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ABSTRACT 

 AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) encode related 

transcription factors with partially overlapping roles in floral organ development in the 

model plant Arabidopsis thaliana. ANT and AIL6 do not make equivalent contributions to 

these processes. Loss of ANT function by itself results in smaller flowers, demonstrating 

that the role of ANT in organ size control cannot be provided by AIL6. Loss of AIL6 

function on its own has no phenotypic consequences indicating that all of its roles in 

flower development can be provided by ANT or some other genes. To further probe the 

function of AIL6 in flower development, we investigated the molecular basis for the 

distinct functions of ANT and AIL6 and began to characterize the AIL6 protein. To 

determine whether the functional differences between ANT and AIL6 are a consequence 

of differences in gene expression and/or protein activity, we made transgenic plants in 

which a genomic copy of AIL6 was expressed under the control of the ANT promoter (i.e. 

ANT:gAIL6). ANT:gAIL6 can rescue the floral organ size defects of ant mutants when 

AIL6 is expressed at similar levels as ANT in wild type. Thus, the functional differences 

between ANT and AIL6 result primarily from gene expression differences. However, 

ANT:gAIL6 ant lines that express AIL6 at higher levels display additional phenotypes 

including reduced numbers of floral organs, mosaic floral organs, subtending filaments or 

bracts, and bigger petals. The severity of these phenotypes correlates with overall AIL6 

mRNA levels. Such phenotypes were not observed in previously characterized transgenic 

lines in which the coding region of AIL6 (cAIL6) was expressed under the constitutive 
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35S promoter. In some 35S:cAIL6 lines, larger flowers are produced, similar to transgenic 

plants that overexpress ANT. To further investigate the basis for these phenotypic 

differences in AIL6 overexpression lines, we made two different inducible AIL6 

transgenic lines. Induction of AIL6 activity in both of these lines resulted in distinct floral 

phenotypes depending on the developmental stage of the flower at the time of treatment. 

Induction of high AIL6 activity in older flowers resulted in larger floral organs while 

induction of high AIL6 activity in younger flowers resulted in the production of petaloid 

sepals and in some cases other mosaic floral organs. Furthermore, we show that the 

distinct phenotypes observed in different AIL6 overexpression lines are likely explained 

by differences in both the levels and spatial/temporal accumulation of AIL6 mRNA. 

Initial investigations into AIL6 protein activity show that AIL6 can activate transcription 

in yeast through a promoter containing ANT consensus binding sites, suggesting that 

AIL6 has similar DNA binding specificities as ANT. Using chromatin 

immunoprecipitation assays, we identified floral organ identity genes as potential targets 

of AIL6 regulation. Our results contribute to our understanding of flower development 

and identify potential genetic tools to engineer flowers with altered floral organ identity 

and size.  
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CHAPTER 1 

INTRODUCTION 

Arabidopsis thaliana is a popular model plant that belongs to the Brassicaceae 

family (Figure 1.1). Arabidopsis can complete its entire lifecycle in six weeks and their 

flowers naturally self-pollinate. It was the first plant to have its genome sequenced and is 

a popular tool for understanding the molecular biology of many plant traits. The 

development of higher plants is divided into two phases: embryonic and post-embryonic. 

In animals, organs are produced during embryogenesis, whereas most plant organs are 

generated post-embryonically. During embryogenesis in plants, two small groups of 

stems cells are positioned at each of the two ends of the apical-basal axis: the shoot apical 

meristem (SAM) and the root apical meristem. During post-embryonic development, the 

SAM at the top of the plant gives rise to the aerial plant body including stems, leaves and 

flowers, whereas the root apical meristem at the basal end generates roots.  

The SAM is a dome-like structure that generates lateral organs (e.g. leaves and 

flowers) around its periphery, while maintaining a pool of undifferentiated cells in its 

center. The SAM can be divided into three specialized zones: the central zone, the 

peripheral zone and the rib zone (Figure 1.2A). In the central zone, a small population of 

pluripotent stem cells divides infrequently. In the peripheral zone, cells divide more 

rapidly and their descendants become incorporated in lateral primordia. Cells within the 

rib zone give rise to stem tissues. The organizing center, a niche required for the 

induction and maintenance of stem cells, lies within the central zone and is defined based  
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on the expression domain of a key regulator of meristem activity, the WUSCHEL (WUS) 

gene (Mayer et al., 1998). The balance of cell numbers among these zones must be 

carefully maintained for continuous meristem function. Loss of too many stem cells 

results in meristem termination while too much cell division in the central zone results in 

overproliferation of the meristem (fasciation).  

WUS works with several CLAVATA (CLV) genes in a feedback loop to maintain 

stem cell number within the meristem (Figure 1.2B). The CLV genes act in opposition to 

WUS to promote the loss of stem cell from the meristem. WUS, transcribed in the 

organizing center, specifies and maintains stem cell identity in overlying cells. WUS 

protein, a homeodomain transcription factor, migrates into the central zone, where it 

directly actives CLV3 (Yadav et al., 2011). CLV3 is processed into a secreted signaling 

peptide that binds to the extracellular domain of the leucine-rich receptor kinase 

CLAVATA1 (CLV1), triggering an intracellular signaling cascade that in turn represses 

WUS transcription from the upper layers of the central zone and restricts it to the 

organizing center (Brand et al., 2000; Clark et al., 1997; Fletcher et al., 1999; Kondo et 

al., 2006; Ogawa et al., 2008). wus mutants fail to properly maintain meristems, resulting 

in premature termination of the SAM and production of flowers that lacked most central 

organs (stamens and carpels). Overexpression of CLV3 mimics the wus loss of function 

phenotype (Brand et al., 2000). Conversely, mutations in CLV genes fail to restrict WUS 

expression in Arabidopsis and thus result in fascinated meristems. The WUS/CLV 

feedback loop is not the only pathway known to play a role in stem-cell maintenance and 

fate. For example, the KNOTTED1-LIKE HOMEOBOX (KNOX) family transcription 
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factor STM functions in a parallel and complementary fashion to the WUS/CLV pathway 

and prevents stem cells from differentiating (Lenhard et al., 2002). 

The arrangement of lateral organs on the stem is called phyllotaxis. In wild type 

Arabidopsis, leaves and flowers arise at an angle of 137.5 degrees relative to the previous 

one giving rise to a spiral phyllotaxis. Lateral organ initiation occurs at sites in the 

periphery of the SAM corresponding to maxima of the plant phytohormone auxin 

(Benková et al., 2003; Heisler et al., 2005; Reinhardt et al., 2000; Reinhardt et al., 2003). 

These maxima are generated by both local auxin biosynthesis and directional transport of 

auxin within the shoot apex [reviewed in (Vernoux et al., 2010)]. Auxin, produced by 

young leaves, moves into the shoot apex and undergoes polar transport that is mediated 

primarily by the auxin effluxer PINFORMED1 (PIN1) (Gälweiler et al., 1998; 

Wiśniewska et al., 2006). Once a primordium is initiated, it acts as an auxin sinks, 

depleting the surrounding region of auxin. Auxin levels are thus highest in the region 

furthest from existing primordia and a new primordium is initiated at this position. As 

lateral organ primordia mature and become more distant from the SAM, they switch from 

being auxin sinks to being sources of auxin. Thus cyclical patterns of auxin buildup and 

depletion underlie the spiral phyllotaxis of lateral organ initiation in Arabidopsis. 

In Arabidopsis, the shoot apical meristem (SAM) progresses through a vegetative 

phase where leaf primordia initiate on its flanks and form rosette leaves (Figure 1.1). The 

vegetative phase is characterized by two subphases, a juvenile phase and an adult phase. 

The juvenile phase is defined by the development of small leaves that lack trichomes on 

the abaxial epidermis. During the adult phase, the SAM produces large leaves with 

trichomes present on both abaxial and adaxial epidermis and acquires reproductive 
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competence. The juvenile-to-adult phase transition is also termed the vegetative phase 

change.  

After producing a certain number of leaves, plants switch to a reproductive 

developmental phase (Figure 1.1). The SAM, now also called the inflorescence meristem 

(IM), first produces two to three cauline leaves and associated axillary inflorescences 

(also called branches) in the early inflorescence phase, and then produces individual 

flowers in the flower formation phase. An inflorescence is a stem with flowers. The 

timing of the switch from vegetative development to reproductive development is critical 

for reproductive success. Environmental cues such as temperature, photoperiod and 

nutrient availability activate multiple signaling pathways that converge to regulate the 

expression of floral integrators that promote flowering. Later, these floral integrators 

activate the expression of floral meristem identity genes that promote flower formation 

from the IM. 

The two most important floral meristem identity genes are APETALA1 (AP1) and 

LEAFY (LFY) (Irish and Sussex, 1990; Weigel et al., 1992). Mutations in these genes 

result in replacement of early flowers with inflorescences (lfy) or flowers with 

inflorescence features (ap1). In other words, flowers lose their identity as flowers and 

instead take on properties of an inflorescence. lfy ap1 double mutants show a more 

complete replacement of flowers by inflorescences than either single mutant. The switch 

from the production of inflorescences to flowers is also promoted by two partially 

redundant AP2/ERF (APETALA2/Ethylene Response Factor) transcription factors: 

AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE 6 (AIL6). ant ail6 double 

mutants, like lfy, show a delay in the formation of the first flower (Yamaguchi et al., 
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2016). The timing of flower formation is tightly regulated by control of LFY expression. 

The auxin response factor MONOPTEROS (MP) and ANT/AIL6 act in parallel pathways 

to activate LFY expression to promote the switch to flower formation (Yamaguchi et al., 

2016).  

Similar to leaf primordia, flower primordia called floral meristems (FMs) arise 

from the peripheral regions of the SAM at auxin maxima (Benková et al., 2003). 

Mutations in the auxin effluxer PIN1 result in a pin-like inflorescences in which flower 

primordia are not initiated but the meristem continues to grow. This phenotype is also 

observed in mp single mutants as well as ant ail6 lfy triple mutants (Przemeck et al., 

1996; Yamaguchi et al., 2013). Application of auxin paste to pin1 shoot apices results in 

flower initiation at the corresponding site where auxin was applied demonstrating that 

auxin accumulation is both necessary and sufficient for flower initiation (Reinhardt et al., 

2000; Reinhardt et al., 2003). MP directly activates the expression of ANT, AIL6 and LFY 

to promote the continuous flower primordia initiation.  

The floral meristem identity genes LFY and AP1 also act later within flower 

primordia to activate the expression of genes that specify floral organ identity. These 

genes are called floral homeotic genes or floral organ identity genes. In Arabidopsis, four 

kinds of floral organs (sepals, petals, stamens and carpels) arise in precise positions 

within four concentric rings called whorls. From the outside to the inside, four sepals 

arise in the outermost first whorl, four petals arise in the second whorl, six stamens arise 

in the third whorl and two fused carpels are present in the forth whorl. For sepals, the 

position adjacent to the SAM is called the adaxial position and the side furthest from the 

SAM is the abaxial position (Figure 1.3). The other two sides are called the lateral 
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positions. Arabidopsis flower development has been characterized into a series of stages 

(1-14) based on morphological parameters (Smyth et al., 1990). Stage 1 of flower 

development is characterized by the development of a bulge on the flank of the IM. Stage 

3 of flower development corresponds to the period in which sepal primordia are first 

visible within the flower primordium and stage 6 is when all four types of floral organ 

primordia have been initiated (Figure 1.3).  

Four classes of floral homeotic genes (A, B, C, E), that are active in different 

whorls, act in different combinations to specify floral organ identity [reviewed in (Krizek 

and Fletcher, 2005)] (Figure 1.4). Mutations in the class A, B or C genes result in 

homeotic transformations in floral organ identity in two adjacent whorls of the flower, 

while loss of all class E genes results in flowers that consist only of leaf-like organs. For 

example, loss-of-function alleles of the A-class gene AP2 result in homeotic 

transformations of sepals to carpels and petals to stamens (Jofuku et al., 1994). AP1 and 

AP2 are A-class genes that are active in first and second whorls. The B-class genes AP3 

and PI (PISTILLATA) function in the second and third whorls. The C-class gene 

AGAMOUS (AG) functions in the third and forth whorls. The E-class genes, the 

SEPALLATA genes, (SEP1/SEP2/SEP3/SEP4) are expressed in all four whorls. The 

combination of class AE genes specify sepals in the first whorl, class ABE genes specify 

petals in the second whorl, class BCE genes specify stamens in the third whorl, and class 

CE genes specify carpels in the center. By manipulating the spatial activity domains of 

the floral homeotic genes, it is possible to completely transform one organ into another. 

For example, misexpression of the two class B genes throughout the entire flower 
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primordia results in flowers with two outer whorls of petals (ABE functions) and two 

inner whorls of stamens (BCE functions) (Krizek and Meyerowitz, 1996). 

AP1, AP3, PI, AG and SEP1-4 are members of the MADS domain transcription 

factor family, while AP2 is the founding member of the plant specific AP2/ERF family 

(Riechmann and Meyerowitz, 1998). Biochemical studies have shown that AP1 and AG 

form homodimers while AP3 and PI form a heterodimer, all of which can bind DNA 

(Riechmann et al., 1996). Furthermore, SEP proteins also interact with AP1, AP3, PI and 

AG to form higher order complexes (Honma and Goto, 2001). Distinct tetrameric MADS 

domain proteins complexes, consisting of SEP proteins with specific combinations of the 

floral organ identity factors, regulate different target genes to specify distinct floral organ 

identities in different whorls (i.e. the quartet model) (Smaczniak et al., 2012; Theissen 

and Saedler, 2001).  

While the molecular mechanisms specifying floral organ identity are well-studied, 

little is known about other aspects of flower development, such as the processes that 

control floral organ numbers, floral organ sizes, and the positioning of floral organ 

initiation.  

Genes involved in maintaining or terminating of floral meristem cells, such as 

STM, WUS, CLV1, CLV2, CLV3 and AG, can affect the numbers of floral organs 

produced by FMs. Much like stem cells in the SAM, stem cells within the FM are 

initially maintained by WUS/CLV signaling. However, while the SAM is indeterminate, 

the FM is determinate and all of its stem cells are consuming during floral organ 

initiation. In stage 3 floral buds, the class C gene AG is induced by LFY and WUS in the 

center of flower (Lenhard et al., 2001; Lohmann et al., 2001). In stage 6 flowers, AG 
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represses WUS and turns off floral stem cell activity. The floral meristem of ag flowers 

fails to terminate in the production of the fourth whorl organs. Instead, ag flowers are 

indeterminate and continue to produce new cells that are incorporated into many extra 

whorls of sepals and petals (Yanofsky et al., 1990). 

Increased or reduced numbers of floral organs often reflect the secondary 

consequence of disruption to the balance between the dampening and promotion of 

proliferation of the undifferentiated stem cells. In mutants of three CLV genes, there is an 

increase in the number of all four floral organ types, particularly the inner whorls of 

stamens and carpels (Clark et al., 1997; Fletcher et al., 1999). In contrast, mutations in 

STM and WUS generate flowers with reduced numbers of organs especially in the inner 

whorls (Endrizzi et al., 1996; Mayer et al., 1998). Other genes affecting these key 

regulators of floral stem cells also show defects in floral organ numbers. For example, 

mutations in the bZIP transcription factor PERIANTHIA (PAN) frequently demonstrate 

five-fold symmetry in their outer three floral whorls rather than the normal bilateral 

symmetry seen in the wild type (Chuang et al., 1999). PAN affects floral stem cell 

activities through direct activation of AG (Das et al., 2009; Maier et al., 2009).  

Flower development requires the formation of correct boundaries that separate 

adjacent whorls and adjacent floral organs within a whorl. Boundaries correspond to 

regions with reduced rates of cell division (Zadnikova and Simon, 2014). Failure to 

establish organ boundaries results in fused floral organs. CUP-SHAPED COTYLEDON1 

(CUC1), CUC2 and CUC3 are all expressed in boundaries between floral organ 

primordia; double mutant combinations of the three CUC genes produce flowers that 

exhibit fusions between adjacent floral organs (Aida et al., 1997; Hibara et al., 2006). 
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CUCs prevent the inter-sepal boundary from differentiating into sepal tissue. The tri-helix 

transcription factor PETAL LOSS (PTL) acts in concert with CUC1 and CUC2 in the 

formation of sepal boundaries but in a different pathway (Brewer et al., 2004). PTL 

suppresses growth in the inter-sepal zone and is required to establish auxin maxima at the 

presumptive petal initiation sites (Lampugnani et al., 2013). Another gene, RABITT EARS 

(RBE), encoding a zinc finger transcriptional repressor, is specifically expressed in petal 

primordia and is required for proper petal development and inter-sepal boundary 

maintenance. The rbe mutants result in aberrant or elimination of petals and fused sepals 

(Krizek et al., 2006; Takeda et al., 2004). RBE negatively regulates microRNA164s 

expression and microRNA164s in turn fine-tunes CUC1 and CUC2 expression in organ 

boundaries (Huang et al., 2012). The aforementioned transcriptional network involving 

CUCs, PTL and RBE reveals the presence of strong feedback control and 

interdependency between the establishment of boundaries and organ development.  

The correct regulation of organ size is a fundamental developmental process, the 

failure of which can compromise organ function and organismal integrity. Final organ 

sizes mainly result from the combined effects of cell proliferation and cell expansion in 

plants. In plants, the initial growth of lateral organ primordia is primarily due to increases 

in cell division and later growth is primarily due to cell expansion. Mutants that change 

the rate and/or duration of either the cell proliferation or cell expansion phases can be 

responsible for alterations in floral organ size. Several factors like the transcription factor 

AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE (ARGOS) (Hu et al., 2003), 

the AP2 transcription factor ANT (Elliott et al., 1996; Klucher et al., 1996) and the single 

C2H2 zinc finger transcription factor JAGGED (JAG) (Dinneny et al., 2004; Ohno et al., 
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2004) promote cell proliferation and organ growth while other factors like the E3 ligase 

BIG BROTHER (BB) (Disch et al., 2006) and the putative ubiquitin receptor DA1 (Li et 

al., 2008) limit organ sizes by limiting cell proliferation. Other genes promote or limit 

cell expansion, such as EXPANSIN10 (EXP10) (Cho and Cosgrove, 2000), the 

cytochrome P450 ROTUNDIFOLIA3 (ROT3) (Kim et al., 1999; Kim et al., 1998), 

ANGUSTIFOLIA (AN) (Tsuge et al., 1996) and BIGPETALp (Szécsi et al., 2006). 

