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c© Yann Benétreau-Dupin 2015



Abstract

Cosmology raises novel philosophical questions regarding the use of probabilities in in-
ference. This work aims at identifying and assessing lines of arguments and problematic
principles in probabilistic reasoning in cosmology.

The first, second, and third papers deal with the intersection of two distinct problems:
accounting for selection effects, and representing ignorance or indifference in probabilistic
inferences. These two problems meet in the cosmology literature when anthropic consid-
erations are used to predict cosmological parameters by conditionalizing the distribution
of, e.g., the cosmological constant on the number of observers it allows for. However, uni-
form probability distributions usually appealed to in such arguments are an inadequate
representation of indifference, and lead to unfounded predictions. It has been argued that
this inability to represent ignorance is a fundamental flaw of any inductive framework
using additive measures. In the first paper, I examine how imprecise probabilities fare
as an inductive framework and avoid such unwarranted inferences. In the second paper,
I detail how this framework allows us to successfully avoid the conclusions of Doomsday
arguments in a way no Bayesian approach that represents credal states by single credence
functions could.

There are in the cosmology literature several kinds of arguments referring to self-
locating uncertainty. In the multiverse framework, different “pocket-universes” may have
different fundamental physical parameters. We don’t know if we are typical observers
and if we can safely assume that the physical laws we draw from our observations hold
elsewhere. The third paper examines the validity of the appeal to the “Sleeping Beauty
problem” and assesses the nature and role of typicality assumptions often endorsed to
handle such questions.

A more general issue for the use of probabilities in cosmology concerns the inadequacy
of Bayesian and statistical model selection criteria in the absence of well-motivated mea-
sures for different cosmological models. The criteria for model selection commonly used
tend to focus on optimizing the number of free parameters, but they can select physi-
cally implausible models. The fourth paper examines the possibility for Bayesian model
selection to circumvent the lack of well-motivated priors.

Keywords: Cosmology, Cosmological Constant Problem, Measure Problem in Cos-
mology, Probability, Bayesian Confirmation Theory, Induction, Imprecise Probablities,
Indifference, Ignorance, Doomsday Argument, Anthropic Reasoning, Self-Locating Be-
liefs, Sleeping Beauty Problem, Copernican Principle, Typicality, Bayesian Model Se-
lection, Bayesian Information Criterion, Akaike Information Criterion, Ockham’s Razor,
Simplicity, Parsimony, Unification
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Chapter 1

Introduction

1.1 Preliminary Remarks

Probabilistic arguments are a crucial but problematic ingredient of contemporary cosmol-

ogy. They have been used, e.g., to make predictions regarding the values of fundamental

constants by the theory of eternal inflation. Cosmology raises novel philosophical ques-

tions regarding, for instance, the status of arguments from fine-tuning, the explanatory

strength of appeal to typicality for a unique system, the role of self-locating uncertainty,

and the probative value of anthropic considerations. These problems are receiving in-

creasing attention among cosmologists, and only recently have philosophers turned to

these topics. All of these problems are connected in the sense that they involve as-

signments of probability, and as a consequence they need to be addressed together as

problems regarding the role and nature of probabilities in cosmology. My research in this

regard aims at identifying and assessing lines of arguments and problematic principles in

probabilistic reasoning in cosmology.

1.1.1 Cosmology as a Science

Speaking of probabilities in cosmology may seem to be problematic in the same way

that cosmology as a science seems problematic: there is only one universe, and as a

consequence one can wonder whether it makes sense to speak of laws of the universe,

1



2 Chapter 1. Introduction

and how to justify probability values when we cannot measure frequencies. The scientific

character of cosmology is not a topic I address in any of the chapters in this work.

However, it bears saying a few preliminary remarks about this issue, so as to explain in

what way I see cosmology as an interesting context for the kind of broader questions I

touch on.

The universe as a whole is a peculiar object, comprising all the physical world, self-

contained, and unique. Skepticism as to the possibility to establish a science of the

universe considered as a whole usually rests on several lines of argument, including:

- the difficulty to define its object; see, e.g., Roberto Torretti’s argument in (Torretti,

2000) that cosmology lacks a satisfying theoretical framework because of the in-

compatibility between general relativity and quantum mechanics (even the account

of the Cosmological Microwave Background radiation requires both theories),

- the difficulty to test our models (particularly because we only have access to a very

small portion of the universe) and the role of fundamental and apparently a priori

assumptions (such as the Copernican principle),

- the legitimacy to extrapolate local laws to the totality of the universe,

- the possibility that there be a physical science—i.e., a science aimed at discovering

physical laws—of a unique object.

All this leads many to question the scientific character of cosmology, or even the mere

possibility that there can be a science of the universe (at least a nomothetic science of

the universe). The following concern, indeed, is almost commonplace:

It is very questionable whether the study of any phenomenon that is not

repeatable can call itself a science at all. It would be sad however to abandon

the whole fascinating area to the priesthood. But if we are going to lend

this unique subject any kind of scientific respectability we have to look at all
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its claims with a great circumspection and listen to its proponents with even

greater scepticism than is usually necessary. (Disney, 2000, 1126)

This criticism echoes claims made by, e.g., Munitz (1952, 1962, 36) or Ellis (2007),

according to which the uniqueness of its object sets cosmology apart from all other

physical disciplines, and prevents it from seeking physical laws. Ellis formulated the

argument behind such a claim as follows:

Thesis 1 The universe itself cannot be subjected to physical experimentation. (. . . )

Thesis 2 The universe cannot be observationally compared with other universes. (. . . )

Thesis 3 (consequence of 1 & 2) The concept of ‘Laws of Physics’ that apply to one

object only is questionable. We cannot scientifically establish ‘laws of the universe’

that might apply to the class of all such objects, for we cannot test any such proposed

law except in terms of being consistent with one object (the observed universe).

(Ellis, 2007, 1216–1217, emphasis mine)

On such an account, if the uniqueness of the universe may preclude the scientific

character of cosmology, it is because our usual distinctions between laws (necessary) and

initial conditions (contingent) don’t apply in cosmology, since the initial conditions of the

universe are unchangeable, given only once and for all. This problem, Ellis acknowledged,

is not specific to cosmology, which he likens to historical or geographical sciences whose

aim is to describe an object and its evolution, rather than to find out its laws.

The issue of the uniqueness of the universe as a primary challenge to the scientific

character of cosmology can illustrate how relevant cosmology can be to philosophy, and

philosophy to cosmology. Indeed, if what is at stake is the possibility of cosmology

as a branch of physics, then addressing this philosophical issue matters to cosmology.

On the other hand, if what is at stake is the nature of a physical law and whether it

presumes a distinction between the contingent and the necessary in the physical facts,

then cosmology will provide us with an ideal case study.
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Yet it has been argued that asking whether the uniqueness of the universe poses a

challenge to the scientific character of cosmology rests on a flawed conception of what

it means to be a physical law. Ellis’s or Munitz’s conception of physical laws usually

implies that laws need to apply to multiple instances of a phenomenon given to us com-

pletely (and not in part) and to a set of objects that have the same underlying behavior.

Cosmological models are usually based on Einstein field equations (EFE), which express,

at the largest scale, a relationship between the universe’s spatial curvature, its density,

and its distribution of matter. EFE are of the following form:

Rµν −
1

2
gµν = −8πG

c4
Tµν + Λgµν

where Rµν and R are, respectively, the Ricci tensor and Ricci scalar, gµν is the metric

tensor, G is Newton’s constant, Tµν is the stress-energy tensor, and Λ is the cosmological

constant. Now, as argued in (Smeenk, 2008, 2013, 626), if EFE are taken to be cosmo-

logical laws, then every sub-region of a solution of an EFE is also a solution to the same

equation. Thus, we could identify a multiplicity of instances to which the global law

applies. Therefore, Munitz’s and Ellis’s claim that cosmology cannot aim at finding laws

of the universe because such laws cannot apply to a multiplicity of instances fails for the

EFE.

Moreover, the requirement of a distinction between law and instance is problematic

insofar as it considers that events or phenomena are instances of a law. However, “[t]he

motion of Mars is not an “instance” of Newton’s laws; rather, the motion of Mars is

well approximated by an equation derived from Newton’s laws along with a number of

other assumptions.” (Smeenk, 2013, 626) The idea that the phenomena can constitute

“instances” of laws rests on the idea that physical laws can completely capture the phe-

nomena, which comes to seeing laws and phenomena as both having the same empirical

content. But physical laws do not completely describe phenomena; rather, when initial
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conditions are given, they enable us to give a description that accurately represents the

phenomena, and allow further refinements.

The uniqueness of the universe does represent an empirical and conceptual challenge

to its scientific study, but not an impossibility in principle. More generally, because of the

nature of its object of study, cosmology exacerbates difficulties that are common to many

physical domains. Likewise, many of the problems and conclusions of the four papers

in this dissertation are not specific to cosmology, but they are particularly relevant to

cosmology.

1.1.2 Probabilistic Arguments in Cosmology

Probabilistic arguments in cosmology are used for confirming cosmological models, for

making predictions about the value of physical parameters, and even for motivating re-

search programs. For instance, three chapters in this dissertation especially deal with

probabilistic arguments that appeal to anthropic considerations in order to solve the cos-

mological constant problem (see below §§ 1.2.1, 2). Likewise, probabilistic arguments are

at the basis—explicitly or not—of fine-tuning claims that motivate theories of the initial

state of the universe. The cosmological standard model, which gives us a description of

global properties of the universe, leads to singularities when extrapolated backward in

time. Moreover, it leads to an extremely fine-tuned “initial state” of the universe. Hot

big bang cosmology in effect requires that the early universe be highly homogeneous in

spite of the fact that separated regions were causally disconnected, and it requires that

the global topology of the early universe be extremely close to flatness. Some see this

fine-tuning as a problem, and refer to these two requirements as the “horizon problem”

and the “flatness problem”, respectively. Alan Guth, most notably, argued that such

fine-tuning cries out for an explanation, and he proposed in (Guth, 1981) that a stage

of exponential expansion in the early universe (right after recombination, around 10−35s

after the initial singularity) could solve both problems.
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Whether or not inflation does solve the problems it claims to solve,1 the view that

there are problems to be solved rests on an argument from fine-tuning, which implies a

probabilistic judgment. In other words, appealing to the initial flatness and homogeneity

of the early universe to motivate inflation rests on a claim—often made very explicitly

in the literature—that such initial conditions are extremely improbable or extremely

unlikely, and therefore implausible and unphysical. One might wonder on what measure

such a state is improbable (see below § 1.1.3), but it is usually understood that however we

choose that measure, the “initial states” selected by compatibility with observations must

be extremely close to the maximally symmetric Friedman-Lemâıtre-Robertson-Walker

(FLRW) models,2 and therefore, presumably, an extremely small subset of the space of

solutions of EFE.

On the other hand, one can wonder why we should expect the initial state not to

be special. Furthermore, as argued in, e.g., (Feynman, 1967; Penrose, 1979), considera-

tions from statistical mechanics would lead us to expect that the initial state should be

extremely improbable. This line of reasoning dates back from the work of Ludwig Boltz-

mann and the search for a justification for time’s arrow. On a Boltzmannian account of

statistical mechanics and the approach to equilibrium, a system’s entropy is as likely to

increase toward the future (and time’s arrow to flow in the right direction) as it is likely

to increase toward the past, unless we can show or posit that it was lower in the past.

According to David Albert, all posits of a “uniform-over-the-present-macrocondition dis-

tribution” used in some Boltzmannian accounts are thus “bound to fail—unless they

concern nothing less than the entirety of the universe at nothing later than its begin-

ning.” (Albert, 2000, 82,85)

Eventually, the status of this account of time’s arrow may decide whether or not

a rationale for inflationary cosmology—but also, eternal inflation and predictions in the

1See (Smeenk, 2014; McCoy, 2015) for discussions.
2Friedman-Lemâıtre-Robertson-Walker models are solutions to EFE that are spatially isotropic and

homogeneous.
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multiverse—based on probabilistic judgments is warranted. But until then, it places such

probabilistic arguments in cosmology at the forefront of both cosmology and debates in

the philosophy of physics.

1.1.3 A Caveat about Cosmological Measures

Fine-tuning arguments in cosmology regarding the initial state of the universe or its global

properties, as well as anthropic predictions, imply an appropriate probability measure

over some parameter of interest. They imply that such a measure can exist, and that

it can be well-defined and well-behaved. In all the papers in this dissertation, I take

for granted that it makes sense to speak of a probability distribution over the space of

solutions to EFE with respect to, e.g., the value of the cosmological constant (especially

when I discuss anthropic arguments in Chapters 2, 3, and 4) or the set of values of

different such parameters in a cosmological model (in paper 5).

There are, however, good reasons to doubt that such an assumption is tenable.

Schiffrin and Wald (2012); Curiel (2015) assessed the technical and conceptual diffi-

culties of defining the kind of measure used in such cosmological arguments. In partic-

ular, the families of spacetimes we work with and with which we carry out probabilistic

reasoning are spaces of Lorentzian metrics on differential manifolds, which tend to be

infinite-dimensional. However, “any translation-invariant measure on any reasonably

well-behaved infinite-dimensional space assigns infinite measure to all open sets, unless

the measure is the trivial measure,” i.e., the one that assigns measure zero to every

measurable set. (Curiel, 2015, § 3)

However, even if we restrict our family of models to finite-dimensional FLRW space-

times with a scalar field, as with, e.g., the Gibbons-Hawking-Stewart measure, µGHS,3

serious difficulties remain as to the physical interpretation of such measures. As Schiffrin

and Wald (2012) recalled, a measure like µGHS is constructed from a Hamiltonian for-

3See (Gibbons et al., 1987; Hawking and Page, 1988).
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mulation of general relativity, which in statistical and Hamiltonian mechanics usually

provides a canonical (Liouville) measure. But the requirements for assigning a Liouville

measure to such a space, Schiffrin and Wald argued, face important difficulties. Even in

this restricted space of solutions to EFE, the total measure of phase space is infinite, be-

cause the phase space of general relativity is noncompact. As a consequence, any proper

subset of phase space is of measure (or probability) zero. One could use “regularization

procedures” that roughly work as follows (see Schiffrin and Wald, 2012, § IV): if we

want to assign a probability p(X) to a property X within the space Γ, and if both X

and Γ \ X are of infinite measure, a regularization procedure approximates p(X) by a

nested sequence of finite-measure subsets {Γn} with ∪nΓn = Γ, and by defining p(X)

as p(X) = lim
n→∞

µGHS(X ∩ Γn)

µGHS(Γn)
. However, the result will depend on what is, arguably, an

arbitrary choice of partition of Γ.4

However, even if there is no ambiguous way to define a probability based on the

GHS measure, the physical significance of that measure is itself problematic. Indeed, as

Schiffrin and Wald argued, arguments for a Liouville measure based on the dynamical

evolution of the system of interest (here, the universe) do not apply when: “the system

is not ergodic, (. . . ) one has not waited a time much greater than the equilibrium time

after the system was prepared,” or when “the system has a time-dependent Hamiltonian

that is varying on a time scale that is small or comparable to the equilibration time.”

(Schiffrin and Wald, 2012, § III) But in cosmology none of these conditions obtains, which

precludes statistical equilibration.

1.1.4 Broader Epistemological Issues

The remarks we just saw in § 1.1.3 constitute a serious challenge to a legitimate and

physically meaningful use of measures in cosmology (at least when those are defined over

4Schiffrin and Wald (2012) give as an example (Gibbons and Turok, 2008) and (Carroll and Tam,
2010), which gave very different results for the probability that the universe would have undergone a
large number of e-foldings of inflation, based on two plausible constructions of {Γn}.
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the space of solutions to EFE). As a consequence, they question the validity of many of

the probabilistic arguments the papers in this dissertation touch on. Nevertheless, the

relevance of this dissertation’s conclusions is rooted in broader discussions. But, like the

issue of the lawlikeness of cosmological laws previously illustrated, cosmology will elicit

concept-clarification more forcefully than many other disciplines. Indeed, in cosmology,

[p]resuppositions (regarding causality or time-order, for example) are made

explicit; implications (such as the rejection of simultaneity at a distance) are

explored. Consistency is tested. Relations between the most general prin-

ciples of the theory and the conceptual framework within which the basic

observations have to be situated, are worked out. (. . . ) [T]his sort of concep-

tual analysis is akin to that which elsewhere defines the work of philosophy.

(McMullin, 1981, 182)

Thus I hope to show in this dissertation that not only can philosophy be relevant to

cosmology, but also cosmology to philosophy. Indeed, all these papers are concerned

with the question of justifying probabilistic arguments based on pre-empirical notions

(such as indifference, typicality, or simplicity), which are of broad philosophical interest

and whose scope goes beyond cosmology.

The first two papers (i.e., Chapters 2 and 3) deal with the question of how to represent

our credences, and, in particular, how to represent ignorance and indifference (see also

below §§ 1.2.1, 1.2.2). A common criticism against a subjective interpretation of prob-

ability (i.e., the view that probabilities should be construed as representing an agent’s

degree of belief) claims that it is psychologically unrealistic to assign to our credence

a precise numerical value (see, e.g., Kyburg, 1978). Moreover, for those who conceive

of probabilities in terms of betting behavior, it would be more realistic to deal with an

interval of betting prices (bounded by a selling price and a buying price), rather than a

unique value (see Smith, 1961).
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A bigger problem with the demand that our credences be represented by a precise

value of a probability distribution is that this artificially precise value will artificially

support unwarranted conclusions. This becomes clear when we want to represent our

complete ignorance or indifference about, e.g., the likely value of some physical parameter.

A common probabilistic interpretation of the principle of indifference recommends that

we assign the same precise probability value to each event about which we are equally

indifferent. In Chapter 3, I will discuss the contentious Doomsday argument, an argument

yielding a prediction about the end date for humanity based only on the knowledge of

how long it has existed and the assumption that we are typical members of this reference

class (see below § 1.2.2). Similar arguments lead to notoriously arbitrary conclusions: if

for instance, I am told that a factory makes dice whose side length is equally likely to be

anywhere between 1cm and 2cm, I would not obtain the same probability distribution

about what this factory produces if I am indifferent about these dice’s side length or

if I am indifferent about these dice’s volume (van Fraassen, 1989). Thus one can see

that it is possible, with this probabilistic interpretation of the principle of indifference,

to obtain, as Fisher (1922, 325) wrote, “a vitally important piece of knowledge (. . . ) out

of complete ignorance” and arbitrary choices. For that reason, some have argued that a

more accurate representation of our credences should be, in fact, less precise:

As sophisticated Bayesians like Isaac Levi (1980), Richard Jeffrey (1983),

Mark Kaplan (1998), have long recognized, the proper response to symmet-

rically ambiguous or incomplete evidence is not to assign probabilities sym-

metrically, but to refrain from assigning precise probabilities at all. (. . . )

Imprecise credences have a clear epistemological motivation: they are the

proper response to unspecific evidence” (Joyce, 2005, 171).5

Objections to imprecise probabilities assert that they contradict general principles of

conditionalization. Indeed, in some circumstances, updating our credence after obtaining

5See also, e.g., (Levi, 1974; Walley, 1991; Joyce, 2010; Augustin et al., 2014).
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new information results, somewhat counter-intuitively, in a less precise posterior credence;

this is known as the “problem of dilation”.6 This issue has occupied a large part of

the discussion about imprecise probabilities, and it led some to wonder, for instance,

whether this reveals a more general problem with Bayesian updating, or if we ought

to restrict the domain of reasonable credal states to those that preclude dilation (see

Bradley, 2015, § 3.1 for a survey). But some contend that dilation is in fact a problem

for conditionalization, or that it is even a bug of imprecise Bayesianism; they simply

argue that “[t]he dilation-vulnerable parts of your prior conditional beliefs simply indicate

cases where there is evidence of unknown value to be learned.”7 (Bradley and Steele,

2014b, 1301–2) Another objection to imprecise probabilities centers around possible,

problematic consequences in decision making with imprecise probabilities. Adam Elga

(2010), for instance, proposed a sequence of bets which, under certain circumstances,

cannot result in the greatest possible gain, and which can even lead to a sure loss, if an

agent’s credences are allowed to be imprecise.8 It is debatable that Elga’s is in fact an

objection strong enough to support the claim that credences should be precise. It has

been argued indeed, e.g., in (Sahlin and Weirich, 2014), that there are decision making

rules for imprecise probabilities that don’t result in a sure loss.9 Moreover, as argued in

(Bradley and Steele, 2014a), even if there weren’t such decision making rules, it would

not be reasonable to reject imprecise probabilities as a whole on the grounds that they

make some bad decisions merely permissible.

6Roger White (2010), for instance, made the claim that dilation violates the reflection principle,
according to which an agent ought to have now a certain credence in a given proposition if she is certain
she will have it at a later time (see van Fraassen, 1984). Jim Joyce, however, argued that this claim
is incorrect: “Reflection does not tell you to have imprecise beliefs now if you know that you will have
imprecise beliefs in the future. Rather, it says that your current credence for [a given hypothesis] should
coincide with your current expectation of your future credence for [that hypothesis].” (Joyce, 2010,
303–304)

7This is arguably a deflationary view of the problem of dilation, but, according to these authors, it
is the consensus view in statistics.

8In other words, he offered a variant of a diachronic “dutch book” argument.
9Namely, maximizing minimum expected utility. I will briefly discuss several possible decision making

rules with imprecise probabilities in Chapters 2 and 3.



12 Chapter 1. Introduction

I will show in Chapter 3, on the other hand, that the conclusion of the Doomsday

argument cannot be avoided by any Bayesian approach that represents credal states by

single credence functions. I will show how imprecise probabilities allows one to avoid

getting, as Fisher wrote, “a vitally important piece of knowledge (. . . ) out of complete

ignorance” (already cited above). Therefore, pace Elga, I will argue that, under certain

circumstances, not only that our credence should be imprecise, but also, more specifically,

that it should be represented by a set of probability distributions.

In addition to addressing the question of how we should represent credences, the

papers in this dissertation raise the issue of whether ignorance or indifference should

drive our inferences and predictions. In the arguments I will discuss, indifference claims

can be made about physical events, but they can also be made about ourselves, viz.,

about our location as observers. Assumptions about the typicality of our location as

observers made in cosmology (see §§ 1.2.3, 4) are sometimes taken as examples to assert

the relevance of self-locating beliefs (see, e.g., Titelbaum, 2013). Such claims are part of

a large literature that centers around the Sleeping Beauty problem (Elga, 2000; Lewis,

2001; Titelbaum, 2008) or other such thought experiments (such as in Elga, 2004), and

which falls within a larger discussion on how to handle indexicals.10 According to Ofra

Magidor, much of the works on this topic share the view—which she calls “the myth

of the de se”—that indexical propositions and, among them, self-locating propositions,

require a special handling in epistemology and in confirmation:

There is a special class of propositional (or “propositional-like”) attitudes.

These are self-locating or de se attitudes, ones that are typically expressed

using indexical expressions such as “I” and “now” (. . . ). Moreover, such

attitudes pose a special challenge for our account of propositional attitudes.

In other words, assume one starts with what might otherwise be considered

an adequate account for standard (non de se) attitudes. Once we take on

10See, e.g., (Lewis, 1979) or more recently (Moss, 2012).
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board de se attitudes, this account ought to be fundamentally amended (. . . ).

(Magidor, 2014, 1)

Such calls to modify our non-indexical propositional attitudes by taking into account

indexical elements were made explicitly in the context of cosmology. Nick Bostrom, most

notably, argued that, because cosmological theories imply that, in a spatially infinite

universe, any possible observation will almost certainly be made, they cannot “have any

observational consequence at all” (Bostrom, 2002b, 608) unless we adopt “a methodology

for evidence with a de se component.” (op. cit., 621). Here is his claim in a nutshell:

we must be careful about how we construe the evidence. We know not only

that such-and-such observations are made (which I shall show is impotent as

a basis for evaluating Big World theories): we also know that such-and-such

observations are made by us. This indexical de se component of our evidence

turns out to be crucial to cosmology, and recognizing this is the first step to

the solution I shall propose.

The second step is to formulate a new methodological principle that describes

the probabilistic evidential bearing of (partly) indexical information on non-

indexical hypotheses. (Bostrom, 2002b, 608–609, original emphasis)

Such claims imply that there are two, presumably distinct kinds of uncertainty: un-

certainty “about what the world is like,” and uncertainty “about one’s own spatial or

temporal location in the world” (Elga, 2000, 143). These two kinds of uncertainty are

about what Magidor called non-indexical and, respectivelly, indexical propositional at-

titudes. Adam Elga (2000) formulated the Sleeping Beauty problem in order to show

why our account of non-indexical propositional attitudes needs to be amended; he then

argued for assumptions and methods specifically adapted to handle with self-locating un-

certainty in order to solve that problem (introduced below in §§ 1.2.3, 4.2.1). If Elga and

Bostrom are right, then solutions to the Sleeping Beauty problem (and, more generally,
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a methodology with a de se component) can help to place a priori constraints on our

credence about the physical world, which could be especially relevant in cosmology.

Relatedly, invoking simplicity in theory choice and model selection aims at providing

us with another a priori guiding principle. As we will see below in §§ 1.2.4, 5, this

epistemological inclination is sometimes justified—at least in the science literature—by

an appeal to Ockham’s razor. Simplicity is usually considered to be “a standard criterion

for evaluating the adequacy of a theory” (Kuhn, 1977, 357) or for model selection, but as

Kuhn argued, theoretical simplicity can take on different meanings: a theory can afford

us more easily computable problem-solving methods, it can constitute a more unifying

explanation to more phenomena, or it can be more ontologically parsimonious. As Kuhn

argued,

[s]implicity, however, favored Copernicus, but only when evaluated in a quite

special way. If, on the one hand, the two systems were compared in terms of

the actual computational labor required to predict the position of a planet

at a particular time, then they proved substantially equivalent. Such com-

putations were what astronomers did, and Copernicus’s system offered them

no labor-saving techniques; in that sense it was not simpler than Ptolemy’s.

If, on the other hand, one asked about the amount of mathematical appara-

tus required to explain, not the detailed quantitative motions of the planets,

but merely their gross qualitative features—limited elongation, retrograde

motion and the like—then, as every schoolchild knows, Copernicus required

only one circle per planet, Ptolemy two. In that sense the Copernican theory

was the simpler, a fact vitally important to the choices made by both Kepler

and Galileo and thus essential to the ultimate triumph of Copernicanism.

But that sense of simplicity was not the only one available, nor even the one

most natural to professional astronomers, men [sic] whose task was the actual

computation of planetary position. (Kuhn, 1977, 358)
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Yet according to the same Kuhn, “Copernicus, too, was forced to use minor epicycles and

eccentrics. His full system was little if any less cumbersome than Ptolemy’s had been.

Both employed over thirty circles; there was little to choose between them in economy.”

(Kuhn, 1959, 169) One can then wonder what sense of simplicity we ought to adopt, and

on what grounds.

In this dissertation, I will give a generally critical assessment on the issue of simplicity

as well as about other pre-empirical notions and their role in inference and confirmation.

I discuss, particularly in Chapter 2 (see also § 1.2.1), claims that are very critical of

probabilistic reasoning in general, in part because, as we saw, the formal requirements

of a probability distribution—such as additivity—place too strong a constraint on the

representation of our credences. One might draw similarly critical conclusions from the

limitations of statistical and Bayesian analysis in model selection which I point out in

Chapter 5 (see also § 1.2.4). However, in these two papers, while I will acknowledge

limitations and inadequacies in the use of probabilities in induction, I will show how this

same inductive framework offers us a way out of these difficulties, and what legitimate

role probabilistic reasoning can play in cosmology.

1.2 Outline of the Thesis

Chapters one, two, and three will deal with the intersection of two distinct problems: the

problem of accounting for selection effects and the problem of representing ignorance or

indifference in probabilistic inferences. These two problems meet in different places in

the cosmology literature. A first case is that of anthropic reasoning used to predict cos-

mological parameters such as the cosmological constant. In the absence of fundamental

theories to explain, e.g., the value of the vacuum energy density ρV , it has been argued

that we should conditionalize the probability of different values of ρV on the number of

observers they allow (Weinberg, 1987). Without a well-motivated measure for the cos-
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mological constant, such arguments appeal to a uniform prior probability distribution in

order to represent our lack of knowledge and in order to obtain a prediction. The predic-

tion thus obtained, however, reflects the inadequacy of uniform probability distributions

as representations of indifference. John Norton (2010) has argued that this inadequate

uniform probability distribution, which turns indifference into improbability, is a funda-

mental flaw of probabilistic inference or in general any inductive framework using additive

measures. Norton’s criticism is a serious challenge to Bayesianism. In chapter one, I will

examine how imprecise probabilities (whereby credences are represented by a family of

probability distributions) fare as an inductive framework and avoids such unwarranted in-

ferences. In particular, I will ask whether they can meet Norton’s criteria for a candidate

for representation of neutral support. In chapter two, I will detail how this framework

allows us to successfully address Doomsday arguments in a way no Bayesian approach

that represents credal states by single credence functions could.

