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Abstract 

For the majority of the 20th century, one of the central dogmas of linguistics was 

that, at the level of the lexicon, the relationship between words and meanings is 

arbitrary: there is nothing about the word ‘dog’ for example that makes it a 

particularly good label for a dog. However, in recent years it has become 

increasingly recognized that non-arbitrary associations between words and meanings 

make up a small, but potentially important portion of the lexicon. This thesis 

focuses on exploring the effect that non-arbitrary associations between words and 

meanings have on language learning and the structure of the lexicon. Based on a 

critical analysis of the existing literature, and the results of a number of experiments 

presented here, I suggest that the overall prevalence and developmental timing of 

two forms of non-arbitrariness in the lexicon– systematicity and motivatedness – is 

shaped by the pressure for languages to be learnable while remaining expressive. The 

effect of pressures for learnability and expressivity have been recognized to have 

important implications for the structure of language generally, but have so far not 

been applied to explain structure at the level of the lexicon.  

The central claim presented in this dissertation is that features of the perceptual and 

cognitive organization of humans results in specific types of associations between 

words and meanings being easier for naïve learners to acquire than others, and that 

the pressure for languages to be learnable  results in lexica that leverage these 

human biases. Taking advantage of these biases, however, induces constraints on the 

structure of the lexicon that, left unchecked, might limit its expressivity or penalize 
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subsequent learning. Thus, lexica are structured such that early-acquired words are 

able to leverage these biases while avoiding the limitations imposed by those biases 

when they are extended past a certain point. 
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Lay Summary 

This dissertation focuses on the relationship between words and their meanings. 

Typically, words are assumed to be related to their meanings based only on 

arbitrary convention: there is nothing about the word ‘tree’ that makes it a good 

word for a tall wooden plant, and thus it is not surprising that other languages use 

completely different words for trees. Some words however are not arbitrary: ‘oink’ is 

imitative of the sound that it describes, and can thus be described as motivated, 

rather than arbitrary. In addition to the possibility that words can be motivatedly 

connected to meanings,  similar words like ‘glimmer’, ‘glitter’, and ‘glisten’ can refer 

to similar things: this type of non-arbitrary association between words and meanings 

is referred to as systematicity. 

In this dissertation, I explore the effect that these two types of non-arbitrariness – 

systematicity and motivatedness – have on language learning. I suggest that 

languages, in order to be more learnable, take advantage of both of these types of 

non-arbitrary associations. 
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Chapter 1 

Introduction and Thesis Overview 

How do words get their meanings? This question, which Harnad called the symbol 

grounding problem (1990) dates back to at least Plato’s Cratylus dialogue, which is 

recognized as the first recorded exploration of the issue. Generally, linguistic 

tradition has been built around the idea that there are no connections between 

words and meanings other than those established by linguistic convention (de 

Saussure, 1983; Hockett, 1960). In other words, the lexica of natural languages are 

arbitrary when it comes to how the form of a word (i.e., its sound) is related to its 

meaning. For example, there is nothing about the word ‘tree’ that makes it 

particularly good for describing a large plant made of wood, and thus different 

languages have different words for trees. In recent years, however, the proposal that 

lexica are entirely arbitrary and conventional has come under close scrutiny. Word-

meaning mappings can in fact be non-arbitrary in two ways, and researchers have 

increasingly recognized that these non-arbitrary associations can be found in the 

lexica of natural languages. First, relationships between individual words and their 

meanings can be non-arbitrary because they are motivated by the perceptual and 

cognitive organization of language users (Dingemanse et al., 2014): for example, the 

word ‘oink’ is imitative of its meaning (the sound that a pig makes). Second, 
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associations between words and meanings can be non-arbitrary by virtue of being 

systematic (Monaghan et al., 2014). Systematic relationships between words and 

meanings refer to a configuration where similar words are mapped onto similar 

meanings: ‘glimmer’, ‘glitter’, and ‘glisten’ for example are similar to one another 

both because they all begin with the segment ‘gl-‘, and because they all have 

meanings related to light.  

The goal of this thesis will be to explore these non-arbitrary associations 

between words and meanings, evaluating and providing evidence for the proposal 

that non-arbitrary relationships between words and meanings have important 

influences on learning and the structure of the lexicon. The basic assertion proposed 

here is that the pressure for languages to be learnable (Kirby et al., 2015) is met by 

taking advantage of non-arbitrary (motivated or systematic) associations between 

words and meanings. Because both motivated (Section 1.1) and systematic (Section 

1.2) non-arbitrary associations between words and meanings are easier to learn than 

arbitrary associations (Sections 1.4-1.5), the process of cultural evolution should 

result in lexica that take advantage of these associations. 

The most basic prediction that can be made by invoking the pressure for 

languages to be learnable is that the lexicon should be primarily non-arbitrary, 

because both systematic and motivated associations between words and meanings 

are easier to learn than arbitrary ones. This prediction, however, is not borne out in 
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the lexica of natural languages, which are largely arbitrary. The central aim of this 

dissertation is to account for the overall arbitrariness of the lexicon while allowing 

non-arbitrary associations to contribute meaningfully to the process of language 

learning. Specifically, I will suggest that both motivatedness and systematicity have 

inherent limitations that preclude them from making up the majority of the lexicon, 

but that the developmental time course over which human learners acquire words 

can allow for those non-arbitrary connections to have an important influence on 

learning when their limitations are less robust.  

The experimental results presented in this dissertation allow for a more 

complete explanation of this possibility than has been previously undertaken 

(Monaghan et al., 2011; Monaghan et al., 2014). Primarily, this dissertation explores 

how the pressure for learnability (languages must be learnable) and the pressure for 

expressivity (languages must be able to express a sufficient number and range of 

concepts) interact with human cognitive and perceptual biases over the 

developmental time course of language acquisition to shape the structure of the 

lexicon.  

 It is important to note from the start that this dissertation focuses on non-

arbitrariness at the level of the lexicon, focusing on monomorphemes and 

pseudoword stimuli. At the level of morphosyntax, it is uncontroversial that a great 

deal of human language is systematic (e.g. plurality in English is morphologically 



 

4 

 

marked, typically by adding /-s/), but at the level of the lexicon, language is assumed 

to be arbitrary. Nonetheless in several places in this dissertation, I will return to a 

discussion of non-arbitrariness in morphosyntax, especially insofar as the pressure 

for learnability that has shaped morphosyntax might inform our search for similar 

processes in the formation of the lexicon.  

This chapter will focus on a review of the literature surrounding non-

arbitrariness in the lexicon, providing a necessary standardization of the 

terminology used in studies ranging both across disciplines (primarily psychology 

and linguistics, but also philosophy, anthropology, and behavioural ecology) and 

across time (from the early twentieth century to more contemporary research). In 

section 1.1, I explore motivated associations between words and meanings, and 

suggest that the term motivatedness encompasses a wide swath of concepts in 

language learning. In this discussion of motivatedness I survey a broad range of such 

associations before discussing the likely mechanisms that underpin those 

associations and thus the suggestion that they can be co-opted for learning in 

language-naïve learners. Finally, I discuss the limitations of motivatedness, 

suggesting that motivated associations between words and meanings can express a 

finite number of concepts that are insufficient for an expressive language.   

In section 1.2 I explore systematic mappings between words and meanings 

and examples of those types of associations in the lexicon. I also provide a thorough 
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discussion of the limitations of systematic mappings between words and meanings, 

suggesting that systematicity can constrain expressivity and also potentially 

learning - an issue that will become central to the rest of the dissertation.  

In section 1.3 I discuss the intersection of systematicity and motivatedness, 

and suggest that the two types of non-arbitrariness are orthogonal to one another: 

words can be non-arbitrarily related to their meanings both as a function of being 

motivated and as a function of being systematic at the same time. Thus, connections 

between words and meanings can be motivated but non-systematic, motivated and 

systematic, non-motivated but systematic, or non-motivated and non-systematic 

(arbitrary). I provide examples from natural languages that combine features of the 

two types of non-arbitrariness, and discuss their relative contributions to the 

lexicon.  

In sections 1.4 and 1.5 I return to discussions of motivatedness and 

systematicity respectively, focusing on the influence that the presence of these types 

of non-arbitrary associations has on learnability. To this end, I consider evidence 

from experimental studies, corpus analyses, and computational simulations of 

learning.  

In section 1.6 I return to the suggestion that the lexicon should be non-

arbitrary, incorporating the evidence discussed in the preceding sections to inspire a 

more complex model for the structure of the lexicon that considers pressures for the 
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language to be expressive, and also the possibility of learnability pressures favoring 

arbitrariness. This more complex model incorporates existing findings in the 

literature, but also makes clear what conceptual and evidentiary pieces are missing. 

The search for support for this model becomes the central drive of this dissertation. 

Finally, in section 1.7 I outline the structure of the remaining chapters of this 

thesis with reference to the central questions suggested by the model proposed in 

section 1.6. 

1.1 Motivatedness 

In this section I will discuss motivatedness, which refers to a configuration of 

language where some feature of a word is mapped onto a related feature of its 

meaning. I will begin by differentiating between unimodal and crossmodal 

associations, providing examples of each, before considering the mechanistic 

explanations underlying those associations and their limitations for expressing 

dimensions relevant to language.  

The concept of relatedness, that is, the dimension along which a feature of a 

word can be mapped to a feature of its meaning, is quite broad. First, motivated 

mappings between words and meanings can vary in terms of their modality: for 

example, the onomatopoeic word “oink” is similar to the sound that it describes, 

while the association between the word “teeny” and a small object is mediated 

crossmodally by virtue of the perceptual relatedness of high pitched sounds and 
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small objects (Sapir, 1929). Motivatedness as a broad term captures all possible non-

arbitrary relationships between features of words and features of meaning while 

acknowledging that these relationships can be mediated along a number of 

dimensions. 

 Despite the fact that language at the level of the lexicon is typically thought 

of as arbitrary, recent research has suggested that motivatedness is an important 

property of all languages, whether they are signed or spoken (Perry, Perlman, & 

Lupyan, 2015). However, as I have acknowledged, motivatedness takes a number of 

forms: words can be related to meanings directly and unimodally (e.g. ‘oink’), or 

based on mappings between seemingly unrelated crossmodal dimensions (e.g. 

‘enormous’ for large objects (Cuskley, 2013)). In both of these cases, the 

transparency and strength of the motivatedness of the relationships can also vary 

(‘moo’ is more similar to the sound of a cow than ‘cock-a-doodle-doo’ is to the sound 

of a rooster), both as a function of the modalities along which those relationships are 

structured and as a function of the language in which they are embedded. Finally, 

the mechanisms underlying these relationships might vary as a function of these 

features as well, with some associations being strongly biased by the perceptual or 

cognitive system of the language learner and others less strongly so, or contingent on 

the presence of contextual information. In the proceeding sections, I will discuss 

each of these topics and how they relate to motivatedness.  
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1.1.1  Modality 

Motivated associations between words and meanings can be mediated by 

associations that vary in their modality. Broadly, associations can be either 

unimodal or crossmodal. In unimodal associations, a feature of meaning is mapped 

to a feature of the word along a dimension that is shared between the two (e.g. 

‘crash’ is imitative of the sound of something crashing). Crossmodal associations are 

a type of motivated connection that relies on biases in cognition or perception that 

link otherwise unrelated features of words and meanings to one another: for 

example, humans have a bias to associate high pitch with small size, and this can be 

realized linguistically by the use of words like ‘teeny’ for small objects.  

Unimodal associations 

Typically, research into language focuses on unimodal associations based on 

acoustical properties (sound to sound) in spoken languages (Cuskley, 2013; Imai & 

Kita, 2014), and iconic representations of meaning features like size, shape, or 

movement in signed languages (Taub, 2001; Perniss & Vigliocco, 2014). One of the 

most widely discussed and commonly occurring unimodal associations is 

onomatopoeia, which can be found in many languages. In onomatopoeia, the non-

linguistic sound is mapped to a word that is in some way imitative of that sound, for 

example, the word ‘‘woof to describe the sound that a dog makes. These associations 
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are often referred to as iconic (the structure of a word resembles what it stands for: 

Ahlner & Zlatev, 2010; Perniss & Vigliocco, 2014; Dingemanse et al., 2015) in the 

psycholinguistic literature. 

Crossmodal associations 

Crossmodal associations between words and meanings come in a variety of forms 

that attest to the possibility that crossmodal perception might be a major feature of 

human cognition. Because languages are typically transmitted acoustically, the 

types of crossmodal associations seen in language are often mediated by motivated 

associations between the sound of a word and some feature of its meaning, and thus 

I will focus on those types of associations. 

Shape-sound symbolism 

One of the most widely attested crossmodal associations that can be observed in 

humans is shape-sound symbolism. The Bouba-Kiki effect, which is the most well 

studied form of sound symbolism in the psycholinguistic literature was first 

discovered by Kohler (1929), who demonstrated a perceptual bias wherein 

experimental participants associated pseudowords with certain phonological 

features to objects that varied in their overall shape (Figure 1.01).  
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Figure 1.01- The original ‘maluma’ (left) and ‘takete’ (right) shapes from Kohler (1929). 

 

The bias underlying the Bouba-Kiki effect is robust, having been demonstrated in 

both children (e.g. Ozturk, Krehm, & Vouloumanos, 2013) and adults, as well as 

with speakers of multiple languages (Davis, 1961; Bremner et al., 2013). 

Size-sound symbolism 

The Bouba-Kiki effect is perhaps the most well attested crossmodal linguistic bias 

experimentally, but size-sound symbolism is more widely attested crosslinguistically. 

Beginning with Sapir (1929), a number of authors have found pervasive 

relationships between vowel height and size, such that high front vowels are 

associated with small objects and low back vowels with larger objects. This effect 

has been attested in not only speakers of English (Johnson, 1967), but also Chinese, 
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Thai (Huang, 1969), Korean (Kim, 1977), and several other languages (Gebels, 1969; 

Malmberg, 1964; cf Newman, 1933, Newmeyer, 1993). 

1.1.2 Mechanisms 

Unimodal associations between words and meanings do not seem to require a very 

complex mechanistic explanation. For production, these associations require 

language users be able to produce signals that are recognizably similar to their 

meanings, taking into account phonotactics constraints. The recognition of the 

motivated relationship between these types of associations also seem 

straightforward, but less transparent word-meaning mappings might actually 

require fairly advanced cognition (section 1.13). 

Some observed crossmodal biases seem to be best explained by simple 

associative learning mechanisms. For example, the association between distance and 

amplitude is a reliable feature of the environment that can be learned from the 

environment and then leveraged later for communication (distant sounds are, all 

things being equal, quieter). Other associations, like for example associations 

between high pitched sounds and perceptual brightness, seem less obvious and might 

require some other mechanistic explanation. 

Crossmodal associations reflect a general feature of human perceptual 

organization where cortical areas for different modalities are connected (e.g. Kovic, 



 

12 

 

Plunkett, & Westermann, 2010). Evidence for crossmodal associations being 

underpinned by structural organization of the brain is found primarily in the study 

of synesthesia, a cluster of conditions that results in exaggerated connections 

between unrelated sensory modalities (Ramachandran & Hubbard, 2001). Many, 

but not all crossmodal associations observed in synesthetes have also been 

demonstrated in the normal population, although synesthetes might show 

exaggerated versions of those associations (Bankieris & Simner, 2015).  

The physiological and genetic (Asher et al., 2009) underpinnings of 

crossmodal associations in both synesthetes (Rouw & Scholte, 2007) and the 

normative population (Revill et al., 2014) have been shown to be related to one 

another. Associations across sensory modalities have been demonstrated to be 

mediated by increased density of neural connections between the cortical areas 

responsible for the processing of those inputs in both synesthetes and the normal 

population (Kanero et al., 2014).   

1.1.3 Limitations 

The acoustic channel on which most languages are transmitted inherently limits the 

possibility for unimodal associations between words and meanings: meanings having 

to do with imitable acoustic dimensions can be matched to labels that are 

motivated, but the majority of meanings necessary for human language are simply 

not amenable to this kind of unimodal motivated mapping. Human languages need 
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to express things about the world other than descriptions or imitations of sounds. 

Additionally, motivated associations between words and meanings are not equally 

transparent: some meanings, for example, map relatively poorly onto their 

communication channel (i.e., whether the language is verbal, signed, written, etc.). 

The transparency of unimodal motivated associations is also related to the process of 

conventionalisation: although unimodal words like onomatopoeia are imitative of 

sounds, they are constrained by the phonotactics of the language in which they are 

embedded.  

In English, for example, the word for the sound of a crowing rooster (‘cock-a-

doodle-doo’) is onomatopoeic. Other languages, however, have different expressions 

for this sound: German uses ‘kikiriki’, where French uses ‘cocorico’. I might, as an 

English speaker, suggest that the English onomatopoeia is more straightforwardly 

iconic than the other two, but all three are quite different from the actual sound 

made by a rooster (Perniss, Thompson, & Vigliocco, 2010). Human language, 

especially when conventionalized to recognizable words rather than non-speech 

sounds is unable to perfectly mimic the sounds of acoustic events, because 

onomatopoeia are still formed by a string of speech sounds (e.g. vowels and 

consonants), and, even if phonemes could perfectly mimic environmental sounds, all 

languages have constrained sets of available phonemes (Assaneo et al., 2011). 
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Crossmodal associations between words and meanings have similar 

limitations based on the suitability of the communication channel for taking 

advantage of perceptual biases. In some ways, because these associations are not 

imitative, the fidelity of imitation is not an issue, but at the same time the fidelity of 

recognition might be more difficult.  Absent prosodic cues, for example, it might be 

difficult to recognize that the vowels in ‘humongous’ make it an appropriate word to 

describe very large things.  

The Chinese symbol for ‘gate’ serves as a good example of the process of 

conventionalisation of a motivated word-meaning association, in this case 

demonstrating the process of erosion. Over time the initially unimodally iconic 

representation of a gate in Chinese became increasingly arbitrary and divorced from 

its iconic origin (Figure 1.02). This further obscures the motivated nature of the 

association between the logograph and its meaning.  

 

Figure 1.02- The conventionalisation of an iconic logograph for the word GATE in Chinese. 

From Garrod et al. (2007). p. 962. 

 

Crossmodal associations are likely subject to the same processes of erosion and 

conventionalisation as unimodal associations. Dingemanse (2012) has suggested, for 
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example, that the process of conventionalisation might result in motivated 

crossmodal associations that are language specific, although this possibility seems to 

require that these iconic associations are also systematic, or at least derived from the 

structure of a language more generally.  

Collectively, motivated associations between words and meanings are 

potentially beneficial for language learning, but limited in their expressivity. This 

limit to expressivity has both an absolute component (some meanings do not have 

motivated associations to a feature of the communication channel) and a relative 

component based on transparency (the motivatedness of certain associations might 

not always be entirely straightforward). 

1.2 Systematicity 

Where motivatedness refers to associations that operate directly between words and 

their meanings, the second non-arbitrary dimension along which language can be 

structured operates by mapping characteristics of sets of words to characteristics of 

sets of meanings (systematicity). In this section I will outline the effect that 

systematic associations between words and meanings has on the dimensionality of 

languages and thus their potential ability to express a sufficient number of 

meanings.  

In an alien language where all proper nouns end with ‘-iks’, for example, any 

time a learner came across ‘-iks’ they would know immediately that they were 
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dealing with a proper noun. This sort of mapping, where all meanings of a certain 

category are mapped to all words with a given feature (and no words with that 

feature are mapped to other categories of meaning) might be called absolute 

systematicity, although generally (perhaps always, in natural languages) 

systematicity operates at a statistical level, rather than an absolute one (Reilly et 

al., 2012). Crucially, systematicity is orthogonal to motivatedness: that is, it is 

possible for the systematic mappings between word set features and meaning set 

features to be either motivated or conventional and idiosyncratic to a language (see 

section 1.3). 

1.2.1 Systematicity and Dimensionality 

One of the most important effects of creating systematic associations between 

properties of word sets and properties of meaning sets is that doing so inherently 

limits the dimensionality of the signal space for a language. This is immediately 

apparent in the example above of absolute systematicity: because the ending ‘iks’ 

can only be used for proper nouns in such a configuration, the overall expressivity of 

that language has been reduced (there are many possible words that cannot be used 

for proper nouns). 

Quantifying the dimensionality of language, however, and especially 

quantifying the loss of potential expressivity based on the introduction of a 

systematic division to the signal space, is not easy. How the introduction of 



 

17 

 

systematic divisions influences the potential expressivity of a language varies as a 

function of the number of phonemes, the allowable length of words, and the number 

of systematic divisions required. Even if we assume some incredibly large value for 

the number of possible phonemes, or the length of allowable words, the introduction 

of systematic divisions always reduces the dimensionality of a language, and might 

as a corollary limit its expressivity.  

The World Atlas of Language Structures (Dryer and Haspelmath, 2013) lists 

!Xóõ as the language with the largest inventory of consonant phonemes, at 122 

(Maddieson, 2013) and German as the language with the largest inventory of basic 

vowels, at 14 (Maddieson, 2013b). A language using these consonant and vowel 

phoneme inventories (which would be the language with the largest basic phoneme 

inventory), and whose words were only cVc trigrams would have a possible signal 

space with over 200,000 words (an average language, by comparison, with 22.7 

consonants and 6 vowels would have just over 3000 possible trigrams).  If, in this 

language, we wanted to mark a distinction between nouns and verbs systematically 

we might suggest that all words for nouns should begin with half of the possible 

consonant phonemes, and all words for verbs should begin with the other half. This 

would result in just over 50,000 possible mappings each for nouns and verbs (1/4 of 

the total space each), which still seems like plenty of space, regardless of the fact 

that half of the previously available mapping space is lost by the introduction of the 

systematic marker (Figure 1.03). 
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Figure 1.03- The introduction of a systematic division marking nouns vs. verbs constrains the 

available mapping space. Areas of the space filled by hash marks represent mappings of words 

to meanings that are disallowed based on the systematic marking. 

 

The introduction of additional systematic divisions beyond a distinction between 

nouns and verbs further constrains the mapping space. If we introduce an additional 

marked distinction between count nouns and mass nouns, for example, we further 

reduce the number of possible labels for count nouns to 12,500 (Figure 1.04). 
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Figure 1.04- The introduction of a second systematic division splitting nouns into count vs. mass 

nouns further constrains the available signal space. 

 

Further divisions between subtypes of nouns that are marked systematically will, of 

course, further constrain the usable mapping space (Figure 1.05). With the 

introduction of a third systematic division (animate vs inanimate count nouns) there 

are only 3000 possible labels for animate count nouns. 
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Figure 1.05- The introduction of a second systematic division splitting nouns into count vs. mass 

nouns further constrains the available signal space. 

 

Of course, we could imagine further subdivisions of the available mapping space that 

would constrain the number of possible words in our artificial language. With each 

division, the number of possible words for a given meaning becomes exponentially 

smaller, and at some point might become so small that there would be an insufficient 

number of possible words to express all of the meanings within a category (Table 

1.01). 
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Table 1.01- The effect of systematicity on the size of the available mapping space. At each 

added level of systematicity, an increasingly large percentage of the mapping space becomes 

unavailable for use, and the total number of possible words within subcategories becomes 

smaller. At some level of systematicity, the number of possible words within a category 

becomes insufficient to express the meanings required for the language. 

 

Natural languages are typically more constrained in the size of their phoneme 

inventory than our artificial language presented above, but are less constrained in 

the way that words can be created (not all words are trigrams). The overall size of 

the possible signal space for any language is thus very large. Consider table 1.02 

below, where the number of possible words of each length given our language with a 

large phoneme inventory vs. an average inventory. 

 

Table 1.02 The overall size of the possible signal space for a language increases exponentially 

as a function of the total phoneme inventory and the allowed length of (monomorphemic) words. 
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Here it might become obvious that the size of a language’s signal space and its 

mapping space are not identical to one another. It would be possible, for example, to 

have a language with a very large signal space (many possible words), but a very 

constrained mapping space. A language with a small signal space and no systematic 

divisions, for example, might actually have more possible word-meaning mappings 

than a much larger language that incorporated many systematic divisions to the 

mapping space. For artificial examples like the one given above then, the absolute 

signal space of the language does not change as a function of introducing 

systematicity: discounting phonotactics and other rules for word construction, all 

words in the overall signal space are theoretically available for the language. 

Crucially, however, the introduction of systematicity ensures that certain mappings 

between words and meanings will not be available. Assuming an equal number of 

word-meaning pairs for a language that is either systematic or not, we would say 

that both languages make use of an equal proportion of the signal space. The crucial 

difference is that a systematic language maps from the signal space to the meaning 

space in such a way that large portions of the mapping space are unavailable – a 

constraint which is not shared by arbitrary languages. 

It might be hard to imagine, given the nearly 5 billion possible trisyllables in our 

artificial example, that the introduction of systematicity might materially influence 

the expressivity of such a language, but consider that there are many more 
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differences than, for example, nouns vs. verbs that are relevant to language learners. 

The question of the degree to which systematicity imposes actual limits on the 

expressivity and learnability of language is central to much of this dissertation, and 

is dependent on the size of the signal space, the number of systematic dimensions 

along which the language is to be marked, and how those two features interact with 

the perceptual and cognitive machinery of language learners.  

1.3 Systematicity and Motivatedness 

As mentioned above, systematicity and motivatedness are not mutually exclusive 

and, in fact, run orthogonally to one another – that is, the relationship between a 

word and meaning can be systematic vs. non-systematic and motivated vs. non-

motivated. There are examples of all of these possible configurations in natural 

languages, although non-motivated non-systematic (i.e. arbitrary) associations 

between words and meanings account for by far the largest portion of the lexicon (de 

Saussure, 1983). In the sections below I will provide examples of each of these types 

of associations between words and meanings. Additionally, taking into consideration 

the benefits of systematicity and motivatedness and their limitations, I attempt to 

explain the relative contribution of each type of associations to the lexicon. 
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Motivated Systematic Motivated Non-Systematic 

A part of the language where 
there are both mappings 
between individual words and 
their meanings (motivatedness) 
and between groups of words 
and groups of meanings 
(systematicity). 
 
Examples:  
Pervasive sound symbolism 
Some phoneasthemes (e.g. gl- 
cluster) 

A part of language where there 
are mappings between 
individual words and their 
meanings (motivatedness) but 
no relationship between groups 
of similar words and groups of 
similar meanings. 
 
Examples:  
Onomatopoeia 
Mimetics/Ideophones 

Non-Motivated Systematic Non-Motivated Non-
Systematic 

A part of language where there 
is no mapping between 
individual words and their 
meanings, but where features 
of a set of similar words are 
mapping onto a set of similar 
meanings (systematicity). 
 
Examples:  
Phonaesthemes 

A part of language that is 
arbitrary. This makes up the 
majority of the lexicon. 

Figure 1.06- The crossing of systematicity and motivatedness creates four possible ways that 

words can be related to meanings, which should account for the entire lexicon.  

Before proceeding into a more complete discussion of the relationship between 

motivatedness and systematicity, it bears mentioning at least two things that make 

the practical distinction between the two-types of non-arbitrariness fuzzier than the 

treatment that I give them below. First, recognizing systematicity can be 

problematic: this is true not only because systematicity is most often statistical 
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rather than absolute, but also because there is no hard and fast cut-off point for 

systematicity. If a language has, for example, two words for small objects that 

contain a specific vowel sound could this rightly be described as systematicity? 

What about three words, or four? Making a call here is difficult, and when looking 

for systematicity we should be mindful of what kinds of evidence we accept, lest we 

have a very high false positive rate for systematicity, and report systematicity 

(either absolute or statistical) that is illusory. 

Relatedly, we should recognize that the relationship between motivatedness and 

systematicity can be a slippery one. Below, I introduce the idea of incidental 

systematicity, which refers to configurations where by taking advantage of motivated 

associations repeatedly the language arrives at a configuration that could also be 

described as systematic. In the above example, consider the possibility that words 

for small objects contained high-front vowels – an association we know to be 

motivated (Sapir, 1929). Just as it can be difficult to establish whether this 

configuration was systematic, it might be hard to find cases where motivated 

associations are taken advantage of in a language that does not result in incidental 

systematicity. This is further complicated by the fact that whether we recognize a 

group of words as being systematic depends on the level at which they are 

considered. For example, ‘moo’, ‘tweet’, and ‘oink’ are all motivated, but neither the 

phonological features of the words are similar nor are the acoustical features of the 

sounds that they represent, so we might call them non-systematic. At the same time, 
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however, all three words are similar in that they are imitative of the sounds of 

animals – should we consider the broad use of onomatopoeia in English an example 

of systematicity? If so, is it incidental or not? 

These two considerations muddy the water of the discussion below, and should be 

kept in mind, but for the majority of the remaining dissertation I discuss more ideal 

less complicated examples of non-arbitrariness. 

1.3.1 Motivated Non-Systematic 

 

Figure 1.07- A diagrammatic representation of a motivated non-systematic association between 

a word’s form and its meaning.  

 

Motivated non-systematic associations are those where there is a mapping between 

some feature of a word’s meaning and some feature of the word. In English, 
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onomatopoeia is an example of a motivated non-systematic association, while 

ideophonic forms in other languages also meet this criteria; ‘goron’, for example, is 

sound-symbolically associated with heaviness in Japanese (Asano et al., 2015), likely 

due to its vowel roundedness. Here I propose that motivated non-systematic 

associations between words and meanings likely make up the smallest portion of the 

lexicon for two reasons. First, despite the fact that there are many well attested 

crossmodal perceptual biases that might underpin these kinds of associations, there 

is still a limit to the number of concepts that can likely be expressed along a 

motivated dimension. We might consider, for example, the form of the words 

‘lullaby’ and ‘fuck’ to be related to their meanings motivatedly: ‘lullaby’ is more 

sonorous than is ‘fuck’, and this difference maps onto their underlying affective 

dimensions (Yardy, 2010). Words like ‘lullaby’, and ‘fuck’ might thus be particularly 

well suited for their meanings, but what might a motivated signal for ‘honor’ or even 

‘signal’ be? The second reason that I propose that isolated motivated non-systematic 

associations between words and meanings might account for a very small portion of 

the lexicon is that the introduction of multiple signals based on a single motivated 

dimension inherently produces mappings that are systematic in addition to being 

motivated. 

Curse words like ‘fuck’, for example, use less sonorant consonants and 

prosodic cues that enhance their spectral harshness, and this has been suggested to 

be related to the motivational, hedonic, and affective purpose of those words 
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(Yardy, 2010). In a language with only a single curse word, the use this association 

would be only motivated and not systematic. However, in English and most other 

languages we have a large repertoire of curse words, and insofar as each of these 

words matches to the motivated bias we suggest, the structures of sets of meanings 

and sets of signals begin to come into an alignment and gain the property of being 

systematic (see Figure 1.08).  

 

Figure 1.08- A diagrammatic representation the formation of an incidentally systematic mapping 

between words and meanings.  In this case, individual word forms are mapped to meanings 

based on a motivated association between the two. Because multiple similar word forms are 

mapped to multiple similar meanings, the resulting configuration of the language can be 

recognized as being systematic. 
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1.3.2 Motivated Systematic 

In this dissertation, I call the above shift from a motivated non-systematic 

association to a set of motivated systematic associations incidental systematicity, 

which could account for some observed types of word-meaning associations in 

natural languages. In English for example, the border between phonaesthemes 

(clusters of similar words that are mapped to similar meanings) and onomatopoeia 

can be a blurry one: onomatopoeic words like ‘crash’, ‘clang’, ‘smash’, ‘bang’, and 

‘crunch’ express similar meanings and are also similar to one another (in that are 

similarly structured and use overlapping segments). Thus, the motivatedness of 

these form-meaning mappings also creates an overall structure that is recognizably 

systematic. Some ideophonic expressions in other languages share this feature. For 

example, reduplication is a common feature in Japanese ideophones that describe 

events occurring repeatedly (Asano et al., 2015), and is suggested to be motivated, 

but because the same motivated mapping is used repeatedly, those clusters of 

ideophones are also more systematic than would otherwise be expected. 

The non-incidental case of motivated systematic mappings between words 

and meanings might be one where there is a motivated mapping between a property 

of a set of words and a set of meanings, but where no such motivated mapping can 

be recognized in the comparison of any individual word to its meaning (Figure 1.09). 

Dingemanse (2011) outlines the existence of this kind of association in Siwu where a 
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group of words that varies in their vowel quality (‘pɔmbɔlɔɔ’, ‘pumbuluu’, and 

‘pimbilii’) maps to meanings about the protrusion of the belly, with /ɔ/ being 

mapped to the largest protrusion and /i/ to the smallest. 

 

Figure 1.09- A diagrammatic representation the association between word forms and meanings 

that is both motivated and systematic. In this case, the motivated connection between the form 

of a set of words and the form of its related set of meanings is based not on individual motivated 

associations but a motivated mapping of the set of word forms to the set of meanings. 

 

As an example, consider the names for a fictional family of animals that includes 

three species that differ primarily in how dangerous they are: we might have a 

domesticated cat; a wild cat, but one that is not typically thought of as being 

dangerous (e.g. a bobcat); and a large, wild, and very dangerous variety (e.g. a tiger). 

For these meanings, there is a dimension (danger) that increases across the group, 
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and this dimension could be mapped onto an analogous signal dimension that 

similarly increases (see Figure 1.10). 

  

Figure 1.10- An example of non-incidental motivated systematicity. Here, a similarity on the 

meaning dimension (increasing danger) is mapped onto a similar structure on the meaning 

dimension (plosivity). In this case, the low danger meanings are mapped onto relatively less 

plosive signals, whereas the more dangerous meanings are mapped onto relatively more 

plosive signals. 

 

In the example above, the mapping between the signal space and the meaning space 

is motivated in the normal sense (i.e. there is a motivated affective connection 

between plosivity and danger), but the individual mappings between words and 

meanings might not themselves be sufficiently transparent to be recognized as 

iconic. That is, the entire meaning dimension is mapped only onto a relatively small 

portion of the signal dimension. This mapping to the signal space might be so 
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narrow as to be insufficient for any individual word to be iconic, and thus the 

motivatedness of this systematic relationship arises as a function of the similarity 

solely between the set of meanings and the set of signals. Incidental motivated 

systematicity, on the other hand, would maintain individual iconic associations, 

with the systematicity arising because of the relationship between those associations 

(Figure 1.11). 

 

Figure 1.11- An example of incidental motivated systematicity. Here meaning dimensions are 

mapped onto signal dimensions in a motivated way individually. However, this mapping 

incidentally also creates a systematic structure to the relationship between the set of meanings 

and the set of signals. 

 

The difference between incidental and non-incidental motivated systematicity is 

thus quite subtle, and the two are likely to bleed into one another: i.e. non-incidental 

systematicity might make the motivatedness of associations between individual 

words and meanings more obvious.   
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1.3.3 Non- Motivated Systematic 

 

Figure 1.12- A diagrammatic representation of a non-motivated but systematic association 

between word forms and meanings. Here, word forms that are similar to each other are mapped 

onto meanings that are similar to one another, but the specific mapping between the form space 

and the meaning space is arbitrary. 

 

The fact that even motivated word-meaning associations might become 

conventionalized should suggest the broadening of the number of potential 

mappings between sets of words and sets of meanings, and thus their pervasiveness 

in the language, afforded to mappings between sets of words and meanings that are 

systematic, but not motivated. Returning to our example of ‘honor’ and related 

abstract terms for example, I suggested that finding a crossmodal association that 

could be mapped to these kinds of meanings via the speech channel would be 
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difficult. However, relying instead on non-motivated associations opens up the 

number of possibilities for systematic mappings enormously.  

Phonaesthemes are one example of a systematic mapping between words and 

meanings, and have been documented in a number of languages (English: Bolinger, 

1980; Indonesian and other Austronesian languages: McCune, 1983; Blust, 1988; 

Swedish: Abelin, 1999; Japanese: Hamano, 1998; and Ojibwa: Rhodes, 1981). 

Bergen (2004) suggests that determining the overall proportion of languages that 

contain phonaestheme clusters is difficult, but that no systematically studied 

languages have been found to lack phonaesthemes (but, cf. Cuskley, 2013). Consider, 

for example, the gl- phonaestheme cluster in English, which contains a number of 

words (‘glimmer’, ‘glitter’, ‘glisten’, ‘glint’, etc.) that have to do with light and 

vision (Bergen, 2004): we know, based on our previous discussion, that there are in 

fact well attested crossmodal associations between sound and light (bright = high 

pitched, for example; Lindauer, 1990). English, however, and other non-tonal 

languages, do not have the ability to capture this association in a motivated way 

(whether any tonal languages make use of this motivated association is an open 

empirical question). By applying a non-motivated systematic mapping however, 

English is able to capture the similarity between terms denoting light and vision and 

map that similarity onto a set of similar words beginning with ‘gl-‘. However, as I 

acknowledge above (and, as discussed in Cuskley, 2013) the distinction between 

phonaesthemes and onomatopoeia is not always clear: ‘gl-‘ is unlikely to be related 
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to meanings having to do with light by any motivated process, but instead by 

historical accident and the process of conventionalisation (Cuskley, 2013). This is 

not, however, true of all phonaestheme clusters, some of which might be motivated. 

The ‘sn-‘ cluster for example has a number of words (sneeze, sniffle, snot, snarl) 

having to do with the nose, and these meanings are mapped to a ‘sn-‘ sound that is 

nasal; in fact, evidence for this specific motivated systematic association has been 

demonstrated crosslinguistically (Blasi et al., 2014): because the mapping underlying 

the ‘sn-‘ cluster is likely motivated, the cluster would be incidentally systematic. 

Finally, it bears noting that phonaestheme clusters are not systematic in the 

absolute sense: the ‘gl-‘ onset is disproportionately associated with meanings having 

to do with light and vision, but not all words that share the onset share similar 

meanings (e.g. ‘glove’, ‘glaive’, ‘gloat’, etc.). The systematicity of these types of 

associations can thus best be characterized as being statistical in nature, rather than 

absolute, and statistical associations between word forms and meanings have been 

demonstrated in large swaths of the lexicon (e.g. Monaghan et al., 2014). 
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1.3.4 Non-Motivated Non-Systematic (Arbitrary) 

 

Figure 1.13- A diagrammatic representation of a set of arbitrary mappings between word forms 

and meanings. 

 

Although non-motivated systematic associations between sets of words and sets of 

meanings are substantially more flexible than their motivated counterparts, they 

still theoretically suffer from the issues related to how they constrain the 

dimensionality of the signal system that I described above: if we assumed that 

motivated mappings were mandatory where possible then the use of the ‘sn-‘ 

phonaestheme would limit dimensionality in two ways. First, no word relating to the 

nose or nasal-oral cavity could begin with any other onset, and second, the ‘sn-‘ 

onset could not be used for any meanings not related to the nasal-oral cavity. 
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Relaxation of the motivatedness constraint would allow any onset to be mapped 

systematically onto meanings related to the nasal-oral cavity, but dimensionality 

would still be constrained: whatever onset was used for the systematic mapping 

would be removed as a possible onset for other words.  

