=" ~ .(alpha/2))

latextable <- function(m, caption=NULL, floating.environment="table", ...) {

rownames (m) <- paste("x", rownames(m), sep="=")
colnames (m) <- paste("x'", colnames(m), sep="=")
if (!is.null(caption) & length(caption) == 1) {

sep <- regexpr("[\\.,:]", caption) [1]

if (sep != -1)

caption <- c(caption, substr(caption, 1, sep-1))

}
print (xtable(m, caption=caption, ..., digits=4), floating.environment=

floating.environment)

R/hmm.R

library (HMM)
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# transitionmatrix[] has to be organised row-wise
newhmm <- function(transitionmatrix, emissionProbs, startProbs=c(1l, rep(O0,
dim(transitionmatrix)-1)))
initHMM (States=states (transitionmatrix), Symbols=1:ncol(emissionProbs),
startProbs=startProbs, transProbs=transitionmatrix[], emissionProbs=

emissionProbs)

chain.mean <- function(markovchain)

apply (markovchain, 1, function(row) weighted.mean(0:(length(row)-1), row))

# draw a b/w heatmap based on a matrix of positive numbers, with higher
color resolution closer to O

# the first argument is a list with elements 'hmm' and 'observation'

plotposterior <- function(hmmargs, addmean=TRUE, addmostlikely=FALSE, ...) {
data <- t(do.call(posterior, hmmargs))
plotchain(data, ...)
if (addmean)
lines (0: (nrow(data)-1), chain.mean(data), lty=2, col="white")
if (addmostlikely)
points (0: (nrow(data)-1), as.numeric(do.call(viterbi, hmmargs)), pch=".",

col="white") # 4 for cross, 20 for small bullet

# all states emit the same symbol - posterior is same as running markov.
chain ()
noconditioning <- function(transitionmatrix, duration)
list (hmm=newhmm (transitionmatrix, matrix(l1, nrow=dim(transitionmatrix))),
observation=rep(l, 1+duration))
#plotposterior (noconditioning(bilm.transition.matrix.average (50, .5), 100),
addmostlikely=FALSE)

# all actuated trajectories without interruptions

#actuationconditioning <- function(transitionmatrix, duratiomn)

# list(hmm=newhmm(transitionmatrix, cbind(c(l, rep(0, dim(transitionmatrix)
-1)), c(0, rep(l, dim(transitionmatrix)-1)))), observation=c(l, rep(2,

duration)))

# gotta fiddle a little bit with this one to stop the model from avoiding
the
# final state until the very last generation: every state has a chance of
# emitting one of two symbols (.99 vs .01), but the lower probability one of
# all the non-categorical states is never actually emitted
naiveconditioning <- function(transitionmatrix, duration)
list (hmm=newhmm (transitionmatrix, cbind(rep(.99, dim(transitionmatrix)), c

(rep(0, dim(transitionmatrix)-1), .01), c(rep(.01, dim(transitionmatrix)
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-1), 0))), observation=c(rep(l, duration), 2))

#plotposterior (naiveconditioning(bilm.transition.matrix.average (10,

30))

.01),

# exact initiation doesn't matter, chain might stay at O for some time

completionconditioning <- function(transitionmatrix, duration)

list (hmm=newhmm (transitionmatrix, cbind(c(rep(1l, dim(transitionmatrix)-1),

0), c(rep(0, dim(transitionmatrix)-1),

duration), 2))

D,

observation=c(rep(1,

#plotposterior (completionconditioning(bilm.transition.matrix.average (30,

.01), 50))

# exact initiaton and termination

exactconditioning <- function(transitionmatrix, duration)

list (hmm=newhmm (transitionmatrix, cbind(c(1l, rep(0, dim(transitionmatrix)

-1)), c(0, rep(1l, dim(transitionmatrix)-2), 0), c(rep(0, dim(

transitionmatrix)-1), 1))), observation=c(l, rep(2, duration-1), 3))