Questions about the role of our place as observers arise in other parts of cosmology.

We may be uncertain about how representative or typical our observations are, depending

on whether we find ourselves in a typical region of our universe. We may also be uncertain

about our location as observers if we know that there may be copies of ourselves, i.e., other

observers having experiences identical to our own. Or we may also have an uncertainty

about our location as observers if in the multiverse different “universes” (or “pocket

universes”) are possible and which would be compatible with the data we have. Such

worries are sometimes discussed as questions about self-locating uncertainty, handled by

endorsing a kind of Copernican Principle, i.e., by simply assuming that we are “typical

observers”. Some arguments used to justify such assumptions closely resemble solutions

to puzzles of self-locating beliefs well known to philosophers, such as the Sleeping Beauty

problem. Chapter three will investigate whether and to what extent such self-locating

uncertainty is distinct from our uncertainty about what the world is like in such a way

that these two kinds of uncertainty require different handling in confirmation theory.
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The problems raised in the first three chapters join more general criticisms about the

role of probabilistic inference in cosmology. A more general issue concerns the inadequacy

of Bayesian model selection criteria in the absence of well-motivated measures for differ-

ent cosmological models. Bayesian model selection extends inferences about parameter

estimation to the space of models (Trotta, 2012). Information criteria commonly used for

model selection (such as the Akaike Information Criterion or the Bayesian Information

Criterion) tend to optimize the number of free parameters. But indiscriminate appli-

cations of what is taken to be Ockham’s razor can select physically implausible models

(Efstathiou, 2008). The last chapter will examine the possibility for Bayesian model

selection to circumvent the lack of well-motivated priors. In particular, I will evaluate

to what extent the virtue of unification as a criterion for model selection—defended by

Myrvold (2003)—overcomes the limitations of usual Bayesian information criteria.

1.2.1 The Bayesian Who Knew Too Much

Ongoing work by cosmologists (see e.g., Carr, 2007) purports to explain an allegedly

surprising coincidence—the fact that physics has produced a universe capable of hosting

life. Indeed, if the value of some physical constants, left indeterminate by our current

theories, were only slightly different, life wouldn’t be possible. These authors claim that

this state of affairs corresponds to a low-probability fine-tuning of cosmic parameters. In

such works, and apparently in accordance with Bayesian analysis, a theory that increases

the odds of what these authors consider to be a surprising cosmic arrangement should be

favored over those which don’t. The initial low probability values that motivate the need

for an explanation, however, is meant to represent our ignorance or indifference about

what value of a parameter we should expect.

Steven Weinberg (1987) resorted to a similar kind of confirmation when he appealed

to anthropic constraints (i.e., constraints related to the possibility for life to exist) in

order to explain the value of the cosmological constant (i.e., the vacuum energy density
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ρV ), left indeterminate by existing theories. Anthropic considerations provide bounds on

ρV , which can be neither too large (because then galaxies couldn’t form) nor too small

(because then observers wouldn’t have time to arise before the universe recollapses).

However, the anthropically-allowed range is quite large, and, in the absence of further

theories, it leaves us with many equipossible values for ρV . Furthermore, by conditionaliz-

ing on the number of observers each value of ρV allows for, the initial uniform distribution

is turned into a prediction. Later observations of the cosmological constant have been

taken to vindicate this reasoning (see, e.g., Weinberg, 2007).

However, it is debatable whether a precise probability distribution over admissible

values of some physical parameters or their ratios can reasonably reflect a reasonable

prior credal state. Moreover, it is questionable that the conditions for life (e.g., the

particular value of certain physical constants) should be assigned a low rather than a

neutral probability value, if these parameters are left indeterminate by our theories.

John Norton has argued that Bayesianism cannot handle ignorance adequately due to

its inability to distinguish between neutral and disconfirming evidence. He argued that,

in anthropic reasoning as in other cases, this inability allows one to draw unwarranted

conclusions from a lack of knowledge. Because it stems from the requirement of additivity,

it is, on Norton’s account, the sign of a fundamental flaw of Bayesian calculus. In several

works, Norton (2007, 2008, 2010) has introduced criteria for a candidate for representation

of neutral evidential support.

Joyce (2010) defended a version of Bayesianism without sharp credences. An im-

precise probability—or a ‘representor’ following (van Fraassen, 1990)—consisting of a

family of credal functions can be thought of as representing the credal state of a single

agent composed of several members who don’t necessarily agree with each other (e.g., a

jury or a committee). Representing a credal state by means of a family of credal func-

tions allows one to give a probabilistic representation of ignorance that 1) distinguishes

stochastic independence from unknown interaction between parameters, and 2) better



1.2. Outline of the Thesis 19

models the non-informativeness of priors corresponding to a credal state of ignorance

or indifference. This analysis allows us to see that, contrary to Norton’s claim, it isn’t

necessarily Bayesian reasoning, but rather an inadequate application of it that may be

at the origin of confusions in such instances of anthropic reasoning.

We can see to what extent imprecise probabilities fulfill Norton’s proposal, and

whether or not the latter should be amended. In particular, we can see that, if adopted,

the imprecise model generally agrees with Norton’s representation of neutral support but

demands that his criterion of self-duality be reformulated. The dual of a measure of be-

lief is a measure of disbelief, and for Norton a representation of indifference or ignorance

must be self-dual. Because of the requirement of additivity, no measure can be self-dual.

Applied to the imprecise model, a credal set C representing ignorance is self-dual if it

contains probability functions ci and their duals c′i such that ∀ci ∈ C, c′i is such that

∀α, ci(α) = c′i(¬α) and ci(¬α) = c′i(α). It is clear that we cannot have such a set since

the dual of a probability function cannot be a probability function. But I will argue that

we need not impose such a strong constraint on credal sets.

Depending on what decision-making criterion with imprecise probabilities one chooses,

it is possible to construct a representation of indifference by means of credal sets that meet

all or almost all of Norton’s criteria, and it can do so without compromising Bayesianism

altogether. It only requires that we demand neither that credences be sharp nor that

a unique representation be applicable to all cases of ignorance or indifference (i.e., that

self-duality be abandoned).

1.2.2 Blurring Out Cosmic Puzzles

The previous section briefly introduced anthropic reasoning as an example of probabilis-

tic reasoning that allows one to draw unwarranted conclusions from a lack of knowledge.

The Doomsday argument is another example of such puzzles of probabilistic confirma-

tion. The Doomsday argument is in fact a family of arguments given to help us determine
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the end date for humanity based only on the knowledge of the time elapsed since human-

ity’s advent. Both puzzles make ‘cosmic’ predictions based on typicality assumptions: by

conditionalizing on the number of observers allowed for by a given value of the cosmolog-

ical constant, anthropic reasoning assumes that we are typical observers; Doomsday-type

arguments assume that our observation time is taken at random among all of human-

ity’s. Thus, the Doomsday argument and anthropic reasoning share a similar structure:

1) a uniform prior probability distribution reflects an initial state of ignorance or indif-

ference, and 2) an appeal to typicality or mediocrity is used to make a prediction. This

is puzzling: these two assumptions of indifference and typicality are meant to express

neutrality, and yet from them alone we seem to be getting a lot of information. But

assuming neutrality alone shouldn’t allow us to learn anything! One way of formulating

both of these arguments (anthropic reasoning and the Doomsday argument) makes them

a straightforward application of Bayesianism, yet the conclusion is so absurd as to cast

doubt on Bayesianism itself.

Much of the philosophical discussion around these arguments has focused on the

validity of the typicality assumption. For instance, Nick Bostrom (2002a) offered a

challenge to what he calls the Self-Sampling Assumption (SSA), according to which “one

should reason as if one were a random sample from the set of all observers in one’s

reference class.” In order to avoid the consequence of the Doomsday argument, Bostrom

suggested to adopt what he calls the Self-Indicating Assumption (SIA): “Given the fact

that you exist, you should (other things equal) favor hypotheses according to which

many observers exist over hypotheses on which few observers exist.” But this arguably

ad hoc solution leads to the unpalatable consequence that a preference for a cosmological

scenario over another can be established entirely a priori. Relatedly, Radford Neal (2006)

argued that conditionalizing on non-indexical information (i.e., all the information at the

disposal of the agent formulating the argument, including all their memories), reproduces

the effects of Bostrom’s SIA without its adhocness.
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However, these solutions to an assumption of typicality cannot satisfactorily avoid the

conclusions of all versions of the Doomsday argument. A version put forth by Richard

Gott (1994) which starts from an assumption about our birth rank (instead of that of

our position as observers) among all of humankind will yield a prediction for humanity’s

end date whatever assumption we make as to our typicality or atypicality.

Imprecise probabilities allow us to better represent our initial state of ignorance or

indifference, with a credal set of functions that disagree with each other. If the only thing

we want our prior credal state to represent is that we know neither whether nor when

humanity will end, then we ought to include in our prior set an infinity of normalizable

credal functions about the possible total number of humans. In order to be normalizable,

all these functions have to tend to zero as the total number of possible humans goes to

infinity. At any confidence level, not all functions in that set will agree on an upper

bound on that total number. This result, however, would be impossible to obtain with a

single prior probability distribution, with which we would have no choice but to predict

an end date for humankind. Relatedly, in a bounded case (e.g., anthropic predictions for

values of the cosmological constant), it is possible to construct an imprecise prior credal

set that results in a very weak—or even no—confirmation of anthropic hypotheses.

I will show that imprecise probabilities can dissolve these puzzles better than precise

probabilities could. Philosophical discussions about the value of the imprecise model

usually center around the difficulty to define updating rules that don’t contradict general

principles of conditionalization. But the expressive richness of this framework and its

ability to solve such puzzles of confirmation and avoid unwarranted conclusions should

be considered as a crucial feature of the imprecise model and count in its favor.
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1.2.3 Lost in the Multiverse: Self-locating uncertainty, typical-

ity, and observation bias

There are in the cosmology literature several kinds of arguments referring to self-locating

uncertainty. In the multiverse, different “universes” are possible: different “pocket-

universes” may have different fundamental physical parameters. We don’t know how

to locate ourselves in this ensemble of possible universes. We don’t know how to locate

ourselves within our own universe either. We don’t know if we are typical observers

and if we can safely assume that the physical laws we draw from our observations hold

elsewhere or if, on the contrary, our view on the world is particularly biased spatially or

temporally.

A kind of self-locating uncertainty that is sometimes invoked in such a discussion

comes from the possible existence of copies of myself. For instance, if the multiverse

theory is true, then there are other pocket universes where reside observers having ex-

periences indistinguishable from my own. As a consequence, we should be uncertain as

to which of these pocket universes we inhabit. If one of these pocket universes is more

favorable to the advent of life than the other (because of a difference in the value of some

physical parameter), then this pocket universe is more likely to host a greater number

of such copies of myself. This adds to the uncertainty about my location: I don’t know

which of these pocket universes I may find myself in, and, within this pocket universe, I

don’t know which of the copies of myself I am.

This kind of uncertainty is used for instance in anthropic reasoning, where predictions

are obtained by conditionalizing a prior probability distribution for a given cosmological

parameter on the number of observers it allows for (see, e.g., Weinberg, 1987; Bousso,

2006). Moreover, according to, e.g., Max Tegmark, there is even a real possibility that,

in a universe that is large enough, “your closest identical copy is 10 to the 1028 meters

away,” (Tegmark, 2003, 48); i.e., within that distance, each of us has a doppelgänger
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with exactly the same experiences and memories.

There are two main issues concerning all the above questions and arguments that

require clarification. One is the status of self-locating beliefs and their role in induction

and confirmation. The first question I will address is how distinct are the following

“two sorts of uncertainty”: one “about what the world is like” and another one “about

one’s own spatial and or temporal location in the world” (Elga, 2000, 143). Should the

realization that I could very possibly be somewhere else affect my beliefs about the world?

That is, does the fact that a physical model is more favorable to the advent of observers

having experiences indistinguishable from my own, or that it generates more observing

standpoints resulting in an experience identical to my own, affect my credence in that

model? And if so, does that mean that my self-locating uncertainty should have a role

in confirmation and induction distinct from other kinds of uncertainty?

A second, related question concerns how to handle self-locating uncertainty. In par-

ticular, I will ask whether and when assumptions of typicality (or a Copernican principle,

or an assumption of mediocrity) are warranted or even required to characterize our self-

locating uncertainty.

I will claim that many of these issues that are often taken to be about “self-locating

uncertainty” are in fact problems about how to handle observation bias or about un-

certainty about what the world is like. Consequently they don’t constitute a new or

distinctive challenge or source of rules for confirmation theory.

These arguments involving our “location” broadly construed are not particularly new,

whether in cosmology or in philosophy.11 But the topic of self-locating beliefs (or, fol-

lowing Lewis (1979), “de se beliefs”) and whether they bear on de re beliefs has recently

generated much discussion in philosophy. Arguments given as solutions to the Sleeping

Beauty problem—a thought experiment introduced as an illustration of the distinctness

of self-locating uncertainty and its bearing on our credence about the world—are still

11For a critique of the anthropic principle, see, e.g., (Earman, 1987), for one of the Copernican
principle, see, e.g., (Beisbart, 2010).
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debated, in philosophy and cosmology alike.

The Sleeping Beauty problem is sometimes explicitly invoked in the cosmology liter-

ature to justify the assumption—made by, e.g., Tegmark (2003); Bousso et al. (2008);

Page (2010); Freivogel (2011)—that we are equally likely in the multiverse to be any-

where consistent with our data. Beauty will be put to sleep for three days on Sunday

night. Right after she falls asleep, a fair coin will be tossed to determine how many times

she will be briefly woken. If the coin toss results in Heads, Beauty will be briefly woken

only once, on Monday. If Tails, she will be woken twice: once on Monday, and once

on Tuesday. But after each waking, Beauty will be put back to sleep with a drug that

makes her completely forget about that waking. Now, right after she has been woken

but without having been told what day it is, what should Beauty’s credence be that the

coin came up Heads? According to Elga (2000), she should have a credence of 1/3 that

the result of the coin toss was Heads. I will show that appeals to this solution in the

cosmology literature as a justification for the claim that all three possible awakenings

are a priori equally likely, rest on confusions about the Sleeping Beauty problem and

about Elga’s argument. I will show how this puzzle clarifies the nature and role of self-

locating beliefs, and in particular how typicality assumptions in cosmology come down to

asserting a “mere personal preference for theories in which we are typical of something.”

Hartle and Srednicki (2007, 1)

In order to assess what role typicality assumptions may play in cosmological model

selection within our “pocket universe,” and when they might be warranted, I will exam-

ine arguments to defend the Copernican principle. Cosmological models as well as the

interpretation of our cosmological data usually rest on the adoption of the Copernican

principle, i.e., on the assumption that the apparent spatial homogeneity and isotropy

doesn’t stem from our having a very special point of view on our cosmic neighborhood.

This has very real implications for our choice of cosmological models. Indeed, if the

Copernican principle holds, then our observations lead to the conclusion that the expan-
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sion of the observable universe is accelerating, and thus they support the existence of

dark energy. However, assuming that we are at the center of a large ‘cosmic bubble’ could

explain the same observations that are taken to support dark energy. The adoption of

the Copernican principle, however, forces us to discard this alternative hypothesis, and

to posit this mysterious dark energy instead. According to arguments about how self-

locating beliefs should bear on our knowledge of what the world is like, the fact that the

number of locations we could find ourselves in is much larger if we adopt the Copernican

principle than in the “cosmic bubble” scenario should favor the former hypothesis over

the latter. I will show that it is neither solutions to the Sleeping Beauty problem nor

in general considerations about self-locating uncertainty, but rather more evidence (see,

e.g., Uzan et al., 2008) that will help us adopt or reject the Copernican principle.

1.2.4 Simplicity and Unification in Cosmological Model Selec-

tion

The use of Bayesian methods in cosmology is a relatively new field of research (see, e.g.,

Trotta, 2008, 2012; Liddle, 2009; Hobson et al., 2010, for recent reviews). In the absence

of well-motivated prior probabilities for cosmological models, Bayesian and statistical

model selection appeals to, e.g., the “Astronomer’s prior,” a uniform distribution over

a given range of models. Because selecting cosmological models based only on how

likely they make our data is almost guaranteed to favor models that overfit the data,

cosmologists rely on a sense of “simplicity” (or “Ockham’s razor”) to weigh a model’s

accuracy against its number of free parameters. For that same reason, they sometimes

use statistical tools—such as the Bayesian Information Criterion (BIC) or the Akaike

Information Criterion (AIC)—as an Ockham’s razor.

However, although these methods purport to minimize our reliance on a choice of

prior, they are not able to isolate physically implausible models. As a result, in cosmology

where well-motivated priors or statistical data are lacking, such model selection criteria
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have been said to be no more than prior selection, casting doubt on the possibility to

have meaningful Bayesian cosmological model selection altogether (see, e.g., Efstathiou,

2008; Linder and Miquel, 2008).

I will first assess the claim that what such Bayesian and statistical methods do is

indeed to seek a balance between a model’s fit-to-data and its complexity (defined in

terms of the number of its free parameters). We will see that the notion of “simplicity” is

ambiguous and, as argued by Norton (2012), a surrogate for background information. In

addition, we will see that, strictly speaking, it is not simplicity that these model selection

criteria are after.

Regardless of the question of simplicity, we will see that statistical and Bayesian

model selection faces serious challenges, especially in cosmology, due to the limited data

sample available to us and the lack of theoretical background. Therefore, I will consider

what other Bayesian model selection method might fare better in cosmology.

In contrast with model selection driven by the search for parsimony in the number

of free parameters, Wayne Myrvold (2003) has given a Bayesian account of a model’s

ability to unify different sorts of phenomena, regardless of the number of parameters. The

measure of information used in this account is between a set of phenomena and another,

otherwise unrelated set of phenomena, given a certain model. This measure gives a formal

character to the idea of consilience of inductions (Whewell, 1847), according to which

“a consilience of inductions would occur when the values of certain parameters can be

determined from two different sorts of phenomena, and the values determined from one

class of phenomena agree with those determined from another.” (Myrvold, 2003, 418)

Parameter estimation plays a role in assessing the unifying power of a model, but on

this account it is the improved relationship between parameters of different kinds that

will provide support to a choice of model. I wish to explore if this Bayesian criterion of

unification can be better suited to some probabilistic inferences in cosmology.
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Chapter 2

The Bayesian Who Knew Too Much1

2.1 Introduction: Bayesian Reasoning and Ignorance

If you ask me what the probability is of rolling a 2 with a throw of a fair, cubic die, I

will answer, “1
6
.” Now imagine that we are having a conversation about Shakespeare’s

play The Tempest and you ask me to assign a probability to the claim that the play has

16,633 words. My response would be that I simply do not have a clue. My knowledge

of Elizabethan drama would allow me to say that the value falls within some interval,

in which all values seem equally plausible. However, I would not be able to assign

a probability to the claim that the play has exactly 16,633 words. If you insist on a

probability, I would respond—echoing David Albert—by asking, “What part of ‘I don’t

have a clue’ do you not understand?”

The simplest version of Bayesianism is ill-equipped to handle such a case. Reasoning

with the principle of indifference, as in the case of the die, motivates a uniform probability

distribution over some interval of values; if there are 20,000 equiprobable numbers in

the plausible range of number of words for that play, each number will be assigned a

probability of 1
20,000

. Thus according to usual Bayesian confirmation theory, learning

the exact length of The Tempest is equivalent to confirming a claim with a very low

probability. In contrast, suppose that we are discussing whether or not the 1956 movie

1This chapter was published in May 2015 in Synthese 192 (5): 1527–1542. Section 2.4 below is an
excerpt of § 3.3.
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Forbidden Planet is a good adaptation of The Tempest, and you ask me to assign a

probability to the claim that Shakespeare himself authored that movie’s screenplay. I

would not be indifferent about that claim; I would assign to it a very low probability,

and I would be very surprised if it were confirmed. Yet orthodox Bayesianism does not

allow one to distinguish these two confirmations: it sees them both as the confirmation

of a low-probability claim, thereby justifying in both cases a same sense of surprise. One

may legitimately be surprised by the confirmation of a low-probability proposition, but

not by the confirmation of something about which we are entirely indifferent. In the

absence of a representation of neutral degree of belief, we have no choice but to treat

large numbers of alternatives about which we are equally indifferent as if they all were

improbable propositions. Consequently, any hypothesis—however unlikely—that lends

more support to the observed value than was initially given by the constant probability

distribution will be seen as significantly confirmed.

Steven Weinberg (1987) resorted to a similar kind of confirmation when he appealed

to anthropic constraints (i.e., constraints related to the possibility for life to exist) in

order to explain the value of the cosmological constant (i.e., the vacuum energy density

ρV ), left indeterminate by existing theories. Anthropic considerations provide bounds on

ρV , which can be neither too large (because then galaxies could not form) nor too small

(because then observers would not have time to arise before the universe recollapses).

However, the anthropically allowed range is quite large, and, in the absence of further

theories, it leaves us with many equipossible values for ρV . Weinberg further argued that

anthropic considerations may have a stronger, predictive role. The idea is that we should

conditionalize the probability of different values of ρV on the number of observers they

allow: the most likely value of ρV is the one that allows for the largest number of galaxies

(taken as a proxy for the number of observers).2 The probability measure for ρV is then

2This assumption is contentious (see, e.g., (Aguirre, 2001) for an alternative proposal).
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as follows:

dp(ρV ) = ν(ρV ) · p?(ρV ) dρV ,

where p?(ρ) dρV is the prior probability distribution, and ν(ρV ) the average number

of galaxies which form for ρV . By assuming that there is no known reason why the

likelihood of ρV should be special at the observed value, and because the allowed range

of ρV is very far from what we would expect from available theories, Weinberg argued

that it is reasonable to assume that the prior probability distribution is constant within

the anthropically allowed range, so that dp(ρV ) can be calculated as proportional to

ν(ρV ) dρV (Weinberg, 2000). Moreover, by assuming that we are typical observers (and

thereby adopting what Alexander Vilenkin (1995) called a ‘principle of mediocrity’),

Weinberg predicted that the observed value of this parameter should be close to the

mean of the anthropically allowed values. The initial uniform distribution is turned into

a prediction, a sharply peaked distribution around a preferred value. Later observations of

the cosmological constant have been taken to vindicate this reasoning (see, e.g., Weinberg,

2007).3

John Norton (2010) criticized the probabilistic representation of ignorance on which

such arguments rest. He objects to the claims that 1) there can be a probability dis-

tribution over admissible values of some physical parameters when in fact those are left

indeterminate by existing theories, and more strenuously that 2) the observed value has

low probability instead of a neutral probability. Norton has suggested that the inability

to distinguish between neutral and disconfirming evidence is the sign a fundamental flaw

of Bayesianism, originating from the requirement of additivity. Therefore, for him, only

a radically different inductive logic can adequately represent ignorance.

Norton’s challenge is valid against the Bayesian who knows too much (i.e., who repre-

sents ignorance or indifference with a single uniform probability distribution). But there

3The median value of the distribution obtained by such anthropic prediction is about 20 times the
observed value ρobs

V , whereas predictions based on existing theories are 120 orders of magnitude higher
than the observed value (Pogosian et al., 2004).
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are other Bayesians.

2.2 A Bayesian Failure?

2.2.1 Neutral vs. Disconfirming

Before I discuss in more detail what a representation of neutral degree of belief—i.e., a

representation of indifference or ignorance—could look like, let me rephrase the problem

under consideration in Bayesian terms.

The Bayesian approach to epistemology can be characterized as follows (see, e.g.,

Joyce, 2010, 281-282):

- Belief is not all or nothing. One can assign degrees of belief to propositions.

- These degrees obey the laws of probabilities.4

- Learning implies updating an initial degree of belief (called prior) to obtain a pos-

terior. Updating a prior for hypothesis H after acquiring evidence E will involve

taking conditional probabilities and applying Bayes’s theorem:

p(H|E) =
p(H) · p(E|H)

p(E)
,

where p(E|H) denotes the probability of E conditional on H (i.e., the probability

of E given H).

- Rational agents use their graded beliefs to choose actions with higher expected

value.

A further principle that is sometimes invoked as a constraint on probability assign-

ments, the principle of indifference claims that one must assign the same probability value

4(1) For a probability function p, ∀α, p(α) ≥ 0; (2) if α is logically true, then p(α) = 1; (3) additivity:
if α, β are incompatible (p(α&β) = 0), then p(α ∨ β) = p(α) + p(β). It follows from these laws that
∀α, p(α) + p(¬α) = 1.
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to equipossible events, or events about which we are equally ignorant or indifferent. If

there are many such events, additivity dictates that each of them be assigned a uniform,

low probability value, which is equivalent to saying that each event is improbable (or,

equivalently, that their negation is probable).

We can now see how to rephrase the problematic arguments considered in § 2.1:

1. The value of a parameter k is left indeterminate by our background knowledge.

According to the principle of indifference, that indeterminateness is represented by

a constant probability distribution widely spread over the admissible values of k,

each of which having low probability p(k|B).

2. A theory T makes the observed value kobs much more probable:

p(kobs|T&B) >> p(kobs|B).

3. According to Bayes’s theorem, we then have

p(T |kobs&B)

p(T |B)
=
p(kobs|T&B)

p(kobs|B)
>> 1.

In other words, observing kobs lends strong support to T .

For Norton, this confirmation is unwarranted. It is based on a flaw of Bayesianism

itself—namely, it has no ability to represent neutrality due to additivity (Norton, 2010,

501-502). Assigning a definite low probability value to a proposition about which we are

ignorant is then turning ignorance into improbability. It comes down to conflating discon-

firming evidence (p(H|E) << 1) with neutral evidential support (p(H|E) = p(¬H|E)).

2.2.2 A Non-Bayesian Notion of Neutral Support?

Norton (2007a, 2008, 2010) introduced the following criteria for a candidate for repre-

sentation of neutral evidential support (or indifference, or ignorance):
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- it cannot be additive (and therefore does not obey the laws of probability),

- it cannot be represented by the degrees of a one-dimensional continuum, such as

the reals in [0, 1],

- it must be invariant under redescription,5

- it must be invariant under negation: if we are ignorant or indifferent as to whether

or not α, we must be equally ignorant as to whether or not ¬α.

It is clear that usual Bayesianism cannot meet all these criteria. We should then look

for another framework for an inductive logic that would allow one not only to express ig-

norance and indifference, but also to compare credences and carry out inferences and con-

firmation. Norton confesses that he “know[s] of no adequate theoretical representation”

of such a framework (Norton, 2010, 504). He then simply refers to this representation

of neutral support as ‘I’, for ‘indifference’ or ‘ignorance’, with the following properties

expressed in terms of a (non-probabilistic) credal function p:

- ∀α, p(α) = I → p(¬α) = I (invariance under negation),

- ∀α1, α2 mutually exclusive (but α1 ∨ α2 6≡ >), p(α1) = p(α2) = I → p(α1∨α2) = I

(non-additivity).6

This framework must also preserve the values p(>) = 1 = 1− p(⊥).7

This set of criteria for a representation of neutral evidential support is compelling.

Because of this conflict with additivity, representing neutrality is a serious challenge for

5The invariance under redescription only requires that the probability value that corresponds to
neutral support for a same event must not depend on how this event is described. For instance, in
the example given above in § 2.1, book length was given in terms of number of words and could be
redescribed in terms of number of pages or lines.

6Strictly speaking, it is not entirely appropriate to define this condition in terms of additivity. For
a representation of credence to be ‘non-additive’ in the sense of interest to Norton here, it has to fulfill
the following condition: ∀α, β incompatible propositions about which we are completely indifferent or
ignorant, we can have neither p(α ∨ β) > p(α) nor p(α ∨ β) > p(β).

7> is an unconditionally true statement, and ⊥ an unconditionally false one.
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Bayesianism. But I will show that we need not abandon Bayesianism altogether, and

that enriched versions of it already in use can satisfy these criteria to a certain extent.

2.3 A Bayesian Notion of Neutral Support

2.3.1 Bayesian Credences Need Not Have Sharp Values

It has been argued (see, e.g., Levi, 1974; Walley, 1991; Joyce, 2010) that Bayesian cre-

dences need not have sharp values, and that there can be imprecise probabilities.8 The

difficulty to assign sharp values to credences was already raised by Kyburg (1978), who

saw this as psychologically unrealistic. An imprecise probabilities model recognizes “that

our beliefs should not be any more definitive or unambiguous than the evidence we have

for them.” (Joyce, 2010, 320)

It is possible to reject a precise Bayesian model in favor of a less exact one, in which

credences are not well-defined but allow for imprecise values. Joyce defended an imprecise

model in which credences are not represented merely by a range of values, but rather by

a family of (probabilistic) credence functions. In this imprecise probability model,

1. a believer’s overall credal state can be represented by a family C of cre-

dence functions [ci] (. . . ). Facts about the person’s opinions correspond

to properties common to all the credence functions in her credal state.

