
FUNCTIONAL CHARACTERIZATION OF FRO4 AND FRO5: TWO MEMBERS OF 
THE FERRIC CHELATE REDUCTASE FAMILY OF ARABIDOPSIS 

 
by 
 

Grandon Thomas Wilson 
 

Bachelor of Science 
University of South Carolina, 2007 

 
 
 
 

Submitted in Partial Fulfillment of the Requirements 
 

For the Degree of Master of Science in 
 

Biological Sciences 
 

College of Arts and Sciences 
 

University of South Carolina 
 

2014 
 

Accepted by: 
 

Erin Connolly, Director of Thesis 
 

Beth Krizek, Reader 
 

Rekha Patel, Reader 
 

 
Lacy Ford, Vice Provost and Dean of Graduate Studies



ii	  

© Copyright by Grandon Thomas Wilson, 2014 
All Rights Reserved.



iii	  

DEDICATION 

This manuscript is dedicated to two people who have helped me in more ways than 

imaginable: Rod Kinard and the late Ed Morris. They were always there during the highs, 

the frustrations, and the tears to offer jokes, words of encouragement, and comfort. 

 



iv	  

ACKNOWLEDGEMENTS 

 I would first like to acknowledge my advisor, Dr. Erin Connolly. First, for 

accepting me as a graduate student into her lab, and second for all the knowledge and 

guidance she provided over these past few years. I’d also like to thank my current 

committee members, Dr. Beth Krizek and Dr. Rehka Patel, as well as my former 

committee members Dr. Johannes Stratmann and Dr. Caryn Outten for all of the helpful 

advice and suggestions throughout the years.  Also, our collaborators Maria Bernal, Ute 

Kramer, and Sabeeha Merchant. 

 Next, I want to acknowledge and thank my current and former lab mates: Anshika 

Jain for every helpful discussion we had dealing with experiment problems as well as all 

of the every day conversations about life, Margo Maynes for all of the laughs and words 

of encouragement, and Iera Chatterjee and Huijun Yang for teaching me the basics of 

molecular Biology and helping me get steady on my feet to work independently.  

 I’d like to thank all of the friends I made in graduate school. Erika, for being the 

first person I made friends with when I initially started graduate school. We’ve had more 

cups of coffee together than I could imagine, but they were all worth it. April South for 

being that one person who I could constantly talk with about the labs I taught, as well as 

being an awesome and extremely helpful friend. Claire Hann, whom I met through Erika, 

and who has stuck with me and helped so much. Kim Shorter for being someone who I 

can could be extremely empathetic with and who understood a lot of my worries and



v	  

concerns. Finally, all of my plant Biology friends and journal club members: Han, CJ, 

Marcie, and Janaki, for always being there to discuss difficult figures. I’d also like to

thank my undergraduate research advisor Dr. Dan Tufford for getting me interested in 

research, which led me to study plant Biology. 

I'd like to thank my family for always believing in me and asking: “When are you 

going to graduate?” Finally, I’d like to thank Rod Kinard and Ed Morris, for whom this 

manuscript is dedicated, for being there the past five years and helping me grow into the 

person I am today. 

 



vi	  

ABSTRACT 

Iron (Fe) is the fourth most abundant element within the earth’s crust and is an 

essential micronutrient for plants and animals. Fe plays key roles in photosynthesis, 

respiration and chlorophyll biosynthesis in plants and in hemoglobin in animals. Like Fe, 

copper (Cu) is also an important micronutrient in plants and is needed for photosynthesis 

and respiration, especially in the important copper-containing protein plastocyanin.  

Copper also is important in scavenging reactive oxygen species and ethylene perception. 

The reduction of Fe3+ to Fe2+ at the root surface of Arabidopsis thaliana during times of 

Fe deficiency has been a well-characterized process; however, reduction of Cu2+ to Cu1+ 

at the root surface is less well understood. It is known that a member of the FRO family 

of Arabidopsis genes, FRO2, functions to reduce Fe3+ to Fe2+ prior to import, but a role 

for copper reduction in Cu uptake in response to Cu deficiency was not previously 

known. The work presented in this thesis describes the characterization of two additional 

members of the FRO family, FRO4 and FRO5, that have been shown to have high amino 

acid sequence similarity. FRO4 and FRO5 function in the reduction of Cu2+ to Cu1+ at the 

root surface.  For the characterization of these two genes, we isolated a T-DNA knock-

out line of FRO4, fro4, which lacks full-length FRO4 transcript.  In addition, we 

generated and characterized artificial microRNA knockdown lines for FRO5 and for both 

FRO4 and FRO5 (double knockdown line).  Under copper deficiency, FRO4 and FRO5 

are highly expressed in root and shoot tissue. Loss-of-function mutants show only basal 

levels of reductase activity under Cu deficiency and grow poorly on Cu deficient
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hydroponic media compared to their wild-type counterparts. Taken together, these data 

support the hypothesis that FRO4 and FRO5 are the principle copper reductases during 

Cu deficiency in Arabidopsis and function redundantly to reduce Cu2+ to Cu1+ as part of 

the high affinity Cu uptake system. 
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CHAPTER 1 

IRON AND COPPER HOMEOSTASIS IN ARABIDOPSIS THALIANA 

 

Importance of Iron: 

Iron (Fe) is an essential micronutrient required by plants and is used in many 

cellular processes including photosynthesis, respiration, and nitrogen fixation (Briat and 

Lobreaux, 1997). Iron is required in chloroplasts where it is used by the photosynthetic 

complexes, is required for chlorophyll biosynthesis, and is essential for the production of 

Fe-S clusters (Kobayashi and Nishizawa, 2012). Iron metabolism in plants is an 

important area of study because iron deficiency anemia is one of the most common 

human nutritional deficiencies worldwide (http://www.who.int/home-page). In addition, 

most people acquire their iron from plant sources, so there is significant interest in 

understanding the molecular basis of iron uptake and accumulation in plants. 

 Despite the significant iron requirement of plants, it is important to note that too 

much iron is toxic to plants, leading to the generation of reactive oxygen species 

(Halliwell and Gutteridge, 1992). More importantly, even though iron has a high 

abundance in the earth’s crust, it is generally present as insoluble oxyhydroxide ferric 

iron complexes at neutral or basic pH (Grotz and Guerinot, 2006). Approximately 30% of 

soils worldwide are considered iron deficient and plants grown under conditions of low 

iron availability tend to have chlorosis of the leaves (Briat and Lobraeux, 1997) and 
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suffer from reduced crop yield (Guerinot and Yi, 1994). Despite the low bioavailability 

of iron in soil, plants manage to utilize two strategies to combat iron deficiency and take 

up the nutrient (Guerinot and Yi, 1994).  

Uptake and Transport of Iron:  

Plants can be classified as using either Strategy I or Strategy II for iron 

acquisition. Strategy I plants are all non-grasses, including Arabidopsis thaliana, while 

Strategy II plants are graminaceous monocots (Guerinot and Yi, 1994). When under iron 

deficient conditions, Strategy I plants engage in a three-step process to take up iron. At 

the root surface, protons are pumped out into the rhizosphere via an ATPase, likely 

thought to be AHA2 (Santi and Schmidt, 2009), a member of the Arabidopsis H+-ATPase 

gene family. This serves to lower the pH of the surrounding rhizosphere and increase iron 

solubility. Ferric (Fe(III)) iron chelates are then reduced to ferrous (Fe(II)) iron by a 

plasma membrane ferric chelate reductase; FRO2 (Ferric Reductase Oxidase 2) is known 

to function as the ferric reductase that reduces iron at the root surface (Yi and Guerinot, 

1996; Robinson et al, 1999). Finally, Fe2+ is transported into the cell across the plasma 

membrane via IRT1 (Iron-Regulated Transporter 1; Eide et al., 1996; Vert et al., 2002). 