Furthermore organisms can make bigger organs by increasing ploidy (e.g. (Sonoda et al., 

2009)). In many organ size mutants, there is partial compensation between cell number 

and cell size. For example, the small petals in rbe mutants have overall fewer cells but 

those cells are bigger in size (Huang and Irish, 2015). In animals, several key pathways of 

organ size control has been identified, such as the Hippo pathway and the target of 

rapamycin pathway [reviewed in (Crickmore and Mann, 2008; Hwang et al., 2008)]. 

However, homologs to the Hippo pathway are not found in plants and plant organ sizes 

are mainly regulated by plant specific factors. 

Besides their roles in the switch to flower formation and the initiation of flower 

primordia, the two AP2/ERF transcription factors ANT and AIL6 play additional roles in 

some less well-understood aspects of floral organ initiation and development. Mutations 

in ANT result in flowers with smaller organs (Figure 1.5) while ectopic expression of 

ANT results in larger flowers (Krizek, 1999). Mutations in AIL6 have no phenotypic 

consequences but ant ail6 double mutants display more severe floral organ defects than 

ant (Krizek, 2009) This indicates that ANT and AIL6 have partially redundant functions 

although AIL6 cannot provide all of the same functions as ANT. This may be due to the 

fact that ANT mRNA is detected at higher levels and in a broader spatial pattern than 
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AIL6 mRNA during floral organ development (Figure 1.6). We investigated the 

molecular basis for the distinct functions of ANT and AIL6 by expressing a genomic copy 

of AIL6 under the control of the ANT promoter and determined whether this transgene 

could complement the ant mutant phenotype (Chapter 2). 

ant ail6 double mutant flowers consist of small sepals, filamentous organs, 

stamen-like organs, undefined organs and unfused carpel valves, which arise in random 

positions within flower primordia and in fewer number than in wild type (Figure 1.5). 

Thus ANT and AIL6 have partially overlapping roles in regulating floral organ number, 

positioning, identity and growth.(Krizek, 2009) The loss of petal and stamen identities 

and partial loss of carpel identity in ant ail6 appears to be a consequence of reduced 

expression of the floral organ identity genes AP3 and AG. This suggests that AP3 and AG 

might be targets of ANT and AIL6 regulation. Experiments to test this hypothesis are 

described in Chapter 3.   

Members of the AP2/ERF transcription factor family contain one or two copies of 

the AP2/ERF repeat which is a DNA-binding domain of approximately 60 amino acids 

(Jofuku et al., 1994; Hao et al., 1998). The AP2 subfamily of the AP2/ERF family has 

two AP2 repeats and consists of 15 of the total 146 AP2/ERF proteins (Riechmann et al., 

2000). The ANT clade of the AP2 subfamily named the AIL/PLETHORA (AIL/PLT) 

group contains eight genes: ANT, AIL1, AIL5, AIL6, AIL7, PLT1, PLT2 and BABY BOOM 

(BBM) (Nole-Wilson et al., 2005). As a group, AIL proteins share 70% amino acid 

identity within two AP2 repeats and the intervening linker, but little similarity outside of 

this region. While AIL6 and AIL7 share high sequence similarity throughout their 



12 

sequences, they have different expression patterns in flowers (Figure 1.6) and ail6 ail7 

double mutate have no obvious phenotype (Krizek, 2009). 

DNA binding and transcriptional activation functions have been described for 

ANT, but very little is known about AIL6 protein. ANT can bind to and activate 

transcription through the following DNA sequence: 5’-

ttgGTGCACATATCCCGATGCTTaca-3’ (referred to as binding site 15 or BS 15) 

(Krizek, 2003; Nole-Wilson and Krizek, 2000). Experiments to examine whether AIL6 

can activate transcription through BS 15 are described in Chapter 3.  

AIL6 also plays important functions in some other plant development processes. It 

acts redundantly with AIL5 and AIL7 in regulating phyllotaxis in the shoot by promoting 

auxin biosynthesis in the center of the SAM as well as the spacing and arrangement of 

lateral root primordia partially through function downstream of auxin responsive factors 

ARF7 and ARF19 (Hofhuis et al., 2013; Pinon et al., 2013; Prasad et al., 2011). Also, 

AIL6 acts redundantly with ANT and AIL7 to maintain the shoot apical meristem and with 

PLT1, PLT2 and BBM to maintain root apical meristem (Galinha et al., 2007; 

Mudunkothge and Krizek, 2012). plt1 plt2 ail6 triple mutants are rootless and plt1 plt2 

ail6 bbm quadruple mutants completely lack roots and hypocotyls (Galinha et al., 2007). 

Last but not the least, AIL5, AIL6, and AIL7 redundantly control the intermediate steps 

leading to de novo shoot regeneration by regulating PLT1 and PLT2 and shoot-promoting 

factors like CUC2 to allow shoot regeneration (Kareem et al., 2015). 

The evolution of AIL genes can be traced back into the moss Physcomitrella 

patens in land plants (Aoyama et al., 2012). Four orthologs of AIL/PLT proteins are 

reported to determine stem cell identity in the non-vascular plant moss Physcomitrella 
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patens. AIL5/PLT5-like genes was proposed to be the common ancestor of the eudicot 

and monocot AIL gene family lineages (Prasad et al., 2011). After the diverge of 

monocots and eudicots, AIL gene sequences formed separate subclades (Floyd and 

Bowman, 2007; Kim et al., 2006). AIL genes appeared to be important regulators for 

various plant development processes, including plant stem cell maintenance, growth and 

auxin signaling responses. 
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Figure 1.1 A schematic representation of an Arabidopsis thaliana plant. During the 

vegetative phase, the plant produces juvenile leaves and adult leaves. The rosette leaves 

refer to both juvenile leaves and adult leaves. During reproductive phase, the plant 

generates cauline leaves subtending secondary inflorescences in the early inflorescence 

phase and individual flowers during the flower formation phase.   
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Figure 1.2 Shoot apical meristem (A) Schematic representation of tissue organization 

within the shoot apical meristem. Abbreviations: CZ, central zone; OC, organizing 

center; PZ, peripheral zone; RZ, rib zone; Lateral primordia are leaves during vegetative 

development and flowers during reproductive development. (B) Schematic representation 

of WUS/CLV signaling within the shoot apical meristem. WUS, transcribed in the 

organizing center (pink), specifies and maintains stem cell identity in overlying cells. 

WUS protein migrates into the central zone (blue), where it directly actives CLV3.  CLV3 

is processed into a secreted signaling peptide that binds to the extracellular domain of the 

leucine-rich receptor kinase CLV1, triggering an intracellular signaling cascade that in 

turn represses WUS transcription from the upper layers of the central zone and restricts it 

to the organizing center. Arrows indicate positive regulatory interactions and bars 

indicate negative regulatory interactions.  

A 

B 



16 

 

 

Figure 1.3 A scanning electronic micrograph of the primary inflorescence of 

Arabidopsis. This is a top down view of the inflorescence apex of a 26-day-old plant 

after the older flower buds have been removed. The stage of each bud is indicated. The 

abaxial (Ab), adaxial (Ad), and lateral (L) sepals on the stage 4 bud are indicated. 

Bar=50µm.  
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Figure 1.4 The classic ABCE model for floral organ identity (Reviewed in Krizek, 

B.A. and Fletcher, J.C., 2005). Abbreviations: se, sepals; pe, petals; st, stamens; ca, 

carpels. 
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Figure 1.5 Ler (left), ant-4 (middle), and ant-4 ail6-2 (right) flowers. Photograph by B. 

Krizek. Used with permission. 
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Figure 1.6 ANT, AIL6, and AIL7 mRNA expression in stage 3 and stage 6 flowers. 

(Krizek, 2015a) Reproduced with permission.  
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CHAPTER 2 

AINTEGUMENTA-LIKE6 CAN FUNCTIONALLY REPLACE 

AINTEGUMENTA BUT ALTERS ARABIDOPSIS FLOWER 

DEVELOPMENT WHEN MISEXPRESSED AT HIGH LEVELS
1
  

 

INTRODUCTION 

 

Two members of the Arabidopsis AINTEGUMENTA-LIKE (AIL) transcription 

factor family, AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE 6 (AIL6) play 

partially overlapping roles in several aspects of flower development (Krizek, 2009, 2011; 

Yamaguchi et al., 2016; Yamaguchi et al., 2013). ANT and AIL6 promote the switch to 

flower formation by upregulation of LEAFY (LFY), which encodes a transcription factor 

that specifies floral meristem identity (Weigel et al., 1992). ANT, AIL6 and LFY then 

promote flower primordia initiation at the sites of auxin maxima within the periphery of 

the inflorescence meristem.(Benková et al., 2003; Heisler et al., 2005; Reinhardt et al., 

2000; Yamaguchi et al., 2013) Auxin accumulation in these cells activates 

MONOPTEROS (MP), an AUXIN RESPONSE FACTOR (ARF), which induces 

expression of LFY, ANT and AIL6 to bring about primordia initiation and outgrowth 

(Yamaguchi et al., 2013). In addition, LFY provides these primordia with a floral fate 

while ANT and AIL6 promote growth of the floral primordia

 

1
Han, H. and B.A. Krizek. Submitted to Plant Molecular Biology, 13/07/2016 
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(Elliott et al., 1996; Klucher et al., 1996; Krizek, 1999; Krizek, 2009; Krizek and Eaddy, 

2012; Schultz and Haughn, 1993; Weigel et al., 1992; Weigel and Nilsson, 1995). 

After establishment of a flower primordium, ANT and AIL6 regulate the initiation 

and development of floral organs within the flower. In wild-type flowers, floral organ 

primordia arise at precise positions within four concentric whorls. These primordia 

subsequently adopt fates as sepals, petals, stamens or carpels based on the activities of 

distinct combinations of floral organ identity genes (also known as floral homeotic 

genes), as summarized in the ABCE model [reviewed in(Krizek and Fletcher, 2005)]. 

Loss of both ANT and AIL6 functions together result in flowers with small sepals, 

filamentous organs, stamen-like organs, undefined organs and unfused carpel valves 

(Krizek, 2009). These organs do not arise in characteristic positions within the flower or 

in distinct whorls (Krizek, 2009). Thus ANT and AIL6 contribute to floral organ 

positioning within the flower, the establishment of floral organ identity, floral organ 

growth, and carpel patterning.  

ANT and AIL6 do not make equivalent contributions to these processes. Loss of 

ANT function by itself results in smaller flowers (Elliott et al., 1996; Klucher et al., 

1996), demonstrating that the role of ANT in organ size control cannot be provided by 

AIL6. Loss of AIL6 function on its own has no phenotypic consequences indicating that 

all of its roles in flower development can be provided by ANT or some other gene 

(Krizek, 2009). Some of the functional differences between ANT and AIL6 may arise 

from differences in gene expression, as ANT mRNA is present at higher levels and in a 

broader domain than AIL6 mRNA in young flowers, and ANT mRNA persists much 

longer in developing floral organs (Elliott et al., 1996; Nole-Wilson et al., 2005). We 
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investigated whether gene expression differences underlie the functional differences 

between ANT and AIL6 by expressing a genomic copy of AIL6 under the control of the 

ANT promoter. The ANT:gAIL6 transgene largely rescues the organ size defects of ant 

mutants, indicating that AIL6 can promote growth of floral organs when expressed in the 

same domains and at the same levels as ANT. 

ANT:gAIL6 ant lines expressing AIL6 at higher levels show changes in flower 

development that include the production of fewer floral organs and mosaic floral organs 

such as petaloid sepals. In addition, these flowers show defects in the initiation and 

growth of floral organ primordia. The severity of these phenotypes is correlated with 

AIL6 mRNA levels. Similar phenotypes are observed in ANT:gAIL6 lines in a wild-type 

background and in transgenic lines in which AIL6 is misexpressed using an ethanol 

inducible system (i.e. 35S:AlcR/AlcA:gAIL6). Such phenotypes are not observed in 

35S:ANT plants suggesting that AIL6 can regulate genes that are not targets of ANT 

regulation. 35S:AlcR/AlcA:gAIL6 plants as well as transgenic plants expressing a steroid 

inducible genomic copy of AIL6 under the control of the 35S promoter (i.e. 35S:gAIL6-

GR) produce larger flowers, similar to 35S:ANT plants (Krizek, 1999; Mizukami and 

Fischer, 2000). 35S:gAIL6-GR flowers produce some petaloid sepals but do not produce 

other mosaic organs observed in 35S:AlcR/AlcA:gAIL6 flowers. We compare the 

phenotypes described here with earlier AIL6 misexpression experiments; it is likely that 

the somewhat distinct phenotypes of these lines are a consequence of differences in the 

levels and patterns of AIL6 expression.  
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MATERIALS AND METHODS 

 

Plant materials and growth conditions 

The ant-4 allele was described previously (Baker et al., 1997; Nole-Wilson et al., 

2005). ant-4 was PCR genotyped as described previously (Krizek, 2009). Plants were 

grown on a soil mixture of Metro-Mix 360:perlite:vermiculite (5:1:1) in 16hr days (100-

150 µmol·m
-2

·s
-1

) at 20-22°C.  

 

Plasmid construction and plant transformation 

A genomic copy of AIL6 corresponding to most of the coding region and 919bp of 

3’ sequence was obtained by digestion of BAC F12B17 with KpnI and BamHI and 

ligation into BJ36. The first 141bp of the AIL6 coding region were added to this genomic 

fragment by PCR amplification with AIL6-27 (5’-

ATACGGTACCATGATGGCTCCGATGACGAACTGGTTAACGTTTTCTCTGTCAC

CAATGGAGATGTTGAGGTCATCTGA-3’) and AIL6-44 (5’-

ACACGAGCATGTACTGTTGAG-3’) and digestion with KpnI to create gAIL6/BJ36. A 

6.2kb ANT promoter sequence was subcloned from pBluescript into the SalI site of 

gAIL6/BJ36. ANT:gAIL6 was subcloned into the NotI site of pART27 and transformed 

into Agrobacterium tumefaciens strain ASE by electroporation. Ler and ant-4 plants were 

transformed with this Agrobacterium strain by vacuum infiltration (Bechtold et al., 1993). 

Transformants were selected for kanamycin resistance. Plants homozygous for the 

transgene were used for phenotypic characterization. 
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For the ethanol inducible constructs, AlcR was subcloned from pJH0022 into 

BJ97 using EcoRI and HindIII. The 35S promoter was subsequently subcloned from 

pJH0022 into the EcoRI site of AlcR/BJ97. 35S:AlcR was subcloned from BJ97 into the 

NotI site of pMLBart. AlcA was first subcloned from pACN into the HindIII site of 

pBluescript and subsequently subcloned into the PstI and SalI sites of gAIL6/BJ36. 

AlcA:gAIL6 was subcloned into the NotI site of pART27. 35S:AlcR/pMLBart and 

AlcA:gAIL6/pART27 and were transformed into Agrobacterium strain ASE by 

electroporation. Transformants were selected for either basta (pMLBart) or kanamycin 

(pART27) resistance. 35S:AlcR transgenic line 95 was crossed with AlcA:gAIL6 line 49. 

Plants homozygous for both transgenes were used for phenotypic characterization.  

For the 35S:gAIL6-GR construct, 919bp of AIL6 3’ sequence was subcloned into 

the XbaI site of pART7, which contains a 35S promoter. A genomic copy of AIL6 lacking 

the stop codon was subcloned into AIL6 3’/pART27 using SmaI and BamHI. The ligand 

binding domain of the glucocorticoid receptor (GR) was added to the BamHI site of 

gAIL6-3’/pART7. 35S:gAIL6-GR-3’ was subcloned from pART7 into pART27 using 

NotI and transformed into Agrobacterium tumefaciens strain ASE by electroporation. Ler 

plants were transformed with this Agrobacterium strain by vacuum infiltration (Bechtold 

et al., 1993). Transformants were selected for kanamycin resistance. Plants homozygous 

for the transgene were used for phenotypic characterization.  

AIL6m:gAIL6-VENUS was constructed by first cloning a 919bp fragment of AIL6 

3’ sequence into the XbaI site of 9Ala-VENUS/BJ36. This AIL6 3’ sequence was PCR 

amplified with AIL6-46 (5’-AATATCTAGAAACCAATCATATAAGTTGATTGAG-

3’) and AIL6-47 (5’-AAGATCTAGACCTCGGCTAGGAAATATGTTT-3’). A genomic 
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copy of AIL6 was created in pGEM3Z and subcloned into the SmaI/BamHI sites of 9Ala-

VENUS-3’/BJ36. 591 bp of AIL6 5’ sequence was subcloned into the SmaI site of gAIL6-

VENUS-3’/BJ36 to create AIL6m:gAIL6-VENUS/BJ36. AIL6m:gAIL6-VENUS was 

subcloned into the NotI site of pART27 and transformed into the Agrobacterium strain 

ASE by electroporation. Ler plants were transformed with this Agrobacterium strain by 

vacuum infiltration (Bechtold et al., 1993). Transformants were selected for kanamycin 

resistance. Individual lines were crossed into the ant-4/+ ail6-2 background. 

AIL6m:gAIL6-VENUS line 5 complements ail6-2 such that AIL6m:gAIL6-VENUS-3’ ant-

4 ail6-2 flowers resemble ant-4 flowers. Plants from AIL6m:gAIL6-VENUS line 5 in the 

ail6-2 background were used for confocal microscopy. 

 

Petal size and petal cell size measurements 

Petal measurements were performed on at least 12 petals from at least 6 different 

plants. These flowers corresponded to those at at positions 1-10 on an inflorescence for 

35S:cAIL6 and 35S:gAIL6. For the inducible lines (35S:AlcR/AlcA:gAIL6 and 

35S:gAIL6-GR), these flowers corresponded to stage 14 flowers at later positions on the 

inflorescence. Petal measurements were performed as described previously (Trost et al., 

2014). Petal area, length and width were determined using Image J software or a program 

written in MATLAB.  

For petal size measurement, individual flowers were cleared in chloral hydrate (8g 

chloral hydrate, 11ml water, 1ml glycerol) and imaged with differential interference 

contrast (DIC) optics on an Olympus BX60 microscope. 
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Scanning electron microscopy 

Tissue for SEM was fixed, dehydrated, dissected and coated as previously 

described (Krizek, 1999). For viewing ovules, carpels were sliced with a razor blade 

immediately before fixation. SEM analyses were performed on an FEI Quanta 200 ESEM 

or a Tescan Vega3 SBU Variable Pressure SEM. 