2. If the believer is rational, then every credence function in C is a proba-

bility.

3. If a person in credal state C learns that some event D obtains (. . . ), then

her post-learning state will be CD =

{
c(X|D) = c(X)

c(D|X)

c(D)
: c ∈ C

}
.

8‘Imprecise credence’ is more appropriate than ‘imprecise probability’ since it does not necessarily
obey the laws of probability. Here I nevertheless use both expressions interchangeably, as is done in the
literature.
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4. A rational decision-maker with credal state C is obliged to prefer one

action α to another α∗ when α’s expected utility exceeds that of α∗

relative to every credence function in C. (Joyce, 2010, 288)

In other words, in this imprecise probability model, a credal state can be represented

by a family of functions that behave as usual Bayesian, probabilistic credence functions.

Joyce also offers an analogy that illustrate this model: the overall credal state C acts as a

committee whose members (each being analogous to a credence function ci) are rational

agents who do not all agree with each other and who all update their credence in the

same way, by conditionalizing on evidence they all agree upon. With this analogy, the

properties of the overall credal state C correspond to those common to all the committee

members.

In order to make comparative confidence claims, different criteria can be adopted

(corresponding to different decision-making rules). Depending on the criterion chosen,

one will be more confident in an event than in another event if

- it has maximum lower expected value (Γ−minimax criterion),

- it has maximum higher expected value (Γ−maximax),

- it has maximum expected value for all distributions in the credal set (maximality),

- it has a higher expected value for at least one distribution in the credal set (E−admissibility),

or

- its lower expected value on all distributions in the credal set is greater than the

other event’s highest expected value on all distributions (interval dominance).9

This model allows one to simultaneously represent sharp and imprecise credences,

but also comparative probabilities. It can accommodate sharp credences, for which the

9This list is not exhaustive. It is beyond the scope of this paper to compare and assess these criteria.
See (Troffaes, 2007; Huntley et al., 2014) for reviews.
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usual condition of additivity holds. But it can also accommodate less sharply defined

relationships when credences are ambiguous. It does so by means of a family of credence

functions, each of which is a Bayesian function that obeys the laws of probability.

2.3.2 Neutral Support with Imprecise Credences

This imprecise model allows one to distinguish two notions of neutral support: distin-

guish stochastic independence (true independence of evidence for a given hypothesis) and

unknown interaction (unknown dependence).

With a single (precise) probability distribution, two variables αm and αn in appro-

priate algebras are stochastically independent if p(αm|αn) = p(αm) whenever p(αn) > 0.

Different concepts have been suggested to extend the notion of stochastic independence

of two variables αm and αn to the imprecise model (see Cozman, 2012), among which:

- complete independence, if stochastic independence of αm and αn obtains for each

distribution ci ∈ C,10

- confirmational irrelevance, if C(αm|αn) = C(αm),

- epistemic irrelevance, if stochastic independence obtains for the lowest expecta-

tion among all functions ci ∈ C, or the related, symmetric concept of epistemic

independence (if αm is epistemically irrelevant to αn and αn to αm).

In contrast, unknown interaction between two variables αm and αn can be represented

by a credal set that contains credence functions that differ on the correlation between

αm and αn. Such a credal set would include credence functions ci that are such that

ci(αm&αn) ≤ ci(αm) · ci(αn) and others functions cj such that cj(αm&αn) > cj(αm) ·

cj(αn). Following the committee analogy once again, in a state of unknown interaction

between αm and αn, jury members disagree with each other about that interaction. The

10As discussed in (Cozman, 2012), this definition violates convexity.
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overall credal state of the committee neither favors nor dismisses any of the opinions of

its jury members; it can only express a lack of agreement.

The case of complete ignorance or indifference is of particular interest for the anthropic

argument presented in § 2.1: we want to represent complete ignorance or indifference

as to what value a certain physical parameter should have. With the imprecise model,

recalling the committee analogy, complete ignorance as to whether or not α (i.e., complete

indifference between which of α or ¬α is more likely) can be represented by a committee

in which there is no agreement among its members about whether or not α is more or

less probable than ¬α. This notion of neutral support is analog to Norton’s requirement

that, in order to express neutral support for an event α, a measure of belief about α be

equal to a corresponding measure of disbelief about α (Norton, 2007a). In the context

of credal sets, this requirement is fulfilled, for example, by a committee composed as

follows:

for every jury member and for every contingent event α, there exists a jury

member who has as much disbelief in α as another has belief in it.

Or, to put it in terms of credence functions,

if C is a credal state representing a family of credence functions c about

contingent events α, if ∀c, α, ∃ c′ ∈ C such that c′(α) = 1 − c(α), then C

corresponds to a state of ignorance or indifference.11

If all the jury members are rational (i.e., if all the credence functions are probability

functions), we must have, by definition, C(>) = 1 = 1− C(⊥).12

Such a credal state about a given event α can then be updated by conditionalizing

upon new evidence, taken as such by all the jury members (i.e., all the credence functions

11This requirement corresponds in fact more to a state of indifference than to one of ignorance.
Indeed, one may argue that a credal set that gives the set of values {0.1, 0.8} is a better representation
of ignorance—but not one of indifference—than one that gives the set of values {0.49, 0.51}. I am here
overlooking distinctions between these two notions.

12i.e., ∀c ∈ C, c(>) = 1 = 1− c(⊥).



2.3. A Bayesian Notion of Neutral Support 41

c ∈ C). Thereby, after new evidence E is gathered, the range of values taken by all the

credence functions of C, c(α|E), is susceptible to change, and so is the overall credal

state regarding α.

A trivial but extreme example of representation of complete ignorance by means of

a set of credal functions is the set I of all possible probability distributions. For any

proposition α about which we are completely ignorant, that representation of ignorance

would give us C(α) = [0, 1]. In case of complete ignorance, excluding possible proba-

bility distributions compatible with our evidence is “pretending to have information [we

do] not possess.” (Joyce, 2005, 170) This proposal meets all of Norton’s criteria for a

representation of ignorance (see above § 2.2.2).

There is however a good reason not to be content with such an extreme representa-

tion of ignorance. Indeed, in that set I of all possible probability distributions will be

extremely sharp probability distributions that require an unreasonably large—or even

infinite—number of updatings before they can yield posteriors distributions that are sig-

nificantly different (see, e.g., Rinard, 2013, for a recent discussion). Such distributions

in I are said to be dogmatic, and consequently the whole set I is dogmatic. A repre-

sentation of complete ignorance I, and generally any vacuous prior, entails a vacuous

posterior. This should prevent such a set from being used in an inferential process in

which we may hope to move away from a state of ignorance after a certain number of

iterations of Bayesian updating. This representation of ignorance by means of a family of

credal functions, although it satisfies Norton’s criteria for ignorance, is incompatible with

learning. That is why imprecise statisticians, who are interested in inferential processes,

prefer to deal with ‘near-ignorance’ (i.e., broad credal intervals smaller than [0,1]) rather

than complete ignorance, thereby ruling out dogmatic priors (see Moral, 2012; Augustin

et al., 2014; Walley, 1991, §7.3.7).

By way of example, let us represent our near-ignorance about three mutually exclusive

propositions α1, α2, α3 with a credal set C = {ci} consisting of probability functions
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defined as follows:

α1 α2 α3

c1(αi) 0.9 0.05 0.05

c2(αi) 0.05 0.9 0.05

c3(αi) 0.05 0.05 0.9

and for all i, j ∈ {1, 2, 3}, for all x 6= αi or their disjunctions, cj(x) = 0.

With this credal set, we cannot be more confident in any value of αm than in any other;

and for all αm, αn, m 6= n, C(αm) = C(αn). A constant, unique probability distribution

could express this as well. But this credal set tells us more than that, namely that, for

all m, we cannot be more confident in any αm than in its negation.

This example does not satisfy the characterization of ignorance proposed earlier. How-

ever, we can see that, with a few amendments, this set suffices to represent indifference

about any of these propositions αi, and can meet the requirements for a representation

of neutral support (see above §2.2.2):

- it is not a sharp value in [0, 1],

- it can be defined so as to be invariant under redescription: ∀α, a (a, redescription

of α), if C(α) represents a state of ignorance, so will C(a),13

- it is invariant under negation (we do not have more confidence in α than in its

negation).

- we do have C(α1 ∨ α2 ∨ α3) = C(>) = 1 = 1− C(⊥).

The criterion of non-additivity (see above note 6) cannot be satisfied in a trivial manner.

In the example above, we have ∀i,m, n ∈ {1, 2, 3},m 6= n, ci(αm ∨ αn) > ci(αm). That is

also true of the bounds of the credal intervals (they will not be non-additive). But we

13If the functions in this set are described as Dirichlet distributions, then this criterion will be satisfied
(see, e.g., de Cooman et al., 2009).
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can prevent that by adding to our set credal functions ck such that ck(α1 ∨ α2) = ck(α1)

and so on. That is, we can add to our initial set three other functions c4, c5, and c6 so as

to have ∀i ∈ {1, 2, 3},∃ cj ∈ C, j ∈ {4, 5, 6} such that cj(αi) = 0. But the newly added

functions are not reasonable, since if we agreed that the propositions αi are contingent,

then no function ruling them out completely should be accepted in our credal set.

However, adopting certain conventions can mitigate the effects of additivity. If among

the criteria for comparative confidence claims with credal sets introduced earlier in § 2.3.1

we choose that of interval dominance, then our representation of credence is non-additive

in this example (i.e., for all m,n ∈ {1, 2, 3}, we are not more confident in αm ∨ αn than

in αm). However, one might argue that interval dominance is often not a desirable cri-

terion. It is a demanding criterion that allows one to express a difference in confidence

between two propositions only if one is unambiguously more certain than the other. This

criterion is arguably not fined-grained enough to help us for most of the inferences we

are likely to encounter. Other, often more desirable comparison criteria, however, will

result in additive imprecise credences. With other comparison rules, we could under

circumstances circumvent additivity by adopting threshold values, beyond (respectively

below) which all values are considered to be equally confirmatory (respectively disconfir-

matory). For instance, in the set given above, if we consider that any value below 0.1 is

equally disconfirmatory and any value beyond 0.9 is equally confirmatory, then we lose

all additivity.

We could also adopt a different strategy that does not involve such conventions.

For any proposition α about which we are ignorant (whether the αi or their Boolean

combinations), we can define a credal set C such that C(α) = C(¬α). The imprecise

model allows us to treat equipossible propositions in the same way, which does not mean

that they must receive a same probability value or be represented by the same credal

set. By ‘sameness of treatment’ of contingent, equipossible events about which we are

ignorant or indifferent, I mean that our credal state of ignorance about them would be
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modeled in the same manner, by a credal set having the same desired properties. We

will come back to this in the next section.

With the imprecise model, not one single set of functions or one set of rules to define

it will be suited to truly represent ignorance in all situations, unless we are ready to

represent a state of complete ignorance by the undesirable and unreasonable set I of all

possible credal functions. But this model allows one to define sets that do not favor any of

the propositions about which we are ignorant and that is suited to a particular ensemble

of propositions under consideration. It does so by means of Bayesian credence functions,

which allows for our credal state to be updated and evolve. All that this requires is that

we do not demand that agent’s credences have sharp values.

2.3.3 Norton’s Objections

Interpretative objections

Norton (2007a,b, 2008) has formulated several objections to the imprecise model. He

has expressed a general discomfort with what he considers to be an inadequate approach,

“an attempt to simulate an inherently nonadditive logic with an additive measure, rather

than to seek the logic directly.” (Norton, 2010, 504, note 4). But as indirect or contrived

as this method might seem, it is successfully applied in statistical analysis (see, e.g.,

Walley, 1991; Augustin et al., 2014). Yet Norton has raised more pointed criticisms of

the imprecise model about the very question of representing ignorance:

the representation [of ignorance by sets of probability functions] is not literally

correct. That is, ignorance is not the maintaining of all possible beliefs at

once; it is the maintaining of none of them. So we should regard the device of

convex sets as a way of simulating ignorance through a convenient fiction.14

(Norton, 2007b, § 4.2)

14This remark also applies to non-convex sets.
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Or elsewhere:

The sort of ignorance I seek to characterize is first order ignorance; it is just

not knowing which is the true outcome; not a second order uncertainty about

an uncertainty. (Norton, 2007a, § 6.2)

Such criticism is in fact not specific to the question of representing ignorance. It is

aimed more generally at the use of several credal functions in order to represent a unique

credal state.15 But it does not apply to the imprecise model we have considered here,

and, in general, proponents of imprecise probabilities need not endorse this view. Indeed,

this model does not allow “the maintaining of all possible beliefs at once.” Even though a

credal set may be comprised of several credal functions, the agent’s credence it represents

is unique; its properties are those that are common to all the credal functions in that

set. If all possible beliefs could be held at once—or rather, if no particular belief can be

more certain than any other—an agent’s credence would not be multiple, it would just

not be any of these particular beliefs.

Indifference and self-duality

Another criticism more specifically aimed at the issue of representing ignorance or

indifference deserves a closer examination. Norton (2007a) argues that a representation

of ignorance should satisfy what he calls a condition of self-duality. The dual of a measure

of belief is a measure of disbelief. If we are ignorant about a proposition α, our degree

of belief that α should not be different from our degree of disbelief that α:

An epistemic state of complete ignorance is invariant in its contingent propo-

sitions (. . . ); that is, the state is self-dual in its contingent propositions, so

15The following passage makes it clear that Norton thinks of the use of a set of probability functions
as allowing the simultaneous representation of several states of belief: “the use of sets renders ignorance
as a second order sort of belief. We allow that many different belief-disbelief states are possible. We
represent ignorance by presenting them all, in effect saying that we dont know which is the pertinent
one.” (Norton, 2007a, § 6.2, 248)
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that m(α) = M(α) = m(¬α) for all contingent α [where m(α) is a measure

of the belief that α and M(α) its dual]. (Norton, 2007a, § 6.1, 247)

This follows from the requirement of invariance under negation for a representation of

neutral support.

We saw earlier in § 2.3.2 that no single probability function (or in general no measure,

additive by definition) can meet this criterion.16 Any probability function will necessar-

ily express a (non-strictly) increasing belief as we go from propositions to their logical

consequences (e.g., for any functions c in a credal set, α1 ` α1∨α2 → c(α1∨α2) ≥ c(α1)).

On the other hand, a measure of disbelief should be (non-strictly) decreasing as we go

from propositions to their logical consequences. Consequently, no probability function

can simultaneously express our belief and our disbelief in a certain proposition, even

if we consider only contingent propositions. This, however, is not necessarily true of

credal sets. We also saw in § 2.3.2 that if comparative confidence claims are based on

interval dominance, then imprecise credences need not be additive for contingent propo-

sitions. Consequently, an imprecise credence represented by a set of functions as the one

given in § 2.3.2 can simultaneously represent belief and disbelief (at least for contingent

propositions).

However, on Norton’s account (Norton, 2007a, §§ 3.2, 6.2) a credal set C representing

ignorance is self-dual if it contains probability functions ci and their duals c′i such that

∀ci ∈ C, c′i is such that ∀α, ci(α) = c′i(¬α) and ci(¬α) = c′i(α). But, as we just saw, the

duals of probability functions cannot be probability functions, and consequently a set

containing probability functions and their duals cannot comprise probability functions

only.

In contrast, for any given set of contingent propositions, the imprecise model allows

us to define sets that represent our indifference or ignorance. We saw above in § 2.3.2

a proposal for a representation of neutral support, according to which if C is a credal

16Unless we are dealing with only two mutually exclusive propositions.
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state representing a family of credence functions c about contingent events α, C cor-

responds to a state of indifference if ∀c, α, ∃ c′ ∈ C such that c′(α) = 1 − c(α). This

proposal differs from Norton’s criterion of self-duality (note the different placement of

the universal quantifier on α). The imprecise model as I have considered it here does not

guarantee us than once a credal set is defined so as to represent indifference about a set

of propositions, it will necessarily adequately represent our indifference about all their

Boolean combinations, nor, in general, that it will adequately provide neutral support to

any other proposition we are indifferent about. This model does not suggest either that

the same rules used to define a credal set representing indifference should apply to all

situations (this will be illustrated below in § 2.4). But for any given set of contingent

propositions—for instance, some propositions and their negations—we can construct a

credal set that represents our indifference; thus, it will represent our indifference about

these propositions and the negation of each of them. For these propositions, it is reason-

able to expect this sort of duality from our representation of belief (i.e, from the credal

set as a whole), but not from its components.

If we consider only contingent propositions, and if comparison in our level of confi-

dence is based on interval dominance, then with imprecise probabilities we have at our

disposal a representation of ignorance or indifference that shares with a self-dual rep-

resentation the relevant properties for a representation of neutral support, namely the

ability to simultaneously represent belief and disbelief. With other comparison criteria

(e.g., Γ-minimax), a self-dual representation of ignorance or indifference as one Norton

demands could only express nothing less than complete ignorance. We saw in § 2.3.2

that such a credal set, I, exists, but we also saw that it is incompatible with learn-

ing. The less demanding representations of ignorance or indifference I have considered

here have over a self-dual representation a clear expressive advantage. We saw that the

imprecise model allows one to distinguish between stochastic independence, epistemic

irrelevance, unknown interaction, or ignorance or indifference about the value of a pa-
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rameter. It can fulfill criteria of a representation of ignorance better than what a single

probability function can do, yet it does so by means of probability functions, each of

which can subsequently be modified following Bayes’s rule.17 Consider for instance the

3-function example from § 2.3.2. Now assume that the probability of αi in that example

corresponds to the probability of drawing the numbered ball Bi from an urn (with re-

placement between each draw). Assume further that we are interested in determining a

bias—of our urn or the balls—in this drawing. How should we represent our initial state

of ignorance in a way that does not prevent us from eventually finding a value after a

sufficient iteration of Bayesian updating? It is unclear how Norton’s non-probabilistic,

self-dual representation of complete ignorance, ‘I’, can evolve, whereas it is possible for

our 3-function credal set to yield such a result eventually.18 Notwithstanding the lack

of self-duality, the ability for credal sets representing indifference or ignorance to be up-

dated is a desirable feature that makes an imprecise representation of indifference a more

interesting element of inductive logic than Norton’s self-dual measure I.

The kind of representation of ignorance that Norton seeks is part of a larger inductive

logic yet to be carried out. It is in the light of the search for a unique representation

of our credences that Norton imposes this criterion of self-duality of complete ignorance,

applicable to any proposition about which we are ignorant. In this context, it is a

plausible requirement. But it is a very strong condition that can leave one wondering

how a unique representation as the one Norton proposes—which would yield the same

value ‘I’ whatever the event about which we are ignorant—can be used in a fruitful

inductive process. Norton offers no compelling reason why his demanding notion of self-

duality should be required of alternative representations of ignorance or indifference such

as the ones the imprecise model affords us.

17Further discussion about the expressive advantages of imprecise probabilities can be found in
(de Cooman and Miranda, 2007; Miranda and de Cooman, 2014).

18See (Piatti et al., 2009; Moral, 2012) for a discussion about the conditions on a near-ignorance
credal set required for learning. These requirements favor the use of Dirichlet distributions.
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2.4 Dissolving Cosmic Confusions

In order to emphasize how ill-equipped Bayesianism (or any other inductive framework

based on additive measures) is in order to deal with ignorance, and to show its inability

to avoid unwarranted conclusions, Norton (2010) invited us to consider two instances of

‘cosmic confusion.’ These are anthropic reasoning (see above § 2.1) and the Doomsday

argument. In both cases, we draw conclusions from a lack of knowledge. We can see how

the use of imprecise credences can dissolve what Norton referred to as ‘cosmic confusions’

in a way no unique probability distribution can.

The Doomsday argument is a family of arguments about humanity’s likely survival

(see, e.g., (Bostrom, 2002, §§ 6–7), (Richmond, 2006) for reviews). It allows one to com-

pare the likelihood of two scenarios about humanity’s survival or even make a prediction

about the end date for humanity based only on the assumption that our place on hu-

manity’s timeline is random. Some versions of this argument have been addressed within

the framework of orthodox Bayesianism so as to block any conclusion we could draw

from these assumptions alone. But a variant of this argument, based on the assumption

that we have a random birth rank among all humans (Gott, 1994), cannot be dissolved

without appealing to imprecise credences. The argument goes as follows. Let r be my

birth rank (i.e., I am the rth human to be born), and N the total number of humans that

will ever be born.

1. Assume that there is nothing special about my rank r. Following the principle of

indifference, whatever r, the probability of r conditional on N is p(r|N) =
1

N
.

2. Assume the following improper prior19 for N : p(N) =
k

N
. k is a normalizing

constant whose value does not matter.

19As Gott (1994) recalls, this choice of prior is fairly standard (albeit contentious) in statistical

analysis. It is the Jeffreys prior for the unbounded parameter N , such that p(N) dN ∝ d lnN ∝ dN

N
.

This means that the probability for N to be in any logarithmic interval is the same. This prior is called
improper because it is not normalizable, and it is usually argued that it is justified when it yields a
normalizable posterior.
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3. This choice of distributions p(r|N) and p(N) gives us the prior distribution p(r),

with N ≥ r:20

p(r) =

∫ N=∞

N=r

p(r|N)p(N) dN =

∫ N=∞

N=r

k

N2
dN =

k

r
.

4. Then, Bayes’s theorem gives us

p(N |r) =
p(r|N) · p(N)

p(r)
=

r

N2
,

which favors small N and allows us to make an estimate for N at any confidence-

level.

This result should strike us as surprising: we should not be able to learn something

from nothing! Indeed, according to that argument, we can make a prediction for N

based only on knowing our rank r and on not knowing anything about the probability of

r conditional on N , i.e., on being indifferent—or equally uncommitted—about any value

it may take.

In this argument, any choice of prior probability distribution will result in a prediction

for N , at any confidence-level. However, if our prior ignorance or indifference about N ,

C(N), is represented by a credal set containing an infinity of credal functions, {c : c ∈ C},

each normalizable, defined on N>0, and such that ∀c ∈ C, limN→∞(c(N)) = 0 (e.g., a

family of Pareto distributions), then the resulting prediction for N diverges. In other

words, this imprecise representation of prior credence in N , reflecting our ignorance about

N , does not yield any prediction about N . Without the possibility for my prior credence

to be represented not by a single probability distribution, but instead by an infinite set

of probability distributions, I cannot avoid obtaining an arbitrarily precise prediction.

In the case of the cosmological constant problem (see above § 2.1), representing our

20I use a continuous distribution as an approximation for the discrete case.
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prior ignorance or indifference about the value of the vacuum energy density ρV by an

imprecise credal set can limit, if not entirely dissolve, the appeal of anthropic considera-

tions. As we saw earlier, Weinberg (1987) argued that, in the absence of useful theoretical

background, it was reasonable to assume a constant, uniform prior probability distribu-

tion for ρV within the anthropically allowed range, and then conditionalize on the number

of observers each value of ρV would allow for. With the imprecise model, a state of in-

difference between different values of ρV within the anthropically allowed range can be

expressed by a set of probability distributions {c? : c? ∈ C?}, all of which normalizable

over the anthropic range and such that ∀ρV ,∃ c?i, c?j ∈ C? such that ρV is favored by

c?i and not by c?j.
21 It is in principle possible to define this prior credal set so that for

any value of ρV , the lowest expectation value among the the posteriors is lower than the

highest expectation value among the priors. If then we adopt interval dominance as a

criterion for comparative confidence claims, then no observation of ρV will be able to

lend support to our anthropic prediction.

As we saw earlier, one may object to the adoption of interval dominance in such a case.

This choice of demanding confidence comparison rule could be motivated by the fact that

we have no plausible alternative theoretical framework to the anthropic argument. In

this context, it can be reasonable to agree to increase one’s credence about the anthropic

explanation only if it does better than any other yet unknown alternative might have

done. Nonetheless, if we adopt other confidence comparison rules, it is possible with

the imprecise model to construct prior credal sets that define a large interval over the

anthropic range such that the confirmatory boost obtained after observing ρV is not

nearly as vindicative as it is with a single, uniform distribution.

21For reasons expressed earlier in footnotes 13 and 18, this should preferably be done by means of
Dirichlet distributions.
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2.5 Conclusion

Norton (2010) has correctly argued that representing neutrality with a broadly spread

single probability distribution amounts to conflating ignorance with improbability. He

has shown how this leads to unwarranted confirmations. I here claim that a credal state

of ignorance should best be represented by an imprecise credence. With this approach,

merely acquiring information about the value of a certain parameter cannot suffice to

justify a sense of surprise. The imprecise model offers us a more adequate representation

of neutrality and prevents prior credences from doing too much inductive work, as is

illustrated by its ability to block the consequence of the Doomsday argument better than

what orthodox Bayesianism can do.

We saw that, if we adopt interval dominance as a criterion for confidence comparison,

it is possible for an imprecise representation of indifference to meet the criteria for a

representation of neutral support put forth in (Norton, 2007a, 2008, 2010). But if we

adopt less demanding confidence comparison rules, we can still construct a representation

of indifference by means of credal sets that meet these criteria to a large extent, and we

can do so without compromising Bayesianism altogether. It only requires that we do not

demand that credences be sharp nor that a unique representation be applicable to all

cases of ignorance or indifference (i.e., that self-duality be abandoned).

One can see Norton’s argument as emphasizing the perils of excessive structure im-

ported from probability theory into inductive logic, and then arguing that we need to

eliminate much of that structure. There are several ways to modify the mathematical

structure to counter the assumption of additivity. Norton’s stated motivations are not

sufficient to force us to adopt the framework he advocates. The imprecise model has

the advantage of allowing us to distinguish different kinds of ignorance and indifference.

More importantly, it makes it possible to move out of a state of ignorance when we

acquire interesting information.
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Chapter 3

Blurring Out Cosmic Puzzles1

3.1 Introduction

The Doomsday argument and the appeal to anthropic bounds to solve the cosmologi-

cal constant problem are two examples of puzzles of probabilistic confirmation. These

arguments both make ‘cosmic’ predictions: the former gives us a probable end date for

humanity, and the second a probable value of the vacuum energy density of the universe.

They both seem to allow one to draw unwarranted conclusions from a lack of knowl-

edge, and yet one way of formulating them makes them a straightforward application of

Bayesianism. They call for a framework of inductive logic that allows one to represent ig-

norance better than what can be achieved by a Bayesian approach that represents credal

states by single credence functions so as to block these conclusions.

3.1.1 The Doomsday Argument

The Doomsday argument is a family of arguments about humanity’s likely survival.2

There are mainly two versions of the argument discussed in the literature, both of which

appeal to a form of Copernican principle (or principle of typicality or mediocrity). A

first version of the argument endorsed by, e.g., John Leslie (1990) dictates a probability

1This chapter was presented at the 2014 Biennial Meeting of the Philosophy of Science Association,
and it is forthcoming in the corresponding issue of Philosophy of Science.

2See, e.g., (Richmond, 2006; Bostrom, 2002, §§ 6–7) for reviews.
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shift in favor of theories that predict earlier end dates for our species assuming that we

are a typical—rather than atypical—member of that group.

The other main version of the argument, referred to as the “delta-t argument,” was

given by Richard Gott (1993) and has provoked both outrage and genuine scientific inter-

est.3 It claims to allow one to make a prediction about the total duration of any process

of indefinite duration based only on the assumption that the moment of observation is

randomly selected. A variant of this argument, which gives equivalent predictions, rea-

sons in terms of random selection of one’s rank in a sequential process (Gott, 1994).4

The argument goes as follows:

Let r be my birth rank (i.e., I am the rth human to be born), and N the total number

of humans that will ever be born.

1. Assume that there is nothing special about my rank r. Following the principle of

indifference, for all r, the probability of r conditional on N is p(r|N) =
1

N
.

2. Assume the following improper prior probability distribution for N : p(N) =
k

N
. k

is a normalizing constant, whose value doesn’t matter.

3. This choice of distributions p(r|N) and p(N) gives us the prior distribution p(r):5

p(r) =

∫ N=∞

N=r

p(r|N)p(N) dN =

∫ N=∞

N=r

k

N2
dN =

k

r
.

4. Then, Bayes’ theorem gives us p(N |r) =
p(r|N) · p(N)

p(r)
=

r

N2
, which favors small

N .

The choice of the Jeffreys prior for the unbounded parameter N in step 2 is such that

the probability for N to be in any logarithmic interval is the same; that is, we have

3See, e.g., (Goodman, 1994) for opprobrium and (Wells, 2009; Griffiths and Tenenbaum, 2006) for
praise.

4The latter version doesn’t violate the reflection principle—entailed by conditionalization—according
to which an agent ought to have now a certain credence in a given proposition if she is certain she will
have it at a later time (Monton and Roush, 2001).

5I use a continuous distribution as an approximation for the discrete case.
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p(N) dN ∝ d lnN ∝ dN

N
. This prior is called improper because it is not normalizable,

and it is sometimes argued that it is justified when it yields a normalizable posterior.

Although this is a contentious assumption, we will see that no other precise distribution

would allow us to avoid the conclusion of the Doomsday argument.

