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Abstract
The goal of this dissertation is to contribute to the epistemology of science by

addressing a set of related questions arising from current discussions in the philoso-
phy and science of climate change: (1) Given the imperfection of computer models,
how do they provide information about large and complex target systems? (2) What
is the relationship between consilient reasoning and robust evidential support in the
production of scientific knowledge? (3) Does taking the mean of a set of model out-
puts provide epistemic advantages over using the output of a single ‘best model’?
Synthesizing research in philosophy and science, the thesis analyzes connections
among consilient inductions, robustness analysis, and the aggregation of various
sources of evidence, including computer simulations, by investigating case stud-
ies of climate change that exemplify the strength of consilient reasoning and the
security of robust evidential support. It also explains the rationale and epistemic
conditions for improving estimates by averaging multiple estimates, comparing a
simple case of averaging estimates to practices in multi-model ensemble studies.
I argue: (A) the concepts of consilience and robustness account for the strength
and security of inferences that rely on imperfect computer modelling methods, (B)
consilient reasoning is conducive to attaining robust evidential support, and (C) an
analogy can explain why averaging the outputs of multiple models can improve es-
timates of a target system, given that conditions of model independence, skill and
unequal weighting are taken into account.

Keywords: consilience, robustness, epistemology, climate science, models.
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Chapter 1

Introduction

1.1 Introduction

Human activities, primarily the burning of fossil fuels and clearing of forests, have

increased the concentration of greenhouse gases (GHGs) in the atmosphere, inten-

sifying the greenhouse effect and causing global warming. Global mean surface

temperature (GMST) has risen by about 0.7°C over the period 1906–2005, and the

rate of warming during the second half of this period was almost double that for

the period as a whole (Solomon et al., 2007, p. 36). Furthermore, 1983–2012 was

likely the warmest 30-year period of the last 800 to 1400 years (Masson-Delmotte

et al., 2013, p. 386). 2014 was more likely than any other year in the instrumen-

tal record (since c. 1880) to be the warmest year on record, and at least 10 of the

warmest years on record have occurred within the past two decades (Gillis, 2015).

Atmospheric concentrations of the important GHG carbon dioxide (CO2) have also

increased since pre-industrial times (c. 1750) from 280 parts per million (ppm) to

over 400 ppm today—a higher level than records show from between 800,000 to

15 million years ago (Tripati et al., 2009; Thompson, 2015). The burning of coal,
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natural gas, and other fossil fuels, releases CO2 with a unique chemical ‘finger-

print,’ indicating that increasing concentrations are due to human emissions (Ghosh

and Brand, 2003). Although global climate change has occurred many times over

the course of our planet’s history due to natural causes such as fluctuations in the

earth’s orbit, changes in the sun’s intensity, and volcanic activity, none of the known

natural forcing mechanisms can account for the current rise in global temperatures.

An overwhelming majority of scientists agree that human activities are caus-

ing climate change (Oreskes, 2004; Doran and Zimmerman, 2009; Anderegg et al.,

2010; Cook et al., 2013), but public opinion on this issue remains divided.1 While

climate science conveys the evidence of climate change, philosophy of science in-

vestigates how scientific methodology produces knowledge, which is the focus of

this dissertation. My objective is to contribute to the epistemology of science by

addressing a set of related questions arising from current discussions in the phi-

losophy and science of climate change: (1) Given the imperfection of computer

models, how do they provide information about large and complex target systems?

(2) What is the relationship between consilient reasoning and robust evidential sup-

port in the production of scientific knowledge? (3) Does taking the mean of a set of

model outputs provide epistemic advantages over using the output of a single ‘best

model’? Synthesizing research in philosophy and science, the thesis analyzes con-

nections among consilient inductions, robustness analysis, and the aggregation of

various sources of evidence, including computer simulations, by investigating case

studies of climate change that exemplify the strength of consilient reasoning and

1For example, recent polls suggest that only 63% of Canadians believe the scientific evidence is
conclusive that climate change is primarily caused by human activity (Environics/Suzuki), and only
45% of Americans attribute the warming of the past four decades to human causes (IPSOS/Reuters,
2015).
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the security of robust evidential support. It also explains the rationale and epistemic

conditions for improving estimates by averaging of multiple estimates, comparing

a simple case of averaging estimates to practices in multi-model ensemble studies.

I argue: (A) the concepts of consilience and robustness account for the strength

and security of inferences that rely on imperfect computer modelling methods, (B)

consilient reasoning is conducive to attaining robust evidential support, and (C) an

analogy can explain why averaging the outputs of multiple models can improve es-

timates of a target system, given that conditions of model independence, skill and

unequal weighting are taken into account.

During the middle of the nineteenth century, intellectual and environmental cir-

cumstances in the Northern Hemisphere (NH) gave rise to the four ideas that form

the core topics of the dissertation: consilience, robustness, the averaging multiple

estimates and anthropogenic global warming. The remainder of this chapter dis-

cusses these ideas and provides and overview of the chapters that follow.

1.2 Consilience

While some probabilities are objective, assigning a degree of credence to hypothe-

ses about the causes, effects and trajectories of climate change involves incorpo-

rating expert judgment with respect to a wide variety of evidence (Mastrandrea

et al., 2010). Consilience is a mode of reasoning that involves assigning a high

degree of plausibility to a given hypothesis (H) when it is supported by a diverse

set of independent lines of evidence, which would be unlikely to converge unless

3



H were correct.2 With major developments in the fields of astronomy, biology,

chemistry, and many other disciplines of ‘natural philosophy,’ this was an era of

rapidly accelerating scientific discovery and invention (Weber, 2000). Developing

an epistemology to account for the strength of the most reliable scientific infer-

ences, William Whewell (1840, 1858, 1860) coined the term ‘consilience’3 (from

the Latin, con, meaning ‘together,’ and salı̄re, meaning ‘to leap’) to describe the

“jumping together” of multiple independent lines of evidence in support of H. H

receives strong evidential support when it successfully accounts for a set of diverse

phenomena because, as Whewell notes:

No accident could give rise to such an extraordinary coincidence. No

false supposition could, after being adjusted to one class of phenomena,

exactly represent a different class, where the agreement was unforeseen

and uncontemplated. That rules springing from remote and uncon-

nected quarters should thus leap to the same point, can only arise from

that being the point where the truth resides (Whewell, 1858, p. 88).

Whewell compares the consilience of inductions to a case of deciphering an

inscription, that is, “interpreting an unknown character, in which two different

inscriptions, deciphered by different persons, had given the same alphabet. We

should, in such a case, believe with great confidence that the alphabet was the true

2I, as others (e.g., Lloyd (2015)), am interested in agreeing inferences from multiple lines of
evidence, which are often called ‘variety of evidence inferences.’ These may involve inductions, in
Whewells sense, but may also refer simply to other sorts of inferences. I will speak of ‘consilience’
when inferences drawn from evidence stem from distinct areas of investigation supporting the same
conclusion.

3Whewell coined several other terms in the English language, including the word ‘scientist’
(Snyder, 2012).
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one” (Whewell, 1860, pp. 274–5).4 Analogously, scientific knowledge is strength-

ened by the agreement of multiple independent lines of evidence, which converge

in support of hypotheses about the natural world. Whewell’s favourite example of

consilience is Newton’s theory of universal gravitation, which unifies Kepler’s three

laws of motion, accounting for a plethora of phenomena, including the revolutions

of planets, the motions of satellites, the patterns of the tide, and the fall of a stone.

Aiming to explain how ‘historical sciences,’ such as paleontology and paleocli-

matology, are epistemologically rigorous despite the fact that they employ methods

of study outside the confines of traditional laboratory experiments, Stephen Jay

Gould (1989, 2002, 2003) applies this idea to inquiries into the deep past. Gould

refers to consilience as “the flower principle,” alluding to Charles Darwin’s gather-

ing a wide range of evidence to support his hypotheses in the context of evolutionary

biology. Darwin himself expressed the logic of consilience, noting that a “hypoth-

esis may be tested . . . by trying whether it explains several large and independent

classes of facts.” Natural selection, for instance, explains the “geological succes-

sion of organic beings, their distribution in past and present times, and their mutual

affinities and homologies” (Darwin, 1868, vol. 1, p. 657).

4Incidentally, this metaphor parallels the following actual case that occurred around the time of
Whewell’s writing. In the early 1850s, a handful of scholars claimed to have an approximate un-
derstanding of the hitherto undeciphered cuneiform texts of Mesopotamia (Wellard, 1972, p. 79).
One of these scholars, William Talbot, attempted a translation of an Assyrian cylinder from the
reign of King Tiglath-Pileser I (1116–1078 BCE), using a deciphering system developed by Henry
Rawlinson (1846) and Edward Hincks (1846). Talbot sealed his translation in an envelope and sent
it to the President of the Royal Asiatic Society, requesting that they test whether the interpretation
methodology was reliable by having others translate the cylinder independently. The society agreed,
accepting independent interpretations from Rawlinson, Hincks and Jules Oppert. Upon comparing
the four translations, the consensus among them indicated the reliability of the method of interpre-
tation (Tiglath Pileser I et al., 1857).
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Since the nineteenth century, several philosophers of science have elaborated

on the theory of consilience, relating it to more recent discourse in confirmation

theory (Hesse, 1968; Laudan, 1971; Thagard, 1978; Cohen and Hesse, 1980; Fisch,

1985; Myrvold, 2003; Snyder, 2012), and applying it to various areas of scientific

research, including astronomy (Forster, 1988; Harper, 1989), evolutionary biol-

ogy (Lloyd, 1983; Gould, 2002), quantum mechanics (Forster, 2010), paleontology

(Forber, 2011), historiography (Tucker, 2011), and other natural and social sciences

(Wilson, 1998). As Naomi Oreskes (2007) notes, consilience can also account for

the strength of inferences made in climate science—an important point upon which

this dissertation expands.

1.3 Robustness

The mid-nineteenth century also generated precursors to the idea of robust reason-

ing. Responding to the epistemology of René Descartes, who held that knowledge

could be secured by establishing a sequence of inferences anchored to an indu-

bitable foundational premise, Charles Sanders Peirce (1868, p. 141) advocated for

a robust epistemology:

Philosophy ought to imitate the successful sciences in its methods, so

far as to proceed only from tangible premises which can be subjected

to careful scrutiny, and to trust rather to the multitude and variety of its

arguments than to the conclusiveness of any one. Its reasoning should

not form a chain which is no stronger than its weakest link, but a cable

whose fibers may be so slender, provided they are sufficiently numerous

6



Figure 1.1: The structure of consilience and robustness. See text for details about
the similarities and differences between these concepts

and intimately connected.

The concepts of consilience and robustness are similar in that both pertain to the

agreement of multiple lines of evidence with respect to the plausibility of H (Fig-

ure 1.1). These two modes of reasoning are distinct, however. While consilience

suggests the occurrence of E1,...., En are unlikely unless H is the case, robustness

regards the plausibility of H in the face of some change to a subset of the body of

evidence.

Many current discussions of robustness in the philosophy of science literature

spring from the work of Richard Levins (1966) who, in examining methodolo-

gies in population biology, maintained that, although numerical models (or what he

calls “theorems”) are at best incomplete approximations of reality, and the extent to

which they represent reality are often ambiguous, one can still use them to secure

the plausibility of H, if each model independently points to the same conclusion.

Finding inspiration in the work of Peirce, Levins, and several other proponents

of multilateral evidential reasoning, William Wimsatt (1981, 1987) imputes this

mode of inference to researchers in many disciplines over the history of human
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thought, thus popularizing the notion of robustness analysis.5 Philosophers of sci-

ence have since elaborated upon the idea of robustness, examining how it accounts

for the security of inferences in several fields of scientific inquiry, including physics

(Cartwright, 1991; Staley, 2004; Woodward, 2006), evolutionary biology (Weis-

berg, 2006), epidemiology (Nederbragt, 2012), cell biology (Trizio, 2012), mathe-

matics (Krömer, 2012), astrophysics (Allamel-Raffin and Gangloff, 2012) and other

disciplines (Soler, 2012).