 

RNA isolation and RT-qPCR 

RNA was extracted from inflorescences using TRIzol (Life Technologies) and 

treated with Turbo DNase (Life Technologies). In some cases, the RNA was further 

purified on an RNeasy column (Qiagen) and DNased while on the column. First-strand 

cDNA synthesis was performed using qScript cDNA Supermix (Quanta BioSciences). 

qPCR reactions were performed on a BioRad CFX96 using PerfeCTa SYBR Green 

FastMix for iQ (Quanta BioSciences) and AIL6 primers described previously (Krizek and 

Eaddy, 2012). Data analyses were carried out as described previously (Krizek and Eaddy, 

2012). Two to three biological replicates were used for each experiment. For the absolute 

quantification RT-qPCR experiment comparing ANT and AIL6 mRNA expression in Ler, 

standard calibration curves were generated using a known amount of plasmids containing 

either ANT or AIL6 cDNA quantitated on a Qubit fluorometer.  

 

In situ hybridization 

Inflorescences were fixed, embedded, sectioned, hybridized and washed as 

described previously except that a hybridization temperature of 53
o
C was used with the 

long AIL6 probe (see below) (Krizek, 1999). The digoxigenin-labeled AP3 antisense 
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RNA probes was synthesized as described previously (Jack et al., 1992). For the PI 

probe, a XhoI/NcoI fragment of PI cDNA was subcloned into the SmaI site of pGEM3Z 

vector. PI/pGEM3Z was linearized with BamHI and transcribed with T7 RNA 

polymerase. Two different AIL6 antisense RNA probes were used. The experiments 

shown in Figure 2.14 and Figure 2.9 used a previously described AIL6 probe (Nole-

Wilson et al., 2005). The experiments in Figure 2.3, Figure 2.5, Figure 2.13 and Figure 

2.18 used a long AIL6 probe in which nucleotides 497 to1691 of the AIL6 cDNA were 

PCR amplified with AIL6-FW (5’-TCGGAAGGACTCATCTTGCT-3’) and AIL6-RV 

(5’-CCCTGAACGTTGGAGTTGTT-3’) using Phusion DNA polymerase and cloned 

into the SmaI site of pGEM3Z. Long AIL6/pGEM3Z was linearized with HindIII and 

transcribed with T7 RNA polymerase.  

 

Ethanol and dex induction of transgenes 

35S:AlcR/AlcA:gAIL6 plants were treated with mock (H2O) or ethanol vapor by 

placing 2mls of water or 2mls of 100% ethanol in 2ml centrifuge tubes in half of the pots 

in a tray. The tray was covered with a plastic dome. 14-16 day old plants were treated 

once for eight hours while 29-30 day old plants were treated three times (every other day) 

for four hours each day. Inflorescences of 23-26 day old 35S:gAIL6-GR plants were 

treated two or three times by pipetting a mock (0.1% ethanol and 0.015% Silwet) or dex 

(10µM dexamethasone and 0.015% Silwet) solution every other day to the 

inflorescences. 
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Confocal Microscopy 

Flowers were dissected from live inflorescence using a 26-gauge needle. 

Inflorescences were transferred to a coverslip onto which a 24 well adhesive silicone 

isolator (Grace Bio-Labs) had been placed and filled with approximately 10μl of 0.8% 

agarose/0.5x MS salts. Confocal image stacks were acquired using a Leica TCS SP8X 

confocal microscope with a 40x water-immersion lens. A 514nm laser line was used to 

excite VENUS and a 640nm laser line was used to excite chlorophyll. Fluorescence was 

detected with a 520-560nm (VENUS) or a 650nm long pass filter (chlorophyll). Gain 

settings of 250 (VENUS) and 30 (chlorophyll) were held constant. For the inflorescence 

apex Z-stacks were collected using an average of four optical slices every 2μm for a total 

of 20μm. For individual stage three flowers, Z-stacks were collected using an average of 

four optical slices every 2μm for a total of 10μm. Zoom was set on one for inflorescence 

meristem pictures and 1.75 for stage 3 flower primordium pictures. 

 

RESULTS 

 

Expression of AIL6 under the ANT promoter rescues the floral organ size defects of 

ant 

To investigate whether the functional differences between ANT and AIL6 arise 

from differences in their expression patterns and/or distinct protein activities, we 

expressed a genomic copy of AIL6 under the control of the ANT promoter in the ant-4 

background. The ANT promoter used in this construct complements ant-4 when fused to 

the ANT coding sequence (Krizek, 2009). We generated 13 ANT:gAIL6 ant transgenic 
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lines that fell into four phenotypic classes referred to as C1 (lines 19,61,69,70,74,83,89), 

C2 (lines 17,18), C3 (lines 68,77) and C4 (lines 53,62). Phenotypic and molecular 

characterizations were performed on one representative homozygous line of each class: 

line 69 (C1-69), line 18 (C2-18), line 68 (C3-68) and line 62 (C4-62) (Figure 2.1A-F). 

All four of these lines largely rescue the floral organ size defects of ant-4 as shown for 

petals (Figure 2.1G) and stamen anthers (Figure 2.2A-F). However, the flowers of these 

lines differed in other aspects including floral organ number, the presence of mosaic 

organs, and the presence of subtending filaments or bracts (Figure 2.1A-F; Table 2.1). 

C1-69 flowers had a wild-type appearance, although they produced a few petaloid sepals, 

slightly smaller petals and fewer stamens than Ler and had similar numbers of flowers 

with fused floral organs as ant-4 (Figure 2.1C, G; Table 2.1). In C2-18, early-arising 

flowers have a wild-type appearance but later-arising flowers produce some petaloid 

sepals, have fewer petals compared with ant-4, have reduced numbers of stamens 

compared with Ler, and are often subtended by very short filaments (Figure 2.1D; Table 

2.1). The number of mosaic first whorl organs is greatly increased in C3-68. These 

flowers also show reduced numbers of floral organs in whorls 2-4 and are often 

subtended by filaments (Figure 2.1E; Table 2.1). Reductions in floral organ number are 

even more severe in C4-62 (Figure 2.1F; Table 2.1). First whorl sepals are often replaced 

by filaments or petals, the carpels exhibit reductions in valve tissue, and bracts frequently 

subtend the flowers. Second whorl organs are almost completely lost in C4-62 and it is 

sometimes difficult to distinguish first and second whorl organs. 

For two of the four classes (C1 and C3), we observed variation in the ability of 

the ANT:gAIL6 transgene to rescue the female sterility defects of ant mutants. While the 
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two C2 lines produced seeds and neither of the two C4 lines produced seeds, we observed 

that two of seven C1 lines and one of two C3 lines produced seeds. None of the fertile 

ANT:gAIL6 ant lines set as many seeds as wild type. To investigate whether the defects in 

seed production might be a consequence of the inability of ANT:gAIL6 to rescue ant 

ovule defects, we examined ovules in two C1 lines: C1-69 which produces seeds and C1-

61 which does not produce seeds. The ovules of ANT:gAIL6 ant C1-69 are smaller than 

those of wild type but the integuments fully enclose the nucellus (Figure 2.2G-I). Thus, 

C1-69 largely complements the ant loss of integument phenotype.  In ANT:gAIL6 ant C1-

61, integument growth is partially rescued, but the nucellus is not fully enclosed by the 

integuments (Figure 2.2J). Therefore, the inability of C1-61 to produce seeds is 

associated with reduced integument growth compared with C1-69. Furthermore, we 

found that AIL6 mRNA levels are lower in ANT:gAIL6 ant C1-61 ovules as compared 

with C1-69 ovules (Figure 2.3A-C). Thus, differences in seed set in these two lines are 

correlated with the extent of integument growth and AIL6 mRNA levels in developing 

ovules.  

In addition to producing fewer seeds than wild type, ANT:gAIL6 ant C1-69, C2-

18, C3-68 and C4-62 produce seeds that vary in size and seed coat color (Figure 2.4A-F). 

ANT:gAIL6 ant C1-69 seeds are light yellow/light green in color while the color ranged 

from light green to light brown for ANT:gAIL6 ant C2-18, C3-68, and C4-62. Variation 

in seed size and color was reported previously for transgenic lines in which the coding 

region of AIL6 was expressed under the control of the 35S promoter (i.e. 35S:cAIL6) 

(Krizek and Eaddy, 2012). Thus, high levels of AIL6 can interfere with seed 

development. 
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ANT:gAIL6 ant phenotypes are correlated with AIL6 mRNA levels 

To investigate whether the different ANT:gAIL6 ant phenotypic classes might be a 

consequence of different AIL6 mRNA levels, we performed RT-qPCR on RNA from 

ANT:gAIL6 ant C1-69, C2-18, C3-68, and C4-62 inflorescences. AIL6 mRNA levels 

were approximately 9, 13, 17 and 21 fold higher in ANT:gAIL6 ant C1-69, C2-18, C3-68, 

and C4-62, respectively compared to wild type (Figure 2.5A). Thus, the severities of the 

additional ANT:gAIL6 ant phenotypes are correlated with AIL6 mRNA levels. In 

addition, there is a dosage effect of the transgene; flowers from ANT:gAIL6 ant C4-62 

plants hemizygous for the transgene have a less severe phenotype than flowers from 

plants homozygous for the transgene (Figure 2.6A-C). 

We next investigated which ANT:gAIL6 ant line produced AIL6 mRNA levels 

that were most similar to the levels of ANT mRNA in Ler inflorescences. An absolute 

RT-qPCR experiment showed that wild-type inflorescences contain approximately 8-fold 

more copies of ANT mRNA than AIL6 mRNA. Thus, C1-69, which has 9-fold higher 

levels of AIL6 mRNA compared with wild type, most closely approximates normal ANT 

mRNA copy numbers. The additional phenotypes resulting from higher AIL6 expression 

levels in C2-18, C3-68 and C4-62, can be considered a result of overexpression of AIL6 

above normal levels of ANT mRNA. To confirm that AIL6 mRNA accumulated in a 

spatial and temporal pattern in ANT:gAIL6 C1-69 flowers similar to that of ANT mRNA 

in wild-type flowers, we performed in situ hybridization. The AIL6 mRNA expression 

pattern in ANT:gAIL6 ant C1-69 closely matches that of ANT mRNA expression in wild-

type flowers (Elliott et al., 1996) (Figure 2.5B-E,I-K). AIL6 mRNA is expressed at higher 
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levels in incipient and young floral primordia in ANT:gAIL6 ant as compared with wild 

type (Figure 2.5F,G,I,J). In stage 4 flowers, AIL6 mRNA is mainly present in the floral 

meristem of wild-type flowers but accumulates to high levels in both the floral meristem 

and sepal primordia of ANT:gAIL6 ant C1-69 (Figure 2.5F,I). AIL6 mRNA is detected at 

high levels in stage 7 ANT:gAIL6 ant flowers, while AIL6 mRNA is not detected much 

after stage 6 in wild-type flowers (Figure 2.5G,J) (Nole-Wilson et al., 2005). AIL6 

mRNA was not expressed in wild-type ovules but was detected in developing ovule 

primordia of older ANT:gAIL6 ant flowers (Figure 2.5H,K).  

 

ANT:gAIL6 lines in a wild-type background display alterations in flower 

development similar to those observed in the ant background 

To further investigate the consequences of overexpressing AIL6, we transformed 

wild-type plants with the ANT:gAIL6 transgene. Generation of these transgenic plants 

allowed us to investigate whether the ANT:gAIL6 transgene conferred the same 

phenotypes in a background containing ANT activity. Of the 15 lines obtained, three lines 

(lines 2, 13, 14) have a wild-type appearance (Figure 2.7A,B). The remaining 12 lines 

showed phenotypic variations similar to those observed in the ant-4 background, and we 

characterized these lines as weak (six lines), strong (four lines) or severe (two lines) and 

performed floral organ counts on one line from each class: line 2 (wild type), line 12 

(weak), line 4 (strong) and line 16 (severe) (Figure 2.7A-E; Table 2.2). Based on these 

floral organ counts, line 12 (weak) most resembles ANT:gAIL6 ant C1-69, line 4 (strong) 

most resembles ANT:gAIL6 ant C3-68 and line 16 (severe) most resembles ANT:gAIL6 

ant C4-62 (Tables 2.1, 2.2). 
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Flowers from the weak line 12 produce a small number of petaloid sepals in the 

first whorl (Figure 2.7C; Table 2.2). In the strong line 4, flowers frequently contained 

petaloid sepals and subtending filaments, and had reduced numbers of petals and stamens 

(Figures. 2.7D, 8A, 8B; Table 2.2). We observed that petaloid sepals were more often 

present in the adaxial position, followed by the abaxial position as compared with the 

lateral positions (Table 2.3). In addition, first whorl organs showed increasing petal 

identity in the first whorl as the plants aged (Table 2.4). Thus in later-arising flowers, 

these organs were characterized as sepaloid petals rather than petaloid sepals. In the 

severe line 16, flowers contained various mosaic organs and reduced numbers of floral 

organs (Figures 2.7E, 8E, 8G; Table 2.2). The positioning of floral organs is severely 

disrupted in line 16; we characterized organs as being present in the outer whorl, stamen 

whorl or inner whorl for organ counts (Table 2.2). ANT:gAIL6 line 16 flowers do not 

make a normal gynoecium. Instead, the organs that arise in the center of the flower have 

reduced or absent carpel valve tissue, in some cases stigmatic tissue is present on top of a 

thin cylinder (Figure 2.8F). In other cases, stamenoid carpels or filaments are present in 

the center of the flower (Figure 2.7E; Table 2.2). Only rarely are any seeds obtained from 

line 16 homozygous plants. Line 16 flowers are often subtended by filaments or bracts, 

with early-arising flowers more likely to be subtended by a filament and later-arising 

flowers more likely to be subtended by a bract (Table 2.4; Figure 2.7E, 8G). These bracts 

have a combination of sepal-like and leaf-like cells (Figure 2.8H). There is often further 

growth in the bract axil resulting in the formation of additional leaf-like outgrowths 

(Figure 2.8I). For both line 4 and line 16, the phenotypic defects become more severe 
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with developmental age (Table 2.4). Older flowers show reduced numbers of sepals, 

petals and stamens and increasing numbers of mosaic organs.  

We examined early flower development in ANT:gAIL6 lines 4 and 16. The outer 

whorl organs of lines 4 and 16 are often narrower than those of wild type and do not fully 

enclose the floral bud by the time of stamen primordia initiation (Figure 2.8C, J-L). 

While four whorls can be distinguished in line 4 flowers (Figure 2.8D), only three whorls 

are visible in line 16 (Figure 2.8J, K). In addition, many floral organs in line 16 show 

altered morphology with filament-like structures present in the outer whorl and altered 

development of the innermost carpel primordia (Figure 2.8K, L). Many fewer floral 

organ primordia are initiated in line 16 (Figure 2.8J). While flower initiation from the 

inflorescence meristem is similar to wild type in line 4, in line 16 plants, the 

inflorescence meristem gets progressively smaller and is consumed in flower initiation 

(Figure 2.8M-P).  

We used RT-qPCR to investigate whether the severity of the ANT:gAIL6 flower 

phenotypes are correlated with AIL6 mRNA levels. AIL6 mRNA levels were 

approximately 2.5, 7, 20 and 43 fold higher in lines 2 (wild type), 12 (weak), 4 (strong) 

and 16 (severe), respectively, compared to wild type (Figure 2.7F). Thus, as described 

previously for ANT:gAIL6 lines in the ant background, the severity of the ANT:gAIL6 

phenotypes in a wild-type background is correlated with AIL6 mRNA levels. It also 

appears to be independent of ANT activity. We confirmed that AIL6 mRNA in 

ANT:gAIL6 lines 4 and 16 was expressed in a spatial pattern similar to that of ANT in 

wild type (Figure 2.9A-F). In addition, we found that AIL6 mRNA is present in the 

filaments and bracts that subtend ANT:gAIL6 line 4 and 16 flowers (Figure 2.9C, E, F). 
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The ANT promoter is initially active in the cryptic bracts that do not grow out in wild-

type (Long and Barton, 2000). Thus our results suggest that AIL6 expression in these 

cells is sufficient to promote outgrowth of these organs.  

 

The class B floral homeotic genes AP3 and PI are misexpressed in ANT:gAIL6 

flowers 

The partial transformation of first whorl sepals to petals in ANT:gAIL6 flowers 

suggests that the class B genes AP3 and PI are misexpressed in some first whorl cells. In 

wild-type flowers, these genes are expressed in second and third whorl cells where they 

contribute to the specification of petal and stamen identities, respectively (Figure 2.10A, 

C, E, G). In ANT:gAIL6 lines 4 and 16, we detected both AP3 and PI mRNA in the first 

whorl primordia of stage 3 flowers (Figure 2.10B, F; Figure 2.11A-D). The expansion of 

AP3 and PI expression into the first whorl is correlated with high level expression of 

AIL6 in the first whorl of ANT:gAIL6 flowers, as conferred by the ANT promoter. AP3 

and PI expression was maintained in first whorl organs of ANT:gAIL6 line 16 at later 

stages of development (Figure 2.10D, H). We did not observe AP3 or PI mRNA 

expression in the center whorl, although stamenoid carpels are occasionally present here 

in lines 4 and 16 (Table 2.2). AP3 and PI were not expressed in the filaments and bracts 

subtending ANT:gAIL6 flowers (Figure 2.10B). 
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ANT:gAIL6 misexpression phenotypes are distinct from previously published AIL6 

misexpression phenotypes 

Previously we published a description of transgenic plants in which the coding 

region of AIL6 was expressed under the control of the constitutive 35S promoter from 

cauliflower mosaic virus (i.e. 35S:cAIL6) (Krizek and Eaddy, 2012). These plants 

produced flowers with changes in floral organ size and morphology that were correlated 

with AIL6 mRNA levels. 35S:cAIL6 line 22, which expressed AIL6 at approximately 55-

fold higher levels than wild type, produced flowers with dramatic alterations in floral 

organ morphology and defects in cellular differentiation (Figure 2.12B). In contrast, 

35S:cAIL6 line 31 which expressed AIL6 at approximately 30-fold higher levels than wild 

type produced larger floral organs with relatively normal morphologies (Figure 2.12C). 

The increased floral organ size of 35S:cAIL6 line 31 is shown for petals (Table 2.5). 

Increases in petal size are also observed for ANT:gAIL6 ant C4-62 (Figure 1G) and 

ANT:gAIL6 line 16 (Table 2.5), indicating that high levels of AIL6 misexpression in the 

ANT expression domain can also alter floral organ size.  

Previously, we had also generated 35S:gAIL6 lines in which the genomic region 

of AIL6 was expressed under the control of the 35S promoter (Yamaguchi et al., 2016). 

35S:gAIL6 lines have flower phenotypes similar to wild type and AIL6 mRNA expression 

levels 2-3 fold higher than wild type (Figure 2.12D; Table 2.5). We were only able to 

generate six 35S:gAIL6 lines; this may be due to harmful consequences of expressing 

high levels of AIL6 mRNA in embryos.  

