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ABSTRACT 

Ecological communities and the biological interactions that regulate community 

structure are notoriously complex. To make these systems more tractable, ecologists 

traditionally measure and model communities at the population level, treating individuals 

as functionally equivalent. While this approach has yielded tremendous insight into the 

factors governing communities, it remains unclear whether accounting for individual-

level variation could improve our capacity to predict the responses of communities to 

perturbation, a major goal in the midst of unprecedented rates of environmental change.   

The objective of this study was to examine the magnitude of individual-level 

phenotypic variation in predatory crabs (family Xanthidae), and the effects of this 

variation on crab trophic behavior and the strength of their interactions with bivalve prey 

in oyster reef communities. Specifically, I measured individual variation in crab body 

size, behavioral traits and parasite infection. A main aspect of this work was testing how 

each of these factors affected the crab functional response, i.e. the per capita rate of prey 

consumption depending on prey density. This response is important in scaling up prey 

consumption rates to the population level, and to larger spatial scales. I also explored how 

oyster reef habitat structure and threat from toadfish, a predator of crabs, can mediate the 

ecological effects of crab phenotype. 

The results of this work support the importance of individual-level variation for 

species interactions that influence the structure of reef communities. The body size 
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distribution of crabs, which is in part dependent on the presence of structurally complex 

reef habitat, determined their top-down effects on the bivalve prey community. 

Furthermore, individual behavioral traits scaled with crab body size and were consistent 

over time in the field. Individual crab behavior also varied independently of crab body 

size, but could not be predicted by individual metabolic rate. Individual-level variation in 

crab body size, behavioral traits and parasite infection all influenced the crab functional 

response to bivalve prey density in different ways. This work provides a general pathway 

(modification of the functional response) by which the effects of individual phenotypes 

can scale up to influence predator-prey population dynamics.



vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................ iii 

ABSTRACT .......................................................................................................................... iv 

LIST OF TABLES ................................................................................................................. vii 

LIST OF FIGURES ............................................................................................................... viii 

CHAPTER 1 INTRODUCTION ...................................................................................................1 

CHAPTER 2 PREDATORY CRAB SIZE DIVERSITY AND BIVALVE 

 CONSUMPTION IN OYSTER REEFS ...............................................................................15 

CHAPTER 3 PREDATOR SIZE INTERACTS WITH HABITAT STRUCTURE TO 

 DETERMINE THE ALLOMETRIC SCALING OF THE FUNCTIONAL RESPONSE....................46 

CHAPTER 4 EFFECT OF PREDATION THREAT ON REPEATABILITY OF INDIVIDUAL CRAB 

 BEHAVIOR REVEALED BY MARK-RECAPTURE .............................................................78 

CHAPTER 5 TESTING FOR RELATIONSHIPS BETWEEN INDIVIDUAL CRAB 

 BEHAVIOR AND METABOLIC RATE ACROSS ECOLOGICAL CONTEXTS ........................107 

CHAPTER 6 TRAIT-MEDIATED FUNCTIONAL RESPONSES: PREDATOR 

 BEHAVIORAL TYPE MEDIATES PREY CONSUMPTION .................................................136 

CHAPTER 7 PARASITE MODIFICATION OF PREDATOR FUNCTIONAL RESPONSE ...................168 

CHAPTER 8 CONCLUSION ..................................................................................................194 

LITERATURE CITED ...........................................................................................................201 

APPENDIX A COPYRIGHT PERMISSION LETTERS ................................................................236  



vii 

LIST OF TABLES 

Table 2.1 Substitutive experimental design treatments .....................................................39 

Table 2.2 Bivalve prey used in experiment .......................................................................40 

Table 3.1 Competing models predicting mussel location ..................................................72 

Table 3.2 Functional response model parameter estimates ...............................................73 

Table 4.1 Factors influencing crab refuge use behavior ..................................................103 

Table 4.2 Factors influencing crab behavioral change ....................................................104 

Table 6.1 Influences on proportional mussel consumption .............................................164 

  



viii 

LIST OF FIGURES 

Figure 2.1 Size frequency distributions of bivalves from North Inlet ...............................41 

Figure 2.2 Total prey consumption and substitutive model predictions ............................42 

Figure 2.3 Consumption of bivalve prey types ..................................................................43 

Figure 2.4 Contribution of bivalve prey types to dissimilarity between treatments ..........44 

Figure 2.5 Reef height and average crab body size ...........................................................45 

Figure 3.1 Density-dependent mussel location ..................................................................74 

Figure 3.2 Mussel consumption and functional response model fits .................................75 

Figure 3.3 Size scaling of functional response parameters ................................................76 

Figure 3.4 Consumption of mussels at different distances from cluster edge ...................77 

Figure 4.1 Size scaling of crab refuge use behavior ........................................................105 

Figure 4.2 Repeatability of crab refuge use behavior after recapture ..............................106 

Figure 5.1 Repeatability of crab activity level and metabolic rate ..................................132 

Figure 5.2 Effects of predation threat on individual traits of crabs .................................133 

Figure 5.3 Relationships between crab movement and metabolic rate ............................134 

Figure 5.4 Relationships between crab activity level and metabolic rate ........................135 

Figure 6.1 Effects of crab activity level on proportional mussel consumption ...............165 

Figure 6.2 Functional responses in the absence and presence of threat ...........................166 

Figure 6.3 Effect of activity on small crab functional response ......................................167 

Figure 7.1 Effect of parasite infection on crab functional response ................................190 

Figure 7.2 Crab:mussel size ratio effect on handling time ..............................................191



ix 

Figure 7.3 Effect of parasite infection on crab reaction time ..........................................192 

Figure 7.4 Effects of parasite infection on crab size structure and sex ratio ...................193



1 

CHAPTER 1 

INTRODUCTION 

A central goal of ecology is to understand the factors that regulate the abundances 

of interacting species in a given location (i.e. community structure). Early depictions of 

communities linked species based on their feeding relationships (Summerhayes and Elton 

1923, Hardy 1924, Elton 1927), while natural history observations suggested the 

importance of predation in limiting the abundances and distributions of prey species (De 

Bach 1958, Hairston et al. 1960, Pearson 1964, Brooks and Dodson 1965). Brooks and 

Dodson (1965), for example, observed that large-bodied zooplankton were curiously 

absent from Connecticut lakes containing a planktivorous fish, the alewife (Alosa 

pseudoharengus). These lakes were instead dominated by an assemblage of smaller-

bodied zooplankton species (Brooks and Dodson 1965). 

Experimental manipulations, such as predator additions or removals, confirmed 

the potential for predators to regulate communities. For example, Paine (1966) identified 

a predatory invertebrate, the ochre seastar (Pisaster ochraceus), which governs the 

diversity of lower trophic levels in the rocky intertidal through preferential predation on 

the competitively dominant prey species. Ecologists have since demonstrated that such 

indirect, cascading effects of predators are widespread. Trophic cascades, whereby a 

predator reduces the abundance of its prey and this in turn enhances the abundance of the 

prey’s resource, have now been detected across wide range of aquatic and terrestrial
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ecosystems (Terborgh and Estes 2010). Traditional trophic cascades are driven by the 

direct removal of prey by predators (i.e. consumptive effects), but the mere threat of 

predation can induce behavioral changes in prey that reduce their feeding rate (i.e. non-

consumptive effects: Schmitz et al. 2004). Thus the direct and indirect effects of 

predation on ecological communities can be strong and wide-reaching. 

To predict the effects of predators, ecologists seek a mechanistic understanding of 

how this behavioral interaction, often occurring between an individual predator and prey, 

scales up to affect the dynamics of populations and communities over longer time scales. 

This goal is especially topical today given widespread population declines and 

extinctions of top predators (Estes et al. 2011), and the introduction of invasive predators 

around the globe (e.g. Wardle et al. 2009). An ideal model of predator-prey interactions 

incorporates only the necessary elements of the interaction to be generalizable across 

species (i.e. the reductionist approach: Lotka 1925, Volterra 1926, Holling 1959). 

Traditionally, this is accomplished by modelling interactions without regard to the 

specific traits of individuals, but instead focusing on mean effects and changes in 

population sizes.  

The predator functional response, for example, describes the rate of prey 

consumption by a single predator individual as a function of prey density (Holling 1959).  

This response is dependent on the behaviors that a predator and its prey exhibit during an 

encounter, such as the rate of attack and the time it takes to handle an individual prey 

item (Holling 1959). A number of mathematical models have been developed to describe 

this response (Jeschke et al. 2002), and its precise shape is crucial for predictions of 

population stability (Murdoch and Oaten 1975). In general, the same functional response 
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shape is applied across individuals for use in population models (Lotka-Volterra form) 

that predict predator-prey dynamics (Okuyama 2008, Bolnick et al. 2011) or the 

dynamics of multi-trophic systems (Rosenzweig 1973, Oksanen et al. 1981). These 

models also assume homogeneity of predator and prey life-history traits (e.g. birth rate, 

death rate). Again, implicit in this approach is the assumption that the traits of individuals 

are the same, or if variation exists, then it is relatively unimportant. 

This “taxonomic approach” to ecology (sensu Rall et al. 2011) is commonly 

applied in empirical studies as well. In classic food webs, species are depicted as nodes, 

while feeding links between consumers and their energy sources are based on mean diet 

data, or solely from the diets of adult individuals (Cohen 1978, Polis 1991). Furthermore, 

field manipulations, such as predator removal studies, generally remove all predators 

from an area to test the overall effect of predation on communities. Finally, predation 

experiments often constrain the body sizes of individuals in order to reduce this potential 

source of variability, and therefore elucidate the effects of other factors of interest on 

predator-prey interactions (Polis 1984, Werner et al. 1984). Thus whether, and when, it is 

worth incorporating individual variation into empirical studies of predation, at a cost of 

increased complexity, is an important question (Bolnick et al. 2011, Sih et al. 2012). 

In reality, conspecific individuals vary greatly in their traits (Hardy 1924, Bolnick 

et al. 2003). Sex (Shine 1989, Shine 1991) and body size dependent on ontogeny (Polis 

1984, Werner and Gilliam 1984) are two of the most studied aspects of individual 

variation, but there exists further variation within sexes and size classes. This includes 

variation in individual morphology, physiology and behavioral traits (Bolnick et al. 2003, 

Sih et al. 2004, Nespolo and Franco 2007, Burton et al. 2010). In some communities, 
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individual variation even exceeds variation between species means, with important 

ecological consequences (Woodward and Hildrew 2002, Arim et al. 2010). Woodward 

and Hildrew (2002), for example, found that the individual body size of predatory 

invertebrates in the Broadstone stream (UK) was the best predictor of their niche overlap, 

even when compared to their species designations, encounter rates with prey, and 

microhabitat use. Evolutionary biologists have long-recognized individual phenotypic 

variation as the raw material for natural selection (Darwin 1859). However, it remains 

unclear how this variation scales up to affect the population dynamics of interacting 

species and community structure (Bolnick et al. 2011), and in reverse, how the abiotic 

and biotic environment promotes and maintains individual variation in natural 

populations (Araujo et al. 2011).  

A new focus of ecology examines whether the explicit consideration of individual 

variation can help better predict population and community dynamics (Bolnick et al. 

2003, Bolnick et al. 2011). To address this, traditional ecological models of population 

dynamics and species interactions have been revisited to incorporate individual variation 

(Bolnick et al. 2011). One way this has been accomplished is by using a quantitative 

genetics framework that permits modelling of individual phenotypic variation and 

heritability in variation (Schreiber et al. 2011). Furthermore, the development of 

individual-based (Grimm and Railsback 2005) and state-based models (Persson et al. 

1998), requiring previously unavailable computational power, allow the simulation of 

unique individuals and their interactions over time and across space. 

Somewhat in parallel, widespread reductions in biological diversity have 

motivated examination of the importance of functional diversity, i.e. the range of 
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functional traits among species, for ecosystem functions, such as energy transfer, biomass 

production and nutrient cycling (Hillebrand and Matthiessen 2009). Specifically, studies 

of the effects of species richness on ecosystem functioning (Loreau et al. 2001) often 

show that functional diversity, rather than species richness per se, drives ecosystem 

functioning (Tilman et al. 1997, Hillebrand and Matthiessen 2009). A number of indices 

have been developed to quantify functional diversity (Schleuter et al. 2010), and studies 

have compared the efficacy of these indices in linking the traits of organisms with their 

ecological effects (e.g. Petchey et al. 2004).  

The goal of my dissertation is to experimentally examine the importance of 

individual-level phenotypic variation for predator-prey interactions that influence 

community structure. I accomplish this using a model system of Xanthid crabs (Panopeus 

hersbtii and Eurypanopeus depressus) that inhabit intertidal oyster (Crassostrea 

virginica) reefs in North Inlet estuary, South Carolina. Xanthid crabs are important 

consumers of bivalves in oyster reefs, and my work reveals considerable variation in the 

traits of crabs, including body size, behavior and parasite load. By examining the drivers 

of this variation and its effects on crab trophic behavior, this work contributes to the 

current reassessment of the traditional taxonomic approach to studying predator-prey 

interactions (Bolnick et al. 2003, Bolnick et al. 2011). My dissertation touches on three 

main research themes, all of which fall under the umbrella of individual ecology.  

1. Body size constraints on species interactions 

An individual’s body size is perhaps its most ecologically important phenotypic 

trait (Peters 1983, Polis 1984, Werner and Gilliam 1984). Body size influences individual 

energetic demands (Brown et al. 2004), reproductive capacity (Blueweiss et al. 1978), 
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and the strength of species interactions such as competition or predation (Brose et al. 

2010). Individuals often change their diet or habitat use as they grow, and such 

ontogenetic niche shifts are widespread across animal taxa (Polis 1984, Werner and 

Gilliam 1984). Human exploitation, such as fishing, impacts the body size distributions 

of predators by selectively removing the largest individuals (Fisher et al. 2010, Shackell 

et al. 2012), and a reduction in body size has been deemed a universal response to global 

warming (Gardner et al. 2011, Forster et al. 2012). Therefore, understanding of the role 

of body size variation in governing species interactions is necessary to predict the effects 

of these perturbations on communities. 

In Chapter 2, I use a field experiment to test the effects of body size diversity, i.e. 

the number of size classes present, in Panopeus herbstii populations on their 

consumption of the bivalve community in oyster reefs.  Humans are altering organismal 

diversity at multiple organizational scales, from reduced genetic diversity in threatened 

populations (Ellstrand and Ellam 1993), to the loss of entire biotic communities (Guerold 

et al. 2000). Nevertheless, the vast majority of experimental studies have manipulated 

local species richness as the sole metric of biodiversity (Balvanera et al. 2006). Thus, a 

major research challenge is to move beyond species richness manipulations for a more 

holistic understanding of the importance of biodiversity.  My work (Chapter 2) shows 

that large crabs are particularly important in determining top-down effects on the bivalve 

prey community in reefs, while body crab size diversity per se, has little effect on the 

overall rate of prey consumption. This is due to an increase in prey size and diet breadth 

with crab body size, making large crabs functionally unique in their ability to consume 

large bivalves. Furthermore, in a field survey, I show that large crabs tend to inhabit 
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portions of reefs where the height of the surficial oyster shell layer is relatively tall. 

Because the destructive harvest of oysters by humans reduces the height of this shell 

layer (Lenihan and Peterson 1998, Lenihan and Micheli 2000, Lenihan and Peterson 

2004), oyster harvest could compromise trophic transfer through the loss of large crabs.  

A number of studies have tested how the predator functional response scales with 

the size ratio of a predator to its prey (e.g. Miller et al. 1992, Brose et al. 2010, McCoy et 

al. 2011, Rall et al. 2011). Furthermore, allometric constraints on predator-prey 

interactions have been used to successfully predict the structure of natural food webs 

(Otto et al. 2007, Petchey et al. 2008). Still, it is unclear how the size-dependent 

functional response interacts with additional ecological factors, such as physical habitat 

structure. In Chapter 3, I test how the functional response of Panopeus herbstii scales 

with crab body size in structurally complex oyster reef habitat, while keeping mussel prey 

(Brachidontes exustus) size constant. This work shows, counterintuitively, that larger 

crabs consume less mussel prey than smaller crabs at low mussel prey densities (i.e. a 

reduced attack rate). In an additional manipulation, I show that this reduced consumption 

rate is due to the impaired ability of large crabs to extract mussel prey from narrow 

crevices between oyster shells. Again, through the destruction of oyster reef habitat via 

fishing (Lenihan and Peterson 1998, Lenihan and Micheli 2000), this work suggests that 

the loss of structurally complex reef habitat could have major effects on the strength of 

the crab-bivalve interaction. 

2. Individual behavior, a departure from optimality theory 

Animal personality describes intraspecific variation in the behavioral traits of 

individuals that is consistent over time and across ecological contexts (Gosling 2001, Sih 
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et al. 2004, Sih et al. 2012).  Specifically, behavioral types describe individual variation 

in single behavioral traits (e.g. boldness or aggression), while behavioral syndromes 

describe correlations between multiple behavioral traits or the same behavior across 

multiple ecological contexts (Sih et al. 2004). The concept of animal personality provides 

a departure from the traditional view that animal behavior is infinitely labile, varying 

with the organism's internal state as well as the external environment to maximize fitness 

(i.e. optimality theory: Stephens and Krebs 1986). For example, constraints on individual 

behavior (i.e. cross-context behavioral correlations) have been used to explain sub-

optimal behavior exhibited in natural populations, such as precopulatory mate 

cannibalism in fishing spiders (Dolomedes triton) (Johnson and Sih 2005). Despite the 

existence of personality in a diversity of animal taxa (Gosling 2001), ecologists have only 

begun to examine how consistent individual differences in behavior can affect the 

strength of species interactions (Sih et al. 2012). 

In Chapter 4, I measure individual variation in the refuge use behavior of the crab 

Panopeus hersbtii, both in the absence and presence of threat from a major predator of 

crabs, the oyster toadfish (Opsanus tau). This study reveals considerable variation in crab 

refuge use behavior, a portion of which is dependent on crab body size. I find that, in 

general, large crabs use the refuge use less than small crabs, spending more time active in 

both the absence and presence of predation threat. I then use mark-recapture techniques 

to test for temporal consistency in this behavioral trait (i.e. the existence of a behavioral 

type). This work shows that crab refuge use behavior is repeatable over time (crabs spent 

a month in the field on average), and particularly repeatable when measured under the 

risk of toadfish predation. Studies of personality in invertebrates are relatively rare 
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(Kralj-Fišer and Schuett 2014), and this is one of the first to test for the consistency of 

individual behavior in an invertebrate species after time in the field. 

Similar to behavior, there is widespread intra-population variation in metabolic 

rate that is consistent over time, but unexplainable based on size, sex or other easily-

measured aspects of the phenotype (Nespolo and Franco 2007, Burton et al. 2010). 

Individual physiology has been implicated as a key driver of individual behavior (Careau 

et al. 2008); individuals that exhibit energetically costly behaviors (e.g. high activity 

level) should require a greater rate of energy metabolism to support these behaviors (Biro 

and Stamps 2010). In Chapter 5, I examine relationships between individual crab 

(Panopeus herbstii) activity level and standard metabolic rate (O
2
 consumption measured 

via respirometry). To test for context-dependence in the behavior-physiology 

relationship, I measure these traits of crabs in the absence and presence of water-borne 

chemical cues from toadfish (Opsanus tau). In contrast to my previous measurements of 

individual crab behavior (Chapter 4), I use a restricted size range of crabs where the 

effect of crab body size on individual behavior is undetectable. While this study reveals 

repeatability of both individual activity level and metabolic rate independent of crab body 

size, I find no relationship between activity level and metabolic rate, either in the absence 

or presence of predation threat. 

Lastly, in Chapter 6, I examine how individual crab behavior, specifically activity 

level, affects the crab (Panopeus herbstii) functional response to mussel prey 

(Brachidontes exustus) density. The form of the functional response is dependent on 

predator and prey behavior (Holling 1959, Brose 2010), but it remains unclear how 

consistent individual behaviors (i.e. animal personality) can affect the response. In this 
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Chapter, I also test how predation threat from toadfish (Opsanus tau) influences the 

functional response by manipulating the presence of toadfish chemical cues during crab 

foraging. I find that crab activity level affects the functional response of small, but not 

large crabs, suggesting size-dependent effects of activity level on the crab-mussel 

interaction. Specifically, small crabs with a high activity level consume more mussel prey 

across the range of mussel prey densities, reflected in the increased magnitude of their 

type-2 (hyperbolic) functional response. Toadfish predation threat, in contrast, reduces 

the magnitude of the crab functional response. Through alteration of the functional 

response, crab activity level could have important consequences for the population 

dynamics of crabs and mussels. Considering the ubiquity of behavioral types in predator 

and prey populations (Gosling 2001), this work has broad implications beyond the crab-

mussel system. 

3. Parasite effects on individual ecology 

Parasites often modify the traits of their hosts, including host morphology, 

behavior and physiology (Holmes and Bethel 1972). Little known is known however, of 

how these trait changes could alter the species interactions that hosts are involved in (i.e. 

trait-mediated indirect effects). In Chapter 7, I examine the effect of an invasive barnacle 

parasite (Loxothylacus panopaei) on the foraging behavior and functional response of its 

host, the Xanthid crab, Eurypanopeus depressus. I find that this parasite drastically 

reduces the magnitude of the crab functional response, and this change in the response is 

driven by the delayed reaction of infected crabs to mussel prey. Furthermore, individual 

crabs harboring a greater parasite load exhibit a greater reaction time to mussel prey. This 

study therefore provides a mechanistic framework whereby the effects of a parasite on 



11 

individual behavior can scale up to influence predator-prey interaction strength. These 

effects are particularly relevant considering the high prevalence of parasite infection in 

Eurypanopeus depressus from North Inlet estuary (~20%).  

Study system: Xanthid crabs in intertidal oyster reefs 

 Xanthid crabs are a diverse taxonomic group, containing the most genera of any 

Brachyuran family (Williams 1984). Along the Atlantic and Gulf coasts of the U.S., 

Xanthid crabs are some of the most common and ecologically important consumers in 

estuarine habitats. Specifically, in North Inlet estuary, South Carolina (my dissertation 

study site), these crabs are the biomass and density-dominant resident consumers in 

intertidal reefs formed by the Eastern oyster (Crassostrea virginica) (Dame 1979). Oyster 

reefs are critical habitats in North Inlet, covering approximately 5% of its total area and 

providing the only hard-bottom substrate among a seascape of sand/mud flats (Dame 

1979). These reefs host diverse ecological communities (37 resident species) that utilize 

the surfaces of oyster shells, the interstitial spaces between shells and the underlying 

mud/shell hash layer for refuge (Dame 1979). While oysters, the dominant filter-feeder, 

form the foundation of reefs, these habitats support multi-level food webs with major 

trophic groups (Dame and Patten 1981). Oysters also attract mobile predators (Lenihan et 

al. 2001) as well as juvenile fishes that use reefs as nursery grounds (Lehnert and Allen 

2002). 

The bivalves that Xanthid crabs feed upon in reefs, including oysters and several 

species of mussels, provide critical functions to estuarine ecosystems, such erosion 

control, benthic-pelagic coupling and water filtration (Dame et al. 1980, Dame and Libes 

1993, Beck et al. 2011). North Inlet estuary in particular provides a good example of an 
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estuary in which shellfish reefs play a critical role in cycling materials throughout the 

larger estuarine system. Work by Dame et al. (1980) shows that due to North Inlet’s 

small size and extremely dense oyster aggregations, the time it takes for oysters to filter 

the entire water volume is just 0.7 days. By converting phytoplankton to oyster biomass 

and depositing suspended detritus, oysters effectively couple the pelagic and benthic 

zones of the estuary (Dame et al. 1980). 

Two species of Xanthid crabs, Panopeus herbstii and Eurypanopeus depressus, 

co-occur in North Inlet’s reefs (McDonald 1982). These crabs are omnivorous, but the 

larger Panopeus herbstii preys in large part on bivalves, such as oysters, ribbed mussels 

(Geukensia demissa) and scorched mussels (Brachidontes exustus). The smaller 

Eurypanopeus depressus has a more general diet, but can still consume substantial 

numbers of recently-settled juvenile bivalves (McDonald 1982, Chapter 7). These crabs 

have been considered pests for bivalve aquaculture operations in the southeastern U.S. 

due to their predation on cultured bivalves (Gibbons and Castagna 1985, Bisker et al. 

1989), and predation on oyster spat by crabs has been implicated in impacting reef 

development (Wells 1961). Studies of niche variation between these crabs (McDonald 

1982, Meyer 1994) have found that Panopeus herbstii tends to inhabit the shell hash/mud 

layer beneath oyster shells, while Eurypanopeus depressus is more often found in the 

interstitial spaces within the oyster reef matrix.   

The work conducted on the community inhabiting oyster reefs in North Inlet has 

been largely descriptive (e.g. Dame 1979), but several lines of evidence point to the 

importance of predation in controlling the structure of the reef community. Using data on 

the biomasses of different trophic groups in North Inlet’s reefs, Dame and Patten (1981) 
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developed an energy flow model that predicts levels of control throughout the reef food 

web. Their results indicate that next to filter-feeders, the predator trophic group, 

comprised primarily of Xanthid crabs, plays the most important role in controlling the 

dynamics of the reef community. Specifically, predators control filter-feeders by directly 

consuming them, which in turn, alters the deposition of detritus in the system, indirectly 

affecting microbiota and meiofauna components. This result lead the authors to conclude 

that the data “support the ecological argument for top level consumer control of the 

environment” (Dame and Patten 1981). Furthermore, several studies have shown that 

trophic cascades involving Xanthid crabs as mesopredators are major determinants of 

community structure in reefs (e.g. Grabowski 2004, Grabowksi and Kimbro 2005, 

Griffen et al. 2012, Kimbro et al. 2014). These cascades are largely mediated by predator-

induced changes in Xanthid crab foraging behavior (Grabowski 2004, Kimbro et al. 

2014). Taken together, this evidence indicates that the biotic force of predation is 

important in controlling reef community structure in North Inlet.  

In addition to their roles as consumers, Xanthid crabs serve as prey to a variety of 

vertebrate predators including fish and birds. In particular, the oyster toadfish (Opsanus 

tau) is a voracious predator of mud crabs; in South Carolina waters, mud crabs make up 

65% of the diet of toadfish (Wilson et al. 1982). Eurypanopeus depressus are also 

infected by an invasive barnacle parasite (Loxothylacus panopaei) that was introduced to 

the Atlantic coast in the 1960’s through shipments of oysters from the Gulf of Mexico 

(Van Engel et al. 1966). By altering the density and behavior of crabs, these natural 

enemies release the prey of crabs, namely bivalves, from crab predation (i.e. a trophic 
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cascade) (Grabowski 2004, Grabowksi and Kimbro 2005, Griffen et al. 2012, Chapter 6, 

Chapter 7). 

Several characteristics make these crabs an ideal system for which to test the 

importance of individual phenotypic variation for species interactions. First, these crabs 

occur in high densities in North Inlet’s reefs (Dame and Vernberg 1982, McDonald 

1982), making manipulations of their trait distributions in small experimental areas 

realistic. Second, these crabs reproduce continuously over the spring and summer months 

(McDonald 1982), and this pattern of reproduction produces continuous variation in body 

size. In particular, Panopeus herbstii reaches a maximum size of 55 mm (carapace width) 

in North Inlet (Dame and Vernberg 1982, McDonald 1982), and there is some evidence 

that larger crabs utilize different food resources compared to smaller crabs (Seed 1980, 

Whetstone and Eversole 1981). Third, Xanthid crabs have recently been used as a model 

system to examine animal personality (Hazlett and Bach 2010, Griffen et al. 2012, 

Gherardi et al. 2012). While most studies of personality have been conducted using 

vertebrate species, recent work has revealed that invertebrates, such as Xanthid crabs, 

also exhibit individual variation in behavioral traits that is consistent over time (Kralj-

Fišer and Schuett 2014).  
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CHAPTER 2 

PREDATORY CRAB SIZE DIVERSITY AND BIVALVE CONSUMPTION IN OYSTER 

REEFS
1
 

ABSTRACT 

Body size is widely recognized as an important functional trait of predators due to 

its influence on prey consumption rates and diet breadth. Yet it remains unclear how the 

diversity of this trait within predator populations affects prey communities. To test the 

effects of intraspecific predator size diversity, we manipulated the number of size classes 

(i.e. size diversity) in the Xanthid crab Panopeus herbstii and measured their 

consumption of the bivalve community in intertidal oyster (Crassostrea virginica) reefs. 

In the experiment, the presence of large crabs, but not size diversity, significantly 

affected total prey biomass consumption. The largest size class of crabs effectively 

consumed all bivalve prey types whereas smaller crabs were restricted in diet breadth. As 

such, any treatment containing large individuals had significantly greater total prey 

consumption and more uniform consumption across the prey community than those 

without. We also investigated the potential for oyster harvest by humans to alter crab 

population size structure at the study site (North Inlet, South Carolina, USA). 