Arbitrary associations between words and meanings do not have this 

limitation: the ability to map words to meanings and the learnability of those 

mappings is not enhanced by either systematicity or motivatedness, but neither is it 

limited by them. This is ostensibly the explanation for the fact that the lexicon is 

largely arbitrary: although arbitrariness does not provide any cues for learnability, 

and thus results in all word-meaning mappings having to be learned in isolation 

(potentially), motivated and systematic mappings constrain the size of the available 

signal space and thus might be insufficiently expressive or more difficult to learn in 

the long run (see below).  

The effect that non-arbitrary associations between words and meanings have 

on learning has been pointed to increasingly in the last decade by researchers 

suggesting that although motivated and systematic associations account for a 

relatively small portions of the lexicon, they might be crucial to the process of 

language learning (Monaghan et al., 2011; Imai & Kita, 2014). Below, I will review 

the literature suggesting roles for motivatedness and systematicity in language 

learning, setting the stage for the central questions of this dissertation. 
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1.4 Motivatedness and Language Learning 

In this section I discuss the benefits that motivated associations between words and 

meanings might provide for naïve language learners. Motivated mappings between 

words and meanings are central to bootstrapping theories that posit that they 

scaffold the learning of later non-motivated language (Imai & Kita, 2014; Asano et 

al., 2015; Perniss & Vigliocco, 2014). I will review this proposal below after 

summarizing the evidence suggesting that motivated tokens are learned more easily, 

regardless of any later impact they have on the learnability of non-motivated 

tokens.  

1.4.1 Experimental evidence 

There is a wide range of experimental evidence, centered on both artificial language 

learning and the learning of other motivated word-meaning mappings from 

unfamiliar languages that supports the notion that motivated associations between 

words and meanings are easier to learn than are arbitrary ones. In 2012, three papers 

using very similar methodologies were all published exploring, for the first time, the 

proposal that the Bouba-Kiki effect might reflect a learning bias, rather than simply 

a perceptual bias: i.e. that the application of the perceptual bias underlying the 

Bouba-Kiki effect would enhance learning. Aveyard (2012), Monaghan et al. (2012), 

and Nielsen & Rendall (2012) all found evidence using their experimental protocols 

that motivated sound-symbolic associations between consonant plosivity and image 
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jaggedness were learned more easily than the equivalent counter-motivated 

configuration of the language. That is, participants were better able to learn that 

‘takete’ was the name of a jagged object than they were to learn that it was the 

name of a curved object, given equivalent training. Nielsen & Rendall (2012) 

specifically framed their experiment against a common critique in the early sound 

symbolism literature that sound symbolic biases might be observed precisely 

because they already exist in some languages but are not motivated (i.e. they are 

conventionally systematic). This proposal suggest that said biases represent a 

learned bias, rather than a bonafide learning bias based on the perceptuocognitive 

organization of human language learners, and based on the results of their 

experiment, Nielsen & Rendall (2012) suggested that having been learned was 

unlikely to account for the bias observed experimentally.  

Where the three above studies focused on a comparison between motivated 

and counter-motivated word-meaning associations, other researchers have focused 

on comparing the learnability of real words from foreign languages that have been 

judged to be sound-symbolic, vs. words that are arbitrary (but not counter-

motivated). Similar to the findings comparing motivated to counter-motivated 

learning, these studies have shown that motivated crossmodal associations between 

words and meanings facilitate learning in a number of languages (Asano et al., 2015; 

Nygaard, Cook, & Namy, 2009).  Yoshida (2012) for example, found that non-

Japanese speakers learn motivated Japanese words easier than arbitrary ones, and 
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this effect has also been demonstrated in children (Kantarzis, Imai, & Kita, 2011), 

and infants as young as 4 months of age (typically assessed through a preferential 

looking task; Imai et al. (2008); Pena, Mehler, & Nespor, 2011). 

1.4.2 Child-directed speech 

In addition to findings that learners of languages other than Japanese are able to 

learn the meaning of Japanese mimetic words are rates higher than would otherwise 

be expected, there is converging evidence that Japanese mothers preferentially use 

motivated mimetics terms rather than their non-motivated synonyms when 

speaking to their infant children (Fernald & Morikawa, 1993; Saji & Imai, 2013). 

Similar patterns in infant-directed speech are seen in other languages (English, 

German, and Mandarin Chinese; Grieser & Kuhl, 1988). English speaking mothers, 

for example, use prosodic cues to exaggerate the pronunciation of words denoting 

size in way that further enhance motivated associations between size and sound (e.g. 

‘huuuuuge” vs. ‘teeeeny”; Perniss & Vigliocco, 2014).  

1.4.3 Corpus analysis and crosslinguistic consistency 

In addition to findings that mothers preferentially use motivated words when 

speaking to their infants, further support for the importance of motivatedness 

specifically for learning can be found in the analysis of motivatedness cross-

linguistically. Many languages, including  not only Japanese but also some other 
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Asian languages (Diffloth, 1994; Watson, 2001); indigenous South American 

languages (Nuckolls, 1999); the majority of sub-Saharan African languages (Childs, 

1994); and some aboriginal Australian languages as well (Alpher, 1994; Schultze-

Berndt, 2001) have been shown to have large iconic portions of their lexicon. Alone, 

the presence of motivated associations between words and meanings would not 

suggest a benefit for learning from those associations, but there has been increasing 

evidence demonstrating that these sound symbolic pockets of the language are often 

learned early in development (Thompson et al., 2012). The structure of basic 

vocabularies, i.e. those that are learned earliest, have also been demonstrated to 

have shared crossmodal associations (Wichmann et al., 2010), and this finding also 

extends to some sign languages, where early acquired signs are often the most iconic 

(Vinson et al., 2008). 

1.5 Systematicity and Language Learning 

In this section I will review the evidence that systematicity at the level of the 

lexicon is beneficial for language learning. Although this suggestion is gaining 

traction rapidly, evidence for it is much rarer in the psycholinguistic literature.  

1.5.1 Experimental evidence 

There have been very few experimental investigations of the proposal that 

systematic associations between words and meanings might be beneficial for 
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learning. Monaghan et al. (2011) stands as the best experimental investigation of 

this possibility so far: in a series of three experiments Monaghan et al. compared the 

learnability of artificial lexica that were either systematic (but not motivated) or 

arbitrary with respect to the mappings between their words and meanings, and 

found a clear benefit for systematicity in categorization learning. Given a set of 

words using plosive consonants that is mapped to a set of meanings (e.g. nouns) the 

regularity of mapping between word and meaning spaces allows participants to learn 

the category structure exceptionally well. That is, in a systematic language where all 

words for nouns are made up of plosive letters, experimental participants rarely 

make the error of assigning a non-plosive word to a noun.  The replication and 

extension of this finding to explore different aspects of systematicity is one of the 

central contributions of this dissertation, so I will return to these findings multiple 

times henceforth and with greater precision; at first approximation though, we can 

count these findings as evidence for a systematicity benefit.  

Additionally, some experimental results reported to reflect motivatedness 

might actually reflect systematicity (Yoshida, 2012). Even the experimental results 

reported to be traceable to sound-symbolic biases like the Bouba-Kiki effect can be 

explained partly with reference to systematicity, as the artificial languages used in 

those experiments often have the characteristic of being incidentally systematic. For 

example, Maurer et al. (2006) used the set of words ‘k^te’, ‘keki’, ‘tite’, and ‘t^kiti’ 

for jagged images. 
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1.5.2 Computational models 

In addition to an experimental exploration of the effect of systematicity on language 

learning, Monaghan et al. (2011) made use of a series of computational models 

designed to explore more generally the benefits of systematicity for learning. 

Broadly, Monaghan et al.’s simulation findings align with those of their 

experimental participants: systematic associations between word spaces and 

meaning spaces make categorization easier. These results also align with the findings 

of an earlier computational model by Gasser (2004), which explored what I have 

here called incidental systematicity. In Gasser’s model, similar signals were mapped 

onto similar meanings such that the motivated associations between signal spaces 

and meaning spaces were systematic: we will return to the results of these two 

simulations in Chapters 2 and 3.  

1.5.3 Corpus analysis 

Just as corpus analyses have shown an association between age of acquisition and 

motivatedness, a number of studies have shown that the early acquired part of the 

lexicon is more systematic than would otherwise be expected (e.g. Monaghan et al., 

2014). This finding suggests that the potential benefits of systematicity are 

leveraged early in language acquisition when they are most beneficial, and is, like 
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the corpus findings regarding motivatedness, often interpreted as evidence that 

acquisition of non-arbitrary words bootstraps later learning. 

1.6 Motivatedness, systematicity, and language learning 

Taking into consideration only the above pressures for learnability and how they 

would favor the creation of motivated and systematic associations between words 

and meanings, we would arrive at a model that would suggest that the lexicon would 

be largely non-arbitrary in nature. Considered mostly simply, the pressure for 

learnability seems to suggest that arbitrary associations have no advantage and thus 

that they shouldn’t really exist in the lexicon (Figure 1.14). 
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Figure 1.14- A model of the structure of the lexicon based on the pressures of learnability 

favoring both motivated and systematic associations between words and meanings predicts that 

the lexicon should be largely non-arbitrary. 

This model suggests that the pressure for languages to be learnable interacts with 

systematicity to produce a positive pressure towards lexica being systematic, 

containing both motivated systematic and non-motivated systematic tokens. 

Similarly, because motivated associations are easier to learn, this model suggests 
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that we should find both motivated systematic and motivated non-systematic word-

meaning mappings in the lexicon.  

The suggestion of this model that the lexicon should be non-arbitrary, however, is 

misaligned with the fact that actual lexica are generally reported to be largely 

arbitrary. In this section I consider the above evidence regarding the benefits and 

limitations of systematicity and motivatedness to propose a more robust model that 

accounts for the fact that lexica are largely arbitrary while simultaneously 

acknowledging the importance of non-arbitrariness for learning. Finding support for 

this model and determining the relative strength of its components will be the 

central goal of the remainder of this dissertation. 

Non-arbitrary associations between words and meanings are proposed to be 

selected for by the pressure for languages to be learnable (Imai & Kita, 2014; 

Monaghan et al., 2011). Thus, the process of cultural transmission should ensure 

that insofar as these benefits are real we should find them in the structure of the 

world’s languages, and should be able to observe similar phenomena in the lab. 

However, in addition to a pressure for learnability, languages also have a pressure 

for expressivity: a language with a single word that applies to all meanings is, as has 

been pointed out elsewhere (Kirby et al., 2015), perfectly learnable, but also 

perfectly inexpressive. Figure 1.15, below, represents a more complete model that 

accounts for these factors and also aligns with the observed structure of the lexicon. 
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Below, I will tackle the parts of this model individually, pointing towards those 

claims that require the further experimental support provided in this dissertation. 

 

Figure 1.15- A more robust model of the pressures for learnability and expressivity and how 

they interact to shape the structure of the lexicon. Red lines represent the interaction of 

systematicity with the pressure from which they originate, and blue lines similarly represent the 

interaction of motivatedness and their origin. Finally, each line has a notional “valence”, such 

that lines labeled with a “+” sign reflect outcomes towards their source, and lines labelled with a 

“I” sign reflect outcomes that bias against their source. For example line A reflects the fact that a 

positive learnability pressure selects for systematic associations between words and meanings. 
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Line D, on the other hand, reflects the fact that systematic word-meaning associations can 

actually make learning more difficult, and thus that the pressure for learnability can select for 

arbitrary word-meaning mappings. 

 

As acknowledged above, the pressure for languages to be learnable explains the 

presence of both motivated and systematic associations in the lexicon (Figure 1.15- 

lines A, B, and C). The evidence for this fact has mostly been covered in the 

preceding sections of the introduction, but one important question concerning those 

pressures remains to be addressed: are findings like those of Nielsen & Rendall 

(2012), which suggest a learning benefit for the Bouba-Kiki effect traceable to 

systematicity, motivatedness, or both? Many experimental findings that have been 

traced to motivatedness (Maurer et al., 2006; Nielsen & Rendall, 2011; Monaghan et 

al., 2012; Ahlner & Zlatev, 2010), for example, could be equally well explained by 

what I have called incidental systematicity. In Chapter 4 I explore this question 

experimentally.  

In addition to benefitting learnability, both systematicity and motivatedness 

have limitations and attendant costs. Motivated associations between words and 

meanings are inherently limited in the kinds of meanings that can be expressed (line 

E), which should lead to the use of arbitrary words. Additionally, the serial 

application of motivated associations results in the formation of incidentally 



 

49 

 

systematic divisions (line B), leading to an increase in the number of motivated 

systematic word-meaning mappings. 

Systematic mappings between words and meanings, because they impinge on 

the dimensionality of the signal space, can lead to both expressivity and learnability 

penalties. In the most straightforward case, enforcing absolute systematic divisions 

in the signal space can result in a hard limit on the number of possible meanings of a 

given type (line F). In the artificial example presented earlier in this chapter, a 

language using only cVc trigrams with an average-sized phoneme inventory would 

only have 3 possible labels for animals, for example (and no possible labels for 

domestic animals or pets). I do not directly explore this expressivity pressure in this 

dissertation by way of experiment, and exploring this pressure via corpus study is 

likely impossible. The fact that no languages seem to suffer from an inability to 

express an adequate number of meanings suggests that this pressure is very strong. 
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Table 1.01- The effect of systematicity on the size of the available mapping space. At each 

added level of systematicity, an increasingly large percentage of the mapping space becomes 

unavailable for use, and the total number of possible words within subcategories becomes 

smaller. At some level of systematicity, the number of possible words within a category 

becomes insufficient to express the meanings required for the language. 

 

In addition to a hard limit on expressivity, systematicity can create practical limits 

on expressivity. Our theoretical language (with an average phoneme inventory) 

might need words for 30 different animate objects, which is approximately 1% of the 

possible words in an arbitrarily structured version of that language, but 66% of the 

48 possible words in a systematically structured version of the language that marks 

the animate/inanimate distinction and all levels above it. Although, strictly 

speaking, this language would be sufficiently large to express the required meanings, 

choosing 30 words from that constrained signal space would result in words that 

were very similar to one another. Assuming that the production or reception of 

words did not have 100% fidelity (a cognitive limitation of human language 

learners), the fact that these labels are more similar to one another than they would 

be in a more arbitrary language might induce a learnability penalty that results in 

selection for an arbitrary lexicon (line D). Assuming that languages must express a 

given number of meanings (the number of which varies by language) the effect that 

systematicity has on reducing the possible mapping space can result either in a 

language being insufficiently expressive or more difficult to learn. Figure 1.16 below 
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illustrates this fact, and a number of additional concepts that will become important 

later.  

Figure 1.16- A visualization of the way that systematicity can influence both the size of the 

available mapping space and the contrastiveness of words within that space. Each circle 

represents a word-meaning pair in the space with an error term around that word. Where words 

are closer to each other in the space, they are more easily confused. 

 

Above, the introduction of a systematic marker in the originally unconstrained 

signal spaces reduces the size of the overall space for mapping words to meanings. In 

this case the reduction still allows the language to be expressive (there is space for all 

of the words), but reducing the size of the mapping space results in words that are, 

all other things being equal, more similar to each other (and thus potentially more 

likely to be confused). However, the size of the mapping space does not entirely 

determine the confusability of the labels: words in the bottom right quadrant are 

less similar to one another than are words in the upper left quadrant of the signal 
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space, despite the allowed signal space being the same size. In this dissertation, the 

similarity of labels to one another will be referred to as contrastiveness: words that 

are more contrastive should, on average, be learned more easily (and confused less 

often). In chapters 2, 3 and 5 of this dissertation, I explore this learnability pressure 

experimentally. 

The findings discussed above and the experimental results presented in the 

coming chapters of this dissertation offer an explanation for the overall structure of 

the lexicon and why it is predominantly arbitrary, despite learnability pressures 

generally favoring non-arbitrariness. However, this dissertation also attempts to 

address the temporal patterning of language acquisition: early acquired words are 

both more systematic and more motivated than later acquired words, and the 

question of why this is the case is an important one. One suggestion, discussed 

below, is that the acquisition of non-arbitrary words early bootstraps the acquisition 

of the later-acquired arbitrary lexicon.  

1.6.1 Bootstrapping 

Early research exploring non-arbitrary associations between words and meanings 

found, repeatedly, that non-arbitrariness aids learning (e.g. Nygaard, Cook, & 

Namy, 2009) and that in some languages like Japanese, children acquire non-

arbitrary words earlier than they do arbitrary ones (Imai et al., 2008). These 

findings led to the suggestion that the acquisition of the non-arbitrary early 
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acquired lexicon bootstraps the acquisition of later arbitrary tokens (Imai & Kita, 

2014), and to corpus analyses suggesting that the non-arbitrariness of early-acquired 

portions of the lexicon is not a feature of a very limited set of languages (Monaghan 

et al., 2014). Some authors have invoked this idea of bootstrapping non-specifically 

(e.g. Nielsen, 2011) without suggesting any mechanism by which this bootstrapping 

could occur. At the very least, however, to meet the criteria of bootstrapping we 

need evidence not only that one event follows another, but also that the learning of 

the first actually somehow enhances the learnability of subsequent tokens.  

The generalized suggestion of bootstrapping - i.e. that learning non-arbitrary 

tokens enhances the learning of arbitrary ones later, with no invocation of a 

mechanism will here be referred to as the simple bootstrapping hypothesis. Despite 

the simple bootstrapping hypothesis being artificial and potentially untenable, this 

dissertation will explore it nonetheless, because of its experimental approachability 

and what its feasibility might tell us about the feasibility of other bootstrapping 

hypotheses. 

Imai & Kita (2014) have suggested a version of the bootstrapping hypothesis 

(which they call the sound symbolic bootstrapping hypothesis) that I will refer to here 

as referential bootstrapping. I call Imai & Kita’s sound symbolic bootstrapping 

hypothesis by this different name because I suggest an additional role of sound 

symbolism for conceptual bootstrapping (see below) that is not discussed by Imai & 
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Kita (2014). The central idea of this hypothesis is that the natural connection 

between certain words and meanings endows language learners with the ability to 

establish reference, and that this general referential ability underpins the later 

ability to map arbitrary words to meanings (Perniss, Thompson, & Vigliocco, 2010). 

The referential bootstrapping hypothesis thus relies on motivatedness as a 

mechanism to explain how reference is established (Baldwin, 1993), and further 

suggests that referential bootstrapping in spoken language is analogous to the 

enhancement of referential establishment in gestural communication systems 

(Perlman, Dale, & Lupyan, 2015).  

Strangely, no authors have offered up an equivalent bootstrapping 

hypothesis based on systematicity, rather than motivatedness. Here, I propose that 

if systematicity also enhances later learnability, it may do so through a process that 

bootstraps the acquisition or transparency of concepts and categories. I refer to this 

possibility as conceptual bootstrapping, and suggest that systematic associations 

might make the structure of the underlying categories that they reflect more 

apparent, or allow for the establishment of categories that are increasingly obscure. 

An early systematic mapping of some feature of words to, for example, all nouns 

might be later differentiated to make obvious the differences between count and 

mass nouns. Similarly, an establishment of an understanding of the difference 

between nouns and other types of meanings might allow language learners to 

subsequently learn less systematic or even wholly arbitrary word-meaning 
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mappings. Further, I suggest that the establishment of incidental motivated 

systematic associations could underpin the ability of language learners to later learn 

non-motivated systematic associations - this is a second type of bootstrapping 

mediated by motivated associations, and the reason that I suggest that Imai & Kita 

(2014)’s sound symbolic bootstrapping hypothesis is too generally named (because 

they do not explore this possibility). 

Despite raising the possibility of conceptual bootstrapping, I am generally 

critical of bootstrapping hypotheses because direct empirical support for them is so 

far lacking. It may be the case, for example, that non-arbitrary associations between 

words and meanings are in fact easier to learn, but that the subsequent learning of 

arbitrary associations is underpinned by general cognitive development, rather than 

bootstrapping.  At an early stage of development, non-arbitrary associations might 

be easier for children to learn due to their limited cognitive ability. With additional 

time for cognitive development, children might subsequently become increasingly 

able to learn arbitrary word-meaning mappings. This account would still explain the 

observed structure of the lexicon and the time course over which its components are 

acquired, but would not require bootstrapping, which proposes that early learning 

accounts for an enhancement of later learning, rather than simply occurring 

subsequently. 
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1.6.2 Contrastiveness and learnability 

In addition to the possibility that the appearance of bootstrapping effects are an 

illusion caused by cognitive development generally, the transition from early 

acquired non-arbitrary mappings to later-acquired arbitrary ones might instead be a 

consequence  of the pressures for learnability and expressivity acting on the 

structure of language. Given this account, early-acquired portions of the lexicon 

could be non-arbitrary to enhance learning, but these non-arbitrary mappings might 

create conditions under which the language fails to be adequately expressive or the 

learning benefit for these associations inverts. In the example discussed above, with 

48 possible labels for animate objects, selecting only 3 words that were still relatively 

distinct from one another would be relatively easy. As children acquire language 

more completely, however, they will likely require more than 3 labels for animate 

objects, and additional meaning dimensions will become increasingly salient or 

necessary. To avoid the possibility that the language reaches either a hard limit on 

expressivity (insufficient possible words to express all required meanings) or a limit 

on learnability based on loss of contrast, later-acquired portions of the lexicon might 

relax their non-arbitrary rules. Looked at over a developmental time course, the 

resultant mapping between time of acquisition and arbitrariness would seem to 

support the presence of bootstrapping, but here this structure would be the result of 

an expressibility pressure, rather than bootstrapping. I explore the difference 
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between an explanation relying on bootstrapping and one accounted for only by the 

pressure for learnability directly in Chapter 5.  

1.7 Thesis Outline 

The experiments presented in this thesis will focus primarily on the question above: 

how much can the interaction of pressures for learnability and expressivity tell us 

about the structure of language. The influence that these pressures have on the 

structure of language will also be evaluated with respect to bootstrapping 

hypotheses to assess their feasibility or necessity.  

1.7.1 Overview and contribution statements 

The body of this thesis has been written specifically for this purpose, other than the 

text of Chapter 4, which has been submitted to the Journal of Experimental 

Psychology: Learning, Memory, and Cognition. The body of that chapter appears in 

the form that it will appear in publication, other than some minor editing to adhere 

to the format of the remainder of the dissertation. However, as that chapter is based 

on a publication, the writing of that chapter was shared more evenly between myself 

and its other authors, who were material not only in the writing but also the 

statistical analyses presented therein.  

Additionally, the model presented in Chapter 3 of this dissertation was created 

collaboratively with Dieuwke Hupkes, a visiting master’s student who was 
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responsible for the coding of the model, under the supervision of myself and Dr. 

Kenny Smith. 

1.7.2 Chapter 2- Systematicity and language learning 

In Chapter 2, I present the results of a series of experiments exploring the benefits of 

systematicity for the learning of artificial lexica. In Experiment 1 I 

straightforwardly extend the design of Monaghan et al. (2011) using a new 

experimental paradigm that allows for an easier exploration of the learnability 

penalty for systematic languages due to the confusability of similar words. In 

Experiment 2, using maximally contrastive but still systematic artificial lexica, I 

demonstrate that systematic mappings that maintain contrastiveness can allow for a 

learnability benefit that does not collapse the signal space and result in increased 

confusability of within-class words. Finally, in Experiment 3, I attempt to directly 

manipulate contrastiveness and the degree to which introducing a systematic 

mapping constrains signal space dimensionality, and find further support for the 

general conclusion that systematicity can enhance learnability in terms of 

categorization but not always individuation. In that experiment I also demonstrate 

that the relationship between contrastiveness and signal space saturation is not 

necessarily entirely linear, and thus that new metrics are required to compare these 

factors adequately.  
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1.7.3 Chapter 3- Phonological dispersion, systematicity, and language learning 

In Chapter 3 I present the results of a further extension of Monaghan et al.’s 

experimental paradigm, and also a recreation of their computational model that 

explores a novel form of systematic mapping between words and meanings that is 

systematic but not based on phoneme feature similarity. I find that although this 

novel type of systematic association between words and meanings results in 

massively different learning by the computational model, my experimental 

participants learn systematic associations similarly regardless of what dimension 

they are structured along.  

1.7.4 Chapter 4- Motivated vs. Conventional systematicity 

In Chapter 4 I present an experiment designed to test the difference in learnability 

between motivated systematic artificial lexica and lexica that are systematic, but 

not motivated. I find that overall there is no difference in learnability between the 

two types of lexica, although participants in the motivated condition of the 

experiment have an advantage on early trials where they are able to respond based 

on perceptual bias. Additionally, I find that the presence of motivated associations 

between words and meanings can interfere with the learnability of non-motivated 

systematic associations along a second dimension. I interpret these results to suggest 

that the potential of motivatedness to interfere with expectations regarding 
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motivatedness more generally might account for the fact that expressives in natural 

languages are often markedly different in their phonotactics: by isolating motivated 

portions of the lexicon from the rest of the lexicon, any negative influence that they 

have on learnability can be minimized.  

1.7.5 Chapter 5- Growing Lexicon experiment 

In Chapter 5 I present an experiment that allows for an exploration of the time 

course of learning to test the bootstrapping hypothesis and also how the learnability 

of words varies as a function of their likelihood of being confused with other words of 

the same type. The results of this experiment suggest that the simple bootstrapping 

hypothesis does not seem to account for the observed learnability of arbitrary tokens 

subsequent to the learning of motivated systematic ones, but rather that 

contrastiveness and confusability alone account for this finding.  

1.7.6 Conclusions 

I conclude the dissertation by briefly rehearsing findings of the experiments 

presented here and situating them in the fields of linguistics and psychology more 

generally, suggesting that ultimately the fundamental pressures of learnability and 

expressivity interact to shape the structure of language, and that bootstrapping 

hypotheses are not required to account for the fact that arbitrary word-meaning 

mappings are learned later than non-arbitrary ones and account for a much more 
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substantial portion of natural lexica. I conclude, however, by suggesting that both 

perceptual and conceptual bootstrapping likely account for some of the observed 

properties of language and acquisition trajectory of its learners, suggesting 

experimental protocols that might allow for future exploration of this possibility 

and establishment of how it interacts with expressivity and learnability pressures.  
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Chapter 2 

Systematicity and Learning I 

 

 

Figure 2.01- Chapter 2 compares the effects of learnability pressure towards systematicity to 

the effect of the learnability pressure towards arbitrariness by comparing the learnability of 

systematic (but non-motivated) artificial languages to arbitrary ones. 
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This chapter focuses on an exploration of the effect that various types of systematic, 

but non-motivated associations between words and meanings have on learnability.  

As discussed in Chapter 1, in the past decade there has been an increasing interest in 

the effect that systematic mappings between words and meanings have on learning. 

To rehearse, systematicity refers to any mapping of words to meanings such that a 

feature shared by a set of similar words is reliably associated with a feature shared 

by a set of similar meanings.  

 

Figure 2.02- A diagrammatic representation of a non-motivated but systematic association 

between word forms and meanings. Here, word forms that are similar to each other are mapped 

onto meanings that are similar to one another, but the specific mapping between the form space 

and the meaning space is arbitrary. 

 

In this chapter, I explore systematic associations between words and meanings that 

are non-motivated. For example, there is probably nothing that makes ‘gl-‘ a 
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particularly good segment for words having to do with light, but nonetheless there is 

a cluster of words beginning in ‘gl-‘ that share similar meanings (‘glimmer’, ‘glare’, 

‘glint’, ‘glow, etc.). Specifically, this chapter explores the learnability pressures for 

systematic associations: both the learnability benefit for systematic associations 

(Figure 2.01 A) and the learnability/practical expressivity cost associated with those 

same types of associations (Figure 2.01 B).  

To this end, I present the results of three experiments exploring the 

learnability of non-motivated systematic artificial languages compared to arbitrary 

(non-motivated, non-systematic) languages. The evidence provided in this chapter 

focuses on a fundamental split of learning into two types. Individuation refers to 

what we typically thinking of as word learning – assigning the correct word to a 

given meaning: for example, recognizing ‘glare’ as the correct word to describe a 

strong and bright light. Categorisation, on the other hand, refers to assigning the 

incorrect word to a meaning where that incorrect word is still of the same type as the 

correct word – for example, to accept the word ‘glare’ as referring to a sparkly 

reflected light (‘glitter’). The results of these experiments suggest the presence of a 

general learnability benefit for systematic lexica (Figure 2.01-A) based primarily on 

a benefit for categorisation learning, and a learnability penalty contingent on the 

degree to which systematicity impinges on practical expressivity/learnability (Figure 

2.01-B).  
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2.1  Background and Rationale 

As we saw in Chapter 1, systematic associations between words and meanings can 

divide the lexicon in such a way that they impose limits on expressivity. The first of 

these types of limits, which I referred to as a hard limit on expressivity, occurs when 

the number of words allowed by a systematic division is smaller than the number of 

individual meanings of that systematically marked type that need to be expressed. 

In our artificial language from Chapter 1 with an average phoneme inventory (22.7 

consonants and 6 vowels) used only trigrams, there would be just over 3000 possible 

words for that language. If this artificial language systematically marked words for 

animals as beginning with the segment ‘pI’, there would be 23 possible words for 

animals (pIg, pIp, pIf, pIn, etc.; assuming no phonotactic constraints disallowed 

certain combinations). If this language required names for 30 animals, this 

systematic mapping would impose a hard limit on expressivity: it simply would not 

be possible given these constraints to have unique names for each animal. If this 

language required names for 18 animals, however, expressivity would theoretically 

be unhampered - it would be possible to assign names to each of the 18 animals. 

These 18 words, however, would all be very similar to one another, and thus might 

be difficult to keep separate, especially given their similar meanings.  

This tension between a learnability benefit for systematic word-meaning 

mappings and a learnability penalty induced by a loss of contrastiveness is the 
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central issue of this chapter, and has been explored previously both experimentally 

(Monaghan et al., 2011) and through computational modelling (Gasser, 2004; 

Monaghan et al., 2011). Both of these approaches to the tension between learnability 

benefits and penalties suggest that the strength of the two pressures is contingent on 

how much systematicity constrains the signal space. Systematic mappings between 

words and meanings aid the process of categorisation: in the above example, upon 

hearing the word ‘pIk’ a learner familiar with the language would know that it 

referred to an animal, even if they had never heard the word before. However, if 

asked to feed to ‘pIm’ a user of this language might find themselves confused: is 

‘pIm’ the right word for a horse, a cow, a cat, a chicken, a rooster, or a crocodile? 

In 2011, Monaghan and colleagues attempted to explore this tension directly. 

In a series of experiments, Monaghan et al. (2011) compared the ability of human 

participants to learn languages that were either entirely systematic or entirely 

arbitrary. Systematic language learners in Monaghan et al. (2011)’s first experiment 

learned names for a set of nouns that were made up of a small set of phonemes, and 

words for a set of verbs that were made up of a second small set of phonemes, with 

no overlap between the two. In this experiment, Monaghan et al. found that learners 

of systematic languages had an overall advantage for categorisation over learners of 

arbitrary languages. In addition to a benefit for categorisation, learners of 

systematic languages showed an early individuation benefit, but arbitrary language 

learners eventually matched the overall performance of systematic language 
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learners. Monaghan et al. (2011) also included a number of computational models of 

the same kind of language learning that matched the general patterns of learning 

observed in their human learners, but in this chapter I will focus on their 

experimental results (although I return to the model results in Chapter 3). 

The findings of Monaghan et al. (2011)’s first experiment are limited in their 

ability to separate the learnability benefit of systematicity from the learnability 

penalty based on loss of contrastiveness because they explore on a single signal 

space. Specifically, the signal space used by Monaghan contains only 16 possible 

words, of which 12 were used; thus, all words tested were very similar to one 

another, and this might have inflated the learnability penalty. 

In 2004, Michael Gasser created a computational model of language 

acquisition that allowed for an exploration of the difference in learnability between 

systematic and arbitrary languages where the size of the signal space and the 

vocabulary also varied.  In a signal space with 1000 possible “words”, Gasser (2004) 

found that when vocabulary was small (15 word-meaning mappings) systematic 

associations between words and meanings were easier to learn than arbitrary ones, 

but with a larger vocabulary size (100 words) arbitrary languages were easier to 

learn than systematic ones. However, when Gasser increased the size of the possible 

signal space to 10,000 possible words, he found that the large vocabulary condition 

still favored systematicity over arbitrariness for learning.  
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2.2  Chapter Outline 

In Experiment 1, I present the results of an extension of an experimental paradigm 

used by Monaghan et al. (2011) where experimental participants learn a language 

that is either systematic or arbitrary, and find, supporting Monaghan et al. (2011) 

that systematic languages are easier to learn, but that this learning benefit is based 

primarily on those languages allowing for categorisation. That is, systematic 

languages are easier to categorise, but because their words are more similar to one 

another, more difficult individuate than arbitrary languages. 

The words learned in Experiment 1 (as well as in Monaghan et al., 2011) are 

very similar to one another, being chosen from a relatively small signal space. As we 

saw in the introduction, the similarity of these words to each other based on a 

systematic mapping between words and meanings might have a negative impact on 

learnability. Thus, in Experiment 2 I present the results of a further extension of the 

experimental methodology used in Experiment 1 that tests the learnability of 

languages that are systematic, but chosen from a much larger potential signal space 

such that they are less similar to one another. I find, using these more contrastive 

stimuli, that systematic languages retain an advantage for categorisation without 

incurring the same penalty to individuation. 

Monaghan et al.’s 2011 paper includes two additional experiments exploring 

different types of non-motivated systematic mappings between words and meanings. 
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In Experiment 3 of their paper, they introduce an experiment where systematic 

marking is somewhat relaxed such that labels within categories can be more 

contrastive while maintaining a strictly systematic construction. In my Experiment 

3, I attempt to further explore this possibility by constructing an experimental 

paradigm to manipulate the contrastiveness of labels to one another and delineate 

the degree to which overall contrastiveness influences learnability, although the 

metric by which I calculate contrastiveness makes interpreting the results of that 

experiment difficult. 

2.3  Experiment 1 

Experiment 1 focuses primarily on a replication of the experimental results of 

Monaghan et al. (2011), but using a slightly different experimental methodology. 

Where Monaghan et al. used a forced choice task for testing where participants were 

presented with a single word and tasked with choosing the correct meanings for that 

word from all possibilities; Experiment 1 here uses a signal detection paradigm to 

evaluate learning. The use of a signal detection paradigm, where on each trial 

participants are presented with a single word and a single meaning and asked to 

either accept or reject the pairing as correct, allows for a number of tests comparing 

individuation learning to categorisation learning that are not as straightforward 

using an alternative forced choice task. In addition to the use of a new experimental 

methodology (signal detection) Experiment 1 differs from Monaghan et al. (2011) in 
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the specific stimuli used- the differences between my stimuli and Monaghan et al.’s 

will be described below in the relevant sections. Finally, Monaghan et al. used a 

static selection of words from their available signal space: although there were 8 

possible words of each type, all participants were taught the same subset of 6 of 

those words. In Experiment 1 I relax that control, resulting in slightly different 

languages for each experimental participants: for each participant 8 words of each 

type were chosen from 64 possible words. Because of this, the similarly of each 

participants words to each other varies slightly, allowing for an exploration of the 

effect that this subtle difference in contrastiveness has on learnability. 

2.3.1 Methods 

Participants 

Participants were 26 students (11 female) recruited from the general population of 

the University of Edinburgh, and were compensated 2.00 GBP for the 15 minutes 

required to complete the task. All participants were monolingual English speakers 

between 17 and 31 years of age. Ethical approval was obtained from the University 

of Edinburgh in line with British Psychological Society (BPS) guidelines, and 

informed consent was obtained from all experimental participants. 

Participants were assigned randomly to each of 3 experimental conditions. 

Conditions 1a (n=7)) and 1b (n=7) were counterbalanced systematic language 
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conditions. We found no differences between participants in these subconditions (i.e. 

it did not matter whether animals were paired with plosive or sonorant words), so 

those subconditions were collapsed for further analysis. The remaining participants 

(n=12) were assigned to Condition 2 (arbitrary language).  

Experimental Design 

Label Stimuli 

Monaghan et al. (2011) created two types of words that differed in both their 

consonant and vowel composition. From a set of four consonants (/f/, / ʒ/, /g/, and 

/k/) and four vowels (/i/, / ɪ/, /u:/, and /a:/) two types of words were created, each with 

eight possible words (six of which were used: see Table 2.01). I created the new label 

stimuli for Experiment 1 using similar constraints, although the labels created were 

trisyllables (in cVcVcV configuration) rather than trigrams, and created using a 

slightly larger and different set of phonemes.  

Words of the first type were constructed from the obstruent consonants /t/, 

/k/, and /p/ in combination with the vowels /i/ and /e/ while words in the second class 

were constructed from the sonorant consonants /m/, /n/, and /l/ and the “rounded” 

vowels /o/ and /u/.  

For each of the possible consonant phoneme positions, two of the available 

phonemes were chosen as possibilities for label construction while for each vowel the 
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two possibilities remained the same (see Table 2.01), resulting in a total space with 

64 possible words of each type. For each experimental participant, a set of 8 words 

of each type was chosen from this total space (Table 2.02), giving over 4 billion 

possible combinations of words of each type. By contrast, Monaghan et al.’s signal 

space had 8 possible words, of which 6 were used, which gives 28 possible 

combinations of words of each type (of which only 1 combination was used). 

 

Table 2.01- Word construction procedure for Experiment 1. 
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Table 2.02- A comparison of the word stimuli used in Monaghan et al. (2011) (left) and 

Experiment 1 (right). 

 

Acoustic stimuli for each of the words was created using Apple talk with the female 

voice Victoria. Because Apple talk does not use phonetic symbols, the actual 

pronunciation of the words shown here is somewhat inexact, although I did my best 

to ensure that the phoneme representations were accurate. At the very least, the 

actual words produced by apple talk were discriminable such that the phonemes for 

systematic language learners were systematic (i.e. the pronunciation of /u/ was not 

always precise, but it was never produced similarly to /i/ or /e/). 
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The similarity of the set of words for each participant was calculated using 

Hamming Distance, which is a measure of the difference between two strings of 

equal length based on the number of positions where the phonemes are different. 

Thus, at each consonant or vowel position, each label was compared to every other 

label and a score between 0 and 6 was calculated, giving the distance from that label. 

With this information, I calculated an average contrastiveness score for each 

participant and included in the data for analysis. 

Experiment 1 used the sonorant/plosive and rounded/unrounded dichotomy 

typically found in sound symbolism research relating to the Bouba-Kiki effect (cf. 

Maurer et al., 2006; Nielsen & Rendall, 2011, 2012) to allow for the extension of the 

experimental paradigm to exploration of the effects of motivatedness on learnability 

(see Chapter 4).  

Image Stimuli 

Image stimuli were also split into two categories: animals and vehicles, and were 

taken from a variety of online sources using Google Image search; images were 

placed on a white background, then standardized for size and resolution. The use of 

two categories of nouns differs from Monaghan et al., who used images depicting 

actions and objects from the Peabody Picture Vocabulary Test (Dunn & Dunn, 

1997). Thus, in addition to having a difference in the contrastiveness of my labels, 

relative to Monaghan et al., it is possible that there is also a difference in the 
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contrastiveness of my meanings, although quantifying such a difference would be 

difficult.  

Experimental Design 

For each participant, eight of the twelve images and labels of each type were 

randomly selected as stimuli. These labels and images were then paired together 

based on the experimental condition. This part of the experimental set-up differed 

from Monaghan et al. only in that participants in Monaghan et al. learned 12 word-

meaning pairs, where participants in Experiment 1 learned 16.  

