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Abstract 

 

Hutchinson-Gilford Progeria Syndrome is disease of highly accelerated 

aging.  In addition to appearing physically old mere months after birth, patients 

suffer from maladies typical of the elderly, including heart attack and stroke, two 

factors which contribute to an average life expectancy of 14 years.  The source of 

progeria has been identified as progerin, a defective variant of nuclear lamina 

protein lamin A.  Progerin has also been found natively in healthy cells 

(concentration increasing with age), and is known to adversely affect nuclear 

morphology and chromosomal integrity.  This thesis sought to investigate the 

effect of progerin upon which pathways were favored in the repair of DNA 

double-strand breaks.  Plasmids were engineered for use in the creation of cell 

lines inducible for progerin expression.  In addition, immortalized human 

fibroblast cells were transfected to express progerin constitutively.  These cells 

were assayed for the relative rates of different modes of repair after spontaneous 

and double-strand break-induced recombination.  It was discovered that the 

progerin-expressing cells repair damage via non-homologous end joining at a 

higher rate than control cells, though there are significant caveats to these data. 
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Chapter 1: Introduction

 

DNA Double Strand Break Repair 

DNA Double-strand breaks (DSB) pose one of the more urgent threats to 

cell viability.  Such breaks may be caused by ionizing radiation, reactive oxygen 

species, or stalled replication forks (O’Driscoll and Jeggo 2006, Sonoda et al. 

2006). A break that is not identified quickly risks being “repaired” by joining it to 

an unrelated fragment from elsewhere in the genome.  The consequences of such 

genome instability are severe and unpredictable; one of the few that is well 

characterized is the Philadelphia Chromosome, a translocation which creates a 

fusion oncogene (Collins et al. 1987, Somervaille and Cleary 2010).  Dividing cells 

that fail to repair the break destroy a large segment of the genome upon mitosis 

since one side of the break is not attached to a centromere.  The other fragment is 

immediately vulnerable to erosion for lacking a telomere, and it poses a threat of 

translocation to any subsequent DSB repair events, increasing the likelihood of 

further errors.  Ultimately, unresolved DSBs are nearly universally fatal (McVey 

and Lee 2008). 
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The damage site of a DSB activates a signal-transduction pathway through 

phosphatidylinositol 3-kinase related kinases (PIKK) (Jackson 2002).  Two that 

are known are ataxia telangiectasia mutaed (ATM) and ataxia telangiectasia and 

RAD3-related (ATR).  The ATM pathway is linked to H2A histone family 

member X (H2AFX), tumor protein 53 binding protein 1 (TP53BP1), and breast 

cancer 1 early onset (BRCA1) (Stiff et al. 2004); ATM itself regulates cell cycle 

arrest at the G1-S checkpoint (by way of p53 and p21) and at the G2-M 

checkpoint (Lukas et al. 2004). 

When a DSB is found (Fig 1.1 A), it may be repaired by the process called 

homologous recombination (HR).  Both sides of the break site are resected to 

produce 3’ overhangs (Fig 1.1 B).  In humans, the exposed single strands are 

bound by multiple units RAD51 in a helical structure apparently conserved from 

bacteria (Ogawa et al. 1993).  In one of the known variations of HR, one strand is 

guided by this complex to a homologous location, the “donor,” which is usually 

the same locus on the sister chromatid or the homologous chromosome, though 

more complex substrates are possible (Wang et al 2011).  The RAD51-DNA 

complex unwinds the donor site to initiate strand invasion and allow the 

overhang to base pair (Fig 1.1 C, Baumann and West 1998).  Likewise, the other 

exposed 3’ overhang pairs complementarily to the other strand of the donor (Fig 

1.1 D). The intact donor then serves as a template for a DNA polymerase to  
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Figure 1.1 Homologous Recombination   

 

See text for details.  



 4   

replace the resected bases (Fig 1.1 E).  Each of the invasion sites consists of a four-

stranded, cross-shaped DNA structure called a Holliday Junction.  A junction is 

capable of migrating and may thereby expand the repair site beyond the initial 

region of damage and resection, resulting in stretches of paired bases derived 

from different chromosomes.  The complex of repair proteins must finally 

resolve the double Holliday Junctions by cleavage and ligation.  These cleavages 

are directional and result in either crossover (CO, Fig 1.1 F) or non-crossover 

(also called gene conversion (GC, Fig 1.1 J)) events.  Crossovers, specifically, 

exchange all genetic material on the distal side of the break between the two 

chromosomes or chromatids.  Because HR is active from late S phase through G2, 

crossover between two chromosomes may result in four unique chromatids 

rather than the expected two pairs of identical sisters (Fig 1.2).  When these non-

identical chromatids segregated upon mitosis, there is a roughly 50% chance that 

the daughter cells will receive two alleles derived from the same chromosome, a 

phenomenon called loss of heterozygosity (LOH).  Loss of heterozygosity is 

implicated in cancer as an explanation for the apparent failure of what should be 

the functioning dominant alleles of tumor-suppressor genes: the alleles are still 

functional, but they were not inherited by the pre-cancerous cell.  This 

correlation is firmly established, so much so that the coincidence of cancer and 

loss of heterozygosity is taken as evidence that the affected gene is a   
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Figure 1.2 Loss of Heterozygosity 

 

Following a single crossover, the subsequent mitosis has a 50% chance of leaving 

each daughter cell with two haplotypes derived from the same chromosome, as 

shown by the brackets.  
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tumor suppressor.  Excepting probability, there is nothing to prevent multiple 

crossover events from occurring to the same chromosome, meaning the 

chromosome can resolve as a patchwork of alleles originating from both itself 

and its homologue. 

In an alternate pathway, the repair event may also progress without a 

second strand invasion (Fig 1.1 G).  After synthesis extends the 3’ overhang (Fig 

1.1 H), branch migration may permit the invading strand to detach from the 

homologous chromosome and anneal to its original complement strand (Fig 1.1 

I).  The remaining gap is then closed via synthesis and ligation (Fig 1.1 J).  This 

pathway is termed Synthesis Dependent Strand Annealing (SDSA) and cannot 

result in crossover. 

It has been suggested (O’Driscoll and Jeggo 2005) that the primary 

function of HR is to resolve DSBs that arise due to stalled replication forks (Cha 

and Kleckner 2002); this is supported by the observation that HR deficient cells 

are not particularly vulnerable to radiation yet highly vulnerable to crosslinking 

(O’Driscoll and Jeggo 2005, Thompson and Schild 2001). 

Alternatively, a break site may be repaired through Non-Homologous 

End Joining (NHEJ) wherein the two sides of the break are rejoined by complexes 

of proteins which assemble on either side of the break.  The KU heterodimer first 

binds the break site and recruits DNA-dependent protein kinase (DNA-PKcs), 
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DNA polymerase μ or λ, and a ligase (McVey and Lee 2008).  The damage which 

caused the break site does not necessarily leave behind complementary single-

stranded ends, so the repair complex may resect the break site to reveal 

homology.  This process is imprecise and may result in deletions in excess of 1 

kbp (Wang et al. 2011). 

In the certain circumstances, such as a defect in one of the constituent 

proteins of non-homologous end joining, the two ends are resected in search of 

microhomology (homology of only a few bases) in a process called 

Microhomology-Mediated End Joining (MMEJ) (McVey and Lee 2008).  

Microhomology mediated end joining is necessarily error-prone due to the 

required loss of bases, and its lax homology requirement renders it prone to join 

unrelated sequences. 

If resection reveals long regions of homology, RAD52 may initiate single 

strand annealing (SSA).  The two overhangs are made to base pair at the repeats 

with no consideration for sequences 3’ to those repeats, forcing unpaired bases to 

hang loosely away from the repair site.  These sequences are digested by an 

endonuclease before the break is finally sealed by ligation, leading to significant 

deletions in the wake of a single-strand annealing repair event. (McVey and Lee 

2008). 
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Unlike HR, NHEJ and its related mechanisms are active throughout the 

cell cycle and, therefore, cover more instances of damage.  It may be interpreted 

that HR is the most favorable, but not always feasible, method to repair DSBs, 

and NHEJ, MMEJ, and SSA are more urgent means to remedy a critical problem.  

Regardless of how unfaithful the repair is, it is almost certainly less destructive 

than neglecting to repair a DSB altogether. 

Aging as a Disease of DSB Repair 

The issue of repair in general and DSB in particular becomes more 

pronounced as the organism advances in age.  In addition to an accumulating 

load of mutations (Morley 1998), mutations also occur at a greater rate in aged 

individuals (Stuart and Glickman 2000).  This is not necessarily a positive-

feedback mechanism, but perhaps the result of a separate element of the biology 

of aging (Gorbunova and Seluanov 2005).   