Case studies about climate change are particularly interesting and informative

for epistemological research into the logic of scientific inquiry because climate sci-

entists have systematically scrutinized and reported on the methodologies and find-

ings in this field of research. Accordingly, this dissertation expands on the analysis

of Wendy Parker (2006, 2010, 2011) and Elisabeth Lloyd (2009, 2010, 2012, 2015),

who investigate the role of robust inferences and variety-of-evidence reasoning in

climate modelling studies.

5Wimsatt (1981) refers to robust and serial inferences as, respectively, the “Babylonian” and
“Greek” methods, but this terminology is problematic. Explaining his reasoning for these histor-
ical labels, he cites Feynman (1967, p. 46), who uses the distinction metaphorically to describe
two “ways of looking at mathematics.” In Babylonian schools, Feynman asserts, students learn
by working on examples until they learn a rule; whereas the Greeks (i.e., Euclid) discovered how
theorems can be proven on the basis of established axioms. Although Feynman’s discussion has
a very different connotation than Wimsatt’s account of robustness, some Babylonian texts indicate
an appreciation for some essential components of scientific inquiry. Brown (2000, Ch. 4) describes
Mesopotamian texts from the last centuries of first millennium BCE that document systematic ob-
servations and mathematical and non-mathematical methods for predicting and retrodicting celestial
phenomena, such as eclipses and planetary positions with a high degree of accuracy. He notes that
different methods for predicting a particular phenomena, which were in use at the same time, were
considered equally legitimate. As Wimsatt notes, however, the ancient Greeks, such as Aristotle,
also “valued having multiple explanations of a phenomenon” (Wimsatt, 1981, p. 61).
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1.4 Averaging Estimates

The dissertation will also concentrate on the epistemology of averaging the outputs

of multi-model ensemble members, explaining the rationale of this methodology

by comparing it to a simpler case of averaging estimates, which suggests crucial

conditions that must be met for ensemble averages to improve estimates of a target

system, including ensemble constituents’ being relevantly skillful, independent, and

unequally weighted to reflect differences in model evaluations and dependencies.

Many current lines of research into the causes, effects and trajectories of climate

change rely on climate m odels. One way scientists use these tools to study the cli-

mate is by incorporating simulations into ensembles, comparing and combining

results to explore and reduce uncertainties about various components of the target

system (McGuffie and Henderson-Sellers, 2014). Intergovernmental Panel on Cli-

mate Change (IPCC) assess multi-model ensembles (MMEs) in climate model eval-

uation (Flato et al., 2013), paleoclimate reconstructions (Masson-Delmotte et al.,

2013), detection and attribution studies (Bindoff et al., 2013), and climate change

projection analysis (Collins et al., 2013). Some studies assume that averaging out-

puts from multiple simulation is a means of cancelling out random errors, thereby

producing estimates of a target system more reliably than any individual simulation.

Statistical methods for averaging estimates developed in the beginning of the

nineteenth century, particularly in the context of astronomy (Stigler, 1986). By

the turn of the twentieth century, this approach was well-established, as illustrated

by the following example. in 1906, Francis Galton attended the annual West of

England Fat Stock and Poultry Exhibition in Plymouth, England. This exhibition

featured a weight-estimating competition in which competitors, consisting of a mix
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of experts (e.g., butchers, farmers) and non-experts, estimated how much an ox

would weigh after it had been “slaughtered and dressed.” After the competition,

Galton borrowed from the vendor the 800 tickets sold, allowing him to view the

recorded estimates. Studying the tickets, he observed that the median estimate of

1207 lb. was only 9 lb. higher than the actual weight of 1,198 lb (Galton, 1907c),

while the mean estimate of 1,197 lb. was only 1 lb. lower, notably closer to the

actual weight than the best individual estimate, which was 7 lb. higher than the

actual weight (Galton, 1907a). “This result,” he maintained, “is more creditable

to the trust-worthiness of a democratic judgment than might have been expected”

(Galton, 1907b). He called this success of aggregating multiple estimates “vox

populi” or “the wisdom of crowds.” Since Galton, scholars in various disciplines,

ranging from law and economics to political science and cognitive science, have

drawn on the wisdom of aggregating multiple estimates to gain insights about their

different targets of inquiry (Surowiecki, 2004).

Forming a key research program of the World Climate Research Program (WCRP),

the Climate Model Intercomparison Project (CMIP) coordinates scientists from

around the world to conduct computer simulation experiments, using different mod-

els with overlapping input variables to compile simulation output, which is provided

by community members (Taylor et al., 2012). An underlying assumption of certain

climate ensemble studies is that, by comparing multiple models, one may identify

and reduce systematic errors in estimates because two or more plausible but rele-

vantly independent models are unlikely to produce convergent results unless they

accurately represent features of the target in question.

An important consideration for climate model ensemble methodology is the ex-
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tent of systematic dependencies among models in a given ensemble. If models in

an ensemble are in fact sampled from a ‘truth-centered distribution,’ then different

models should on average have near-zero error correlations. In practice, however,

analysis of CMIP ensembles demonstrates that such correlations are often strongly

positive (Knutti et al., 2010). Although a consensus on how to proceed has yet to be

established, some modellers propose adapting and correcting ensemble methods to

adjust for systematic biases, determining the effective number of models in ensem-

bles, and weighting models according to relevant degrees of skill and independence

(Jun et al., 2008; Jewson and Hawkins, 2009; Pennell and Reichler, 2011). While

modellers continue to refine procedures for improving ensemble estimates, the ra-

tionale for this approach has yet to be explored in full detail. Accordingly, the dis-

sertation will examine MME methodology by comparing cases in climate modelling

with a simpler, well-understood approach of averaging multiple measurements of a

single quantity, explaining the ‘wisdom of multiple models.’

1.5 Climate Change

As well as marking the emergence of epistemological discussions about consilience,

robustness, and averaging multiple estimates, the mid-nineteenth century marked

the end of the Little Ice Age (LIA), a climate interval that started in the early four-

teenth century CE, when mountain glaciers of the European Alps and other loca-

tions expanded, and mean annual temperatures across the NH declined by 0.6°C

(when compared to the average temperature between 1000 and 2000 CE) (Jackson

and Rafferty, 2014). From the early 1800s to the first half of 20th century, many
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theories emerged about the causes of climate change, suggesting global tempera-

ture responses could be caused by changes in the earth’s orbit, solar radiation, tides,

elevation of land masses, atmospheric and oceanic circulation, continent-ocean dis-

tribution, atmospheric volcanic dust concentrations, cosmic dust, sunspots, polar

migration and continental drift (Fleming, 1998, 109).

Analyzing the results of field experiments conducted by Horace-Bénédict de

Saussure, Edme Marriotte, and others, Joseph Fourier (1837, p. 13), first postulated

the greenhouse effect, observing that “the temperature [of the earth] can be aug-

mented by the interposition of the atmosphere, because heat in the state of light finds

less resistance in penetrating the air, than in repassing into the air when converted

into non-luminous heat.” By the second half of the nineteenth century, John Tyndall

(1861, 1863) conducted a series of controlled laboratory experiments, demonstrat-

ing how certain gases trap infrared radiation. In reflecting on his experimental find-

ings, Tyndall suggested that changes in atmospheric concentration of some gases,

such as water vapour and carbon dioxide (CO2), could bring about climate change.

Considering the implications of the greenhouse effect, Savante Arrhenius (1896)

calculated that a doubling of atmospheric CO2 would increase temperatures by 5 to

6°C.

By the first half of the twentieth century, the Industrial Revolution, which had

begun in the mid-sixteenth century, had brought about a transition in manufacturing

from hand production to machine methods, increasingly those driven by fossil fuel

energy. During this time, scientists commonly thought that contemporary levels

of CO2 concentrations were already absorbing all available long-wave radiation,

so increasing concentrations might affect plant growth but would be ineffective at
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changing the earth’s heat balance (Fleming, 1998).

In the second half of the twentieth century, however, as NH temperatures were

rising, global warming was becoming an important public concern, especially with

regard to rising sea levels, habitat loss, and changes to agricultural conditions (Flem-

ing, 1998). When scientists investigated further the long-term effects of fossil fuel

combustion, they understood that humankind was conducting a geophysical ‘ex-

periment’ on the global climate (Callendar, 1939; Plass, 1956; Revelle and Suess,

1957). Today, the consensus among climate scientists is that global warming is

occurring and its primary causes are anthropogenic.6

Among the findings in its latest report, the IPCC states that “For average annual

NH temperatures, the period 1983–2012 was very likely the warmest 30-year period

of the last 800 years” (Masson-Delmotte et al., 2013, p. 386). “Global Mean Sur-

face Temperature has increased since the late 19th century” (Hartmann et al., 2013,

p. 161). “It is extremely likely that human activities caused more than half of the

6National science societies and academies, including the Canadian Meteorological and Oceano-
graphic Society, and the American Association for the Advancement of Science, have issued state-
ments emphasizing their agreement with the conclusion that the evidence for anthropogenic climate
change is compelling. The international consensus is articulated by assessment reports of the IPCC,
which receives contributions scientists from over 130 countries around the world. Literature re-
views and surveys of scientists corroborate this consensus. Doran and Zimmerman (2009) invited
10,257 earth scientists to participate in a survey on the subject and found that overall, 90% of re-
spondents said they think that, when compared with pre-1800s levels, mean global temperatures
have generally risen, and 82% said that they think human activity is a significant contributing fac-
tor in changing mean global temperatures. Oreskes (2004) analyzed 928 abstracts of papers from
refereed scientific journals between 1993 and 2003, finding that none of the papers disagreed with
the consensus position. Anderegg et al. (2010) reviewed publication and citation data for 1,372 cli-
mate researchers and drew the following two conclusions: “(i) 97–98% of the climate researchers
most actively publishing in the field support the tenets of ACC (Anthropogenic Climate Change)
outlined by the Intergovernmental Panel on Climate Change, and (ii) the relative climate expertise
and scientific prominence of the researchers unconvinced of ACC are substantially below that of the
convinced researchers.” Similarly, a review of 11,944 abstracts of scientific papers matching “global
warming” or ”global climate change,’ found 4,014 discussing the cause of recent global warming,
97.1% of which endorsed the consensus position (Cook et al., 2013).
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observed increase in global mean surface temperature from 1951–2010” (Bindoff

et al., 2013, p. 869). Exemplifying the relationship between consilience and robust-

ness, this dissertation will focus on these and related findings, examining the ways

in which this epistemology accounts for the strength and security of climate change

studies that draw on multiple lines of evidence.

1.6 Overview

Chapter 2. Computer Models and the Evidence of Anthropogenic

Climate Change: Case Studies in Consilient and Robust Episte-

mology

The global climate system is large and complex, with many causal factors interact-

ing. To study climate change, scientists employ computer models, which approxi-

mate the target system with various levels of skill. Given the imperfection of climate

models, how do scientists use simulations to generate knowledge about the causes

of observed climate change? I address this question by developing an epistemology

of evidential reasoning based on the ideas of consilient inductions and robustness

analysis. Although philosophers have discussed these ideas with respect to the reli-

ability of scientific knowledge in other contexts, the ways in which these concepts

are distinct but related to each other, and their relation to climate modelling studies,

have only begun to be examined (Lloyd, 2015). Applying this epistemology to case

studies of climate change, I argue that, despite imperfections in climate models,

consilience and robustness can account for the strength and security of climatologi-
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cal inferences that employ computer simulations, including those used to infer that

global warming is occurring and its primary causes are anthropogenic.

Chapter 3. Consilience, Robustness, and the Hockey Stick Hy-

pothesis

Some theories of evidential reasoning that suggest the concepts of consilience and

robustness can account for the epistemic strength and security of scientific infer-

ences. The way in which these concepts relate to each other, however, has yet to

be explored. Developing a conceptual framework to analyze connections between

consilient reasoning and robust evidential support, this chapter investigates case

studies in climate science supporting the claim that NH mean surface temperatures

were higher during the last few decades than during any comparable period over

at least the preceding 400 years—a proposition that, for reasons discussed below,

is called the ‘hockey stick hypothesis’ (HSH). My thesis is that a consilience of

inductions is conducive to its having robust evidential support. Examining studies

of climate proxy indicators, which confer some degree of consilience to HSH, this

chapter elaborates on the connection between consilience and robustness with re-

spect to debates about global warming. This case also highlights the importance of

epistemology as regards the ethics and politics of evidence-based decision-making.