In the systematic condition of the experiment, all images of one category 

were paired with all labels of one category, with the second category of images 

paired with the second category of labels. For example, all animals could be paired 

with plosive words and all vehicles with sonorant ones, or the opposite assignment 

could be applied; which of these pairings was used was counterbalanced across 

participants.  

In the arbitrary condition of the experiment, half of the images from each 

category were paired with half of the labels of each category; thus, half of the 

animals were given plosive labels, and half were given sonorant labels, with the same 

being true for the vehicles. 

The experiment was programmed and conducted using Livecode v 5.0.2. 
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Procedure 

Familiarisation 

Prior to training, participants were familiarised with all of the words that they 

would subsequently learn the meaning for. For familiarisation, each word was 

played to the participant via headphones twice, with a 1 second delay between each 

presentation. The order that the words were presented in was randomized, and 

participants were given two rounds of familiarisation (for a total of four exposures to 

each word). 

Training 

The training portion of the experiment involved the sequential presentation of all of 

the paired labels and images. On each training exposure, the participant was shown 

an image in the center of the screen. 750 milliseconds later, the word for that image 

was played to them via headphones, and then, after a 1 second delay played a 

second time. After the second presentation of the word, the image remained on 

screen for one second before progressing to the next trial. Each association was 

presented twice in randomized order in each of two training blocks.   

Testing 
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Experiment 1 used a signal detection paradigm to measure the ability of 

participants to learn the associations that they were taught during training. On each 

test trial participants were presented with a single image in the center of the screen 

concurrently with the presentation of a single auditory stimulus via headphones. 

Participants were tasked with responding either “yes” (by pressing the “z” key) or 

“no” (by pressing “/”) to indicate whether they had previously seen the specific 

pairing of image and label that they were presented with.  

Trials in the test phase of the experiment were split into three types: targets, 

in-class distractors, and out-of-class distractors. Target trials were those in which the 

presented image-label pair was one that had been seen during training. In-class 

distractor trials involved presented images being paired with labels that were 

different from the one that they had been trained with, but were of the same type 

(thus, if the word for a given image  was made using plosive consonants, an in-class 

distractor trials would pair that image with another word containing plosive 

consonants). Finally, out-of-class distractor trials paired images with incorrect words 

that were of the opposite type.  There were a total of 64 test trials for each 

experimental participant (16 Target, 16 In-class, 32 Out-of-class). 

Data Analysis 

Participant responses were scored according to a signal detection paradigm; on 

target trials “yes” responses were scored as hits, with “no” responses as misses, while 
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on distractor trials of both types “yes” responses were scored as false alarms with 

“no” responses scored as correct rejections. This type of scoring allowed for the 

calculation of a d’ value for each of the participants, which is a measure of the 

ability of participants to discriminate between alternatives that effectively controls 

for experiments where there are many more distractor trials than there are targets. 

Overall comparison of participants in the two conditions (systematic vs. arbitrary) 

was compared using a two-sample t-test. 

A repeated-measures analysis of variance of response correctness was also 

conducted with experimental condition as a between-subjects factor and trial type 

(In-class, Out-of-class, or target) as a within-subjects factor. This analysis allowed 

me to break down participant responses based on categorisation and individuation. 

Performance on target trials is a straightforward way to gauge individuation 

learning, but the difference between performance on target trials and in-class-

distractor trials is actually the most relevant comparison. A learner who 

individuates perfectly will accept all target trials and reject all in-class-distractor 

trials, while one who has learned only the category structure (e.g. that ‘keketi’ is a 

word for a vehicle) will accept all target trials *and* all in-class-distractor trials. 

Performance on out-of-class distractor trials can also be used to gauge the ability of 

learners to categorise- those who have learned the category structure should be able 

to easily reject all out-of-class distractors. In terms of our learnability pressures, the 

learnability benefit suggested for systematicity should lead to systematic language 
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learners performing better on target trials, out-of-class distractor trials, or both. The 

learnability penalty suggested for systematicity however should lead to systematic 

language learners performing significantly worse on target trials, in-class-distractor 

trials, or both. 

Finally, in addition to comparisons of d’ and the repeated measures ANOVA, 

a simple linear regression was conducted for each experiment condition to test the 

correlation between learnability and the average contrastiveness of a participant’s 

language. I predicted that overall, more contrastive languages would be easier to 

learn than less contrastive ones (i.e. there would be a positive correlation between 

correctness and contrastiveness). 

2.3.2 Results 

Signal Detection 

Participants in the systematic and arbitrary language learning conditions both 

performed at rates above chance. Participants in the systematic condition of the 

experiment had an average d’ score of 1.49 (SD= 0.64) while participants in the 

arbitrary language condition had an average d` score of 0.42 (SD= 0.39). 

Participants in both conditions performed significantly better than chance 

(systematic: t(13)=8.75,p<0.001, arbitrary: t(11)=  3.66, p=0.0037), but participants 
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in the systematic condition performed better than those in the arbitrary condition 

(t(24)= 5.06, p<0.001: Figure 2.03). 

 

Figure 2.03- d’ performance by participants in the systematic and arbitrary conditions of 

Experiment 1 scored by their ability to identify pairs of objects and labels that they had 

previously learned in the training phase of the experiment. Performance in both conditions was 

significantly better than chance (both ps<0.01) and participants in the systematic language 

condition performed significantly better than those in the arbitrary language condition (p<0.001). 

 

Repeated Measures Analysis of Variance 

The repeated measured analysis of variance revealed a significant main effect of 

condition: participants in the systematic condition (M= 0.67, SE= 0.021) performed 

significantly better than participants in the arbitrary language condition (M= 0.57, 
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SE= 0.023; F(1,77)=9.95, p=0.0043. There was also a significant main effect of trial 

type (F(2,77)= 42.13, p<0.001): post-hoc comparison using the Tukey-Kramer 

Multiple comparison test showed that participants performed significantly worse on 

in-class-distractor trials (M=0.42, SE= 0.029) than on either Target (M= 0.69, 

SE=0.029 ) or out-of-class distractor trials(M= 0.75, SE=0.021 ).  

In addition to these main effects there was a significant interaction between 

experimental condition and trial type (F(2,77)= 35.65, p<0.001; Figure 2.04). Post 

hoc analysis of this interaction showed that participants in the arbitrary language 

learning condition did not perform significantly differently on the three trial types 

(Target: M= 0.59, SE=0.043; In-Class Distractor: M= 0.55, SE= 0.043, Out-of-Class 

Distractor: M= 0.57, SE=0.031: F(2,732)=0.23, p=0.79). Participants who learned 

systematic languages however performed significantly differently depending on trial 

type (F(2,854)= 92.35, p<0.001): Systematic language learners performed best on 

out-of-class distractor trials (M=0.94, SE=0.028), second best on target trials 

(M=0.79, SE=0.04) and worst on in-class distractor trials (M=0.28, SE=0.04) and all 

of these differences were significant according to the Tukey-Kramer Multiple 

comparison test.  
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Figure 2.04- Effect of the interaction of experimental condition and trial type on the proportion of 

correct responses. Participants in the arbitrary language condition performed equally well 

regardless of the type of experimental trial, while systematic language learners performed best 

on out-of-class distractor trials and worst on in-class-distractor trials. 

 

Additionally, I compared the performance on each trial type between the two 

conditions using further rmANOVAs. I found that on target trials, participants in 

the systematic condition performed better than those in the arbitrary condition 

(Systematic: M= 0.79, SE= 0.039; Arbitrary: M= 0.59, SE=0.042; F(1,25)= 11.59, 

p=0.0023). Similarly, participants in the systematic condition performed 

significantly better than those in the arbitrary condition on out-of-class distractor 

trials (Systematic: M= 0.94, SE= 0.028; Arbitrary: M= 0.57, SE=0.031; F(1,25)= 
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76.95, p<0.001). However, on in-class distractor trials, participants in the arbitrary 

condition performed significantly better than systematic language learners 

(Arbitrary: M= 0.55, SE=0.046; Systematic: M= 0.28, SE= 0.042; F(1,25)= 18.77, 

p<0.001). 

The fact that performance on in-class distractor trials was significantly below 

chance for systematic language learners (M= 0.28; t(13)= 4.89=, p<0.001) prompted 

a final test comparing the inverse of performance on in-class distractor trials to 

performance on target trials to determine if performance on the two trial types could 

be explained entirely by categorisation learning. A two sample t-test showed that for 

systematic language learners correctness on target trials was not significantly 

different from the inverse of correctness on in-class distractor trials (t(26)=1.19, 

p=0.243). 

Finally, a linear regression revealed that a moderate positive correlation 

between average contrastiveness and d’ (r= 0.406, p=0.039: See Figure 2.05), 

although this was not true for either systematic language learners (r= 0.23; p=0.43) 

or arbitrary language learners (r= -0.17; p= 0.60) when analysed alone. 
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Figure 2.05- Linear regression of d’ as a function of contrastiveness. Data from systematic 

language learners (and their correlation) is plotted in orange, while data from arbitrary language 

learners is plotted in blue. The green regression line represents the linear fit to the total data set 

and shows a moderate correlation between the two, with contrastiveness accounting for 16.5% 

of the variance in d’ scores (p=0.039). 

 

2.3.3 Discussion 

My prediction that systematic language learners would perform significantly better 

when the data was analysed in terms of categorisation was supported by the data 

from Experiment 1. Systematic language learners performed significantly better on 

out-of-class distractor trials but suffered a penalty on in-class distractor trials 
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relative to arbitrary language learners. In support of a benefit of systematicity for 

individuation, I found that participants who learned systematic languages 

performed better on target trials than did arbitrary language learners.  

I evaluated the interaction between a benefit for categorisation and a benefit 

for individuation by comparing performance on target trials and in-class distractor 

trials for systematic language learners. This analysis showed that systematic 

language learners accepted target and in-class distractor trials at equal rates, which 

could be interpreted to suggest that they were able to learn only category 

information and not able to individuate at all. Subtracting the proportion of 

accepted in-class distractors (0.72) from the proportion of accepted targets (0.79) 

suggest that, at best, systematic language learners would be truly individuating 

correctly on only 7% of trials, although this difference is not significant.  

The correlation of contrastiveness to correctness was significant and in the 

direction that I predicted, although the overall variance in contrastiveness between 

experimental participants was fairly low. Thus, to better understand this issue an 

experimental methodology that allows for individual comparisons on a trial-by-trial 

basis would be required (see Chapter 5).  

A direct comparison between the results of Experiment 1 and the results of 

Monaghan et al.’s Experiment 1 is difficult for a number of reasons, but their general 

conclusions seem to be fairly well supported by my data. First, and most obviously, 



 

86 

 

I used a different experimental protocol (Signal Detection vs. AFC) which produced 

different data for analysis, although the ability to separate individuation and 

categorisation is easier given my data structure. Second, Monaghan et al. used 

multiple rounds of training and testing in their experimental protocol, whereas I had 

only a single round of training and testing: thus the most relevant comparison 

between our results compares Experiment 1 presented here with the first block of 

Monaghan et al.’s Experiment 1 (although in their case, participants were given 

twice as much training). 

The graphs below (Figures 2.06 and 2.07) show a comparison of my results 

and Monaghan’s split into categorisation and individuation. For categorisation, I 

calculated a value based on the average of the number of accepted pairs that were 

either targets or in-class distractors for each experimental condition. For 

individuation, I use the proportion correct for my experimental participants across 

all three trial types. Because these data were obtained using different experimental 

designs, I do not include any statistical comparisons here, as they wouldn’t be 

appropriate, instead including the comparison only for illustration purposes. 
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Figure 2.06- A comparison of Categorisation performance between Monaghan et al. (2011)- 

Experiment 1 (dark), and Experiment 1 (light)  presented here. Error bars represent standard 

error. 

  

Figure 2.07- A comparison of Individuation performance between Monaghan et al. (2011)- 

Experiment 1, and Experiment 1 presented here. Error bars represent standard error. 
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The comparison presented in the above graph in terms of individuation is, however, 

misleading: as I have acknowledged, my results suggest that systematic language 

learners actually individuated relatively poorly, and that their individuation results 

can be better explained by having learned to categorise. This raises a question: how 

much of the individuation data in Monaghan et al. is due to the same feature? 

Comparing individuation data for arbitrary language learners between the two 

conditions is similarly difficult: given a response where participants were only 

guessing, my participants would guess correctly on 50% of the trials, while 

Monaghan et al.’s would guess correctly on 8.33% of trials. 

For a better comparison, I subtracted the effect attributable to guessing from 

the observed values for both experiments. For arbitrary languages where no 

category information is available, this required simply subtracting the average 

correctness due to chance (50% for Experiment 1 presented here, 8.33% for 

Monaghan et al.). For systematic languages this meant establishing the baseline 

correctness from the categorisation score, then subtracting that value from the 

observed individuation (Experiment 1: 0.79 (observed) - 0.72 (expected) = 0.07; 

Monaghan et al.: 0.325 (observed) - 0.1433 (expected: 84% categorisation/6 options) 

= 0.182). The comparison of individuation between the two experiments given those 

values is shown below in Figure 2.08. 

 



 

89 

 

 

 

Figure 2.08- A comparison of Individuation performance between Monaghan et al. (2010)- 

Experiment 1, and Experiment 1 presented here, corrected for the influence that guessing has 

on performance. Error bars represent standard error. 

 

This correction for the influence of guessing brings the findings of the two 

experiments relatively close in line with each other; although as mentioned 

comparing them statistically is inappropriate. Still, both support the same general 

conclusion: systematicity is good for categorisation, but can be bad for 

individuation. The signal detection paradigm I used in Experiment 1 allowed me to 

demonstrate this point even more clearly, and suggested the possibility that 
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Monaghan et al.’s results should similarly be analysed to account for the effect that 

learning the category only has on individuation.  

The overall positive correlation that I observed between contrastiveness and d’ 

suggests, however, that contrastiveness generally contributes to learning. The 

pressure for learnability should favor mappings between words and meanings that 

are more contrastive. In Experiment 1, and in Monaghan et al. (2011), 

contrastiveness is predicted by language type, but this is likely to be partially due to 

the fact (especially in Monaghan et al.) that words are chosen from such a small 

signal space. However, it is possible to maintain a systematic mapping between 

words and meanings that does not result in words being as similar to one another as 

in Experiment 1. Below, in a second experiment, I explore this possibility- extending 

the design of Experiment 1 using a set of labels that is more contrastive. 

2.4  Experiment 2 

One of the potential problems with extending the findings of Monaghan et al. 

(2011)’s experiment 1, and my own Experiment 1, presented above, is that it only 

captures the tension between the learnability benefit for systematicity vs. the 

learnability penalty due to loss of contrastiveness at a narrow range of values of 

contrastiveness. That is, in the case of a systematic language for Monaghan et al., 

the labels ‘fiz’, ‘fIz’ and ‘zIf’ for example are very similar to one another, and also 

relatively similar to the second type of words (‘ga:k’, ‘ka:g’, ‘ku:k’) (how similar 
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these words are both within each type and between types depends on what model of 

similarity I use- see Chapter 3). The same is true of the labels used above for 

Experiment 1, ‘kekete’, ‘kepipe’, and ‘tekipe’ are all quite similar to one another, 

and although words of the second type are constructed from a different set of 

phonemes, they are still similarly structured (‘lomumu’, ‘molulo’, ‘mulomo’, etc.).  

It is, however, possible to manipulate both the contrastiveness within and between 

types of words that are used to mark categories systematically. Here, I present the 

results of a second experiment using a set of words that, rather than making a 

systematic distinction based on phoneme features, uses two kinds of words that vary 

in their structure (monosyllables vs. trisyllables) and are additionally maximally 

distinct within those categories in terms of their phoneme structure. Based on the 

maximal contrastiveness of the set of experimental stimuli used here for Experiment 

2, I predict that the benefit of systematicity will allow for increased learnability for 

systematic languages without as large of a concomitant reduction to learnability 

based on contrastiveness.  

2.4.1 Methods 

Participants 

Participants were 28 students (11 female) recruited from the general population of 

the University of Edinburgh, and were compensated 2.00 GBP for the 15 minutes 
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required to complete the task. All participants were monolingual English speakers 

between 17 and 31 years of age. Ethical approval was obtained from the University 

of Edinburgh in line with BPS guidelines, and informed consent was obtained from 

all experimental participants. 

Participants were assigned randomly to each of 3 experimental conditions. 

Conditions 1a (n=6)) and 1b (n=7) were counterbalanced systematic language 

conditions. We found no differences between participants in these subconditions (i.e. 

it did not matter whether animals were paired with mono or trisyllables), so those 

subconditions were collapsed for further analysis. The remaining participants (n=15) 

were assigned to Condition 2 (arbitrary language). 

Experimental Design 

Label Stimuli 

Two lists of twelve nonsense words were created (using the English Lexicon Project 

Website: Balota et al., 2007): The words followed English phonotactics and were all 

stressed on the first syllable, but they varied according to the number of syllables (1 

vs. 3). The two categories of labels (monosyllables and trisyllables) were selected not 

only to be distinct from one another, but also to be contrastive within categories (see 

Table 2.03). Acoustic stimuli for each of the words was created using Apple talk with 
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the female voice Victoria. As in Experiment 1, I did my best to ensure that the 

pronunciations were in line with the IPA representation shown below. 

 

Table 2.03- A comparison of the word stimuli used in Experiment 1 vs. Experiment 2. Word 

stimuli for Experiment 2 are both more different between types (monosyllables vs. trisyllables) 

and within types. 

 

Image Stimuli 

The image stimuli used in Experiment 2 were identical to those used in experiment 

1. 
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Procedure 

The procedure used for Experiment 2 was identical to that used in Experiment 1. 

Data Analysis 

Data analysis for Experiment 2 was identical to that of Experiment 1. d’ scores were 

calculated for each experimental participant and performance between the two 

conditions was compared using a two sample t-test. Additionally, I performed a 

repeated measures analysis of variance on the effect of language type (systematic vs. 

arbitrary) and trial type (target, in-class distractor, out-of-class distractor) on 

performance. I compared performance between the two conditions with a 

generalised linear model that included experiment, condition, and trial type as 

factors. Because the words used in Experiment 2 were not of the same length, they 

were not amenable to being compared via their Hamming distances, and thus I 

include no analysis for contrastiveness for Experiment 2. 

I predicted that overall the languages used in Experiment 2 would be more 

easily learned, and that systematic language learners would demonstrate a benefit 

for systematicity aiding categorisation, but no concomitant learnability penalty on 

in-class-distractor trials. 
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2.4.2 Results 

Signal Detection 

Participants in both the systematic and arbitrary language learning conditions both 

performed at rates above chance (Systematic d’: M= 3.37, SE= 0.47; 

t(12)=6.15,p<0.001); Arbitrary d’: M=2.36, SE= 0.29; t(14)=  6.35, p<0.001). 

Participants in the systematic condition did not perform significantly better overall 

than those in the arbitrary condition, although there was a marginal effect (t(25)= 

1.85, p=0.068: Figure 2.09). 

 

Figure 2.09- d’ performance by participants in the systematic and arbitrary conditions of 

Experiment 2 scored by their ability to identify pairs of objects and labels that they had previous 

learned in the training phase of the experiment. Performance in both conditions was significantly 

better than chance (ps<0.001). The performance of participants in the two conditions was only 

marginally significantly different (p=0.068). 
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Repeated Measures Analysis of Variance 

The repeated measures analysis of variance showed no significant main effect of 

condition, in line with the d’ omnibus test (Systematic: M=0.897, SE= 0.021; 

Arbitrary: M=0.851, SE=0.019; F(1,83)= 2.38, p=0.135). There was however a 

significant main effect of trial type (F(2,83)= 7.33, p=0.0016): post-hoc comparison 

using the Tukey-Kramer Multiple comparison test showed that participants 

performed equally well on target (M=0.846, SE=0.019) and in-class distractor 

(M=0.847, SE=0.019), but significantly better than both on out-of-class distractor 

trials (M=0.929, SE= 0.013).  

There was also a significant interaction between experimental condition and 

trial type (F(2,83)= 3.93, p= 0.026; Figure 2.10). Post hoc analysis of this interaction 

showed that participants in the arbitrary language learning condition did not 

perform significantly differently on the three trial types (Target: M= 0.813, 

SE=0.027; In-Class Distractor: M= 0.863, SE= 0.027, Out-of-Class Distractor: M= 

0.88, SE=0.019: F(2,27)=1.87, p=0.17). Participants who learned systematic 

languages however performed significantly differently depending on trial type 

(F(2,23)= 9.6, p<0.001): Systematic language learners performed better on out-of-

class distractor trials (M= 0.98, SE= 0.019) than on either target trials (M=0.88, 



 

97 

 

SE=0.027) or in-class-distractor trials (M=0.83, SE=0.027), which they performed 

equally well on. 

 

 

Figure 2.10- Effect of the interaction of experimental condition and trial type on the proportion of 

correct responses. Participants in the arbitrary language condition performed equally well 

regardless of the type of experimental trial, while systematic language learners performed best 

on out-of-class distractor trials. 

 

Additionally, I compared the performance on each trial type between the two 

conditions using further rmANOVAs. I found that participants performed equally 

well on both target trials (Systematic M= 0.88, Arbitrary M=0.81; F(1,420)=2.12, 

p=0.16) and in-class distractor trials (Systematic M= 0.83, Arbitrary M=0.86; 
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F(1,420)=0.43, p=0.52), and better on out-of-class distractor trials than did 

arbitrary language learners (Systematic M=0.98; Arbitrary M=0.88; F(1,27)= 12.62, 

p=0.0015). 

Comparison of Experiments 

A repeated measures analysis of variance comparing performance on the two 

experiments found a significant main effect of experiment: Participants in 

Experiment 2 (M=0.87, SE=0.0087) performed significantly better than participants 

in Experiment 1 (M=0.62, SE=0.0091; F(1,161)= 136.75, p<0.001). There was also a 

significant main effect of condition (F(1,161)= 11.11, p=0.0016), and a significant 

effect of trial type (F(2,161)=43.54, p<0.001).  

The two way interaction for Experiment x Trial Type was found to be significant 

(F(2,161)= 22.74, p<0.004), driven mostly by the fact that performance on in-class 

distractor trials was much lower for participants in Experiment 1 (see below). The 

two way interaction of Condition x Trial Type (F2,161)= 38.41, p<0.001) was also 

significant, mirroring the general finding of both experiments that systematic 

language learners were significantly better on out-of-class distractor trials. Finally, 

there was no significant interaction of Experiment x Condition (F(1,161)= 1.38, 

p=0.246). 
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The two way interactions described above are actually easiest to see based on the 

results of the significant 3-way interaction of Experiment x Condition x Trial Type 

(F(2,161)=16.33, p<0.001; Figure 2.11). 

 

Figure 2.11- Comparison of results between Experiment 1 and Experiment 2.  

 

Post hoc tests showed that systematic language learners performed equally well on 

both target (F(1,26)= 3.39, p=0.077 ) and out-of-class distractor trials (F(1,26)= 

2.03, p=0.166), but that systematic language learners from Experiment 2 performed 

significantly better than systematic language learners from Experiment 1 on in-class 

distractor trials (F(1,26)= 85.85, p<0.001). 
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2.4.3 Discussion 

The results of Experiment 2 dovetail nicely with the suggestion of Gasser (2004) 

that, all other things being equal, systematic languages are easier to learn when the 

signal space is more contrastive. Although there was no overall difference in 

learnability between systematic and arbitrary languages in Experiment 2, 

systematic language learners performed significantly better on out-of-class distractor 

trials without the commensurate loss of ability to individuate (lower than chance 

performance on in-class distractor trials) that we observed in Experiment 1. 

The results of Experiment 2 demonstrate that under certain conditions, the 

costs of systematicity that are incurred by a reduction of contrastiveness can be 

avoiding while still maintaining a benefit for categorisation, and thus suggests that 

the pressure exerted by the learnability penalty is variable and contingent on 

contrastiveness. In fact, contrastiveness seems to be a general pressure, as even 

arbitrary language learners in Experiment 2 performed significantly better than 

they did in Experiment 1.  

Monaghan et al. (2011) also recognized that the pressure for languages to be 

contrastive would have an important impact on the relative learnability of 

systematic vs. arbitrary languages. In an additional experiment, they attempted to 

explore this possibility by creating languages that were still systematic but that 

came from a larger signal space and were thus more contrastive. Below, I present the 
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results of a third experiment extending the findings of Monaghan et al. (2011)’s 

second experiment (actually the third Experiment in their manuscript, but here we 

will not discuss Experiment 2). 

2.5  Experiment 3 

In Experiment 2, presented above, we moved from marking categories 

systematically via phonology to marking categories via word length, Monaghan et 

al., on the other hand, opted in their 2nd experiment to maintain phonological 

marking of categories. Rather than creating two types of words that used different 

phonemes entirely, Monagahan et al. relaxed the constraint that every phoneme in a 

word should systematically mark the category of that word. So, rather than all 3 

phonemes in a cVc trigram being systematic, they created labels where only the coda 

phoneme in the trigram was systematic (i.e. any word ending in /g/ or /k/ could be 

used for a noun). Monaghan et al. termed this new marking a ‘half-half’ language, 

and suggested that systematic marking in that way should provide the benefits of 

categorisation while decreasing the penalty on individuation (Table 2.04).  
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Table 2.04- Signal space used for Monaghan et al. (2011) Experiment 2. The first column of 

each word type  shows the signal space from Monaghan et al. experiment 1. Words in that 

column in bold are those that were actually tested in that experiment. The larger signal space of 

each word type represents the total available space for Experiment 2, where the systematic 

difference between the word types can be found only in the coda position of each trigram (but, 

see below). Finally, cells highlighted in blue show the set of words from the larger signal space 

that were tested in Monaghan et al.’s experiment 2. 

 

Monaghan et al. (2011) found, in support of their suggestion, that learners of their 

half-half languages performed best on the task of individuation (better than both 

arbitrary language learners, and systematic language learners from Experiment 1), 

and also performed significantly better at categorisation than did arbitrary language 

learners (Figure 2.12). 
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Figure 2.12- The results of Monaghan et al.’s second experiment, showing a benefit for half-half 

languages for categorisation (left) and individuation (right). 

 

By creating half-half languages, Monaghan et al. (2011) explicitly manipulated the 

size of the available signal space: In experiment 1, with fully systematic cVc 

trigrams, there were 8 possible words of each type, whereas in experiment 2, with 

half-half trigrams, there were 32 possible words of each type. In both cases, six 

words of each type were chosen from the total signal space. However, as we saw in 

the introduction, size of the signal space and contrastiveness are related, but are not 

actually the same thing. For example, given Monaghan et al.’s new signal space 

there would be 906,192 possible ways to select six words from each possible space of 

32 words. Monaghan et al., however, test only one of those possible combinations 

(highlighted in blue in the above table). Within the larger signal space, it is possible 

to select subsets of words that are relatively more or less contrastive to each other: 

for example, it’s still possible when choosing from the larger signal space to select 

the exact words used in Experiment 1. To disentangle the effect of contrastiveness 
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from the effect of signal space size, we extended Monaghan et al.’s half-half language 

to test random combinations of words taken from the larger signal space, hoping 

that this manipulation would allow me to trace my results to contrastiveness more 

broadly, rather than allowing for only a comparison between a single minimally 

contrastive language (Monaghan et al. Experiment 1) vs. a much more contrastive 

one (Monaghan et al., Experiment 2). I created Experiment 3 as an attempt to 

explicitly address this issue. 

2.5.1 Methods 

Participants 

Participants were 60 students (20 male) recruited from the general population of the 

University of Edinburgh, and were compensated 2.00 GBP for the 15 minutes 

required to complete the task. All participants were monolingual English speakers 

between 18 and 33 years of age. Ethical approval was obtained from the University 

of Edinburgh in line with BPS guidelines, and informed consent was obtained from 

all experimental participants. 

Experimental Design 
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Where Experiments 1 and 2, presented above, were simple two-way designs, 

Experiment 3 was created using a 2 (signal space size: large vs. small) x 3 (language 

type: systematic vs. half-half vs. arbitrary) factorial design.  

Label Stimuli 

The words used for Experiment 3 were cVcVcV trisyllables, as in Experiment 1 

presented above, but the construction of those words was different for participants 

in each of the six experimental conditions (following the 2x3 factorial design 

presented above). Large signal spaces were created by combining phonemes similarly 

to how they were combined in Experiment 1 from a set of six consonants (t, k, p, m, 

n, l) and four possible vowels (i, e, o, u). At each of the consonant locations, four of 

the possible six consonants were chosen (2 plosive, 2 sonorant). For large signal 

spaces, consonants and vowels were combined exhaustively to create 4 possible 

syllables for each of the first two syllables of the word; for the final syllable only two 

of the possible four syllables were chosen such that both the consonant and the 

vowel of that syllable were different. For small signal spaces, all three syllables were 

created identically to the final syllable for large signal spaces. For systematic 

languages, plosive consonants were paired with non-rounded vowels, and sonorants 

consonants with rounded-vowels. For half-half languages, one plosive and one 

sonorant consonant was chosen for each type of word, and combined with one 

rounded and one non-rounded vowel (Table 2.05). 
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Table 2.05- An example of the creation of syllables for systematic and arbitrary languages that 

were either large (chosen consonants and vowels combined exhaustively) or small.  
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This procedure for creating syllables was done for each of the three syllables of the 

created words, and then those syllables were combined to create total signal spaces 

from which the words used for each participant could be selected (Table 2.06). Large 

signal spaces thus resulted in the creation of 32 possible words, while small signal 

spaces contained 8 possible words. 

 

 

Table 2.06- An example of the creation of words for systematic and half-half languages using 

large and small signal spaces. 

 

As in Experiments 1 and 2, arbitrary versions of each language were created by 

randomly splitting the systematic version of that language such that half of the type 
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1 systematic words were paired with images of one type, and the other half with 

images of the second type (see Table 2.07). 

 

Table 2.07- An example of a set of possible signal spaces for Experiment 3.  
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Although words for experiments 1 and 2 were created by using Apple talk to produce 

whole words (e.g. ‘penoke’) in Experiment 3 we instead used Apple talk to produce 

only each of the possible cV syllables (e.g. ‘pe’, ‘ki’, ‘ti’, etc.). This change allowed 

for more precise control over the synthesizer’s pronunciation of the vowel sounds. 

On each experimental trial, participants were exposed to each word as a set of three 

syllables following each other immediately. Thus, these words were unstressed and 

had no confounds from co-articulation. As a cost, however, they sounded more 

artificial than the words in previous experiments.  

Image Stimuli 

Images used in Experiment 3 were identical to those used in Experiment 1 and 2. 

Contrastiveness 

Just as in Experiment 1, a contrastiveness value was calculated for each word 

learned by every participant, compared to all of their other learned words. This 

contrastiveness value was included in the analysis of the experiment as a factor in 

the main repeated measures ANOVA. 
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Procedure 

The procedure for Experiment 3 was identical to Experiments 1 and 2, presented 

above, but, following Monaghan et al. (2011) participants were only taught 6 words 

of each type (as opposed to the 8 of each type from Experiments 1 and 2). 

Data Analysis 

Data analysis for Experiment 3 was conducted similarly to the previous two 

experiments. The omnibus test of performance using d’ as a metric was conducted as 

a general linear model with my 2 (signal space size) x 3 (language type) factorial 

design. I predicted a main effect of signal space size, with languages taken from 

larger signal spaces being easier to learn, in addition to a main effect of language 

type, with half-half languages being learned the best overall (following Monaghan et 

al.’s findings). 

Additionally, I performed a repeated measures analysis of variance using 

signal space size (large vs. small) and language type (systematic vs. arbitrary vs. 

half-half) as between subjects factors and trial type as a within-subjects factor. I 

predicted that the rmANOVA results would demonstrate the same main effects as 

the d’ analysis, but that there would also be a significant interaction of language 

type and trial type that would account for the overall superiority of the half-half 

languages for learning: half-half and systematic language learners would perform 
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approximately equally well on out-of-class distractor trials, but half-half language 

learners would perform better on in-class distractor trials due to the greater 

contrastiveness of their language. Finally, I predicted a further interaction of Size, 

Systematicity, and Trial type where learners of large systematic languages would 

perform better on in-class distractor trials than learners of small systematic 

languages due to the increased contrastiveness of the larger sets of labels. 

To explore contrastiveness directly, I performed a linear regression on the d’ 

scores of participants against the average contrastiveness of their language. 

Additionally, I performed a logistic regression comparing performance on individual 

trials as a function of the contrastiveness of individual words. 

2.5.2 Results 

Signal Detection 

In line with my predictions, I found a significant main effect of systematicity 

(F(2,54)= 6.98, p=0.002) but no main effect of signal space size (F(1,54)=1.29, 

p=0.26) and no interaction of systematicity x signal space size (F(2,54)=0.36, 

p=0.698).  Post-hoc analysis using a Tukey-Kramer test revealed that systematic 

language learners (M=1.53, SE=0.16) performed significantly better than arbitrary 

language learners (M=0.66, SE= 0.16); Half-half language learners (M=1.13, 
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SE=0.16) performed between systematic and arbitrary language learners, but were 

not significantly different from either (Figure 2.13).  

 

Figure 2.13- The results of the analysis of Experiment 3 using a 2x3 factorial design with d’ as 

the dependent variable. The graph shows a significant main effect of systematicity: systematic 

language learners performed significantly better than did arbitrary language learners. 

Repeated Measures Analysis of Variance 

The rmANOVA of correctness did not match up with my hypotheses: I found no 

significant main effects of lexicon size ( F(1,179)= 0.83, p=0.365) and only a 

marginally significant main effect of systematicity (F(2,179)=2.47, p=0.094). There 

was a significant main effect of trial type (F(2,179)= 20.87, p<0.001) in line with my 

predictions. 

There was no significant two way interaction of Size x Systematicity (F(2,179)= 

0.33, p=0.72) or of Size * Trial Type (F(2,179)=0.52, p=0.59). There was however a 
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significant interaction of Systematicity x Trial Type (F(4,179)= 9.57, p<0.001). The 

three way interaction was not significant (F(4,179)= 0.83, p=0.51). 

Post hoc analysis of the main effect of trial type using the Tukey-Kramer multiple 

comparison test showed that participants performed significantly better on target 

(M=0.71, SE=0.024) and out-of-class distractor trials (M=0.75, SE=0.017) than they 

did on in-class-distractor trials (M=0.56, SE=0.024). 

 

Figure 2.14- The results of Experiment 3, plotting proportion correct and the influence of signal 

space size, systematicity, and trial type. The graph shows a significant main effect of trial type, 

and a significant interaction of trial type x systematicity. 
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Post hoc analysis of the interaction between systematicity and trial type showed 

that that participants in the arbitrary language learning conditions did not perform 

significantly differently on each of the three trial types (F(2,59)=0.89, p=0.42). 

Participants who learned systematic languages, and those who learned half-half 

languages, however, performed significantly better on Target and Out-of-Class 

distractor trials than on In-Class distractor trials (Systematic: F(2,59)=28.92, 

p<0.001; Half-Half: F(2,59)=6.77, p=0.003).  

Contrastiveness 

The results of the linear regression between average contrastiveness and d’ revealed 

no significant correlation between the two (r=0-.03, p=0.99). No correlations for any 

language type were significant (all ps>0.90). 
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Figure 2.15- The results of a linear regression between d’ and average contrastiveness shows 

no significant correlation between the two (p=0.995).  

 

A logistic regression comparing performance on individual trials as a function of 

contrastiveness was similarly not significant (r=0.196, p=0.28). 

2.5.3 Discussion 

The results of Experiment 3 are somewhat confusing: one the one hand, the basic 

findings of the previous two studies are supported: systematic language learners 

perform best, with the bulk of this effect driven by their increased competence on 

out-of-class distractor trials, which they are able to reject correctly with high rates 
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of accuracy; additionally, as expected, learners of systematic lexica again struggled 

with in-class distractors, making false alarms at rates around chance (suggesting 

they were forced to guess on such trials). On the other hand, I did not replicate 

Monaghan et al.’s findings that half-half languages were easier to learn than fully 

systematic ones: Although half-half language learners did not perform significantly 

worse than systematic language learners overall, they also didn’t perform better 

than arbitrary language users. Broken down over trial types, the differences between 

systematic and half-half language users were again non-significant, suggesting that 

any benefit for half-half language learners is not manifest in this data.  

The manipulations used in this experiment were designed to demonstrate 

that there is a difference between size of the signal space and contrastiveness. In 

both of their experiments, Monaghan et al. selected a single language from the 

possible signal space for each experimental condition to be used for all participants.  

The words chosen for Monaghan et al.’s experiments were not, however, random: 

they were actually selected in such a way that they were maximally contrastive for 

their signal space. To demonstrate this fact, I simulated the process of choosing 

labels from the entire signal space available for the systematic language used in 

Monaghan et al.’s first experiment and for the half-half language used in Monaghan 

et al.’s second experiment. From these signal spaces (8 total words for the 

Systematic language from Experiment 1; 32 total words for the Half-half language 

from Experiment 2) I simulated the process of choosing labels over 10,000 runs, with 
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each run calculating the contrastiveness of those classes of labels both within-class 

and between-class. The results of my simulation of this process show that the choice 

of labels used by Monaghan et al. in both experiments was made in such a way that 

those labels were maximally contrastive. The systematic language used in 

Experiment 1 had a within-class contrast (the similarity of each set of chosen words 

to each other) of 1.50, while the average set of words chosen from that signal space 

had a within-class contrast of 1.426. The different for the half-half language used in 

Experiment 2 and the average was even larger: the half-half language used was one 

of the combinations with the highest possible contrastiveness (1.94), compared to 

the average within-class contrastiveness of 1.72 (Table 2.08). 

 Systematic Half-Half 

 Used Average Used Average 

Within 1.5 1.426 1.94 1.72 

Between 3 3 2.53 2.5 

Table 2.08- Contrastiveness of systematic label types from Monaghan et al.’s Experiment 1, 

and half-half label types from Monaghan et al.’s Experiment 3. In each case the set of labels 

chosen for each type is maximally contrastive for one chosen from that possible signal space. 

 

The comparison between the learnability of these two languages tells us, as did the 

comparison between my own Experiments 1 and 2, presented above, that systematic 

languages that can maintain maximal contrastiveness are easier to learn than 

systematic languages that cannot. The lack of a benefit for half-half marking in the 

Experiment 3 data, however, points out that simply increasing the size of the 
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potential signal space is not enough: the languages constructed from that space also 

require some optimisation process working over them to ensure that more 

contrastive languages are selected from the possible combinations. In the case of 

Monaghan et al. (2011), this was achieved by the deliberate selection of maximally 

contrastive lexica from the available signal space, but real languages do not have 

this luxury. Fortunately, the process of iterated learning seems to be exactly the 

kind that can lead to the emergence of more optimal systems with respect to 

learnability, transmissibility, and communicative function. Over time, whatever 

permutation of the lexicon was chosen originally, the process of cultural 

transmission through iterated learning could slowly move the language towards one 

of the many possible local optima. 

Unfortunately, my own attempts to trace performance directly to 

contrastiveness in Experiment 3 were unsuccessful. The most likely explanation for 

this might be that because of the very large number of permutations of chosen 

lexica, combined with the substantial individual differences displayed by 

experimental participants, there was really no reason to expect that the data 

available would be adequate to look at fine-grained distinctions in contrastiveness. 