Strategy II plants respond to iron deficiency by synthesizing phytosiderophores 

(PS) and then releasing them from the roots into the surrounding rhizosphere; PSs, such 

as mugineic acid, bind Fe(III) with high affinity (Walker and Connolly, 2008). These 

Fe(III)-PS complexes are then transported across the root membrane via the YS1 (Yellow 

Stripe1) iron transporter (Curie et al., 2001).  

  



3	  

Iron Homeostasis: 

Iron uptake and trafficking need to be tightly regulated. Iron is associated with citrate as 

it is transported through the xylem from the roots to the shoots and with nicotianamine in 

phloem (Briat et al., 2007). Having these iron complexes helps prevent free iron from 

causing damage via the generation of hydroxyl radicals and keeps iron from precipitating. 

In addition, ferritins are present in plastids and mitochondria and serve as iron storage 

units; data also show that ferritins play a role in protecting a plant against oxidative stress 

during growth and development (Ravet et al, 2009). It has also been shown that iron can 

be stored within the vacuole (Kim et al., 2006).  

Not much is known about Fe sensing and signaling. However, the expression of 

FRO2 and IRT1 is regulated transcriptionally by the transcription factor, FIT (Colangelo 

and Guerinot, 2004). Two bHLH transcript factors, AtbHLH38 and AtbHLH39, have 

been shown to form heterodimers with FIT to control the transcriptional activation of 

FRO2 and IRT1 (Yuan et al., 2008). The recently discovered bHLH transcription factor 

POPEYE (PYE) also plays a role in roots during iron starvation, and has been shown to 

function in the stele to regulate the expression of multiple genes involved in Fe 

homeostasis (Long et al., 2010).  

In addition to transcriptional regulation of the iron deficiency response, IRT1 has 

been shown to be post-translationally regulated (Connolly et al., 2003; Kerkeb et al, 

2008; Barberon et al, 2011; Shin et al, 2013). Recently, it was discovered that proper 

turnover of FIT is required for optimal expression of IRT1 and FRO2 during Fe-

deficiency. This involves the process of constant degradation of “exhausted” FIT by 

ubiquitination and proteosomal degradation of the transcription factor on the promoters 



4	  

of IRT1 and FRO2 that is then replaced by newly synthesized FIT protein (Sivitz et al, 

2011). 

Hormones also play roles in the regulation of plant responses to Fe availability 

(Hindt and Guerinot, 2012). Two ethylene transcription factors, EIN3 and EIL1, are 

important in the ethylene pathway; it is theorized that these proteins bind directly to FIT, 

strengthening the Fe-deficiency response in Arabidopsis (Lingam et al, 2011). Double 

mutants of ein3 eil1 show reduced FIT protein abundance and lower expression of FRO2 

and IRT1 (Lingam et al, 2011). Two additional positive hormone regulators of Fe-

deficiency in Arabidopsis are NO and auxin. Auxin is a regulator of plant growth, and 

under Fe-deficiency, Fe can work to increase lateral root growth through the auxin 

transporter, AUX1. This serves to increase the surface area of roots to allow for more 

uptake of Fe from the environment (Giehl et al, 2012). The signaling molecule NO is 

produced in response to Fe deficiency and is important for stabilization of FIT (Graziano 

and Lamattina, 2007; Meiser et al, 2011) Hormones that negatively regulate the Fe-

deficiency response are cytokinin and jasmonate. When exogenous cytokinin is added to 

plants, FIT, FRO2, and IRT1 expression is down-regulated (Seguela et al, 2008). The 

effect of exogenous jasmonate is the same (Maurer et al, 2011). 

IRT1 and the FRO family: 

In Strategy I plants, IRT1 is the major transporter of iron, and other divalent 

cations such as zinc, manganese, cobalt and cadmium from the soil (Eide et al, 1996; Vert 

et al, 2002). IRT1 belongs to the ZIP family of metal transporters (Kim and Guerinot, 

2007). It is an essential gene as plants that lack IRT1 are inhibited in their ability to take 

up iron and die early unless they are watered with high levels of a soluble form of iron 
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(Vert et. al., 2002). During times of iron deficiency, expression of IRT1 at the root plasma 

membrane is greatly increased. Peak levels in expression of IRT1 mRNA occur 3 days 

after detection of iron deficiency and coincide with noticeable levels of the IRT1 protein 

(Connolly et. al., 2002). Previous studies have shown that when two-week-old 

Arabidopsis seedlings are placed on media deficient in iron for three days and then 

transferred to plates with media sufficient in iron, IRT1 mRNA and protein begin to 

disappear, and are undetectable after 12 hours. This rapid turnover is thought to help 

prevent the uptake of too much iron (Connolly et al, 2002).  

Like IRT1, transcription of FRO2 is up-regulated during times of iron deficiency, 

with FRO2 mRNA levels reaching a peak at three days after the transfer to Fe deficient 

conditions (Connolly et al., 2003). FRO2 functions to reduce Fe(III)-chelates to Fe(II), 

which can then be transported across the root plasma membrane. This step of the iron 

uptake process is thought to be rate limiting (Grusak et al., 1990; Connolly et al., 2003). 

Mutants deficient in FRO2, known as ferric reductase defective 1(frd1), display enhanced 

chlorosis (as compared to WT) when iron is limiting, showing just how important FRO2 

is to the Strategy I pathway.  FRO2 was identified due to its sequence similarity to yeast 

FRE1, and to a subunit of gp91phox (the human respiratory burst NADPH oxidase; 

Robinson et al, 1999). Fe(III) reductase genes have been characterized in tomato and pea 

and are expressed in similar locations as FRO2 (Li et al., 2002; Waters et al., 2002; Kim 

and Guerinot, 2007).      

The Arabidopsis FRO gene family contains 8 members, named FRO1-8 

(Mukherjee, et al, 2006). A subset of the FRO genes are induced in response to Fe 

deficiency and studies have shown that the FROs are expressed in different locations 
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within the plant (Wu et al, 2005; Muhkjeree et al, 2006). FRO2 localizes to the root 

plasma membrane and, as mentioned above, is the major enzyme involved in iron 

reduction at the root-soil interface during iron deficiency (Robinson et al., 1999). FRO3 

and FRO8 are believed to localize to the mitochondria and may have a role in the 

reduction of iron in that organelle (Jain and Connolly, 2013), while FRO7 has been 

shown to localize to the chloroplasts and to function in supplying iron to the organelle 

(Jeong, et al., 2008). FRO4 and FRO5 are targeted to the secretory pathway, and 

preliminary data show that FRO5 localizes to the plasma membrane (Jeong and 

Connolly, 2009). Predictions suggest that FRO4 may also localize to the plasma 

membrane. 

Importance of Copper: 

Copper (Cu), like Fe, is also an essential micronutrient in plants. Copper is an 

important cofactor of proteins important for photosynthesis and respiration, scavenging 

reactive oxygen species, and in ethylene perception (Marschner, 1995; Rodrigues et al., 

1999; Pilon et al, 2006). One important and abundant copper-containing protein is 

plastocyanin (PC), which functions in Photosystem I of photosynthesis (Kiselback et al., 

1998; Raven et al., 1999). Copper/Zinc superoxide dismutase (Cu/ZnSOD) is a second 

important copper-containing protein that functions to scavenge reactive oxygen species 

(Bowler et al., 1994). Since most copper is located in leaves, when copper is limiting, 

plants tend to have withered leaves and slowed growth (Hansch and Mendel, 2009).  It is 

important to note that iron and copper homeostasis are intertwined processes. Should 

copper become limiting, plants can shift from the use of copper-containing proteins to 
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iron-containing proteins in order to traffic available copper to the exceedingly more 

important plastocyanin, a topic discussed more below.  

