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Abstract

This dissertation looks at motor control in speech production. Two specific ques-

tions emerging from the speechmotor control literature are studied: the question

of articulatory versus acoustic motor control targets, and the question of whether

prosodic linguistic variables are controlled in the sameway as segmental linguis-

tic variables.

In the first study, I test the utility of whispered speech as a tool for addressing

the question of articulatory or acoustic motor control targets. Research has been

done probing both sides of this question. The case for articulatory specifications

is developed in depth in the Articulatory Phonology framework of Haskins re-

searchers (eg Browman & Goldstein 2000), based on the task-dynamic model

of control presented by Saltzman & Kelso (1987). The case for acoustic speci-

fications is developed in the work of Perkell and others (eg Perkell, Matthies,

Svirsky & Jordan 1993, Guenther, Espy-Wilson, Boyce, Matthies, Zandipour &

Perkell 1999, Perkell, Guenther, Lane, Matthies, Perrier, Vick, Wilhelms-Tricarico

& Zandipour 2000). It has also been suggested that some productions are gov-

erned by articulatory targets while others are governed by acoustic targets (Lade-

foged 2005).

This study involves two experiments. In the first, I make endoscopic video

recordings of the larynx during the production of phonological voicing contrasts

in normal and whispered speech. I discovered that the glottal aperture differ-

ences between voiced obstruents (ie, /d/) and voiceless obstruents (ie, /t/) in
normal speechwas preserved in whispered speech. Of particular interest was the

observation that phonologically voiced obstruents tended to exhibit a narrower

glottal aperture in whisper than vowels, which are also phonologically voiced.

This suggests that themotor control targets of voicing is different for vowels than

for voiced obstruents. A perceptual experiment on the speech material elicited
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in the endoscopic recordings elicited judgments to see whether listeners could

discriminate phonological voicing in whisper, in the absence of non-laryngeal

cues such as duration. I found that perceptual discrimination in whisper, while

lower than that for normal speech, was significantly above chance. Together, the

perceptual and the production data suggest that whispered speech removes nei-

ther the acoustic nor the articulatory distinction between phonologically voiced

and voiceless segments. Whisper is therefore not a useful tool for probing the

question of articulatory versus acoustic motor control targets.

In the second study, I look at the multiple parameters contributing to relative

prominence, to see whether they are controlled in a qualitatively similar way to

the parameters observed in bite block studies to contribute to labial closure or

vowel height. I vary prominence by eliciting nuclear accents with a contrastive

and a non-contrastive reading. Prominence in this manipulation is found to be

signalled by f0 peak, accented syllable duration, and peak amplitude, but not

by vowel de-centralization or spectral tilt. I manipulate the contribution of f0 in

two ways. The first is by eliciting the contrastive and non-contrastive readings in

questions rather than statements. This reduces the f0 difference between the two

readings. The second is by eliciting the contrastive and non-contrastive readings

in whispered speech, thus removing the acoustic f0 information entirely. In the

first manipulation, I find that the contributions of both duration and amplitude

to signalling contrast are reduced in parallel with the f0 contribution. This is a

qualitatively different behaviour from all other motor control studies; generally,

when one variable is manipulated, others either act to compensate or do not react

at all. It would seem, then, that this prosodic variable is controlled in a differ-

ent manner from other speech motor targets that have been examined. In the

whisper manipulation, I find no response in duration or amplitude to the ma-

nipulation of f0. This result suggests that, like in the endoscopy study, perhaps

whisper is not an effective means of perturbing laryngeal articulations.
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CHAPTER 1

Overview

1.1 Context

Linguistics is the study of the patterns of language. We wish to determine what

causes lie behind the patterns we observe. Sociolinguists examine social patterns

and seek social factors as causes. Morphologists look at morphological patterns

and the morpho-syntactic factors behind them. Semanticists look at patterns of

meaning; historical linguists look at diachronic patterns of language evolution.

In phonetics, we observe patterns in the physical production of speech. We look

for psychological, anatomical, and acoustic explanations for those patterns.

A functional (goal-oriented) perspective is useful in the investigation of motor

tasks in general. In reaching tasks, for example, the end-point of the hand has

proven to be a key predictive parameter in determining the precise path of the

hand. This is opposed to, say, muscle-specific targets which specify individual

articulator activation potentials.

When we turn to speech production, a sensible starting point would be to de-

termine whether speech is similar to other motor tasks. Can we identify func-

tional goals which reliably predict articulator trajectories? Unfortunately, speech

presents some unique difficulties when we try to set up specific empirical tests.

Unlike in reaching or other manual skilled action tasks, not all of the potential

functional targets of speech are easily identified. Some, like the listener’s even-

tual understanding of an utterance, are difficult to assess objectively. Others, like

the positions of laryngeal and oral articulator groups, cannot be easily observed

1
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without intrusive instrumentation (which is likely to alter the behaviour being

investigated).

The goals of this dissertation are twofold. First, I pose two empirical questions

about the motor control of speech, loosely related by the fact that both revolve

around the coordination of laryngeal with supralaryngeal articulations. Second,

I develop methods to more reliably measure data produced in such studies.

1.2 Perturbation and compensation

Many linguistic researchers have approached the problem of motor control, us-

ing a variety of investigative methods. This research generally uses a perturba-

tion/compensation paradigm. Researchers perturb some aspect of speech (say,

restricting jawmovement with a bite block apparatus) and look to see what com-

pensation, if any, occurs (say, extra lip movement to achieve labial closure).

“Perturbation studies have allowed for the examination of a phenomenon known

as ‘compensatory articulation,’ i.e., the achievement of a goal or target produc-

tion involving compensatory movement by the nonperturbed articulators. The

results of these studies have suggested that there is some type of invariant goal

in the production of a given speech sound and that variable muscle activations

serve to reach that goal.” (Baum 1988, p 1662) A control variable acts to keep

invariant that which it specifies—a property of the acoustic signal, say, or the rel-

ative position of two articulators. By introducing perturbations, researchers can

then observe the compensation to determine which properties of the speech are

kept invariant. There are two layers of questions to ask within this compensa-

tion/perturbation paradigm. First, we ask whether a manipulation of parameter

A triggers compensation in parameter B. Second, if compensation is observed,

we as what this tells us about motor control.

Figure 1.1 schematizes the hypothesis space used to ask the first question.

A compensation study generally involves two variables that contribute to a lin-

guistic distinction. Experimenters manipulate one variable (eg, jaw opening)

leaving the other one (such as lip movement) free to vary. The response of the

dependent variable to the manipulation is then observed. There are three types

of behaviour that the dependent variable might exhibit (hypotheses a, b, and c in
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Figure 1.1: Illustration of the contribution of the independent (solid line) and
dependent (dashed lines) variables to a linguistic signal. The dependent vari-
able can respond to the manipulation of the independent variable in three ways
(discussed in the text).

figure 1.1): it can fail to react at all (a), it can react to the manipulation in the op-

posite direction as the independent variable does (b), or it can react in the same

direction as the independent variable (c).

If there is no correlation between the variables—hypothesis (a) in figure 1.1—this

suggests that they are governed by separate motor control variables. Statistically,

this is the null hypothesis: we ask whether it is reasonable to rule this possibility

out given a particular set of data. The point of motor control variables is to

recruit any articulatory resources available to maintain an invariant goal. When

a manipulation of one contribution does not trigger a compensatory reaction in

the other, the reasonable inference is that these two variables do not cooperate in

achieving the hypothesized motor control target.

The next alternative is that there is a significant negative correlation between

the dependent variable and the independent variable—hypothesis (b) in fig-

ure 1.1. This is exactly the behaviour predicted if both parameters are controlled

by the same motor control variable, acting to achieve a single invariant goal. If

both variables can contribute to a target, and that target is the object of a mo-

tor control variable, then a reduction of one variable’s contribution will tend to

trigger a compensatory increase in the other variable’s contribution—a negative

correlation—in order to achieve the target.

Under existing characterizations of control variables, these two hypotheses are

the only likely ones: either two parameters are governed by the same control

variable, and so exhibit compensation—hypothesis (b)—or they are not gov-

erned by the same control variable, and thus don’t respond to each other’s perturbations—

hypothesis (a). The third possibility—that two parameters show a sympathetic
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rather than a compensatory relationship—would be difficult to explain from

within the current motor control. A result consistent with hypothesis (c) would

suggest a unique mode of motor control, different from what has been observed

in past studies.1

We are not only interested in whether there is some sort of compensation—

whether, for example, the tongue compensates for jaw immobility in the pro-

duction of vowels. We ultimately want to know what is driving that compen-

sation. What functional target is suggested by the compensation we observe?

In the tongue-jaw example (drawn from the bite-block literature, discussed in

section 1.2.2 below), it is tempting to infer that the target is articulatory because

the parameter being maintained by the compensation (vocal tract area function)

is articulatory. But in this case, the acoustic consequence (the formant structure

of the vowel) is also being maintained. Either of these things—the articulatory

configuration or the acoustic output—could be invoked as a possible target to ex-

plain the compensatory behaviour observed. Figure 1.2 illustrates this situation,

drawing on the hypothesis space shown in Figure 1.1.

C
o
n
tr
ib
u
ti
o
n

A B

Articulation

A B

Acoustics

Figure 1.2: Illustration of results that do not help decide between articulatory
and acoustic hypotheses (based on schematization from Figure 1.1).

What we need is a manipulation in which the different hypothesized targets pre-

dict different behaviours: where a speaker driven by an articulatory target would

respond differently to one driven by an acoustic target. Figure 1.3 presents ...

It should be remembered, however, that the useful results schematized in fig-

ure 1.3 are not the only possible results in an experiment. Also possible (still

omitting the difficult-to-interpret outcome (c) from figure 1.1) are results where

both articulation and acoustics show compensation, and where neither show

compensation.

1On a procedural level, such a result may also point to a poor design, in which the dependent
and independent variables are not, in principle, capable of being controlled separately.
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Articulatory specification
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A B A B

Acoustic specification

Figure 1.3: Illustration of how to test between different types of control vari-
able specification—results that help decide between articulatory and acoustic
hypotheses.

By definition, compensation studies elicit speech in unusual conditions—some

form of perturbation is always used. It is prudent to ask whether the patterns

thus revealed can be used to make statements about normal speech production.

In a study of Swedish vowels produced with bite-block, Lindblom, Lubker &

Gay (1979) say the following:

Context-sensitive coding and plasticity of motor control are properties

of motor systems in general. To explain the existence of compen-

satory articulation we can therefore propound the following hypothe-

sis: speakers do so well on the compensatory vowel production tasks

because normal speech production programming is indeed “compen-

satory” (context-sensitive and predictive) in nature. The differences

between compensatory and normal articulation do not reside in the

choice of different encoding strategies, but rather have to do with ex-

treme versus non-extreme articulatory parameter values. (p159)

Kelso & Tuller (1983) advocate a similar approach:



CHAPTER 1. OVERVIEW 6

Immediate adjustment . . . is a predictable outcome of a dynamical

system in which muscles function cooperatively as a single unit. If

the operation of certain variables is fixed, as in the bite block, or un-

expectedly altered, as in on-line perturbation, linked variables will

automatically assume values appropriate to the constraint relation,

as long as biomechanical limitations are not violated. In short, dy-

namical systems—of which speech is an instance—always operate in

a mode that one can describe as “compensatory.” (p222)

Skilled actions are controlled in such a way that the same motor control strat-

egy can produce successful behaviours in normal and in abnormal conditions.

This is confirmed by the predictive success of mathematical models that incor-

porate such assumptions—such as those for balance in cats (Lockhart & Ting

2007), hand position in human reaching tasks (Flash & Hogan 1985). It is also

supported by several of the speech studies mentioned below. In particular, note

the agreement between bite block studies (eg Gay, Lindblom & Lubker 1981,

Kelso & Tuller 1983) and the walking-and-talking study of Shiller, Ostry, Grib-

ble & Laboissière (2001), described below. The former involve instrumental per-

turbation; the latter involves simply speaking while walking—hardly an abnor-

mal condition. Both the naturalistic and the instrumental perturbations yield the

same compensatory behaviour.

Following is a quick overview of methods used to probe the nature of speech

motor control.

1.2.1 Instrumental perturbations

In laboratory speech studies, it is unsurprising that many researchers seek to

perturb speech instrumentally. They introduce apparatus to either restrict the

motion of the articulators or change their shape. The two main types of instru-

mental perturbations used are bite blocks, which restrict the mobility of the jaw,

and oral prostheses, which change the configuration of the vocal tract.

1.2.2 Bite block

Bite block experiments perturb jaw movement by blocking the biting motion.

Bite blocks can come in two forms. One is a static bite block, which consists
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of a solid object held between the teeth, usually the lateral posterior teeth, to re-

duce obstruction of the acoustic speech signal (Lindblom et al. 1979, Lubker 1979,

Fowler & Turvey 1981, Gay et al. 1981, Kelso & Tuller 1983, Oller & MacNeilage

1983, Smith &McLean-Muse 1987, Baum, Kim&Katz 1997, Baum 1988, Edwards

1992). The other is a dynamic bite block, in which an apparatus is arranged so

that the jaw moves freely at first, but resistance can be applied without warning

to the jaw, inhibiting its movement (Folkins & Abbs 1975).

Jaw movement participates in a wide variety of speech articulations—any artic-

ulation involving raising of the tongue or lower lip. Interfering with jaw move-

ment therefore affects the production of a large number of speech sounds.

Two important findings come out of bite-block studies with respect to the nature

of motor control variables.

The first is that segments are consistently produced with appropriate constric-

tions in spite of the bite block. Labial consonants exhibit adequate closure (Folkins

& Abbs 1975, Smith &McLean-Muse 1987)—the lips move farther to compensate

for the reduced jawmobility. Vowels tend to show normal formant structures im-

mediately on insertion of the bite block (Lindblom et al. 1979, Fowler & Turvey

1981, Gay et al. 1981, Kelso & Tuller 1983). Tracings of the x-ray data collected by

Gay et al. (1981) showed that the tongue and lip articulations were adjusted to

maintain as normal a vocal tract area function as possible, especially at the points

of greatest constriction (the points most relevant to producing natural-sounding

segments). Other studies show small but consistent effects of bite block on for-

mant values (McFarland & Baum 1995, Baum et al. 1997, Baum 1999). However,

these effects are smaller than would be expected if no compensation occurred,

suggesting that some compensation is present even when it is not complete. Also,

Flege, Fletcher & Homiedan (1988) found that immediate compensation was not

complete in the production of [s℄ and [t℄ in bite block, in both articulatory and
perceptual measures.

The second key finding of bite block studies is that these compensations were

immediate, showing little or no delay as might be expected if speakers were re-

planning their articulatory strategies (Lubker 1979, Fowler & Turvey 1981, Kelso

& Tuller 1983).

The compensatory behaviours evident in these bite-block studies suggest a sin-

gle control variable that specifies labial closure (for labial consonants) or tongue
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height (for vowels), rather than muscle-specific control variables separately gov-

erning the contributions of the jaw and lips.

In terms of the hypotheses schematized in figure 1.1 above, these studies all point

clearly to hypothesis (b): compensation is present. The reduced contribution of

jaw movement triggers an increased contribution of lip or tongue movement.

Note that this hypothesis does not require complete compensation—tongue height,

for instance, does not have to be the same relative to the palate for bite-block as

for non-bite-block vowels. Schematically from figure 1.4, j + k does not have to

equal l + m. It is enough that there is some negative correlation.

C
o
n
tr
ib
u
ti
o
n

free bite-block

j

k
l

m

lips/tongue
jaw

Figure 1.4: Winning hypothesis in bite block studies.

From these studies, we cannot establish whether the true target specified by the

control variables is articulatory or acoustic; just that it is composite across multi-

ple related articulators.

1.2.3 Oral prostheses

Another means of instrumentally perturbing speech is by altering the configura-

tion of the articulators. Themost common form this takes is the use of an artificial

palate such as an electropalatograph (Hamlet & Stone 1976, 1978, Baum & Mc-

Farland 1997, McAuliffe, Lin, Robb & Murdoch 2008). By changing the effective

shape of the palate, it shifts the point of contact or approximation for consonantal

strictures, and it alters the resonating properties of the oral cavity. It also blocks

the touch receptors in the palatal skin, thus depriving the speech production

mechanism of one potential source of feedback about articulatory performance.

Another technique involves using a dental prosthesis to extend the teeth (Jones

& Munhall 2003).

Artificial palates used to examine the production of both consonants and vow-

els caused changes in both articulation and the acoustic signal (Hamlet & Stone
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1976, 1978, Baum & McFarland 1997, McAuliffe et al. 2008). Not only this, but

the changes were not consistent across speakers. This suggests that there is no

coherent compensation strategy being employed. Only after accustomization do

productions begin to approximate natural-sounding speech. The time to accus-

tomization varies across studies, speakers, and segment types. Hamlet & Stone

(1976) report that some speakers were able to produce normal vowel formants af-

ter a week with the prosthesis, while some were not. Studying the production of

alveolar consonants with artificial palates, Hamlet & Stone (1978) found that af-

ter two weeks speakers’ productions were approaching normal (initial overshoot

patterns had either disappeared or been dealt with by speakers shifting the place

of articulation). Baum&McFarland (1997) accelerated adaptation by having par-

ticipants read [s℄-laden passages over the course of an hour. Both perceptual and
acoustic measures suggested that near-normal-sounding [s℄was produced by the
end of the hour. McAuliffe et al. (2008) observe varied adaptation patterns across

their three participants over the 3 hours of their study.

A related study by Jones & Munhall (2003) used dental prostheses that extended

the upper front teeth by 5–6 mm. Their goal was “to examine the contribution of

auditory feedback to learning a novel acoustic-motor relationship by modifying

the vocal tract in a way that did not hinder movement or reduce somatosensory

information.” (p 533) Unlike artificial palates, dental extension prostheses don’t

interfere with feedback on contact or pressure. Results for the production of /s/
showed acoustic distortions, which improved over time. (Articulatory data were

not recorded.) This agrees with the results of the artificial palate studies.

Speakers do not immediately compensate for the distortion imposed by a pros-

thesis (as they do with bite-block). Short-term reactions to the presence of the

prosthesis are varied and unpredictable—neither the articulatory plan nor the

acoustic product are kept invariant. The use of oral prostheses does not, there-

fore, allow us to examine how speech motor control variables are represented or

organized. These studies provide information on the longer-term adaptation by

which normal speech is eventually restored, but such longitudinal questions are

beyond the scope of the current work.

1.2.4 Non-instrumental perturbations

All laboratory procedures for examining speech carry the risk of generating “un-

natural” behaviour—of producing patterns that do not, in fact, represent normal
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speech production. Are speakers consciously adjusting their targets or otherwise

diverging from their normal speech production behaviours? The introduction of

experimental apparatus such as bite blocks and oral prostheses compounds this

risk. Some researchers have therefore opted to use more naturalistic perturba-

tions to examine compensatory behaviours.

One approach is to simply wait for one parameter (the independent variable)

to vary spontaneously, perhaps due to co-articulatory effects, and then observe

whether another parameter (the dependent variable) responds systematically to

that variation. The walking study (section 1.2.5) and the two co-articulatory vari-

ation studies (section 1.2.6) take this approach. The other approach is to directly

elicit speech under specific linguistic conditions differing in a relevant (indepen-

dent) variable, and to look for compensatory effects in another (dependent) vari-

able. This is the approach taken with whisper studies (section 1.2.7).

1.2.5 Walking

Shiller et al. (2001) observed subjects speaking while walking. The varying direc-

tion and magnitude of head acceleration (up and down) applies varying loads to

the jaw: it wobbles up and down a little relative to the head. This is analo-

gous to the load produced by a dynamic bite block apparatus (Folkins & Abbs

1975, section 1.2.7). Shiller et al. found that, when participants were speaking

and walking (rather than just walking) the wobble of the jaw due to acceleration

disappeared. Participants were compensating for the acceleration due to walk-

ing in order to achieve normal jaw apertures for speech. This study provides

valuable validation of the results of bite-block studies (which show compensa-

tion to experimentally-induced confounds of jaw movement) as representative

of “normal speech”—supporting the claim of Lindblom et al. (1979) and Kelso

& Tuller (1983) above that normal speech motor control is inherently “compen-

satory”, and no special mode of control needs to be invoked to explain speech

under perturbed conditions.

1.2.6 Co-articulatory variation

Some studies go one step further even than Shiller et al. (2001), looking only

at natural, unperturbed speech and counting on contextual effects within the

speech itself to constrain some aspect of production more in some situations and

less in others. Perkell et al. (2000, p 246) define the term “motor equivalence” as
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referring to “the observation that, in multiple tries, the same goal is reached in

more than one way.”

Perkell et al. (1993), investigated the production of /u/, one of whose distinctive
characteristics is a low F2 frequency. They used an electromagnetic mid-sagittal

articulograph (EMMA) to examine the movements of the tongue. Their partici-

pants were four male speakers of American English specifically selected from a

pool of twice that many on the basis of their prominent use of lip rounding in /u/
production. They elicited /u/ in contexts where co-articulatory effects could be
expected to lower the tongue body, raising F2 frequency. They then observed lip

rounding, which also affects F2. They found that the tongue-height differences

induced by co-articulation were negatively correlated with lip-rounding differ-

ences apparently designed specifically to maintain an /u/-like second formant.
That is, their participants were using different vocal tract shapes to achieve an

invariant auditory goal, depending on the context. This suggests that a motor

control variable was acting on an acoustic rather than an articulatory specifica-

tion, as it was the acoustic and not the articulatory properties of speech which

were being kept constant.

A similar study was conducted by Guenther et al. (1999) to investigate the main-

tenance of the characteristically low F3 of /�/. They elicited it in bisyllabic non-
sense words, following different consonants (/b d g v/) and intervocalically. Us-
ing acoustic modelling, they identified three acoustic motor equivalence strate-

gies that could be used to maintain the low F3. “Analysis of acoustic and articu-

latory variabilities revealed that these tradeoffs act to reduce acoustic variability,

thus allowing relatively large contextual variations in vocal tract shape for /r/
without seriously degrading the primary acoustic cue.”

If replications with greater numbers of speakers bear out the patterns observed

in these two studies, then we will have good evidence for acoustic specifications

in the production of the formants studied. Identifying and testing other, similar

motor-equivalence strategies could lead to a conclusion that formants of vowels

and sonorants are governed by control variables with acoustic specifications.

1.2.7 Whisper

Another way to look for compensatory behaviour without intrusive experimen-

tal apparatus is to have speakers voluntarily remove a channel of information.
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Many studies have looked at whisper—in which vocal fold vibration is absent—

to see what (if anything) speakers do to recover the information normally carried

in vocal fold vibration. This includes f0 contours expressing lexical tone (Gao

2002), pitch accent (Nicholson & Teig 2003), intonational information, or sung

tune (Meyer-Eppler 1957, Thomas 1969), as well as the phonological voicing

contrasts normally signalled (in part) by the presence and timing of devoicing

and voicing (Kallail & Emanuel 1984a,b, Munro 1990, Mills 2003, Higashikawa,

Green, Moore & Minifie 2003).

With anymethodological tool, such as whisper, it is useful to know exactly which

variables are being manipulated and which are not. For example, we know that

voice onset time is, strictly speaking, absent from whispered speech. But are

all of the glottal distinctions between voiced and voiceless consonants absent in

whispered speech? Perkins, Rudas, Johnson & Bell (1976) assume they are when

interpreting their finding that shows stutterers are far more fluent in whispered

speech. They claim that the reduction in stuttering is because there are fewer

gestures to coordinate. On the other hand, several phoneticians have claimed

(also without direct empirical evidence) that, in whispered as in normal speech,

the glottis is wider for phonologically voiceless segments such as /s/ than for
phonologically voiced segments like /z/ (Sweet 1877, 1906, Pike 1943, Malmberg
1963, Abercrombie 1967, Catford 1964, 1977, Laver 1994).

Several studies have looked at the perception of voicing contrasts in whispered

speech, finding better-than-chance discrimination (Dannenbring 1980, Munro

1990, Higashikawa & Minifie 1999, Stevens & Wickesberg 2002, Nicholson &

Teig 2003, Mills 2003). However, none have eliminated the possibility that non-

laryngeal cues, such as duration, are responsible.

1.3 Existing work

The experimental work described in the foregoing sections is far from resolving

the basic questions pertaining to speech motor control.

The bite block studies confirm that the control of jaw and lips (in the case of labial

consonants) or jaw and tongue (in the case of vowels) is combined. Wemay infer

that this combined control is based on functional targets such as labial closure

or tongue height, but we cannot determine from the evidence at hand whether

those targets have articulatory or acoustic specifications. Either would generate
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the patterns observed. The walking study, though a valuable validation of bite-

block results, is unlikely as a methodology to tell us anything beyond what bite

block studies have already demonstrated.

The research on oral prostheses demonstrates that the motor control system is

unable to generate online compensation for alterations of the vocal tract—specifically

of passive articulators (palate and upper teeth). In such cases, a process of re-

learning is required in order to achieve “normal” productions.

Acoustic studies of motor-equivalent co-articulatory variation provide prelimi-

nary support for acoustic goals for vowel and sonorant formants (though much

work remains to be done to establish this conclusion).

1.4 Empirical questions

One question which is frequently brought up in speech motor control research is

whether the functional targets of speech are specified in terms of articulation or

in terms of acoustics.

1.4.1 Phonological voicing in whispered speech

An empirical question was raised in section 1.2.7: is the glottal distinction be-

tween voiced and voiceless consonants absent in whispered speech? On the sur-

face, the answer is obviously “yes”. After all, phonetic voicing participates in

this contrast, either by its presence or absence on the obstruent in question, or by

the timing of its onset relative to consonantal release (voice onset time, or VOT).

However, the question is not whether phonetic voicing is used to distinguish

obstruents in whispered speech, but whether the glottal distinction that gives

rise to voicing contrasts is present. It is on this question that researchers have

differed, and it is this question which the current study seeks to answer. By defi-

nition, whispered speech lacks phonetic voicing, and thus does not have acoustic

contrasts. However, there is a great deal of variability possible in laryngeal ar-

ticulator configurations even within the constraints of whispered speech. The

glottis can be wider or narrower; the vocal folds can be elongated or shortened;

transglottal airflow can be greater or less. All three of these parameters could
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participate in phonetic voicing in normal speech. The current study looks specif-

ically at whether glottal aperture distinguishes phonologically voiced and voice-

less obstruents in whispered speech; and if so, how does the distinction compare

to that in normal speech.

1.4.2 Parameter cooperation in signalling contrast

Research into compensation has so far looked primarily at segmental speech pro-

duction: consonants and vowels. The production of suprasegmental elements

such as stress, accent, and intonation, is less well-studied. This may be largely

due to the fact that the segmental patterns of speech are more well-explored than

the suprasegmental patterns.

However, perceptual and acoustic studies have established some patterns of

prosody to the extent that they are susceptible to study within the perturba-

tion/compensation paradigm. In this work, I examine the various acoustic cues—

particularly f0 and duration—which are used to signal (and to recognize) con-

trastive focus on an accented word.