In Chapter 5 of this dissertation, I return to an experimental manipulation designed 

to explore contrastiveness at a more fine-grained level. 
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One additional feature of the way that Monaghan et al.’s word sets for 

Experiment 2 were chosen is interesting and potentially problematic: at the level of 

individual phonemes the half-half language is indeed arbitrary with respect to their 

first consonant and vowel (e.g. /f/, /g/, /k/, and /ʒ/ all appear as the first consonant; 

and /I/, /i/, /a:/, and /u:/ all appear as the first vowel), but considered more distantly 

their chosen half-half language could actually be considered systematic.  Type 1 

words from Monaghan et al.’s Experiment 2 begin with ‘fi-‘, ‘ʒi-’, ‘ʒ -‘, ‘gu:-‘, ‘ka:-‘, 

and ‘ku:-‘ and always end with /f/ or /ʒ/. Type 2 words on the other hand begin with 

‘ga:-‘, ‘gu:-‘, ‘ka:-‘, ‘fi-‘, ‘fI-‘, and ‘ʒi-‘ and always end with /g/ or /k/. Because neither 

the word beginnings (when considered as segments (onset-rhyme pairs), rather than 

individual phonemes) nor the word endings overlap between these two languages, 

they can be considered, in some sense, to be fully systematic, rather than only half-

half.  

Unfortunately, some of the lexica constructed for my own half-half languages 

fell prey to the same peculiarity, take for example the following half-half language: 
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Table 2.09- A sample language from Experiment 3 

 

By my rules for constructing a small half-half language these labels make sense - 

possible syllables were constructed randomly from the set of:’pe’, ‘pi’, ‘ke’, ‘lo’, ‘lu’, 

‘mo’, and ‘mu’ and then these syllables were chosen for each syllable locus such that 

at each locus for each type of label two of the syllables would be used. However, this 

ends up with a strangely mixed almost fully systematic language. In terms of 

consonants, the language ends up being almost fully systematic: type 1 labels use the 

consonants /p/, /l/, /k/, and /n/, whereas type 2 labels use the consonants /t/, /m/, /n/, 

and /l/: between the two types /l/ is the only consonant seen in both word types. 

Looking at the Hamming distance of these label types compared to one another, the 

difference becomes even more glaring, with the out-of-class contrast being 6 across 

all possible languages selected from this set: at each individual locus of consonant or 

vowel the same phoneme does not appear in the two languages: i.e., although /l/ 
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appears in both word types, it appears only in the first syllable for type 1 word and 

only in the final (intentionally systematic) syllable for type 2 words.  

Whether these languages should be considered systematic or not is an 

interesting question, although it seems unlikely that experimental participants 

would recognize the systematicity of the initial segments in Monaghan et al.’s half-

half languages given the much more transparently systematic coda phoneme. Still, 

whether these kinds of associations can be recognized as systematic and thus aid 

categorisation learning is an open empirical question: real world corpus studies 

showing that systematicity at the level of the lexicon is often distribution and 

statistical in nature (e.g. Monaghan et al., 2014) suggest that this possibility would 

be interesting to explore further.  

The possibility of choosing languages from a large signal space that are 

incidentally systematic (but not due to being motivated) becomes even greater for 

larger signal spaces: from the 32 possible words of each type in my large signal 

spaces there would be many combinations of choosing 6 words of each type 

randomly that would result in languages that were fully systematic. Some of those 

languages would be fully systematic in the same way as the systematic languages in 

the above experiments, while a larger subset would be fully systematic in the way 

described above.  



 

122 

 

2.6 General Discussion and Conclusions 

In this chapter I have laid out the results of three experiments designed to more 

fully explore the differential effects of non-motivated systematicity and 

arbitrariness (non-motivated, non-systematic) on the learnability of artificial 

languages. The experimental methodologies used here, while utilising a different 

experimental protocol (signal detection vs. AFC) were modelled after those used by 

Monaghan et al. (2011), and produced results that were broadly consistent with 

previous findings: non-motivated systematic mappings between words and meanings 

facilitate learning, although this effect is largely mediated by the fact that they 

allow for efficient learning of categories in such a way that out-of class distractors 

are quickly and easily rejected. Also in line with the findings of Monaghan et al., 

systematic mappings between words and meanings can produce penalties for 

learnability when it comes to individuation, and these are easiest to spot in the data 

by considering the fact that systematic language learners perform at or below chance 

on in-class distractor trials in each of the three experiments- suggesting that they are 

learning category structure, rather than learning individual meanings adequately.  

Overall then, my results are supportive of the claim that systematicity, when 

applied to a signal space of a given dimensionality, reduces the average 

contrastiveness of labels to one another, and thus impairs individuation. Creating a 

language that is still systematic, but less constraining, results in languages that gain 
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the benefits of both systematicity (i.e. increased categorisation) and arbitrariness 

(increased individuation). Of note, despite not finding support for the superiority of 

this half-half language over fully systematic ones in any of the relevant metrics, my 

manipulation in Experiment 3 revealed that simply modifying the size of the 

available signal space does not necessarily create conditions in which a lexicon 

chosen from that space becomes more learnable- it merely creates the possibility for 

more contrastive lexica to be chosen.  

My attempt to manipulative contrastiveness of learned language by selecting 

randomly from the available signal space was successful, but not predictive of 

learning. Part of the reason for this may be due to the contrastiveness measure used 

for the above experiments (Hamming Distance). Hamming distance applies to 

strings of phonemes, being agnostic to anything about either phonology or 

psychological reality, suggests that n and p, for example, are as similar to one 

another as are p and b, which seems unlikely to be the case. For this reason, 

Monaghan et al. (2011) used a phonological feature encoding for their neural 

network that captures the relative similarity of certain features to one another. 

Thus, a phonological feature encoding highlights that systematic configurations of 

the language rely on mapping similar encodings to similar meanings- not just 

mapping unrelated sounds to meanings in a systematic way. The degree to which 

these phonological features are relevant to human perception however is an open 

question- one that I attempt to address in Chapter 3. Although this question may 
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seem separate from the central questions of this dissertation, it is actually 

potentially very important: if we believe that the learnability pressure towards 

arbitrariness is contingent on the degree of contrastiveness between words, it is 

crucial to understand what measure of contrastiveness is most relevant to human 

language learners. 
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Chapter 3 

Systematicity and Learning II: The role of phonological 

similarity in artificial language learning

 

Figure 3.01- In Chapter 3, I explore the same comparison between languages that are 

systematic (but non-motivated) and languages that are arbitrary. Here, I focus on the pressure 

for arbitrariness due to confusability and a discussion of what contrastiveness measure is most 

relevant for human language learners. 
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In Chapter 2, I presented a series of experiments that explored two learnability 

pressures. The first of these (Learnability pressure A, above) is a pressure towards 

systematic mappings between words and meanings that are suggested to make 

learning easier. The results of the experiments presented in Chapter 2 suggests that 

the increased learnability of systematic languages is because they allow for increased 

categorisation (recognizing that the word for a given meaning is of the correct 

category, if not the exact correct word). The second learnability pressure 

(Learnability Pressure B, above) is one that favors arbitrary associations between 

words and meanings because systematic associations tend to reduce the size of the 

available signal space, resulting in words that are, all other things being equal, more 

similar to each other. In this chapter, I focus on an exploration of this issue of this 

issue of similarity, which I have characterized as the contrastiveness of a word to 

other words with similar meanings and to the lexicon more generally. The central 

question of this chapter is what measure of contrastiveness is most relevant for 

human language learners: only by understanding the types of similarity that result 

in increased confusability and a reduction of learning can we understand the 

strength of the pressure towards arbitrary word-meaning associations. 
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In addition to a comparison of the ability of different contrastiveness metrics 

to predict the relative learnability of systematic vs. arbitrary word-meaning 

associations, I also critically explore the notion of categorisation presented in Chapter 

2, suggesting that exploring categorisation in the way that we and previous authors 

have is not actually entirely appropriate. 

3.1  Background and Rationale 

To rehearse, systematicity refers to isomorphisms between a set of words and a set of 

meanings such that similar words are mapped to similar meanings. In English and 

many other languages this is exemplified by phonaestheme clusters: for example in 

English the ‘gl-‘ cluster is found in a number of words associated with light and 

vision (e.g., ‘glint’, ‘gleam’, ‘glare’). Systematic associations between words and 

meanings are suggested to be potentially beneficial for language learning since they 

include a regularity in word-meaning mappings. However, the ability to identify and 

exploit systematic associations is contingent on previous exposure to other examples 

of the association. For instance, given the ‘gl-‘ phoneastheme example a naïve 

speaker of English would be unlikely to pair ‘glare’ with its specific meaning, but 

once familiar with a few tokens from the cluster would be more likely to guess the 

appropriate meaning for a low frequency word like ‘gloam’.  

The ability of learners to leverage systematic associations between words and 

meanings for language acquisition is contingent largely on two factors, which we saw 
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in Chapter 2. Systematic word-meaning mappings take advantage of a similarity 

between words of a given type, and this means that experience with those words can 

be generalized (i.e. coming across a new ‘gl-‘ token makes the meaning easier to 

guess). However, because words in systematic languages are similar to one another, 

and stand for similar meanings, they might be more easily confusable, either in 

terms of learnability or as a function of communicative pressure and transmission 

error.  

In 2011, Monaghan et al. reported a series of experiments and computational 

models of language learning that they designed to test the effect of systematicity on 

learning. Their primary finding was that systematic and arbitrary (i.e. neither iconic 

nor systematic) lexicons facilitate different types of learning. The task of 

individuating the meaning of a given word (i.e., selecting the appropriate pairing of 

label and referent), was promoted by arbitrariness, but the process of categorization 

(i.e., choosing a referent of the appropriate type for a given label, but not necessarily 

the exact referent) was aided by systematic mappings between forms and meanings.  

In Chapter 2 of this dissertation, we presented the results of three 

experiments that extended Monaghan et al. (2011)’s exploration using different 

stimuli and a new experimental protocol (signal detection rather than alternative-

forced-choice). The results of those experiments were broadly supportive of 

Monaghan et al.’s original findings, although they highlighted that predicting the 
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costs and benefits of systematicity of language learning can be difficult. The 

systematic structure used by Monaghan et al. as based on a mapping of phonology 

to meaning: words for a given type of meaning were similar to one another based on 

their phoneme use. Words of the first type, for example, used the plosive consonants 

/g/ and /k/, which differ only in terms of their voicing. Words of the second type, on 

the other hand, used the fricative consonants /f/ and /ʒ/, which are also similar to one 

another. The phonemes used in the two word types are, however, much more 

different between types than they are within: /f/ and /g/ for example differ in terms 

of their sonority, voicing, degree of stricture, palatalization, roundness, and tongue 

features (based on a set of 11 phonological features from Harm & Seidenberg, 1999).  

The same is true of the phonemes that I used to construct my languages in 

Experiment 2 of Chapter 2. There, the plosive consonants /p/, /t/, and /k/ are more 

similar to each other based on their phonological features than they are to the 

sonorant consonants /m/, /n/, and /l/. Despite the fact that I created two types of 

words based on phonological features, I found that the simple edit distance between 

words (Hamming distance) was actually predictive of the learnability of those 

words. This is somewhat curious, as Hamming distance applied to strings of 

phonemes is agnostic to their phonological features: /k/ and /g/ differ only slightly in 

terms on their phonological feature mapping (voicing) compared to the difference 

between /f/ and /g/ (6 features), but Hamming distance considered the difference 

between /k/, /g/, and /f/ to be equal.  
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This raises an interesting question: what kinds of systematic mappings 

between features of words and features of meanings can language learners take 

advantage of, and how can we best define a metric of contrastiveness that captures 

human biases. The comparison of results between the models used in Monaghan et 

al.(2011), which represent words as clusters of phonological feature dimensions, and 

the results of their experimental participants (to whom words were presented as 

auditory stimuli) suggests that phonological similarity is important for establishing 

systematic associations and also establishing the confusability of words to one 

another. Computational models that encode words based on their phonological 

features learn arbitrary and systematic languages similarly to humans, so the 

suggestion might be that those phonological features similarly capture human 

learning. However, my results from Chapter 2 suggest that Hamming distance, 

which is agnostic to phonological features, also predicts human performance – so, 

which of these is a better measure of the metric along which similarity is established 

cognitive for human language learners? 

3.2  Chapter Outline 

In this chapter, we replicate and extend the model used by Monaghan et al. (2011), 

including a manipulation of phonological clustering. As mentioned, Monaghan et al., 

used phonemes for each class of label that were similar based on their phonological 

features- a configuration I refer to as phonologically clustered, which is typical for 
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these kinds of experiments. However, it is possible to create equally systematic 

languages where this feature of phonological clustering is broken- a configuration I 

refer to as phonologically dispersed. In phonologically dispersed languages, I map 

dissimilar phonemes to meanings that are similar: for example, /f/ and /g/, despite 

being quite different, can both be used to construct words for similar meanings. The 

inclusion of this phonological clustering manipulation allows us to explore the 

benefits of systematicity more generally, and to test the degree to which a 

phonological feature encoding is appropriate for the modeling of human perception 

in a learning task like this one.  

Additionally, I explore the effect of phonological clustering on learning 

abilities of the computational model further by including a second set of phonemes 

(contrasting voiceless plosives vs. voiced sonorants) which are equally similar within 

group but more dissimilar between groups. These two manipulations extend 

Monaghan et al.’s original 2 level (systematic vs. arbitrary) design to a 2 (systematic 

vs. arbitrary) x 2 (phonologically clustered vs dispersed) x 2 (phoneme set) factorial 

design that allows us to more fully explore the features of systematic associations 

between words and meanings that give them their learning benefits (for 

categorisation) and/or accrue them penalties (due to confusability). I find that the 

model predicts significant main effects of all 3 factors: systematic languages favor 

categorisation, while the phonological clustering of those languages predicts the loss 

of individuation for systematic mappings (phonologically dispersed languages are 



 

133 

 

individuated very well). Finally, the use of plosive vs. sonorant phonemes, because it 

results in words that are more phonologically distinct between categories, increases 

the ability of the model to categorise correctly. 

In exploring the effects of these experimental manipulations on the 

learnability of the model, I also discuss the appropriateness of the term 

categorisation, suggesting that: a) neither Monaghan et al. (2011), nor I, actually 

measure the ability of either the model or human participants to recognize category 

structures, and b) that, for this reason, what we have called categorisation is not 

strictly separate from individuation. In discussing this fact, I return to and re-

evaluate some of the findings of Monaghan et al.’s experiments, suggesting that 

some of the claims made about the benefits of systematicity for categorisation may 

need to be re-evaluated, or at least explored more directly experimentally. 

In addition to an extension of the model used in Monaghan et al. (2011), I 

present the results of an experiment exploring the effect of phonological dispersion 

on the learning of human participants. Following the experiments presented in 

Chapter 2, I use a signal detection paradigm for this exploration. Using this 

manipulation, I find that for human participants the degree of phonological 

clustering does not have a significant effect on learnability, suggesting that the 

model’s phonological feature representation overestimates the confusability of the 

phonemes for human participants. This finding allows for a further discussion about 
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the notion of contrastiveness, and how to best predict the chance that human 

language learners will be confused by similar words. 

3.3  Simulation 1 

The simulation that I present here moves from the 2 level (systematic vs. arbitrary) 

design used by Monaghan et al. (2011) to a more robust 2 (systematic vs. arbitrary) 

x 2 (phonologically clustered vs. dispersed) x 2 (phoneme set) experimental design. 

This allows us to explore the possibility that systematic mappings not based on 

phonological feature similarity might be learned differently by a model that encodes 

labels as strings of phonological features, and also to explore the degree to which 

similarity within groups and dissimilarity between groups influences the learnability 

of systematic lexica.  

We replicate the connectionist model described by Monaghan et al., testing 

how well input patterns (phonological feature representations) map onto output 

patterns (which represent meanings).  

3.3.1 Methods 

Networks 

We (myself and Dieuwke Hupkes, a visiting MSc student) replicated the network 

architecture used by Monaghan et al. (2011). A feed-forward connectionist model 
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was constructed with either 33 or 66 input units, 20 hidden units, and 10 output 

units. The input layer was fully connected to the hidden layer, and the hidden layer 

fully connected to the output layer. Words, which served as input to the network, 

were either 3-phoneme CvC combinations constructed from Monaghan et al.’s 

original phoneme set (33 input units), or the 6-phoneme cVcVcV combinations used 

in Experiment 1 of Chapter 2 (66 input units). Each phoneme was represented by a 

binary pattern over 11 input nodes (taken from Harm and Seidenberg, 1999: see 

Table 3.01).  
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Table 3.01- The phonological feature codings used in Simulation 1, taken from Harm & 

Seidenberg (1999). 
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We generated output patterns (meanings) according to the procedure described in 

Monaghan et al. (2011). Two category prototypes were generated: for the first 

category (glossed as “objects”), values for each output unit were initialized at 0.25 

and for the second category (glossed as “actions”) they were initialized to 0.75. Six 

individual output patterns were generated from each prototype activation pattern 

by randomly changing the values of each of the output units in the range of +/-0.25: 

thus, all output units were in the range of 0-0.5 for objects and 0.5 – 1.0 for actions. 

All meanings from the same category were therefore represented by similar output 

representations and were distinct from output representations for the other 

category. A new set of output layer activation patterns were generated at random 

for each simulation run to avoid the results being biased by a particular set of 

output layer initialisations that may have either favored or penalized learning. 

Experimental Design 

Simulation 1 uses a 2 (systematic vs. arbitrary) x 2 (phonologically clustered vs. 

dispersed) x 2 (phoneme set) factorial design.  

Label Stimuli 

We trained the network to map between input and output representations (forms 

and meanings respectively) for 12 input-output pairings, corresponding to 12 form-
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meaning associations. We generated eight sets of labels, which varied according to a 

2x2x2 design (see Table 3.02).  

For phonologically-clustered languages there were four sets of labels with 

distinct phonological features. For the conditions using Monaghan et al.’s phonemes, 

one subset of six labels used fricatives /ʒ/ and /f/ and vowels /i/ and /I/; the second 

subset of 6 labels used the plosives /g/ and /k/ and the vowels /a/ and /u:/. For the 

phonologically-dispersed languages the two subsets were constructed using the 

consonants /f/ and /g/ with the vowels /i/ and /ɒ/ (set 1) or the consonants /ʒ/ and /k/ 

with the vowels /I/ and /u:/. For the conditions using Nielsen & Rendall (2012)’s 

phonemes, one subset of six labels used plosives /t/ and /k/ and the unrounded vowels 

/i/ and /e/; the second subset of labels used the sonorants /m/ and /n/ and the rounded 

vowels /o/ and /u/. For the phonologically-dispersed versions the subsets were 

constructed using the consonants /m/ and /t/ with the vowels /u/ and /e/ (set 1) or the 

consonants /n/ and /k/ with the vowels /o/ and /i/. The set of phonemes used to create 

words of each type for each of these factors is shown in Table 3.02, along with the 

phonological feature differences for those sets of phonemes. 
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Table 3.02- Phoneme sets used to create words for Simulation 1. The distance both within each 

set of phonemes and between the two sets of phonemes is given for each set of phonemes.  

 

A comparison of the average Euclidean edit distance for each of the four sets of 

phonemes can be seen below, in Figure 3.02.  
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Figure 3.02- The average phonological feature edit distance both within and between the 

groups of phonemes used to create language for Simulation 1. 

 

The set of phonemes used by Monaghan et al. is slightly more similar than the set 

used by Nielsen, both in terms of within class (Monaghan= 3.63, Nielsen=4) and 

between class similarity(Monaghan=3.69; Nielsen=4) . This suggests that we should 

find a significant effect of phoneme inventory, with the languages made from 

phonemes from Experiment 2 being learned better by the model in terms of both 

individuation and categorisation than languages made from Monaghan et al.’s 

original phonemes.  
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The manipulation of phonological dispersion results in phonemes for 

phonologically clustered languages that are similar within type (M=2.5), but 

different between type (M=4.5). Phonologically dispersed languages, on the other 

hand, are similar within type (M=5.13) but different between type (M=3.19). 

The manipulations of phoneme inventory and phonological dispersion were 

crossed with whether the languages were arbitrary (3 meanings from each category of 

meaning were associated with each subset of labels) or systematic (all meanings from 

one category were associated with a single subset of labels). This yields eight 

language types. In the systematic phonologically-clustered lexica, similar sounding 

words map to similar meanings, and the words within a category have high featural 

similarity (i.e. they are composed of e.g. fricatives and front vowels or plosives and 

back vowels). In systematic phonologically-dispersed lexica, similar-sounding words 

map to similar meanings (e.g. all words featuring a /ʒ/ or /k/ will have similar 

meanings), but words within a category have low featural similarity (e.g. /ʒ/ or /k/ 

share few phonological features).  All four possible arbitrary lexica, whether 

clustered or dispersed, break this systematicity: similar-sounding words are no more 

likely to have a similar meaning than not (see Table 3.03). 
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Euclidean Distances 

 

Table 3.03- Labels used in Simulation 1.  

EDW= Average Euclidean distance within label type.  

EWB= Euclidean distance between label types. 

 

As in Monaghan et al. (2011), Euclidean distances between the phonological feature 

representations for each set of words were calculated (the labels ‘gɒk’ and ‘gɒg’, for 

example, would share 32 of 33 features and thus their Euclidean distance from each 

other would be 1) along with the mean Euclidean distances between sets of words in 

a given condition. This clustering vs. dispersion manipulation shifts the mean 

Euclidean between the labels associated with a particular category of meaning for 
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systematic languages. Euclidean distances within and between all categories can be 

seen in Table 3.03. Additionally, Figure 3.03, below, shows the Euclidean distances 

visually. 

 

Figure 3.03- The average Euclidean distance between phonological feature representations of 

words use in Simulation 1.  

 

Procedure 

Training 

Separate networks were trained on all eight language types, manipulating 

systematicity, phonological dispersion, and phoneme set in a 2x2x2 factorial design. 
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Weights on connections between units were initially randomized with a uniform 

distribution in the range of +/- 0.5. The model was trained by back-propagation of 

error with gradient descend (with a learning rate of 0.05), where after each form-

meaning pair was presented the connection weights were adjusted to bring the 

network’s actual output closer to the target output meaning for that pattern. A 

training block involved the presentation of all 12 input-output pairings in random 

order and the performance of the model was assessed after 10, 20, 30, and 40 blocks 

of training. 

Testing 

During testing, the model was presented with a single input form and the Euclidean 

distance between its output activation and the target output meaning was 

computed. For individuation, each trial was considered a success only if the 

network’s output activation pattern was closest to the target output. For 

categorisation, the model was judged to have correctly identified the category of the 

referent of the input word if the network’s output was closest to a pattern of the 

same category as the target output.  

The simulation was run 40 times per condition, each run using different 

starting weights, different output category patterns, and a different random 

assignment of forms to meanings. 
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Data Analysis 

As a test of the ability to replicate and extend Monaghan et al. (2011)’s findings, I 

first present a brief analysis of the output of our model on only the two conditions 

from their original paper. For this, the model’s performance at the end of each of the 

four testing blocks was analysed using a repeated measures analysis of variance. I 

performed a separated ANOVA for each of our dependent variables (individuation 

and categorisation) with systematicity (arbitrary vs. systematic) as a between 

subjects factor and experimental block as a within subjects factor.  

3.3.2 Replication Results 

The results of our model generally align well with the findings of Monaghan et al. 

(2011)’s original model presented as simulation 1 in their paper (see Figure 3.04). As 

with their model I find that for Individuation the model learns systematic languages 

(M= 0.468, SE= 0.013) better than it does arbitrary ones (M= 0.267, SE= 0.013; 

F(1,319)= 124.5, p<0.001), although overall our model performs better at the 

individuation task than does Monaghan et al.’s (Figure 3.04-Bottom), despite using 

the same learning rate. There was also a significant main effect of block (F(3,319)= 

249.07, p<0.001) and a significant interaction of systematicity x block (F(3,319)= 

9.12, p<0.001). 
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  For categorisation the performance of our model matches that of Monaghan 

et al.’s, with perfect categorisation from the beginning for the systematic language, 

which is significantly better than categorisation for arbitrary languages (M=0.665, 

SE=0.007; F(1,319)= 1170.05, p<0.001;Figure 3.04-Top). There was also a 

significant effect of block (F(3,319)= 29.62, p<0.001) and a significant interaction of 

block x systematicity (F(3,319)= 29.62, p<0.001). 
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Figure 3.04- Comparison of results between Monaghan et al. (2011)’s original published model 

and our attempted replication of the model. The top graph shows categorisation, while the 

bottom graph shows individuation performance. Error bars represent standard error. 
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3.3.3 Replication Discussion 

Our instantiation of Monaghan et al.’s model produced results that were nearly 

identical for categorisation, but were significantly higher for individuation, despite 

using the same learning rate. Despite the difference in the ability of the two models 

to individuate, the fact that the pattern of results between the two versions was 

nearly identical satisfied our standards for replication.  

 Individuation and Categorisation 

In chapter 2, I hinted at a potential problem with the categorisation and 

individuation metrics used by Monaghan et al. (2011) in their model and their 

experiment. Although the metrics measure what they are reported to, their overall 

usefulness in separating learning into two broad types is actually limited. The 

central limitation of these two metrics is that they are taken from a single response 

(which meaning is selected for a given word), and thus not independent from one 

another. If a run of the model was the individuate perfectly (always choose the 

correct meaning for a given word), then by the categorisation metric used by 

Monaghan et al. we would also say that the model categorised perfectly, but is this a 

fair suggestion? Given this possibility, it would actually be impossible to determine 

the difference between a model (or experimental participant) that had learned to 

individuate perfectly and also recognized the structure of the underlying categories 
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and one that had learned only individual words but nothing about the systematic 

structure of the word-meaning associations.  

To distill the effect that different types of languages have on categorisation 

then, we require a metric that does not include individuation responses as part of 

categorisation. To that end, I included a new metric of categorisation that included 

only cases where the model was unable to individuate correctly, but still chose a 

token from the appropriate category. In the subsequent analyses, I refer to this 

metric as categorisation error. The inclusion of this metric also allows a simple way to 

look at the model’s improvement in categorisation over experimental blocks. A 

model that shows a perfect categorisation score using Monaghan et al.’s 

categorisation metric can do so with any combination of correctly individuating and 

making categorisation errors, but the two cannot be teased apart easily for analysis. 

This is actually the case in the original data published by Monaghan et al. (2011) for 

Experiment 1: systematic languages are categorised at ceiling immediately, but 

individuation climbs over the course of experimental blocks. Categorisation error 

gives us a single value that captures this fact and is amenable to direct statistical 

analysis.  
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Figure 3.05- A graph of categorisation error from our replication of Monaghan et al. (2011). 

Error bars show standard error. 

 

Given the graph above, it is easy to see that initially the model has learned 

individual words poorly, and is selecting meanings that are incorrect, but of the 

correct type. However, over the course of experimental blocks the model makes 

fewer categorisation errors. A model that failed to learn individual words at all, 

however, would see no decrease in its number of categorisation errors over the course 

of multiple rounds of training and testing.  
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3.3.4 Methods II 

The performance of our full model at the end of each of four testing blocks was 

analysed using a repeated measures analysis of variance with systematicity 

(arbitrary vs. systematic), phonological dispersion (clustered vs. dispersed), and 

phoneme inventory (Monaghan vs. Nielsen) as between subjects factors and testing 

block as a within subjects factor. I performed three separate rmANOVAs – one for 

each of our dependent variables (individuation, categorisation, and categorisation 

error).  

Given that the model represents words as sets of phoneme vectors, it is 

possible to make predictions based on both the contrastiveness of sets of phonemes 

and the contrastiveness (average Euclidean distance) of the sets of words used in 

each experimental condition.  Broadly, within-class contrastiveness should be 

correlated with individuation performance (more contrastive = better individuation) 

and between-class contrastiveness should be correlated with categorisation 

performance (more contrastive = better categorisation).  
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Phoneme Contrastiveness 

 

Figure 3.06- The average phonological feature edit distance both within and between the 

groups of phonemes used to create language for Simulation 1. 

 

Despite the fact that the model only sees complete words, it is also possible to make 

predictions about performance based only on phoneme inventories: the degree that 

the contrastiveness of phoneme inventories predicts performance might suggest that 

the systematicity of entire words is redundant. The phonemes used in languages 

created from the Nielsen and Monaghan phoneme inventories do not differ in the 

within-class contrastiveness, and thus should be individuated equally well, while 

Nielsen’s phonemes are slightly more contrastive between classes and thus should be 
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easier to categorise. 

The sets of phonemes used in phonologically dispersed languages are substantially 

more contrastive within-class and thus phonologically dispersed languages should be 

individuated more easily than phonologically clustered ones. The increased 

contrastiveness within these phoneme sets comes at a cost to their between-class 

contrastiveness, suggesting that phonologically dispersed languages should be more 

difficult to categorise.  

Phonological Feature Contrastiveness 

 

Figure 3.07- The average euclidean distance between phonological feature representations of 

words use in Simulation 1.  
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The average euclidean distances of words used in the 8 languages learned by the 

model make similar predictions to their underlying phoneme composition. Because 

the words created using the Nielsen phoneme inventory are longer, they are more 

contrastive both within and between types and should thus be easier to both 

individuate and categorise. Systematic languages have higher between-class 

contrastiveness and thus should be easier to categorise than arbitrary languages, 

which have higher within-class contrastiveness and thus should be easier to 

individuate. Finally, phonologically dispersed languages have higher within-class 

contrastiveness and should be easier to individuate than their phonologically 

clustered counterparts.  

3.3.5 Results 

For individuation I found significant main effects of systematicity (Arbitrary M= 

0.413, Systematic M= 0.567; F(1,1279)= 254.02, p<0.001 ), phonological dispersion 

(Clustered M= 0.354, Dispersed M=0.62 ; F(1, 1279)= 787.75, p<0.001), phoneme set 

(Nielsen M=0.532, Monaghan M= 0.497; F(1, 1279)= 78.51, p<0.001), and 

experimental block (F(3, 1279)= 1406.5, p<0.001). In addition to these main effects, 

all two-way and three way interactions were significant (all p<0.05), as was the four-

way interaction of all factors (F(3, 1279)= 3.48, p=0.016).  
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Figure 3.08- Results of Individuation performance for simulation 1. Error bars show standard 

error. 

 

For categorisation all main effects and their interactions were significant (p<0.05). I 

found significant main effects of systematicity (Arbitrary M= 0.743, Systematic M= 

0.99), phonological dispersion (Clustered M= 0.825, Dispersed M=0.908), and of 

phoneme set (Nielsen M=0.880, Monaghan M= 0.853; Figure 3.09).  
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Figure 3.09- Results of categorization performance for simulation 1. Error bars show standard 

error. 

 

Finally, for categorisation error I again found that all main effects and their 

interactions were significant (p<0.05). I found significant main effects of 

systematicity (Arbitrary M= 0.330, Systematic M= 0.4237), phonological dispersion 

(Clustered M= 0.471, Dispersed M=0.283), and of phoneme set (Nielsen M=0.348, 

Monaghan M= 0.406; Figure 3.10).  
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Figure 3.10- Results of categorisation error for simulation 1. Error bars show standard error. 

 

3.3.6 Discussion 

The results of our model replicate the findings of Monaghan et al. (2011)’s first 

model: languages that are systematically structured are learned more easily by the 

model, both in terms of individuation (associating a form with its specific reference) 

and categorisation (associating a form with any referent of the correct class). The 

advantage for systematic languages shows up early in the model, where even at the 

first testing block the language is already categorizing at ceiling. In line with 

Monaghan et al. (2011), I suggest that the categorisation benefit account for much 
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of the difference in individuation between systematic and arbitrary languages. The 

inclusion of our third metric- that of categorisation error (when the model chooses a 

meaning of the appropriate type, but not the correct meaning) is further suggestive 

that this is where the benefits accrue for systematic lexica. We can see that for 

systematic languages, whenever the model is wrong early on, it is always at least 

making in-class, rather than out-of-class errors. For arbitrary languages however the 

choice of a meaning for a given signal does not ensure that other nearby signals will 

be associated with similar meanings.  

I also found a significant effect of phoneme set: labels constructed from the 

set of plosive vs. sonorant (Nielsen) phonemes were easier for the model to learn in 

all of their permutations. This second set of phonemes has advantages of its own- the 

differences between plosive and sonorant phonemes are greater than the equivalent 

differences between plosive and fricative phonemes used by Monaghan et al. (2011). 

Additionally, because this second phoneme set is used to construct labels that are 

twice as long (66 phonological feature units, rather than 33) the model has more 

features over which to individuate and more reinforcement for categorisation. 

Phonologically dispersed systematic languages were learned better than their 

phonologically clustered counterparts were. The manipulation of phonological 

dispersion creates systematic languages where the within-class difference for both 

types of words is maximized, and this predicted that those languages would be 



 

159 

 

individuated better. The results of this set of simulations thus give clear predictions 

that can, as in Monaghan et al. (2011), be tested against the learning abilities of 

human participants.  

 3.4  Experiment 4 

Following Monaghan et al. (2011), I wanted to compare the ability of our model to 

learn our artificial languages to the ability of human experimental participants. The 

results of our extension of Monaghan et al.’s model to explore the effect of 

phonological dispersion on learning suggested that phonologically dispersed 

languages were significantly easier for the model to individuate, and that systematic 

phonologically dispersed languages gained the benefit from systematicity (early 

categorization near ceiling) without the incumbent penalty for individuation of their 

phonologically clustered counterparts. The fact that the model individuates 

phonologically dispersed languages better is predicted by both the edit distance of 

the phonemes used in their construction and the average Euclidean distance of the 

actual words used: phonologically dispersed languages have higher within-class 

contrast than do their phonologically clustered counterparts, and are also 

individuated substantially better.  

Here, I evaluate whether human participants produce the same general 

results as the model: i.e. whether they are sensitive to the phonological feature 

representations of the words that they use, or whether some other metric of 
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similarity between words within and between classes is better able to predict human 

behavior. From the perspective of phonological features, phonologically dispersed 

languages have greater within-class contrastiveness and should thus be easier for 

participants to learn. At the level of individual phonemes, however, phonological 

clustering has no effect on the contrastiveness of words: all words within one type 

use a single set of phonemes (though the phonemes are not related) and none of 

those phonemes are used for the creation of both types of words.  

As in Chapter 2, I use a signal detection paradigm, compared to the 

alternative-forced-choice task presented to the model. The rationale for using this 

experimental methodology, to rehearse from Chapter 2, is that it allows for a 

separation of pressures for individuation and categorization that are less 

straightforward given the model’s AFC task. The fact that experimental 

participants respond to three separate types of trials (targets, in-class distractors, 

and out-of-class distractors) allows for an evaluation of how well they are able to 

individuate (the difference between performance on target trials and in-class 

distractor trials) and also their relative certainty about the category structure (out-

of-class distractor trials). 
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3.4.1 Methods 

Participants 

Participants were 40 students (24 female) and members of the public recruited from 

the SAGE recruiting service at the University of Edinburgh (mean age 22.15 years). 

Ethical approval was obtained from the University of Edinburgh in line with BPS 

guidelines, and informed consent was obtained from all experimental participants. 

All participants were proficient speakers of English and had normal hearing and 

normal or corrected-to-normal vision and were paid £2 for their participation, which 

took approximately 15 minutes. 

Participants (n=40) were assigned randomly to each of 4 experimental conditions 

such that each condition had 10 participants. Conditions 1 and 2 (systematic 

languages) had further random assignment of participants to subconditions (n=5) 

that counterbalanced the nature of systematic word-meaning associations. We found 

no differences between participants in these subconditions (e.g. it did not matter 

whether animals were paired with plosive or sonorant words), so those subconditions 

were collapsed for further analysis. 
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Experimental Design 

The experiment conducted here used a signal detection protocol to measure the 

ability of participants to learn associations between novel labels and their meanings 

in a 2 (systematic vs. arbitrary) x 2 (phonologically clustered vs. dispersed) factorial 

design. For the systematic clustered condition, where signal meaning mappings were 

phonologically systematic, there was a correspondence between the category of the 

picture and the phonology of the labels (e.g. all plosives were paired with animals), 

whereas for the systematic dispersed condition the mappings between form and 

meaning were systematic but not based on phonology. The remaining two 

conditions, arbitrary clustered and arbitrary dispersed, were expected to be equivalent, 

as the phonological characteristics of a label were not predictive of the category of 

its meaning in either case.  

Label Stimuli 

The word stimuli used for the experiment here were generated using the “Nielsen” 

phoneme set used above in Simulation 1 but instead of using a fixed set of 6 of the 

possible 8 generated words, each participant saw a random sample of 6 of the 8 

possible words. The stimuli were created identically to those in Experiment 3 of 

Chapter 1- thus, each syllable was produced by Apple talk and then during the 
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experiment those syllables were presented sequentially to form words that were 

unstressed. 

 

Table 3.04- A sample of possible languages for the four conditions of Experiment 4 

 

Image stimuli 

Word meanings were selected from two distinct categories: animals and vehicles, and 

were taken from a variety of online sources using Google Image search; images were 

extracted from their background and placed on a white background, then 

standardized for size and resolution (Figure 3.11). 
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Figure 3.11- A sample of the images used in Experiment 4. 

 

Procedure 

Familiarisation 

Prior to training, participants were exposed to all of the labels used for their version 

of the experiment, absent their referents, via headphones in two randomized blocks, 

to familiarize them with what the novel labels sounded like. 

Participants were then instructed that they would be presented with pairs of 

labels and images and it was their task to remember the pairs of images and labels 
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that they saw. They were informed that after training they would be tested on their 

ability to recognize label-meaning pairs that they had previously been exposed to.  

Training 

After familiarization, participants were shown proper training trials, where an image 

was shown on screen for 750 milliseconds before a label was played to them via 

headphones, twice, with a one second break between each presentation. One second 

after the second presentation of the label, the image would disappear and a new 

training trial would begin.  During training, each label-meaning pairing was 

presented twice in two blocks whose order was randomized.  

Testing 

At test, participants were presented with pairs of labels and images. Each label and 

image was seen a total of four times across three types of experimental trial, for a 

total of 48 trials. One quarter of the trials (12) were target trials, where the presented 

label-image pair was one to which the participant had been exposed during training. 

One quarter of the trials (12) were in-class distractor trials, where the presented label-

image pair was not one that had previously been learned but where the image was of 

the same type (animal or vehicle) as the image originally presented with the label 

(e.g. if ‘munomu’ was a label for a car, it might be presented with another vehicle as 

an in-class distractor). The remaining trials (24) were out-of-class distractor trials, 
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where the label was presented with an image of the opposite type as the one it had 

originally been paired with. On each trial participants responded via keyboard, 

pressing either the ‘z’ key for “no” or the ‘/?’ key for “yes” on a given trial. After 

their selection the experiment proceeded to the next trial. The experiment was 

conducted using an interface created with Livecode v 5.02. 