Studies of transgenic mice have revealed that advanced age is associated 

with large and diverse genome rearrangements (Dolle et al. 1997, as cited in 

Gorbunova and Seluanov 2005).  These events were not observed to have 

occurred at homologous locations, meaning NHEJ, rather than HR, was used in 

their repair.  The coincidence of age and error-prone DSB repair suggests greater 

errors during non-homologous end joining and/or increased reliance upon same 

(relative to HR) as the organism ages.  DSBs themselves are implicated as a signal 
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that induces senescence (Gorbunova and Seluanov, 2005), illuminating further 

the network of effects and causes.  Indeed, disruption of various DSB repair 

factors, including KU and DNA-PKcs, accelerate senescence of cells in culture 

and cause organisms to develop sundry side-effects usually associated with 

aging, such as osteoporosis, atherosclerosis, alopecia, and achromotrichia 

(Gorbunova and Selunov 2005). 

Similar phenomena have been observed in human genetic disorders.  First 

described in 1886 by Jonathan Hutchinson, Hutchinson-Gilford Progeria 

Syndrome (HGPS) is a genetic disorder characterized by patients developing 

symptoms resembling old age as young children.  Within the first year after 

birth, patients develop alopecia, reduced growth, cardiovascular disease, 

macrocephaly, and other symptoms, culminating in a life expectancy of 

approximately 14 years (Ackerman and Gilbert-Barness 2002, Doming 

Domínguez-Gerpe and Araújo-Vilar 2008); death commonly results from heart 

attack or stroke (Baker, Baba, and Boesel 1981, as cited in Cao et al. 2006).  Due to 

the early mortality, the disorder is rarely inherited and usually arises from a de 

novo mutation in LMNA, the gene for nuclear lamina protein lamin A.  Lamin A 

is a filamentous protein which polymerizes as part of the nuclear lamina during 

interphase (Broers et al. 1999, Moir et al. 2000).  It has been shown to aid in the 
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localization of other nuclear proteins, and, as opposed to B-type lamins, lamin A 

is only observed in differentiated cells (Burke and Stewart 2002).   

This mutation which causes HGPS is silent (G608G, GGC > GGT), but it 

alters a cryptic splice site to more closely resemble the consensus splice donor 

(Eriksson et al. 2003).  The significance of alternate splicing is in the localization 

of the protein because post-translational maturation of lamin A includes 

farnesylation of the carboxyl terminus (Broers et al. 1999).  The farnesylated 

prelamin A is processed by Zmpste24 which cleaves the C-terminus (Burke and 

Stewart 2002).  In contrast, the alternate splice triggered in HGPS causes a 50 aa 

internal deletion, including the Zmpste24 recognition site, with the result that the 

polypeptide remains farnesylated.  In situ progerin remains associated with the 

nuclear membrane and forms aggregates during mitosis instead of distributing 

evenly around the lamina (as wild type lamin A does); cells so affected develop 

nuclear blebs and invaginations (Glynn and Glover 2005, Wu et al. 2014). 

HGPS serves as a model for what may be called the “aging phenotype.”  

In addition to the aforementioned medical phenotypes, HGPS cells also maintain 

a higher frequency of DSBs over wild-type cells (Constantinescu et al., 2010).  

Even in non-HGPS cells, progerin concentration has been observed to increase 

with age (Verdy et al. 2011), and progerin expression correlates with nuclear 

deformations (Cao et al. 2007). 
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In this thesis, a model system mimicking progeria was created for the 

purpose of studying the effect of progerin upon repair of double-strand breaks.  

Plasmids were engineered for the expression of progerin under the regulation of 

a doxycycline-sensitive promoter.  Furthermore, immortalized human fibroblasts 

were stably transfected with constitutively active progerin.  These cells also 

contained a stably-integrated, inducible, selectable break repair substrate.  Cells 

were cultured under selection to observe the results of repair of spontaneous and 

induced DNA double-strand breaks.  It was hypothesized that the presence of 

progerin would increase the rate of error-prone repair events relative to higher 

fidelity events.
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Chapter 2: Materials and Methods

 

Cell Lines 

Cell line pLB4/11, described previously (Wang et al. 2011), was derived 

from SV40-immortalized normal human fibroblast cell line GM637 (obtained 

from the NIGMS) and contains a single integrated copy of recombination 

substrate pLB4 (Fig 2.1, example repair events shown in Fig 2.2).  This plasmid 

contained a copy of herpes simplex virus 1 thymidine kinase fused to neo.  The tk 

gene is interrupted by a 22 bp insertion which includes the I-SceI recognition site 

(Fig 2.3).  The insert inactivates neo by causing a frame shift that reveals an early 

STOP codon.  Upstream of the fusion gene is a second tk gene, which serves as a 

donor for repair of the fusion gene by HR.  The donor differs from the recipient 

at 13 bases; these differences serve to identify the method of repair when repair 

products are sequenced.   

HGADFN155 and HGADFN370 fibroblasts derived from HGPS patients 

were obtained from the Progeria Research Foundation, Peabody, MA, as were 

HGMDFN371 fibroblasts which were derived from an unaffected parent of 

HGADFN370.    
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Figure 2.1 The tk/neo Fusion Recombination Substrate Plasmid pLB4 

 

See text for details. 
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Figure 2.2 Repair of the tk/neo Fusion Recombination Substrate  

 

A: The tk/neo fusion gene after an example NHEJ event.  NHEJ events are not 

fully predictable and may result in large deletions which significantly decrease 

the distance between the second HindIII site and the XbaI site. B: The fusion gene 

after GC.  Note the absence of the I-SceI site and the replacement sequence from 

the donor (variable in length).  C: The fusion gene after CO or SSA.  See text for 

details.  
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Figure 2.3 Inactivating Insert into tk/neo Fusion Gene.   

 

This 22 bp insert forces a frame shift in the tk/neo fusion gene which also reveals 

an early STOP codon, inactivating G418 resistance.  The box indicates the 18 bp 

recognition site for endonuclease I-SceI, and the arrows mark the location of the 

cut.  
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Cell Culture Conditions 

Cells were cultured in minimal essential media, alpha modification (α-

MEM) with 10% heat-inactivated fetal bovine serum and incubated at 37OC in 

humidified 5% CO2 air mixture. 

Plasmids 

pBABE-puro-GFP-progerin: This plasmid was a gift from Tom Misteli 

(Addgene plasmid #17663) (Fig 2.4).  The plasmid contains an ampicillin 

resistance gene to enable selection during bacterial amplification of the plasmid 

and a puromycin resistance gene for selection in mammalian cells. 

pBABE-puro-GFP: This plasmid is the result of digesting pBABE-puro-

GFP-progerin with SalI (Fig 2.5).  The smaller, D50-laminA, fragment (2.4 kb) 

was discarded, and the vector (5.9 kb) was ligated. 

pTRE3G: Obtained from Clontech Laboratories, Inc., this plasmid is an 

empty vector designed to place a gene of interest under the regulation of 

promoter PTRE3G (Fig 2.6).  The promoter does not respond to mammalian 

transcription factors but will respond to transducible protein Tet-Express 

(631177, Clontech) according to protocols provided by Clontech Laboratories Inc.  

This plasmid also contains an ampicillin resistance gene to enable selection 

during bacterial amplification of the plasmid. 
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Figure 2.4 Plasmid pBABE-puro-GFP-progerin.   
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Figure 2.5 Plasmid pBABE-puro-GFP  
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Figure 2.6 Plasmid pTRE3G 
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pCMV-3xnls-I-SceI: Obtained through the generosity of M. Jasin (Sloan 

Kettering), this plasmid (hereafter pSce) contains the gene for yeast endonuclease 

I-SceI.  The N-terminus has been affixed with 3 copies of a nuclear localization 

signal.   Plasmid pSce is used for transient expression of the endonuclease and is 

not intended to stably integrate. 

pEGFP-D50-laminA: This plasmid was a gift from Tom Misteli (Addgene 

plasmid #17653) (Fig 2.7).  The plasmid is derived from pEGFP-N1 (Fig 2.8) and 

includes a fusion gene of GFP and D50-laminA, an alternate name for progerin 

referring to the 50 aa deletion distinguishing it from wt laminA.  

Restriction Enzyme Digests 

All enzymes were acquired from New England Biolabs Inc.  Restriction 

enzymes used included BamHI (R0126L), HindIII (R0104L), NheI (R0131S), NotI 

(R0189S), SalI (R0138S), and XbaI (R0145S).  Restriction digests were conducted 

as prescribed by the supplier. 

Agarose gel electrophoresis 

Gel electrophoresis of DNA was performed using gels cast at 0.8% agarose 

and 0.05% ethidium bromide in TAE buffer (40 mM tris base, 20 mM acetate, 1 

mM EDTA).  The mass of sample was combined with 2 μL of dye and diluted 

with water to a final volume of 12 μL.  Dilute samples were loaded into the gel 

alongside a combination of λ DNA-HindIII and φX174 DNA-HaeIII used ladder  
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Figure 2.7 Plasmid pEGFP-D50-laminA 
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Figure 2.8 Plasmid pEGFP-N1 
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and run at 90 V for approximately 90 min. (precise time varied depending upon 

size of bands to be viewed) in TAE buffer with 0.05% ethidium bromide.  Bands 

were visualized by exposure to UV radiation on a UVP transilluminator, and 

photographs were taken with a Polaroid MP4 LAND Camera. 