Copper Homeostasis in Yeast: 

In yeast, before iron and copper can be taken into the cell, the metals must be 

reduced. Saccaromyces cerevisiae FRE1 and FRE2 are metalloreductases involved in the 

reduction of iron and copper at the cell surface (Martins et al., 1998). Once reduced, 

copper is transported into the cell via the high and low affinity yeast transporters CTR1 

and CTR3 (Freitas et al., 2003). Much like FRO2 and IRT1 in Arabidopsis, FRE1, FRE2, 

CTR1, and CTR3 are regulated by metal status. The transcription factor MAC1 is induced 

under copper deficiency and acts to regulate genes involved in copper homeostasis 

(Jungmann et al., 1993). MAC1 binds to the copper responsive elements of FRE1, CTR1, 

and CTR3 to activate gene expression when copper is limiting; MAC1 is inactive when 

copper is available (Freitas et al., 2003).  

Copper Homeostasis in plants:  

Copper homeostasis needs to be tightly regulated, as too much copper can be 

toxic to plants. When copper is limiting, the plant must shift how it utilizes copper, as 

copper is a cofactor in many components of photosynthesis and respiration (Marschner, 

1995). Much research has been done in the green algae Chlamydomonas reinhardtii to 

help understand the response to copper deficiency (Merchant et al., 1991). In 

Chlamydomonas there is a shift from using proteins that contain copper to proteins that 

contain iron as a cofactor. This shift also exists in Arabidopsis, though the proteins differ. 

Under copper deficiency, Arabidopsis shifts from using Cu/Zn superoxide dismutase 

(Cu/ZnSOD) to using Fe superoxide dismutase (Abdel-Ghany et al., 2005). By doing this, 

copper can then be directed to plastocyanin, which is a vital component of the 
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photosynthetic electron transport chain (Yamasaki et al., 2007). Recently, it has been 

shown that a microRNA plays a role in copper homeostasis in Arabidopsis (Yamasaki et 

al., 2009). MicroRNA miR398 is induced under copper deficiency and is controlled by 

the transcription factor, SPL7 (SQUAMOSA promoter binding protein-like7). miR398 

functions by degrading the transcript of two Cu/Zn SODs, CuZn/SOD1 and Cu/ZnSOD2.   

SPL7 also regulates the transcription of many copper deficiency response genes in 

Arabidopsis such as COPT1 and COPT2, FeSOD, and even FRO3 (Yamasaki et al, 

2009). Mutant spl7 plants do not up-regulate these genes under copper limitation. Data 

presented here and in publication also show that FRO4 and FRO5 are controlled by SPL7 

and are two of the most highly up-regulated genes during Cu deficiency (Bernal et al., 

2012). 

Uptake and Trafficking of Copper: 

Like iron, copper may need to be reduced from Cu2+ to Cu1+ before the plant can 

take it up. Some evidence suggests that FRO2 may play a role in the reduction of copper 

at the root surface, as frd1 plants are impaired for copper reduction (Robinson et al., 

1999). However, frd1 plants are not copper deficient, so it is possible that plants take up 

copper as Cu2+, or that other FRO family members function in reduction of Cu.  

Reduced copper has been shown to be transported into the plant via the copper 

transporter, COPT1 (Puig et al., 2007a; Penarrubia et al., 2009). The COPT1 transporter 

belongs to a family of six copper transporter proteins in Arabidopsis (Sancenon et al., 

2003).  It is possible that plants can also take up the divalent form of copper as members 

of the ZIP family of transporters, ZIP2 and ZIP4, have been shown to be up-regulated 
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during copper deficiency (Wintz et al., 2003). However, this hypothesis lacks support, 

which is discussed more in Chapter II. 

Inter- and Intracellular Copper Homeostasis: 

Several members of the COPT family of Cu transporters have been characterized 

to date. COPT2 has been shown to play a role during both Fe and Cu deficiencies by 

functioning to alleviate some of the stress induced by Fe deficiency (Peria-Garcia et al, 

2013). COPT5 has been shown to function as a Cu exporter across the tonoplast under Cu 

deficient conditions (Garcia-Molina et al, 2011; Klaumann et al, 2011), and finally 

COPT6 has been shown to be involved in redistribution of Cu in aerial tissue under Cu 

deficiency (Garcia-Molina, 2013).  

Once Cu enters the root as Cu1+, it needs to be loaded into the xylem. It is 

believed that HMA5 can move Cu into the xylem  where it then can bind to NA, although 

this is still unclear (Andres-Colas et al, 2006; Curie et al, 2009). In which oxidative state 

Cu is transported into leaf cells is currently unknown, as well as which transporter is 

involved in the process. It was speculated that FRO6 may be involved in Cu reduction 

prior to leaf import, however it has been shown that FRO6 expression is actually reduced 

under Cu deficiency (Mukherjee et al, 2006). Other data suggests that FRO5 may play a 

role due to its expression pattern and control by Cu status, but this hypothesis needs to be 

further tested. 

Cu is needed in cells for use by the Cu transporter RAN1 for ethylene perception 

(Binder et al, 2010), Cu/ZnSODs, cytochrome c oxidase in mitochondria (Carr and 

Winge, 2003), and plastocyanin. Much work has been done to understand chaperones and 
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transporters involved in the shuttling and import of Cu into various organelles, as well as 

transcriptional response to Cu deficiency (Burkhead et al, 2009).   

Due to the cellular environment and the fact that Cu is reactive and can lead to 

oxidative damage, Cu is bound to chaperones that aid in the shuttling of the metal to 

target proteins. One chaperone characterized in yeast is Atx1 (Pufahl et al, 1997). This 

protein functions to move Cu to an ATPase located in the golgi. The first Arabidopsis 

homolog of the yeast Atx1 gene characterized was CCH (Himelblau et al, 1998). CCH 

expression was found to be up-regulated under Cu-deficiency conditions and low under 

Cu excess (Puig et al, 2007b). The second characterized Atx1 homolog in Arabidopsis 

was ATX1, which is expressed under Cu excess. Both chaperones have been show to 

interact with RAN1 and HMA5, suggesting that these two chaperones deliver copper to 

the machinery for ethylene perception and function in Cu detoxification under high Cu 

stress (Andres-Colas et al, 2006; Puig et al, 2007b). However, recent data has shown that 

ATX1 and not CCH is required for tolerance to excess and low Cu conditions (Shin et al, 

2012).   

The final Cu chaperone is CCS, which is the only plant homolog of the yeast and 

human Cu chaperone for SODs; CCS functions to provide Cu to the three isoforms of 

Cu/ZnSOD in Arabidopsis (Chu et al, 2005). The three isoforms of Cu/ZnSOD are 

localized to the cytosol, chloroplast, and peroxisomes. CCS has been shown to be active 

in both plastids and the cytosol, and mutants of CCS show reduced activity in all three 

SODs, demonstrating that CCS is the primary Cu chaperone for these proteins (Chu et al, 

2005).  
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Data has shown that two P-Type ATPases, PAA1 and PAA2, are responsible for 

the transport of Cu into chloroplasts (Abdel-Ghany et al, 2005). These proteins localize to 

the chloroplast inner membrane and thylakoid membrane, respectively, and are important 

for delivery of Cu to plastocyanin and the electron transport chain (Abdel-Ghany et al, 

2005; Bernal et al, 2004).  PAA1 and PAA2 single mutants are not lethal and mutant 

phenotypes can be rescued by addition of extra Cu, however paa1paa2 double mutants 

are embryo lethal, underscoring the importance of efficient transport of Cu to chloroplast 

(Shikanai et al, 2003; Abdel-Ghany et al, 2005).  