Specifically, anthropogenic oyster harvest, which acts to compress the surficial shell 

layer in reefs, could reduce crab body size by reducing the availability of refuge habitat

                                                           
1
 Toscano, B.J. and B.D. Griffen. 2012. Marine Ecology Progress Series. 445: 65-74. 

 Reprinted here with permission of publisher. 
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 for large crabs. Therefore, we tested for a relationship between the height of the shell 

layer and average crab body size in the field. In the field survey, average crab body size 

decreased with decreasing height of the shell layer. Thus, our data suggests that oyster 

harvesting practices have the potential to skew crab size structure towards a 

preponderance of small individuals, thereby compromising the trophic transfer that 

occurs in unperturbed reefs.   

INTRODUCTION 

Predator body size is a key functional trait with important consequences for how 

predators affect prey communities (Elton 1927, Kneib & Stiven 1982, Werner & Gilliam 

1984, Woodward et al. 2005, Brose 2010). Predator populations are naturally 

heterogeneous in body size, and different sized conspecifics often have divergent 

ecological effects (Polis 1984, Werner & Gilliam 1984, Werner 1992). For example, 

body size affects individual prey consumption rates due to differing energetic 

requirements or handling times (Mittelbach 1981, Brose 2010), and can also influence 

diet diversity or trophic position due to changes in size of the feeding apparatus (Hardy 

1924, Arim et al. 2010). Incorporating such intraspecific functional variation in both 

empirical and theoretical frameworks has major consequences for trophic interactions and 

food web dynamics (Rudolf 2007, Okuyama 2008, Bolnick et al. 2011, Rudolf & 

Lafferty 2011).  

Body size variation within predators represents a potentially important, yet 

understudied level of predator biodiversity (i.e. intraspecific diversity). Previous studies 

of predator biodiversity have focused almost exclusively on predator species richness (i.e. 

interspecific diversity) (Bruno & Cardinale 2008, Hillebrand & Matthiessen 2009, Reiss 
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et al. 2009, Finke & Snyder 2010). These studies indicate that functional diversity (i.e. 

the range of functional traits among predator species), rather than richness per se, drives 

ecological processes such as prey suppression (Schmitz 2007, Bruno & Cardinale 2008, 

Schmitz 2009). For example, crab species that consume different prey types fulfill 

complimentary functional roles in the rocky intertidal (Griffin et al. 2008). Such resource 

partitioning allows greater resource use efficiency, thus enhancing ecological process 

rates (Finke & Snyder 2008, Griffin et al. 2008).  

Mechanisms such as resource partitioning could apply similarly to the ecological 

effects of intraspecific body size diversity. For example, the partitioning of food 

resources is common within predator species (Polis 1984), where small and large size 

classes of a predator often have non-overlapping diets (Stoner & Livingston 1984). Such 

ontogenetic (i.e. growth-related) shifts are widespread throughout fish, amphibians, 

reptiles and invertebrate taxa (Werner & Gilliam 1984). While some of these species 

undergo major morphological and habitat transitions that are associated with diet 

differences (e.g. amphibians), intraspecific partitioning is also common in predators that 

exhibit simple allometric growth (Werner & Gilliam 1984). Other types of intraspecific 

phenotypic variation (e.g. morphology, sex, individual specialization; Bolnick et al. 

2003) can have similar effects on diet variation within species. In some communities, 

such niche variation within predator species exceeds variation among predator species 

means (e.g. Woodward & Hildrew 2002, Arim et al. 2010). Particularly in these 

communities, intraspecific predator diversity could have ramifications for consumptive 

effects in food webs.  
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Furthermore, intraspecific predator size diversity is being altered by 

anthropogenic stressors. For example, harvesting practices that target the largest 

individuals in a population (i.e. minimum size limits) skew population size structure 

towards smaller individuals (Fisher et al. 2010, Shackell et al. 2010), thus reducing body 

size diversity within predator populations. Harvesting can also indirectly affect predator 

size structure by decreasing intraspecific competition, which in turn increases growth 

rates and size-at-age in some harvested populations (Law 2000).  

The mud crab, Panopeus herbstii, is common along the Atlantic and gulf coasts of 

the U.S., where it inhabits hard-bottom substrates in the intertidal zone, especially oyster 

reefs (Williams 1984). Throughout its range, this crab is a major consumer of mollusks 

(particularly bivalves and gastropods), affecting their local distribution and population 

structure (McDermott 1960, Seed 1980, Bisker & Castagna 1987, Milke & Kennedy 

2001). Within our study site (North Inlet, South Carolina), this crab is the numerically- 

and biomass-dominant resident predator in intertidal reefs created by the eastern oyster 

(Crassostrea virginica) (Dame 1979). These reefs fringe the banks of tidal creeks 

throughout North Inlet and provide the only natural hard substrate available, supporting 

food webs with major trophic levels (e.g. primary producers, primary consumers, 

predators) (Dame 1979). Here, P. herbstii feeds on a community of bivalves including C. 

virginica, scorched mussels (Brachidontes exustus) and ribbed mussels (Geukensia 

demissa) (Dame & Patten 1981, Dame & Vernberg 1982). Feeding preference 

experiments conducted in the laboratory show that larger P. herbstii preferentially 

consume larger bivalves (Seed 1980, Whetstone & Eversole 1981). In North Inlet’s reefs, 

bivalve prey size varies considerably (Figure 2.1), providing opportunity for intraspecific 
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prey resource partitioning. These bivalves in turn provide important ecosystem services 

to North Inlet including benthic-pelagic coupling and erosion control (Dame & Libes 

1993).  

While Panopeus herbstii is not harvested directly, the harvest of their biogenic 

habitat (oysters) is potentially altering the size distribution of P. herbstii in North Inlet’s 

reefs. Oyster harvest (e.g. tonging, dredging, hand-harvesting) is a destructive practice 

that reduces the height and structural complexity of subtidal oyster reefs (Lenihan & 

Peterson 1998, 2004). In North Inlet, recreational oyster harvest has similar impacts on 

intertidal reefs where oyster removal and concomitant trampling reduces the height of the 

surficial shell layer (Toscano, unpublished data), defined as the extension of live and 

dead oyster shells above the sediment. Structurally complex reefs provide refuge for P. 

herbstii and crab density is positively correlated with the volume of oyster clusters 

(Meyer 1994). Because larger crabs require more refuge space than smaller crabs (Meyer 

1994), reductions in the height of the surficial shell layer that occur with oyster 

harvesting could skew crab size structure towards a preponderance of smaller individuals. 

This reduction in crab body size and the more general loss of size diversity could have 

important cascading effects on the oyster reef food web. 

Here, we tested how altered body size diversity in Panopeus herbstii influences 

their top-down effects on bivalves. To accomplish this we manipulated the number of 

size classes in P. herbstii, treating size classes as units of biodiversity, and measured 

aggregate and prey-specific consumption of the bivalve community in reefs. We also 

examined the relationship between the height of the surficial shell layer and P. herbstii 
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body size in the field to determine the potential effects of oyster harvest on crab size 

structure in intertidal reefs.  

METHODS 

 Study site 

 We conducted the experiment and sampled crabs in tidal creeks within North Inlet 

estuary (33° 20’ N, 79° 10’ W) in Georgetown, South Carolina USA. North Inlet is an 

ocean-dominated estuary characterized by high average salinity (34 ppt) and a diurnal 

tidal cycle (mean tidal height of 1.5 m above MLLW) (Dame et al. 1986). The 

experiment was run from July-August 2010 and field sampling was conducted during 

August of 2010 and July of 2011.  

Field experiment 

 In order to test the role of intraspecific body size diversity in mediating the 

predatory impacts of Panopeus herbstii, we manipulated body size diversity, or the 

number of size classes present in a population. We manipulated size diversity over 3 

levels (1, 2 and 3 size classes present) while maintaining a constant total energy demand 

(Chalcraft & Resetarits 2004) in a substitutive experimental design (Table 2.1). This 

design allows separation of the effects of population size distribution on consumption 

rates, without confounding associated allometric changes in metabolic rate that would 

arise if densities were held constant across size classes. This application of the 

substitutive design is analogous to that in species richness studies that alter the number of 

species while maintaining a constant overall density of individuals (e.g. Griffin et al. 

2008, Toscano et al. 2010). 
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 We determined densities of each size class that are equivalent in total energy 

demand using a power-law metabolic rate model where the total energy demand of a 

population (T) of mean body size (W) is a function of the metabolic rate (I) of individuals 

times the number of individuals (N) (Brown et al. 2004, Chalcraft & Resetarits 2004): 

 

Equation 1.  

 

Metabolic rate (I) scales as a power-law function of body size with a scaling 

exponent of roughly 0.75 (Leffler 1973, Brown et al. 2004). Thus, populations i and j of 

densities N and mean body sizes W have an equivalent total energy demand when the 

following equality is satisfied (Chalcraft & Resetarits 2004): 

 

Equation 2. 

 

 

This energetic equivalence rule predicts that populations of equivalent total 

energy demand will have similar impacts on ecological processes related to metabolic 

rate (e.g. ingestion), without taking into account the roles of density-dependence or size 

specific foraging abilities (Chalcraft & Resetarits 2004). 

Specifically, this model yielded the prediction that 8 small crabs (19-23 mm 

carapace width [CW]), 4 medium crabs (29-33 mm CW) and 2 large crabs (38-42 mm 

CW) are approximately equivalent in total energy demand, and so these densities were 

used in assembling the various treatments (Table 2.1). This inverse relationship between 
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density and body size as well as the overall crab biomass used in this experiment is 

similar to patterns in natural populations of Panopeus herbstii from North Inlet (Dame & 

Vernberg 1982, McDonald 1982). Here, crabs exhibit fairly distinct size classes due to 

pulsed recruitment during late spring and summer (Dame & Vernberg 1982, McDonald 

1982). The experiment was conducted in a randomized complete block (temporal) design 

with a total of 5 blocks (N = 5 replicates per treatment).  

 We conducted the experiment within completely enclosed wire cages (0.5 [L] × 

0.6 [W] × 0.3 [H] m) lined with 0.25 cm polyethylene plastic sheet netting to prevent 

predator emigration or immigration. Each cage received two artificial oyster reefs (0.3 

[L] × 0.16 [W] × 0.12 [H] m) to recreate the intertidal oyster reefs inhabited by the study 

species. We used artificial reefs to precisely control the amount and type of prey in cages, 

as well as standardize the complexity of the habitat because reef complexity is an 

important determinant of Panopeus herbstii bivalve consumption rates (Grabowski 2004, 

Grabowski & Powers 2004). We created these reefs using oyster shell that had been dried 

and cleaned to remove epifauna. Holes were drilled in shell and shell clusters were 

assembled to mimic natural reef formations using plastic zip-ties. We then mounted the 

clusters on a fiberglass base and standardized by size as well as volume (measured 

through water displacement) to create a standardized reef matrix on which bivalve prey 

could be attached.  

 Two sizes of Brachidontes exustus (small: 0.5-0.9 g wet weight [WW], large: 1-2 

g WW) and Crassostrea virginica (small: 4-7 g WW, large: 11-14 g WW), and a single 

size of Geukensia demissa (3-6 g WW) were offered to crabs in cages within the range of 

natural field densities (Figure 2.1; Table 2.1). These species are the most common 
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constituents of the bivalve grazer community in North Inlet’s reefs (Dame 1979), and are 

all commonly found in the stomach contents of Panopeus herbstii from the field site 

(Griffen, unpublished data). Bivalve prey were attached to the artificial oyster reefs in the 

lab prior to trials. Oysters were glued (Gorilla Super Glue) to artificial reefs while 

mussels attached naturally through byssal thread formation. After attachment, artificial 

reefs with prey were placed in flow-through seawater tanks and individual bivalves were 

observed for normal filtering behavior over 24 h. Predators and prey were collected from 

reefs adjacent to the study site and used only once in the experiment. Crabs were starved 

for 2 days prior to trials to standardize hunger levels. 

 Cages were deployed over a homogenous substrate of mud/sand adjacent to and at 

the same tidal level as natural oyster reefs. First, sediment taken from the mud/sand flat 

adjacent to the experimental site was added to cages (8 cm). Artificial reefs with attached 

prey were then added. Next, 20 loose shells of similar dimensions, also dried and cleaned 

of epifauna, were scattered around the artificial reefs in each cage, again to recreate the 

complex, 3-dimensional habitat of natural oyster reefs. Finally, treatments were randomly 

assigned to cages and crabs were added.  Trials lasted 48 hours (4 tidal cycles) and cages 

were deployed and retrieved at low tide. At the conclusion of each trial, surviving prey 

were counted and mortality was determined as the loss of prey between the start and end 

of trials.  

Prey biomass consumption (dry weight prey tissue consumed, g 48 h
-1

) was used 

as the response variable in all statistical analyses. Dry weight was determined as follows. 

First, sub-samples of prey used in the experiment were randomly taken to estimate the 

mean wet weight of each prey type (Table 2.2). Then, for a range of sizes of each prey 
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type, soft tissue was removed and dried in a drying oven at 60 °C for 24 h to determine 

the relationship between wet tissue weight and dry tissue weight using linear least-

squares regression (Brachidontes exustus: R
2
 = 0.84, Crassostrea virginica: R

2
 = 0.69, 

Geukensia demissa: R
2
 = 0.85). To estimate prey-specific consumption, the number of 

individual prey of each type that were missing at the end of trials was multiplied by the 

mean dry tissue weight for individuals of that prey type (as estimated through linear 

regression) (Table 2.2). The mean dry tissue weight of each individual prey species 

consumed by crabs was summed to derive the total consumption by the crab population 

in each cage.  

We used a two-factor analysis of variance (ANOVA) with temporal block and 

treatment as factors to test for differences in total consumption among the different 

treatments (treatments A to G, Table 2.1). We then used the following planned linear 

contrasts to test specific hypotheses regarding the effects of crab size diversity and size 

composition on total consumption. First, we compared the mean of the three single-size-

class treatments (A, B, C) to the most diverse 3-size class treatment (G) to test for the 

effect of body size diversity on total consumption. Second, we compared treatments with 

large crabs (C, E, F, G) to treatments without (A, B, D) to test for the importance of large 

crabs in determining total consumption.  

For treatments with 2 size classes present (D-F), we compared actual total 

consumption to that predicted by a substitutive model (Griffen 2006): 

 

Equation 3.    E = (C1 × C2)
0.5
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where E is expected total prey consumption and C1 and C2 are total consumption by each 

size class separately. This substitutive model predicts total consumption assuming 

additive effects (Griffen 2006). Two-tailed paired t-tests were used to compare predicted 

and observed total consumption to determine whether predation by different size classes 

did in fact combine additively (Griffen 2006). Total consumption data for these analyses 

were not significantly different from a normal distribution (Shapiro-Wilk normality test: 

W = 0.965, P = 0.325) and variances were homogenous among groups (Bartlett’s test: test 

statistic = 11.9719, df = 6, P = 0.063).  

 We used permutational multivariate ANOVAs (PERMANOVA) to test for 

differences among treatments in their effects on the bivalve prey assemblage. The first 

PERMANOVA tested for differences in prey resource use between the 3 single-size-class 

treatments (treatments A to C). The second PERMANOVA tested for differences in prey 

resource use between the multiple size class treatments (treatments D to G). Similarity 

percentage (SIMPER) analysis was used to determine which bivalve prey types 

contributed most to dissimilarity between treatments. SIMPER was conducted using 

PAST (Hammer et al. 2001). All other statistical analyses were conducted using R 

(v.2.12.0) (R Core Development Team 2010).  

Crab sampling 

To examine the relationship between the height of the surficial shell layer and 

crab body size, we sampled mean shell layer height and mean crab body size in 0.25 m
2
 

quadrats (N = 29) from intertidal oyster reefs that receive mild harvest pressure (Toscano, 

personal observations). Quadrats were taken from reefs bordering tidal creeks that were 

roughly equivalent in area (50 m
2
) and shape. Mean shell layer height was measured as 

the distance between the mud layer and tops of shells at the corner of each quadrat (4 
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measurements for each quadrat were averaged). Crabs from within the quadrat were 

removed and mean size was determined. Because crab recruitment occurs over the spring 

and summer months (Dame & Vernberg 1982, McDonald 1982), densities of new recruits 

were likely higher than if crabs were sampled at other times of the year. Thus, we only 

sampled crabs over 15 mm CW to reduce the influence of new recruits. Only plots with 

100% oyster shell cover were sampled to avoid confounding the known effects of percent 

shell cover on Panopeus herbstii populations (Meyer 1994). Since both variables were 

sampled with error, model II regression (reduced major axis regression) was used to test 

for a significant relationship between reef height and crab body size. 

RESULTS 

Field experiment 

 Prey mortality in predator-free controls was low (< 3% for all prey species 

combined), indicating that prey mortality in predator-present treatments was due to 

predation. Total prey consumption differed across treatments (ANOVA, F6,24 = 5.207, P 

= 0.001, Figure 2.2) and temporal blocks (ANOVA, F4,24 = 3.939, P = 0.013).  Mean total 

prey consumption of the 3 single-size-class treatments (A to C) did not differ from that 

when 3 size classes were combined (G) (linear contrast, F1,24 = 0.391, P = 0.538, Figure 

2.2), though treatments that included large crabs had greater total consumption than 

treatments without large crabs (linear contrast, F1,24 = 14.422, P = 0.0009, Figure 2.2).  

Small and medium crab combinations (treatment D) and small and large crab 

combinations (treatment E) had greater total consumption than substitutive model 

predictions based on consumption by each size class alone (paired t-tests, t4 = -3.083, P = 

0.037 and t4 = -3.921, P = 0.017, for treatments D and E respectively, Figure 2.2). Total 
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consumption by medium and large crabs together (treatment F) however, did not differ 

significantly from the model prediction (paired t-test, t4 = -0.894, P = 0.422, Figure 2.2). 

 Prey-specific consumption of the bivalve assemblage was dependent on treatment 

in single-size-class treatments (PERMANOVA, F2,12 = 16.616, P = 0.01, Figure 2.3a).  

SIMPER analysis revealed that Geukensia demissa was the prey type that contributed 

most to dissimilarity between small and large crab treatments, as well as between 

medium and large crab treatments (Figure 2.4). Small Crassostrea virginica contributed 

most to dissimilarity between small and medium crabs (Figure 2.4). In general, small 

crabs restricted their diet to small and large Brachidontes exustus. Medium crabs also 

consumed both size classes of B. exustus, while adding G. demissa and small C. virginica 

to their diet. Large crabs had the broadest diet and consumed the bivalve prey types most 

evenly.  Specifically, large crabs increased their consumption of G. demissa and small C. 

virginica, while further adding large C. virginica to their diet and reducing consumption 

of B. exustus (Figure 2.3a). 

Treatment had a marginal effect on prey-specific consumption of the bivalve 

community when multiple size classes of crab were present (perMANOVA, F3,16 = 2.232, 

P = 0.06, Figure 2.3b). Consumption of Brachidontes exustus remained fairly consistent 

across multiple size class treatments (Figure 2.3b), while consumption of large 

Crassostrea virginica, a much larger prey item (Table 2.2, Figure 2.1), occurred only in 

the presence of large crabs (Figure 2.3b).  
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Crab sampling 

The average body size of Panopeus herbstii was positively related to the height of 

the surficial shell layer (model II regression, P < 0.0001, R
2
 = 0.479, Figure 2.5) within 

intertidal oyster reefs. 

DISCUSSION 

In the field experiment, crab body size diversity had no effect on total prey 

consumption when all 3 size classes were combined (Figure 2.2). There was however, 

some evidence of emergent, positive effects of size diversity in treatments with 2 size 

classes (Figure 2.2). More important than diversity per se was the presence of large crabs. 

In treatments with large crabs present, total prey consumption was significantly greater 

than in treatments without large crabs (Figure 2.2). In the field survey, we found a 

positive relationship between the height of the surficial shell layer and crab body size 

(Figure 2.5). Because oyster harvest reduces the height of this shell layer, harvest can 

have substantial indirect effects on crab size structure. Specifically, oyster harvesting 

practices that reduce shell layer height and structural complexity likely skew crab size 

structure towards a preponderance of small individuals, thereby reducing mean crab size 

in reefs. Due to the importance of large crabs in enhancing trophic transfer (Figure 2.2), 

the loss of large crabs could substantially perturb the oyster reef food web. 

Data on prey-specific consumption (Figure 2.3) provides some insight into the 

mechanisms behind the total consumption results. The lack of a consistent effect of body 

size diversity was not surprising considering crab size classes did not discretely partition 

bivalve prey resources.  Theoretical work predicts that increasing specialist consumer 

diversity should enhance aggregate resource use, while increasing generalist consumer 
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diversity should have no effect (Ives et al. 2005). Empirical studies support this 

prediction, showing that partitioning among foragers can increase resource use efficiency 

(Finke & Snyder 2008, Griffin et al. 2008). Instead of partitioning among size classes, 

there was an increase in diet breadth with crab body size (i.e. nested diets, Figure 2.3a). 

Smaller crabs were restricted in their resource use to the smallest prey types (small and 

large Brachidontes exustus: Figure 2.3a) while larger crabs added larger prey to their diet 

while still consuming smaller prey, albeit at lower rates (Figure 2.3a).  

Positive effects of diversity were seen however, in treatments with 2 size classes 

present. Both small and medium, as well as small and large crabs together consumed 

significantly more than the additive prediction (Figure 2.2). In our substitutive 

experimental design, there is a reduction in size class density in the more diverse 

treatments (Table 2.1). This could have the effect of releasing crabs from intra-size class 

competition. This is congruent with the empirical finding that only size ranges that 

overlap in resource use exhibit density-dependence within species (Polis 1984) and that 

interference competition between crabs is strongest among similarly-sized conspecifics 

(Smallegange & van der Meer 2007). This same mechanism has been observed in studies 

of predator richness, where multispecies predator assemblages have greater effects on 

ecological processes due to reduced intraspecific densities, and thus reduced resource 

overlap and interference (Griffin et al. 2008, Takizawa & Snyder 2011). However, only 

with stomach contents analyses or additional treatments from an additive design (Griffen 

2006, Byrnes & Stachowicz 2009) can this hypothesis be assessed with the present 

system. It also is worth mentioning that while we limited the prey community to bivalves, 

a major food source for Panopeus herbstii, these crabs are omnivorous and will consume 
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other food resources including other invertebrates, algae and detritus (Toscano and 

Griffen, unpublished data). Had these other food resources been incorporated into the 

study, partitioning between size classes may have been detected. 

In treatments with large crabs, total prey consumption was enhanced relative to 

treatments without large crabs. This was due to the ability of large crabs to consume the 

larger bivalve prey types (Figure 2.3a) that were not consumed by smaller crabs on the 

time scale of our experiment. These resource use differences among different sized crabs 

were likely driven by morphological constraints on foraging, and a trade-off in the 

foraging capabilities of small and large crabs (Seed & Hughes 1997, Morton & Harper 

2008). The major claw of small crabs, the functional organ used to handle prey, is not 

large and robust enough to crush the large prey types outright, and so these prey gain a 

size refuge in treatments with small crabs on the time scale of our experiment (Figure 

2.3a). However, smaller crabs are more efficient than large crabs at consuming 

Brachidontes exustus in this study (Figure 2.3a). This is supported by functional response 

data in which small crabs consume more small B. exustus at low prey densities (Toscano 

and Griffen, unpublished data). Thus, under predation by large crabs, smaller prey may 

gain a partial refuge from predation. 

While our experiment revealed these short-term changes in predation with crab 

size structure, size structure could also affect bivalve population dynamics, the long-term 

stability of the reef community, and the recovery of the community from disturbance. 

While our data suggests that the loss of large crabs may free larger oysters from 

predation, higher consumption rates on small, or newly settled bivalves (e.g. oyster spat) 

by small crabs could impede the recovery of reefs from perturbation. Thus the loss of 
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large crabs (and predominance of smaller crabs) could affect the recruitment and 

assembly of the bivalve community. These long-term consequences of changes in 

predator size structure are unknown, but likely important for the management of 

imperiled reef systems worldwide.  

Ontogenetic diet expansion, as detected in the present study, is common in 

consumers (Polis 1984, Werner & Gilliam 1984, Woodward & Hildrew 2002, Woodward 

et al. 2005, Arim et al. 2010) and particularly those that are limited by the size of their 

feeding apparatus (e.g. mouth gape size in fish and amphibians, claw size in crabs). In 

such consumers, large individuals are functionally unique as they can consume prey that 

smaller individuals cannot. In these cases, the loss of size structure, and particularly the 

loss of large individuals, can have important implications for lower trophic levels; 

without large predator individuals, large prey items will be freed from top-down control. 

This is an important applied issue because human harvesting practices often remove the 

largest individuals in a population, skewing population size structure towards smaller 

individuals and reducing intraspecific body size diversity. Thus understanding how 

intraspecific size diversity in predator populations mediates their community impacts is 

critical to ecosystem-based management practices, which in part focus on the 

community-wide effects of harvesting a species. 

Reduced top-down control resulting from the harvesting of large individuals was 

recently observed by Shackell et al. (2010) who reported that exponential increases in 

prey abundance over 38 years in a northwest Atlantic fishery are related to declines in the 

average body size of exploited fish predator species. Total predator biomass remained 

constant over this time period, but the body mass of predators declined 60% due to the 



 

32 

preferential exploitation of large individuals. This loss of large individuals initiated a 

trophic cascade in which prey were freed from top-down control, in turn reducing 

zooplankton and increasing phytoplankton abundances. Our study provides a mechanistic 

basis that elucidates how such a broad-scale effect can transpire with the loss of large size 

classes from predator populations. 

In sum, previous studies document the importance of predator species richness 

(Bruno & Cardinale 2008), yet aspects of intraspecific predator diversity remain to be 

fully incorporated into the larger framework of predator biodiversity. Our study has 

addressed one component of intraspecific phenotypic diversity, though other components 

of intraspecific diversity are likely also important in driving ecological or even ecosystem 

level processes (e.g. individual specialization, resource use differences due to 

polymorphism; Bolnick et al. 2003).  As with size diversity, these additional forms of 

diversity can be altered by human activities. For example, exploitation often targets 

certain animal personality types where the boldest individuals more frequently approach 

and are caught in traps (Biro & Post 2008). This removal of particularly bold individuals 

can alter the intraspecific behavioral diversity of a population. With continued alterations 

to all organizational levels of biodiversity, the challenge is to move beyond species 

richness manipulations alone to gain a more holistic understanding of the functional 

importance of biodiversity. 
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Table 2.1 Treatments in a substitutive experimental design used to examine the effects of 

body size diversity and size composition of Panopeus herbstii populations on bivalve 

prey consumption. Each treatment was replicated 5 times in a randomized complete block 

design. Total energy demand (T) units refer to densities of crabs from each size class that 

are approximately equivalent in total energy demand. Small crabs were 19-23 mm 

carapace width (CW), medium crabs 29-33 mm CW and large crabs 38-42 mm CW. 

  

 

  

Treatment Small Medium Large T  units Size 

code no. cage
-1

no. cage
-1

no. cage
-1

size class
-1

diversity

A 24 0 0 3 1

B 0 12 0 3 1

C 0 0 6 3 1

D 12 6 0 1.5 2

E 12 0 3 1.5 2

F 0 6 3 1.5 2

G 8 4 2 1 3

H (control) 0 0 0 0 0



 

40 

Table 2.2 Bivalve prey community offered in all treatments. Numbers of prey were split 

evenly between the 2 reefs in each cage. Sub-samples of prey used in experiment were 

randomly taken to estimate mean wet weight for each prey type. See “Methods” for 

procedure used to estimate dry tissue weight for each prey type. 