Contrastiveness 

I calculated the contrastiveness of the possible languages in each of the four 

experimental conditions using two metrics. First, I used the phonological features of 

possible sets of words for each condition to calculate an average Euclidean distance 

within each type of words and between each type. Second, I calculated the average 

Hamming distance of possible sets of words for each condition based on their 

phonemes. The values of those contrastiveness calculations for each condition can be 

seen below in Figure 3.12. 
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Figure 3.12- The average within-class (top) and between class (bottom) contrastiveness of 

lexica for each of the four conditions of Experiment 4, calculated using the phonological feature 

euclidean distance (left) and the simple Hamming edit distance (right. 

 

Both metrics suggest that systematic lexica have lower within-class contrastiveness 

than their arbitrary counterparts, so should be harder to individuate. Both 
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contrastiveness metrics predict no difference in learnability between arbitrary lexica, 

so both suggest that arbitrary lexica, whether they are phonologically dispersed or 

phonologically clustered, should be equally learnable.  

The euclidean distance based on phonological features predicts an effect of 

phonological clustering- phonologically dispersed languages have higher within-class 

constrastiveness than their phonologically clustered counterparts. Hamming 

distance based on phonemes however does not predict this effect: the distance within 

groups based on their Hamming distance is the same regardless of whether or not 

the words are composed from similar phonemes or not.  

Data Analysis 

As with the results of Experiments 1-3 from Chapter 2, responses were scored 

according to a signal detection paradigm; on target trials “yes” responses were scored 

as hits, with “no” responses as misses, while on distractor trials of both types “yes” 

responses were scored as false alarms with “no” responses scored as correct 

rejections. These responses were transformed to a d’ value for each participant, 

which I used as an omnibus measure for a general linear model with systematicity 

(arbitrary vs. systematic) and phonological clustering (clustering vs. dispersed) as 

factors. Additionally, I conducted a repeated measures analysis of variance with 

systematicity and phonological clustering as between subjects factors and trial type 

(target vs. in-class distractor vs. out-of-class distractor) as a within-subjects factor. 
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3.4.2 Results 

Signal Detection 

For the omnibus test of performance using d’ I found a main effect of systematicity, 

in line with predictions based on both of my contrastiveness metrics (and previous 

work): Systematic languages (M= 1.41) were easier to learn than Arbitrary ones (M= 

0.503, ;F(1)= 16.12, p<0.001). I did not however found a significant effect of 

phonological clustering (Clustered M= 1.09, Dispersed= 0.81; F(1)= 1.63, p=0.21), 

and only a marginal interaction of the two (F(1)=3.87, p=0.057), supporting the 

predictions of hamming distance as a contrastiveness metric; see Figure 3.13. 
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Figure 3.13- Omnibus d` results from Experiment 4 demonstrate a significant main effect of 

systematicity: systematic languages are easier to learn in this task than arbitrary ones. Error 

bars represent standard error. 

 

Repeated measures Analysis of Variance 

The repeated measured analysis of variance revealed a significant main effect of 

condition: systematic language learners performed significantly better than 

arbitrary language learners (M= F(1,119(=7.55, p=0.009. I found no significant 

effect of phonological dispersion (F(1,119)=0.55, p=0.463) and no significant 

interaction of systematicity x phonological dispersion (F(1,119)= 2.03, p= 0.163). 

There was a significant main effect of trial type (F(2,119)=13.68, p<0.001): post hoc 



 

171 

 

analysis using the Tukey-Kramer Multiple comparison test showed that participants 

performed significantly worse on in-class-distractor trials (M=0.52, SE= 0.0312) 

than on either Target (M= 0.68, SE=0.0312 ) or out-of-class distractor trials(M= 

0.72, SE=0.0221 ).  

In addition to main effects of systematicity and trial type, I found a 

significant interaction between trial type and systematicity (F(2,119)=11.44, 

p<0.001). I found, using post-hoc analysis, that participants who learned arbitrary 

languages did not perform significantly differently on the three trial types (Target: 

M= 0.60, SE= 0.035; In-Class Distractor: M= 0.58, SE= 0.035; Out-of-class 

Distractor M=0.59, SE= 0.025; F(2,59)=0.11, p=0.89). Systematic language learners 

however performed significantly different depending on trial type (F(2,59)= 17.48, 

p<0.001): Systematic language learners performed worst on in-class distractor trials 

(M=0.454, SE= 0.052) than they did on either target (M=0.754, SE= 0.052) or out-

of-class distractor trials (M=0.85, SE= 0.036), on which they performed equally well 

(Figure 3.14). There was no significant three-way interaction of systematicity x 

phonological dispersion x trial type (F(2,119)= 2.18, p= 0.12). 
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Figure 3.14- Effect of the interaction of experimental condition and trial type on the proportion of 

correct responses. Participants in the arbitrary language condition performed equally well 

regardless of the type of experimental trial, while systematic language learners performed best 

on out-of-class distractor trials and worst on in-class-distractor trials. 

 

Finally, I compared performance on each trial type between the two conditions 

using further rmANOVAs. I found that systematic language learners performed 

systematically better on target trials (F(1,39)= 7.22, p=0.011) and out-of-class 

distractor trials (F(1,39)= 29.78, p<0.001)than did arbitrary language learners. 

However, arbitrary language learners performed only marginally better on in-class 

distractor trials (F(1,39)= 3.10, p=0.086) than systematic language learners.  
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3.4.3 Discussion 

The results of this experiment support the general findings of Monaghan et al. (2011) 

as well as the findings of the three experiments presented in Chapter 2 of this 

dissertation: systematic languages were easier to learn for both our replication of 

Monaghan et al.’s model and my experimental participants. Specifically, in both 

cases, systematic languages aid in the task of categorization, while arbitrary 

languages, by virtue of being more contrastive, aid the task of individuation.  

Based on the results of Simulation 1, I expected that human participants 

would be sensitive to the phonological features of the languages used in Experiment 

4: phonologically dispersed languages would create a benefit to categorization but 

also be easier for the experimental participants to individuate. Calculating 

contrastiveness based on the phonological feature mapping from Harm & 

Seidenberg, by which words are represented in the simulation, predicts that there 

should be an effect of phonological clustering, whereas calculating contrastiveness 

based on Hamming distance (as in Chapter 2) predicts no difference in learnability 

between phonologically clustered and phonologically dispersed languages. The fact 

that human learners performed no differently on the two trial types suggests that 

Hamming distance at the level of phonemes is the more appropriate of the two 

metrics for predicting human learning.  
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3.5 General Discussion and Conclusions 

The results of Chapter 2 showed that the idea of contrastiveness is central to 

determining whether languages can be systematically marked in such a way to 

produce a benefit to categorization learning without inducing a concomitant penalty 

to individuation. Because contrastiveness is central to the tension between a positive 

learnability pressure favoring systematicity and a negative pressure favoring 

arbitrariness, it is crucial to understand what features are relevant to human 

language learners. Monaghan et al. (2011), by creating a simulated neural network 

that used phonological features to represent words, and demonstrating that the 

model performed similarly to human language learners, suggested that phonological 

features are most relevant to human perception.  

However, both the phonological features and an analysis considering only the 

phonemes used both make the same predictions about the learnability of systematic 

vs. arbitrary languages. Based on the phonological feature edit distance within and 

between classes of words, systematic mappings between words and meanings reduce 

the within-class contrastiveness of words while making the between-class distance 

larger. However, considering phonemes as discrete units leads to the same 

predictions. To test which of these two possibilities was a better model for human 

perception, I introduced an additional factor of phonological clustering on which 
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both our replication of Monaghan et al.’s model and my experimental participants 

were tested.  

The results of our model suggested that phonologically dispersed languages 

were easier to learn, especially using our individuation metric. Because /f/ and /g/ are 

more different than /g/and /k/ based on their phonological feature representations, 

mapping /f/ and /g/ systematically to one type of meanings allowed the model to 

learn about category information without leading to confusion of individual words 

to each other.  

The results of my human language learners, however, did not support the 

findings of the model: for human language learners there was no effect of 

phonological clustering, suggesting that the systematic use of phonemes for marking 

category structures results in benefits for categorisation learning and penalties for 

individuation learning regardless of how similar phonemes within a category are to 

one another. Human participants seem to be able to learn systematic languages that 

are not based on phonological clustering- i.e. they are able to map dissimilar 

phonemes onto nonetheless similar meanings. Specifically, participants learned that 

pairs of features that are unrelated to each other can nonetheless be predictive of the 

same category, despite phonologically-similar features being used as labels for an 

opposing category. Specifically, because the experimental participants we typically 

employ are already familiar with a language, the differences between say /p/ and /t/ 
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may be more salient than they are when represented as phonological features to a 

language naïve model. There is at least one interpretation that is more favourable 

towards the phonological feature: children might learn more similarly to Monaghan 

et al.’s original models, but whether this is true is an open question. A second 

interpretation is that phonological feature representations are unable to capture the 

perceptual salience of labels for this kind of task at all. 

One interesting possibility, first raised by Gasser (2004), is that the 

saturation of the available signal space will have important implications for whether 

arbitrary or systematic languages are ultimately easier to learn. That is, systematic 

language are easier to learn when there is sufficient space for there to be systematic 

associations without those labels actually becoming too similar to one another, and 

thus confusable. With the inclusion of increasingly large numbers of labels (which 

increases the saturation of the available space) the benefit for systematic languages 

becomes increasingly small and eventually inverts. Using our experimental protocol, 

it’s possible that given a sufficiently large number of stimuli per image type learning 

only category markers without any ability to individuate tokens would be an 

optimal strategy (given a memory limitation for similar tokens). The balance 

between systematicity and arbitrariness is likely to not only be based on the design 

of the experimental task (or the typical situations under which language learning is 

conducted) but also the overall similarity of labels to one another. 
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The results of the computational models and artificial language learning 

experiment presented here provide further evidence that systematic languages, where 

there are system-level associations between form and meaning, allow language 

learners to learn to categorise novel words more easily. In contrast to previous work 

however I found additional evidence that at least in some cases systematic languages 

are also easier to individuate- this is especially likely to be the case when lexica are 

small (Gasser, 2004). This might have important implications for the trajectory of 

language learning: early in acquisition the size of lexica will of necessity be small, so 

preferentially teaching systematic labels to new learners would be optimal. 

Ultimately, as the lexica of these learners grow, moving to more arbitrary signal-

meaning mappings would become easier. This possibility is supported by recent 

findings which suggest that early acquired words are more likely to be systematic than 

late acquired ones (Monaghan et al., 2014), suggesting that although overall the 

lexicon does not appear to be systematic, the age at which words are acquired may 

reflect the fundamental division of labour between systematicity and distinctiveness. 

One additional benefit that systematic languages might have over arbitrary 

ones that is not tested in the experiment or simulations is that systematic languages 

should allow for generalisation to entirely novel tokens. In this case, new signal-

meaning mappings that are congruent with previously learned systematic 

relationships might be accepted at rates above chance. Although I have not directly 

explored that possibility here, it seems to be one that would be rather straightforward 
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to test, using either artificial language stimuli or real-world systematic form-meaning 

associations like those found in English phonaestheme clusters. Thus, when presented 

with an unfamiliar word like ‘gloam’ it might be easier for a new participant to learn 

that it was a word having to do with light. Here we might see a similar division of 

labour between arbitrariness and systematicity: systematicity might make predicting 

meanings given a new signal or creating sensible signals for a new meaning easier, but 

it might also cause overgeneralisation so that non-systematic labels cannot be learned 

as easily. This division of labor might again be productive, with arbitrary form-

meaning mappings actually allowing systematic relationships to persist without 

collapsing into a signal meaning.  

The work presented here has additionally focused on systematic signal-

meaning mappings that are conventional rather than motivated. The associations 

that I have tested are isomorphic in the sense that specific features of signals are 

mapped onto features of meanings, but the direction of these mappings can go either 

way. For example, my data do not suggest that plosive consonants are any better 

when paired with animals than with vehicles, but there are a number of associations 

between phonological features and object characteristics that are motivated by the 

perceptual or cognitive apparatus of the language learner, like the Bouba-Kiki effect 

(Kohler, 1929; Mauer et al., 2006; Nielsen & Rendall, 2011, 2012, 2013), where 

voiceless plosive consonants are associated with jagged image forms and voiced 

sonorants with curved image forms. It is possible that motivated signal-meaning 
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associations of this type are also important for language learning, as they allow for 

generalisation without previous experience with the language (this could be thought 

of as generalisation from a perceptual prior, rather than a learned one).  

Finally, I suggest that what appears to be increased realism in computational 

models of human language learning is not always beneficial. The fact that human 

languages are made up of well-defined phonemes does not mean that the phonological 

feature representation of those phonemes is necessarily appropriate as a coding for the 

percept of those languages for human learners.  

The degree to which natural languages take advantage of the potential 

learnability benefits for systematic languages is currently not well understood, with 

the majority of research focusing on iconicity, rather than systematicity, as a 

plausible bootstrapping method for language acquisition (Imai et al., 2008; 

Monaghan, Mattock, & Walker, 2012; Nygaard, Cook, & Namy, 2009). A more 

complete understanding of how structural regularities at the level of the lexicon can 

influence language learning will need to take into account differences between 

motivated and conventional systematic form meaning mappings (Nielsen et al., in 

prep.) The recognition that the original categorisation metric used by Monaghan et 

al. (2011) is composed of a combination of correct and incorrect responses to a task 

that is explicitly about individuation further makes the suggest that systematic 

languages “aid categorisation” one that is difficult to support with the data. In fact, 

neither the experimental participants nor the model is ever asked to provide any 
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responses about what category a word-meaning pair belongs to. The ‘categorisation 

benefit’ for systematic languages can thus only really be pointed to as an increased 

probability of guessing the correct label from a learned category. Although I do not 

test for anything that could be conceptualized as a real categorisation task in this 

chapter, Chapter 4 introduces an experimental paradigm where participants are 

asked onto to categorise.  
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Chapter 4 

Motivatedness and categorisation 
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Foreword: 

Declaration of submission for publication 

The contents of Chapter 4 represent an article submitted for publication to the 

Journal of Experimental Psychology: Language, Memory, and Cognition. As the 

chapter is only submitted, but has not been published, it has been modified to the 

format of the thesis content generally. The body text of this chapter has, however, 

not been modified from the form in which it was submitted for publication, other 

than changing the names of the experiments presented here to line up with the 

experiments in the rest of the dissertation. Because this chapter represents a 

potential publication, it has been edited collaboratively to a greater degree than 

other work presented in this dissertation, although the writing and statistics for this 

Chapter were completed primarily by the author of this dissertation.  
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Introduction of submission for publication 

The text of this chapter is largely congruent with the central narrative of this thesis, 

but differs slightly in its use of terminology, using terms like iconic and sound-

symbolic more commonly than they are used in the rest of the dissertation. The main 

thrust of this chapter is an exploration of the learnability advantage for motivated 

associations between words and meanings, and an attempt to separate that 

learnability benefit from one related to systematicity. The results shown here neatly 

demonstrate the early advantage that motivatedness provides to naïve learners 

while simultaneously demonstrating that conventionally (non-motivated) 

systematic languages are ultimately equally learnable. The similarity of the 

learnability between motivated and non-motivated systematic languages provides 

us with a rationale to use motivated systematic associations in Chapter 5, where we 

test the effect of decreasing contrastiveness on language learning directly. Because 

this chapter was produced more collaboratively than other chapters, I make use of 

the pronoun “we”, rather than “I” throughout 

Additionally, although we do not make it explicit in the same way that I do 

here in Chapter 3, the experiments presented in this manuscript are tests of 

categorisation, rather than individuation. Thus, the results show that participants 

are able to match shared features of words onto shared features of meanings.  
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Introduction 

The traditional linguistic assumption of the arbitrariness of the sign (de Saussure, 

1983; Hockett, 1960) holds that words and their meanings are related only by 

linguistic convention - after all, there is nothing ‘dog-like’ about the word dog, and 

any other label established by local convention could equally well be the word for a 

‘dog’. There is, however, increasing evidence for the pervasiveness of systematic 

mappings between words and meanings in natural languages. Systematicity exists in 

a lexicon when some feature of a set of words can be reliably mapped onto some 

feature of their meaning; that is, where there is an isomorphism between some 

dimension of meaning and some dimension of form in the lexicon (e.g. in the 

phonological form of words). Although it is widely accepted that natural languages 

are massively systematic above the level of the lexicon (i.e. in their morphosyntax), 

the idea that the lexicons of natural languages might be systematically organized 

has only recently begun to be seriously considered. It has been found, for example 

that phonological features (in the simplest case, length) are predictive of 

grammatical categories (Farmer, Christiansen, & Monaghan, 2006; Fitneva, 

Christiansen, & Monaghan, 2009; Kelly, 1992); furthermore, Monaghan et al. (2014) 

have shown that across the entire lexicon, the English language is more 

phonologically systematic than would occur by chance – although the effect is not 

particularly large, features of sound and meaning are mapped onto one another in 

statistically reliable ways. 
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These systematic mappings between words and meanings can be seen to be 

either motivated or entirely established by convention - a fundamental difference that 

until recently has been ignored. Motivated systematic mappings involve some degree 

of iconicity or transparency in the mapping between meanings and signals, and go 

by a number of names in the literature, being called variously iconic (e.g. Ahlner & 

Zlatev, 2010), sound-symbolic (Hinton, Nichols, & Ohala, 1994), crossmodal (e.g. 

Cuskley, 2013), or phonosemantic (Akita, 2011). A large number of languages use 

mimetics  or ideophones, where the words that describe an event or object are 

somehow imitative of that event or object, for example, in Japanese the word ‘goro’ 

refers to a heavy object rolling, while the word ‘koro’, starting with a voicelesss 

consonant, refers to a light object rolling (e.g. Imai et al., 2008). Examples of this 

type of association can also be seen in English, in onomatopoeic expressions (e.g. 

‘crash’ is meant to be imitative of the sound that it describes). Ideophones and 

onomatopoeic expressions fall under the general heading of sound-symbolism, and are 

thus considered motivated associations between word and meaning, driven in part 

by the perceptuo-cognitive organization of language users (Cuskley, 2013; Nielsen, 

2011; Ramachandran and Hubbard, 2001).1  One consequence of motivated 

                                                 

1 Although specific mechanisms linking sound and meaning are rarely offered, one 

intriguing possibility is that the same types of cross-modal associations as those seen in 

synaesthetes might mediate this process and be reflective of human cognitive 

organization more generally (Maurer & Mondloch, 2004; Simner, 2006, 2012). 



 

187 

 

associations between single words and single meanings is that a group of such 

motivated mappings will exhibit systematicity, since the motivatedness of 

individual mappings ensures that a group of such mappings exhibits systematicity 

as defined above: their common semantic features map to a shared dimension of 

form.  

In contrast to these motivated associations2, conventional systematic 

mappings between words and meanings are non-motivated: the observed 

isomorphism between meaning and form is a function of a particular linguistic 

convention, rather than the perceptuo-cognitive organization of the language’s 

users. For example, in English the word-initial gl- cluster is found in a number of 

words associated with light and vision (e.g. glint, gleam, glare, glitter, etc.; but, note 

that not all gl- words are part of the cluster), but this seems likely to be due to 

                                                 

Specifically, the synaesthetic account of these motivated associations between sound 

and meaning places them firmly in the realm of being explained by perceptuo-cognitive 

biases in language processing and/or production, rather than being observed in language 

users as a function of previous learning via exposure to their language. 

2 The differences between conventional or motivated connections between words and 

meanings are not always immediately obvious - in each case that a systematic 

connection between words and meanings are found we must apply psycholinguistic 

techniques to determine the degree to which these associations are purely conventional 

or motivated (Nielsen and Rendall, 2012). 
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language-specific clustering and history rather than gl- being a particularly effective 

or evocative consonant segment for denoting light (Cuskley and Kirby, 2013).  

4.1  Background and Rationale 

Monaghan et al. (2014) show that the language-wide tendency for systematicity in 

English is most pronounced in early-acquired words, suggesting that this 

systematicity might facilitate learning. Similarly, motivated connections between 

words and objects provide language learners with a priori expectations about the 

likely meaning of some words, and might therefore facilitate word learning. We 

review this evidence below. It has furthermore been suggested (Asano et al., 2015; 

Dingemanse et al., 2015; Lockwood & Dingemanse, 2015; Imai & Kita, 2014; Perniss 

& Vigliocco, 2014) that the presence of motivated signal-meaning mappings might 

bootstrap the acquisition of mappings that are not sound symbolically motivated, a 

possibility which has to date received little empirical support.  Imai & Kita (2014) 

suggest that the presence of sound symbolism allows infants and toddlers to 

establish lexical reference that can then be extended from motivated forms to purely 

conventional forms. This bootstrapping hypothesis is currently the most well-

developed one in the literature, with the exact nature of how sound-symbolism 

might influence real-world language learning left unexplained in most other places 

(e.g. Nielsen, 2011). One possibility is that learning motivated word-meaning 

correspondences might directly increase the capacity to learn conventional words, 
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e.g. if processing of sound-symbolic associations requires less time or cognitive 

resources, this will free up those resources for learning of conventional tokens.  

Research using both adults and children has suggested that motivated tokens 

are easier to learn, even cross linguistically (Imai et al., 2008; Nygaard, Cook, & 

Namy, 2009). One particularly well-studied motivated form-meaning connection is 

known as the Bouba-Kiki effect (Kohler, 1929; Maurer et al., 2006; Pexman & 

Sidhu, 2014; Ramachandran & Hubbard, 2001), where jagged images are associated 

with words containing plosive consonants and curved images are associated with 

words containing sonorant consonants (and to a lesser degree, rounded vowels: cf. 

Fort, Martin & Peperkamp, 2015; Nielsen & Rendall, 2011, 2013).  Three recent 

papers (Aveyard, 2012; Monaghan, Mattock, & Walker, 2012; Nielsen & Rendall, 

2012) explored the degree to which such motivated connections between signals and 

meanings enhanced the learnability of an artificial language. In all three cases, the 

authors compared the ability of participants to learn associations that were 

congruent with known sound-symbolic associations (e.g. that a word like ‘teka’ 

should be paired with a jagged image) or incongruent with such associations (e.g. 

monu might be associated with a jagged image; see Figure 4.01).  
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Figure 4.01- Sample stimuli used in previous experiments. Labels in green below each image 

are congruent with known sound symbolic biases. Labels with red are incongruent with (the 

opposite of) these biases.  

 

In all three experiments, participants were able to learn congruent associations 

between words and images better than incongruent associations. This suggests that 

motivated connections between words and meanings might facilitate language 

learning.  

The artificial languages used in these three studies take advantage of iconic 

or sound-symbolic associations between phonemes/phonetic features and visual 
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features of objects. However, in addition to being motivated, these lexicons are also 

necessarily systematic in the same way as the previously discussed conventional 

systematic systems like phonaesthemes: even without a bias to associate, say, 

plosive consonants with jagged images, a learner of one of these languages might 

nonetheless recognize the presence of the systematic tendencies in the lexicon. A 

recent study demonstrates that purely conventional (i.e. non-motivated) systematic 

connections between words and meaning improves learnability of artificial lexicons 

(Monaghan et al., 2011; but, cf Nielsen et al., in prep).  These studies looked at 

lexicons where some feature of words is mapped onto a feature of a class of meanings 

(Monaghan et al. use a systematic artificial lexicon where words constructed from 

plosive consonants refer to objects, and words constructed from fricative consonants 

refer to actions), and focused on how systematicity influenced the ability of learners 

to individuate (identify the correct meaning for a given word) and categorize 

(identify a meaning of the correct category, i.e. object or action). Their results show 

that systematic associations between words and meanings facilitate the process of 

categorization, but this increase in category learning comes at a cost to 

individuation - systematic associations between words and meanings necessarily 

constrain the available signal space (since all words in a category share many 

features, i.e. sound alike), making differentiating between words more difficult 

(Monaghan et al., 2011; Gasser, 2004; but, cf. Nielsen et al., in prep).  
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Returning to the literature showing a learnability advantage for motivated 

mappings: by comparing lexicons that are both systematic and motivated to 

lexicons that are systematic but counter-motivated (i.e. incongruent with known 

sound-symbolic biases) these studies might be either over- or under-estimating the 

learnability benefits of motivatedness. Firstly, the systematicity of the counter-

motivated lexicons might diminish (or perhaps exacerbate) the cost of being 

counter-motivated. Secondly, the difference in learnability between motivated and 

counter-motivated lexicons might reflect either a benefit for motivatedness or a 

penalty for counter-motivatedness, with the comparison of the two extremes making 

it impossible to tease these two possibilities apart. This might have important 

implications for natural languages: should we expect natural languages to favor 

motivated associations between signals and meanings, or avoid counter-motivated 

associations, or both? Finally, in reference to the bootstrapping hypothesis 

introduced above, because previous studies entangle motivatedness and 

systematicity, we cannot be sure of the degree to which learning benefits are a 

function of motivatedness rather than systematicity: we have evidence both that 

motivated associations are learned more easily than counter motivated associations, 

and that conventionally systematic lexicons are (in some cases) learned more readily 

than purely arbitrary lexicons, but this tells us nothing about whether motivated 

systematic lexicons and conventional systematic lexicons are learned differently. 
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4.2 Investigating motivatedness  

Here, we report the results of two experiments designed specifically to compare the 

learnability of systematic lexicons (mapping words to shapes) that vary in their 

motivatedness, including comparing the learnability of motivated systematic 

lexicons to purely conventional systematic lexicons.  

In Experiment 5, we compare the learnability of artificial lexicons where 

phonological features like plosivity are mapped to shape features in ways that are 

either motivated (e.g. plosives map to jagged shapes), counter-motivated (e.g. 

plosives map to curved shapes), conventionally systematic (e.g. dental fricatives  

map to jagged shapes, palate-alveolar fricatives map to curved shapes), or partially 

motivated (e.g. jagged shapes are labeled with a mix of plosives and fricatives; see 

Table 4.01 below).  Experiment 1 shows that the benefit of motivatedness relative to 

purely conventional mappings arises early in the learning of these artificial lexicons; 

given sufficient training, conventional systematic lexicons become equally well 

learnt, suggesting that at least some previous studies may have overestimated the 

importance of motivatedness or iconicity for language learning, where systematic 

structure might be sufficient.  

Furthermore, Experiment 5 shows that partially motivated lexicons exhibit 

the lowest rates of learnability, suggesting that the presence of both motivated and 

conventional associations between signals and meanings interferes with learning. 
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This finding runs counter to the prediction that motivated associations might 

bootstrap the learning of conventional ones. In order to further explore this finding, 

in Experiment 6 we investigate the learnability of lexicons mapping words to shapes 

that differ in both shape and size, allowing us to independently manipulate the 

motivatedness of mappings from consonants to shape (e.g. in a motivated lexicon, 

plosives map to jagged shapes; in a conventional lexicon, fricatives map to jagged 

shapes) and vowels to size (e.g. in a motivated lexicon, high vowels map to small 

shapes; in a conventional lexicon, mid-vowels to small shapes). In line with the 

results from Experiment 5, we find that lexicons that exhibit a mix of motivated 

and purely conventional mappings are hardest to learn, again counter to the 

bootstrapping hypothesis. 

4.3 Experiment 5 

We conducted an artificial language learning experiment using a paradigm where 

participants learned associations between novel words and images, where those 

associations were either motivated or conventional. The stimuli used in this 

experiment were similar to those used in Nielsen & Rendall (2012), which explored 

the learnability of motivated and counter-motivated lexicons. Participants were 

assigned to one of four conditions. The target lexicons across all four conditions were 

systematic, but differed in their level of motivatedness. Following the experiments 

reviewed above (Nielsen & Rendall, 2012; Aveyard, 2012; Monaghan et al., 2012), 
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participants in the Motivated condition attempted to learn a systematic lexicon that 

was consistent with known sound-symbolic biases, while participants in the Counter-

Motivated condition attempted to learn a lexicon which was incongruent with those 

same biases. Participants in the Conventional condition attempted to learn a 

conventional systematic lexicon, using forms that were neither motivated nor 

counter-motivated. Finally, participants in the Partially Motivated condition 

attempted to learn a systematic lexicon which mixed motivated and conventional 

mappings.  

4.3.1 Methods 

Participants  

Participants were 63 students and graduates recruited from the Student and 

Graduate Employment recruiting service at the University of Edinburgh and were 

assigned randomly to each of the four experimental conditions. Of the 63 

participants, 39 were female and the average age of the participants was 23.65 years. 

All participants were proficient speakers of English and had normal hearing and 

normal or corrected-to-normal vision. Participants were paid £2 for their 

participation, which took approximately 10 minutes. 
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Image and Word Stimuli 

The images used in this experiment were selected from two distinct categories: 

curved and jagged shapes, and were generated using a random shape generator 

(Birkbeck, 2008). The generator populates a field of a given size with a set of random 

initial points to determine an image seed, and then connects these points via cubic 

Bezier curves. Using a radially constrained methodology, these randomly generated 

points are joined using either straight lines, or via the migration of interpolated 

points to create curved versions of images using the same seed (see also Nielsen & 

Rendall, 2011, 2012, 2013 for similar image generation techniques). All of the images 

used in the study were simple black line figures presented on a white background as 

bitmap files with 480x480 resolutions (see Figure 4.02). The pair of images presented 

on each trial was created for the same image seed, and were thus maximally similar 

to one another despite one being curved and the other jagged. 
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Figure 4.02- An example of the figures used in Experiment 5. Each row represents a pair of 

images generated from the same initial seed. 

 

The words used to label these objects were all disyllabic cVcV words. For 

participants in the Motivated condition, labels were constructed that were congruent 

with previously observed sound symbolic biases: labels for curved images contained 

the phonemes /m/ and /n/, while labels for jagged images contained the phonemes /p/ 

and /t/ (see Table 4.01 for the assignment of consonants to conditions, and see below 

for an explanation of how these consonants were combined with vowels to form 
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words). In the Counter-Motivated condition, words were created identically to the 

Motivated condition, but assigned in the opposite (incongruent) manner, such that 

plosive words were assigned to curved objects and sonorant words to jagged objects. 

In the Conventional condition, labels were similarly systematic, but the pairings of 

phonemes to shapes was not motivated by previously established sound symbolic 

biases: two sets of phonemes were chosen (/Θ/ and /ð/ vs. /ʃ/ and /ʒ/)3, and for each 

participant one phoneme set was paired with curved labels and the other with 

jagged labels.  

Finally, in the Partially Motivated condition, words were created by mixing 

motivated and conventional phonemes: for each participant, one of the phonemes 

associated with each word category would be motivated (e.g. /n/ for a label for a 

curved object) while the other would be conventional/arbitrary (e.g. any of /Θ/, /ð/, 

/ʃ/, or /ʒ/). These partially motivated lexicons were generated such that no single 

phonetic feature that varied systematically between the two label types (e.g. there 

was no voicing contrast that split the categories). One quarter of the labels for any 

lexicon in the Partially Motivated condition therefore featured only motivated 

                                                 

3 See the Discussion for some remarks on issues relating to differences between conditions in within-

category phoneme similarity. 



 

199 

 

phonemes, one quarter featured only non-motivated phonemes, and half featured 

one motivated and one non-motivated phoneme.  

 

Table 4.01- Consonant phonemes used in Experiment 5 

 

The vowels /ʌ/ and /ɛ/ were used across all four conditions, yielding 4 possible 

syllables for each label type in each condition, which were then concatenated to 

produce 16 possible disyllabic labels for each type of stimuli in each condition of the 

experiment (see Table 4.02 for examples). 

 Motivated 

Condition  

Counter-Motivated 

Condition  

Conventional 

Condition  

Partially Motivated 

Condition  

Curved 

Images 

mʌnʌ 

mɛmɛ 

nɛmʌ 

nʌnɛ 

pʌtɛ 

pɛpɛ 

tʌtɛ 

tɛpʌ 

ʃɛʒʌ 
ʒʌʃʌ 
ʃʌʃɛ 
ʒɛʒɛ 

mɛmʌ 

ʃʌʃʌ 

mʌʃɛ 

ʃɛmɛ 

Jagged 

Images 

pʌtɛ 

pɛpɛ 

tʌtɛ 

tɛpʌ 

mʌnʌ 

mɛmɛ 

nɛmʌ 

nʌnɛ 

Θʌðɛ 

Θɛðɛ 

ðɛðʌ 

ðɛΘʌ 

Θʌtɛ 

Θɛtɛ 

tɛtʌ 

tɛΘʌ 

Table 4.02- Sample words used in Experiment 5 
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The phoneme segments required for the experiment were recorded by a trained male 

phonetician in a single continuous track and then extracted as sound files. These files 

were then concatenated using the SoX command line sound processing utility 

(http://sox.sourceforge.net/) to produce all possible labels for each experimental 

condition. Assembling the word stimuli in this way ensured an accurate and 

consistent presentation of the phonemes in question and also allowed for the 

construction of words that did not contain any stress information and where there 

was no influence of coarticulation. Thus, although the stimuli were still somewhat 

artificial, they were markedly less artificial sounding than the stimuli from 

Experiments 1-4. 

Procedure 

The experiment was conducted using an interface created with Livecode (Version 

5.50, RunRev, 2012). Participants were randomly assigned to one of the four 

conditions. On each of 96 experimental trials, participants were presented with a 

pair of images, one jagged and one curved (with location on screen, left vs. right, 

randomized) and, after 500 ms, played one of the word stimuli via headphones. One 

second after the first presentation of the word, it was presented again (see Fig 4.03A 

for an example of a typical trial).  
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Figure 4.03- A) An example of what participants saw on each trial of the experiment. 

B) Feedback given to participants after their response, showing that they responded correctly 

and highlighting the correct image for the presented label 

 

On each trial participants were tasked with choosing the image that matched the 

label presented to them, which they did by pressing either the “Z” or “/?” key on the 

keyboard. Participants were provided with feedback after every trial (Fig 4.03B). If 

participants responded correctly, they were shown a green checkmark at the bottom 

of the screen, while if they responded incorrectly they were shown a red “x”. The 

label for the trials was played to them again, and the correct image was highlighted 

with a green square. 
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The 96 trials were split into three blocks, each of 32 trials, with each of the 32 

possible labels being presented once per block, and the order of labels within blocks 

randomized. In each block, a given label was paired with a new pair of images, such 

that no image was seen more than once (i.e. there were 96 pairs of images, randomly 

distributed between the three experimental blocks). The lexicon that participants 

learned therefore provided labels for categories of images, rather than individual 

images: on each of the three occurrences of a label, the correct answer would be of a 

consistent category (e.g. curved or jagged) but not identical to the previous correct 

answer seen for that label. 

Data Analysis 

Responses for each trial of the experiment were coded for correctness and then 

analysed using a logistic mixed effects analysis of the relationship between 

correctness and lexicon type. The analysis was conducted using R (R Core Team, 

2012) and lme4 (Bates, Maechler, & Bolker, 2015). We used experimental block and 

condition (and their interaction) as fixed effects, with by-subject random intercepts 

and by-subject random slopes for the effect of block; condition was dummy-coded, 

taking the Conventional condition as our reference level; Block was a numerical 

predictor, with the model intercept giving the log-odds of correct responses in block 

1. P-values for fixed effects and their interaction were obtained using likelihood ratio 
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tests of the full model compared against the model without the effect; other p-values 

reported below were obtained via the normal approximation.  

A second analysis, identical to the first but using linear rather than logistic 

regression, was conducted examining the effect of lexicon type on response times 

(time between the start of the audio clip being played and the participant providing 

their response by key press).  

In addition to an omnibus analysis using Experimental Block and Condition 

as factors, we conducted an additional planned analysis looking at only the first 

eight trials for each participant- an early period of time over which we could expect 

any differences between the conditions to be the most pronounced.  

4.3.2  Results 

Performance over time in all four conditions is shown in Figure 4.04. Model 

comparison revealed a significant effect of experimental condition (χ2(6)= 22.58, 

p<.001). Participants in the Conventional condition performed significantly better 

than chance even in block 1 (β=0.98, SE=0.22, p<.001). Participants in the Counter-

Motivated condition did not perform significantly differently from participants in 

the Conventional condition (β=0.01, SE=0.33, p=.98). Participants in the Motivated 

condition performed significantly better (β=0.83, SE=0.32, p=.01), whereas 

participants in the Partially Motivated condition performed significantly worse (β=-
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0.74, SE=0.34, p=.027); indeed, participants in the Partially Motivated condition 

are not significantly better than chance in block 1 (a model taking Partially 

Motivated as the reference level of condition has a non-significant intercept, 

indicating that the log-odds of a correct answer are not significantly greater than 0, 

i.e. the odds are not significantly greater than 1: β=0.24, SE=0.25, p=.34).  

Model comparison also revealed a significant effect of Block (χ2(4)= 69.02, 

p<.001) and a significant interaction between Block and Condition (χ2(3)= 8.00, 

p=.046). Performance increased over blocks in the Conventional condition (β=0.92, 

SE=0.17), and increased at similar rates in the Motivated and Counter-Motivated 

conditions (as indicated by the lack of significant interaction with Block for these 

conditions: Motivated, β=0.12, SE=0.25, p= .63; Counter-Motivated, β=0.19, 

SE=0.25, p = .46). However, performance increases marginally more slowly with 

Block in the Partially Motivated condition (β=-0.47, SE=0.24, p=.052).   
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Figure 4.04 - Results of performance from Experiment 5 show a significant advantage for 

learners of Motivated Systematic language learners, especially in Block 1. Further, the results 

show partially motivated lexica to be learned least effectively, with little difference between 

conventional and counter-motivated lexicons. Error bars show standard error. 

Our analysis of the earliest exposures, limited to the first 8 trials and with only 

Condition as a fixed effect, revealed a significant effect of condition (χ2(3)= 11.72, 

p=.008).  Participants in the Conventional condition were not performing 

significantly above chance in the first 8 trials (β=0.18, SE=0.20, p=.36); while 

performance of participants in the Partially Motivated condition did not differ 

significantly from the Conventional condition (β=-0.06, SE=0.30, p=.83), 

participants in the Motivated condition performed significantly better, and indeed 

substantially above chance (β=0.88, SE=0.29, p=.003). Participants in the Counter-

Motivated condition exhibiting an intermediate level of performance: the model 

with the Conventional condition as the reference level indicated that participants in 

the Counter-Motivated condition were not significantly better than participants in 
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the Conventional condition (β=0.42, SE=0.30, p=.15), while a model using the 

Counter-Motivated condition as the reference level showed that their performance 

was also not significantly lower than participants in the Motivated condition 

(β=0.46, SE=0.31, p=.14), but was significantly above chance (β=0.61, SE=0.22, 

p=.006). 

 

Figure 4.05- Performance in first 8 trials for Experiment 5. Motivated Systematic and Counter-

Motivated language are above chance even in the first 8 trials, while systematic and partially 

motivated lexica are at chance. Error bars show standard error. 

 

In our analysis of response times (see Figure 4.06), model comparison indicated a 

significant effect of experimental condition (χ2(6)= 20.99, p=0.002), which was 

driven primarily by participants in the Counter-Motivated condition: while 

participants in the Conventional, Motivated and Partially Motivated provided 
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responses approximately equally rapidly in Block 1 (model intercept indicating 

response times in the Conventional condition: β=2240ms, SE=186ms; no significant 

difference in the Motivated condition, β=62ms, SE=259ms, p=.31; nor in the 

Partially Motivated condition, β=626ms, SE=282ms, p=.24), participants in the 

Counter-Motivated condition responded significantly more slowly (β=930ms, 

SE=271ms, p<.001). 