#plotposterior (exactconditioning(bilm.transition.matrix.average (50,

100))

R/randomtransitions.R

# numerical simulation

.01),

# stochastically generate chains that start off in state 0/n and are in

# state n/n after chainlength generations

generate.transitioning.chains <- function(transitionmatrix, chainlength,

numchains=1, initstate=0) {

N <- dim(transitionmatrix)-1

p <- markov.chain(transitionmatrix, chainlength) [chainlength+1,N+1]

message ("probability of being in state N/N after exactly ", chainlength, "

generations is ", p)

message ("this means a chain will be found roughly every ", round(1/p), "

attempts")
sapply (1:numchains, function(chain) {
attempts <- 0
while (TRUE) {
attempts <- attempts+1l

pop <- vector("numeric", chainlength+1)

pop[1] <- initstate
for (i in 2:(chainlength+1))

popl[i] <- sample(O0:N, 1, prob=transitionmatrix[1+pop[i-1],])

if (poplchainlength+1] == N) {

message ("found transition ", chain,

return (pop)

after

>

attempts,

n

attempts"



21

22

23

24

25

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

}

# s
#r

gen

N

p
p

201

)

tochastically generate chains that start off in state 0/n and that first
each state n/n after EXACTLY chainlength generations
erate.transitioning.chains.exact <- function(transitionmatrix,
chainlength, numchains=1, initstate=NULL) {

<- dim(transitionmatrix)-1

<- markov.chain.exactduration(transitionmatrix, chainlength)

<- plchainlength+1,N+1] - pl[chainlength,N+1]

message ("probability of first arriving in state N/N after exactly ",

chainlength, " generations is at most ", p)

message ("this means a chain will be found roughly every ", round(1/p), "

S

}

plo
#

p

#
£

attempts")
apply (1:numchains, function(chain) {
attempts <- 0
while (TRUE) {
attempts <- attempts+1l
pop <- vector("numeric", chainlength+1)
pop[1] <- ifelse(is.null(initstate), sample(1:N, 1, prob=
transitionmatrix[1,-1]), initstate)
for (i in 2:(chainlength+1)) {
if (popl[i-1] == || popli-1] == 0)
break
popl[i] <- sample(O0:N, 1, prob=transitiomnmatrix[1+pop[i-1],])
}

if (poplchainlength+1] == N) {
message ("found transition ", chain, " after ", attempts, " attempts"
)
return (pop)
}
¥
)
tchains <- function(data, ...) {

plot circles for start+end conditioning
lot(c(0, nrow(data)-1), range(data), xlab="generation", ylab="frequency",
)
paste("frequency of variant 1 (out of ", max(data), ")", sep="")
or (i in 1:ncol(data))
lines (0: (nrow(data)-1), datal,i])






Appendix C

Questionnaire materials

This appendix contains the various materials used for the questionnaire data collection and anal-
ysis: Section C.1 provides the four questionnaire sheets described in Chapter 5 that were handed
to participants on site. Only one randomisation is given. The online version of the questionnaire
is still available at http://spellout.net/ibexexps/kstadler/shetland/experiment.html,
and the source code for the generation of the randomised questionnaire sheets is provided in
Section C.2. Section C.3 provides the R code used to load and arrange the questionnaire and

acceptability judgment data that form the basis of the statistical analyses in Chapter 5.

C.1 Paper questionnaires
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http://spellout.net/ibexexps/kstadler/shetland/experiment.html

Momentum exit-questionnaires

A questionnaire for testing people's awareness of (the directionality of ) changes, with questions
tapping into their explicit knowledge of:

1. their own frequency of use

2. their interlocutors’ frequency of use

3. the ‘age’ of a variant (a naive way to get at their impression of the real-time nature of a
change)

4. the apparent time development of a change (asking about younger/older speakers’
frequency of use)

Now with 4 pages per individual: questions about a changing variable (imperatives, p.1),
a stable one (negation, p.2), and two more changing and almost completed ones (yes/no
questions and wh questions, p.3+4).