Differences in the flower phenotypes of 35S:gAIL6, 35S:cAIL6 and ANT:gAIL6 

are likely a consequence of differences in AIL6 mRNA levels and distribution (Figure 
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2.13; Supplementary Table 2.4). AIL6 mRNA is present in a similar spatial and temporal 

domain in Ler and 35S:gAIL6 line 6 (Figure 2.13A-D). This, together with the fact that 

AIL6 mRNA levels are only 2.5 fold higher in 35S:gAIL6 line 6 compared with wild type, 

likely explains the absence of a flower phenotype (Yamaguchi et al., 2016). AIL6 is 

misexpressed in some floral organs of stage 4 and older flowers of 35S:cAIL6 lines 31 

and 22 (Figure 2.13E-G) (Krizek and Eaddy, 2012) while in ANT:gAIL6 line 16, AIL6 

mRNA accumulates to high levels throughout young flowers (stage 1-4) (Figure 2.13H). 

To further probe the basis for the different AIL6 misexpression phenotypes, we made two 

types of AIL6 inducible lines under the control of the 35S promoter: an ethanol inducible 

transgene (35S:AlcR/AlcA:gAIL6) and a steroid-inducible transgene (35S:gAIL6-GR). 

 

Misexpression of AIL6 using an ethanol inducible system results in mosaic organs, 

reductions in floral organ number and alterations in petal size 

In the ethanol-inducible system (Roslan et al., 2001), the transcription factor AlcR 

is expressed constitutively under the control of the 35S promoter while a genomic copy of 

AIL6 is under the control of the AlcA promoter, which is bound by AlcR only in the 

presence of ethanol (i.e. 35S:AlcR/AlcA:gAIL6). We examined AIL6 mRNA levels in 

35S:AlcR/AlcA:gAIL6 plants at eight, 12 and 24 hours after the start of a single eight hour 

ethanol treatment. AIL6 mRNA levels were induced 144 fold at the end of the ethanol 

treatment compared with untreated plants (Figure 2.14A). AIL6 mRNA levels dropped 

over time after removal of the ethanol (Figure 2.14A). We also examined the spatial 

distribution of AIL6 mRNA using in situ hybridization. In water treated 

35S:AlcR/AlcA:gAIL6 inflorescences, AIL6 mRNA accumulated in a similar pattern as 
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that described previously for wild-type inflorescences (Figure 2.14B). In ethanol treated 

35S:AlcR/AlcA:gAIL6 inflorescence AIL6 mRNA accumulated to high levels in almost all 

tissues (Figure 2.14C). However, we did not observe AIL6 mRNA in stage 1 and 2 

flowers in ethanol-treated plants (Figure 2.14C).  

35S:AlcR/AlcA:gAIL6 plants treated with a single eight hour ethanol treatment at 

14-16 days of age produced flowers that displayed alterations in floral organ development 

from approximately 13 to 16 days after ethanol treatment (Table 2.6). They produce 

fewer floral organs and a variety of mosaic organs (Figure 2.14D-F). These phenotypes 

are similar to those observed in ANT:gAIL6 flowers. No phenotypes were observed in 

mock or ethanol-treated Ler flowers, in mock or ethanol-treated flowers from transgenic 

lines containing either 35S:AlcR or AlcA:gAIL6, or in mock-treated plants containing 

both transgenes (i.e. 35S:AlcR/AlcA:gAIL6) (Figure 2.15A-D). In ethanol-treated 

35S:AlcR/AlcA:gAIL6 flowers, the most dramatic reductions in floral organ number were 

observed in flowers that matured 15 days after the ethanol treatment; these flowers 

contained 9.6 organs while water-treated 35S:AlcR/AlcA:gAIL6 flowers contained 15.5 

floral organs (Table 2.6). A variety of mosaic organs were present in these flowers 

including petaloid sepals, stamenoid sepals and stamenoid petals (Figure 2.14E, F). In 

addition, ethanol-treated 35S:AlcR/AlcA:gAIL6 flowers display altered patterns of floral 

organ initiation. In stage 3 wild-type and mock treated 35S:AlcR/AlcA:gAIL6 flowers, the 

abaxial sepal primordium arises first followed by the two lateral sepals and then the 

adaxial sepal primordia (Figure 2.14H). In 35S:AlcR/AlcA:gAIL6 stage 3 flowers, lateral 

sepal primordia are visible earlier than the abaxial sepal primordia (Figure 2.14I). In 

addition, the sepal primordia in the ethanol-treated flowers do not grow as fast as in the 
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untreated flowers, and they do not fully enclose the developing flower. Thus organ 

primordia in the inner whorl are visible (Figure 2.14J). We also often observed a 

“reduced” flower that was very small with very few floral organs (Figure 2.14G, K; Table 

2.6). Such flowers could be observed on the inflorescence meristem at approximately six 

days after the ethanol treatment and reached maturity at 15-16 days after the ethanol 

treatment (Figure 2.14K; Table 2.6).  

While a single ethanol treatment to 14-16 day old 35S:AlcR/AlcA:gAIL6 plants 

produces flowers with phenotypes similar to ANT:gAIL6, we did not observe increases in 

petal size. Since this phenotype might be dependent on AIL6 mRNA levels, 

developmental stage of the flower and/or age of the plant, we tried different ethanol 

treatment regimes. Exposure of older 35S:AlcR/AlcA:gAIL6 plants (29-30 days old) to 3 

four hour ethanol treatments resulted in larger petals from approximately 6-10 days post 

treatment (Figure 2.14L, M; Table 2.5). At later days after the treatments, these plants 

also produced mosaic floral organs and exhibited reductions in floral organ number. Thus 

35S:AlcR/AlcA:gAIL6 flowers can recapitulate all of the phenotypes observed in 

ANT:gAIL6 plants. Since distinct phenotypes are observed at different times after AIL6 

induction, the developmental stage of the flower at the time of treatment likely plays a 

role in determining the consequences on flower development. Furthermore, since 

different ethanol treatment regimes were required for the production of larger petals as 

compared with mosaic organs, overall AIL6 levels, the length of time of high AIL6 

activity, and/or the developmental age of the plant may also help to determine the nature 

of the phenotype. 

 



 40 

35S:gAIL6-GR lines produce larger flowers and some petaloid sepals 

In 35S:gAIL6-GR, a genomic copy of AIL6 was fused in frame with the ligand-

binding domain of the glucocorticoid receptor (GR). Upon treatment with the steroid 

dexamethasone (dex), AIL6-GR protein can enter the nucleus to regulate gene 

expression. Dex treatment of 35S:gAIL6-GR plants results in the production of larger 

flowers from approximately 9-13 days post treatment as shown for two lines (lines 7 and 

30) (Figure 2.16C, E). We also observed the production of some petaloid sepals in the 

first whorl of dex-treated 35S:gAIL6-GR flowers approximately 14-20 days after the first 

dex treatment (Figure 2.16D, F; Table 2.7). Neither of these phenotypes was observed in 

dex treated Ler flowers (Figure 2.16A, B). The larger flower phenotype of 35S:gAIL6-

GR flowers closely resembles that of 35S:ANT and dex-treated 35S:ANT-GR (Krizek, 

1999; Yamaguchi et al., 2016). Petal epidermal cells were of similar size in mock and 

dex-treated 35S:gAIL6-GR flowers suggesting that the increase in organ size is largely 

due to the presence of more cells (Figure 2.17A-D). 

AIL6 mRNA levels were approximately 100 fold higher in 35S:gAIL6-GR lines 7 

and 30 compared with Ler (Figure 2.18A). In situ hybridization shows higher levels and a 

broader accumulation pattern of AIL6 mRNA in 35S:gAIL6-GR lines 7 and 30 compared 

with Ler (Figure 2.18B-G), although AIL6 mRNA levels were low in stage 1 flowers of 

35S:gAIL6-GR (Figure 9C, D).  
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DISCUSSION 

 

AIL6 can functionally replace ANT 

The ability of AIL6 to complement ant when expressed under the control of the 

ANT promoter suggests that the functional differences between ANT and AIL6 are largely 

a consequence of the different expression patterns of these genes. This is likely due to 

both the lower overall expression of AIL6 as compared with ANT as well as to differences 

in the spatial and temporal expression patterns of the genes. ANT mRNA is detected in a 

broader pattern and persists longer in developing floral organs as compared with AIL6 

(Elliott et al., 1996; Nole-Wilson et al., 2005). The ability of AIL6 to functionally replace 

ANT indicates that AIL6 likely regulates many of the same target genes as ANT when 

expressed at ANT levels in these cells. Specifically, the ability of AIL6 to rescue the floral 

organ size defects of ant indicates that AIL6 can regulate genes that promote floral organ 

growth. The ability to regulate common targets is consistent with the high sequence 

similarity of ANT and AIL6 within the AP2 repeat regions, particularly at positions 

previously shown to be important for DNA binding by ANT (Krizek, 2003; Nole-Wilson 

et al., 2005). Thus, these proteins may have similar intrinsic DNA-binding specificities. 

We find that the phenotypes in ANT:gAIL6 ant plants are correlated with varying 

levels of AIL6 mRNA. While expression of AIL6 at levels comparable to ANT in wild-

type inflorescences rescues ant flowers back to wild-type, higher AIL6 mRNA levels 

result in altered patterning within the flower primordium including defects in floral organ 

positioning and growth and altered spatial expression of the floral homeotic genes. Such 

phenotypes have not observed in plants misexpressing ANT. 35S:ANT flowers produce 
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larger flower organs but do not show defects in floral organ initiation or identity (Krizek, 

1999; Mizukami and Fischer, 2000). Thus, in cells with high levels of AIL6 protein, 

additional targets appear to be regulated by AIL6 that are not regulated by ANT, 

suggesting some functional differences within these two proteins. It is not known whether 

such genes are regulated by AIL6 under physiological conditions.  

 

AIL6 misexpression phenotypes depends on the developmental stage of the flower 

We observe somewhat different flower phenotypes with different AIL6 

misexpression constructs. This is at least partially a consequence of the developmental 

stage of the flower at the time of AIL6 overexpression as described here for two different 

inducible AIL6 lines. The earliest phenotype observed in both ethanol-treated 

35S:AlcR/AlcaA:gAIL6 and dex-treated 35S:gAIL6-GR was the production of larger 

flowers which occurred approximately 6-10 days after the first ethanol treatment in 

35S:AlcR/AlcaA:gAIL6 plants and 9-13 days after the first dex treatment in 35S:gAIL6-

GR plants. Other phenotypes, including the production of mosaic organs and reductions 

in floral organ number, were recorded later (13-16 days after ethanol treatment and 14-20 

days after dex treatment), meaning that the flower primordia were younger at the time of 

AIL6 induction. This suggests that there is a window during flower primordium 

development in which AIL6 overexpression can affect floral organ initiation and identity 

specification. After this window has passed, AIL6 overexpression can affect floral organ 

growth but not floral organ identity.  

We note phenotypic differences between the two types of inducible AIL6 lines 

(Table 2.8). 35S:gAIL6-GR flowers show only modest effects on floral organ number and 
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the only mosaic floral organs produced are petaloid sepals. In contrast, 

35S:AlcR/AlcA:gAIL6 flowers show dramatic reductions in floral organ number and 

produce a variety of mosaic floral organs. The basis for these differences is not clear. 

Both induction systems result in high levels of AIL6 mRNA accumulation and a broad 

spatial pattern of AIL6 expression. However, the relative levels and duration of nuclear 

localized AIL6 protein may vary in the two systems. The levels and persistence of 

nuclear localized GR fusion proteins can vary depending on the number and spacing of 

the dex treatments (Ito et al., 2007). Thus, it is possible that a different course of dex 

treatments might affect the 35S:gAIL6-GR phenotype and result in the production of 

more mosaic floral organs. 

 

Concentration dependent effects of AIL6 activity 

Phenotypic differences of ANT:gAIL6 lines in both the ant-4 and Ler backgrounds 

are correlated with steady-state AIL6 mRNA levels and dosage of the transgene. This 

suggests a concentration dependent effect of AIL6 activity on gene expression. Different 

levels of AIL6 activity could result in different levels of activation of a particular set of 

target genes, with distinct floral phenotypes dependent on the absolute level of target 

gene activation. This seems the most likely explanation of the different classes of 

ANT:gAIL6 phenotypes, which are somewhat similar but vary in severity. Another 

possibility is that different levels of AIL6 activity regulate distinct target genes with a 

particular phenotype resulting from the regulation of a unique set of target genes. This 

could occur via distinct DNA-binding affinities for cis-acting regulatory elements and via 

combinatorial control with other transcription regulators. For example, target genes 
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containing high affinity cis-acting elements could be activated in cells with low levels of 

AIL6 while target genes containing low affinity cis-acting elements would only be 

activated in cells with high levels of AIL6. Alternatively, some AIL6 protein-protein 

interactions may only occur when AIL6 protein levels are high. It is also possible that the 

phenotypes associated with high AIL6 mRNA levels are a result of the sequestering of 

transcriptional co-activators or co-repressors thus limiting the activation or repression of 

other genes that are unrelated to the biological function of AIL6 (i.e. squelching) 

(Ptashne, 1988).  

Whether concentration-dependent regulatory effects of AIL6 occur in wild-type 

flowers is not known. We have observed dosage effects of AIL6 in both the ant-4 and 

ant-4 ail7-1 backgrounds, suggesting that absolute levels of AIL6 are important in certain 

contexts (Krizek, 2015a). Graded distributions of AIL proteins including AIL6 have been 

observed in the root with highest levels in the root apical meristem defining stem cell 

identity and lower levels required for cellular differentiation (Galinha et al., 2007). Using 

an AIL6-VENUS protein fusion, which complements AIL6 function as assayed in the 

ant-4 ail6-2 background, we have observed gradients of AIL6 protein within young 

flower primordia (Figure 2.19). Interestingly, the AIL6 protein distribution differs from 

AIL6 mRNA distribution in stage three flowers. While AIL6 mRNA is detected at higher 

levels in the floral meristem dome as compared with sepal primordia (Nole-Wilson et al., 

2005), higher AIL6 protein is observed in the periphery of stage three and four flowers. 

The significance, if any, of the AIL6 protein gradient in flower patterning or floral organ 

development is not known. Identification of AIL6 regulatory targets and their spatial 
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pattern of activation in relation to AIL6 levels may help to reveal whether such gradients 

contribute to flower development.  
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Table 2.1 Floral organ counts for Ler, ant-4 and ANT:gAIL6 ant-4 lines C1-69, C2-18, 

C3-68, C4-62 (flowers 1-30 counted). 

 
 Ler ant-4 C1-69 C2-18 C3-68 C4-62 

Whorl 1:       

Se 4.00 4.01 3.97 3.11 1.62 0.78 

Pe/Se   0.03 0.88 1.52 0.54 

Se/Pe     0.54 0.30 

Filament    0.02 0.58 1.57 

Pe     0.22 1.11 

Pe-St mosaic     0.04 0.33 

St; St-like     0.03 0.19 

Se-St mosaic      0.01 

total 4.00 4.01 4.00 4.01 4.55 4.83 

       

Whorl 2:       

Pe 4.00 3.77 3.90 2.75 1.23 0.33 

Se/Pe     0.02 0.01 

Filament   0.01 0.01 0.02 0.03 

Pe-St mosaic     0.01 0.01 

total 4.00 3.77 3.91 2.76 1.28 0.38 

       

Whorl 3:       

St 5.77 4.77 5.36 4.89 4.14 2.86 

St-like   0.01 0.07 0.17 0.05 

Filament   0.01 0.03 0.03  

Ca/St, St/Ca    0.12 0.02  

total 5.77 4.77 5.38 5.11 4.36 2.91 

       

Whorl 4:       

Ca 2.0 2.00 2.00 1.95 1.58 0.30 

St/Ca     0.19 0.07 

thin cylinder     0.01 0.11 

St-like      0.02 

Filament      0.48 

total 2.0 2.00 2.00 1.95 1.78 0.98 

       

Total all whorls 15.77 14.55 15.29 13.83 11.97 9.10 

% of flowers with subtending filament 0.00 0.0 0.0 68.0 83.3 20.0 

% of flowers with subtending bract 0.00 0.0 0.0 0.0 7.50 77.3 

% of flowers with organ fusion (Se, St) 0.76 8.3 8.3 39.3 25.8 5.3 

Abbreviations: Se, sepal; Pe/Se, petaloid sepal; Se/Pe, sepaloid petal; Pe, petal; Pe-St 

mosaic, petal-stamen mosaic organ; St, stamen; Se-St mosaic, sepal-stamen mosaic 

organ; Ca/St, carpelloid stamen; St/Ca, stamenoid carpel; Ca, carpel  

  



 47 

Table 2.2 Floral organ counts for Ler and ANT:gAIL6 lines 2, 12, 4 and 16 (flowers 1-30 

counted). 