The key question is this: will these prosodic parameters interact in the same com-

pensatory pattern that we have seen, for example, in bite-block perturbations of

segmental parameters? Or will the fact that f0 and duration are generated by dif-

ferent articulatory systems (one laryngeal, the other supralaryngeal) mean that

they are coordinated in a qualitatively different way to how jaw and lip move-

ment are coordinated in bite-block speech? The answer to this question will help

us understand just how widely the bite block type of compensation is informa-

tive about speech production in general.

1.5 Methodological contributions

One theme of the current work, emerging both in the study of voicing in whis-

per and in the study of parameters signalling contrast, is a focus on articulatory

events that occur in the larynx. Whispered speech and phonological voicing are

primarily defined by the laryngeal posture employed in the production of the

segments in question. Contrastive emphasis involves at least two parameters—

f0 and amplitude—which are primarily controlled in the larynx. (The third pri-

mary acoustic parameter implicated in signalling contrast is duration, which is

mainly due to the timing of supralaryngeal articulatory events.)
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The study of laryngeal motor control is hampered by the inaccessibility of laryn-

geal structures to direct instrumental observation. Recordings with intrusive in-

struments such as endoscopes or electrodes used in electromyography are expen-

sive to acquire and uncomfortable for participants, necessitating short record-

ing sessions. Most data from which laryngeal events are inferred is indirect—

primarily acoustic data. Inferences of laryngeal features such as glottal vibration

characteristics (via spectral tilt) or pharyngeal/epiglottal retraction (via formant

structures) depends on models that map articulations to acoustics. The validity

of inferences can never exceed the validity of the acoustic models—all of which

employ some simplifying assumptions.

A secondary goal of this work is to improve upon existing measurement tech-

niques to get precise, reliable measurements of parameters related to laryngeal

motor control. Chapter 2 introduces the data gathered in the endoscopy study,

and presents a new technique (drawing on existing methods from the literature)

for acquiring well-controlled glottal aperture values from endoscopic video data.

Chapter 4 outlines the acoustic measures taken for the study of contrastive em-

phasis. In addition to outlining measures of duration, f0, and amplitude, this

chapter presents a thorough review of the literature on spectral tilt. Measures of

spectral tilt have been used for many things, but often tend to be used as a proxy

for certain properties of the glottal waveform. I identify the measure best-suited

to the current study (in which the source waveform is of particular interest), and

introduce a slight modification designed to expand its applicability.



CHAPTER 2

Endoscopy measures

While fiberoptic endoscopy has been available for phonetic research for sev-

eral decades—it was first introduced to the phonetic research community by

Sawashima &Hirose (1968)—a technique for obtaining reliable, controlled quan-

titative measurements from endoscopic recordings remains elusive.

This chapter gives the reader an overview of the issue of measuring endoscopic

data. A brief review of anatomy (section 2.1) is followed by a survey of measures

described in existing research (section 2.3). Next, I present the techniques used

to correct distortions in the images (sec:endoscopy-correcting-distortions), fol-

lowed by the procedure for extracting measurements (sec:endo-measurement).

Chapter 3 presents the details of data acquisition, and the results of measuring

that data with the technique described here.

2.1 Anatomy

The basic vocal anatomy and the positioning of the lens are common to all endo-

scopic studies.

Endoscopic recordings give a view of the larynx from above. The position of the

endoscope relative to the larynx is illustrated in figure 2.1.

Figure 2.2 illustrates the anatomical structures of the larynx that are typically

visible in endoscopic images. Endoscopic images are oriented with the poste-

rior of the larynx approximately at the top. All marked structures aside from the

epiglottis and the cuneiform tubercles are composed of soft tissue. The epiglottis

16
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Larynx

Nasal cavity

Epiglottis

Endoscope

Figure 2.1: Midsagittal depiction of vocal tract with endo-
scope in place, adapted from image in Wikimedia Commons
“http://commons.wikimedia.org/wiki/Image:Particulate danger-it.svg”
(public domain image), posted by user “Xander89”.

and cuneiform tubercles are cartilaginous structures covered by skin. Note that,

although circles are used to identify the cuneiform tubercles in the figure, they

are rarely circular in appearance. In this figure, they appear roughly triangu-

lar; in figure 2.12 later in this chapter (a different speaker), they appear as long

ovals. The arytenoids—another pair of skin-covered cartilages—are not clearly

visible in this type of data. They lie inferior to the cuneiform tubercles (from this

perspective, they are beyond the cuneiform tubercles).

The crescent-shaped upper edge of the epiglottis is sometimes visible, some-

times not, as shown in figure 2.3. Its base is always visible—the bump at the

anterior end of the vocal folds is the epiglottal tubercle at the base of the epiglot-

tis. The posterior portions of the aryepiglottal folds are always visible, though

their points of connection to the epiglottis are often not visible (as in figure 2.2).

The other labelled structures—cuneiform tubercles, ventricular folds (false vo-

cal folds), and vocal folds—are usually visible. (The ventricular folds can ob-

scure the vocal folds during particularly constricted productions. Also, see Es-

ling (2002), Esling & Harris (2003), and Edmondson & Esling (2006) for examples

of endoscopic images in which the epiglottis is so retracted as to completely ob-

scure the glottis—such articulations are beyond the scope of the current work.)



CHAPTER 2. ENDOSCOPY MEASURES 18

(a)

(b)

(c)

Figure 2.2: Illustration of laryngeal anatomy (a) as seen through an endo-
scope, (b) with key structures outlined, and (c) labelled abstraction. Label key:
GL = glottal opening, VF = vocal folds, FVF = false vocal folds (ventricular folds),
EPI = epiglottis, AEF = aryepiglottal folds, CT = cuneiform tubercles.
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(a) (b)

Figure 2.3: Frames with the upper edge of the epiglottis visible (a) and not visible
(b).

The structures labelled cuneiform tubercles in the present work are so identified

following Edmondson & Esling (2006). However, Benguerel, Hirose, Sawashima

& Ushijima (1978) identify the same structures as the corniculate cartilages. In his

discussion of laryngeal anatomy, Zemlin (1988) describes the corniculate carti-

lages as resting on the superior apexes of the arytenoid cartilages (p106), while

the cuneiform cartilages are embedded in the aryepiglottic folds (p108), some-

what lateral to the corniculate cartilages (Zemlin’s figure 3-13, p109). Unfortu-

nately, he does not provide a labelled image of the endoscopic view to decisively

distinguish the two structures in an endoscopic image. It is therefore possible

that these structures are mislabelled in the current work. I retain Edmondson &

Esling’s attribution, as the labelled structures in figure 2.2 seem to agree more

with Zemlin’s description of the cuneiform cartilages than his description of the

corniculate cartilages. Note that the property relevant for the current work—

namely, that they are of constant size and can thus serve as a normalizing refer-

ence for distance (section 2.5 below) holds regardless of the name we use.

2.2 Non-video-based measures of glottal opening

There are methods of observing (or inferring) the magnitude of glottal opening

which do not involve gathering video data.

Transglottal illumination (also known as photoglottography) uses a similar setup

to endoscopy, with the addition of a light sensor applied externally to the front of

the throat below the larynx. (ie Lisker, Abramson, Cooper & Schvey 1969, Baer,

Lofquist & McGarr 1983, Gracco & Löfqvist 1994, Hess & Ludwigs 2000) This
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detects the amount of light transmitted through the larynx from the endoscopic

tube. (This can be done in conjunction with enodscopic recordings.) This has the

advantage of generating a single time-varying signal. That signal correlates with

the size of the glottal opening (the wider it is, the more light passes through).

However, being a one-dimensional signal, it provides no scope for dealing with

confounding variables such as relative height of the larynx and supraglottal ob-

struction by the cuneiform tubercles, ventricular folds, or epiglottis (see below

for discussion of these). An additional confound, not experienced in the current

endoscopic study, is reported by Gracco & Löfqvist (1994). They had to discard

14% of the data from one of their 3 participants because the participant’s tongue

kept obstructing the light source.

A laryngograph (or electroglottograph) uses electrodes attached on either side of

the larynx to obtain a trace of glottal contact area over time. (ie Baer et al. 1983,

Henrich, d’Alessandro, Doval & Catellengo 2004) This is far less invasive, as the

sensors are external to the vocal tract. The electrodes measure resistance across

the larynx, which varies inversely with the amount of contact between the vocal

folds. More contact means less resistance. This measure does not suffer from the

problem of obstruction as video and transillumination techniques do.

Measures taken using these different techniques are reported to be highly corre-

lated with each other. Because of this, I decided to us only one: endoscopic video

recordings. I felt that this technique offers the richest raw data from which to ex-

tract meaningful measures while adjusting for important confounding factors.

2.3 Existing measures of video data

While some important qualitative work on endoscopic data has been done and

continues to be done without numerical measurements (Esling 2002, Esling &

Harris 2003, Edmondson & Esling 2006), the ability to quantify observations for

statistical analysis is necessary for the testing of more specific or subtle hypothe-

ses.

Various instrumental setups can be used in phonetic research to generate endo-

scopic images.1 For example, high-speed analysis of individual vocal fold vibra-

tions (thousands of frames per second) (Hayden & Koike 1972, Tanabe, Kitajima,

1I will not cover studies that use rigid oral endoscopes, as they dramatically interfere with
natural speech articulation. However, many of the points made about the measurement of data
from fiberoptic nasal endoscopes would apply equally to data from rigid oral endoscopes.
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Gould & Lambiase 1975) differs from normal-speed recordings (25-30 frames per

second) used to observe variations in laryngeal configuration across segments

(Kagaya 1974, Hirose, Lee & Ushijima 1974, Hirose & Ushijima 1978, Benguerel

et al. 1978, Benguerel & Bhatia 1980). Different again is the use of stroboscopy

with normal-speed recordings to capture some high-speed characteristics of vo-

cal fold vibration without needing a high-frame-rate recorder (see, for example

Anastaplo & Karnell 1988).

Most researchers measure the distance between the vocal folds, taken at a natural

landmark—the vocal processes of the arytenoid cartilages (Hirose et al. 1974,

Kagaya 1974, Benguerel et al. 1978, Hirose & Ushijima 1978, Iwata, Sawashima,

Hirose & Niimi 1979, Sawashima & Park 1979, Benguerel & Bhatia 1980). This is

relatively posterior, and therefore tends to be the point of greatest aperture along

the length of the vocal folds. This is illustrated in figure 2.4, which depicts a [p℄
at the moment of release, spoken by a female participant in the current study.

Figure 2.4: Common glottal aperture measure (see text) comprising apparent
distance between the vocal processes of the arytenoid cartilages.

While less time-consuming than any of the alternatives, this measure has an im-

portant disadvantage. It is vulnerable to two key intra-recording confounds—

varying camera-to-larynx distance, and cuneiform tubercle obstruction of the

posterior portion of the vocal fold. This does not preclude it being a useful mea-

sure, but a measure that deals with these confounds would be more powerful—

particularly for studying vocalizations in which larynx height and vocal fold ob-

struction vary systematically with variables being manipulated (as they do in

whispered speech).

Other studies have reported a variety of alternative measures of glottal opening.
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In a procedure designed for analysis of high-speed endoscopic video, Hayden

& Koike (1972) use a series of five points along the length of each vocal fold to

calculate both maximum glottal aperture and total glottal area. A similar mea-

sure is presented by Tanabe et al. (1975), who measure glottal width at six points

along the length of the vocal folds. Tanabe et al. (1975) point out one advantage

of making measurements across frames of a single glottal cycle: “The vertical

movement of the larynx does not effect the measurement, since the phonation is

a vowel phonated at a constant pitch, and the time span covered on the film is

short.” (p80)

Anastaplo & Karnell (1988) present a measure which is designed specifically to

validate EGG measures. From images acquired using stroboscopy, they identi-

fied three points along the midsagittal line of the glottis (depicted in figure 2.5,

adapted from their figure 4, p1885):

Points P and A represent the posterior and anterior borders of the glot-

tis duringmaximum opening. PointCmarks the posterior-most point

of contact along the superior surface of the vocal folds during periods

of glottal closure. Relative length of glottal opening (G) was mea-

sured as G = PC/PA.

In other words, their measureGwas the portion of the antero-posterior length of

the glottis which was open. Because it is a ratio, it is already effectively normal-

ized for camera-to-larynx distance.

Figure 2.5: Glottal measure from Anastaplo & Karnell (1988), from their figure 4
(p1885). Points indicated (P , C, and A) are described in the text. The leftmost
diagram indicates a maximum G measure of 1.0; the two to the right represent
decreasing values (about 0.5 and 0.2).

Benguerel et al. (1978) identify a further difficulty with the distance between the

vocal processes. They note that this distance is generally a very small distance on
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the film, so it is particularly vulnerable to small errors in measurement. To miti-

gate this error, they add a second measure—the distance between the corniculate

cartilages (what I identify as the cuneiform tubercles in the current work—see

earlier comment on labelling these structures).

A recent study ignores distance measures altogether. Dailey, Kobler, Hillman,

Tangrom, Thananart, Mauri & Zeitels (2005) opt instead tomeasure glottal angle—

the angle at which the anterior ends of the vocal folds intersect. This measure

has the advantage of being independent of camera-larynx distance, and so not

requiring normalization. Unfortunately, this measure cannot cope with glottal

configurations where the vocal folds are closed along their anterior portion, then

widen in a posterior glottal chink (such as in the middle diagram in figure 2.5.

In such cases, glottal angle increases as glottal opening decreases (ie, as the glottal

chink becomes shorter)—exactly the reverse of the normal relationship between

glottal angle and glottal opening. The measure is thus unsuitable for high-speed

analysis of vocal fold vibrations (see, for example, the measure of Anastaplo &

Karnell 1988 mentioned above) or for analysis involving whispered or breathy

states of the glottis.

2.3.1 What has changed?

The reader may now wonder, with this wealth of well-used and accepted mea-

surement techniques already available, why one would wish to develop a whole

new procedure for quantifying glottal aperture in endoscopic images. After all,

the data itself is largely the same.

The main change is one of resources. As noted by previous researchers (Hayden

&Koike 1972, Tanabe et al. 1975), endoscopic measurements are time-consuming.

When most of the above-cited research was performed, only the most rudimen-

tary aspects of the analysis could be aided by computers. Now, however, the

data is recorded and stored digitally, and significant parts of the processing can

be fully or partially automated using image analysis and editing software. Thus,

for the same amount of research time and with substantially less capital costs for

video and computer equipment and software, we can obtain much better-quality

data than previous researchers could.

For example, because of its small size, a fiberoptic endoscope will always need a

wide-angle lens and will thus distort the image to some degree (cf Dailey et al.

2005). It is now possible to digitally correct this distortion using a combinationof
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computer-aided measurement and fully-automated processing scripts (see sec-

tion 2.4.3).

Building on the existing strategies, I have developed a procedure for removing

distortions and extracting measurements which accounts for much more of the

confounding variation and thus gives us much cleaner data than previous tech-

niques yielded. This should improve the power and reliability of the statistical

inferences that we can draw from endoscopic data.

2.4 Correcting image distortions

Two types of image distortion must be removed before the frames can be mea-

sured. The first, rectangular pixels, relates to the encoding format of the video

data. The second, barrel distortion, is a consequence of the lens optics. They are

removed separately, as described below.

2.4.1 Rectangular pixels

Video images recorded in NTSC format2 have “rectangular” pixels—their width

is not equal to their height. This has its roots in the pre-digital foundations of

NTSC video-coding, where vertical distancewas quantized (imageswere scanned

and displayed as rows) but horizontal distance was not quantized (the horizontal

information was encoded in an analog signal, not a digital one. In the still im-

ages extracted from the video recordings, the circular field of view through the

endoscope is not a circle. The field of view in the uncorrected image displayed

on the right of figure 2.6 is about 338 pixels high and 369 pixels wide—about 10%

wider than it is high.

Exact pixel dimensions of the field of view are difficult to obtain, due to blurred

edges in the digital image. Figure 2.7 illustrates the fuzziness of edges in the

image. Depicted is a close-up of the edge of the field of view, marked (as in most

images) by at least two rows of pixels of decreasing brightness. It is not clear

which level of brightness should be taken as the true edge. For quantifying the

current distortion, I took the midpoint of the region in doubt—halfway between

the full brightness of the main image and the full darkness of the border—as the

point to measure as the edge.

2NTSC is a standard video format in North America, where the current data were recorded.
Other regions use different standards—such as the PAL format in Europe. They all tend to have
rectangular pixels, but with different proportions.
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Figure 2.6: Before (left) and after (right) correction for rectangular pixels.

Figure 2.7: Close-up illustrating fuzziness of the edge of the field of view—the
boundary between the dark upper portion and the lighter lower portion of the
figure.

Measurements onmultiple frames converged on a height-to-width ratio of 10:11—

the field of viewwas about 10%wider than it was tall. I was unable to find a clear

peer-reviewed technical reference to verify that the pixel aspect ratio of NTSC

television images is 11:10. However, various online resources did back up this

figure. See for example “http://www.activeservice.co.uk/video/pixels/page2.htm”

(viewed 9 June 2009). From these observations, we can infer that a pixel in an

NTSC-standard image (and on an NTSC-compliant television) has a height-to-

width ratio of 11:10. The extracted still images were processed on a computer;

computer monitors use square pixels (height-to-width ratio 1:1). This explains

our observation that, when displayed on a computer monitor, each pixel in an

NTSC-recorded image (and thus also the picture as a whole) appears short—the

height is reduced 10% relative to the width.

Because distance measures made in our analysis rely on linear Cartesian geom-

etry, a transformation was applied which restores the original proportions: the

vertical dimension was extended by 10% on all extracted frames using a batch
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processing script. The image on the right in figure 2.6 shows the result after

rectangular pixel correction was applied to the raw image on the left.

2.4.2 Wide-angle distortion

The optical properties of the lens produce barrel distortion (bowing-out) in the

image. This interferes with measurements of distance and angle—distances and

sizes are non-linearly reduced toward the edge of the field of view. This problem

is described by Dailey et al. (2005), from whom the following correction method

is derived.

A reference image was generated containing a 15 mm by 15 cm grid composed of

1 cm by 1 cm squares. This reference image was recorded with the experimental

apparatus at a distance of 50 millimetres, so that the reference squares covered

the entire field of view, as seen in figure 2.8.

Figure 2.8: Image of reference grid with barrel distortion (image has been cor-
rected for rectangular pixels as described in section 2.4.1). The letters have been
added to identify squares used to measure distortion.

The barrel distortion was corrected using the following procedure. All manip-

ulations were performed using the GNU Image Manipulation Program (GIMP

2007) with an extension specifically designed to deal with barrel distortion (Hod-

son 2007).

In order to quantify the distortion of the original images, measurements were

taken to determine how “square” the squares in the image were. Two proper-

ties characteristic of squares were measured: corner angles and edge lengths.
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Squares have 90◦ angles at their corners, and all sides have equal length. Under

barrel distortion, distances closer to the edge of the image are reduced relative to

those in the centre and angles are warped, some becoming more acute and some

more obtuse.

Nine squares in the image were selected based on their distribution and the vis-

ibility of their corners. The squares were selected from the centre and from the

edge of the endoscope’s field of view—labelled “A” through “I” in figure 2.8.

The coordinates of the corners of each labelled square were recorded.3

From these coordinates, corner angles and edge lengths were calculated. In the

uncorrected image (figure 2.8), the mean edge length was 44 pixels, with a stan-

dard deviation of 6 pixels—14.6% of the mean length. Angles ranged from 71◦ to

113◦, with a standard deviation of 11.3◦, which is 12.6% of the average angle of

90◦.4

With standard deviations of 14.6% in distances and 12.6% in angles, where the

ideal is zero variation in both, any measurements taken on the uncorrected data

would be greatly confounded by the distortion, especially if the measurements

are made in different parts of the field of view (see, for example, figure 2.11

below). Also, the measurement error will mean data will have a large residual

variance in statistical tests, compromising the ability to detect real effects.

2.4.3 Wideangle correction tool

This section provides a brief summary of the behaviour of the correction tool

used to remove the barrel distortion (Hodson 2007).

The tool constructs a new image in which information from each point in the

original image is moved toward or away from the centre according to formu-

las 2.1 and 2.2.

xorig = xc + k ·
(

1 + ar2 + br4
)

· (xmod − xc) (2.1)

3Coordinates of a point can be easily recorded in Gimp like so: a 1x1 pixel brush is selected
for use with the pencil tool, and placed over each corner in turn. The coordinates are read off
from the information panel in the lower left corner of the image window.

4The mean internal angle was 90
◦—a geometric certainty when dealing with four-sided

shapes of this sort. Mean angle could not therefore be used to quantify distortion.
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yorig = yc + k ·
(

1 + ar2 + br4
)

· (ymod − yc) (2.2)

In these formulas, (xorig, yorig) is a pixel location in the original image and (xmod, ymod)

is the location of the corresponding pixel in the modified image.

The coordinates (xc, yc) define the centre of the effect (which may not be the cen-

tre of the image). The coordinates (xc, yc) are derived from parameters “xshift”

and “yshift” in Hodson’s tool, each of which takes a value from -100 to 100,

representing the full width w and height h (respectively) of the image. The con-

version from xshift to xc is xc = w ∗ (100 + xshift)/200 and from yshift to yc is

yc = h ∗ (100 + yshift)/200.

The scaling parameter k was always set to 1.0 in this work.

The value r represents the Euclidean distance between the centre of the effect

(xc, yc) and the pixel (xmod, ymod), relying on the assumption that pixels are square

(they have the same height as width). This assumption is satisfied, as the rectan-

gular pixel correction was applied before wideangle correction (see section 2.4.1).

Finally and most importantly, the parameters a and b specify the magnitudes of

the second- and fourth-order distortions (respectively)—the actual wide-angle

effect itself. These correspond to the “main” and “edge” parameters of Hodson’s

tool. The “main” (second degree) correction factor affects the centre of the image

more strongly; the “edge” (fourth degree) correction factor affects mainly the

edges of the image.

It may seem, intuitively, that the equations should give xmod and ymod (unknowns)

in terms of xorig and yorig (knowns). However, equations 2.1 and 2.2 are used to

determine where the information for each pixel in the modified image will come

from in the original image. For a given pixel in the new image, xmod and ymod are

known (they define its location in the new image); it is xorig and yorig (giving the

location in the old image where that pixel’s information should come from) that

need to be calculated.

A minor change in a single calculation parameter was made to the wide-angle

tool’s source code before compiling it, due to the extreme nature of the barrel

distortion introduced by our lens. (Without this correction, the maximum values

for the parameters were insufficient to completely remove the barrel distortion
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from the test image.) I changed the following line in the source code (in the

function wide-angleSetupCalc()):

calcVals.mult_sq = vals.square_a / 200.0;

to

calcVals.mult_sq = vals.square_a / 100.0;

The value vals.square a represents the user-defined parameter “main”, which

can vary from -100 to +100. The value calcVals.mult sq represents the value

a in equations 2.1 and 2.2. This alteration doubles the effect of the “main” (quadratic)

correction parameter. A test confirmed that a value of 50.0 with the modified ver-

sion produced the same effect as a value of 100.0 with the original version. The

value of a in equations 2.1 and 2.2 could range from -1.0 to 1.0; the value of b

could range from -0.5 to 0.5.

Exploring the parameter settings of the correction tool, I was able to subjectively

approximate a good correction (the lines looked approximately straight). To fur-

ther improve “squareness” before experimental measurements began, the fol-

lowing “slope-climbing” algorithm was followed. It was performed manually,

as automated edge detection for determining distortion was not available.

• Each of the two parameters “main” and “edge” in the correction tool (a
and b in equations 2.1 and 2.2) was adjusted up and down from the current

best-known values by a minimal amount, producing 4 candidate modified

images.

• The distortion was measured for each of these four images as described
above.

• The candidate with the least variance was taken as the new best-known
values, and the procedure was repeated.

• When no more improvement was obtained, the current best result was
deemed the best possible.

A final corrected image is shown in figure 2.9. Notice how the correction affects

the square border of the original. Because barrel distortion compresses distances

more toward the edge of the image, the correction involves stretching distances

near the edge proportionally more than those closer to the centre. The optimum
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correction output by this algorithm increased the overall mean edge length by

25% to 54.9 pixels. This increase is not a problem, as distances are available only

in arbitrary units (pixels). It is a necessary side-effect of the correction, which

stretches the borders of the image but leaves the centre relatively unchanged.

There was a 1.2 pixel standard deviation in lengths—about 2.1% of the mean

length. Angles varied from 86◦ to 95◦, with a standard deviation of 1.8◦ (2.0%).

Figure 2.9: Reference image after barrel distortion was corrected.

This correction was obtained with the following parameter settings:

• xshift = −1.5 (slight horizontal correction for centre of effect)

• yshift = 0.0 (field of view already vertical centred in image)

• main = −85.0 (positive values introduce or increase wide-angle distortion;

negative values remove or decrease it)

• edge = 90.0 (this positive value adjusts for overcorrection at the edges of

the field of view from the “main” parameter)

Remember that the parameter “main” was used with a slightly-modified version

of the original tool from Hodson (2007).
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These measurements show a marked improvement over the original image. The

ideal solution would yield no variance in either edge length or corner angles.

Unfortunately, these measurements are vulnerable to ambiguity, particularly at

the edge where lighting is less optimal and the lines are several pixels wide after

correction. It is unlikely that a perfect correction is attainable in practice. The

correction obtained—reducing variance in both angle and edge-length to less

than 3%—is the best we can achieve with the techniques available to us.

2.5 Measurement

After correction for rectangular pixels and barrel distortion, video frames were

measured for glottal aperture.

2.5.1 Glottal aperture

For the investigation of voicing, we need a measure to represent glottal aper-

ture. The techniques described here owe much to previous quantitative work on

endoscopic images (described in section 2.3 above).

Following Iwata et al. (1979) and Sawashima & Park (1979), I chose to mea-

sure the maximum visible distance between the vocal folds—almost invariably

achieved at the posterior end. Figure 2.10 illustrates how this is done.

Figure 2.10: Marking the vocal folds and glottal aperture. (Same token as in
figure 2.2. The tracing on the right shows hypothetical bisector between lines of
vocal folds, from which angle of measurement for glottal aperture is derived (see
text).

First the visible portions of the vocal folds were marked: straight-line approxi-

mations were drawn between the visible end-points. The angle (in degrees from
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horizontal) and length (in pixels) of each straight line were recorded.5 The angle

of a hypothetical line bisecting the vocal fold lines was calculated. Glottal aper-

ture was measured at the widest visible point, perpendicular to the hypothetical

bisector. For the image in figure 2.10, that distance is 33.1 pixels, marked with

an almost-horizontal white line. The tracing to the right of the image shows the

hypothetical bisector used to determine the angle at which glottal aperture was

measured.

2.5.2 Larynx height

This pixel distance depends not only on the actual glottal aperture, but also on

the distance between the camera and the glottis. Significant variation in camera-

glottis distance was observed even between nearby tokens produced by a single

speaker, as illustrated in figure 2.11. Nomethod was available to calibrate the vi-

sual data of varying object-to-camera distance to a fixed referent of known size.