Regulation of Copper Homeostasis 

It was discovered that the transcription factor Crr1 in Chlamydomonas is a 

regulator of the Cu deficiency response (Kropat et al, 2005). Crr1 binds to a GTAC motif 

under Cu deficiency and activates transcription of Cu assimilation genes  (Quinn et al, 

2000). In Arabidopsis, work with miRNA398 led to the discovery of the Arabidopsis 

homolog of the Ccr1 transcription factor from Chlamydomonas. miRNA398 is up-

regulated under Cu deficiency and binds to transcripts of non-essential Cu proteins, that 

when lost, causes an attenuated response to Cu status (Yamasaki et al, 2007; Yamasaki et 

al, 2009). It was initially hypothesized that the SPL family of transcription factors could 

be mediating the response to Cu deficiency given the fact that these proteins recognize 

the GTAC motif (Birkenbihl et al, 2005). Arabidopsis SPL7, which shares the highest 

sequence similarity to Chlamydomonas Crr1, has been shown to be the master regulator 

of the Cu deficiency response in Arabidopsis (Yamasaki et al, 2009; Bernal et al, 2012).  

Objective: 

Arabidopsis FRO4 and FRO5 are two FRO genes that were previously 

uncharacterized. Based on data generated previously in our lab, as well as RNA-Seq data 
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provided by our collaborators, FRO4 and FRO5 have been shown to be two of the most 

highly up-regulated genes under Cu deficiency and most likely function as root surface 

Cu reductases. My aim with this thesis project was to obtain and characterize mutants of 

FRO4 and FRO5 and to confirm their function in vivo.
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CHAPTER 2: 

FUNCTIONAL CHARACTERIZATION OF FRO4 AND FRO5 

INTRODUCTION 

Copper is an essential micronutrient in plants, where it is needed as a cofactor in 

proteins involved in photosynthesis and respiration, in scavenging reactive oxygen 

species, and in ethylene perception (Marshner, 1995; Rodrigues et al, 1999; Pilon et al, 

2006). One of the most important copper containing-proteins in plants is plastocyanin 

(PC), which functions in Photosystem I of the photosynthetic machinery (Kiselback et al, 

1998; Raven et al, 1999). A second important Cu-containing enzyme is Cu/Zn superoxide 

dismutase, which functions to scavenge reactive oxygen species (Bowler et al, 1994).  

Finally, Cu has importance in cell wall metabolism and seed coat metabolism, 

functioning through glycoproteins known as laccases (Turlapati et al, 2011). 

Cu is a highly toxic and reactive metal and it has been reported that levels of Cu 

in plants can range from 2 µg-1 g to 5  µg-1 g DW depending on the plant species (Epstein 

and Bloom, 2005). A normal Cu concentration in shoots is considered to be 6µg g-1 DW 

(Cohu and Pilon, 2007), while deficiency occurs at less than 5µg g-1 and toxicity occurs 

at greater than 20 µg-1 g dry-weight (Marshner, 1995). Cu deficiency in plants leads to 

chlorosis of leaves, reduced growth and seed set, and impaired photosynthetic efficiency 
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PS (II) is more susceptible to Cu toxicity than PS(I) as high concentrations of Cu enhance 

the negative impact of periods of prolonged, high intensity light, which leads to damage 

to PSII (Aro et al, 1993; Bernal et al, 2004).  

Cu uptake is a well-characterized process in the photosynthetic green alga 

Chlamydomonas reinhardtii and in Arabidopsis.  Like in plants, plastocyanin is one of 

the most abundant Cu-containing proteins in C. reinhardtii. During Cu deficiency, C. 

reinhardtii induces the expression of cytochrome c6, which is an Fe-containing protein 

that can perform the function of plastocyanin (Merchant et al, 1991). This ensures that 

photosynthetic activity is maintained under Cu deficiency (Quinn and Merchant, 1995). 

The Cu homeostasis network on C. reinhardtii is controlled by the transcription factor 

Crr1, which targets genes that contain a CuRE motif, such as cytochrome c6 (Kropat et al, 

2005).  

The Arabidopsis homolog of C. reinhardtii Ccr1 transcription factor is SPL7 and 

is up-regulated during Cu-deficiency (Yamasaki et al, 2009). This transcription factor 

serves to activate the transcription of copper assimilation genes, such as the transporters 

COPT1 and COPT2, as well as the Cu chaperone, CCH. In addition, SPL7 controls the 

activation of several microRNAs, mainly miR397, miRNA398, and miRNA408,, which 

serve to down-regulate the translation of non-essential Cu-containing proteins such as 

Cu/ZnSOD and laccases (Yamasaki et al, 2009; Burkhead et al, 2009). 

Previously, it was believed that two ZIP transporters, ZIP2 and ZIP4, might 

function in the uptake of Cu2+ from the root surface. These genes are up-regulated during 

copper deficiency and are able to rescue the ctr1 yeast mutant which lack a functional Cu 

transporters (Sancenon et al, 2003). However, there has not been any evidence to suggest 
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that these two transporters work in the high affinity Cu uptake pathway (Wintz et al, 

2003, Puig et al, 2007a, Yamasaki et al, 2009; Burkhead 2009; del Pozo et al, 2010; 

Bernal et al, 2012). Recent studies using stable isotopes support a reduction-based 

method for Cu uptake (Jouvin et al, 2012). Stable isotope studies show that Cu2+ is 

reduced to Cu1+ prior to import via a cell-surface reductase and Cu1+ is the principle form 

in which Cu is brought into plant during Cu deficiency.  

While it was known that COPT1 acts as the root Cu1+ transporter in Arabidopsis 

(Sancenon, et al 2003; Sancenon et al, 2004), it was unknown whether a member of the 

Arabidopsis FRO family facilitated the reduction of Cu2+ to Cu1+ for subsequent uptake 

into roots via COPT1 FRO2 can function as Cu reductase, however, although mutants of 

FRO2 (frd1) fail to induce Cu reductase activity under Fe deficiency, they do not suffer 

from reduced Cu levels (Robinson et al, 1999). This suggested that other FROs may 

function to reduce Cu under copper deficiency. Two additional, uncharacterized 

candidates were FRO4 and FRO5. These two genes lie in tandem on chromosome 5 and 

share high amino acid similarity. It was previously shown that FRO5 was induced by Cu 

deficiency in roots, and both proteins are predicted to localize to the secretory 

pathway/plasma membrane (Mukherjee et al, 2006). An RNA-Seq study showed that 

under Cu deficiency, FRO4 and FRO5 are two of the most highly up-regulated genes in 

roots (Bernal et al, 2012). Additionally, spl7 mutants failed to up-regulate FRO4 and 

FRO5 under Cu deficiency, showing that expression of FRO4 and FRO5 is under the 

control of this transcription factor.  Indeed, both FRO4 and FRO5 have several repeats of 

the GTAC motif in their upstream promoter regions, further supporting the hypothesis 
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that these two genes are under the control of SPL7 since SPL7 is known to bind to the 

GTAC promoter motif (Bernal et al, 2012).  

My thesis project was to characterize mutants of FRO4 and FRO5 and study their 

function in vivo in Arabidopsis. My data, combined with the data of our collaborators, 

shows that FRO4 and FRO5 are part of the high affinity copper uptake system in 

Arabidopsis and serve as the principle Cu reductases in the roots.  