Extraction of DNA from low melting point agarose gel 

Low melting point agarose gels were cast at 0.9% (low melting point 

agarose, A-9414, Sigma-Aldrich Co. LLC) with 0.05% ethidium bromide in TAE 

buffer.  The full digestion product was loaded across multiple lanes and run at 50 

V for at least 2 hr. (until the bands separated).  The desired band was cut from 

the gel and placed into a microcentrifuge tube for 10 min. incubation at 65OC.  

The melted sample was then combined with an equal volume of Tris-

equilibrated phenol and vortexed thoroughly.  The sample was incubated on ice 

for 5 min. before centrifugation at 14,000 rpm in an Eppendorf Microcentrifuge 

5415C.  The resulting aqueous phase was transferred to a separate 

microcentrifuge tube and mixed with 3 volumes of 95% ethanol and 1/10th 

volume of 3M sodium acetate.  This mixture was vortexed and then incubated at 

80OC for 10 min.  Thereafter, it was centrifuged for 7 min., and the supernatant 

was discarded.  The pellet was rinsed in 200 μL of 70% ethanol and then 

centrifuged once more for 5 min.  The ethanol was removed by pipetting, and the 

sample was dried under vacuum at 60OC in a Labconco Centrivap Concentrator 
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for 5 min.  The dry pellet was resuspended in 20 μL of TE buffer (10 mM tris HCl 

at pH 8.0, 1 mM EDTA). 

Plasmid construction 

pTRE3G-GFP-progerin:  Plasmid pTRE3G was digested with BamHI and 

NheI, yielding a 3.4 kb fragment and a smaller fragment of only 12 bases.  The 3.4 

kb fragment (the vector) was isolated by gel extraction.  Plasmid pEGFP-D50-

laminA was digested with BamHI and NheI to yield 4.7 and 3.2 kb fragments, of 

which the 3.2 kb fragment (containing D50-laminA) was also isolated by gel 

extraction.  The pTRE3G fragment was treated with bacterial alkaline 

phosphatase (BAP, Thermo Fisher Scientific Inc. 18011-015) to prevent 

dimerization of the vector.  The treated vector was then combined with the insert 

1:1 by molarity, T4 DNA ligase (New England BioLabs Inc. M0202S), and ligase 

buffer (New England BioLabs Inc. B0202S) and incubated at 20OC overnight.  

Ligation products were transformed into bacteria on ampicillin media to select 

for successful transformation. 

pTRE3G.Sal-: Plasmid pTRE3G was digested with SalI.  The linearized 

plasmid was blunted using NEB Quick Blunting Kit (E1201, New England 

Biolabs, Inc.).  Blunted plasmid was recovered by gel extraction and ligated by T4 

DNA ligase (Fig 2.9).  Ligation products were transformed into bacteria on 

ampicillin media to select for successful transformation.  
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Figure 2.9 Destruction of SalI Restriction Site by Blunting 

and Ligation 

 

Note that the ligation product no longer possesses a 

“GTCGAC” motif.  



 26   

pTRE3G.Sal--GFP-progerin: The protocol to construct pTRE3G-GFP-

progerin was repeated using pTRE3G.Sal- as the starting substrate. 

pTRE3G-SΔS-GFP-progerin: Plasmid pTRE3G.Sal--GFP-progerin was 

digested with BamHI and treated with BAP as above.  The linearized plasmid 

was combined with a BamHI to SalI adaptor sequence (Fig 2.10) at a ratio of 1:100 

by molarity and ligated as above.  Ligation products were transformed into 

bacteria on ampicillin media to select for successful transformation. 

pTRE3G-SΔS-GFP: Plasmid pTRE3G-SΔS-GFP-progerin was digested 

with SalI.  The larger fragment (4.2 kb) was isolated by gel extraction and ligated 

as above.  Ligation products were transformed into bacteria on ampicillin media 

to select for successful transformation. 

pTRE3G-SΔS-GFP-laminA: Plasmid pTRE3G-SΔS-GFP-progerin was 

digested with SalI.  The larger 4.2 kb fragment (the vector) was isolated by gel 

extraction and treated with BAP as above.  Plasmid pBABE-puro-GFP-laminA 

was digested with SalI, and its 2.4 kb fragment (laminA) was isolated by gel 

extraction.  The vector and insert were combined 1:1 by molarity and ligated as 

above. Ligation products were transformed into bacteria on ampicillin media to 

select for successful transformation.  Plasmid DNA was extracted from several 

bacterial colonies, and all were tested by two separate instances of diagnostic 

PCR to determine orientation of the insert.  DNA was combined with GE  



 27   

 

 

Figure 2.10 BamHI to SalI Adaptor 

 

Oligonucleotides AW-134 and AW-135 were annealed to form this structure.  

AW-134 possesses a 5’ phosphate to permit binding to an existing BamHI sticky 

end.  The SalI site is not revealed until it has been digested.  
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Healthcare illustra PuReTaq Ready-To-Go PCR beads and primers AW-136/AW-

137 or AW-136/AW-138 (forward or reverse product, Fig 2.11) and subjected to 

touchdown PCR.  Initial denaturation was for 5 min. at 95OC followed by 14 

cycles of 1 min denaturation (95OC), 1 min. annealing, and 3 min. elongation 

(72OC).  Annealing temperature started at 72OC and dropped by 2OC every 2nd 

cycle to a final temperature of 60OC.  Protocol was conducted using a Perkin 

Elmer DNA Thermal Cycler.  PCR products were visualized by gel 

electrophoresis to determine which reaction yielded product. 

Amplification of plasmids in bacterial cultures 

Amplifications were conducted using Bioline α-Select Gold Efficiency 

Chemically Competent Cells (BIO-85027) for amplification.  For each plasmid, 

plasmid solution was mixed with bacterial solution and processed according to 

the supplier’s protocol. During selection steps, cells were cultured in media with 

100 μg/mL ampicillin. 

Purification of plasmids from bacterial cultures 

Plasmids were purified from bacteria using the QIAprep Spin Miniprep 

Kit (27104).  Extractions were performed according to the instructions provided 

with the kit, including buffers provided.  Centrifugations were conducted in an 

Eppendorf Microcentrifuge 5415C. 
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Figure 2.11 Orientation of LMNA when Inserted into 

pTRE3G-SΔS-GFP 

 

PCR amplification with primers AW-136 and AW137 yields 

product in plasmids with the correct orientation of LMNA.  

AW-136 and AW-138 yield product in plasmids with reverse 

orientation.  
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Establishment of stable human cell lines integrated with pBABE derivatives 

Transfections were accomplished by electroporation.  Five million cells of 

the desired cell line were suspended in 800 μL of PBS with 5 μg of the desired 

plasmid (pBABE-puro-GFP or pBABE-puro-GFP-progerin, linearized by 

digestion with NotI) and electroporated using a Bio-Rad Gene Pulser set to 700 V 

and 25 μFd.  The cells were then cultured in a 175 cm2 flask for 48 hr. to recover 

from stress. 

To identify and isolate resistant clones, cell lines were cultured into media 

with 0.5 μg/mL puromycin.  The cultures were established at densities of 106 cells 

per 75 cm2 flask.  After a suitable growth period (between 14 and 21 days, 

depending upon individual ability to thrive), colonies were counted and then 

picked and cultured individually. 

Cultures were screened for GFP expression by viewing under an EVOS fl 

Cell Imaging System (Thermo Fisher Scientific).  Cell lines judged to have high 

levels of expression were subjected to protein extraction for later analysis by 

Western blot. 

Protein Extraction 

Cell cultures used for protein extraction were grown to confluence in 25 

cm2 flasks.  After aspirating the medium and rinsing with 5 mL PBS, cells were 

detached from the flask by incubation in 500 μL trypsin-EDTA.  The loose cells 
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were resuspended in 4.5 mL medium and transferred to a conical tube for 3 min. 

of centrifugation in a Clay Adams Dynac Centrifuge (Beckton, Dickinson and 

Company) at a speed setting of “40”.  Medium was aspirated, and the cells were 

resuspended in 10 mL PBS at 4OC.  The above centrifugation was repeated, and 

existing PBS was aspirated before resuspending the cells in 1.5 mL PBS, again 

4OC.  This suspension was transferred to a microcentrifuge tube for 5 min. 

centrifugation at 4000 rpm and 4OC in an Eppendorf Microcentrifuge 5415 R.  

After once more aspirating the PBS, the cells were resuspended in 100 μL RIPA 

buffer (50 mM tris, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% 

Triton X 100) with protease inhibitor (P8340-1ML, Sigma-Aldrich Co. LLC).  

Samples were incubated on ice for 30 min. and then centrifuged for 10 min. at 

10,000 rpm and 4OC.  The supernatant was collected for further use, and the 

precipitate was discarded. 