15



Chapter 4. Averaging Estimates: The Wisdom of Multiple Cli-

mate Models

Many current climate studies average the outputs of multiple models, taking the

mean to be the ‘best estimate’ of climatic quantities. Does this approach provide

epistemic advantages over one that instead dedicates resources to developing a sin-

gle ‘best model’? If so, what conditions must be met for the combined estimate of a

quantity to be more skillful than an estimate from a single model? While modellers

continue to refine procedures for improving ensemble estimates, the philosophi-

cal rationale for this approach has yet to be explained. Accordingly, this chapter

examines ensemble methodology by comparing cases in climate modelling with a

simpler, well-understood approach of averaging multiple measurements of a single

quantity. It argues that climate change studies incorporating the results of a plural-

ity of models can offer important epistemic advantages over employing only one

model, if conditions of model skill, independence and unequal weighting are taken

into account.

Chapter 5. Conclusion

The dissertation concludes with an overview of the main findings of the thesis,

summarizes the arguments of the preceding chapters, identifies connections among

them, and comments on the implications of this research for future work in the

epistemology of science.
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Chapter 2

Computer Models and the Evidence

of Anthropogenic Climate Change:

Case Studies in Consilient and

Robust Epistemology

2.1 Introduction

The global climate system is large and complex, with many casual factors interact-

ing. To study climate change, scientists employ computer models, which are very

imperfect representations of the target system. The most detailed, high-resolution

models of the global climate omit representations of major features of the planet

that affect the climate (e.g., mountain ranges) and contain parameterizations that

simplify complex climatic processes (e.g., cloud formation). Knowing whether a

27



given climate model provides insight into questions about a target system at various

scales and about its responses to different perturbations can, therefore, be difficult

to determine.

Among the findings of the Intergovernmental Panel on Climate Change (IPCC)

Fifth Assessment Report (AR5) is the conclusion that “[i]t is extremely likely that

human activities caused more than half of the observed increase in global mean

surface temperature [GMST] from 1951–2010” (Meehl et al., 2007, p. 869). An

important source of evidence for this conclusion are the results of computer model

simulations. political debates about climate change frequently characterize scien-

tific methodology as a mode of reasoning that is only as strong as its weakest link.1

Given that each of the modelled worlds used to study the climate is very different

from the earth, how do scientists use computer simulations to generate knowledge

about the causes of observed climate change?

I address this question by employing the ideas of consilient reasoning and ro-

bustness analysis, focusing on the epistemic advantages of drawing on a variety of

evidence, and expanding upon related philosophical inquiries into this field of study

(Weisberg, 2006; Lloyd, 2009, 2010; Parker, 2010; Edwards, 2010). Although

philosophers have discussed the importance of multiple sources of evidence, the

ways in which the concepts of consilience and robustness are distinct but related

to each other, and relevant to climate modelling methodology, have yet to be ex-

plained. Applying this epistemology to case studies documented by the IPCC, I

argue that the notions of consilience and robustness account for the strength and

1For example, some have tried to discredit climate science by focusing on a few erroneous claims
of IPCC, such as the suggestions that the Himalayan glaciers would melt by 2035, or that the Ama-
zon rainforest may be at risk from droughts (Lewis, 2010).
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security of climatological inferences that make use of imperfect computer models.

The approach of the paper is as follows. Section 2 illustrates the logic of con-

silience by describing a set of evidential pathways that converge in support of the

global warming hypothesis. This example presents a clear case of consilient rea-

soning without having to address the question of the role of computer model sim-

ulations. Section 3 expands upon this case by explaining how multiple imperfect

models contribute to the security of scientific knowledge because a variety of inde-

pendent approximations of a target system provide alternative evidential pathways

to support particular hypotheses. This point is exemplified by model agreement in

studies of anthropogenic climate change. Section 4 concludes the paper by summa-

rizing the main points of the argument.

2.2 The Consilience of Global Warming

Kent Staley (2004) notes that attaining multiple lines of evidence can increase the

plausibility of a hypothesis (H) by enhancing its epistemic strength and security.

While he draws a distinction between H’s strength (i.e., the degree to which evi-

dence indicates H) and its security (i.e., the insensitivity of H to changes in some

evidential pathway), he sets aside the question of how one can increases the strength

of an inference (p. 468). The idea of consilience, however, can account for the way

in which multiple lines of evidence strengthen an inference. A consilience of induc-

tions occurs when multiple independent evidential pathways indicate H such that it

would be unlikely that these lines of evidence would occur if H were incorrect.

Climate science contains many examples of consilient reasoning, the case of
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global warming providing a vivid illustration. In evaluating the Global Warming

hypothesis (GW)—that is, the proposition that “Global Mean Surface Temperature

has increased since the late 19th century” (Hartmann et al., 2013, p. 161)—the

IPCC highlights several agreeing lines of evidence, colligating many facts which

comprise a consilience of inductions. The evidence converging on GW results from

multiple observations of different interconnected components of the climate system,

the collection of which would be unlikely to occur if GW were incorrect. While

land-surface weather stations provide the most direct evidential pathway supporting

GW, a consilience emerges from other climate records, including measured changes

in atmospheric and oceanic temperatures at various heights and depths; in glacier

mass, snow coverage, and sea ice extent; in sea level; and in atmospheric water

vapour content. Although these various measurements indicate different kinds of

climate change, these findings are consilient with GW.

Figure 2.1 contains 10 graphs depicting this consilience. Since the atmosphere

and hydrosphere are interconnected fluid bodies, a warming at the earth’s surface

produces detectable effects at different levels of the atmosphere and ocean. Some

of the energy absorbed by the climate system is stored in the oceans, and this en-

ergy uptake is detectable in global ocean heat content records going back to the

1950s. Another line of support is the change in the amount of water vapour in the

atmosphere, i.e., its specific humidity, measurements of which indicate a positive

change to this variable, both over the land and the oceans. Observed sea-level rise

is another line of support; warming oceans result in water expansion, leading to ris-

ing sea levels, which are further heightened by additional water input from melting

glaciers and ice sheets and changes to the storage and usage of water on land. The
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cryosphere (i.e., the frozen parts of the planet) is also affected by changing tem-

peratures. Snow cover, particularly during the spring, is sensitive to temperature

changes. Since the 1950s, Northern Hemisphere spring snow cover has declined.

Similarly, Arctic sea-ice losses are detectable in satellite records, particularly at the

end of the annual melt in September, which is the time of its minimum extent. For at

least the last 20 years, the amount of ice contained in glaciers globally has declined

(Hartmann et al., 2013).

Since observations of these diverse phenomena are both consistent with GW and

inconsistent with the claim that GW is incorrect, this body of evidence comprises a

case of consilience. As Whewell would say, “[n]o accident could give rise to such

an extraordinary coincidence” (Whewell, 1858, p. 88). With the detection of GW

thus well established, the next question to consider is: What has been causing this

warming?
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Figure 2.1: Multiple independent indicators of a changing global climate. Each
line represents an independently derived estimate of change in the climate element.
In each panel all data sets have been normalized to a common period of record
(Hartmann et al., 2013, p. 199)©Cambridge University Press.
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2.3 Climate Modelling, Robustness, and Anthropogenic

Global Warming

While consilience increases the strength of H by drawing on multiple lines of ev-

idence, this mode of reasoning is distinct from the idea of evidential robustness,

which also depends on multiple lines of evidence. Robustness analysis secures the

plausibility of H by ensuring that it is insensitive to inaccuracies of a particular ev-

idential pathway. The following case exemplifies how converging evidential path-

ways provide H with epistemic security, despite imperfections in particular lines of

supporting evidence.

One of the earliest formulations of the thesis that humans are conducting a large

scale ‘experiment’ on the global climate comes from the work of Guy Stewart Cal-

lendar who, in 1938, read a paper to the Royal Meteorological Society, arguing that

CO2 from fossil fuel consumption caused a measurable increase in the earth’s tem-

perature. “The course of world temperatures during the next twenty years should,”

he explained, “afford valuable evidence as to the accuracy of the calculated [warm-

ing] effect of atmospheric carbon dioxide” (Callendar, 1939, p. 236). Over a decade

later, Gilbert Plass echoed this idea, writing that, “[i]f at the end of this century,

measurements show that the carbon dioxide content of the atmosphere has risen

appreciably and at the same time the temperature has continued to rise throughout

the world, it will be firmly established that carbon dioxide is an important factor

in causing climatic change” (Plass, 1956, p. 387). Perhaps the most well-known

statement of this thesis is that of Roger Revelle and Hans Suess:

[H]uman beings are now carrying out a large scale geophysical exper-
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iment of a kind that could not have happened in the past nor be re-

produced in the future. Within a few centuries we are returning to the

atmosphere and oceans the concentrated organic carbon stored in sed-

imentary rocks over hundreds of millions of years. This experiment,

if adequately documented, may yield a far-reaching insight into the

processes determining weather and climate (Revelle and Suess, 1957,

pp. 19–20).2

The logic of climate change detection and attribution (D&A) studies involves a

mode of induction that is more complex than simply correlating increasing anthro-

pogenic greenhouse gas (GHG) emissions with increasing GMST. While detecting

climate change involves a procedure of inferring that some climatic variable has

changed in a defined statistical sense, attributing causal force to a particular variable

involves a procedure of determining the components of a target system responsible

for the detected change. D&A analyses investigate aspects of the climate over dif-

ferent scales of space (from a single grid point to the whole globe) and time (from

minutes to millennia), using various methods to study the causes of climate change.

Some focus on human activities that influence climatic variables such as surface air

temperature, tropospheric temperature, depletion of stratospheric ozone, daily tem-

perature extremes, upper ocean temperatures, glacier melting, ocean salinity, ocean

acidification and oxygen depletion, and precipitation patterns.3 Attribution studies

into the question of whether human activities are responsible for climate change em-

ploy computer modelling methods. An important modelling strategy is to examine

2For related historical accounts, see Fleming (1998) and Weart (2011).
3For an overview of D&A studies investigating these and other variables, see Bindoff et al. (2013,

pp. 932–939).
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whether a detected change is consistent with simulations (made by skillful4 models)

that predict a given response to anthropogenic forcing while being inconsistent with

alternative (counterfactual) simulations that exclude this forcing. Accordingly, this

approach has been applied to investigate the causes of GW (Figure 2.2).

Although computer models and the simulations they produce are critical in sci-

entific studies about climate change, even the most detailed, high-resolution mod-

els of the global climate omit important representations of major features of the

planet that affect the climate and contain parameterizations that simplify complex

climatic processes (McGuffie and Henderson-Sellers, 2014). While certain forms

of scientific representations have unambiguous relations to reality, the extent of the

representational relationship between numerical models and reality can be ambigu-

ous. Richard Levins (1966) explains this point by comparing numerical models (in

population biology) with traditional geographic maps. Map legends stipulate clear

relations between the object system (i.e., the markings on a page) and the target

system (i.e., the geographical space it depicts). Continuity of lines on a map corre-

spond to contiguity of physical features of reality; relative distances on a map indi-

cate relative distances in space; colours and symbols indicate topographic features,

and so on. Unlike a geographical map, the representational limits of mathematical

models are often less clear. Whether a given climate model provides insight into

questions about a target system at various scales or about its responses to various

perturbations can be difficult to determine.