There was a significant effect of experimental block (χ2(4)= 59.83, p<.001), 

but no interaction between condition and block (χ2(3)= 1.62, p=.65): response times 

decreased by over 300ms per block in the reference Conventional condition (β=-343, 

SE=80, p<.001), and similar decreases were seen in all other conditions. 
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Figure 4.06- Response Time Data for Experiment 5. Despite the fact that motivated and 

counter-motivated languages show similar early learning advantages (in trials 1-8), and counter-

motivated and systematic languages show similar patterns of learning over the course of the 

whole experiment, there is a significant penalty with regards to reaction time for counter-

motivated lexica, suggesting that extra processing is required at some level. Error bars show 

standard error. 

 

4.3.3  Discussion 

Motivated connections between words and objects provide an early advantage to 

language learners: even with very little training, the fact that connections between 

words and meanings aligns with their perceptual biases allows learners to rapidly 

perform above chance levels, and significantly better than learners of purely 

conventional systematic lexicons. Learners of purely conventional systematic 

lexicons have no such early advantage, and thus require experience with their 
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artificial language; over the course of repeated exposure however, performance of 

participants in the conventional condition increases, with learners of both motivated 

and conventional lexica performing near ceiling by the third block of the 

experiment. This result is consistent with the literature reviewed in the introduction, 

highlighting the advantages of motivated mappings, and shows that this advantage 

persists when motivated lexicons are compared against conventional, rather than 

counter-motivated, lexicons.  

Our other results are more surprising. First, we found, counter to our 

expectations based on previous experiments (Nielsen & Rendall, 2012; Aveyard, 

2012; Monaghan et al., 2012) that the counter-motivated lexicon was learned as well 

as the purely conventional lexicon. Second, contrary to our expectations based on 

the bootstrapping hypothesis, we found that the partially motivated lexicon was 

learned worst of all. 

In previous experiments that examined the difference in learnability between 

motivated and counter-motivated artificial lexicons, researchers have found 

consistently that their participants performed significantly worse at learning 

counter-motivated lexicons (Aveyard, 2012; Monaghan et al., 2012), and in one case, 

found that learners of a counter-motivated lexicon didn’t even perform at rates 

above chance (Nielsen & Rendall, 2012). Our results are broadly consistent with this 

picture:  over the course of the entire experiment, performance in the counter-

motivated condition is lower than in the motivated condition (see e.g. Figure 4.04 
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and associated analyses). However, performance on the counter-motivated lexicon is 

generally high, and certainly no worse than performance on the conventional 

lexicon. This comparison between counter-motivated and purely conventional 

lexicons, absent in previous work, suggests that the difference seen previously 

between motivated and counter-motivated lexicons is likely to be driven largely by 

an advantage to motivated mappings, rather than a penalty to counter-motivated 

lexicons: counter-motivated lexicons seem to be no harder to learn than any other 

systematic lexicon.  

Surprisingly, we found that counter-motivated lexicons exhibited 

performance intermediate between motivated and conventional lexicons in the 

earliest trials for each participant, and were above chance in those early trials (like 

participants learning a motivated lexicon, but unlike participants learning a purely 

conventional lexicon), suggesting that participants were able to productively use 

counter-motivated mappings after a very small number of exposures. One potential 

explanation for this finding is that the counter-motivated lexicons require only the 

addition of one additional step of processing, namely reversal of expectation: 

participants identify the ‘best’ (i.e. motivated) referent for a label, and then select 

the other referent. The reaction time data support this interpretation - participants 

in the counter-motivated condition were significantly slower than participants in the 

Motivated and Conventional conditions (approximately 700ms slower on average to 

respond on each trial). One interpretation of this data is that this extra time 
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required to respond reflects a conscious strategy by participants to reverse their 

expectations, but the deficit in response speed is equally well explained as operating 

subconsciously - in either case, the large response time difference is suggestive of the 

same kinds of explanations offered by the findings of previous studies, namely 

pointing to the ‘naturalness’ of motivated mappings. 

Our finding that participants in the counter-motivated condition were 

reliably above chance, even in the first 8 trials, runs counter to the finding by 

Nielsen & Rendall (2012) that participants were unable to perform above chance 

after 12 training trials with feedback. However, Nielsen & Rendall (2012) used a 

signal detection paradigm, where participants responded to single images paired 

with labels, which may have made differences between curved and jagged images 

less obvious, or make explicit or implicit reversal-of-expectation approaches of the 

sort we see evidence for in our task less accessible for participants - the overall more 

modest results of Nielsen & Rendall (2012) when compared with other sound 

symbolism work using a 2AFC paradigm (e.g. Nielsen & Rendall, 2011; Maurer et 

al., 2006) also suggests this possibility. In addition to using a potentially more 

difficult signal-detection paradigm, Nielsen & Rendall (2012) provided a single block 

of training, where participants may or may not have been able to internalize 

appropriate rules for responding and thus simply reverted to their existing 

perceptual bias. In the paradigm reported here, feedback given after each trial 

enables participants to eventually learn to make the correct associations. 
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Counter to bootstrapping predictions made in the sound symbolism literature, we 

found that participants in the partially motivated condition performed significantly 

worse than those in the other conditions, suggesting that the concurrent use of 

motivated and conventional markers for a single semantic dimension 

(spikiness/curvedness) might be problematic for lexicon learners. This interpretation 

of the data runs counter to previous claims in the literature that one of the benefits 

of motivated associations might be that they bootstrap the learning of related 

conventional tokens, and thus help account not only for the learning of motivated 

tokens themselves, but also the rest of the lexicon.  

Although this is an intriguing possibility, one potential alternative 

explanation for the difficulty posed by our partially-motivated lexicon is that it is 

driven by phonological feature similarity, rather than the mixing of motivated and 

conventional mappings. In our conventional lexicon, for example, the phonemes Θ 

and ð are very similar, differing only in their voicing, and refer to the same category 

of referents. In one possible instantiation of the partially motivated condition 

however, the two phonemes Θ and m (differ in voicing, sonority, nasality of 

stricture, and place of articulation) might be used to refer to shapes drawn from 

single category. Participants in this condition of the experiment are therefore faced 

with a more difficult task of mapping two dissimilar phonemes to a single category. 

However, this seems unlikely to be a full explanation. Firstly, the phonemes used in 

the motivated lexicons in our experiment are more distinct within-category than our 
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conventional phonemes (p and t are more dissimilar than Θ and ð), yet are learnt 

more successfully. Secondly, in other work using a similar artificial language 

learning paradigm (Nielsen et al., in prep), we find that adult learners experience no 

difficulties in learning lexicons with highly dissimilar within-category phonemes, at 

least in the case where both phonemes are conventionally systematic with relation to 

the category that they mark.  

One additional possible explanation for the deficit in learnability of partially 

motivated lexicons is that the bootstrapping of conventional label-meaning 

mappings by the presence of motivated mappings can only be effective across 

meaning dimensions, rather than within them. In our partially motivated lexicon, a 

mix of conventional and motivated forms are used to convey a single semantic 

dimension, spikiness versus curvedness. It could be that this sort of competition 

between motivated and non-motivated mappings is problematic, and that 

motivated mappings on one meaning dimension might bootstrap the learnability of 

conventional mappings on a second, unrelated meaning dimension, or at least not 

interfere with learning in other dimensions. To explore this possibility, we conducted 

a second experiment where image stimuli varied along two dimensions (shape, as in 

Experiment 5, and size), both of which have known sound-symbolic associations.   
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4.4 Experiment 6 

As in Experiment 5, we conducted an artificial language learning experiment where 

participants learned associations between novel words and images that were either 

motivated or conventional. The stimuli used in the experiment were similar to those 

used in Experiment 5, but featured a larger space of vowels, and images varied in 

size as well as in jaggedness. Dating back to at least Sapir (1929), previous work has 

demonstrated in both English (Johnson, 1967) and a number of other languages 

(Gebels, 1969; Huang, 1969; Kim, 1977; Malmberg, 1964) that high front vowels are 

associated with small size and low back vowels are associated with large size, making 

size a suitable second dimension which can be encoded linguistically in a motivated 

or purely conventional manner. We trained and tested participants on four lexicons, 

in a between-subjects 2x2 design where we independently manipulate whether shape 

and size are linguistically encoded in a motivated or purely conventional manner; 

this design therefore allowed me to explore whether partially-motivated lexicons are 

always harder to learn, or whether this disadvantage only relates to competition 

between motivated and conventional mappings on a single semantic dimension. 
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4.4.1 Methods 

Participants 

Participants were 48 students and members of the public recruited from the SAGE 

recruiting service at the University of Edinburgh, and were assigned randomly to 

each of the four experimental conditions. Of the 48 participants, 32 were female and 

the average age of the participants was 22 years. All participants were proficient 

speakers of English and had normal hearing and normal or corrected-to-normal 

vision. Participants were paid £2 for their participation, which took approximately 

20 minutes. 

Image and Word Stimuli 

The images used in this experiment were created using the same procedure outlined 

in Experiment 5, but in addition to varying in jaggedness they also varied in size. 

Small images were presented in 240x240 resolution, whereas large images were 

presented in 480x480 resolution, thus small images were ¼ of the area of their larger 

counterparts (see Figure 4.07).  



 

216 

 

 

Figure 4.07- Examples of images used in Experiment 6, where images vary on both jaggedness 

and size.  

 

The words created for Experiment 6 were all disyllabic cVcV words, as in 

Experiment 5. As in Experiment 5, motivated labels were constructed using 

phonemes congruent with known sound-symbolic biases. Labels for curved images 

contained the phonemes /m/ and /n/, while labels for jagged images contained the 

phonemes /p/ and /t/.  Vowels were chosen for the motivated sound-symbolic 

mapping based on previously observed biases where large objects are typically 

associated with low back vowels and smaller objects with high front vowels (Sapir, 

Large Small 

Jagged 

Curved 
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1929; Huang, 1969). Thus, we chose the vowels /ɑ/ and /ɒ/ for large images and the 

vowels /i/ and /y/ for small images.  

For non-motivated, conventional conditions of the experiment, we selected 

labels featuring phonemes whose association to shapes was not motivated by any 

previously established sound symbolic biases. Thus, for participants for whom the 

sound-shape mapping was non-motivated, two sets of consonants were chosen (/Θ/ 

and /ð/ vs. /ʃ/ and /ʒ/) and for each participant one set was paired with curved labels 

and the other with jagged labels; for participants for whom the sound-size mapping 

was non-motivated, two sets of vowels were chosen (/I/ and /ʌ/ vs. /ʊ/ and /ɛ/) and for 

each participant one set of these vowels was paired with small images and the other 

with large images (see Table 4.03).  

Table 4.03- A sample of labels used in Experiment 6. 

 

This set of images and sounds allowed me to independently manipulate whether 

shape or size were mapped to sound in a motivated or purely conventional manner, 
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yielding a 2x2 between-subjects design. Participants in the Shape Motivated – Size 

Motivated condition (or Motivated-Motivated for short) were trained on labels 

which were congruent with sound-symbolic associations for both consonant-shape 

and vowel-size. Participants in the Shape Conventional-Size Conventional 

(Conventional-Conventional) condition were taught associations between signals and 

meanings that were conventionally systematic for both vowel-size and consonant-

shape. In the remaining two conditions, one of the shape features was coded sound 

symbolically, and the other conventionally (Shape Motivated-Size Conventional; 

Shape Conventional-Size Motivated). 

In each of these four experimental conditions, the two vowels and two 

consonants for each type of image were combined to create 4 possible syllables, 

which could then be concatenated in all combinations to produce 16 possible labels 

for each type of stimuli in each condition of the experiment. In Shape Conventional 

conditions, the number of participants for which the phonemes /ʃ/ and /ʒ/ were used 

to label curved objects was counterbalanced across participants; similarly, in Size 

Conventional conditions the number of participants for which the phonemes /I/ and 

/ʌ/ were used to label small objects was counterbalanced across participants. The 

phoneme segments required for the experiment were recorded by a trained 

phonetician in a single continuous track and then extracted as sound files. These files 

were then concatenated using the SoX command line sound processing utility to 

produce all possible labels for each experimental condition.  
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Procedure 

The experimental procedure was closely matched to Experiment 5. On each of 192 

experimental trials participants were presented with a pair of images, and, after 

short delay, played one of the word stimuli via headphones. One second after the 

first presentation of the word, it was presented again.  

On each trial participants were tasked with choosing the image that matched 

the label presented to them, which they did by pressing either the “Z” or “/?” key on 

the keyboard, and were provided with feedback after every trial. 

There were three types of trials in Experiment 6. Both Different trials 

presented pairs of images that were different on both size and shape: thus, 

participants would be able to answer correctly on Both Different trials if they had 

learned either type of association (vowel-size or consonant-shape). Size Different 

trials presented pairs of images that varied only on size (and had the same shape); 

thus, to answer correctly on these trials participants needed to be familiar with the 

vowel-size mapping in their lexicon. Finally, Shape Different trials presented pairs 

of images that were identical in size, but differed in shape (one image was curved and 

the second jagged); to answer correctly on these trials participants needed to be 

familiar with the consonant-shape mapping in their lexicon (Figure 4.08). 
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Figure 4.08- The three trial types used in Experiment 6. 

 

In each of three blocks of trials there were 64 total trials: 24 Both Different trials, 20 

Size Different trials, and 20 Shape Different trials. On each trial which image was 

presented on each side was randomized. The experiment was conducted using an 

interface created with Livecode 5.50.   
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Data Analysis 

As in Experiment 5, responses for each trial of the experiment were coded for 

correctness and then analysed using a logistic mixed effects analysis of the 

relationship between correctness and lexicon type. The analysis was conducted using 

R (R Core Team, 2012) and lme4 (Bates et al., 2015). Omnibus analyses indicated 

several interactions involving trial type and block, and in the interests of clarity we 

therefore analyze all three trial types separately. For each trial type we use 

experimental block, consonant mapping (conventional versus motivated association 

with shape), vowel mapping (conventional versus motivated association with size), 

and their interactions, as fixed effects, with by-subject random intercepts and by-

subject random slopes for the effect of block, consonant mapping and vowel 

mapping. Block was a numerical predictor, with the model intercept giving the log-

odds of correct responses in block 1; consonant mapping and vowel mapping were 

dummy-coded with Conventional as the reference level, yielding models whose 

intercepts indicate performance on lexicons with conventional consonants and 

conventional vowels (at block 1). P-values for fixed effects and their interaction were 

obtained using likelihood ratio tests of the full model compared against the model 

without the effect; other p-values reported below were obtained via the normal 

approximation.  
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4.4.2 Results 

Performance over time in all four conditions for each of the three trial types is shown 

in Figures 4.09-4.11.  

Both Different trials 

On Both Different trials, participants in the Conventional-Conventional condition 

performed above chance even in block 1 (as indicated by a significant model 

intercept: β=1.52, SE=0.26, p<.001; note that experimental blocks are longer in 

Experiment 6 than Experiment 5). Model comparison indicated a significant effect 

of block (χ2(4)= 37.24, p<.001), with performance increasing markedly on Both 

Different trials as participants progressed through the experiment (β=0.59, 

SE=0.19); there was also a significant effect of consonant mapping (χ2(4) = 10.11, 

p=.039) and a marginal interaction between consonant mapping and block (χ2(2)= 

4.8295, p=0.089): inspection of the estimates of slope provided by the full model 

suggests that these effects are driven by the fact that performance on lexicons with 

motivated consonants increased more rapidly with block (as indicated by the 

interaction between consonants and block: β=0.55, SE=0.30).  
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Figure 4.09- Performance on trials where both shape and size are relevant features. There is a 

steady increase with block in all conditions, and performance on lexicons with motivated 

mappings for shape increase more rapidly. Error bars show standard error. 

 

Shape Different trials 

On Shape Different trials, participants performed significantly better than chance 

even in block 1 (as indicated by a significant model intercept: β=1.31, SE=0.32, 

p<.001). Model comparison indicated a significant effect of block (χ2(4)= 34.33, 

p<.001), with performance increasing as participants progressed through the 

experiment at a rate similar to that seen in Both Different trials (β=0.86, SE=0.20). 

Model comparison also suggest an interaction between vowel mapping and block 
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(χ2(2)=5.5719, p=.06): performance on lexicons with motivated vowels increased less 

rapidly (β=-0.62, SE=0.24) than the reference level. Note that vowels are not 

relevant to performance on Shape Different trials, suggesting that the presence of 

motivated size-vowel mappings in the lexicon interferes with learning of 

conventional shape-consonant mappings.  

 

Figure 4.10- Performance on Shape Different trials, where shape is the only relevant feature for 

responding. The presence of motivated size-vowel mappings interferes with learning of 

conventional shape-consonant mappings, leading to marginally slower increase in performance 

over blocks. Error bars show standard error. 
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Size Different trials 

Participants in the Conventional-Conventional reference level did not perform 

significantly better than chance in block 1 (as indicated by a non-significant model 

intercept: β=0.02, SE=0.16, p=.15). Model comparison indicated a significant effect 

of block (χ2(4)= 34.33, p<.001), with performance increasing as participants 

progressed through the experiment (β=0.46, SE=0.11), albeit at a slower rate than 

seen in the other trial types. Model comparison also indicated that the inclusion of 

all other fixed effects and their interactions significantly improved model fit 

(consonants: χ2(4)= 9.74, p=.045; consonants x block: χ2(2)= 9.27, p=.010; 

consonants x vowels: χ2(2)= 6.34, p=.042; vowels: χ2(4)= 13.08, p=.011; vowels x 

block: χ2(2)= 6.49, p=.039; consonants x vowel x block: χ2(1)= 6.23, p=.013). 

Inspection of the full model suggests that this is driven by two effects. Firstly, in the 

mirror-image of the interaction seen in Shape Different trials, participants learning 

lexicons with motivated consonants but conventional vowels failed to increase in 

performance over Blocks (as indicated by the negative slope for the interaction 

between consonants and block, β=-0.43, SE=0.15; note that the magnitude of this 

interaction is comparable with the effect of block for the reference level, indicating 

that these participants did not improve with block). Again, since consonants are 

irrelevant to performance on Size Different trials, this effect can only be explained as 

a consequence of interference between (irrelevant) motivated mappings for shape 
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and the learning of a conventional mapping for size. Secondly, the full model 

exhibits a three-way interaction between consonant mapping, vowel mapping and 

block (β=0.77, SE=0.28), indicating that this interference effect is specific to 

learning conventional vowel-size mappings in the presence of motivated consonant-

shape mappings; if both vowels and consonants are motivated, learning proceeds at a 

rate equivalent to or in excess of that seen for purely conventional lexicons. 

 

Figure 4.11- Performance on Size Different trials, where size is the only relevant feature for 

responding. Overall performance on these trials is substantially lower than in Both Different and 

Shape Different trials. The data also suggest a similar interference effect to that seen on Shape-

Different trials, with the presence of irrelevant consonant-shape mappings interfering with the 

learning of conventional vowel-size associations, as seen in the lack of improvement over 

blocks in the Motivated Shape – Conventional Size lexicon. Error bars show standard error. 
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4.4.3 Discussion 

Our results are consistent with the extensive literature on the primacy of shape in 

word learning (e.g. Landau, Smith & Jones, 1988; Samuelson & Smith, 2005): 

performance on Size Different trials, which require learning a system mapping words 

to object size, is markedly lower than on Shape Different trials (which involve 

learning mappings between words and shape), and performance on Both Different 

trials, where participants can exploit either word-shape or word-size mappings, 

pattern with Shape Different trials, suggesting that participants preferentially use 

word-shape mappings in this task.  

In common with Experiment 5, we see some advantages for motivated 

lexicons relative to the baseline provided by purely conventional lexicons, although 

given the increased block length in Experiment 6, these advantages are less marked 

– performance on Both Different trials improves more rapidly when the mapping 

from consonants to shape is motivated. However, the clearest result from 

Experiment 2, consistent with the results from Experiment 5, is that there is a 

learning penalty associated with languages which exhibit a mix of motivated and 

conventional mappings, even when these mappings apply to orthogonal semantic 

dimensions. Subtly, however, this effect is seen through the influence of irrelevant 

motivated mappings in the lexicon, and impacts primarily on the learning of 

conventional mappings: on Shape Different, irrelevant motivated coding of size 
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results in reduced learning of conventional coding of shape; on Size Different trials, 

irrelevant motivated coding of shape results in reduced learning of conventional 

coding of size, and furthermore (again reflecting the primacy of shape over size in 

word learning), motivated mappings for size only facilitate learning if shape is also 

(irrelevantly) coded in a motivated fashion. These results, taken together with those 

of Experiment 5, suggest that the most learnable lexicons should be consistent: either 

consistently motivated, or consistently conventional. Mixing of motivated and 

conventional mappings impairs learning, a potentially problematic finding for the 

bootstrapping hypothesis. 

4.5 General Discussion and Conclusions 

The work presented here generally supports previous work examining the 

learnability advantages of motivated associations, but highlights that the typical 

comparison to counter-motivated lexica is not a fair one. If, for example, one wanted 

to make the claim in English that words in the gl- phonaestheme cluster were 

motivated, and thus easier to learn, a proper comparison would need to account for 

the fact that the word cluster is also systematic. Thus, some of the reported learning 

benefits that arise from supposedly motivated associations between words and 

meanings might actually be explained either jointly or entirely by the fact that 

those word-meaning mappings are also systematic.  
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Although in Experiment 5 learners of motivated systematic languages 

outperform those who learn conventional systematic languages, the main benefit for 

motivated connections between words and meanings seems to be primarily due to 

the fact that taking advantage of those associations requires no learning – even in 

the very earliest trials participants are able to respond correctly, suggesting that 

their perceptual bias allows for the productive use of naïve intuitions that can be 

especially beneficial when encountering new words. 

One finding of previous research (Aveyard, 2012; Monaghan et al., 2012; 

Nielsen & Rendall, 2012) suggests that counter-motivated languages are more 

difficult for participants to learn, but in Experiment 5 we found that there was no 

real penalty for learners of counter-motivated lexica – they were able to learn the 

rules of their language nearly as well as those learning motivated languages and no 

worse than learners of conventional languages. This suggests that although counter-

motivated associations go against perceptual biases, they are nonetheless still 

systematic and thus can be learned relatively easily. Intriguingly, however, 

participants who learned a counter-motivated language were much slower to 

respond, even though they were overall equally accurate. This suggests an extra 

level of processing to invert naïve word-meaning expectations, although whether 

this process is a conscious or subconscious one is currently unknown (however, the 

application of techniques from recent FMRI studies, e.g. Kanero et al., 2014, might 

be able to shed light on this question).  
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One of the most surprising findings to come out of Experiment 5 was that 

partially-motivated languages were hardest to learn - performance on these lexicons 

was worse than either the motivated or conventional systems from which they were 

created. This result suggests that an optimal system might need to be consistent 

with respect to its use of motivated connections between words and meanings. The 

results of Experiment 6 provide further support for this possibility, where the 

presence of irrelevant motivated associations actually impairs the ability of 

participants to productively apply rules for conventional associations between 

phonemes and meanings on a relevant dimension.  

Recent findings have suggested that the learning benefits of systematic 

associations between words and meanings are leveraged early in language acquisition 

(Monaghan et al., 2014), which is especially interesting given the findings of other 

research which suggest that systematic lexicons are easier to learn when the size of 

the lexicon is small (Gasser, 2004; Monaghan et al., 2011; Nielsen et al., in prep). 

Monaghan et al. (2014)’s findings with regards to the systematicity of early acquired 

words is agnostic as to whether such associations are conventional or motivated, but 

the fact that languages take advantage of structure where it is most beneficial for 

learning is promising for proponents of bootstrapping hypotheses. As a culturally 

transmitted system that persists through a repeated cycle of learning and use, we 

expect that languages will evolve to become increasingly learnable and/or 

increasingly communicatively functional (Kirby, Cornish, & Smith, 2008; Silvey, 
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Kirby, & Smith, 2015; Winters, Kirby, & Smith, 2015; Kirby, Tamariz, Cornish & 

Smith, 2015); thus, if motivatedness, systematicity, or both allow for increased 

learnability we should expect them to be incorporated into the lexicon by the 

process of language transmission. 

Although evidence showing that early acquired words are more systematic 

than their later acquired counterparts is promising for bootstrapping hypotheses, 

our results regarding partially motivated languages run counter to the these 

hypotheses. Overall, the results from both experiments suggest that optimal lexica 

should be consistent with regards to their use of motivated word-meaning 

associations, with inconsistent application of these types of associative rules 

impairing learnability overall. Given suggestions regarding the confusability of 

systematic lexica as they become more saturated (i.e. Gasser, 2004) the possibility 

that mixed lexica are problematic might account for a number of findings in natural 

languages. Specifically, if lexica need to be sufficiently large that they will 

inevitably become confusable, it may be the case that an early-established 

motivated core to a category becomes problematic and its impact on the lexicon 

overall needs to be mitigated.  

One criticism that has been leveled against the Bouba-Kiki effect and other 

examples of connections between words and meanings that are motivated by the 

perceptuo-cognitive organisation of language speakers (some of which might be 

shared with other species and align with communicative pressures more generally, 
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cf. Owren & Rendall, 2001) is that there is little evidence that these biases are 

manifest in natural languages like English. Our findings regarding mixed-motivated 

languages might speak to this directly – because naïve expectations about sound-

meaning correspondences do not operate productively when they are not applied 

uniformly, one might expect their impact on the lexicon as a whole to be somehow 

minimized.  One possible mechanism for minimizing the negative impact of sound-

symbolic tokens on learning of other tokens is to somehow isolate motivated tokens 

as a special case. In languages like Japanese, this might explain the presence of 

mimetic or ideophonic expressions, which are more frequent in child-directed speech 

and which have their own phonological and syntactic properties (Imai et al., 2008). 

In languages that do not make use of mimetics and ideophones, like English, the 

same insulation of sound-symbolic cues from the rest of the lexicon might occur at 

the level of speech prosody, rather than through the use of perceptual biases 

associated with phonemes themselves, accounting for the use of exaggerated pitch 

contours and durations in child directed speech.  

On the other hand, one possible interpretation of the results presented here is 

that conventional systematic associations between words and meanings are 

ultimately just as effective as motivated ones, and thus we might not expect 

motivated mappings to crop up often in natural languages – although the presence 

of irrelevant sound-symbolic associations negatively impacts the learning of 

conventional systematic associations, there is no evidence that conventional 
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systematic associations induce the same kinds of learning penalties – thus, they 

might be able to exist in natural lexica without the need to be insulated from the 

rest of the lexicon by the kinds of processes outlined above. This is certainly 

possible, and might explain the presence of presumably conventional clusters like 

the gl- phonaestheme in English.  

There are at least two ways in which the presence of sound-symbolic tokens 

might bootstrap the acquisition of language more generally, and future research 

should be mindful to make specific predictions about how such bootstrapping might 

work. The simplest version of a bootstrapping hypothesis that we put forward here 

(i.e. that the presence of motivated tokens frees up memory/effort to learn other 

associations) is not supported by the results of the two experiments presented here, 

and other work (Nielsen et al., in prep) similarly suggests that this version of 

bootstrapping does not align with data from artificial language learning 

experiments. The bootstrapping hypothesis put forward by Imai & Kita (2014) relies 

on the idea that the presence of sound-symbolic tokens provides a referential 

bootstrap that allows young language learners to establish reference. Referential 

bootstrapping seems like a more promising explanation for the potential benefits of 

motivated word-meaning associations, but given that adult experimental 

participants have already established concepts and categories it is difficult to test 

the degree to which this type of bootstrapping might influence learning. Future 

work should explore these bootstrapping mechanisms in children or by creating 
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experimental manipulations that can explore the impact of sound symbolism on the 

learning of novel categories (Thompson et al., 2014).   

4.5.1 Conclusions 

First, in line with a number of previous findings, we find an early learnability 

advantage for motivated lexicons. Second, although conventional and counter-

motivated lexicons do not benefit from this early boost, they are subsequently 

learned at the same rate as motivated lexicons, and indeed exhibit very similar levels 

of performance in our task, suggesting that systematic counter-motivated mappings 

are no harder to learn than purely conventional ones. Finally, in both experiments 

we found a novel effect where the presence of sound-symbolic mappings interferes 

with the learning of conventional associations, which we speculate might be 

connected to a number of features of natural languages.  
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Afterword 

The results from Experiments 5 and 6, presented in this chapter, provide a number 

of crucial pieces for the central argument of this dissertation, as well as pointing 

towards a number of areas for future research and potentially helping explain the 

distribution of motivated sound-meaning associations in natural languages. We 

found that systematic languages of all types allowed for successful categorisation, 

but that motivated associations between words and meanings made this systematic 

mapping apparent from the very earliest trials without any learning. This finding 

allows us to take advantage of motivated systematic associations in Chapter 5, 

where I will explore more directly than in previous chapters the effect that 

decreasing contrastiveness has on learning.  
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Chapter 5- Growing Lexicon Experiment 
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5.1  Background and Rationale 

As discussed in the introduction and elaborated upon further in Chapters 2 and 3 the 

central question of the effect that systematicity and motivatedness have on 

language learning seems to hinge on the balance between the benefits accrued to 

those non-arbitrary mappings between words and meanings and the penalties to 

learnability that they might induce as similar labels become increasingly confusable.  

To rehearse, systematic associations between sets of words and sets of meanings 

allow language learners to make generalizations that positively influence the 

learnability of those associations- the fact that there are reliable cues to meaning in 

the structure of words allows for those word-meaning pairs to be learned more easily. 

The results of Chapter 4 further suggest that this is the case regardless of whether 

such systematic associations between sets of words and sets of meanings are 

motivated or not, with an additional small benefit to motivated mappings in the 

earliest stages of learning. In addition to the benefits of systematicity however, the 

similarity of labels to one another can have a negative impact on learnability: 

similar words are more readily confused, especially when they are mapped to similar 

meanings, and thus individuation learning can be more difficult for systematic 

language learners than for those learning arbitrary word-meaning mappings. 

Despite experimental findings suggesting that systematicity might, in some 

situations, have a negative impact on learnability, the suggestion that motivated 
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and/or systematic associations between words and meanings might bootstrap the 

acquisition of the arbitrary majority of the lexicon is raised commonly in the 

literature surrounding these research areas. Most often, the method by which the 

acquisition of motivated word-meaning mappings might bootstrap the acquisition of 

later arbitrary tokens is left unstated (but, cf. Imai & Kita, 2014) - the fact that 

there is evidence that early-acquired words are more motivated than later-learned 

arbitrary words (Monaghan et al., 2014) , and that both children and adults benefit 

from motivatedness when acquiring those new words (Nygaard et al., 2009, Imai et 

al., 2008) are offered up as evidence for the bootstrapping of arbitrary associations 

by motivated ones, but to date there has been no direct test of any version of a 

sound-symbolic bootstrapping hypothesis. This chapter presents an experiment 

designed to directly test this hypothesis. 

5.1.1  Signal Space Saturation  

To discuss contrastiveness and signal space saturation in the context of previous 

experiments and the experiment presented here, it is best to first rehearse what the 

terms mean. The idea of signal space saturation is one that is not easy to quantify 

for natural languages, where the overall dimensionality of the language system is 

unknown (see chapters 1 and 2), but in the experiments presented in this dissertation 

is much easier to conceptualise. If, for example, we create rules for assembling words 

such that a small subset of consonants and vowels are used, and words are all of a 
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certain length, we arrive at an absolute size for the number of possible words in that 

artificial language. So, for a language where there are 4 possible consonants and 4 

possible vowels, with each word being a cVcV disyllable, we have 4^4 (256) possible 

words. In this case, the signal space saturation of a language chosen from those 

possible words is simply a function of how many words are chosen: we might have a 

relatively unsaturated signal space, where we choose to use, for example, 8 labels 

from the possible space, or a much more saturated space, where we choose to use 180 

of the possible words. As discussed previously, signal space saturation, given the 

choice of a fixed number of labels, is inherently linked to systematicity, such that 

systematic associations between words and meanings will always produce more 

saturated signal spaces, since they shrink the space of possible signals (see Figure 

5.01). 

 

Figure 5.01- A visual representation of the effect of systematicity on signal space saturation. 

Each blue circle represents a signal-meaning pair and an error term (e.g. arising from 
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production or perceptual errors) around that word. In figure A, the mapping of words to 

meanings is unconstrained, and the entire space can be used, whereas under a systematic 

configuration in figure B, half of the possible signal space becomes unusable and (on average) 

the error terms around the signal-meaning pairs become closer/eventually overlap. 

 

In Figure 5.01, we can see that the introduction of a systematic mapping between 

words and meanings necessarily reduces the size of the available signal space, from a 

large unconstrained area where any type of word can be mapped to any type of 

meaning, down to two smaller areas. In fact, the visual representation here suggests 

that this approximately halves the  available space, but in our example of cVcV 

bisyllables, an arbitrary configuration of words-meanings allows form 256 possible 

labels, whereas a fully systematic one (like that used in Experiment 2 of Chapter 2) 

gives us 2 much smaller areas each with 16 (2^4) possible labels. Thus, signal space 

saturation is intimately tied to the number of words required within a signal space, 

but also to the overall size of that space, with systematicity necessarily infringing on 

signal space flexibility and resulting in more constrained, highly saturated signal 

spaces. 

5.1.2  Contrastiveness  

The concept of contrastiveness is closely and inversely related to signal space 

saturation. Highly saturated signal spaces will, all other things being equal, result in 

words that are more similar to one another, and thus, languages that are less 
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contrastive. However, in Figure 5.01 we can see that within a signal space of a given 

size, there are multiple ways that words can be assigned that are more or less 

contrastive. If we compare, for example, type 1 word-meaning mappings in Figure 

5.01 to type 2 word-meaning mappings, we can see that the type 1 words are more 

similar to one another than are the type 2 words, which are more evenly spread out 

over the possible signal space.  Thus, contrastiveness is a measure of how words are 

chosen *within* a given signal space, whereas signal space saturation is a measure of 

the total area of a given space that is occupied by word-meaning mappings.  

The difference between signal space saturation and contrastiveness is an 

important one, because without some other process of optimization operating on a 

signal space, it is possible to have signal spaces with very low levels of saturation 

that are nevertheless non-contrastive; even arbitrary mappings between words and 

meanings will sometimes, by chance, be sufficiently similar to one another that they 

might be confused by virtue of signal similarity alone (e.g. without any constraints 

we might still arrive by random chance at three words with similar forms and 

meanings). In fact, a failure to recognize the difference between these two metrics is 

likely the source of Chapter 2’s Experiment 3 failing to find the desired effects: the 

half-half language used by Monaghan et al. (2011) allowed for a less saturated signal 

space, and subsequently the labels were chosen in a way that was maximally 

contrastive. My own labels, on the other hand, were chosen from a less saturated 

signal space, but chosen randomly, resulting in a larger deviation in the level of 
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contrastiveness (i.e. on average half-half languages were more contrastive than the 

fully systematic languages, but few were as contrastive as the languages used in 

Monaghan et al., 2011).  

The prediction arising from my own findings, and those of previous 

researchers, is that the level of contrastiveness of an artificial lexicon should be 

proportional to its learnability, especially with regards to the learnability of 

systematic vs. arbitrary word-meaning mappings. 

5.1.3  Previous Findings  

The results of the three experiments presented in Chapter 2 of this dissertation 

closely reflect the findings of previous researchers (i.e. Gasser, 2004; Monaghan et 

al., 2011) while offering additional insights about the conditions under which 

systematicity and arbitrariness are favored in artificial language learning contexts. 

Collectively, the results of those experiments seem to show an overall benefit for 

learners of systematic languages: the fact that a feature of the word (e.g. their 

length, in Experiment 2, or their phoneme inventories in Experiments 1 and 3) maps 

reliably onto a feature of their associated meaning allows participants to learn those 

configurations of language more readily than participants learning identically sized 

arbitrary languages. However, this size of the benefit for systematic languages 

depends on both the type of test (individuation vs. categorization), and the 
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dimensions along which systematic associations are structured (and thus, the 

underlying contrastiveness of their labels). 

The importance of these two factors is best demonstrated by the difference in 

learnability between systematic languages in Experiments 1 and 2 presented in 

chapter 2. For Experiment 2, systematic associations between words and meanings 

were structured such that monosyllabic words were mapped onto a single type of 

image (i.e. animals) and trisyllabic words were mapped onto a second type of image 

(i.e. vehicles); additionally, individual words of each type were chosen in such a way 

that they were maximally distinctive from one another and thus potentially less 

confusable. For experiment 1, the word stimuli that I used were much more similar 

to those used in Monaghan et al. (2011)’s experiments – rather than a category 

distinction based on number of syllables, the two categories of words differed in their 

phonology, with the relevant distinction being between sonorant and plosive 

consonants; additionally, rather than words within those categories being chosen for 

maximal distinctiveness, they were chosen randomly from that highly constrained 

signal space. Thus, in terms on contrastiveness, the stimuli used in Experiment 2 

were much more contrastive than those used in Experiment 1: between categories 

the differences between words were larger, and within categories words in 

experiment 2 were maximally distinct, rather than relatively similar to one another. 
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The results of these otherwise identical experiments, when compared to each 

other, are thus illustrative of the degree to which the overall level of contrastiveness 

influences learnability (see Figure 5.02).  

 

Figure 5.02- Results from Experiments 1 and 2 from Chapter 2 demonstrate that the benefit 

accrued to systematic language learners is both contingent on the degree of contrastiveness 

both within and between word types, and also the learnability metric of interest. Error bars show 

standard error. 

 

The comparison of the results from these two experiments demonstrates, first, that 

the overall more contrastive languages used in Experiment 2 are substantially easier 

to learn across the board, regardless of experimental condition. This finding maps 

nicely onto the general finding of Gasser (2004)’s computational modeling of the 
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acquisition of artificial lexica: more contrastive languages are, all other things being 

equal, easier to learn than less contrastive ones.  

Additionally, we can see that in general the benefit for systematic language 

learners accrues primarily in out-of-class distractor trials, and despite the fact that 

overall performance in the less contrastive experiment 1 is lower, performance on 

out-of-class trials for systematic language learners is approximately equal and near 

ceiling: the category distinction is equally apparent for learners of both systematic 

configurations, and they very rarely make errors on those out-of-class distractor 

trials, suggesting, at the very least, that they have effectively learned the category 

structure of their language. Thus, the findings of those two experiments generally 

support the categorization findings of Monaghan et al.’s experiments, which suggest 

the same benefit for systematic language learners using an alternative-forced-choice 

paradigm.  