To find an estimate with a confidence α, we solve p(N ≤ x|r) = α for x, with

p(N ≤ x|r) =

∫ x

r

p(N |r) dN . Upon learning r, we are able to make a prediction about

N with a 95%-level confidence. Here, we have p(N ≤ 20r|r) = 0.95. That is, we have

p(N > 20r|r) < 5%.

According to that argument, we can make a prediction for N based only on knowing

our rank r and on being indifferent about any value r conditional on N may take. We

should be troubled by the fact that we can get so much information out of so little. If N

is unbounded, an appeal to our typical position shouldn’t allow us to make any prediction

at all, and yet it does.

3.1.2 Anthropic Reasoning in Cosmology

Another probabilistic argument that claims to allow one to make a prediction from a lack

of knowledge is commonly used in cosmology, in particular to solve the cosmological con-

stant problem (i.e., explain the value of the vacuum energy density ρV ). This parameter

presents physicists with two main problems:6

1. The time coincidence problem: we happen to live at the brief epoch—by cosmologi-

cal standards—of the universe’s history when it is possible to witness the transition

from the domination of matter and radiation to vacuum energy (ρM ∼ ρV ).

2. There is a large discrepancy—of 120 order of magnitudes—between the (very small)

observed values of ρV and the (very large) values suggested by particle-physics

models.

6See (Carroll, 2001; Solà, 2013) for an overview of the cosmological constant problem.
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Anthropic selection effects (i.e., our sampling bias as observers existing at a certain

time and place and in a universe that must allow life) have been used to explain both

problems. Anthropic selection effects make the coincidence less unexpected, and account

for the discrepancy between observations and possible expectations from available theo-

retical background. But there is no known reason why having ρM ∼ ρV should matter

to the advent of life.

Steven Weinberg and his collaborators (Weinberg, 1987, 2000; Martel et al., 1998),

among others, proposed that, in the absence of satisfying explanations, anthropic con-

siderations could play a strong, predictive role. The idea is that we should conditionalize

the probability of different values of ρV on the number of observers (or a proxy, such

as the number of galaxies) taken as a function of that parameter. The probability mea-

sure for ρV is then d p(ρV ) = ν(ρV ) · p?(ρV ) dρV , where p?(ρ) dρV is the prior probability

distribution, and ν(ρV ) the average number of galaxies which form for ρV .

By assuming that there is no known reason why the likelihood of ρV should be special

at the observed value, and because the allowed range of ρV is very far from what we would

expect from available theories, Weinberg and his collaborators argued that it is reasonable

to assume that the prior probability distribution is constant within the anthropically

allowed range, so that dp(ρV ) can be calculated as proportional to ν(ρV ) dρV (Weinberg,

2000, 2). Weinberg then predicted that the value of ρV would be close to the mean value

in that range (assumed to yield the largest number of observers). This “principle of

mediocrity,” as Alexander Vilenkin (1995) called it, assumes that we are typical observers.

Thus, anthropic considerations not only help establish the prior probability distribu-

tion for ρV by providing bounds, but they also allow one to make a prediction regarding

its observed value. This method has yielded predictions for ρV only a few orders of magni-

tudes apart from the observed value.7 This improvement—from 120 orders of magnitude

to only a few—has been seen by their proponents as vindicating anthropically-based

7The median value of the distribution obtained by such anthropic prediction is about 20 times the
observed value ρobs

V (Pogosian et al., 2004).
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approaches (see, e.g., Weinberg, 2007).

3.1.3 The Problem: Ex Nihilo Nihil Fit

The Doomsday argument and anthropic reasoning share a similar structure: 1) a uniform

prior probability distribution reflects an initial state of ignorance or indifference, and 2)

an appeal to typicality or mediocrity is used to make a prediction. This is puzzling: these

two assumptions of indifference and typicality are meant to express neutrality, and yet

from them alone we seem to be getting a lot of information. But assuming neutrality

alone should not allow us to learn anything!

If anthropic considerations were only able to provide us with one bound (either lower

or upper bound), then the argument used to make a prediction about the vacuum en-

ergy density ρV would be analogous to Gott’s 1993 delta-t argument: without knowing

anything about, say, a parameter’s upper bound, a uniform prior probability distribution

over all possible ranges and the appeal to typicality of the observed value favors lower

values for that parameter.

I will briefly review several approaches taken to dispute the validity of the results

obtained from these arguments. We will see that dropping the assumption of typicality

isn’t enough to avoid these paradoxical conclusions. I will show that, when dealing

with events we are completely ignorant or indifferent about, one can use an imprecise,

Bayesian-friendly framework that better handles ignorance or indifference.
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3.2 Typicality, Indifference, Neutrality

3.2.1 How Crucial to Those Arguments Is the Assumption of

Typicality?

The appeal to typicality is central to Gott’s delta-t argument, Leslie’s version of the

Doomsday argument, and Weinberg’s prediction. This assumption has generated much of

the philosophical discussion about the Doomsday argument in particular. Nick Bostrom

(2002) offered a challenge to what he calls the Self-Sampling Assumption (SSA), according

to which “one should reason as if one were a random sample from the set of all observers

in one’s reference class.” In order to avoid the consequence of the Doomsday argument,

Bostrom suggested to adopt what he calls the Self-Indicating Assumption (SIA): “Given

the fact that you exist, you should (other things equal) favor hypotheses according to

which many observers exist over hypotheses on which few observers exist.” (Bostrom,

2002) But as he noted himself (Bostrom, 2002, 122-126), this SIA is not acceptable as a

general principle. Indeed, as Dennis Dieks summarized: “Such a principle would entail,

e.g., the unpalatable conclusion that armchair philosophizing would suffice for deciding

between cosmological models that predict vastly different chances for the development of

human civilization.The infinity of the universe would become certain a priori.” (Dieks,

2007, 431)

The biggest problem with Doomsday-type arguments resting on the SSA is that their

conclusion depends on the choice of reference class. What constitutes “one’s reference

class” seems entirely arbitrary or ill-defined: is my reference class that of all humans,

mammals, philosophers, etc.? Anthropic predictions can be the object of a similar crit-

icism: the value of the cosmological constant most favorable to the advent of life (as

we know it) may not be the same as that most favorable to the existence of intelligent

observers, which might be definable in different ways.

Relatedly, Radford Neal (2006) argued that conditionalizing on non-indexical infor-
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mation (i.e., all the information at the disposal of the agent formulating the Doomsday

argument, including all their memories) reproduces the effects of assuming both SSA and

SIA. Conditionalizing on the probability that an observer with all their non-indexical in-

formation exists (which is higher for a later Doomsday, and highest if there is no Dooms-

day at all) blocks the consequence of the Doomsday argument without invoking such ad

hoc principles, and avoids the reference-class problem (see also Dieks, 1992).

Although full non-indexical conditioning cancels out the effects of Leslie’s Doomsday

argument (and, similarly, anthropic predictions), it is not clear that it also allows one

to avoid the conclusion of Gott’s version of the Doomsday argument. Neal (2006, 20)

dismisses Gott’s argument because it rests only on an “unsupported” assumption of

typicality. There are indeed no good reasons to endorse typicality a priori (see, e.g.,

Hartle and Srednicki, 2007). One might then hope that not assuming typicality would

suffice to dissolve these cosmic puzzles. Irit Maor et al. (2008) showed for instance that

without it, anthropic considerations don’t allow one to really make predictions about the

cosmological constant, beyond just providing unsurprising boundaries, namely, that the

value of the cosmological constant must be such that life is possible.

My approach in this paper, however, will not be to question the assumption of typical-

ity. Indeed, in Gott’s version of the Doomsday argument given in § 3.1.1, we would obtain

a prediction even if we didn’t assume typicality. Instead of assuming a flat probability

distribution for our rank r conditional on the total number of humans N , p(r|N) =
1

N
,

let’s assume a non-uniform distribution. For instance, let’s assume a distribution that

favors our being born in humanity’s timeline’s first decile (i.e., one that peaks around

r = 0.1×N). We would then obtain a different prediction for N than if we had assumed

one that peaks around r = 0.9×N . This reasoning, however, yields an unsatisfying result

if taken to the limit: if we assume a likelihood probability distribution for r conditional

on N sharply peaked at r = 0, we would still obtain a prediction for N upon learning r
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(see Figure 3.1).8

Figure 3.1: Posterior probability distributions for N conditional on r, obtained for r = 100 and
assuming different likelihood distributions for r conditional on N (i.e., with different assumptions as to
our relative place in humanity’s timeline), which each peaks at different values τ = r

N . The lowermost
curve corresponds to a likelihood distribution that peaks at τ → 0, i.e., if we assume N →∞.

Therefore, in Gott’s Doomsday argument, we would obtain a prediction at any

confidence-level, whatever assumption we make as to our typicality or atypicality, and

we would even obtain one if we assume N → ∞. Consequently, it is toward the ques-

tion of a probabilistic representation of ignorance or indifference that I will now turn my

attention.

3.2.2 A Neutral Principle of Indifference?

One could hope that a more adequate prior probability distribution—one that better

reflects our ignorance and is normalizable—may prevent the conclusion of these cosmic

puzzles (especially Gott’s Doomsday argument). The idea that a uniform probability

distribution is not a satisfying representation of ignorance is nothing new; this discussion

8Tegmark and Bostrom (2005) used a similar reasoning to derive an upper bound on the date of a
Doomsday catastrophe.
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is as old as the principle of indifference itself.9 As argued by John Norton (2010), a uni-

form probability distribution is unable to fulfill invariance requirements that one should

expect of a representation of ignorance or indifference:

- non-additivity,

- invariance under redescription,

- invariance under negation: if we are ignorant or indifferent as to whether or not α,

we must be equally ignorant as to whether or not ¬α.10

For instance, in the case of the cosmological constant problem, if we adopt a uni-

form probability distribution for the value of the vacuum energy density ρV over an

anthropically-allowed range of length µ, then we are committed to assert for instance

that ρV is 3 times more likely to be found in a any range of length
µ

3
than in any

other range of length
µ

9
. This is very different from indifference or ignorance, hence the

requirement of non-additivity for a representation of ignorance.

These criteria for a representation of ignorance or indifference cast doubt on the

possibility for a probabilistic logic of induction to overcome these limitations.11 I will

argue that an imprecise model of Bayesianism, in which our credences can be ambiguous,

will be able to explain away these problems without abandoning Bayesianism altogether.

3.3 Dissolving the Puzzles with Imprecise Credence

3.3.1 Imprecise Credence

Bayesian probability generally operates under the assumption that an agent can represent

her credence by a single, sharp numerical value between 0 and 1. A common gripe

9See, e.g., (Syversveen, 1998) for a short review on the problem of representing non-informative
priors.

10For an extended discussion about criteria for a representation of ignorance—with imprecise proba-
bilities in particular—see (de Cooman and Miranda, 2007, §§ 4–5). See also Chapter 2 above.

11The same goes for improper priors, as was argued, e.g., by Dawid et al. (1973).
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against Bayesian approaches is that this assumption is psychologically unrealistic (see,

e.g., Kyburg, 1978). Moreover, for those who think of probabilities in terms of betting

behavior, it would be more realistic to deal with an interval of betting prices (bounded

by a selling price and a buying price), rather than a unique value (see Smith, 1961).

In a model of imprecise credences (or ‘imprecise probabilities’ by misuse of lan-

guage) developed and defended by, e.g., Walley (1991); Joyce (2010), credences are

not represented merely by a range of values, but rather by a family of probabilistic

credence functions. In this model, an agent’s credal state can be represented by a fam-

ily C of probabilistic credence functions [ci], whose properties are those common to all

the credence functions in this credal state. On this account, one’s credal state upon

learning that a certain event D obtains is the set of the updated credence functions

CD =

{
c(X|D) = c(X)

c(D|X)

c(D)
: c ∈ C

}
.

In this model, each credal function (i.e., each member of a family of function that

represents an agent’s credal state) is treated as in a Bayesian approach that represents

credal states by single credence functions. Precise probabilities are therefore a special

case of the imprecise probabilities model.

Different criteria for making comparative confidence claims exist in the literature: for

instance, we can say that one will be more confident in an event than in another event if

- it has maximum lower expected value (Γ−minimax criterion),

- it has maximum higher expected value (Γ−maximax),

- it has maximum expected value for all distributions in the credal set (maximality),

- it has a higher expected value for at least one distribution in the credal set (E−admissibility),

or

- its lower expected value on all distributions in the credal set is greater than the

other event’s highest expected value on all distributions (interval dominance).12

12This list is not exhaustive, see (Troffaes, 2007; Huntley et al., 2014) for reviews.
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This imprecise model is interesting when it comes to representing ignorance or indif-

ference: it can do so with a set of functions that disagree with each other. If the agent is

a committee whose members’ opinions correspond to the credal functions that constitute

the agent’s credal state (i.e., the whole set), then this situation corresponds to one of

indecision resulting from the disagreement between the committee members. How this

indecision arises will depend on which of the above rules we adopt.

3.3.2 Blurring Out Gott’s Doomsday Argument: Apocalypse

Not Now

Let us see how we can reframe Gott’s Doomsday argument with an imprecise prior

credence for the total number of humansN , or more generally for the length of any process

of indefinite duration X. Let our prior credence in X, CX , be represented by a family of

credal functions {cγ : cγ ∈ CX}, each normalizable and defined on R>0. Thus, we avoid

improper prior distributions. All we assume is that X is finite but can be indefinitely

large. We have no reason to exclude from our prior credal set CX any distribution that is

monotonically decreasing and such that ∀cγ ∈ CX , limX→∞(cγ(X)) = 0.13 Let then our

prior credence consist in the following set of functions, all of which decrease but not at the

same rate (i.e., similar to a family of Pareto distributions),

{
cγ(X) =

kγ
Xγ

: cγ ∈ CX
}
,

with γ > 1 and kγ a normalizing constant such that kγ =
1∫∞

0
dX
Xγ

. The limiting case

γ → 1 corresponds to X →∞, but γ = 1 must be excluded to avoid a non-normalizable

distribution.

If we don’t want to assume anything about the distributions in CX (other than their

being monotonically decreasing), this prior set must be such that it contains functions

of decreasing rates that are arbitrarily small. That is, ∀X ∈ R>0,∀ε ∈ R<0, ∃ cγ ∈ CX

such that
dcγ(X)

dX
> ε. This requirement applies not to any of the functions in CX but

13In order to avoid too sharply peaked distributions (at X → 0), constraints can be placed on the
variance of the distributions (namely, an lower bound on the variance), without it affecting my argument.
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to the set as a whole.

Following the steps of the argument given above in § 3.1.1, we obtain the following

expression for the distributions in the credal set
{
cγ(r) : cγ(r) ∈ Cr

}
representing our

prior credence in r:

cγ(r) =

∫ N=∞

N=r

p(r|N) · cγ(N) dN =

∫ N=∞

N=r

kγ
Nγ+1

dN.

Bayes’ theorem then yields an expression for the posterior credal functions in CN |r:

cγ(N |r) =
p(r|N) · cγ(N)

cγ(r)
=

kγ

Nγ+1 ·
∫ N=∞
N=r

kγ
Nγ+1 dN

.

For each credal function in CN |r, we can find a prediction for N with a 95%-level

confidence, by solving cγ(N ≤ x|r) = 0.95 for x, with cγ(N ≤ x|r) =

∫ x

r

cγ(N |r) dN.

We will find a prediction for N given by our imprecise posterior credal set CN |r by

determining its upper bound, i.e., a prediction all distributions in CN |r can agree on.

Now, as γ → 1, the prediction for x such that cγ(N ≤ x|r) = 95% diverges. In other

words, this imprecise representation of prior credence in N , reflecting our ignorance or

indifference about N , doesn’t yield any prediction about N .

Choosing any of the predictions given by the individual distributions in the credal

set would be arbitrary. Without the possibility for my prior credence to be represented

not by a single probability distribution but by an infinite set of probability distributions,

I cannot avoid obtaining an arbitrarily precise prediction. Other distributions, such as

distributions that decrease at different rates, could be added to the prior credal set, as

long as they fulfill the criteria listed at the beginning of this section. However, no other

distribution that we could include would change this conclusion.

3.3.3 Blurring Out Anthropic Predictions

We are ignorant about what value of the vacuum energy density ρV we should expect

from our current theories. We can see that representing our prior ignorance or indifference

about the value of the vacuum energy density ρV by an imprecise credal set can limit, if

not entirely nullify, the role of anthropic considerations beyond that of mere boundary
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conditions.

If we substitute imprecise prior and posterior credences in the formula from (Wein-

berg, 2000, see infra § 4.3.3), we have dCρV = ν(ρV ) · C?
ρV

dρV , with C?
ρV

a prior credal

set that will exclude all values of ρV outside the anthropic range, and ν(ρV ) the average

number of galaxies which form for ρV , which as in § 4.3.3 peaks around the mean value

of the anthropic range. In order for the prior credence C?
ρV

to express our ignorance or

indifference, it should be such that it doesn’t favor any value of ρV .

With the imprecise model, such a state of ignorance can be expressed by a set of

probability distributions {c?i : c?i ∈ C?
ρV
}, all of which normalizable over the anthropic

range and such that ∀ρV ,∃ c?i , c?j ∈ C?
ρV

such that ρV is favored by c?i and not by c?j .
14

Such a prior credal set will not favor any value of ρV . In particular, it is in principle

possible to define this prior credal set so that for any value of ρV , the lowest expectation

(with respect to our credence) among the posteriors is lower than the highest expectation

among the priors. If then we adopt interval dominance as a criterion for comparative

confidence claims (see infra § 3.3.1), then no observation of ρV will be able to lend support

to our anthropic prediction.

One may object to the adoption of interval dominance in such a case. This crite-

rion is arguably not fined-grained enough to help us for most of the inferences we are

likely to encounter. However, this choice of demanding confidence comparison rule can

be motivated by the fact that we have no plausible alternative theoretical framework

to the anthropic argument. In this context, it can be reasonable to agree to increase

one’s credence about the anthropic explanation only if it does better than any other

yet unknown alternative might have done. Nonetheless, if we adopt other confidence

comparison rules, it is possible with the imprecise model to construct prior credal sets

that define a large interval over the anthropic range such that the confirmatory boost

14This can be obtained, for instance, by a family of Dirichlet distributions (preferable in order to have
invariance under redescription (see de Cooman et al., 2009)), each of which giving an expected value at
a different point in the anthropically allowed range. As in § 3.3.2, a lower bound can be placed on the
variance of all the functions in C?ρV in order to avoid dogmatic functions.
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obtained after observing ρV is not nearly as vindicative as it is with a single, uniform

distribution.

This approach doesn’t prevent Bayesian induction altogether. Because all the func-

tions in C?
ρV

are probability distributions, they all can be updated as in usual Bayesian

inferences and, in principle, converge toward a sharper credence, provided sufficient up-

dating.

3.4 Conclusion

These cosmic puzzles show that, in the absence of an adequate representation of ignorance

or indifference, a logic of induction will inevitably yield unwarranted results. Our usual

methods of Bayesian induction are ill-equipped to allow us to address either puzzle. I

have shown that the imprecise credence framework allows us to treat both arguments in

a way that avoids their undesirable conclusions. The imprecise model rests on Bayesian

methods, but it is expressively richer than the usual Bayesian approach that only deals

with single probability distributions.

Philosophical discussions about the value of the imprecise model usually center around

the difficulty to define updating rules that don’t contradict general principles of condi-

tionalization (especially the problem of dilation). But the ability to solve such paradoxes

of confirmation and avoid unwarranted conclusions should be considered as a crucial

feature of the imprecise model and count in its favor.
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Chapter 4

Lost in the Multiverse: Self-locating
uncertainty, typicality, and
observation bias

4.1 Introduction

This morning I was feeling terrible. The flu, maybe. Or maybe it was just that I’m not

a morning person. I couldn’t tell where I was. I remembered I’d been in an airplane

recently, maybe I was traveling and that’s why I felt lost. I could have been home or

at a friend’s home. Or maybe I was visiting my family in France. I was so foggy that I

couldn’t see or hear anything that would help me locate myself. I knew I would have to

get out of bed and go get a cup of coffee: in what language would I greet the first person

I would meet? I’m home in America much more often than I am in France; should I have

assumed that I was probably at home? But when I travel to Europe I visit many people

and as a consequence I stay over in many more places than when I’m home; should I have

assumed that I was equally likely to have awaken in any of these rooms, and therefore

that I was probably traveling? Maybe this was all a dream and, after all, maybe I should

have assumed that I was more likely to be where most people are: somewhere in Asia

between the latitude of Mumbai and that of Manila.1

Now that I’ve had several cups of coffee, I’m ready to tackle the question of how

1Or in a galaxy far far away identical to ours.
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self-locating uncertainties should affect my beliefs, and of when typicality assumptions

are legitimate and helpful. These questions weren’t really crucial for me this morning—I

found a door and opened it, and then I went down a flight of stairs without falling down:

I knew that I could only be home. But answers to what appear to be similar questions

may in other contexts be very elusive and yet decisive.

There are in the cosmology literature several kinds of arguments referring to self-

locating uncertainty. Eternal inflation predicts the existence of a “multiverse” containing

an infinity of “pocket universes” with fundamental physical constants taking any and all

possible values. We don’t know how to locate ourselves in this ensemble of possible

universes. We don’t know how to locate ourselves within our own universe either. We

don’t know if we are typical observers and if we can safely assume that the physical

laws we draw from our observations hold elsewhere or if on the contrary we are very

atypical observers, i.e., observers whose view on the world is particularly biased spatially

or temporally.

A kind of self-locating uncertainty that is sometimes invoked in such a discussion

comes from the possible existence of copies of myself. For instance, if the multiverse

theory is true, then there are other pocket universes where reside observers having ex-

periences indistinguishable from my own. As a consequence, we should be uncertain as

to which of these pocket universes we inhabit. If one of these pocket universes is more

favorable to the advent of life than the other (because of a difference in the value of some

physical parameter), then this pocket universe is more likely to host a greater number

of such copies of myself. This adds to the uncertainty about my location: I don’t know

which of these pocket universes I may find myself in, and, within this pocket universe, I

don’t know which of the copies of myself I am.

This kind of uncertainty is used for instance in anthropic reasoning, where predictions

are obtained by conditionalizing a prior probability distribution for a given cosmological

parameter on the number of observers it allows for (see, e.g., Weinberg, 1987; Bousso,
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2006). Moreover, according to, e.g., Max Tegmark, there is even a real possibility that,

in a universe that is large enough, “your closest identical copy is 10 to the 1028 meters

away,” (Tegmark, 2003, 48); i.e., within that distance, each of us has a doppelgänger

with exactly the same experiences and memories.2

There are two main issues concerning all the above questions and arguments that

require clarification. One is the status of self-locating beliefs and their role in induction

and confirmation. The first question I want to address is how distinct are the following

“two sorts of uncertainty”: one “about what the world is like” and another one “about

one’s own spatial and or temporal location in the world” (Elga, 2000, 143). Should the

realization that I could very possibly be somewhere else affect my other, non-indexical

beliefs about the world? And if so, does that mean that my self-locating uncertainty

should have a role in confirmation and induction distinct from other kinds of uncertainty?

A second, related question concerns how to handle self-locating uncertainty. In par-

ticular, I will ask whether and when assumptions of typicality (or a Copernican principle,

or an assumption of mediocrity) are warranted or even required to characterize our self-

locating uncertainty.

All these arguments involving our “location” broadly construed are not particularly

new, whether in cosmology or in philosophy.3 But the topic of self-locating beliefs (or,

2An argument made by, e.g., Page (2010); Aguirre and Tegmark (2011) and which I won’t examine
in more detail claims that this has problematic implications for Born’s rule because, in a large universe,
there may be other copies of ourselves that have exactly the same experiences but projection operators
assume that there is only one observer. On this account, the only difference between us and copies of
ourselves is our location, but which location each copy is in isn’t available to them. Our expectation of
projection operators (or other operators that would replace them) should be, Page claims, the average
of what copies of ourselves could observe:

Born’s rule works when one knows where the observer is within the quantum state (e.g.,
in the quantum state of a single laboratory rather than of the universe), so that one has
definite orthonormal projection operators. However, Born’s rule does not work in a universe
large enough that there may be identical copies of the observer at different locations, since
then one does not know uniquely where the observer is or what the projection operators
are. (Page, 2010, 2)

3For a critique of the anthropic principle, see, e.g., (Earman, 1987), for one of the Copernican
principle, see, e.g., (Beisbart, 2010).
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following Lewis (1979), “de se beliefs”) and how they are related to de re beliefs has

recently generated much discussion in philosophy. And arguments given as solutions

to the Sleeping Beauty problem—a thought experiment introduced as an illustration of

the distinctness of self-locating uncertainty and its bearing on our credence about the

world—are still debated, in philosophy and cosmology alike.

In this paper I claim that the Sleeping Beauty problem can indeed help us find clarity

about the nature and role of self-locating beliefs and uncertainty in confirmation, but

not for the reasons usually given in the literature. I will show that the Sleeping Beauty

problem doesn’t involve anything pertaining specifically to self-locating beliefs. The

canonical presentation of this problem complicates it unnecessarily: memory loss or self-

locating uncertainty don’t play any essential role in this problem. The Sleeping Beauty

problem is in fact a problem about how to handle observation bias and as such does not

constitute a new or distinctive challenge or source of rules for confirmation theory.

I will show that claims resting on typicality assumptions as to our location, on the

other hand, represent a distinctive kind of claim. They rest questionable assumptions,

such as the assumption that all models equally compatible with our observations are

equally likely. Appealing to the Sleeping Beauty problem to justify this assumption rests

on confusions about that problem.

4.2 Self-Locating Beliefs and Observation Bias

4.2.1 The Sleeping Beauty Problem as a Problem about Obser-

vation Bias

Are there, as Elga (2000) put it, “two sorts of uncertainty”—one “about what the world is

like” and another one “about one’s own spatial and or temporal location in the world”—

that are distinct in such a way that they require different handling in confirmation theory
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or epistemology more broadly? The Sleeping Beauty problem was brought back to the

forefront by Elga (2000) in order to illustrate that they are distinct, and to show how the

former bear on the latter. I will contend that the kind of information and uncertainty

the Sleeping Beauty problem purports to deal with is in fact not specific to self-location,

and that as a consequence it can’t be used to answer the questions it was intended to

answer.

Here’s the standard setup of the problem: Beauty will be put to sleep for three days

on Sunday night. Right after she falls asleep, a fair coin will be tossed to determine how

many times she will be briefly woken. If the coin toss results in Heads, Beauty will be

briefly woken only once, on Monday. If Tails, she will be woken twice: once on Monday,

and once on Tuesday. But after each waking, Beauty will be put back to sleep with a

drug that makes her completely forget about that waking. Now, if we ask Beauty, right

after she has been woken but without telling her what day it is, what her credence should

be that the coin came up Heads on Sunday night, what should her answer be?

Two answers are usually given to this question: “
1

2
” and “

1

3
”. For “halfers” (e.g.,

Lewis, 2001; White, 2006), that credence doesn’t depend on self-locating beliefs, and at

no point did she learn anything that would alter her credence that the coin is fair and

that there is a one in two chance that it landed Heads on Sunday night. For “thirders”

(e.g., Elga, 2000; Dieks, 2007; Titelbaum, 2008), upon waking up in the middle of the

experiment, Beauty’s credence should change merely because she finds herself in a dif-

ferent situation than before the experiment. Without having any new information, her

self-locating uncertainty makes her waking after Tails twice as likely as after Heads.

More precisely, according to Elga (2000), and with H: “the coin landed Heads,”

T : “the coin landed Tails,” M : “it is now Monday,” U : “it is now Tuesday,” Beauty

believes the coin to be fair and therefore should give equal credence to T&M and H&M .

Moreover, because she’s not able to locate herself, she should give equal credence to

T&M and T&U . Because H&M , T&M , and T&U are the only possible predicaments
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Beauty could find herself in upon awaking, Elga asserted that the respective probabilities

to be located in one of them sum up to 1. Consequently, Beauty’s credence that the coin

landed Heads on Sunday if asked in the middle of the experiment should be
1

3
. I will

come back to Elga’s argument and its relevance for anthropic arguments later in § 4.3.3.

Thus we can see what role self-locating uncertainty should play for our beliefs about

what the world is like according to thirders. I contend, however, that this isn’t what this

problem illustrates. The canonical presentation of the Sleeping Beauty complicates it

unnecessarily and obfuscates its meaning.4 Contrary to claims made by, e.g., Titelbaum

(2013a, §9), when Beauty awakes in the middle of the experiment, she has not lost cer-

tainty about her location as much as she has gained knowledge about her newly acquired

observation bias. In the middle of the experiment, she knows that she will be awoken and

asked about her credence in H twice as often after a T toss than after a H toss. Outside

of the experiment, she may assume that her questioner’s behavior won’t depend on the

outcome of the coin toss. But by entering the experiment, she acquires information about

her questioner’s asymmetric behavior, rather than losing certainty about her temporal

location.