 
 Ler ANT:gAIL6 

line 2 

ANT:gAIL6 

line 12 

ANT:gAIL6 

line 4 

 ANT:gAIL6 

line 16 

Whorl 1:     Outer Whorl:  

Se 4.00 4.00 3.99 1.94 Se 0.36 

Pe/Se   0.02 1.21 Pe/Se 0.34 

Se/Pe    0.73 Se/Pe 0.49 

Filament    0.02 Filament 1.82 

Pe    0.16 Pe 0.74 

St/Pe    0.01 Pe-St mosaic 0.36 

total 4.00 4.00 4.01 4.07 St/Fil 0.25 

     St 0.61 

Whorl 2:     Se-Pe-St 

mosaic 

0.27 

Pe 4.00 4.00 3.98 2.36 Ca-like 0.01 

Trumpet Pe    0.01 total 5.25 

Filament    0.63   

Pe/Se or Se/Pe    0.027   

St/Pe    0.10   

total 4.00 4.00 3.98 3.13   

       

Whorl 3:     Stamen 

Whorl: 

 

St 5.77 5.88 5.94 4.93 St 1.59 

Filament   0.01 0.02 Filament 0.041 

total 5.77 5.88 5.95 4.95 Ca/St 0.027 

     total 1.66 

       

Whorl 4:     Inner  Whorl:  

Ca 2.00 2.00 2.00 1.84 Ca and Ca-like 0.49 

St/Ca    0.06 St/Ca 0.18 

St-like    0.01 Filament 0.36 

total 2.00 2.00 2.00 1.91 total 1.03 

       

Total all whorls 15.77 15.88 15.94 14.06  7.94 

% of flowers with 

subtending 

filament 

0.00 0.00 0.00 69 % of flowers 

with subtending 

filament 

34.5 

% of flowers with 

subtending bract 

0.00 0.00 0.00 0 % of flowers 

with subtending 

bract 

62.8 

% of flowers with 

organ fusion  

0.76 0.00 0.00 22.7 % of flowers 

with organ 

fusion  

6.8 

Abbreviations: Se, sepal; Pe/Se, petaloid sepal; Se/Pe, sepaloid petal; Pe, petal; St/Pe, 

stamenoid petal; St, stamen; Ca, carpel; St/Ca, stamenoid carpel  
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Table 2.3 Comparison of ANT:gAIL6 line 4 first whorl organs in medial (adaxial and 

abaxial) and lateral positions (flowers 1-10, 11-20 and 21-30 counted). 
  whorl 1 ad whorl 1 ab whorl 1 lat 

ANT:gAIL6 (flowers 1-10) Se 0.26 0.50 1.82 

 Pe/Se 0.56 0.38 0.42 

 Se/Pe 0.12 0.06 0.04 

 fil    

 Pe 0.04 0.02 0.06 

 St/Pe    

     

ANT:gAIL6 (flowers 11-20) Se 0.08 0.22 1.70 

 Pe/Se 0.16 0.64 0.30 

 Se/Pe 0.72 0.14 0.02 

 fil  0.02  

 Pe 0.06   

 St/Pe    

     

ANT:gAIL6 (flowers 21-30) Se 0.04 0.12 1.08 

 Pe/Se 0.12 0.54 0.50 

 Se/Pe 0.70 0.20 0.20 

 fil  0.02 0.02 

 Pe 0.08 0.14 0.08 

 St/Pe 0.02  0.02 

Abbreviations: ad, adaxial; ab, abaxial; lat, lateral; Se, sepal; Pe/Se, petaloid sepal; Se/Pe, 

sepaloid petal; fil, filament; Pe, petal; St/Pe, stamenoid petal 
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Table 2.4 Floral organ counts for Ler and ANT:gAIL6 lines 4 and 16 (flowers 1-10, 11-20, 21-30 counted). 
 
 Ler 

1-10 

Ler 

11-20 

Ler 

21-30 

ANT:gAIL6 

#4; 1-10 

ANT:gAIL6 

#4; 11-20 

ANT:gAIL6 

#4; 21-30 

 ANT:gAIL6 

#16; 1-10 

ANT:gAIL6 

#16; 11-20 

ANT:gAIL6 

#16; 21-30 

Whorl 1:       Outer Whorl:    

Se 4.0 4.0 4.0 2.58 2.0 1.24 Se 0.96 0.10  

Pe/Se    1.36 1.1 1.16 Pe/Se 0.96 0.04  

Se/Pe    0.22 0.88 1.10 Se/Pe 0.94 0.46 0.42 

Filament     0.02 0.04 Filament 0.60 2.36 2.52 

Pe    0.12 0.06 0.30 Pe 1.40 0.64 0.15 

St/Pe      0.04 Pe-St mosaic 0.14 0.48 0.48 

total 4.0 4.0 4.0 4.28 4.06 3.61 St/Fil  0.20 0.56 

       St 0.20 0.58 1.06 

Whorl 2:       Se-Pe-St mosaic  0.06 0.02 

Pe 4.0 4.0 4.0 3.20 2.34 1.54 Ca-like   0.02 

Trumpet Pe      0.02 total 5.20 4.92 5.23 

Filament    0.40 0.44 1.04     

Pe/Se or Se/Pe    0.02 0.04 0.02     

St/Pe    0.02 0.18 0.10     

total 4.0 4.0 4.0 3.64 3.00 2.72     

           

Whorl 3:       Stamen Whorl:    

St 5.78 5.86 5.66 5.34 4.92 4.52 St 2.86 1.28 0.60 

Filament    0.02  0.04 Filament 0.06 0.06  

total 5.78 5.86 5.66 5.36 4.92 4.56 Ca/St 0.04 0.02 0.02 

       total 2.96 1.36 0.62 

           

Whorl 4:       Inner  Whorl:    

Ca 2.0 2.0 2.0 1.88 1.82 1.82 Ca and Ca-like 0.45 0.59 0.42 

St/Ca    0.04 0.06 0.08 St/Ca 0.20 0.08 0.27 

St-like      0.02 Filament 0.40 0.40 0.27 

total 2.0 2.0 2.0 1.92 1.88 1.92 total 1.05 1.07 0.96 

           

% flowers with sub fil 0 0 0 26 92 90 % flowers with sub fil 60.0 26.0 16.7 

% flowers with sub 

bract 

      % flowers with sub bract 32.0 74.0 83.3 

% flowers with Se,Pe,St 

fusion 

0 0 2.6 22 26 20 % flowers with Se,Pe,St 

fusion 

16.0 4.0 0 
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Table 2.5 Petal area, width and length in AIL6 misexpression lines. 

 
 Pe area (mm

2
) Pe length (mm) Pe width (mm) 

Ler 2.01 + 0.15 3.19 + 0.17 1.09 + 0.06 

35S:cAIL6 #31 2.52 + 0.22 3.45 + 0.22 1.19 + 0.08 

35S:gAIL6 #6 1.99 + 0.15 3.14 + 0.16 1.10 + 0.07 

    

Ler 1.79 + 0.36 2.95 + 0.29 1.05 + 0.12 

ANT:gAIL6 #16 2.60 + 0.51  3.67 + 0.38  1.19 + 0.16  

    

Ler mock (8d post) 1.41 + 0.19 2.64 + 0.21 0.93 + 0.07 

Ler ethanol (8d post) 1.38 + 0.18 2.68 + 0.22 0.90 + 0.09 

35S:AlcR/AlcA:gAIL6 mock (8d post) 1.58 + 0.20 2.83 + 0.23 0.97 + 0.06 

35S:AlcR/AlcA:gAIL6 ethanol (8d post) 2.36 + 0.34 3.35 + 0.20 1.23 + 0.12 

    

Ler mock  1.54 + 0.17 2.94 + 0.16 0.95 + 0.06 

Ler dex  1.46 + 0.21 2.86 + 0.22 0.93 + 0.09 

35S:gAIL6-GR #7 mock 1.57 + 0.21 3.00 + 0.20 0.95 + 0.07 

35S:gAIL6-GR #7 dex 2.35 + 0.19 3.60 + 0.18 1.10 + 0.05 

    

Ler mock 1.79 + 0.28 2.72 + 0.25 1.06 + 0.10 

Ler dex 1.83 + 0.25 2.87 + 0.23 1.07 + 0.08 

35S:gAIL6-GR #30 mock 1.90 + 0.17 2.89 + 0.16 1.11 + 0.07 

35S:gAIL6-GR #30 dex 2.78 + 0.31 3.47 + 0.16 1.30 + 0.09 

Genotypes grouped together were grown and measured at the same time 
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Table 2.6 Floral organ counts for water and ethanol treated 35S:AlcR/AlcA:gAIL6 from 

12-17 days post treatment. 

 
35S:AlcR/AlcA:gAIL6  EtOH-

12d 

EtOH-

13d 

EtOH-

14d 

EtOH-

15d 

EtOH-

16d 

EtOH-

17d 

H2O 

(12-17d) 

1
st
 whorl        

Se 4.00 3.00 2.55 1.00 2.90 3.88 4.00 

Pe/Se; Se/Pe  0.09 0.27 0.43 0.18   

Filament  0.27 0.18     

Pe  0.09 0.27 0.43 0.55   

St/Se; Se/St  0.18 0.09 0.29 0.09   

Se-Pe/St   0.09     

St/Pe; Pe/St  0.09 0.45 0.71    

St  0.18 0.18 0.57 0.18   

Total-1
st
 whorl 4.00 3.90 4.08 3.43 3.90 3.88 4.00 

        

2
nd

 whorl        

Pe 3.88 2.64 2.27 1.14 2.55 3.75 4.00 

Trumpet Pe   0.09     

Se/Pe    0.14    

St/Pe; Pe/St  0.27 0.27 0.14    

Filament 0.125 0.09 0.18 0.43    

St  0.18 0.09 0.14    

Total-2
nd

 whorl 4.005 3.18 2.90 1.99 2.55 3.75 4.0 

        

3
rd

 whorl        

St 5.38 4.36 3.09 2.14 3.45 5.38 5.54 

St-like  0.09      

Pe  0.09      

Filament  0.18  0.29    

Total-3
rd

 whorl 5.38 4.72 3.09 2.43 3.45 5.38 5.54 

        

4
th

 whorl        

Ca 2.00 2.00 2.00 1.70 1.60 2.00 2.00 

        

Total all whorls 15.38 13.8 12.1 9.55 11.5 15.0 15.54 

% of “reduced” flowers  0% 0% 0% 14.3% 18.2% 0% 0% 

% of flowers with organ 

fusion 

0% 9% 0% 14.3% 9% 0% 0% 

Abbreviations: Se, sepal; Pe/Se, petaloid sepal; Se/Pe, sepaloid petal; Pe, petal; St/Se, 

stamenoid sepal; Se/St, sepaloid stamen; Se-Pe/St, sepaloid petaloid stamen; St/Pe, 

stamenoid petal; Pe/St, petaloid stamen; St, stamen; Ca, carpel; St/Ca, stamenoid carpel 

.
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Table 2.7 Floral organ counts for water and dex treated 35S:gAIL6-GR line 30 from 12-20 days post three dex treatments. 

 
35S:gAIL6-GR dex-12d dex-13d dex-14d dex-15d dex-16d dex-17d dex-18d dex-19d dex-20d mock (12-15d) 

1
st
 whorl           

Se 4.00 3.91 3.41 3.07 2.92 2.92 3.23 3.44 3.75 4.00 

Pe/Se + Se/Pe  0.09 0.59 0.80 1.00 1.08 0.77 0.33 0.25  

Total-1
st
 whorl 4.00 4.00 4.00 3.87 3.92 4.00 4.00 3.77 4.00 4.00 

           

2
nd

 whorl           

Pe 4.00 4.00 3.88 4.00 3.61 3.54 3.62 4.00 4.00 4.00 

Total-2
nd

 whorl 4.00 4.00 3.88 4.00 3.61 3.54 3.62 4.00 4.00 4.00 

           

3
rd

 whorl           

St 5.74 5.82 5.53 5.40 5.31 5.15 5.62 5.33 5.75 5.74 

Total-3
rd

 whorl 5.74 5.82 5.53 5.40 5.31 5.15 5.62 5.33 5.75 5.74 

           

4
th

 whorl           

Ca 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

Total-4
th

 whorl 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

           

Total all whorls 15.74 15.82 15.41 15.27 14.84 14.69 15.24 15.10 15.75 15.74 

Abbreviations: Se, sepal; Pe/Se, petaloid sepal; Se/Pe, sepaloid petal; Pe, petal; St, stamen; Ca, carpel 
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Table 2.8 Comparison of AIL6 misexpression lines. 

 
Transgenic line mRNA levels (RT-qPCR); mRNA 

distribution  

Phenotype Reference 

35S:gAIL6 #6 2.6;  

wild-type AIL6 mRNA pattern 

wild-type flowers (Yamaguchi et 

al., 2016) 

35S:cAIL6 #31 30;  

patchy and absent from stage 1-4 

flowers 

larger flowers; altered 

carpel morphology 

(Krizek and 

Eaddy, 2012) 

35S:cAIL6 #22 55;  

patchy and absent from stage 1-4 

flowers 

altered floral organ 

morphology; loss of cell 

differentiation 

(Krizek and 

Eaddy, 2012) 

ANT:gAIL6 #16 43;  

ANT mRNA pattern (strong 

expression in stage 1-4 flowers; 

lower levels and more restricted 

expression as flowers mature) 

mosaic floral organs, 

reductions in floral organ 

number, larger petals 

this study 

35S:AlcR/AlcA:gAIL6 144 (8 hrs);  

everywhere except stage 1 and 2 

flowers 

mosaic floral organs, 

reductions in floral organ 

number, larger flowers 

this study 

35S:gAIL6-GR #30 104;  

everywhere except  stage 1 flowers 

larger flowers; mosaic 

petaloid sepals 

this study 
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Figure 2.1 ANT:gAIL6 ant flowers rescue the petal size defects of ant. A Ler flower. 

B ant-4 flower. C ANT:gAIL6 ant-4 C1-69 flower. D ANT:gAIL6 ant-4 C2-18 flower. E 

ANT:gAIL6 ant-4 C3-68 flower. The arrow points to a filament subtending the flower. F 

ANT:gAIL6 ant-4 C4-62 flower.  The arrow points to a bract subtending the flower. G 

Graph of petal area, length and width in Ler, ant and ANT:gAIL6 ant lines. The error bars 

show standard deviation. Petal area, length, and width values of C1-69, C2-18, C3-68 and 

C4-62 are statistically different from ant-4 (p value < 0.0001). Petal area, length, and 

width values of C2-18 and C3-68 are not statistically different from Ler (p value >0.03). 

Pictures in A-F were taken at the same magnification.  
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Figure 2.2 SEM of ANT:gAIL6 ant anthers and ovules. Stamen anthers from Ler (A), 

ant-4 (B), ANT:gAIL6 ant-4 C1-69 (C), ANT:gAIL6 ant-4 C2-18 (D), ANT:gAIL6 ant-4 

C3-68 (E) and ANT:gAIL6 ant-4 C4-62 (F). Ovules from Ler (G), ant-4 (H), ANT:gAIL6 

ant-4 C1-69 (I) and ANT:gAIL6 ant-4 C1-61 (J). Size bars are 100µm. 
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Figure 2.3 AIL6 expression in ANT:gAIL6 ant ovules. A In situ hybridization shows no 

AIL6 mRNA in Ler ovules. B AIL6 mRNA is detected at low levels in ANT:gAIL6 ant 

C1-61 ovules. C AIL6 mRNA is detected at high levels in ANT:gAIL6 ant C1-69 ovules. 

Size bars are 50m. 
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Figure 2.4 ANT:gAIL6 ant seeds are altered in color and size. Seeds from Ler (A), 

ant-4/+ (B), ANT:gAIL6 ant-4 C1-69 (C), ANT:gAIL6 ant-4 C2-18 (D), ANT:gAIL6 ant-4 

C3-68 (E), and ANT:gAIL6 ant-4 C4-62 (F). Pictures in A-F were taken at the same 

magnification. 
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Figure 2.5 AIL6 expression in ANT:gAIL6 ant lines. A Graph of RT-qPCR results 

showing relative AIL6 mRNA levels in Ler, ant-4 and ANT:gAIL6 ant lines C1-69, C2-

18, C3-68 and C4-62 inflorescences. The expression level in Ler is set to one and error 

bars show standard deviation. B-E In situ hybridization of ANT mRNA in Ler 

inflorescences. B ANT mRNA accumulates in floral primordia on the periphery of the 

IM. c ANT mRNA in a stage 4 flower. Arrow points to a sepal primordia. D ANT mRNA 

in a stage 7 flower. Arrow points to a developing sepal. e ANT mRNA in ovules (arrow). 

F-H In situ hybridization of AIL6 mRNA in Ler inflorescences. AIL6 mRNA 

accumulates in the inflorescence meristem and young flowers of Ler inflorescences (F, 

G) but not in the sepals of stage 4 or 7 flowers (F, G) (arrows) or in ovules (H) (arrow) 

(H). I-K In situ hybridization of AIL6 mRNA in ANT:gAIL6 ant C1-69 inflorescences. I 

AIL6 mRNA accumulates to high levels in the periphery of the inflorescence meristem 

and in the sepals of stage 4 flowers (arrow) of ANT:gAIL6 ant C1-69. J AIL6 mRNA is 

detected in the sepal (arrow), stamen and carpel primordia of stage 7 ANT:gAIL6 ant C1-

69 flowers. K AIL6 mRNA is detected in the ovules (arrow) of ANT:gAIL6 ant C1-69 

carpels. Abbreviations: IM, inflorescence meristem; st 4, stage 4 flower; st 6, stage 6 

flower; st 7, stage 7 flower. Size bars are 50µm. Panels B-E showing ANT mRNA are 

presented to show the spatial pattern of expression driven by the ANT promoter. They are 

from a separate experiment as compared with panels F-K showing AIL6 mRNA. 

  



 

59 

 
 

Figure 2.6 Dosage effects of the ANT:gAIL6 transgene in ant-4. A Ler flower. B 

ANT:gAIL6 ant C4-62 flower from a plant hemizygous for the transgene. Flower has 

reduced numbers of petals and petaloid sepals (arrows). C ANT:gAIL6 ant C4-62 flower 

from a plant homozygous for the transgene. Flower has reduced numbers of floral organs, 

filaments, a stamenoid petal (arrow), and is subtended by a bract. Pictures in A-C were 

taken at the same magnification. 
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Figure 2.7 ANT:gAIL6 flower phenotypes and AIL6 mRNA levels. A Ler flower. B 

ANT:gAIL6 line 2 flower. C ANT:gAIL6 line 12 flower. D ANT:gAIL6 line 4 flower. The 

arrow points to a subtending filament. E ANT:gAIL6 line 16 flower. The arrow points to a 

subtending bract. F RT-qPCR of AIL6 mRNA in Ler and ANT:gAIL6 lines 2, 12, 4 and 

16. The expression level in Ler is set to one and error bars show standard deviation. 

Pictures in A-E were taken at the same magnification.  
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Figure 2.8 SEM of ANT:gAIL6 flowers. A Mosaic petaloid sepal from ANT:gAIL6 line 

4 with both petal-like (Pe) and sepal-like (Se) cells. B Filament (arrow) subtends 

ANT:gAIL6 line 4 flower. C Young ANT:gAIL6 line 4 flower with reduced growth of the 

outer whorl organ primordia, making the inner whorl organ primordia visible. The arrow 

points to a subtending filament. D ANT:gAIL6 line 4 flower with organs in four whorls 

(1, 2, 3, 4). E Mosaic petaloid stamen from ANT:gAIL6 line 16 with petal-like (Pe) and 

stamen-like (St) regions. F ANT:gAIL6 line 16 flower with a thin cylinder topped with 

stigmatic tissue present in the inner part of the flower. G ANT:gAIL6 line 16 flower with 

a mosaic petaloid sepal in the outer whorl. Petal-like (Pe) and sepal-like (Se) cells are 

indicated. The arrow points to a subtending bract. H Close-up of a bract subtending an 

ANT:gAIL6 line 16 flower showing the presence of both leaf-like (Le) and sepal-like (Se) 

cells. I ANT:gAIL6 line 16 bract that has additional leaf-like organs (arrow) growing in 

the leaf axil. J Young ANT:gAIL6 line 16 flower with a subtending filament (arrow) and 

organs that appear to arise in three whorls (1, 2 and 3). K ANT:gAIL6 line 16 flower with 

floral organs present in three whorls (1, 2 and 3). Some of the outermost organs are 

filamentous. L ANT:gAIL6 line 16 flower with a subtending bract (arrow) and organs 

arising in altered positions. Two organs are fused in the inner part of the flower. M Ler 

inflorescence meristem. N ANT:gAIL6 line 4 inflorescence meristem showing reduced 

growth of first whorl organ primordia. Subtending filaments are visible on the flowers. O 

ANT:gAIL6 line 16 inflorescence meristem showing reduced growth and altered 

positioning of first whorl organ primordia and the presence of subtending bracts. P 

ANT:gAIL6 line 16 inflorescence. There is no visible inflorescence meristem; it appears 

to have been terminated with the initiation of flower primordia. Abbreviations: IM, 
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inflorescence meristem; Se, sepal-like cells; Pe, petal-like cells; St, stamen-like cells; Le, 

leaf-like cells; numbers (1, 2, 3, 4) indicate whorls. Size bars are 20µm (H), 50µm (C, D, 

J, K, M-P), 100µm (A, L), 200 (B, E) and 400µm (F, G, I).  