 

 

  

Prey N Size class N Mean SE Dry tissue

species cage
-1

(wet weight; g)  (sub-sample)  wet weight (g)  weight (g)

Brachidontes exustus

small (15-18 mm) 20 0.5 - 0.9 201 0.68 0.009 0.027

large (19-24 mm) 10 1.0 - 2.0 154 1.39 0.033 0.055

Crassostrea virginica

small (35-44 mm) 12 4.0 - 7.0 183 5.73 0.075 0.077

large (53-58 mm) 6 11.0 - 14.0 168 12.34 0.078 0.159

Geukensia demissa (34-44 mm) 4 3.0 - 6.0 74 4.31 0.106 0.131



 

41 

 
 

Figure 2.1 Size frequency distributions of bivalves in intertidal oyster reefs in North 

Inlet, South Carolina: A) Size frequency distributions of oysters, Crassostrea virginica 

(white bars) and the mussel Geukensia demissa (black bars). Only oysters on the exterior 

of the cluster, and thus vulnerable to predation on the time scale of our experiment were 

enumerated; B) Size frequency distribution of the mussel Brachidontes exustus (grey 

bars). All bars are means ± 1 SD from oyster clusters (N = 13). Clusters were randomly 

selected from reefs adjacent to the study site. Clusters varied in volume, and so densities 

here were scaled to the cluster volume (5760 cm
3
) used in field cages. Each cage received 

2 clusters of this volume (see main text for explanation of field experiment). 
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Figure 2.2 Observed total prey consumption by crab population treatments (A-G, Table 

2.1) and substitutive model predictions for treatments with 2 crab size classes (D-F, Table 

2.1). Values are mean total dry weight tissue consumed, g 48 h
-1

 of 5 replicates ± 1 

standard error. Substitutive model predictions were calculated for each trial block 

separately using eq. 3. * denotes a significant difference between observed and predicted 

total consumption rate (α = 0.05). “Div.” refers to the diverse treatment with 3 crab size 

classes present (treatment G, Table 2.1). See Table 2.1 for densities of different crab size 

classes within treatments. 
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Figure 2.3 Consumption of different bivalve prey types by predator population 

treatments: A) Consumption by single-size-class treatments (A-C, Table 2.1); B) 

Consumption by multiple size class treatments (D-G, Table 2.1). Values are mean dry 

weight tissue consumed, g 48 h
-1

 of 5 replicates ± 1 standard error. See Table 2.2 for prey 

sizes and densities. 
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Figure 2.4 Histogram of the contribution of bivalve prey types to dissimilarity between 

small and medium crab treatments (A vs. B, Table 2.1; white bars), small and large crab 

treatments (A vs. C, Table 2.1; grey bars), and medium and large crab treatments (B vs. 

C, Table 2.1; black bars) as determined by SIMPER. See Table 2.2 for prey sizes and 

densities. 
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Figure 2.5 Relationship between reef height and body size of Panopeus herbstii in 

intertidal oyster reefs in North Inlet, SC. Each point represents the mean crab body size 

(mm) and mean reef height (mm) sampled per 0.5 m
2
 quadrat (N = 29). 
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CHAPTER 3 

PREDATOR SIZE INTERACTS WITH HABITAT STRUCTURE TO DETERMINE THE 

ALLOMETRIC SCALING OF THE FUNCTIONAL RESPONSE
2
 

ABSTRACT 

While both predator body size and prey refuge provided by habitat structure have 

been established as major factors influencing the functional response (per capita 

consumption rate as a function of prey density), potential interactions between these 

factors have rarely been explored. Using a crab predator (Panopeus herbstii) - mussel 

prey (Brachidontes exustus) system, we examined the allometric scaling of the functional 

response in oyster (Crassostrea virginica) reef habitat, where crevices within oyster 

clusters provide mussels refuge from predation. A field survey of mussel distribution 

showed that mussels attach closer to the cluster periphery at high mussel density, 

indicating the potential for saturation of the refuge. In functional response experiments, 

the consumption rate of large crabs was depressed at low prey density relative to small 

crabs, while at high prey density the reverse was true. Specifically, the attack rate 

coefficient and handling time both decreased non-linearly with crab size. An additional 

manipulation revealed that at low prey densities, the ability of large crabs to maneuver 

their claws and bodies to extract mussels from crevices was inhibited relative to small 

crabs by the structured habitat, reducing their attack rate. At high prey densities, crevices

                                                           
2
 Toscano, B.J. and B.D. Griffen. 2013. Oikos. 122: 454-462. 

 Reprinted here with permission of publisher. 
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were saturated, forcing mussels to the edge of clusters where crabs were only limited by 

handling time. Our study illuminates a potentially general mechanism where the quality 

of the prey refuge provided by habitat structure is dependent on the relative size of the 

predator. Thus anthropogenic influences that alter the natural crab size distribution or 

degrade reef habitat structure could threaten the long-term stability of the crab - mussel 

interaction in reefs. 

INTRODUCTION 

Predator-prey interactions provide structure for communities and the strength of 

these interactions is a primary determinant of community stability (MacArthur 1955, 

Paine 1980, Berlow et al. 2004, O’Gorman and Emmerson 2009). Accordingly, 

understanding the factors that constrain predator-prey interaction strength remains a 

continual goal in ecology (Berlow et al. 2004). Predator-prey interaction strength is often 

described by an individual predator’s consumption rate as a function of prey density 

(Holling 1959, Berlow et al. 2004). This relationship, termed the functional response 

(Solomon 1949), is dependent on emergent traits related to a predator’s foraging behavior 

such as attack rate (instantaneous rate of encounter, depending on reactive distance, 

movement speed and capture success) and handling time (time it takes to capture, subdue, 

consume and digest an individual prey) (Holling 1959, Jeschke et al. 2002). As a 

component of predator-prey population models, the functional response allows scaling up 

from these individual behavioral traits to predict predator and prey population dynamics. 

At the population level, the precise shape of the functional response, as determined by the 

predator’s attack rate and handling time, governs the stability of predator-prey dynamics 

(Murdoch and Oaten 1975, Hammill et al. 2011). 
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Due to the importance of the functional response for predator-prey population 

dynamics, considerable work has been conducted on the ecological factors that determine 

response characteristics (Jeschke et al. 2002). One such factor is the ratio of predator size 

to prey size. Predator-prey size ratios generally act to constrain the functional response 

within parameter space due to mechanistic links between body size and foraging behavior 

traits (Brose 2010). For example, attack rate is predicted to be hump-shaped with respect 

to the predator-prey body size ratio. When predators are small relative to their prey, their 

search area and movement speed should be reduced and when predators are large relative 

to their prey, their capture success should be low with some maximum in between. 

Indeed, recent work employing simple allometric constraints has had great success in 

predicting trophic links and their strength in empirical food webs (Otto et al. 2007, 

Petchey et al. 2008, O’Gorman and Emmerson 2009). However, empirical data on such 

scaling relationships is sparse, and as a result, common patterns in the size scaling of 

foraging traits remain unresolved (Brose 2010). Determining the precise allometric 

scaling of functional response parameters is important because it can have major 

consequences for the dynamics of size structured populations (Persson et al. 1998, 

McCoy et al. 2011). Furthermore, studies documenting allometric scaling of the 

functional response rarely identify the mechanisms behind empirical scaling relationships 

(Brose 2010, Vucic-Pestic et al. 2010); identifying these mechanisms is essential in 

making predictions that extend beyond specific taxonomic groups.  

A second ecological factor that can significantly affect the functional response is 

prey refuge, defined as any strategy that reduces predation risk (Sih 1987). For example, 

a prey refuge provided by habitat structure is commonly cited as the mechanistic basis of 
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sigmoidal or type III functional responses (Hildrew and Townsend 1977, Anderson 

2001). At low prey densities, most prey occupy the structural refuge and are therefore 

invulnerable to predation. As prey density increases, the refuge becomes saturated and 

the proportion of prey in the refuge decreases (Sih 1987). This causes density dependent 

predation (proportional consumption is lowest at the lowest prey densities), and thus a 

type III response. Because type III functional responses can stabilize predator-prey 

population dynamics (Murdoch and Oaten 1975, but see Basset et al. 1997), prey refuges 

are generally assumed to have this effect, but prey refuges can also destabilize 

interactions under certain circumstances (McNair 1986). 

While numerous studies demonstrate the independent importance and ubiquity of 

predator-prey body size ratios and structural prey refuges in determining the functional 

response, interactions between these two factors, though rarely explored, may be 

fundamental to determining the functional response in many systems. Habitat structure is 

intrinsically size-dependent, as different sized individuals perceive habitat structure 

differently based on their own body size (sensu MacArthur and Levins 1964). For 

example, habitat structure could act as a filter that restricts large predators more 

effectively than small predators from accessing prey due to the greater maneuverability of 

smaller predators through structurally complex habitats (Denno et al. 2004, Brose 2010). 

This effect could be particularly strong at low prey densities when a greater proportion of 

prey are located within the refuge (Sih 1987). Such an interaction of predator size and a 

prey structural refuge could lead to changes in the attack rate, driving a shift from a 

hyperbolic, type II (no prey refuge) to a type III response (prey refuge) with increasing 

predator-prey size ratio (Brose 2010). 
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In the present study, we examined potential interactions between predator body 

size and a structural refuge for prey in determining the functional response of a crab 

(Panopeus herbstii) foraging on mussels (Brachidontes exustus) in oyster (Crassostrea 

virginica) reef habitat. Here, mussels use crevices within oyster clusters as a refuge from 

crab predation. We first tested for density dependence in refuge use by mussels in the 

field, an important criterion for the stabilizing effects of the refuge on predator-prey 

dynamics (Sih 1987). We then examined how the functional response scales with 

predator body size within this structured habitat. We hypothesized that the crab 

functional response would shift from type II to type III with increasing crab size. P. 

herbstii exhibits a type II response when foraging on another bivalve (loose oysters) in a 

simple, unstructured laboratory setting (Rindone and Eggleston 2011). Therefore we 

expected small P. herbstii to exhibit a type II response when foraging on mussels because 

they are not restricted by habitat structure in accessing mussels. Large crabs, in contrast, 

should be more restricted in accessing mussels, eliciting a type III response. Finally, we 

performed a manipulation to determine the degree to which habitat structure hampers the 

ability of large verses small crabs to extract prey from the refuge. 

METHODS 

Study system 

We used a crab predator (Panopeus herbstii) – mussel prey (Brachidontes 

exustus) system to examine the effects of predator body size and a structural refuge for 

prey on the functional response. P. herbstii (Family: Xanthidae) inhabits a range of 

habitats in the intertidal zone along the eastern and Gulf coasts of the U.S. (Williams 

1984). Within our study site (North Inlet estuary, SC, USA), this crab is the numerically 
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dominant resident predator in structurally complex intertidal oyster (Crassostrea 

virginica) reefs (Dame 1979). Here, P. herbstii feeds on a number of bivalve species 

including B. exustus (Toscano and Griffen 2012).  

The P. herbstii – bivalve body size ratio is important in determining their 

predator-prey relationships in reefs. For example, there is evidence that larger P. herbstii 

individuals (>30 mm carapace width, CW) preferentially consume larger bivalves (Seed 

1980, Whetstone and Eversole 1981), while smaller individuals are restricted to 

consuming smaller bivalves (Seed 1980, Toscano and Griffen 2012). These shifts in prey 

choice may be related to size specific differences in the foraging abilities of different 

sized crabs. Furthermore, because populations of P. herbstii in North Inlet include a 

broad size range of individuals (Dame and Vernberg 1982, McDonald 1982), size 

dependent foraging traits could determine the population-level impacts of P. herbstii on 

bivalves (Toscano and Griffen 2012). 

The importance of reef habitat structure and the complexity of this structure (e.g. 

aggregated vs. unaggregated oyster shells [Grabowski and Powers 2004]) for trophic 

interactions involving P. herbstii has also received attention. Experimental manipulations 

show that oyster reef structural complexity reduces interference between foraging P. 

herbstii conspecifics at high crab densities, enhancing their consumption of the hard clam 

(Mercenaria mercenaria) (Grabowski and Powers 2004). In contrast, ribbed mussel 

(Geukensia demissa) prey appear to take some refuge in structurally complex oyster 

clusters from P. herbstii predation (Lee and Kneib 1994). Similarly, the mussel B. 

exustus is found almost exclusively in crevices within oyster clusters in intertidal oyster 

reefs in North Inlet. When placed on oyster shell in flow-through tanks, these mussels 
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tend to seek out (“walking” with their muscular foot) and attach preferentially to crevices 

between shells (Toscano personal observation). Living within protective crevices could 

limit the capture success of their relatively larger crab predator, thus serving as a refuge 

from otherwise intense crab predation in reefs.  

All animals used in experiments as well as oyster clusters for the survey of mussel 

distribution within clusters were collected from intertidal oyster reefs in North Inlet 

estuary (33° 20’ N, 79° 10’ W), Georgetown, South Carolina, USA. We conducted our 

study during May-September in 2010 and 2011, and experiments were run in a screened-

in wet laboratory at the Belle W. Baruch Institute for Marine and Coastal Sciences. 

Field survey of mussel distribution in oyster clusters 

 We first surveyed the distribution of individual mussels within oyster clusters (N 

= 35) from the field to examine potential density-dependence in their use of this refuge 

habitat. An oyster cluster is a conglomeration of live oysters and dead shells that is 

detached, but still resting on the surface of the reef. These clusters contain a network of 

interstitial spaces that are occupied primarily by mussels. For our survey, we selected 

oyster clusters of roughly equal size from intertidal reefs (~50 m
2
) that border tidal creeks 

in North Inlet. Clusters selected were from the same tidal height and spaced at least 1 m 

apart in reefs. We measured the weight of each cluster, the depth of individual mussels 

within the cluster (cm from cluster edge), as well as the number of mussels in each 

cluster. Only mussels that were visible from the cluster exterior and thus presumably 

accessible to crabs were measured. 

We tested for the effects of mussel density on the location of individual mussels 

within oyster clusters using generalized linear mixed effects modeling (function glmer, 
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package lme4 in R [v.2.12.0]). We first regressed the number of mussels per cluster on 

cluster weight to determine the residual variation in mussel number not due to cluster size 

(i.e. mussel density). We then used these residuals as well as cluster weight as fixed 

factors, and cluster number as a random factor (to control for pseudoreplication), with the 

distance of individual mussels from the edge of the cluster as the response variable in a 

generalized linear mixed model (GLMM) fit by the Laplace approximation. Because 

mussel location data contained zeros and behaved like count data, we assumed Poisson 

distributed errors with a log link (Bolker et al. 2009). To correct for overdispersion, we 

included an additional random factor at the level of the individual observation (the 

number of data points) (Elston et al. 2001, Bolker et al. 2009), which has the effect of 

converting the Poisson distribution to a lognormal-Poisson distribution (similar to the 

negative binomial distribution typically used to model overdispersion). We fit models 

with and without fixed factors (while retaining the random factors) and compared models 

using Akaike’s information criterion corrected for small sample sizes (AICC) to 

determine whether adding factors significantly improved the fit of models, while taking 

into account the added model complexity. 

Functional response experiments 

We determined the functional response for 6 crab size classes (18-21 mm 

carapace width [CW], 23-26 mm CW, 28-31 mm CW, 33-36 mm CW, 38-41 mm CW 

and 43-46 mm CW) foraging in oyster reef habitat. The smallest crab size class (18-21 

mm CW) is around the minimum size capable of consuming the size of B. exustus used in 

the present study (12-16 mm shell length) (Toscano unpublished data), and the largest 

size class is near the maximum body size of P. herbstii from North Inlet (Dame and 
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Vernberg 1982, McDonald 1982). We offered B. exustus to crabs in 10 densities within 

oyster clusters: 1, 2, 4, 6, 8, 10, 14, 20, 30 and 40 mussels per tank. Smaller increments 

between lower prey densities allowed detection of subtle curvature in the functional 

response. Trials were run in a randomized block design. All treatments were replicated at 

least 3 times, with treatments showing particularly high variance replicated up to 9 times. 

Artificial oyster clusters were used to approximate the structure of natural reefs, 

while providing a relatively standardized reef habitat on which mussels could attach. 

Clusters were created using oyster shell that had been dried and cleaned to ensure 

removal of any epifauna. Holes were drilled in shell and shell clusters were assembled to 

mimic natural reef formations using plastic zip-ties. Clusters were standardized by the 

number of shells (5 shell per cluster) as well as volume (measured through water 

displacement). The necessary number of mussels for a given treatment were placed 

evenly on 2 oyster clusters in a flow-through seawater table and allowed to attach through 

byssal thread formation overnight. During this period, mussels moved within the clusters 

to find an appropriate anchoring location. Crevice space was limiting in these clusters at 

high mussel densities, forcing some mussels to attach towards the cluster periphery. 

We ran the functional response experiments in glass mesocosms (50 × 28 × 30 

cm) that were completely enclosed in black plastic to reduce light entry, thus mimicking 

the low-light conditions of North Inlet estuary during summer months (Dame et al. 1986). 

Each tank received a single crab, which scales up to a density of approximately 7 crabs 

per m
2
. Crab population density during summer months averages 13.08 ± 6.23 (mean ± 1 

standard deviation) crabs >18 mm CW
 
(Toscano unpublished data), and thus our 

experimental density falls within this range. We established mesocosms as follows. First, 
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a 3 cm layer of sand/mud substrate taken from the estuary was added to the bottom of the 

tanks. Next, 2 artificial oyster clusters with attached mussel prey of a certain density were 

added. Last, 8 large oyster shells (dried and cleaned of epifauna) of approximately equal 

size were scattered around the oyster clusters within each mesocosms, again to mimic 

natural reef habitat. Each tank received a constant flow of unfiltered seawater throughout 

trials. 

Only crabs with two fully developed and functional claws (i.e. no re-growing or 

damaged claws) were used and individual crabs were only used once (i.e. for 1 prey 

density). Crabs were starved for 1 day prior to trials to standardize hunger levels. Crabs 

were placed in tanks at the start of trials and given 24 h to forage, after which the sand 

substrate was sieved and oyster clusters and loose shell were checked for remaining 

mussels. We used 24 h trials to prevent high levels of prey depletion based on 

consumption rates determined in preliminary trials. 

Functional responses were estimated separately for each predator size class (N = 

6). We applied a generalized functional response model to consumption data (Real 1977; 

Hammill et al. 2011): 

 

   
  

   (     
   )

 ,         eqn 1 

 

Where Ne is the number of prey eaten, N0 is initial prey density, P is the number 

of predator individuals, T is the experimental duration, h is handling time and bN0
q
 

describes the attack rate (Real 1977, Hammill et al. 2011). This attack rate term (bN0
q
) 

allows density-dependence in the functional response, where b is a coefficient that 
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describes the scaling of attack rate with prey density (Vucic-Pestic et al. 2010), and q is 

an exponent that allows the response type to vary between a type II response (q = 0) and a 

type III response (q > 0) (Hammill et al. 2011). Because prey were consumed and not 

replaced over the 24 hour duration of our experiment, declining prey density was 

integrated over the experimental duration to find the number of prey eaten (Hammill et 

al. 2011). To estimate parameters, the functional response model was fit using maximum 

likelihood with binomial errors. We only assumed a type III response when q was 

significantly greater than zero and confirmed the response type by fitting traditional type 

II and type III functional response models to each crab size class and comparing fits 

using Akaike’s information criterion (AIC). 

Manipulation of mussel distribution within oyster clusters 

 During functional response experiments, we observed that mussels not eaten by 

large crabs at low mussel densities tended to be located within crevices in clusters, rather 

than exposed. This led us to hypothesize that large crabs are less efficient foragers at low 

mussel densities because their larger claws are less dexterous within crevices, resulting in 

a lower attack rate than small crabs. To test this interaction of habitat structure and 

predator size, we crossed mussel distribution (0, 3 and 6 cm from the cluster exterior) 

with crab size (23-26 mm CW, 33-36 mm CW and 43-46 mm CW), resulting in 9 unique 

treatments, each replicated 6 times. Trials were run in a randomized block design with 6 

treatments per temporal block. Mussel distribution was manipulated by gluing 8 mussels 

within a standardized cluster at a set distance from the exterior of the cluster (0, 3 or 6 

cm). A density of 8 mussels was used because all size classes 23-26 mm CW and larger 

showed the ability to consume this number of prey over 24 h (Figure 3.2), allowing us to 
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attribute any differences in predation efficiency to capture success, rather than handling 

time. Observations confirmed that mussels continued normal filtering activity after being 

glued to clusters. 

Artificial clusters used in this additional manipulation were different from those 

used in the functional response experiment and were created as follows. Five rectangular 

sheets (12 × 5 × 0.2 cm, roughly the size of an oyster shell) of acrylic Plexiglas were 

glued together at one end in the configuration of an open book. This design allowed us to 

hold the angle between Plexiglas sheets constant (not possible with irregularly shaped 

oyster shells) and precisely control the distribution of mussels within the cluster. This 

experiment was run in smaller plastic mesocosms (30 × 18 × 12 cm). Experimental 

conditions (e.g. mesocosm setup and experimental duration) were otherwise the same as 

in the functional response experiments. 

We tested for the fixed effects of mussel distribution (distance from the edge of 

the cluster), crab size, and their interaction, with temporal block as a random factor on 

mussel consumption in a GLMM. Again, we fit the model using the Laplace 

approximation and assumed Poisson distributed errors with a log link for count data 

(Bolker et al. 2009). Fixed factors and the interaction term were dropped sequentially 

while retaining the random factor. We determined the most parsimonious model using 

AICC comparisons. All statistical analyses were conducted using R (v.2.12.0) (R Core 

Development Team 2010). 
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RESULTS 

Field survey of mussel distribution in oyster clusters 

 Mussel density was an important predictor of individual mussel location; the 

model including this factor provided a better fit than the null model of the random factor 

(cluster number) only (∆AICC = 4.81), as well as the next best model including the 

additional factor of cluster weight (∆AICC = 2.01) (Table 3.1). Mussel density was 

negatively associated (coefficient ± SE: -0.062 ± 0.0227, P = 0.006) with mussel location 

within clusters (distance from cluster edge) (Figure 3.1). 

Functional response experiments 

 In contrast to our hypothesis that crabs would transition from a type II to a type III 

functional response with crab size, we found that all crab sizes exhibited type III 

functional responses (q significantly greater than 0; Table 3.2, Figure 3.2, Figure 3.3b), 

except for 23-26 mm and 43-46 mm size classes, in which q was greater than, but not 

significantly different from zero (Table 3.2). AIC comparison of type II and type III 

models fit to each size class generally supported these results; a type III response better 

explained consumption rate data than a type II response for all predator size classes. 

Attack rate coefficient and handling time parameters declined non-linearly with predator 

body size (Figure 3.3a, 3.3c). Specifically, the attack rate declined abruptly between 28-

31 mm and 33-36 mm crab size classes (Figure 3.3a). Handling time declined as a power-

law function of crab size, as indicated by the linear relationship after log-transformation 

(Figure 3.3c). A simple power-law function fit to the handling time data yielded the 

equation h = 1.718(body size)
-0.87

. 
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Manipulation of mussel distribution within oyster clusters 

In the test of the mechanism behind the shift in attack rate (Figure 3.3a), the 

model including crab size and mussel distribution as factors, as well as their interaction, 

performed much better than the next best model (∆AICC = 20.44) (Table 3.1). Regarding 

the interaction between these factors, the mussel consumption of small crabs (23-26 mm) 

was not affected by mussel location within the artificial cluster, while the consumption of 

larger crabs (33-36 mm, 43-46 mm) decreased when mussels were located deeper within 

the cluster (3, 6 cm) (Figure 3.4). 

DISCUSSION 

The relative sizes of predator and prey constrain trophic interactions at an 

individual level (Brose 2010), and studies employing these allometric constraints have 

had great success in predicting the properties of natural food webs (Otto et al. 2007, 

Petchey et al. 2008, O’Gorman and Emmerson 2009). In the present study, we examined 

how habitat structure affects the allometric scaling of the functional response, thus 

extending our understanding of size-based foraging constraints to more realistic habitats 

that include prey refugia. While all crab sizes exhibited roughly type III functional 

responses in the structurally complex habitat (Figure 3.2, Figure 3.3b), crab sizes differed 

in functional response parameter estimates. These parameter estimates and their size 

scaling have major implications for predator and prey population stability (Persson et al. 

1998, Hammill et al. 2011, McCoy et al. 2011). In particular, we observed a decline in 

the attack rate coefficient with crab size, separating the 3 smaller and 3 larger size classes 

into functional groups (Table 3.2, Figure 3.3a). We hypothesized that this reduction in 

attack rate with predator size was due to larger crabs being limited in their ability to reach 
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into tight spaces within clusters to remove mussels, resulting in a prey refuge that is 

dependent on predator size. This hypothesis was supported by our experiment that 

manipulated the location of mussels within artificial clusters and measured the 

consumption efficiency of crabs of different body sizes (Figure 3.4). Furthermore, our 

survey of mussel distribution within clusters from the field showed that mussels attached 

closer to the edge of clusters with increasing mussel density (Figure 3.1). This is probably 

because the deeper, more protected spaces in clusters were already occupied, forcing 

newly settling mussels to attach where they are more vulnerable to crab predation. Thus 

crevice space could be a limiting resource in the field. 

While an abundance of studies show that habitat structure and the complexity of 

this structure can reduce foraging efficiency (Orth et al. 1984), the precise mechanism by 

which this occurs is rarely identified. Decreased foraging efficiency in structured habitats 

is usually attributed to increased search and pursuit time of predators (Crowder and 

Cooper 1982). The interaction between predator size and habitat structure shown here 

(Figure 3.4) provides an alternative or additional mechanism behind the commonly 

reported negative relationship between habitat structure and predation success. This 

mechanism is potentially widespread, occurring wherever relatively larger predators must 

enter or reach into tight spaces to capture prey. For example, this mechanism has been 

implicated in driving the predation refuge for small or juvenile resident fish in corals 

reefs (Hixon and Beets 1993, Holbrook and Schmitt 2002, Almany 2004), where 

sheltered holes in high complexity reefs limit the foraging success of large transient 

predators. This mechanism was also suggested to operate in decreasing the foraging 

success of large, but not small pipefish foraging on amphipods that took refuge in 
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crevices between seagrass shoots (Ryer 1988), as well as smallmouth bass foraging on 

crayfish that use interstitial spaces between cobble substrate as a refuge from predation 

(Stein 1977). While these studies have implicated the mechanism shown here, ours is one 

of few to demonstrate this mechanism (see also Holbrook and Schmitt 2002, Sarty et al. 

2006), as made possible by our ability to manipulate the distribution of prey within the 

refuge. In general, reductions in predation rate associated with prey refuges reduce 

interaction strengths and enhance population stability (McCann et al. 1998, Berlow 

1999). Thus, the size dependent prey refuge revealed in the present study could have 

important implications for the dynamics of predator and prey populations and food webs 

more broadly. 

Past studies have reported hump-shaped relationships between predator-prey size 

ratio and the attack rate (Spitze 1985, Vucic-Pestic et al. 2010, McCoy et al. 2011), 

although linear relationships have also been shown (Thompson 1975, Hassell et al. 1976). 

Proposed mechanisms behind hump-shaped attack rates include reduced consumer 

movement and reactive distance at a low size ratio, decreased capture success at a high 

size ratio, and a high attack rate due to improved movement and capture success at some 

intermediate predator-prey size ratio (Brose 2010), though these hypothesized 

mechanisms await empirical confirmation. While the scaling of the attack rate with 

predator size in our study could be interpreted as the middle-right region of a hump-

shaped relationship (Figure 3.3a), and thus the result of previously suggested, habitat 

structure-independent mechanisms, several lines of evidence indicate that these 

mechanisms do not apply to the present system. First, while a predator’s attack rate is 

dependent on predator and prey speeds of movement, prey movement speed can be 
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ignored in the present study because mussels are relatively sessile. Increases in crab size 

(and thus the length of walking legs) should increase movement speed and the amount of 

prey encountered, thereby increasing the attack rate. We however, observed a decrease in 

attack rate with crab size (Figure 3.3a). Second, while a predator’s attack rate is also 

dependent on predator and prey reactive distances, reactive distance is probably of 

limited importance in our experiment due to mussel distribution; because mussel prey 

were located in a central patch (the oyster cluster), other mussels are within reach of the 

predator after a single mussel is detected. Lastly, a predator’s attack rate is dependent on 

capture success, which we have shown is highly dependent on habitat structure (Figure 

3.4) but may also depend on factors independent of structure. Because crabs of different 

sizes still exhibited some variation in consumption efficiency when all mussels were at 

the edge of the cluster and thus completely vulnerable (0 cm: Figure 3.4), this indicates 

that some factor is operating to reduce the attack rate independently of the prey refuge. 

For example, larger crabs could have a reduced ability, again independent of habitat 

structure, to grasp mussels in order to remove them from the cluster. Alternatively, 

optimal foraging theory predicts that consumers will choose prey that maximize their 

energy intake. If large crabs, relative to small crabs, do not perceive mussels as profitable 

prey (sensu Basset et al. 2012), they may be conditioned to passing up mussels at low 

densities in the field in lieu of more profitable prey. Again, this could cause variation in 

consumption efficiency when mussels are completely vulnerable. This also indicates that 

in a field setting where alternate prey types are available (Toscano and Griffen 2012), the 

interaction strength between crabs and mussels could be reduced.  
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Handling time declined nonlinearly with predator body size (Figure 3.3c). 