Protein concentration assay 

Concentration of protein extracts was determined by comparison against a 

series of BSA standards from 0 to 0.8 μg/μl in RIPA buffer.  The standards and a 

1:10 dilution of each of the samples (total volume 20 μL) were individually 

mixed into 1 mL of dilute dye reagent (Bio-Rad Protein Assay Dye Reagent 

Concentrate, #500-0006).  The dye reagent was prepared by diluting the 

concentrate 1:5 in water and filtering with Whatman paper.  Samples with dye 
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were mixed by vortexing and then incubated for 5 min. at room temperature.  

Sample absorbances were measured at 595 nm using a Hitachi U-2000 

Spectrophotometer.  All samples were performed in duplicate, and the average 

absorbance was compared against the slope of the trend line provided by the 

BSA standards. 

Western blotting 

Polyacrylamide gels used for western blots were cast using 8% separating 

gels (800 μL 40% acrylamide/bis (29:1), 1 mL tris/SDS (pH 8.8), 40 μL 10% 

ammonium persulfate, 6.5 μL TEMED) and 4% stacking gels (250 μL 40% 

acrylamide/bis (29:1), 625 μL tris/SDS (pH 8.8), 25 μL 10% ammonium persulfate, 

6 μL TEMED).  Cellular protein extract (30 μg) was diluted to 10 μL with RIPA 

buffer with an additional 2 μL of SDS sample buffer with dye (300 mM Tris-HCl, 

12% SDS, 30% glycerol, 0.06% bromophenol blue, 600 mM DTT).  The samples 

were heated for 5 min. at 95OC before loading into the gel. The Bio-Rad Precision 

Plus Kaleidoscope Protein Standard (#161-0375, 5 μL) was used as marker, and 

gels were run in a Bio-Rad Mini Protean 3 Cell assembly (running buffer: 25 mM 

tris base, 192 mM glycine, 0.1% SDS w/v).  

Gels were run at 14 mA until all samples passed out of the separating gel 

(as observed from dye front).  Thereafter, gels were run at 18 mA for 

approximately 90 min.  After electrophoresis, the stacking gels were detached 



 33   

and discarded, and the separating gels were packed into a transfer assembly with 

a 60 mm x 80 mm x 0.45 μm Amersham Hybond ECL nitrocellulose membrane 

(RPN68D).  Transfers were performed in transfer buffer (25 mM tris base, 192 

mM glycine, 20% v/v methanol) on ice at 100 V for 90 min.  The membrane was 

blocked overnight by 40 rpm shaking at 4OC in 70 mL of blocking buffer (10 mM 

tris HCl, 150 mM NaCl, 0.1% v/v polysorbate 20, 5% w/v non-fat dry milk). 

After blocking buffer was drained, the membrane was incubated in the 

primary antibody diluted in the same blocking buffer.  Primary antibodies used 

were GFP (B-2): sc-9996 (mouse monoclonal, from Santa Cruz Biotechnology, 

Inc.) at a dilution of 1:500, Lamin A/C (N-18): sc-6215 (goat polyclonal, from 

Santa Cruz Biotechnology, Inc.) at a dilution of 1:500, and Anti-Progerin 

antibody [13A4] ab66587 (mouse monoclonal, from Abcam Inc.) at a dilution of 

1:1000.  Incubation was for 60 min. at 45 rpm and 4OC.  Afterwards, the 

membrane was rinsed four times with wash buffer (10 mM tris HCl, 150 mM 

NaCl, 0.1% v/v polysorbate 20) and then incubated in fresh wash buffer with 90 

rpm shaking at 4OC four times, 5 min. each time.  This was followed by 

incubation in secondary antibody.  Secondary antibodies used were goat anti-

mouse IgG-HRP: sc-2005 (Santa Cruz Biotechnology, Inc.) at a dilution of 1:1000 

and donkey anti-goat IgG-HRP: sc-2020 (Santa Cruz Biotechnology, Inc.) at a 
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dilution of 1:5000.  Incubation was likewise 60 min. at 45 rpm and 4OC, and this 

was followed by another cycle of rinse and wash as described above.   

Detection was accomplished using GE Healthcare Amersham ECL Select 

Western Blotting Detection Reagent.  Component solutions A and B were mixed 

in equal quantities (1 mL of each per 24 cm2 of membrane), spread evenly over 

the membrane surface, and allowed to incubate for 5 min. at room temperature.  

Imaging was conducted using a GE ImageQuant LAS 4000 courtesy of Dr. Beth 

Krizek, University of South Carolina. 

Selection for repair of induced DSB 

To test for the effect of progerin on the rate of DSB repair, cells containing 

stably integrated pBABE derivatives were transiently transfected with pSce.  Five 

million cells of the desired cell line were suspended in 800 μL of PBS with 20 μg 

pSce and electroporated using a Bio-Rad Gene Pulser set to 700 V and 25 μFd.  

The cells were then cultured in a 175 cm2 flask for 48 hr. to recover from stress. 

To identify and isolate resistant clones, cell lines were cultured into media 

with 1000 μg/mL active G418.  The cultures were established at densities of 104, 

105, and 106 cells per 75 cm2 flask to ensure individual colonies could be isolated.  

After a suitable growth period (between 14 and 21 days, depending upon 

individual ability to thrive), colonies were counted and then picked and cultured 

individually. 
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Selection for spontaneous repair events 

Additional cells were cultured under selection without pSce transfection 

to test for spontaneous events.  Cells were cultured into media with 1000 μg/mL 

active G418 at a density of 106 cells per 75 cm2 flask.  The sub-clones were 

subjected to fluctuation analysis using protocol described previously (Waldman 

and Liskay 1988). 

Extraction of genomic DNA from cell culture 

Cells were grown to confluence in a 75 cm2 flask and then subjected to a 

genomic DNA extraction protocol modified from Liskay and Evans (1980).  The 

flask was aspirated of its medium and then washed with 10 mL of PBS.  The PBS, 

also, was aspirated, and the flask was incubated with 2 mL of lysis buffer and 35 

μL of 10 mg/mL Proteinase K (BMB #161519 in TE buffer) for 10 min.  The 

resulting slurry was transferred to a polypropylene tube and incubated at 56OC 

overnight.  Tris-equilibrated phenol (2.5 mL) was mixed into the lysate by 1 min. 

of vortexing and then separated by centrifugation for 10 min. in an IEC HN-SII 

Centrifuge set to 88% speed.  The aqueous phase and interface material were 

transferred to a new tube for vigorous mixing with 2.5 mL ether.  The mixture 

was then centrifuged for 5 min. whereupon the ether phase was removed by 

pipetting.  Residual ether was removed by permitting the sample to incubate for 

3 min. while exposed to atmosphere.  DNA was precipitated by adding 200 μL of 
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3M sodium acetate (pH 6.0) and 2 mL of 95% ethanol at 0OC.  The sample tube 

was inverted repeatedly until DNA began to precipitate into a fine, gauze-like 

appearance.  DNA was spooled onto a borosilicate pipette and dipped into 70% 

ethanol to rinse.  The pipette tip with DNA was broken off into a microcentrifuge 

tube and dried under vacuum at 60OC in a Labconco Centrivap Concentrator for 

3 min.  DNA was resuspended in 200 μL TE with 1.8 μL Ambion RNAse cocktail 

(AM2286) and incubated at 37OC overnight. 

The sample was subjected to a second phenol extraction.  After mixing by 

vortexing, 200 μL of phenol was added to the sample, which was vortexed again 

(1 min.) to mix.  The sample was centrifuged at 14,000 rpm in an Eppendorf 

Microcentrifuge 5415C for 2 min., and then the aqueous phase (and interface 

material) were transferred to a new microcentrifuge tube.  Ether was added (1 

mL) and mixed into the sample by 1 min. of vortexing.  The sample was 

separated by centrifugation at 14,000 rpm for 2 min.  Thereafter, the ether phase 

was removed by pipetting, and residual ether was dried off by exposing the 

sample to atmosphere for 3 min.  DNA was precipitated by adding 133 μL of 7 M 

ammonium acetate and 833 μL of 95% ethanol (both at 0OC) and inverting the 

sample repeatedly.  The sample was then centrifuged for 5 min. at 14,000 rpm.  

Supernatant was removed by decanting, and the pellet was rinsed with 200 μL of 

70% ethanol.  After a further 3 min. of centrifugation, the ethanol was removed 
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by pipetting, and the pellet was dried under vacuum at 60OC in the Centrivap for 

3 min.  The pellet was resuspended in 180 μL TE and incubated at 37OC 

overnight. 

DNA concentration assay 

Genomic DNA collected from extractions was diluted 1:20 in TE buffer.  

Duplicate 60 μL aliquots of the dilute DNA were measured for absorbance at 260 

nm and 280 nm with a Hitachi U-2000 Spectrophotometer.  Sample purity was 

judged according to the ratio of absorbance A260/A280 (expected value 1.8).  

Absorbances of the duplicates were averaged.  Due to the dilution factor, A260 

values were equal to the concentrations of the undiluted samples expressed in 

units of μg/μL. 