Tanabe et al. (1975, p 80) exploit the optical properties of a lens in conjunction

with a metric ruler to calibrate sizes based on constant camera-to-vocal-fold dis-

tance. Nobody reports adapting this method to recordings with varying camera-

to-object distances. Fujimura, Baer & Niimi (1979) describe a system which uses

twin fiberscopic lenses—one inserted through each nostril—to construct a dual

image from which stereoscopic measurements can be used to determine absolute

distances between the lenses and objects in the joint field of view. However, such

equipment was not available to us.

Briefly, there are several reasons why larynx height would vary relative to the

endoscopic lens within a recording. On the one hand, the lens itself might be

moved by the velum, the tongue, or the experimenter (if, for example, the par-

ticipant becomes uncomfortable and needs things shifted). On the other hand,

the larynx itself moves for several reasons. Vocal fold tension is controlled, in

part, by forward/backward rotation of the thyroid cartilage on the cricoid car-

tilage, which involves some vertical movement. Also, laryngeal and epiglottal

sphinctering mechanisms are engaged in whisper (Gao 2002, Esling 2002, Esling

& Harris 2003); this increased activity seems to involve, either directly or as a

common side-effect, raising of the larynx.

Several techniques for measurement of endoscopic images have been outlined in

the past (Hayden & Koike 1972, Tanabe et al. 1975, Sawashima 1979, Iwata et al.

5The “Measure” tool in GIMP (GIMP 2007) provides the Cartesian distance in pixels between
two points and the angle from the horizontal of the line connecting them.



CHAPTER 2. ENDOSCOPY MEASURES 33

1979); unfortunately, they all rely on the assumption (explicit or implicit) that the

larynx does not move vertically with respect to the camera.

Distant, centred Closer; camera shifted to the left

Figure 2.11: Different positions of the camera relative to the laryngeal structures
from the same subject.

A measurement of the cuneiform tubercles in figure 2.11 shows that those in the

right-hand image appear about 30% larger than those on the left. The cuneiform

tubercles are cartilaginous structures, and do not change size or shape from one

utterance to the next; this difference in apparent size can be attributed to the

varying distance between them and the camera.

Because the cuneiform tubercles are approximately the same distance from the

camera as the vocal folds, we can assume that the effect of camera distance on

apparent glottal aperture is proportional to its effect on apparent cuneiform tu-

bercle size. I recorded apparent cuneiform tubercle size on all tokens as a proxy

for camera-to-vocal-fold distance. This measure was used in the statistical anal-

ysis (see section 3.5.11) to account for possible confounds due to varying larynx

height.

The size of each cuneiform tubercle is measured as its maximum visible width.

While the cuneiform tubercles illustrated in figure 2.10 are roughly circular, those

of other speakers (such as that shown in figure 2.12) are much wider in one di-

mension than the other. Taking the maximum visible width helps to maintain

consistency within a speaker’s data. (Note that the wide variations in anatomy

between speakers means that glottal aperture cannot be directly compared across

speakers, even after incorporating the normalizing measurement of cuneiform

tubercle width.)

The tracing of visible boundaries (vocal folds, cuneiform tubercles) is the most

subjective step in the measurement procedure, as it requires a human annotator
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to select discrete boundaries in non-discrete data. Further work using these tech-

niques should employ inter-annotator tests of consistency or, ideally, machine-

based edge-detection algorithms wherever possible. For the current investiga-

tion, such resources were unavailable. A test of intra-annotator consistency was

performed for all measures, and is reported in section 3.5.9.

Figure 2.12 shows a frame of speech with all the measurements marked out. In

Figure 2.12: Token of whispered [p℄ with measurement annotations. The long
dark lines mark the measurements of cuneiform tubercle size; green lines show
the measurements of the vocal folds and the glottal aperture between them.

total, seven values were gathered from each still image: two vocal fold lengths,

two vocal fold angles, one glottal aperture, and two cuneiform tubercle widths.

A token was discarded if any of these could not be measured. For example, in
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the token of whispered [f℄ shown in figure 2.13, the right vocal fold is not visible
and so glottal aperture cannot be measured.

Figure 2.13: Unmeasurable token: right vocal fold is not visible.

2.5.3 Obstruction of the vocal folds

One final confounding influence is the tendency, in many tokens, for one or both

vocal folds to be partially obscured by a cuneiform tubercle, as illustrated in

figure 2.14.

Figure 2.14: Example of vocal fold partially obscured by cuneiform tubercle.

This obstruction is schematised in figure 2.15. The measurements we can make

are shown as line segments BC ( observed glottal aperture) and as AD and AC
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(visible vocal fold lengths). Themeasurementwe desire—actual glottal aperture—

is shown as line segment DE. Vertex E is the unknown point in these measure-

ments.

A

B C

D E

Figure 2.15: Illustration of cuneiform tubercle obstruction of the camera’s view
of glottal aperture. Vertices are labelled.

This schematization depends on the following reasonable approximations. (1)

It assumes that the vocal folds are straight lines. In fact, they are often bowed

slightly inward along their length, but they are nearly straight. This assumption

allows us to use simple straight-line trigonometric properties in our correction.

(2) It assumes that each of the triangles (△ABC and △ADE) is an isosceles tri-

angle (the sides corresponding to the vocal folds have equal length). In practice,

the vocal folds are not of the same length, but by measuring glottal aperture (the

third side) perpendicular to the midline between the other two sides, we ensure

that the measured values do form an isosceles triangle. (3) It assumes that trian-

gles △ABC and △ADE are similar (in the mathematical sense that the internal

angles are the same, and therefore the sides of one triangle are each larger or

smaller than the corresponding sides of the other by the same ratio). This is an

automatic consequence of the first two abstractions.

One property of the schematization in figure 2.15 is that the ratio of the actual

glottal aperture (DE) to the measured glottal aperture (BC) is equal to the ratio

of the long vocal fold measurement (AD) to the short vocal fold measurement

(AC). We begin using congruent sides of the similar triangles:

DE

BC
=

AD

AB
(2.3)

but since the triangles are isosceles, we know that AB = AC, so we substitute to

get:
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DE

BC
=

AD

AC
(2.4)

which, after multiplying both sides byBC, yields a definition of the actual glottal

aperture in terms of the measured values:

DE =
AD · BC

AC
(2.5)

It bears restating that this formula is based on a stylized simplification of the

actual geometry of the endoscopic images. Also, each multiplication and divi-

sion of measured values has the effect of compounding the measurement error,

so the derived measure will be even less precise than any of the individual raw

measurements. On the other hand, by calculating an adjusted glottal aperture

measurement using this formula, we may be able to reduce the confounding in-

fluence of cuneiform tubercle obstructions of the vocal folds. The adjustment

reduces precision (increases variance), but to the extent that the geometric as-

sumptions on which it is based are correct, it improves accuracy—it brings the

mean tendency of the measure closer to what we’re actually interested in mea-

suring.

The magnitude of the adjustment in different subsets of the data can be deter-

mined by looking at the ratio between the adjusted and the plain glottal aperture

measures. This ratio is never less than 1.0, because the fraction by which the

plain measure is multiplied to yield the adjusted measure has a larger numera-

tor than denominator by definition. Over all measurements, the ratio ranges from

1.0 (no change) to 6.0 (the adjustment yields a value six times as great as the

plain measure), with a mean of 1.33 (indicating a 33% increase between the plain

and adjusted measures). The magnitude of adjustment does not seem to differ

greatly between consonants (mean=1.32) and vowels (mean=1.33). A substantial

difference is observed between normal and whispered speech. The mean ratio

in normal-speech tokens is 1.19; in whispered speech, the mean ratio is 1.45.

Clearly, tokens of whispered speech tend to be adjusted by a greater relative

amount than tokens of normal speech. This is in line with the subjective impres-

sion of the author that there is more cuneiform tubercle obstruction in whispered

than in normal speech.
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In the absence of an independent, objective verification of the validity of the ad-

justment, both the plain and the obstruction-adjusted glottal aperture measures

are reported, and the results of each are interpreted with the competing consid-

erations of precision and accuracy in mind.



CHAPTER 3

Endoscopy study

3.1 Opening

Asmentioned in section 1.4.1, this study seeks to establish the usefulness of whis-

pered speech as a tool for investigating the nature of motor control variables, and

to discover the patterns of laryngeal control of glottal aperture in normal and

whispered phonological voicing contrasts.1.

The main empirical question in this study is whether glottal abduction gestures

are observed for phonologically voiceless obstruents in whispered speech. An

auxiliary question is whether, in the presence of such gestures, voicing minimal

pairs are perceptually distinct.

The first question is expressed diagrammatically in figure 3.1. Figure 3.1(a) illus-

trates what is already known about glottal aperture in normal speech: vowels

are produced with a narrow “voiced” glottal posture, voiced obstruents retain

the same glottal aperture, and voiceless obstruents exhibit a wide “voiceless”

glottal aperture. If glottal abduction gestures are present, as predicted by Sweet

(1877, 1906), Pike (1943), Malmberg (1963), Abercrombie (1967), Catford (1964,

1977), and Laver (1994), then we expect a behaviour like 3.1(b). In this situation,

phonologically voiced obstruents pattern with the vowels and have a “whis-

pered” glottal aperture, intermediate between voiced and voiceless. Phonolog-

ically voiceless obstruents show the wide “voiceless” glottal aperture that they

1I am grateful to Professor John Esling of the University of Victoria for his collaboration in
running this experiment and for commenting on the design. The supervising physician and the
participants were paid from Dr. Esling’s SSHRC grant #410-2003-1624. STR-SpeechTech Ltd in
Victoria, who housed the laryngoscope equipment, allowed us to use their recording space for
the recordings.

39
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Figure 3.1: Hypotheses regarding glottal aperture in voicing contrasts: (a) nor-
mal speech; (b) whispered speech—abduction gesture present; (c) whispered
speech—no abduction gesture. Open circles represent phonologically voiceless
obstruents; closed circles represent phonologically voiced obstruents.

do in normal speech. If such gestures are absent, as asserted by Perkins et al.

(1976), our results will look like 3.1(c): glottal posture will remain “whispered”

throughout the utterance.

The perceptual question is really a continuum, the endpoints of which are shown

in figure 3.2. On the left, we see perceptual performance completely unhindered

by the absence of phonetic voicing. On the right, we see perceptual performance

reduced to chance. Two empirical alternatives are open to us: testing whether

perception of whispered speech is significantly worse than perception of normal

speech, and testing whether perception of whispered speech is significantly bet-

ter than chance. Previous studies have already established that perception of

voicing contrasts in whispered speech is worse than it is in normal speech; we

will therefore be asking the latter question.

3.2 Introducing the data

I will begin with a brief visual introduction to the contrasts in question using

spectrograms. The spectrograms in figure 3.3 illustrate the difference between [t℄
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Figure 3.2: Hypotheses regarding perception of voicing contrasts in whispered
speech. The vertical axis is proportion of correct responses by listeners in a
forced-choice task with two choices. The dashed horizontal line represents
chance performance.

and [d℄ in normal speech. The most striking differences are that the voicing ends
earlier for [t℄ (at about the same time as the formants cut off) and resumes later
(lagging significantly behind the consonant release) than for [d℄. One can also see
that the duration of [t℄ is somewhat greater than for [d℄ (reflecting a more general
pattern for English: see Crystal & House 1988, Mills 2003).

The spectrograms in figure 3.4 illustrate the difference between [f℄ and [v℄ in nor-
mal speech. Here, the main difference again revolves around voicing—the [f℄
has no voicing during its closure, while the [v℄ is voiced throughout. The same
durational difference is present here as in the stops.

Compare the spectrograms of the [t℄-[d℄ distinction in normal speech (figure 3.3)
with those of the [t℄-[d℄ distinction in whispered speech (figure 3.5). In the com-
plete absence of voicing, we no longer have aspiration as such. Note, however,

that the high-frequency noise post-release in the whispered [t℄ is comparable to
that seen in normal speech, and might be used to acoustically distinguish it from

the whispered [d℄, which lacks this high-frequency noise post-release. The dura-
tional difference observed between these two segments in normal speech is also

apparent in whispered speech.
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(V) d (V)

voiced vless voiced

Figure 3.3: Spectrograms and waveforms of [t℄ and [d℄ in normal speech. Each
item shows 350 ms of speech. The vertical (frequency) axis goes from 0 Hz to
5000 Hz.

Now compare the spectrograms of the [f℄-[v℄ distinction in normal speech (fig-
ure 3.4) with those of the [f℄-[v℄ distinction in whispered speech (figure 3.6). Here,
the contrast is less obvious. The durational difference is preserved, but very little

else leaps to mind to distinguish [f℄ from [v℄ in these whispered examples. There
may be a slight tendency for [f℄ to have marginally greater amplitude than [v℄.
Because the primary acoustic reflex of the glottal aperture differences in nor-

mal speech—the presence or absence of voicing—is absent in whispered speech,

an acoustically-specified control variable is not expected to preserve the glottal

aperture difference in whisper. An articulatorily-specified control variable, on

the other hand, is expected to produce the same articulatory gestures in different

contexts, regardless of the immediate acoustic consequences.

Therefore, if the glottal aperture difference reflecting phonological voicing con-

trasts in normal speech is also present in whispered speech, it would suggest an

articulatory specification for the control variable governing glottal aperture. If

there is no glottal aperture difference, it would suggest an acoustic specification.
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(V) f (V)

voiced voiceless voiced

(V) v (V)

voiced

Figure 3.4: Spectrograms and waveforms of [f℄ and [v℄ in normal speech. Each
item shows 350 ms of speech. The vertical (frequency) axis goes from 0 Hz to
5000 Hz.

(V) t (V) (V) d (V)

Figure 3.5: Spectrograms andwaveforms of [t℄ and [d℄ in whispered speech. Each
item shows 350 ms of speech. The vertical (frequency) axis goes from 0 Hz to
5000 Hz.

3.3 Terminology

In this study, I use whispered speech as a tool for examining the coordination

of glottal articulations and their relations to supraglottal articulations. There are

two terminological ambiguities that arise in discussing whispered speech. This

section presents the problem (vagueness and polysemy in terms as used in the
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(V) f (V) (V) v (V)

Figure 3.6: Spectrograms andwaveforms of [f℄ and [v℄ in whispered speech. Each
item shows 350 ms of speech. The vertical (frequency) axis goes from 0 Hz to
5000 Hz.

literature) and the particular definitions adopted for this work. A glossary (Ap-

pendix A) is provided for reference, defining these and other useful terms.

Sweet (1877) introduces the first ambiguity—in the term “whisper”:

The popular and the phonetic use of the term ‘whisper’ do not quite

agree. Whisper in popular language simply means speech without

voice. Phonetically speaking whisper implies not merely absence of

voice, but a definite contraction of the glottis. (p5)

Because both senses of the term whisper will be used side-by-side in the dis-

cussion of this study, we need to establish a clear terminological convention.

The two senses of whisper mentioned by Sweet and others (e.g. Abercrombie

1967, p 28) are both, in fact, “phonetic”, in the sense that both describe be-

haviours relevant to phonetic inquiry. I use whispered speech to denote whisper

in Sweet’s “popular” sense—as a property of utterances without voice, whose

primary mode of vocal tract excitation is turbulence from airflow through a con-

stricted glottis.This is opposed to normal speech, by which I mean speech whose

excitation is primarily from voicing. I use whisper phonation or simply whisper

to denote the specific glottal state which produces non-voiced, turbulent glottal

excitation as a sound source for the vocal tract filter. Normal speech contains
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segments of voicelessness (produced with voiceless phonation). Crucially, whis-

pered speech may likewise contain segments of non-whispered voiceless phona-

tion on segments like /t/ and /f/. It is this latter possibility that is the object of
the current study.

A second terminological ambiguity arises when we put phonological voicing

contrasts alongside discussion of phonetic voicing states. This study deals with

“voicing” in two different senses: the phonetic sense (a glottal state) and the

phonological sense (a feature which represents the contrast between phonemes

such as /p/ and /b/). In this dissertation, I use the terms voiced and voiceless
to refer to glottal states, unless explicitly modified as phonologically voiced and

phonologically voiceless.

3.4 Design

This study is designed in two parts. First is the recordings of normal and whis-

pered speech using a nasal endoscope. This part is designed to answer the ques-

tion of whether there is a glottal aperture difference inwhispered speech between

phonologically voiced and voiceless consonants, and to compare any difference

to that seen in normal speech. The second is the use of the audio recordings from

the first part in a perceptual study, to determine the perceptual discriminability

of the voicing pairs in normal and whispered speech.

Note that this is a non-instrumental study, in the sense used in section 1.2.4,

because the experimental perturbation (whispered speech) is non-instrumental.

The presence of an endoscopic tube with a diameter of 4 mm in the nasal pas-

sages and the lens just above the epiglottis causes discomfort in participants, and

almost certainly has a effect on the speech produced. However, the endoscope

was in place for all recordings. The analysis will compare whispered speech ut-

terances with the endoscope to normal speech utterances with the endoscope.

Any difference (or lack of difference) observed between the conditions can be at-

tributed to the experimental manipulations, not to the (assumed constant) effect

of the endoscope’s presence in the vocal tract.
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3.5 Method

3.5.1 Equipment

A flexible fiberoptic nasal endoscope (Kay 9100 Rhino-Laryngeal Stroboscope

system with Olympus ENF type P3 scope with a 28mm lens and Panasonic GP-

US522 camera) was used to capture live video of the larynx while a directional

microphone placed approximately twenty centimetres from the speaker’s mouth

captured the acoustic signal. All data were initially recorded onto a digital tape.

The primary recording medium was a mini DV tape using a Sony GV-D1000

NTSCminiDV recorder attached to the endoscope (data encoded inMPEG-1 for-

mat: video 720x480 pixels, 30 nominal frames per second; audio 44.1 kHz stereo,

224 kbps). Recordings were later transferred to DVD for storage, using Adobe

Premiere software (Adobe 2001).

3.5.2 Speakers

Participants in this study were all native speakers of Standard Canadian English.

Theywere paid CAN$50 (except for the primary researchers, the author and John

Esling, who were not paid) for their participation.

Ten speakers participated in the study. Recordings were completed for nine;

one was unable to proceed due to acute discomfort during insertion of the en-

doscope. Of the nine, two were phoneticians familiar with the details of the

study (the author and John Esling), one was a linguist unfamiliar with our aims,

and the remaining six were undergraduate students in linguistics who were also

naive to the purposes of the experiment.

3.5.3 Dataset

Endoscopic recordings were kept under ten minutes to minimize participant dis-

comfort and fatigue. In order to gather as much data as possible on the voic-

ing contrasts themselves in the limited time available, distractor words were not

used.

I elicited word-initial phonologically voiced and voiceless plosives and fricatives

at the labial and alveolar places of articulation. Each obstruent was elicited in a

real English word embedded in a carrier sentence, to control the phonetic context

while providing the most natural mode of speech possible. The four obstruent
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voicing pairs /p b/, /t d/, /f v/, and /s z/ were elicited through minimal pairs.
The words in their context sentences are shown in table 3.1.

This yielded data on two pairs of stops and two pairs of fricatives; two pairs of

labials and two pairs of alveolars. All the contrasts are word-initial, as glottal ab-

duction gestures are more pronounced initially than in other positions in normal

speech (cf aspiration).

The frame sentence used was “Say x again.” Table 3.1 gives the orthographic

presentation form of the sentences used.

Say PEER again.
Say BEER again.
Say TIER again.
Say DEAR again.
Say FEAR again.
Say VEER again.
Say SEAL again.
Say ZEAL again.

Table 3.1: Orthographic presentation form of the sentences eliciting voicing con-
trasts.

All sentences have the same phonetic frame for the consonant being observed:[seICi��gEn℄. (The exception is that [l℄-final words are used for /s z/ because no[�℄-final minimal pair is available in English.) For each sentence, primary phrasal
stress fell on the target word; secondary stress on the final syllable of the sen-

tence.

Two further sets of sentences illustrating a prosodic contrast were elicited after

recording the above sentences, but will not be analysed in the current study. They

include sentences with contrastive nuclear accent on the target word (“Say PEER

again, not BEER again.”) and sentences where contrastive nuclear accent falls

immediately before the target word (“SAY peer again, don’t WRITE peer again.”)

The full set of sentences recorded from each speaker is given in Appendix B.

3.5.4 Recordings

The equipment was sterilised before each recording. The speaker was seated

in front of the microphone in a quiet room. Because the equipment was used

internally, a medical doctor was present to supervise its use. This doctor was

paid CAN$100 per hour for his time.
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During placement, the endoscope was guided by the supervising medical doc-

tor, with frequent checks that the participant was not experiencing undue dis-

comfort.

The endoscope was guided through the nasal sinus along the medial edge of the

inferior meatus. The two nasal cavities are not completely symmetrical in most

people. Whether we used the left or right side of the nasal septum (left or right

nostril) depended on the participant’s preference and on the relative navigability.

For two speakers, the first attempt was unsuccessful but we were able to use the

other side.

When the lens of the endoscope was in place above the larynx, the participant

was instructed to hold the tube in placewhere it entered the nose. Having control

of the instrument inside them gave participants some reassurance. The duration

of the insertion procedure varied greatly, from under two minutes to as long as

three or four minutes, depending of the navigability of the nasal passages and

the participants’ level of comfort.

Eight index cards were used—one for each sentence in table 3.1. They were shuf-

fled before each speaker’s recording. The author presented the cards one at a

time to the speaker. The speaker read each sentence twice in normal speech,

then twice in whispered speech, with a pause after each repetition, before being

shown the next card. The other two sets of utterances (illustrating an accented/post-

accented contrast) were presented next in the same way.

The experimenters (the author and John Esling) attempted to keep the camera

roughly centred on the glottal opening. Interruptions in the recording occurred

for various reasons. The endoscope was occasionally displaced by movements of

the velum and sometimes of the tongue and had to be moved back into position.

A speaker’s breath would sometimes fog up the lens. This could be cleared by

having the speaker swallow—the associated tongue root retraction wiped the

lens clear. Occasionally, the lens would drop or the epiglottis rise so that the

two touched, causing a mild gag reaction. No subject was so discomforted at

this stage that they asked to discontinue the recording, but a pause was often

required to regain composure. Note that these events could cause the lens to

end up higher or lower in the pharynx than before, meaning that lens-to-glottis

distance varied even within a single recording (see section 2.5.2).
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Recordings varied in duration from three minutes to ten minutes. In addition to

the voicing contrasts and the prosodic dataset, further items were recorded if the

speaker was comfortable—these included pitch manipulations on sung vowels,

and other laryngeal modes (breathy voice, strong whisper). Only the voicing

contrasts will be examined in this study.

3.5.5 Segmentation of the acoustic signal

Following data collection, the audio track was used to locate the consonants un-

der investigation. In order to compare phonologically voiceless obstruents to

phonologically voiced obstruents in normal speech, and to compare both to their

counterparts in whispered speech, landmarks are needed that can be consistently

identified in all conditions. The landmarks used for segmentation in this work

(following the criteria outlined by Turk, Nakai & Sugahara 2006) are described

below.

In wide-band spectrograms, the start and end of the fricatives were defined as

the points where the formants of the surrounding vowels end and begin, as il-

lustrated in figure 3.7.

The beginning of stop consonants was defined as the point where the formants

of the preceding vowel ceased. The beginning of the release burst was used to

mark the end of consonants. Aspiration is counted as part of the following vowel

for two reasons: it is not present in voiced stops, and its whispered analogue,

noted in the discussion of figure 3.5 above, is not reliably detectable by visual

spectrographic means in whispered stops.

An example of the segmentation of [t℄ in normal and whispered speech is shown
in figure 3.8.

3.5.6 Identifying frames to measure

Measurements of glottal aperture weremade on individual frames. Video record-

ings have about 30 frames per second, or 1800 frames per minute, so in order to

have a manageable amount of data, we must identify the frames of greatest in-

terest for the current study.

The main experimental question is whether glottal aperture is different between

phonologically voiced and phonologically voiceless segments inwhispered speech,
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(a)

s eI s il@ gεn

Time (s)
1891 1892.3

(b)

s eI s il@ gεn

Time (s)
1894.2 1895.3

s eI s il@ gεn

Time (s)
1894.2 1895.3

Figure 3.7: Spectrograms of “Say seal again” (a) spoken and (b) whispered. The
vertical (frequency) axis goes from 0 Hz to 5000 Hz.
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(a)

s eI t iô@ gεn

Time (s)
1899.8 1901.1

(b)

s eI t iô@ gεn

Time (s)
1903 1904

Figure 3.8: Spectrograms of “Say tier again” (a) spoken and (b) whispered. The
vertical (frequency) axis goes from 0 Hz to 5000 Hz.
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as it is in normal speech. In order to examine this, we measured three data points

per token: one before, one during, and one after the expected time of the abduc-

tion gesture. The frames for before and after the consonant are taken from the

midpoints of the sonorant sequences preceding and following the target conso-

nants (“v1” and “v2” in figures 3.9 through 3.12).

Two video processing utilities were tested: Adobe Premiere (Adobe 2001) and

VirtualDub (Lee 2005)2. The main function required was the extraction of par-

ticular video frames, as determined by the temporal analysis of the audio track

described above.

With each program, I observed the audio-visual synchronization at the onset of

utterances following a non-speech interval at various points in each recording. In

Adobe Premiere, I found video lags of up to six frames behind the audio track.

This corresponds to between 150 and 190 ms, an unacceptable margin of error

when looking at obstruent voicing. The glottal opening under investigation lasts

for three to five frames, (see, for example, figures 3.9 and 3.11).

VirtualDub exhibited no detectable lag in any of the recordings, and so I used it

to perform the required video-editing tasks.3

A subjective, visual inspection of the video of all speakers suggests that in normal

speech, themaximumdifference in glottal aperture between voiced and voiceless

fricatives is reached during the frication. See for example the sequence of frames

from a production of [s℄ in figure 3.9, compared with that for [z℄ in figure 3.10.
While there is no abduction at all in the [z℄ token, there is a clear abduction ges-
ture for [s℄. It begins on frame 4, peaks on frame 6, and ends with full adduction
restored on frame 9.

All tokens showed a glottal aperture peak between the onset and offset of frica-

tion. We could either select the frame with maximum glottal aperture, or select a

frame based on an acoustic landmark. The problem with taking the frame with

maximum glottal aperture is that, for voiced tokens such as that in figure 3.10,

2After measurements had been made, a third utility was found. Avidemux (Mean 2008),
whose performance for the current tasks is comparable to that of VirtualDub, is also distributed
under the GNU GPL license, and is available on a variety of operating systems. VirtualDub is
only available for Windows.

3I used a very limited set of video-processing features: audio-video synchronization check,
extraction of the audio signal, and extraction of still frames. This review bears only on those
features. The two programs differ in many other ways, such as cost and nonlinear video editing
functions. The foregoing implies no critique of their relative merits for other tasks.
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s eI (v1) s il@ (v2) gεn

1 2 3 4 5 6 7 8 910

Time (s)
248.324 249.624

1 2 3 4 5

6 7 8 9 10

Figure 3.9: Frame sequence from spoken [s℄ illustrating glottal abduction. The
vertical (frequency) axis goes from 0 Hz to 5000 Hz.

there is no apparent difference in glottal aperture across the entire VCV sequence.

In the interest of being able to compare conditions in as unbiased a fashion as

possible, I simply measure the frame closest to the temporal midpoint of the

fricative (as determined by the segmentation described in section 3.5.5 above.