Although we lack the replication and coverage along axes necessary to determine the true 

shape of this function, handling time appears to follow a negative power-law decline with 

crab size (Figure 3.3c). This result is consistent with theoretical predictions based on 

metabolic theory (Brose 2010). When prey are dense (highest N0) there is no search 

required, and so predators are only limited by their handling time. Thus, a predator’s 

maximum consumption rate is equivalent to the inverse of its handling time. Because 

maximum consumption rate is roughly proportional to body size (Peters 1983), handling 

time should follow a ¾ power-law decline with increasing predator-prey body size ratio 

(Brose 2010). Handling time in the present study declined with body size at a scaling 

exponent of -0.87, indicating fairly good agreement with this theory. 

The type III response in our study is consistent with that in other studies where a 

general prey refuge is included (Hildrew and Townsend 1977, Anderson 2001). P. 

herbstii exhibits a type II response when foraging on oysters in an unstructured 

laboratory setting (Rindone and Eggleston 2011), although a comparison of the response 

type in an unstructured habitat in our study is needed to identify the prey refuge as the 

mechanism behind the type III response. Only one other study has tested the size scaling 

of the exponent that allows the response to vary between a type II and type III. This study 

found that the scaling exponent generally increased with relative predator size (a shift 

from type II to type III responses) (Vucic-Pestic et al. 2010). This result however, was 

species-specific: beetle predators displayed a significant shift, though spiders did not. 

Furthermore, this comparison by Vucic-Pestic et al. (2010) was confounded by the use of 
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different prey species for the 2 different sizes of prey. We did not find strong evidence 

for change in response type with crab body size.  

Our results may have important implications for community dynamics in oyster 

reefs that experience substantial fishing pressure. Destructive fishing practices are a 

major source of physical disturbance for marine communities and common ecological 

effects of fishing include habitat degradation (Thrush and Dayton 2002) and changes to 

the size structure of harvested species (Law 2000, Shackell et al. 2010). Oysters, in 

particular, are heavily exploited worldwide (Beck et al. 2011) and oyster harvesting tends 

to diminish the height and structural complexity of oyster reefs (Lenihan and Peterson 

2004). In addition to these effects on reef habitat, oyster harvest also potentially alters 

crab size structure at our study site (North Inlet, SC, USA). Specifically, by reducing the 

height of the surficial shell layer in intertidal reefs (Toscano unpublished data) and thus 

the availability of refuge space for large (>30 mm CW) crabs, harvest can skew crab 

population size structure towards a preponderance of small individuals relative to the 

natural crab size distribution (Toscano and Griffen 2012). Thus, changes to both habitat 

structural complexity and crab size structure are occurring at our study site, and the 

interaction between these factors revealed in our study could play a major role in the 

dynamics of crabs and mussels in the face of this anthropogenic influence. Based on the 

results of the present study, high densities of small crabs and an elimination of refugia for 

mussels could reduce mussel densities or even eliminate local populations. Comparing 

mussel population dynamics in heavily harvested vs. unharvested reefs could provide 

some test of the general effects of harvest on community dynamics and the importance of 

the mechanism revealed in the present study. 
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Finally, though traditional functional response models assume predator 

conspecifics to be functionally equivalent (Jeschke et al. 2002), intraspecific variation in 

the functional response is probably widespread in nature. Understanding how different 

individual functional responses combine and scale up to influence prey over larger spatial 

scales is a major remaining research challenge. Scaling up could be complicated by errors 

due to the averaging of non-linear responses (i.e. Jensen’s inequality: Okuyama 2008), 

differential interference between different sized predator individuals (Smallegange and 

van der Meer 2007), and prey preferences that vary with individual predator size 

(Kalinkat et al. 2011). Despite these inherent complexities, the allometric scaling of the 

functional response and its scaling to population and community levels is essential to 

effectively modeling and managing the dynamics of size-structured populations 

(Hunsicker et al. 2011), and is thus deserving of focused attention.  
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Table 3.1 Comparison of competing models used to predict individual mussel location 

within oyster clusters from the field survey (see “Methods: Field survey of mussel 

distribution in oyster clusters”), and models used to predict mussel consumption in the 

experiment (see “Methods: Manipulation of mussel distribution within oyster clusters”). 

 

 

  

Model parameters K AICC ∆AICC W

Response: individual mussel location within oyster clusters (field survey)

Mussel density + cluster number + observation number 3 315.5 0.00 0.67

Mussel density + cluster weight + cluster number + observation number 4 317.5 2.01 0.25

Cluster number + observation number 2 320.3 4.81 0.06

Cluster weight + cluster number + observation number 3 322.2 6.70 0.02

Response: mussel consumption (experiment)

Crab size + mussel location + crab size*mussel location + temporal block 4 86.88 0.00 1.00

Crab size + mussel location + temporal block 3 107.3 20.44 0.00

Mussel location + temporal block 2 117.1 30.20 0.00

Crab size + temporal block 2 133.9 47.03 0.00

K  is the number of parameters, ∆AICC is the difference between AICC values for each model and the model 

with the lowest AICC, and W  is the AICC weight.
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Table 3.2 Parameter estimates, their standard errors, and statistical significance levels for 

the functional response model (eq. 1) fit to each predator size class. Model parameters are 

the attack rate coefficient (b), a scaling exponent parameter (q) indicating the type (i.e. 

type II or type III) of response, and handling time (h). 

 

 
  

Size class b SE (b ) q SE (q ) h SE (h )

18-21 mm 1.5340
***

0.0372 0.6547
***

0.0160 0.1414
***

0.0034

23-26 mm 1.6706 1.0612 0.9374 0.8038 0.1251
***

0.0126

28-31 mm 1.5043
*

0.5978 1.4522
*

0.6395 0.0823
***

0.0053

33-36 mm 0.3961
*

0.1918 0.7588
*

0.3193 0.0729
***

0.0091

38-41 mm 0.2545
*

0.1127 0.5960
*

0.2904 0.0786
***

0.0162

43-46 mm 0.1399 0.1017 0.6953
#

0.3887 0.0689
***

0.0191

Level of significance: P  < 0.001: 
***

; P  < 0.01: 
**
; P  < 0.05: 

*
; P  < 0.1: 

#
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Figure 3.1 Relationship between mussel density and individual mussel location from 

oyster clusters collected from intertidal oyster reefs in North Inlet, SC. Each point 

represents an individual mussel’s location (distance from the edge of the cluster [cm]) as 

a function of the mussel density (no. of mussels / cluster weight [kg]) in that cluster. 

Small amounts of horizontal and vertical displacement were added to points for clarity. 
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Figure 3.2 Mean consumption ± 1 standard error with functional response model (eq. 1) 

fits for 6 crab size classes foraging on mussels across a range of mussel densities: A) 18-

21 mm carapace width (CW); B) 23-26 mm CW; C) 28-31 mm CW; D) 33-36 mm CW; 

E) 38-41 mm CW; F) 43-46 mm CW. 
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Figure 3.3 The scaling of functional response parameters with crab predator body size: 

A) b = attack rate coefficient (white points); B) q = scaling exponent parameter indicating 

the response type (gray points); C) h = handling time (day ind.
-1

) (black points). Points 

indicate parameters estimates ± 1 standard error. Inset graph in panel C depicts the 

roughly linear relationship between size log10 and handling time log10, indicative of a 

power-law function. The equation of a power-law function fit to the handling time data is 

h = 1.718(body size)
-0.87
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Figure 3.4 Mussel consumption by small crabs (23-26 mm carapace width [CW]; white 

bars), medium crabs (33-36 mm CW; light gray bars) and large crabs (43-46 mm CW; 

dark gray bars) foraging on 8 mussels glued at 3 distances (0, 3 and 6 cm) from the edge 

of a standardized cluster. 
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CHAPTER 4 

EFFECT OF PREDATION THREAT ON REPEATABILITY OF INDIVIDUAL CRAB 

BEHAVIOR REVEALED BY MARK-RECAPTURE
3
 

ABSTRACT 

The persistence of behavioral types in situ and the drivers of persistence are 

central to predicting the ecological effects of intraspecific behavioral variation. We 

surveyed individual refuge use of mud crabs (Panopeus herbstii), a behavior related to 

the strength of a trait-mediated trophic cascade in oyster reefs, in the absence and 

presence of toadfish (Opsanus tau) predation threat. We then released these crabs into the 

field and using mark-recapture, measured the repeatability of this behavior in the absence 

and presence of threat, and how behavioral change was affected by time in the field (a 

month on average, up to 81 days), crab size, and sex. Because crabs exhibited some 

evidence of a circatidal rhythm in refuge use, we also tested how tidal height during 

observation influenced behavioral change. Predation threat increased refuge use and 

small crabs used the refuge more than large crabs, particularly under threat. In recaptured 

crabs, refuge use was more repeatable under threat. Neither time in the field, crab size, 

crab sex nor tidal height had any effect on behavioral change. Our results support the 

non-mutually exclusive hypotheses that (1) prey organisms in the presence, rather than 

absence, of predation threat should exhibit less behavioral variability because the fear of

                                                           
3
 Toscano, B.J., Gatto, J. and B.D. Griffen. 2014. Behavioral Ecology and Sociobiology. 68: 519-527. 

 Reprinted here with permission of publisher. 
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 dying (a severe fitness consequence) should take precedence over less immediately 

important influences on behavior (e.g. hunger); and that (2) individual behaviors tied to 

fixed traits (e.g. the body size dependence of refuge use under threat in this study), rather 

than variable traits, should be more repeatable over time. 

INTRODUCTION 

Consistent variation in behavior between conspecific individuals, variously 

referred to as behavioral types, behavioral syndromes, coping styles, animal personality 

and/or temperament, is a common and taxonomically widespread phenomenon that has 

fundamentally changed the way ecologists view behavior (Gosling 2001; Sih et al. 2004). 

Here we define consistent behavioral variants as behavioral types (BTs), and correlations 

between multiple behavioral traits or the same behavior across multiple contexts as 

behavioral syndromes following the terminology of Sih et al. (2004). Traditionally, 

animal behavior was considered highly plastic, shaped by both the organism’s internal 

state as well as the external environment to maximize fitness (Emlen 1966; Stephens and 

Krebs 1986). Yet increasingly, the importance of constraint imposed by individual BTs 

on behavioral flexibility is recognized as a common aspect of behavior. Accordingly, a 

new research front explores the effects of BTs, as well as other aspects of individual-level 

variation more broadly (Bolnick et al. 2003; Bolnick et al. 2011), on population and 

community dynamics (Sih et al. 2012). Individual constraints on animal behavior have 

recently been used to successfully predict the form and strength of intra- and interspecific 

interactions that ultimately determine community structure (e.g. Pruitt and Ferrari 2011; 

Griffen et al. 2012; Pruitt et al. 2012). For example, Pruitt and Ferrari (2011) found that 

the proportion of aggressive vs. docile BTs in spider (Anelosimus studiosus) colonies 
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determines the nature of their interactions (commensal vs. mutualistic) with other spider 

species that inhabit their webs. 

 Determining both the long-term persistence of ecologically-relevant BTs and the 

drivers of persistence in wild animals is critical to understanding the ecological and 

evolutionary consequences of BTs (Bell et al. 2009; Archard and Braithwaite 2010). If 

the behavioral traits of individuals change over time in the field, then the ecological 

effects of these traits will also change accordingly. At one extreme, traits that prove 

highly variable (i.e. non-persistent) in the field will offer little predictive power in 

ecology. Furthermore, measuring the persistence of BTs, particularly in natural field 

situations, can shed light on the internal and environmental drivers of BTs (Stamps and 

Groothuis 2010), and is necessary to fully understand the timing and overall effects of 

BTs on individual fitness (Dingemanse and Réale 2005). 

 Two methodologies common to BT studies currently impede our ability to assess 

the long-term persistence and thus ecological relevance of BTs. First, many studies of 

BTs assess repeatability (i.e. proportion of total phenotypic variation due to between-

individual variation, a measurement of the temporal consistency of individual behavior) 

over relatively short time intervals of a few days or less, and second, studies commonly 

house animals in the lab between longitudinal behavioral measurements (Bell et al. 2009; 

Archard and Braithwaite 2010; but see e.g. Réale et al. 2000; Wilson and Godin 2009, 

Ferrari et al. 2013). These approaches exacerbate the difficulty of extrapolating to field 

situations. For example, repeatability can decline over time (Bell et al. 2009), and so 

traits that are shown to be repeatable over a few days should not be assumed repeatable 

over longer periods. Furthermore, short repeatability estimates can be strongly influenced 
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by stochastic variation in environmental conditions during behavioral measurement 

(Dingemanse et al. 2002; Gabriel and Black 2010). Repeatability of wild vs. lab-held 

animals may differ because the field generally provides a more dynamic environment, 

and therefore traits with any environmental dependence should change at a faster rate 

(Hoffman 2000). Holding animals in the lab for long periods of time between behavioral 

measurements (e.g. weeks or months) can also impede learning and development 

dependent on field conditions or experiences which may drive behavioral change in the 

field (Archard and Braithwaite 2010). Lastly, because the lab is foreign to animals, they 

may become acclimated to the lab when held for long periods of time, distorting 

measurements of repeatability and potentially yielding behavioral patterns that are 

inconsistent with those of animals accustomed to field conditions (Butler et al. 2006; Biro 

2012; but see Herborn et al. 2010). 

 Short duration experiments on animals housed in the lab are particularly common 

with invertebrates that have become important model systems for studying the ecological 

effects of BTs (Mather 2013; more specifically, decapods: Gherardi et al. 2012; spiders: 

Pruitt and Riechert 2012; anenomes: e.g. Rudin and Briffa 2012). Indeed, the majority of 

studies measuring repeatability of invertebrate behavior do so over a period of a few 

days, and few studies have measured the persistence of individual behavior for 

invertebrates living under natural field conditions, as opposed to being held in the lab, 

between behavioral measurements (but see recent studies of anemones: Briffa and 

Greenway 2011; Hensley et al. 2012). This dependence on the lab is understandable 

because the small size and cryptic nature of invertebrates make them difficult to follow or 

relocate in the field. Yet the longer-term repeatability and thus the ecological relevance of 



 

82 

BTs in this important group of model organisms remains understudied. Measuring the 

persistence of BTs in invertebrates is also important for evaluating the welfare of 

invertebrates in animal research, which has been overlooked in comparison to the welfare 

of vertebrate species (Horvath et al. 2013). 

 In the present study, we assessed the long-term (a month on average, up to 81 

days) repeatability of individual refuge use behavior in mud crabs (Panopeus herbstii) 

measured in the absence and presence of toadfish (Opsanus tau) predation threat. 

Specifically, we measured crab refuge use behavior in the lab, marked and released crabs 

into the field, and then recaptured crabs and measured behavior once again in the lab to 

assess repeatability. Refuge use behavior of mud crabs has important ecological 

consequences for oyster (Crassostrea virginica) reef community dynamics (Griffen et al. 

2012). Individual refuge use mediates the strength of an indirect species interaction 

common in reefs along the Atlantic and Gulf coasts of the United States. Mud crabs that 

feed on scorched mussels (Brachidontes exustus) and juvenile oysters  respond to 

chemical cues from predatory toadfish by taking refuge under oyster shells, and this 

increased refuge use reduces their bivalve consumption rate (Grabowski 2004; 

Grabowski and Kimbro 2005). Yet individual crabs differ in their response to toadfish 

threat along a shy-bold continuum (Griffen et al. 2012; this study). Accordingly, 

individual refuge use by crabs helps predict their mussel consumption in the presence of 

toadfish threat, mediating the strength of the indirect interaction (Griffen et al. 2012). 

While some variation in crab refuge use behavior can be explained by crab size, there is 

additional variation in refuge use not explained by size or other crab characteristics that is 

important in determining the consumption rate of crabs (Griffen et al. 2012). Here, in 
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addition to measuring the repeatability of refuge use behavior in the absence and 

presence of threat, we tested how duration in the field between behavioral measurements 

and individual crab traits (body size and sex) influenced change in refuge use behavior 

over time.  

 We formulated several hypotheses regarding the persistence of individual crab 

refuge use behavior. First, we hypothesized that refuge use under toadfish predation 

threat would be more repeatable than refuge use in the absence of predation threat. This is 

because the fear of dying should take precedence over an organism’s current energetic 

state (e.g. hunger level) or other environmental conditions (e.g. social situation) that 

influence behavior, but have less immediate fitness consequences (termed here ‘the 

predation hypothesis’; Fodrie et al. 2012). Therefore, behavioral variability derived from 

these less important behavioral influences should be reduced. Second, it is likely that 

large P. herbstii reach a size refuge from predation in the field (Hill 2011; Heinonen and 

Auster 2012; Toscano unpublished data), and therefore may have little reason to fear and 

avoid toadfish. By the opposite reasoning behind our first hypothesis, we expected that 

larger crabs should exhibit greater flexibility in refuge use due to a size refuge that 

reduces the importance of predator avoidance, thus elevating the relative importance of 

their current internal state and environmental conditions. Lastly, we hypothesized that 

repeatability of refuge use would decline with time spent in the field due to greater 

opportunity for environmental effects, learning, development and conditioning: processes 

which have been demonstrated to drive behavioral change (Bell et al. 2009). 

Furthermore, individuals for whom repeatability is measured over a long time interval are 

more likely to change physiological state (e.g. hunger level) between measurements 
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compared to individuals measured over shorter time intervals (Bell et al. 2009), which 

again should decrease repeatability over time.  

METHODS 

 We first surveyed the individual refuge use of 247 mud crabs in the absence of a 

toadfish chemical cue and the refuge use of 224 separate crabs in the presence of the cue 

(i.e. under predation threat) from May-August 2012. All crabs were collected by hand 

from an oyster reef known as Oyster Landing in North Inlet estuary, Georgetown, SC, 

USA (33°20′N, 79°10′W). Crabs were collected within a 20 × 20 m area at the center of 

the reef. Behavioral measurements were made in a screened-in wet laboratory at the 

adjacent Belle W. Baruch Institute for Marine and Coastal Sciences. Measuring crab 

refuge use behavior in the field was not possible due to the high turbidity of water in 

North Inlet during the summer months that limits visibility (Dame et al. 1986). 

Initial behavioral measurements 

The following describes our procedure for a single observational block. Thirty-

two observational blocks were run over the course of the study (May-August). Sixteen 

crabs were collected between 20 and 30 mm carapace width (CW) from Oyster Landing 

reef and we attempted to ensure that each collection reflected the entire crab size range 

(20 – 30 mm CW). We randomly assigned 8 of these 16 crabs to the toadfish cue absent 

treatment and the other 8 to the toadfish cue present treatment. Due to constraints on the 

number of crabs a single person could observe in a night, we observed 8 crabs per night 

over 2 consecutive nights, generally from 2000-2300 h. During each night, 4 crabs 

receiving the no cue treatment and 4 crabs receiving the cue treatment were observed. 

The night measured (first or second) had no effect on refuge use behavior (ANOVA: p > 
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0.05), so the blocking factor used in our analyses was the 2 day span over which 16 crabs 

were measured. Any crabs molting, carrying eggs or dying during their time in the lab 

were removed from the data set. 

 Refuge use was measured following the behavioral assay protocol used in Griffen 

et al. (2012). All crabs were starved for 24 h before their refuge use behavior was 

measured. Each crab was observed in a separate glass mesocosm (50 × 28 × 30 cm) 

containing a 3 cm layer of sand/mud substrate and 5 L of oyster shell (8 – 12 cm shell 

length) that had been dried and cleaned to remove epifauna. This amount of shell ensured 

that crabs had ample refuge to hide completely. Mesocosms were completely filled with a 

continuous supply of seawater. Eight large scorched mussels were suspended near the 

water surface in a mesh bag to release prey chemical cues and induce crab searching 

behavior while remaining out of reach of crabs. To create the toadfish cue treatment, 

crabs received a continuous supply of seawater that was first pumped through a holding 

chamber that contained a single adult oyster toadfish. Crabs assigned the no cue treatment 

received a continuous supply of seawater pumped through a holding chamber without a 

toadfish.  

 Crabs were observed under red light with the observer located behind a blind to 

minimize crab disturbance. Crabs were first given a 15 minute acclimation period in the 

observation tanks, after which their refuge use was observed once every 6 minutes over 3 

hours (30 observations in total for each crab). Refuge use was measured as the proportion 

of the 30 observations where crabs were completely in the oyster shell refuge and thus 

invisible to the observer. The refuge was a matrix of shells, so crabs could be hiding 

under a single shell or multiple shells (i.e. at the bottom of the matrix).When crabs were 
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observed out of the refuge, they were usually walking on top of the shell substrate (i.e. 

were active). In addition to refuge use behavior, we measured the carapace width and sex 

of each crab. 

Repeatability and behavioral change 

 After refuge use behavior was measured, each crab was marked with a unique ID 

number and released back into the field. To mark crabs, we glued (with super glue) a 

piece of laboratory labeling tape numbered with permanent marker to the center of the 

crab’s carapace (Stachowicz and Hay 1999).We realized during the middle of the study 

that these hand-written numbers were becoming illegible over time in the field, and so the 

last 80 crabs from the survey were marked using plastic bee tags (queen marking kit: the 

Bee Works, Orillia, Ontario) that did not wear over time. All marked crabs were released 

in a 10 × 10 m area at the center of Oyster Landing reef. To assess the persistence of 

refuge use behavior for crabs released into the field, we recaptured crabs and measured 

their refuge use for a second time using the same behavioral assay procedure in the lab. 

Recaptured crabs were observed under the same treatment (toadfish cue absent or 

present) that they were observed under before release. We recaptured crabs by hand 

within the release area of Oyster Landing reef. We searched the reef over two separate 

search periods (end of July, end of August) until no more marked crabs were recovered at 

each search period. Because crabs were released regularly over the duration of the study 

(after each block) but resampled just twice, individual crabs were recaptured after 

different durations in the field, allowing us to test the effects of duration in the field on 

behavioral change over time.  
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Statistical analysis 

 Initial graphical exploration of refuge use behavior over the course of the study 

revealed persistent oscillations in mean refuge use observed each night with 

approximately a 14 day period. These oscillations in behavior appeared to be negatively 

correlated with the mean tidal level at Oyster Landing (the collection site of crabs) at the 

time of observation in the lab. Crabs used the refuge most while it was low tide (when 

they are generally inactive in the field), indicative of a circatidal rhythm in refuge use. 

We tested for this influence of the tidal cycle on refuge use behavior, among other factors 

affecting crab refuge use behavior, in the following analysis. 

 To explore factors influencing crab refuge use behavior (pre-release), we tested 

the effects of toadfish predation threat, crab carapace width, an interaction between threat 

and carapace width, and mean tidal level during observation on refuge use with 

generalized linear mixed models (GLMM, lme4 package in the statistical software R). 

Female crabs were smaller than male crabs (Welch two-sample t-test: t = -8.267, p < 

0.001), which confounded crab sex with crab size. Therefore, we tested the effects of 

these factors on refuge use separately for males and females. Observational block was 

modeled as a random factor in both GLMM. Because crab refuge use (the response 

variable) was proportional, we modeled this behavior using a binomial distribution and 

logit link (Bolker et al. 2009).  

 After recapturing a portion of these original crabs (108 crabs recaptured), we 

calculated the repeatability of their refuge use behavior using pre-release and post-

recapture behavioral measurements. Repeatability (r) is defined as the proportion of the 

total variation that occurs within individuals as opposed to between individuals and is 
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calculated as r = s
2

A / (s
2
 + s

2
A), where s

2
A is the among-individual variance and s

2
 is the 

within-individual variance (Bell et al. 2009; Nakagawa and Schielzeth 2010). Thus 

repeatability provides a metric of the amount of behavioral variation between relative to 

within individuals, where a higher repeatability value indicates a higher level of 

individual behavioral consistency between measurements. Again, due to the proportional 

behavioral measure (refuge use), we used GLMM-based repeatability estimation (rptR 

package in R, Nakagawa and Schielzeth 2010) with a binomial distribution and logit link. 

Repeatability was calculated separately for crab refuge use in the absence and presence of 

the toadfish cue, and confidence intervals (95%) and statistical significance (p values) 

were estimated using parametric bootstrapping with 1000 resamplings.  

 Next, we explored factors driving change in refuge use behavior (i.e. deviation 

from perfect repeatability) of recaptured crabs after time in the field. We calculated 

behavioral change by subtracting the value of the 1
st
 behavioral measurement (pre-

release) from the 2
nd

 behavioral measurement (post-recapture). Behavioral change was 

log-transformed to meet assumptions of linear regression. To test for a predominant 

direction in behavioral change, we first tested whether behavioral change was 

significantly different than zero in the absence and presence of toadfish predation threat 

using one-sample t-tests. We then used general linear models testing the fixed effects of 

duration (days) in the field, crab carapace width and crab sex on individual behavioral 

change of recaptured crabs. Two separate linear models were used to test the effects of 

these factors in the absence and presence of toadfish predation threat. 

 As previously mentioned, crab refuge use behavior oscillated with a circatidal 

rhythm over the course of the study. This means that if a recaptured crab was originally 
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observed (pre-release) during one tidal height, and observed a second time (post-

recapture) at a different tidal height, then behavioral change would be generated. We 

tested for this tidal influence on behavioral change as follows. We first subtracted for 

each individual crab the tidal height when the pre-release observation was made from the 

tidal height when the post-recapture observation was made. We then used the absolute 

value of this difference as a factor (termed ‘tidal influence’) in general linear models 

testing the effects of duration in the field, carapace width, sex and the tidal influence on 

the absolute value of behavioral change in the absence and presence of predation threat. 

This analysis allowed us to explore the relative influences of these factors on the overall 

magnitude of behavioral change. 

 Lastly, we tested for the differential recapture of crabs with low vs. high refuge 

use (i.e. a sampling bias). We did this by comparing the recapture rate of crabs from the 

lower and upper quartiles of refuge use behavior using Fisher’s exact tests. We conducted 

this analysis separately for crabs with refuge use measured in the absence and presence of 

toadfish predation threat. 

RESULTS 

 The presence of toadfish predation threat caused crabs to spend more time in the 

oyster shell refuge (Table 4.1, Figure 4.1). Large crabs spent less time in refuge than 

small crabs (Table 4.1, Figure 4.1), and this negative effect of crab size on refuge use was 

enhanced in the presence of predation threat (Table 4.1, Figure 4.1). Mean tidal level in 

the field during behavioral observation in the lab reduced the refuge use of male crabs but 

not female crabs (Table 4.1).  
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 We recaptured 108 crabs out of the 484 crabs that were released over the course 

of the study. However, thirty of these crabs had labels where the ID number had faded 

beyond recognition, leaving 78 identifiable crabs. Thirty-five of these crabs had been 

assayed for refuge use in the absence of toadfish predation threat, while the other 43 had 

been assayed for refuge use in the presence of toadfish predation threat. The duration that 

these recaptured crabs spent in the field ranged from 11 to 81 days, with a mean of about 

a month (mean ± 1 SD: 32 ± 16 days). 

 Refuge use both in the absence (r = 0.021, 95% CI: 0 – 0.066, p = 0.032, Figure 

4.2a) and presence of toadfish predation threat (r = 0.173, 95% CI: 0.084 – 0.304, p = 

0.001, Figure 4.2b) was repeatable over time, though repeatability was approximately 8 

times higher in the presence of threat. Furthermore, the significance of repeatability in the 

absence of predation threat was driven by an influential data point (Figure 4.2a, see figure 

caption); when removed, repeatability was reduced substantially (r = 0.011, 95% CI: 0 – 

0.048) and was no longer significant (p = 0.139). 

 Neither behavioral change in the absence (one-sample t-test: t = -1.245, p = 

0.222) or presence (one-sample t-test: t = 1.541, p = 0.131) of toadfish predation threat 

was significantly different from zero, indicating no predominant direction of behavioral 

change. None of the factors tested including time in the field, crab size or crab sex had 

any effect on directional behavioral change in recaptured crabs (Table 4.2). We also 

tested whether these same factors, as well as the ‘tidal influence’ factor, affected the 

overall magnitude of behavioral change regardless of direction. Again none of these 

factors (duration in the field, crab size, crab sex, or the tidal influence) had a significant 
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effect on absolute behavioral change, either in the absence or presence of toadfish 

predation threat (general linear models: p > 0.526).  

Lastly, the recapture rate of crabs with low refuge use vs. high refuge use did not 

differ. This was true of crabs with refuge use measured in the absence (Fisher’s exact 

test: p = 0.459) and presence (Fisher’s exact test: p = 0.285) of toadfish predation threat. 

DISCUSSION 

 Our study revealed repeatability of crab refuge use behavior after substantial time 

in the field (a month on average, up to 81 days) and strong size-scaling of this behavioral 

trait. Most interestingly, the presence of predation threat during behavioral observation 

increased the repeatability and size-dependence of individual crab refuge use behavior. 

Furthermore, contrary to our hypotheses, we found that time in the field between 

behavioral measurements and crab body size did not influence change in refuge use 

behavior over time in wild crabs. Below we discuss potential reasons for these effects of 

predation threat on the repeatability and size-scaling of refuge use behavior, as well as 

the implications of these results for the community ecology of oyster reefs.  