METHODS AND MATERIALS: 

Plant lines and growth conditions 

Wild type Arabidopsis (ecotype Col gl-1), was used as a control in all 

experiments. A T-DNA mutant of FRO4 (SAIL_H09_159; http://signal.salk.edu/cgi-

bin/tdnaexpress) was obtained from the Arabidopsis Biological Resource Center (ABRC; 

https://abrc.osu.edu) and fro5 and fro4fro5 mutants were generated using artificial 

microRNA technology (Schwab et al, 2006). The T-DNA insertion of fro4 was mapped 

to the first exon. For solid media, seeds were surface sterilized with 25% bleach and 0.2% 

SDS for 15 minutes, then washed several times with autoclaved water. Seeds were then 

stored at 4°C for two days prior to plating. For normal growth, seeds were plated on 

Gamborg’s B5 medium (Phytotechnology Laboratories, Shawnee Mission) supplemented 

with 2% surcrose, 1mM MES, and 0.6% agar, pH 5.8. After autoclaving, 1 mL of 1000x 

Gamborg’s Vitamin solution was added (Phytotechnology Laboratories, Shawnee 

Mission). For hydroponic experiments, plants were grown in half strength liquid 

Hoagland’s media (Bernal et al, 2012) under 11h day/13h night for three weeks, before 

being shifted to 16h day/8h night to promote flowering. 
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Isolation of mutant lines: 

Homozygous fro4 (SAIL_159_H09; Colg-1 background) mutants were selected 

by growing plants on solid agar media supplemented with 50µM glufosinate ammonium 

(Basta, Cresent Chemical, Islandia, NY, USA) and by genotyping. A T-DNA primer 

specific for the left border of the insert (LB1 (5’ 

GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC 3’; Sessions et al, 2002) was 

used in conjunction with a FRO4 specific reverse primer (5’ 

ATTTGTGCAATGGAGTTGCTC 3’) to show the presence of the insert; this primer pair 

produced a 1kb band. Mutants were then backcrossed to the wild-type twice to insure 

only a single insertion was present. In order to determine the location of the insert, the 

1kb PCR product was gel purified using a PCR purification kit and following the 

manufacturers instructions (Qiagen, Maryland, USA) Samples were shipped to 

Engencore (http://selahgenomics.com/genomic-services/) for sequencing using LB1 and 

the FRO4 specific reverse primer, and the insert was determined to be in the 1st exon, 

approximately 27 bp downstream of the transcription start site.  

Cloning: 

Artificial microRNA lines for FRO5 and FRO4/FRO5 were made previously by 

Huijun Yang (Connolly Lab) using the Web MicroRNA Designer 

(http://wmd3.weigelworld.org/cgi-bin/webapp.cgi; Schwab et al, 2006) The FRO5 

amiRNA was constructed using the following primers: FRO5miR-sense, 5’-

gaTTATTAGAGAATCGTGCCCCGtctctcttttgtattcc-3’; FRO5miR-antisense, 5’- 

gaCGGGGCACGATTCTCTAATAAtcaaagagaatcaatga-3’; FRO5miR*sense, 5’- 

gaCGAGGCACGATTCACTAATATtcacaggtcgtgatatg-3’; FRO5miR*antisense, 5’-

gaATATTAGTGAATCGTGCCTCGtctacatatatattcct-3’; primer A, 5’ 
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CTGCAAGGCGATTAAGTTGGGTAAC-3’; and primer B, 5’-

GCGGATAACAATTTCACACAGGAAACAG-3’. FRO4/5 amiRNA was constructed 

using the following primers: FRO4FRO5miR-sense, 5’- 

gaTAGTATTAGAGAGTCATGCCTtctctcttttgtattcc-3’; FRO4FRO5miR-antisense, 5’-

gaAGGCATGACTCTCTAATACTAtcaaagagaatcaatga-3’; FRO4FRO5miR*sense, 5’-

gaAGACATGACTCTCAAATACTTtcacaggtcgtgatatg-3’; FRO4FRO5miR*antisense, 

5’-gaAAGTATTTGAGAGTCATGTCTtctacatatatattcct-3’; primer A, 5’-

CTGCAAGGCGATTAAGTTGGGTAAC-3’ and primer B, 5’-

GCGGATAACAATTTCACACAGGAAACAG-3’.  Further details on the construction 

of the mutants have been published previously (Bernal et al, 2012) 

To generate a 35S-FRO5-YFP-HA construct, the Gateway cloning system was 

used (Earley et al., 2006). In order to generate cDNA for cloning, plants were grown on 

standard Gamborg’s B5 agar plates for 7 days under constant light prior to RNA 

isolation. FRO5 cDNA was amplified (from cDNA prepared from RNA isolated from 

Col gl-1 roots using oligo dT primers and Superscript First Strand Synthesis kit; Introgen; 

Carlsbad, CA, USA) using the following primers: FRO5GATEFOR: 

5’CACCATGGGGAATATGAGAAGCTTAGTG 3’ and FRO5GATEREVNOSTOP 5’ 

CCAGTTGAAACTAATTGCCTCAAAGTG 3’, with the forward primer containing the 

added bases CACC at the 5’ end as required for Gateway cloning by recombination and 

the reverse primer lacking the stop codon. The PCR product was then recombined into 

the pENTR/D/TOPO vector as per the manufacturers protocol (Invitrogen, Carlsbad, CA, 

USA). One Shot TOP 10 competent E. coli cells were transformed with the resulting 

pENTR-FRO5 construct. Transformants were selected on 50µg/mL Kanamycin; plasmids 
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were isolated and the inserts were sequenced. The construct was then recombined into the 

pEarleyGate101 destination vector using Gateway LR Clonase II Plus (Invitrogen, 

Carlsbad, CA, USA) to create the 35S-FRO5-YFP-HA plant transformation vector 

(Earley et al., 2006). 

Because amiFRO5 constructs already conferred resistance to Basta (glufosinate 

ammonium), and we needed to transform the amiFRO5 line with a FRO5-YFP construct 

(see results section) a second YFP expression vector was constructed for this study. 

FRO5-YFP-HA was cloned from the previously generated 35S-FRO5-YFP-HA construct 

using the following primers: FRO5BglIIFwd 5’ 

GAAGATCTTCACCATGGGGAATATGAGAAGC 3’ and FRO5HANheIRev 5’ 

CTAGCTAGCTAGTTAAGCGTAATCTGGAACATC3’. The product was then 

subcloned into the pCambia1302 vector 

(http://www.cambia.org/daisy/cambia/home.html, Australia). Following sequencing, the 

plasmid was transformed into Agrobacterium tumefaciens strain GV3101 (Koncz and 

Schell, 1986). amiFRO5 and Col gl-1 plants were then transformed by the floral dip 

method (Clough and Bent, 1998). Transgenic plants were selected on Gamborg’s B5 

media supplemented with 50 µg mL-1 hygromycin. 

Cloning of 35S:FRO4-GFP and 35S:FRO5-YFP 

35S:FRO5-YFP expressing plants were generated prior to my joining the lab by Huijun 

Yang (Connolly Lab). For 35S:FRO4-GFP, bacteria containing cloned FRO4 were 

obtained. The obtained bacteria were grown over night in liquid LB media at 37°C. 

Plasmids were isolated from bacteria using a Qiagen miniprep kit following 

manufactures’ instructions (Qiagen, Maryland, USA). Full length FRO4 was then cloned 
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from the plasmid using the following primers: FRO4GATEFOR: 5’ 

CACCATGGGGAATATGAGAAGCTTAGTG 3’ and FRO5GATEREVNOSTOP: 5’ 

TCACCAGTTGAAACTAATTGCCTCAAG 3’. A FRO5 specific reverse primer was 

used because the 3’ end of FRO4 and FRO5 are identical. Cloning and transformant 

selection proceeded as described above for 35S:FRO5-YFP, with the exception that 

FRO4 was cloned into pEarleyGate103, which expresses GFP (Earley et al, 2006). 

Confocal microscopy was done at the University of North Carolina, Raleigh with the help 

and guidance of Dr. Terri Long using a Zeiss LSM 710 confocal microscope. Plants were 

grown for 4 days on standard Gamborg’s B5 media. Before imaging, live root tissue was 

stained with 10µM propidium iodide for several seconds. 