This frame (frame 7 in figure 3.9, frame 6 in figure 3.10) always showed sub-

stantial abduction for phonologically voiceless fricatives in normal speech. The

maximum sometimes occurred earlier (as in figure 3.9) or later.

The maximum aperture for voiceless plosives is attained close to the release.

Figure 3.11 illustrates this for [p℄, compared against [b℄ in figure 3.12. Again,
the voiced segment shows no change in glottal aperture. The voiceless segment

shows abduction starting on frame 4, peaking on frame 6, and ending by frame 8.
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s eI (v1) z il@ (v2) gεn

1 2 3 4 5 6 7 8 910

Time (s)
291.045 292.345

1 2 3 4 5

6 7 8 9 10

Figure 3.10: Frame sequence from spoken [z℄ illustrating lack of glottal abduc-
tion. The vertical (frequency) axis goes from 0 Hz to 5000 Hz.

The frame closest to the point of release (frame 6 in figures 3.11 and 3.12) was

selected for measurement in the plosives.

3.5.7 Extraction of corresponding video frame

Knowing the time at which we want to measure glottal aperture, the video frame

closest to it can be isolated as a still image. Time points for desired frames were

translated into (fractional) frame numbers based on 29.97 frames per second and

a first frame synchronous with the first acoustic sample.4 Equation 3.1 gives the

4More precisely, one field is produced every 1.001
60
seconds (59.94 fields per second) (Kiver

1964, p320—NTSC technical specification F.2.). A field contains half the information for a full
video frame—one field contains all the odd-numbered horizontal lines of pixels; the next field
contains all the even-numbered lines. A full frame, therefore, is produced every 1.001

30
seconds, or

about 29.97 frames per second. Interested readers are referred to Kiver (1964) for more details on
the historical and engineering justifications for these properties of the NTSC standard.
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s eI (v1) p iô@ (v2) gεn

1 2 3 4 5 6 7 8 910

Time (s)
268.638 269.938

1 2 3 4 5

6 7 8 9 10

Figure 3.11: Frame sequences from spoken [p℄ illustrating glottal abduction. The
vertical (frequency) axis goes from 0 Hz to 5000 Hz.

calculation used to convert time (t) to a (fractional) frame number.

frame = t · 29.97 (3.1)

The calculated frame number was rounded to the nearest whole number (there

are no part-numbered frames). This frame was isolated for analysis. Note that

equation 3.1 assumes that video frame zero and audio sample zero are exactly

synchronous. This property is satisfied in VirtualDub.

Because the visual data was recorded at 29.97 frames per second, the nearest

frame to an identified acoustic landmark could be up to 16.7 ms away (mean ex-
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s eI (v1) b iô@ (v2) gεn

1 2 3 4 5 6 7 8 910

Time (s)
238.918 240.218

1 2 3 4 5

6 7 8 9 10

Figure 3.12: Frame sequence from spoken [b℄ illustrating lack of glottal abduc-
tion. The vertical (frequency) axis goes from 0 Hz to 5000 Hz.

pected distance = 8.3 ms).5 This is a small error compared to a mean duration

of 135 ms for phonologically voiceless consonants across these recordings. Note

also that the abduction gestures observed in figures 3.9 and 3.11 span five and

four frames (respectively). With these facts in mind, a mismatch between iden-

tified acoustic landmark and measured video frame of no more than 16.7 ms is

deemed acceptable.

5With a sampling rate of 30/1.001 frames per second (approximately 29.97), there are 33.3 ms
between samples. Thus, the greatest distance one can be from the nearest sample (the maximum
error) is 16.7 ms. Within the bounds, the magnitude of error should be a flat distribution; an
error of 16.2 ms is as likely as an error of 0.3 ms. Thus, the mean error is half the maximum error,
or about 8.3 ms. Alternatively, Peter Bell (pers.comm.) has calculated the standard deviation

(keeping in mind that this is a flat, not a normal, distribution). The variance is 1

P

∫ P/2

−P/2
x2dx,

which works out to P 2

12
; so the standard deviation is P√

12
. For a period P between video frames

of 33.3 ms, this works out to a standard deviation of 9.6 ms.
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3.5.8 Measurement

With the frames to measure identified as described above, the procedure de-

scribed in chapter 2 was used to gather sound quantitative measures of glottal

aperture.

3.5.9 Annotation reliability test

A retest was performed to determine the extent to which annotator’s judgments

of the visual landmarks used in measurement were replicable.

Krippendorff (1980) identifies three types of reliability that can be tested: sta-

bility, reproducibility, and accuracy. “Stability is the degree to which a process

is invariant or unchanging over time. . . .Reproducibility is the degree to which

a process can be recreated under varying circumstances, at different locations,

using different coders. . . .Accuracy is the degree to which a process functionally

conforms to a known standard, or yields what it is designed to yield.” (pp 130–

131) In the current work, I was unable to use separate coders to check my mea-

surements against. Nor do I have a known standard against which to test my

results. Therefore, only stability is tested here—the extent to which my own

judgments are consistent from one annotation session to another, separated by a

suitable time break. Krippendorff calls this a test-retest design.

I performed a second set of measurements on a subset of the tokens and com-

pared them to the first. The second set ofmeasurements was performed 6months

after the first, without reference to the first measurements taken.

There were 292 tokens which were measurable—that is, on which glottal aper-

ture and at least one cuneiform tubercle could be distinguished. Remember that

for each token, three frames were identified for measurement: one before the

consonant, one during the consonant, and one after the consonant. I randomly

selected 30 video frames from each position (before, during, and after) for re-

measurement, yielding a second measurement on slightly over ten percent of the

measured frames.

In order to determine whether the second measurement of the validation set of

90 frames was close enough to the first, I ran statistical tests representative of
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those in the main analysis below (section 3.6). In this section I only report sig-

nificance levels and directions of effects; for graphical presentation of the means

and variances, see the full analysis of the data.

First, the vowels were analysed for the overall correlation between glottal aper-

ture and mean cuneiform tubercle width, and for the difference between voiced

and whispered phonation modes. The potential value of the cuneiform tubercle

width measure as a proxy for camera-to-glottis distance was verified with a sim-

ple correlation: for both sets of measurements, glottal aperture and cuneiform

tubercle width were significantly correlated. In the first set of measurements,

the slope of the correlation was 0.15 (an increase of 1 pixel in cuneiform tu-

bercle width corresponds to an increase of 0.15 pixels in glottal aperture), and

r2 = 0.18. In the second set of measurements, the slope of correlation was 0.17,

and r2 = 0.20. In both cases, the correlation was significant, with p < 0.001.

A linear mixed-effects model was fitted to the data6 with glottal aperture as the

dependent (response) variable, mean cuneiform tubercle width as a covariate,

phonation mode (voiced/whispered) as a fixed factor, and speaker as a ran-

dom factor. The first set of measurements showed no significant correlation be-

tween glottal aperture and cuneiform tubercle width in this model (slope=0.012;

p=0.768). There was a significant effect of phonationmode, with glottal apertures

estimated at 15 pixels greater in whispered than in voiced vowels (p=0.011). The

second set of measurements gave similar results for the correlation (slope=0.057;

p=0.5084) and for phonation mode (diff=16 px; p=0.016). The same inferences

would be drawn for either set of measurements: there is no significant linear

relationship between measured glottal aperture and measured cuneiform tuber-

cle width in vowels; and whispered vowels have a greater glottal aperture than

voiced vowels.

Second, the consonants were examined. A linear mixed-effects model was fitted

to the data with mean cuneiform tubercle width as a covariate, phonation mode

(spoken or whispered) and phonological voicing (voiced or voiceless) as fixed

factors, and speaker as a random factor. Neither the first nor the second set of

6See section 3.5.11 below for more on why linear mixed-effects models, rather than more tra-
ditional ANOVAs, were used with the current data. All significance values are based on the
Monte-Carlo Markov Chain sampling method (10 000 samples) used in the lme4 package in R
(R 2008).
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measurements showed any significant effects or interactions with this model. Be-

cause of the ambiguous correlation in the vowel analysis, a secondmodel was fit-

ted without the cuneiform tubercle width as a covariate (but otherwise identical).

For the first set of measurements, this new model yielded no effect of phonation

mode (p=0.305), but a significant effect of voicing (p=0.008): glottal apertures

of phonologically voiceless consonants averaged 22 pixels greater than those of

phonologically voiced consonants. There was no significant interaction between

phonation mode and phonological voicing (p=0.631). The second set of mea-

surements yielded the same pattern: no effect of phonation mode (p=0.347), a

significant effect of phonological voicing (p=0.002, magnitude=26 pixels), and no

interaction (p=0.761). The same inference would be drawn for either set of mea-

surements. There is no significant linear relationship between measured glot-

tal aperture and measured cuneiform tubercle width in consonants. The over-

all phonation mode of an utterance (whispered or normal speech) has no effect

on the glottal aperture of consonants, but the phonological identity—voiced or

voiceless—has a strong effect in both normal and whispered speech.

The above tests establish that the measurement procedure followed in this study

is stable between measurements by the same annotator. We can therefore have

reasonable confidence in the validity of the results reported below.

3.5.10 Measurement—summary

Following is a step-by-step summary of the procedures followed in measuring

data for this study. The first sequence describes the procedure for obtaining

undistorted images from the video data.

1. Segment acoustic signal to determine time points for which to measure

frames. (see section 3.5.5)

2. Convert time points to frame numbers: multiply by frame rate, in this case

NTSC 29.97 frames per second, and round to nearest whole frame. (see

section 3.5.6)

3. Extract frames: With the video open in VirtualDub, select File> Save image

sequence..., and save to JPEG format (full quality); with the video open in

Avidemux, select “File > Save > Save Selection as JPEG Images”. This

generates a directory with a file for each frame in the video, numbered.

Select the ones you wish to measure. (see section 3.5.7)
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4. Correct rectangular pixels. (Test magnitude of distortion first by compar-

ing vertical size of “circular” field of view to horizontal size.) In this case,

increase vertical dimension by 10%. (see section 2.4.1)

5. Measure and correct resulting image for barrel distortion. (see sections 2.4.2

and 2.4.3)

The second sequence describes the measurements made on the images after dis-

tortion was removed (based on section 2.5).

1. Mark the size of each cuneiform tubercle. Use the maximum visible width

to ensure consistency across tokens within a speaker.

2. Mark the vocal folds with straight-line approximations between the visible

endpoints. Record the length in pixels and the angle of each vocal fold.

3. Calculate the angle of the glottal aperture. It should be perpendicular to

the angle bisecting the two vocal folds (as depicted in the wireframe at the

right of figure 2.10).

4. Measure the glottal aperture. It should be the maximum visible distance

between the vocal folds, using a line at the angle calculated in the previous

step.

5. For each token, calculate the obstruction-adjusted glottal aperture as the

product of the measured glottal aperture and the length of the longer vocal

fold length, divided by the shorter vocal fold length.

3.5.11 Statistics used

In this study and the one described in chapters 4 and 5, I use linear mixed effects

models to analyse the data, and Markov chain Monte Carlo (MCMC) sampling

to establish the significance levels of the results. Linear mixed effects models are

designed to deal with data where some factors are fixed and others are random.

MCMC methods allow inferences to be drawn that do not depend on normality

or homogeneity of variance—conditions which are required for other methods

used with this sort of data, such as Repeated Measures ANOVA.

Fixed factors systematically sample many or all relevant levels; they can be mea-

sured at the same levels in separate studies. Phonation mode is a fixed factor—a

replication of the current study could include both levels of this variable (normal

andwhisper) just as they are used here. Random factors cannot bemeasured at the

same levels in separate studies, because any one study includes only a random
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sample of levels of the factor. The primary example of a random factor is par-

ticipant. A replication of the current study would not use the same participants.

Random factors tend to represent large populations, such as speakers or words.

MCMC estimation of significance levels uses the data itself to determine a “pos-

terior distribution” against which the null and alternative hypotheses are evalu-

ated. By basing its estimate on the distribution of the data being examined, with-

out reference to externally-defined reference distributions (such as the normal

distribution), the MCMC technique liberates the analyst from having to check

normality, or even homogeneity of variances. MCMC is also less affected by

small sample sets than other techniques are.

Except where noted otherwise, statistical tests in this chapter employ a linear

mixed-effects model with phonation mode (normal or whispered) and phono-

logical voicing (voiced or voiceless) as fixed factors and speaker (9 levels) as a

random factor. The dependent variable (generally either plain or adjusted glot-

tal aperture on a linear or logarithmic scale) is noted in each reported result.

Following Baayen (2008, pp 241–259) and Quené & van den Bergh (2008), I use

the lmer (Linear Mixed Effect Regression) function from the lme4 package (Bates

2005) in R (R 2008). I report p-values derived from Markov Chain Monte Carlo

(MCMC) sampling (10 000 samples). For further discussion of the theory behind

mixed-effects models, see Neter, Kutner, Nachtsheim &Wasserman (1996), Bates

(2005), and Baayen (2008, chapter 7).

Because I am using MCMC sampling to determine p-values, there are no F-

statistics to report. I include graphs showing group variances from the data to

give the reader a visual idea of the effects reported. In order to avoid inflation

of the variances due to inter-speaker differences, a manipulation was performed

akin to the statistical manipulation used to exclude inter-level variation from the

random variables.

Where indicated, I include cuneiform tubercle width as a covariate in the model.

3.6 Results

I begin by presenting some patterns observed in the glottal aperture of vowels,

which support the inclusion of cuneiform tubercle width as a covariate measure.
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I also compare the plain glottal aperture measure to the obstruction-adjusted

glottal aperture measure. I then examine the data for the consonants themselves.

3.6.1 Controls and confounds

The principal analysis of this study is performed on the consonantal measures.

I therefore chose to use the measured vowels as a semi-independent dataset to

validate the control and confound measurements. I begin, in section 3.6.2, by

exploring the option of log-scaling the glottal aperture and cuneiform tubercle

measures to approximate a normal distribution. In section 3.6.3, I evaluate the

use of cuneiform tubercle width as a covariate standing in for camera-to-glottis

distance. In section 3.6.4, I examine the benefit of using the ratio of visible vocal

fold lengths to adjust for obstruction by cuneiform tubercles.

3.6.2 Distributions and log scaling

Figure 3.13 shows the distribution of glottal aperture values across all vowels

produced. While the difference between spoken (black ’o’) and whispered (red

’+’) glottal apertures is clear, it is also clear that variance increases as the measure

increases.
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Figure 3.13: Glottal aperture for all spoken (black ’o’) and whispered (red ’+’)
vowels produced in the current data. The horizontal axis is the order of produc-
tion.

The same tendency is evident when we look at the variance of the two groups—

spoken and whispered—in the error bars shown in figure 3.14. The group with
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the higher mean (whispered vowels) also has greater variance (about 2.9 times

as much as spoken vowels).
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Figure 3.14: Glottal aperture error bars for spoken and whispered vowels. The
centre dot is the mean for each group; the bars represent one standard deviation
above and below the mean.

A similarly asymmetrical variance, though slightly less pronounced, is evident

in the cuneiform tubercle measures, shown in figure 3.15. Figure 3.16 shows the
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Figure 3.15: Cuneiform tubercle width for all spoken (black ’o’) and whispered
(red ’+’) vowels produced in the current data. The horizontal axis is the order of
production.

error bars for this data. The cuneiform tubercle width of whispered vowels has

a standard deviation 1.8 times that of spoken vowels.
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Figure 3.16: Cuneiform tubercle size error bars for spoken and whispered vow-
els. The centre dot is the mean for each group; the bars represent one standard
deviation above and below the mean.

This pattern suggests log-transforming the data, so that variances remain sim-

ilar across categories with different means (such as the spoken and whispered

vowels in figure 3.13). However, there are several zero values for glottal aper-

ture. Log-transforming zero yields −∞, which renders meaningful statistical
analyses impossible. Therefore, before transforming, all measurements were in-

creased by 0.001 pixels. Such a small shift does not greatly effect the transformed

value for non-zero measurements, but it makes the zero measurements finite

once transformed. (Note that the logarithmic transform will always preserve rel-

ative magnitudes—if a > b then log a > log b—and this important property is

unaffected by the adjustment.) Figure 3.17 shows the glottal aperture measures

log-transformed (base e); figure 3.18 shows the cuneiform tubercle measures log-

transformed.

For both the glottal aperture and the cuneiform tubercle width measures, the

transform has solved the problem of greater spread at greater values. However,

note that the originally-zero measurements, even after transformation, stand

well apart from the rest of the measurements. This is a problem, as clearly shown

by the error bars in figure 3.19. The presence of the zeros causes the variance of

the spoken vowels to be very wide.

If the zeros are omitted, the variance of the remaining spoken vowels is seen to

be similar to that for whispered vowels (figure 3.20).
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Figure 3.17: Log-scaled glottal aperture for all spoken (black ’o’) and whispered
(red ’+’) vowels produced in the current data. The horizontal axis is the order of
production.
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Figure 3.18: Log-scaled cuneiform tubercle width for all spoken (black ’o’) and
whispered (red ’+’) vowels produced in the current data. The horizontal axis is
the order of production.

3.6.3 Cuneiform tubercle width as a covariate

In figure 3.21, glottal aperture and cuneiform tubercle width are compared for

all recorded vowels (n=565). Using a mixed-effects linear model with glottal

aperture as a dependent variable and cuneiform tubercle width as a covariate,

phonation mode (normal vs whispered) as a fixed factor, and speaker as a ran-

dom factor, we see that there is indeed a significant effect of phonation mode
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Figure 3.19: Log-scaled glottal aperture error bars for spoken and whispered
vowels. The centre dot is the mean for each group; the bars represent one stan-
dard deviation above and below the mean.
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Figure 3.20: Log-scaled glottal aperture error bars for spoken and whispered
vowels (zeros omitted). The centre dot is the mean for each group; the bars
represent one standard deviation above and below the mean.

(p < 0.001)—glottal aperture for whispered vowels averages 16 pixels greater

than for voiced vowels. Cuneiform tubercle width does not show a significant

correlation with glottal aperture (p = 0.125); however, there is a significant inter-

action with phonation mode (p < 0.001). That is, there is no overall trend, but the

difference in regression slopes between spoken (slope= 0.026) and whispered

(slope= 0.126) vowels is significant. In separate post hoc tests on the whispered

and spoken subsets of the vowel data, the correlation between glottal aperture
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and cuneiform tubercle width is significant for whispered vowels (p < 0.001,

n=276), but not for spoken vowels (p = 0.704, n=289).
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Figure 3.21: Glottal aperture plotted against mean cuneiform tubercle width for
spoken (black ’o’) and whispered (red ’+’) vowels. Regression lines are shown
for each phonation type (spoken = black, whispered = red).

The smaller slope of correlation in spoken vowels (0.026) than in whispered vow-

els (0.126) is due to the fact that the spoken vowels are at the floor of the range—

they all represent adducted vocal folds vibrating—and so glottal aperture is not

as free to vary as it is in the more abducted whispered vowels. In particular, note

the several spoken vowels with zero glottal aperture at the bottom of the graph

in figure 3.21, lying along most of the range of the cuneiform tubercle width

measure.

The significant difference in glottal aperture between spoken and whispered

vowels remains if we use a linear model without cuneiform tubercle width as

a covariate (p < 0.001). However, this model only accounts for 67% of the varia-

tion in glottal aperture (R2 = 0.666). The linear model incorporating cuneiform

tubercle width explains 76% of the variation (R2 = 0.756)—a substantial gain

over the simpler model.

I ran a separate mixed-effect model with cuneiform tubercle width as dependent

variable, phonation mode as a fixed factor, and speaker as a random factor to

determine whether there is a systematic difference in cuneiform tubercle width

between spoken and whispered vowels. There is a significant effect of phona-

tion mode (p < 0.001): spoken vowels have a mean cuneiform tubercle width
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of 68.07 pixels; whispered vowels average 96.77 pixels. The still images in fig-

ure 3.22 illustrate the general pattern that whispered vowels differ from spoken

vowels in both laryngeal height and glottal opening. We can infer that whispered

vowels tend to be closer to the camera than spoken vowels (larynx raising). This

is consistent with the observations of Esling (2002) and Esling & Harris (2003) on

laryngeal sphinctering, in which the contraction of laryngeal structures (sphinc-

tering) in whisper is accompanied by apparent laryngeal raising.

Figure 3.22: Video frames of spoken and whispered vowels, from speaker m1.

The above establishes the cuneiform tubercle width as a potentially useful co-

variate to include in statistical models of glottal aperture. It also shows that this

usefulness can be diminished when glottal aperture variation is constrained by a

floor effect. As a result, I use cuneiform tubercle width as a covariate in analyses

below, but if an initial model shows that it contributes little, I exclude it from

secondary analyses.

3.6.4 Adjustment for cuneiform tubercle obstruction

Figure 3.23 re-presents figure 3.21 using the obstruction-adjusted glottal aper-

ture measure (designed to remove the confounding influence of one cuneiform

tubercle partially obstructing a vocal fold, and thus reducing the apparent glottal

aperture). Notice that the variance has increased relative to the trends observed

(as expected). The overall increase in range of the adjusted glottal aperture mea-

sure in figure 3.23 over the plain glottal aperture measure in figure 3.21 is be-

cause equation 2.5 multiplies the plain glottal aperture by a factor of no less than

1 to obtain the adjusted glottal aperture measure. This increase in itself is not

important, as the units (pixels) are already arbitrary relative to actual distances.

There is still a strong main effect of phonation mode (p < 0.001). Using the

obstruction-adjusted glottal aperture measure, we find a significant correlation
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Figure 3.23: Adjusted glottal aperture plotted against mean cuneiform tubercle
width for spoken (black ’o’) and whispered (red ’+’) vowels. Regression lines are
shown for each phonation type (spoken = black, whispered = red).

with cuneiform tubercle width (p = 0.0083), which interacts significantly with

phonation mode (p = 0.002)—the slope is 0.066 for spoken and 0.149 for whis-

pered tokens. In separate post hoc tests on the whispered and spoken subsets, we

find (as we did for the plain glottal aperture measure) that there is a significant

correlation for the whispered vowels (p < 0.001) but not for the spoken vowels

(p = 0.596).

The linear model with the plain glottal aperture measure accounts for 76% of

the variation (R2 = 0.756), the linear model with the adjusted glottal aperture

measure accounts for 73% of the variation (R2 = 0.733). The two are comparable,

therefore, in their explanatory power. The main difference is that the adjusted

glottal aperture measure exhibits a significant overall correlation with cuneiform

tubercle width, while the plain glottal aperture measure does not. This appears

to be due to the asymmetric effect of the glottal aperture adjustment on spoken

and whispered tokens. See section 2.5.3 for details of this asymmetric effect.

3.6.5 Summary

The correlations between glottal aperture and cuneiform tubercle width (in con-

ditions without floor effects) justify our inclusion of the latter as a covariate to

control for the variations in lens-to-glottis distance. This is particularly important
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because the larynx is systematically higher in whispered tokens than in normal

tokens; a failure to control for larynx height could bias our results. The greater

larynx height in whisper, indicated by the systematically larger cuneiform tuber-

cle width, is probably due to the overall laryngeal sphinctering that accompanies

whisper, reported by Esling & Harris (2005). Without accounting for this, we

would infer that glottal apertures are different for phonologically voiced conso-

nants in whisper than they are in normal speech. A further argument for inclu-

sion of the covariate is that it yields a linear model which accounts for an extra

9% of the overall variance in glottal aperture.

While the adjustment of glottal aperture to correct for partial cuneiform tubercle

obstruction of the glottis (described in section 2.5.3) does not seem to increase

the precision of our results (there is no improvement in the proportion of varia-

tion accounted for by measured factors), it does seem to affect the results. The

correction modifies whispered tokens more strongly than it modifies spoken to-

kens, and subjective visual observation of the measured frames suggests that

cuneiform tubercle obstruction of a vocal fold is substantially more common in

whispered speech than in normal speech.

It is reassuring that our results are the same for the obstruction-adjusted as for the

plain glottal aperture measure. The only point of disagreement is that we found

a significant correlation between the adjusted glottal aperture and cuneiform tu-

bercle width measures in vowels, but no significant correlation between plain

glottal aperture and cuneiform tubercle width in vowels. Because it agrees with

the geometric prediction that apparent glottal aperture should be correlated with

apparent cuneiform tubercle size, this difference tends to support of the adjusted

measure over the plain measure.

However, this difference does not provide conclusive validation for the correc-

tion. We have no independent confirmation that apparent cuneiform tubercle

width is directly correlated with larynx height, for example. Until better evi-

dence either way is available, it is prudent to use both the plain and adjusted

measures and rely on consensus between the results to justify strong conclusions

in our analyses.

3.6.6 Consonants

Having established the validity of certain of our corrective measures using the

vowel data, we can now turn to the consonants which are the object of this study.
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I begin by presenting results for normal speech (section 3.6.7) and whispered

speech (section 3.6.8) separately, before comparing the two (section 3.6.9).

3.6.7 Normal speech

Figure 3.24 shows a typical vowel-consonant-vowel sequence of three measured

frames for the sentence “Say peer again” spoken aloud by a female participant.

The glottal abduction gesture is plainly apparent in the middle frame (the conso-

nant).

Figure 3.24: Typical VCV sequence of frames—“Say peer again” in normal
speech by speaker f1.

Figure 3.25 shows a typical sequence for the sentence “Say beer again”, spoken

aloud by the same speaker. The absence of an abduction gesture is similarly clear.

Figure 3.25: Typical VCV sequence of frames—“Say beer again” in normal
speech by speaker f1.

This contrast is reflected in figure 3.26, which plots mean glottal aperture across

the three measured points (preceding vowel, consonant, following vowel) for all

spoken tokens, with error bars for each point. Note the greater variance in the

voiceless consonants’ glottal aperture. This greater variance at higher values of

glottal aperture motivates log-scaling of the data (section 3.6.2 above), as shown
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Figure 3.26: Glottal aperture plots (left=plain, right=adjusted for cuneiform tu-
bercle obstruction) for spoken obstruents (averaged over all speakers). The
points are taken from the vowel preceding the consonant (v1), the consonant
itself (c), and the vocalic sequence following the consonant (v2). The filled circles
represent voiced tokens, and the open circles represent voiceless tokens. Vertical
lines represent one standard deviation above and below each mean.

in figure 3.27. Note, however, the high variance for the vowels and voiced con-

sonants. This is due to the influence of the zero-valued tokens (as discussed in

section 3.6.2). Omitting the zero-valued tokens, we get figure 3.28, in which vari-
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Figure 3.27: Log-scaled glottal aperture plots (left=plain, right=adjusted for
cuneiform tubercle obstruction) for spoken obstruents (averaged over all speak-
ers). The points are taken from the vowel preceding the consonant (v1), the con-
sonant itself (c), and the vocalic sequence following the consonant (v2). The filled
circles represent voiced tokens, and the open circles represent voiceless tokens.
Vertical lines represent one standard deviation above and below each mean.

ances are similar to each other.