Roman Frigg et al. (2013, p. 893), for example, maintain that systematic errors

in models of the Climate Model Intercomparison Project (CMIP) Phase 3 “lead to

4The notion of model skill is explored in Chapter 4.
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Figure 2.2: Observations are shown on each panel in black or black and shades of
grey. Blue shading is the model time series for natural forcing simulations and pink
shading is the combined natural and anthropogenic forcings. The dark blue and
dark red lines are the ensemble means from the model simulations (Bindoff et al.,
2013, p. 930)©Cambridge University Press.
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nontrivial macroscopic errors of simulation,” such that error in the GMST “in a

hindcast of the last century casts significant doubt on the viability of the informa-

tiveness assumption on a 25-kilometer forecast to the end of this century,” partic-

ularly the downscaled regional projections of the 2009 United Kingdom Climate

Projections (UKCP09) program. Figure 2.3 illustrates the differences among the 24

models of the CMIP3 in GMST over the twentieth century, raising concerns about

the informativeness of regional forecasts that depend on downscaled global projec-

tions because of the wide range among the simulations. Whether errors in hindcasts

of GMST cast doubt on the plausibility of regional projections, the spread of simu-

lations and the difference between them and observed GMST raises the question of

whether such models can be reliable for other purposes, such as that of attributing

climate change to human activities. Should model results qualify as evidence of the

causes of climate change even though they produce such a wide range of hindcasts

with respect to absolute GMST change? What are the limits of how informative

climate models can be about the world?

On the one hand, as indicated in Figure 2.3, simulation estimates of absolute

GMST change vary widely from one model to another, and between models and the

instrumental record, which limits the informativeness of down-scaling general cir-

culation models (GCMs) for regional forecasts. In D&A studies, on the other hand,

rather than focusing on absolute GMST change or regional projections, scientists

typically concentrate on GMST anomalies with respect to the mean over some base-

line period, comparing models programed with natural and anthropogenic forcing

to those that contain natural forcing only (Figure 2.2). Models that include an-

thropogenic forcing are better than those that exclude it with respect to reproducing
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Figure 2.3: Output of Coupled Model Intercomparison Project Phase 3 models (24)
simulating changes in annual global mean surface temperature over the twentieth
century (coloured lines) and instrumental measurements (black line) (Frigg et al.,
2013)©Philosophy of Science Association.
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observed estimates of GMST anomalies, which is a finding that constitutes evidence

of the human influence on the climate.

The epistemology of consilient and robust reasoning is exemplified by the use of

computer models in attribution studies supporting the anthropogenic global warm-

ing hypothesis (AGW)—that is, the proposition is that human activities caused more

than half of the observed increase in GMST from 1951–2010 (Bindoff et al., 2013,

p. 869). In testing AGW, scientists model the climate in various ways, using mod-

els of differing levels of complexity, including comparatively simple energy bal-

ance models, energy models of intermediate complexity, GCMs, and earth systems

models that contain coupled interacting three-dimensional representations of differ-

ent components of the climate system, integrating models of the atmosphere, the

oceans, the carbon cycle, the cryosphere and the biosphere.

One can study these models and the simulations they produce individually and

in climate model ensembles (Parker, 2006). Scientists use a range of methods to

assess model-output, applying different statistical analyses to identify relationships

between dependent and independent variables, such as GW and anthropogenic ac-

tivities. AGW is a consilient finding because multiple modelling approaches of dif-

ferent components of the climate system are consistent with AGW and inconsistent

with the idea that AGW is incorrect. The results of such modelling studies are also

supported by a variety of other evidence, including observations of other changes

in the atmosphere, the oceans and the cryosphere (Hegerl et al., 2007; Lloyd, 2009;

Parker, 2010; Lloyd, 2010).

Given that each of the modelled worlds is very different from each other and

from the earth with respect to their levels of complexity, components of the climate
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represented, etc., how do simulations inform scientists about the causes of global

warming? The answer to this question rests in the logic of robustness analysis.

In cases in which a set of various lines of evidence rely on very rough approx-

imations of a target, if different pieces of evidence, such as those attained using

different modelling methods, independently point to the same conclusion, the epis-

temic security of H can be maintained. By treating the same problem with several

alternative modelling methods, scientists have established independent evidential

pathways supporting AGW such that, even though each climate model is an ap-

proximate representation of the target, each model is imperfect in a different way.

If several independent models produce similar results, one can be more confident in

the robustness of H because the agreement among these approximations is insensi-

tive to alternative modes of representing a target system. “Hence,” Levins writes,

“our truth is the intersection of independent lies” (Levins, 1966, p. 423).

The assumption that each model contributes positive evidential relevance, how-

ever, requires justification (Parker, 2011, p. 579). Accordingly, scientists evaluate

models by comparing simulation output with observed estimates of the target sys-

tem. Positive evaluations may justify the use of models in attribution studies, but

details about the appropriate metrics for determining model skill continue to be a

subject of debate (Flato et al., 2013).

The convergence of multiple lines of evidence supporting AGW exemplifies the

way in which robustness analysis compensates for the imperfections in models that

constitute evidential pathways. Gareth Jones et al. (2013), for example, investigate

the causes of changes in near-surface temperatures from 1860 to 2010, utilizing

the HadCRUT4 observational dataset and an ensemble of 8 coupled models from
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CMIP5, finding that “calculations of attributable temperature trends based on op-

timal detection support previous conclusions that the human-induced greenhouse

gases dominate observed global warming since the mid-20th century” (p. 4001).

Similarly, examining an ensemble of simulations from an energy balance model

of intermediate complexity (Bern2.5D), Markus Huber and Reto Knutti (2012,

p. 31) conclude that “since the mid-twentieth century, greenhouse gases contributed

0.85°C of warming,. . . suggesting an even higher confidence that human-induced

causes dominate the observed warming.”

Further support for AGW emerges from studies of interconnected components

of the climate that carry the signal of anthropogenic activities. Jan Lavštovička

et al. (2006, p. 1253) find that “the anthropogenic emissions of greenhouse gases

influence the atmosphere at nearly all altitudes,” including the upper atmosphere,

which has cooled and contracted—a predicted result of greenhouse warming. Com-

paring a dataset of observed ocean temperatures with simulations from two climate

models (PMC and HadCM3), Tsuga Barnett et al. (2005) identify a signal of anthro-

pogenic forcing in the oceans: “A warming signal has penetrated into the world’s

oceans over the past 40 years.. . . [The signal] cannot be explained by natural inter-

nal climate variability or solar and volcanic forcing, but is well simulated by two

anthropogenically forced climate models” (p. 284).

The epistemic security that results from robustness analysis contrasts with what

William Wimsatt (1981) calls “serial chain” reasoning. Serial reasoning, on the

one hand, involves drawing a conclusion by linking premises in a sequence that is

only as strong as its weakest link. The problem with serial chain reasoning, both

as a method of induction and as a description of scientific practice, is that, when
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an error occurs in one line of evidence, any conclusion resting on it is undermined.

Since reliable inferences about the natural world rely on many forms of inquiry,

the fragile structure of serial reasoning is incongruent with scientific methodology.

Robustness analysis, on the other hand, involves connecting a conclusion to several

independent lines of evidence, providing multiple pathways of evidential support,

the collection of which results in the insensitivity of H to changes in some subset of

the various evidential pathways.

Robustness analysis accounts for the security of scientific inferences such as

AGW because, when many lines of evidence converge in support of H, even when

imperfections exist in particular lines of evidence, including various modelling

methods, alternative evidential pathways provide independent lines supporting the

plausibility of H. Even though each line of evidence contains imperfections, if these

lines of evidence are imperfect in different ways, one line of imperfect evidence

may compensate for the imperfections in another line of evidence. The case of

climate change D&A illustrates how the collection of evidential pathways support-

ing AGW compensates for shortcomings in individual lines of inquiry. The logic

of consilience and robust evidential reasoning thus explains how imperfect models

can be informative in studies of the causes of climate change.

2.4 Conclusion

Studies of climate change have provided strong and secure support for GW and

AGW. In these cases, the independence of different lines of evidence is due to dif-

ferent types of observations, datasets, models and methodology that scientists incor-
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porate in their studies of climate change. The convergent lines of evidence support-

ing GW include a wide range of observations, such as measurements of changing

surface atmospheric and oceanic temperatures, glaciers mass, snow cover, sea ice,

sea level and atmospheric water vapour. Investigating the causes of climate change,

scientists test AGW by using multiple computer modelling methods that, in con-

junction with a variety of other lines of evidence, including observations of many

components of the climate system, comprise as a consilience of inductions because

these observations and modelling results would be unlikely if AGW were incor-

rect. Despite differences between the actual climate system and computer model

representations of it, models provide important sources of information when model

results are robust to variations in the way they approximate the climate.
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Chapter 3

Consilience, Robustness, and the

Hockey Stick Hypothesis

3.1 Introduction

Some theories of evidential reasoning suggest that the concepts of consilience and

robustness can account for the evidential strength and security of scientific infer-

ences. In order to address the question of how consilience and robustness relate

to each other, my account associates evidential strength with consilience and se-

curity with robustness. Analyzing connections between consilient reasoning and

robust evidential support, this paper investigates case studies in climate science

supporting the claim that Northern Hemispheric (NH) mean surface temperatures

were higher during the last few decades than during any comparable period over

at least the preceding 400 years—a proposition that, for reasons discussed below, I
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call the ‘hockey stick hypothesis’ (HSH).1 My thesis is that a consilience hypoth-

esis (H) is conducive to its having robust evidential support. Examining studies of

climate proxy indicators, which confer some degree of consilience to HSH, I elab-

orate on the connection between consilience and robustness with respect to debates

about global warming. This case also highlights the importance of epistemology

as regards the ethics and politics of evidence-based decision-making, because some

opponents of climate change mitigation efforts have mischaracterized the episte-

mology of science in relation to HSH, which is clarified by the logic of consilience

and robustness.

Tree-ring, glacier, borehole and other proxies qualify as relevantly independent

sources of evidence supporting HSH because one can infer HSH from one source

without relying on the same set of assumptions required to draw this conclusion

from another source. The various evidential pathways supporting HSH result in a

consilience of inductions because it would be unlikely that such different proxies

would indicate HSH if HSH were incorrect. This case illustrates how consilience

is conducive to robustness since the different evidential pathways that provide con-

silient support for HSH also provide epistemic security in the face of challenges to

a subset of this evidence.

Consilient reasoning and robustness analysis involve connecting a conclusion

to a set of several independent lines of evidence, providing multiple pillars of sup-

port, each of which contributes to the strength and security of H, contrasting with

serial chain reasoning, which is the view that, when an error occurs in one line of

1The paleoclimate reconstructions discussed below extend from about 400 to 2,000 years ago
and, as will be noted, the extent of the current warming in relation to past climates differs from
one study to another, depending on how far back a given reconstruction goes, and the baseline of
comparison.
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evidence, any conclusion resting on it is undermined (Wimsatt, 1981). The fragile

structure of serial reasoning fails to capture the nature of scientific methodology

because reliable inferences about the natural world rely on many forms of inquiry,

which is a point exemplified by debates about HSH.

3.2 Consilience

Evidential strength is the degree to which data indicate the correctness of H (Staley,

2004; Parker, 2011). Consilience is a mode of reasoning that involves assigning a

high degree of plausibility to H when it is supported by a diverse set of evidence,

which contains lines of evidence that are, to some degree, relevantly independent,

such that it would be unlikely to these lines of evidence to converge unless H were

correct (Whewell, 1840, 1858, 1860). Mere agreement between different lines of

evidence is insufficient for increasing the strength of H. A strong inference oc-

curs when it is highly improbable that a given line of evidence (E1) would be in

agreement with another line of evidence (E2) if H were incorrect. Accordingly,

the success of this epistemology depends on each line of evidence being relevantly

independent from each other.2 Failures of relevant epistemic independence occur

when both E1 and E2 rely on a single assumption, the failure of which undermines

the reliability of H. In this respect, the epistemology of consilient reasoning helps

explain how, and to what extent, scientists gain confidence in the plausibility of

2Relevant epistemic dependence is distinct from social dependence, as when members of a group
relying on collaborative research projects, which Edward Wegman et al. (2006, p. 4) suggest is prob-
lematic: “authors in the area of paleoclimate studies are closely connected and thus ‘independent
studies’ may not be as independent as they might appear on the surface.”
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various claims, including those pertaining to the distant past.3

Consilience operates in the many disciplines of climate science, including pa-

leoclimatology, which has accumulated various kinds of evidence pertaining to hy-

potheses about climate change, like HSH. This conclusion is associated with what

have come to be known as ‘hockey stick temperature curves;’ a term used to de-

scribe the warming pattern that the Intergovernmental Panel on Climate Change

(IPCC) first highlighted in its Third Assessment Report (TAR).4 In this report, the

IPCC reproduces a graph from a 1999 paper authored by Micheal Mann, Ray-

mond Bradley and Malcolm Hughes (MBH),5 showing a pattern of NH temperature

change that slightly cools from about 1000 CE until about 1900 CE (the ‘shaft’ of

the hockey stick) followed by a sharp warming that continues to the present day

(the upward ‘blade’) (Figure 3.1). The work of MBH serves as an interesting case

study in the epistemology of science because their results have been scrutinized

extensively.

