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SUMMARY 

 

Vocal communication sounds are an important class of signals due to their role in 

social interaction, reproduction, and survival. However, it is still unclear how our 

auditory system detects and discriminates these sounds. The auditory cortex is thought 

to play a role in this process, because loss of this area can cause deficits in the 

vocalization discrimination in primates and speech comprehension in humans. In 

addition, the auditory cortex can undergo both rapid and long-term changes under 

classical and operant conditioning. But unlike these conditioning paradigms, the 

behavioral relevance of communication sounds are acquired through social interaction. 

Thus, the question remains as to how the auditory cortex changes its neural 

representation of sounds that are socially acquired.  

To address this question, we used a neuroethological model system, which 

allowed us to study the neural mechanisms underlying natural behavior. This model 

system consists of ultrasonic whistles emitted by pups and are thought to be 

communicative in nature. The calls can elicit a search and retrieval behavior in mothers, 

and are recognized as behaviorally relevant by mothers, but not pup-naïve virgins. 

Therefore, this mouse ultrasonic communication system provides the opportunity to 

understand how the brain encodes natural sounds, and how the neural representation 

changes for vocalizations learned through social interaction.  

In this dissertation, we recorded single neurons from the auditory cortex of fully 

awake, head-restrained mice, and began by assessing the changes in the cortical 
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neurons and local field potentials of animals that either do (mothers), or do not (naïve 

virgins) recognize pup ultrasounds as behaviorally relevant. We then evaluated the role 

that pup experience and the maternal physiological state played in this cortical 

plasticity. Following these results, we explored the behavioral relevance of these neural 

changes using a two-alternative choice task. Finally, we developed a model to predict 

the response latency to natural sounds with the intent to define cortical neurons and 

their roles in processing acoustic features.  

Our results show that the auditory cortex in animals that have had pup 

experience differ in their pup call-evoked inhibition, that the physiological changes 

associated with motherhood act to affect the long-term retention of this plasticity, and 

that these changes are correlated with call recognition behavior. In addition, we find 

that by using a model to predict the response to these vocalizations, there is a distinct 

subset of cortical neurons that preserve the peripheral mechanism for onset encoding, 

and a subset that represents a sound’s behavioral meaning. Taken together, this 

research emphasizes the importance of the primary auditory cortex in processing 

natural vocalizations, demonstrates how it changes to represent behavioral relevance, 

and creates a framework for studying functionally how these changes contribute to 

behavior.  
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CHAPTER 1 

INTRODUCTION 

Sitting at my desk, pondering this dissertation, I turn to my dog and call out his 

name, “Patches”, I say. He is sleeping, but his ears flicker, and he slowly moves his head 

to look at me. Just a few months prior when we first adopted him from the shelter, we 

had given him a new name, and at this time, he showed no recognition or behavioral 

response to the sound, “Patches”. Clearly then, the meaning of this sound has changed, 

but the question is, how does our brain account for this change? 

Our sensory systems govern our perception of the world, and within our acoustic 

environment, sounds are continuous, resulting from physical vibrations. Yet, these 

vibrations can possess meaning, and what might be familiar to some can be unfamiliar 

to others. How our auditory system transforms these acoustic features into behaviorally 

relevant sounds and how we utilize these signals for localization, detection, and 

discrimination is not completely understood. It is amazing to think that our auditory 

system performs one, if not all of these operations in parallel and does so with both a 

speed and accuracy unmatched by any current computational approach.  

 In an attempt to understand how acoustic information gives rise to perception 

and behavior, there has been a strong push towards investigating the auditory cortex as 

a central component to this complex operation. It has numerous connections to higher 

cognitive areas, such as the prefrontal cortex (Fritz et al., 2010), changes its 

representation to facilitate learning and memory (Bieszczad and Weinberger, 2010; 
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Reed et al., 2011), and can alter its encoding to improve behavioral performance based 

on the expectation of sound (Jaramillo and Zador, 2011). While these studies have been 

instrumental in our understanding of auditory cortical function, they do not entirely 

explain how the auditory cortex encodes communication sounds, which are learned 

through social interaction. This difference in how we learn sounds is important because 

it can affect the resultant neural representation. In fact, a recent study demonstrated 

that the direction of plasticity depended on whether the training task used positive or 

negative reinforcement (David et al., 2012). Thus, the goal of this thesis is to understand 

the encoding of socially acquired vocalizations, and how this might subserve perception 

and behavior.  

 The subject matter below is intended to build a basic understanding of the 

methods and approaches used in this dissertation. Section 1.1 will briefly describe how a 

sound signal goes from the periphery to the auditory cortex. Then 1.2 will introduce 

communication sound processing, motivate neuroethology as a way to study the goal of 

this thesis, and in 1.3, detail the approach we have chosen. In 1.4, we will discuss what 

we currently know about experience dependent plasticity, and in 1.5, explain the 

importance of studying this in the awake animal. Finally, 1.6 will review the aims and 

goals of this dissertation.  

 

1.1: The auditory system 

 Within our environment, sounds are dynamic in nature, constantly changing as a 

function of time. As these mechanical waves arrive at our ears, our brain transforms 
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these inputs into electrical signals, and performs a variety of operations that allow us to 

perceive and react to these cues. Yet, the understanding of how our auditory system 

represents a sound’s behavioral relevance and facilitates perception remains unsolved. 

Below, we will briefly discuss how a sound is transformed into neural signals, how the 

physical characteristics of sounds are transmitted, and motivate the auditory cortex as a 

starting point to understand how the brain changes to encode a sound’s behavioral 

relevance.  

 

1.1.1: Peripheral processing and the transduction of sounds 

From a physical perspective, sound is a mechanical wave created by a vibrating 

object and moves outward as particles in the medium (typically air) are compressed and 

spread apart. The characteristics of these vibrations in air and the way in which it 

physically affects our eardrum underlie how we describe a sound’s acoustic features. 

This consists of attributes such as its frequency (number of vibrations of a particle in a 

fixed time), amplitude (energy in which the vibrating object imparts to the medium), 

and place in time (the start/duration of time in which this occurs).  

As this sound wave travels through our auditory canal, it causes the eardrum to 

vibrate. The eardrum is connected to three bones in the middle ear called ossicles, and 

act to transfer this signal to the oval window. At this stage, these signals enter the 

cochlea, a fundamental first step in the transfer of mechanical to electrical energy 

(Moore, 1997). Here, as the oval window vibrates, the fluid within the cochlea moves 

resulting in the movement of the basilar membrane. A key feature in this process is that 
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the basilar membrane separates sounds into different frequencies because of its 

intrinsic mechanical properties. At one end it is relatively narrow and stiff (high 

frequency responding), and at the other it is wider and less rigid (low frequency 

responding). This frequency place representation of the neural activity represents our 

auditory system’s transformation of spectral into spatial information and is called 

tonotopy. Downstream auditory nerve fibers reflect this tonotopic representation, and 

additionally encode the sound’s intensity, timing, and amplitude envelope using action 

potentials. It does this through both the rate of spiking discharges (Ruggero, 1992), and 

their timing (Frisina et al., 1985; Heil and Irvine, 1997). However, while the auditory 

periphery encodes acoustic features, it is unknown how these signals give rise to 

perceptual information (Rauschecker, 1998).   

As this neural representation ascends the auditory system, these signals project 

upstream in a number of parallel pathways through the cochlear nuclei, superior olivary 

nuclei, inferior colliculus, and medial geniculate body of the thalamus (Kandel, 2000). 

One might expect that with the many levels of processing between the periphery and 

cortex, neurons at higher levels perform increasingly complex operations to transform 

simple features into how we perceive sounds. Indeed, we know that the former is true 

when comparing the computations of the nerve fiber to the inferior colliculus. In 

addition to the preservation of tonotopy (Merzenich and Reid, 1974), the inferior 

colliculus also plays roles in sound localization (Benevento and Coleman, 1970; 

Wenstrup et al., 1986), and the encoding of sound duration, direction of frequency 

sweep, and amplitude modulation (Covey and Casseday, 1999; Eggermont, 2001). 
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However, while increasingly complex in its representation, it is thought that these 

subcortical structures primarily perform feature extraction rather than auditory object 

recognition (Ulanovsky et al., 2004). In fact, a recent study by Chechik et al. (2006) 

provided support for this idea by recording neural responses to vocalizations in the 

inferior colliculus, thalamus, and auditory cortex. Measuring responses in these three 

structures, they found that auditory cortical neurons, compared to those in the inferior 

colliculus, carry much less information about the spectral and temporal structure and 

more about the “abstract notion of stimulus identity” (Chechik et al., 2006). Therefore, 

based on these ideas and the role of cortical structures in higher cognitive functioning 

(Rauschecker, 1998; Naatanen et al., 2001; Scheich et al., 2007; Bieszczad and 

Weinberger, 2012), we chose the auditory cortex as a starting point for us to understand 

how changing a sound’s behavioral relevance alters its neural representation, and how 

this subserves higher order areas in the detection, discrimination, and recognition of 

sounds. 