The Sleeping Beauty problem can indeed be reformulated as one about observation

bias, in which self-locating uncertainty or memory loss play no role. Consider that,

instead of having to use fictitious memory-loss-inducing sleeping pills, Beauty takes part

in the following experiment, being fully aware of its setting: a quizzer is sitting at a table

behind a screen, with his head above the screen; he regularly throws a fair coin, which

then falls completely silently on a shock-absorbing mat; he asks Beauty what side she

thinks the coin last landed, but he asks that question twice in a row without throwing

the coin again each time it lands Tails. The problem now is to know what Beauty should

answer in the middle of that experiment. Like in the standard version of the problem,

she never knows if the question she answers follows a Heads toss or a Tails toss.

4Moreover, one might argue that doing so by invoking gratuitously a woman being asked to take
memory-erasing pills is inconsiderate.
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Beauty will on average achieve a better ratio of correct answers (and even a perfect

one in an ideal situation) if she chooses to answer “Heads” only a third of the time.

Therefore, if she wants to increase her chance of giving a correct answer to the quizzer,

Beauty should indeed modify her answers when she is in the middle of the experiment.

She shouldn’t do so because she doesn’t know where she is as much as because she has

been made aware of the bias (observer bias or sampling bias) of the quizzer for whom

Tails tosses count twice as much.

In the standard problem and this alternate experiment alike, if she didn’t know of that

bias, and if she were able to keep a tally of her correct guesses, Beauty would conclude

that if the coin is fair, then the quizzer is biased (or vice versa). She could for instance

start to suspect that the quizzer is cheating or can’t see half the Heads results. But if

Beauty is cognizant of her questioner’s bias and if in the long run she concludes that one

third of the answers should be “Heads”, this would corroborate her belief that the coin

is fair.

This problem, however, is nothing special for confirmation theory. Observation bias in

any measurement is handled in a similar manner. However we choose to present the Sleep-

ing Beauty problem, neither memories nor location—let alone self-locating uncertainty—

play a distinctive role such that it requires a special handling, distinct from usual evi-

dential reasoning.5

4.2.2 Beauty’s Bets in a Rigged Game

Bradley and Leitgeb (2006); Cisewski et al. (2015), following earlier work by Seiden-

feld et al. (1990), have argued that the Sleeping Beauty problem is an example where

her credence and her betting behavior don’t match. Neither memories, uncertainty nor

indifference about one’s location need be assumed in this betting framework either.

According to de Finetti (1974), the probability that an agent assigns to an event E

5Claims that self-locating uncertainty plays no such role can also be found in, e.g., (Bradley, 2011).
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can be elicited by asking how much she is willing to bet that E, knowing that she would

earn $1 if E and $0 otherwise. That price, p, is the elicited probability of E. If p is the

price of the gamble and x the probability of E, the expected utility of the gamble is x−p.

A fair bet is one where the agent expects neither gain nor loss (p = x).

Consider the alternative version of the Sleeping Beauty problem previously intro-

duced, with the questioner hidden behind a screen and regularly asking Beauty how

much she is willing to bet that the last coin toss was Heads, but asking her twice as often

after each Tails toss. In this situation, for Beauty’s bet to be fair to her and the bookie

(i.e., the questioner), she has to account for the fact that in the long run, she will lose

her wager twice as often as she will receive $1. If she believes the coin to be fair (i.e.,

x = 2), the only way that neither she nor the bookie wins in the long run is if her wager

is $
1

3
. See Appendix 4.A for details.

In either version of the Sleeping Beauty problem (i.e., the standard version or the

one with a coin tossed behind a screen and where no sleep is involved), her betting price

is equivalent to her credence in Heads before observation bias is corrected for. In other

words, her betting price is the elicited probability of a biased event, i.e., her credence

about a skewed sample.

4.3 Self-Locating Uncertainty and Typicality in Cos-

mology

4.3.1 Typicality Assumptions

If self-locating uncertainty had a role to play in finding the value of fundamental pa-

rameters in our universe and throughout the multiverse, then it would be, as Titelbaum

(2013b) argued, a good reason to care about the Sleeping Beauty problem indeed. There

are in the cosmology literature several kinds of arguments referring to self-locating uncer-
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tainty. I will show that arguments appealing to the Sleeping Beauty problem to handle

self-locating uncertainty are ill-founded. I will show that legitimate worries about our

location, and worries about whether it should bear on our credence about what the world

is like, can and should be handled as any other information about our observation bias.

We will see that, as a consequence, typicality assumptions about our location or our

existence as observers are unwarranted.

Typicality arguments are used to make predictions in the multiverse, predictions

about, e.g., the value of the vacuum energy density. The most straightforward way to

combine quantum field theory and general relativity leads to a dramatically incorrect

estimate—usually cited as off by 120 orders of magnitude!6 A proposed solution to this

problem is to predict this value from anthropic considerations (see, e.g., Weinberg, 1987;

Bousso, 2006). The idea is to conditionalize the distribution for this parameter on the

number of observers it allows for. Bousso and Freivogel summarized this as follows:

We would like to predict low energy physics parameters observers are likely

to observe. This requires statistical sampling of the theory landscape; an

understanding of how the cosmological dynamics favors or disfavors the pro-

duction of each vacuum; and finally, a sensible method for estimating the

abundance of observers in each vacuum. (For example, parameters unique to

a vacuum with no observers have zero probability of being observed.) (Bousso

and Freivogel, 2007, 2)

This anthropic approach was first put forth by Weinberg (1987); the structure of his

argument is as follows:

1. We first determine what range of values for that parameter are theoretically allowed.

We first identify upper and lower bounds, outside of which the expansion of the

universe is either too fast or too slow to allow for the advent of life. In the absence of

6See, e.g., (Zee, 2010)
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a reason to think that the probability distribution would change over the relevant,

anthropic scale, a uniform probability distribution within that range is assumed to

be the least committal.7

2. We estimate the number of observers as a function of that parameter value.

3. We conditionalize the probability to observe different values of that parameter on

the number of observers they allow, assuming that we are typical observers.

Later observations of the cosmological constant have been taken to vindicate this

reasoning (see Weinberg, 2007). The value of the cosmological constant and other cos-

mological parameters is now much more constrained, but only observationally. Cosmol-

ogists nowadays still appeal to similar arguments in order to test the probative value of

different theoretical scenarios. On this account, we place ourselves in a situation where

we “forget” the known data about these parameters and assess how well different theories

can “predict” them.

The result of such predictions rests on a choice of prior probability distribution (in

step 1). However, with eternal inflation, the number of “universes” (pocket universes

in the multiverse) can be infinite, and so can be the number of observers created. It is

assumed that a prior probability distribution would be based on a measure over the space

of “universes”. The question of the choice of an appropriate measure and its definability

is known as the measure problem in cosmology. Even though it cannot be derived from

fundamental physics, such a measure is often assumed to exist.8 In the absence of relevant

fundamental theories, choices of prior probability distributions are often justified by

appealing to the principle of indifference (or principle of insufficient reason), according

to which all different parameter values within some allowed range should be considered

7I have discussed this assumption in greater detail in Chapter 3 above.
8See, e.g., (Linde and Noorbala, 2010) for a review of different proposed measures. All measures so

far suffer from different severe problems, such as the youngness paradox (whereby it is extremely likely
that we find ourselves as close as possible to the big bang), or the Boltzmann brains problem (whereby
our data are extremely likely to be the product a random thermal fluctuation).
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to be equally likely unless we have a good reason to think otherwise. This symmetry of

belief, however, is entirely epistemic, not physical. This probabilistic interpretation of

indifference is notoriously contentious and leads to notorious paradoxes of probabilistic

inference.9 Yet it is commonly used in cosmology, so much so that a uniform prior

probability distribution over cosmological models in the range −1 ≤ Ωκ ≤ 1 (where Ωκ

characterizes the spatial curvature of the universe) is referred to as “the Astronomer’s

prior” (see, e.g., Trotta, 2012, § 11.3.1.1).

Parallel to the measure problem, the nature and role of typicality has been much

discussed among cosmologists. This discussion involves separate, distinct—and some

problematic—claims about our typicality as observers. But we can see that arguments

used to make predictions based on our alledged typicality as observers sometimes conflate

the following two types of typicality assumption:

- Typicality assumption #1 (typicality of our data with respect to purely indexical

information): In a large universe, other observers may have experiences indistin-

guishable from ours (see, e.g., Tegmark, 2003). If our doppelgängers and we perform

a measurement of a same physical process or event, then we should expect that we

won’t all make the same observation (i.e., our measurements will differ). According

to Bousso et al., we should, in such a case, act “as if our laboratory either [were]

the only laboratory in the universe or [were] selected at random from among all the

laboratories doing the same experiment in the universe. This is the assumption of

typicality.” (Bousso et al., 2008, 1)

- Typicality assumption #2 (anthropic reasoning): In the multiverse, a “pocket uni-

verse” whose parameters are more favorable to the advent of observers is more

likely to be observed.10

9See above Chapters 2 and 3.
10In a sense, this is a non-problematic tautology: a universe more favorable to the advent of life is

more likely to be osberved by living entities. But in the literature this is meant to imply that such a
universe will be more likely to be observed by us.
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In the multiverse, we can use typicality to make statistical predictions

for the results of observations. For instance, to predict the cosmological

constant, we would first determine the theoretically allowed values, and

then count the number of observations of each value. The probability to

observe a given value of the cosmological constant is proportional to the

number of observations, in the multiverse, of that value. (Bousso et al.,

2008, 2, continuation of the previous quote)

The first kind of typicality assumption is simply the assumption that predictions

differing only on indexicality should be considered as equally likely. In this first kind

of assumption, our prediction doesn’t depend on our “location as observer”: if we think

that a stochastic phenomenon has a α% chance of being observed given conditions x, y

and z, then we should consider that any observer under conditions x, y and z has an

α% chance of observing this phenomenon. Such a prediction isn’t affected by what can

be considered as purely indexical information in the context of this experiment (e.g., the

observer’s name, her age, the color of her shirt, whether the experiment is conducted

here or in an exact duplicate of our “pocket universe”, etc.).

For example, imagine that I want to assess whether a coin factory is producing fair

coins. To do so, I can ask many testers to take a coin each and run tests on it, and

then average their results. Alternatively, I can take a coin at random and run tests on it

myself. In doing so, I assume that the coin is typical of what the factory makes. Bousso

et al. give a similar example to illustrate what they mean by an assumption of typicality,

which I call ‘typicality assumption #1.’

The second kind of typicality assumption is the assumption that we should condition-

alize a theoretical prediction on the number of “observations” allowed by our theory. On

this account, assuming that we are a “typical” observer means that, other things being

equal, our observations are most likely to be those shared by the greatest number of ob-

servers. But if the content of the observations is determined by the number of observers,
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then it is the same anthropic argument as in step #3 of (Weinberg, 1987) given above.

Discussions of typicality in the cosmology literature sometimes simply assert that

“our observation should be taken at random among all possible observations.” But

this formulation is ambiguous between the two distinct ideas noted above. It can be

understood either as asserting typicality in the first sense. In that case, it asserts that

the probability of an observation only depends on the physical process observed, not on

who is observing or on how many observers are performing the same observation. Or

it can be understood as asserting typicality in the second sense. In that case, however,

the probability of an observation will depend on the total number of observations (in

the sense given above), which greatly depends on how we are defined as observers. For

instance, in their daily life, what academics typically see (printed words or a computer

screen) differs significantly from what sentient life forms typically see (prey, rocks, and

plants, I assume). Presumably, academics fall into both categories of observers, and

therefore, if we adopt this second kind of typicality assumption, predictions about what

a typical observer sees will depend on an arbitrary choice of reference class of observers.

In order to see how my predictions and inferences would differ depending on which

version of typicality assumption we adopt, consider my situation when I woke up this

morning, having no idea where I was. According to typicality assumption #1, if upon

opening my bedroom door I saw an American-shaped electric outlet, then, other things

equal, I should have assumed that I was in America. But according to typicality assump-

tion #2, I should have assumed, a priori, that I was most likely somewhere in India,11

and the evidence provided by the outlet might not be enough to outweigh the factor due

to the population weighting.

In the literature, however, the two kinds of typicality assumption are not always

carefully distinguished. This has led to confusing exchanges. According to Hartle and

Srednicki, the claim that we shouldn’t prefer a theory that would make us typical ob-

11Or in a galaxy far far away
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servers to one that wouldn’t is “absurd”, “contrary to the standard scientific practice of

assigning noninformative priors that do not preselect conclusions” unless we have good

reasons to do so, and a “mere personal preference for theories in which we are typical

of something.” (Hartle and Srednicki, 2007) In response to such criticism, Bousso and

Freivogel invoked the first kind of typicality assumption to justify the broader, ambiguous

claim about typicality, arguing that “the overall success of the scientific method so far

suggests that [the typicality assumption] is appropriate.” (Bousso et al., 2008, 1)

One can find subsequent reformulations of this broader typicality assumption in terms

of our “location” in the multiverse, such as the following: “In determining where in the

multiverse we are living, we make the assumption of typicality: we are equally likely

to be anywhere consistent with our data. This is called the ‘principle of indifference’.”

(Freivogel, 2011, 4, emphasis mine) If we consider that every region υ1, . . . , υn of the

multiverse susceptible of hosting life (that is, equally compatible with our data) is equally

likely to be realized (as we did earlier in step 1 of Weinberg’s argument), and if we then

count the number of “locations” that can possibly be occupied by observers in each of

these regions (i.e., the number of observers) ν1, . . . , νn, then we should, on this account,

consider that we are equally likely to find ourselves in one of these Ln =
n∑
i=1

υi·νi locations,

each with a probability of
1

Ln
, which makes it a priori more probable that I find myself

in a region of the multiverse where the greatest number of observers are.12

We will first see, in § 4.3.2, that attempts to justify this line of argument based on

solutions to the Sleeping Beauty problem rest on confusions about the nature of that

problem. We will then see, in § 4.3.3, that the motivation behind conditionalizing on

the number of observers initiated by Weinberg and still invoked today is analogous to an

argument made to defend the thirder’s position about the Sleeping Beauty problem; and

I will claim that this argument is flawed.

12Here, Freivogel echoes a method of “observation averaging” suggested in (Page, 2010): “I advocate
first constructing the ensemble of probabilities [i.e., the probabilities of life-permitting regions of the
multiverse] and then using typicality within that wider ensemble.”(Freivogel, 2011, 4, n. 1)
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4.3.2 Confusions about the Sleeping Beauty Problem

Interestingly, we can sometimes find in the cosmology literature explicit references to the

Sleeping Beauty problem (and the thirder solution in particular) to justify the broader,

ambigious formulation of typicality assumption according to which, as we just saw in

§ 4.3, we should consider that we are equally likely to be in the multiverse in any of the

locations consistent with our data; that is, that we are equally likely to be any of the

observers having experiences indistinguishable from our own.

If Beauty adopts this typicality assumption about her location, then, in the standard

setting of the Sleeping Beauty problem, she will conclude that she is equally likely to

wake up in one of the three possible locations: on Monday after a Heads toss, on Monday

after a Tails toss, or on Tuesday, necessarily after a Tails toss. However, this claim rests

on confusions about the Sleeping Beauty problem. Indeed, this claim entails the following

interpretation of the Sleeping Beauty problem, which for convenience I will call

the Indifferent Sleeping Beauty problem:

1. before she is put to sleep, Beauty is told that there is a nonzero proba-

bility that she will either be woken up once or twice,

2. she will have no memory of any possible awakening until the experiment

is over, and

3. each of the possible awakenings is as likely as any other.

With this interpretation of the Sleeping Beauty problem the probability of Heads is

consistent with the standard thirder answer to the Sleeping Beauty problem. However,

unlike in the standard version of the problem (or the one I gave, which is equivalent), the

probability of Heads is given to Beauty as a premise. In the Sleeping Beauty problem,

Beauty’s equal credence in her awaking in one of the three possible predicaments (Monday

after Heads, Monday after Tails, or Tuesday) is due to the fairness of the coin. In the
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standard Sleeping Beauty problem, there’s no equivalent to point #3 in the Indifferent

Sleeping Beauty problem.

Predictions in the multiverse that assume that we are typical observers based on the

assumption that, based on an entirely epistemic principle of indifference, all scenarios

generating our locations are equally likely are analogous to the Indifferent Sleeping Beauty

problem. These predictions are akin to a version of the problem in which we tell Beauty

that she should be indifferent about what determines her location when she wakes up. In

such a version of the Sleeping Beauty problem, she doesn’t need to know what process will

determine whether she will be awoken once or twice and can just assume that whatever

that process, it will make her location typical. In terms of the betting framework seen

earlier in § 4.2.2 (and in Appendix 4.A), it’s equivalent to asking one’s wager without

telling them what the bet is about.

It’s easy to see how such predictions don’t follow from the standard version of the

Sleeping Beauty problem. Suppose that, instead of a coin toss, it is the throw of a fair

die that will decide how many times she will be awoken: once if the die comes up 1, twice

otherwise. There is now only
1

6
chance that she will only be awoken once.

We can arrive at this result by correcting for Beauty’s questioner’s bias: she’s twice

as likely to be asked a question after a number other than 1 was rolled, which is five

times more likely to occur than the roll of a 1. We have P (2 to 5) = 10 × P (1) and

P (1) + P (2 to 5) = 1, and therefore P (1) =
1

11
. This result is incompatible with point

#3 in the Indifferent Sleeping Beauty problem.

Assuming that our place among observers in the multiverse is typical comes to as-

suming that the initial conditions for each “pocket universe” (at least those that are

life-permitting) are equally likely. With that assumption, making predictions in the mul-

tiverse would rest solely on how favorable to life each “pocket universe” is; it wouldn’t

depend anymore on the prior probabilities for their initial conditions. This indeed would

amount to asserting, without any justification, what Hartle and Srednicki (2007) call a
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“mere personal preference for theories in which we are typical of something.” This is

closer to a form of strong anthropic principle than to usual scientific practice.13 We will

see in § 4.3.3 in greater detail what argument could be more rigorously based on the

thirder solution to the Sleeping Beauty problem, but we will also see why it is unwar-

ranted.

It should be noted that if one uses the work of Adam Elga—and in particular his

defense of the principle of indifference in the case of self-locating uncertainty in (Elga,

2004)—to justify assumptions of typicality in the multiverse, one in fact makes “an absurd

claim that [Elga] do[es]n’t endorse,” namely that all physical processes or hypotheses

having the same observable consequences are equally likely.14 Elga distinguished this

claim from another, uncontroversial claim that he endorses, namely that states differing

only on indexicality deserve equal credence (which doesn’t mean that our credence should

necessarily be evenly divided among all states differing only on indexicality). Sebens

and Carroll (2015) discussed a roughly formulated principle of indifference for cases of

self-locating uncertainty adapted from (Elga, 2004), according to which “an observer

should give equal credence to any one of a discrete set of locations in the universe that

are consistent with the data she has”; to avoid possible confusion about this claim, we

should add the following proviso, implicit in (Elga, 2004): “provided all those locations

are equally likely to exist.”15

13Bostrom (2002) has pointed out what he calls the problem of the Presumptuous Philosopher: if the
likeliest theory is, a priori, the one that predicts the largest number of observers, then any theory choice
could be made by any presumptuous armchair philosopher.

14Or with Elga’s terminology: “centered worlds representing indistinguishable predicaments deserve
equal credence” (Elga, 2004, 387).

15To be sure, conditional on the multiverse scenario, all possible observers are guaranteed to exist. The
relative likelihood of their existence is determined in one region of the multiverse or another by the ratio
of the occurrence of these regions. There, Sebens and Carroll are concerned with claims evoked earlier
in fn. 2 according to which indifference in cases of self-locating uncertainty would amount to branch
counting—and therefore have disastrous empirical consequences—in Everettian quantum mechanics.
However, it is questionable whether considerations about self-locating uncertainty add anything new in
this context, or to our usual treatment of predictions in physics more generally.
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4.3.3 Anthropic Reasoning

Now, let’s go back to the argument presented at the beginning of this section in § 4.3.1

and assume that we have a well-defined, physically-motivated prior distribution over the

possible values of a given cosmological parameter. What should we make of step 3 of

that argument, namely conditionalizing a prior distribution over the possible values for

the cosmological constant on the number of observers each of them allows for?

We saw that, according to, e.g., Weinberg (1987); Bousso (2006), we should, other

things being equal, have greater credence in a cosmological model that is more favorable

to the advent of life, because then it is more likely that it will be observed. There are

different possible ways to do that. Conditionalizing a distribution for a given parameter

on some of its observable consequences is uncontroversial. One might think that by taking

the number of galaxies as a proxy for the number of observers, Weinberg conditionalized

his predictions on an observable consequence. Indeed, we can determine the number or

the density of galaxies in our observable universe. But that’s not what he suggested:

by only conditionalizing on the number of galaxies as a function of a given parameter

value, he assumed that we are more likely to find ourselves in a universe with the greatest

possible number of galaxies.

Sometimes challenges to this sort of anthropic argument focus on whether the number

of galaxies is the right proxy (see, e.g., Aguirre, 2001), or point out that its results depend

heavily on the choice of reference class, that is, on how “observer” is defined: does any

life form count, only intelligent life forms, or should the amount of “observation time”

matter more than the number of observers? But such challenges don’t always question

the assumption that I can take my own existence (as an observer) to be an indication

of anything more than the mere fact that I exist (for instance, that it is likely that I

exist).16

16A related assumption is what Bostrom calls the “Self-Indicating Assumption,” according to which
“[g]iven the fact that you exist, you should (other things equal) favor hypotheses according to which
many observers exist over hypotheses on which few observers exist.” (Bostrom, 2002, 66). As we already
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Anthropic reasoning proceeds from the assumption that we are typical observers

among all possible observers, which was typicality assumption #2 in § 4.3.1. In the

cosmology literature, this assumption is usually presented as an intuition, but not jus-

tified. We can see, however, that, if the thirder solution Elga (2000) gave as a solution

to the Sleeping Beauty problem is valid, then it can be generalized to support anthropic

reasoning. I will present Elga’s solution in greater detail than in § 4.2.1, then formulate

a plausible generalization of this argument. I will then show that Elga’s argument is

flawed, and so is the generalized version.

Recall the quantities and equalities invoked by Elga (2000). They can be summarized

in the following table:

Monday Tuesday

Heads cr(H&M) = A ∅

Tails cr(T&M) = B cr(T&U) = C

According to Elga, we have:


A = B

B = C

A = B = C =
1

3

(4.1)

More precisely, to make this assertion, Elga first argued that, conditional on being

awake on Monday (which occurs whether the coin lands Heads or Tails), your credence

in H is just the chance PH that H is true.17 Here, one must assume that it doesn’t make

a difference to our credence in H whether it is determined before or after the first room

saw in Chapter 3 and above in n. 13, Bostrom doesn’t endorse this assumption (see Bostrom, 2002, §7).
17Elga has to assume that our credence in H, cr(H), can differ from the chance that H occurs,

PH . Otherwise the question asked to Beauty about her credence in H in the middle of the experiment
wouldn’t be interesting (it would be one half whether or not she is in the middle of the experiment as
long as she believes the coin to be fair).
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has already been created (i.e., whether the coin is thrown on Sunday night or on Monday

night).18 We then have:

cr(H|M) = cr(T |M) = PH . (4.2)

Second, Elga claims that, conditional on T , my credences are evenly divided among

the two times Beauty could be awake (Monday or Tuesday).19 That is, we have

cr(M |T ) = cr(U |T ). (4.3)

Those two conditions and Bayes theorem determine the ratio
cr(H)

cr(T )
as follows:

cr(H)

cr(T )
=
cr(M |T )

cr(M |H)
· cr(H|M)

cr(T |M)
=

1
2

1
· PH
PT

=
1

2
, (4.4)

since it is assumed that PH = PT .

The generalization of this solution to an argument in support of anthropic reasoning

follows immediately from the special case.20

Imagine that, for all k ∈ {1 . . . N}, the number of people created nk is determined by

the throw of a N−sided die (not necessarily a fair die). Let hk be the proposition that

k was rolled. Let Pk be the chance that hk is true. Assume also that, for all k, if hk is

true then nk identical rooms are created, each occupied by one of the nk people. Let ri

be the proposition that I am in room i. The generalized Sleeping Beauty problem is the

following question: knowing only, for all hypotheses hk, the corresponding values Pk and

18To illustrate the intuitive motivation for this argument, consider the following scenario: you have a
flat tire in the middle of the woods and you call Otto+, your auto insurance. But you don’t remember
what insurance policy you purchased: the normal plan, with which they send you a mechanic, or the
“above and beyond” plan that not only guarantees you a mechanic but also, five minutes later, a chamber
orchestra to provide you high-quality entertainment while your tire is being changed. The arrival of the
mechanic doesn’t change either of your credences that you purchased one policy or the other, since she
will come whichever policy you purchased.

19From the setup of the problem, conditional on H, my credence in being woken on Monday in the
middle of the experiment must be 1.

20I am indebted to Wayne Myrvold for this generalized argument’s formulation.
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nk, and that I am in one of the nk rooms, what should be my credence in hk?
21

We can summarize the situation with the following table, for two such hypotheses hi

and hj:

r1 . . . rni . . . rnj

hi cr(hi&r1) . . . cr(hi&rni) ∅ ∅

hj cr(hj&r1) . . . cr(hj&rni) . . . cr(hj&rnj)

We can therefore consider that my situation as an observer taking part in that exper-

iment is analogous to that of Sleeping Beauty: it is as if I were asked about my credence

in hk and knew that, conditional on hk, I could equally likely be placed in any of the rnk

rooms.

The argument proceeds in the same two steps as in (Elga, 2000). First, we need to

argue that, conditional on being in the first room (which is occupied on all hypotheses),

my credence in hk is just the chance that hk is true. To do so, one must assume, like

we did earlier, that it doesn’t make a difference to our credence in hk whether it is

determined before or after the first room has already been created (i.e., whether the die

is rolled before or after the creation of the first room). In order to make this hypothesis,

we have to consider that, like in the Sleeping Beauty problem, when I am asked about

my credence in hk, I have no memory of several “awakenings” that may have occurred

in the past. In the context of anthropic reasoning, we can give the following analogy:

if hk is true, then rooms in which there are observers who have experiences identical to

my own are created at different times. For this situation to be analogous to the Sleeping

Beauty problem, we can assume that the complete generation of all possible observers

happens in two times: a first observer is created (it might be me, for all I know), and

then all other possible observers will be created at once (I might be one of them, and

I don’t know how many of them there are). How many other observers will be created

21The Sleeping Beauty problem is the special case where N = 2, h1: Heads, h2: Tails, P1 = P2, and
n2 = 2 · n1 = 2.
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depends on hk, the chance of which we know to be PK . Like in the Sleeping Beauty

problem, someone with experiences identical to mine existed before hk was decided, and

I don’t know if I find myself before or after this moment.22 Then, on this account, for

all hypotheses, conditional on being the first observer ever created, my credence in hk

should just be the chance of hk, namely Pk.

In other words, with this assumption, we have a general formulation of the first

conditions given in the special case—i.e., eq. (4.2):

∀k, cr(hk|r1) = Pk. (4.5)

Second, we show that for all k and conditional on hk, my credences are evenly divided

among r1, . . . , rnk . That is, we have the following generalization of eq. (4.3):

∀k, ∀i, j ∈ {1 . . . nk}, cr(ri|hk) = cr(rj|hk) =
1

nk
. (4.6)

Those two conditions and Bayes theorem determine, for any i, j, the ratio
cr(hi)

cr(hj)
the

following generalization of eq. (4.4):

cr(hi)

cr(hj)
=
cr(r1|hj)
cr(r1|hi)

· cr(hi|r1)

cr(hj|r1)
=
ni
nj
· Pi
Pj
. (4.7)

According to this argument, it is therefore rational to set my credences in hi and hj

such that cr(hi)/cr(hj) is boosted by ni/nj, which is exactly what anthropic reasoning

dictates we should do.

Cisweski and her collaborators, in (Cisewski et al., 2015, § 3), have claimed that

“thirder” position , assumed in this generalized argument, rests on an inadequate par-

tition of Beauty’s space of possibilities. According to them, the flaw lies in the fact

22In the Sleeping Beauty problem, Beauty doesn’t know if she is awoken on Monday or Tuesday.
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that the sets of events {M&H,M&T, U&T} or {M,U} don’t form a partition of her

space of possibilities. Yet Elga’s inductive probabilistic reasoning by case (whereby he

determines an unconditional credence from conditional credences) requires that we rea-

son from Beauty’s exhaustive and mutually exclusive possibilities (i.e., a partition of her

space of possibilities).