Exemplifying the idea that consilience adds strength to an inference, the IPCC

qualifies its statements related to HSH with expressions of high confidence.6 Con-

sidering the work of MBH and others, the TAR notes that “[i]ndependent estimates

of hemispheric and global ground temperature trends over the past five centuries

3For philosophical discussions about the confirmation of historical and prehistorical hypotheses,
see Gould (1989, 2002, 2003); Cleland (2001, 2002, 2011); Turner (2004, 2007); Forber (2011);
Tucker (2011).

4Although the climatologist Jerry Mahlman is reported to have coined this use of the term, it had
previously been associated with similar climatological data-series patterns, such ozone depletion
(Biello, 2012, p. 74).

5MBH09 refers to Mann et al. (1999), MBH08 refers to Mann et al. (1998), and MBH refers to
both papers.

6For details about the IPCC’s likelihood and confidence terminology in the TAR, AR4 and AR5,
see Schneider and Moss (1999), IPCC AR4 Appendix (2007) and Mastrandrea et al. (2010), respec-
tively.
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Figure 3.1: Millennial Northern Hemisphere (NH) temperature reconstruction
(blue) and instrumental data (red) from AD 1000 to 1999, adapted from Mann et
al. (1999). Smoother version of NH series (black), linear trend from AD 1000
to 1850 (purple-dashed) and two standard error limits (grey shaded) are shown.
©Cambridge University Press, (Folland et al., 2001, p. 134).
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from sub-surface information contained in borehole data confirm the conclusion

that the late 20th century warmth is anomalous in a longterm context (Folland et al.,

2001, p. 133). In its Fourth Assessment Report (AR4), the IPCC states that “[i]t

is very likely that average Northern Hemisphere temperatures during the second

half of the 20th century were higher than for any other 50-year period in the last

500 years” (Jansen et al., 2007, p. 436). Similarly, in its Fifth Assessment Report

(AR5), the IPCC concludes that “[f]or average annual NH temperatures, the pe-

riod 1983–2012 was very likely the warmest 30-year period of the last 800 years”

(Masson-Delmotte et al., 2013, p. 386). Figure 3.2 illustrates a convergence of mul-

tiple evidential pathways supporting the HSH, some of which make use of entirely

different methodologies and proxies discussed below.

Since people only began taking instrumental measurements of climatic vari-

ables in the late seventeenth century (Fleming, 1998; Weart, 2011), scientists in-

vestigating climate conditions before this time rely on proxy climate indicators; i.e.,

preserved physical characteristics of the past that stand in for instrumental measure-

ments. Interpreted according to physical and biophysical principles, proxies serve

as a means of measuring historical and prehistorical phenomena in the absence of

systematic instrumental records (Folland et al., 2001, p. 130).

The strength of the IPCC’s inferences related to HSH is due to a wide range

of available supporting evidence. Scientists infer information about surface tem-

perature change by, for example, measuring the width and density of tree rings

(Jones et al., 1998; Briffa, 2000). Cores extracted from trees provide annually re-

solved time series of wood properties. Since, under certain conditions, temperature

changes influence tree ring growth, trees from particular locations provide a means
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Figure 3.2: Reconstructed (a) Northern Hemisphere and (b) Southern Hemisphere,
and (c) global annual temperatures during the last 2000 years. Individual recon-
structions (see Appendix [IPCC AR5] 5.A.1 for further information about each
one) are shown as indicated in the legends, grouped by colour according to their
spatial representation (red: land-only all latitudes; orange: land-only extratropical
latitudes; light blue: land and sea extra-tropical latitudes; dark blue: land and sea all
latitudes) and instrumental temperatures shown in black (Hadley Centre/ Climatic
Research Unit (CRU) gridded surface temperature-4 data set (HadCRUT4) land and
sea, and CRU Gridded Dataset of Global Historical Near-Surface Air Temperature
Anomalies Over Land version 4 (CRUTEM4) land-only; Morice et al., 2012). All
series represent anomalies (°C) from the 1881–1980 mean (horizontal dashed line)
and have been smoothed with a filter that reduces variations on time scales less than
about 50 years.
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of reconstructing temperature change over time. Also, since earth surface temper-

ature variations diffuse downward with time, scientists can estimate past surface

temperatures by measuring the vertical temperature profile down boreholes drilled

from rock, soil, and ice. Since the TAR, other borehole studies have arrived at

similar conclusions, estimating that the NH average surface temperatures increased

1 K from CE 1500 to 2000 (Pollack and Smerdon, 2004). Furthermore, records

of the lengths of mountain glaciers extending hundreds of years can be incorpo-

rated in models of glacier dynamics, which also draw on records of precipitation

and variables, allowing scientists to relate changes in glacial extent to changes

in local temperatures. Others reconstruct annual average surface temperatures of

the past 400 years on hemispherical and global scales by studying fluctuations in

glacier length over this time, an approach that “confirms the pronounced warming

of the twentieth century, giving a global cumulative warming of 0.94–0.31 K over

the period 1830–2000 and a cumulative warming of 0.84 ± 0.35 K over the pe-

riod 1600–2000” (Leclercq and Oerlemans, 2012). Other studies combine several

types of paleo-climate proxies. The PAGES2k project, for instance, reconstructs

continental-scale temperature variability during the past two millennia using a data

set that includes 511 time series of tree rings, pollen, corals, lake and marine sed-

iments, glacier ice, speleothems and historical documents. This similarly study

concludes that “[r]ecent warming reversed the long-term cooling; during the period

AD 1971–2000, the area-weighted average reconstructed temperature was higher

than any other time in nearly 1,400 years” (Ahmed et al., 2013, p. 339).

In the case of paleoclimate reconstructions, tree-ring, glacier, borehole and

other proxies qualify as relevantly independent sources of evidence because in-
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ferences drawn from one source can be maintained without relying on the same

set of assumptions required to draw an inference from another source. The set of

diverse evidential pathways supporting these inferences results in a consilience of

inductions supporting HSH because it would be unlikely that these different prox-

ies would carry a signal indicating HSH if HSH were incorrect. As the following

section explains, the conducive relationship between consilience and robustness is

exemplified by the epistemic security of HSH in the face of challenges to MBH.

3.3 Robustness

Epistemic security is the idea that the plausibility of H is insensitive to changes

in a particular evidential pathway (Staley, 2004; Parker, 2011). Robustness analy-

sis involves identifying a collection of independent lines of evidence supporting H

such that the plausibility of H is insensitive to vulnerabilities in a subset of the total

available evidence (Wimsatt, 1981).7 If different lines of evidence are sensitively

dependent on a common assumption, such as a method of data calibration or a par-

ticular interpretation of physical principles, and that assumption were discovered

to be fundamentally mistaken, the evidential network previously supporting the H

could collapse. The more diverse a set of evidence is, however, the less likely it

is that some new evidence will undermine the entire set. Furthermore, while a ro-

bust inference is insensitive to errors in a given evidential pathway, the individual

plausibility and relevant independence of each line of evidence are critical for es-

7Brett Calcott (2011) identifies three senses of ‘robustness’ in Wimsatt’s account: “robust the-
orems,” “robust phenomena” and “robust detection.” The latter idea is the one most relevant to
paper.
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tablishing H. In the case of paleoclimate reconstructions, each line of evidence is

limited by several factors. Confidence in earth surface temperature reconstructions,

for example, weakens the further back in time one’s claim extends because weath-

ering destroys proxies (North et al., 2006). Interpreting proxies is also complicated

by other environmental influences. Tree ring growth, for instance, is influenced by

myriad of environmental variables, including local temperatures, precipitation, soil

nutrients, and atmospheric CO2 levels. Accordingly, Briffa (2000) notes that the

“activities of humans may well be impacting on the ‘natural’ growth of trees in dif-

ferent ways, making the task of isolating a clear climate message subtly difficult.”8

For this reason, it is important to test the robustness of each evidential pathway

leading to H and consider as much evidence as possible.

The MBH99 hockey-stick reconstruction became iconic of the IPCC TAR. Its

Working Group 1 highlights the graph several times, featuring it in the summary

for policy makers (TAR-Fig. 1(b), p. 3), Technical Summary (TAR-Fig. 5, p. 29),

Chapter 2: Observations (TAR-Fig. 2.20 p. 134), and in combinations with other

reconstructions (e.g., Fig. 2.21, p. 134). In the midst of the publicity of the IPCC,

several studies challenged the methods, proxies and findings of MBH, some of the

most publicized and controversial of which were authored by Willie Soon and Sal-

lie Baliunas (Soon and Baliunas, 2003; Soon et al., 2003) (SB03), who maintain

that “the 20th century is probably not the warmest nor a uniquely extreme climatic

period of the last millennium” (Soon and Baliunas, 2003, p. 89).9

8This issue has come to be known as the ‘divergence’ between instrumental and certain tree-ring
proxies.

9The significance of SB03 to political debates about climate policy demonstrates the relevance of
epistemology to moral and political decision-making: During a U.S. Senate debate on 28 July 2003,
Senator James M. Inhofe referenced SB03 while opposing the Climate Stewardship Act, which
proposed a policy for CO2 restrictions. “With all of the hysteria,” Inhofe concluded, “all of the
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The political situation surrounding MBH led the U.S. Congress Representative

and chairman of the U.S. House of Representatives Committee on Science Sher-

wood Boehlert to initiate a special committee assembled by the National Research

Council (NRC) to investigate the science of paleoclimate reconstructions and pro-

duce a report on “Surface Temperature Reconstructions for the Past 2,000 Years”

(the North Report). The committee examined the available evidence from instru-

mental and proxy records, including those consisting of data from tree rings, corals,

boreholes, marine sediments, speleothems, ice cores, and climate models. Consid-

ering the wide variety of evidence regarding paleoclimate change, the investigation

found that the basic conclusion of MBH “has subsequently been supported by an

array of evidence that includes both additional large-scale surface temperature re-

constructions and pronounced changes in a variety of local proxy indicators, such

as melting on ice caps and the retreat of glaciers around the world, which in many

cases appear to be unprecedented during at least the last 2,000 years” (North et al.,

2006, p. 3)

Since reconstructions that use tree-ring, glacier, borehole and other proxies

fear, all of the phony science, could it be that man-made global warming is the greatest hoax ever
perpetrated on the American people? It sure sounds like it” (Inhofe, 2003). On another occasion,
Inhofe repeated this claim, stating “the more I checked into it, the things started with the United
Nations, the International Panel on Climate Control [sic.], and they used one scientist. And his
name was Michael Mann, the famous hockey stick—remember that. . . [I]n all of the recent science,
as I’ve mentioned on your radio show, it confirms that I was right on this thing. This thing is a
hoax.” (This video and transcript of Inhofe’s interview with Glenn Beck on CNN Headline News
are available at http://thinkprogress.org/politics/2006/07/21/6435/inhofe-gore/.)
Mann et al. (2003) responds to SB03 with three key points: (1) SB03 fail to assess the sensitivity
of proxy data to past temperature variability, (2) they take regional temperature changes to indicate
hemispheric changes across overly broad intervals of time (800–1300), without indicating whether
warm anomalies in different regions were synchronous and (3) they take as their base period for
comparison the mean temperatures over the whole of the 20th century, and they reconstruct past
temperatures from proxies without resolving the data according to decadal trends. For details about
the political debate about MBH, see Pearce (2010) and Mann (2012)
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serve as independent lines of evidence supporting HSH, even if a reconstruction

that uses one type of proxy is discovered to be fundamentally flawed, other studies

provide independent support for this finding. So, despite a host of criticisms that

have been made against MBH, the report concluded that “[i]t can be said with a

high level of confidence that global mean surface temperature was higher during

the last few decades of the 20th century than during any comparable period during

the preceding four centuries” (North et al., 2006, p. 118).