RNA Isolation and Transcript Analysis: 

To analyze transcript levels, total RNA was extracted from 100 mg of frozen leaf 

tissue of two-week old seedlings grown on standard Gamborg’s B5 media from Col gl-1, 

fro4, fro5, and fro4fro5 using TRI-Reagent (Sigma, Saint Louis, MO, USA). DNase I 

(Bio-Rad, Hercules, CA, USA) treatment was conducted using 3.5 µg of RNA at 37°C 

for 10 minutes. Superscript First-Strand Synthesis System for semi-quantitative RT-PCR 

(Invitrogen, Carlsbad, CA, USA) was used to synthesize cDNA from 3.5 µg of RNA. For 

full length FRO4 and FRO5 transcripts, PCR was conducted using the FRO4 full-length ( 

Forward: 5’ CACCATGGGAAATATGAGAAGCTTAGTGAAGAC 3’; Reverse: 5’ 

TCACCAGTTGAAACTAATTGCCTCAAG3’) primer pair and a FRO5 full-length 

primer pair (Forward: 5’ CACCATGGGGAATATGAGAAGCTTAGTG 3’; Reverse: 5’ 

TCACCAGTTGAAACTAATTGCCTCAAG 3’) . Primers specific for actin (Forward: 5’ 

CCTTTGTTGCTGTTGACTACGA 3’; Reverse: 5’ GAACAAGACTTCTGGGCATCT 
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3’) were used for control reactions. PCR reaction mixtures contained 1µg of cDNA when 

using FRO4 or FRO5 primers, and 1/10th as much cDNA for actin reactions.  

Semi-quantitative RT-PCR was used to examine transcript levels and 

amplification was monitored over the course of the PCR reaction to ensure that amplicon 

comparisons were made during the exponential phase of amplification. The primers used 

were: FRO4 RT Forward: 5’ GCGTTTTTAGACCTAATCTTCCCACTG 3’ and FRO4 

RT Reverse: 5’GCGCCATAAGAAAACTACACTGGAA 3’; FRO5 RT Forward: 5’ 

GCATTTTTAGACCTAATCTTCCCTTCA 3’ and FRO5 RT Reverse: 5’ 

TGCGCCACAAGAAAATTATGCTTGAC 3’.  The PCR was paused and samples 

removed at the cycle numbers indicated in figures 2.2B, 2.3B, and 2.4B. 

Copper Reductase Assay: 
 

Prior to sowing seeds on Cu sufficient or deficient media, glass petri dishes were 

soaked overnight on 0.1N HCl, followed by four washes to remove as much metal as 

possible. Copper reductase assays were then performed on plants grown for 23 days on 

+Cu/-Cu agar medium in glass plates (Becher et al, 2004; Bernal et al, 2012). For 

measurement of reductase activity, plant roots were submerged in 300 µL of assay 

solution in a 96-well plate consisting of 0.2mM CuSO4, 0.6mM Na3Citrate, and 0.4mM 

BCDS (Sigma-Aldrich) and placed in the dark for 30 minutes. The assay solution 

absorbance was then measured at 483 nm and activity was standardized to fresh weight of 

roots (Yi and Guerinot, 1996). Ten plants were used for each genotype for each assay, 

and activities for two biological replicates were averaged.  A student’s t-test was used to 

perform statistical analysis.  

Arabidopsis membrane preparation: 
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Arabidopsis total membranes were isolated from Col gl-1 and amiFRO5 plants 

transformed with the 35S:FRO5-YFP-HA construct, as previously described (Zhao et al., 

2002). Two-week-old seedlings were ground with liquid nitrogen using homogenization 

buffer (1 mL g-1 tissue fresh biomass) containing 30 mM Tris pH 8.5, 150 mM NaCl, 1 

mM EDTA, 20% glycerol, 1 mM phenylmethylsulfonyl fluoride, and 2 mM Pefabloc 

(Roche, Indianapolis, IN, USA) at 4°C. Ground samples were then filtered through 

Miracloth (Calbiochem, Sand Diego, CA, USA) to remove plant debris. The extract was 

centrifuged at 8,000xg at 4°C for 15 minutes. The supernatant was recovered and 

centrifuged at 100,000xg at 4°C for 30 minutes to pellet microsomal membranes. Isolated 

membranes were resuspended (200 µL g-1 fresh biomass of starting tissue) in 10 mM Tris 

pH 7.5, 150 mM NaCl, 1 mM EDTA, 10% (v/v) glycerol, 1 mM phenylmethylsulfonyl 

fluoride, and 2 mM Pefabloc and stored at -80°C. 

Western Blot: 

Protein concentrations were estimated using the Bradford Assay (BioRad, 

Hercules, CA, USA). Membrane extracts (15 µg) were diluted with an equal volume of 

4X loading buffer and placed at 37°C for 1 h prior to being separated by SDS-PAGE and 

transferred to a PVDF membrane by electro-blotting using standard protocols (Towbin et 

al, 1979). FRO5-YFP-HA protein was detected using an anti-HA antibody (Roche 

Applied Science, Penzberg, Germany). Membranes were incubated with 5% non-fat dairy 

milk in 1x PBST for one hour prior to incubation with the antibody. Membranes were 

then washed with 1x PBST buffer 2x for 5 minutes each. For primary antibody 

incubation, anti-HA was diluted to 1:2500 in 1% non-fat dairy milk in 1x PBST and 

placed in 4ºC overnight. The membrane was then washed 5x with 1x PBST buffer for 5 
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minutes each on the following day. A chemiluminescent substrate (Thermo Scientific, 

Rockford, IL, USA) was used to examine abundance of protein in the dark room. To 

confirm equal loading, a gel loaded and run in parallel was stained with coomassie for 1 

hour and then washed with destaining solution until bands were crisp and viewable.

RESULTS: 

Previously, two groups had looked at the expression of all eight members of the 

FRO family. Wu et al (2005) showed slight expression of FRO4 in Fe-deficient roots and 

leaves, and showed some expression of FRO4 in cotyledons. FRO5 was shown to be 

more highly expressed than FRO4 in both shoots and roots, while also showing 

expression in flowers. Muhkerjee, et al (2006) only saw FRO5 expression in roots, which 

was slightly higher under Fe-deficient conditions, while seeing no expression of FRO4. 

Additionally, Muhkerjee et al examined expression in response to Cu status, and FRO5 

was shown to be up-regulated under Cu-deficiency (2006). It is possible that the 

differences in expression could be accounted for by different growth conditions used in 

the two studies. 

 Our collaborators also examined expression of FRO4 and FRO5 shortly after the 

discovery that the transcription factor SPL7 regulates the Cu-deficiency response 

(Yamasaki et al, 2009). Using RNA-Seq, it was found that FRO4 and FRO5 are two of 

the most highly expressed genes under Cu-deficiency in roots, with FRO5 showing 

higher expression. Also, it was shown that both genes are under the control of SPL7, due 

to the fact that expression of FRO4 and FRO5 was lost in spl7 mutants (Bernal et al, 

2012).  
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In parallel, our lab obtained a T-DNA insertion line for FRO4 and generated 

artificial microRNA lines for FRO5 and FRO4/FRO5 (using a microRNA designed to 

target both FRO4 and FRO5). This approach was necessary, as a true T-DNA knockout 

line for FRO5 did not exist.   

Analysis of transcript abundance in fro4, fro5 and fro4,fro5 

To determine transcript abundance of FRO4, semi-quantitative reverse 

transcriptase PCR was performed. Primers that amplify the full coding sequence of FRO4 

and FRO5 were used to test transcript levels in wild type (Col gl-1) and fro4 plants 

(Figure 2.1A primer pair e and f; Figure 2.2A). I tested FRO5 transcripts in these plants 

due to the fact that FRO4 and FRO5 lie in tandem on chromosome 5 and previously it has 

been shown that a T-DNA insertion in FRO6 can have an effect on transcript abundance 

of FRO7, both of which also lie in tandem on chromosome 5. (unpublished data). 

Full-length FRO4 transcript was undetectable in the fro4 mutant, while FRO5 

transcript abundance was unaffected by the disruption of FRO4 (Figure 2.1B). Once a 

homozygous line was established for fro4, I then mapped the insertion point of the T-

DNA. Using the LB1 primer and FRO4 internal reverse primer (2.1A; primer “a”), I was 

able to map the insertion to 27 bp downstream of the transcription start site in the 1st 

exon, which is marked by the triangle in Figure 2.1A.  