 

1.1.2: The auditory cortex 

 In this section, we first discuss how studies have physiologically defined the 

different auditory fields. Doing so will help provide an understanding of how we 

characterize and distinguish the core areas of auditory cortex from higher order non-

core auditory areas. 

Similar to other sensory cortical areas, the auditory cortex shows a distinct 

laminar structure (Linden and Schreiner, 2003). In total, there are six layers that can be 
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anatomically defined, and different layers have distinct cell types, input and output 

connections (for detailed review see: Linden and Schreiner, 2003; Winer et al., 2005). 

The layers are numbered I-VI, with the former being the most superficial. For the core 

areas of auditory cortex, the predominant thalamic input comes from the ventral medial 

geniculate body and arrives at cortical layers III and IV (Cruikshank et al., 2002). In these 

layers, neurons are organized tonotopically and show robust responses to tones, have 

narrower frequency tuning curves, and respond to specific best frequencies (Merzenich 

et al., 1975; Reale and Imig, 1980; Hackett et al., 2011). In contrast, non-core or higher 

auditory areas receive the majority of its thalamic inputs from the medial or dorsal 

divisions, and typically respond more poorly to tones, but more robustly to noise and 

show more complex frequency tuning (Clarey, 1992; Stiebler et al., 1997; Kaas and 

Hackett, 1998). These distinct differences are fundamental to how studies characterize 

the auditory cortex and divide it into its core and non-core areas.  

As we mentioned above, the different auditory fields and their locations are 

characterized physiologically by their tonotopic structure. This is performed using a 

frequency mapping procedure, which consists of measuring the single and/or multi-unit 

responses to tones in layers III/IV, and obtaining a tonotopic map by defining a 

best/characteristic frequency at each location. The best frequency is the frequency that 

produces the strongest response across different intensities (Hackett et al., 2011), and 

the characteristic frequency is the frequency that can produce a response at the lowest 

intensity (Merzenich et al., 1975). For the most part, both methods yield similar results, 

where core areas show tonotopic organization, and non-core areas do not.  
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Using this mapping procedure, specific auditory fields within core and non-core 

areas have been distinguished in different animal species based on their responses to 

sounds. Across all mammals, the primary auditory field (A1) is considered a core area as 

it is tonotopically organized and responds robustly to tones. Outside of A1, the number 

of fields, anatomical location, and roles in sound processing becomes more complex 

depending on animal species. For example, in the mouse, macaque, cat, and gerbil, the 

anterior auditory field (AAF) is similar to A1 but typically lies rostral and shows an 

opposing frequency gradient (Stiebler et al., 1997). However, in the cat, mapping studies 

show the presence of two additional tonotopic fields, the posterior auditory field, and 

ventral posterior auditory field, both of which are nonexistent in the mouse and 

macaque monkey (Reale and Imig, 1980). The diversity of physiological or anatomical 

differences in the designation of auditory fields suggests that species differences may 

reflect the varying environmental or behavioral influences. Because this dissertation 

uses the mouse model to investigate auditory cortical processing in core areas, we will 

focus primarily on how the mouse auditory cortex has been defined.  

One of the first complete studies on this came from Stiebler et al. (1997) who 

used characteristic frequency and defined the parcellations based on earlier work in the 

cat auditory cortex (Andersen et al., 1980; Reale and Imig, 1980). By recording multi-

units from anesthetized mice, they found five different fields based on the frequency 

arrangement and response characteristics (Fig. 1.1). They were defined as A1, AAF, 

ultrasound field (UF), dorsal posterior field (DP), and the secondary auditory field (A2). 

The locations of A1 and AAF were characterized by their robust responses to tones and 
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distinct rostral to caudal frequency gradients. This was confirmed by a more recent 

study that used a high density mapping procedure showing a clear increase in a multi-

unit’s best frequency from caudal to rostral in AAF, and then a clear reversal in the 

gradient going rostral to caudal in A1 (Hackett et al., 2011). In the dorsal-rostral area of 

auditory cortex, Stiebler and colleagues defined UF as a region that did not show a clear 

tonotopic gradient, but had much higher frequency responses (~46-70 kHz) compared to 

A1 and AAF. Although not tonotopic, UF was considered a core area because of its 

similarities to other core areas in its connections with the ventral medial geniculate 

body and inferior colliculus (Hofstetter and Ehret, 1992). Finally, both DP and A2 fields 

were considered non-core areas because they had more complex frequency tuning, 

lacked tonotopic arrangement, and their characteristic frequencies were difficult to 

determine. Thus, based on the physiological characteristics of multi-unit responses, the 

mouse auditory cortex has a number of distinct fields, several of which are analogous to 

other animal models (i.e. cat, gerbil, macaque). 

 

 

Figure 1.1: Schematic of the auditory cortical fields in the mouse. The primary areas consist of AAF, A1, 
and UF. Light grey areas represent the core areas of auditory cortex.  
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1.2: The auditory cortex and sound processing 

Although we have a basic knowledge across animal species about the 

physiological organization of auditory cortex according to best frequency, we still do not 

completely understand its role in sound processing. Early lesion studies made great 

progress in developing our knowledge of the function of auditory cortex. David Ferrier 

was one of the early pioneers who would lesion brain areas found by generating an 

auditory startle response through stimulating the cortex (Heffner, 1987). His initial 

experiments suggested that bilateral lesions in monkeys would render them 

unresponsive to sounds, while unilateral lesions would render only the contralateral ear 

unresponsive to sounds. However, a number of later studies demonstrated that these 

lesions produced more specific changes that were species dependent (Heffner and 

Heffner, 1986, 1990; Peretz et al., 1994; Ohl et al., 1999). For example, in a localization 

task, bilateral auditory cortical lesions affected the behavioral performance in cats 

(Strominger, 1969), macaques (Heffner and Masterton, 1975), and ferrets (Kavanagh 

and Kelly, 1987), but not in rats (Kelly and Glazier, 1978; Kelly and Kavanagh, 1986) or 

hedgehogs (Ravizza and Diamond, 1974). This difference in behavioral performance 

suggests that the importance of sound localization may be species specific, and 

emphasizes the need to study auditory cortical function utilizing model systems that 

exploit natural behavior. In the following sections, we will briefly discuss a general 

hypothesis about the role of auditory cortex in encoding sounds, motivate the need to 

study species-specific vocalizations, and introduce the importance of using a 

neuroethological approach. 
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1.2.1: Communication sound processing 

 The mammalian auditory system has been studied extensively, and much of this 

comes from recording cortical responses to specific acoustic features such as changing 

tone frequencies (Merzenich et al., 1975; Merzenich et al., 1976; Kelly et al., 1986), 

frequency sweeps (Whitfield and Evans, 1965; Glaser, 1971; Mendelson and Cynader, 

1985; Mendelson et al., 1993), amplitude modulations (Creutzfeldt et al., 1980; Phillips 

and Hall, 1987), intensities (Schreiner et al., 1992; Taniguchi and Nasu, 1993; Heil et al., 

1994), and durations (Galazyuk and Feng, 1997; He et al., 1997). Through these studies 

and numerous others, current data supports the idea that auditory cortical neurons are 

diverse in their responses and can be temporally precise (Heil and Irvine, 1997) or 

“sluggish” (Ulanovsky et al., 2004), and can respond linearly or non-linearly to different 

sound features and their combinations (Bar-Yosef et al., 2002; Machens et al., 2004). 

Because of this response variability, it has been suggested that the auditory cortex may 

play a role in the representation of auditory objects or the behavioral relevance of 

sounds (Nelken et al., 2003; Nelken, 2004; King and Nelken, 2009).  