Similar conclusions have been reached by other studies that investigate the

proxies and methodology of MBH. Stephen McIntyre and Ross McKitrick (2005)

(MM05b) maintain that MBH results for the fifteenth century exhibit a “pivotal de-

pendence” on a relatively small subset of proxy records, particularly those derived

from bristlecone pines, which “are widely doubted to be reliable temperature prox-

ies” (p. 69). They hold that the hockey stick pattern in proxy principal component

summaries for North America is disproportionately carried by the bristlecone pine

proxies. Eugene Wahl and Caspar Ammann (2007) (WA07), however, demonstrate

the robustness of MBH results with respect to the bristlecone proxies by noting

the following two points. (1) They test whether excluding these proxies has a dis-

cernible effect on NH mean surface temperature reconstructions, especially in the

fifteenth century as claimed by MM05b, concluding that, regardless of whether

these records carry meaningful large-scale temperature information, their exclu-

sion has relatively little effect on the magnitude and trajectory of NH temperature

reconstructions over the last 600 years (pp. 43–44). So, whether these data inap-

propriately lead to the hockey-stick result “ceases to be of significant import.” By

verifying the robustness of MBH against several criticisms of their methods and
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proxies, WA07 provide evidence for HSH: “both the 20th century upward trend

and high late-20th century hemispheric surface temperatures are anomalous over

at least the last 600 years” (p. 33–34). (2) In response to MM05b’s suggestion

that these proxies are problematic with respect to identifying local temperatures,

WA07 note that the relationship between bristlecone-pines and NH temperatures

can be interpreted according to more complex and indirect connections among cli-

mate parameters, such as those among tree-ring growth, precipitation, and El Niño

Southern Oscillation (ENSO). “MBH do not claim that all proxies in their recon-

struction are closely related to local-site variations in surface temperature. Rather,

they invoke a less restrictive assumption that “whatever combination of local mete-

orological variables influence the proxy record, they find expression in one or more

of the largest-scale patterns of annual climate variability” [Mann et al. 2000, p. 330]

against which proxy records are calibrated in the reconstruction process” (Wahl and

Ammann, 2007, p. 37).

These examples illustrate two ways of demonstrating the robustness of HSH.

The first defense identifies alternative sources of primary evidence supporting HSH,

which act as backup evidence, indicating that this conclusion is secure even if prob-

lems exist in the approach of MBH. The second defense responds directly to criti-

cisms of MBH, providing evidence of HSH by reinforcing the approach of MBH.

3.4 Conclusion

Consilient reasoning is conducive to robust inferences because, when many lines

of evidence converge to strengthen the plausibility of H, the epistemic security of
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H is enhanced by these alternative evidential pathways. The consilience of HSH

illustrates the connection between consilience and robustness because the converg-

ing lines of evidence that provide HSH with epistemic strength also provide it with

epistemic security against criticisms that have targeted one of the many evidential

pathways leading to this finding.

This epistemology also relates to ethical and political debates about climate

change. Due to the social, political and moral implications of anthropogenic cli-

mate change, the results of paleoclimate studies related to global warming have

become the subject of scientific scrutiny and political controversy. Having been tar-

geted in political debates about climate change, Bradley (2011, p. 4) describes how

the work of MBH was “chosen as a sacrificial lamb” by people and organizations

attempting to discredit the science of global warming. “[A]ntagonists seemed to be-

lieve that if they could refute [MBH], the entire edifice of global warming science

would crumble and fall.” While serial chain reasoning has led to the targeting in-

dividual lines of evidence and individual scientists, an epistemology of consilience

and robustness analysis can provide strength and security to evidence-based ethical

decisions-making.
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Chapter 4

Averaging Estimates: The Wisdom of

Multiple Climate Models

4.1 Introduction

Climate models are approximate representations of the climate system, expressed

as differential equations based on known physical, chemical, and biological princi-

ples, discretized to run on a digital computer. Climate models vary in complexity,

differing in the number of spatial dimensions they contain, and the extent to which

various processes are explicitly represented. At the more comprehensive end of

the spectrum, General Circulation Models (GCMs) are three-dimensional repre-

sentations of interacting components of the climate system. Earth System Models

(ESMs) couple GCMs of the earth’s atmosphere with models of its oceans, the car-

bon cycle, the cryosphere, the biosphere, and other components of the system.

Many current lines of research into the causes, effects and trajectories of climate
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change rely on climate models (McGuffie and Henderson-Sellers, 2014). One way

scientists use these tools is by incorporating simulations into ensembles, compar-

ing and combining results to explore and reduce uncertainties about various com-

ponents of the target system. Forming a key source of information for Intergov-

ernmental Panel on Climate Change (IPCC), the Coupled Model Intercomparison

Project (CMIP) coordinates scientists from around the world to conduct computer

simulation experiments and share their results. Using different models with over-

lapping input variables, CMIP compiles simulation output provided by community

members (Taylor et al., 2012).

An underlying assumption of certain climate ensemble studies is that convergent

results among relevantly independent models can reduce uncertainties regarding

questions about climate change. Some studies also assume that averaging outputs

from multiple simulations is a way of canceling out random errors, thereby detect-

ing signals or producing projections more reliably than any individual simulation.

In light of the extensive human, computational, and financial resources required to

produce ensembles such as those of CMIP, a question to consider is: Would it be

better for researchers to pool their resources in developing a single ‘best model’

rather than a plurality of different models? This chapter argues that incorporating

the results of a plurality of models offers important epistemic advantages over em-

ploying only one model, insofar as ensemble members are weighted to reflect their

skill and independence.

Our procedure is as follows. First, we describe several uses of climate model

ensembles, focusing on cases in which multi-model averages improve the reliabil-

ity of estimated climate change, particularly examples in climate model evaluation,
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detection and attribution (D&A) and projection studies. We then compare climate

ensemble approaches to a simple formulation of combining multiple estimates of

a quantity. This comparison illustrates an important lesson: In forming best esti-

mate averages, the optimal weights to be used are unequal weights if models are of

unequal skill or exhibit correlated model errors.

4.2 Climate Model Ensembles

A climate model ensemble is a set of simulations representing aspects of the cli-

mate, allowing scientists to compare and combine model outputs and providing

potential ways of enhancing modelling capabilities and scientific understanding of

climatic phenomena. Different evolutions of a modelled system result from stochas-

tic processes, variations in initial conditions and alternative model designs, so ex-

amining many different models or many runs of a single model may help to ad-

dress questions about structural errors in a model or set of models and uncertain-

ties associated with the internal variability of the climate. A multi-model ensem-

ble (MME) is a collection of different models of similar structure and complexity

which can be used to sample internal variability and structural uncertainty of the

models comprising the set.1 The IPCC draws on MME studies of CMIP. CMIP co-

1The IPCC distinguishes between MMEs and perturbed physics ensembles (PPEs). A PPE is
a set of multiple simulations, each of which is a run of a single base model containing different
parameter values. Aiming to capture the effects of uncertainties in initial conditions and other de-
tails of climatic processes, the distributed computing project Climateprediction.net exemplifies this
approach, carrying out a large number of model runs on volunteers’ home computers. Instead of
relying on a single supercomputer to carry out all these simulations, volunteers run a version of one
model on their home computers and return the processed data to the project centre, which compiles
these runs, providing a means of investigating features of the climate system such its sensitivity to
increasing atmospheric GHG content (Stainforth et al., 2005). PPEs provide an organized and sys-
tematic way of examining representational uncertainty, that is, how changes to a model-parameter
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ordinates scientists to conduct ‘benchmark experiments’ that compare models with

each other and observed climatic quantities, including recent instrumental measure-

ments from historical records, collected with in situ and remote sensing devices,

and proxy estimates of paleo-climate conditions, reconstructed from environmental

traces of climatic phenomena. These comparisons provide a means of examining a

range of model behaviours under controlled conditions, allowing scientists to iso-

late strengths and weakness of different modelling methodologies. The IPCC draws

on ensemble studies in addressing a range of questions, including whether a set of

models is adequate for the purposes of accounting for observed estimates of cli-

matic phenomena, whether climatic change can be detected and, if so, attributed to

certain causal factors, and how the future climate will evolve, given various forcing

parameters (Parker, 2009, 2011).

4.2.1 Climate model ensemble evaluation

Calibrating and evaluating a climate model by waiting to see if it can accurately

predict future climatic conditions is practically impossible: climate model projec-

tions are on the order of decades, centuries and millennia, so making a compari-

son of model output with states of affairs in the distant future is infeasible. Why,

then, should one think of climate models as reliable representational tools that of-

fer sources of knowledge about the world? The IPCC’s rationale is twofold: (1)

these models incorporate well-known physical principles, such as the conserva-

tion of mass, energy, and momentum, and (2) they demonstrate skill according to

some metric of evaluation. Although scientists use various metrics of model eval-

representing some feature of the climate affect the overall simulation.
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uation, a common approach is to compare model outputs with observed estimates

of the target system, such as changes in global mean surface temperature (GMST),

sea-ice, ocean heat content and precipitation. Scientists evaluate individual models,

model-components and model ensembles by comparing their outputs with observed

estimates of the target system. Satisfying the condition of adequately reproducing

observed quantities alone, however, is insufficient for guaranteeing the reliability

of a model because models can be ‘tuned’ to adhere to observational constraints

by adjusting various combinations of climate model parameters (Flato et al., 2013,

pp. 749–750)

The most common way of evaluating an MME is “to calculate the arithmetic

mean of the individual model results, referred to as an unweighted multi-model

mean” (ibid, p. 755). A result that holds in some studies of various climatic pa-

rameters is that taking the mean value of multiple model outputs often agrees more

favourably with observations than any individual model output (ibid p. 767). Fig-

ure 4.1 illustrates climate model ensemble evaluation of two sets of models, com-

paring observed and simulated time series of anomalies in annual GMST.

An alternative to a ‘one model, one vote’ ensemble approach is to assign un-

equal weights to individual model estimates in order to reflect differences in model

skill, independence and internal variability. We will return to this point after de-

scribing two other applications of averaging results of multiple climate models.

4.2.2 Climate change detection and attribution

Detecting climate change is the process of demonstrating that the target system has

changed in some defined statistical sense. Attributing a change to some causal fac-
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Figure 4.1: Climate model ensemble evaluations: anomalies relative to the 1961–
1990 time-mean of each individual time series (yellow region). Vertical dashed
grey lines mark major volcanic eruptions. Both graphs plot individual simulations
(thin colour lines), multi-model mean (thick red line), and different observations
(thick black lines). While coupled general circulation models (GCMs) from CMIP5
comprise the results in the top graph (a), the bottom graph (b) shows results from
earth-system models of intermediate complexity (EMIC) (Flato et al., 2013, p. 768).
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tors involves identifying the forcing mechanisms that led the system to evolve in a

particular way (Hegerl et al., 2010). Model evaluation relates to D&A research be-

cause confidence in a model’s ability to detect and attribute climate change depends

on its ability to reproduce observed estimates of climatic quantities. Attribution

studies typically involve comparing observed estimates with models that have been

programmed to include or exclude different forcing mechanisms so as to demon-

strate the efficacy of these mechanisms in producing observed changes to the system

(Bindoff et al., 2013).