This mountain-and-plain pattern in spoken utterances is typical for all minimal

pairs produced by all speakers, using both the plain and adjusted glottal aperture
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Figure 3.28: Log-scaled glottal aperture plots (left=plain, right=adjusted for
cuneiform tubercle obstruction) for spoken obstruents (averaged over all speak-
ers, zeros omitted). The points are taken from the vowel preceding the consonant
(v1), the consonant itself (c), and the vocalic sequence following the consonant
(v2). The filled circles represent voiced tokens, and the open circles represent
voiceless tokens. Vertical lines represent one standard deviation above and be-
low each mean.

measures, with three exceptions: two produced by speaker f5 and one produced

by speaker m2.

The female speaker f5 produced the “tier”/“deer” contrast as shown in fig-

ure 3.29 and the “peer”/“beer” contrast as shown in figure 3.30, both of which

diverge significantly from the overall pattern shown in figure 3.26.
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Figure 3.29: Glottal aperture plots (left=plain, right=adjusted for cuneiform tu-
bercle obstruction) for spoken sentences “Say tier again” and “Say deer again”
from female speaker f5. The points are taken from the vowel preceding the con-
sonant (v1), the consonant itself (c), and the vocalic sequence following the con-
sonant (v2). The filled circles represent voiced tokens, and the open circles repre-
sent voiceless tokens. Vertical lines represent one standard deviation above and
below each mean.
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Figure 3.30: Glottal aperture plots (left=plain, right=adjusted for cuneiform tu-
bercle obstruction) for spoken sentences “Say peer again” and “Say beer again”
from female speaker f5. The points are taken from the vowel preceding the con-
sonant (v1), the consonant itself (c), and the vocalic sequence following the con-
sonant (v2). The filled circles represent voiced tokens, and the open circles repre-
sent voiceless tokens. Vertical lines represent one standard deviation above and
below each mean.

Themale speakerm2 produced the “fear”/“veer” contrast as shown in figure 3.31.

This pattern is reminiscent of the mountain-and-plain pattern of figure 3.26, ex-

cept that the “plain” is much higher.
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Figure 3.31: Glottal aperture plots (left=plain, right=adjusted for cuneiform tu-
bercle obstruction) for spoken sentences “Say fear again” and “Say veer again”
from male speaker m2. The points are taken from the vowel preceding the con-
sonant (v1), the consonant itself (c), and the vocalic sequence following the con-
sonant (v2). The filled circles represent voiced tokens, and the open circles repre-
sent voiceless tokens. Vertical lines represent one standard deviation above and
below each mean.

Because each speaker only produced two spoken tokens of each target word,

we cannot determine whether these are systematic or accidental exceptions, or

whether they are part of the normal range of variation in glottal behaviour. These
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apparently-anomalous tokens are therefore not excluded from the dataset in the

statistical analyses.

A mixed-effects linear model analysis run on the consonant data from normal

speech, with glottal aperture as the dependent variable, cuneiform tubercle width

as a covariate, phonological voicing as a fixed factor, and speaker as a random

factor affirms that the “mountain-and-plain” pattern dominates, despite the anoma-

lous pairs mentioned. There is a significant correlation between glottal aperture

and cuneiform tubercle width (p = 0.031, adjusted glottal aperture p = 0.042).

There is a significant effect of voicing: glottal aperture for phonologically voice-

less consonants, at 29 pixels (px) is 23 px (411%) greater than for phonologically

voiced consonants, at 6 px (p < 0.001 for both plain and adjusted glottal aperture

measures). There is no interaction between the correlation of glottal aperture

with cuneiform tubercle width and the effect of phonological voicing on glottal

aperture (p = 0.330, adjusted p = 0.093).

3.6.8 Whispered speech

Figures 3.32 and 3.33 show sequences for whispered “peer” and “beer”, respec-

tively. The whispered [p℄ does not show the clear abduction we see in its spoken
counterpart in figure 3.24. It seems to have the same glottal posture as the sur-

rounding vowels. The whispered [b℄, on the other hand, does not (as its spoken
counterpart, figure 3.25) show a constant glottal posture; we seem to see an ad-

duction during the consonant!

Figure 3.32: Typical VCV sequence of frames—“Say peer again” whispered by
speaker f1.

This contrast is reflected in figure 3.34, which plots mean glottal aperture across

the three measured points (preceding vowel, consonant, following vowel) for all

spoken tokens, with error bars for each point.
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Figure 3.33: Typical VCV sequence of frames—“Say beer again” whispered by
speaker f1.
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Figure 3.34: Glottal aperture plots (left=plain, right=adjusted for cuneiform tu-
bercle obstruction) for whispered obstruents (averaged over all speakers). The
points are taken from the vowel preceding the consonant (v1), the consonant it-
self (c), and the vocalic sequence following the consonant (v2). The filled circles
represent voiced tokens, and the open circles represent voiceless tokens. Vertical
lines represent one standard deviation above and below each mean.

3.6.9 Comparing normal to whispered speech

I ran a mixed-effects linear model analysis (separately for the plain and the ad-

justed glottal aperture measures) with glottal aperture as the dependent variable,

cuneiform tubercle width as a covariate, phonation mode and phonological voic-

ing as fixed factors, and speaker as a random factor. There was no significant

correlation between glottal aperture and cuneiform tubercle width (p = 0.257,

adjusted p = 0.149). Nor was there a main effect of phonation mode: whispered

consonants had similar glottal aperture to their spoken counterparts (p = 0.164,

adjusted p = 0.199). There was a main effect of voicing: voiceless consonants, at

32 px, had a 22-pixel (234%) greater glottal aperture than voiced consonants at
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Figure 3.35: Log-scaled glottal aperture plots (left=plain, right=adjusted for
cuneiform tubercle obstruction) for whispered obstruents (averaged over all
speakers). The points are taken from the vowel preceding the consonant (v1),
the consonant itself (c), and the vocalic sequence following the consonant (v2).
The filled circles represent voiced tokens, and the open circles represent voice-
less tokens. Vertical lines represent one standard deviation above and below each
mean.

9 px (p < 0.001, adjusted p = 0.010)—just as in the analysis for only the spoken

consonants.

There were no significant interactions. Crucially, there was no interaction be-

tween phonation mode and voicing—the effect of phonological voicing on the

consonant’s glottal aperture in whisper was not significantly different from the

effect of phonological voicing on the consonant in normal speech (p = 0.098,

obstruction-adjusted p = 0.401). Note that, although both the plain and the ad-

justed glottal aperture measures agree that there is no interaction, the plain mea-

sure has a much lower p-value than the adjusted value. Figure 3.36 shows that

the adjusted measure has a greater variance than the plain measure for phono-

logically voiced consonants in whisper. This explains the large difference in p-

values, as a greater variance increases the likelihood that a difference between

means is due to chance.

The same data is shown log-scaled in figure 3.37. (As the zero values affect the

variance of the phonologically voiced consonants in normal speech so much in

the log-scaled data, they are excluded from this figure.) Note that the variances

are very similar (with the exclusion of the zero values). Note also that the appar-

ent glottal aperture is greater for phonologically voiced tokens in whisper than
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Figure 3.36: Mean glottal aperture in the four crossed conditions: phonologically
voiced and voiceless consonants, in normal and whispered speech. Error bars
indicate one standard deviation above and below the mean. The left plot gives
plain glottal aperture; the right plot gives adjusted glottal aperture.

in normal speech. This does not show up in our statistical results because the lin-

ear model takes into account the tendency of whispered tokens to have greater

apparent cuneiform tubercle width. In other words, the apparent effect in this

figure is because the larynx tends to be closer to the camera in whisper than in

normal speech.
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Figure 3.37: Mean log-scaled glottal aperture in the four crossed conditions:
phonologically voiced and voiceless consonants, in normal and whispered
speech. Error bars indicate one standard deviation above and below the mean.
The left plot gives plain glottal aperture; the right plot gives adjusted glottal
aperture.

Figure 3.38 illustrates the influence of phonation mode and phonological voicing

on glottal aperture, when plotted against the cuneiform tubercle width. Looking



CHAPTER 3. ENDOSCOPY STUDY 79

at the regression lines, it is clear that phonologically voiceless consonants have

greater glottal aperture than phonologically voiced consonants, but the phona-

tion mode (normal or whispered speech) does not affect the glottal aperture of

consonants.
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Figure 3.38: Plain (top) and adjusted (bottom) plots of glottal aperture against
cuneiform tubercle width for consonants, with regression lines for the separate
groups. Spoken items are black; whispered are red. Voiceless consonants are
open circles (dashed regression lines); voiced consonants are closed circles (solid
regression lines).

The crucial finding here is that there is no significant difference between glottal

aperture on consonants in normal speech and in whispered speech. The clear
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abducted/adducted contrast in normal speech between phonologically voiced

segments /p t f s/ and phonologically voiceless segments /b d v z/ is preserved
in whispered speech. In fact, not only the contrast but the specific apertures

appear to be preserved.

This represents the first quantitative characterization of how glottal aperture cor-

responds to phonological voicing in whispered speech. Based on previous whis-

per studies (see section 1.4.1), I expected that the presence or absence of glot-

tal aperture distinctions in whispered phonological voicing contrasts would say

something about the acoustic or articulatory basis of the control variable govern-

ing glottal aperture. However, such conclusions hinge on the assumption that,

in the absence of phonetic voicing, there is no audible consequence of glottal

aperture manipulations in whisper. This assumption is tested and refuted in the

perceptual study detailed below.

The current results (whatever their meaning for the theory of motor control)

verify the expectation of Sweet (1906), Catford (1964), and others for voiceless

phonemes (abduction to the normal voiceless glottal state). However, they con-

tradict the speculation about voiced obstruents: while Sweet and others expected

speakers to use whisper posture for all phonologically voiced segments, we see

speakers clearly trying to give voiced obstruents the same glottal aperture in

whisper as they do in normal speech—they use the whispered posture for vowels

only, and approximate the voiced posture for phonologically voiced obstruents.

3.7 Perceptual test

The interpretation of the above results depends crucially onwhether there are au-

dible cues to phonological voicing generated by the gestural contrast observed.

A perceptual test was performed using the acoustic portion of the recordings

measured above to determine if such audible cues exist.

3.7.1 Dataset

All productions measured in the above study were collected. However, some

had more than two repetitions. In order to maintain a balanced design for the

perceptual study, I randomly discarded excess tokens so that there were two

repetitions in each cell of the crossed design. That left 2 spoken and 2 whispered

repetitions of each of 8 sentences by each of 9 speakers. For two tokens, only one
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repetition had been recorded. Each of these was included twice to balance the

design.

In Mills (2003), a similar test showed better-than-chance perception; but that per-

formance was attributed to durational cues. Voiceless obstruents have signifi-

cantly greater duration than voiced obstruents. Because duration (a supralaryn-

geal articulatory cue) would confound the current question (whether laryngeal

gestures themselves aid discrimination), the recorded tokens were modified to

remove any durational cues to voicing. Tokens illustrating stops (/p b t d/) were
truncated to begin just before the release. Tokens illustrating fricatives (/f v s z/)
were truncated to include only the final 100ms of the fricative. If duration is used

by listeners to judge consonant voicing, this truncation may bias the answers in

favour of the phonologically voiced alternatives. However, this bias cannot pro-

duce better-than-chance performance (it will equally bias phonologically voiced

and voiceless productions).

3.7.2 Presentation

The experiment was run using the E-Prime perceptual experiment software (E-

Studio 2003). Participants were seated in quiet experimental booths and used

high-quality headphones.

The 288 stimuli were presented in random order. A 250 ms pause was included

between each response of the listener and the presentation of the next stimu-

lus. Each audio stimulus was accompanied by a visual prompt indicating two

options—the word produced (correct), and its voicing minimal pair (incorrect).

The visual prompt indicated which key on a keyboard (“1” or “2”) to press for

each alternative. There was no means for participants to listen again to an audio

stimulus if they were uncertain. Figure 3.39 illustrates a typical visual prompt.

I had previously found that listeners were biased toward a voiceless judgment

for whispered tokens Mills (2003); in that study, however, the voiceless option

was always presented as option “1”, so the bias may have been for response “1”

rather than for perceived voicelessness. Therefore, I randomized the order of the

alternatives in the current study—the voiceless alternative was “2” as often as it

was “1”.

Three blocks of stimuli were presented to participants. Each block contained the

full set of stimuli, in independently randomized order.
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1=beer again

2=peer again

Figure 3.39: Sample slide presented to participants.

A full session lasted approximately 30 minutes.

3.7.3 Participants

The listeners were eleven adult native speakers of Canadian and American En-

glish (similar to the Canadian English of the speakers fromwhom the stimuli had

been recorded), all naive to the purposes of the study. None of the participants

had spent much time in contact with other varieties of English before adulthood.

Participants 3, 7, and 12 had studied phonetics at the graduate level7. Partic-

ipants 10 and 13 had taken an undergraduate course in phonetics. No other

participant had any formal phonetic training.

One participant (11) reported that one ear might be less sensitive than the other;

others were not aware of any hearing problems. During the sessions of three

participants (9, 10, and 11), building work involving jackhammers intruded for

a substantial portion of the session.

7Some participant numbers are higher than the number of participants because some individ-
uals withdrew from the study after being assigned a number.
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These potential confounds of intrusive noise and minor hearing loss would tend

to produce results closer to random behaviour (favouring H0). Data from partic-

ipants 9, 10, and 11 are therefore checked to see if they diverge from the overall

tendency.

The phonetic training of listeners 3, 7, 10, 12, and 13 might be expected to artifi-

cially boost their perceptual performance, leading us to reject the null hypothesis

when perhaps we should not. Their data are also checked against the overall re-

sults to see if they diverge.

Participants were instructed to identify which sentence fragment they thought

they heard, and to pick randomly if they were completely uncertain.

Most participants reported feeling that several tokens had the initial consonant

completely removed (labial stops especially); several also reported that for some

tokens they thought they heard a word that was not among the options (“gear”

instead of “beer”, for example).

3.7.4 Results and analysis

Overall, listeners correctly identified tokens in normal speech 93% of the time

(n=4752, χ2=3441.49, df=1, p<0.001). In whispered speech, they also performed

significantly above chance, with correct identifications 65% of the time (n=4752,

χ2=452.26, df=1, p<0.001). The difference between listener performance in nor-

mal and whispered speech is significant (n=7507, χ2=221.33, df=1, p<0.001). Fig-

ure 3.40 illustrates overall performance (proportion correct responses) in this per-

ception task.

The five listeners with phonetic training performed similarly. They scored 93%

in normal speech (n=2160, χ2=1574.23, df=1, p<0.001) and 67% in whispered

speech (n=2160, χ2=236.02, df=1, p<0.001). The difference between performance

on normal andwhispered speech is significant (n=3439, χ2=92.82, df=1, p<0.001).

The three listeners exposed to significant background noise also performed simi-

larly. They scored 91% in normal speech (n=1296, χ2=860.44, df=1, p<0.001) and

65% in whispered speech (n=1296, χ2=111.42, df=1, p<0.001). The difference

between performance on normal and whispered speech is significant (n=2014,

χ2=56.72, df=1, p<0.001).
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Figure 3.40: Overall perception scores on endoscopic recordings. The horizontal
dotted line corresponds to chance performance (50% correct).

Subdividing the data by manner of articulation, as depicted in figure 3.41, an

interesting pattern emerges. In normal speech, stops were identified with 99%

accuracy (n=2376, χ2=2257.52, df=1, p<0.001), but fricatives with only 86% accu-

racy (n=2376, χ2=1256.73, df=1, p<0.001)—adifference that is significant (n=4398,

χ2=19.65, df=1, p<0.001). In whispered speech, stops were identified with 75%

accuracy (n=2376, χ2=584.04, df=1, p<0.001) but fricatives were identified with

only 56% accuracy (n=2376, χ2=34.91, df=1, p<0.001)—also a significant differ-

ence (n=3109, χ2=63.69, df=1, p<0.001).

Alveolar stops /t/ and /d/ are discriminated slightly better inwhisper than labial
stops /p/ and /b/—scores are 81% for alveolar stops and 72% for labial stops.
This is consistent with listeners’ subjective impressions that, for the /p b/ tokens,
the initial consonant sometimes seemed to be missing entirely. Acoustically, this

may be due to the fact that the formant transitions for labial consonants are less

pronounced than those for alveolar consonants; thus, in the absence of any other

acoustic cue, the labial plosives sometimes seem to disappear entirely.

No systematic difference in perception is observed between the labial and alveo-

lar fricatives.
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fricatives stops
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Figure 3.41: Perception scores on stop and fricative contrasts in normal andwhis-
pered speech. The horizontal dotted line corresponds to chance performance
(50% correct). The dark bar indicates normal tokens; the light bar indicates whis-
pered tokens.

The main trends to note in the above data are that (a) listeners are better at dis-

tinguishing voicing pairs in normal speech than in whispered speech; (b) even

without duration as a cue, listeners perform better than chance at distinguishing

all labial and alveolar stop and fricative voicing pairs; and (c) perceptual perfor-

mance on fricative pairs suffers more from the removal of phonetic voicing and

duration cues than does performance on stop pairs.

3.8 Discussion

This chapter presents the results of an investigation into the nature of glottal

aperture control in whispered speech. A detailed quantitative methodology is

introduced for extracting useful numerical values from complex, multivariate

video data that contains several distortions and potential confounds to measure-

ment.
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The data yield a characterization of glottal aperture patterns as they relate to

phonological voicing contrasts in Canadian English in both normal and whis-

pered speech. Glottal aperture distinctions are seen between phonologically

voiced and voiceless obstruents in both normal and whispered speech; more-

over, the distinctions are the same in whispered speech as they are in normal

speech, contrary to the expectations of several previous researchers. Relating

this back to the diagrammed hypotheses in figure 3.1, our results fit neither of

the proposed hypotheses. Figure 3.42 presents the observed outcome (alongside

the pattern for normal speech).
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Figure 3.42: Diagrammatic representation of glottal aperture in voicing contrasts:
(a) normal speech; (b) whispered speech—abduction and adduction gestures
present. Open circles represent phonologically voiceless obstruents; closed cir-
cles represent phonologically voiced obstruents.

A perceptual test demonstrates that, even in the absence of phonetic voicing, the

glottal aperture distinctions seem to generate audible differences between the

phonologically voiced and voiceless obstruents.

We therefore cannot conclude that the glottal distinctions observed are due to

an articulatory specification for the motor control variable governing the larynx.

The control variablemay have an articulatory specification. However, it may also

have an acoustic specification which exploits the remaining acoustic cues that the

listeners are picking up on.

Further discussion is offered in chapter 6.



CHAPTER 4

Prosodic measures

Chapter 5 presents an experiment in which a prosodic feature is manipulated,

and associated acoustic properties are observed. The current chapter gives the

details of how those acoustic properties are measured.

Five acoustic parameters have been implicated in the communication of relative

prominence in English: f0 and duration (Fry 1955, 1958, Cooper, Eady &Mueller

1985, Eady & Cooper 1986, Aylett & Turk 2006), amplitude (Traunmüller & Eriks-

son 2000), spectral tilt (Sluijter & van Heuven 1996, Heldner 2001, Remijsen 2001,

Wouters & Macon 2002), and vowel quality (Aylett & Turk 2006). All five were

measured in this study. The following sections present the details of how each

was measured.

4.1 Duration

Duration measures taken include the duration of the entire target word as well

as the duration of the accented syllable. In order to confirm that varying speech

rate does not confound our results, an easily-segmented sequence preceding the

target word was also marked. This control sequence was designed to contain

a prenuclear pitch accent (generally, on the content word previous to the target

word). These control duration sequences are indicated in table 4.1.

In order to obtain clear segmentations, only the first syllable of the control words

“golfing” (for target word “father”) and “searching” (for target word “marshes”)

were used.

87
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Sample sentence Target word Control
Their seatbelts will be fastened. fastened seatbelts

She can cycle fastest. fastest cycle
They’re golfing with their father. father golf(ing)
They’re searching the marshes. marshes search(ing)
It’s on in the morning. morning on in the

He checked his main sources. sources check[ed]
They’re going surfing. surfing going
They ordered some sushi. sushi order[ed]
She’s writing a thesis. thesis writing
He’s very thirsty. thirsty very

Table 4.1: Sections of sentences used as control durations.

Condition Control
Statement He checked his main sources.
Question Did he check his main sources?
Statement They ordered some sushi.
Question Did they order some sushi?

Table 4.2: Control words varied across conditions for two of the target words.

Tokens for “morning” were not ultimately used, because of the lack of a consis-

tent prenuclear accent mentioned in section 4.2 above.

For target words “sources” and “sushi”, the control word varied between in-

flected for statements and uninflected for questions, as illustrated in table 4.2.

Because the key statistical analysis is within sentence types, these differences

should not confound our results.

Durations of segments were measured on the basis of acoustic landmarks com-

mon to both normal andwhispered speech. The onset and offset of voicing could

not be used as landmarks to identify segment boundaries, because any measure-

ments derived from phonetic voicing boundaries would not be comparable be-

tween normal and whispered speech.

The main landmarks we used are vowel formant onset and offset. Most target

words contain mainly sequences of alternating vowels and voiceless fricatives.

The onset and offset of vowel formants are used (rather than voicing) for these

boundaries (figure 4.1).

Note that, as in figure 4.1, some tokens contained plosives. In order to facili-

tate the formant analysis, boundaries were taken at the end of the release burst,
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o1 n1 o2 n2 c2

fastest

Time (s)
2.55784 3.32968

Figure 4.1: Segmented token of “fastest” spoken by speaker 4. Labels for indi-
vidual segments indicate syllable position (o=onset, n=nucleus, c=coda) and the
syllable that the segment is in (1 or 2). The vertical (frequency) axis goes from
0 Hz to 5000 Hz.

rather than at the beginning (as in the endoscopy study). Release bursts contain

high frequency noise which would disrupt formant tracking and possibly skew

formant tracks.

The same criteria were used in segmenting whispered tokens (figure 4.2).

o1 n1 o2 n2 c2

fastest

Time (s)
2.59107 3.30641

Figure 4.2: Segmented token of “fastest” whispered by speaker 4. Labels for
individual segments indicate syllable position (o=onset, n=nucleus, c=coda) and
the syllable that the segment is in (1 or 2). The vertical (frequency) axis goes from
0 Hz to 5000 Hz.

Some words contain nasals bordering vowels; again, vowel formant onset and

offset were used (see figures 4.3 and 4.4).
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o1 n1 o2 n2 c2

marshes

Time (s)
2.5883 3.35349

Figure 4.3: Segmented token of “marshes” spoken by speaker 5. Labels for in-
dividual segments indicate syllable position (o=onset, n=nucleus, c=coda) and
the syllable that the segment is in (1 or 2). Note the boundaries on either side of
segment “o1” ([m℄). The vertical (frequency) axis goes from 0 Hz to 5000 Hz.

o1 n1 o2 n2 c2

marshes

Time (s)
2.73014 3.57041

Figure 4.4: Segmented token of “marshes” whispered by speaker 5. Labels for
individual segments indicate syllable position (o=onset, n=nucleus, c=coda) and
the syllable that the segment is in (1 or 2). Note the boundaries on either side of
segment “o1” ([m℄). The vertical (frequency) axis goes from 0 Hz to 5000 Hz.
4.2 Fundamental frequency

The next parameter to describe is the magnitude of the pitch accent on an ac-

cented syllable.

Prosodic prominence is generally signalled by a high f0 peak relative to surround-

ing prosodic constituents (Portele & Heuft 1997, Terken & Hermes 2000), rather
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than by absolute f0.
1. I therefore measured not only the f0 peak of the accented

target word (nuclear pitch accent), but also the f0 peak of the word with the pre-

vious pitch accent in each utterance (prenuclear pitch accent) and the intervening

f0 minimum.

For every token, glottal pulses were marked by first running an automatic track-

ing algorithm, and then hand-checking and adjusting bad tracks. Figure 4.5 il-

lustrates the locations of the pulse marks on the accented syllable of “fastened”.

Time (s)
4.1 4.25

-0.5

0.5

0

Time (s)
4.1 4.25

Figure 4.5: Pulse marks on the accented syllable of “fastened”. The solid trace is
the waveform; the horizontal dashed line is the reference pressure; the vertical
dashed lines indicate the times at which glottal pulses are marked.

Ideally, we would use a smoothed contour that abstracts away from segmental

perturbations of f0 and extrapolates over unvoiced sections of the signal. The

MOMEL algorithm (Hirst & Espesser 1993) provides smoothing of segmental

perturbations, as well as extrapolation across voiceless sections of the signal,

1Following preliminary results from Gussenhoven & Rietveld (1988), Ladd, Verhoeven & Ja-
cobs (1994) found that the perceived prominence of an accent is sometimes positively, and some-
times negatively, correlated with the relative f0 height of a preceding accent. Accents with high
f0 have negative correlations (perceived as more prominent when the f0 of the preceding accent
is lower); those with low f0 have positive correlations (perceived as more prominent when the f0

of the preceding accent is higher). These studies do not, however, look at whether this perceptual
inversion is reflected in speakers’ productions. That is, we do not know whether speakers ma-
nipulate prominence sometimes by varying f0 directly with the preceding peak, and sometimes
by varying f0 inversely with the preceding peak. For the current study, I use two separate mea-
sures of relative prominence: the nuclear peak relative to the prenuclear peak, and the nuclear
peak relative to the prenuclear valley.
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based on fitting quadratic spline segments to the data. I used an implementa-

tion of this algorithm for Praat to identify maxima and minima in the f0 con-

tour2. Figure 4.6 illustrates the output of this algorithm (smooth line), plotted

alongside the f0 values derived from adjascent pairs of glottal pulse marks (in-

dividual dots). This algorithm yielded mixed results: for some tokens (such as

0

200

2.56802 3.92179

f 0
 (

H
z)

searching marshes

P N

Time (s)
2.56802 3.92179

Figure 4.6: Example of f0 smoothing output for sentence “Are they searching the
marshes?” The un-smoothed f0 contour after manual correction of the voicing
pulses is indicated by points (each point represents the period between two glot-
tal pulses). The output of MOMEL algorithm is shown as a curve. “P” indicates
the prenuclear accent peak and “N” indicates the nuclear accent peak.

the one illustrated), both prenuclear and nuclear accent peaks were tracked well.

For many tokens, the tracking algorithm was unable to generate a contour that

looked reasonably close to the actual data. Another frequent problem was that

the inter-accent valley was generally not marked very well. Note that this token

has a falling boundary tone, even though it is a question. This was a common

feature of our data—speakers produced a high pitch accent followed by a low,

with no rise at the end of the sentence. See section 5.6.12 for results, which show

2The implementation we used was written by Guillaume Roland, with modifications by Bert
Remijsen and further modifications by the current author. Themodifications dealt with file struc-
tures, and did not affect the actual f0 smoothing and spline-fitting algorithm.
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that speakers did, nevertheless, use f0 to distinguish statements from questions,

at least as far as the pitch accent on the utterance-final word is concerned.

These shortcomings meant that a significant portion of the data did not yield reli-

able f0 measurements after MOMEL smoothing. Because of this, a measurement

procedure based on the raw f0 track was followed instead.

From the manually-corrected pulse marks, a series of f0 values were calculated

and plotted. Each point in the plot represents the frequency calculated from the

period between two pulses. Examples of the f0 plot from this method are seen in

figures 4.7, 4.9, and 4.8.