The order of presentation of the two variants, their order in the ‘which is older’ question, and
the order of the younger/older speakers question are all randomised, so there's 8 different
versions of the same 4-page questionnaire.

Open questions/things to try out/change away from too much linguistics lingo:

1. replace ‘use this variant’ with ‘say'?

2. do people understand ‘negating a sentence’?

3. change from “people around you" to “people in Shetland” or “people you normally talk
to”

4. change from “Which variant do you think is older” to “Which variant do you think has
been around for longer?”



You are probably familiar with these two ways of asking somebody to do something:

“Mak du dy ain denner!” “Du mak dy ain denner!”

How much do you use either of these variants?

O OJ OJ O OJ
| use only | use more | use both | use more | use only
‘Mak du.. ‘Mak du.. equally ‘Du mak.. ‘Du mak..

How much do you think are people around you using either of the variants?

O O O O O
People use only People use more People use both People use more People use only
‘Mak du.. ‘Mak du.. equally ‘Du mak.. ‘Du mak..

Which of the two variants do you think is older?

O O O
‘Mak du.. is ‘Du mak.." is People have
older older always used
both

How much do you think younger speakers use either of the variants?

O O O O O
younger younger younger younger younger
speakers use speakers use speakers use speakers use speakers use
only ‘Mak du.!  more ‘Mak du.. both equally more ‘Du mak.! only ‘Du mak..

How much do you think older speakers use either of the variants?

O O OJ O O
older speakers older speakers older speakers older speakers older speakers
use only use more use both equally use more use only
‘Mak du.. ‘Mak du.. ‘Du mak.! ‘Du mak.!



You are probably familiar with these two ways of negating a sentence:

“He didna go” “He didnoo go”

How much do you use either of these variants?

O OJ OJ O OJ
| use only | use more | use both | use more | use only
‘didna’ ‘didna’ equally ‘didnoo’ ‘didnoo’

How much do you think are people around you using either of the variants?

O O O O O
People use only People use more People use both People use more People use only
‘didna’ ‘didna’ equally ‘didnoo’ ‘didnoo’

Which of the two variants do you think is older?

O OJ O
‘didna’ is older  ‘didnoo’ is older People have
always used
both

How much do you think younger speakers use either of the variants?

O O O O O
younger younger younger younger younger
speakers use speakers use speakers use speakers use speakers use
only ‘didna’ more ‘didna’ both equally more ‘didnoo’ only ‘didnoo’

How much do you think older speakers use either of the variants?

O O OJ O O
older speakers older speakers older speakers older speakers older speakers
use only ‘didna’ use more use both equally use more use only
‘didna’ ‘didnoo’ ‘didnoo’



You are probably familiar with these two ways of asking somebody a question:

“Kens du Sarah?" “Does du ken Sarah?"

How much do you use either of these variants?

O OJ OJ O OJ
| use only | use more | use both | use more | use only
‘Kens du..?’ ‘Kens du..?’ equally ‘Does du ken..?" ‘Does du ken..?’

How much do you think are people around you using either of the variants?

O O O O O
People use only People use more People use both People use more People use only
‘Kens du..?’ ‘Kens du..? equally ‘Does du ken..?" ‘Does du ken..?’'

Which of the two variants do you think is older?

O O O
‘Kens du..?’ is  ‘Does du ken..?’ People have
older is older always used
both

How much do you think younger speakers use either of the variants?

O O O O O
younger younger younger younger younger
speakers use speakers use speakers use speakers use speakers use
only more both equally more only
‘Kens du..?’ ‘Kens du..? ‘Does du ken..?" ‘Does du ken..?'

How much do you think older speakers use either of the variants?