The IPCC assesses attribution studies that identify and quantify anthropogenic

signals, finding the human ‘fingerprint’ in several climatic variables. Figure 4.2 il-

lustrates the findings of a set of attribution studies indicating anthropogenic forcing

at both regional and global scales, on land surface temperatures, precipitation, ocean

heat content, and sea ice. Comparing observed estimates of changes in the atmo-

sphere, ocean and cryosphere with outputs of model ensembles, these studies iden-

tify differences between models that include representations of natural causes alone

and those that include representations of both natural and anthropogenic causes.

The IPCC concludes that the “coherence of observed changes for the variables

shown in Figure [4.2] with climate model simulations that include anthropogenic

and natural forcing is remarkable. . . Both natural and anthropogenic forcings are

required to understand fully the variability of the Earth system during the past 50

years” (ibid p. 927).

One of the main sources of Figure 4.2 is the publication of Gareth Jones et al.

(2013), whose attribution study investigates the causes of near-surface temperature

changes using observed estimates and CMIP3 and CMIP5 ensembles in an equal
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weighting approach, which they acknowledge “may underestimate the uncertainty

in the model spread” (p. 4003).2 This point relates to the averaging approach in

ensemble evaluation noted above, and one that modellers use to make climate pro-

jections, which we will outline below before addressing the epistemic question of

when such averaging may provide an improved estimate of a given quantity.

4.2.3 Climate change projections

Unlike weather forecasts, which can be compared with observations on a weekly,

daily and hourly bases, longer-term climate change projections aim to provide in-

sights into how, given various contingencies such as the rate of anthropogenic

greenhouse gas (GHG) emissions, climatic conditions will change in the decades

and centuries ahead. The IPCC distinguishes projections from ‘predictions,’ ex-

plaining that the former term suggests a dependency on a range of alternative as-

sumptions about forcing conditions, including the atmospheric concentrations of

GHGs, while the latter term suggests a more definitive expectation about how a

system will in fact evolve. The IPCC draws on CMIP climate projections, simu-

lating a range of possible responses to different forcing scenarios. Representative

Concentration Pathways (RCPs) describe climatic forcing resulting from variations

in the emission rates and concentrations of GHGs and aerosols, and changes to

landscapes (Moss et al., 2008, 2010). Each RCP represents one of many possible

scenarios that could lead to particular radiative forcing characteristics. Figure 4.3

2Since some of the models in these ensembles contribute more than one simulation to the set,
the authors calculate the “weighted” average of the simulations so as “to give equal weight to each
model;” that is, they average the simulations of any model that contributes more than one simulation
before averaging the output of the set of distinct models. So, while they assign unequal weights to
simulations, they assign equal weight to each model in the ensemble.
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Figure 4.2: Climate change D&A studies using multi-model ensembles: For each
graph, black and grey lines indicate observed estimates, light blue lines represent
simulations that only include natural forcing, and pink lines represent simulations
that combined natural and anthropogenic forcings. Dark blue and red lines show
the ensemble means. The horizontal green lines mark the quality of the observed
estimates across time (Bindoff et al., 2013, p. 930).
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Figure 4.3: Time series of GMST anomalies (relative to 1986–2005) from CMIP5
concentration-driven experiments, showing RCP projections for the multi-model
mean (solid lines) and the 5 to 95% range (±1.64 standard deviation) across the
distribution of individual models (shading). Numbers in the figure indicate the
number of models contributing to the different time periods (Collins et al., 2013,
p. 1054).

shows CMIP5 GMST projections for 4 RCPs.

Modellers often take MME projection averages to be the best estimates of future

responses to various forcings. In its fourth assessment report, the IPCC states that,

“[t]o the extent that simulation errors in different [coupled GCMs] are indepen-

dent, the mean of the ensemble can be expected to outperform individual ensemble

members, thus providing an improved best estimate forecast” (Meehl et al., 2007,

p. 805).

The IPCC’s “Good Practice Guidance Paper on Assessing and Combining Multi
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Model Climate Projections” outlines an epistemology of model ensembles, describ-

ing how quantifying uncertainties in model ensembles can assume that each model

member is “sampled from a distribution centered around the truth” (Knutti et al.,

2010a, p. 4).3 On this ‘truth-centered’ interpretation, one considers perfectly inde-

pendent models in an ensemble as random draws from a distribution centered on

reality such that uncertainties in predictions generated by the models tend towards

zero as more samples are taken (Tebaldi and Knutti, 2007; Jun et al., 2008). Accord-

ingly, model errors are equally likely to over estimate and under estimate quantities,

allowing an ensemble mean to cancel errors as more models are included.

4.2.4 Model Independence

Models may be similar to each other because they describe the same features of

system, but other similarities are due to common simplifications, numerical approx-

imations, omissions of processes, parameterizations of processes, and other factors

that may bias results. Discerning whether model agreement is due to their accu-

racy rather than than systematic biases complicates the interpretation of converging

results. If models in an ensemble are in fact structurally independent and sampled

from a truth-centered distribution, then different model errors should on average

have near-zero pairwise correlations.

In practice, however, models share structural features that lead to correlated er-

3The IPCC also notes that one can assume that each member is “exchangeable” with the other
members and the real system. This latter assumption considers observed estimates as “a single
random draw from an imagined distribution of the space of all possible but equally credible climate
models and all possible outcomes of Earth’s chaotic processes.” Under this interpretation, a given
model drawn at random from a distribution of models is statistically indistinguishable from observed
estimates, implying that uncertainties will “converge to a value related to the size of the distribution
of all outcomes.”
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rors (Tebaldi and Knutti, 2007; Jun et al., 2008; Pirtle et al., 2010; Knutti et al.,

2010b; Masson and Knutti, 2011; Knutti et al., 2013). For example, investigating

the extent of independence among 24 models in the CMIP3 ensemble, Christopher

Pennell and Thomas Reichler (2011) apply two methods of quantifying the “ef-

fective” (as opposed to “actual” or stipulated) number of models in an ensemble,

finding that the amount of unique information produced by each model implies that

the effective number of models in the ensemble (7.5–9) is smaller than the number

stipulated (24). “As more models are included in an ensemble,” they conclude, “the

amount of new information diminishes in proportion” (Pennell and Reichler, 2011,

p. 2358). Using an alternative method, Reto Knutti et al. (2013) arrive at a similar

conclusion with respect to CMIP5 models, finding that ensemble members are “nei-

ther independent of each other nor independent of the earlier [CMIP3] generation.”

Figure 4.4 illustrates the clustering of models according to similarities in their out-

put with respect to temperature and precipitation projections. Models appearing in

the same branch of the trees are close to each other according to a distance metric

that considers the spatial field of monthly values in a control simulation without

external forcing (see ibid Supporting Information for details).

Although a consensus on how to proceed has yet to be established, some mod-

ellers propose adapting and correcting ensemble methods to adjust for systematic

biases, determining the effective number of models in ensembles, and weighting

models according to relevant degrees of skill and independence.
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Figure 4.4: (a) The model “family tree” from CMIP3 and CMIP5 (marked with
asterisks) control climate plus observations (ERA40/GPCP and NCEP/CMAP),
shown as a dendrogram (a hierarchical clustering of the pairwise distance matrix
for temperature and precipitation fields, see text). Some of the models with obvious
similarities in code or produced by the same institution are marked with the same
color. Models appearing in the same branch are close, and similarity is larger the
more to the left the braches separate (for a detailed description of the method, see
Masson and Knutti (2011)). (b) Same but based on the predicted change in temper-
ature and precipitation fields for the end of the 21st century in the RCP8.5 scenario
relative to the control (Knutti et al., 2013)©American Geophysical Union 2013
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4.3 Averaging Multiple Estimates

4.3.1 Averaging measurements

The rationale for averaging climate model ensemble output can be clarified by

considering the following simpler, well-understood approach of averaging multi-

ple measurements of a single quantity arrising from different measuring methods.

We begin by denoting that each measurement or source of data Xi = True Value

+ Random Error:

Xi = x∗ + ei. (4.1)

Note that, in general, Xi and X j are not identically distributed because they arise

from different measuring methods.

Then suppose that we take a weighted average of the measurement results:

X̄ =

n∑
i=1

wi Xi, where
n∑

i=i

wi = 1. (4.2)

This gives us an estimator of the quantity being measured. We choose, as a measure

of ‘skill’ of the estimator, the variance:

V(X̄) = 〈(X̄ − x∗)2〉, (4.3)

noting that lower variance ⇔ better estimator.4 We can choose the weights wi

to minimize the variance of our estimator.
4The 〈 and 〉 symbols enclose the expectation value.
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4.3.2 Independent estimates with equal skill

Suppose that the errors associated with distinct sources are probabilistically inde-

pendent. Then the variance of our estimator is given by

V(X̄) =

n∑
i=1

w2
i V(Xi). (4.4)

Now suppose that the variances of each source are the same: V(Xi) = V , for each

i = 1, . . . , n. In this case the optimal weights are equal; and the variance of our

estimator is

V(X̄) = V/n. (4.5)

Note that the variance of our estimator tends to zero as the number n of sources

increases.

4.3.3 Independent estimates with unequal skill

In this case the optimal weights give more weight to sources with smaller variance.

The optimal weights are those that have the weight accorded to a given source be

inversely proportional to the variance of that source. That is,

wi ∝ 1/V(Xi). (4.6)

To see this, first define the quantity κ by

1/κ2 =

n∑
i=1

1/V(Xi). (4.7)
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With some algebraic manipulation, we get

V(X̄) = κ2 +

n∑
i=1

(
wi − κ

2/V(Xi)
)2
. (4.8)

We minimize by taking

wi = κ2/V(Xi). (4.9)

If, for example, we have two measurements of the width of a desk, one with a

ruler, with an precision of ±1 mm, and the other with a tape-measure, with precision

±100 mm, then an unweighted mean of the two measurements could produce a less

accurate measurement than taking a single estimate. One could just use the estimate

from the more precise source, but excluding the other would be to ignore some of

the information at our disposal. Instead of excluding relevant data, we can improve

the performance of our estimate by taking a weighted mean, weighting the better

source of data more strongly.

4.3.4 Estimates with dependencies

Suppose that, rather than being independent, the errors of our sources exhibit corre-

lations between them. One might be tempted to think that the best way to proceed

in such a case would be to pare down the ensemble until we have an independent set

of sources. This approach, however, would be to discard potentially useful informa-

tion; the optimal strategy is to form a weighted mean in which correlated sources

are accorded less weight.
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We define the covariance matrix:

Ci j = 〈(Xi − x∗)(X j − x∗)〉. (4.10)

Assuming this matrix is invertible, and letting C−1 be its inverse, one can show that

optimal weights are given by

wi ∝

n∑
j=1

C−1
i j. (4.11)

The variance of the estimator X̄ that we get,5 using these weights, is

V(X̄) = 1/
n∑

i, j=1

C−1
i j. (4.12)

If we suppose we have a number of sources, with the same variance V , we can

compare (4.5) and (4.12), showing that these are as useful as an effective number

(ne) of independent sources, where

ne =

n∑
i, j=1

C−1
i j/V. (4.13)

Example 1. Suppose that we have three data sources. Two of them, X1 and X2,

have the same variance σ2 and have correlated errors, with correlation coefficient r,

defined by

r = C12/σ
2. (4.14)

The third, X3, has errors independent of the other two, and variance τ2. The covari-

5cf. Dickinson (1973)
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ance matrix is given by

C =


σ2 rσ2 0

rσ2 σ2 0

0 0 τ2

 (4.15)

Its inverse is

C−1 =


1/(1 − r2)σ2 −r/(1 − r2)σ2 0

−r/(1 − r2)σ2 1/(1 − r2)σ2 0

0 0 1/τ2

 (4.16)

This yields optimal weights that satisfy

wopt
1

wopt
3

=
wopt

2

wopt
3

=
1

(1 + r)
τ2

σ2 . (4.17)

That is, for positive r, the correlated estimates are accorded less weight than they

would be if they were independent, and the weight accorded to each by the optimal

weighting decreases as r increases.

If σ2 = τ2, we have

ne =
3 + r
1 + r

. (4.18)

This is, as one would expect, equal to 3 when r = 0, and goes to 2 as r approaches

1; two perfectly correlated sources are no better than one.