For tokens where a clear, smooth peak-valley-peak pattern was evident in the

f0 track, the peaks and valley were taken as the frequency points at the local

maxima and minimum, as shown in figure 4.7. Note that, in order to reduce

confounds from segmental f0 perturbations, an f0 point was only taken as a true

maximum orminimum if it was part of a sequence of at least two simlar f0 points.

This avoids undue influence from obvious outliers, three of which can be seen

in figure 4.7 (not marked—there is one outlier adjascent to each of the labelled

turning points).

0

258.82

f0

h L H

going surfing

1.9764 3.4137
Time

Figure 4.7: Token with marked-up f0 contour. The pitch points are marked “h”
(prenuclear accent f0 peak), “L” (inter-accent f0 minimum), and “H” (nuclear
accent f0 peak).
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The words of interest in this study are utterance-final, so there is a large amount

of creakiness. As a result, non-smooth f0 tracks were common. Specifically, an

apparent diplophonia was often observed, as in the first syllable of “fastened” in

figure 4.8. In such cases, I treated the upper of the two alternating f0 tracks as a

valid source of peak values. For example, in this token, the nuclear accent peak

is taken as the highest point in the upper part of this alternation.

0

154.06

f0

h L H

seatbelts fastened

3.0009 4.8384
Time

Figure 4.8: Token with diplophonic f0 contour.

In some cases, creakiness was so severe that no clear peak or valley could be

identified. In figure 4.9, for example, no prenuclear accent is apparent. Also, the

obvious low-point is about half the frequency of the adjascent portions of speech,

with an abrupt rather than gradual transition. This suggests a qualitative rather

than quantitative shift in phonation, rendering the use of this as a “valley” less

valid. Tokens like this were discarded.

The sentences for the target word “morning”—“It’s on in the morning” and “Is

it on in the morning?”—did not have a consistent prenuclear accent on the word

“on” as expected. Without a prenuclear accent to compare the nuclear accent to,

I had to exclude all “morning” tokens from the analysis.
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0

129.72

f0

L H

his main sources

1.8243 3.5074
Time

Figure 4.9: Token with unusable f0 contour.

Frequency tracks were produced for spoken statements and questions, but not

for whispered statements. Figures 4.10, 4.11, and 4.12 illustrate the overall distri-

bution of frequency measures for the nuclear peak, the prenuclear peak, and the

interpeak minimum (respectively). All three show a distinct positive skew.

A logarithmic transform of these data—converting Hertz to semitones—removes

this skew. This is shown in figures 4.13, 4.14, and 4.15.

The formula used in this work to derive a logarithmic frequency measure in

semitones (flog) from a linear one in Hertz (flin) is given in 4.1. This formula

uses a reference frequency of 100 Hz. Frequency values yielded therefore rep-

resent the number of semitones above 100 Hz. A semitone is one twelfth of an

octave—twelve semitones represents a doubling of the linear frequency.

flog =
12 ln

(

flin

100

)

ln 2
(4.1)

Analyses in chapter 5 are performed on the log-scaled measurements.
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Figure 4.10: Distribution of nuclear peak frequencies.
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Figure 4.11: Distribution of prenuclear peak frequencies.

4.3 Amplitude

The third acoustic measure relevant to contrastive accent is the amplitude (Traunmüller

& Eriksson 2000).

For this data, we take amplitude as the maximum excursion from zero pressure

over the duration of the vowel, as illustrated in figures 4.16 and 4.17.
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Figure 4.12: Distribution of interpeak minimum frequencies.
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Figure 4.13: Distribution of log-scaled nuclear peak frequencies.

Amplitude measurements in decibels (LP ) were derived from the peak pressure

measures (P ) using the standard formula (equation 4.2). In the absence of an

absolute standard to use as a reference pressure (P0), I used the maximum ex-

cursion from zero pressure in the vowel with prenuclear accent (in the control
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Figure 4.14: Distribution of log-scaled prenuclear peak frequencies.
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Figure 4.15: Distribution of log-scaled interpeak minimum frequencies.

words identified in table 4.1).3

LP = 20 log
10

(

P

P0

)

(4.2)

3I used Praat’s Get absolute extremum... function (Boersma & Weenink 2005), with
the standard Sinc70 interpolation (fitting a sinc function to the waveform using 70 samples
each side of the sample with the greatest absolute value; see Praat online help for full details).
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Time (s)
2.36779 2.51054

–0.2

0.2

0

Figure 4.16: Example measurement of amplitude on a spoken vowel. The abso-
lute extremum is indicated with a circle.

Time (s)
2.79403 2.98255

–0.02

0.02

0

Figure 4.17: Example measurement of amplitude on a whispered vowel. The
absolute extremum is indicated with a circle.

Because each token’s amplitude measure is normalized against a value within

the same sentence, varying recording levels between speakers will not affect this

measure.

4.4 Vowel quality

The automated formant-tracking algorithm used in the Praat software (Boersma

& Weenink 2005) was used to track the first three formants of each accented

vowel. Visual inspection was used to verify the algorithm’s accuracy. Gross

errors such as treating two closely-spaced formants as one were corrected by ad-

justing the tracker’s parameters on individual tokens until the track fell within
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the visually-apparent range of each formant throughout the vowel. The average

of each track over 50 ms at the midpoint of the vowel (or as close as possible to

themidpoint, if an audio tick disrupted the track) was taken as the target formant

value for that syllable.

Vowel quality is expected to become less centralized in contrastive (more promi-

nent) contexts (Aylett & Turk 2006). This means that we expect a different direc-

tion of effect on the formants depending on where in the formant space a vowel

normally lies.

I began by comparing the mean F1 and F2 values of each vowel in the data to

the overall formant means, as a proxy for a completely centralized vowel (see

figure 4.18).4 Table 4.3 shows the direction of difference of F1 and F2 for each
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Figure 4.18: Vowels plotted by formant values. The dotted lines represent the
average F1 and F2 values of all data points. ASCII approximations are used for
the vowels: “i” for [i℄, “u” for [u℄, “e” for [�℄, “o” for [O℄, “a” for [æ℄, “A” for [A℄.
vowel represented in the accented syllables of the current data. These means are

taken from the statements in normal speech with non-contrastive contexts. (Note

4An alternative means of defining the centralized vowel would have been to take the actual
measurements of the accented vowel in, for example, “thirsty” /T�:sti/; results would have been
similar.
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F1 F2 Words/æ/ above below fastened, fastest/A:/ above below father, marshes/�:/ above above surfing, thirsty/i/ below above thesis/O:/ below below morning, sources/u/ below above sushi

Table 4.3: Difference of vowel formants from mean (all differences have p < 0.05
in individual single-sample t-tests).

that some vowels are represented by more than one target word—such as /æ/
in both “fastened” and “fastest”.) The table shows /æ/, /A:/, and /�:/ with F1
higher than the overall mean and /i/, /O:/, and /u/with F1 lower than the overall
mean. It also shows /�:/, /i/, and /u/ with F2 higher than the overall mean and/æ/, /A:/, and /O:/ with F2 lower than the overall mean. I left schwa (/�/) out of
further analysis because it is generally considered to be reduced, despite the fact

that in the current dataset it departs significantly from the overall mean (having

higher F1 and F2).

The measures of F1 and F2 frequency that were used in the spectral tilt calcula-

tions also served as indicators of vowel quality.

4.5 Spectral tilt

Spectral tilt is the overall distribution of energy in the spectrum; it is also de-

scribed as the rate at which intensity falls off as frequency increases.

Studies have shown spectral tilt to be involved in the perception and produc-

tion of lexical stress (Sluijter & van Heuven 1996, Remijsen 2001). Differences

between modal and turbulent (breathy, whispered) phonation modes are also

reflected in spectral tilt: turbulent excitation produces proportionally more high-

frequency energy than modal excitation does (Hanson 1997, Hanson & Chuang

1999, Mills 2003).

Obviously, formant locations also affect the distribution of energy in the spec-

trum. A high second formant, for example, generates a spectrum with more

energy in the high frequencies than there is in a vowel with a low second for-

mant.
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I will not deal here with factors external to the speaker. Telephone transmission

generally cuts out low-frequency energy; muffling speech with a hand or duct

tape dramatically attenuates the high-frequency portions of the signal.

Several different approaches to measuring spectral tilt have been explored in the

literature.

4.5.1 Energy bands

Sluijter & van Heuven (1996) use the simple strategy of identifying four fre-

quency bands, and measuring the average energy in each band. They then per-

form a separate univariate analysis on each band and compare the results to see

which part of the spectrum is most affected by lexical stress in Dutch. A sim-

ilar approach is taken by Remijsen (2001) in Ma’ya, an Austronesian language,

and by Mills (2003), looking at Scottish English voicing contrasts in whispered

speech.

This method has the advantage of being simple to perform. However, in order to

avoid the confound of varying formant frequencies, only a single vowel quality

can be used and the frequency bands must be set so that no formant is too close

to the boundary between two bands.

For the current study, I would prefer to obtain a value representing the source

spectrum, independent of the particular vowel being produced, so that we can

directly compare the spectral tilt of an [i℄ with that of an [o℄ without worrying
about the confound of shifting formant frequencies. The technique of Sluijter &

van Heuven is not suitable for cross-vowel comparisons.

It is also numerically inelegant, in that it yields multiple values rather than a

single “spectral tilt” value.

4.5.2 Regression lines

In one study (Kochanski, Grabe, Coleman & Rosner 2005), the authors fit a re-

gression line to the spectrum, and use the slope of the line to represent spectral

tilt. In order to have a measure with more perceptual relevance, they rescale

both frequency and power in the spectrum before doing regression. They rescale

the frequency to Barks, and power to the cube-root of power ( 3
√
power). They

generate a best-fit line across (Bark-scaled) energy bins from 500 Hz to 3000 Hz.
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While the values yielded by this method is a “slope” value, it is not clear (for our

purposes) that it represents a property of the source. Variations in formant values

can be expected to significantly affect this slope independently of any changes in

the source spectrum.

4.5.3 Voicing-based measures

Some measures are directly or indirectly based on the presence of voicing.

Campbell & Beckman (1997) measure spectral tilt as the “intensity ratio between

the first and second harmonics (H2-H1 in dB)”. This measure would be very sen-

sitive to F1 movement (low F1 would increase the ratio), thus failing to separate

source and filter.

Two studies have implemented a measure based on comparing the energy at f0

to the overall energy of the spectrum (Traunmüller & Eriksson 2000, Heldner

2001). They produce a separate copy of the signal which is dynamically low-

pass filtered at 1.5×f0. Their spectral emphasis measure is calculated as SPLall −
SPLf0.

This has the advantage of yielding a single value to represent the proportion of

energy in the signal that is low-energy. It is also partly insensitive to variations in

formant frequencies, except that an F1 proximate to f0 would probably increase

the amplitude of the f0 energy band.

Like the other measures above, this one does not specifically isolate source spec-

trum properties. Its value is an amalgam of source and filter properties.

4.5.4 Acoustic models

Ultimately, what is needed for our purposes is a measure of spectral tilt that can

systematically eliminate the influences of the supraglottal filter on the spectrum,

leaving just the source properties to be compared.

Two research lines have pursued this approach. One, followed byHanson (1997),

Hanson & Chuang (1999), compares the amplitudes of the first harmonic (H1)

and the third formant (A3). First, however, formulas are applied to correct for

the influences of the nearby formants:
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H1∗ = H1 − 20 log10

(

F12

F12 − f 2

)

(4.3)

A3∗ = A3 + 20 log10

(

[1 − (F3/F1)2][1 − (F3/F2)2]

[1 − (F3/F1ref)
2][1 − (F3/F2ref)

2]

)

(4.4)

Where f is the frequency of H1; F1, F2, and F3 are the frequencies of the first

three formants; and F1ref and F2ref are the frequencies of reference formants—

the formants F1 and F2 in a tube the length of the speaker’s vocal tract, but of

completely uniform diameter.

The main disadvantage of Hanson’s approach for our study is that it relies on a

measurable H1 (first harmonic peak), which is not present in whispered speech.

An alternative method which uses a more complete and explicit acoustic model

than that of Hanson is that introduced by Fulop, Kari & Ladefoged (1998), also

used by Guion, Post & Payne (2004). They use the work of Fant (1960) to mathe-

matically model all of the factors contributing to the speech spectrum.

This model identifies six main contributors to the observed spectrum of speech:

1. The first formant

2. The second formant

3. The third formant

4. The remaining formants

5. The source spectrum

6. The radiation of the sound from the mouth

While in principle all formants could be independently measured, it is only the

first three that vary enough in speech to be worth measuring individually. Equa-

tion 4.5 gives the function for the contribution of a formant of frequency F and

bandwidth b to the overall spectrum (amplitude in dB as a function of frequency

(f ) in Hz).

dB(f) = 20 log
10

F 2 + (b/2)2

√

(f − F )2 + (b/2)2 ×
√

(f + F )2 + (b/2)2
(4.5)
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The total contribution of the remaining formants is estimated by the “catch-all”

formula 4.6. This formula increases with the fourth power of f (very fast). This

renders it unrealistic for very large f , but it is an adequate approximation within

the range used for speech analysis.

dB(f) = 0.72(f/492)2 + 0.0033(f/492)4 (4.6)

The radiation characteristics are assumed to be fixed—the experimental setting is

the same across recordings, right down to the distance from the speaker’s mouth

to the microphone (it is a headset). Fulop et al., following Fant, collapse the

radiation and the source formulae into a single equation (4.7).

dB(f) = g

(

20 log10

(

2
f/100

1 + (f/100)2

))

(4.7)

The parameter g determines the overall slope of this component of the spec-

trum. Throughout the current work, g is set to 1.0, for a spectral slope of about

-6 dB/octave. Acoustic models (Nı́ Chasaide & Gobl 1997) and empirical inves-

tigations (Stevens 1998, p 69) identify this as a reasonable median value for the

combined effects of the glottal source spectrum (-12 dB/octave) and the radiation

of sound from the mouth (+6 dB/octave). Because the latter is constant across

speaking conditions, variation in the combined source+radiation spectrum can

be attributed to the source.

Figure 4.19 illustrates the contributions under this model of the different com-

ponents for a hypothetical vowel with formants at 500, 1500, and 2500 Hz. The

individual components of the model are shown in the upper half of the figure,

and the spectrum yielded by summing them is shown in the lower half. In this

figure, as in the main analysis, default formant bandwidths of 30 Hz for F1,

80 Hz for F2, and 150 Hz for F3.

Figure 4.20 illustrates the measurement on an actual token (the accented vowel

of “father”, spoken aloud by speaker 5).

The spectral tilt measure is derived from the A1 and A2 measures (peak ampli-

tudes of F1 and F2 respectively) from the smoothed actual spectrum and from

the modelled spectrum, as specified in equations 4.8, 4.9, and 4.10:
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Figure 4.19: Model of spectrum from Fulop et al. (1998), derived from Fant (1960).
Upper half shows individual components of model; lower half shows complete
spectrum.

diffmeasured = A1measured − A2measured (4.8)

diffmodel = A1model − A2model (4.9)

spectral tilt = diffmeasured − diffmodel (4.10)
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Figure 4.20: Measurement of spectral tilt on the accented vowel of spoken “fa-
ther” (speaker 5). Upper frame gives spectrogram with 8 ms window, with for-
mant tracks displayed and windowed selection indicated by square brackets at
top of figure. Lower frame gives raw spectrum for windowed selection, LPC
smoothed spectrum (black), and modelled spectrum based on formant averages
from top frame (red).

This measure, by accounting for the effects of formants and other supraglottal

contributors to the spectrum, allows us to say something specifically about the

source spectrum. Also, because the formants are explicitly modelled, the mea-

sure has the potential to be used to compare different vowels.
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4.5.5 Summary of existing spectral tilt measures

The current study requires a measure of spectral tilt that can be meaningfully

compared across different vowel contexts, that tells us about the source spec-

trum rather than primarily about the filter properties, and that can be applied to

whispered as well as to voiced vowels.

Of all the measures identified in the literature, the only one that fulfils all of these

needs is the components model introduced by Fulop et al. (1998). This measure

is used in the contrastive emphasis study presented in chapter 5, with a minor

modification described in the following section.

4.5.6 Modified optimal measure

The spectral tilt measure presented by Fulop et al. (1998) is the most suitable

existing measure in the literature for our purposes, because it is most explicitly

designed to exclude all supraglottal influences on the observed spectrum. How-

ever, there remains one problem. If F1 and F2 are closer together (as for [O℄), the
spectral tilt measure will tend to be smaller; if they are further apart (as for [i℄),
the measure will tend to be larger, even if the glottal slope (the value we seek to

represent with our measure) is the same.

In order to control for this, we scale the spectral tilt by the distance between

F1 and F2. The slope of the modelled source spectrum, as modelled in equa-

tion 4.7, has a relatively constant downward slope of about 6 dB/octave. It

seems reasonable to therefore scale the spectral tilt measure by the octave (log-

frequency) distance between F1 and F2. Equations 4.11 through 4.13 show how

the frequency-scaled spectral tilt measure is derived from the spectral tilt value

yielded by equation 4.10 above. The values F1oct and F2oct give the log-scaled

F1 and F2 frequencies (in octaves relative to 100 Hz).

F1oct = ln

(

F1

100

ln 2

)

(4.11)

F2oct = ln

(

F2

100

ln 2

)

(4.12)

spectral tilt
scaled

=
spectral tilt

F1oct − F2oct

(4.13)
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As an example of the range of values yielded by this procedure, consider the

spectra illustrated in figures 4.21 and 4.22. The spoken vowel illustrated in fig-

ure 4.21 has a spectral tilt of -1.61 dB/octave—meaning that the vowel’s spec-

trum is 1.61 dB/octave flatter than the modelled spectrum. Thewhispered vowel

illustrated in figure 4.22 has a spectral tilt of -14.92 dB/octave—notice howmuch

it diverges from the modelled spectrum above F1, compared with the LPC spec-

trum in figure 4.21. The difference between these two tokens is expected—the

turbulent excitation used in whisper has a much more level spectrum than the

periodic excitation of modal voicing (Hanson 1997, p474).
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Figure 4.21: Measurement of spectral tilt on the accented vowel of spoken “fa-
ther” (speaker 5). The upper frame gives the spectrogram with an 8 ms window,
with formant tracks displayed and the windowed selection indicated by square
brackets at the top of the figure. The lower frame gives the raw spectrum for the
windowed selection, the LPC smoothed spectrum, and the modelled spectrum
based on formant averages from the top frame. The spectral tilt measure for this
token is -1.61 dB/octave.
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Figure 4.22: Measurement of spectral tilt on the accented vowel of whispered “fa-
ther” (speaker 5). The upper frame gives the spectrogram with an 8 ms window,
with formant tracks displayed and the windowed selection indicated by square
brackets at the top of the figure. The lower frame gives the raw spectrum for the
windowed selection, the LPC smoothed spectrum, and the modelled spectrum
based on formant averages from the top frame. The spectral tilt measure for this
token is -14.92 dB/octave.

4.5.7 Validation

Using the data from the contrastive emphasis study described in chapter 5, I

performed two tests to verify the validity of the modified spectral tilt measure.

First, I compared spoken to whispered statements. The empirical and theoreti-

cal literature is clear that a whispered glottal source has a more level spectrum

than a voiced source. We should therefore expect whispered tokens to have a

lower spectral tilt measure than voiced tokens. We expect a similar pattern in the

unmodified measure from Fulop et al. (1998).



CHAPTER 4. PROSODIC MEASURES 111

Second, I compared the spectral tilt of different vowels in the data. The modifica-

tions I made are intended to make the measure vowel-independent; if this goal

was successful, we should find no significant differences between the spectral

tilt values of the different vowels. This assumes that the glottal source does not

systematically covary with vowel quality.

I fitted a mixed-effects linear regression model to the data, with phonation mode

(voiced or whispered) as a fixed factor, and with speaker and word as random

factors. Separate models were generated for the modified measure and for the

original Fulop et al. measure.

Our modified spectral tilt measure yields an average of -7.0 dB/octave for voiced

tokens (s.d. = 2.2), and -12.1 dB/octave for whispered tokens (s.d. = 2.2). This

difference, illustrated in figure 4.23, is significant (p < 0.001).
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Figure 4.23: Spectral tilt of voiced and whispered vowels using measure modi-
fied from Fulop et al. (1998).

A similar pattern is obtained from Fulop et al.’s unmodified measure. Voiced

vowels average -5.4 dB (s.d. = 1.2) andwhispered vowels average -9.9 dB (s.d. = 1.1).

This difference (figure 4.24) is significant (p < 0.001).

For the second validation test, I fitted a mixed-effects linear regression model to

the data, with word (eight levels) as a fixed factor, and with speaker as a random

factor. Separate models were generated for the modified measure and for the

original Fulop et al. measure.
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Figure 4.24: Spectral tilt of voiced and whispered vowels using measure from
Fulop et al. (1998).

As expected, the original measure from Fulop et al. (1998) showed a great deal

of variation between vowels (figure 4.25). Similar vowels, such as the [a℄ in “fas-
tened”, “fastest”, and “father”, pattern together. Also, some dissimilar vowels,

such as the [a℄ in “marshes” and the [O℄ in “sources”, seem to pattern together.
However, overall there is a great deal of variation between vowels. This measure

is clearly not vowel-independent.5

Fitting the same model to the revised measure, we see a significant change in the

relationships between vowels (figure 4.26). Unfortunately, we do not see vowel-

independence. There is still a large amount of variation between different vowel

qualities.

There are two obvious possibilities for why the normalized spectral tilt measure

does not give a vowel-independent value. The first possibility is that the glottal

source spectra that produce different vowels do in fact have different slopes. Just

as vowels have different intrinsic f0 (Whalen & Levitt 1995), perhaps they have

different intrinsic spectral tilt. However, the magnitude of difference in spectral

tilt measures is very large. The difference between the lowest vowel measure ([a℄
5Note that Fulop et al. use the measure to distinguish between [+ATR] and [-ATR] vowels—

they are clearly aware that the measure isn’t vowel-independent. Guion et al. (2004) also uses
their measure to distinguish vowels from one another. The fact that it is not vowel-independent
is not a critique of their use of the measure; simply a caution in the current use.
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Figure 4.25: Spectral tilt of different vowels using measure from Fulop et al.
(1998).

in “marshes”) and the highest ([i℄ in “thesis”) is 16.6 dB/octave. For comparison,
the difference between voiced and whispered vowels is only 5.1 dB/octave.

The other, more likely possibility is that we have failed to adequately adjust for

the effects of the supraglottal resonances in our measure. The original acous-

tic model from Fant (1960) is already an abstraction, and so will not perfectly

model the contributions to the recorded acoustic signal. In addition, we made

two abstractions from Fant’s model in our calculations. First, we only explicitly

modelled the first three formants. In principle, we could measure all formants

for a more accurate spectrum.

Second, we did not measure formant bandwidths. We used the default val-

ues suggested by Fant (1960) and employed by Fulop et al. (1998). This cer-

tainly affects our spectral tilt measure in whisper, where formant bandwidths

are known to be greater than they are in voiced speech. It probably also affects
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Figure 4.26: Spectral tilt of different vowels using measure modified from Fulop
et al. (1998).

inter-speaker comparisons, as speakers vary in the amount of breathiness even

in voiced speech (Hanson 1997, Hanson & Chuang 1999, Hanson, Stevens, Kuo,

Chen & Slifka 2001).



CHAPTER 5

Contrastive accent study

5.1 Experimental question

The main aim of this dissertation is to examine the control variables that medi-

ate speech motor behaviour. In this experiment, I ask how the parameters that

contribute to a prosodic contrast interact, and how their interaction relates to the

interactions seen in segmental contrasts.

In example 5.1, the word “surfing” has phrasal stress but is not contrasted with

anything. In example 5.2, it has phrasal stress and is contrasted with “swim-

ming” in the preceding sentence.

They’re away today. They’re going surfing. (5.1)

They’re not going swimming. They’re going surfing. (5.2)

When spoken, the accent on “surfing” in 5.2 is made more prominent to express

this contrast—it has greater duration and an exaggerated pitch accent (Fry 1955,

1958, Cooper et al. 1985, Eady & Cooper 1986, Pell 2001, Braun 2004, Liu & Xu

2007), and greater amplitude (Traunmüller & Eriksson 2000) or flatter spectral

tilt (Sluijter & van Heuven 1996, Remijsen 2001) than the instance of “surfing”

in 5.2.

In the current experiment, I use two methods for perturbing the contribution of

f0 to the signal of relative prominence: whispered speech and question intona-

tion.

115
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Whispered speech removes f0 information completely from the acoustic signal.

If there is a single control variable mediating all of the acoustic parameters that

signal contrastive context, such a manipulation should cause compensation in

one or more of the other acoustic parameters. If, instead, the multiple parameters

are controlled by separate control variables, no compensation is expected from

the other parameters to the manipulation of f0.

The results of the endoscopy study in chapter 3 show that normal glottal artic-

ulations are not always altered in whisper. If the articulatory contributions to

pitch accent, such as vocal fold tension and subglottal pressure (Nı́ Chasaide &

Gobl 1997), are likewise preserved in whispered speech then wemight not expect

compensation at all, even if the different acoustic parameters are governed by a

single control variable. Therefore, a second manipulation was performed with

a more directly-observable effect on f0 production. Following Eady & Cooper

(1986), I chose to use question intonation as well as whisper. Examining focus

location and intonation, Eady & Cooper (1986) report that in sentence-final ac-

cented words, f0 is a stronger signal of focus (broad versus narrow) in statements

than in questions. The difference is slight, but it suggests that question intonation

may interfere with the use of f0 to differentiate focus types. I therefore decided to

elicit accents with contrastive and non-contrastive contexts in questions as well

as in statements. Because f0 can be measured acoustically in both statements

and questions, this manipulation does not carry the uncertainty that the whisper

manipulation carries.

5.2 Speech material

Recordings of sentence pairs like those in 5.1 and 5.2 above give us information

about how duration, f0, intensity, and spectral tilt are used to signal contrastive

context. Because the sentence in which the target word is found does not change

between these two conditions, we can assume that any differences in these mea-

sures are due solely to the difference in context.

See table 5.1 for all target sentences; appendix C gives the complete list of sen-

tences used in all manipulations, including the context sentences used to elicit

contrastive and non-contrastive readings. Speakers’ productions of these sen-

tences give us a baseline for how each acoustic parameter is used to signal con-

trastive context. Next, we introduce our experimental manipulation.
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Their seatbelts will be fastened.
She can cycle fastest.

They’re golfing with their father.
They’re searching the marshes.
It’s on in the morning.

He checked his main sources.
They’re going surfing.
They ordered some sushi.
She’s writing a thesis.
He’s very thirsty.

Table 5.1: Sentences used to establish baseline acoustic contributions to sig-
nalling contrastive context.

The sentences listed in table 5.1 were elicited in whisper as well as in normal

voice. Whispered speech, lacking vocal fold vibration, lacks f0 as an acoustic

parameter to signal contrastive context. If the other acoustic parameters are gov-

erned by the same control variable, we would expect them to compensate in

whispered speech by showing greater differences between non-contrastive and

contrastive contexts.