O OJ OJ OJ OJ
older speakers older speakers older speakers older speakers older speakers
use only use more use both equally use more use only
‘Kens du..?’ ‘Kens du..?’ ‘Does du ken..?” ‘Does du ken..?’



You are probably familiar with these two ways of asking somebody a question:

“Whit gae du him?" “Whit did du gie him?"

How much do you use either of these variants?

O OJ OJ O OJ
| use only | use more | use both | use more | use only
‘Whit gae du..?” ‘Whit gae du..?’ equally ‘Whit did du gie..?" "Whit did du gie..”’

How much do you think are people around you using either of the variants?

O O O O O
People use only People use more People use both People use more People use only
‘Whit gae du..?’  ‘Whit gae du..?”’ equally ‘Whit did du gie..?" ‘Whit did du gie..?’

Which of the two variants do you think is older?

O OJ O
‘Whit gae du..?’  ‘Whit did du gie..?” People have
is older is older always used
both

How much do you think younger speakers use either of the variants?

O O O O O
younger younger younger younger younger
speakers use speakers use speakers use speakers use speakers use
only more both equally more only
‘Whit gae du..?” ‘Whit gae du..?’ ‘Whit did du gie..?" "Whit did du gie..”’

How much do you think older speakers use either of the variants?

O OJ OJ OJ OJ
older speakers older speakers older speakers older speakers older speakers
use only use more use both equally use more use only
‘Whit gae du..?” ‘Whit gae du..?’ ‘Whit did du gie..?" 'Whit did du gie..”’
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C.2 Questionnaire source code

questionnaire/data/questionnaire. Rmd

title: Momentum exit-questionnaires
output: pdf_document
classoption: aédpaper,12pt
header-includes:
- \usepackage{fullpage}
- \renewcommand{\familydefault}{\sfdefault}
- \usepackage{array}
- \newcolumntype{x}{>{\centering\arraybackslash}p{2.75cm}}

\newenvironment{likert}
{\parskip=0cm\par\nopagebreak\centering\vspace{0.4cm}}
{\vspace{1l.45cm}\par\noindent\ignorespacesafterend}

\thispagestyle{empty}

A questionnaire for testing people's awareness of (the directionality of)

changes, with questions tapping into their explicit knowledge of:

1. their own frequency of use

their interlocutors' frequency of use

the “age' of a variant (a naive way to get at their impression of the

real-time nature of a change)

4. the apparent time development of a change (asking about younger/older

speakers' frequency of use)

Now with 4 pages per individual: questions about a changing variable (
imperatives, p.1), a stable one (negation, p.2), and two more changing

and almost completed ones (yes/no questions and wh questions, p.3+4).

The order of presentation of the two variants, their order in the
older' question, and the order of the younger/older speakers question

are all randomised, so there's 8 different versions of the same 4-page

questionnaire.
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Open questions/things to try out/change away from too much linguistics lingo

1. replace '*use* this variant' with '*say*'?

2. do people understand 'megating a sentence'?



33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

210 APPENDIX C. QUESTIONNAIRE MATERIALS

3. change from "people around you" to "people in Shetland" or "people you
normally talk to"
4. change from "Which variant do you think is *older*" to "Which variant do

you think has been around for longer?"

<!-- \newpage \begin{center} This page semi-intentionally left blank \end{

center} -->
“*"{r echo=FALSE, results="asis"}

likert <- function(labels, question="") {
cat (question, "\\begin{likert}\\begin{tabular}{", rep("x", length(labels))
IR0 g
pasteO(rep("$\\square$", length(labels)), collapse=" & "), "\\\\",
pasteO(labels, collapse=" & "), "\\end{tabular}\\end{likertl}")

usage <- function(prefix, left, right) {
c(paste(prefix, c("only", "more"), left), paste(prefix, "both equally"),
paste(prefix, c("more", "only"), right))

questionnaire <- function(left, right, variabledescription) {
cat ("\\newpage You are probably familiar with these two ways of",
variabledescription)
cat ("\\begin{likert}", left$presentation, "\\hspace{3cm}",
right$presentation, "\\end{likert}")

# How much of the time are you using the variants? If you are strictly
using one of the variants circle in that variant.
likert (usage ("I use", left$use, right$use), "How much do you use either of

these variants?")

likert (usage ("People use", left$use, right$use), "How much do you think

are people around you using either of the variants?")