Consequently, Cisewski et al. argue, if the set of events from which we reason is

exhaustive but is not a partition, then probabilistic reasoning follows what they call the

“Law of Too Much Probability”. For example, for two conditions χ1 and χ2 such that

χ1 ∪ χ2 = Ω and χ1 ∩ χ2 = χ3 6= ∅, then we have

cr(E) = cr(E|χ1) · cr(χ1) + cr(E|χ2) · cr(χ2)− cr(E|χ3) · cr(χ3). (4.8)

In the middle of the experiment, Beauty can’t have access to any information that

would help her know when “today is Monday” is true and “today is Tuesday” is not.

She is unable to substitute either specific day for “now”, and, for her in the middle of

the experiment, “now” can’t pick out anything other than M ∨ U . Therefore, on this

account, the partition of Beauty’s space of possibilities can only be {H&M,T&(M∨U)},

which is equivalent to simply {H,T}. Thus Beauty’s credence in H shouldn’t change in

the middle of the experiment.

If one grants that the partition in the Sleeping Beauty problem is a flawed one, then

one has to conclude that Elga’s generalized argument, too, suffers from an inadequate

partition. My earlier presentation of this argument didn’t distinguish carefully between

two situations: being located in time before or after the creation of the first room.

Without this distinction, the analogy with the Sleeping Beauty problem would break

down, and then we couldn’t make the assumption formulated in eq. (4.5) that, conditional

on being in the first room, my credence in hk is just the chance Pk that hk is true.

In order for the generalized argument to resemble more closely and unequivocally

the Sleeping Beauty problem, we should make the distinction between the following two
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situations:

- r∗1: “I am in room 1 before the roll of the die that determines whether hk is true,”

and

- r1: “I am in room 1 after the roll of the die that determines whether hk is true,”

so that r∗1 is analogous to M , and r1, . . . , rnk to T .

With this additional distinction, we make sure that the set {r∗1, r1, . . . , rnk} is ex-

haustive of all the situations an observer could find herself in. But, like Beauty during

the experiment, this distinction wouldn’t be apparent to that observer. According to

Cisewski and collaborators, this distinction can’t affect this observer’s partition, and the

anthropic argument fails.

However, one might argue that the issue of whether Beauty can see the set of events

{M&H,M&T, U&T} as a partition doesn’t depend on whether she can distinguish its

members. Yet one need not agree with Cisewski and her collaborators to see why con-

clusions from the Sleeping Beauty problem don’t carry over to anthropic reasoning.

In effect, the conditions for observation bias to occur and affect Beauty’s credence

about the coin toss don’t exist in the anthropic case. In both cases, our credence in a

physical event depends on the chance of that event (which depends on the coin’s fairness

in the Sleeping Beauty problem, and on the relative presence of a part of the multiverse

having properties favorable to the advent of life in the case of anthropic reasoning).

However, the distinction made above between the two “locations” r∗1 and r1, necessary

for the anthropic argument to be analogous to the Sleeping Beauty problem, would be

completely artificial. Indeed, there is nothing in the anthropic argument considered above

that plays a role analogous to that of Beauty’s questioner. That is, in the multiverse, we

are only “awake” once; we only occupy one location in the multiverse. Consequently, in

the anthropic argument, there is no room for the kind of observation bias that is at play

in Elga’s problem.
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Therefore, eq. (4.5) should hold only for r∗1 (i.e., before the die roll), but not for r1

(i.e., after the die roll), and for clarity we should replace it with the following:

∀k, cr(hk|r∗1) = Pk. (4.2’)

Moreover, eq. (4.6) should only apply to r1, . . . , rnk (i.e., after the die roll), and we

have

cr(hk) =

nk∑
i=1

cr(hk|ri) · cr(ri), (4.9)

which is just the law of total probability if we forget the artificial situation r∗1. In

eq. (4.9), eq. (4.2’) is irrelevant. Consequently, unlike with eq. (4.4), there is nothing we

can deduce as to the relative likelihood of two hypotheses hi, hj based on the relative

number of observers they produce. Thus eq. (4.4) becomes

cr(hi)

cr(hj)
=
Pi
Pj
. (4.4’)

Knowing that I exist and without observing any other humans, this doesn’t allow me

to assert that I should have more credence in a hypothesis based only on the fact that it

is more favorable to the advent of life. On the other hand, with the partition of events

{r1, . . . , rnk} (i.e., without considering r∗1), we can use Bayes theorem to have

∀k, cr(hk|r1) =
Pk

nk · cr(r1)
. (4.2’)

Although this prevents anthropic considerations to alter our credence in any hypoth-

esis hk, eq. (4.2’) allows us to update our credence in the hypotheses hk upon learning r1,

which eq. (4.5) didn’t allow for. Indeed, eq. (4.5) assumed, without any physical justifica-

tion, that all hypotheses conditional on being in the first room were equally likely. As we

saw, without the questionable assumption in eq. (4.5), knowing that I exist and without

observing any other humans, I shouldn’t have more credence in a hypothesis based only
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on the fact that it is more favorable to the advent of life.

In § 4.3.1, we saw that considerations about how typical a hypothesis makes us

shouldn’t affect our credence about that hypothesis. Appendix 4.B shows how to reach

the same conclusion within the betting framework. In this section, we saw how anthropic

reasoning could be made analogous to the Sleeping Beauty problem. Since the Sleep-

ing Beauty problem is an exemplary puzzle about how self-locating beliefs should affect

our credences (much like anthropic considerations should do if anthropic reasoning were

valid), one might have hoped that, if the thirder position were true, it could be used

to justify anthropic reasoning. We saw, however, that the new element the “thirder”

solution purports to bring to such arguments is flawed. Consequently, we are compelled

to conclude, as we did earlier in § 4.3.1, that favoring hypotheses on the grounds that

they make our location more typical is unwarranted.

Therefore, in the case of the cosmological constant problem for instance, the mere fact

that we exist and how favorable to the advent of life a model is cannot guide our cosmo-

logical predictions and confirmations, whether or not we have a physically well-motivated

prior probability distribution over the different possible value of the vacuum energy den-

sity. We can, however, conditionalize on observable consequences of the possible values

a parameter may take. But that has nothing to do with anthropic reasoning.

4.3.4 Testing the Copernican Principle

Previously we wondered whether we should have greater credence in a cosmological model

if it allows for the existence of more observers having experiences indistinguishable from

ours. It is possible to rephrase that question as follows: should we have greater credence

in a cosmological model if it allows for the existence of more locations from where obser-

vations would be similar to our own? If so, then if we have a choice between two models

compatible with our data, then, other things being equal, we should have greater credence

in one that doesn’t require us to occupy a special position. This is what the Coperni-
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can principle prescribes, and it has very real implications for our choice of cosmological

models.

Consider a cosmological model characterized by the usual six free parameters of the

ΛCDM model describing the matter-energy content of the universe, the spatial distri-

bution of primordial density fluctuations, and the effect of ionizing radiation.23 One of

its parameters corresponds to the density of baryonic (i.e., non-dark) matter, and it is

not given by background theoretical assumptions. Therefore, it can only be constrained

from observation.24 To do so, we assume that, at large scales, the distribution of matter

is homogeneous and isotropic. This assumption is called the Cosmological Principle, and

it plays a transcendental role in much of cosmology: the homogeneity and isotropy of the

universe at large scales are essential ingredients for the Friedmann-Lemâıtre-Robertson-

Walker metric, an exact solution of Einstein Field Equations of general relativity consid-

ered to be the standard model of cosmology.25

Such cosmological models as well as the interpretation of our cosmological data usually

rest on the assumption that the apparent spatial homogeneity and isotropy doesn’t stem

from our having a very special point of view on our cosmic neighborhood. In doing so,

we assume that we are not atypical observers, i.e., that the distribution of matter we

can observe is representative of the average distribution of matter in the universe. To

justify this last assumption, one can invoke the principle of sufficient reason: we shouldn’t

presume that there is anything special about our cosmic surroundings, unless we have a

good reason to do so.

23For the latest data see, e.g., (Planck Collaboration, 2014). Such a model characterizes our “pocket
universe”. I am not here considering the possible existence of other “pocket universes”.

24Such constraints on matter density or the cosmological constant can be data from the cosmic
microwave background, baryonic acoustic oscillations, and measurements from supernovae (see, e.g.,
Gong et al., 2013).

25The isotropy of the universe at large scale is an empirically established fact, but only for the
observable universe. This fact is used to support the adoption of the Copernican principle, which
may be empirically testable. However, the isotropy and homogeneity at even larger scales—beyond the
boundaries of the observable universe—is what the Cosmological principle asserts. This assumption isn’t
testable to the same extent as the Copernican principle. Yet the Cosmological principle is necessary to
derive the FLRW metric. On the distinction between these two principles and their testability, see, e.g.,
(Beisbart and Jung, 2006).
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Adopting the Copernican principle has consequences for our choice of cosmological

models:

This implies that the spacetime metric reduces to a single function of the

cosmic time, the scale factor a(t). (. . . ) Low redshift observations combined

with the assumption of almost flatness of the spatial sections, justified mainly

by the cosmic microwave background data, lead to the conclusion that (. . . )

the expansion is accelerating. This conclusion involves no hypothesis about

the theory of gravity or the matter content of the universe, as long as the

Copernican principle holds. This has stimulated a growing interest in possible

explanations, ranging from new matter fields dominating the dynamics at late

times to modifications of general relativity. (Uzan et al., 2008, 1)

In other words, if we endorse the Copernican principle, we need to account for the ap-

parent accelerating expansion of the universe. As suggested in the last quote, important

aspects of our theoretical background are at stake (see Uzan, 2010; Huterer, 2011, for

reviews). We are now facing a choice: we can either hold on to the Copernican Princi-

ple but then may have to postulate a mysterious dark energy, or we can renounce the

typicality of our location. As Uzan et al. argued, renouncing the Copernican Principle

would have as a consequence that “we may be living close to the center (because isotropy

around us seems well established observationally) of a large underdense region.” (Uzan

et al., 2008, 1)

Let cr(H) denote our credence that the universe around us is isotropic and homoge-

neous (which is what the Copernican Principle asserts), cr(¬H) our credence that it is

isotropic but inhomogeneous. Let {rn} be the set of n possible locations compatible with

our data about our cosmic surroundings. Like we had in § 4.3.3, there will be far many

more such locations with H than with ¬H. Now, let’s ask, like in § 4.3.3, what role, if

any, should the fact that H makes our location and the observed isotropy typical play in
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our credence in H? How confident should we be that our location is typical even if we

have a good reason to suspect that it isn’t (such as the the need to posit dark energy)?

This situation is analogous to anthropic reasoning discussed in § 4.3.3. We can indeed

use eq. (4.7) to compare our respective credence in H and ¬H relative to how typical

our location is under each hypothesis:

cr(H)

cr(¬H)
=

cr(H|rH)

cr(¬H|r¬H)
· cr(r¬H |¬H)

cr(rH |H)
, (4.10)

with rH , r¬H the total number of locations from which we could observe isotropy un-

der hypotheses H,¬H, respectively. The conclusions from §§ 4.3.1, 4.3.3 apply here as

well: as I have shown in Appendix 4.B, the betting framework compels us to assert that

considerations about our typicality and the number of locations compatible with our ob-

servations don’t affect our prior credences cr(H) and cr(¬H). I have shown that attempts

to argue otherwise don’t succeed: either such attempts conflate two senses of typicality

assumption, or they rest on flawed probabilistic arguments. Consequently, the answer to

questions about the role of self-locating uncertainty for testing the Copernican principle

will be identical to that given to questions about the role of anthropic considerations.

Now, we can see that for this inquiry, like for the other problems we considered

previously, obtaining additional evidence—and not considering relative self-locating un-

certainties as we did it—can guide us. In this case, for instance, Uzan et al. (2008)

showed that measuring the time drift of cosmological redshifts would provide us with

that sort of evidence. Consider our past light cone (see Fig. 4.1, left). We move on our

universe line, and so does a galaxy, observed at a time t with redshift z. Consider then

our past light cone at a time t + δt. That same galaxy has also moved during δt and is

now seen with a redshift z + δz (see Fig. 4.1, right).

The redshift is linked to the scale factor a(t) as follows:

1 + z =
λrec
λem

=
a0

a
, (4.11)
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Figure 4.1: Illustration of the drift δz over δt, from (Uzan, 2010, § 1.2.4)

where a0 is the scale factor at the time of the emission, and a that at the reception. If

going from z to z + δz is compatible with the Copernican principle, then we have:

ż = H0(1 + z)−H(z), (4.12)

with H0 at emission and H at reception (see Sandage, 1962) Now, if only isotropy is as-

sumed, but not homogeneity, then for an observer at the center of a spherically symmetric

universe, we have:

ż = H0(1 + z)−H(z) +
1√
3
σ(z), (4.13)

with σ(z) = 0 if homogeneous. z can be determined observationally (e.g., with type Ia

supernovæ) without assumptions regarding homogeneity.

Assuming we can carry out this experiment,26 considerations about the relative degree

of our self-locating uncertainty will not help us settle this issue. Either we observe an

inhomogeneity (i.e., σ(z) 6= 0, which would confirm H) or we don’t. If we observe

evidence of the inhomogeneity of our cosmic neighborhood and at the same time remain

committed to the Cosmological principle, then the adoption of the Copernican principle is

unwarranted, regardless of considerations of the initial self-locating uncertainty borne by

26According to (Uzan, 2010, § 1.3.1), a typical order of magnitude is, for z = 4: δz ≈ −5 · 10−10 over
a period of time δt ≈ 10yr. So-called “extremely large telescopes,” now under construction, may allow
for such observations.



4.4. Conclusion 101

different hypotheses about this homogeneity. In other words, what matters in an inquiry

about our location (namely here, what our cosmic neighborhood is like) is empirical

evidence about our location, not how typical each hypothesis about our location makes

us.

4.4 Conclusion

There is a clear motivation to assess how self-locating uncertainty can bear on our knowl-

edge of the world in cosmology where fundamental physical theories to explain, e.g., the

value of the cosmological constant are lacking. Therefore, it’s not surprising that the

Sleeping Beauty problem has made its way through the cosmology literature. This in

turn provides philosophers with an interesting playground. I have argued, on the con-

trary, that the Sleeping Beauty problem has nothing new to contribute to confirmation

and evidential reasoning in cosmology; it merely dictates that one should modify their

belief when they obtain information about their observation bias.

Typicality assumptions often used in cosmology intend to handle self-location uncer-

tainty by assigning equal probability to locations or to models consistent with our data.

Although this reasoning would yield the same solution to the Sleeping Beauty problem

as one reasoning in terms of sampling bias, it rests on a principle of indifference with

which our results are epistemic rather than physical and evidence-based in nature.

In this paper I have dealt with two different situations, and two corresponding typi-

cality assumptions:

- In § 4.2.1, we saw that the Sleeping Beauty problem should be construed as a

problem about how to correct for observation bias (i.e., how to handle information

about, e.g., the reliability of our observation device). In this context, a typicality

assumption tells us that, unlike information about our data or their reliability,

information or uncertainty of purely indexical character shouldn’t affect how we
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reason about the evidence we have. For instance, if Beauty didn’t know about her

questioner’s bias, and if she could keep a tally of her correct responses (and if she

considers her questioner’s identity to be irrelevant in this regard), she would soon

conclude that the coin is biased toward Tails.

- In § 4.3, in the case of anthropic reasoning or the Copernican principle, an as-

sumption of typicality has the effect of giving a confirmatory boost to theories that

make our position as observer (whether the number of observers or the number of

observational standpoints) typical.

These two typicality assumptions have very different effects on confirmation: the

former tells us that, without a good reason to suspect otherwise, we should treat our

data as if they were representative of what anyone else in a similar situation (with respect

to what we think are relevant conditions) would obtain; the latter tells us, without any

physical justification, to have a bias towards theories that make us typical. In the context

of anthropic reasoning, this would be equivalent to the claim that that nature is good to

us; put differently, this second kind of typicality assumption favors cosmological models

that are fine-tuned for life. Other things being equal, one type of assumption, the first

one, is neutral with respect to confirmation and induction, whereas the second introduces

an unwarranted bias.

Self-locating beliefs (i.e., our knowledge about our “location”, broadly construed) can

contribute to our knowledge of the world, but only qua knowledge of possible observation

bias. As a consequence, it’s not the case that self-locating uncertainty is distinct from

uncertainty about what the world is like in a way that requires any special treatment in

confirmation theory.
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4.A Appendix A: Beauty’s Credence and Betting

Behavior

Below is a summary, adapted from (Cisewski et al., 2015), of how to calculate Beauty’s

credence about the coin toss’s result based on de Finetti’s method for eliciting a personal

probability from betting behavior.27

According to de Finetti (1974), the probability that an agent assigns to an event E

can be elicited by asking how much she is willing to bet that E, knowing that she would

earn $1 if E and $0 otherwise. That price, p, is the elicited probability of E. If p is the

price of the gamble and x the probability of E, the expected utility of the gamble is x−p.

A fair bet is one where the agent expects neither gain nor loss (p = x).

More generally, for any variable X (a real-valued function defined on the state space

Ω), pX the agent’s price for X, βX,pX a real number set up by the opponent, the gambles

the agent will be willing to enter are of the form

βX,pX [X − pX ]. (4.14)

For the agent, the bet is fair if pX = X. If β > 0, the agent pays βpX in order to receive

βX in return, and if β < 0, the agent receives βpX in order to pay βX in return. In any

case, a gamble is advantageous to the agent if X > pX and more or less risky depending

on the value of β.28

The general formula for the net cash flow of the series of bets Beauty can enter is as

follows: ∑
i

βiF (ω)[Ci(ω)(xi − pi)], (4.15)

27In Appendix 4.B, I use this formalism in the context of many possible self-locations (e.g., when
there are copies of myself).

28In the general case, X, pX , β can be any real number. In the previous example, we had x = X,
β = $1, and p = pX , with x, p ∈ [0, 1]. Having β = 1 makes p comparable to a probability measure.
This is de Finetti’s method for eliciting a personal probability (or credence).
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with i ∈ {MH,MT,UT}, C the result of the coin toss (either C = H or C = T ),

xi ∈ {a, b, c}, and pi = pa,b,c the price for the series of bets Beauty can enter. Let’s assume

that for all i, βi = β. The net cash flow corresponding to the series of bets Beauty can

enter is as follows:

∑
i

βiF (ω)[Ci(ω)(xi − pi)] = βF (ω)[H(ω)(a− pa,b,c) + T (ω)(b− pa,b,c) + T (ω)(c− pa,b,c)]

(4.16)

= βF (ω)[H(ω)(a− pa,b,c) + T (ω)(b+ c− 2pa,b,c)].

Beauty would pay pa,b,c twice if the coin lands Tails, but only once if Heads. Now, since

for all ω, H(ω) = 1− T (ω), the net cash flow can be written as

βF (ω)[H(ω)(a− b− c+ pa,b,c) + b+ c− 2pa,b,c]. (4.17)

The standard Sleeping Beauty problem (the first one presented above in §1) corre-

sponds to a = 1 and b = c = 0. That is, upon awakening, Beauty is asked her price

for the bet that MH happens (and therefore a is expected) and neither MT nor UT

happens. The net cash flow then can be written as

βF (ω)[H(ω)(a− b− c+ pa,b,c) + b+ c− 2pa,b,c] = βF (ω)[H(ω)(1 + p1,0,0)− 2p1,0,0]

(4.18)

= β(1 + p1,0,0)F (ω)

[
H(ω)− 2p1,0,0

1 + p1,0,0

]
.

Since β can be determined after p has been announced,29 we can rewrite the net cash

29Side note: we saw earlier that the sign of β would affect how to interpret the gambling process.
But here p1,0,0 > 0 and therefore the sign of β doesn’t depend on it.
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flow as

βF (ω)[H(ω)− x], (4.19)

with x =
2p1,0,0

1 + p1,0,0

. In this form, one can elicit Beauty’s credence in H(ω). A fair

price for this gamble is indeed such that x = H(ω), which corresponds to the probability

of H in the event that F (ω) = 1—i.e., the probability of H conditional on F , P (H|F ).

This is a crucial result for the analysis of the role of self-locating uncertainty: a credence

in an event and a fair price for a bet about that event are distinct, and they don’t always

have the same value. Now, assuming that Beauty is necessarily awake when she is asked

about P (H), ω is necessarily such that P (F ) = 1 and P (H|F ) = P (H). Assuming that

the coin is fair, we then have

P (H|F ) = P (H) =
1

2
. (4.20)

What Beauty considers to be a fair price for the standard Sleeping Beauty bet is not

directly her credence in H. Indeed, we have x =
2p1,0,0

1 + p1,0,0

and then

p1,0,0 =
x

2− x
=

1

3
. (4.21)
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4.B Appendix B: Bets and Credence with Many Pos-

sible Self-Locations (or Copies of Myself)

We can see that, unlike the Sleeping Beauty problem, anthropic reasoning is not about

observation bias. Within the betting framework, we can see that considerations about

the number of other possible copies of myself I could be, or locations I could find myself

in, won’t affect my betting price.

Consider an example similar to that of § 4.3.3: a version of the Sleeping Beauty

problem where if Heads, there will be m copies of myself, n if Tails (m < n and as in

§ 4.3.3, assume that the first m in either scenario are identical). Knowing that the coin

is fair, should that affect my betting price that the coin came up Heads?

Let’s proceed as in Appendix 4.A. Beauty can enter one of m + n possible bets (or

that there are m + n possible situations in which she can enter that bet): if H1 (H and

she’s observer #1), if H2, and so on. The payoff is a if H and b otherwise. Let’s make

the same assumption about β as in Appendix 4.A.

Following eq. (4.15), the net cash flow in this situation can be written as

β

 m∑
i=1

P (Hi)(a− p1,0) +
n∑
j=1

P (Tj)(b− p1,0)

 . (4.22)

Now, we have

m∑
i=1

P (Hi) = P (H), (4.23)

n∑
j=1

P (Tj) = P (T ) = 1− P (H). (4.24)

Unlike in the standard Sleeping Beauty problem, the price p1,0 is paid only once if

Heads and only once if Tails. Thus any consideration about self-locating uncertainty

vanishes. Here, the betting price and credence are identical.
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Chapter 5

Simplicity and Unification in
Cosmological Model Selection

5.1 Introduction

In the last two or three decades, cosmology came of age and left a time with “only

21
2

facts”1 to enter a “precision era” defined by increasingly precise measurements of a

number of cosmic parameters. Driven by a new wealth of data, cosmologists have then

turned their attention to statistical and Bayesian model comparison methods.

Model selection in cosmology consists in identifying the relevant parameters necessary

to characterize our universe, its composition and evolution, and the values of these pa-

rameters. Cosmological parameters can be the cosmological matter, baryon, or radiation

densities, the Hubble parameter characterizing the spatial curvature of the universe, the

cosmological constant Λ, etc.(see Liddle, 2004, for a review of candidate parameters for

cosmological models). The Λ-cold dark matter (ΛCDM) model, for instance, is a widely

used parametrisation of the Big Bang model based only on 6 of such parameters. Com-

peting models may require a different number of such parameters, each tuned at different

values; for instance, the ΛCDM model can be extended to include cosmological inflation

or other processes to account for the evolution of the early universe.

1According to Peter Scheuer in 1963, “1) the sky is dark at night, 2) the galaxies are receding from
each other as expected in a uniform expansion, and 21

2 ) the contents of the universe have probably
changed as the universe grows older.” (quoted in Longair, 1993, 160).
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Among such competing cosmological models, however, the values of some of their

parameters (their free parameters) may be left undetermined by our background theories,

and can only be constrained observationally. It is in that context that cosmologists

have recently started to appeal to Bayesian and statistical model selection methods (see,

e.g., Trotta, 2008, 2012; Liddle, 2009; Hobson et al., 2010, for recent reviews). These

model selection—or, rather, comparison—methods rely on likelihoodist and Bayesian

criteria such as the Bayes factor (the ratio of models’ Bayesian evidence), the Bayesian

Information Criterion (BIC), or other information criteria such as the Akaike Information

Criterion (AIC).2

Bayesian methods often need to make reference to prior probability distributions; how-

ever, in cosmology, this would require measures over the space of cosmological models

that are well-defined, well-behaved, but also physically motivated. In addition to con-

ceptual and technical difficulties to define such measures (see, e.g., Schiffrin and Wald,

2012), fundamental theories motivating cosmological parameters are lacking. In the ab-

sence of well-motivated prior probabilities for cosmological models, cosmologists appeal

for instance to what is called the “Astronomer’s prior,” a uniform distribution over a

given range of models among which we are indifferent a priori.

To compare two modelsM1 andM2 assumed to be equiprobable, the Bayes factor—

the ratio of the models’ evidence p(data|M1)
p(data|M2)

—selects the model giving the best fit between

data and model. However, in the absence of well-motivated prior distributions for cos-

mological parameters and models, and without a priori constraints on how complex our

models can be, fit-to-data alone is a poor selection criterion. Indeed, some models will

be able to achieve better fit-to-data simply in virtue of having more free parameters.

Therefore, because model selection criteria such as the BIC or the AIC tend to op-

timize the number of free parameters (i.e., introduce a parameter only if it significantly

2There exist other information criteria (see Spiegelhalter et al., 2002; Konishi and Kitagawa, 2008,
for reviews). Among these other criteria, the Deviance Information Criterion (DIC) is sometimes used
in cosmology (Liddle, 2007). The BIC and the AIC are the two main such criteria, on which many other
criteria are based.



112Chapter 5. Simplicity and Unification in Cosmological Model Selection

improves fit-to-data), they are seen as more refined and more discerning than methods

that merely tend to maximize the likelihood of data given a model. Both in the cosmol-

ogy literature and the philosophy literature, they are often introduced as acting as an

Ockham’s razor, i.e., as seeking ontological parsimony.

This account is prevalent in cosmological selection in cosmology. For instance, Kunz

et al. (2006) or Martin et al. (2011) used a measure of Bayesian complexity, a correction of

the Bayesian evidence which simply measures a model’s goodness-of-fit, meant to reward

a model with parameters that are fewer and defined over smaller ranges. Relatedly,

Andrew Liddle suggested to “use the Akaike and Bayesian information criteria to carry

out cosmological model selection, in order to determine the parameter set providing the

preferred fit to the data” and so as to conclude, for instance, that spatially flat models

are “statistically preferred” to closed models (Liddle, 2004, 49).

The rationale behind the use of Bayesian complexity, the AIC, or the BIC, rather

than the Bayes factor, is often limited to claims about the need for a balance between

fit-to-data and model complexity (in terms of number of its free parameters). Indeed,

main introductory texts justify this approach by invoking Ockham (see, e.g., Trotta,

2008, 2012; Hobson et al., 2010, §§ 5–7).3 Thus they echo claims about the importance

of parsimony as a model selection criterion that are widespread in the statistics literature

as well as in central philosophical publications on model selection (see especially Forster

and Sober, 1994; Forster, 2000; Sober, 2008, § 1.7). This view rests on the notion that,

because selecting models based only on their ability to fit the data may lead to overfitting

the data, we should instead weigh each parameter against its informativeness and penalize

those parameters that increase fit only marginally or not at all. In other words, model

selection should aim at reaching a balance between fit and complexity because we should

avoid overfitting. It is this claim that I here want to assess.

3Liddle didn’t explicitly mention the medieval logician in (Liddle, 2004), where he gave more elabo-
rate arguments to justify these criteria (see also Liddle, 2009). But we will see in § 5.3 why the specific
context of cosmology makes their use problematic.
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In § 5.2.1, we will first see, for model selection in general and in cosmology in partic-

ular, what motivates the search for criteria that go beyond fit-to-data that likelihoodist

methods estimate. We will see why it is often argued that simplicity should guide model

selection in that regard. Some philosophers have disputed the relevance of simplicity—

an ambiguous and possibly arbitrary notion—as a criterion for model selection. John

Norton (2012a,b), for instance, recently argued that an information criterion such as

AIC is in fact the result not of considerations about simplicity, but rather of background

assumptions about our space of models under test. Following such arguments, I will

claim in § 5.2.2 that whether or not model selection information criteria can be useful

in cosmological model selection does not depend on any notion of parsimony or model

complexity, and I will argue that these information criteria are not after parsimony or

after a balance between fit and complexity.

Independently of the question of the relevance of simplicity in model selection, we

will see, in § 5.3, that the use of statistical methods in cosmological model selection

faces severe obstacles that limit our ability, in principle, to avoid overfitting the data.

Furthermore, we will see that, because universes only come in very small numbers, the

relevance of certain statistical methods—the AIC in particular—is questionable.

However, I will suggest, in § 5.4, that another Bayesian model selection method can

be meaningful and relevant in cosmology. I will argue that there is a sense in which not

parsimony but rather unification, or lack of dispersion, can guide model selection. Wayne

Myrvold (2003) has given a Bayesian account of a model’s ability to unify different sorts of

phenomena, regardless of the number of parameters at play. The measure of information

used in this account is one between a set of phenomena and another, otherwise unrelated

set of phenomena, given a certain model. This measure gives a formal character to the

idea of consilience of inductions (Whewell, 1847), according to which “a consilience of

inductions would occur when the values of certain parameters can be determined from

two different sorts of phenomena, and the values determined from one class of phenomena
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agree with those determined from another.” (Myrvold, 2003, 418) Parameter estimation

plays a role in assessing the unifying power of a model, but on this account it is the

improved relationship between parameters of different kinds that will provide support to

a choice of model. The sort of lack of dispersion this measure rewards is the consolidation

of the relationship between phenomena.