DNA sequencing 

Genomic DNA was combined with GE Healthcare illustra PuReTaq 

Ready-To-Go PCR beads and primers AW85 and AW91 (Fig 2.12, amplification 

locus shown in Fig 2.13) and subjected to touchdown PCR, described above.  

Protocol was conducted using a Perkin Elmer DNA Thermal Cycler.  PCR 

products were then treated with Exonuclease I (Affymetrix, Inc. part 70073X, 1 

unit/ 1 μL of sample) to eliminate primers and Shrimp Alkaline Phosphatase 

(Affymetrix, Inc. part 78390, 1 unit/ 10 μL of sample) to destroy residual 

nucleotides.  Enzymes were inactivated by 15 min. incubation at 80OC before  
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Figure 2.12 PCR Primers for Identification of DSB Repair Event by Sequencing 

 

Primers AW-85 and AW-91 flank the region shown in Fig 2.13.  Their 

amplification product may be used to determine the method of repair.
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1     ccagcgtcttgtcattggcgaattcgaacacgcagatgcagtcggggcggcgcggtccgagtgtggcctcga-

1     ccagcgtcttgtcattggcgaattcgaacacgcagatgcagtcggggcggcgcggtcccagtgtggcctcga- 

73    acaccgagcgaccctgcagcgacccgcttaacagcgtcaacagcgtgccgcagatcttggtggcgtgaaact-

73    acaccgagcgaccctgcagcgacccgcttaacagcgtcaacagcgtgccgcagatcttggtggcgtgaaact- 

145   ccggtccacttcgcatattaaggtgacgccgcacctcttcggccagcgccttgtagaagcgcgtatggcttc-

145   ccggtccacttcgcatattaaggtgacgccgcacctcttcggcaagcgccttgtagaagcgcgtatggcttc- 

217   gtaccccggccatcaacacgcgtctgcgttcgaccaggctgcgcgttctcgcggccatagcaaccgacgtac-

217   gtacccctgccatcaacacgcgtctgcgttcgaccaggctgcgcgttctcgcggccatagcaaccgacgtac- 

289   ggcgttgcgccctcgccggcagcaagaagccacggaagtccgcctggagcagaaaatgcccacgctactgcg-

289   ggcgttgcgccctcgccggcagcaagaagccacggaagtccgcctggagcagaaaatgcccacgctactgcg- 

361   ggtttatatagacggtcctcacgggatggggaaaaccaccaccacgcaactgctggtggccctgggttcgcg-

361   ggtttatatagacggtcctcacgggatggggaaaaccaccaccacgcaactgctggtggccctgggttcgcg- 

433   cgacgatatcgtctacgtacccgagccgatgacttactggcaggtgctgggggcttccgagacaatcgcgaa-

433   cgacgatatcgtctacgtacccgagccgatgacttactggcaggtgctgggggcttccgagacaatcgcgaa- 

505   catctacaccacacaacaccgcctcgaccagggtgagatatcggccggggacgcggcggtggtaatgacaag-

505   catctacaccacacaacaccgcctcgaccagggtgagatatcggccggggacgcggcggtggtaatgacaag- 

577   cgcccagataacaatgggcatgccttatgccgtgaccgacgccgttctggctcctcatatcgggggggaggc-

577   cgcccagataacaatgggcatgccttatgccgtgaccgacgccgttctggctcctcatgtcgggggggaggc- 

649   tgggagcttagggataacagggtaatagctcacatgccccgcccccggccctcaccctcatcttcgaccgcc-

649   tggg----------------------agttcacatgccccgcccccggccctcaccctcatcttcgaccgcc- 

721   atcccatcgccgccctcctgtgctacccggccgcgcgataccttatgggcagcatgaccccccaggccgtgc-

699   atcccatcgccgccctcctgtgctacccggccgcgcgataccttatgggcagcatgaccccccaggccgtgc- 

793   tggcgttcgtggccctcatcccgccgaccttgcccggcacaaacatcgtgttgggggcccttccggaggaca-

771   tggcgttcgtggccctcatcccgccgaccttgcccggcacaaacatcgtgttgggggcccttccggaggaca- 

865   gacacatcgaccgcctggccaaacgccagcgccccggcgagcggctggacctggctatgctggctgcgattc-

843   gacacatcgaccgcctggccaaacgccagcgccccggcgagcggcttgacctggctatgctggccgcgattc- 

937   gccgcgtttacgggctacttgccaatacggtgcggtatctgcagtgcggcgggtcgtggcgggaggactggg-

915   gccgcgtttacgggctgcttgccaatacggtgcggtatctgcagggcggcgggtcgtggcgggaggattggg- 

1009  gacagctttcggggacggccgtgccgccccagggtgccgagccccagagcaacgcgggcccacgaccccata- 

987   gacagctttcggggacggccgtgccgccccagggtgccgagccccagagcaacgcgggcccacgaccccata- 

1081  tcggggacacgttattaccctgtttcgggcccccgagttgctggcccccaacggcgacctgtataacgtgtt-

1059  tcggggacacgttattaccctgtttcgggcccccgagttgctggcccccaacggcgacctgtacaacgtgtt- 

1153  tgcctgggccttggacgtcttggccaaacgcctccgttccatgcacgtctttatcctggattacgaccaatc-

1131  tgcctgggccttggacgtcttggccaaacgcctccgtcccatgcacgtctttatcctggattacgaccaatc- 

1225  gcccgccggctgccgggacgccctgctgcaacttacctccgggatggtccagacccacgtcaccacccccgg-

1203  gcccgccggctgccgggacgccctgctgcaacttacctccgggatggtccagacccacgtcaccacccccgg- 

1297  ctccataccgacgatatgcgacct                                                 -

1275  ctccataccgacgatctgcgacct -                                                            

- 

Figure 2.13 Sequence Alignment of HSV-1 tk Recipient and Donor Genes 

 

In addition to the 22 bp I-SceI insert (the sequence in the recipient above with no 

counterpart in the donor), the donor and recipient sequences differ at 13 bases.  

These mismatches may be used to distinguish between repair events.  
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submitting samples for sequencing to Eton Bioscience Inc., Research Triangle 

Park, NC.  Sequencing relies upon the T7 promoter incorporated into primer 

AW85. 

Southern blotting 

Genomic DNA from G418 resistant cultures was analyzed by Southern 

hybridization using a 32P-labeled probe specific for the HSV-1 tk sequence as 

described previously (Lukacsovich et al. 1994).  Blots were exposed to Amersham 

Hyperfilm MP (GE Healthcare Limited, 28906845) and developed on a Futura 

Classic E Automatic X-Ray Film Processor (Fischer Industries Inc.). 

Statistical Analysis 

Statistical analysis was performed using a Pearson’s chi-squared test of 

independence.  Significance values were calculated using Simple Interactive 

Statistical Analysis (Uitenbroek 1997). 
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Chapter 3: Construction of Plasmids for Use in Modeling Progeria 

in Human Cell Lines

 

To establish cell lines for the study of the effect of inducible progerin upon 

DSB repair, plasmids were constructed based on pTRE3G (Fig 2.6).  Genes 

inserted into the multicloning site of pTRE3G are under the regulation of PTRE3G, 

a promotor with very low expression in mammalian cells.  However, under 

conditions indicated by the supplier, PTRE3G is strongly induced.  Progerin was 

integrated into the plasmid under the regulation of this promoter, and GFP was 

appended as a fusion protein to serve as a marker for screening.  It was decided 

that, in addition to the experimental GFP-progerin cell line, four control cell lines 

would be required: no vector, empty vector, GFP, and GFP-laminA.  The empty 

vector controls for the presence of the plasmid, GFP for the presence of active 

synthesis from the plasmid, and GFP-laminA for whether observed effects were 

attributable to the defect within progerin or merely to the increase in nuclear 

lamins, since plasmid activity is in addition to, rather than instead of, native 

lamin A synthesis. 
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To construct plasmid pTRE3G-GFP-progerin, the multicloning site of 

pTRE3G was opened with BamHI and NheI, and a GFP progerin fragment 

derived from pEGFP-D50-laminA was inserted, placing fusion gene GFP-

progerin under the regulation of PTRE3G.  Plasmids were amplified by 

transformation into bacteria, relying upon the ampicillin resistance provided by 

pTRE3G for selection (Fig 3.1 A).  Correct construction was confirmed by 

extraction of plasmid DNA and digestion with BamHI and NheI.  The correct 

plasmid yields two fragments, the 3.4 kb vector and the 3.2 kb GFP-progerin 

fusion gene (Fig 3.2). 

The construction of a plasmid containing laminA was not straightforward 

due to the incompatibility of restriction sites among available plasmids.  To 

surmount this difficulty, the existing SalI site of pTRE3G was destroyed by 

cutting at the restriction site, filling in the overhang, and ligating the blunt ends 

together (Fig 2.9), resulting in plasmid pTRE3G.Sal- (Fig 3.1 B).  This was done to 

prevent the existing SalI site from interfering with a later digestion. 