Factors driving crab refuge use behavior 

 By measuring crab behavior daily over 3 months, we were able to detect a 

persistent effect of the tidal cycle on crab refuge use behavior measured in the lab. Had 

our study been conducted over a shorter duration (and thus over fewer oscillations of the 

tidal cycle), we likely would have overlooked this tidal influence on behavior. Male crabs 

used the refuge less (i.e. were most active) when they were observed during high tides at 

the Oyster Landing reef where crabs were collected. Though the influence of the tidal 

cycle on the behavior of other crabs species (e.g. Barnwell 1966; Saigusa 1992) and 
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marine invertebrates in general (Palmer 1973) has been shown to dissipate with time in 

the lab, the crabs used in this experiment were collected from the field just 24 - 48 h 

before behavioral observations. This lack of a substantial acclimation period could 

explain the remaining tidal influence on refuge use behavior shown here. We discuss the 

potential effects of the tidal cycle on measuring the persistence of crab behavior below in 

‘Repeatability and behavioral change’.  

 In line with previous work (Griffen et al. 2012), we found that individual refuge 

use in P. herbstii is negatively related to crab body size and positively related to toadfish 

predation threat. However, the study by Griffen et al. (2012) differed from ours in that 

they used larger crabs (>30 mm), and found that the size-scaling of refuge use behavior 

was the same in the absence and presence of toadfish predation threat. In contrast, using 

smaller crabs (<30 mm), we found that the effect of body size on refuge use was more 

pronounced in the presence than absence of predation threat for both male and female 

crabs (Figure 4.1); smaller crabs in particular spent more time in refuge and less time 

active in the presence of threat. The enhanced size scaling of refuge use under predation 

threat shown here is most likely the result of the heighted vulnerability of small crabs to 

predation. Toadfish, a major consumer of mud crabs in South Carolina (Wilson et al. 

1982), are gape-limited predators (Gudger 1910), and the resident toadfish that inhabit 

North Inlet’s reefs are generally small (<15 cm, Toscano personal observations). Though 

not confirmed, it’s likely that larger crabs gain a size refuge from predation by resident 

toadfish in the field, as has been observed in other systems (Hill 2011; Heinonen and 

Auster 2012). This is supported by feeding trials in the lab (Toscano unpublished), where 

toadfish (mean total length ± 1 SD: 14.73 ± 2.58 cm) not limited by their gape size were 



 

93 

averse to eating larger crabs (>22 mm carapace width), perhaps due to the damage these 

crabs can inflict with their claws. Thus smaller crabs below this size refuge have reason 

to be more responsive to predation threat, while large crabs, safe from toadfish predation, 

would gain no benefit and instead lose foraging opportunities by modifying their 

behavior in the presence of a toadfish risk cue, particularly when foraging opportunities 

are limited (these intertidal crabs can only forage during high tides).  

 The mesocosoms where behavior was measured contained live mussels that 

released prey cues, stimulating crab foraging behavior. Thus refuge use in this study was 

a measure of the risk that a crab is willing to take (i.e. its boldness) in order to gain 

energy through foraging. Numerous studies have detected such a link between individual 

body size and boldness, but both positive and negative relationships have been reported 

(Dowling and Godin 2002; Brown and Braithwaite 2004). In situations where prey reach 

a size refuge from predation (e.g. the present study), it should be expected that boldness 

is positively related to body size. Alternatively, small individuals may be less averse to 

risk when foraging under predation threat due to their proportionally higher metabolic 

rates and thus greater energy requirements (Dowling and Godin 2002; Brown and 

Braithwaite 2004). This indicates that the relationship between body size and boldness 

can depend on both individual-level (i.e. prey metabolic rate) and community-level 

processes such as predator prey dynamics. 

Repeatability and behavioral change 

 Our recapture rate of marked P. herbstii was fairly high: ~22% of crabs released 

were recaptured within the 10 × 10 m release area. This rate of recapture is in general 

accord with a previous study (Stachowicz and Hay 1999), in which 20 P. herbstii were 
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marked and released into an intertidal oyster reef and 6 individuals were recovered within 

a 5 m
2
 search area after 48 h. While our recovery rate was similar, the duration of time 

that crabs spent in the field here was much greater (a month on average, but up to 81 

days). This suggest that P. herbstii movement rates within and between North Inlet’s 

reefs are fairly low, considering that we failed to recapture crabs that molted or died 

during the course of the study yet still recaptured a substantial portion of crabs released. 

 We hypothesized that crab refuge use would be more repeatable in the presence 

vs. absence of predation threat because the fear of dying, a severe fitness consequence, 

should take precedence over other influences on behavior (e.g. current energetic state or 

social situation) that can introduce behavioral variability (termed here ‘the predation 

hypothesis’). A related explanation is that higher repeatability of refuge use under 

predation threat is driven by the stronger size dependence of refuge use in the presence 

vs. absence of threat (Figure 4.1). Crab body size was fixed over the duration of this 

study (none of the recaptured crabs had molted), and behaviors that are dependent on 

some fixed property of the individual should be more consistent over time than behaviors 

that depend on shorter-term changes in an individual’s internal state or environmental 

conditions (termed here ‘the fixed-trait hypothesis’) (Bell et al. 2009). Either or both of 

these non-mutually exclusive drivers of behavioral trait persistence could be operating in 

the present study. The predation hypothesis could be tested by manipulating crab 

energetic state (e.g. hunger level) and testing repeatability in the presence and absence of 

predation threat, with the expectation that repeatability should decrease faster in the 

absence of predation threat with increasing hunger level (Dowling and Godin 2002). The 

fixed-trait hypothesis could be tested by measuring the behavioral change of crabs over 
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successive molts, with the expectation that behavior will change with increasing body 

size. 

 In a meta-analysis of repeatability estimates from a wide range of both 

invertebrate and vertebrate species, Bell et al. (2009) found that repeatability generally 

decreased with time between behavioral measurements. Contrary to our hypothesis, we 

found no evidence of behavioral change dependent on time. This is despite crabs 

spending up to 81 days in the field, and for reference, the lifespan of P. herbstii has been 

estimated at 2.3 years (McDonald 1982). However, we cannot discount the possibility 

that we tended to recapture crabs which were more consistent in their behavior over time, 

though we detected no bias regarding the differential recapture of crabs with low vs. high 

refuge use behavior. Clearly, crabs change their refuge use behavior over ontogeny 

(Figure 4.1), but the lack of behavioral change with time in the present study suggests 

that most behavioral change happens during molting when crabs grow or at other times of 

the year. This consistency of behavior over time while crab body size was fixed again 

suggests high repeatability of individual behavior when that behavioral trait is dependent 

on a fixed trait of the individual. 

 As previously mentioned, we detected an influence of the tidal cycle on crab 

refuge use behavior over the course of the study. Measuring an individual crab at 2 

different tidal levels (pre-release, post-recapture) in this tidally-influenced behavioral 

cycle should reduce behavioral consistency, even if the individual’s actual BT relative to 

other crabs is not changing. Our analysis however did not detect any effect of the tidal 

cycle on behavioral change. This could be due to individual variation in responsiveness to 

the tidal rhythm, as has been shown in other marine invertebrates (Palmer 1973). Still, 



 

96 

such persistent circatidal rhythms in activity have been observed in a variety of intertidal 

marine invertebrates (Palmer 1973) and biological temporal rhythms are taxonomically 

widespread (Dunlap et al. 2004). Thus behavioral ecologists should be cognizant of such 

endogenous temporal rhythms in behavior, particularly when taking repeated longitudinal 

behavioral measurements to assess behavioral consistency (Koski 2011).  

Implications for oyster reef community ecology 

 Individual crab refuge use behavior and body size, as studied here, have 

previously been shown to mediate the consumption rate of crabs foraging on mussels in 

the presence of toadfish predation threat (Griffen et al. 2012), thereby determining the 

strength of indirect interactions that are a major community-structuring force in oyster 

reefs (Grabowski 2004; Grabowksi and Kimbro 2005). The repeatability of refuge use 

revealed here suggests that this crab behavioral trait is relatively stable over time in the 

field. Thus any ecological effects of crab refuge use are not just a transient feature of the 

reef food web. Rather, if individual crabs remain on the same reef, or within the same 

location within a reef for long periods of time, then their individual refuge use behavior 

could drive spatial variation in ecological interactions (Griffen et al. 2012). Such testable 

predictions can only be made by measuring the persistence of BTs and the drivers of 

persistence in natural field situations, thus advancing mechanistic study of the ecology of 

individual behavior (Sih et al. 2012). 
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Table 4.1 Results of generalized linear mixed models (GLMM) testing the effects of 

fixed factors on pre-release refuge use behavior of male and female crabs. P values of 

significant model factors (α = 0.05) are shown in bold. Observational block was modeled 

as a random factor in these models. 

 

 

  

Model factors Estimate SE z P

Response: pre-release refuge use behavior of male crabs

Predation threat -3.652 0.438 -8.336 <0.001

Crab size -0.224 0.013 -17.626 <0.001

Tidal level -0.359 0.120 -2.984 0.003

Predation threat × crab size 0.115 0.016 6.962 <0.001

Response: pre-release refuge use behavior of female crabs

Predation threat -3.718 0.909 -4.089 <0.001

Crab size -0.374 0.028 -13.203 <0.001

Tidal level 0.101 0.283 0.358 0.721

Predation threat × crab size 0.106 0.037 2.898 0.004
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Table 4.2 Results of general linear models testing the effects of fixed factors on 

directional behavioral change measured in the absence and presence of toadfish predation 

threat. 

 

 

  

Model factors β SE t P

Response: directional behavioral change (toadfish cue absent)

Duration (days) in the field 0.003 0.003 0.907 0.371

Crab size -0.006 0.016 -0.344 0.733

Crab sex 0.128 0.113 1.131 0.267

Response: directional behavioral change (toadfish cue present)

Duration (days) in the field -0.003 0.002 -1.141 0.261

Crab size -0.013 0.008 -1.522 0.136

Crab sex 0.004 0.060 0.063 0.950
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Figure 4.1 Size scaling of individual refuge use behavior in male and female mud crabs 

(Panopeus herbstii) with histograms of body size and behavior distributions: A) Male 

crab refuge use in the absence of toadfish (Opsanus tau) predation threat, measured as the 

proportion of observations over 3 h where a crab was observed taking refuge under oyster 

shell; B) Male crab refuge use in the presence of toadfish predation threat, measured in 

the same way but in the presence of chemical cues from toadfish; C) Female crab refuge 

use in the absence of toadfish predation threat; D) Female crab refuge use in the presence 

of toadfish predation threat 
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Figure 4.2 Individual refuge use behavior of marked and recaptured mud crabs 

(Panopeus herbstii) measured in the absence (A) and presence (B) of toadfish (Opsanus 

tau) predation threat; repeatability (r) of refuge use was statistically significant in both 

cases (α = 0.05), however significance of repeatability of refuge use in the absence of 

predation threat was dependent on an influential data point (bottom left corner of panel 

A) 
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CHAPTER 5 

TESTING FOR RELATIONSHIPS BETWEEN INDIVIDUAL CRAB BEHAVIOR AND 

METABOLIC RATE ACROSS ECOLOGICAL CONTEXTS
4
 

ABSTRACT 

Two hypotheses have been proposed to explain covariation between activity and 

metabolic rate among conspecifics. First, individual-level variation in activity exhibited 

during the measurement of metabolic rate should covary with metabolic rate (e.g. O2 

consumption measured via respirometry). Second, the ‘pace-of-life’ syndrome hypothesis 

posits a persistent positive relationship between individual activity level measured under 

more natural conditions and metabolic rate, among other behavioral, physiological and 

life-history traits. Here, we examined these potential relationships between individual 

behavior and standard metabolic rate (SMR) in the mud crab (Panopeus herbstii). 

Specifically, we recorded (1) crab movement in metabolic chambers during the 

measurement of SMR, and (2) crab activity level in a more natural situation where 

laboratory mesocosms mimicked field conditions. To test for context-dependency, we 

assessed behavior-SMR relationships in the absence and presence of predation threat 

from toadfish (Opsanus tau) in the form of waterborne chemical cues. We first measured 

the repeatability (i.e. proportion of phenotypic variation due to between-individual 

variation) of crab activity level and SMR and found these traits to be repeatable. Crabs

                                                           
4
 Toscano, B.J. and C.J. Monaco. To be submitted to Behavioral Ecology and Sociobiology.  
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 increased movement in metabolic chambers in the presence of threat, but decreased 

activity level under more natural conditions. Interestingly, crabs with an initially low 

SMR increased SMR in the presence of threat, while crabs with an initially high SMR 

showed the opposite response. Individual differences in SMR were partially explained by 

crab movement during the measurement of SMR (i.e. a methodological relationship). We 

did not however, detect a relationship between crab activity level and SMR in the 

absence or presence of toadfish predation threat, even after accounting for the direct 

effect of movement on SMR. Thus despite repeatability of activity level and SMR, our 

study does not support covariance between activity level and SMR as a ‘pace-of-life’ 

syndrome in mud crabs. 

INTRODUCTION 

Individual-level phenotypic variation in behavioral and energetic traits is 

ubiquitous in animal populations (Careau and Garland 2012). For example, behavioral 

traits such as activity level, boldness and aggressiveness can vary substantially between 

conspecifics and this variation is often consistent over time (referred to as behavioral 

types; Sih et al. 2004, Bell et al. 2009). Furthermore, single behavioral traits are often 

consistent across ecological contexts, and multiple behavioral traits may be correlated at 

the individual-level (referred to as behavioral syndromes; Sih et al. 2004, Bell and Sih 

2007). Such consistent individual differences (CIDs) in behavior have now been detected 

across a wide range of animal taxa (Gosling 2001).  

Similarly, measures of baseline metabolic rate, including basal, standard and 

resting metabolic rate, can vary threefold among conspecifics of the same size, age and 

sex (Speakman et al. 2004, Burton et al. 2011). Such residual variation in metabolic rate 
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had been considered noise around populations’ or species’ means and treated analytically 

as measurement error (Careau et al. 2008), but researchers have since demonstrated that 

individual differences in metabolic rate can persist over the lifetime of individuals 

(Nespolo and Franco 2007, Burton et al. 2011). Current work illuminates the ecological 

and evolutionary consequences of CIDs in behavioral (Sih et al. 2012) and energetic traits 

(Burton et al. 2011), though the maintenance of variation in these traits within 

populations remains unresolved (Careau and Garland 2012). 

Recent work suggests potential links between CIDs in behavior and energetics 

that could shed light on the maintenance of these traits (Careau et al. 2008, Biro and 

Stamps 2010, Careau and Garland 2012). First, covariation between behavioral and 

energetic traits is expected based on methodological grounds (Careau et al. 2008). 

Measurements of baseline metabolic rate (e.g. O2 consumption via respirometry) assume 

animals are at rest within metabolic chambers designed to restrict movement, yet 

individual animals often vary in the amount of activity or stress exhibited during the 

measurement of metabolic rate. Active individuals are expected to consume more O2 than 

resting individuals, and so measurements from excessively active individuals are often 

discarded and metabolic rate re-measured at another time (Careau et al. 2008). 

Nevertheless, individual differences in behavior expressed during the measurement of 

metabolic rate are potentially repeatable (i.e. a behavioral type), and correlated with other 

behaviors in more natural contexts (i.e. a behavioral syndrome). Therefore, removal of 

excessively active individuals can bias the population sample (Careau et al. 2008). 

A functional link between behavioral and energetic traits has also been 

hypothesized (Careau et al. 2008, Biro and Stamps 2010, Careau and Garland 2012). 
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Individuals that exhibit energetically costly behaviors (e.g. high activity level) should 

require a greater rate of energy metabolism to support these behaviors (Biro and Stamps 

2010). In reverse, individual behaviors that increase energy intake (e.g. foraging activity) 

should enhance metabolic rate (Biro and Stamps 2010). As such, the direction of 

causality in this relationship is dependent on the mechanism at work (Killen et al. 2013). 

The link between individual behavior and energetics is potentially part of a broader 

covariation of behavioral, physiological and life-history traits referred to as the ‘pace-of-

life’ syndrome (Biro and Stamps 2008, Réale et al. 2010). The ‘pace-of-life’ syndrome 

has been studied at the population and species levels (Ricklefs and Wikelski 2002), but 

more recently applied at the individual level (Réale et al. 2010). At the individual level, 

conspecifics range from a reactive to a proactive pace of life; reactive individuals are 

characterized by lower activity, boldness and aggression, and this lifestyle is associated 

with reduced energy expenditure, growth and fecundity. In contrast, proactive individuals 

are characterized by the opposite traits and pace of life. Covariation of these traits could 

be maintained by common hormonal control (e.g. testosterone: Buchanan et al. 2001) or 

correlational selection (Galliard et al. 2013).   

 Support for the ‘pace-of-life’ syndrome hypothesis at the individual level, and 

more specifically relationships between CIDs in behavioral and energetic traits, has been 

mixed (Bouwhuis et al. 2013), though adequate tests are few (Careau and Garland 2012). 

In a recent review, Killen et al. (2013) suggested the importance of environmental 

stressors (i.e. abiotic and biotic factors that “challenge” individuals to adjust their 

behavior or physiology in order to cope) in mediating behavior-energetic relationships, 

and potentially explaining this mixed support. Environmental stressors can modify the 
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relationship between CIDs in behavior and energetics by modifying the distribution of 

one or both of these types of traits, and having differential effects on the traits of certain 

phenotypes (i.e. different individual reaction norms). Studying the context-dependence of 

energetic-behavior relationships is important because it can yield insight into the 

mechanisms behind relationships, as well as the effects of environmental change on these 

relationships (Killen et al. 2013). 

 In the present study, we tested for relationships between individual behavior and 

standard metabolic rate (SMR) in a geographically widespread and abundant marine 

invertebrate, the common mud crab (Panopeus herbstii). We measured crab behavior 

both in metabolic rate chambers (crab movement) and in laboratory mesocosms that 

mimicked natural oyster (Crassostrea virginica) reef habitat (crab activity level). We 

further examined how behavior-energetics relationships were affected by the presence of 

threat from a major predator of mud crabs, the toadfish (Opsanus tau). Predation is a 

powerful agent of selection (Svanbäck and Eklöv 2011, Siepielski et al. 2013) and the 

threat of predation in the form of visual or chemical cues is a widespread biotic stressor 

(Lima and Dill 1990). Nevertheless, the effects of predation threat on the relationship 

between CIDs in behavioral and energetic traits are unclear (Killen et al. 2013).  

Previous work established CIDs in P. herbstii refuge use behavior (Toscano et al. 

2014). Refuge use in this study (Toscano et al. 2014) was measured as the proportion of 

observations where crabs were observed in an oyster shell refuge and inactive. Crab 

activity level is the inverse of this measurement, and is referred to as such in the present 

study. Toscano et al. (2014) however, measured the repeatability of crab refuge use with 

a wide size range of crabs, where body size explains a substantial portion of the variation 
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in refuge use behavior and therefore temporal consistency in refuge use behavior. Here, 

we build upon this work by testing for a physiological link with crab activity level within 

a more restricted size range of crabs, where the influence of body size on behavior is 

undetectable.  

We hypothesized that crab movement in metabolic chambers would be positively 

related to SMR (i.e. a methodological relationship), and SMR would be further related to 

crab activity level in a more natural setting (i.e. a functional relationship). We further 

expected predation threat from toadfish to modify relationships between behavior and 

SMR, because toadfish predation threat reduces crab activity level, but individual crabs 

differ in the magnitude of their response to threat (Griffen et al. 2012). More specifically, 

it could be expected that crabs with higher SMRs should exhibit riskier behaviors (i.e. 

higher activity) under threat to satisfy their energetic demands, whereas the relationship 

between activity level and SMR would be less apparent in the absence of threat due to the 

lack of this constraint on activity (Killen et al. 2011, 2012). 

METHODS 

 We first tested for CIDs in crab activity level and SMR by measuring the 

repeatability (i.e. proportion of phenotypic variation due to between-individual variation) 

of these traits. We then tested for relationships between crab behavior (crab movement 

during the measurement of SMR and activity level) and SMR in the absence and presence 

of predation threat from toadfish (Opsanus tau). In doing so, we were also able to 

examine the direct effects of predation threat on individual crab traits (crab movement 

during the measurement of SMR, activity level, and SMR). Experiments were conducted 

from May through August 2013 in the wet laboratory at the Baruch Marine Field 
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Laboratory, Georgetown, South Carolina, which is adjacent to North Inlet estuary 

(33°20’N, 79°10’W). All animals used in the study were collected by hand from the high 

intertidal portion of oyster reefs in North Inlet.  

Repeatability of activity level and SMR 

 Repeatability of activity level and SMR was measured for separate groups of 

crabs (n = 24 crabs for activity level, n = 38 crabs for SMR) from the same size range 

(mean carapace width [CW] ± 1 SE: 29.03 ± 0.24 mm, 28.53 ± 0.28 mm, respectively). 

We exclusively used male crabs to remove the potential influence of sex on both activity 

level (Toscano et al. 2014) and metabolic rate (Niewiarowski and Waldschmidt 1992). To 

determine the repeatability of activity level and SMR, these traits were measured twice 

per crab with 48 h between measurements. All crabs were fed with hard clams 

(Mercenaria mercenaria) and starved for 24 h before the measurement of either activity 

level or SMR to standardize hunger levels. 

Individual crab activity level was measured following similar methods to those 

used in previous studies of P. herbstii refuge use behavior (Griffen et al. 2012, Toscano 

et al. 2014), where crab activity level is the inverse of refuge use as measured in these 

studies. Each crab was housed in a plastic mesocosm (43 cm length × 31 cm width × 18 

cm height) during the measurement of activity level. Mesocosms were set up to mimic 

the physical structure of a natural oyster reef; each mesocosm received a sand substrate (1 

cm deep) and a matrix of loose oyster shell (6 cm deep) that had been dried and cleaned 

to remove epifauna. Activity level was measured at night from approximately 2000 to 

2300 h and mesocosms received flow-through, unfiltered seawater throughout the 

measurement of activity level. The activity level of crabs was observed under red light 
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and behind a blind to minimize disturbance to crabs (Griffen et al. 2012, Toscano et al. 

2014). 

To measure activity level, we first placed crabs in mesocosms and allowed them 

to acclimate for 15 minutes. After this acclimation period, the behavior of crabs was 

observed once every 9 minutes over 3 hours (20 observations in total per crab). During 

each observation, we recorded whether crabs were active and moving (usually on top of 

the oyster shell matrix) or inactive (usually within the matrix). Crab activity level was 

calculated as the proportion of observations where crabs were observed active out of 20 

total observations.  

We quantified the repeatability of P. herbstii SMR to examine CIDs in the 

energetic requirements of crabs. Prior to all measurements, crabs were individually 

housed in small tackle box compartments (3 cm length × 3 cm width) to prevent 

excessive activity. We measured SMR at night (generally from 2100 to 2400 h) and 

under red light to minimize disturbance to crabs. SMR was measured in a climate-

controlled room to maintain water temperatures between 20 and 22˚C throughout the 

duration of measurements.  

We began trials by placing individual crabs in 0.7 L acrylic chambers (14 cm 

length × 7 cm width × 7 cm height) filled with 1-μm filtered, O2 saturated (air-bubbled) 

seawater (100% O2 saturation). Each container received a magnetic stir-bar to ensure 

mixing. Chambers were then sealed and a Clark-type dissolved oxygen sensor (HANNA, 

model HI-9146; HANNA instruments, USA) was inserted. We recorded the O2 

concentration in chambers every 10 minutes for 60 minutes. Preliminary trials revealed 

that crabs normalized their O2 consumption rate after less than 10 minutes in the 
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chamber; therefore, only data collected after 10 minutes was used in statistical analyses. 

Trials were terminated early if oxygen concentration dropped below 70% of the O2 

saturation level. After each trial, we measured the water volume in chambers with a 

graduated cylinder. We also measured the O2 concentration in two crab-free chambers to 

control for background changes in dissolved O2. We calculated individual O2 

consumption from the average of the five 10 minute interval measurements. We 

standardized SMR by crab dry weight (dried for 48 h at 70 °C) in all of our analyses, 

though doing so did not qualitatively alter our results. 

We analyzed the repeatability of activity level and SMR using the methods of 

Nakagawa and Schlereth 2010 and the associated rptR package in the statistical software 

R (ver. 2.15.2, R Core Team 2012). Repeatability is the proportion of total phenotypic 

variation due to between-subject, as opposed to within-subject variation (Lessells and 

Boag 1987, Bell et al. 2009). Due to the proportional measurement of activity level, we 

used a generalized linear mixed model (GLMM) with a binomial error distribution to 

calculate the repeatability of activity level. Confidence intervals (95%) and statistical 

significance (p-values) of the repeatability of activity level were estimated using 

parametric bootstrapping with 1000 resamplings. Mass-specific SMR data met the 

assumption of normality (Shapiro-Wilk normality test: W = 0.973, p = 0.330), and 

therefore, we calculated the repeatability of SMR using the ANOVA method in the rptR 

package. 

Testing for relationships between crab behavior and SMR 

  Next, we tested for relationships between crab behavior (the movement of crabs 

during the measurement of SMR and crab activity level) and SMR, and how these 
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relationships were affected by predation threat from toadfish in the form of waterborne 

chemical cues. This experiment also allowed us to test the effects of predation threat on 

crab behavioral traits and SMR. Activity level and SMR were measured as described 

previously in ‘Repeatability of activity level and SMR’. In addition, we recorded the 

movement of crabs during the measurement of SMR. Specifically, we recorded whether 

crabs were moving or still (i.e. resting) at 10 minute intervals corresponding with regular 

measurements of O2 concentration in chambers (6 observations per crab). Movement 

during SMR was quantified as the proportion of observations where crabs were observed 

moving. We also manipulated the presence of chemical cues from toadfish during the 

measurement of both activity level and SMR in this experiment. Thus, we measured 

movement during the measurement of SMR, activity level, and SMR of individual crabs 

in the absence and presence of predation threat, yielding 6 measurements per crab.  

This experiment was run in a randomized complete block design (n = 8 crabs per 

block) using a different group of crabs (mean CW ± 1 SE: 30.22 ± 0.22 mm) from those 

used in the repeatability experiments. Three blocks were run in total, and each block 

lasted 5 days. Crab movement during the measurement of SMR was recorded during the 

last 2 blocks (i.e. n = 16 crabs), and so all analyses which include crab movement use 

these 16 crabs. The following describes our procedure for a single block. On the first day, 

we collected 8 male crabs from North Inlet. Crabs were housed in tackle box 

compartments (3 cm length × 3 cm width) between measurements of activity level and 

SMR, and fed daily with M. mercenaria and then starved for 24 h standardize hunger 

levels at 24 h before all measurements. On the second day, the SMR of these 8 crabs was 

measured either in the absence or presence of predation threat (this order was alternated 
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for blocks). SMR in the absence of predation threat was measured as described 

previously (‘Repeatability of activity level and SMR’). To measure SMR in the presence 

of toadfish predation threat, we first treated 1-μm filtered seawater by soaking a single 

toadfish (25 cm total length [TL]) in 5.65 L of water for 1.5 h. We then sieved the treated 

water through a 10-μm filter bag to remove traces of fish slime, and aerated it to saturate 

with O2. This water was otherwise treated in the same way as seawater used to measure 

SMR in the absence of predation threat. The SMR of crabs was then measured in this 

treated water. 

On the third day, we measured the activity level of these 8 crabs. We measured 

the activity level of 4 crabs in the absence of predation threat and the activity level of the 

other 4 in the presence of threat. Activity level in the absence of predation threat was 

measured as described previously (‘Repeatability of activity level and SMR’). Activity 

level in the presence of predation threat was measured the same as in the absence of 

threat , except the seawater which fed mesocosm tanks was first directed through a 

holding chamber that contained a single toadfish (30 cm TL). On the fourth day, the 

activity level of this same group of 8 crabs was measured again, but in the alternate 

treatment (e.g. crabs receiving the predation threat treatment received the predation threat 

absent treatment). Finally, on the fifth day, the SMR of all 8 crabs was measured again 

but under the alternate treatment.  

We used 2 linear mixed models (LMM) to examine relationships between (1) crab 

movement assessed during SMR measurements and SMR (i.e. a methodological 

relationship), and (2) crab activity level and SMR (i.e. a functional relationship). We 

further tested whether crab activity level influenced SMR after removing the effect of 
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movement on SMR. We did this by first regressing movement on SMR, and using the 

residuals from this regression in a LMM testing the effect of activity level on movement-

corrected SMR. We used generalized linear mixed models (GLMM) to examine the 

relationship between movement assessed during SMR measurements and crab activity 

level. Mass-specific SMR data was modeled with a Gaussian error distribution, while 

movement and activity level (proportional data) were modelled with a binomial error 

distribution and logit link (Bolker et al. 2009).  