Prior to my joining the lab, Huijun Yang began the process of constructing 

artificial microRNA mutants. The WMD 2 – Web microRNA Designer software was 

used to design 21bp artificial microRNAs that targeted: 1. just FRO5 and 2. both FRO4 

and FRO5 simultaneously. (Figure 2.2A, Figure 2.3A). The microRNAs targeted 

sequences in the 7th exon of each gene. For FRO5, red letters indicate complementary 



	  

25	  

bases between the microRNA and FRO5, while lower case red letters indicate 

mismatches that would correspond to FRO4; blue letters are mismatch bases (Figure 

2.2A).  For the microRNA targeting both FRO4 and FRO5 simultaneously, red letters 

indicate complementary bases, while blue and black letters are mismatches to FRO4 and 

FRO5 respectively (Figure 2.3A; Bernal et al, 2012).  

After isolating several homozygous lines for both microRNA constructs, I 

examined transcript abundance. First I tested transcript abundance of FRO4 and FRO5 in 

two amiFRO5 lines (7 and 10), using internal primers (Figure 2.2B, FRO5I-Fand FRO5I-

R). Transcript abundance in these two lines was unaffected when compared to the wild 

type. At first this was confusing; however, recent data has shown that it is possible to 

achieve translational repression using artificial microRNA constructs as opposed to 

transcription knockdown (Gu and Kay, 2010).  

To test if this phenomenon was occurring in these plants, a 35S:FRO5-YFP-HA 

construct was generated and transformed into the wild-type and amiFRO5 backgrounds. 

If translational repression was occurring, then we should be able to detect FRO5 

transcript in both wild type and amiFRO5 plants, but we should not be able to detect any 

FRO5-YFP-HA fusion protein in the amiFRO5 background. Using both western blot and 

confocal microscopy, we confirmed that no FRO5-YFP-HA fusion protein was detectable 

in the amiFRO5 background, despite the fact that it was detected in the control (WT) 

background and that translational repression of FRO5 was indeed occurring in the 

amiFRO5 lines (Figure 2.4A; Bernal et al, 2012). Using an anti-HA antibody and 

membrane preps, I was able to detect a 105kD band that corresponded to a FRO5-YFP-

HA fusion protein in wild type plants transformed with the construct, but not in the 
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amiFRO5 background. This data was also supported by confocal microscopy performed 

by our collaborators (Bernal et al, 2012). Examining FRO5 transcripts in these plants 

showed no detectable differences between the wild type and amiFRO5 mutants (Figure 

2.4B).  

Examination of transcript abundance in two independent homozygous mutants for 

amiFRO4FRO5 (lines 27 and 48) showed that transcript levels of FRO4 were below 

detectable levels, while transcript abundance of FRO5 was largely unchanged compared 

to wild-type (Figure 2.3B). Because of the translational repression of FRO5 shown in the 

amiFRO5 lines, we assume that FRO5 protein is also repressed in the amiFRO4FRO5 

lines as well. 

Phenotypic analysis of mutants 

Since data indicated that FRO4 and FRO5 are expressed more highly under 

copper deficiency, and because of the fact that they are under the expression of the SPL7 

transcription factor, next we wanted to test copper reductase activity in wild type and all 

mutants. Plants were grown for three weeks on either Cu-sufficient or Cu-deficient media 

before a root copper reductase assay was performed. Under Cu-deficient conditions, 

wild-type plants show high induction of activity, while fro4 and fro5 single mutants 

showed greatly reduced activity, and double mutants showed only basal level activity 

(Figure 2.5; Bernal et al, 2012). 

In addition to copper reductase activity, experiments performed by our 

collaborators show that short-term high affinity uptake of Cu in single and the double 

mutants was greatly reduced. Plants were grown on either Cu-sufficient or –deficient 

media for three weeks and then roots were placed in a solution containing 10nM CuSO4 
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for ten minutes. A fluorescent dye, known as CS1 (Coppersensor-1), was used to 

visualize Cu1+ in root tissue. Wild-type plants showed large amounts of Cu1+ within root 

cells, while single mutants showed greatly reduced fluorescence due to a decrease in Cu1+ 

uptake and the double mutant showed nearly abolished uptake of Cu1+, further showing 

the importance of FRO4 and FRO5 to the reduction of Cu2+ to Cu1+ prior to import into 

the plant (Bernal et al, 2012). 

To examine growth of wild type and mutant plants under both Cu sufficiency and 

Cu deficiency, I grew plants hydroponically from the seedlings stage until senescence. 

While all plants looked healthy under copper-sufficient conditions, under copper 

deficient conditions, single and double mutants of FRO4 and FRO5 show stunted growth, 

and fewer branches. However, seed weight showed no observable difference (Figure 2.7) 

Despite the dramatic phenotype of mutant plants grown under copper deficiency, when 

grown on soil, the mutants are mostly similar to wild-type plants, with amiFRO4FRO5 

plants showing only slightly stunted growth (Figure 2.6). 

Preliminary confocal data appear to show that FRO4 and FRO5 are localized to 

the plasma membrane; however, only specks of fluorescence could be seen. (Figure 2.8)  
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Figure 2.1: Gene map for FRO4.  
A) A homozygous, single insertion T-DNA mutant of FRO4 (fro4) was obtained from 
ABRC (SAIL_159_H09). The insertion was mapped to a position downstream of the 
transcription start site in the 1st exon, marked by the triangle. To genotype for 
homozygous lines, LB1 and a FRO4 reverse primer, labeled “a” were used. Black boxes 
represent exons, while lines represent introns. Letters above the gene indicate primers 
used.  
B) Transcript analysis of WT and fro4. Full length FRO4 was tested in WT and fro4 
mutants. fro4 mutants show no detectable full length FRO4 transcript and FRO5 levels in 
the mutant are unaffected. Actin is used as a control. (Bernal et al, 2012 © The Plant 
Cell).  
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Figure 2.2: Generation of amiFRO5 lines.  

A) Gene map of FRO5. An artificial microRNA target sequence was generated to target 
the 7th exon of FRO5. Red letters indicate complementary bases to FRO5, while lower 
cases letters are mismatch bases to FRO4. Blue letters indicate mismatch pairs of FRO5. 
FRO5FL-F and FRO5FL-R were primers used to amplify full length FRO5. 
B) Transcript analysis of two independent mutant lines for amiFRO5. FRO4 and FRO5 
levels were tested in WT and mutants. FRO5I-F and FRO5I-R were used to test transcript 
abundance of FRO5; FRO4 internal primers, labeled “c “and “d”(Figure 2.1B), were used 
to test FRO4 transcript abundance. FRO4 and FRO5 transcript is unaffected in in both 
amiFRO5 lines. Actin used as control. (Bernal et al, 2012. © Plant Cell)   
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Figure 2.3: Transcript analysis of fro4fro5 mutants.  