 This diversity in responses may reflect the role of auditory cortex in tasks such as 

communication. Communication sounds are a class of signals that are acoustically 

complex in their spectral and temporal features, and carry biological importance (Wang, 

2000; Kanwal, 2006; Suta et al., 2008). These distinct characteristics of vocalizations 

could mean that the neural representation for these sounds differ from other non-

behaviorally relevant acoustic signals. Indeed, in the primary auditory cortex of the 

awake marmoset, neurons respond more strongly to vocalizations compared to 
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equivalently complex time-reversed versions of these sounds (Wang et al., 1995). This 

suggests that specific neurons in the marmoset show combination sensitivity between 

the spectral and temporal features of the species-specific calls. In addition, Wang and 

colleagues also demonstrated that in contrast to the marmoset, auditory cortical 

neurons in the cat showed no differences between the call and its time-reversed pair 

(Wang and Kadia, 2001). This selectivity demonstrates the importance of studying 

species-specific vocalizations, and motivates the use of a neuroethological approach to 

studying communication.  

 

1.2.2: Neuroethology and studying sound processing 

Previously, we discussed a number of species-specific differences in auditory 

processing. This included evidence of species-specific neural processing of vocalizations, 

lesions that produce species-specific deficits in sound localization, and distinct 

differences in the physiological organization of the auditory cortex. This species 

variability provides strong evidence that to study communication processing, a 

neuroethological approach is necessary. For review, neuroethology is the study of the 

neural mechanisms underlying natural behavior, and takes into consideration the 

hypothesis that neural responses to the same sounds can differ because of evolutionary 

pressures or experience-dependent factors (Gentner and Margoliash, 2002). These 

factors could explain the neural response differences between the cat and marmoset in 

response to marmoset vocalizations mentioned previously (Wang et al., 1995; Wang and 

Kadia, 2001). Therefore, because the goal of this thesis is to understand the auditory 
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cortical representation of socially acquired vocalizations, it is necessary to use a model 

system where the vocalizations are communicative and naturally acquired during an 

individual lifetime.  

It is argued that a disadvantage with this approach is its inability to probe the 

entire acoustic space of neural responses. We contend that studying neural processing 

using complex vocalizations and fixed acoustic features are equally important. Together, 

they provide greater insight into how the auditory cortex integrates the representation 

of both acoustic structures and auditory objects, and how this integration plays a role in 

sound perception. However, in studying the neural coding of communication sounds, a 

neuroethological approach may be the most appropriate. This is based on the idea that, 

“one cannot study how the cortex codes Chinese in a native English speaker who never 

learned Chinese.” (Wang, 2000).  

 

1.3: Mouse ultrasonic communication system  

The mouse ultrasonic communication system provides a neuroethological 

approach to address how the auditory cortex changes to encode behaviorally relevant 

sounds. In the mouse, studies have shown that the animals communicate through sound 

and use these signals to convey either their current physiological state or the 

environmental conditions (Brudzynski, 2005; Ehret, 2005; Portfors, 2007). Both pups 

and adults emit ultrasonic vocalizations (USVs), and these sounds are thought to be 

communicative in nature because they have been described as signals that transfer the 

sender’s affective state to the receiver, subsequently altering the receiver’s behavior 
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(Ehret and Haack, 1981; Hammerschmidt et al., 2009; Shepard and Liu, 2011). For 

example, a mouse pup displaced from its nest will emit ultrasonic isolation calls. These 

calls are thought to initiate searching behavior in the mother to retrieve the pup back to 

the nest (Noirot, 1972; Smotherman et al., 1974). Unlike virgins with no pup experience, 

these calls have been shown to be behaviorally important to the mother (Ehret, 1982, 

1987). Thus, the mouse ultrasonic communication system presents an opportunity to 

understand not only how natural sounds are encoded in the brain, but how this 

representation changes when a sound acquires behavioral relevance through social 

interaction. 

 

1.3.1: Infant and adult mouse ultrasounds 

Pups and adults both emit USVs, but are distinct in their perceptual and acoustic 

representation. The adult USV is thought of as a courtship call that is produced by the 

male when an adult female is nearby (Holy and Guo, 2005), and plays a role in attracting 

the female (Pomerantz et al., 1983). In support of this, a recent study demonstrated that 

virgins were attracted to the playback of male vocalizations, but not to artificial pup calls 

(Hammerschmidt et al., 2009). This is likely because the behavioral response to adult 

calls is innate (Shepard and Liu, 2011), and virgin females do not recognize pup calls 

until they have received sufficient pup experience (Ehret et al., 1987).  

Unlike adult calls, pup USVs are sounds emitted from newborn mice and are 

evoked by changes in their body temperature, isolation from the nest, contact with 

adults and littermates, and rough handling. In particular, the isolation sounds are 
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communicative and facilitates a mother’s ability to localize a pup to perform retrieval 

back to the nest (Ehret, 2005). In addition, while adult calls are innately recognized, pup 

calls are acquired through pup experience during post-partum days 3-13. Pups call very 

little in the first three days after birth, but then increase their call rate on day four 

(Noirot, 1972). From day 4-13, the calling rate exhibits an inverse U-shaped function 

with the peak between days 7 and 9 (Hahn et al., 1998). Through this experience, 

mothers and cocarers (virgins with pup experience) recognize and preferentially 

approach a speaker playing back pup calls over a neutral sound (Ehret, 1982, 1987; 

Ehret et al., 1987). In both the pup and adult call communication paradigms, the female 

mouse acts as the receiver. Therefore, because the two calls differ in how they are 

acquired (innate versus experience), we can begin to understand how a change in the 

pup calls’ behavioral relevance selectively affects auditory coding.  

Studies now clearly show that pup isolation calls can elicit a search and retrieval 

by the mother, and will respond to a large variety of ultrasounds. In particular, the 

lactating mother has been shown to prefer USVs and synthetic calls with specific 

acoustic parameters (Ehret and Haack, 1981; Ehret, 1987). This suggests that the 

acoustic features are important and may facilitate the discrimination of pup and adult 

ultrasounds. In support of this, a study by Liu et al. (2003), demonstrated that the two 

USVs were acoustically separable in its spectral and temporal features (Figure 1.2; Liu et 

al., 2003). Figure 1.2 shows the contour plots of the joint distributions for all the 

recorded pup isolation calls between post-partum days 5-12 and adult encounter 

vocalizations. In addition, Liu and colleagues found that the calls were different in their 
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call repetition rates (100 ms for adults, 180 ms for pups). Clearly then, both pup and 

adult vocalizations could be distinguished by auditory cortical neurons based on these 

differences in their spectral and temporal features. However, it is not yet understood 

whether the auditory cortex is solely representing these acoustic features or if its 

encoding reflects the differences in perceptual relevance of the USVs.  

 

 

Figure 1.2: Contour plots of the joint distributions of call frequencies and durations of adult (orange) and 
pup (brown) USVs. The contours represent 0.19, 0.37, 0.56, 0.75, and 0.93 probabilities. The two classes 
of calls are distinct in their acoustic features, but overlap in the frequency-duration space. The numbers in 
the boxes correspond to the 18 pup calls used in this thesis for playback to the animal (see Appendix B). 
Adult calls used in this thesis were taken from the same regions as the pup calls in this frequency-duration 
space. Figure was adapted with permission from Robert C. Liu from the paper: Liu RC, Schreiner CE (2007) 
Auditory cortical detection and discrimination correlates with communicative significance. PLoS Biol 
5:e173. 

 

 

1.3.2: The role of experience and hormones on pup call preference 

In the auditory system, reproductive hormones can play a significant role in 

regulating response properties in humans (de Boer and Thornton, 2008; Song et al., 
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2008), rodents (Coleman et al., 1994; Willott et al., 2006), birds (Maney et al., 2006; 

Tremere et al., 2009; Remage-Healey et al., 2010; Tremere and Pinaud, 2011), frogs 

(Goense and Feng, 2005; Miranda and Wilczynski, 2009), and fish (Sisneros and Bass, 

2003). For example, reproductive hormones contribute to the maintenance of cognitive 

function in verbal memory (Sherwin, 2003) and facilitate auditory processing for 

species-specific vocalizations (Maney and Pinaud, 2011). However, much less is known 

about how these intrinsic physiological factors work with extrinsic factors like pup 

experience, to affect the sensory representation of behaviorally relevant stimuli.   