This manipulation is somewhat reliant on the assumption—currently untested—

that the articulatory gestures which generate f0 contours in normal speech are

not present in whisper. The results from the endoscopy investigation of obstru-

ents (chapter 3) suggest that this assumption may be false. If we do not see

compensation in the current study, then, it may be due either to the operation

of separate control variables for the different acoustic parameters, or to the fact

that the manipulation did not in fact alter the articulatory behaviour regarding

f0. If we do see compensation under the whisper manipulation, it will strongly

suggest both that the manipulation was successful in inhibiting the articulatory

contribution to f0 and that there is a single control variable responsible for f0 and

whichever acoustic parameters exhibit compensation.

Because of the uncertainty about whether the whisper manipulation actually re-

moves articulations underlying f0 manipulations, a second manipulation was

also performed. The f0 environment at the end of a sentence is different for

a yes/no question than for a statement: typically, questions end with a high

boundary tone, while statements end with a low boundary tone. I elicited target

words sentence-finally in questions which were structurally almost identical to

the statements given above—compare 5.1 and 5.2 above with 5.3 and 5.4:
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They’re away today. Are they going surfing? (5.3)

They’re not going swimming. Are they going surfing? (5.4)

Because of the high boundary tone in questions, speakers have a more lim-

ited pitch range available with which to signal contrastive context (Grabe, Post,

Nolan & Farrar 2000). This claim is tested for the current data in section 5.6.12

below. With the f0 parameter thus attenuated, we can look for increased magni-

tude of one or more other parameters signalling contrastive context.

This manipulation has the advantage over the whisper manipulation of allowing

us to observe acoustically whether the articulatory control of f0 has, in fact, been

changed. Its disadvantage is that the effect on f0 is less complete: there is still

some f0 difference between tokens in non-contrastive and contrastive contexts; in

whisper, if the manipulation is successful, there is no remaining f0 difference.

5.3 Participants

Recruitment of participants was guided mainly by one criterion: whether they

spoke a variety of English in which pitch accents are consistently expressed with

high f0 excursions, rather than a mixture of high and low. This allows us to di-

rectly compare the magnitude of pitch accents across conditions. In exploratory

recordings, Southern British English speakers were found to fit this requirement.

Speakers of other varieties—particularly from the north of England and from

Scotland—exhibited high pitch accents in statements, but frequently had low

pitch accents in questions. This variation is also observed by Grabe et al. (2000)—

they report that speakers from Newcastle show high pitch accent in statements

and low pitch accent in questions. They also report low pitch accent in both con-

ditions for Belfast speakers. Speakers from Leeds and Cambridge in their study

showed high pitch accents in both conditions.

Four male and two female speakerswere recorded for this study, all native speak-

ers of Southern British English.
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Speaker Order
1 S Q W
2 W S Q
3 QW S
4 S W Q
5 Q S W
6 W Q S

Table 5.2: Speakers and block orders. S = spoken statements; Q = spoken ques-
tions; W = whispered statements.

5.4 Recordings

Each context + target sentence pair was made into a slide for presentation on a

computer screen.

A first round of pilot recordings demonstrated that, when slides from all prosodic

conditions were randomized together in a single block—contrastive and non-

contrastive contexts for statement, question, and whispered tokens—speakers

found it difficult to use the correct type of accent. They confused the different

conditions, producing contrastive accents in non-contrastive contexts and not

producing contrastive accents in contrastive contexts. It is likely that there were

too many dimensions changing between tokens: the intonational manipulation

(statement/question/whisper) and the context variation (contrastive/non-contrastive).

Therefore, the slides were divided into three blocks. One block contained all

of the spoken-aloud statement tokens (contrastive and non-contrastive); another

contained all of the question tokens (contrastive and non-contrastive), and the

third contained all of the whispered tokens (contrastive and non-contrastive).

Within each block, the twenty slides (ten target sentences, each in both a con-

trastive and a non-contrastive context) were presented five times. Each of the

five sets of twenty slides was combined in a unique random order.

In order to prevent order of presentation from confounding the results, the blocks

were presented in a different order to each speaker according to a Latin Square

design. Each of the six possible orders of spoken statements, spoken questions,

and whispered statements was assigned to one of the six speakers. The order

assigned to each speaker is presented in table 5.2.
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In a second set of pilot recordings, in which tokens were separated into blocks

as above, speakers did not consistently produce contrastive accent on the tar-

get words when it was indicated by the context sentence. While I did not want

to bias speaker behaviour by overly-specific instruction, it was crucial for this

experiment that a consistent difference between contrastive and non-contrastive

tokens was produced, at least in the base condition (spoken statements).

In order to remind speakers to produce contrastive accent, without biasing them

about how to produce it, slides with a non-contrastive context sentence had ”(se-

quence)” prepended to them, to indicate a sequence of two related sentences,

and slides with a contrastive context sentence had ”(contrast)” prepended to

them. Instructions were also given at the start of the recordings to pay partic-

ular attention to this difference. Reminders were given periodically throughout

the recordings. These additions succeeded in eliciting consistent differences be-

tween the contrastive and non-contrastive tokens. Sample slides are presented

in figure 5.1.

Recordings were made in a sound-treated booth. The experimenter sat with

speakers during the recordings. The experimenter controlled the presentation

of slides (approximately one half second between the end of reading one slide

and presentation of the next). If the experimenter (the author) perceived that the

accent was wrong on a given production (contrastive accent when a slide gave

a non-contrastive context, or vice versa), the speaker was asked to repeat that

token. Instructions were repeated between sets and between blocks if a speaker

seemed to be ignoring the contrastive/non-contrastive difference.

Speakers were given water and encouraged to drink whenever needed. In par-

ticular, they were advised to drink if they began to sound dry—aside from the

importance of attending to participants’ well-being, excessive mucosal viscosity

(stickiness) due to dryness produces acoustic events which interfere with clear

measurements.

Participants were given £5.00 and some chocolate in thanks for their participa-

tion.

5.5 Measurements

Five acoustic properties were measured for each token in this dataset: f0, dura-

tion, amplitude, vowel quality, and spectral tilt. See chapter 4 for details on how
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(sequence)

The plane went down nearby.

They’re searching the marshes.

(contrast)

They’re not searching the forest.

They’re searching the marshes.

Figure 5.1: Sample slides presented to participants.

each acoustic parameter was measured.

5.6 Results

In this experiment, I ask whether a reduction in the contribution of one acoustic

parameter to signalling contrastive context elicits a compensatory increase in the

contributions of any of the other acoustic parameters that signal contrastive con-

text. Before answering the question, we first need to establish three properties of

the data:
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1. The parameter being manipulated—f0—is consistently used by speakers to

signal whether the context is contrastive or not.

2. At least one other parameter—in this case, one of duration, amplitude,

spectral tilt, and vowel quality—is also used to signal the type of context.

3. The manipulations used (statements versus questions, and spoken versus

whispered) successfully alter the extent to which f0 contributes to signalling

the type of context.

In section 5.6.2, I examine the spoken statement data. I find that f0, duration,

and amplitude all show a significant effect of contrastive context in the expected

direction. Spectral tilt shows no effect. This satisfies prerequisites 1 and 2 above.

Section 5.6.8 presents the whisper manipulation. In this manipulation, it is as-

sumed that an f0 manipulation was successful. Duration and amplitude show

no evidence of compensation. Section 5.6.11 presents the question manipula-

tion, showing that f0 was successfully reduced as a signal of contrastive context.

Neither duration nor amplitude exhibit compensation. Instead, they show the

reverse: when the contribution of f0 is reduced, so are the contributions of dura-

tion and amplitude.

Section 5.7 presents some discussion of the results and how they relate to the

purpose of the study.

5.6.1 Statistics used

As with the endoscopy study, I used mixed-effects linear models to test for sig-

nificant effects in the data (see section 3.5.11). I use the lmer (Linear Mixed Ef-

fect Regression) function from the lme4 package Bates (2005) in the R statis-

tical software (R 2008). I report p-values derived from Markov Chain Monte

Carlo (MCMC) sampling (10 000 samples), which avoids the anticonservative

bias Baayen (2008) reports for the traditional t-statistic when dealing with small

sample sets. (The current data is a small data set, with only 554 measured data

points across all speakers and conditions.)

A recent analysis (Quené & van den Bergh 2008) shows that repeated measures

techniques where there are multiple crossed random factors are at greater risk

of Type I error (underestimating the probability of the null hypothesis) than the

alternative mixed-effects models. This is relevant for the current study, where

there are two random factors (speaker and word). For further discussion of the
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theory behind mixed-effects models, see Neter et al. (1996), Bates (2005), and

Baayen (2008, chapter 7).

Because I am using MCMC sampling to determine p-values, there are no F-

statistics to report. I include graphs showing group variances from the data to

give the reader a visual idea of the effects reported. Using the raw variance

across the full dataset would tend to obscure true effects, as between-speaker

and between-word differences would be added to true within-condition vari-

ances. I therefore applied the following adjustment to data for each variable

before plotting the graphs. For each speaker, I calculated the difference between

that speaker’s mean and the grand mean of the data. Each data point from that

speaker was shifted by that difference, so that the speaker’s mean equalled the

grand mean. This adjustment preserved differences between conditions (ie, be-

tween contrastive and non-contrastive tokens), but removed inter-speaker differ-

ences. This is akin to how the statistical test deals with inter-speaker variation.

The same adjustment was then applied to the other random factor (target word).

This manipulation mirrors the adjustments for between-group effects of random

variable performed in the statistical analyses.

5.6.2 Basic effects

The following sections present the tests for a main effect of contrastive context

on the final accented syllable in spoken statements. The data show that f0, du-

ration, and amplitude all signal contrastive context in spoken statements, but

vowel quality and spectral tilt do not. All tests for main effects use a mixed-

effects ANOVA with contrastive context as a fixed factor (2 levels: contrast or no

contrast) and random factors word (9 levels) and speaker (6 levels).

5.6.3 Main effect on f0

In spoken statements, words in a non-contrastive context had a peak 0.72 semi-

tones lower than the preceding pitch accent, on average. Words in a contrastive

context averaged 0.37 semitones higher than the preceding pitch accent. The dif-

ference between accents in contrastive and non-contrastive contexts relative to

the prenuclear accent was 1.03 semitones—a significant difference (p < 0.001).

Figure 5.2 illustrates the difference.
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Figure 5.2: Mean f0 nuclear accent peak relative to prenuclear accent in non-
contrastive (-) and contrastive (+) contexts, using a logarithmic (semitone) scale.
Bars indicate one standard deviation above and below the mean.

5.6.4 Main effect on duration

In order to determine whether any duration effect was confounded by varying

speech rate, a test was made with the control duration as a dependent variable.

This test showed a significant effect (p < 0.001), but as figure 5.3 shows, the effect

was the reverse of that seen above for the accented syllable: the control duration

(which received pre-nuclear accent) was 16ms (6%) shorter with contrastive con-

text than with non-contrastive context. The effect of contrastive context on the

target word duration is thus very unlikely to be due to varying speech rate. We

can therefore conclude that any positive effect of contrastive context on the ac-

cented syllable duration is genuine.
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Figure 5.3: Mean duration of control word in non-contrastive (-) and contrastive
(+) contexts. Bars indicate one standard deviation above and below the mean.
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A significant effect of contrastive context on accented syllable duration was seen

(p < 0.001): syllables in a contrastive context averaged 16.8 ms (8%) longer than

those in a non-contrastive context. This effect is shown in figure 5.4. It is not a

large effect: studies on perception find 50% discriminability thresholds between

5% and 10%, depending on the task (Fujisaki, Nakamura & Imoto 1975, Quené

2007). The current result—syllable duration increasing 6% in contrastive context

over non-contrastive—lies at the border of perceptibility. Numerically, it is sta-

tistically significant, suggesting that this is a consistent part of the motor control

involved in signalling contrast.
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Figure 5.4: Mean duration of stressed syllable in non-contrastive (-) and con-
trastive (+) contexts. Bars indicate one standard deviation above and below the
mean.

The effect carried over onto the unstressed final syllable of the word as well—

it averaged 18 ms (6%) longer in contrastive than non-contrastive contexts (p <

0.001). Figure 5.5 illustrates this effect.

5.6.5 Main effect on amplitude

There was a significant effect of contrastive context on the peak amplitude of the

accented vowel (p < 0.001): accents in a contrastive context had an average peak

amplitude 1.14 dB higher than accents in a non-contrastive context (figure 5.6).

The just noticeable difference for isolated vowel sounds is around 1.2 dB (Flana-

gan 1955). The perceptual threshold for differences in a natural speech context is

likely to be even higher, as there are many other acoustic fluctuations in speech

that listeners must also attend to. Our observed difference of 1.14 dB is therefore
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Figure 5.5: Mean duration of unstressed syllable in non-contrastive (-) and con-
trastive (+) contexts. Bars indicate one standard deviation above and below the
mean.
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Figure 5.6: Mean amplitude of stressed vowel in non-contrastive (-) and con-
trastive (+) contexts. Bars indicate one standard deviation above and below the
mean.

unlikely to be perceptually useful. As with duration, though, the tendency is

statistically significant, suggesting a real difference in articulation.

5.6.6 No effect on vowel quality

Two tests were performed for each of F1 and F2: one with vowels having a lower

average frequency of that formant, and one with vowels having a higher average

frequency of that formant. They are illustrated in table 5.3. None of the tests

showed a significant effect of context: vowels in a contrastive context were not

less centralized than vowels in a non-contrastive context.
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Vowels p
Set: linear log
F1 low /i O u/ 0.341 0.384
F1 high /æA/ 0.850 0.580
F2 low /æA O/ 0.080 0.077
F2 high /i u/ 0.205 0.232

Table 5.3: Effects of contrastive context on formant frequencies.

5.6.7 No effect on spectral tilt

As seen in figure 5.7, there was no significant effect of contrastive context on

spectral tilt (p=0.233).
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Figure 5.7: Mean spectral tilt measures in non-contrastive (-) and contrastive (+)
contexts. Bars indicate one standard deviation above and below the mean.

5.6.8 Responses to the whisper manipulation

In the first manipulation, I elicited the same statements in whisper as in normal

speech. With whisper, the presence of f0 as an acoustic cue to contrastive context

is completely eliminated. Whether this manipulation successfully eliminated the

articulatory adjustments corresponding to f0manipulation cannot be directly an-

swered with the present data (see the discussion at the end of section 5.2 above).

The tests reported in the following sections are based on a mixed-effects linear

model with context (non-contrastive or contrastive) and phonation mode (spo-

ken or whispered) as fixed factors, and with word (9 levels) and speaker (6 lev-

els) as random factors. The dependent (response) variables tested are duration

(stressed syllable, unstressed syllable, control duration) and amplitude.
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5.6.9 Duration

An examination of the control duration (figure 5.8) shows no confounding in-

fluence of speech rate on on the following effects. There is an effect of con-

text (p = 0.006): the control duration averages 14 ms (5%) shorter in contrastive

than in non-contrastive contexts. There is a significant effect of phonation mode

(p < 0.001): control durations are 15ms (5%) greater in whispered than in normal

speech. There is no interaction between context and phonation mode (p=0.680).
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Figure 5.8: Control duration in non-contrastive (-) and contrastive (+) contexts in
normal and whispered speech. Bars indicate one standard deviation above and
below the mean.

On the accented syllable of the target word, there is a main effect of context (p <

0.001): syllables with a contrastive context average 17 ms (8%) longer than those

without in spoken statements, and 13 ms (5%) longer in whispered statements

(figure 5.9). There is a main effect of phonation mode: syllables are significantly

longer whenwhispered (by an average of 11ms, 5%) thanwhen spoken normally

(p < 0.001). There is no interaction between the effect of context and that of

phonation mode (p=0.251)—no compensation.

Similar patterns are seen on the unaccented syllable (figure 5.10). There is a main

effect of context (p < 0.001)—17 ms (5%) in normal speech and 10 ms (3%) in

whispered speech. Unlike on the previous syllable, there is no main effect of

phonation mode (p = 0.773). There is no interaction between context and phona-

tion mode (p = 0.264).
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Figure 5.9: Mean duration of accented syllable in non-contrastive (-) and con-
trastive (+) contexts in normal and whispered speech. Bars indicate one standard
deviation above and below the mean.
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Figure 5.10: Mean duration of unaccented syllable in non-contrastive (-) and con-
trastive (+) contexts in normal and whispered speech. Bars indicate one standard
deviation above and below the mean.

5.6.10 Amplitude

We find an overall main effect of context on peak amplitude (p = 0.046): peak

amplitude is 1.21 dB greater in a contrastive than in a non-contrastive context.

There is also a main effect of phonation mode (p < 0.001): peak amplitude is

2.36 dB greater in whisper than in normal speech. (Remember that the peak

amplitude is measured relative to the peak amplitude in the accented syllable

of the control sequence, so our measure will not reflect the fact that whispered

speech overall has a lower amplitude thanmodal speech.) There is no interaction

between the effect of context and the effect of phonation mode (p = 0.347).
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Figure 5.11: Mean amplitude in non-contrastive (-) and contrastive (+) contexts
in normal and whispered speech. Bars indicate one standard deviation above
and below the mean.

5.6.11 Responses to the question manipulation

The following sections report results from the question manipulation, in which

the contribution of f0 to signalling contrastive context was reduced by placing

the words in yes/no questions, near the high boundary tone. Neither of the

other acoustic parameters that signal contrastive context show compensation.

Interestingly, the duration measure mirrors the f0 measure in showing a weaker

effect of contrastive context in questions than in statements.

All tests reported in this section are based on a mixed-effects linear model with

context (non-contrastive or contrastive) and sentence type (statement or ques-

tion) as fixed factors, and with word (9 levels) and speaker (6 levels) as random

factors.

5.6.12 Fundamental frequency

Using f0 peak as a dependent variable, the main effect of context seen in the state-

ment data remains (p < 0.001): overall, tokens in a contrastive context have an

f0 peak 0.52 semitones higher than tokens in a non-contrastive context, relative

to the prenuclear accent. Crucially for this experiment, we also find a significant

interaction between context and sentence type (p < 0.001). In statements, ac-

cent peaks averaged 1.33 semitones higher in contrastive than in non-contrastive
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contexts, relative to the previous accent. In questions, the difference between ac-

cent peaks in contrastive contexts and those in non-contrastive contexts was only

0.49 semitones.
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Figure 5.12: Mean f0 peak relative to prenuclear accent in non-contrastive (-)
and contrastive (+) contexts in statements (st) and questions (qu). Bars indicate
one standard deviation above and below the mean. Frequency is shown with
logarithmic scaling (semitones).

Our manipulation of the f0 contribution to signalling contrastive context was

successful: f0 contributes to more in statements than it does in questions (fig-

ure 5.12).

Also, the difference between statements and questions is significant. The pitch

accent on the final word of questions averaged 0.77 semitones higher, relative

to the preceding accent, than the pitch accent on the final word of statements

(p < 0.001). As mentioned in section 4.2, this does not mean that questions had a

rising intonation at the end; it simplymeans that the final pitch accent was higher

in questions than in statements (with all other pertinent intonational variables

kept constant).

5.6.13 Duration

When examining spoken statements in section 5.6.4, we saw that the duration of

the accented syllable showed an effect of context.

Looking at statements alongside questions now, we see a main effect of con-

trastive context (p < 0.001): tokens in a contrastive context have an 11 ms longer
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accented syllable than those in a non-contrastive context. We also see a signifi-

cant interaction between contrastive context and sentence type (p < 0.001). Look-

ing at the marginal means, we see that contrastive context increases accented

syllable duration by an average of 19 ms (9%) in statements, but only by 3 ms

(1%) in questions, over its duration in a non-contrastive context. This is shown

in figure 5.13.
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Figure 5.13: Mean accented syllable duration in non-contrastive (-) and con-
trastive (+) contexts in statements and questions. Bars indicate one standard
deviation above and below the mean.

The same pattern was observed in the final (unaccented) syllable: an overall ef-

fect of contrastive context (p < 0.001), interacting with sentence type (p = 0.020):

there is a 20 ms (6%) effect of contrastive context in statements, but only a 3 ms

(1%) effect in questions.
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Figure 5.14: Mean unaccented syllable duration in non-contrastive (-) and con-
trastive (+) contexts in statements and questions. Bars indicate one standard
deviation above and below the mean.
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Again, we check these results against the pattern of the control duration across

the conditions (figure 5.15). We find a significant main effect of contrastive con-

text on the control duration (p < 0.001)—as in section 5.6.4. The control du-

ration averages 8 ms (3%) shorter in tokens with a contrastive context than in

tokens with a non-contrastive context. There is a main effect of sentence type—

control durations are 13 ms (5%) shorter on average in questions than they are

in statements (p < 0.001). There is an almost-significant interaction of context

and sentence type (p = 0.057)—the negative effect of contrastive context tends to

be greater in statements than in questions. These patterns demonstrate that the

effects observed above in the target words are not an artefact of varying speech

rate.
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Figure 5.15: Mean control duration in non-contrastive (-) and contrastive (+) con-
texts in statements and questions. Bars indicate one standard deviation above
and below the mean.

5.6.14 Amplitude

In section 5.6.5, we saw that the base condition (spoken statements) shows a

small but statistically significant effect of contrastive context on peak amplitude.

Looking at statements and questions together, we find a main effect of con-

trastive context (p < 0.001). In statements, vowels in a contrastive context are

1.11 dB higher than those in a non-contrastive context; in questions, vowels in a

contrastive context are only 0.13 dB higher than those in a non-contrastive con-

text. There is a significant effect of sentence type (p = 0.023); questions have a

0.07 dB higher amplitude than statements. There is a significant interaction be-

tween context and sentence type (p = 0.020)—the effect of contrastive context on

amplitude is significantly greater in statements than in questions (figure 5.16).
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Figure 5.16: Mean amplitude in non-contrastive (-) and contrastive (+) contexts
in statements and questions. Bars indicate one standard deviation above and
below the mean.

In other words, like its duration and its f0 peak, the amplitude of the accented

syllable is a statistically stronger signal of contrastive context in statements than

in questions. The difference remains below the JND of 1.2 dB for vowel sounds

observed by Flanagan (1955).

5.7 Summary

The study presented in this chapter provides a phonetic profile of the effects of

contrastive context as conveyed in Southern British English, and yields some

evidence on the question of single or multiple control variables for prosodic con-

trasts.

The current data confirm that contrastive context is, indeed, signalled by mul-

tiple acoustic cues. We find that the f0 peak of the pitch accent is higher for

accented words in a contrastive context than in a non-contrastive context; the

duration of the accented syllable is greater; and the peak amplitude is higher.

Vowel quality and spectral tilt do not vary systematically with contrastive con-

text in the current data.

In the whisper manipulation, there was no compensatory behaviour in duration

or amplitude. This is consistent with separate control variables for these differ-

ent measures in the signalling of contrastive context. Remembering that glot-

tal “voicing/devoicing” gestures were observed in the endoscopy study (chap-

ter 3), we cannot discount the possibility that the same is happening in the cur-
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rent study. Perhaps the manipulations of vocal fold tension and subglottal pres-

sure that produce f0 changes in normal speech are also performed in whispered

speech, even though they have no perceptible effect on the acoustic signal. If so,

and if changes in articulation are required to trigger compensation, then a con-

trol variable governing f0, duration, and amplitude together would still not be

expected to trigger compensation in the whisper condition. Short of electromyo-

graphic or endoscopic investigation, we cannot tease apart these two possible

interpretations of the results from the whisper manipulation.

In the question manipulation, we were able to manipulate the degree to which

f0 signalled contrastive context. The f0 difference between accents in contrastive

and non-contrastive contexts is much weaker at the end of a question than at the

end of a statement. Neither of the other cues identified as signalling contrast—

duration and amplitude—exhibited compensation under this manipulation. In

fact, both duration and amplitude showed evidence of being attenuated in the

same direction—weaker signalling of contrast in questions than in statements.

This fits neither the null hypothesis (separate control variables, no response of

one parameter to manipulation of another) nor the compensation hypothesis

(increased use of one parameter in response to decrease of another). The rela-

tionship observed is consistent with the idea that duration and amplitude are

not independent of f0 in production—that speakers cannot physically alter one

without affecting the others. However, the work of Berkovits (1984) compar-

ing English and Hebrew sentence-final intonation demonstrates that it is physi-

ologically possible to manipulate f0 and duration independently of one another.

Moreover, what we know of the physiological and acoustic aspects of production

suggests that these parameters can be manipulated independently.

So while the whisper manipulation give results consistent with the hypothesis of

separate control variables for f0, duration, and amplitude, the question manipu-

lation gives results that are consistent with neither of the original hypotheses.

Both manipulations give results that differ from the type of results seen in bite

block studies of lip closure and vowel height, and in studies of acoustic motor

equivalence. As discussed above, the whisper manipulation may have failed

to alter f0 behaviour in such a way as to trigger compensation. However, the

question manipulation was clearly successful in setting up the preconditions for

compensation. It remains to be seenwhat the unexpected result says aboutmotor

control variables in the signalling of contrastive context. This is discussed further

in chapter 6.



CHAPTER 6

Discussion and conclusions

In this dissertation, I inquire about the nature of speechmotor control—specifically,

motor control variables, around which online adaptation to different speech con-

ditions is organized.

6.1 Voicing contrasts in whispered speech

Chapter 3 presents two experiments probing the utility of whispered speech as

a tool for investigating the question of articulatory versus acoustic targets in the

production of phonological voicing contrasts.

6.1.1 Articulatory study

In the examination of endoscopic data, I present a procedure for extracting quan-

titative measures of glottal aperture from the high-dimensional video data. From

these measures, we see that there are systematic glottal aperture differences:

voiced and voiceless obstruents are produced with the same glottal apertures in

whispered speech as in normal speech—this element of the articulatory contrast

is preserved intact in whisper.

Readers are reminded that, in this study, we use maximum distance between

the vocal folds as our measure of glottal aperture. This can be expected to cor-

relate with other measures of glottal aperture, such as glottal area, but it is not

an identical measure. For example, a glottis with the vocal folds parted slightly

along their whole length may give the same measure as one with mostly closed
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vocal folds and a posterior glottal chink (as in most speakers’ whispered glot-

tal state), if we were to use the current technique. See figure 6.1, reproduced

from figure 2.5 for an illustration of such differences. However, if we were to

Figure 6.1: Reproduction of figure 2.5, to illustrate the difference between mea-
suring glottal aperture as distance and as area.

measure glottal area (perhaps, the number of pixels in the visible glottis), the for-

mer would have a greater glottal aperture than the latter. My impression is that,

because of the “glottal chink” configuration that dominates in whisper, a study

that looked at glottal area rather than glottal opening would show less difference

in aperture between normal and whispered speech than the current study does.

However, I suspect that the conclusions regarding obstruent contrasts would be

substantially similar to those drawn here.

The first benefit of this finding is that it provides us with a quantitative character-

ization of glottal behaviour in whispered voicing contrasts. Figure 6.2 presents

the results for spoken and whispered tokens (replicating the left portion of fig-

ures 3.28 and 3.35).