Thus after having argued that in cosmology usual model selection methods that aim

at maximizing fit-to-data and predictive accuracy 1) do not seek simplicity, and 2) are

not adequate methods in many contexts, I will claim that carrying out model selection

by measuring consilience, on the other hand, can be pursued by Bayesian methods and

overcome problems related to the limited sample of universes accessible to us.

5.2 Simplicity and Model Selection

5.2.1 Why Simplicity Might Matter

A basic ingredient in model selection in cosmology is the Bayesian evidence p(D|M), i.e.,

the likelihood of the data D given a model M, defined as follows:

p(D|M) =

∫
p(D|θ,M) p(θ|M) dθ, (5.1)

with θ a particular set of values for the free parameters of a given model. That is, the

model likelihood is the integral over all the possible parameter values of the product of

the likelihood of the parameters in a given model and the prior for the parameters in

that model.

To compare two modelsM1 andM2 assumed to be equiprobable, the Bayes factor—

the ratio of the models’ evidence p(data|M1)
p(data|M2)

—selects the model giving the best fit between

data and model.

This method of model comparison assumes that we can assign prior probabilities to
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the parameters at play in a given model. We will see later, in § 5.3, the challenges that

this assumption poses for many inferences using the Bayesian evidence in cosmology.

Assuming that the number of parameters is fixed, likelihood-based model comparison

methods such as this one can tell us how closely model and data fit together. This

method can be used for parameter estimation, that is, to determine for each parameter

the value that best fits the data.

Model selection in cosmology, however, aims at comparing models with different num-

bers of parameters. Because fundamental theories that could explain, for instance, the

initial conditions in the early universe or the value of the cosmological constant are lack-

ing, model selection is used in the literature to determine how many parameters our

cosmological models should have. This role is explicit, for instance, in several applica-

tions of cosmological model selection (see, e.g., Liddle, 2004; Kunz et al., 2006; Szydlowski

et al., 2015; Martin et al., 2011)

However, if in model selection we didn’t have any constraints regarding how to choose

our parameters, and if our preferences between models were only a function of their

Bayesian evidence, we would likely favor models that overfit the data (i.e., ad hoc models).

For any given data set, the best-fitting linear curve, defined by only two parameters—i.e.,

a best-fitting curve of the form f(x) = ax + b—will necessarily not be a better-fitting

curve than any best-fitting polynomial curve of higher order—i.e., a best-fitting curve

of the general form f(x) =
n>1∑
i=0

aix
i. Consider for instance the data set in Fig. 5.1: the

higher the order of the best-fitting polynomial curve, the better the fit to the data.

However, a better-fitting curve isn’t necessarily more physically plausible. If for in-

stance the data set in Fig. 5.1 includes data points collected under different experimental

conditions which have not been corrected for, then seeking the best fit, whatever the

number of parameters required to do so, could move us away from the physically true

fitting curve. In fact, “a curve that is maximally close to the data (because it passes

exactly through all the data points) is probably not going to be maximally close to the
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Figure 5.1: Different polynomial curves of different orders (from 1, linear, to 6). The higher the order,
the better the curve fits the data; only the 6th-order curve fits all the data points.

truth. Closeness to the truth is different from closeness to the data.” (Forster and Sober,

1994, 6) If we were simply interested in the best-fitting model for a given data set, then

we should seek models that are maximally close to the data. But maximal accuracy to

the data we already have is not necessarily a good indicator of further data we could

gather in the future.

Imagine, for instance, that the data points in Fig. 5.1 are measurements of the tem-

perature of a given amount of monoatomic gas at high temperatures and low pressures

as the function of its volume. Our knowledge of thermodynamics—of the ideal gas law

in particular—leads us to expect that it is a linear curve that will best represent the

relationship between the two quantities measured here. However, it is only polynomials

of order 6 and higher that will pass exactly through all the data points. Therefore, if we

want to infer from this data set a model that is most likely to perform best, on average,

with all such future measurements, then we should look for the linear curve that best

fits the data we already have. Looking for a curve, a polynomial, of higher dimension

would be looking for a model that overfits that data. That is, it would be looking for

a model “which is too sensitive to idiosyncrasies in the data set that are unlikely to

recur in further samples drawn from the same underlying distribution.” (Hitchcock and

Sober, 2004, 11) Indeed, it wouldn’t make much physical sense to look for a model that
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characterizes a relationship described by Boyle’s law by more parameters, which would

likely be ontologically superfluous—i.e., ad hoc.

Therefore, although empirical adequacy is obviously a critical criterion in model se-

lection, it cannot be the only one; we do not just want our models to fit our data (actual

or potential), we want them to tell us what are the relevant parameters that determine

them. And it is because likelihood-based methods may favor better-fitting yet unwar-

ranted models that cosmologists, in need of additional guiding principles for induction,

appeal to some sense of parsimony.

An illustration often given to illustrate the importance of parsimony and the danger

of adhocness is the example of Ptolemaic versus Copernican astronomy (see, e.g. Forster

and Sober, 1994, § 5); if fit-to-data and predictive accuracy were the only relevant criteria

for model selection, then we should prefer the Ptolemaic model, because, unlike with the

Copernican model, we can always add epicycles to improve it.

In order to avoid adhocness and overfit, the cosmology literature, echoing the philos-

ophy and statistics literature, usually invokes Ockham’s razor, i.e., the prescription not

to “multiply entities unnecessarily”:

Bayesian model comparison makes use of an Occam’s razor argument to rank

models in term of their quality-of-fit and economy in the number of free

parameters. A model with more free parameters will naturally fit the obser-

vations better, but it will also be penalized for the wasted parameter space

that the larger number of parameters implies. (Kunz et al., 2006, 1)

By appealing to “Ockham’s razor” as a principle that applies to the number of entities

(or parameters), cosmologists follow a widespread but puzzling tradition of crediting the

medieval logician with the maxim “Entia non sunt multiplicanda præter necessitatem.”

However, as discussed in, e.g., (Thorburn, 1918), this formulation of the principle of

parsimony cannot be found in the writings of Ockham himself. What one can find in the
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writings of Ockham are the following formulations: “pluralities ought not be supposed

without necessity,” and “in vain we do by many that which can be done by means of

fewer.”4 However, as argued in, e.g., (Ariew, 1977), it is debatable to view Ockham as

holding a metaphysical principle of parsimony with respect to the number of entities and

the simplicity of Nature. Moreover, none of these versions of the principle of parsimony

was specifically Ockham’s; they were quite common among his contemporaries in one

form or another, and this principle was commonly attributed by Scholastic thinkers to

Aristotle and Aquinas.5

Such claims by cosmologists echo arguments found in, e.g., (Forster and Sober, 1994;

Sober, 2008, § 1.7) claiming that statistical or Bayesian information criteria can serve

as such an Ockham’s razor by weighing a model’s accuracy against its number of free

parameters. In practice, for a given level of accuracy a model attains, such information

criteria score that model according to the level of informativeness of its parameters. These

information criteria thus “shave off” superfluous parameters, guiding us toward the most

economical and (hopefully) relevant models, thereby reducing the risk of overfitting. On

this account, it is because of this resistance to overfitting that a simpler model (simpler

with respect to the number of its free parameters) should be preferred.

4“pluralitas non est ponenda sine necessitate” for the former, and “frustra fit per plura quod potest
fieri per pauciora” for the latter. Although Trotta (2008, n. 3), for instance, gives the first of these two
formulations, he interprets it in terms of number of free parameters, as is commonly done by cosmologists
and philosophers of science.

5“One is forced to conclude that Ockham’s razor is not Ockham’s. Ockham was not the first to have
coined “entities must not be multiplied without necessity”; he had no part in formulating it. Ockham was
not the most avid user of principles of parsimony; the principle Ockham used to reduce the ontology of
his realist opponents was his principle of absolute divine omnipotence, a principle of possible plenitude.
Ockham did hold methodological principles of parsimony, but he was not the first to coin these, either.
Ockham must have regarded his principles as methodological and must have been careful not to state
them as a metaphysical doctrine. Ockham’s views on metaphysics and theology seem to have been
inconsistent with his holding a metaphysical principle of parsimony.” (Ariew, 1977, 17)



5.2. Simplicity and Model Selection 119

5.2.2 Why It Doesn’t, and What Model Selection Criteria Re-

quire

There is no doubt that overfitting should be avoided. But assuming something to the

effect that “the simplest explanation is always the best”6 seems at odds with scientific

practice, which is more interested in finding not the simplest but the truest explanation.

The oft-repeated maxim attributed to Ockham, however, isn’t itself simple. What

exactly does it mean for a theory to be simpler or to have fewer entities? And why would

nature care about making things simpler? As is sometimes recalled in philosophical

discussions around the notion of simplicity (see, e.g., Norton, 2012a), Newton himself in

the “Rules of Reasoning in Philosophy” of his Principia asserted that “[w]e are to admit

no more causes of natural things than such as are both true and sufficient to explain

their appearances” because “Nature does nothing in vain, and more is in vain when less

will serve; for Nature is pleased with simplicity, and affects not the pomp of superfluous

causes.” But as Norton went on to show, simplicity is more clearly a reflection of our

background knowledge than of Nature’s modesty. Norton gave the following illustration:

if we see, on a beach, a series of seagull steps in a line, the simplest assumption would

be that these marks were left not by a group of birds each leaving one step’s mark, but

rather by a single bird walking a straight line; however, if we see a large number of the

same steps not organized in a straight line, the simplest assumption would be that a flock

of seagulls, and not just one disoriented bird, walked there. What makes an assumption

the simplest in both cases seems be the number of causes—each bird leaves its own line

of steps on the sand—rather than the number of birds.

There is no systematic way to identify what a theory should keep simple: the number

of causes, of entities, of parameters? In the cosmology literature (Martin et al., 2011;

Trotta, 2012) as well as in philosophy (Forster and Sober, 1994; Forster, 2000), but also

6One can find equivalent maxims in the cosmology literature. For instance, “the simplest theory
compatible with the available evidence ought to be preferred.” (Trotta, 2008, 130)
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in the statistics literature itself (Spiegelhalter et al., 2002; Claeskens and Hjort, 2008, 2),

information criteria are presented as a means to seek parsimony, i.e., a balance between

complexity in terms of number of free parameters and fit or predictive accuracy of a

model. Information criteria such as the BIC and the AIC result from different approaches,

but they have similar effects, namely, for a given level of fit-to-data or predictive accuracy,

they reward models with fewer parameters. Thus these criteria seem to weigh each

parameter against its informativeness and penalize those parameters that only marginally

increase fit. As we saw, that is why they are seen as a protection against overfitting, and

why simplicity in terms of the number of parameters is assumed to play a role in model

selection.

But we can see that, in model selection based on such information criteria, simplicity

is not a relevant guiding criterion, even though the number of free parameter sometimes

explicitly appears in the formulation with which these criteria are used. By having a

closer look at the BIC and the AIC, we can see that the purpose and formulation of these

information criteria have nothing to do with simplicity or balance between complexity

and fit. We can then also see that more recent information criteria such as the Deviance

Information Criterion (DIC) or the measure of Bayesian complexity (its analogue in the

cosmology literature), which explicitly purport to measure a balance between complexity

and fit don’t necessarily depend on the number of parameters.

The Akaike Information Criterion is one of the most used information criteria, and

one of the first to have been proposed (Akaike, 1973). The AIC of a given model is

usually given in the following form:

− 2 lnLmax + 2k, (5.2)

where Lmax is the maximum likelihood achievable by the model and k the number of its

free parameters. According to this criterion, the lower the score, the better the model.
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For a given degree of fit, the AIC rewards models with fewer parameters, and vice versa.

And because it also depends on the fit-to-data a model can achieve, it can been seen as

balancing fit and complexity; this is why it is said to act as an Ockham’s razor that limits

the risk of overfitting. However, following (Norton, 2012b), we can see that the AIC is not

defined in terms of simplicity, and that its referring to a model’s dimensionality doesn’t

result from considerations about Ockham’s razor or simplicity.

The AIC was first motivated by the Kullback-Leibler (“K-L”) information (or diver-

gence), defined as follows (see, e.g., Konishi and Kitagawa, 2008, §§ 3.1–3.4):

I(g; f) =

∫
log

(
g(x)

f(x)

)
g(x) dx, (5.3)

where x is an observation (it can be a set of obervations) g is the true distribution for x

and f a model. That model f , characterized by a k−dimensional parameter vector θ, is

generally not identical to the true distribution. The K-L information measures how close

the model f is to the true distribution g: its value is 0 if, and only if, the model f is the

true distribution.

In practice, we don’t know what the true distribution g is, and we want to find the

model f that comes closest to it. To do so, we seek to maximize the following term of

eq. (5.3): ∫
g(x) log f(x) dx, (5.4)

called the expected log-likelihood (since the other term of the integral,
∫
g(x) log g(x) dx,

is fixed). But this term depends on the unknown distribution g. However, if we make

the assumption that the data we have can provide us with a good estimate of the true

distribution, then they can be used to determine the K-L information. To do so, we

can replace the true distribution g with an empirical distribution ĝ based on a set of

N independent and identically distributed (IID) observations xN , where each of the N

observations is weighted equally. This substitution is made under the assumption that
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this empirical distribution converges toward the true distribution when N is large. Now,

in order to estimate the parameter vector θ̂ of ĝ, based on the observations xN and

such that it maximizes the log-likelihood `(θ) of f(·|θ) over all possible data, we can use

analytic methods to obtain approximate solutions, called maximum likelihood method.7

However, we introduce a bias by using the same data to estimate both the expected

likelihood (eq. (5.4)) and the log-likelihood, `(θ), of our statistical model. Akaike found

that, as N → ∞, this bias comes asymptotically close to the model’s number of free

parameters.

Therefore, the AIC gives an evaluation of the badness (the bias) of a model whose

parameters have been determined using the maximum likelihood method.8 Improving a

model’s AIC score is equivalent to optimizing that model’s log-likelihood over all possible

data sets, and not just the data it was initially tuned for. But this implies that the true

distribution g(x) exists and is contained in the family of parametric models {f(x|θ);θ ∈

Θ} (where Θ is the entire parameter space) that we have initially specified. It also

assumes that the hypothetical true distribution g is what generates the data we have

access to.

Now, assuming that the unique, true distribution exists and is contained in the family

of models under consideration, the AIC will automatically favor models of lower dimen-

sionality. As Norton (2012b, 9–11) argued, if we expect the AIC to help us find a unique

distribution, then it is appropriate for this information criterion to reward parsimony.

Indeed, for some definite data, the same level of accuracy will be reached, within a given

family of models, by a greater number of models of a given dimension than by models

of lower dimension. Consider for instance Fig. 5.1, and assume that the data points

reported in this figure are all the possible data points, without error, in a given context

for which we are trying to find a true distribution. The 6th-order polynomial curve hits

7For instance, if `(θ) is continuously differentiable, the maximum likelihood estimator θ̂ is a solution

of
∂`(θ)

∂θ
= 0 (see Konishi and Kitagawa, 2008, § 3.3.2).

8The reason behind the addition of the −2 factor is debated (see, e.g., Rao et al., 2008, 352).
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all these data points, and no curve of lower dimension does so. However, many curves of

higher dimension could hit all the same data points, and an even larger number of curves

of even larger dimension could do so. In this case, among all the distributions that hit all

those points, the AIC will reward the model (i.e., the family of nth-order polynomials)

with a unique solution, which is necessarily that with fewer parameters.

However, I claim—echoing Norton’s remarks—that the fact that the AIC rewards

models with fewer parameters is a byproduct of the analysis from which the AIC stems,

rather than its explicit goal. The AIC, therefore, doesn’t stem from considerations about

parsimony, simplicity, or Aristotelian metaphysics. At least, it doesn’t explicitly aim at

achieving simplicity in terms of number of parameters as much as it aims at finding a

unique, true solution.

We can see that the Bayesian Information Criterion, developed by Schwarz (1978) a

few years after the AIC, doesn’t depend on a model’s dimension either. The BIC score

for a given model is usually given in the following form:

− 2 lnLmax + k lnN, (5.5)

where Lmax is the maximal likelihood achievable by the model (i.e., the Bayesian evidence

of eq. (5.1) limited to that model), k the number of parameters in the model, and N the

number of data points used to determine the fit. This assumes that the data points used

are IID. The best model according to this criterion is the one with the lowest BIC score.

In effect, like with the AIC, for a given level of fit-to-data, this model selection criterion

rewards models that have fewer parameters. The BIC score depends on the sample size

(i.e., N in eq. (5.5)), and in particular this has the effect of placing a higher standard

for adding a parameter when the sample is higher, which can be seen as an appealing

feature.9

9One might argue that the outcome of model comparison shouldn’t depend on our sample size, but
this effect vanishes for large sample sizes. Applications of the BIC must therefore be made with caution
when the sample size is small. This assumption can be very problematic in cosmology in cases where we
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However, balancing fit and complexity is not what the BIC aims at. In fact, the BIC

isn’t even defined in terms of a model’s dimensionality. Indeed, its usual formulation,

given above in eq. (5.5), is proportional to the approximation of the model likelihood

(related to the Bayesian evidence given earlier in eq. (5.1)), for N observations. We

can find the exact definition of the BIC in, e.g., (Konishi and Kitagawa, 2008, § 9.1.1).

Assume that a model Mi is characterized by a parametric distribution pi(x|θi) and a

prior distribution pi(θi) for a ki−dimensional parameter vector θi. The likelihood of

the model Mi for a set of N observations xN (xN = {x1, . . . , xN} where the xi are

observations), is given by

pi(xN ) =

∫
p(xN |θi) pi(θi) dθi. (5.6)

This assumes that the N observations are independent and identically distributed.

If there are r candidate models, Bayes theorem gives us the posterior probability of

Mi (i ∈ {1, . . . , r}):

p(Mi|xN) =
pi(xN) p(Mi)
r∑
j=1

pj(xN) p(Mj)
. (5.7)

If we assume that all the r models under consideration are equally likely (i.e., that

their prior probability is identical), we can determine the posterior probability of Mi

given N observations. It follows from eq. (5.7) that this is entirely determined by the

model likelihood given in eq. (5.6). The BIC is defined as the logarithm of the model

likelihood multiplied by −2:10

− 2 ln pi(xN) = −2 ln

(∫
p(xN |θi) pi(θi) dθi

)
. (5.8)

The lowest BIC score corresponds to the greatest model likelihood given N observations,

only have few (or sometimes only one!) observable events. We will come back to this in § 5.3.
10This formulation, and in particular the addition of the −2 factor, allows us to obtain a criterion

close to the Akaike criterion, developed before the BIC.
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which corresponds to the greatest model posterior given N observations and assuming

that all the candidate models’ priors are identical. The usual formulation for the BIC

given in eq. (5.5), which depends directly on the model’s dimensionality, results from the

Laplace approximation of integrals (see Konishi and Kitagawa, 2008, § 9.1.2–9.1.3).

The BIC has interesting features. Among its advantages, it doesn’t require us to

integrate over the entire parameter space (as the Bayesian evidence requires), but only

over a model’s parameter space. In particular, for a given degree of fit, a model with

fewer parameters will be rewarded, and vice versa. But this is not a defining feature of

the BIC.

The AIC and BIC are the most widely used in model selection. We will see in § 5.3,

however, that they are not well suited to most contexts in which we could carry out

cosmological inferences. Ideally, cosmologists would prefer to work directly with the

Bayesian evidence (see eq. (5.1)). But as we saw, the Bayesian evidence will almost

always favor models that overfit the data. For that reason, they have suggested to add

to the Bayesian evidence an “Ockham’s razor penalty” (or “Bayesian complexity” score),

so as to seek a balance between fit-to-data and complexity.11

For a model characterized by a k−dimensional parameter vector θ, θ ∈ Θ, this infor-

mation criterion makes use of the Kullback-Leibler distance, DKL, between a parameter

vector’s prior, p(θ), and its posterior given the data, p(θ|d):

DKL =

∫
Θ

p(θ|d) log

(
p(θ|d)

p(θ)

)
dθ. (5.9)

11See, e.g., (Kunz et al., 2006; Trotta, 2008, 2012; Hobson et al., 2010, § 4–7). This model selection,
the Bayesian complexity, is adapted from the Deviance Information Criterion (DIC): the explicit goal
of this information criterion, given in the title of (Spiegelhalter et al., 2002) couldn’t be clearer as to
what its creators intended it to do. For a succinct but precise presentation of the DIC, see (Konishi
and Kitagawa, 2008, § 9.5). See (Kunz et al., 2006; Hobson et al., 2010, § 4.3.2) for its application in
cosmology.
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The Bayesian complexity is defined as follows:

C = −2
(
DKL − D̂KL

)
, (5.10)

where D̂KL is the maximum information gain we can expect under the model (akin to

the estimator for the AIC).12 In other words, this information criterion measures how

much parameter space is “wasted” in our model, and how well our data constrain our

parameters. The closer to the truth a model, the smaller its parameter space, and

the smaller its complexity score. As explained in (Hobson et al., 2010, 86), usually, in

eq. (5.9), DKL ≈ k log

(
signal

noise

)
, where k is the number of free parameters in our model,

and where the “signal” and “noise” refer, respectively, to the relevant and wasted volumes

in our parameter space.

Now, if we have two models M1,M2, with respective Bayesian evidences p(D|M1)

and p(D|M2) and Bayesian complexities C1 and C2, Kunz et al. suggested to compare

them as follows:

- p(D|M2) >> p(D|M1): model M2 is clearly favored over model M1

and the increased number of parameters is justified by the data.

- p(D|M2) ≈ p(D|M1) and C2 > C1: the quality of the data is sufficient

to measure the additional parameters of the more complicated model,

but they do not improve its likelihood by much. We should prefer model

M2, with less [sic] parameters.

- p(D|M2) ≈ p(D|M1) and C2 ≈ C1: both models have a comparable

likelihood and the effective number of parameters is about the same. In

this case the data is not good enough to measure the additional parame-

ters of the more complicated model and we cannot draw any conclusions

as to whether the additional complexity is warranted. (Kunz et al., 2006,

12This is usually determined by using Markov chain Monte Carlo (MCMC) methods.
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4)

Thus we see how the use of the Bayesian evidence and Bayesian complexity gives a

formal characterization to the intuitive notion of “balancing fit and complexity.” How-

ever, even if in some circumstances Bayesian complexity can be expressed in terms of

the number of parameters, it is in fact defined by the volume of a model’s parameter

space, which depends on how the range of each parameter is defined. Now assume that

we compare two models: M1, characterized by an m−dimensional parameter vector θ1,

andM2, characterized by an m+1−dimensional parameter vector θ2. These models are

of respective complexities C1 and C2. Assume further thatM1 andM2 are identical, ex-

cept that θ1 includes a parameter α defined on a very broad range, and that, instead, θ2

includes two parameters β, γ defined on very narrow ranges. We may then have C1 > C2

even though M1 has fewer parameters than M2.

Strictly speaking, then, simplicity—or a balance between simplicity and fit—is not

what information criteria such as the Akaike information criterion or the Bayesian infor-

mation criterion are after. And as we saw, strictly speaking, none of these information

criteria are after simplicity defined in terms of number of parameters. This is even true

of the Bayesian complexity criterion that cosmologists have introduced with the explicit

intention of acting as an “Ockham’s razor penalty” on the Bayesian evidence. Therefore,

whether or not the use of such statistical tools is appropriate in general, and in cosmology

in particular, does not depend on a sense of simplicity.13

There is a sense in which simplicity matters in model selection: we have to assume

that there is a true model, and that there is but one true model—in other words, we have

to assume that nature is not trying to trick us. In model selection and, more generally,

in science, we strive to achieve parsimony in the number of models we should select. But

that has nothing to do with parsimony with respect to the number of free parameters.

13One might argue that it is possible to find a notion of simplicity that captures what some or all of
the information criteria seek. My claim concerns simplicity as it is usually addressed in statistics and
cosmology (namely, simplicity in terms of number of parameters).
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5.3 Limitations of Model Selection Criteria in Cos-

mology

The model selection criteria we saw above in § 5.2.2 can help us compare how well models

fit a given body of data. As argued by Elliott Sober (2008, § 1.7), AIC and BIC are best

used for different tasks: BIC favors models that give us the best likelihood (on average)

for the data we have, whereas AIC favors models with the best predictive accuracy—that

is, their ability to predict new data. In principle, in any situation where we would carry

out model comparison with the help of the information criteria we saw previously, we

could only compare the relative performance of models’ fit or predictive accuracy and

bias, but we couldn’t assert that we found the true model based only on these methods.

There may be relative advantages to the BIC or the AIC, but neither can tell us which

one is true.14 Only the AIC, however, can in principle tell us that, if the true model is

among the family of models under consideration, we have come as close to it as possible.

“Cosmologists, however, are probably not yet willing to concede that they might be

looking for something other than absolute truth specified by a finite number of param-

eters.” (Liddle, 2007, 76) But predictive accuracy, assessed by the AIC, cannot suffice

to characterize “closeness to the truth,” contrary to claims one can find, e.g., in (Forster

and Sober, 1994, 10). Indeed, false models can be predictively accurate—think of the

Ptolemaic model evoked in the previous section for instance.15 Therefore, in cosmology

where the number of relevant parameters is not settled, neither maximal fit nor best

predictive accuracy, nor, as we saw, balance between complexity and fit, will suffice as

model selection criteria.

14To be sure, this is not the aim of these methods. It is beyond the scope of this paper to characterize
all the relative advantages and limitations of these information criteria. See (Liddle, 2007) for a discussion
about the relative merits of the BIC and AIC. The former generally avoids overfitting better than the
AIC, but it can also unfairly disfavor more complex models, and the risk of overfitting can be replaced
by that of underfitting; see also (Weakliem, 1999) for a discussion of this problem from a social science
perspective.

15In this paper, I have not always carefully distinguished between “predictive accuracy” and “fit”,
and considered both as a type of fit-to-data, whether old or future.
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What we can expect from such statistical methods is that they help us to select which

of our candidate models has the best average likelihood or the best predictive accuracy

with the least bias, not which are the candidate models. However, we can see that,

even if we assume that among the models we compare one of them is the true underlying

distribution, then, there are in cosmology limitations to their meaningfulness in principle.

The two main obstacles for the application of these model selection methods in cosmology

are 1) the lack of well-motivated prior distributions for some cosmological parameters,16

and 2) the limited accessible sample of cosmological events—i.e., the uniqueness of the

universe.

Model comparison based on the Bayesian evidence (such as the “balance-between-

fit-and-complexity” approach proposed by Kunz et al.) assumes that we can assign

prior probabilities to the parameters at play in our models. However, our theoretical

background leaves some cosmological parameters undetermined; Efstathiou (2008) for

instance showed how this is the case for dark matter. As a consequence, the Bayesian

evidence can be highly dependent on some arbitrary choices regarding how we define the

parameters’ prior distributions. For instance, even if we give a relatively much higher

prior probability to a small range of values around the center of a normal distribution,

the outer tails of such a probability distribution can contain much of the volume of the

parameter space. In model selection, this effect becomes exponentially problematic as the

number of parameters increases, up to the point where almost all of the volume can be

located the extreme ranges of the parameter space.17 Therefore, comparing models whose

dimensionality differ can be very risky. Model comparison, whether based on Bayesian

evidence or other criteria, doesn’t replace the parameter inference step, and, when our

background knowledge doesn’t give us much constraint for some parameters, arbitrary

choice of priors for them can therefore greatly affect a model’s Bayesian evidence.

16This was argued in (Linder and Miquel, 2008) and, more cogently, in (Efstathiou, 2008).
17Up to 99.8% for a 10-dimensional space. See, e.g., http://astrostatistics.psu.edu/su05/bayes freq2.pdf,

cited in (Linder and Miquel, 2008).

http://astrostatistics.psu.edu/su05/bayes_freq2.pdf
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Consider for instance the case of the comparison of a cosmological model with a flat

universe (i.e., in which the curvature Ωκ is null) with a curved model (Ωκ 6= 0). To do

so, we would determine the Bayes factor of two models:

- a modelM1 such that p(Ωκ|M1) (the prior distribution for Ωκ inM1) is a Gaussian

distribution of mean µ = 0 with a given variance τ 2, and

- a model M2 such that p(Ωκ|M2) is a Gaussian distribution of mean µ 6= 0 with a

given variance τ 2.

A comparison based on the ratio of the Bayesian evidence will require us to determine,

for each model, the data likelihood given Ωκ as well as the prior distribution for Ωκ in

that model (where Ωκ = θ in eq. (5.1)). Now, as illustrated in (van Dyk, 2012, 144),18

the Bayesian evidence is highly dependent on the prior distribution p(Ωκ); in particular,

depending on our choice of variance τ 2 for that parameter, the Bayes factor can strongly

favor either model!