To test for each of these relationships, we first constructed models that included 

all potential predictor terms. Models included toadfish predation threat and crab carapace 

width as additional fixed factors because behavioral and energetic traits were measured in 

the absence and presence of predation threat, and crab size could potentially influence 

both mass-specific metabolic rate and behavior (Toscano et al. 2014). Including predation 

threat as a factor in models allowed us to test the effect of predation threat on both 

behavioral traits and SMR. We also tested for an interaction between the predictor trait 

(crab movement, crab activity and SMR) and toadfish predation threat in each model, to 

test whether trait relationships were altered by the presence of predation threat. Initial 

visual inspection of the effect of predation threat on SMR (Figure 5.2c) suggested that 

predation threat increased the SMR of crabs with initially low SMR, and decreased the 

SMR of crabs with initially high SMR (though we lacked a proper control in this 

experiment, where crabs would receive the same treatment twice). To test for this pattern, 

we tested the effect of SMR in the absence of threat on the change in SMR (SMR in the 

presence of threat – SMR in the absent of threat) in a LMM.  
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In all models, crab identity and experimental block were treated as random factors 

to control for pseudoreplication. For LMM, we tested for the significance of terms by 

dropping fixed factors (while retaining random factors) and comparing nested models 

using F tests (Crawley 2009). For GLMM, we used z-values (i.e. the Wald statistic) and 

associated p-values to examine whether factor coefficients were significantly different 

from zero. All statistical analyses were conducted using R (ver. 2.15.2, R Core Team 

2012). 

RESULTS 

 Both individual activity level (r [link scale] ± 1 SE = 0.047 ± 0.027, 95% CI: 

0.005 – 0.11, p = 0.002; Figure 5.1a) and SMR (r ± 1 SE = 0.533 ± 0.148, 95% CI: 0.227 

– 0.838, p = 0.005; Figure 5.1b) were significantly repeatable over time, indicating 

temporal consistency in these traits.  

 Predation threat increased crab movement in metabolic rate chambers (GLMM: 

effect of threat ± 1 SE = 1.435 ± 0.355, z = -4.044, p < 0.001; Figure 5.2a), but reduced 

the activity level of crabs (GLMM: effect of threat ± 1 SE = -1.183 ± 0.186, z = -6.376, p 

< 0.001; Figure 5.2b). Predation threat had no consistent linear effect on SMR (F test: 

LMM with threat as a fixed factor vs. null model [random factors only], p = 0.707; Figure 

5.2c). Instead, crabs with initially low SMRs increased SMR in the presence of threat, 

while crabs with initially high SMRs decreased SMR in the presence of threat (F test: 

LMM with SMR measured in the absence of threat as a fixed factor vs. null model 

[random factor only], p < 0.001; Figure 5.2c). Crab body size (carapace width) did not 

affect crab movement in metabolic rate chambers (GLMM: effect of crab size ± 1 SE = -
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0.397 ± 0.234, z = -1.701, p = 0.089) or crab activity level (GLMM: effect of crab size ± 

1 SE = 0.002 ± 0.272, z = 0.008, p = 0.994). 

 Individual crab movement, observed during the measurement of crab SMR, was 

positively related (effect of movement ± 1 SE = 8.688 ± 2.378) to crab SMR (F test: 

model with crab movement as a fixed factor vs. null model [random factors only], p = 

0.002; Figure 5.3). The relationship between crab movement and SMR was best 

described by a second-order polynomial model (F test: polynomial term, F2, 29 = 12.582, 

p < 0.001; Figure 5.3). Movement and threat did not interact to predict crab SMR (F test: 

LMM with movement × threat interaction vs. model with independent factors, p = 0.263; 

Figure 5.3).  

In contrast, crab activity level, observed under more natural conditions, had no 

effect on crab SMR (F test: LMM with crab activity level as a fixed factor vs. null model 

[random factors only], p = 0.551; Figure 5.4), nor did the interaction between activity 

level and threat (F test: LMM with activity × threat interaction vs. model with 

independent factors, p = 0.816; Figure 5.4). This was true even after removing the effect 

of crab movement in metabolic rate chambers on SMR prior to analysis (F test: LMM 

with activity × threat interaction vs. model with independent factors, p = 0.069). 

Lastly, crab movement measured during SMR did not predict activity level 

measured under more natural conditions (GLMM: effect of movement ± 1 SE = -0.016 ± 

0.815, z = -0.020, p = 0.984), either in the absence or presence of toadfish predation 

threat (GLMM: effect of movement × predation threat interaction ± 1 SE = 1.191 ± 

0.827, z = 1.441, p = 0.150).  
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DISCUSSION 

In the present study, we found repeatable individual-level variation (i.e. CIDs) in 

crab activity level and mass-specific SMR with 48 h between longitudinal measurements. 

Though activity level is typically less repeatable than other behaviors (e.g. aggression or 

exploration; Bell et al. 2009), the significant repeatability of crab activity level detected 

here qualifies this trait as a behavioral type of P. herbstii. A previous study (Toscano et 

al. 2014) also found repeatability of individual P. herbstii behavior (referred to as refuge 

use in Toscano et al. [2014], which is the inverse of activity level), though this study used 

a wide size range of crabs (20-30 mm CW) in which crab body size had a large negative 

effect on refuge use (Toscano et al. 2014). In the present study, we demonstrated 

significant repeatability using a much smaller size range of crabs where body size had no 

effect on behavior. Furthermore, in line with other studies of CIDs in metabolic rate and 

SMR in particular (reviewed in Nespolo and Franco 2007), our data indicate that crab 

SMR is a temporally consistent trait at the individual level. The repeatability of SMR in 

the present study (r ± 1 SE = 0.533 ± 0.148) was close to the range of previously reported 

repeatability values for SMR (mean r ± 1 SE = 0.645 ± 0.076) in other taxa (Nespolo and 

Franco 2007).  

Waterborne chemical cues from toadfish influenced crab movement (measured in 

metabolic rate chambers), crab activity level and crab SMR in different ways. Predation 

threat increased the movement of crabs in metabolic rate chambers, but decreased crab 

activity level measured under more natural conditions. We attribute these different 

behavioral responses to the lack of refuge habitat in the containers where crab SMR was 

measured and presence of refuge habitat in mesocosms where activity level was 
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measured. Increased movement in the presence of predation threat likely reflects attempts 

to hide or escape the metabolic rate chamber (i.e. stress). In contrast, crabs that reduced 

activity level in the presence of threat often took refuge under oyster shells, consistent 

with other studies on the effects of predation threat on P. herbstii behavior (Grabowski 

2004, Griffen et al. 2012, Toscano et al. 2014). Reduced activity is a taxonomically 

widespread response to predation threat and an effective mechanism of predator 

avoidance (Krupa and Sih 1998, Anholt et al. 2000, Grabowski 2004).  

Interestingly, crabs with an initially low SMR increased SMR in response to 

predation threat, while crabs with an initially high SMR decreased SMR. While the 

influence of predation threat on metabolic rate has received little attention (Woodley and 

Peterson 2003), metabolic rates, or correlates of metabolic rate (e.g. opercular rate in 

fish), generally increase in the presence of threat (Woodley and Peterson 2003, Hawkins 

et al. 2004, Steiner and Van Buskirk 2009, Hawlena and Schmitz 2010), though 

decreases with threat have also been detected (Cooke et al. 2003). For example, Cooke et 

al. (2003) found that largemouth bass (Micropterus salmoides) heart rate decreased in the 

presence of threat from bird predators but increased after simulated attack, suggesting an 

initial hiding response and heightened stress after attack. Our findings that crabs with an 

initially low SMR increased SMR but only up to ~20 µmol/h/g DW oxygen consumption, 

and that crabs with an initially high SMR did not increase their SMR past this rate, 

suggests that this is an approximate upper limit for the mass-specific SMR of P. hersbtii 

in our study. The increase in SMR of crabs with initially low SMRs could be indicative 

of preparation for an escape response such as a sudden movement away from the source 

of threat (Höjesjö et al. 1999, Killen et al. 2013). This also suggests that increased energy 
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expenditure is a nonlethal cost of predation threat for crabs with low SMR, although it is 

unknown whether crabs can compensate for this cost after threat has passed (Cooke et al. 

2003). In contrast, the reduction in SMR of crabs with initially high SMR could be 

associated with a hiding response during attack, though this prediction remains to be 

tested.  

Our data supported the hypothesis that crab movement in metabolic chambers 

would be positively related to SMR (i.e. a methodological relationship; Careau et al. 

2008), suggesting that crabs which move more in metabolic rate chambers also respire 

more. This relationship was best described by a polynomial model which peaked at 

approximately 18 µmol/h/g DW oxygen consumption. Again, this suggests an upper limit 

to mass-specific SMR in our study beyond which additional movement had little effect 

on SMR. Methodological relationships between metabolic rate and behavior make it 

difficult to effectively separate the effects of individual behavioral variation from 

metabolic rate (Careau et al. 2008). Preventing animal movement via restraint could 

eliminate individual differences in movement, though this would likely induce further 

stress and thereby modify metabolic rates in unrealistic ways. While other studies have 

failed to detect a methodological relationship between behavior and energetics (e.g. 

Bouwhuis et al. 2013), this likely depends on the behavioral response of the particular 

study species to the method of metabolic rate measurement. It has been previously 

suggested that discarding metabolic rate data from individuals which exhibit excessive 

activity during the measurement of metabolic rate can bias the population sample in favor 

of inactive individuals (Careau et al. 2008), and our results suggest this is true with P. 

herbstii.  
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We further hypothesized that crab activity level measured in a relatively more 

natural setting would be related to SMR (i.e. a functional relationship). Arguments in 

support of functional relationships between individual behavior and baseline metabolic 

rate posit that high levels of activity, boldness and aggressiveness are required to gain 

energy in support of a high metabolic rate, or vice versa (i.e. the pace-of-life-syndrome 

hypothesis). Despite CIDs in crab activity level and metabolic rate and the 

aforementioned methodological relationship, we failed to detect a relationship between 

crab activity level measured under more natural conditions and SMR, even after 

removing the direct effect of crab movement on SMR. The lack of a functional 

relationship is not particularly surprising, given that individual crab movement, which 

predicted some variation in SMR, was not related to crab activity level. Both crab activity 

levels and SMR were measured over relatively short time periods (3 h and 1 h, 

respectively) in the lab, and while repeatable, it is possible that these assays do not 

capture natural variation in traits such as daily foraging activity and energy expenditure 

over longer time scales. Measuring such traits in the field is relatively labor-intensive 

(e.g. via the doubly labeled water technique) but a crucial next step in rigorously 

examining the pace-of-life syndrome hypothesis (Bouwhuis et al. 2013). 

The lack of relationship between crab activity level and SMR was consistent 

across the absence and presence predation threat from toadfish in the form of waterborne 

chemical cues, a widespread biotic stressor. In a recent review, Careau and Garland 

(2012) reported that 9 of 21 studies detected significant relationships between behavior 

and metabolic traits, providing mixed support for individual-level behavior-energetics 

relationships (Biro and Stamps 2010, Careau and Garland 2012, Bouwhuis et al. 2013). 
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Killen et al. (2013) proposed context-dependence as one reason for this mixed support. 

Evidence for the importance of context-dependence is provided by work on juvenile 

European sea bass Dicentrarchus labrax (Killen et al. 2011, 2012). These studies show 

that relationships between risk-taking behavior and metabolic rate only emerge in food 

deprived fish (Killen et al. 2011), or fish experiencing hypoxic environmental conditions 

(Killen et al. 2012). This is because these stressors cause fish with higher metabolic rates 

to undertake risky behaviors which are unnecessary under normal conditions. Based on 

this work, we hypothesized that crabs with higher SMRs would exhibit higher activity 

under threat in order to satisfy their energetic demands, whereas the relationship between 

activity level and SMR in the absence of threat would be less apparent. It is possible that 

this influence of crab SMR on activity did not emerge due to the relatively short duration 

of the activity level assay and starvation period used (24 h) in our study. Alternatively, 

differences in risk perception among individuals could drive variation in crab activity 

level that is independent of variation in SMR in the presence of predation threat 

(Stankowich and Blumstein 2005).  

While our study did not support a pace-of-life syndrome between activity level 

and SMR in P. herbstii, it is one of few studies to test for such a syndrome in an 

invertebrate species (Careau and Garland 2012, Krams et al. 2013). Krams et al. (2013) 

found that mealworm beetles (Tenebrio molitor) with lower metabolic rates also 

displayed higher durations of immobility, a behavior that reduces predation risk, 

providing rare support for a pace-of-life syndrome in an invertebrate species. Ectothermic 

invertebrates could be expected to show different individual-level relationships between 

behavior and energetics compared to endotherms (Kralj-Fišer and Schuett 2014) due to 
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(1) the importance of environmental temperature in determining both behavior (e.g. 

Briffa et al. 2013) and metabolic rate in ectotherms (e.g. Clarke and Johnston 1999), and 

(2) the importance of metabolism in maintaining endothermy (Galliard et al. 2013). We 

suggest that additional research on CIDs in the behavioral and physiological traits of 

invertebrates will provide insight into the commonness of individual-level behavior-

energetics relationships across taxonomic groups, and therefore the mechanisms behind 

relationships. This information is critical in refining our understanding of the 

maintenance of individual-level phenotypic variation in natural populations. 
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Figure 5.1 Individual activity level (panel A) and standard metabolic rate (SMR) (panel 

B) of mud crabs (Panopeus herbstii) measured twice over a period of 3 days with 48 h 

between measurements. Dotted lines indicate a 1:1 relationship (i.e. perfect consistency) 

for comparison to the distribution of data points. 
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Figure 5.2 Effects of toadfish (Opsanus tau) predation threat on crab movement during 

the measurement of standard metabolic rate (SMR) (panel A), activity level (panel B), 

and SMR (panel C) of mud crabs (Panopeus herbstii). Dotted lines indicate a 1:1 

relationship for comparison to the distribution of data points. 
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Figure 5.3 Relationship between individual crab (Panopeus herbstii) movements 

assessed during standard metabolic rate (SMR) measurements and SMR in the absence 

(white circles) and presence (black circles) of toadfish (Opsanus tau) predation threat.  

Black line depicts polynomial model fit to data. 

  

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

2
0

2
5

3
0

Movement during SMR measurement

S
M

R
 (

m
o
l/
h
/g

 D
W

)
Predation threat absent

Predation threat present



 

135 

 
 

Figure 5.4 Relationship between individual crab (Panopeus herbstii) activity level and 

SMR in the absence (white circles) and presence (black circles) of toadfish (Opsanus tau) 

predation threat. 
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CHAPTER 6 

TRAIT-MEDIATED FUNCTIONAL RESPONSES: PREDATOR BEHAVIORAL TYPE 

MEDIATES PREY CONSUMPTION
5
 

ABSTRACT 

1. The predator functional response (i.e. per capita consumption rate as a function of 

prey density) is central to our understanding of predator-prey population dynamics. 

This response is behavioral, depending on the rate of attack and time it takes to 

handle prey.  

2. Consistent behavioral differences among conspecific individuals, termed behavioral 

types, are a widespread feature of predator and prey populations but the effects of 

behavioral types on the functional response remain unexplored.  

3. We tested the effects of crab (Panopeus herbstii) behavioral type, specifically 

individual activity level, on the crab functional response to mussel (Brachidontes 

exustus) prey.  We further tested whether the effects of activity level on the response 

are mediated by the presence of toadfish (Opsanus tau) predation threat in the form of 

waterborne chemical cues known to reduce crab activity level.  

4. The effects of crab activity level on the functional response were dependent on crab 

body size. Individual activity level increased the magnitude (i.e. slope and asymptote) 

of the type II functional response of small crabs, potentially through an increase in

                                                           
5
 Toscano, B.J. and B.D. Griffen. Accepted by Journal of Animal Ecology.  

 Reprinted here with permission of publisher, 5/20/2014. 



 

137 

time spent foraging, but had no effect on the functional response of large crabs. 

Predation threat did not interact with activity level to influence mussel consumption, 

but independently reduced the slope of the type II functional response. 

5. Overall, this study demonstrates size-specific effects of a behavioral type on a 

predator-prey interaction, as well as a general pathway (modification of the functional 

response) by which the effects of individual behavioral types can scale up to 

influence predator-prey population dynamics.  

INTRODUCTION 

 Predator-prey interactions have traditionally been described, measured and 

modeled at the population or species levels. For example, classic food webs are depicted 

with species as nodes and feeding links determined with mean trophic data from species 

or solely from adults (Cohen 1978; Polis 1991). Similarly, the functional response, i.e. 

per capita prey consumption dependent on prey density, is generally averaged across 

predator individuals for use in models that predict predator-prey population dynamics 

(Okuyama 2008; Bolnick et al. 2011) or the dynamics of multi-trophic systems (e.g. 

Rosenzweig 1973; Oksanen et al. 1981). This is a decidedly taxonomic approach (sensu 

Rall et al. 2011) to studying predator-prey interactions that obscures individual-level 

variation and assumes interactions can be understood by mean values of populations or 

species (Bolnick et al. 2011). 

Recent empirical work has illuminated extensive individual-level phenotypic 

variation in predator and prey populations with important ecological consequences 

(reviewed by Bolnick et al. 2003; Araujo, Bolnick & Layman 2011; Bolnick et al. 2011; 

Sih et al. 2012). For example, conspecific individuals often differ in their behavioral 
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traits (e.g. activity, boldness or aggression) and these differences are consistent over time 

(termed behavioral types, BTs; Sih, Bell & Johnson 2004, Carter et al. 2013). 

Furthermore, behavioral syndromes describe correlations between different BTs (e.g. 

boldness and aggression; Bell & Sih 2007), or correlations of a single BT measured 

across ecological contexts (Sih et al. 2004, Carter et al. 2013). BTs can influence various 

aspects of predator-prey interactions including consumption rates (Pruitt & Krauel 2010), 

predator foraging tactics (Coleman & Wilson 1998; Kurvers et al. 2010), predator diet 

breadth (Riechert 1991), and predator-prey spatial distributions (Cote et al. 2010; Griffen, 

Toscano & Gatto 2012). Nevertheless, it remains unclear whether accounting for such 

individual-level behavioral variation in traditional models of predator-prey interactions 

could help explain patterns or alter predictions at the population and community levels 

(Okuyama 2008; Bolnick et al. 2011).  

The functional response is central to our understanding of predator-prey 

population dynamics (Holling 1959; Murdoch & Oaten 1975) and co-evolutionary theory 

(Abrams 2000). This response is dependent on behavioral traits, including an individual 

predator’s rate of attack, determined by its reactive distance, movement speed, capture 

success, and the behavior of its prey, as well as its handling time, i.e. the time it takes to 

capture, subdue and consume an individual prey (Jeschke, Kopp & Tollrian 2002; Tully, 

Cassey & Ferriere 2005); these model characteristics affect the long- and short-term 

stability of predator-prey dynamics (Murdoch & Oaten 1975; Abrams 2000). If predator 

or prey BTs can influence these emergent behavioral traits (attack rate and handling 

time), then BTs can alter the functional response and potentially scale up to influence 

population dynamics. Accounting for BTs in the functional response could be especially 
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important if there is a spatial structure to behavioral types (e.g. Boon, Réale & Boutin 

2008; Griffen et al. 2012), or when combining different functional responses to make 

predictions at the population level (Jensen’s inequality; for discussion see Okuyama 

2008; Bolnick et al. 2011). 

Activity level is one of the most well-studied behavioral traits (Careau et al. 

2008), and numerous studies have shown that activity level differs consistently between 

conspecifics (i.e. a BT; Sih et al. 2004). Activity level is typically measured by placing 

an individual animal in a familiar environment and measuring either the distance moved 

over a period of time (e.g. Harcourt et al. 2009; Pruitt, Stachowicz & Sih 2012) or the 

frequency or duration of movement (e.g. Wilson et al. 2010; Mafli, Wakamatsu & Roulin 

2011; Beckmann & Biro 2013). In a foraging context, these measures of activity level 

should influence predator-prey encounters (although this also could depend on the 

activity of prey; Sweeney et al. 2013), particularly when prey are at low densities, thus 

modifying the attack rate (i.e. initial slope) in functional response models. Furthermore, 

while greater predator activity increases encounters with prey, it also heightens the risk of 

being eaten by higher order predators (Werner & Anholt 1993; Anholt, Werner & Skelly 

2000). Therefore, intermediate predators often modify their activity level to balance 

foraging demands with the threat of being eaten. While this tradeoff is traditionally 

studied from an optimization perspective (i.e. activity level is modified to maximize 

fitness), it has been suggested that individual BTs impose limits on behavioral plasticity, 

thereby precluding perfect optimization (Sih et al. 2004). Thus predation threat from a 

higher order predator could modify the effects of activity level on the intermediate 
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predator functional response, depending on whether or not individuals respond 

behaviorally to predation threat, and the degree to which they respond.  

In the present study, we explored the hypothesis that individual predator activity 

level can modify the predator functional response and further examined how predation 

threat could mediate the effects of activity level on the response. This is an important first 

step in determining whether accounting for individual predator behavior in the functional 

response could improve our predictive capacity regarding consumption rate and predator-

prey interaction strength. We used a well-studied tri-trophic system consisting of toadfish 

(Opsanus tau Linnaeus) as a top predator, mud crabs (Panopeus herbstii Milne-Edwards) 

as an intermediate predator, and scorched mussels (Brachidontes exustus Linnaeus) as 

prey of crabs (Grabowski & Kimbro 2005; Griffen et al. 2012). Previous work in this 

system indicates that individual differences in crab activity level are consistent over time, 

validating activity level as a BT of mud crabs (see Methods: Study system for further 

discussion). Furthermore, smaller crabs generally have lower activity levels than large 

crabs (Griffen et al. 2012, Toscano, Gatto & Griffen 2014), likely due to their greater 

susceptibility to toadfish predation (Toscano unpublished data). Therefore, due to the 

importance of crab body size in determining activity level as well as the outcome of 

predator-prey interactions more broadly (e.g. Aljetlawi, Sparrevik & Leonardsson 2004; 

McCoy et al. 2011), we used a wide size range of crabs to test whether effects of activity 

level further depend on crab body size. In short, our study found that the effects of crab 

activity level on the crab functional response were indeed size-dependent, while toadfish 

predation threat had effects independent of crab activity level and body size on the crab 

functional response.  
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METHODS 

Study system 

Toadfish, mud crabs and scorched mussels are common inhabitants of oyster 

(Crassostrea virginica Gmelin) reefs along the Atlantic and Gulf coasts of the United 

States. Previous work has shown that individual mud crabs differ in their use of oyster 

shell refuge habitat (Griffen et al. 2012), and that these behavioral differences are 

consistent over months in the field (Toscano et al. 2014). Refuge use is negatively related 

to crab body size, but there is additional consistent variation in refuge use that is not 

explained by size (Griffen et al. 2012; Toscano et al. 2014). Furthermore, mud crabs 

increase refuge use in the presence of toadfish chemical cues (Grabowski & Kimbro 

2005), a widespread response to predation threat. This anti-predatory behavior reduces 

the mussel consumption rate of crabs, thereby modifying the strength of the trait-

mediated trophic cascade involving these species (Griffen et al. 2012). This trophic 

cascade is a major determinant of community structure in oyster reefs (Grabowski & 

Kimbro 2005; Griffen et al. 2012). Refuge use in these studies (Griffen et al. 2012; 

Toscano et al. 2014) was measured as the proportion of behavioral observations where an 

individual crab was under oyster shell and inactive. In the present study, we use the 

inverse of this behavioral measurement (i.e. the proportion of observations where crabs 

are observed active), as measured in other studies of individual activity level as a BT (e.g. 

Wilson et al. 2010; Mafli et al. 2011; Beckmann & Biro 2013), to test the hypothesis that 

crab activity level influences the crab functional response to mussel prey density. 
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Experimental setup 

 The experiment was run from May through August 2012 in a screened-in wet 

laboratory at the Baruch Marine Field Lab in Georgetown, South Carolina, USA. 

Organisms used in the experiment were collected from the adjacent Oyster Landing 

intertidal oyster reef in North Inlet estuary (33°20′N, 79°10′W).  

 To examine the effects of individual crab activity level on the functional response, 

we measured both the activity level and mussel consumption rate of individual crabs. 

Activity level was measured prior to consumption rate trials. We manipulated the 

presence of chemical cues from toadfish during measurements of both activity level and 

consumption rate to test how the presence of predation threat directly affects the 

functional response, and how threat could mediate the effects of activity level on the 

functional response. Specifically, both the activity level and consumption rate of 

individual crabs were measured under 1 of 2 predation threat treatments: toadfish 

chemical cue absent (n = 240 crabs) or toadfish chemical cue present (n = 207 crabs). 

Activity level measured under predation threat is a measure of boldness as defined in the 

animal personality literature (Carter et al. 2013). The consumption rate of individual 

crabs was measured at a single prey density rather than a range of prey densities to 

minimize the duration crabs were held in the lab, which could modify individual behavior 

through conditioning (Butler et al. 2006). We ran the experiment in a complete block 

design and the following methods pertain to a single block of 4 day duration.  

On the first day, 16 crabs (20-30 mm carapace width, CW) were collected from 

the high intertidal portion of the Oyster Landing reef. Mud crabs become important 

predators of adult bivalves in oyster reefs in North Inlet estuary when they reach ~20 mm 



 

143 

CW (Toscano & Griffen 2012), and attain a maximum size of 55 mm CW at this site 

(McDonald 1982). All crabs were fed with mussels ad libitum as soon as they were 

brought into the lab. Eight of these 16 crabs were then randomly assigned to the toadfish 

cue absent treatment while the other 8 were assigned to the toadfish cue present 

treatment, and these treatments were maintained for both activity level and consumption 

rate trials (methods for activity level and consumption rate trials are detailed below). To 

create the toadfish cue present treatment, we pumped seawater through a holding 

chamber that contained a single adult toadfish (~ 30 cm total length) fed ad libitum with 

mud crabs in between experimental trials. This seawater was then divided equally among 

mesocosms containing crabs to keep the amount of chemical cue consistent within 

blocks. Crabs assigned the cue absent treatment received seawater that did not first pass 

by a toadfish, but was otherwise distributed using the same seawater system. Mesocosms 

receiving the toadfish cue absent and cue present treatments were always alternated 

spatially. 

On the second day, 4 crabs receiving the toadfish cue absent treatment and 4 crabs 

receiving the cue present treatment (8 of the 16 crabs) were observed to measure their 

activity level, and on the third day, the other 8 crabs were observed in the same manner. 

This second group of 8 crabs was fed again on the 2
nd

 day to keep their starvation time 

before activity level measurement (24 h) consistent with the first group of 8 crabs, and on 

the third day, all crabs were fed to maintain starvation consistency before consumption 

rate trials. On the fourth day, the consumption rate of all 16 crabs was measured in a 24 h 

feeding trial. All crabs were held in the lab for an additional 2 days after consumption 

rate trials to ensure that crabs were not approaching a molt cycle or female crabs were not 
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becoming reproductive. This procedure for a single experimental block was repeated 33 

times over the course of the summer (May through August). Any crabs molting, carrying 

eggs or dying during their time in the lab were removed from the final data set. 

Additionally, the toadfish chemical cue treatment failed during the measurement of crab 

consumption rate for 5 blocks and these crabs were therefore removed from the final data 

set. However, complete removal of these blocks (i.e. both cue absent and present 

treatments) from the final data set did not alter our results. 

Measurement of crab activity level 

 The activity level of individual crabs was measured using a similar behavioral 

assay to that used in previous studies of mud crab BTs (Griffen et al. 2012; Toscano et al. 

2014). Each crab was observed in a glass mesocosm (50 × 28 × 30 cm) containing a 3 cm 

layer of sand/mud substrate and 5 L of oyster shell that had been dried and cleaned to 

remove epifauna. This experimental crab density (1 crab per 0.14 m
2
) is within the range 

of densities previously reported in North Inlet (McDonald 1982, Toscano unpublished 

data). Oyster shell was placed on top of the substrate to mimic natural reef habitat. This 

amount of shell ensured that crabs had ample space to hide completely. In each tank, 

eight large mussels (~25 mm shell length, SL) were suspended in a mesh bag near the 

surface of the water to release chemical cues and induce crab foraging behavior while 

remaining out of reach of crabs.  

Crabs were observed at night (from ~2000-2300 h) under dim red light and from 

behind a blind to minimize disturbance. Over a period of 3 hours, we observed whether 

crabs were exposed and active (vs. hiding and remaining motionless) every 6 minutes (30 

observations per crab in total). Activity level was measured as the proportion of 30 



 

145 

observations that crabs were visible to the observer and moving. In addition to activity 

level, we recorded the carapace width, major claw width and sex of each crab. 