Unlike past studies which have focused independently on the effects of either 

learning paradigms or reproductive hormones on cortical processing, this model system 

provides the opportunity to explore how both these factors work together to alter the 

representation for stimuli learned through social interaction. While both mothers and 

cocarers can behaviorally recognize pup ultrasounds, a natural question is how the 

physiological changes associated with motherhood affect this learning. In rats and mice, 

it is now understood that while mothers can retrieve and perform maternal behavior on 

post-partum day one, virgins that are co-housed with mothers during pregnancy and 

parturition (cocarers) need several days of pup experience before exhibiting equivalent 

maternal behavior (Ehret, 1989; Numan and Stolzenberg, 2009; Stolzenberg and 

Rissman, 2011). In addition, Ehret and Koch (1989) demonstrated in a sound recognition 

task that both mothers and virgins preferentially approach a speaker playing back 

ultrasounds after pup weaning (21 days of pup experience); however, 1 month later, 

only mothers could still recognize the calls. Overall, these results show that both the 
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onset and maintenance of maternal behavior or pup call recognition are affected by the 

physiological differences between mothers and cocarers. Whether these physiological 

differences affect auditory processing itself remains an open question. 

 

1.4: Plasticity and the auditory cortex 

Thus far, we have discussed the basics of how a sound is transformed into neural 

signals, the importance of using species-specific vocalizations in studying the 

representation of sounds, and a unique model system that will help us explore these 

areas. However, one of the primary goals of this thesis is not just to understand how 

natural sounds are encoded, but also how this neural code changes when a sound 

acquires behavioral relevance.  In the following sections, we will briefly introduce our 

current understanding of different forms of experience dependent plasticity. Then we 

will discuss evidence of plasticity related to species-specific vocalizations and focus in 

more detail on the maternal model. 

 

1.4.1: Experience dependent plasticity 

There is evidence now that the adult auditory cortex is not static, but that 

different forms of experience can alter its response. Early on, much of this 

understanding came from studying learning-induced plasticity using classical 

conditioning. Classical conditioning is a form of learning that consists of presenting a 

conditional stimulus (CS, e.g. sound) with an unconditional stimulus (US, e.g. foot shock) 

in succession until the CS evokes the same response as the US. Using this paradigm, 
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evidence of auditory cortical plasticity was found in the cat by Galambos et al. (1955), 

where pairing an auditory CS with a shock led to increases in the amplitude of CS-

evoked field potentials across auditory cortex. These findings were further strengthened 

by a number of fear conditioning studies from Weinberger and colleagues, showing 

frequency response plasticity in single neurons, multi-units, and local field potentials 

(Diamond and Weinberger, 1989; Bakin and Weinberger, 1990; Galvan and Weinberger, 

2002). In particular, these studies demonstrated that there was both an increase in the 

response to the frequency of the CS, but also a decrease in the pre-training best 

frequency response. Additionally, they demonstrated that these changes were not a 

result of random sounds and shocks that were unpaired. While this work helped to 

establish the idea that learning could result in adult auditory cortical plasticity, a 

number of questions remain. Most importantly, whether this form of plasticity is 

conserved across all types of learning, and how these changes might facilitate 

perception and behavior.  

In addition to classical conditioning, a number of studies have explored the 

effects of operant conditioning and task dependence on the auditory cortical plasticity. 

Operant conditioning refers to the animal reinforcing its behavior by either the removal 

or introduction of a positive or negative consequence. Using this paradigm, Fritz and 

colleagues trained ferrets to perform either tone detection or a two-tone discrimination 

in an active avoidance conditioning task (Fritz et al., 2003; Fritz et al., 2005). In this 

particular task, the animals were allowed to lick a waterspout, and trained to stop when 

the target sound was played to avoid a shock. Recording auditory cortical neurons in the 
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awake ferret auditory cortex, they found that in the tone detection task there was an 

enhancement of the response at the target frequency (Fritz et al., 2003; Fritz et al., 

2005). In contrast, neurons in the two-tone discrimination task changed to enhance its 

response at the target frequency and suppress its response at the reference frequency 

(Fritz et al., 2003; Fritz et al., 2005). Therefore, these studies presented evidence of 

short-term adult auditory cortical plasticity using operant conditioning in the awake 

animal, and that the nature of the neural changes depended on the specific behavioral 

task.  

Behaviorally, it is clear that the way in which an animal learns a sound’s meaning 

under an operant or classical conditioning task differ. In spite of this, both approaches 

showed the same general changes in demonstrating an enhancement of the neural 

response at the target frequency. This similarity suggests that the neural changes may 

reflect the fact that both involve associative learning. That is, the animal learns to 

associate a behavior with a particular stimulus. Therefore, auditory cortical plasticity 

may depend on the specific stimulus feature (tone frequency in both paradigms) that 

yields the most favorable behavioral outcome. Indeed, there is evidence that frequency-

specific neural plasticity is not the only outcome of learning, but that auditory cortical 

plasticity correlates with the most behaviorally salient features. For example, studies 

have found auditory cortical changes in the neural responses to sound intensity (Polley 

et al., 2006), frequency modulation (Wetzel et al., 1998; Ohl et al., 1999; Ohl et al., 

2001), and temporal modulation (Beitel et al., 2003; van Wassenhove and Nagarajan, 

2007). While these changes were more indicative of the target stimulus, recent work by 
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David et al. (2012) also demonstrated that the auditory cortex changed in ways that 

were specific to how the sound was learned. Using an aversive and an appetitive 

instrumental learning task, they found that responses to the target sound changed but 

in opposite directions. Specifically, there was an enhancement in the neural response 

after aversive conditioning and suppression after appetitive conditioning. Clearly then, 

these studies demonstrate that the adult auditory cortex can be “retuned” to account 

for changes in behavioral relevance, and that the type of plasticity reflects the most 

behaviorally salient acoustic feature.  

Even with the vast evidence of auditory cortical plasticity, there is still a limited 

understanding of how these changes relate to perception and behavior. A number of 

more recent studies have begun to clarify this by recording neurons from awake 

behaving animals. One study in particular linked changes in the auditory cortex with 

behavioral performance. Using a positive reinforcement task, Jaramillo and Zador 

(2010), explored how expectation of a sound could alter behavioral performance in a 

discrimination task, and whether the auditory cortex would reflect these changes. 

Altogether, they found that temporal expectation of the target stimulus improved 

behavioral performance, silencing auditory cortex by applying a GABAA receptor agonist 

decreased this performance, and that neuronal activity in the auditory cortex correlated 

with each animal’s behavioral ability. These findings further support the idea that 

auditory cortex is important in sound recognition, and that changes in the sound task 

can result in auditory cortical plasticity, which may be important for improving 

behavioral performance.  
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1.4.2: Auditory cortical plasticity and communication processing 

 Based on the studies mentioned previously, it is evident that the adult auditory 

cortex can undergo changes in its representation of specific acoustic features, and that 

these changes can depend on the behavioral task. How this translates to our learning of 

vocalizations is still not understood. Species-specific vocalizations are generally complex 

in their spectral and temporal characteristics (Liu et al., 2003). In addition, while training 

paradigms typically involve a single behavior, such as detection or discrimination, 

communication in real contexts involves both tasks and is learned through social 

interaction. For these reasons, a primary goal of this thesis is to begin to understand 

how the auditory cortex changes in response to socially acquired vocalizations.  

A number of studies have demonstrated that mothers, but not pup-naïve virgin 

females, recognize the communicative significance of pup USVs (Ehret, 1982, 1987; 

Ehret et al., 1987), but our understanding is still limited as to whether this difference is 

correlated with neural changes as early as sensory cortex. Much of the work thus far has 

consisted of recordings from groups of neurons (multi-unit, MU) in the anesthetized 

mouse auditory cortex of both mothers and virgins. In two separate studies, Liu and 

colleagues demonstrated that there were distinct differences in the MU activity 

between mothers and virgins in their cortical entrainment, and their detection and 

discrimination information of pup calls (Liu et al., 2006; Liu and Schreiner, 2007). While 

these results were the first to show that changes in the auditory cortex correlate with 

the pup vocalizations’ behavioral relevance, there remains a number of open questions. 
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Importantly, future studies should address whether these changes between mothers 

and virgins persist when looking specifically at single neurons in the awake animal.   

 

1.5: The auditory cortex of awake animals 

 Much of our understanding about how neurons in the auditory cortex process 

sounds comes from studying animals under anesthesia. In electrophysiology, anesthesia 

is generally used to facilitate our ability to record single neurons from animals in vivo. 