We saw earlier that cosmologists sometimes appeal to the “Astronomer’s prior,” a

uniform prior distribution for −1 ≤ Ωκ ≤ 1, since it is consistent with observable proper-

ties of the universe. But based on theoretical considerations from inflationary cosmology,

the “Curvature scale prior,” a uniform prior distribution for −5 ≤ log |Ωκ| ≤ 0, would

have produced different results. Our results are therefore strongly dependent on an ar-

bitrary choice of priors and on the lack of uninformative priors.19 This dependence on a

choice of prior undermines the appeal of likelihoodist methods, which seeks to avoid the

need for prior probability distribution for the models being compared.

If the Bayesian evidence depends on such arbitrary choices, then so will the Bayes

factor. Moreover, not only will comparing the Bayesian evidence’s fit with a complexity

factor dependent on these choices, but also the complexity factor itself is not invariant

18which constitutes a response to (Trotta, 2012).
19As van Dyk (2012, 144) recalled, the use of improper prior distributions would result in improper

prior predictive distributions and undefined Bayes factor.
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under reparametrization.20 Likewise, even though the BIC only requires us to estimate

the maximum likelihood achievable within a given model, and not throughout the pa-

rameter space, its results may also be strongly dependent on an arbitrary choice of prior

distribution—and especially the parameter range—for a parameter within that model

(see Weakliem, 1999; Liddle, 2007).

The AIC, on the other hand, isn’t affected by how we set a priori the parameters’

range. But we can see that in cosmology its application and that of the BIC face limita-

tions that are inherent to the fact that in cosmology we only have access to one realization

of a cosmological model—i.e., one universe. Here, I don’t want to reiterate claims that

can be found in, e.g., (Ellis, 2007) according to which the uniqueness of the universe

may preclude the possibility of cosmology as a science; the problem I want to underline

concerns the use of statistical methods for analyzing a unique data set about a unique

object.

Indeed, statistical methods such as those we have considered so far are usually applied

to a set of multiple realizations of a given process or phenomenon. But there are in

cosmology limitations that our sample can’t overcome:

1. There is an inherent variance in our data due to the fact that we can only perform

observations from one point of view. That’s a sample variance due to our obser-

vation bias and technical limitations, for instance in techniques used to determine

the power spectrum of the Cosmological Microwave Background radiation (CMB)

with harmonics.21 As a consequence, there is a limiting precision in how our data

can be used as evidence for one model or another (e.g., anisotropies in the CMB

can determine the amplitude of primordial mass fluctuations).

2. There is another kind of sample variance: if the physical process underlying the

formation and evolution of the universe will do so with some level of randomness or

20See, e.g., (Spiegelhalter et al., 2014) for a discussion of this problem.
21See the large error bars at large angles below in Fig. 5.2.
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variation, then we are limited by the fact that we can only access one realization

of that process.

This first limitation hinders our capacity to access independent measurements to the

same phenomenon. But in observations of the CMB, for instance, even if we assume no

error in our measurement at all (the kind of error that independent measurements would

reduce), our data underdetermines the power spectrum of the CMB at large angular

scales.22

There are solutions to overcome the first kind of limitation at low angular scales,

by seeking to observe the CMB from “other viewpoints”, for instance through a cluster

of galaxies (see Kamionkowski and Loeb, 1997).23 But such solutions can’t address the

second kind of limitation, which produces an uncertainty about a variance in our data

at both low and large angular scales.

These problems affect the validity of the results we could obtain with model selection

information criteria in different ways. We saw for instance that, independently of our

limited background knowledge, and independently of the problem of defining parameters

and their range (in general or even only in a given model), a model’s BIC score depends on

our sample size (see eq. 5.5-5.6), especially if this sample size if small. Likewise, the AIC

score will be affected by the sample size, and its definition in terms of the model’s number

of free parameters comes from an approximation for a large number of IID observations.

But the consequences of the limitation of our sample are even more problematic for

the AIC. Indeed, the AIC assumes that the data is generated by one of the models under

consideration. That is, it assumes that the AIC evaluates how biased a given model is

from the true model, assuming that the true model can be found in the family of models

we have specified (by identifying candidate parameters), and assuming that this true

22This problem is often referred to in the literature as “cosmic variance”, even though this term can
be used to refer to other of the sampling problems discussed here.

23In a nutshell, one can observe the polarization of CMB photons scattered by electron gas found in
a cluster of galaxies; this polarization corresponds to properties of the CMB as seen in this cluster.
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model is what generates the data from which we carry out this statistical investigation—

that is, we assume that the data we have aren’t itself error-laden. It is under this

assumption that, as we saw with eq. (5.4), we can substitute the average of our data,

ĝ, for the true distribution g. Thus the very idea behind the AIC assumes that have

at our disposal a large sample of IID data sets that we take as a surrogate for the true

distribution from which the K-L information measures the distance. If, however, there

is only one data set from which we derive both this surrogate and our model, then the

AIC can’t do more than give us an estimate of goodness-of-fit.

Methods usually presented as allowing us to get around the cosmic variance, such

as in (Kamionkowski and Loeb, 1997), allow us to obtain independent observations, but

independent observations of the same event. The kind of IID observations statistical

methods rely on are observations of different, independent iterations, or realizations, of

the same physical process.24 These methods were not designed—and their formulation

would not be as well justified—for small samples, let alone a sample of one event as is

the case with the CMB!

To be sure, there are contexts in which the anisotropies in the CMB can be each

treated as IID events. For instance, if we want to use fluctuations in the CMB as

evidence regarding how the early universe evolved at later stages, or if we are interested

in studying whether these fluctuations are related to present-day large-scale astrophysical

structures, then each of these anisotropies, at different angular levels, and each of these

structures, can be considered as IID events. But if we want the CMB to inform us on

the physics responsible for these anisotropies—i.e., truly cosmological properties—then

together they constitute only one event.

Therefore, without being able to use Bayesian information criteria under adequate

circumstances, and without even the hope of improving these circumstances, we place

ourselves in a situation where we can’t know, with these methods, if the model they

24The cosmology literature is sometimes explicit about this distinction, but, as was noted in a similar
context, “this level of sloppiness is standard.” (Starkman et al., 2012, 4)
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would favor isn’t overfitted to too small a sample, which would defeat the very purpose

of using these information criteria in the first place.

This problem will arise, for instance, in the analysis of the CMB. The CMB is a

highly isotropic radiation which, according to the big bang model, dates from the epoch

of recombination in the early universe, when photons could first travel freely without

interacting with matter. The angular power spectrum represents the small anisotropies

in the CMB as a function of angular distance in the sky. Such observations of anisotropies

in the CMB constitute a major if not the main empirical test of cosmological models and

are taken to provide crucial constraints on cosmological parameters (see, e.g., Parkinson

and Liddle, 2010; Martin et al., 2011). Fig. 5.2 shows the angular power spectrum

obtained from WMAP data: the continuous line is the best-fitting model from inflationary

cosmology; the large error bars at large angular (i.e., low-l) scales are due to cosmic

variance (in the first sense given earlier). But even with this limitation in precision,

significant anomalies exist at large angles; the angular power spectrum is significantly

lower at large angles than predicted by theory.25

As George Ellis (2014, § 3.1 and p. 12) recalled, a lower power spectrum at those

scales are expected to occur in a “small universe”. Whether or not these anomalies

are physically meaningful (i.e., are not artifacts) will affect what we can tell about the

large-scale topology of our universe, and therefore our choice of cosmological models.

These discrepancies are usually considered to be “statistical flukes” that reveal the

limit of using statistical methods in such analyses for a unique event (see, e.g., Copi et al.,

2007, for a discussion). Therefore, if indeed these anomalies are due to observational

artifacts, then trying to account for them at all cost would result in a model that overfits

the data.

With a similarly small sample of events at other angular scales, we could as well

disregard anomalies (for instance, at l ≈ 40) as being statistical flukes as well. This,

25This discrepancy persists in more recent observations made by Planck (see Ijjas et al., 2013).
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Figure 5.2: Two estimates (in red and in black) of the WMAP angular power spectrum of the Cosmic
Microwave Background radiation. The continuous lines are the best-fitting models from inflationary
cosmology for each estimate. Source: NASA/WMAP.

however, cannot be the only argument by which we discard problematic disagreements

between data and theory, for it would be ad hoc, especially if these anomalies could be

explained by equally plausible scenarios (see, e.g., Liu et al., 2013). However, the kind

of model selection methods considered in earlier sections will not be able to tell us what

data point in our small sample is a statistical fluke or not. These methods cannot choose

models for us, nor can they tell us how to interpret our data; they can only help us

compare how well these models fit the data and, assuming that one of these models is

true, how close to the truth it is.

5.4 Measuring Consilience Rather Than Predictive

Accuracy or Fit

We have seen that the difficulties to use Bayesian methods for model selection in cosmol-

ogy are not easy to overcome. We saw in § 5.2.1 that likelihoodist methods that rely on

the Bayesian evidence or the Bayes factor can be highly dependent on a choice of priors—

http://lambda.gsfc.nasa.gov/product/map/current/pub_papers/nineyear/cosmology/wmap_9yr_cosmology_images.cfm
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at least a choice of range—for our physical parameters and, if the number of parameters

is not fixed a priori, they run the risk of overfitting the data. The BIC and the AIC, in

different ways, aim at addressing both problems. First, the BIC is less sensitive than the

Bayes factor to the parameter range problem, and the AIC avoids that problem entirely.

Secondly, both criteria are usually introduced as solutions to avoid overfitting by seeking

parsimony in terms of our models’ number of free parameters. In § 5.2.2 we have seen,

in fact, that the validity and applicability of these criteria to cosmology does not depend

on a vaguely defined notion of simplicity or ontological parsimony. But we saw in § 5.3

that, regardless of the role of simplicity in model selection, there are limitations to the

use and meaningfulness of these criteria in cosmology. In particular, the BIC and the

AIC were designed to apply to large samples of IID observations. However, in many

cases in cosmology, in addition to being mostly limited to observing from one particular

standpoint, we can only hope to be able to observe a unique event. It is questionable,

under these circumstances, to use criteria defined under the assumption that they will

apply to large samples. Furthermore, it undermines the relevance of these criteria if we

use them in situations in which we can’t identify which of our data, if any, are statistical

flukes, since this can greatly affect our conclusions.

We can see that Bayesian methods can play a role in model selection in cosmology

and overcome some of these difficulties. However, I will suggest that it is not to assess

fit-to-data, predictive accuracy, or balance between fit and complexity for which Bayesian

methods will be most legitimate in cosmology. Even with limited data about a unique

event, we can assess a model’s ability to unify phenomena and physical processes that may

otherwise seem unrelated. Newton’s theory of gravitation, for instance, gave a common

causal framework to both astronomical and terrestrial phenomena. Another example

sometimes given in support of the view of induction as unification is Jean Perrin’s case

for atomism; by providing several experimental methods to calculate Avogadro’s number

from disparate domains—Brownian motion, the viscosity of gases, the color of the sky,
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black body spectrum, etc.—Perrin argued that this concordance of evidence could not

be “be considered as the result of chance.” (quoted in Psillos, 2011, 355)

Such cases of concordance and explanatory and causal unification illustrate William

Whewell’s view of “consilience” as a confirmation criterion:

the evidence in favour of our induction is of a much higher and forcible char-

acter when it enables us to explain and determine cases of a kind different

from those which were contemplated in the formation of our hypothesis. (. . . )

That rules springing from remote and unconnected quarters should thus leap

to the same point, can only arise from that being the point where truth re-

sides.

Accordingly the cases in which inductions from classes of facts altogether dif-

ferent have thus jumped together, belong only to the best established theories

which the history of science contains. And as I shall have occasion to refer

to this particular feature in their evidence, I will take the liberty of describ-

ing it by a particular phrase; and will term it the Consilience of Inductions.

(Whewell, 1847, 65, cited in (Myrvold, 2003))

Induction for Whewell consists in several steps, namely the identification of the in-

dependent variables, the construction of models, and the determination of parameters.

Consilience then occurs when the value of parameters determined from a kind of phe-

nomena agrees with that obtained from a distinct kind of phenomena. In other words,

consilience occurs when we multiple, independent bodies of data used to determine the

values of parameters contained in our models. Conversely, in order to check that con-

silience occurs, we can use the determination of parameters from one body of data to

place constraints on that other body of data. A model that suggests such a lawlike con-

nection between disparate bodies of data therefore makes them informationally relevant

to each other.26

26“Consilience” is stronger than mere “concordance” as it is used in the cosmology literature, to
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Wayne Myrvold (2003) gave a Bayesian account of consilience. Among the ingredients

of this account is the notion of informational relevance I(P,Q) of one proposition P to

another proposition Q, that is, the information that one proposition P yields about

another proposition Q, formulated as follows:27

I(P,Q) = log
p(Q|P )

p(Q)
. (5.11)

This measure is defined such that independent evidence is additive. That is, if P1 and

P2 are independent, then I(P1&P2, Q) = I(P1, Q) + I(P2, Q). Moreover, it is symmetric

with respect to its arguments P and Q.

The second ingredient of this account is a measure of unification U(P1, P2;H) of two

phenomena P1, P2 by a hypothesis H, that is, how much H makes P1 yield information

about P2, defined as follows:

U(P1, P2;H) = I(P1, P2|H)− I(P1, P2). (5.12)

Finally, we can define a measure of evidential support I(H,P1&P2) of two phenomena

P1, P2 to a hypothesis H on the basis of its unificatory power, as follows:

I(H,P1&P2) = I(H,P1) + I(H,P2) + U(P1, P2;H) (5.13)

What this measure captures is the fact that the unificatory power of a hypothesis, by

designate a region of parameter space where ΛCDM models matches all the data we have. The latter
only refers to empirical constraints, whereas consilience is about mutual informational relevance between
two bodies of data otherwise unrelated.

27I(P,Q) is assumed to be continuously definable—in terms of probability functions for Q and Q given
P—so that small changes in probability yield small changes in information. As explained in (Myrvold,
2003, 409–410), it also follows a normalization convention such that, when our information about Q
amounts to certainty that Q obtains, “[i]f Q is one of 2n equiprobable, mutually exclusive and jointly
exhaustive alternatives, then the information that Q obtains amounts to n bits of information, and, in
general, information that Q obtains will count as − log2 p(Q) bits of information.” (notation edited for
consistency) Assumed here and in the other elements of this account is the fact that these probability
functions are defined with respect to our background information.
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itself, contributes to its support by the evidence. This measure differs from the informa-

tion criteria seen above in several ways. This measure of consilience allows us to assess

how much a physical model, characterized by a set of physical relationships between some

parameters, unifies phenomena. The BIC and criteria based on the Bayesian evidence,

on the other hand, allow us to assess the goodness-of-fit of a model defined as a set

of probability distributions for the values of some parameters, and the AIC the bias of

such models and their predictive accuracy. All this measure of consilience requires—and

all it assesses—is the ability of a hypothesis under consideration to make two sets of

phenomena yield information about each other.

This alternative information criterion is interesting in cosmology because it doesn’t

suffer from some of the limitations of model selection criteria we saw earlier in § 5.3. To

be sure, the information that a model yield in virtue of its unificatory power still depends

on a possibly arbitrary choice of prior distributions for our parameters. But, unlike the

AIC, this Bayesian measure of consilience doesn’t require in principle that we have access

to multiple, IID data sets. Indeed, the probability distributions at play in eq. (5.11, 5.13)

need only reflect our credence for a given parameter or hypothesis, whatever the size of

our sample. Because, on this account, models are assessed according to how well they

connect independent bodies of data, we avoid the risk of overfitting our models to what

might have been indistinguishable statistical flukes. Moreover, this measure of consilience

allows us to favor a model over another based on empirical considerations, and not on

vague, extra-empirical intuitions about “Nature’s modesty” or maxims allegedly from

medieval thinkers.

William Harper (2011) has given an exposition of how this account of empirical success

fits Newton’s methodology. An illustration of this concerns how Newton determined the

exponent of the power law with observations of pendulums, the motion of planets and

that of the apsides. In doing so he used independent observations to constrain the same

parameter value from one context to another. Harper also showed how it continues
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to guide cosmology today: it is only when multiple, independent bodies of data were

increasingly and more precisely agreeing with each other on the existence and the value

of dark energy that this became an established fact to most cosmologists (see Harper,

2011, 394–396).28

Relatedly, we can assess the unificatory power of dark matter from different sources:

from the direct or indirect detection of weakly interacting massive particles (WIMPs),

from astrophysical sources or from particle colliders; from the statistical distributions

of galaxies and their rotation curves; from distant supernovæ; from lensing effect, etc.

Likewise, observations of fluctuations in the CMB can constrain models of WIMP (see

Bauer et al., 2015).

The idea that consilience should be used as a criterion of confirmation may not be

new or surprising to cosmologists, yet it can offer new perspectives on how to approach

longstanding problems, such as confirming inflationary cosmology. A shift in confirma-

tion criteria from simplicity to consilience would have the advantage, for instance, not to

reward the versatility of inflationary cosmology—i.e., its ability to generate models that

could accommodate nearly any initial condition in the early universe.29 Chris Smeenk

(2012), for instance, argued that considering inflationary cosmology as a a theory of

structure formation, rather than as a solution to fine-tuning problems in the early uni-

verse, offers more detailed constraints on its parameters by relating the amplitude of the

density perturbations of the inflaton field to various features of the CMB.30

With these few fragmentary remarks on confirming aspects of dark energy, dark mat-

ter, or inflationary cosmology, I am only hinting at why a measure of empirical unification

and theoretical consilience constitutes a better approach to cosmological model selection

28This took place after the first measurements on the CMB from COBE, and more decisively those
of WMAP, corroborated estimations of ΩΛ ≈ 0.7 from a previous survey of supernovæand, indirectly,
from estimates of the age of the universe by observing the oldest clusters of galaxies.

29One can find criticisms of the versatility of inflation in the cosmology literature, but they are usually
phrased, vaguely, in terms of Popperian falsifiability, which is arguably a coarse confirmation criterion.

30The difficulties in trying to characterize inflation as a unification between between cosmology and
particle theory, which would constitute an alternative attempt to characterize the potential unifying
power of inflation, was discussed in (Zinkernagel, 2002).
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than the statistical and Bayesian methods we saw previously. I here mainly want to

make the case that we can use a quantitative measure of confirmation which, in cos-

mology, is better motivated and doesn’t suffer from the same limitations as the model

selection methods often used. Consilience and unification as a confirmation criterion is

more demanding than predictive accuracy, and more refined than falsifiability.

5.5 Conclusions

We have seen that when the theoretical landscape is not well-defined or well-constrained,

comparing cosmological models based on their respective Bayesian evidence is not a

reliable method, as it is likely to favor models that overfit the data. To avoid this,

we have seen attempts in the literature to appeal to simplicity, given in terms of our

models’ number of free parameters: cosmologists have proposed a measure of “Bayesian

complexity” as a correction put on a model’s Bayesian evidence so as to penalize that

model’s complexity. Alternatively, the cosmology literature sometimes appeals to other

statistical and Bayesian information criteria such as the Akaike Information Criterion

(AIC) or the Bayesian Information Criterion (BIC), often under the assumption that

their goal is to find a balance between fit-to-data and complexity. In the literature, this

appeal to simplicity is often justified by vague, apocryphal references to Ockham’s razor

and to ontological restraint.

A closer look at these model selection criteria has shown that, in spite of how they are

usually formulated or presented, they do not, strictly speaking, aim at favoring models

that, other things being equal, have fewer parameters. Rather, these criteria’s formula-

tions in terms of a model’s number of free parameters only hold under certain conditions

and approximations—assumptions or approximations with respect to the size of our sam-

ple or to our parameters’ range. Therefore, as Norton (2012b) has shown for the AIC,

simplicity with respect to the number of free parameter is more a common byproduct



142Chapter 5. Simplicity and Unification in Cosmological Model Selection

than a goal or a consistent result of the analysis carried out with any of these model

selection criteria.

Although, in practice, these model selection criteria tend to sanction the introduction

of new parameters only if it results in a considerable gain in information about the data,

it is objectionable to say that it is out of a sense of parsimony or ontological modesty that

we use these criteria. Not only is there no straightforward or objective sense in which

to characterize simplicity, but also is it doubtful that Nature obeys any imperative to be

modest or simple—at least, there is no compelling reason why it should be simple with

respect to its number of free parameters.

Now, regardless of metaphysical considerations about these model selection criteria,

we have seen that the use of these criteria is especially problematic in cosmology. Indeed,

conclusions based on the BIC score or the Bayesian evidence can be highly dependent on

arbitrary choices of priors or on how parameter ranges are defined. Moreover, accuracy

in using the AIC (and, to a lesser extent, the BIC) assumes that we have access to a large

sample of independent and identically distributed data. But this requirement cannot be

met if these model selection techniques are used to characterize a unique object (such as

the universe) or a unique event (such as the CMB).

I have suggested, however, that another Bayesian measure could help us assess and

compare parameters and models even when our data sample is very limited. The mea-

sure of consilience or unification proposed by Myrvold (2003)—that is, a measure of a

model’s ability to unify different sorts of phenomena—does not suffer from the some of

the limitations that undermine the use of other model selection methods in cosmology.

By measuring a model’s ability to make two otherwise unrelated sets of phenomena yield

information about each other by giving a functional relationship between them, char-

acterized by some parameters, this model selection method does not merely select the

“best” set of parametric values according to a sense of balance between fit and sim-

plicity. The degree of confirmation from the unificatory power of a model it assesses,
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although it depends on assumptions about our prior expectations, allows us to ground

model comparison in empirical claims rather than scholastic metaphysics.
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Chapter 6

Concluding Remarks

I will end this dissertation with a few concluding remarks, so as to emphasize its contri-

butions for philosophy and cosmology.

Three of the papers in this work assessed anthropic arguments and predictions à la

Weinberg, and particularly its two central premises: a representation of ignorance or

indifference, and the claim that we can conditionalize a probability distribution for a

physical parameter on the number of observers it allows for.

The first two papers, Chapters 2 and 3, focused on the first of these premises, i.e.,

the problem of reasoning from ignorance or indifference, and argued that the ability

to draw conclusions in such a situation is a flaw rather than a strength of the use of

probabilities. In Chapter 3, I have shown that, under these circumstances, such flawed

arguments and conclusions (of which the Doomsday argument is another example) are

necessary consequences of any Bayesian approach that represents credal states by single

credence functions, unless we adopt ad hoc rules as the ones we can find in (Bostrom,

2002a). But I have also shown that these conclusions can be avoided if we allow our

credences to be imprecise.

What is at stake with such arguments is the adequacy of probabilities as an inductive

framework, recently summarized as follows:

John Norton has discussed the limits of probability theory as a logic of induc-

tion, using an example which, he claims, admits no reasonable probabilistic

147
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attitude (Norton, 2007, 2008a,b). One might hope that [the imprecise proba-

bility model] offers an inductive logic along the lines Norton sketches. Norton

himself has expressed scepticism on this line (Norton, 2007). (Bradley, 2015,

§ 2.6)

In particular, Norton had put forth compelling criteria any logic of induction should meet

when representing indifference or ignorance. In response to Norton’s skepticism, I have

shown, in Chapter 2, that imprecise probabilities can indeed meet these criteria. Thus I

hope to have convincingly argued not only that the imprecise credence model constitutes

a plausible framework for an inductive logic, but also that it achieves what no other

representation of credences by a unique probability distribution can do.

The third paper examined the second premise in Weinberg’s anthropic argument, i.e.,

the claim that we ought to expect to find ourselves in a physical world more favorable to

the advent of life. This claim is sometimes—even in the cosmology literature—formulated

as one about self-locating uncertainty, to which solutions to the Sleeping Beauty problem

are relevant. I have made precise what a defense of anthropic reasoning based on the

Sleeping Beauty problem or, more generally, about self-locating uncertainty, can be. But

at the same time I have shown that the two kinds of arguments are, in fact, not similar.

This examination of the Sleeping Beauty problem led me to argue against the “thirder”

position of Elga et al., and thus to dispute that this problem can be used to illustrate

that, in science in general and cosmology in particular, “we need a methodology for evi-

dence with a de se component.” (Bostrom, 2002b, 621) More precisely, I presented three

arguments against the “thirder” position, two of which have been made elsewhere in the

literature. The first line of criticism is to say that the Sleeping Beauty problem is one

where Beauty’s credence about the coin toss result is distinct from her betting behavior

on this matter. The second—which I haven’t endorsed—is that the “thirder” position

implies a flawed partition of events, as it assumes that the two possible observation times

(Monday and Tuesday) can be, for her, distinguishable and mutually exclusive. The
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last objection, which is my own, argues that the Sleeping Beauty problem should rather

be construed as a problem about observation bias, albeit one that involves unnecessary

elements about Beauty’s location and memories.

Cosmologists often phrase solutions to self-locating problems in terms of “typicality

assumptions”. In Chapter 4, I distinguished two kinds of typicality assumptions: one

assumption concerns the reliability of our data, and the second one concerns their generic

character. I have argued that justifications of predictions based on typicality assumptions

found in the literature conflate these two kinds of typicality. As a consequence, I claimed

that the only typicality assumptions that are warranted (ceteris paribus) are those that

do not affect our inferences.

This conclusion, in effect, applies more broadly to either of the notions examined in

the first three papers: arguments stemming from a state of ignorance or indifference, or

from an assumption of typicality, should have no effect on our knowledge of the world if

these attitudes are only epistemic in nature, and not the reflection of physical properties.

From these first three papers, one can draw a conclusion that echoes previous critiques

of anthropic reasoning. Prior to the anthropic-based prediction from (Weinberg, 1987),

we could find the following formulation of the anthropic principle: “we must be prepared

to take account of the fact that our location in the universe is necessarily privileged to the

extent of being compatible with our existence as observers.” (Carter, 1974, 293, original

emphasis) Weinberg made the same claim when he suggested to use anthropic bounds

to restrict the range of possible values of the cosmological constant, but I have shown

that what he added to this claim to obtain a prediction—namely, taking into account

the number of observers as a function of the value of the cosmological constant—is

unwarranted. As a consequence, the only valid element of anthropic reasoning left was

already contained in Carter’s formulation of the anthropic principle, in which “it is hard

to find anything stronger than a tautology.” (Earman, 1987)

In the fourth paper, we saw that the rationale behind the appeal to simplicity in
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model selection is also usually motivated on a priori grounds. Indeed, according to

claims made by cosmologists, philosophers, and statisticians, the appeal to simplicity in

terms of number of a model’s parameters does not depend on our evidence: it is usually

argued that, other things being equal, we should prefer models with fewer parameters,

because we should avoid overfitting, and the risk of overfitting is greater when we have

more, possibly superfluous or meaningless parameters. By examining in greater detail

how this claim plays out in cosmology—i.e., with what tools and methods it is applied

in model selection—I showed that, strictly speaking, the model selection criteria used or

developed do not seek to balance fit-to-data (or predictive accuracy) and “complexity”.

In accordance with what Norton (2012) showed for the Akaike Information Criterion

(AIC), I demonstrated that simplicity in terms of number of free parameters is only

a byproduct of the analysis, rather than its aim. The search for simplicity, Nature’s

modesty, or ontological parsimony is then, at best, no more than an “intuition pump” or

a surrogate for background knowledge.

In that same paper, I exposed the specific limitations cosmologists face in many con-

texts when using statistical and Bayesian model selection criteria. One can find in the

literature a critique of using the Bayesian evidence in model selection, as it is highly de-

pendent on choices in the priors, which in many cases in cosmology are poorly motivated

(Efstathiou, 2008; van Dyk, 2012). One can also find warnings against the Bayesian

Information Criterion if the data sample available to us is small, which can be very small

indeed in many contexts in cosmology. I argued, further, that information criteria such

as the AIC assume that we have access to multiple instances of the phenomenon or phys-

ical system under consideration, which precludes its use when the system in question is

unique, such as the universe or the Cosmic Microwave Background radiation.

All the chapters in this dissertation gave examples of probabilistic arguments that lead

to spurious confirmation, whether it be because the argument is not valid or because,

in these particular instances, the probabilistic framework is not adapted to its object
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of study. But we also saw that it would be exaggerated to conclude that these are the

result of fundamental flaws of Bayesianism. Probabilities can play a legitimate role in

cosmological inferences, and the Bayesian framework allows us to avoid unwarranted

conclusions.

We saw the risk of substituting a priori reasoning for physical modeling and empirical

support. To be sure, a priori assumptions are sometimes useful, and they can even be

necessary; for instance, I briefly evoked in § 4.3.4 that we need to assume homogeneity

and isotropy at large astrophysical scales in order to be able to work with FLRW models.

But I also argued that the Copernican principle’s validity (i.e., the “specialness” of our

location as observers) can and should be assessed on empirical grounds, and so should

the propensity of our universe to foster life, or how many parameters cosmological models

should have.
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