Example 2. Suppose that we have n sources of data with the same variance σ2,

and that each pair has the same mutual correlation r, so that

Ci j =


σ2, , i = j,

rσ2, , i , j.
(4.19)
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Since none of the data sources is better than any of the others, the optimal weights

are equal. We find that

V(X̄) = (1 − r)V/n + rV. (4.20)

Though this decreases with increasing n (so that it is always better to have more

sources of data than fewer), if r is nonzero, there is a residual error rV that is not

eliminated by increasing the number of data sources.

The effective number of sources is

ne =
n

1 + (n − 1)r
. (4.21)

Although this increases with increasing n, it does not increase without limit, and is

never greater than 1/r, no matter how large n is.

4.3.5 Comparing the simple case with CMIP ensemble method-

ology

The simple case of combining measurements suggests what is needed for effective

use of multimodel ensembles. In both cases, methods for averaging results aim to

track the truth about some target, and correlations of errors in estimates suggest

methodological interdependencies which can influence the number of effective es-

timates in a set. In the simple case of combining measurements, the goal of the

procedure is to identify sources with small variance. In the case of combining cli-

mate models, the goal is to improve the reliability of methods estimating climate

parameter quantities. While in the simple case, sources of data will differ in vari-

85



ance, in the case of climate model ensembles, model skill varies from one ensemble

member to another, depending on different metrics of evaluation. In the simple

case, combining independent sources of equal variance involves taking an equally

weighted mean of each source, suggesting an assumption similar to that of the one

‘model, one vote’ strategy, which is that an equally weighted mean can provide

the best estimate even though the models in question demonstrate different degrees

of skill and independence. The simple case of combining independent sources of

unequal variance weights estimators with small variance more strongly, suggest-

ing that averaging independent climate models of unequal skill should weight more

skillful models more strongly than models that preform less well. Similarly, the

simple case deals with non-independent sources by using covariance as a measure

of dependence, adjusting weights accordingly, noting that positive correlations indi-

cating the non-independence of sources detracts from the usefulness of combining

measurements. In dealing with climate model ensembles, modellers use statistical

techniques to measure systematic dependencies (Doblas-Reyes et al., 2005; Hage-

dorn et al., 2005). Table 4.3.5 summarizes these points of comparison. An impor-

tant difference between our simple example and climate model ensembles is that

climate models often estimate several different parameters. Some climate models

are more skillful in addressing questions about some variables than others, so mod-

ellers assign different measures of success for different purposes (Flato et al., 2013,

p. 766).

While the success of averaging ensembles is evident in many cases, a caveat

should be noted. The benefit of aggregated performance is more significant when

exploring multiple variables represented by many models. In estimating a single
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Combining Measurements Combining Models

Goal: To infer estimators with small

variance

Goal: to improve reliability of estimates

of quantities in climate studies

Sources of data differ in variance Models may vary in skill

Independent sources, equal variance:

Take unweighted mean

Independent models, equal skill: Take

unweighted mean

Independent sources, unequal variance:

Weight sources with small variance more

strongly

Independent models, unequal skill:

Weight models with more skill more

strongly

Non-independent sources: Use

covariance as measure of dependence,

adjust weights accordingly. Positive

correlation detracts from usefulness of

combining measurements

Non-independent models: Use statistical

method to measure systematic

dependencies and weights accordingly.

Possitive error correlations detract from

usefulness of combining models

Table 4.1: Comparing Cases of Combining Estimates

variable, one model can perform better than the equally-weighted multi-model av-

erage (Hagedorn et al., 2005). However, an unequally weighted average may pro-

vide further improvements. Our comparison with the simple example suggests that

a best estimate from models should assign unequal weights to models in order to

account for differences in their skill and relevant dependencies.

An alternative to assigning ‘one model, one vote’ is to assign model weights

based on skill (e.g., model error in relation to observed estimates), independence
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(error correlation), and internal variability (unpredictable noise), which has im-

proved performance in some cases (Van Den Dool and Rukhovets, 1994; Robertson

et al., 2004; Min and Hense, 2006; Weigel et al., 2008). Andreas Weigel et al.

(2010) weight models according to these three factors, finding that, while on aver-

age equally weighted MME produce more accurate projections than do individual

models, projection errors can be further reduced with optimum weights that are a

function of these factors. However, if model weights inappropriately reflect model

uncertainties, the weighted estimate may be less reliable than the unweighted one.

“In fact, if the noise is of comparable or even larger magnitude than the model

errors, then equal weighting essentially becomes the optimum way to construct a

multimodel, at least if the models to be combined have similar internal variability”

(Weigel et al., 2010, pp. 4189).

4.4 Conclusion

The aggregation of outputs of multiple numerical models has advantages for many

fields of study, including those related to human health (Thomson et al., 2006), agri-

culture (Cantelaube and Terress, 2005), economics (Bauer et al., 2003), sports game

predictions (Servan-Schreiber et al., 2004), and political polling (Silver, 2012). Sci-

entific inquiries into questions about atmospheric phenomena have demonstrated

that, according to various performance metrics, averaged estimates from MMEs

can out-perform estimates from any individual model member—a conclusion ex-

emplified by weather and seasonal forecasts (Krishnamurti et al., 1999), studies

of mean climate (Gleckler et al., 2008; Reichler and Kim, 2008), climate change
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attribution (Zhang et al., 2007), statistics of variability (Pierce et al., 2009), long-

term simulations estimating the present-day climate (Lambert and Boer, 2001), and

predictions of ENSO (Palmer et al., 2005).

This paper discussed cases in which one attains a best estimate of a quan-

tity by averaging multiple estimates of various degrees of independence and skill.

An assumption of the climate MME approaches described above is that individ-

ual model biases will partly cancel when averaged. Applying the ‘one model, one

vote’ approach to ‘ensembles of opportunity’ takes the average estimate from a set

of equally weighted, unequally skillful models with various degrees of systematic

dependence and internal variability. Our comparison between climate modelling

case studies and the simpler case of combining estimates highlights the importance

of assigning unequal weights to ensemble members when estimates of model skill

and independence can be adequately assessed. While correlated model errors can

detract from the accuracy of MME estimates, efforts have been made to reduce the

degree of these correlations. Some degree of model correlation is expected and ac-

ceptable because model weight can be adjusted to reflect model independence. Our

analysis recommends that climate modellers combine outputs of models with differ-

ent assumptions to reduce these correlations. Although improving model skill is an

important part of MME methodology, quantifying degrees of relevant dependencies

is also key for improving estimates of climate system variables.
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Chapter 5

Conclusion

This dissertation addressed a set of related questions regarding the epistemology of

science, including how consilient reasoning and robust evidential support account

for the use of simulations in studies of large and complex target systems, how the

notions of consilience and robustness relate to each other, and what the conditions

are under which taking the mean of a set of multiple estimates provides epistemic

advantages over using a single estimate. While philosophers have engaged with

epistemology of science different contexts, this research provided a systematic ex-

amination of climate science methodology, explaining the distinctions and relations

among different forms of evidence aggregation, and accounting for how scientific

methods help to account for the high levels of confidence scientists have with re-

spect to certain climate change hypotheses. The thesis argued that consilient reason-

ing and robust evidential support account for the strength and security of inferences

that rely on imperfect computer modelling methods, that consilience is conducive

to robustness, and that averaging the outputs of multiple models can provide im-
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proved estimates of a target system when notions of relevant independence, skill

and unequal weights are taken into account.

A salient theme among these chapters is a persistent emphasis on the impor-

tance of aggregating multiple lines of evidence in order to establish the plausibility

of hypotheses. This theme encompassed general philosophical discussions about

consilience, robustness and averaging estimates, and particular scientific cases of

paleoclimate reconstructions, detection and attribution (D&A) studies, and climate

change projections.

The methodology of individual case studies presented throughout the thesis

also overlap in several ways. In order to increase their confidence in the results

of D&A studies, for example, scientists evaluate models by comparing outputs

with observed estimates of climatic phenomena, including patterns determined by

paleoclimate reconstructions. Similarly, climate modelling studies inform certain

paleo-climate reconstructions by calculating the potential amplitude of tempera-

ture changes over past centuries that are consistent with proxy data that serve as

samples of climatic variables. The plausibility of climate model projections also

depends on the skill with which such models can reproduce observed estimates of

past and present climatic conditions. So, in several respects, paleo-climate recon-

structions, climate model evaluations, D&A studies and climate projections draw

on each other as sources of information. This exchange of information among dif-

ferent lines of inquiry expands the evidential resources available to each study, and

demonstrate the complexity of research programs aimed at producing knowledge

of the climate. In focusing on the importance of multiple lines of evidence, each

chapter also highlighted the importance of identifying degrees of methodological
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skill, evidential independence. The point of weighting evidence unequally is also

relevant to each of the case studies, as in the principle component analysis of the

paleo-climate reconstructions, and the model ensembles used in evaluations, D&A

studies, and climate projections. These overlapping themes are depicted in Fig-

ure 5.1 by the dashed red line encompassing the common elements of the different

chapters.

Each chapter exemplified how scientific inferences can be contrasted with ‘se-

rial chain’ reasoning, which is the idea that an inference is only as strong as its

weakest link. In this respect, the epistemology of this thesis provides a defense

against arguments made in political debates about climate change that suggest er-

rors in a given study can debunk a scientific consensus that has emerged from mul-

tiple independent lines of inquiry.

A related area of study for future research which has yet to receive sufficient

attention is the intersection of epistemology and ethics in the context of ethical

decision-making with respect to the science of climate change. Public debates about

the hockey stick hypothesis (HSH) is one of many examples in which clarifying

the epistemology of climate science is important for public policy. Paul Edwards

(2010, p. 415) documents other cases in which problematic assumptions about cli-

mate modelling methodology have lead to “an ill-formed political debate based on

a fundamental misrepresentation of the nature of climate knowledge.” Accordingly,

clarifying the epistemology of climate science is important for understanding how

scientific inferences relate to moral and political decision-making (Tuana, 2013).

The IPCC summarizes several observed effects of climate change, including

changes to natural and human systems on all continents and across the oceans.
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Figure 5.1: Dissertation overview. See text for description.

99



According to its latest assessment, “risks of harmful impacts on ecosystems and

human systems increase with the rates and magnitudes of warming, ocean acidifi-

cation, sea-level rise and other dimensions of climate change” (IPCC, 2014, p. 71).

Further risks are indicated by observing ecosystem shifts and species extinctions,

on land and in the oceans, during the past millions of years, caused by natural

global climate change, including ones that occurred at rates lower than current an-

thropogenic climate change. Reasons for concern arise form projections regarding

unique and threatened systems, including ecosystems and cultures already at risk

from climate change, such as those associated with the Arctic sea and coral reefs.

Additional warming also increases risks of extensive biodiversity loss, and related

threats to ecosystem goods and services upon which people depend. Warming feed-

back can also lead to ‘tipping points’ that exacerbate risks of abrupt and irreversible

changes to physical and ecological systems. Other risks that increase with further

warming pertain to extreme events, such as heat waves, heavy precipitation and

coastal flooding. Since such risks are distributed unevenly among different regions

and people, disadvantaged people are the most vulnerable to the effects of climate

change (IPCC, 2014).

The limitations in climate modelling projection methods make precautionary

climate change mitigation and adaptation measures even more urgent because these

epistemic limits affect our ability to plan for what might be needed to prepare for

future environmental change. Although scientists face challenges in evaluating cli-

mate model reliability and they express high levels of uncertainty in their projec-

tions of regional scale climate change, adaptation and mitigation decisions need to

be made in order to improve the well-being of people and ecosystems in the decades
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ahead. Timely investments in climate change mitigation and adaptation efforts of-

fer the advantage of reducing humanitarian, ecological and economic costs in the

future. Estimating the costs and benefits of such measures is, however, contingent

on the reliability of scientific knowledge. Accordingly, further inquiry drawing on

climate science, epistemology of science, moral and political philosophy and en-

vironmental philosophy may improve our ability to navigate the waters of ethical

decision-making under conditions of scientific uncertainty with respect to climate

change.
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