However, a number of studies have begun to uncover the distinct differences in how 

auditory areas encode stimuli when comparing neural activity in the anesthetized to the 

awake state (Gaese and Ostwald, 2001; Syka et al., 2005; Ter-Mikaelian et al., 2007). 

This issue of sensory processing under different anesthetic conditions is not isolated to 

the auditory system, as studies in other areas such as the visual and somatosensory 

systems have also demonstrated unique stimulus responses when comparing the 

anesthetized to the awake preparation (Chen et al., 2005; Greenberg et al., 2008). In 

fact, the study by Greenberg et al. (2008) in the visual cortex stated explicitly that, 

“brain activity during wakefulness cannot be inferred using anesthesia”, further 

emphasizing the importance of studying how the brain works in the awake state. While 

it is important not to ignore these effects in the interpretation of cortical activity and its 

functional importance, a number of studies have also shown similarities between the 

two states depending on the brain area and type of stimulus encoding being studied 

(Ter-Mikaelian et al., 2007; Schumacher et al., 2011). This suggests that both 

preparations can provide valuable information about how sensory stimuli are encoded; 
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but it is imperative to understand the type of question asked, under what experimental 

conditions brain area the study is conducted, and how this affects the interpretation.  

 Compared to subcortical structures, work investigating the effects of anesthesia 

on primary auditory cortical processing of both tones and more complex sounds, such as 

vocalizations, suggest the need for using an awake preparation. In response to tones, 

both Gaese and Ostwald (2001) and Zurita et al. (1994) demonstrated that there is an 

overall suppression of intrinsic excitability as well as a sharpening of frequency 

responses in neurons, which may depend on anesthesia. To more complex sounds, such 

as sinusoidally amplitude-modulated tones, Ter-Mikaelian et al. (2007) demonstrated 

that when considering the spike timing and variability, anesthesia increased the auditory 

cortical temporal precision. Finally, in response to species-specific vocalizations, both 

Syka et al. (2005) and Huetz et al. (2009) demonstrated differences in the temporal 

coding and strength of responses in the auditory cortical coding of communication 

sounds. Taken together, these studies suggest that recording the neural activity in the 

awake animal is critical in our exploration of auditory cortical processing of natural 

vocalizations and how this encoding transforms to reflect a sound’s change in behavioral 

relevance. We thus have employed a technique that allows us to record from the 

auditory cortex of awake-restrained mice in our study of communication sound 

processing.  

 

1.6: Summary and Objectives 
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The aim of this dissertation is to utilize the mouse ultrasonic communication 

system to investigate how the auditory cortical representation of natural sounds is 

transformed when they become behaviorally relevant. In order to study this question, 

we record both neurons and local field potential responses to sounds in the awake 

mouse auditory cortex.  

We begin chapter 2 by first exploring the differences in cortical responses to pup 

calls for mice that do (mothers) and do not (virgins) recognize pup calls as behaviorally 

relevant. We demonstrate that in the awake mouse, the auditory cortical call-inhibited 

responses undergo changes that correlate with the behavioral relevance and 

hypothesize a possible function for this plasticity. In chapter 3, we build off this result by 

uncovering how pup experience during motherhood (mothers) or experience alone 

(cocarers), influence the inhibitory plasticity. Based on these differences, we design a 

closed loop feedback behavioral experiment to test whether the cortical changes are 

correlated with behavioral performance. Then, in chapter 4, we begin to explore how 

call-excited neurons encode vocalizations. We proceed by creating a model that predicts 

the first spike latency of natural calls. We find that this model segregates out a specific 

subset of excited neurons that are “acoustically faithful” and another that reflect the 

difference in a sound’s behavioral meaning. In chapter 5, we summarize the results of 

the dissertation, discuss the significant contributions, and demonstrate the design for an 

auditory cortical implant that can record single neurons to address future studies.   
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CHAPTER 2 

INHIBITORY PLASTICITY IMPROVES THE  

CORTICAL DETECTION OF VOCALIZATIONS 

All results in this chapter were published previously in Neuron: Galindo-Leon, E.E.*, Lin, 

F.G.*, Liu, R.C. (2009) Inhibitory plasticity in a lateral band improves cortical detection of 

natural vocalizations. Neuron 62: 705-716 (*co-first authors). Any citation of work in this 

chapter should properly cite the above article.  

An important task of the auditory cortex is to process behaviorally relevant 

vocalizations. Much progress has been made in advancing our understanding of how the 

auditory system encodes the acoustic features of such sounds (Wang et al., 1995; 

Nelken et al., 1999; Nagarajan et al., 2002; Wallace et al., 2005; Huetz et al., 2009). 

However, it is still unclear how encoding changes as vocalizations become behaviorally 

relevant. To study this, we used a previously described ultrasonic communication 

system between mouse pups and adult females (Ehret et al., 1987; Ehret, 2005). In this 

chapter, we explored the response differences in single units (SU) and local field 

potentials (LFP) in the awake mouse auditory cortex, and presented pup isolation calls 

to animals that either do (mothers) or do not (virgins) recognize the sounds as 

behaviorally relevant. By identifying the neural plasticity that correlates with the change 

in behavioral relevance of pup calls, we hope to expand our understanding of how the 

https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#13552b7ecdd7c3db__ENREF_184
https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#13552b7ecdd7c3db__ENREF_114
https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#13552b7ecdd7c3db__ENREF_112
https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#13552b7ecdd7c3db__ENREF_179
https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#13552b7ecdd7c3db__ENREF_75
https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#13552b7ecdd7c3db__ENREF_42
https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#13552b7ecdd7c3db__ENREF_40
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brain changes its representation of communication sounds learned through social 

interaction, and how this might functionally facilitate detection or discrimination.  

 

2.1: Introduction  

The perception of species-specific vocalizations is a critical neural process due to 

its roles in social interaction, reproduction, and survival (Seyfarth et al., 1980; Barfield 

and Thomas, 1986; Brudzynski and Chiu, 1995; Wang, 2000; Ehret, 2005). The auditory 

cortex is thought to be essential in the processing of these sounds (see 1.2). Recent 

studies have begun to improve our understanding of how auditory cortical neurons at 

both the population and single neuronal level encode sounds and contribute to these 

processes. At the population level, studies suggest that distributed cortical excitation 

can help improve signal-to-noise for downstream processing (Medvedev and Kanwal, 

2004; Wallace et al., 2005; Wang et al., 2005; Liu and Schreiner, 2007). At the cortical 

neuronal level, precisely-timed inhibitory input (Razak and Fuzessery, 2006, 2010) and 

facilitatory combination-sensitivity both help shape excitatory selectivity for calls 

(Fitzpatrick et al., 1993; Rauschecker et al., 1995; Razak et al., 2008; Washington and 

Kanwal, 2008). However, this picture ignores a possible role for call-evoked inhibition at 

the population level – an issue that has been overlooked in most vocalization studies.  

Inhibition plays an important role in the encoding of sound stimuli and can shape 

the spectral and temporal response properties of auditory cortical neurons (Wehr and 

Zador, 2003; Zhang et al., 2003; Tan et al., 2004; Sadagopan and Wang, 2010; O'Connell 

et al., 2011). Although most experience-dependent plasticity studies have targeted how 
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excitatory responses change their sound encoding, there is a growing interest in how 

this also affects inhibition. For example, a recent study in rats trained on a sound 

detection task found that engagement in the auditory task suppressed overall responses 

in the auditory cortex (Otazu et al., 2009). These results led them to suggest that task-

engaged suppression may allow the primary auditory cortex to inhibit neurons 

irrelevant to the task. In addition, a study in ferrets trained on a conditioned avoidance 

tone detection task, found that while cells tuned near the target tone were enhanced, 

those tuned far from it became suppressed, suggesting that this differential plasticity 

enhances the representation of the target tone (Atiani et al., 2009). Together, these 

studies demonstrate that response suppression is an outcome of experience dependent 

plasticity and plays an important role in the distributed sound processing in primary 

auditory cortex. However, the question remains whether these forms of plasticity reflect 

what occurs when communication sounds are learned within a natural context.  

Auditory cortical plasticity can depend on how sounds are learned and responses 

can be enhanced or suppressed based on the reinforcement conditioning (David et al., 

2012). In addition, species-specific vocalizations can invoke a differential cortical 

response when comparing two different animal species (Wang and Kadia, 2001). As 

most communication sounds are learned through social interaction, these studies 

emphasize the importance of studying how the auditory cortex encodes behaviorally 

relevant vocalizations through a neuroethologically motivated approach. By utilizing a 

mouse model communication system (see 1.3), we begin to address this question by 
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recording both excitatory and inhibitory SU responses in the auditory cortex of awake 

mice.   