# Which of these variants do you think is the older one/has been used for
longer? (i.e. tapping into either real time or apparent time knowledge)
# (I.e. which one has been used for a longer period of time?) #"They
have been around for the same time"

likert(c(paste(c(left$realtime, right$realtime), "is older"), "People have

always used both"), "Which of the two variants do you think is *older
*?II)
# people used to say more "..." / used "..." more often / which one was

used before
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# people use more A these days <> the mix of the two variants isn't

changing <> people use more B these days

# apparent age (Do you think the first/second variant is used more often
by younger/older speakers? (i.e. explicitly asking for their knowledge
about apparent age))

likert (usage (paste(left$age, "use"), left$use, right$use), paste("How much

do you think\\emph{", left$age, "}use either of the variants?"))

likert (usage (paste(right$age, "use"), left$use, right$use), paste("How
much do you think\\emph{", right$age, "}use either of the variants?"))

variable <- function(long, short) {
long <- paste(" “\\emph{", long, "}''", sep="")
short <- paste("™", short, "'", sep="")
r <- expand.grid(use=short, realtime=short, age=c("younger speakers", "
older speakers"), stringsAsFactors=FALSE)
r$presentation <- rep_len(long, nrow(r))

return(r)

randomisation <- function(v, i, description="saying the same thing") {

questionnaire(v[i,], v[i+nrow(v)-i,], paste(description, ":", sep=""))

negation <- variable(c("He didna go", "He didnoo go"), c("didna", "didnoo"))

# Tak du a peerie sweetie!
imperative <- variable(c("Mak du dy ain denner!", "Du mak dy ain denner!"),
c("Mak~du..", "Du~mak.."))

# Does du hear yun?
yesnoquestion <- variable(c("Kens du Sarah?", "Does du ken Sarah?"), c("Kens

~du..?", "Does~du~ken..?"))

# Whaar cam he fae?
whquestion <- variable(c("Whit gae du him?", "Whit did du gie him?"), c("
Whit~gae~du..?", "Whit~did~du-~gie..?"))

for (i in 1:nrow(imperative)) {
randomisation(imperative, i, "asking somebody to do something")
cat ("\\setcounter{page}{1}")
randomisation(negation, i, "negating a sentence") # saying something didn'
t happen

# extended questionnaire
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randomisation(yesnoquestion, i, "asking somebody a question")

randomisation(whquestion, i, "asking somebody a question")

C.3 Questionnaire data processing code

questionnaire/data/shetland—data.R

vars <- c("imp", "ynq", "whq", "neg")

varcolors <- c("orange", "blue", "green", "darkgrey")

names (varcolors) <- vars

changingcolors <- varcolors[1:3]

longvars <- c(imp="imperatives", yng="yes/no questions", whq="wh questions"

neg="negation")
vardesc <- c(imp="imperatives", yngq="yes/no questions", whq="wh questions",

neg="negation (stable control)")

lvls <- c("onlyout", "moreout", "both", "morein", "onlyin")
collapsedlvls <- c("fewin", "morein", "onlyin")
collapsedmapping <- c("fewin", "fewin", "fewin", "morein", "onlyin")

rellvls <- c("behind", "level", "ahead")
adddiff <- function(d, vi1, v2="other", name=v1l) {
diffname <- paste(name, "diff", sep="")
diffs <- as.numeric(d[[v1]]) - as.numeric(d[[v2]])
d[[paste(name, "relative", sep="")]] <- factor(rellvls[2+sign(diffs)],
levels=rellvls, ordered=TRUE)