So, the overall comparison of the two experiments suggests a benefit for more 

contrastive lexica (in alignment with Gasser, 2004), and I replicate previous findings 

with regards to categorization, but what about individuation? The findings of both 

Gasser (2004)’s model, and Monaghan et al. (2011)’s models and experiments, 

suggest that systematic language learners should suffer an individuation penalty, 

wherein they have difficulty learning to differentiate between individual words 

within a category. Generally, the findings of both experiments support that 
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conclusion: performance on in-class distractor trials is worse than performance on 

target trials for learners of systematic languages (but not for learners of arbitrary 

languages), suggesting that they are willing to accept in-class distractors at higher-

than-expected rates. However the degree to which this is true, and thus, the degree 

to which systematicity imposes a penalty on individuation varies massively 

depending on the experiment. In Experiment 2, where individual labels within 

categories are maximally contrastive, performance on in-class distractor trials is still 

relatively high: systematic language learners accept in-class distractors at slightly 

higher rates, but they still seem to be learning to individuate fairly well. In 

experiment 1 however, this is not the case: performance on in-class distractor trials 

is well below chance, and is effectively the inverse of performance on target trials, 

suggesting that participants are unable to differentiate between words within a 

category and have learned only the structure of the categories that the word-

meaning pairs fall into.  
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5.1.4  Signal space saturation, contrastiveness, and language learning  

The results of Experiments 1 and 2 from Chapter 2, combined with the results of 

Gasser (2004), and Monaghan et al. (2011) suggest that the degree to which benefits 

and penalties accrue to systematic language learners based on the structure of their 

signal-meaning mappings is contingent on the degree to which those mappings can 

remain contrastive in a given signal space. Although the results of Experiment 2 also 

allowed for some insight into how contrastiveness influences learnability (from a 

signal space of a given saturation, those configurations of word-meaning pairs that 

are more contrastive are easier to learn), ultimately the conclusions that could be 

drawn from the experiments in Chapter 2 were underwhelming. One of the reasons 

for the results failing to speak to the effect of contrastiveness on learnability has to 

do with the fact that the manipulation of contrastiveness in those experiments could 

only be compared between subjects, looking at each artificial lexicon as a whole to 

determine a contrastiveness value. Additionally, the degree to which learning 

favored systematic over arbitrary languages (or vice versa) varied as a function of 

contrastiveness (Experiment 1 vs. Experiment 2), but I could only compare very 

contrastive lexica to relatively less contrastive ones.  

Monaghan et al. (2011)’s suggestion that systematicity and arbitrariness 

combine in language to give the best of both worlds via a division of labor is an 

intriguing one, but none of their experimental results or my own speak to the point 
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at which the benefits of systematicity for learning begin to be outweighed by the 

costs of confusability due to decreasing contrastiveness. That is, previous results 

demonstrate that contrastive lexica favor systematicity, and that less contrastive 

ones favor arbitrariness, but the point at which this switch occurs is unexplored.  

Additionally, because previous studies (including my own) involve learning 

and testing a complete (but small) lexicon, they do not allow for an explanation of 

how the changing contrastiveness of a single word over time influences its 

learnability. If, for example, one learns the word ‘monu’ for a vehicle, that word is 

initially the only one of its type, and very contrastive. Subsequently however, one 

might learn any number of additional similar words: ‘numo, ‘nonu’, ‘muno’, etc., 

resulting in a concomitant decrease in the contrastiveness of the previously learned 

word, which might now be confused with related tokens. To test for this possibility, 

an experimental protocol that tracks the learnability and contrastiveness of artificial 

lexica over time is required, as such a protocol will allow not only for an exploration 

of the effect of overall signal space saturation, but also contrastiveness of individual 

words at various stages of signal space saturation. Additionally, this type of 

experimental protocol has the benefit of being more similar to natural language 

learning, where individual meanings are learned in serial: the fact that research 

suggests that early acquired portions of the lexicon are more systematic than later 

acquired portions (Monaghan et al., 2014) makes the exploration of the effect of 
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changing contrastiveness on learnability even more germane to discussions of 

language evolution and the structure of the lexicon more broadly. 

5.1.5  Sound-Symbolic bootstrapping 

One persistent suggestion in the literature is that the learning of sound-symbolic 

associations between words and meanings are potentially beneficial for language 

learning. To wit, Imai & Kita (2014) suggest that “…recent findings from cognitive 

psychology, cognitive neuroscience, and developmental psychology, cognitive and 

anthropological linguistics converge on the view that iconicity plays a core role for 

philogenesis and ontogenesis of language…”.  

The proposal that motivated associations between words and meanings are 

learned more readily than arbitrary ones is, as previously discussed, fairly well 

established in both the experimental literature (e.g. Nielsen & Rendall, 2012; 

Nygaard, Cook, & Namy, 2009; Perniss & Vigliocco, 2014) as well as corpus analyses 

demonstrating that sound-symbolic associations are manifest both in language 

broadly (Blasi et al., 2015) and specifically in early acquired parts of the lexicon 

(Monaghan et al., 2014) and child-directed speech (Akita, 2011; Ogura, 2006). 

However, the idea that sound-symbolism, and motivated associations between 

words and meanings more generally, bootstraps the acquisition of language more 

broadly relies on the suggestion that learning motivated word-meaning associations 
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influences learning over-and-above the enhancement provided to the learnability of 

individual tokens. 

Unfortunately, until recently suggestions that motivated associations 

between words and meanings bootstrap the acquisition of other parts of the lexicon 

haven’t been made entirely clear (e.g. Nielsen, 2011; Cuskley, 2013; Ramachandran 

& Hubbard, 2001). Recently, other researchers have begun to center in on more fully 

explicated bootstrapping hypotheses: for example, Imai & Kita (2014) have 

suggested that motivated associations help establish reference and lexical 

representation, both because the motivatedness of tokens makes some word-meaning 

pairs more salient, and also because this salience allows infants to extract relevant 

features from complex visual scenes (see also Perniss & Vigliocco, 2014). Here, I will 

refer to these types of bootstrapping arguments as referential bootstrapping, which I 

discussed in the introduction: motivated connections between words and meanings 

function to allow infants to establish reference and learn to attach linguistic sounds 

to meanings in the environment.  

In addition to referential bootstrapping, in the introduction I also introduced 

the idea of conceptual bootstrapping, which suggests that the combination of 

systematicity and motivatedness might allow naïve learners to more easily pick up 

on category distinctions that are relevant to their specific language and establish 

concepts that can be relevant for the learning of subsequent arbitrary tokens. This 
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type of bootstrapping argument suggests not only that motivatedness and 

systematicity might highlight salient dimensions along which categories are 

structured, but also that this ability might be leveraged to establish the existence of 

concepts and categories generally in the mind of the naïve learner.  

I will call a final type of bootstrapping that might be of interest simple 

bootstrapping, This version of bootstrapping merely suggests that the learning of 

motivated word-meaning mappings increases the subsequent learnability of 

arbitrary tokens by some unspecified mechanism: this is the unspecified version of 

bootstrapping that we might ascribe to previous authors (myself included) who were 

unclear about what bootstrapping explanation they favored, and instead invoked 

the concept of bootstrapping non-specifically. Although this unspecified 

bootstrapping account is untenable, because it lacks a mechanism, in this chapter I 

explore it as a possibility because it is experimentally approachable.  

  Unfortunately, experiments using adult participants who presumably have 

already learned to establish lexical reference cannot test the tenability of the 

referential bootstrapping hypothesis. Similarly, conceptual bootstrapping might be 

difficult to test with adult participants: in the first case, it is obvious that they have 

already established concepts and categories generally, and in the second case, the 

kind of stimuli that are typically used in these experiments belong to easily 

recognizable categories. Testing the simple bootstrapping hypothesis however is 
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much simpler, requiring only a temporal dimension to learning where participants 

are taught an initially motivated language and then tested for their ability to learn 

subsequent arbitrary word-meaning mappings. For this reason, I test the simple 

bootstrapping hypothesis here, not because it is an explanation that merits serious 

consideration, but because exploring it might tell us about the feasibility of more 

well-stated and plausible bootstrapping hypotheses. 

5.2 Investigating signal space saturation and sound-symbolic 

bootstrapping 

It is possible to test the influence that changing contrastiveness has on learnability 

of systematic languages, and the simple bootstrapping hypothesis for the benefit of 

motivated languages simultaneously. In Chapter 4 I demonstrated that, other than 

an early benefit for motivated languages, motivated systematic and non-motivated 

systematic lexica are approximately equally easy to learn; thus, here I can 

simultaneously use both while maintaining an ability to compare the results broadly 

to those in Chapters 2 and 3 of this dissertation.  

5.3  Experiment 7 

To explore both the effect of changing contrastiveness on language learning and the 

simple bootstrapping hypothesis, an experimental protocol was required that met a 

number of criteria. To test the simple bootstrapping hypothesis, an experimental 

design was required that separated learning and testing such that the motivatedness 
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of learned word-meaning mappings could change over time. Simultaneously, 

exploring contrastiveness more fully required measurement of learnability over 

multiple rounds of training and testing.  

Specifically, a test of the bootstrapping hypothesis required that participants 

could be taught an initial motivated language, then transition at some point to 

learning arbitrary word-meaning mappings. Crucially however, the learnability of 

later-acquired arbitrary labels needed to be compared to some sensible baseline, such 

that any difference in learnability of early acquired vs. late acquired words could be 

traced to bootstrapping, rather than some other factor (primacy and recency effects, 

reduced performance due to increasing cognitive demand, etc.). 

In order to test the effect of contrastiveness on learnability, we need a way to 

quantify how the introduction of additional words impacts on the signal space 

saturation and the contrastiveness of existing labels. In previous experiments (i.e. 

Experiment 3 from Chapter 2), the contrastiveness metric used failed to capture the 

influence that the presence of additional similar words had on learnability, and as 

such a new contrastiveness metric was required that could be calculated for words in 

this new experimental protocol.  The new contrastiveness metric used for this 

experiment, in addition to changing over the process of learning, should also 

straightforwardly predict the learnability of word-meaning pairs over time, rather 
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than any deficit in learnability simply being traceable to participants being required 

to learn additional word-meaning pairs over time. 

Given these requirements, the simple bootstrapping hypothesis suggests that 

participants who learn motivated word-meaning mappings early before switching to 

learn arbitrary word-meaning mappings later should perform significantly better 

than participants who do not have the benefit of this scaffolding.  In addition to this 

prediction, we should find that lexica that are more contrastive will be easier to 

learn, and that for individual words, performance will fall off over time as a function 

of the decreasing contrastiveness of words to one another as additional word-

meaning mappings are learned, and that this penalty should be especially prevalent 

for learners of systematic lexica due to their lower levels of contrastiveness. 

5.3.1 Methods 

Participants 

Participants were 49 (32 female) students and members of the general population 

recruited from the University of Edinburgh (n= 31) and the University of 

Lethbridge (n=18) subject pools, and were compensated 3.00 GBP and $5.00 CAD 

respectively for their participation in the experiment, which took approximately 25 

minutes. All participants were fluent English speakers between 17 and 35 years of 

age (Mean= 21.92, StDev= 3.81) with normal hearing and normal or corrected-to-
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normal vision. Each of these experimental participants was assigned randomly to 

one of the four experimental conditions. Ethical approval was obtained locally at 

both the University of Edinburgh and the University of Lethbridge, adhering to 

both British Psychological Association and American Psychological Association 

guidelines, and informed consent was obtained from all participants.  

Experimental Design 

The experimental protocol created for this experiment differed from those of 

previous experiments in that participants were exposed to multiple rounds of 

training and testing, learning a complete artificial lexicon over the course of these 

multiple bouts rather than all at once. Specifically, participants were trained with 

an initial language, and then exposed to alternating rounds of testing and training 

where they learned new words in each training round, and then were tested on those 

new words in addition to all previously learned words in each testing round.  

This manipulation allowed me to simultaneously explore the simple 

bootstrapping hypothesis and the effect of changing contrastiveness on learnability. 

Specifically, participants in the experiment were split into 4 conditions in a 2 (Early 

language: Motivated or Arbitrary) x 2 (Late language: Motivated or Arbitrary) 

design, as shown below in Table 5.01. 
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Condition Early Language (First 8 Labels) Late Language (last 8 labels)  

1 Motivated Systematic Motivated Systematic 

2 Motivated Systematic Arbitrary 

3 Arbitrary Arbitrary 

4 Arbitrary Motivated Systematic 

Table 5.01- The four conditions for used in the growing lexicon experiment. Participants learned 

an initial language that was either arbitrary or motivated and systematic, then later learned 

additional tokens that were either arbitrary or motivated and systematic, in a 2x2 factorial 

design. 

 

Label Stimuli 

All words created for this experiment were bisyllables in cVcV order. 

To create labels that were either motivated and systematic or arbitrary I used a 

total of 8 possible consonants. Following the stimuli used in Experiment 1 of this 

dissertation I used the plosive consonants /t/ and /p/ in contrast with the consonants 

/m/ and /n/ for sound symbolic labels. For the creation of arbitrary labels I needed 

two pairs of consonants that I was reasonably certain either a) wouldn’t have any 

associated sound symbolic bias and/or b) would have equal small biases. Thus, I 

selected four unvoiced fricative consonants, contrasting /s/ and /f/ with / θ / and / ʃ / 

(see Table 5.02).  
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Sound Symbolic Arbitrary 

Plosive p, t Type 1 f, s 

Sonorant m, n Type 2 ʃ, θ 

Table 5.02- Consonants used for the construction of words in Experiment 7. 

 

Based on these pairs of consonants, 8 possible words were created for each of the 

word types (as that is the maximum number that could be used for any one 

participant) for each participant. 

To create the 8 possible words of each type, 8 consonant skeletons were 

selected from 16 possible skeletons based on the available consonants for that type. 

For example, given the consonants /t/ and /p/, there are four possible consonant 

configurations (t_t_, t_p_, p_t_, and p_p_). I thus created four copies of each of the 

possible configurations, for 16 total possibilities, then selected 8 consonant skeletons 

randomly from this total of 16 (thus, each participant would on average have two 

labels with each consonant configuration, but could have anywhere from 0 to 4 of 

each type). 

Thus, we might arrive at these possible consonant configurations for a 

participant. I created complete words from these consonant configurations by 

assigning the four possible vowels semi-randomly with the constraint that no 

duplicate words were created and that each of the four possible vowels occurred an 

equal number of times in both the first and second syllable (Table 5.03). 
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Table 5.03- An example of the possible set of labels for an experimental participant from which 

lexica were chosen. 

 

Once these possible labels were created for each participant, the appropriate 

numbers of labels were randomly selected based on experimental condition, as 

below: 

Motivated Systematic early- Motivated Systematic late- 8 Plosive Labels, 8 

Sonorant Labels 

Motivated Systematic early- Arbitrary late- 4 Plosive Labels, 4 Sonorant Labels, 8 

chosen randomly from the arbitrary labels 
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Arbitrary early- Arbitrary late- 16 arbitrary labels 

Arbitrary early- Motivated Systematic late 8 chosen randomly from the arbitrary 

labels, 4 plosive labels, 4 sonorant labels 

This word generation procedure allows for a subset of 16 words for each 

participant to be selected from 256 possible words (4x(2x4x2x4)) in such a way that 

I ensure that the overall use of vowels is unbiased while allowing for a range of 

possible consonant configurations that ensures that individual participants will have 

languages that are more or less contrastive within word types. Words were presented 

to participants as both auditory stimuli (see below) and also on screen in the 

orthographic form with the following substitutions (Table 5.04):  
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Consonants Vowels 

IPA Orthographic IPA Orthographic 

p p a ah 

t t o oh 

m m e ay 

n n ʌ uh 

s s   

f f   

ʃ sh   

θ th   

Table 5.04- A representation of the IPA symbol and associated orthographic form presented to 

participants in Experiment 7. Auditory stimuli were generated as closely as possible to their IPA 

notation, but orthographically labels were presented in such a way that the orthography would 

be more accessible to IPA-naïve experimental participants. 

Each of the 256 possible total words was created as an audio file using Apple Talk 

with the Victoria voice (As in Experiment 1 of Chapter 2). Because apple talk does 

not use phonetic symbols, the phonetic representations given for each of the 

phonemes (especially the vowels) is inexact, although I ensured that the auditory 

representation was as close to the intended sequence as possible. 
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Image Stimuli 

The image stimuli used in this experiment were created using a radially constrained 

mathematical formula which created pairs of curved and jagged image forms from 

the same set of randomly generated calculus points. The resulting image pairs were 

identical to one another except in the curvature of their lines. Full details of the 

image generation technique are provided in Nielsen and Rendall (2011). Using this 

methodology I created a large set of 192 total images (96 total pairs) from which I 

selected 12 rounded and 12 jagged images for their distinctiveness. No matching 

images from any seed were chosen. 

For each participant, 8 of each of these 12 possible image types was used, for a total 

of 16 images for each experimental participant (8 curved, 8 jagged). 

Procedure 

In this experiment participants were taught associations between pseudowords and 

meanings (images of either jagged or curved shapes) over the course of alternating 

rounds of training and testing. In each round of training, they were exposed to a set 

of new word-meaning pairs a total of 6 times each in randomized order. After 

training, they were tested on their ability to remember the correct image for each of 

the pseudowords that they have learned, both in the immediately preceding training 
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block and in all previous rounds, by clicking on the correct image from a field of 

possible images. 

Training 

In each block of training, participants were exposed to a new set of paired 

pseudowords and images a total of 6 times each in randomized order. In the first 

training block, participants learn 4 pseudowords, whereas in the subsequent 6 blocks 

they learn only 2 new pseudowords per block. 

On each training exposure, participants were shown a fixation cross, followed 

by the appropriate image appearing on screen. After a delay of 500 ms, the 

orthographic representation of the label was displayed to the participant below the 

image. One second later, the label was played to them auditorily via headphones. 

After another 2 seconds the label was played for them a second time. Finally, after a 

final 2 second delay, the fixation cross came back up to signal the start of a new 

training exposure. 
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Figure 5.03- Example training trial from Experiment 7 showing a participant being exposed to a 

jagged image with a plosive label. In addition to the label being presented to the participant in 

orthographic form, it was also presented to them via headphones. 

 

Testing 

In each block of testing, participants were tested for their ability to correctly pair 

pseudowords with their appropriate image. On each trial participants were shown a 

field of between 4 and 16 possible images (all of the images that they had seen up to 
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that point in the experiment) along with a single pseudoword, that was presented to 

them both orthographically in the center of the screen and auditorily via 

headphones (Figure 5.04).  

 

Figure 5.04- Example of a testing trial for a participant in Experiment 1. The participant is 

presented with the label ‘taytay’ both in the orthographic form shown on screen and via 

headphones, then tasked with choosing the correct meaning for that word from the available 

options.  
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Participants made their selection on each trial by clicking on their choice of 

appropriate image for a given label, which recorded their response and progressed 

them to the next trial. 

In each testing block, the location of the possible images to be selected was 

randomized to ensure that participants were learning associations between words 

and shapes, rather than words and response locations. 

As outlined above, Experiment 7 used a 2x2 factorial design, with 

participants learning either a motivated systematic or arbitrary initial language, 

then later learning either a motivated systematic or arbitrary late language. The 

early language consisted of the first 8 pairs of words and meanings learned over the 

first 3 rounds of training and testing, while the late-acquired language consisted of 

the remaining 8 pairs of words and meanings learned over the final 4 rounds of 

training and testing (see Table 5.05). 
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Round # 

Trained 

# 

Tested 

MS Early 

MS Late 

MS Early 

Arb Late 

Arb Early 

Arb Late 

Arb Early 

MS Late 

1 4 4 4 MS 4 MS 4 Arb 4 Arb 

2 2 6 2 MS 2 MS 2 Arb 2 Arb 

3 2 8 2MS 2MS 2 Arb 2 Arb 

4 2 10 2MS 2 Arb 2 Arb 2MS 

5 2 12 2MS 2 Arb 2 Arb 2MS 

6 2 14 2MS 2 Arb 2 Arb 2MS 

7 2 16 2MS 2 Arb 2 Arb 2MS 

Total 16 70 16 MS 8 MS, 8 Arb 16 Arb 8 Arb, 8 MS 

Table 5.05- The number of new words trained and number of words tested at each experimental 

block in Experiment 7. Additionally, a description of the structure of experimental blocks for 

participants in each of the four conditions of the 2x2 factorial design used in Experiment (MS= 

Motivated Systematic, Arb=Arbitrary). 

 

Contrastiveness and Confusability 

The contrastiveness metric used in Experiment 3 of Chapter 1 of this dissertation, 

and also by Monaghan et al. (2011) is ultimately not one that is appropriate for 

exploring the types of questions that Experiment 7 here seeks to answer. 

Specifically, the average edit distance of a single word to all other words of its type 

fails to adequately capture the degree to which that label is contrastive from other 

labels of its type. As a simple demonstration, consider the example presented below 

in Table 5.06. 
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Label of 

Interest 

In-Class 

Label 

Edit 

Distance 

Exposure 

Round 

Average Edit 

Distance 

naymoh mohmay 3 1 3 

 nuhmoh 1 2 2 

 maymay 2 3 2 

 muhnah 4 4 2.5 

Table 5.06- An example of the comparison of a given label (’ne mo’) to related labels, and the 

effect that the introduction of those new labels has on the average edit distance- my previously 

used contrastiveness metric. 

 

The example language shown in table 5.06 demonstrates quite clearly why average 

edit distance fails as a metric of contrastiveness when looking at individual labels: At 

first, the introduction of more labels decreases the average edit distance, which 

seems to capture contrastiveness, but in exposure round 4 a maximally different 

label is introduced and the average edit distance actually becomes higher. In one 

sense, this seems reasonable: ‘muhnah’ is maximally different from ‘naymoh’, and 

thus the average distance between the labels increases, but the introduction of 

‘muhnah’, which is maximally different, should not result in the suggestion that 

‘nuhmoh’ would suddenly be less easily confused with ‘muhnah’. Comparing the 

contrastiveness of single words to each other using their hamming distance is 

appropriate, as we saw in Chapter 3, as is averaging the contrastiveness of every 

word in a language to each other (‘muhnah’ is not similar to our target word, but is 

quite similar to other words in the language), as we saw in Experiment 1 of Chapter 
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2. However, when looking at a single target word a contrastiveness value based on 

the similarity to all other words (but not those words to each other) fails to capture 

similarity adequately- the introduction of a new dissimilar label word should not 

make an existing similar label easier to learn. No matter what new label is 

introduced, and no matter the similarity to the label of interest, the requirement to 

learn an additional new token should never result in the prediction that performance 

will actually improve. Thus, a new metric was required that would capture not only 

the fact that the introduction of additional labels should always reduce 

contrastiveness, but that similar labels should reduce contrastiveness more.  

To capture these effects, I created a new metric for contrastiveness designed 

to predict the possibility that participants would confuse the word of interest with 

any other previously learned labels. This metric is thus a measure of confusability, 

with low values suggesting a lower probability that participants will confuse labels 

in their language (thus, a low value = a more contrastive language). Confusability is 

the inverse of the edit distance between two tokens (so, the labels ‘naymoh’ and 

‘mohmay’, which have an edit distance of 3, have a confusability value of 1/3). For a 

given word, the overall confusability value is calculated by summing the 

confusability values from the comparisons of that word with all other words of the 

same type, as seen in table 5.07. 
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Target 

Label 

Comparison 

Label 

Edit 

Distance 

Exposure 

Round 

Avg. Edit 

Distance 

 

Confusability 

Summed 

Confusability 

naymoh 

mohmay 3 1 3 1/3 .33 

nuhmoh 1 2 2 1 1.33 

maymay 2 3 2 ½ 1.83 

muhnah 4 4 2.5 ¼ 2.08 

Table 5.07- An example of the calculation of the new confusability metric used in Experiment 7. 

 

Although I use this specific confusability metric (inverse edit distance) in the 

analyses presented in this chapter, the general findings hold under a number of 

models of confusability, shown in Table 5.08. 

Edit 

Distance 

Contrastiveness Metric 

Contrast A Contrast B Contrast C Contrast D 

1 1 1 1 1 

2 1 0 1/2 1/4 

3 1 0 1/3 1/9 

4 1 0 1/4 1/16 

Table 5.08- Calculation rules for 4 possible contrastiveness metrics tested for Experiment 7. In 

Metric A, all labels of the same type are weighed evenly, and assumed to be equally confusing. 

In Metric B, only neighbours with an edit distance of 1 influence contrastiveness/confusability. 

Metric C reflects the metric used in this chapter, where additional labels add the inverse of their 

edit distance to the summed contrastiveness metric. Metric D works similarly, but using an 

inverse square law.  

 

This new confusability metric has a number of benefits. First, early learned words 

will have relatively low values for their summed confusability, but their summed 
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confusability will be higher every time they are subsequently tested as a function of 

the number of additional words learned and their similarity to those words- thus, 

performance of early acquired words can be compared across subsequent testing 

blocks, allowing me to test whether the introduction of additional confusable labels 

can impair performance on previously learned labels. In addition to an exploration 

of the effect of increasing confusability / decreasing contrastiveness, this metric 

assures that later learned words will have higher confusability.  

It bears noting, in addition to the strengths of the metric, that it is not truly 

a measure of confusability: I measure how often language learners confused words 

based on performance in the experiment. The confusability metric I use is, rather 

than being a measure, a predictor based on how I suspect that the presence of 

additional similar words might affect learnability. 

Other metrics of contrastiveness and confusability 

It is worth mentioning that there are multiple literatures outside of research about 

motivatedness and systematicity that have their own interpretations of 

contrastiveness and confusability and have developed metrics to quantify those 

features. Although I do not make use of those metrics here, it is important to 

acknowledge them and link them to my own notions about contrastiveness and 

confusability. Ultimately, the deployability of some of these earlier-described 
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metrics for confusability are inadequate for my present purposes for a number of 

reasons, which I will outline in discussing them below. 

Historically, Miller & Nicely (1955) were amongst the first to explore the perceptual 

confusability of (English) consonants systematically in a way that allowed them to 

make general statements about confusability, rather than simply cataloguing 

perceptual errors. Miller & Nicely created confusion matrices for each of the 16 most 

common consonants in English, such that the proportion of the time that a given 

consonant was either recognized, or mistaken for another of the consonants of 

interest, was recorded. These confusion matrices were calculated both with neutral 

vocal stimuli and under a range of noise conditions. The overall confusion matrices 

under various levels of noise calculated by Miller & Nicely can be compressed such 

that they are slightly less burdensome (one can, for example, focus on how much 

confusion there is between relatively more or less similar phonemes), or considered in 

terms of some of the phonological features of the studied phonemes.  

Aside from its mathematical complexity, the applicability of Miller & Nicely (1955)’s 

classic confusion data to the work presented here is limited by a number of factors. 

First, Miller & Nicely consider only consonant phonemes, which means that for the 

present study we would have to ignore confusability caused by vowel similarity. 

Second, the majority of the data from Miller & Nicely deals with the confusability of 

phonemes under various types of noise, which is not ideal for the present study for at 
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least two reasons: a) that stimuli are presented in such a way that noise is limited, 

and b) that it’s difficult to determine which confusability matrix is the most 

appropriate for use under these conditions. Third, Miller & Nicely’s data is framed 

entirely in terms of perceptual confusability (i.e. what a participant heard), whereas 

we are interested in confusability more generally (which might include perceptual 

confusability, but also memorability, and potentially even productive 

confusability). Finally, Miller & Nicely’s notion of confusability, in focusing on 

individual phonemes, has limited applicability to the confusability of entire word 

forms. 

Following Miller & Nicely (1955), a number of other researchers tackled some of 

those shortcomings and extended the notion of confusability based on similar 

measurements. Wicklegren (1965, 66) found for example that phoneme similarity 

also influenced confusability in short term memory, while others (e.g. Bailey & 

Hahn, 2001) demonstrated that phoneme similarity played a role in determining the 

confusability of whole words. In 2006, Bailey & Hahn returned to the issue of 

similarity in an attempt to answer two questions that are also directly applicable to 

the work that I present here: i) Is there a single notion of “phoneme similarity” that 

underlies perceptual, memory, and other observed differences, and ii) What is the 

best measure of phoneme similarity?  



 

273 

 

To tackle these questions, Bailey & Hahn (2006) compared confusability metrics 

based on phonological features (like manner + place of articulation) to those based 

on confusability of perception (e.g. Miller & Nicely, 1955), production (e.g. Dell & 

Reich, 1981), and short-term memory retrieval (e.g. Wicklegren, 1965). For 

phonological feature metrics, Bailey & Hahn explored both SPMV , which is a 

similarity metric based on place and manner of articulation + voicing, and the 

natural class metric from Frisch (1996). For confusability metrics, Bailey & Hahn 

used the phoneme confusability in short term memory from Wicklegren (1966), the 

speech production phoneme confusability from Shattuck-Hufnagel & Klatt (1979), 

and a measure of perceptual confusability from Luce (1986) under six signal-to-noise 

ratios. 

Bailey & Hahn (2006) found that SPMV, the simplest featural metric was the best 

predictor of confusability. Further, they found through a comparison of the various 

metrics to one another that psychological estimates of the differences between 

phonemes were better predictors than estimates of their commonality. Of note, they 

also find that the confusability relationship is non-linear – that is, more dissimilar 

phonemes are confused more easily, but not to the degree one would expect based on 

the confusability where only a single feature differs. 

Bailey & Hahn’s findings offer a number of potential insights into the confusability 

metric that we use here, although the benefit of using SPMV or some other, 
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potentially more robust, featural metric are not entirely clear. Bailey & Hahn’s 

findings improve over those of Miller & Nicely (1955) for our purposes in that they 

take more than perceptual confusability into account, but they are still formulated 

such that they refer to differences between phonemes, and not an aggregate 

predictor for the similarity or dissimilarity of entire words. Computing such a value 

from Bailey & Hahn’s data may be possible, but would require additional 

experimental motivation in determining how to weigh the influence of various 

phonemes relative to one another. 

Other authors, like Nowak & Krakauer (1999) have considered perceptual 

confusability more abstractly and even more mathematically than Miller & Nicely 

(1955). Using computational models, they demonstrate that when there is a fitness 

payoff, languages can evolve such that the sounds are selected to minimize their 

similarity. These model languages can add new sounds to increase the number of 

describable objects, but this only increases confusability. According to Nowak & 

Krakauer then, the process of combining discrete sounds into words is a direct 

response to the pressure for expressivity (which they call unlimited semantic 

representation). Under this system, the authors suggest that word recognition is 

based on identification of each individual phoneme in the word. Although they do 

not discuss the underlying representation of these phonemes, this suggests that 

phoneme similarity, whatever its underlying metric, should have important 

implications for the confusability of words to one another, although, again, a fitness 
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pressure operating on the lexicon should select for configurations of words that are 

maximally distinctive. 

Collectively, the approaches outlined above suggest that predicting confusability is 

both mathematically and practically quite complex. Featural similarity models are 

theoretically motivated, and do a fairly good job of predicting actual confusability 

in a wide range of experimental manipulations, which suggests that those features 

bear some psychological resemblance to the perceptual and cognitive features 

relevant to human language learners. Despite this fact, or own research suggests 

that phonological feature encodings do not actually predict the ability of human 

participants to learn artificial languages (Chapter 3), which casts some doubt on the 

applicability of the metrics described above for the research presented here. 

Certainly, taking advantage of more robust and grounded (both ecologically and 

theoretically) metrics like those developed by Bailey & Hahn (2006) has its benefits, 

but those benefits must be weighed against practical issues as well. First, the metrics 

outlined in previous research are often quite opaque, especially to those who are not 

proficient with some fairly complicated matrix algebra (myself included). Relatedly, 

the metrics are not parameterized in an accessible way that would make them useful 

for applying to new experimental manipulations. Third, the metrics that I have 

discussed are generally based on differences between phonemes in equivalent 

locations in otherwise identical words, rather than a comparison of the confusability 

of entire words to one another. Finally, and relatedly, extending these methods 
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directly (even if it were easy to do so) to comparisons of whole words might be 

difficult, as weighing the relative importance of similarity at different loci in a word 

could be problematic without further empirical support.  

This is, of course, not to be a naysayer entirely about previously established 

methods for calculating or predicting confusability. Even if we were to find that the 

metric used here was superior to previously described ones, the insights from 

exploring those methods can provide insight for how my confusability metric fits 

into the broader psycholinguistic literature. In future, extensions of the work 

presented in this chapter should consider incorporating these considerations, if not 

the actual confusability metrics developed by others, more completely. For the 

present study however, the relative simplicity of the confusability predictor that I 

have created is a strength in that it is easily approachable and makes simple 

predictions in line with the findings of experiments presented earlier in this 

dissertation. Ultimately, I hope that the continuation of work like this by myself 

and others can at the very least compare this type of confusability predictor to the 

performance of other predictors, but as an experiment that is the first of its kind I 

have here favored simplicity and ease-of-interpretation over other factors. 
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Data Analysis 

Responses for each trial of the experiment were coded for correctness and then 

analysed using a logistic mixed effects analysis of the relationship between 

correctness and experimental condition. The analysis was conducted using R (R Core 

Team, 2012) and lme4 (Bates et al. 2015). As a test of my confusability metric, 

differences between the four experimental conditions on early learned words in the 

early trials and later performance on those early learned words after more words 

were introduced and confusability increased was the most relevant comparison. As a 

test of the bootstrapping hypothesis, the differences in performance between 

conditions comparing early-learned words tested late and later-learned words tested 

late was the most relevant comparison; if the bootstrapping hypothesis is correct, 

then for MS Early -> Arb Late languages performance on late acquired words (i.e. 

arbitrary word-meaning mappings) should be better than either performance on 

early acquired (i.e. Motivated Systematic) words tested later, late acquired arbitrary 

words acquired in other conditions (Arb Early -> Arb Late), or both. To best explore 

these possibilities, I combined Exposure round (early vs. late) and testing block 

(early vs. late) into a single factor: Trial Type, which is shown Table 5.09. 
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Early Acquired 

Early Tested 

Early Acquired 

Late Tested 

Late Acquired 

Late Tested 

Rounds Trained 1-3 1-3 4-7 

Rounds Tested 1-3 4-7 4-7 

Table 5.09- Trial Type (Exposure Block x Testing Block) factor used for data analysis in 

Experiment 7.  

 

 

For the logistic mixed effects analysis of the relationship between correctness and 

experimental condition I used Trial Type and Condition (and their interactions) as 

fixed effects, with subject as a random effect. P-values for fixed effects and their 

interaction were obtained using likelihood ratio tests of the full model compared 

against the model without the effect; other p-values reported below were obtained 

via the normal approximation. 

A second analysis, identical to the first but including my new contrastiveness 

metric (and the associated interactions) as a fixed effect was also conducted to 

explore the degree to which contrastiveness influenced the relative learnability of 

systematic vs. arbitrary word-meaning associations.  

The simple bootstrapping hypothesis suggests that late-learned arbitrary 

word-meaning mappings should be easier for participants who have previously 

learned a systematic language than for participants who have learned an arbitrary 

early language. To test this possibility, I performed a two-sample t-test on 
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comparing performance on these late trials between these two groups. Additionally, 

I compared performance on late-learned motivated systematic associations between 

participants who had learned either motivated or arbitrary associations in the early 

acquired portion of their lexicon. 

Finally, I conducted a planned analysis comparing performance on block 1 

between motivated systematic language learners and arbitrary language learners as 

an additional test of the early effect of motivatedness found in Chapter 4.  

5.3.2  Results 

Logistic Mixed Effects Regression I 

Performance across the three levels of Trial Type (Early Acquired- Early Tested; 

Early Acquired- Late Tested; and Late Acquired- Late Tested) for each of the four 

experimental conditions is shown in Figure 5.05.  
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Figure 5.05- Performance of participants in the four conditions of Experiment 1 as a function of 

the type of word that they were being tested on. The results suggest an overall performance 

deficit in later trials, reflecting the fact that learning additional words imposes increasing 

cognitive demands. However, the languages where learning changes (both from MS to Arbitrary 

and vice-versa) perform significantly better on late learned, late tested trials. Error bars show 

standard error. 

 

Model comparison revealed a significant effect of experimental condition (χ2(9)= 

23.44, p=0.005): dummy coding of experimental condition. There was also a 

significant main effect of Trial Type (χ2(8)= 82.75, p<0.001): participants performed 

significantly better on Early Learned Early Tested trials (M= 0.727, SD= 0.113) 

than on either Early Learned on Late Tested trials (M=0.58, SD=.085; p<0.001) or 
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Late Learned – Late Tested trials (M=0.606, SD= 0.107; p=0.007). Finally, there 

was a significant interaction of condition and Trial Type (χ2(6)= 20.79, p=0.002). 

Logistic Mixed Effects Regression II 

 

Figure 5.06- Summed confusability metric in each condition across all 7 experimental blocks. 

Confusability here is a metric to predict performance of participants. Motivated systematic early 

languages begin more confusable than arbitrary early languages. However, at testing block 4 

when the late-acquired language begins being learned and tested, we see that both languages 

that switch (MS Early->Arb Late, Arb Early->MS Late) have the lowest summed confusability by 

block 7, predicting that learners of those two languages will perform better than learners of 

either fully motivated systematic or fully arbitrary languages. Error bars show standard error. 
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Figure 5.07- A measure of the summed confusability in each condition and trial type. Motivated 

early language learners have higher summed confusability values, but in late tested trials purely 

motivated and purely arbitrary languages have the highest summed confusability. Error bars 

show standard error. 

 

The inclusion of confusability as a factor in my second model eliminated the overall 

effect of condition (χ2(18)= 24.97, p=0.126), although there was still a main effect of 

trial type (χ2(16)= 36.61, p=0.0024). There was also a significant effect of 

confusability (χ2(12)= 27.13, p=0.007), suggesting that my confusability was in fact 

a good predictor of actual confusability (Figure 5.08). 
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Figure 5.08- Performance results in each experimental condition including confusability as a 

factor in the model. The results demonstrate that confusability has a main effect: performance is 

worse on trials where the summed confusability is higher, and no main effect of experimental 

condition. Missing values on the graph are cells with less than 50 observations. Error bars show 

standard error. 

 

There were no significant two-way interactions, and only a marginal 3-way 

interaction of Condition * Confusability * Trial Type significant (all p>0.052). 

Test of Bootstrapping 

A two sample t test of performance on late-acquired late-tested arbitrary words 

showed that participants who had learned an initially systematic language (M=0.66, 

SE= 0.0415) performed significantly better than participants who had learned an 

initially arbitrary language (M= 0.55. SE=0.0402; t=2.35, p<0.019).  
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A second two-sample t-test showed that performance on late-acquired late-

tested systematic words was higher for participants who had learned an initially 

arbitrary language (M=0.70, SE=0.031) than for participants who had learned an 

initially systematic language (M=0.59, SE=0.33; t= 2.51, p=0.013). 

Test of Motivated Early Advantage 

Looking at the effect of early language type (motivated systematic vs. arbitrary) on 

performance on early trials, I found only a marginal effect of early language type: 

χ2(1)= 3.40, p=0.065 (Motivated systematic M= 0.759, Arbitrary M= 0.687). 

5.3.3 Discussion 

Sound Symbolic Bootstrapping 

The results of my experiment, at first glance, look to support some version of the 

simple bootstrapping hypothesis, which suggests that learning motivated 

associations between words and meanings early increases the subsequent learnability 

of arbitrary word-meaning mappings. The first test of this prediction comes from 

comparing late learned, late tested (arbitrary) trials for participants in the MS Early 

-> Arb Late condition to late learned, late tested (arbitrary) trials for participants in 

the Arb Early-> Arb Late condition. That comparison seems to suggest that late-

learned arbitrary word-meaning mappings are easier for learners who have previous 
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learned a systematic language than for learners who have learned arbitrary word-

meaning associations in the early acquired lexicon, which I found to be true.  