Here, we report on electrophysiological recordings in the auditory cortices of 

fully awake, head-restrained mice. We focus on how neural responses could contribute 

to the collective detection of a class of natural pup calls, by contrasting pooled 

responses to all calls between virgins and mothers. We found that communication 

sounds could generally excite as well as purely inhibit cortical spiking. Comparing animal 

groups, pooling the various forms of evoked excitation did not reveal a significant 

response difference during the calls. However, the timing and strength of call-evoked 

inhibition was systematically altered in mothers – particularly for the frequency band 

lateral to the ~60-80 kHz frequency of the pup whistles. We suggest this lateral band 

inhibitory plasticity as a mechanism to enhance the signal-to-noise in the neural 

population representation of a pup call, and hypothesize this would improve the 

downstream detection of calls. 

 

2.2: Methods 

 The electrophysiological recording, surgical methods, acoustic stimuli, and 

statistical tests used are described in appendices A, B, and C. In this chapter, the data 

from both SUs and LFPs comes from eight virgin females and seven mother CBA/CaJ 

mice, all between 14 and 24 weeks old at the time of surgery. For mothers, recordings 

were taken 0 to 2 weeks following pup weaning. An animal name list of the associated 

animals used for this chapter in appendix A.   
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2.2.1: Single unit analyses 

In response to pure tones at 60 dBSPL, a BF and tuning bandwidth was 

characterized for each excited SU. To define the BF, the PSTH response (5 ms bin width) 

to all 40 logarithmically spaced frequencies (6.5-95 kHz) was used to manually identify a 

response window. An excitatory response window was determined to be the times at 

which the spike rate begins to increase and when it returns to the spontaneous rate. 

The frequency yielding the maximum spike rate response in this window was then 

classified as the SU’s BF. Using the BF, a half-max value was then determined by finding 

the halfway point between the spontaneous rate and the maximum spike rate.  

In response to natural vocalizations, latency and duration of the PSTH, and the 

strength of response were characterized for each SU. SU response latency was 

determined by finding the half-max or half-min of the smoothed spike rate (convolution 

of individual spikes with a Gaussian smoothing function, 5 ms standard deviation). The 

half-max (half-min) was determined based on the spike rates at stimulus onset and at 

the maximum (minimum). The response latency was the time relative to stimulus onset 

for the smoothed, pooled spiking response to reach the halfway point. The duration of 

SU inhibition was the time over which the smoothed spike rate stayed below the half-

min value. Similarly, the duration of SU excitation was the time over which the 

smoothed spike rate stayed above the half-max value. 

To determine if there were differences between animal groups in the pooled 

spike rate for call-excited or -inhibited SUs, each smoothed, time-dependent spike rate 

function was normalized by the average spontaneous rate during the blank trial and 
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then averaged the SUs together. The strength of SU excitation or inhibition was 

quantified by integrating the actual spike count over a period from 205 to 265 ms.  This 

accounts for the shortest neural delay to the auditory cortex, and the longest duration 

pup call, 60 ms plus any offset responses. 

 

2.2.2: Local field potential analyses  

The LFP is usually analyzed in spectral bands – such as theta (~4-10 Hz), beta 

(~10-35 Hz) and gamma (~35-90 Hz) – consistent with an oscillatory view of neural 

activity. We took a complementary approach by instead studying the wide-band (2-100 

Hz) signal. Although the LFP was spectrally peaked around 4-10 Hz, this nevertheless 

better preserves the shape of transients, such as those induced by the acoustic 

stimulation (Shah et al., 2004). Our analysis applied the Hilbert transform to each LFP 

trace to generate its unique analytic signal in the complex domain  (Boashash, 1992; 

Pikovsky et al., 2001). We focused on the Hilbert phase trajectory, where specific phases 

approximately corresponded to specific shape features in the signal. 

LFP phase precision is defined at each time point by the mean resultant length of 

the trial-by-trial wide-band Hilbert phases over the N trials:  
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This quantity has also been called phase concentration (Lakatos et al., 2005), and is 

algebraically related to the circular variance (Mardia and Jupp, 2000) or phase reliability 

(Montemurro et al., 2008). 

For tone responses, the percentage increase in tone-evoked phase precision 

over the virgin was defined as: 
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The integration period was from 205 to 275 ms to account for the duration, including 

onset/offset ramps, of the tone. To determine whether there was a significant increase 

in the integrated phase precision, we performed a bootstrap. We sampled each 

distribution of sites for mothers and virgins separately with replacement 1000 times and 

found the 95% confidence interval. Differences were taken as significant when the 

confidence bound did not include 0. 

 

2.3: Results 

In order to investigate cortical responses to communication sounds in awake 

animals, we developed a head-restrained, electrophysiology preparation for mice (see 

Appendix A). We targeted recording locations using a stereotaxically-laid grid of holes 
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over auditory cortex. SUs and LFPs were first characterized by their responses to tones 

(Fig. 2.1, middle row). We classified SUs as tone-excited or -inhibited depending on 

whether spiking increased or only decreased following tone presentation, respectively; 

some SUs were tone-nonresponsive or not isolated during tone stimulation (Table 2.1). 

A best frequency (BF) was selected for each tone-excited SU by finding the frequency 

eliciting the greatest spike rate in a window around its peri-stimulus time histogram 

(PSTH) peak. A BF for each LFP site was determined similarly based on the largest 

average negative deflection within the first 100 ms after tone onset. In our data set, 

mothers and virgins were mostly similar in their distributions of both SU and LFP BFs. 

Recording sites were then similarly characterized by their responsiveness to a pool of 18 

different pup ultrasounds (Appendix B) as pup call-excited (Fig. 2.1A and B), -inhibited 

only (Fig. 2.1C), or -nonresponsive. 

 

2.3.1: Plasticity in SU responses 

We found a larger proportion of SUs in mothers (35/47) compared to virgins 

(21/39) that were either excited or inhibited by pup calls (z-test, z=1.81, p<0.05, 1-

tailed). In both animal groups though, about equal proportions of these responsive SUs 

showed either pure inhibition or some form of excitation (18 excited vs. 17 inhibited in 

mothers, z-test, z=0, p>0.05, 2-tailed; 10 vs. 11 in virgins, z-test, z=0, p>0.05, 2-tailed), 

indicating a previously under-reported prevalence of communication call-evoked 

cortical inhibition (Table 2.1). Focusing first on excited responses, we found a 

significantly higher proportion of tone-excited SUs in mothers (12/18) compared to 
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virgins (8/26) which were also pup call-excited (z-test, z=2.04, p<0.05, 2-tailed). Previous 

anesthetized MU studies found that nearly all excitation occurred near sound onset, and 

that mothers showed a better temporal alignment across BF ranges than virgins (Liu and 

Schreiner, 2007). By contrast, we now found that latencies to the excitation onset (half-

maximum) varied over a wide range of times (t-test, t=0.43, df=25, p>0.05). This  

 

Table 2.1: Classification of Single Unit Responses. 
 