3

# d[[diffname]] <- factor(diffs, levels=do.call(seq, as.list(range(diffs)))

, ordered=TRUE)
d[[diffname]] <- factor(diffs, levels=-4:4, ordered=TRUE)
levels(d[[diffname]]) [6:9] <- sprintf ("/+i", 1:4)

return(d)

}

nicelvls <- c("only out", "more out", "both", "more in", "only in")
helmertvars <- c("whq", "question", "notchanging")

helmertlevels <- function(var) contr.helmert(4)[5 - as.numeric(var),]

arrangedata <- function(d) {
d$gender <- factor(c(F="female", M="male") [d$gender], levels=c("female",
male"))

d$self <- factor(d$self, levels=1lvls, ordered=TRUE)
d$jitteredself <- jitter(as.numeric(d$self))

d$other <- factor(d$other, levels=1lvls, ordered=TRUE)
d$var <- factor(d$var, levels=vars)

d$longvar <- factor(longvars[d$var], levels=longvars)
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# helmert coding (not reverse, as returned by contr.helmert())

d[,helmertvars] <- helmertlevels(d$var)

d$oldervar <- factor(d$oldervar, levels=c("out", "same", "in")) # TODO
consider this ordered or not?

d$young <- factor(d$young, levels=1lvls, ordered=TRUE)

d$old <- factor(d$old, levels=1lvls, ordered=TRUE)

levels (d$self) <- nicelvls

levels(d$other) <- nicelvls

levels (d$young) <- nicelvls

levels(d$old) <- nicelvls

# collapse first three levels to avoid empty cells in ordered logit model
flattenedlevels <- c("lessin", "lessin", "lessin", "morein", "onlyin")
d$selftrunc <- factor(flattenedlevels[d$self], levels=unique(
flattenedlevels), ordered=TRUE)
d$othertrunc <- factor(flattenedlevels[d$other], levels=unique(
flattenedlevels), ordered=TRUE)

# dummy variable for between-changing/stable tests
d$stable <- d$var == "neg"

# swap "in" and "out" for the stable "neg" variable so that "in"/"out"

# responses can be meaningfully interpreted as 'majority'/'minority'
variant

d[d$var=="neg","oldervar"] <- levels(d$oldervar) [4-as.numeric(d[d$var=="
neg","oldervar"])]

for (col in c("firstvar", "self", "other", "firstolder", "young", "old"))
{
lvls <- levels(d[[col]ll)
d[d$var=="neg",col] <- 1lvls[1+length(lvls)-as.numeric(d[d$var=="neg",col
DN

# identical measures (under different labels)

#d$selffreq <- factor(d$self, levels=freqlvls)

d$oldervar <- factor(c("outgoing older", "always both", "incoming older")[
as.numeric(d$oldervar)], levels=c("outgoing older", "always both", "
incoming older"))

d$oldervarfreq <- factor(c("minority older", "always both", "majority
older") [as.numeric(d$oldervar)], levels=c('"minority older", "always both

"majority older"))

derivative measures

<- adddiff(d, "self")
<- adddiff(d, "old")
<- adddiff(d, "young")

Qo Ao
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d <- adddiff(d, "young", "old", "apparent")
d$apparentdiffN <- as.numeric(d$apparentdiff)-5
# d$apparentdiff <- as.numeric(d$young)-as.numeric(d$old)
# d$apparentrelative <- factor(rellvls[2+sign(d$apparentdiff)], levels=
rellvls, ordered=TRUE)
# d$apparentdiff <- factor(d$apparentdiff, levels=difflvlis(d$apparentdiff),
ordered=TRUE)

return(d)

da <- arrangedata(read.table("shetland.csv", header=TRUE, sep=" "))
da$condition <- as.factor("paper")

do <- arrangedata(read.csv("shetland-online.csv"))

do$id <- factor(do$id)

do$condition <- as.factor("online")

d <- rbind(do,da)