 

63 

 
 

Figure 2.9 AIL6 is expressed in a broader domain and at higher levels in ANT:gAIL6 

lines 4 and 16 flowers as compared with Ler.  A In situ hybridization showing AIL6 

expression in a stage 3 Ler flower. B AIL6 expression in a stage 3 ANT:gAIL6 line 4 

flower. AIL6 mRNA accumulates to higher levels in the outer whorl organ primordia and 

the floral meristem dome of ANT:gAIL6 line 4 compared to wild type. C AIL6 expression 

in a stage 6 ANT:gAIL6 line 4 flower. AIL6 mRNA is detected in the outer whorl 

developing organs as well as the stamen and carpel primordia. AIL6 is also expressed in 

the subtending filament (arrow). D, E AIL6 expression in stage 3 ANT:gAIL6 line 16 

flowers. Expression is detected in some cells of the outer whorl organ primordia. The 

arrow points to AIL6 expression in the subtending filament/bract in E. F AIL6 expression 

in a stage 6 ANT:gAIL6 line 16 flower. AIL6 is expressed in all of the floral organs and 

the subtending bract (arrow). Size bars are 50m. Abbreviations: se, sepal; fm, floral 

meristem dome. 
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Figure 2.10 AP3 and PI are misexpressed in ANT:gAIL6 line 16 flowers. A In situ 

hybridization of AP3 mRNA in a stage 4 Ler flower. B AP3 mRNA expression in first 

whorl organ primordia (black arrows) of a stage 3 ANT:gAIL6 line 16 flower. No AP3 

mRNA is detected in the subtending bract (white arrow). C AP3 mRNA expression in 

stage 4 (left) and stage 7 (right) Ler flowers. D AP3 mRNA is detected in the first whorl 

organ primordia of the stage 3 ANT:gAIL6 line 16 flower (left) and in a first whorl organ 

in an older flower (arrow). E In situ hybridization of PI mRNA in a stage 4 Ler flower. F 

PI mRNA expression in first whorl organ primordia (arrows) of a stage 3 ANT:gAIL6 line 

16 flower. G PI mRNA expression in stage 10 Ler flower. H PI mRNA is detected in the 

first whorl organ of an older flower (arrow). Size bars are 50µm. 
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Figure 2.11 AP3 and PI are misexpressed in first whorl organ primordia of 

ANT:gAIL6 line 4 flowers. A AP3 mRNA is not present in sepal primordia of stage 4 

Ler flowers. B AP3 mRNA is present in the first whorl primordia of this ANT:gAIL6 line 

4 stage 3 flower (arrows). C PI mRNA is not present in sepals of stage 4 Ler flowers. D 

PI mRNA is present in one of the first whorl primordia of this ANT:gAIL6 line 4 stage 3 

flower. Size bars are 50m. Abbreviations: se, sepal. 
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Figure 2.12 Flower phenotypes of previously characterized AIL6 misexpression 

lines. A Ler flower. B 35S:cAIL6 line 22 flower. C 35S:cAIL6 line 31 flower. D 

35S:gAIL6 line 6 flower. Pictures in A-D were taken at the same magnification and 

grown at the same time as ANT:gAIL6 lines. 
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Figure 2.13 AIL6 mRNA expression patterns in previously characterized AIL6 

misexpression lines and ANT:gAIL6 line 16. A, B, E In situ hybridization showing 

AIL6 mRNA in Ler inflorescences. AIL6 mRNA accumulates within the inflorescence 

meristem and young flowers. C, D In situ hybridization shows that AIL6 mRNA 

accumulates in a similar pattern in 35S:gAIL6 line 6 inflorescences as compared with 

Ler. F, G In situ hybridization showing AIL6 mRNA in 35S:cAIL6 line 31 (F) and 22 (G) 

inflorescences. AIL6 mRNA accumulates unevenly in older flowers and does not 

accumulate in stage 1-3 flowers. H In situ hybridization showing AIL6 mRNA in 

ANT:gAIL6 line 16 inflorescence. AIL6 mRNA accumulates to high levels in the 

inflorescence meristem and young flowers. Size bars are 50m. Abbreviations: IM, 

inflorescence meristem. 
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Figure 2.14 35S:AlcR/AlcA:gAIL6 flowers produce mosaic organs and larger petals 

and show reductions in floral organ number. In A-K, plants were treated with a single 

8-hour mock or ethanol exposure. In L, M, plants were treated with three 4-hour mock or 

ethanol exposures. A RT-qPCR showing relative AIL6 mRNA levels in 

35S:AlcR/AlcA:gAIL6 inflorescences at 8, 12 and 24 hours after the start of an eight hour 

ethanol treatment. The expression level is compared to untreated 35S:AlcR/AlcA:gAIL6 

inflorescences and error bars show standard deviation. B In situ hybridization of AIL6 

mRNA on mock-treated 35S:AlcR/AlcA:gAIL6 collected at the end of the eight-hour 

mock treatment. Arrow points to stage 1 flower. C In situ hybridization of AIL6 mRNA 

on ethanol-treated 35S:AlcR/AlcA:gAIL6 at the end of the eight-hour ethanol treatment. 

Arrows point to stage 1 and 2 flowers. D Mock-treated 35S:AlcR/AlcA:gAIL6 flower has 

a wild-type appearance. E-F Ethanol-treated 35S:AlcR/AlcA:gAIL6 flowers have reduced 

numbers of floral organs and mosaic organs. The arrows point to a petaloid stamen (e) 

and a petaloid sepal (F). G Inflorescence of an ethanol-treated 35S:AlcR/AlcA:gAIL6 

plant with a reduced flower (arrow). H SEM of mock-treated 35S:AlcR/AlcA:gAIL6 

inflorescence one day after treatment. The arrow points to a stage 3 flower. As in wild 

type, the abaxial sepal primordium is well defined. I SEM of ethanol-treated 

35S:AlcR/AlcA:gAIL6 inflorescence one day after treatment. The arrow points to a stage 

3 flower in which the lateral sepal primordia are visible while the abaxial sepal is not 

visible. J SEM of ethanol-treated 35S:AlcR/AlcA:gAIL6 inflorescence two days after 

treatment. The young flower primordia show altered positioning and growth of first 

whorl organ primordia. K SEM of ethanol-treated 35S:AlcR/AlcA:gAIL6 inflorescence 

six days after treatment. The arrow points to a reduced flower that initiated only two 

primordia in the outer whorl. L Mock and ethanol-treated 35S:AlcR/AlcA:gAIL6 flower 6 
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days after the first of three four-hour mock (left) or ethanol (right) treatments. M Mock 

and ethanol-treated 35S:AlcR/AlcA:gAIL6 flower 8 days after the first of three four-hour 

mock (left) or ethanol (right) treatments. Size bars are 50µm (B, C, H-K). 
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Figure 2.15 Flower phenotypes of mock and ethanol treated Ler (A), 35S:AlcR (B), 

AlcA:gAIL6 (C) and 35S:AlcR/AlcA:gAIL6 (D). Only plants carrying both the 35S:AlcR 

transgene and the AlcA:gAIL6 transgene show a phenotype after ethanol treatment. 

Pictures in A-D were taken at the same magnification. 
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Figure 2.16 Dex treatment of 35S:gAIL6-GR inflorescences results in larger flowers 

and the production of first whorl petaloid sepals. A Ler flowers nine days after mock 

(left) or dex (right) treatments. B Ler flower 15 days after dex treatment. C 35S:gAIL6-

GR line 7 flowers nine days after mock (left) or dex (right) treatments. D 35S:gAIL6-GR 

line 7 flower 15 days after dex treatment. Arrow points to first whorl petaloid sepal. E 

35S:gAIL6-GR line 30 flowers nine days after mock (left) or dex (right) treatments. F 

35S:gAIL6-GR line 30 flower 15 days after dex treatment. Arrow points to first whorl 

petaloid sepal. Pictures in A-F were taken at the same magnification. 
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Figure 2.17 Petal cell size comparison in mock and dex-treated 35S:gAIL6-GR line 

30. Adaxial petal epidermal cells of 35S:gAIL6-GR line 30 flowers from mock (A, B) and 

dex-treated (C, D) plants 13 days after the first treatment. Size bars are 50m. 
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Figure 2.18 AIL6 mRNA expression in 35S:gAIL6-GR lines 7 and 30. A Graph of RT-

qPCR results showing relative AIL6 mRNA levels in Ler, 35S:gAIL6-GR lines 7 and 30. 

The expression level in Ler is set to one and error bars show standard deviation. B In situ 

hybridization of AIL6 mRNA in Ler inflorescence. AIL6 mRNA accumulates in the 

inflorescence meristem and young flowers of Ler inflorescences. C, D In situ 

hybridization of AIL6 mRNA in 35S:gAIL6-GR line 7 (C) and line 30 (D) inflorescences. 

AIL6 mRNA accumulates throughout the inflorescence meristem and flowers of stage 2 

and older. Arrows point to stage 1 flowers. E In situ hybridization of AIL6 mRNA in Ler 

inflorescence. AIL6 mRNA is restricted to the inflorescence meristem and young flowers. 

F, G In situ hybridization of AIL6 mRNA in 35S:gAIL6-GR line 7 (f) and line 30 (G) 

inflorescences. AIL6 mRNA accumulates in inflorescence stem tissue and older 

35S:gAIL6-GR flowers. Size bars are 50µm (B-D) and 100µm (E-G). 
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Figure 2.19 AIL6 protein distribution in AIL6m:gAIL6-VENUS ail6-2 inflorescences 

and complementation of AIL6 function by AIL6m:gAIL6-VENUS. (A, C) Top view 

confocal images of AIL6m:gAIL6-VENUS ail6-2 inflorescences with the VENUS signal 

shown in yellow and chlorophyll signal shown in red. The thin arrow points to a stage 

three flower primordium and the thick arrow points to a stage four flower primodium. 

The VENUS signal is higher around the periphery of stage three and four flower 

primordia. (B, D) Top view confocal images showing the VENUS signal in the stage 

three flowers indicated in (A, C) respectively. E Ler flower. F ant-4 ail6-2 flower. g ant-

4 flower. H AIL6m:gAIL6-VENUS ant-4 ail6-2 flower. AIL6-VENUS complements ail6-

2. Pictures in E-H were taken at the same magnification 
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CHAPTER 3 

CHARACTERIZATION OF AIL6 PROTEIN AND IDENTIFICATION OF 

POTENTIAL TARGETS OF AIL6 REGULATION 

  

INTRODUCTION 

 

Previously, ANT was shown to bind in vitro to the DNA consensus site 5’-

gCAC(A/G)N(A/T)TcCC(a/g)ANG(c/t)-3’, where the uppercase letters indicate the most 

highly conserved positions, lowercase letters indicate less conserved positions, and N 

indicates positions for which no particular base appeared to be preferred (Nole-Wilson 

and Krizek, 2000). The DNA-binding activity of ANT has been extensively characterized 

using the sequence 5’-ttgGTGCACATATCCCGATGCTTaca-3’ (also known as binding 

site 15 or BS 15). The BS 15 binds to the ANT protein fragment containing two AP2 

repeats and an intervening linker (i.e. ANT-AP2R1R2) at a dissociation constant of 1.3 × 

10
-8

 M. Although ANT and AIL6 share high sequence similarity between their two 

tandem AP2 repeats and intervening linker (Nole-Wilson et al., 2005), little is known 

about AIL6 protein. AIL6 presumably functions as a transcription factor, but there are no 

reports on whether AIL6 can bind DNA and activate transcription. In chapter 2, we 

showed that AIL6 can act like ANT when AIL6 is expressed in the same domain and 

level as ANT. We hypothesize that AIL6 can bind to the ANT consensus binding site in 

vitro and activate transcription through the ANT BS 15 in vivo. Such data would provide 
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biochemical support for AIL6 function as a transcriptional activator with a similar DNA 

binding activity as ANT.  

Moreover, very few downstream targets of AIL proteins have been identified. To 

better understand the biological roles of AIL6 during flower development, we would like 

to identify targets of AIL6 regulation. Previous data showed that AP3 and AG expression 

is reduced in ant ail6 mutants indicating that ANT and AIL6 are necessary for expression 

of the floral homeotic genes AP3 and AG (Krizek, 2009). Furthermore, in Chapter 2, we 

showed that AP3 and PI expression is shifted into the first whorl in ANT:gAIL6, 

suggesting that high AIL6 activity is sufficient to activate these genes in an ectopic 

location. It is not known whether floral homeotic genes are direct targets of AIL6 

regulation in wild-type flowers. 

 

METHODS AND MATERIALS 

 

β-galactosidase liquid assay 

The yeast reporter strain BK1 containing the lacZ reporter gene under the control 

of a trimerized BS 15 and the TATA portion of the CYC1 gene was described previously 

(Krizek, 2003). The coding region of AIL5, AIL6 and AIL7 were cloned into pGAD424 in 

which the GAL4 activation domain has been removed (Clontech). These constructs were 

transformed into BK1 yeast strain. Transformed yeast strains were grown and harvested 

as previously described (Krizek, 2003). β-galactosidase liquid assays were performed 

using the Galacto Light Plus kit following the manufacturer’s protocol (Applied 

Biosystems). 5 µl of crude yeast extract was added to 200 µl of a 1:100 dilution of the 
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Galacton-Plus substrate. After incubation for 40min at room temperature, the enzyme 

activity was terminated and light emission was initiated by the addition of 300µl of 

accelerator. Luminescence was measured with a luminometer. The assays were 

performed in triplicate and repeated at least three times. The amount of protein present in 

each sample was determined by a Bradford assay. 

 

Plasmid construction and plant transformation 

Epitope tagged AIL6-VENUS (i.e. AIL6m:gAIL6-VENUS) was constructed by first 

cloning a 919bp fragment of AIL6 3’ sequence into the XbaI site of 9Ala-VENUS/BJ36. 

This AIL6 3’ sequence was PCR amplified with AIL6-46 (5’-

AATATCTAGAAACCAATCATATAAGTTGATTGAG-3’) and AIL6-47 (5’-

AAGATCTAGACCTCGGCTAGGAAATATGTTT-3’). A genomic copy of AIL6 was 

created in pGEM3Z and subcloned into the SmaI/BamHI sites of 9Ala-VENUS-3’/BJ36. 

591 bp of AIL6 5’ sequence was subcloned into the SmaI site of gAIL6-VENUS-3’/BJ36 

to create AIL6m:gAIL6-VENUS-3’/BJ36. AIL6m:gAIL6-VENUS-3’ was subcloned into 

the NotI site of pART27 and transformed into the Agrobacterium strain ASE by 

electroporation. 35S:AP1-GR ap1 cal plants were transformed with this Agrobacterium 

strain and AIL6-VENUS 35S:AP1-GR ap1 cal transformants were selected for kanamycin 

resistance.  

For the AIL6m:gAIL6-GR construct, 919bp fragment of AIL6 3’ sequence was 

first subcloned into the XbaI site of BJ36. A genomic copy of AIL6 lacking the stop 

codon was subcloned into SmaI/BamHI sites of AIL6 3’/BJ36. The ligand binding domain 

of the glucocorticoid receptor (GR) was added to the BamHI site of gAIL6-3’/BJ36. 591 
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bp of AIL6 5’ sequence previously made in pCRScript (Krizek, 2015b) was subcloned 

into the NotI (by partial digestion) and SmaI sites of gAIL6-GR-3’/BJ36. The 

AIL6m:gAIL6-GR-3’/BJ36 was cloned into the NotI site of pART27 and transformed into 

the Agrobacterium strain ASE by electroporation. ant-4 ail6 plants were transformed 

with this Agrobacterium strain by vacuum infiltration (Bechtold et al., 1993). 

AIL6m:gAIL6-GR-3’/BJ36 transformants were selected for kanamycin resistance.   

For 35S:AlcR/AlcA:AIL6-amiRNA2 construct, AIL6-amiRNA2 DNA contains two 

21mer DNAs within a 404-bp MIR319a stem loop fragment. These two 21mer DNAs are 

self-complementary and will be processed into an artificial microRNA (amiRNA) 

designed to target AIL6. These two 21mer DNA sequences were designed using an online 

amiRNA designing tool (http://wmd.weigelword.org) (Schwab et al., 2006). AIL6-

amiRNA2 DNA (IDT) is 

ttacgtatgaattccaaacacacgctcggacgcatattacacatgttcatacacttaatactcgctgttttgaattgatgttttaggaat

atatatgtagaCGATGTTACTCGAGATAGATTtcacaggtcgtgatatgattcaattagcttccgactcattcatc

caaataccgagtcgccaaaattcaaactagactcgttaaatgaatgaatgatgcggtagacaaattggatcattgattctctttgaT

ATCTATGTCGAGTAACACCGtctctcttttgtattccaattttcttgattaatctttcctgcacaaaaacatgcttgat

ccactaagtgacatatatgctgccttcgtatatatagttctggtaaaattaacattttgggtttatctttatttaaggcatcgccatgggat

cctgacgtta, where the underlined sequences correspond to restriction sites and the 

capitalized sequences are the two 21mers. This AIL6-amiRNA2 was cloned into the 

EcoRI and BamHI sites of AlcA/BJ36 (Leibfried et al., 2005). AlcA:AIL6-amiRNA2 was 

subcloned into the NotI site of AlcR/pMLBart and transformed into the Agrobacterium 

strain ASE by electroporation. ant-4/+ plants were transformed with this Agrobacterium 

http://wmd.weigelword.org/
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strain. 35S:AlcR/AlcA:AIL6-amiRNA2 ant-4/+ transformants were selected for basta 

resistance.    