A) Gene map of FRO4 and FRO5 with artificial microRNA target sequence indicated in 
the 7th exon. Red letters indicate complementary base pairs to both genes, while blue and 
black letters represent mismatches to FRO4 and FRO5 respectively. Black bars represent 
exons while lines represent introns.  
B) Transcript abundance of FRO4 and FRO5 in two independent amiFRO4FRO5 
mutants. FRO4 levels are greatly reduced in both lines, while FRO5 levels appear 
unaffected. Actin is used as a control; cycle numbers indicated under each lane.  
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Figure 2.4: Translational repression of FRO5 in amiFRO5 mutants.  
A) WT and amiFRO5 plants were transformed with a 35S::FRO5-YFP-HA construct. 
Two independent homozygous lines were obtained for each genotype. amiFRO5 plants 
transformed with 35S::FRO5-YFP-HA showed no protein accumulation when probed 
with an anti-HA antibody, while WT plants show protein accumulation.  
B) FRO5 transcript levels were unaffected in all four lines tested. Actin is used a control. 
(Bernal et al, 2012. © Plant Cell) 
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Figure 2.5: Root copper reductase assay.  
WT and mutant plants were grown on +Cu or –Cu solid agar media for 3 weeks at 11h 
day/13h night photoperiod. Roots were completely submerged in copper reductase assay 
solution and placed in the dark for 30 minutes. The assay solution color change was 
measured at 483nm and activity was normalized to fresh root weight. Two biological 
replicates were averaged. Asterisks indicate a significant difference, with p < 0.05 using a 
Student’s t-test.
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Figure 2.6: Phenotype of soil grown wild-type and mutant plants.  
There is no visible difference between wild-type and the single mutants when grown on standard soil in constant light. fro4fro5 
plants show only a slightly stunted growth compared to wild-type, Col gl-1.
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Figure 2.7: Hydroponically grown wild-type and fro4fro5 mutants.  
Plants were grown for 3 weeks in a 11h day/13h night photoperiod before being 
transitioned to a 16h day/8h night photoperiod to promote flowering. Col gl-1 and 
fro4fro5 mutants show no difference in growth under copper sufficient conditions. 
However, fro4fro5 mutants show severely stunted growth compared to wild-type.  
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Figure 2.8 Confocal imagery of 35S:FRO4-GFP and 35S:FRO5-YFP 
Arrows indicate areas of possible fluorescence of FRO4-GFP (A) and FRO5-YFP (B) 
fusion proteins. Cell walls were stained with 10 µM propidium iodide and live root cells 
were imaged with a Zeiss LSM 710 confocal microscope.  
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DISCUSSION: 

Much is known about other members of the FRO family. FRO2 is the principle Fe 

reductase at the root surface (Robinson et al, 1999), while FRO7 functions to reduce Fe at 

the surface of the chloroplast (Jeong et al, 2008). Finally, it is believed that FRO3 and 

FRO8 function at the surface of the mitochondria to reduce Fe (Jain and Connolly, 2013, 

Jain et al, 2014).  

FRO4 and FRO5 represent two functionally uncharacterized FRO members.  Data 

suggested that FRO4/FRO5 are expressed in tissue ranging from shoots, to roots, to 

flowers, while being predicted to localize to the secretory pathway (Wu et al, 2005; 

Mukherjee et al, 2006). Data also show that, in the case of FRO5, expression was induced 

by Cu deficiency (Mukherjee et al, 2006). A T-DNA mutant of FRO4 was obtained 

whose insertion was mapped to the 1st exon. No full-length FRO4 transcript was detected 

in these plants, and FRO5 transcript was unaffected, indicating that any phenotypes 

observed in this mutant would be the effect of a single gene mutation as opposed to a 

double mutation. Due to a lack of an insertion knockout in FRO5, artificial microRNA 

knockdown lines were generated for FRO5 as well as a double knockdown for FRO4 and 

FRO5. Surprisingly, all amifro5 lines tested show transcript; however, no protein 

associated with FRO5 was detected, suggesting translational repression was occurring in 

these plants (Bernal et al, 2012). It remains to be seen if this phenomenon is occurring in 

fro4fro5 mutants, as these plants also show transcript for FRO5, but show undetectable 

levels of FRO4.  

The biochemical assay to test for reductase activity showed differences between 

wild type and mutant plants. While fro4 and fro5 both showed greatly reduced activity, 
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fro4fro5 plants showed only basal levels of Cu-deficiency inducible Cu reductase 

activity. Coupled with the short-term high affinity Cu uptake data (Bernal et al, 2012), it 

appears that FRO4 and FRO5 are required for the reduction of Cu2+ to Cu1+ prior to 

import, and they function redundantly. Both single mutants showed greatly reduced 

uptake of Cu, while double mutants showed almost no detectible Cu1+. This clearly 

shows that FRO4 and FRO5, and not an additional FRO, are needed for Cu reduction at 

the root surface during Cu deficiency (Bernal et al, 2012). 

 Experimentally it has been shown that FRO5 localizes to the plasma membrane in 

protoplasts (unpublished data). Stable transgenic lines expressing either a 35S:FRO4-

GFP or a 35S:FRO5-YFP construct were generated and isolated. Preliminary confocal 

data I obtained show specks of fluorescence along the periphery of root cells next to cell 

wall stained with propidium iodide for both constructs. Interestingly, confocal data 

obtained by our collaborators of 35S:FRO5-YFP-HA plants show that, under normal 

growth conditions, FRO5 protein was detected within the cytosol of root cells (Bernal et 

al, 2012). These results could simply be due to the fact that the protein was under the 

expression of the constitutively active 35S promoter and only under Cu deficient 

conditions would the protein localize to the plasma membrane. This remains to be tested 

experimentally, however.   

 Data has shown that FRO4 and FRO5 show expression in aerial tissue as well as 

root tissue (Wu et al, 2005; Mukhjeree et al, 2005; Bernal et al, 2012). However, only 

FRO5 appears to be under the control of SPL7 in this tissue. This is probably due to the 

fact that normally, FRO4 expression is low and shows higher expression only in older 

leaf tissue. The role these two genes play in leaves is currently unknown. Data has 
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suggested that FRO6 works to reduce Fe in leaves prior to its import into cells (Feng et 

al, 2006). Previously in our lab, leaf disc ferric reductase assays were done with fro6 

mutants. While reductase activity was reduced, some residual activity remained (Maynes, 

2013).  It is possible that this residual activity could be due to the activity of FRO5 also 

working to reduce Fe in leaves. While fro5fro6 double mutants have been generated, 

work still needs to be done to characterize this mutant to test this hypothesis.  

 The discovery that two Arabidopsis FRO genes are tightly regulated by Cu status 

is novel for plants. Previous data has shown that FRO3 responds to Cu status, and FRO2, 

which is localized to the plasma membrane, can reduce Cu under Fe deficiency 

(Robinson et al, 1999; Muhkerjee et al, 2006). However, frd1 (fro2) mutants do not show 

Cu deficiency (Robinson et al, 1999). Even though FRO3 responds to Cu deficiency, 

recent hypotheses suggest that FRO3 may function as a mitochondrial reductase (Jain and 

Connolly, 2013; Jain et al, 2014). Thus, it appears that FRO4 and FRO5 are the only FRO 

family members that function in reduction of Cu at the root surface for subsequent uptake 

by plants. It is perhaps unsurprising that FROs can act as dual reductases for both Fe and 

Cu, as the yeast reductases, FRE1 and FRE2, function to reduce both Fe and Cu prior to 

import (Martins et al, 1998). 

Future directions: 

 The data presented in this thesis and in our recent collaborative publication shows 

strong support for the hypothesis that FRO4 and FRO5 are Cu reductases that are located 

at the root surface during Cu deficiency. Work could still be done to determine if FRO5 

could function as a Fe/Cu reductase in leaf cells, or if these genes play a role in Cu 

remobilization during senescence and seed formation, as some data has suggested that 
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they may be expressed in reproductive tissue (Wu et al, 2005). Subcellular localization 

needs to be definitively determined, as well as spatial and temporal expression patterns. 

FRO2 mRNA levels are highest 72h after transfer to Fe deficient conditions (Robinson et 

al, 1999; Connolly et al, 2003). It would be interesting to see how rapidly transcripts of 

FRO4 and FRO5 accumulate after plants are shifted to Cu deficient media. Studying 

protein accumulation and turnover is difficult; due to the fact antibodies specific to FRO4 

and FRO5 are not available. 

 While agricultural Cu deficiency is not as widespread Fe deficiency, our 

understanding of global Cu homeostasis in plants is important due to how intertwined Cu 

and Fe homeostasis are in plants and animals. The work presented here increases our 

understanding of the Cu homeostasis network, and shows that reduction of Cu by FRO4/5 

is an essential part of the high affinity Cu uptake pathway. 
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