Plasmid pTRE3G.Sal- was digested with BamHI and NheI, and a GFP-

progerin fragment derived from pEGFP-D50-laminA was inserted, placing 

fusion gene GFP-progerin under the regulation of PTRE3G, as before.  Plasmids 

were amplified by transformation into bacteria, relying upon the ampicillin 

resistance provided by pTRE3G for selection.  Correct construction was  
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Figure 3.1 Schematic for Construction of pTRE3G Derivatives 

 

See text for details.        
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Figure 3.2 BamHI/NheI Digest of Potential 

pTRE3G-GFP-progerin Extracts 

 

Lanes C and D show the smaller GFP-progerin band 

and the larger vector band and were kept as 

representative samples of plasmid pTRE3G-GFP-

progerin.  Lanes A, B, and E show an additional 

band, suspected to be singly cut plasmid, and were 

rejected.  A combination of λ DNA-HindIII and 

φX174 DNA-HaeIII was used as ladder. 
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confirmed by extraction of plasmid DNA and digestion with BamHI and NheI.  

The correct plasmid yields two fragments, the 3.4 kb vector and the 3.2 kb GFP-

progerin fusion gene.  Following that, however, the BamHI site at the 3’ end of 

the progerin gene was opened and an adaptor was added to give the locus a new 

SalI site (Fig 2.10).  Combined with the way in which pEGFP-D50-laminA was 

constructed, this left the progerin gene of the pTRE3G.Sal- derivative flanked by 

SalI sites (now called pTRE3G-SΔS-GFP-progerin, Fig 3.1 C). 

Plasmid pTRE3G-SΔS-GFP-progerin was digested by SalI.  Gel extraction 

of the larger fragment and ligation without further ado results in pTRE3G-SΔS-

GFP, one of the desired controls (Fig 3.1 D).  Correct construction was confirmed 

by extraction of plasmid DNA and digestion with BamHI and NheI.  The correct 

plasmid yields two fragments, the 3.4 kb vector and the 0.8 kb GFP gene (Fig 3.3).  

The GFP band is not visible due to its low total mass.  Increasing the initial mass 

of DNA loaded into the gel reveals the formerly invisible band (Fig 3.4). 

The isolated larger fragment from SalI digestion of pTRE3G-SΔS-GFP-

progerin was also taken and combined with the smaller fragment from SalI 

digestion of pBABE-puro-GFP-laminA.  This fragment contains only the lamin A 

gene; however, due to the identical restriction sites on both end of the fragment, 

the ligation is non-directional.  Thus, when the plasmid was transformed into 

bacteria, several colonies were collected, all of which were subjected to plasmid  
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Figure 3.3 Multiple Digests of Potential pTRE3G-SΔS-GFP 

Extracts 

 

The gel shows multiple digest products of 2 separate plasmid 

extractions.  Lanes A-C and E-G are single digests by BamHI, 

SalI, or NheI, each of which recognizes only one restriction 

site on the expected plasmid.  Lanes D and H are digests by 

BamHI and NheI for which the expected bands are 3.4 kb (the 

vector) and 0.8 kb (GFP).  The 0.8 kb band is not visible on 

this gel.  A combination of λ DNA-HindIII and φX174 DNA-

HaeIII was used as ladder. 
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Figure 3.4 Confirmation of pTRE3G-SΔS-GFP 

 

The gel shows multiple digest products of 2 separate plasmid 

extractions.  Lanes A and D are single digests by NheI which 

recognizes only one restriction site on the expected plasmid.  

Lanes B and E are digests by NheI and SalI for which the 

expected bands are 3.4 kb (the vector) and 0.8 kb (GFP, not 

visible).  Lanes C and F are the same double digest with 

increased mass showing the smaller band.  There is an 

additional unknown band assumed to be uncut plasmid.  

Lane G contains plasmid pTRE3G digested with SalI.  A 

combination of λ DNA-HindIII and φX174 DNA-HaeIII was 

used as ladder.  
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extraction.  The presence of the correct plasmid construction was confirmed by 

digesting with SalI in search of the 4.2 kb vector-GFP fragment and the 2.4 kb 

lamin A gene (Fig 3.5).  However, it was also necessary to test each of the 

extractions by diagnostic PCR, once with primers AW-136 and AW-137 (the 

forward insert), and once with AW-136 and AW-138 (the reverse insert, Fig 2.11).  

Samples displaying the correct band pattern after electrophoresis (Fig 3.6) are 

from plasmid pTRE3G-SΔS-GFP-laminA (Fig 3.1 E).  
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Figure 3.5 SalI Digest of Potential pTRE3G-SΔS-GFP-laminA Extracts 

 

Lanes A-C and F-J show the smaller lamin A band and the larger 

vector-GFP band.  Lane D shows an unknown band and was rejected.  

A combination of λ DNA-HindIII and φX174 DNA-HaeIII was used as 

ladder. 
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Figure 3.6 Forward and Reverse Inserts of lamin A into 

pTRE3G-SΔS-GFP 

 

The figure shows PCR products for primers AW-136/137 (forward 

product, top), and AW-136/138 (reverse product, bottom).  See Fig 

2.11 for details.  Lane A contains pBABE-puro-GFP-laminA, 

positive control for the forward product.  Lane B is a negative 

control containing no starting DNA.  Lanes D, F, G, and I contain 

amplification products from cells with the reverse insert plasmid.  

Lanes C, J, and K contain products from cells with the forward 

insert also confirmed not to bear the reverse insert plasmid.  The 

samples in lanes C and K were kept as representative samples of 

plasmid pTRE3G- SΔS-GFP-laminA.  Lanes E and H are 

ambiguous and were rejected for use.  A combination of λ DNA-

HindIII and φX174 DNA-HaeIII was used as ladder. 
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Chapter 4: Effect of Progerin on DSB Repair

 

Identification of GFP-progerin in HGPS cells and cells modeling HGPS

In previous studies, a single copy of plasmid pLB4 was stably integrated 

into human fibroblasts of cell line GM637 (Wang et al. 2011).  Cultures of this cell 

line—pLB4/11—were transfected with either pBABE-puro-GFP (Fig 2.5) or 

pBABE-puro-GFP-progerin (Fig 2.4) by electroporation.  After allowing a suitable 

period to recover, cells were cultured for selection in media containing 

puromycin.  Electroporation efficiency was 4.33 colonies per million cells for 

plasmid pBABE-puro-GFP and 4.85 per million for plasmid pBABE-puro-GFP-

progerin (Table 4.1).  Several surviving colonies were cultured and screened for 

GFP expression (Figs 4.1 and 4.2).  For cultures with strong fluorescence, protein 

was extracted to determine the level of expression by Western blot.  Samples 

were probed with anti-GFP (Fig 4.3) and anti-progerin (Fig 4.4) antibodies in 

search of GFP and fusion protein GFP-progerin (27 and 95 kDa respectively).  

Anti-GFP consistently assayed with darker bands than anti-progerin.  Samples 

pBABE-puro-GFP-progerin-21, pBABE-puro-GFP-progerin-13, and pBABE-puro-

GFP-6C were chosen for exceptional GFP activity relative to other cell lines. 
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Table 4.1 Colonies Recovered from pLB4/11 Cells after Transfection with 

pBABE Derivatives 
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Figure 4.1 Microscopy Image of pBABE-puro-GFP-6C 

 

GFP fluorescence image of cells expressing GFP.  
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Figure 4.2 Microscopy Images of pBABE-puro-

GFP-progerin-21 

 

Visible light (A), GFP florescence (B), and overlay 

(C) images of cells expressing GFP-progerin.  Note 

nuclear localization of GFP.  
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Figure 4.3 Western Blot Confirming Expression of GFP 

 

Protein was extracted from cell lines stably integrated with pBABE-puro-GFP or 

pBABE-puro-GFP-progerin.  These extracts were assayed by western blot using 

an anti-GFP antibody.  Lanes A-D contain extracts from pBABE-puro-GFP-

progerin cell lines 5, 18, 21, and 22 respectively.  Lanes E and F contain extracts 

from pBABE-puro-GFP cell lines 3A and 6C respectively.  
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Figure 4.4 Western Blots Confirming Expression of the GFP-progerin Fusion 

Protein 

 

Protein was extracted from cell lines stably integrated with pBABE-puro-GFP-

progerin.  These extracts were assayed on western blots using either an anti-

progerin or an anti-GFP antibody.  Lanes A-E contain extracts from pBABE-puro-

GFP-progerin cell lines 21, 13, 5, and 1, respectively.  
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To provide context for these results, HGPS and unaffected cell lines were 

acquired from the Progeria Research Foundation.  Protein extracts from cell lines 

HGMDFN370 (HGPS patient) and HGMDFN371 (unaffected parent of 

HGMDFN370) were compared to cell lines expressing GFP and GFP-progerin 

cell lines by Western blot using anti-lamin A primary antibody.  Anti-lamin A 

reacted to all samples, yielding two bands as expected of lamin A (70 kDa) and 

lamin C (60 kDa) (Fisher, et al. 1986) (Fig 4.5 and 4.6).  Anti-progerin blots were 

also used to compare the level of expression of GFP-progerin to the progerin 

expression found in HGPS cells.  However, anti-progerin did not unambiguously 

identify the expected 68 kDa band for native progerin in HGMDFN370 (or any 

other sample) despite reacting with GFP-progerin (Fig 4.6).  Furthermore, the 

polyclonal anti-lamin A did not identify native progerin nor GFP-progerin (Fig 

4.5). 