We are now able to empirically adjudicate speculations in the literature that

heretofore had not been directly tested. Perkins et al. (1976) found that stut-

tering rates are reduced in whisper relative to normal speech. They attributed

this to the reduced coordinative complexity of speech, assuming that no glot-

tal gestures are made in whispered speech. The current results clearly falsify

this assumption. On the other hand, the current results largely confirm a long

line of assertions in the literature, from Sweet (1877, 1906), through Pike (1943),

Malmberg (1963), Abercrombie (1967), and Catford (1964, 1977), to Laver (1994),

that in whispered speech, phonologically voiceless consonants should be pro-

duced with the voiceless glottal state (as they are in normal speech), and phono-

logically voiced consonants should be produced with the whisper glottal state
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Figure 6.2: Log-scaled glottal aperture plots for spoken (left) and whisperd
(right) obstruents (averaged over all speakers, zeros omitted). The points are
taken from the vowel preceding the consonant (v1), the consonant itself (c), and
the vocalic sequence following the consonant (v2). The filled circles represent
voiced tokens, and the open circles represent voiceless tokens. Vertical lines rep-
resent one standard deviation above and below each mean.

(rather than with a voiced glottal state, as they are in normal speech). The cur-

rent data confirm the first half of this prediction—phonologically voiceless con-

sonants are produced with the same glottal aperture in whisper as in normal

speech. But the data refute the second half—phonologically voiced consonants

are in fact produced with a glottal aperture statistically indistinguishable from

the voiced glottal state.

In whispered sequences with voiced obstruents, speakers often adducted the vo-

cal folds from a whisper position on the preceding vowel, to a voiced-like aper-

ture on the obstruents, and back to a whisper position on the following vowel.

It is interesting that voiced obstruents and voiced vowels—produced with the

same laryngeal configuration in normal speech—have different laryngeal con-

figurations from one another in whispered speech. This suggests that the artic-

ulatory specification of voicing on obstruents is different from the articulatory

specification of voicing on vowels.

Note, however, that no actual phonetic voicing occurred during the production

of phonologically voiced obstruents in whisper, although the glottal aperture is

similar to that of phonetically voiced consonants in normal speech. The current

data do not allow us to determine why this is. For vocal fold vibration to occur,

several conditions need to be met. The vocal folds need to have not only appro-

priate positioning, but also the correct tension and elasticity (Borden & Harris
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1984, p83). In addition, subglottal pressure and airflow across the glottis need to

be controlled. Monoson & Zemlin (1984) and Stathopoulos, Hoit, Hixon, Watson

& Solomon (1991) report significantly greater airflow in whisper than in normal

speech. Stathopoulos et al. (1991) calculate airway resistance from their mea-

sures of airflow and oral pressure, and conclude that airway resistance in the

larynx is lower in whispered than in normal speech. These results do not tell us

exactly what laryngeal and sub-laryngeal articulatory modifications are made;

they do, however, point to radically different aerodynamic conditions in whis-

pered speech than in normal speech. These aerodynamic differences, in combi-

nation with possible laryngeal articulatory differences not captured by our sim-

ple glottal aperture measure, are the likely reason why we do not observe pho-

netic voicing in phonologically voiced obstruents in whispered speech, although

the glottal aperture is the same as it is in normal speech when the segments are

voiced.

6.1.2 Perceptual study

In the perceptual test, we discover that listeners can discriminate phonologically

voiced from voiceless obstruents in whisper, with 75% accuracy on plosives and

56% accuracy on fricatives (both significantly above chance). Figure 6.3

While some loss of perceptual discrimination is clear, it is not complete. Both

classes of sounds—fricatives and stops—are recognized significantly above chance

levels (50%). Because of this, the possibility remains that the glottal aperture

distinction observed in the visual data is driven by the goal of maintaining a

perceptual contrast—an acoustic target, rather than an articulatory target.

Whisper is not, therefore, an effective tool for probing the question of articulatory

versus acoustic targets in glottal contrasts. Any tool used to investigate motor

control variables must cause a systematic perturbation to some relevant aspect

of production. The articulatory measurements show that whispered speech does

not detectably perturb the production of voicing contrasts in obstruents (at least

with respect to glottal aperture). The perceptual study shows that whispered

speech also fails to systematically remove acoustic cues to those contrasts.

The much lower perceptual discriminability of fricatives than plosives (also ap-

parent in normal speech: fricatives at 86% and plosives at 99%) is also of interest.

I hypothesize, following the speculations in section 3.2, that acoustic differences
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Figure 6.3: Summary of perceptual scores on the voicing contrasts in the en-
doscopy study, subdivided by manner. Dark bars indicate performance on nor-
mal speech; light bars indicate performance on whispered speech.

in the release burst of stops are exploited by listeners to discriminate them in

both normal and whispered speech.

I observed that the release bursts of voiceless stops seem to have greater energy

than those of voiced stops. Aerodynamically, this is probably due to the greater

closure duration of voiceless stops. Greater closure duration would cause greater

buildup of pressure posterior to the obstruction, which generates a higher-energy

burst upon release of the closure. This would explain why the acoustic difference

is preserved in whisper—because the duration difference is the same in whis-

pered as in normal speech. It would also explain why fricatives (which, having

incomplete closure, do not cause a buildup of pressure) are not so readily dis-

criminated in normal or whispered speech.

Remember that the glottal aperture differences between phonologically voiced

and voiceless consonants are preserved in both whispered stops and whispered

fricatives. Statistically, there was no significant difference between glottal aper-

tures on consonants in normal speech and those in whispered speech.
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6.1.3 Gestural account

While the results do not allow us to decide between an articulatory and an acous-

tic account of motor control, they do tell us somethig about what such accounts

must look like.

Gestural accounts, as commonly conceived, are captured well by the gestural

scores of Browman & Goldstein’s Articulatory Phonology. Figure 6.4, for ex-

ample, illustrates a gestural score for the word “tier” ([thi�℄ as spoken by our
Canadian English participants).

Figure 6.4: Gestural score for “tier”. The labels for tiers of the score are
VEL=velum, TB=tongue body, TT=tongue tip, LIPS=lips, and GLO=glottis.

Note in particular the glottal widening gesture that overlaps with the tongue tip

gesture. One of the questions in this study was whether that gesture would be

expressed in whisper, or whether the whisper “posture” would override it. We

can now say that the gesture is expressed.

Figure 6.5 presents a gestural score for the word “deer” ([ti�℄ or [di�℄), as it would
be given by Browman & Goldstein (1992, and later). Notice that it does not spec-

ify a glottal gesture to accompany the alveolar closure.

This underspecification is based on the very sensible idea that, where no change

in articulator position is observed, no phonological specification for a gesture

should be posited. The current data confirm that there is no change in glottal

posture when the [d℄ in “deer” is spoken normally—it remains closed and vi-
brating throughout the vowel-consonant-vowel sequence.
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Figure 6.5: Gestural score for “deer”, based on Browman & Goldstein (1992).
The labels for tiers of the score are VEL=velum, TB=tongue body, TT=tongue tip,
LIPS=lips, and GLO=glottis.

However, our observations of whispered speech showed a statistically signifi-

cant adduction gesture between the phonetically whispered vowels and the [d℄.
So this suggests that, at least in whispered speech, the gestural score for “deer”

should be as depicted in figure 6.6. Note that the exact alignment of the glottal

“narrow” gesture cannot be determined from the current results; we can only say

that it includes at least the release of the oral closure.

Figure 6.6: Revised gestural score for “deer”, given the current results. The labels
for tiers of the score are VEL=velum, TB=tongue body, TT=tongue tip, LIPS=lips,
and GLO=glottis.

It would seemperverse for this score to be used in whispered speech, and the one

from figure 6.5 to be used in normal speech. Parsimony suggests that the new

score, with the explicit “narrow glottis” gesture for the [d℄, is used for both. This
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means we have a gestural specification (“narrow glottis” on voiced obstruents)

which does not translate to a distinct physical gesture in normal speech.

6.1.4 The phonology of glottal states

Even if we do not take a gestural approach to the mental respresentation of

phonological structure, the asymmetry of laryngeal behaviour between vowels

and phonologically voiced consonants in the current data is instructive.

Phonologically voiceless obstruents have a “voiceless” (fully opened) glottal aper-

ture in both normal andwhispered speech, and phonologically voiced obstruents

have a “voiced” (fully narrowed) glottal aperture in both normal and whispered

speech. On the other hand, vowels have a “voiced” (fully narrowed) glottal aper-

ture in normal speech, and a “whispered” (intermediate between opened and

narrowed) glottal aperture in whispered speech. When speakers whisper, they

change the glottal aperture of their vowels, but not that of their consonants.

The obvious way to explain this is to invoke the system of phonological contrasts.

In English, obstruents are contrastive for phonological voicing but vowels are

not. However pronunciations are encoded in the mental lexicon, minimal pairs

such as “peer” and “beer” must be distinguished—the former specifying a wide

glottis in the onset; the latter specifying a narrow glottis. Vowels, on the other

hand, can take a default value. In normal speech, they are voiced; in whispered

speech, they are whispered.

One might ask which is primary—do vowels take on whisper phonation because

the speaker is adopting a “whispered” articulatory posture; or is the speechwhis-

pered because the speaker is using whisper phonation on vowels? The current

data cannot empirically rule on this question. However, using the concept of

underspecification, I prefer to think that vowels take their glottal state from the

underlying posture.

6.2 Contrastive accent

The study in chapter 5 looks at how different parameters are coordinated in a

prosodic linguistic variable, to see how motor control of prosody compares to

that of the segmental variables that form the bulk of speech motor control re-

search to date.
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The prosodic variable I used was relative prominence, varied by eliciting target

words in contrastive and non-contrastive contexts. Baseline results showed that,

of the five acoustic measures tested, three (f0 peak, syllable duration, and ampli-

tude peak) were used systematically to signal contrast and two (spectral tilt and

vowel quality) were not.

6.2.1 Question manipulation

The question context successfully reduced the contribution of f0 to the signalling

of contrastive context. There was no compensatory increase in the contributions

of duration and amplitude; in fact, both duration and amplitude showed de-

creased effects of contrastive context in questions, relative to statements.

Independent parameters systematically varying sympathetically, rather than com-

pensatorily, with the experimentally-manipulated parameter is not a behaviour

predicted or explainable under standard accounts of motor control variables.

The answer may lie in one key difference between the linguistic variables ex-

amined in previous compensation studies and contrastive emphasis. Previous

studies have looked at linguistic variables with fixed targets: lip closure or vowel

height in bite-block studies, and formant values in acoustic motor equivalence

studies. For these, the linguistic target is the same from utterance to utterance.

The contribution to the target that is required from parameter B (say, lip move-

ment) to achieve the target is fully determined by the contribution from param-

eter A (say, jaw movement). This is schematized in equation 6.1 (where T is the

fixed target):

A + B = T (6.1)

For contrastive accent (and other linguistic variables based on relative promi-

nence), the relationship is different. The combined effect of parameters A, B,

and C (say, f0, duration, and amplitude) must exceed a particular target, which

is defined by another point in the utterance or discourse, inwhich the parameters

have values A0, B0, and C0. This is schematized in equation 6.2:

A + B + C > A0 + B0 + C0 (6.2)
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In this case, a disruption in which the contribution of A is fixed at some abnor-

mal level does not fully specify the combined contribution of B and C that is

required, because the target is relative rather than fixed.

Also, the studies involving bite block and acoustic motor equivalence involve

linguistic variables where it is relatively easy to determine the extent to which

A and B contribute to the target, in articulatory or acoustic terms. If the tar-

get lip aperture is 0 mm and the current aperture is (say) 6 mm, then a 1 mm

vertical movement of the jaw must be accompanied by a 5 mm movement of

the lips. The calculations for achieving a particular second-formant frequency

may be less straightforward, but they are nevertheless deterministic: a partic-

ular tongue posture will require a specific lip protrusion to achieve a specified

formant frequency.

For the current study, what does it mean for A + B + C to be more prominent

than A0 + B0 + C0? A reasonable answer would be that prominence is perceptu-

ally determined—it is an empirical question to map the ways in which different

acoustic parameters interact in the perception of relative prominence. However,

it could be that these interactions are too complex for (or otherwise inaccessible

to) the motor control variables used in speech production. In that case, what pos-

sible strategies are available to speakers for controlling the acoustic parameters

in question? One would be an “every-parameter-for-itself” strategy—the null

hypothesis where we would expect no response of one parameter to a perturba-

tion of the others. Clearly this isn’t happening in the question manipulation.

Another strategy might involve controlling the different parameters as a bundle:

when one goes up, the others go up; when one goes down, the others go down.

That is what we see in the question manipulation. This would seem to reduce

the dimensionality of the motor control task.

This suggestion is not predicted by previous data and theory on motor control;

but the task observed in this study is qualitatively different from previous tasks,

as mentioned.

A useful test of this idea of “bundled parameters” might be gained if a non-

speech motor task could be identified which shared one or both the qualitative

properties of relative prominence identified above: a relative rather than a fixed

target, and a complex rather than a simple relationship between the articulatory
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contributions and the target. Examination of other linguistic tasks sharing these

properties (as well as replication of the current results) could also yield insight.

6.2.2 Whisper manipulation

In the whisper manipulation, we saw no compensation in either duration or am-

plitude for the lack of an f0 cue. In the absence of the data from the endoscopy

chapter and from the questionmanipulation, this result would lead us to the con-

clusion that the different parameters are governed by separate control variables.

However, the endoscopy data calls into question the utility of whispered speech

in examining control variables. It is possible that the articulatory manipula-

tions that normally generate f0 contours are present in whispered speech, but

are acoustically ineffective (having no glottal vibrations to act on). If this is the

case, then the whisper “manipulation” might not be perturbing the speech at all,

from the perspective of the control variables. Support for this possibility comes

from the questionmanipulation. There, we know that f0 is perturbed, andwe see

the sympathetic response of duration and amplitude. The lack of such a response

in whisper means either that the whisper manipulation failed to actually perturb

the articulation of f0, or that whispered speech is controlled in a systematically

different manner than normal speech. The former possibility is muchmore likely

than the latter in the light of the endoscopy findings.

We might also remember the general conclusion of motor control theory—that

“normal speech production programming is indeed ‘compensatory’ . . . . The

differences between compensatory and normal articulation do not reside in the

choice of different encoding strategies, but rather have to do with extreme ver-

sus non-extreme articulatory parameter values.” (Lindblom et al. 1979, p159) It

seemsmore likely that the whispermanipulation failed to disrupt f0 articulations

(as it failed to disrupt “voicing” articulations in the endoscopy study) than that

we are seeing two completely different modes of speech motor control at work.

6.3 Summary

This dissertation presents two studies exploring the nature of motor control vari-

ables in speech production.

The first experiment, looking at glottal aperture in whispered voicing contrasts,

reveals that the same glottal aperture differences seen in normal speech between
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phonologically voiced and voiceless obstruents are also seen inwhispered speech;

this difference is shown to be perceptible to listeners, though the acoustic prop-

erty signalling the difference is not identified. Phonological voicing in vowels

and phonological voicing in obstruents are shown in whispered speech to oper-

ate in qualitatively different ways.

The second experiment, investigating the acoustic contributors to contrastive

emphasis (frequency, duration, and amplitude), finds no evidence of compen-

sation; however, an unexpected “sympathetic attenuation” is observed in the

question manipulation which is not predicted by the standard control variable

paradigm. This suggests that motor control of prosodic variables may be qualita-

tively different from motor control of segmental variables, though more research

is required to determine the generality of this behaviour.



APPENDIX A

Glossary

This work requires the ability to distinguish between certain meanings for which

commonly-agreed specific terms do not yet emerge from the literature at large.

Also included are some terms that may be unfamiliar to phoneticians who have

not worked with endoscopic data. This glossary specifies the meanings used in

this work.

abduct (v) to place farther apart (also abducted, abduction)—used in this work to

refer to the opening of the vocal folds.

adduct (v) to place closer together (also adducted, adduction)—used in this work

to refer to the closing of the vocal folds.

accent (n) a physical manifestation of semantic or syntactic prominence on a

syllable. To be distinguished from stress and focus, which are abstract prop-

erties of syllables and phrases, respectively, and from prominence, which is

a perceptual property of various levels of constituents.

contrastive accent (n) a pitch accent produced in a contrastive context

control variable (n) see motor control variable

coordinative structure (n) the set of muscles and articulators which act together

to achieve a particular target specified by a single motor control variable.

cuneiform tubercles (n) two cartilaginous structures that rest on top of the ary-

tenoid cartilages in the larynx. The cuneiform tubercles are visible in en-

doscopic video recordings as bumps in the anterior/inferior ends of the

aryepiglottal folds.

goal (n) the consciously intended end for which an action is undertaken
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motor control variable (n) the final organisational specification of an action in

the brain before the motor commands are sent to the muscles. Also re-

ferred to simply as “control variable”. Control variables can govern multi-

ple muscles and evenmultiple articulators—for example, a control variable

specifying hand position governs (at least) extension, flexion, and rotation

in the shoulder, elbow, and wrist.

normal speech (n) a sequence of speech in which at least some segments are

produced with vocal fold vibration. This is the normal speech mode of

most healthy speakers.

phonologically voiced (adj) of a segment or sequence of segments, belonging to

an abstract category in a language’s phonology which is characterized by

the presence of phonetic voicing

phonologically voiceless (adj) of a segment or sequence of segments, belonging

to an abstract category in a language’s phonology which is characterized by

the absence of phonetic voicing

prominence (n) a generic term, often used to indicate the perceptual salience of

one part of an utterance relative to another part. Prominence can reflect

any of a large number of possible semantic and lexical relations between

items. Some examples include unstressed and stressed syllables in a word,

function and content words in a phrase, and given and new information in

an utterance.

voiced (adj) of a segment or sequence of segments, produced with a glottal state

in which the vocal folds are regularly vibrating

voiceless (adj) of a segment or sequence of segments, produced with a glottal

state in which there is no vocal fold vibration and the vocal folds are suffi-

ciently abducted to prevent turbulent excitation of the transglottal airstream

(for voicelessness in a phonological sense, see “phonologically voiceless”)

whisper (n) a glottal state in which the vocal folds are not vibrating, but are ad-

ducted so that turbulent noise is generated as air passes through the larynx

whispered (adj) of a segment or sequence of segments, produced with whisper

whispered speech (n) a sequence of speech in which there is no vocal fold vibra-

tion, and in which the primary glottal excitation is whispered. (Note that

other glottal states may occur in whispered speech, so long as they do not

involve vocal fold vibration.)
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Endoscopy study: Sentences read

Following is the full set of sentences elicited in the recordings for the endoscopy

study described in chapter 1. Only the basic voicing contrasts from the sentences

in table B.1 were analysed for this dissertation.

B.1 Voicing contrasts

For each speaker, the basic voicing contrasts (table B.1) were elicited first, fol-

lowed by the emphasized targets (table B.2), followed by the unemphasized tar-

gets (table B.3).

1 Say PEER again.
2 Say TIER again.
3 Say FEAR again.
4 Say SEAL again.
5 Say BEER again.
6 Say DEAR again.
7 Say VEER again.
8 Say ZEAL again.

Table B.1: Orthographic presentation form of sentences eliciting voicing contrast

B.2 Pitch gestures

To elicit different pitch gestures, a contrastive emphasis situationwas constructed.

In one condition (emphasised, higher pitch), the frame sentence was “Say x

again, not y again” where pairs of target words were taken from table B.1. The

other condition (non-emphasised, lower pitch) used the frame sentence “Say x
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again, don’t write x again”, where the emphatic contrast is on the word immedi-

ately preceding the target word.

In order to control for segmental environment, only the first target word was

measured in each case. Eight sentences with emphatic targets were used—one

with each of the eight words in initial position (x) and its minimal pair in the

other position (y) (table B.2). For a different pitch pattern, eight sentences with

non-emphatic targets were used—one for each of the eight words (table B.3).

1 Say PEER again, not BEER again.
2 Say BEER again, not PEER again.
3 Say TIER again, not DEAR again.
4 Say DEAR again, not TIER again.
5 Say FEAR again, not VEER again.
6 Say VEER again, not FEAR again.
7 Say SEAL again, not ZEAL again.
8 Say ZEAL again, not SEAL again.

Table B.2: Orthographic presentation form of sentences in the pitch study—target
words emphasised.

1 SAY peer again, don’t WRITE peer again.
2 SAY beer again, don’t WRITE beer again.
3 SAY tier again, don’t WRITE tier again.
4 SAY dear again, don’t WRITE dear again.
5 SAY fear again, don’t WRITE fear again.
6 SAY veer again, don’t WRITE veer again.
7 SAY seal again, don’t WRITE seal again.
8 SAY zeal again, don’t WRITE zeal again.

Table B.3: Orthographic presentation form of sentences in pitch study—target
words not emphasised.
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Prosody study: Sentences read

The following tables present all of the sentences used in the prosody experiment

(chapter 5). They are organized first by target word, and second by prosodic

condition.

The first ten tables (tables C.1 through C.10) divide the sentences by target word—

each table gives the prompts for a given target word in all four prosodic condi-

tions.

The remaining four tables (tables table:statement-non-contrastive-sentences through table:question-

contrastive-sentences) present the same sentences by the prosodic conditions. It

nc st The passengers will feel safe. Their seatbelts will be fastened.
c st Their seatbelts won’t be released. Their seatbelts will be fastened.
nc qu The passengers will feel safe. Will their seatbelts be fastened?
c qu Their seatbelts won’t be released. Will their seatbelts be fastened?

Table C.1: Sentences elicited in prosody experiment for the target word “fas-
tened”. Prosodic conditions indicated: nc=non-contrastive, c=contrastive,
st=statement, qu=question.

nc st The race will go well. She can cycle fastest.
c st She can’t cycle longest. She can cycle fastest.
nc qu The race will go well. Can she cycle fastest?
c qu She can’t cycle longest. Can she cycle fastest?

Table C.2: Sentences elicited in prosody experiment for the target word “fastest”.
Prosodic conditions indicated: nc=non-contrastive, c=contrastive, st=statement,
qu=question.
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nc st They won’t be in tomorrow. They’re golfing with their father.
c st They’re not golfing with their mother. They’re golfing with their father.
nc qu They won’t be in tomorrow. Are they golfing with their father?
c qu They’re not golfing with their mother. Are they golfing with their father?

Table C.3: Sentences elicited in prosody experiment for the target word “father”.
Prosodic conditions indicated: nc=non-contrastive, c=contrastive, st=statement,
qu=question.

nc st The plane went down nearby. They’re searching the marshes.
c st They’re not searching the forest. They’re searching the marshes.
nc qu The plane went down nearby. Are they searching the marshes?
c qu They’re not searching the forest. Are they searching the marshes?

Table C.4: Sentences elicited in prosody experiment for the target word
“marshes”. Prosodic conditions indicated: nc=non-contrastive, c=contrastive,
st=statement, qu=question.

nc st That show is my favorite. It’s on in the morning.
c st It’s not on in the evening. It’s on in the morning.
nc qu That show is my favorite. Is it on in the morning?
c qu It’s not on in the evening. Is it on in the morning?

Table C.5: Sentences elicited in prosody experiment for the target word
“morning”. Prosodic conditions indicated: nc=non-contrastive, c=contrastive,
st=statement, qu=question.

nc st He found a small error. He checked his main sources.
c st He didn’t check his main data. He checked his main sources.
nc qu He found a small error. Did he check his main sources?
c qu He didn’t check his main data. Did he check his main sources?

Table C.6: Sentences elicited in prosody experiment for the target word
“sources”. Prosodic conditions indicated: nc=non-contrastive, c=contrastive,
st=statement, qu=question.

nc st They’re away today. They’re going surfing.
c st They’re not going swimming. They’re going surfing.
nc qu They’re away today. Are they going surfing?
c qu They’re not going swimming. Are they going surfing?

Table C.7: Sentences elicited in prosody experiment for the target word
“surfing”. Prosodic conditions indicated: nc=non-contrastive, c=contrastive,
st=statement, qu=question.
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nc st They had a light dinner. They ordered some sushi.
c st They didn’t order some pizza. They ordered some sushi.
nc qu They had a light dinner. Did they order some sushi?
c qu They didn’t order some pizza. Did they order some sushi?

Table C.8: Sentences elicited in prosody experiment for the target word “sushi”.
Prosodic conditions indicated: nc=non-contrastive, c=contrastive, st=statement,
qu=question.

nc st She’s still in her office. She’s writing a thesis.
c st She’s not writing a novel. She’s writing a thesis.
nc qu She’s still in her office. Is she writing a thesis?
c qu She’s not writing a novel. Is she writing a thesis?

Table C.9: Sentences elicited in prosody experiment for the target word “thesis”.
Prosodic conditions indicated: nc=non-contrastive, c=contrastive, st=statement,
qu=question.

nc st He ran for hours. He’s very thirsty.
c st He’s not very hungry. He’s very thirsty.
nc qu He ran for hours. Is he very thirsty?
c qu He’s not very hungry. Is he very thirsty?

Table C.10: Sentences elicited in prosody experiment for the target word
“thirsty”. Prosodic conditions indicated: nc=non-contrastive, c=contrastive,
st=statement, qu=question.

was in these sets, randomized separately in five repetitions, that the items were

presented to speakers.
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They had a light dinner. They ordered some sushi.
She’s still in her office. She’s writing a thesis.
He ran for hours. He’s very thirsty.

That show is my favorite. It’s on in the morning.
They’re away today. They’re going surfing.
The race will go well. She can cycle fastest.

The passengers will feel safe. Their seatbelts will be fastened.
They won’t be in tomorrow. They’re golfing with their father.
He found a small error. He checked his main sources.

The plane went down nearby. They’re searching the marshes.

Table C.11: Sentences elicited in prosody experiment for statement intonation
and non-contrastive accent.

Their seatbelts won’t be released. Their seatbelts will be fastened.
She can’t cycle longest. She can cycle fastest.

They’re not golfing with their mother. They’re golfing with their father.
They’re not searching the forest. They’re searching the marshes.
It’s not on in the evening. It’s on in the morning.

He didn’t check his main data. He checked his main sources.
They’re not going swimming. They’re going surfing.
They didn’t order some pizza. They ordered some sushi.
She’s not writing a novel. She’s writing a thesis.
He’s not very hungry. He’s very thirsty.

Table C.12: Sentences elicited in prosody experiment for statement intonation
and contrastive accent.

The passengers will feel safe. Will their seatbelts be fastened?
The race will go well. Can she cycle fastest?

They won’t be in tomorrow. Are they golfing with their father?
The plane went down nearby. Are they searching the marshes?
That show is my favorite. Is it on in the morning?
He found a small error. Did he check his main sources?
They’re away today. Are they going surfing?
They had a light dinner. Did they order some sushi?
She’s still in her office. Is she writing a thesis?
He ran for hours. Is he very thirsty?

Table C.13: Sentences elicited in prosody experiment for question intonation and
non-contrastive accent.
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Their seatbelts won’t be released. Will their seatbelts be fastened?
She can’t cycle longest. Can she cycle fastest?

They’re not golfing with their mother. Are they golfing with their father?
They’re not searching the forest. Are they searching the marshes?
It’s not on in the evening. Is it on in the morning?

He didn’t check his main data. Did he check his main sources?
They’re not going swimming. Are they going surfing?
They didn’t order some pizza. Did they order some sushi?
She’s not writing a novel. Is she writing a thesis?
He’s not very hungry. Is he very thirsty?

Table C.14: Sentences elicited in prosody experiment for question intonation and
contrastive accent.
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