#d$loc <- factor(d$loc, levels=c("Central", "Lerwick", "South", "West", "
Bressay", "North", "Whalsay"))
d$loc <- relevel(relevel(d$loc, "Bressay"), "Lerwick")

#agecats <- c("young", "middle", "old")

agecats <- c("age <= 32", "age > 32")

# split participants in 3 evenly sized categories: <=27 (N=26), 28-49 (N=26)
, >=50 (N=25)

#d$agecat <- factor(agecats[2 - (d$age <= 27) + (d$age>=50)], levels=agecats
, ordered=TRUE)

d$agecat <- factor (agecats[1+(d$age>32)], levels=agecats)

participants <- unique(d[c("id", "gender", "age", "agecat", "loc", "
condition")])

#agecatmeans <- sapply(agecats, function(a) mean(subset(participants, agecat
== a)$age))

#agecatmeans <- aggregate(participants$age, by=list(participants$agecat),
FUN=mean) $x

variable <- function(v, data=d) # "imp", "neg", "whq", "ynq"
subset (data, var == v)
changing <- subset(d, var != "neg")

changing$var <- factor(changing$var)

neg <- subset(d, var == '"neg'")
imp <- subset(d, var == "imp")
whq <- subset(d, var == "whq")
ynq <- subset(d, var == "ynq")

# given the two distribution of responses to younger/older, what is the
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# baseline distribution of differences between them that could have occurred

by
# chance?

diffchancelevel <- function(pl, p2, diff) {
nlevels <- length(pl)
sum (sapply ((1 + max(0, -diff)) : (nlevels - max(0, diff)), function(first)
pll[first]] * p2[[first+diff]]))

diffchancelevels <- function(pl, p2=p1l) {
nlevels <- length(pl)
sapply ((-nlevels+1) :(nlevels-1), function(diff) diffchancelevel(pl, p2,
diff))
3
# plot baseline distribution of derived responses assuming uniform responses

#barplot (diffchancelevels(rep(0.2, 5)), col=temp.colors(9))

#diffchancelevels(rep(0.2, 5), rep(0.2, 5))
#diffchancelevels(c(0,0,1,0,0), rep(0.2, 5))

# grammaticality judgments

ids <- as.character (unique(da$id))

suppressMessages (library(foreach))

jdg <- read.csv("judgments.csv", sep="\t")

jdg <- foreach (i = 1l:nrow(jdg), .combine=rbind) %do¥%

data.frame(id=ids, var=as.character (jdg$var[i]l), verb=as.character (jdg$

verb[i]), incoming=jdg$variant[i]=="incoming", judgment=as.numeric(jdgli
,paste("X", ids, sep="")]), stringsAsFactors=FALSE)

# make var a factor (with identical ordering as the other dataset)

jdg$var <- factor(jdg$var, levels(d$var))

# filter single NA
jdg <- jdglcomplete.cases(jdg),]

# we have to do some sort of aggregation first because not every verb was

# presented in both the new and old variant context. here we just take the
mean

# across all verbs contexts, but could filter down to only those presented
with

# both variants etc.

meanjudgments <- aggregate(jdg$judgment, by=list(id=jdg$id, var=jdg$var,
incoming=jdg$incoming), FUN=mean)

# now put incoming+outgoing judgments on same row

meanjudgments <- aggregate(meanjudgments$x, by=list(id=meanjudgments$id, var
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=meanjudgments$var), FUN=c)
# positive values -> incoming variant rated more highly
meanjudgments$absdiff <- meanjudgments$x[,2] - meanjudgments$x[,1]
meanjudgments$reldiff <- meanjudgments$x[,2] / meanjudgments$x[,1]
# merge grammaticality judgments and usage level estimates by speaker "id"

and "var": intersect(names(meanjudgments), names(da))