Analysis of DSB repair in cells expressing GFP-progerin 

Subsequently, pBABE-puro-GFP-progerin cells were transiently 

transfected with pSce to induce a break within the tk/neo gene on pLB4.  This 

was performed for two replicates of pBABE-puro-GFP-6C as well as two 

replicates of pBABE-puro-GFP-progerin-13 and four replicates of pBABE-puro-

GFP-progerin-21.  These replicates were cultured in media with G418 to select for 

functional repair of the tk/neo fusion gene.  The two GFP-progerin replicates had  
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Figure 4.5 Western Blots Confirming Expression of Progerin and LaminA 

 

Protein was extracted from cell lines stably integrated with pBABE-puro-GFP or 

pBABE-puro-GFP-progerin and from the parent cell line pLB4/11.  These extracts 

were assayed on western blots using either an anti-progerin or an anti-laminA 

antibody.  Lane A contains extract from pLB4/11.  Lanes B and C contain extracts 

from pBABE-puro-GFP-progerin cell lines 5 and 21, respectively.  Lane D 

contains extract from pBABE-puro-GFP cell line 6C.  
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Figure 4.6 Western Blots Comparing expression of Progerin and 

LaminA between HGPS and GFP-progerin Expressing Cell 

Lines 

 

Protein extracts from HGMDFN371 (lane A), HGADFN370 (lane 

B) and cell line pBABE-puro-GFP-progerin-21 (lane C) were 

assayed by western blot using an anti-laminA or an anti-progerin 

antibody.  HGADFN370 is a HGPS patient, and HGMDFN371 is 

an unaffected parent of HGADFN370.  
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rates of survival of 26.4 and 21.0 colonies per 104 cells; GFP colonies survived at a 

rate of 7.11 per 104 (Table 4.2).  Representatives of surviving colonies were 

recovered and cultured.  DNA was extracted from these cells and amplified by 

PCR with primers AW-85 and AW-91 (Fig 2.12).  Approximately 31% (11) of 

GFP-expressing colonies and 25% (15) of those expressing GFP-progerin did not 

yield an amplification product despite surviving selection (Table 4.3).  A further 

5% of GFP-progerin colonies yielded product of an unexpected size.  Successfully 

amplified products were sequenced to determine the method of repair.   

Sequencing data was interpreted by sequence alignment using the tk recipient 

and donor as standards (Fig 2.13).  NHEJ events are characterized by 

insertions/deletions which leave the recipient markers intact.  GC events replace 

a number of the recipient markers with donor but do not affect the flanking 

regions of the recipient.  A third class of events, homology dependent deletion 

(HDD), includes both single-strand annealing and crossover, since these two are 

indistinguishable within this substrate.  HDD events are fusions of the donor and 

recipient tk genes and are characterized by a track of markers that ends 

downstream of the I-SceI site and extends upstream beyond the sequencing 

window.  To distinguish between homology dependent deletions and long gene 

conversions which extend beyond the first marker, genomic DNA was also 

subjected to Southern blotting analysis.  The genomic DNA was digested with  
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Table 4.2 Colonies Recovered from pBABE Transfected Cell Lines after 

Induced DSB and Selection in G418 
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Table 4.3 Products Recovered from G418 Resistant Cells with a Stably 

Integrated Variant of Plasmid pBABE-puro 

 

 

 

Amplification products are those resulting from primers AW-85 and AW-91.  

Irregular results are those samples displaying a band which differs significantly 

in size from the control.   
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HindIII and XbaI and then blotted with 32P-labeled probe for the tk gene.  HDD 

events may be distinguished from gene conversions by the differing banding 

pattern (Fig 2.1 and 4.7).  Blotting patterns confirmed the preliminary results of 

sequencing in nearly all (97%) samples. 

A total of 68 GFP-progerin expressing cultures and 36 GFP expressing 

cultures were analyzed.  NHEJ events were identified by the lack of donor 

markers in the sequencing window (Fig 4.8).  GC events were identified by 

donor markers flanked by recipient markers (Fig 4.9).  HDD events were 

identified by donor markers extending upstream to the limit of the sequencing 

window (Fig 4.10).  In cells expressing GFP-progerin, analysis indicates that 

approximately 30% of events that yielded PCR products were GC, 36% were 

HDD, and 34% were NHEJ (Table 4.4).  It should be noted that only repair events 

which restore the reading frame will survive selection; therefore, the rate of 

NHEJ is (presumably) three times the observed value.  GFP expressing cells 

displayed repair events of 20% GC, 76% HDD, and 4% NHEJ, a drastically lower 

incidence of NHEJ compared to GFP-progerin expressing cells (p = 4.70x10-3 by 

Pearson’s chi-squared test, Table 4.4).  However, both the GFP and GFP-progerin 

expressing cell cultures included events that did not yield PCR products, 31% 

and 26% of total events, respectively.  No such events were found in pLB4/11 (p = 

2.20x10-7, Table 4.4).  A   
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Figure 4.7 Example Southern Blot of Digest Products of the pLB4 

Recombination Substrate 

 

As described in Figure 2.1, the repaired pLB4 recombination substrate displays 

two different banding patterns after HindIII/XbaI digest depending upon 

method of repair.  Samples for which sequencing could not distinguish between 

HDD and GC events were digested and assayed by Southern blot alongside 

additional known events.  Lanes 1, 2, 4, 5, 7, and 9 show the single band 

characteristic of HDD.  Lanes 3, 6, 8, and 10 show the two bands characteristic of 

GC.  It is not necessary to assay NHEJ samples because they can be 

unambiguously identified through sequencing.  All samples shown are derived 

from cell line pBABE-puro-GFP-6C (sub-clones 7D, 8C, 8D, 9A, 9B, 9C, 9D, 9E, 

10C, 10E). 
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Sample 

 

Recipient 

21-A-2 

21-A-4 

21-A-9 

21-B-1 

21-B-24 

21-C-3 

21-C-5 

21-C-8 

21-C-15 

21-C-18 

21-D-3 

21-D-21 

13-A-2 

13-B-1 

13-B-4 

2A (GFP) 

Repair Site 

 

tggg[agcttagggata--acagggtaat]agctca- 

tggg[agcttaggga--------------]----ca- 

tgg-[--------------acagggtaat]agctca - 

tggg[agcttagggata---------aat]agctca- 

tggg[agcttagggata---cagggtaat]agctca- 

tggg[agctta------------ggtaat]agctca- 

tggg[agctta------------ggtaat]agctca- 

tggg[agcttagggata---cagggtaat]agctca- 

tggg[agcttagg---------gggtaat]agctca- 

tggg[agcttagggata---cagggtaat]agctca- 

tggg[agctt-------------------]-----a- 

tggg[agcttagg-------c--ggtaat]agctca-- 

tggg[agctta------------ggtaat]agctca-- 

----[------------------------]------- 

----[------------------------]------- 

----[------------------------]------- 

tggg[agcttagggatattacagggtaat]agctca-

Deletion (bp) 

 

N/A 

16 

13 

7 

1 

10 

10 

1 

7 

1 

22 

7 

10 

151 

79 

1126 

+2 (insertion) 

Figure 4.8 G418R Clones that Yielded NHEJ Events.   

 

Brackets show the location of the I-SceI insert.  The red “c” base shows the 

location of homeologous marker #5.  NHEJ repairs must result in a -1 frame shift 

in order to restore function to neo.  All NHEJ events in induced DSB clones from 

GFP-progerin cell line 13 resulted in very large (≥ 79 bp) deletions, in contrast to 

the more modest (≤ 22 bp) events from cell line 21.  Clones expressing GFP 

resulted in only 1 NHEJ event among them.  Clones from the fluctuation test did 

not yield identifiable NHEJ events. 
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Recipient G C G A ∨ C G T A T C T T A 

Donor C A T G  T T C G G T C C C  

GFP 

 8D * C G G  T T C G G * * * *  

 9C * C G G  T T C G T * * * * 

 9E * C G G  T G T A T * * * * 

 10D * C G G  T G T * * * * * *  

 10E * C G G  T G T A T * * * * 

GFP-progerin  

 13-A-4 * C G G  T * * * * * * * * 

 13-B-13 * C G G  T T C G G * * * * 

 13-B-16 * C G G  T G T A T * * * * 

 13-B-23 * C G G  T G T A T * * * * 

 21-A-1 G C G G  T G T A T C T T A 

 21-A-3 G C G G  T G T A T C T T * 

 21-B-21 G C G G  T G T A T C T T A 

 21-C-1 * C G G  T G T A T * * * * 

 21-C-2 * C G A  T G T A T * * * * 

 21-C-6 * C G A  T G T A T * * * * 

 21-C-12 * * G A  T G T A T * * * * 

 21-C-19 * C G G  T T C G T * * * * 

 21-D-6 * C G A  T G T A T * * * * 

 21-D-17 * C G G  T G T A T * * * * 

 21-D-22 * C G G  T T C A T * * * * 

GFP-progerin (fluctuation)  

 13-4-γ G C G G  T G T A T C * * * 

 13-4-δ * C G G  T G T A T C * * * 

 13-4-ζ G C G G  T G T A T C * * * 

 13-7-δ G C G G  T G T A * * * * * 

 

Figure 4.9 G418R Clones that Yielded Gene Conversion Events 

 

G418R clones were sequenced and compared to the donor and recipient tk genes.  