Measurement of crab consumption rate 

 Eight mussel (12-16 mm SL) prey densities (2, 4, 6, 8, 12, 16, 24 and 36 mussels 

per mesocosm) were randomly assigned to the 8 crabs receiving the toadfish cue absent 

treatment as well as the 8 crabs receiving the cue present treatment for each block. These 

mussel densities fall within the range of recorded mussel densities within a single large 

oyster cluster from the study site (Toscano & Griffen 2012). This created a total of 16 

unique treatment combinations in each block. These trials were conducted in glass 

mesocosms of the same dimensions that we used to observe crab activity level. 

Mesocosms contained a 3 cm layer of sand/mud substrate and 10 large oyster shells, and 

were enclosed in black plastic to mimic the low-light conditions of North Inlet estuary 

during summer months (Dame et al. 1986; Toscano & Griffen 2013). Mussels were 

scattered evenly on oyster shells throughout each mesocosm and allowed to attach to 

oyster shells for 6 h prior to the start of trials. Crabs were allowed to forage for 24 h 

(starting and ending at ~1500 h) and the number of mussels remaining as well as the 

water temperature was recorded at the end of trials.  

Analysis 

 We first tested the factors influencing individual mussel consumption by crabs 

with a generalized linear mixed model (GLMM) using the complete data set (n = 447 

crabs). After establishing the importance of these factors, we then fit functional response 

models to subsets of the data set and compared the parameter estimates of functional 

response model fits to test for the effects of specific factors of interest (notably toadfish 
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predation threat and crab activity level) on the crab functional response. All analyses 

were conducted using the statistical software R (R Core Team 2012). 

 We used a GLMM (lme4 package) with a binomial error distribution to examine 

the effects of crab activity level, crab claw width, experimental treatments (toadfish cue 

absence/presence, mussel prey density) and temperature, as well as all potential two-way 

interactions between these factors on the proportional mussel consumption of individual 

crabs. Claw width, which was strongly related to crab carapace width (linear regression: 

R
2
 = 0.855), was used in this model because it is mechanistically tied to mussel 

consumption in oyster shell habitat (Toscano & Griffen 2013). To correct for 

overdispersion in this model, we included an observation-level random effect (Browne et 

al. 2005). Experimental block was also included as a random effect to control for 

pseudoreplication. Our original GLMM included all main factors, as well as all potential 

two-way interactions. This original model was simplified by dropping non-significant 

interaction terms. 

We then fit functional response models to subsets of the complete data set to test 

the effects of specific factors of interest (toadfish predation threat and crab activity level) 

on the shape and parameter estimates of the functional response. To test how toadfish 

predation threat affected the functional response, we fit models separately to crabs with 

consumption measured in the absence versus presence of the toadfish chemical cue (2 

separate functional response models). To test how crab activity level affected the 

functional response, models were fit to the consumption rates of small crabs (< 24 mm 

CW; activity level had no effect on the mussel consumption of large crabs, see Figure 

6.1) with low activity (≤ 0.22) versus high activity (> 0.22) (2 separate functional 
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response models). Based on visual inspection of the data, this threshold adequately 

demonstrated the effect of activity level on the functional response of small crabs, though 

using other threshold values (0.15-0.3 activity level) did not qualitatively alter our results. 

We included both small crabs receiving the toadfish cue absent and present treatments 

because there was no interaction between the toadfish chemical cue and crab activity 

level on mussel consumption (Table 6.1). Thus we fit a total of 4 functional response 

models in total to subsets of the data. 

Our approach to fitting each functional response model was as follows. First, to 

determine the proper type (i.e. type I, type II, or type III) of functional response, we 

plotted proportional mussel consumption as a function of prey density and analyzed these 

data using a polynomial logistic regression (Juliano 2001). In all cases, these plots 

showed decreasing proportional consumption with prey density and a significantly 

negative first-order term, indicative of type II functional responses (Juliano 2001). 

Because prey were depleted over the 24 h that crabs foraged and not replaced, a Rogers 

type II functional response model that accounts for prey depletion was used (Rogers 

1972; Kalinkat, Brose & Rall 2013): 

 

Ne = No (1 – exp(α(NeTh – PT)))       eqn. 1 

 

 Where Ne is the number of prey eaten, N0 is the initial prey density, α is attack 

rate, Th is handling time, P is the number of predator individuals (set to 1 in all models), 

and T is the experimental duration (24 h). This functional response model was fit using 

maximum likelihood estimation (bbmle package) in the statistical software R.  
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We used bootstrapping to test whether toadfish predation threat and crab activity 

level influenced functional response parameters (α and Th). Specifically, we randomly 

subdivided the data into 2 subsets of the same size as the actual treatment groups (e.g. 

absence of predation threat: n = 240, presence of threat: n = 207). We then fit the 

functional response model (eq. 1) to each of these random subsets and calculated the 

difference in parameter estimates between random subsets. We repeated this procedure 

10,000 times to generate a distribution of random differences in parameter estimates. We 

then compared the actual differences in parameter estimates (i.e. between predation threat 

absence vs. presence and small crabs with low vs. high activity) to these bootstrapped 

null distributions of differences to test whether the actual differences fell outside of 95% 

of null distributions. 

RESULTS 

 Crab activity level and crab claw width interacted to influence proportional 

mussel consumption (Table 6.1); small crabs that exhibited a higher activity level during 

behavioral observation ate more mussels during consumption rate trials (Figure 6.1a), 

while crab activity level had no effect on the mussel consumption of large crabs (Figure 

6.1b). Due to the interaction between crab activity and claw width, we could only 

interpret the conditional effect of crab claw width (i.e. the effect of claw width when 

activity level was zero) (Brambor, Clark & Golder 2006). At zero activity level, crab 

claw width increased mussel consumption (Table 6.1). Temperature, which varied 

between 23 and 33°C over the course of the study, also increased mussel consumption by 

crabs (Table 6.1). In contrast, the presence of chemical cues from toadfish reduced the 

mussel consumption of crabs (Table 6.1). Mussel prey density also reduced proportional 
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mussel consumption by crabs (Table 6.1), resulting in saturating functional responses 

(Figures 6.2 and 6.3).  

Crabs exhibited type II functional responses (Figures 6.2 and 6.3), identified by 

uniformly decreasing proportional mussel consumption with mussel density. The 

presence of the toadfish chemical cue reduced the initial slope of the crab functional 

response (Figure 6.2). Specifically, the presence of the cue decreased the attack rate 

parameter (observed difference between cue and no cue α = -0.029, < 97.8% of the 

bootstrapped parameter differences in α), but had little effect on the handling time 

parameter (observed difference in Th = 0.273, > 78.2% of the bootstrapped parameter 

differences) in type II functional response models (Figure 6.2). In contrast, activity level 

increased the overall magnitude of the functional response of small crabs (Figure 6.3), 

specifically increasing the attack rate parameter (observed difference between high 

activity and low activity α = 0.029, > 97% of the bootstrapped parameter differences) and 

reducing the handling time parameter (observed difference in Th = -1.096, < 99.9% of the 

bootstrapped parameter differences).  

DISCUSSION 

In the present study, we found that crab predator activity level increased both the 

initial slope and asymptote of the functional response of small crabs to mussel prey 

density. In contrast, activity level had no effect on the mussel consumption of large crabs. 

This shows that the effects of individual behavior on ecological dynamics can further 

vary within species depending on individual body size or population size structure. 

Similarly, sex-dependence of the ecological effects of BTs has been observed in great tits 

(Parus major), where individual exploratory behavior had opposite effects on the survival 
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of males and female birds depending on year-to year variation in resource levels 

(Dingemanse et al. 2004; Dingemanse & Réale 2005).  

The functional response is a major determinant of predator-prey population 

dynamics and stability (Murdoch & Oaten 1975), and therefore changes in the response 

driven by individual crab activity level could scale up to influence the crab-mussel 

interaction at the population level. Individual-level variation in activity level is 

taxonomically widespread (Careau et al. 2008), and activity level is common mechanism 

mediating species interactions (Anholt et al. 2000). Models of size-dependent functional 

responses are typically built upon mechanistic or phenomenological links between 

predator-prey body sizes and attack rate and handling time parameters (e.g. Aljetlawi et 

al. 2004; Rall et al. 2011; McCoy et al. 2012). Our work shows that functional response 

models for actively foraging predators could be modified to include the influences of 

additional size-dependent behavioral variation and predation threat to more accurately 

predict predation rates in heterogeneous populations. 

Our observations of crab activity level in a foraging situation allowed us to 

indirectly examine the mechanisms by which crab activity level increased the functional 

response of small, but not large crabs. Despite the presence of mussel prey chemical cues 

in observational tanks, small crabs were often observed inactive and remaining in the 

same location over the entire 3 h behavioral observation period (Figure 6.1a; see also 

Toscano et al. 2014). Large crabs exhibited relatively higher levels of activity in 

comparison (Figure 6.1b). This increase in activity level with crab size is likely driven by 

a size refuge reached by large crabs from predators in the field (Shervette et al. 2004; Hill 

& Weissburg 2013; Toscano unpublished data), where large crabs have little reason to 
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remain inactive and forgo foraging opportunities (see also Krause et al. 1998). If we 

assume that crabs can only find and consume mussel prey when they are active, then it is 

possible that a certain level of activity is needed to reach the maximum possible 

consumption rate over 24 h. Further increases in activity beyond this level should have 

little effect on mussel consumption. This level of activity was likely reached by most 

large crabs but very few small crabs, thus limiting their mussel consumption rate.  

This suggests that an overall increase in time spent foraging is the mechanism 

behind the positive effect of activity level on the mussel consumption of small crabs, and 

this is supported by functional response modeling. We investigated whether an increase 

in time spent foraging could explain the positive effect of activity level by varying the 

experimental duration factor (T) in the type II functional response model (eqn. 1) fit to 

the consumption data of small crabs with low activity (activity level ≤ 0.22). Specifically, 

we fit a functional response model to consumption data from these crabs in which the 

attack rate (α) and handling time parameters (Th) were set to values from the functional 

response model fit to small crabs with a high activity level (activity level > 0.22; α = 

0.083, Th = 2.943). We then estimated T by fitting this model to the data. The 

experimental duration, T, in this model was reduced from 24 (as set in our original 

model) to 16.818 h, and this model provided an equally good fit to the consumption data 

of small crabs with low activity when compared to the model in which experimental 

duration was set to 24 h, and attack rate and handling time were allowed to vary (ΔAIC = 

1.729). This indicates that a simple reduction in the time parameter in the functional 

response model effectively captures the effect of activity level on the response.  
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Though we hypothesized that activity level would primarily influence prey 

consumption at low prey densities and thus the attack rate parameter, our results suggest 

that activity level does not change the nature of crab foraging behavior (i.e. a shift in the 

type of response or relative changes in parameter estimates). It is worth noting however, 

that the reduction in activity between small crabs exhibiting high vs. low activity (~80% 

reduction in mean activity level), was much greater than the magnitude of reduction in 

the time parameter, T, in the functional response model (30% reduction). This indicates 

that our behavioral observations of activity level underestimated actual activity level in 

consumption rate trials. This is made clear when considering that small crabs with zero 

activity during behavioral observation still consumed a substantial proportion of mussel 

prey (Figure 6.1a), which could happen if crabs observed inactive during the 3 h 

behavioral observation eventually became active over the course of 24 h consumption 

rate trials. The underestimation of activity level in consumption rate trials is even more 

apparent when considering that large crabs with a low level of activity (< 0.2) measured 

in behavioral observations consumed up to 90% of prey (Figure 6.1b). This further 

suggests that individual crabs could have a different timing of activity over consumption 

rate trials that were not fully captured in the 3 hour behavioral observation. 

Griffen et al. (2012) found that the presence of toadfish predation threat enhanced 

the effect of crab activity level (referred to as refuge use, the inverse of activity level, in 

this study) on mussel consumption, but detected no significant effect of activity level on 

mussel consumption in the presence of threat at an alpha level of 0.05. Griffen et al. 

(2012) however used larger crabs (30-42 mm CW) than in the present study, which may 

explain our different results (i.e. a significant effect of activity level on mussel 
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consumption for small crabs only). Though we did not detect such an interaction between 

predation threat and activity level as hypothesized, our study provides some of the first 

empirical evidence of the effects of predation threat from a higher order predator on the 

functional response of an intermediate predator (see also Alexander, Dick & O’Connor 

2013). The majority of studies on trait-mediated trophic cascades test for a significant 

effect of trait change on intermediate predator consumption rate at a single prey density, 

rather than the range of prey densities needed to estimate the functional response (Bolker 

et al. 2003). As expected, the presence of the toadfish chemical cue reduced the crab 

functional response, but did not change the type of response (functional response 

remained type II). Similarly, Alexander et al. (2013) found that a fish predator chemical 

cue reduced the magnitude of an amphipod’s functional response to isopod prey, but did 

not change the type of response. Further study is needed before broad conclusions can be 

drawn on the general effects of predation threat from a higher order predator on the 

functional response of an intermediate predator.  

In general, hyperbolic type II functional responses that predict declining 

proportional prey consumption destabilize predator-prey population dynamics, while 

sigmoidal type III responses, that predict initially increasing and then decreasing 

proportional prey consumption, stabilize predator-prey dynamics (Murdoch & Oaten 

1975; Juliano 2001). Previous work with the present study system showed that mud crabs 

exhibit type III functional responses when foraging in a more complex oyster shell 

habitat than used in the present study (Toscano & Griffen 2013). Furthermore, Toscano 

and Griffen (2013) demonstrated that oyster shell habitat structure limits large crabs (> 

26 mm carapace width) from accessing mussel prey at low prey densities, thus driving 
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differences in the attack rate parameter in the functional responses of small vs. large 

crabs. In the present study, the direct effects of crab body size on mussel consumption 

were likely minimized by our use of a less complex oyster shell habitat, and these 

differences in mesocosm setup can explain the difference in functional response type 

measured in this study compared to Toscano and Griffen (2013).  

Several additional factors could influence predator activity level and functional 

responses that our lab experiment did not incorporate. First, interference between 

conspecific predators or other forms of predator-dependence are important in determining 

functional responses (Abrams & Ginzburg 2000), and in particular the prey consumption 

rates of crabs (Grabowski & Powers 2004, Griffen & Delaney 2007). Furthermore, the 

presence of additional non-prey species has been shown to modify consumption rates 

(Kratina, Vos & Anholt 2007). Lastly, our experiment used a single predator (toadfish), 

and it is unclear how predator diversity might affect the functional responses of 

mesopredators. All these influences could modify individual activity levels. Thus further 

work should test the importance of individual predator behavior for the functional 

response under more natural conditions with additional ecological complexity.  

Finally, while using a non-mobile prey (mussels) allowed us to isolate the effects 

of individual predator behavior on the functional response, many predators are faced with 

the task of capturing mobile prey that exhibit their own individual behaviors (Sih & 

Christensen 2001). Thus the BTs of predators and prey can interact to determine prey 

consumption (Pruitt et al. 2012; McGhee, Pintor & Bell 2013; Sweeney et al. 2013). This 

has been demonstrated in a marine predator-prey system, where turban snails 

(Chlorostoma funebralis) that exhibit greater predator avoidance behavior have higher 
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survivorship in the presence of active ocher sea stars (Pisaster ochraceus), while snails 

that exhibit reduced predator avoidance have higher survivorship in the presence of 

inactive seastars (Pruitt et al. 2012). Such interactions between predator and prey BTs are 

likely widespread in nature, and their effects on predator functional responses warrant 

research attention. Ultimately, measuring such BT-dependent functional responses and 

combining these measurements with ecological theory (e.g. individual-based models: 

Grimm & Railsback 2005; or state-dependent predator-prey models: e.g. Persson et al. 

1998) offer a promising avenue whereby the long-term effects of individual behavior on 

population and community dynamics can be explored (Bolnick et al. 2011). 
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Table 6.1 Generalized linear mixed model (GLMM) testing the effects of fixed factors on 

the proportional mussel consumption of mud crabs (n = 447). Experimental block and an 

observation-level factor were included as random effects. Consumption was measured 

over 24 h in glass mesocosms set up to mimic oyster reef habitat. Eight levels of mussel 

prey density (2, 4, 6, 8, 12, 16, 24 and 36 mussels per tank) were offered to crabs. 

 

 

  

Model factors Estimate SE t P

Response: Proportion of mussels consumed 

Mussel prey density -0.075 0.004 -16.148 < 0.001

Crab activity level 3.914 1.249 3.133 0.002

Crab claw width 0.482 0.091 5.314 < 0.001

Toadfish cue -0.314 0.113 -2.786 0.005

Temperature 0.083 0.033 2.503 0.012

Crab activity level × crab claw width -0.619 0.203 -3.048 0.002
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Figure 6.1 Effects of individual crab activity level on proportional mussel consumption 

by small (< 24 mm carapace width, CW; panel A) and large (≥ 24 mm CW; panel B) 

crabs at the 3 highest levels of mussel prey density (i.e. where crab consumption was not 

limited by prey density; 16, 24 and 36 mussels per tank). Line in panel A depicts 

significant relationship between crab activity level and proportional mussel consumption 

from binomial model fit to mussel consumption of small crabs at the 3 high mussel prey 

densities. Removal of the data point in the top-right corner of panel A had no effect on 

model coefficient estimates or significance of estimates presented in Table 6.1. 
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Figure 6.2 Mean number of mussels eaten ± 1 standard error by crabs in the absence 

(white dots; n = 240) and presence (black dots; n = 207) of a toadfish predator chemical 

cue. Sample sizes for the 8 prey density treatments (2, 4, 6, 8, 12, 16, 24 and 36 mussels 

per mesocosm) in the absence of the chemical cue were: n = 27, 32, 28, 29, 30, 30, 32 

and 32, respectively. Sample sizes for the 8 prey density treatments in the presence of the 

chemical cue were: n = 26, 27, 26, 25, 27, 26, 24 and 26, respectively. Lines depict 

functional response model (eqn. 1) fits to the two groups of data (dotted line: model fit to 

consumption data in the absence of toadfish cue; black line: model fit to consumption 

data in the presence of toadfish cue). 
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Figure 6.3 Mean number of mussels eaten ± 1 standard error by small crabs (< 24 mm 

carapace width) that exhibited low activity (≤ 0.22 activity, white dots; n = 104) vs. high 

activity (> 0.22 activity, black dots; n = 59). Sample sizes for the 8 prey density 

treatments (2, 4, 6, 8, 12, 16, 24 and 36 mussels per mesocosm) for crabs with low 

activity were: n = 11, 16, 15, 12, 12, 10, 10 and 18, respectively. Sample sizes for the 8 

prey density treatments for crabs with high activity were: n = 4, 9, 5, 9, 5, 11, 9 and 7, 

respectively. Crab activity level was observed prior to measurement of consumption rate. 

Lines depict functional response model (eq. 1) fits to the two groups of data (dotted line: 

consumption by small crabs with low activity; black line: consumption by small crabs 

with high activity).
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CHAPTER 7 

PARASITE MODIFICATION OF PREDATOR FUNCTIONAL RESPONSE
6
 

ABSTRACT 

Parasite alteration of the host (predator) functional response provides a 

mechanism by which parasites can alter predator-prey population dynamics and stability. 

We tested the hypothesis that parasitic infection of a crab (Eurypanopeus depressus) by a 

rhizocephalan barnacle (Loxothylacus panopei) can modify the crab’s functional response 

to mussel (Brachidontes exustus) prey and investigated behavioral mechanisms behind a 

potential change in the response. Infection dramatically reduced mussel consumption by 

crabs across mussel densities, resulting in a decreased attack rate parameter and a nearly 

8-fold reduction in maximum consumption (i.e. the asymptote, or inverse of the handling 

time parameter) in a type II functional response model. To test whether increased 

handling time of infected crabs drove the decrease in maximum consumption rate, we 

independently measured handling time through observation. Infection had no effect on 

handling time and thus could not explain the reduction in consumption. Infection did 

however increase the time that it took crabs to begin handling prey after the start of the 

handling time experiment. Furthermore, crabs harboring relatively larger parasites 

remained inactive longer before making contact with prey. This behavioral modification 

likely contributed to the reduced mussel consumption of infected crabs. A field survey

                                                           
6 Toscano, B.J., Newsome, B. and B.D. Griffen. 2014. Oecologia. 175: 345-352. 

 Reprinted here with permission of publisher. 
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 revealed that 20% of crabs inhabiting oyster reefs at the study site (North Inlet estuary) 

are infected by the barnacle parasite, indicating that parasite infection could have a 

substantial effect on the population level crab-mussel interaction. 

INTRODUCTION 

Parasites are increasingly recognized for the important roles they play in natural 

food webs (Minchella and Scott 1991; Wood et al. 2007; Lafferty et al. 2008). Parasites 

can make up a substantial portion of food web biomass compared to free-living species 

(Kuris et al. 2008), and their inclusion in food webs as independent nodes modifies 

patterns of connectance and food chain length (Lafferty et al. 2008). They can also 

directly alter the reproductive success and survivorship of their hosts (Minchella and 

Scott 1991; Marzal et al. 2005), thus mediating host population dynamics and the 

dynamics of communities.  

Parasites can also have indirect effects on food webs by modifying the behavior, 

physiology, morphology and life-history (i.e. the traits) of their hosts (Holmes and Bethel 

1972; Poulin and Thomas 1999; Fitze et al. 2004; Wood et al. 2007; Repetto and Griffen 

2012). These effects on hosts can cascade to affect the species interactions that hosts are 

involved in (Minchella and Scott 1991). For example, trematode parasite infection 

increases the frequency of conspicuous behaviors exhibited by killifish (Lafferty and 

Morris 1996). Birds, the final hosts of the trematode parasite, preferentially consume 

infected killifish due to this behavioral modification (Lafferty and Morris 1996). 

Similarly, infection by an acanthocephalan parasite changes the color and behavior of 

amphipods, which in turn increases their susceptibility to predation by stickleback fish, 

the final host of the parasite (Bakker et al. 1997). Despite an abundance of studies on the 
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effects of parasites on host traits, it remains unclear how trait-mediated effects of 

parasites can scale up to affect the long-term dynamics and stability of predator-prey 

populations and food webs (Lafferty et al. 2008). 

 A likely factor that may link parasite impacts on the individual host to broader 

impacts on predator-prey or food web dynamics is the predator functional response (Dick 

et al. 2010; Haddaway et al. 2012). The functional response describes how a predator’s 

per capita consumption rate of prey changes with the local density of prey (Holling 

1959). This response is behavioral, depending on the predator’s rate of attack and the 

time it takes to handle an individual prey (Jeschke et al. 2002). The functional response is 

a critical component of population models of species interactions, and the precise shape 

and parameter values of the functional response are major determinants of short and long-

term predator-prey population stability in these models (Murdoch and Oaten 1975; 

Abrams 2000). For example, a hyperbolic response curve (i.e. type II functional 

response) typically destabilizes predator-prey dynamics, while a sigmoidal response 

curve (i.e. type III response), often driven by a refuge from predation at low prey 

densities (Sih 1987), typically stabilizes interactions (Murdoch and Oaten 1975).  

Numerous studies have demonstrated strong effects of parasites on predator-prey 

interactions (Lafferty 1992; Bernot and Lamberti 2008), yet these studies typically 

examine predation as a mechanism for parasite transmission between hosts, and rarely 

consider parasites as interaction modifiers (sensu Wootton 1994) of predator-prey 

systems in a food web context (but see Wood et al. 2007; Bernot and Lamberti 2008). 

Indeed, only a few studies (Dick et al. 2010; Haddaway et al. 2012) have examined how 

parasites affect the consumption rates of their predatory hosts across prey densities, i.e. 
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the predator functional response. Parasite alteration of the host functional response is 

therefore an understudied pathway by which parasites can indirectly alter the dynamics 

and stability properties of predator-prey populations. Considering the ubiquity of 

parasites in food webs and pervasive effects of parasite infection on host behavior 

(Holmes and Bethel 1972; Poulin and Thomas 1999), parasite modification of host 

functional responses could be a common trait-mediated indirect interaction in nature. 

In the present study, we examined the impact of an invasive rhizocephalan 

barnacle parasite (Loxothylacus panopei) on the functional response of its host, the flat-

backed mud crab (Eurypanopeus depressus) preying on scorched mussels (Brachidontes 

exustus). Flat-backed mud crabs are important predators of scorched mussels in oyster 

reefs and other structurally complex habitats along the Gulf and Eastern Coasts of the 

United States (McDonald 1982; Williams 1984; Lee and Foighil 2004). The parasitic 

barnacle L. panopei was originally restricted to the Gulf of Mexico, but invaded the East 

coast of the United States in 1964, potentially through shipments of oysters that also 

carried infected crabs from the Gulf of Mexico (Van Engel et al. 1966). Rhizocephalan 

barnacles such as L. panopei are macroparasites that exclusively infect crustaceans and 

mainly crabs (Overstreet 1983). Female barnacle cyprid larvae settle on a recently molted 

crab and produce a system of branching roots throughout the crab’s body cavity 

(O'Brien and van Wyk 1985). After this internal phase is complete, a sac-like externa (the 

parasite’s reproductive body) is extruded under the crab’s abdomen. Male cyprid larvae 

then settle on and fertilize this externa. Common effects of rhizocephalan barnacles on 

crab hosts include the inhibition or cessation of growth as well as the castration of both 

female and male crabs (O'Brien and van Wyk 1985). Thus parasite infection precludes 
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reproduction but allows crabs to survive and interact ecologically with conspecifics and 

other species (Lafferty and Kuris 2009). 

We compared the mussel consumption rate of uninfected and infected crabs 

across mussel densities to examine the hypothesis that parasite infection can alter the 

predator (host) functional response. We then tested whether increased handling time 

and/or reaction time (i.e. the time it took crabs to respond to prey) of infected crabs drove 

the decrease in prey consumption associated with parasite infection. Finally, we surveyed 

parasite prevalence in the field, providing some insight into the potential population 

impacts of parasite alteration of the functional response and thus the crab-mussel 

predator-prey interaction. 

METHODS 

We tested the effects of barnacle (Loxothylaccus panopei) parasite infection on 

the interaction between the flat-backed mud crab (Eurypanopeus depressus) and its prey, 

the scorched mussel (Brachidontes exustus). All animals used in experiments were 

collected from intertidal oyster reefs in tidal creeks throughout North Inlet estuary 

(33°20’N, 79°10’W), Georgetown, South Carolina. North Inlet is a relatively pristine salt 

marsh consisting of ocean-dominated tidal creeks with a high average salinity (~34 ppt) 

and a diurnal tidal cycle (Dame et al. 1986). We ran experiments in the screened-in, 

outdoor wet laboratory at the adjacent Baruch Marine Field Laboratory. The field survey 

of parasite prevalence was also conducted in intertidal reefs throughout North Inlet. 

Experiments and field sampling were conducted from June through August 2012.  
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Functional response experiment 

We first measured the functional responses of uninfected and infected mud crabs 

(8-13.5 mm carapace width) foraging on the scorched mussel (4-7 mm shell length). 

Mussels in this size range are abundant in oyster clusters throughout the study site 

(Toscano and Newsome, personal observations). We identified infected crabs by the 

presence of parasite externae, indicative of a mature stage of parasite infection (Alvarez 

et al. 1995). However, we cannot discount the possibility that uninfected crabs were 

actually in the immature, internal stage of infection. Mussels were offered to crabs in 8 

densities: 2, 4, 6, 8, 10, 16, 24 and 32 mussels per experimental chamber. Trials were run 

in a randomized complete block design and each treatment was replicated a total of 

twelve times (12 blocks). Individual crabs were used once in this experiment. 

 We ran functional response experiments in plastic chambers (15 cm length × 13 

cm width × 7.6 cm height) containing oyster shells to simulate the structure of natural 

oyster reef habitat. Each chamber received five cleaned and dried oyster shells (7-10 cm 

shell length) to provide a relatively consistent substrate for mussels to attach to. The 

necessary number of mussels for a given treatment was evenly distributed over the shell 

throughout each chamber. Experimental chambers were then placed in a larger cylindrical 

flow-through seawater tank (97 cm diameter × 41 cm depth, water depth: 25 cm) and 

mussels were allowed to attach to oyster shells over a 12 hour period. Crabs were starved 

for a 24 hour period before placement in the chambers to standardize hunger levels. After 

starvation, crabs were allowed to forage for a 13 hour period overnight, generally from 

1900-0800 h. Chambers received a constant flow of unfiltered sea water from North Inlet 
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throughout this period. After 13 hours, the number of remaining mussels was recorded. 

All dead mussels showed signs of being preyed upon by crabs (cracked shells). 