 

Plasmid construction and protein expression 

AIL6-AP2R1R2 containing amino acid 246-426 was PCR amplified from cDNA 

using primers AIL6-29-1 (5’-CATTGGATCCACGTTTGGTCAAAGGACTTCG-3’) and 

AIL6-30-1 (5’-GAATGGATCCTGCACTCTTCATGATGGCTTC-3’). Both primers 

contain the underlined BamHI restriction sites. The purified PCR fragment was inserted 

into the BamHI site of pET32a (Novagen). The plasmid was sequenced and confirmed. 

AIL6-AP2R1R2 was expressed as a fusion protein. The N-terminus of AIL6-AP2R1R2 

was fused with Trx-His-S-enterokinase and the C-terminus of AIL6-AP2R1R2 was fused 

with a His tag. Proteins were expressed by induction with 1mM IPTG in 

BL21(DE3)plysS cells. The cells were harvested after growth at 30°C for 2.5 hours. Cells 

were lysed using four freeze/thaw cycles followed by sonication. Proteins were purified 

using Ni-NTA (Thermo Fisher Scientific) according to the manufacturer’s instructions. 

ANT-AP2R1R2 were purified as previously described (Nole-Wilson and Krizek, 2000), 

except Ni-NTA was purchased from Thermo Fisher Scientific. 

 

fEMSA 

5’ Cy5 labeled oligodeoxynucleotides (5’-

CCTGTAAGCATCGGGATATGTGCACCAAGT-3’) and non-labeled complementary 

oligodeoxynucleotides (5’-ACTTGGTGCACATATCCCGATGCTTACAGG-3’) were 

ordered from Fisher Scientific. Oligodeoxynucleotides were annealed in 10mM Tris 
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pH7.5, 150mM NaCl and 1mM EDTA. Purified AIL6-AP2R1R2 was incubated with 

20ng florescent Cy5 labeled DNA probe in 20mM Tris pH8, 100mM KCl, 1mM EDTA, 

12% glycerol, 1 mM DTT, 20 ng/µl dI-dc, 20 ng/ µl calf thymus DNA and 0.3 mg/ml 

BSA overnight at 4 °C. The protein-DNA complexes were separated on 5% acrylamide 

(29:1 polyacrylamide:bisacrylamide) gels in 1 x TBE at 4 °C. Images were scanned using 

Typhoon FLA-7000.   

 

Chromatin immuniprecipitation (ChIP) 

35S:AP1-GR ap1 cal inflorescences and AIL6m:AIL6-VENUS-3’ 35S:AP1-GR 

ap1 cal inflorescences were treated with 10μM dexamethasone (DEX) in 0.015% Silwet 

L-77 and collected for ChIP two days after DEX treatment. ChIP was carried out similar 

to a previously described procedure (Kwon et al., 2005) and one posted online 

(https://www.plant-epigenome.org/protocols/wagner-lab-simplified-chromatin-

immunoprecipitation-chip) with the following changes: the inflorescence tissue was 

collected into cold PBS and kept on ice for 2-3 hours and in some experiments a 

Biorupter (Diagenode) was used for shearing DNA. GFP antibodies (Abcam ab290) 

coupled to Dynabeads Protein A were used for the immunoprecipitation. Primers used for 

ChIP are in Table 3.2. The negative control (NC) gene is Ta3 (At1g37110) (Han et al., 

2012). At least three biological replicates were performed for each gene. Each biological 

replicate was examined in triplicate. 
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GUS staining 

The GUS assays were performed as described in (Mudunkothge and Krizek, 

2014). The tissue was incubated in 2mM 5-bromo-4-chloro-3-indolyl-β-glucuronic acid 

for approximately 15 hours. The tissue was embedded in paraplast, sectioned, mounted 

on slides and observed under dark-field and bright-field illumination. 

 

RNA extraction and real-time RT-PCR 

Buds younger than stage 6 or 8 were identified by the diameter of buds (Smyth et 

al., 1990) and collected under dissecting microscope. RNA was extracted from 

inflorescences using TRIzol (Life Technologies) and further purified on an RNeasy 

column (Qiagen) and DNased while on the column. First-strand cDNA synthesis was 

performed using qScript cDNA Supermix (Quanta BioSciences). PCR reactions were 

performed on a BioRad CFX96 using PerfeCTa SYBR Green FastMix for iQ (Quanta 

BioSciences). The AP3 and AG primers used were AG-F (5’-

GTTCTTTGTGATGCGTAAGTCG-3’), AG-R (5’-

TGTACCTCTCAATAGTCCCTTTTAC-3’), AP3-F (5’-

CGAATGCAAGAAACCAAGAGG-3’) and AP3-R (5’-

GAATGTCAAGCTCGTCCAAAC-3’). Data analyses were carried out as described 

previously (Krizek and Eaddy, 2012). Two biological replicates were two sets of plants 

that were grown, chemical treated and collected at the same time but in separate trays. 

Data were averaged from four biological replicates that carried out in two independent 

experiments. Each biological replicate was examined in triplicate.  
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RESULTS 

 

AIL6 activates transcription in yeast through BS 15 

To investigate whether AIL6 can bind to the BS 15 in vitro, we performed a 

fEMSA with E. coli expressed AIL6-AP2R1R2 protein and a fluorescently tagged BS 15. 

Similar to ANT-AP2R1R2, AIL6-AP2R1R2 bound to BS 15 in a protein concentration 

dependent manner (Figure 3.1).     

To determine whether AIL6 can activate transcription in yeast through BS 15 , we 

transformed the yeast reporter strain BK1, which contains three copies of BS 15, with 

AIL6 (Krizek, 2003). Yeast expressing AIL6 produces high levels of β-galactosidase 

activity, indicating that AIL6 can activate transcription through BS 15 (Figure 3.2). To 

compare the transcriptional activation activities of different AILs, ANT, AIL5 and AIL7 

were transformed into BK1. Slightly higher levels of β-galactosidase activity were seen 

in yeast cells expressing ANT as compared with those expressing AIL6. Only a small 

amount of β-galactosidase activity was detected in yeast cells expressing AIL5 and AIL7.  

These results show that ANT and AIL6 but not AIL5 or AIL7 can activate transcription 

through BS 15 in yeast at high levels.  

   

The floral homeotic gene AG is misexpressed in ANT:gAIL6 flowers 

In chapter 2, we showed that expression of the class B floral homeotic genes AP3 

and PI genes are shifted to the first whorl of ANT:gAIL6 flowers, which correlate with the 

petal cells present in the first whorl organ. Because stamens and stamenoid organs are 

present in the outer whorl of ANT:gAIL6 line 16 flowers, we also examined expression of 
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the class C gene AG  in these inflorescences. ANT:gAIL6 line 16 flowers were crossed to 

AG:GUS (pMD200) (Deyholos and Sieburth, 2000), which contains ~6 kb of AG 

upstream sequences plus 3.8 kb of AG genomic sequence (corresponding to exons 1-2 

and introns 1-2) which were sufficient for AG normal expression (Deyholos and Sieburth, 

2000; Sieburth and Meyerowitz, 1997). GUS expression is stronger and broader in 

ANT:gAIL6 AG:GUS stage 4 and stage 6 flowers as compared with the parental AG:GUS 

line (Figure 3.3A, D). GUS is detected in the third and fourth whorls of stage 4 AG:GUS 

flowers and in developing stamen and carpel primordia in older flowers (Figure 3.3A-C). 

In ANT:gAIL6 AG:GUS flowers, GUS is expressed throughout stage 4 flowers, indicating 

that AG is misexpressed in the outer whorls of these flowers (Figure 3.3D). In older 

ANT:gAIL6 AG:GUS flowers, GUS expression was detected in some outer whorl organs, 

which have morphologies suggestive of organs with some stamenoid identity (Figure 

3.3E, F). AG was not detected in the bracts subtending ANT:gAIL6 line 16 flowers 

(Figure 3.3E). Interestingly, strong GUS expression was observed in the innermost 

arising organs in ANT:gAIL6 AG:GUS flowers even though normal gynoecium are not 

formed in ANT:gAIL6 line 16 flowers (Figure 3.3D, E). Thus, the absence of normal 

carpels does not appear to result from reductions in AG mRNA expression in these organs. 

These results indicate that high AIL6 activity is sufficient to promote AG misexpression 

in the outer whorl of ANT:gAIL6 line 16 flowers. 

 

AIL6 is bound to regulatory sequences of floral homeotic genes  

Our results indicate that misexpression of AIL6 in first whorl organs, as conferred 

by the ANT promoter can activate AP3, PI, and AG expression in the outermost whorl of 
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the flower. Previous work has shown that expression of AP3 and AG is decreased in ant 

ail6 double mutants (Krizek, 2009). Also, a sequence with similarity to the ANT 

consensus binding site is present in the second intron of AG which is essential for the 

normal expression of AG (Nole-Wilson and Krizek, 2000; Sieburth and Meyerowitz, 

1997). To investigate whether this might be a consequence of direct regulation of these 

genes by AIL6, we performed chromatin immunoprecipitation (ChIP) using a VENUS 

tagged AIL6 line (AIL6-VENUS) in the 35S:AP1-GR ap1cal floral induction system in 

which flower development can be synchronized (Wellmer et al., 2006). This floral 

induction system allowed us to investigate binding of AIL6 to these promoters at stage 3 

of flower development, which is the time at which AP3 and AG are first expressed 

(Drews et al., 1991; Jack et al., 1992). The stage 3 flowers correspond to two days after 

DEX treatment in the 35S:AP1-GR ap1cal floral induction system. 

In Chapter 2, we showed that high levels of AIL6 mRNA result in severe flower 

defects. Hence, high levels of AIL6 may regulate genes that are not regulated by AIL6 in 

physiological conditions. Our epitope tagged AIL6-VENUS line contains all regulatory 

elements necessary for normal AIL6 expression (Krizek, 2015b). We also confirmed that 

AIL6 is expressed at approximately normal levels in this line. AIL6 mRNA levels are 

2.45 + 0.22 fold higher in AIL6-VENUS; 35S:AP1-GR ap1 cal inflorescences as 

compared with 35S:AP1-GR ap1cal (Table 3.1). Previous work has shown that plants 

expressing 2.3 fold higher AIL6 mRNA in ant ail6 mutants complement but don’t 

overcomplement the loss of AIL6 function in ant ail6 double mutants (Krizek, 2015b). 

This suggests that the AIL6-VENUS; 35S:AP1-GR ap1 cal line provides a reasonable 

level of AIL6 activity. AIL6-VENUS 35S:AP1-GR ap1 cal inflorescences have a slightly 
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higher amount of AIL6 mRNAs (3.39+0.11 fold higher than 35S:AP1-GR ap1cal) two 

days after DEX treatment, suggesting that AP1 activation induces AIL6 expression. This 

is consistent with previous work showing that AP1 positively regulates AIL6 expression 

(Kaufmann et al., 2010).  

The ChIP experiments showed that AIL6 bound to two characterized elements of 

the AP3 promoter that are required for AP3 expression in early stages of flower 

development: the distal early element (DEE) and the proximal early element (PEE) (Hill 

et al., 1998; Lamb et al., 2002) but not to sequences further upstream or a negative 

control gene (Figure 3.4A, B). ChIP with the control 35S:AP1-GR ap1 cal did not show 

such enrichment to any of these genomic regions (Figure 3.4B). We also detected binding 

of AIL6 to the large second intron of AG, which is known to be required for proper AG 

expression (Sieburth and Meyerowitz, 1997). AIL6 bound to several regions within the 

second intron of AG with region 2 showing very strong enrichment (Figure 3.4C, D). 

Interestingly, the region 2 contains an ANT consensus binding site. No binding of AIL6 

was detected to a region at the 3’ end of AG or to a negative control gene (Figure 3.4D). 

ChIP with the control 35S:AP1-GR ap1 cal did not show enrichment to any of these 

regions (Figure 3.4D). 

 

Floral homeotic gene expression in response to changes in AIL6 activity  

The ChIP results suggest that AP3 and AG may be direct targets of AIL6 

regulation. However, binding to a genomic region is not sufficient to claim this. To 

further investigate the direct regulation of AP3 and AG by AIL6, we used the previously 

described 35S:AlcR/AlcA:gAIL6 line and made two additional transgenic tools in which 
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we could induce (i.e. AIL6m:AIL6-GR ant ail6) or downregulate (i.e. 

35S:AlcR/AlcA:AIL6-amiRNA2 ant) AIL6 activity. These transgenic lines allow us to 

examine the expression of potential AIL6 target genes at time points soon after induction 

or downregulation of AIL6 activity. AIL6m:gAIL6-GR ant ail6 expressed the AIL6-GR 

fusion protein in the endogenous AIL6 expression domain in the ant ail6 mutant 

background. Of 30 lines generated, line 14 was the most promising. DEX treated 

AIL6m:gAIL6-GR line 14 shows partial rescue of AIL6 activity (Figure 3.5A). 

35S:AlcR/AlcA:AIL6-amiRNA2 ant generates an artificial microRNA (amiRNA) that 

specifically targets AIL6 after ethanol induction. Of seven lines generated, lines 1 and 2 

were the most promising. Ethanol treated 35S:AlcR/AlcA:AIL6-amiRNA2 ant line 1 

displays a partial loss of AIL6 activity (Figure 3.5B). 

We investigated AG and AP3 expression in both AIL6m:AIL6-GR ant ail6 and 

35S:AIL6-GR (Chapter 2) lines by RT-qPCR. Because of the severe flower defects in ant 

ail6, it is hard to identify stage specific flower buds. Based on experience, I tried 

collecting AIL6m:AIL6-GR ant ail6 inflorescences consisting of unopen buds (floral 

stages 1-12) at 4hr, 8hr and/or 24hr post Mock/DEX treatment. AP3 mRNA levels were 

slightly higher (1.38 + 0.29) 8 hr after DEX treatment in comparison to the Mock 

treatment in one experiment consisting of two biological replicates. However, a second 

experiment also consisting of two biological replicates showed no change of AP3 mRNA 

levels between Mock and DEX treatment in any time points. These experiments show 

that there is no dramatic change in AP3 mRNA levels after AIL6 induction.  

Because AP3 and AG are primarily expressed in young flowers, I collected buds 

younger than stage 6 in 35S:AIL6-GR inflorescences. Unexpectedly, AG and AP3 mRNA 
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levels were lower 4hr after DEX treatment compared to Mock in 35S:AIL6-GR line 30 

(AG: 0.69+0.69; AP3: 0.69+0.71). In a second experiment, AG and AP3 mRNA levels 

were unchanged. All together, these data also indicate that there is no dramatic chance in 

expression of AG and AP3 after AIL6 induction.   

I next performed a time course experiment examining AP3 and AG expression in 

stage 8 and younger 35S:AlcR/AlcA:gAIL6 flowers. AP3 mRNAs levels were lower at 2, 

4 and 8 hours after the start of an ethanol treatment and steadily decreased during the 

eight hour treatment in 35S:AlcR/AlcA:gAIL6 (Figure 3.6A). AG mRNA levels were 

lower at 2, 4, and slightly increased from 4hr to 8hr (Figure 3.6B). AP3 and AG mRNA 

levels were not changed in the H2O treated plants suggesting that similarly staged flowers 

were collected in all of the samples. The lower levels of AP3 and AG mRNA in 

35S:AlcR/AlcA:gAIL6 lines may be a consequence of fewer petals, stamens and carpels in 

these flowers.  

 

DISCUSSION 

 

AIL6 has similar DNA binding properties as ANT 

Here, we showed that AIL6 can bind to BS 15 in vitro and activate transcription 

in yeast through this site. This suggests that AIL6, like ANT, can function as a 

transcription factor and can bind to similar DNA sequences. Future experiments could be 

done to determine the disassociation constant of AIL6 binding to BS 15. By comparing 

the affinities of ANT and AIL6 to BS 15, and with knowledge of the relative 

concentrations of these two proteins, we could better understand which protein would 
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primarily bind to target genes if both proteins are present in cells. Also, we could 

determine whether ANT and AIL6 might form a complex when they bind to BS 15.      

 

The floral homeotic class B and C genes are potential direct targets of AIL6 

The class B genes AP3 and PI are potential direct targets of AIL6. AP3 and PI are 

expressed in the second and third whorls in wild-type floral primordia. AP3 expression is 

reduced in ant ail6 double mutants (Krizek, 2009). This indicates that both ANT and 

AIL6 are required for normal AP3 expression; however loss of both ANT and AIL6 does 

not abolish AP3 expression indicating the presence of additional pathways regulating 

AP3 expression. In ANT:gAIL6, AP3 and PI mRNA are expanded to the outer whorl 

floral organs, suggesting AIL6 is sufficient for inducing AP3 and PI expression in the 

first whorl organs. However, the lower AP3 and PI expression in whorls 2 and 3 of 

ANT:gAIL6 (in situ data shown in Chapter 2) and overall lower expression measured by 

RT-qPCR (Figure 3.6) conflicts with the hypothesis that AIL6 is a positive regulator of 

AP3 based on the reduced expression of these genes in ant ail6.  

The downregulation of AP3 mRNA levels after induction of AIL6 in 

35S:AlcR/AlcA:gAIL6 inflorescences consisting of flowers younger than stage 8 may be a 

consequence of reduced numbers of second and third whorl organs in these flowers 

(Chapter 2). In this case, the downregulation of AP3 in these flowers might not be due to 

direct repression by AIL6 but an indirect effect of changes in cell proliferation patterns. 

Alternatively, the regulation of AP3 by AIL6 may be complex with tissue and flower 

stage dependent contexts. For example, perhaps high AIL6 activity can induce AP3 in the 
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first whorl, but repress AP3 in the second and third whorls. AIL6 might play a role in 

establishing the outer boundary of AP3 and PI expression.  

The class C gene AG is another potential target of AIL6 regulation. In stage 3 

wild-type flowers, AG is expressed in cells of the floral meristem that will develop into 

the third and fourth whorls of the flower. In ant ail6 flowers, AG mRNA is reduced 

and/or absent in the centermost cells of the floral meristem indicating that ANT and AIL6 

activities are required for AG expression in the center of a flower (Krizek, 2009). AG 

mRNA is also expanded outward to the second whorl of  ant ail6, which is consistent 

with the fact that ANT functions redundantly with AP2 to restrict AG expression in the 

second whorl (Krizek et al., 2000). In contrast, AG expression is expanded to outer whorl 

organs in ANT:gAIL6, suggesting that ectopic AIL6 can induce AG in the outer whorl 

organs.   