However, a closer look at the data suggests that bootstrapping does not actually 

account for this effect, as its inverse is also true: that is, learners of Arb Early -> MS 

Late languages perform better on the late learned (motivated systematic) portion of 

their lexicon than do participants in the MS Early -> MS Late condition.  

If we were willing to accept the simple bootstrapping hypothesis based on the 

data from this experiment, then we would also be required to, paradoxically, accept 

the possibility that the learning of early arbitrary tokens bootstraps the acquisition 

of later motivated systematic tokens. Although these two findings are not mutually 

exclusive (i.e. it is possible that both bootstrapping effects are real), the fact that the 

data clearly demonstrates both effects suggests the possibility that they might be 

underpinned by some other variable. Writ broadly, the combination of these two 

findings suggests that conditions where the early and late learned parts of the 

lexicon are different result in increased learnability of the later learned part of the 

lexicon, compared to conditions where early and late acquired portions of the 

artificial lexicon are entirely systematic or entirely arbitrary. One potential 

explanation for this finding then is that increasing signal space saturation accounts 

for the learnability penalty for late acquired late tested word-meaning mappings. 

  



 

286 

 

Contrastiveness and Language Learning 

The suggestion that more contrastive word-meaning mappings should be easier to 

learn resulted in two predictions. First, we found, in support of my predictions, that 

performance varied as a function of the contrastiveness of word-meaning mappings. 

We can see support for this prediction most clearly in the interaction between Trial 

Type and Experimental condition: early learned words tested early (when the 

language is maximally contrastive) had the highest performance, regardless of 

experimental condition. Additionally, individual word-meaning mappings become 

more difficult to remember as a function of this interaction: although we see an 

overall decline in task performance, which can be chalked up to the baseline decline 

in performance due to general memory constraints, the decline in task performance 

is less severe for learners of languages that switch from one type of form-meaning 

mapping to the other (i.e. MS - > Arb, or Arb -> MS; as described above), i.e. those 

languages where the later learned portion of the lexicon is more contrastive relative 

to the early learned portions of the lexicon.  

The results of the second linear mixed effects model, which included 

confusability as a predictor, eliminated the main effect of condition, making it clear 

that confusability accounts for the decrease in learnability across experimental 

conditions. Regardless of experimental condition, performance was significantly 

worse on less contrastive labels.  
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The second analysis including confusability as a predictor also included a 

significant main effect of trial type, with participants performing better on early 

learned – early tested trials than the other two trial types. Several explanations 

seem immediately plausible for this finding. First, the benefit for early learned – 

early tested trials might reflect a primacy effect that is eventually washed out by 

increasing confusability. Second, the benefit might be due to early learned – early 

tested trials in motivated systematic early languages providing a benefit for their 

learners: however, we found no significant interaction between Trial Type and 

Experimental condition, and a post-hoc test looking at motivated systematic vs. 

arbitrary early trials did not suggest an effect of motivatedness. Finally, early 

learned-early tested trials have fewer labels to learn, and a smaller test array of 

possible choices. 

5.4  General Discussion 

The results presented here support the general conclusion of the experiments 

presented earlier in this dissertation and the findings of previous researchers with 

regards to the benefits and costs of systematicity: systematic associations between 

words and meanings enhanced the learnability of those tokens, but the degree to 

which this was true varied as a function of the overall signal space saturation and/or 

relative contrastiveness of each word to other words of its type. Early acquired 

systematic associations between words and meanings were learned most easily, 
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although the degree to which this learnability benefit might have been produced by 

motivatedness, rather than systematicity is impossible to determine given the data 

for this experiment, although the results of the experiments from Chapters 2-4 

suggest that both are candidates for explaining the increased performance. We also 

demonstrated, for the first time in an artificial language learning experiment of this 

type, that potential confusability penalties for systematic word-meaning mapping 

vary not only as a function of the contrastiveness of entire artificial lexica (as in 

Monaghan et al., 2011; and Experiments 1-3 from Chapter 2), but also that the 

introduction of new labels that are similar to existing labels can lead to confusion 

even on previously well-learned word-meaning pairs.  

The findings of this experiment are particularly relevant for proponents of 

bootstrapping hypotheses in general, as they demonstrate the possibility that 

invocations of bootstrapping hypotheses might suffer from the post hoc, ergo propter 

hoc logical fallacy. Assuming that there is some selection process operating over 

languages such that word-meaning mappings are chosen in an optimized fashion, the 

pressures of contrastiveness might necessitate the shift from an early motivated 

and/or systematic lexicon to a less constrained arbitrary lexicon, but the fact that 

these two stages of language learning occur in succession would not necessarily 

suggest that the first influences the learnability of the second in any way that could 

be described as “bootstrapping” or “scaffolding” that learning process. Assuming 

that it is true that in natural languages earlier acquired parts of the lexicon are 
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systematic (and potentially motivated) whereas the later acquired parts of the 

lexicon are more arbitrary does not suggest causality- given the interaction of two 

selection pressures: contrastiveness maximization and learnability enhancement 

(due to systematic structure, motivatedness, or both) the fact that arbitrary and 

systematic associations between words and meanings are favored at different times 

does not suggest that one causes the other. Referential and conceptual bootstrapping 

are, despite seeming more tenable than simple bootstrapping hypothesis explored 

here, not inured to this possibility: it is difficult to determine the degree to which 

later learning is contingent on, and thus bootstrapped by earlier learning. The use of 

motivated word-meaning mappings might, for example, ease the ability of naïve 

language learners to establish reference between sound and meaning, but the degree 

to which this established reference is actually generalizable to non-motivated tokens 

is much more difficult to establish.  

5.4.1  Extensions 

The experimental protocol here offers a number of opportunities for testing many of 

the hypotheses raised in the artificial language learning and sound-symbolism 

literature generally. The inclusion of non-motivated systematic languages, for 

example, might help further enrich the results of the experiments presented in 

Chapter 4 – for example, we do not currently know if motivated mappings continue 

to be beneficial beyond the earliest exposure to tokens.  
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Similarly, although the results of this experiment give better insight into the 

influence of contrastiveness on learnability, the ability to look at the transition 

between levels of contrastiveness that favors systematicity or arbitrariness was 

limited by a number of factors. The method of construction for arbitrary word-

meaning mappings in this experiment was still relatively constrained – although 

previous experiments, e.g. Monaghan et al. (2011) used arbitrary signal spaces that 

were even more tightly constrained (and more similar to the systematic signal 

spaces) it is possible to work with arbitrary associations that are significantly more 

contrastive than the one used here. In a maximally contrastive arbitrary language, 

the learning of new labels should not interfere with performance on older labels, 

other than an impairment due to increasing cognitive demand and task difficulty- 

here, however, even my arbitrary word-meaning mappings were relatively 

constrained and became increasingly confusable over time (though not as quickly as 

the systematic labels. Using a larger signal space and more contrastive labels for the 

creation of arbitrary languages would allow for an extension of this experiment, 

because an Early Arbitrary -> Late Arbitrary language could serve as a baseline to 

which other conditions could be compared, establishing not only the degree to which 

increased task demands influence learnability, but also e.g. the influence of primacy 

and recency effects.  
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5.5 Conclusions 

In general, we find further support for the notion that systematic associations 

between words and meanings can benefit language learners under certain conditions, 

i.e. those where the benefits of systematicity accrued due to the similarity of words 

for related meanings are not overwhelmed by the potentially confusability induced 

by that same similarity.  The interesting insight from this experiment in particular is 

that word-meaning pairs that are already established in the lexicon of their learners 

can be interfered with by the introduction of additional labels, and the degree to 

which learning new labels penalizes the memorability of previously learned labels 

varies as a function of  the similarity of those labels. Previous to these findings one 

could imagine, for example, that the individuation penalty for less contrastive 

systematic languages would only be incurred by newly learned words, and that this 

penalty would be sufficient to push languages towards arbitrary word-meaning 

mappings so that those new words could be learned more easily. Our results, 

however, suggest that in addition to a pressure for new words to be more contrastive 

for the benefit of their own learnability, existing words also suffer from penalties to 

memorability under less contrastive conditions – this suggests that in addition to a 

pressure for new labels to be learnable, languages suffer a secondary pressure 

towards arbitrariness, in that already learned words can be negatively impacted.  



 

292 

 

The results of this experiment also highlight the fact that bootstrapping 

explanations, including those offered in this dissertation, must meet a difficult 

burden of proof, lest we risk committing a post hoc, ergo propter hoc fallacy. Selective 

pressures on the expressivity, usability, or transmissibility of language might 

account for the fact that early acquired portions of the lexicon are more likely to be 

systematic or motivated and also for the arbitrariness of subsequently learned 

words, without any enhancement of later learning that can be rightfully described as 

bootstrapping. The finding that confusability predicts learnability and accounts for 

some of the differences in learnability between systematic and arbitrary lexicons also 

suggests a number of interesting but results in the existing literature in the field, but 

also to explore non-arbitrary configurations of the language that might have the 

benefits of systematicity without inducing further confusability (i.e. while 

maintaining contrastiveness). 
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Chapter 6 

Conclusions 

In this dissertation I have undertaken an exploration of motivatedness and 

systematicity, and the effects that those type of non-arbitrary associations between 

words and meanings have on learning and the structure of the lexicon. Above the 

level of the lexicon, language is recognized to be shaped by pressures to make it more 

learnable, expressive, and communicatively functional (Kirby et al., 2015). The 

recognition that these pressures might influence the structure of language are 

relatively new, especially when stated explicitly, but all attempts to delineate 

universals of human language (e.g. Hockett, 1960) are fundamentally related to 

these issues. By exploring features common to all languages, previous researchers 

have necessarily found themselves describing the outcomes of those pressures. 

Further, because what is learnable, expressive, or communicatively functional is 

determined by the perceptual and cognitive organization of language learners, the 

exploration of these language universals also tells us important facts about human 

cognition more generally. 

The acknowledgement that cognitive biases, especially those that are domain 

general, have downstream effects on language has proven to be a rich source of 
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explanatory power for the structure of human languages above the level of the 

lexicon. More systematic languages are more compressible, and thus easier to learn 

(Chater & Vityani, 2003; Tamariz & Kirby, 2015), and the structure of syntax 

reflects the structure of events (Haiman, 1980, 1985). Human language learners 

share the same basic perceptual and cognitive structures, and thus human 

languages, despite being different, share some features that reflect the strengths and 

constraints of human perception and cognition (Hockett, 1960). The pressures for 

language to be expressive but learnable, which are mediated by these shared 

perceptuocognitive features, likely accounts for the shared features of many 

languages. It is, however, important to recognize that not all languages produce the 

same solution to the pressures for expressivity and learnability. 

As we have seen in both the psycholinguistic literature broadly (e.g. 

Monaghan et al., 2011; Perniss & Vigliocco, 2014; Dingemanse et al., 2015) and in 

this dissertation, the pressure for languages to be learnable can, under some 

circumstances, favor arbitrariness and explain the predominance of arbitrary word-

meaning associations. Hockett (1960) recognized both arbitrariness and learnability 

as universal features of human language, but we might instead suggest that 

learnability is a language universal on its own, but also one that accounts for the 

form that other language universals take, especially when we also consider the 

pressure for expressivity. Languages have universal features like discreteness 

because those features make languages more learnable and/or expressive: 
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learnability is both a design feature and a pressure that accounts for the presence of 

other design features. Human perceptual and cognitive biases mediate the pressures 

of learnability and expressivity, and thus shape the expression of language 

universals, and this recognition has been productive for exploring questions about 

the evolution of language. 

At the level of the lexicon we can see a number of similar perceptual and 

cognitive biases. Motivated associations between words and meanings arise because 

of perceptual biases, while domain-general memory and other cognitive constraints 

bias towards systematicity and compressibility. The presence of non-arbitrary word-

meaning associations has been recognized for a long time, but often treated as 

marginal (Newman, 1933, Newmeyer, 1993; Saussure, 1983). In recent years, 

however, researchers have increasingly suggested that these associations are 

probably important (Nielsen & Rendall, 2012): they might make words more 

learnable (Nygaard et al., 2009), expressive (Yardy, 2010) or both (Nielsen, 2011). 

Here, I have explicitly suggested that the way that perceptuo-cognitive biases 

influence the structure of the lexicon is homologous to the way that those same 

biases influence syntax and morphology: perceptual and cognitive biases determine 

the features that favor learnability, and those features, through an interaction with 

the pressure for expressivity, determine the structure of the lexicon.  
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In the remainder of this chapter I will briefly review the model for the 

contribution of motivatedness and systematicity to the structure of the lexicon that 

was presented in Chapter 1, focusing on the empirical evidence presented here and 

elsewhere in support of that proposition. Ultimately, this model is unlikely to 

explain everything about the structure of the lexicon, but modestly it can serve as a 

platform to motivate future research. Where the model currently falters in its 

explanation of structural outcomes or their timing, I will point towards some 

plausible directions for future research. 
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6.1  Motivatedness, systematicity, and language learning 

 

Figure 6.01- A robust model of the pressures for learnability and expressivity and their 

contribution to the lexicon. 

 

To rehearse briefly, previous research has suggested the non-arbitrary associations 

between words and meanings might have important implications for the learnability 

of languages (e.g. Monaghan et al., 2011). Motivated associations between words and 
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meaning have been suggested to allow for reference to be established (Imai & Kita, 

2014): here I have called that proposal the referential bootstrapping hypothesis. This 

hypothesis suggests that the use of motivated word-meaning mappings to establish 

reference can be generalized to enhance the establishment of reference in non-

motivated cases. Support for this hypothesis comes from a number of sources, 

although it has not been tested directly experimentally. First, children are able to 

learn motivated associations between words and meanings more easily than 

arbitrary associations (Asano et al., 2015), and this is true cross-linguistically 

(Kantarzis et al., 2011). Additionally, adults have been shown to demonstrate the 

same effect in artificial language learning paradigms (e.g. Nygaard et al., 2009). In 

languages that make use of large classes of non-arbitrary words like ideophones, 

motivated word-meaning mappings are learned earlier and more easily than their 

arbitrary counterparts (Imai & Kita, 2014), suggesting that perceptual bias is being 

leveraged to enhance learning.  

Research exploring motivated word-meaning mappings has exploded in the 

last 5 years, and invocation of ideas like referential bootstrapping to explain the 

benefit that motivated mappings might have for language learning more generally 

has become increasingly common (Imai & Kita, 2014; Perniss & Vigliocco, 2014; 

Dingemanse et al., 2015). Here, however, I offer one additional suggestion: that 

motivated incidentally systematic mappings between sets of words and sets of 

meanings might make concepts and categories underlying the structure of the 
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lexicon more obvious: a proposal that I have called conceptual bootstrapping. The fact 

that much of the artificial language learning literature exploring the learnability of 

motivated word-meaning mappings like the Bouba-Kiki effect are also structured 

such that they are incidentally systematic (e.g. Aveyard, 2012; Monaghan et al., 

2012), however, makes determining the effect of motivatedness on learning slightly 

more problematic. 

Research exploring the effect that systematicity at the level of the lexicon 

has on learning, and the degree to which natural lexica are systematic, has been 

much less common than research into motivatedness, but has resulted in similar 

suggestions: systematic associations between words and meanings might increase 

learnability, but the degree to which this is true is likely to depend on the nature of 

the systematic associations and how greatly those associations impinge on the 

language’s contrastiveness (which captures both expressivity and 

learnability)(Monaghan et al., 2011).  

Thus, previous research left a number of questions unanswered that the research 

presented in this dissertation attempted to address: 

1) What effect does systematicity have on contrastiveness, and thus on 

learnability? 

2) How do different realizations of systematic word-meaning mappings 

influence learnability? 

3) What are the benefits of motivatedness for language learning? Are these real 

effects, or are they mediated by (incidental) systematicity, rather than 

motivatedness? 
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4) What is the explanatory value of bootstrapping hypotheses? Is there 

evidence for bootstrapping, or do other features like contrastiveness best 

explain previous findings? 

6.2 Summary 

6.2.1 Experimental Evidence 

Chapter 2 

In Chapter 2, I presented the results of a series of experiment designed to examine, 

as straightforwardly as possible, the effect of systematicity on language learning. I 

found, following previous researchers, that systematic associations between words 

and meanings provide a benefit for language learning for categorization, but can 

penalize individuation learning. However, the use of two different sets of 

pseudowords between Experiments 1 and 2 allowed me to demonstrate that the 

degree to which systematicity can actually penalize learning varies as a function of 

the confusability of pseudowords of the same type.  

In Experiment 1, which used a set of pseudowords constructed similarly to 

those in Monaghan et al. (2011) we found that learners of systematic languages 

performed well on tasks that were aided by having a transparent category structure. 

On out-of-class distractor trials, systematic language learners were able to quickly 

and easily reject pairs of words and meanings that were not coherent with the 

category structure of their language (e.g. rejecting ‘mo nu mu’ as the label for a 
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vehicle). The performance of those same systematic language learners on in-class 

distractor trials, however, suggested that they had failed to learn the names for any 

individual meanings. When presented with a word that was of the correct type, but 

not the actual correct word (e.g. ‘mo nu mu’ for an animal, but not a badger) 

systematic language learners performed significantly below chance: they had learned 

the category structure of the language, but had somehow failed to learn individual 

words. This suggested that something about the systematic mapping between words 

and meanings interfered with the process of individuation.  

In Experiment 2, where the chosen languages were maximally contrastive, 

systematic language learners did not have this problem: they were still able to reject 

out-of-class distractors at similar rates, but did so while maintaining the ability to 

learn individual words. This result suggested that the contrastiveness of words to 

one another influenced learnability: when languages could be systematically marked 

in such a way that individual words within systematic categories were still distinct, 

the language could aid performance on out-of-class distractor trials without a 

commensurate decrease in the ability to individuate (Figure 6.02).  
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Figure 6.02- Results from Experiments 1 and 2 demonstrate that the benefit accrued to 

systematic language learners is both contingent on contrastiveness. When words are less 

similar to one another, they are less easily confused and thus easier to learn. Error bars show 

standard error. 

 

In Experiment 3 of Chapter 2, I attempted to replicate the findings of Monaghan et 

al. (2011)’s 3rd experiment, introducing half-half languages that were systematically 

marked, but less constrained. I suggested that Monaghan et al. (2011)’s results were 

interesting, but underpinned by contrastiveness in a way that was not 

straightforwardly captured by their experimental design: i.e. the half-half languages 

that they created were indeed more learnable because they were more contrastive, 

not necessarily because of their partially systematic construction. First, these 
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languages were still, depending on how they were analysed, fully systematic: the 

same phonemes did not appear in the same locations between the two types of 

languages. Second, the chosen words for the half-half language were actually 

maximally contrastive: the manipulation of word construction into partially 

systematic types allows for the possibility to select more contrastive languages, but 

does not ensure it.  I attempted to address these criticism by introducing an 

additional factor of signal space size, suggesting that lexica chosen from a smaller 

signal space would be inherently less contrastive and thus more difficult to learn. I 

did not, however, find support for this proposal: the manipulation of signal space 

size failed to capture contrastiveness in a way that was stable enough to allow for 

exploration. Specifically, the results of this third experiment highlighted the 

difference between signal space size and saturation: given an equal number of tokens 

larger signal spaces will on average be more contrastive, but this is not guaranteed. 

Experiment 3 was also designed to include a contrastiveness measure for each 

pseudoword that I hoped would predict performance, but ultimately failed to 

capture the feature of interest (In Chapter 5, I returned to an exploration of 

contrastiveness using a new metric). 

Chapter 3 

In Chapter 3, I explored the proposal that decreasing contrastiveness negatively 

impacts learnability more indirectly. The systematic associations explored in 
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Chapter 2, as well as those explored by Monaghan et al. (2011), rely on 

systematically mapping features of phonology (e.g. plosiveness) to features of 

meaning (e.g. animals) such that similarity on the signal dimension maps onto 

similarity on the meaning dimension. In Chapter 3, I explored the degree to which 

experimental results could actually be traced to phonological features. I suggested, 

following the results of Chapter 2, that a complete explanation of how 

contrastiveness affects learnability would require a better understanding of what 

features are salient to human language learners. Thus, in Chapter 3 I introduced a 

phonological clustering factor to explore systematic word-meaning mappings that 

were not based on phonological features, but that were still systematic when 

analysed based on their phoneme inventories. Thus, instead of matching all plosive 

words with animals and all sonorant words with vehicles, I created pseudoword 

categories that were still systematic, but where phonological features were not 

predictive. I explored the effects of this manipulation both using the same 

experimental methodology as in experiments 1-3 and using a replication of 

Monaghan et al. (2011)’s model.  

Our replication of Monaghan et al. (2011)’s model suggested that 

phonologically dispersed languages, where dissimilar phonemes were mapped onto 

similar meanings, were easier to learn: maximizing categorisation performance while 

minimizing the individuation penalty in much the same way that I found in 

Experiment 2 from Chapter 2. Following Monaghan et al. (2011), I used the results 
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of our model to make predictions about the performance of my human language 

learners. I found, however, counter to the results of the model, that a 

contrastiveness metric based on phonological features was not predictive of the 

performance of human participants (Figure 6.03).  

 

Figure 6.03- Results from Experiments 4 (Chapter 3). For human participants there was no 

effect of phonological clustering, suggesting that phonological features were not predictive of 

learnability. Error bars show standard error. 

 

The difference in performance between our model and human participants can be 

traced directly to contrastiveness: specifically to the determination of what features 

are relevant in determining similarity, and thus confusability, for the model and the 
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human learners. The phonological feature representation used by the model ensures 

that similar phonemes are represented very similarly to one another, /g/ and /k/ for 

example differ only in voicing in the model, and thus are very similar to one another 

and easily confused. For human learners, /g/ and /k/ still differ only in terms of 

voicing, but are nonetheless recognized as separate phonemes whose difference is 

highly relevant for the language. The results of Chapter 3 thus suggest that: a) 

systematic associations between words and meanings do not need to be based on 

phonological similarity to influence learnability; b) human language learning is, in 

this context, better explained as being mediated by similarity based on phonemes 

being discrete, rather than by assuming that phonemes are clusters of phonological 

features; and, c) that conclusions drawn from computational models should be 

considered carefully.  

Chapter 4 

In Chapters 2 and 3, in addition to an exploration of systematicity generally, I 

suggested that the categorisation metrics used in Monaghan et al. (2011), and thus in 

our own model, were not actually appropriate metrics of categorisation, because 

they reflected errors in response to a task that was explicitly about individuation. 

Systematic associations between words and meanings might increase the ability of 

human learners to categorise, but neither Monaghan et al. (2011) nor the 

experiments in Chapters 2 and 3 actually tasked experimental participants with 
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categorizing. In Chapter 4, we presented the results of a task that is explicitly about 

categorisation, rather than individuation.  

To explore categorisation, I departed form a comparison of the learnability 

between systematic and arbitrary languages to compare the ability of learners to 

categorise correctly with languages that were systematic, but either motivated or 

non-motivated. Previous research (Aveyard, 2012; Monaghan et al., 2012; Nielsen & 

Rendall, 2012) has suggested that motivated associations between words and 

meanings are more easily learned than are their counter-motivated counterparts. 

These results, however, are difficult to analyse with respect to motivatedness 

enhancing learning over arbitrariness. First, the motivated associations used in these 

experiments were also incidentally systematic, and second their learnability was 

compared to counter-motivated, rather than arbitrary tokens. To this end, we 

conducted two experiments exploring the difference in learnability between 

motivated (incidentally) systematic and non-motivated systematic languages and 

determined that there is a learning benefit for motivatedness, and that that benefit 

comes in the earliest testing trials where naïve expectations based on 

perceptuocognitive biases allow participants to answer correctly prior to any 

learning (Figure 6.04).  
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Figure 6.04- Results from Experiment 5 show that motivated systematic languages are easier to 

categorise that conventional systematic languages, but only on early trials. Error bars show 

standard error 

.  

 Figure 6.05- Results from Experiment 6 show that the presence of a motivated association 

between features of the word and features of the meaning on one dimension negative 

influences the learnability of a non-motivated association for a second, unrelated feature of 

meaning. Error bars show standard error. 
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Additionally, we found that the presence of motivated associations between words 

and meanings interfered with the learnability of arbitrary associations on a second, 

unrelated dimension (Figure 6.05). We suggested that this finding might help 

account for the relative lack of motivatedness in natural lexica, or at least help 

explain why non-arbitrary parts of the lexicon are isolated from the rest of the 

lexicon in some languages like Japanese (Asano et al., 2015). Ideophones and 

expressives (Akita, 2011), for example, are noted for their markedness (Newman, 

2001), being described as being phonologically aberrant or peculiar (Newman, 1968; 

Epps, 2005; Kruspe, 2004) or structurally marked (e.g. Klamer, 1999). The 

markedness of these ideophones, which effectively insulated them from the rest of 

the lexicon, might exist to stop the presence of these associations from negatively 

influencing the learnability of arbitrary words.  

Chapter 5 

In Chapter 5 we introduced a temporal component to the artificial language learning 

paradigms used in previous chapters to allow for an exploration of the way that 

learning changes over time. Specifically, the introduction of this temporal 

component allowed me to evaluate the possibility of naïve bootstrapping: i.e. the 

suggestion that learning non-arbitrary word-meaning mapping bootstraps learning 

of later-acquired arbitrary words (but not based on either referential or conceptual 
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bootstrapping). I found evidence that appeared to initially support this possibility, 

but that could actually be more properly traced to confusability: systematic 

languages, as they grow, become increasingly confusable, and this eventually 

swamps the learning benefit that they gain from being systematic in the first place 

(Figure 6.06). 

 

Figure 6.06- Results from Experiment 7 show that systematic languages become increasingly 

confusable as the number of words to be learned increases. Error bars show standard error.  

 

 In my growing lexicon experiment, I found that later-learned words were learned 

more poorly overall because the task of learning more words is inherently more 

difficult, but that learning words that were more contrastive later increased their 
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learnability. In the case of learners who moved from learning motivated systematic 

words to arbitrary ones, this appeared to support a bootstrapping hypothesis, but 

the same results were found for participants moving from arbitrary early lexica to 

later motivated systematic ones (Figure 6.07). 

 

Figure 6.07- The summed confusability metric from Experiment 7 shows that languages that 

contrastiveness, rather than bootstrapping, predicts the difference in learnability between the 

four language types from that experiment. Error bars show standard error.  
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6.2.2 Bootstrapping 

My overall results, especially those of the growing lexicon experiment presented in 

Chapter 5, suggest that I should be critical of bootstrapping proposals for the benefit 

of non-arbitrary word-meaning mappings for language learning. Although I was 

unable, using adult participants, to test for the possibility of either referential or 

conceptual bootstrapping, my results still suggest that the temporal trajectory of 

natural language learning does not necessarily suggest bootstrapping or scaffolding. 

Both motivatedness and systematicity have clear benefits for learning under certain 

conditions, and it appears that these conditions are best met in early language 

learning: new learners can use motivated associations to establish reference, and 

systematic mappings allow for generalizability that benefits some types of learning. 

The existing evidence suggests that the structure of natural lexica reflects these 

benefits: early acquired portions of the lexicon are indeed more systematic 

(Monaghan et al., 2014) and motivated (Asano et al., 2015) than the later acquired 

arbitrary remainder of the lexicon.  

As I stressed in Chapter 5 however, the mere fact that acquiring arbitrary 

word-meaning pairs occurs after the early acquisition of more non-arbitrary words 

does not imply that the learning of the first enhances the learning of the second. 

Even the referential and conceptual bootstrapping hypotheses, which I was unable 

to test directly, rely on the suggestion that the learning of the non-arbitrary words 
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enhances the learning of later arbitrary ones. However, the fact that more difficult 

to learn arbitrary associations are learned later could instead reflect general 

cognitive development reaching maturity and then being brought to bear on the 

more difficult learning task, rather than early-acquired words accounting for the 

enhancement. So, we must recognize that bootstrapping hypotheses are susceptible 

to post hoc ergo propter hoc reasoning, and this is especially true when we consider 

contrastiveness as a pressure that can significantly shape learning trajectories. 

6.2.3 Contrastiveness and Confusability  

Collectively, the results of the experiments presented above suggest that, much like 

language above the level of the lexicon, the pressure for languages to be learnable 

accounts for the general structure of the lexicon. The conditions under which a 

language is learnable are determined by the perceptual and cognitive organization of 

its learners: certain types of associations are more learnable by virtue of their being 

perceptually biased, and constraints from domain-general systems like memory 

similarly influence what kinds of associations and structures of associations can be 

learned. Here, we have suggested, following others (Gasser, 2004; Monaghan et al., 

2011), that both motivatedness and systematicity can enhance learning, but that 

the constraints that these non-arbitrary mappings impose on the available signal 

space create the conditions that limit the degree to which they can be beneficial for 

learning. 
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Motivated associations between words and meanings do not individually 

constrain the signal space to any large degree, although a language based only on 

motivated associations would suffer from limited expressivity because it would only 

be able to express a limited number of concepts. However, as I have suggested, 

motivated associations can become incidentally systematic, and this systematicity 

constrains the size of the signal space.  

In the case of systematicity, mapping similar words to similar meanings can 

benefit learning, especially in cases where categorization is relevant: at the very least 

systematic associations limit the cognitive load required to discount out-of-class 

pairings. At the same time however, increasing the number of words in a given signal 

space increases the possibility, given some error, that words will be confused for one 

another. This increase in confusability as a function of signal spaces becoming 

increasingly saturated accounts for the majority of my findings, and suggests that 

languages will favor systematicity only insofar as systematic word-meaning 

mappings do not result in confusable word-meaning pairings (over and above some 

baseline level of confusability based on simply learning more words). 
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6.3  Future Directions 

6.3.1 Bootstrapping 

The findings of the experiments presented in this dissertation, as well as the more 

general claims outlined here, point towards a number of potentially profitable 

directions for future research.  

First, although I am critical of invoking bootstrapping explanations based 

simply on temporal order of events, both referential and conceptual bootstrapping 

are plausible and account for the observed data in human language learners fairly 

well. Unfortunately, because adult learners have already learned to establish 

reference, exploring the referential bootstrapping hypothesis using typical 

experimental participants and methodologies might be impossible. However, Imai & 

Kita (2014)’s sound symbolism bootstrapping hypothesis  is ripe for empirical testing: 

we already have evidence that infants attend to motivated word-meaning 

associations, and require only observations demonstrating that attention to 

motivated associations can be leveraged to establish reference for arbitrary ones.  

The conceptual bootstrapping hypothesis suggests that learning non-

arbitrary associations between words and meanings can enhance the ability of 

learners to recognize concepts and categories that are relevant to their language and 

can be leveraged for later language learning. Although adult learners have already 
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established the ability to recognize categories and generalize across those categories 

(ref?) they might still benefit from non-arbtirariness in the establishment of new 

categories. Experimental stimuli like the “Yufo” (Gauthier and Tarr, 1997), where 

the distinction between the two types of images is not immediately apparent, even 

to adult learners, might allow for the best test of categorisation. Previously, authors 

have suggested that labelling superordinate categories generally allows children to 

learn to form those categories (Waxman & Hall, 1993; Waxman & Markow, 1995), 

and that relational concepts underpinning these categories can then be transferred to 

novel stimuli (e.g. Ratterman & Gentner, 1998). With systematicity at the level of 

the lexicon however, we are not interested in superordinate terms, but rather in how 

similarity within categories (or motivatedness of association) might similarly 

influence category formation. The “Yufo” stimuli used in Lupyan, Rakison, & 

McClelland (2007; Figure 6.08) are well suited to this task because the distinction 

between the two types is not immediately apparent, even to adult learners. 
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Figure 6.08- “Yufo” stimuli from Lupyan et al., 2007. 

 

Lupyan et al. (2007) found that simply by having names, the category distinction 

between the two types of Yufos was made more salient and the categories were 

learned more easily, despite the fact that the inclusion of names required additional 

learning. In 2014, Lupyan & Casasanto returned to these stimuli, demonstrating 

that when the superordinate names for the two types of yufos were motivated 

(‘foove’ for round-headed yufos and ‘crelch’ for pointier yufos) categorization 

became easier. This result certainly seems to suggest that motivatedness, at least, 

might bootstrap category formation. I propose a simple extension of this 

experimental paradigm where names are given to these stimuli directly, rather than 
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labeling only their category. This manipulation would allow for a test of whether 

motivatedness and systematicity can more generally bootstrap the acquisition of 

categories, and further whether these learned categories can then be generalized to 

more arbitrary labels. 

The experiment suggested above addresses the claim that non-arbitrary 

word-meaning mappings might facilitate the learning of category boundaries, but 

what about the establishment of categories more generally? Again, adult 

participants are already aware of the fact that the objects in their language can 

belong to meaningful categories, but what about children? The conceptual 

bootstrapping hypothesis suggests, in addition to making relevant dimensions more 

salient for adult learners, that this saliency might underpin the recognition that 

categories exist at all, much in the same way that motivated word-meaning 

mappings can be suggested to underpin the establishment of reference. Testing this 

possibility requires infant participants, but might otherwise use a similar 

methodology to Lupyan & Casasanto (2014) (although preferential looking, rather 

than direct responding, would likely be required).  

6.3.2 Contrastiveness 

Because different languages likely have differently sized signal spaces, the search for 

a specific optimal configuration of language that would allow for maximal benefits 

based on systematicity and motivatedness while maintaining sufficient 
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contrastiveness would be a fool’s errand. However, the recognition that 

systematicity and motivatedness might inherently limit contrastiveness still 

suggests a number of directions for future research.  

An understanding of the relationship between signal space saturation, 

systematicity, and confusability both explains some of the existing findings in the 

psycholinguistic literature and points towards predictions about the structure of the 

lexicon that are so far not attested. First, I suggest that because non-arbitrary 

mappings between words and meanings limit the available signal space, and because 

additional systematic dimensions further limit the available space, individual 

natural languages should leverage non-arbitrariness differently.    

Motivated associations between words and meanings may enhance learning, 

especially in early acquired words, but this does not suggest that the sound-symbolic 

mappings that we observe in one language should necessarily be found in all (or even 

most) other languages. Because there are many possible crossmodal associations that 

can be leveraged linguistically to increase the salience of certain word-meaning 

mappings we should instead expect that each language will arrive at a similar 

overall solution for how to leverage motivatedness without penalizing learnability or 

expressivity, but that the specific motivated dimensions leveraged for this purpose 

will be somewhat random. The results of Experiment 2 in Chapter 4 of this 

dissertation point towards why languages might not actually be most learnable if all 
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possible motivated associations were manifest in the language: the presence of a 

motivated association on one dimension might actually interfere with the learning of 

arbitrary associations. Because not all meanings that a language expresses are 

equally (or at all) amenable to motivated mappings, the presence of too much 

motivatedness might actually limit learnability. 

Similar suggestions might be made for systematic associations at the lexical 

level: some systematicity is good, but only insofar as a language remains sufficiently 

expressive and learning is not penalized due to increased confusability. But, different 

languages will arrive at different solutions for where systematic word-meaning 

mappings can be best leveraged, although some categories will obviously be more 

relevant early in language acquisition, and thus more likely to be systematically 

structured.  

These two suggestions are especially important if one takes bootstrapping 

hypotheses seriously. Under either referential or conceptual bootstrapping, only a 

limited number of non-arbitrary word-meaning associations would be required to 

scaffold language learning, and as such the idiosyncratic use of non-arbitrary 

mappings between languages would seem less strange.  

Exploring these possibilities in natural languages seems daunting and 

potentially tautological: how could the fact that different languages leverage 

different motivated or systematic mappings suggest that those mappings represent 
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different solutions to the same overarching challenge of optimization? The use of 

artificial language learning tasks, especially iterated learning protocols that allow for 

non-guided optimization seem to be the most profitable way to explore these 

possibilities. Initial generations of participants might be trained with languages that 

used a large number of non-arbitary word-meaning mappings, and have the 

learnability of this language compared with the output of later generations: how 

many non-arbitrary mappings might be maintained in later versions of the 

language, and what dimensions might prove to be most favorable for the persistence 

of these non-arbitrary mappings? 

Finally, considerations of the interaction between contrastiveness and non-

arbitrariness might help explain the isolation of ideophones from the rest of the 

lexicon in languages that have large numbers of non-arbitrary word-meaning 

mappings. By using a portion of the possible signal space that is not otherwise 

utilized by the lexicon, these languages might gain all of the benefits of 

systematicity and motivatedness without materially influencing the contrastiveness 

of the remainder of the lexicon. In terms of my findings from Chapter 5, this 

configuration would still result in a penalty for learnability as more non-arbitrary 

words are learned (early acquired words would be easier to remember when there 

were few words, but would become more confusable as additional non-arbitrary 

words were introduced), but the introduction of non-arbitrary words would not 
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make previously learned arbitrary words more confusable. Both experiments and 

computational modelling approaches are well suited to exploring this possibility. 

6.4  Overall Conclusions 

In this dissertation I have attempted to address the possibility that non-arbitrary 

associations at the level of the lexicon might be important for language learning. 

The pressure for human languages to be both learnable and expressible has been 

raised with respect to the organization of language at all levels, from phonology (ref) 

to morphosyntax (Kirby et al., 2015), other than at the level of the lexicon. 

However, just as perceptual and cognitive constraints relevant to learning have been 

proposed to influence the structure of languages generally, I have proposed here that 

those same constraints exist at the level of individual word-meaning mappings, and 

thus that they should similarly shape lexical structure.  

Although this suggestion is not new, this dissertation has sought to apply a 

single framework to a wide range of research in psychology and linguistics exploring 

the task of language learning, and to examine critically how well current theories 

account for the observed experimental and naturalistic data in the field. The most 

central contribution of this dissertation to the field generally is the contribution of a 

parameterization of confusability that might be used to explain differential 

learnability across a wide range of previous findings. This notion of confusability 

follows closely from Monaghan et al. (2011) and Gasser (2004) in recognizing that 
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non-arbitrariness constrains signal space, but goes farther than that by being 

applicable not only to lexica described as a whole but also to individual learning 

events. Further, the use of this metric further enhanced my ability to critically 

explore the possibility that learning non-arbitrary tokens bootstraps the acquisition 

of later arbitrary tokens. 

The effect of the interaction between pressures for languages to be both 

learnable and expressive is one that has different solutions that are dependent on the 

size of the signal space and the number and variety of meanings that languages are 

required to express. Because language learning unfolds over time, with a small initial 

vocabulary dealing with a rather simple set of words and potentially also a more 

limited phoneme inventory, the optimal solution for language learning early in 

development is likely to be different than the optimal solution for language learning 

later on. The presence of non-arbitrary word-meaning associations, especially in the 

early-acquired lexicon suggests that languages have been shaped to be learned 

optimally over the course of development. By taking advantage of benefits for non-

arbitrariness when those same non-arbitrary associations do not induce learnability 

or expressivity penalties, the task of language learning is made easier across the 

board. The degree to which this is true, and the specific types of non-arbitrary 

associations leveraged for this purpose, will naturally vary between languages, but 

future research considering this possibility broadly and linking it to an overarching 
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theory should help illuminate questions about human cognition and the evolution of 

language.  
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Appendix A- Figures 

Animal stimuli from Experiments 1-4 
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Vehicle Stimuli from Experiments 1-4 
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Image Stimuli from Experiment 5 
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Image Stimuli from Experiment 6 
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Image Stimuli from Experiment 7 
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