# approach #2: only average ratings given for verbs rated in both

# incoming+outgoing context

matchedjudgments <- merge(subset(jdg, incoming) [-4], subset(jdg, !incoming)
[-4], by=c("id", "var", "verb"))

colnames (matchedjudgments) [4:5] <- c("incoming", "outgoing")

meanmatchedjudgments <- aggregate(matchedjudgments[c("incoming", "outgoing")
], by=list(id=matchedjudgments$id, var=matchedjudgments$var), FUN=mean)

meanmatchedjudgments$absdiff <- meanmatchedjudgments$incoming -
meanmatchedjudgments$outgoing

meanmatchedjudgments$reldiff <- meanmatchedjudgments$incoming /

meanmatchedjudgments$outgoing

matchedjudgments$absdiff <- matchedjudgments$incoming - matchedjudgments$
outgoing

matchedjudgments$reldiff <- matchedjudgments$incoming / matchedjudgments$
outgoing

#aggregate (jdg$judgment , by=list(id=jdg$id, var=jdg$var, verb=jdg$verb), FUN
=c) $x

plotjudgmentcor <- function(judgments, cl, c2, render=cl, xlab=paste("

estimated usage level (", ci1, ")", sep=""), ylab=paste("relative
acceptability (incoming", if (c2=="absdiff") "-" else "/", "outgoing)"),
main=NULL, ...) {

d <- merge(judgments, da)
d$var <- factor(d$var)
# R's core cor.test can't do p values for ties
print (cor (as.numeric(d[[c1]]), d[[c2]], method="kendall"))
kendall <- cor.test(as.numeric(d[[c1]]), d[[c2]], method="kendall")
# rpudplus can (rpucor.test()), but requires a license for the test
# print(rpud::rpucor(cbind(as.numeric(d[[c1]]), d[[c2]]), method="kendall",
use="pairwise"))
# calculate 95), confidence interval of tau (tau slightly different here)
# print(DescTools::KendallTauB(as.numeric(d[[c1]]), d[[c2]], 0.95))
# apparently the best package (with p values accounting for ties) is
pvrank:
kendall <- pvrank::rankor(as.numeric(d[[c1]]), d[[c2]], "kendall", print=
FALSE, type='"greater")
plot (as.numeric(d[[render]]), d[[c2]], x1lim=c(0.8, 5.2), xlab=xlab, ylab=
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ylab, main=if (is.null(main)) bquote(taul[B] == .(round(kendall$Value, 3)
) ~ "(p" == .(paste(round(kendall$Cpv, 3), ")", sep=""))) else main, col
=changingcolors [d$var], xaxt="n", pch=4, pty="s", ...)

axis(1, 1:5, levels(d[[c1]]), las=3)

legend("topleft", levels(d$var), fill=changingcolors)

# plot relative judgment ('equal acceptability') baseline
abline (h=if (c2=="absdiff") 0 else 1, lty=2)

# usageestimate could be "self", "other" or "selfdiff"
# for the 'judgments' argument, see below

plotjudgments <- function(judgments=meanmatchedjudgments, usageestimate="

jitteredself", ...) {
par (mfrow=c(1,2))
plotjudgmentcor (judgments, usageestimate, "absdiff", ...)
plotjudgmentcor (judgments, usageestimate, "reldiff", ...)

}

# this is the plot averaged over all lexical items
#plotjudgments (meanjudgments)

# averaged only over matched lexical items (slightly higher)
#plotjudgments (meanmatchedjudgments)

#plotjudgments (meanmatchedjudgments, "other")

# this plot over all individual items (strong lexical effects)

#plotjudgments (matchedjudgments)

# intensity in (0,1]
temp.colors <- function(mn, mx=NULL, intensity=1) {
if (is.null(mx)) {
mx <- floor(mn/2)
mn <- ceiling(-mn/2)
}
hsv(c(rep(0.65, abs(mn)), FALSE, rep(0, abs(mx))), intensity*abs(mn:mx)/

max (abs (c(mn,mx))))
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