The downregulation of AG mRNA levels after induction of AIL6 in 

35S:AlcR/AlcA:gAIL6 inflorescences consisting of flowers younger than stage 8 conflicts 

with the hypothesis that AIL6 is a positive regulator of AG based on the reduced 

expression of these genes in ant ail6. This result is not easily explainable as AG:GUS 

flowers showed a broad pattern of AG expression in ANT:gAIL6 (Figure 3.3).  These 

results suggest that AIL6 overexpression lines are not a relevant system for examining 

the potential regulation of floral homeotic genes.  

While ChIP assays showed that AIL6 is bound to the regulatory sequences of AG 

and AP3 in stage 3 flowers, further evidence is needed to determine confirm direct 

regulation of AIL6 on AG and AP3 in physiological conditions. To examine possible 

tissue and/or flower stage dependent regulation of AIL6 on AP3 and AG, we could use 
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laser capture microdissection to capture second and third whorl cells of stage 3-6 flowers 

in DEX induced AIL6m:gAIL6-GR ant ail6 and ethanol treated 35S:AlcR/AlcA:AIL6-

amiRNA2 ant for gene expression analysis.  
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Table 3.1 Relative AIL6 mRNA levels in AIL6-VENUS; 35S:AP1-GR ap1 cal 

compared to 35S:AP1-GR ap1 cal in both untreated and 2 day post Dex treatment. 

 

Relative AIL6 mRNA levels 35S:AP1-GR ap1 cal AIL6-VENUS;  

35S:AP1-GR ap1 cal 

For untreated plants 1 2.45+0.22 

For Dex 2day plants 1 3.39+0.11 

Standard deviations are calculated from two biological replicates.  

  



 

92 

Table 3.2 Primers used for ChIP 

 

AP3-1-F CGATCATACGGCTGGGTGAT 

AP3-1-R AAGGCATTCCCCGTATCTGC 

AP3-2-F TGATTTGATGGACTGTTTGGAG 

AP3-2-R TTTGGATTAATCGTCACTTCCA 

AP3-3-F CATCGATGTCCGTTGATTTA 

AP3-3-R TTTGGTGGAGAGGACAAGAGA 

Ta3-F CTGCGTGGAAGTCTGTCAAA 

Ta3-R CTATGCCACAGGGCAGTTTT 

AG-1-F AGAGAGTCCCACGTGATTACTT 

AG-1-R AATCTTGCGCTCAATTCCAACC 

AG-2-F TGGGTACTGAGAGGAAAGTGAG 

AG-2-R TGGTCTGAACATGTCTAGGGTT 

AG-3-F ACCCTAGACATGTTCAGACCAA 

AG-3-R TCTCAATAGTCCCTTTTACACTGCA 

AG-4-F AGACCAAACCGCTCTCCAGT 

AG-4-R TTGCTTGCTCAACCCAATTC 
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Figure 3.1 ANT-AP2R1R2 and AIL6-AP2R1R2 bind to binding site 15 (BS 15). 
Equal amount of probes were used in each lane. Free probes (lanes 1 and 5); increasing 

concentration of ANT-AP2R1R2 protein with probes (lanes 2-4); increasing 

concentration of AIL6-AP2R1R2 protein with probes (lanes 6-8). 
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Figure 3.2 Transcriptional activation by ANT, AIL5, AIL6 and AIL7 through BS 15 

in yeast. Each effector plasmid was tested for its ability to activate expression of the 

reporter plasmid. The reporter plasmid contained lacZ under the control of three copies of 

BS 15 and the TATA region of the CYC1 promoter. Error bars show standard deviations 

calculated from three technical replicates. 
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Figure 3.3 AG is misexpressed in ANT:gAIL6 flowers. (A)(B)(C) Dark-field (left) and 

bright field (right) images of AG:GUS inflorescence. (A) GUS expression is detected in 

the third and fourth whorls of the stage 3 AG:GUS flower but not in the sepal primordia 

(arrow). GUS expression is also detected in the developing stamen and carpel in the stage 

6 flower. (B) GUS expression is detected in the stamens and carpels of stage 7 and 9 

flowers. (C) GUS expression is detected in the stamens and carpels of stage 11 flower. 

(D)(E)(F) Dark-field (left) and bright-field (right) images of ANT:gAIL6 line 16 AG:GUS 

inflorescence. (D) GUS expression is detected in throughout the stage 4 flower including 

the sepal primordia (arrow). GUS expression is also detected throughout the older flower 

on the right. (E) ANT:gAIL6 line 16 AG:GUS flower showing GUS expression 

throughout the flower but not in the subtending bract (arrow). (F) GUS is detected in all 

of the organs including a first whorl organ that looks to have stamenoid identity (arrow) 

in a ANT:gAIL6 line 16 AG:GUS flower. Scale bars are 50μm. 
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Figure 3.4 AIL6 binds to AP3 and AG regulatory regions. (A) Genomic structure of 

AP3 gene (top) with the positions of regions (1, 2, 3) examined with ChIP. Black boxes 

represent exons and the white boxes represent untranslated regions. Region 2 includes the 

characterized distal enhancer element (DEE) and region 3 includes the characterized 

proximal enhancer element (PEE). (B) Graph of a representative AP3 real time PCR ChIP 

experiment. The negative control (NC) gene is Ta3 (At1g37110). Error bars show 

standard deviation of three technical replicates. (C) Genomic structure of AG gene (top) 

with the positions of regions (1, 2, 3, 4) examined with ChIP. Black boxes represent 

exons and the white boxes represent untranslated regions. (B) Graph of a representative 

AG real time PCR ChIP experiment. Error bars show standard deviation of three technical 

replicates. 
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Figure 3.5 Additional genetic tools to induce or downregulate AIL6 activity. (A) 

AIL6m:gAIL6-GR ant-4 ail6-2 line 14 mock (left) and dex (right). Images were taken two 

weeks after a single mock and dex treatment. (B) 35S:AlcR/AlcA:AIL6-amiRNA2 ant-4 

line 1 H2O (left) and EtOH (right). Images were taken two weeks after a single eight-hour 

H2O or EtOH treatment. Images in (A) and (B) were taken under the same magnification.  
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Figure 3.6 AP3 and AG mRNA levels decrease after ethanol (EtOH) treatment of 

35S:AlcR/AlcA:gAIL6 plants. Inflorescences consisting of flowers younger than stage 8 

were collected from 22 day old 35S:AlcR/AlcA:gAIL6 plants at 0hr, 2hr, 4hr and 8hr after 

the start of an eight hour mock/ethanol treatment for RT-qPCR analysis. AP3 (A) AG (B) 

mRNA levels decreased in EtOH treated plants but not in H2O treated plants. Expression 

levels for all samples were compared to the 0hr time point. 
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APPENDIX A 

ECTOPIC EXPRESSION OF AIL6 ALTERS LEAF INITIATION RATES 

AND THE SWITCH TO FLOWER FORMATION 

 

INTRODUCTION 

 

In Arabidopsis, the juvenile-to-adult phase transition is regulated by a decrease in 

the level of microRNA156s (miR156s). miR156s are present at high levels after 

germination and decline during shoot development, leading to an increase in its targets, 

transcripts encoding SQUAMOSA PROMOTER BINDING (SBP/SPL) transcription 

factors (Wu et al., 2009; Wu and Poethig, 2006). At the end of the vegetative phase, 

plants undergo the vegetative-reproductive phase transition. 

The vegetative-to-reproductive phase transition is also termed the reproductive 

phase transition or flowering. Flowering time refers to the time to the vegetative-to-

reproductive phase transition. Temporal control of the vegetative-reproductive phase 

transition determines the time invested in vegetative growth and hence the vegetative 

resources available during reproduction. In Arabidopsis, long-day photoperiods promote 

flowering while short-day photoperiods delay it. The activity of the circadian oscillator 

CONSTANS (CO) in leaves fluctuates over a 24 hour period, and is regulated at both 

transcriptional and post-transcriptional levels in concert with the length of photoperiod 

(Liu et al., 2008; Suárez-López et al., 2001). In long days, CO promotes flowering by 
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activating expression of the small protein FT, which acts as a long distance signal moving 

from leaves to the shoot apex (An et al., 2004; Corbesier et al., 2007; Jaeger and Wigge, 

2007; Mathieu et al., 2007). FT integrates signals from several other positively and 

negatively acting pathways and triggers the expression of another floral integrator SOC1 

(Yoo et al., 2005). In response, shoot apical meristem identity switches from a vegetative 

meristem into an inflorescence meristem. 

There are two subphases of the reproductive phase: an early inflorescence phase 

and a flower formation phase. The shoot branching pattern of plants is crucial for light 

interception efficiency and adaptation to resource availability. After making two to three 

cauline leaves and axillary meristems, the inflorescence meristem (IM) transits to the 

flower formation phase. In Arabidopsis, flowers are not subtended by any leaf-like 

structures while secondary inflorescences are subtended by cauline leaves. The transition 

from branching to floral fate in the lateral primordia of the IM in Arabidopsis requires the 

transcription factor LFY and its direct target gene AP1.  

ANT and AIL6 and the auxin response factor MP act in parallel pathways to 

directly upregulate the expression of LFY to promote the switch to flower formation 

(Yamaguchi et al., 2016). Because AIL6 is known to play a role in promoting the switch 

to flower formation, I decided to investigate developmental phase transitions in 

ANT:gAIL6 which showed differences in vegetative development and the time to flower 

formation.   
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METHODS AND MATERIALS 

 

Plant growth conditions 

Plants were sown on half MS plates and transplanted at 7 days to a soil mixture of 

Metro-Mix 360: perlite: vermiculite (5:1:1) and grown in 16 hour days (100-

150μmol/m
2
/s) at 22

o
C for long day condition and in 8 hour days at 20

o
C for short day 

condition. The plants used for these studies were the transgenic ANT:gAIL6 line 16 in the 

Ler background described in Chapter 2. 

 

Measurement of phase length  

Leaves longer than 1mm were counted every day under a dissecting microscope. 

Juvenile leaf number was scored as the number of rosette leaves lacking abaxial 

trichomes (excluding coyledons) while adult leaf number was scored as the number of 

rosette leaves with abaxial trichomes. A minimum of 14 plants of each genotype were 

used in each study. 

 

Tissue sectioning 

Shoot apices were fixed, embedded and sectioned similarly to tissue prepared for 

in situ hybridization (Krizek, 1999).  
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RESULTS 

 

ANT:gAIL6 plants are delayed in the switch to flower formation  

ANT:gAIL6 line 16 plants take longer to form the first flower as compared with 

Ler. The opening of the first ANT:gAIL6 line 16 flower occurs at 29.28 dap (days post 

planting) + 1.34 while the opening of the first Ler flower occurs at 23.28 dap + 0.75 

(Table A.1). To determine the age of the plant when the first flower was initiated by the 

inflorescence meristem, we sectioned Ler and ANT:gAIL6 line 16 seedlings. Flower 

meristems are easily distinguished from leaf primordia by their round shape. The 

generation of the first floral meristem of ANT:gAIL6 line 16 occurs at 14-16 dap which is 

later than Ler at 10-12 dap.  

 

ANT:gAIL6 delayed flowering time and have a prolonged early inflorescence phase  

To determine whether the delay in flower formation is due to a delay in the 

vegetative-to-reproductive transition or due to a prolonged early inflorescence phase, I 

measured the time to the formation of the first cauline leaf (i.e. flowering time) and 

counted the number of secondary inflorescences. The initiation of the first cauline leaf of 

ANT:gAIL6 line 16 occurs at 15.09 dap + 1.06 which is slightly but significantly later 

than that of Ler at 13.44 dap + 0.78. Thus, the vegetative-to-reproductive transition 

appears to be delayed in ANT:gAIL6 line 16. Next, we measured the number of cauline 

leaves produced in the early inflorescence phase. ANT:gAIL6 line 16 makes significantly 

more cauline leaves and secondary inflorescences (2.64 + 0.57) compared with Ler (1.94 

+ 0.54) (Table A.1). In addition, 16% of the first flower of ANT:gAIL6 line 16 plants are 
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subtended by a cauline leaf, which suggests that these flowers has some inflorescence 

identity (Figure A.1). These data indicate a longer early inflorescence phase in 

ANT:gAIL6 line 16. Thus the delay in first flower formation appears to be due to both a 

delay in the vegetative-to-reproductive transition and a prolonged early inflorescence 

phase.  

 

ANT:gAIL6 plants show altered leaf development and produce fewer juvenile leaves 

In addition to changes in flower development (Chapter 2), ANT:gAIL6 line 16 

plants show alterations in leaf development. They produce fewer rosette leaves than wild 

type: 4.88 + 0.78 rosette leaves compared with 5.63 + 1.42 for Ler (Table A.1). These 

rosette leaves are narrower and serrated (Figure A.2A-C). In addition, the cauline leaves 

margins are curled upward (Figure A.2D,E). Using the presence of trichomes on the 

abaxial surface of rosette leaves as a marker, the number of juvenile leaves in ANT:gAIL6 

line 16 and Ler was counted. ANT:gAIL6 line 16 produces significantly fewer (3.28 + 

0.68) juvenile leaves compared with wild type (4.33 + 0.49). The number of adult leaves 

in ANT:gAIL6 line 16 is unchanged compare to Ler.  

 

ANT:gAIL6 generate leaves at a slower rate 

ANT:gAIL6 line 16 plants were delayed in the switch from vegetative to 

reproductive development indicating that they spent more time in the vegetative phase 

although they produce fewer rosette leaves. This suggested that they might produce 

leaves at a slower rate than wild type. The time interval between the initiations of two 

successive leaves is referred to as plastochron. To determine plastochron length in 
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ANT:gAIL6 line 16, the production of leaf primordia were counted every day in both 

long-day and short-day conditions (Figures A.3, A.4). ANT:gAIL6 line 16 initiates leaves 

at a slower rate than Ler in both long day and short day photoperiods, indicating that 

ANT:gAIL6 has a lengthened plastochron during both vegetative and early inflorescences 

phases (Figures A.3, A.4 and Table A.2).  

 

DISCUSSION 

 

ANT:gAIL6 plants exhibit a longer plastochron and delayed flowering  

ANT:gAIL6 have a longer plastochron than wild type. The leaf initiation rate 

could be affected either by the size of the meristem or by the rate of cell division in the 

meristem (Wang et al., 2008). AIL6 overexpression might limit cell number in the 

meristem periphery. This could be examined by scanning electron microscopy. 

ANT:gAIL6 plants are also delayed in the switch from vegetative to reproductive 

development (i.e. flowering time). Plastochron length and flowering time are regulated by 

separate mechanisms. Genes can affect plastochron length without affecting flowering 

time and vice versa. slow motion mutants exhibit a longer plastochron but flowered at the 

same time as WT (Lohmann et al., 2010). Similarly, genes can accelerate or delay 

flowering time with either a longer or shorter plastochron. Mutants in gibberellin 

synthesis (ga1) and gibberellin sensitivity (gai) have delayed flowering time with a 

slightly longer plastochron (Wilson et al., 1992). spl9 spl15 double mutants show a 

delayed flowering time with a shorter plastochron while overexpressing SPLs lengthened 

plastochron and accelerated flowering (Wang et al., 2008). CYP78A5 loss-of-function 
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mutants flowered early and exhibited a shortened plastochron (Wang et al., 2008). The 

molecular mechanism of how AIL6 might regulate plastochron length is not clear and 

requires further work.  

 

ANT:gAIL6 and ant ail6 double mutants exhibit a prolonged early inflorescence 

phase 

ANT:gAIL6 line 16 makes more branches than Ler and the first flower is often 

subtended by a big cauline leaf (Figure A.1). This later phenotype suggests that the first 

flower of ANT:gAIL6 line 16 has some inflorescence-like properties. These results 

suggest that AIL6 overexpression promotes the early inflorescence phase and/or represses 

flower formation. This was not expected since previous work has show that ant ail6 

double mutants also have a prolonged early inflorescence phase (Yamaguchi et al., 2013). 

Thus, it appears that either too little or too much AIL6 activity can interfere with the 

timing of flower formation. 
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Table A.1 Number of leaves and length of phases in Ler and ANT:gAIL6 line 16 in long 

day photoperiods. 

 
 Ler (n=18) ANT:gAIL6 line 16 (n=24) 

Days to first flower opening 23.28 + 0.75 29.28 + 1.34 * 

Days to first CL visible (>1mm) 13.44 + 0.78 15.09 + 1.06 * 

   

Number of Juvenile RL  4.33 + 0.49 3.28 + 0.68 * 

Number of Adult RL  1.61 + 0.51 1.6 + 1.00 

Number of CL (subtending infl.) 1.94 + 0.54 2.64 + 0.57* 

Number of CL (subtending  flowers) 0 + 0 0.16 + 0.37 

Total RL number 5.63 + 1.42 4.88 + 0.78 * 

Total CL number 1.94 + 0.54 2.8 + 0.65 * 

Total  number of RL and CL 7.47 + 1.93 7.68 + 0.69 

 * Statistically different from Ler (99% confidence level; p-value <0.01) 

 n is the number of plants used  

 Abbreviations: RL, rosette leaves; CL, cauline leaves; infl, inflorescences 
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Table A.2 The leaf initiation rate of Ler and ANT:gAIL6 line 16 grown in short day 

photoperiods. 

 
 Rosette leaf number 

Ler (n=19) 0.69 + 0.05 

ANT:gAIL6 line 16 (n=17) 0.39 + 0.03 * 

 * Statistically different from Ler (99% confidence level; p-value <0.01) 

 n is the number of plants used 
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Figure A.1 The first flower produced on ANT:gAIL6 line 16 inflorescence is 

sometimes subtended by a cauline leaf (arrow). A cauline leaf subtends secondary 

inflorescence (left); a flower subtends by a bract (right). 
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Figure A.2 ANT:gAIL6 leaf phenotypes. (A) Rosette leaves removed from Ler and 

ANT:gAIL6 line 16 plants. ANT:gAIL6 plants produce fewer rosette leaves, some of 

which show lobing along their margins. (B) 20 day old Ler plant. (C) 20 day old 

ANT:gAIL6 line 16 plant (D) Ler inflorescence. The cauline leaf (arrow) is relatively flat. 

(E) ANT:gAIL6 line 16 inflorescence. The edges of the cauline leaf (arrow) are curled 

upward. Image B-C and D-E are taken under the same magnification, respectively. 
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Figure A.3 Number of leaves in Ler and ANT:gAIL6 line 16 plants grown in long-

day photoperiods. Average and standard deviation were calculated from 20 Ler plants, 

and 14 ANT:gAIL6 line 16 plants. 
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Figure A.4 Number of leaves in Ler and ANT:gAIL6 line 16 plants grown in short-

day photoperiods. Average and standard deviation were calculated from seven Ler 

plants and 11 ANT:gAIL6 line 16 plants. 
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