Functional response models were fit separately to uninfected and infected crabs, 

allowing us to examine the effects of parasite infection on the functional response.  First, 

to determine the type of functional response (i.e. type I, II or III), we used polynomial 

logistic regression on the proportion of prey consumed as a function of prey density 

(Juliano 2001). For both uninfected and infected crabs, the first order term in this 

regression was significantly negative (i.e. declining proportion consumed at very low 

prey densities), indicative of a type II functional response (Juliano 2001). Because prey 

were depleted over the 24 h that crabs foraged and not replaced, a Rogers type II 

functional response model that accounts for prey depletion was fit separately to 

uninfected and infected crabs (Rogers 1972): 

 

        (     ( (        )))      eqn. 1 

 

where Ne is the number of prey eaten, N0 is the initial prey density, α is attack rate, Th is 

handling time, P is the number of predator individuals (set to 1), and T is the 

experimental duration (set to 13 h). Eqn. 1 is a recursive function of Ne, and so we used 

the Lambert W function to implement the model (see Bolker 2008 for details): 
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where W is the Lambert W function and all other parameters are the same as in eqn. 1. 

This functional response model was fit to prey consumption data using maximum 

likelihood estimation with binomial errors in the statistical software R (package 

“bblme”).  

Handling and reaction time experiment 

 During the functional response experiment, we noticed that the maximum 

consumption rate of infected crabs was substantially lower than that of uninfected crabs. 

In traditional functional response models, maximum consumption rate is equivalent to the 

inverse of handling time, or the time it takes to capture, subdue and consume an 

individual prey (Juliano 2001). These models assume that predators forage continuously 

(Tully et al. 2005; Jeschke et al. 2002), and in such a situation, predators are only limited 

by handling time at high prey densities. Thus the reduced maximum consumption rate of 

infected crabs suggested an increase in the handling time of infected crabs. To test this, 

we observed and compared the handling time of uninfected and infected crabs 

independently of the functional response experiment.  

Crabs and mussels used in this experiment fell within the same size ranges used in 

the functional response experiment. We recorded the carapace width of each crab and 

length of each mussel before trials and crabs were starved for 24 hours to standardize 

hunger levels. The handling time of crabs was observed in cylindrical glass containers (6 

cm diameter × 5 cm height) with one crab and one mussel per container. Ten crabs were 

observed at once and the experiment was conducted over multiple nights. Handling time 

was observed at night (generally from 1900-2400 h) under a red light to minimize 

disturbance to crabs (Griffen et al. 2012). Crabs were allowed to acclimate for five 
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minutes before exposure to a mussel. Once a mussel was introduced, we recorded the 

time it took for a crab to make contact with the mussel (reaction time), as well as the time 

it took to completely consume the mussel after the first contact (handling time). Crabs 

were given 1 h to begin handling mussels before the experiment was terminated. Crabs 

that did not begin handling mussels during this time were excluded from the analysis. 

The reaction time of uninfected and infected crabs was measured and compared to test 

whether a longer period of inactivity before reacting to mussel prey contributed to the 

decreased consumption of infected crabs. 

After this experiment, we removed and weighed the parasite externae of infected 

crabs to test whether the externa mass relative to the crab’s body mass influenced the 

handling or reaction time of infected crabs. This could be expected if the size of the 

externa is indicative of the level of parasite infection, or acts as a physical impediment to 

crab handling of mussels. We compared the dry weight of the externa to the dry weight of 

the remaining crab body to determine relative parasite mass. Both the removed externae 

and crab bodies were dried in an oven at 60° C for 72 h before measurement of dry 

weight. 

We used linear mixed models (LMM) to test the fixed effects of parasite infection 

and the crab:mussel size ratio on handling and reaction time. Data were normally 

distributed, justifying use of a Gaussian distribution. We also used LMM to test the fixed 

effects of the crab:mussel size ratio and the parasite:crab mass ratio on the handling and 

reaction time of infected crabs. The day of observation was modeled as a random factor 

in all models to control for pseudoreplication. We fit models with and without fixed 

factors while retaining the random factor (day of observation) and compared models 
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using Akaike’s information criterion (AIC) to determine whether additional factors 

improved the fit despite increased model complexity. 

Field survey 

We surveyed the prevalence of the barnacle parasite in flat-backed mud crabs in 

the field. This survey allowed us to determine the overall rate of parasite infection in 

crabs, as well as some intrinsic factors associated with infection. We sampled crabs in 

haphazardly placed quadrats (0.25 m
2
) in intertidal oyster reefs throughout North Inlet. 

Nine oyster reefs were sampled in total and 6 quadrat samples were taken from each reef 

(a total of 54 quadrat samples). All quadrat samples were taken from the upper intertidal 

sections of reefs. Within each quadrat, all E. depressus were removed by hand and their 

carapace width, sex, and infection status was recorded. We recorded the presence of crabs 

below 5 mm, but were unable to accurately measure the carapace width or discern the sex 

of these crabs. 

We used a generalized linear mixed model (GLMM) with a binomial error 

distribution to test the effect of crab sex on the probability of parasite infection. A 

binomial error distribution was used to model binary (presence-absence) data. Crab sex 

was modeled as a fixed factor and quadrat was modeled as a random factor, with 

individual infection status (uninfected or infected) as the response variable. We used a 

non-parametric Kolmogorov-Smirnov test to test for a difference in the size distribution 

of uninfected and infected crabs. All statistical analyses were conducted in R version 

2.15.2 (R Development Core Team). 
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RESULTS 

Functional response 

 Parasite infection dramatically reduced the mussel consumption rate of crabs 

across mussel prey densities (Figure 7.1). In a type II functional response model fit to 

infected crabs, this reduction in mussel consumption was manifested as a ~30% decrease 

in the attack rate parameter and a nearly 8-fold increase in the handling time parameter 

compared to uninfected crabs.  

Handling time 

 The predator to prey size ratio was an important predictor of individual crab 

handling time measured through observation, while parasite infection (i.e. uninfected or 

infected) had little effect on handling time (Figure 7.2). Handling time was best explained 

with a model containing the crab:mussel size ratio as a fixed effect (weight = 0.923); the 

crab:mussel size ratio reduced handling time (estimate ±1 SE = -0.106 ± 0.016; Figure 

7.2) in this model. This model was substantially better than the model containing both the 

crab:mussel size ratio and parasite infection as fixed effects (ΔAIC = 4.96, weight = 

0.077), as well as the model containing only parasite infection as a fixed effect (ΔAIC = 

32.34, weight = 0.00).  

In infected crabs, the predator to prey size ratio was again an important predictor 

of handling time. The linear model containing this fixed factor (weight = 0.504, 

crab:mussel size ratio estimate ±1 SE = -0.122 ± 0.029) performed similarly to the model 

containing both the crab:mussel size ratio and the parasite:crab mass ratio as fixed factors 

(ΔAIC = 0.10, weight = 0.481, crab:mussel size ratio estimate ±1 SE = -0.121 ± 0.030, 

parasite:crab mass ratio estimate ±1 SE = -0.251 ± 1.293), and substantially better than 
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the model containing just the parasite:crab mass ratio as a fixed factor (ΔAIC = 7.01, 

weight = 0.015). 

Reaction time 

The reaction time of crabs (i.e. latency in responding to mussel prey) was best 

predicted by a model containing parasite infection as a fixed effect (weight = 0.808, 

parasite infection estimate ±1 SE = 0.050 ± 0.029; Figure 7.3); this model was 

substantially better than both the model containing the crab:mussel size ratio as a fixed 

effect (ΔAIC = 3.11, weight = 0.171) and the model containing both these factors as fixed 

effects (ΔAIC = 7.26, weight = 0.021). Furthermore, though excluded from the analysis, 

23 infected crabs never began handling mussels over the duration of the experiment (1 h) 

compared to 13 uninfected crabs. 

In infected crabs, reaction time was best predicted by a linear model containing 

the parasite:crab mass ratio as a fixed factor (weight = 0.966). This model performed 

substantially better than the model containing both the parasite:crab mass ratio and the 

crab:mussel size ratio as fixed factors (ΔAIC = 7.16, weight = 0.027), and the model 

containing only the crab:mussel size ratio as a fixed factor (ΔAIC = 9.84, weight = 

0.007). In the best fit model, infected crabs with relatively larger parasites took longer to 

begin handling mussels (parasite:crab mass ratio estimate ±1 SE = 2.590 ± 1.615; Figure 

7.3). 

Field survey 

 Nearly 20% of crabs sampled in North Inlet estuary were infected by the barnacle 

parasite (86 out of 446 crabs). Crab sex had a significant effect (GLMM: estimate ± 1 SE 

= -0.991 ± 0.299, z = -3.319, p < 0.001) on the probability of infection. Specifically, the 
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sex ratio of infected crabs was heavily skewed towards females (Figure 7.4). The size 

distribution of infected crabs also differed from that of uninfected crabs (KS-test: D = 

0.486, p < 0.001). The smallest infected crab found was 7.2 mm carapace width, while 

uninfected crabs below 7 mm carapace width were abundant (Figure 7.4).  

DISCUSSION 

We found that barnacle parasite infection drastically reduced the magnitude of the 

crab functional response to mussel prey. The most striking effect of infection was a 

nearly 8-fold decrease in the maximum consumption rate (i.e. the inverse of the handling 

time model parameter) of infected crabs. Two other studies (Dick et al. 2010; Haddaway 

et al. 2012) have tested the effects of parasite infection on the host functional response to 

prey. Dick et al. (2010) found that acanthocephalan parasite infection actually increased 

the functional response of an amphipod host foraging on isopods, though the mechanism 

behind this effect was not investigated. Specifically, infection increased attack rate and 

handling time parameters in a type II functional response model (Dick et al. 2010). 

Similar to our study, Haddaway et al. (2012) found that microsporidian parasite infection 

of crayfish foraging on amphipods reduced attack rate and handling time parameters in a 

type II functional response model, though neither of these studies found as strong an 

effect of infection on host prey consumption as in the present study.  

We identified infected crabs by the presence of parasite externae and therefore 

failed to detect whether uninfected crabs were actually in the immature, internal stage of 

parasite infection. Furthermore, we could not find evidence of the internal portion of the 

parasite in our dissections of these “uninfected” crabs, and thus could not determine the 

prevalence of this stage of infection. The internal stage of infection lasts approximately 
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30 days on average in a different species of Xanthid crab, Rhithropanopeus harrisii 

(Walker et al. 1992; Alvarez et al. 1995). If crabs in the immature stage of infection 

exhibited reduced prey consumption similar to crabs in the mature stage of infection, our 

inclusion of these crabs as “uninfected” would reduce the magnitude of the negative 

effect of infection on the functional response.  Our results therefore represent a 

conservative estimate of the effects of parasite infection on crab consumption rates.  

However, rhizocephalan parasite effects on the grooming and burrowing behavior of a 

Portunid crab (Charybdis longicollis) were only observed in crabs harboring externae 

(Innocenti et al. 1998).  

We further tested the possibility that increased handling time of infected crabs 

drove the reduction in consumption by comparing the mussel handling time of uninfected 

and infected crabs independently of the functional response experiment. Parasite 

infection had no effect on handling time measured through observation and therefore 

could not explain the reduction in consumption. Infected crabs did however show some 

signs of increased latency in reacting to mussel prey in the handling time experiment. 

Specifically, infection increased the time that it took crabs to begin handling prey after 

the start of the experiment, and infected crabs with larger parasites took longer to make 

contact with mussel prey than crabs with relatively smaller parasites. This finding is 

consistent with behavioral observations indicating that infected crabs spend less time 

active and more time hiding compared to uninfected crabs (Newsome, personal 

observations). A similar reduction in activity concomitant with rhizocephalan barnacle 

infection has been observed in shore crabs (Carcinus maenas) (Mouritsen and Jensen 

2006). Typical functional response models, including the type II model used here, do not 
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incorporate such non-foraging activities (Jeschke et al. 2002) and instead assume that a 

predator’s time is divided between searching for prey and handling prey, though this 

assumption is rarely tested (Abrams 1990; Tully et al. 2005). Thus while the type II 

functional response model described consumption data well in the present study, it did 

not explain the underlying mechanism behind the reduction in mussel consumption of 

infected crabs, and we think this reduced consumption is due in part to reduced foraging 

activity of infected crabs (i.e. violation of the assumption of constant foraging activity).  

Several non-mutually exclusive explanations exist for the effects of infection on 

crab behavior and mussel consumption revealed in the present study. First, parasite 

infection may reduce the crab’s energy demands. Previous work has shown that infection 

by rhizocephalan barnacles can lead to the reduction or cessation of crab somatic growth, 

potentially due to the reallocation of energy to the parasite (O'Brien and van Wyk 1985). 

Thus it is possible that this reduced need for energy for growth could reduce crab 

foraging effort if the parasite cost is less than the savings of reduced growth. Second, 

rhizocephalan roots can invade all organs and tissues of the host and the number of 

rootlets increases over the course of the infection (Bortolini and Alvarez 2008). 

Therefore, the internal portion of the parasite could compete for space with other internal 

organs such as the crab’s gut, potentially reducing space for food storage before or during 

digestion. Our dissections of infected crabs however revealed no clear effects of 

crowding, and so we think this explanation is unlikely. Third, parasite infection could 

reduce the crab host’s digestive capabilities, thereby increasing digestion time and 

reducing foraging effort and prey consumption (see also Wood et al. 2007). 

Rhizocephalan parasite infection of blue crabs (Callinectes sapidus) damages the crab 
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hepatopancreas and causes significant loss of hepatopancreas tissue (Bortolini and 

Alvarez 2008). This organ serves multiple functions in digestion, including the secretion 

of digestive enzymes and absorption of nutrients, and therefore, any damage to the 

hepatopancreas could reduce the rate of digestion. Lastly, parasite infection could impair 

the neurosensory capabilities of crabs, altering their behavior and foraging ability. 

Potential effects of parasite infection on crab-mussel population dynamics 

Twenty percent of crabs sampled harbored parasite externae, indicative of the 

mature stage of parasitic infection (Alvarez et al. 1995). Again, our survey did not 

examine the immature, internal stage of parasite infection and therefore likely 

underestimated actual parasite prevalence. Our survey also revealed that the sex ratio of 

infected crabs was heavily skewed towards females. This is potentially due to the 

parasitic feminization of male crabs, a common effect of rhizocephalan barnacles on crab 

hosts (O'Brien and van Wyk 1985). Furthermore, in accordance with another study 

(Alvarez et al. 1995), we found that infected crabs were intermediate in body size 

compared to uninfected crabs (i.e. few crabs < 7 and > 15 mm carapace width). This is 

likely due to the reduced growth rate or cessation of growth in infected crabs 

(O'Brien and van Wyk 1985). 

Considering the prevalence of parasite infection in flat-backed mud crabs and 

strong effects of infection on the crab functional response, the parasitic barnacle could 

have substantial effects on the long-term dynamics of the crab-mussel interaction. 

Rhizocephalan barnacles castrate their crab hosts, thus precluding reproduction by 

infected individuals (O'Brien and van Wyk 1985). Therefore, reduced consumption by 

infected crabs cannot directly feedback to affect the population dynamics of crabs (i.e. 

the numerical response) as modeled in a typical Lotka-Volterra predator-prey framework. 
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However, reduced mussel consumption of infected crabs could provide some predation 

refuge for mussels, allowing mussel density to increase and indirectly enhancing the 

population growth of uninfected crabs. These predictions are speculative and require 

further study in the field. Interestingly, the larvae of the parasitic barnacle L. panopei 

cannot tolerate low salinity (Reisser and Forward 1991). Therefore spatial and temporal 

variation in salinity could mediate barnacle parasite effects on crab-mussel dynamics. 

In sum, parasite modification of host behavior and physiology is widespread 

(Poulin and Thomas 1999), and these trait changes likely influence host functional 

responses (Dick et al. 2010; Haddaway et al. 2012; the present study), and therefore the 

dynamics of predator-prey populations and energy flow in food webs. More broadly, 

parasite modification of the host functional response is part of a general class of trait-

mediated indirect interactions driven by parasite alteration of host traits. This class of 

interactions includes parasite modification of host ecosystem engineering (Thomas et al. 

1999), as well as parasite mediation of interspecific competition involving hosts (Park 

1948; Schall 1992). Future studies of such parasite-mediated interactions could benefit by 

measuring the curvature of responses and trade-offs as we have done here, as opposed to 

two-level experiments (e.g. absence vs. presence, or “low” vs. “high”). Such multi-level 

experiments allow long-term, population-level prediction in ecological models (Bolker et 

al. 2003), and will therefore enhance our understanding of the key functional roles of 

parasites in community and food web ecology (Lafferty et al. 2008). 
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Figure 7.1 Effect of barnacle parasite (Loxothylaccus panopei) infection on the 

functional response of a mud crab predator (Eurypanopeus depressus) foraging on mussel 

(Brachidontes exustus) prey. Points indicate mean consumption ± 1 SE of uninfected 

(white points; n = 96) and infected crabs (black points; n = 96). Lines depict functional 

response model (Eqn. 1) fits to mussel consumption data of uninfected (dotted line) and 

infected (black line) crabs. Mussels were offered to crabs in 8 densities (2, 4, 6, 8, 10, 16, 

24, and 32 mussels per chamber) and crabs were allowed to forage for 13 h 
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Figure 7.2 The relationship between the crab:mussel size ratio and the handling time of 

mussel prey by uninfected (white points; n = 53) and infected (black points; n = 55) mud 

crabs. Handling time was measured through observation of predator-prey interactions 
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Figure 7.3 Effect of the barnacle parasite on reaction time (i.e. the time it took to begin 

handling mussels after the start of the handling time experiment) of mud crabs. Main 

graph depicts the influence of the parasite:crab size ratio on the reaction time of infected 

crabs (n = 55). Inset graph depicts the influence of parasite infection on the reaction time 

of uninfected (white points; n = 53) and infected (black points; n = 55) crabs. Reaction 

time was measured through observation of predator-prey interactions 
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Figure 7.4 Comparison of the size structure and sex ratio of uninfected (white bars; n = 

360) and infected (gray bars; n = 86) mud crabs collected from intertidal oyster reefs in 

North Inlet estuary
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CHAPTER 8 

CONCLUSION 

Predation is a critical process in ecosystems (Terborgh and Estes 2010), and the 

strength of predator-prey interactions is major determinant of community stability 

(MacArthur 1955, Paine 1980). Particularly in oyster reefs, trophic cascades between top 

predators (e.g. fish), mesopredators (e.g. Xanthid crabs), and bivalve prey are a major 

determinant of community structure (Grabowksi 2004, Kimbro et al. 2014). The strength 

of trophic cascades in reefs has been shown to vary due to the influences of habitat 

structure and interactions between multiple predators (Grabowski et al. 2008), as well as 

resource supply and environmental conditions (Kimbro et al. 2014). Nevertheless, the 

effects of individual variation on these cascades remain relatively unexplored (but see 

Griffen et al. 2012).  

The objective of this dissertation was to examine the importance of individual-

level phenotypic variation for predator-prey interactions that influence community 

structure in oyster reefs. I accomplished this using a series of experiments testing the 

effects of individual variation in Xanthid crab body size, behavioral traits and parasite 

infection on their interactions with natural enemies (e.g. toadfish [Opsanus tau] and the 

barnance parasite [Loxothylacus panopaei]) and bivalve prey, including filter-feeding 

oysters (Crassostra virginica) and several species of mussels that inhabit oyster reefs.  

My work demonstrates that individual-level variation influences the strength of 

predator-prey interactions and trophic cascades in intertidal oyster reefs in North Inlet
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 estuary. Body size, for example, varies widely in populations of the Xanthid crab 

Panopeus hersbtii in North Inlet (Dame and Vernberg 1982, McDonald 1982), and 

humans are potentially influencing the population size distribution of these crabs through 

the destructive harvest of oysters (Chapter 2). In Chapter 2, I showed that, at the 

population-level, the size distribution of crabs influences their consumptive effects on the 

bivalve community in reefs. Furthermore, crab body size interacts with reef habitat 

structure to determine the individual bivalve consumption rate of crabs (Chapter 3).  

Behavioral traits, such as refuge use and activity level, also vary widely among 

individual crabs, and this variation is consistent after substantial time in the field (Chapter 

4). While some variation in behavior is explained by crab body size, there is additional 

variation that is unexplainable based on aspects of crab phenotype, such as individual 

physiology (Chapter 5), qualifying crab activity level as a behavioral type (Sih et al. 

2004). Importantly, individual variation in activity level influences the mussel 

consumption rate of small, but not large crabs (Chapter 6), suggesting size-dependent 

effects of this behavioral type on the crab-mussel predator-prey interaction. 

Lastly, a barnacle parasite which infects the Xanthid crab Eurypanopeus 

depressus induces behavioral changes dependent on the size of the parasite relative to the 

size of the infected crab (Chapter 7). This behavioral modification dramatically reduces 

the mussel consumption rate of crabs, thereby reducing the strength of the crab-mussel 

interaction. All three aspects of individual variation (body size, behavioral traits and 

parasite infection) influence the crab functional response to mussel prey density 

(Chapters 2, 6 and 7). When combined with the numerical response (i.e. the response of 

predator density to prey density), the functional response permits scaling up from 
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predator and prey behavioral traits and individual prey consumption rates to the 

population level (Holling 1959, Murdoch and Oaten 1975, Brose 2010). In sum, my 

findings suggest that individual phenotypic variation can influence the population 

dynamics of crabs and the species they interact with in oyster reefs. Specifically, this 

body of work contributes to the following research themes. 

1. Body size constraints on species interactions 

Increasing prey size and diet breadth with predator size is a common feature of 

natural food webs (Hardy 1924, Werner and Gilliam 1984). In Chapter 2, I used a field 

experiment to show that large crabs (Panopeus hersbtii) consume larger, adult bivalves, 

which smaller crabs cannot. Thus large crabs are functionally unique in their ability to 

consume large bivalves, making their presence critical for top-down control of the 

bivalve prey community in reefs. Due to the increase in diet breadth with crab size and 

overlap in resource use among crab size classes, body size diversity had little effect on 

bivalve prey consumption in this study. However, in a scenario where different size 

classes partition food resources (Polis 1984, Werner and Gilliam 1984), aggregate prey 

consumption should increase with size diversity, in part by reducing intra-size class 

competition (Finke and Snyder 2008, Griffin et al. 2008, Ye et al. 2013). Thus, size 

diversity, an underappreciated aspect of biodiversity, should be considered when 

examining the ecological effects of predator populations (Ye et al. 2013).  

In Chapter 3, I tested how crab body size affected the crab functional response to 

mussel prey density in structurally complex oyster reef habitat. Both body size (Kalinkat 

et al. 2013) and habitat structure (Anderson 2001) are important influences on predator 

functional responses. Predator-prey size ratios affect attack rate and handling parameters 
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(Brose 2010), while habitat structure can serve as a refuge for prey at low prey densities, 

inducing a sigmoidal type-3 functional response that can stabilize predator-prey 

interactions (Holling 1959, Murdoch and Oaten 1975, Sih 1987). My work showed that 

these factors can interact to determine the predator functional response. Specifically, reef 

habitat structure physically restricted large crabs from accessing mussel prey at low prey 

densities, reducing their mussel consumption rate relative to small crabs. In contrast, 

mussels saturated the oyster shell refuge at high mussel densities, forcing mussels into 

areas where they were vulnerable to predation by large crabs. 

Furthermore, in a field survey (Chapter 2), I showed that large crabs tend to 

inhabit portions of reefs where the height of the surficial oyster shell layer is relatively 

tall. Because the destructive harvest of oysters by humans reduces the height of this shell 

layer (Lenihan and Peterson 1998, Lenihan and Micheli 2000, Lenihan and Peterson 

2004), oyster harvest could compromise trophic transfer through the loss of large crabs, 

though this prediction remains to be tested in the field. 

2. Individual behavior, a departure from optimality theory 

In Chapter 4, I measured individual variation in crab refuge use behavior.  I also 

examined some internal and external influences on refuge use, and measured the 

temporal consistency (i.e. repeatability) of this behavioral trait in the field. The majority 

of studies testing for the temporal consistency of individual behavior do so while holding 

animals in the lab (Archard and Braithwaite 2010); this approach removes the influences 

of fluctuating environmental conditions that animals experience in the field (Archard and 

Braithwaite 2010), and potentially conditions animals to the lab setting, further distorting 

measurements of repeatability (Butler et al. 2006). I found that refuge use varied widely 
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among crabs, and a considerable portion of this variation was dependent on crab body 

size. Large crabs used the refuge less than small crabs, likely due to their lower 

susceptibility to predation in the field (Hill and Weissburg 2013). Using mark-recapture, I 

demonstrated that crab refuge use behavior is consistent for up to 3 months in the field. 

Furthermore, time spent in the field had no effect on the consistency of behavior. This 

work sheds light on some of the drivers of natural variation in crab behavior, and 

provides rare field evidence for temporal consistency of individual behavior in an 

invertebrate species, which are underrepresented in studies of animal personality relative 

to vertebrates (Kralj-Fišer and Schuett 2014). 

In Chapter 5, I tested whether the activity level of individual crabs could be 

predicted by their metabolic rate. Because behavioral traits such as activity and 

aggressiveness are energetically costly, individual differences in behavior could require 

different rates of energy metabolism (Careau et al. 2008, Biro and Stamps 2010). This 

link between individual behavior and energetics is potentially part of a broader 

covariation of behavioral, physiological and life-history traits referred to as the ‘pace-of-

life’ syndrome (Biro and Stamps 2010). This study was conducted using a much narrower 

size range of crabs in comparison to Chapter 4, in which the previously demonstrated 

influence of crab size on behavior was undetectable. Furthermore, to test for context-

dependence, I measured individual behavior and metabolic rate in the absence and 

presence of toadfish (Opsanus tau) predation threat in the form of waterborne chemical 

cues. Support for behavior-physiology relationships at the individual level has been 

mixed (Bouwhuis et al. 2013), and Killen et al. (2013) suggest context-dependence as one 

reason for this mixed support. Specifically, environmental stressors that force individuals 
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to modify their behavior or physiology to cope could induce behavior-physiology 

relationships which are otherwise unapparent (Killen et al. 2013). For example, hypoxic 

conditions cause European seabass (Dicentrarchus labrax) individuals with high 

metabolic rates to undertake greater risks in the presence of predation threat, driving a 

positive relationship between individual metabolic rate and risk-taking behavior (Killen 

et al. 2012). In Chapter 5, I found that both crab activity level and standard metabolic rate 

were repeatable over time, but were not related, either in the absence or presence of 

toadfish predation threat. 

Animal personality is ubiquitous (Gosling 2001), but there is limited information 

on how personality can influence the strength of species interactions (Sih et al. 2012). In 

Chapter 6, I tested how crab activity level affected the crab functional response to mussel 

prey density. Because predation threat from toadfish causes crabs to reduce activity 

(Griffen et al. 2012, Chapter 5), I further examined how toadfish predation threat could 

mediate the effects of activity level on the response. This work showed that activity level 

enhanced the mussel consumption of small, but not large crabs, presumably through an 

increase in the amount of time that small crabs spent foraging during consumption rate 

trials. Specifically, small crabs with a high activity level, as measured in independent 

behavioral observations, exhibited a type-2 functional response that was greater in both 

slope and asymptote when compared to the response of less active small crabs. Toadfish 

predation threat independently reduced the slope, but not the asymptote, of the crab 

functional response. This study provides important information on how natural 

behavioral variation in a mesopredator can affect its functional response, thereby 
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providing a framework to connect individual behavior to population and community 

dynamics. 

3. Parasite effects on individual ecology 

Parasites were traditionally left out of food web depictions due to their cryptic 

nature, complex life cycles and the lack of skills necessary for parasite identification 

(Marcogliese and Cone 1997). Recently, however, there has been a surge of interest in 

the effects of parasites on energy flow and food web dynamics (Lafferty et al. 2008). One 

pathway by which parasites can influence food web dynamics is through the modification 

of species interactions that hosts are involved in. In Chapter 7, I tested the hypothesis that 

parasite infection can modify the host functional response to prey density. Approximately 

20% of flat-backed mud crabs (Eurypanopeus depressus) are infected by a barnacle 

parasite (Loxothylacus panopaei) in North Inlet estuary, and this chapter examined the 

effects of this parasite on the crab functional response to mussel prey density, as well as a 

potential behavioral mechanism behind these effects.  In a lab experiment, I showed that 

parasite infection increased the time it took for crabs to begin feeding when exposed to a 

mussel (i.e. increased reaction time). Furthermore, the degree of behavioral alteration was 

dependent on the size of the parasite relative to the size of the crab; crabs harboring large 

parasites took longer to respond to mussel prey. The effect of parasite infection on crab 

consumption rates was dramatic; uninfected crabs consumed approximately 8 times more 

mussels than infected crabs. This study provides critical evidence that parasites can 

modify the strength of species interactions in food webs through the modification of host 

traits (i.e. a trait-mediated indirect interaction). 
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