  Mothers Virgins 

Total Recorded SU's 47 39 

Pup Call-Responsive 35/47  21/39  

No Tone Data 9 3 

   & Pup Call-Excited 4 0 

   & Pup Call-Inhibited 3 0 

   & Pup Call-Nonresponsive 2 3 
 

Tone-Responsive 32/38 35/36 

Tone-Excited 18/32 26/35 

   & Pup Call-Excited 12/18  8/26  

   & Pup Call-Inhibited 1/18 6/26 

   & Pup Call-Nonresponsive 5/18 12/26 
 

Tone-Inhibited 14/32 9/35 

   & Pup Call-Excited 2/14 2/9 

   & Pup Call-Inhibited 10/14  5/9  

   & Pup Call-Nonresponsive 2/14 2/9 
 

Tone-Nonresponsive 6/38 1/36 

   & Pup Call-Excited 0 0 

   & Pup Call-Inhibited 3 0 

   & Pup Call-Nonresponsive 3 1 
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Figure 2.1: Three examples of different SU and LFP pairs co-recorded off the same electrode in response 
to pup calls and tones demonstrate the quality of our recordings. (A-C top row) Responses to pup calls. 
Trial-by-trial SU spike raster (upper) and 10 ms-binned PSTH (middle) for call-excited (A and B) and -
inhibited SUs. The mean call-evoked LFP responses (bottom) at the same site are also shown. Stimuli 
presented during the interval denoted by the horizontal black bar. (A-C bottom row) Tonal tuning curves 
for SU spike count (solid black line, left axis) and the amplitude of the negative LFP deflection (dotted 
black line, right axis. Correlation coefficients (CC) between the full frequency tuning curves for SU and LFP 
varied from -0.58 to 0.95 over our tone-excited population of SUs, suggesting these neural signals do not 
reflect the same processes. 
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Figure 2.2: Examples of the diversity of call-excited SU responses (A1-A3) and the more stereotypical 
nature of call-inhibited responses (B1-B3) to pup calls. Black bar represents the stimulus period and stars 
show the half-maximum latency for call-excited responses, and the half-minimum latency for call-
inhibited responses. Time between the two stars represents the duration of response. Examples show the 
raw (gray bars, 5 ms bins) and Gaussian-smoothed (black line) PSTH’s. 
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reflected the many different ways by which excitation occurred in the awake animal, 

such as transient onsets and delayed offsets (for examples see Fig. 2.2). Furthermore, 

this variability in call-excited responses was also reflected in the strength of SU 

excitation, which was computed by integrating the normalized spike rate over the 

stimulus period (black bar in Fig. 2.3A1). We found no significant differences between 

mothers and virgins in the strength or duration of call-excited responses. Therefore, the 

distributions overlapped between the two animal groups (Fig. 2.3A2). In addition, by 

pooling all the call-excited responses in both mothers and virgins, we found that 

mothers had a greater magnitude of the time-dependent, population-averaged spike 

rate, but it was not significant (ANOVA F = 0.74, p>0.05). Although we did not find 

significant changes in the duration and strength of the pooled cortical excitation in 

awake animals, we cannot exclude the possibility that our methods may have failed to 

uncover more subtle changes in excitation due to the variability in spiking responses. 

Turning to inhibited cells, the time course of responses was more stereotyped (Fig. 

2.2B1-B3), in contrast to excited cells (Fig. 2.2A1-A3).  

The proportion of call-inhibited SUs in mothers compared to virgins was higher 

but not significantly so, whether all SUs (20/47 for mothers, 11/39 for virgins, z-test, 

z=1.2, p>0.05, 2-tailed) or only tone-inhibited SUs (10/14 for mothers, 5/9 for virgins, z-

test, z=0.33, p>0.05, 2-tailed) were considered. More importantly, unlike excitation, the 

strength of each call-inhibited SU response (Fig. 2.3B1) was significantly stronger, and 

the duration of inhibition was significantly longer, so that mothers and virgins occupied 

distinct regions in the latency-duration plane (Fig. 2.3B2). Comparing the call-inhibited  
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Figure 2.3:  Mothers show stronger and longer call-inhibited SU responses compared to virgins. (A1 and 
B1) Examples of raw (gray bars, 5 ms bins) and Gaussian-smoothed (black line) PSTH’s for a call-excited 
and -inhibited SU. The stars indicate half-max or -min values for calculating the latency and duration. (A2 
and B2 scatter plot) Call-excited (upward triangles) and -inhibited (downward triangles) latencies and 
durations for mothers (black) and virgins (gray). Stars refer to SUs depicted in A1 and B1. Excited 
Nmothers=16, Nvirgins=10. Inhibited Nmothers=17, Nvirgins=11. (A2 and B2 bottom box plots)  Group comparison 
of call-evoked excitatory and inhibitory normalized rate (SU strength). For this and later figures, box plots 
show lines at the lower quartile, median and upper quartile, and whiskers extending out to extreme data 
points that are not outliers. The difference between mothers and virgins for call-excited SUs was not 
significant (Mann-Whitney, U=80, Nmothers=16, Nvirgins=10, p>0.05, 2-tailed), but was significant for call-
inhibited SUs (t-test, t=2.9, df=26, p<0.01). For this and later figures, n.s./asterisk indicates a non-
significant/significant comparison. (A2 and B2 right box plots)  Group comparison of call-evoked excitatory 
and inhibitory durations. Mothers and virgins were not significantly different for call-excited SUs (t-test, 
t=.54, df=24, p>0.05), but were for call-inhibited SUs (t-test, t=4.7, df=26, p<0.0001). (A3 and B3) 
Population-averaged time course of spike rate normalized by the spontaneous rate, for call-excited and -
inhibited SUs. In this and later figures, the gray rectangles marked by asterisks denote regions where 
significant differences were found between traces, and the error bars represent standard errors. 
Significant differences occurred only for call-inhibited responses. Dotted lines represent the baseline 
spontaneous rate.  
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PSTH, we also found that the inhibition was significantly deeper in mothers on a time 

point by time point basis (Fig. 2.3B3). Thus, in the awake mouse, average inhibition of 

cortical spiking by the class of pup calls was systematically longer and stronger in 

mothers compared to virgins. 

What function might these changes have, and how specific are they for 

processing pup calls? Because our SU data alone did not permit us to fully address these 

questions, as explained below, we turned next to analyzing the LFP. This allowed us to 

both corroborate and extend our evidence for functionally-relevant inhibitory plasticity. 

 

2.3.2: Plasticity in LFP responses 

What causes a neuron to be inhibited or excited depends on the nature of its 

inputs from other neurons. To monitor this, we used the LFP, which is sensitive to the 

slow currents generated at excitatory and inhibitory synapses (Lopes da Silva and Kamp, 

1987), and to spiking afterpotentials from neurons across this network (Logothetis, 

2003). While distant, synchronous currents contribute to this signal, a recent study 

suggests that local contributions within ~250 um are dominant (Katzner et al., 2009). In 

principle, such local currents could be different around SUs that are being inhibited 

versus excited, not least of all because of the absence of the SUs own spiking in the 

former case. Indeed, simultaneous in vivo intracellular and extracellular recordings have 

shown that a SUs membrane potential often mirrors the LFP, so that depolarizations 

(hyperpolarizations) co-occur with relative negativities (positivities) in the extracellular 

potential (Kaur et al., 2005; Poulet and Petersen, 2008). 
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Given this possibility, we separately examined LFPs depending on whether a co-

recorded SU was excited or inhibited by calls, in case the local network supporting each 

response type changed in a systematic way that would be reflected in the LFP. For this 

limited purpose, we focused only on the wide-band LFP (up to 100 Hz), rather than 

consider specific spectral bands (e.g. theta-band) individually (Galindo-Leon and Liu, 

2010). We used standard time domain methods to generate the Hilbert phase time-

series for each trial’s LFP signal (Fig. 2.4A). This describes when various shape features in 

a signal – such as local minima (~π), maxima (~0 and 2π) and zero-crossings (~0.5π and 

1.5π) – occur. 

Using this analysis, we discovered plasticity in the call-evoked variability of the 

local network activity around call-inhibited SUs. To characterize variability, we 

constructed at each recording site a time-dependent histogram of the Hilbert phase 

trajectories across the different trials of all the calls (Fig. 2.4B). Before stimulus onset, 

the instantaneous Hilbert phase was essentially random. However, shortly after the 

onset of the calls, the Hilbert phase began concentrating near 0.5π to π, corresponding 

to the descent of the LFP toward its valley. The Hilbert phase distribution then became 

very sharp, and eventually widened back to a uniform distribution. We quantified the 

trial-by-trial variability of this local network response by a phase precision measure 

indicating how well aligned the instantaneous Hilbert phases from different trials were: 

a value of 1 at a particular time implies that all trials had exactly the same phase, while 

randomly distributed phases would yield a value of 0 (Fig. 2.4C). Examples of the LFP 

phase precision at call-excited and -inhibited sites are shown in the upper panels of Fig.  
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Figure 2.4: Example demonstrating the computation of the Hilbert phase time series for each LFP signal 
and the resultant phase reliability measure. (A) Examples of three LFP trials in response to pup call stimuli 
(blue, tan, brown), and at a given time (black vertical line), the three trials show distinct phase values at 
either 30 ms after the call stimuli (left coordinate axes) or at 260 ms (right coordinate axes). (B) The 
variability in the LFP shape depicted as a time-dependent probability histogram of trial-by-trial Hilbert 
phases. Brighter (darker) colors indicate higher (lower) probabilities for a specific phase at a specific time. 
(C) Based on the time-dependent probability histogram a phase precision value at each time point is 
computed, with one being the maximum value and indicating that all trials have the same Hilbert phase at 
a specific time point.   
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2.5A1 and B1, respectively. In general, call onset reliably reset the wide-band LFPs 

Hilbert phase and drove a rapid increase in the precision of the local network response 

at each site. Over time, this phase drifted as intrinsic, non-stimulus-locked fluctuations 

began dominating the signal again. 