Clones listed in the figure included repair events in which a portion of the 

recipient bases were replaced by donor bases. The yellow highlight indicates 

donor mismatches found within the repaired sequences.  Asterisks indicate 

insufficient or ambiguous data.  The caret in the recipient sequence marks the 

location of the I-SceI recognition site.
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Recipient G C G A ∨ C G T A T C T T A 

Donor C A T G T T C G G T C C C  

GFP 

 1B * A T G T G T A T * * * * 

 1E * A T G T T C G G * * * * 

 2E * A T G T G T A T * * * * 

 4B * A T G T T C G * * * * * 

 4C * A T G T T C G G * * * * 

 4E * A T G T T C G G * * * * 

 5C * A T G T T C G G * * * * 

 5D * A T G T T C G G * * * * 

 6B * A T G T G T A T * * * * 

 6C * A T G T T C G C * * * * 

 6E * A T G T T C G * * * * * 

 7D * A T G T T C G * * * * * 

 8A * A T G T T C G G * * * * 

 8C * A T G T G T A T * * * * 

 9A * A T G T G T A T * * * * 

 9B * A T G T T C G G * * * * 

 9D * A T G T T C G G * * * * 

 10C * A T G T T C G G * * * * 

GFP-progerin 

 13-A-3 * * T G T T C G G * * * * 

 13-A-12 * A T G T * * * * * * * * 

 13-A-17 * A T G T T C * * * * * * 

 13-B-14 * A T G T T C G G * * * * 

 21-B-23 * A T G T T C G G T ? ? ? 

 21-C-7 * A T G T T C G G * * * * 

 21-C-14 * A T G T G T A T * * * * 

 21-C-16 * A T G T G T A T * * * * 

 21-C-20 * A T G T T C G C * * * * 

 21-C-21 * A T G T T C G G * * * * 

 21-C-23 * A T G T G T A T * * * * 

 21-D-4 * A T G T G T A T * * * * 

 21-D-11 * A T G T G T A T * * * * 

 21-D-13 * A T G T T C G G * * * * 

 21-D-14 * A T G T T C G G * * * * 

 21-D-15 * A T G T T C G * * * * * 

 21-D-16 * A T G T T C G G * * * * 

 21-D-18 * A T G T T C G G * * * * 

GFP-progerin (fluctuation) 

 13-2-ι * A T G T T C G G T * * * 

 13-7-θ C A T G T T C G G T * * * 

 13-2-κ C A T G T T C G G T * * * 

 

Figure 4.10 G418R Clones that Yielded Homology Dependent Deletion Events 

 

G418R clones were sequenced and compared to the donor and recipient tk genes.  

Clones listed in the figure included repair events in which the recipient sequence 

was joined to the donor. The yellow highlight indicates donor mismatches found 

within the repaired sequences.  Asterisks indicate insufficient or ambiguous data.  

The caret in the recipient sequence marks the location of the I-SceI recognition 

site.  
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Table 4.4 DSB Repair Events Recovered from G418 Resistant Cells with a 

Stably Integrated Variant of Plasmid pBABE-puro 

 

 

 

Data for cells with no pBABE derivative were retrieved from Wang et al. 2011. 
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small number of these events present unusual banding patterns on Southern 

blots (Fig 4.11), though the significance of this finding is not clear. 

Spontaneous repair events in cells expressing GFP-progerin 

Additional pBABE-puro-GFP-progerin-13 cells were subjected to a 

fluctuation test to recover spontaneous HR events, again in G418.  Survival 

ranged from 1.1 cells per 104 to less than 5.0 per 107 (Table 4.5).  Genomic DNA 

extracted from the resulting colonies was also subjected to PCR and sequencing.  

All of the samples from fluctuation cultures yielded product for primers AW-85 

and AW-91.  Sequencing revealed that 33% of repair events were GC, 28% HDD, 

and 39% could not be identified because no deviation from the recipient 

sequence could be found within the sequencing window (Table 4.6). 

Discussion 

This experiment was conducted for the purpose of studying the effect of 

constitutive progerin expression on DSB repair.   The presence of GFP-progerin 

in cells significantly increased the rate of GC and NHEJ relative to HDD when 

compared to rates of those events in GFP-expressing cells.  The largest rate 

increase is in NHEJ, indicating that the cell is forced to rely upon NHEJ more 

often than upon HR despite the superior fidelity of the latter (Fig 4.12).  This 

links progerin—and, by extension, natural aging—to the fidelity of break repair 

mechanisms and lends credence to the idea of aging as a disease of DSB repair. 
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Figure 4.11 Example Southern Blot of G418R Clones that did not Yield 

Amplification Product after PCR with Primers AW-85 and AW-91 

 

Several colonies which survived selection did not yield a product 

suitable for sequencing.  Lanes A-E contain DNA from sub-clones 

derived from pBABE-puro-GFP-6C (in order: 2A, 3A, 3C, 6D, and 7A).  

Lanes F-I contain DNA from sub-clones derived from pBABE-puro-

GFP-progerin-21 (in order: 21-B-16, 21-C-4, 21-C-10, 21-D-1, and 21-D-

12).  Lane J contains DNA from sub-clone pBABE-puro-GFP-progerin-

13-B-12.  None of the aforementioned samples yield amplification 

product.  Lane K contains DNA from cell line pBABE-puro-GFP-

progerin-13 before induced break and selection.  Note lanes D and F 

which do not present either of the expected banding patterns. 
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Table 4.5 Colonies Recovered from Fluctuation Test of pBABE-puro-GFP-

progerin-13 

 

 

 

Cells were selected in G418.  No break was induced before selection.  Additional 

sub-clones were discarded due to contamination. 
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Table 4.6 Repair Events Recovered from G418 Resistant Cells after Fluctuation 

Test 

 

 

 

Cells were selected in G418.  No break was induced before selection.   
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Figure 4.12 Ratio of DSB Repair Events in Cells According to 

Protein Expressed 
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Plasmid pBABE-puro-GFP served as a control to be tested in parallel to 

plasmid pBABE-puro-GFP-progerin.  However, it was discovered that cells 

expressing GFP displayed a class of repair events not found in the parent cell line 

pLB4/11 as reported in previous studies (Fig 4.13).  A possible explanation for 

this discrepancy can be found in the scientific literature (Wallace et al. 2013).  

Green fluorescent protein has been linked to inflammation (Mak et al. 2007), 

neuropathy (Krestel et al. 2004), and apoptosis (Liu et al. 1999).  The mechanism 

of toxicity has not been fully explained, nor does it appear that any correlation 

has been confirmed or rejected relative to DNA repair.  There remains a 

possibility that free GFP has different cellular activity than GFP appended to a 

fusion protein (regardless of the identity of the fusion).  In future studies, cells 

integrated with pBABE-puro-GFP-laminA would serve as a useful control to 

compare against pBABE-puro-GFP-progerin by showing the difference between 

elevated expression of functional laminA to elevated D50-laminA (progerin).  

The empty vector (pBABE-puro) may also serve as a control. 

Concerning the forms of repair detectable by the methods employed—

gene conversion, homology-dependent deletion, non-homologous end joining—

cells expressing GFP-progerin were not significantly different from pLB4/11 cells.  

However, both GFP and GFP-progerin expressing cell cultures yielded repair 

events that could not be characterized by the assays used.  These uncharacterized 
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results fail to yield a PCR product using primers AW-85 and AW-91, and two of 

these events display unusual banding patterns on Southern blots (Fig 4.11).  Such 

results have not been found in the parent cell line (Table 4.4, Fig 4.13).   

Spontaneous repair also included uncharacterized events.  However, 

despite the failure to fully characterize them, they are demonstrably distinct: all 

of these spontaneous events yielded PCR product in contrast to none of the 

uncharacterized break-induced events.  Furthermore, all of these spontaneous 

events are derived from the same sub-clone of the fluctuation test, so they may 

be descendants of a single repair event.  Without additional research to explicitly 

identify the repair events, statistical tests of these spontaneous/induced results 

are of only marginal value.  
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Figure 4.13 Expanded Data on Ratio of DSB Repair Events in 

Cells According to Protein Expressed 
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