In order to detect systematic differences in local network variability, we 

compared the durations, max precision values, and the population-averaged phase 

precision time courses between animal groups. Mirroring the results found when 

comparing SU firing between mothers and virgins, the LFPs at call-excited SU sites (Fig. 

2.5A2 and A3) were not different in any of these measures. In contrast, the LFP phase 

precision at call-inhibited sites in mothers reached a higher phase precision peak value, 

and stayed higher for longer, even beyond the duration of the pup call stimulus (Fig. 

2.5B3). Thus, the local network near call-inhibited SUs in mothers responded trial-by-

trial with more stereotyped activity than in virgins. 

Furthermore, the LFP phase precision at call-inhibited SU sites in mothers 

increased even beyond the level of precision at call-excited sites. For call-inhibited sites 

in mothers, the precision became greater after about 18 ms, and stayed higher until 190 

ms after stimulus onset (comparison not illustrated). This result indicates that local 

network level changes between virgins and mothers consistently increased the precision 

of presumed synaptic and membrane currents associated with inhibiting cortical 

neurons. In fact, on a site-by-site basis, we found that the stronger the SU inhibition, as 

measured by a lower normalized spike rate averaged across all calls (integrated over the 

maximum call duration), the greater the peak LFP phase precision (corrcoef, cc=-0.55,  
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Figure 2.5: Mothers have a longer and greater LFP phase precision at call-inhibited but not -excited SU 
sites. (A1 and B1) Example LFP phase precision trajectories and their durations (stars) for both a call-
excited and -inhibited site in a mother and virgin. Phase precision values lying above the dashed line are 
significant. (A2 and B2) Peak values and durations of the LFP phase precision at call-excited (upward 
triangles) and -inhibited SU sites (downward triangles) for mothers and virgins. Excited Nmothers=16, 
Nvirgins=10. Inhibited Nmothers=14, Nvirgins=11. (A2 and B2 bottom box plots) Group comparison of call-evoked 
LFP phase precision max values. Differences between mothers and virgins were not significant at call-
excited SU sites (t-test, t=0.83, df=24, p>0.05, 2-tailed), but were significant at call-inhibited SU sites (t-
test, t=2.4, df=23, p<0.05, 2-tailed). (A2 and B2 right box plots) Comparison of call-evoked LFP phase 
precision durations. Differences between groups were not significant at call-excited SU sites (Mann-
Whitney, U=54, Nmothers=16, Nvirgins=10, p>0.05, 2-tailed), but were significant at call-inhibited SU sites (t-
test, t=2.3, df=23, p<0.05, 2-tailed). (A3 and B3) Population-averaged phase precision trajectories. LFPs 
from call-excited SU sites did not show a significant difference between mothers and virgins. LFPs from 
call-inhibited sites in mothers had a significantly higher phase precision trajectory than virgins beginning 
near sound onset until more than 100 ms after sound offset. 



 43 

df=26, p<0.005, 2-tailed). This did not occur for excitation (cc=0.33, df=24, p>0.05, 2- 

tailed). Thus, longer and deeper inhibition of SU spiking in mothers correlates with more 

sustained and higher phase precision in the LFP. 

 

2.3.3: Plasticity dominated by laterally tuned sites 

The SU and LFP data both suggest significant changes in the nature of call-

evoked inhibition in the mother’s auditory cortex. Is this plasticity globally distributed, 

or might changes in inhibition between virgins and mothers depend on the specificity of 

a recording site’s tuning to the frequencies in pup calls? We addressed this by 

separating our SUs and LFPs at call-excited and -inhibited sites depending on the LFP BF. 

Sites with LFP BF<50 kHz (lateral band) nevertheless responded to high-ultrasonic calls 

presented at moderate sound levels. These sites showed a significant difference in the 

degree of call-evoked SU inhibition between mothers and virgins (Fig. 2.6B1 Inset). In 

parallel, there were large differences in the strength of the phase precision for LFPs 

recorded around call-inhibited SUs (Fig. 2.6B1). Differences were not apparent for call-

excited SUs (Fig. 2.6A1 and Inset). 

In fact, the lateral BF range was mainly responsible for the population 

differences in normalized SU firing (Fig. 2.3A2 and B2, lower box plots) and LFP phase 

precision (Fig. 2.5A3 and B3). When we compared LFP sites tuned to high-ultrasonic 

frequencies (BF>50 kHz), the differences in SUs and LFPs at both call-excited and -

inhibited SU sites (Fig. 2.6A2 and B2) were not significant. For the call-excited SU 

responses, the median SU normalized firing rate was higher in mothers, but not 
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significantly so. Mirroring the SU results, the LFP phase precision at call-excited and -

inhibited sites also did not show significant differences between mothers and virgins. 

Thus, using both SUs and LFPs, we conclude that there is a robust plasticity in call- 

evoked inhibition within auditory cortical regions tuned to frequencies lower than the 

high-ultrasonic frequencies where pup calls are found. 

 

 

Figure 2.6: Plasticity from call-inhibited sites tuned to lateral frequencies. Significant differences in LFP 
phase precision mainly arose from call-inhibited sites with LFP BF<50 kHz. SUs from these same lateral 
band sites had greater call-evoked inhibition in mothers than in virgins. (A1 and A2) Population-averaged 
phase precision trajectories for LFPs at call-excited SU sites, grouped by LFP BF. No significant differences 
in trajectories were found between mothers and virgins for either lateral (A1) or high-ultrasonic (A2) band 
sites. Similarly, differences in the normalized, integrated SU firing (see Fig. 2.3A2 and B2) did not reach 
significance for either the lateral (t-test, t=.98, df=10, p>0.05, 2-tailed) or the high-ultrasonic band (Mann-
Whitney, U=16, Nmothers=10, Nvirgins=5, p>0.05, 2-tailed). (B1 and B2) Population-averaged phase precision 
trajectories for LFPs at call-inhibited SU sites, grouped by LFP BF. The trajectory for mothers was 
significantly higher than virgins at lateral (B1) but not high-ultrasonic (B2) band sites. Similarly, differences 
in the normalized, integrated SU firing were significant for the lateral (t-test, t=2.3, df=13, p<0.05, 2-
tailed) but not the high-ultrasonic band (t-test, t=1.7, df=11, p>0.05, 2-tailed; Nmothers=9, Nvirgins=4). 
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The LFP plasticity may partially reflect a change in the reliability of feed-forward 

inputs into the lateral band. This conclusion is based on the peak phase precision at the 

onset of vocalizations. The high-ultrasonic regions in both virgins and mothers 

presumably receive strong inputs from pup calls, and the peak phase precision values 

for both animal groups at call-excited and –inhibited sites were correspondingly higher 

and not significantly different (ANOVA F(3,21) = 0.58, p>0.05). On the other hand, pup 

calls do not normally drive very reliable inputs to the lateral band, since the phase 

precision here was significantly lower compared to the high-ultrasonic band for all sites 

(t-test, t=3.3, df=49, p<0.01). This changed in mothers, particularly for call-inhibited sites 

in the lateral band, so that mothers had more reliable evoked responses whose 

precision rose higher than in virgins. This more uniform peak phase precision across 

both the high-ultrasound and lateral bands at call-inhibited SU sites in mothers could 

thus result in a more robust neural response to pup calls across the auditory cortex.  

 

2.3.4: Lateral band plasticity enhanced for pup call frequencies 

Both the SU and the LFP data suggest that the main changes in call-evoked 

inhibition occurred for neural sites tuned to lateral frequencies. We next asked whether 

these changes were in any way specific for pup calls, or whether they reflected a more 

generic difference in auditory processing in mothers. To address this, we turned to pure 

tonal stimuli, since tone frequency is one of the main parameters that defines these 

whistle-like pup calls (Liu et al., 2003). We looked to see whether the lateral band’s 

inhibitory plasticity was specific for stimulus frequencies in the high-ultrasonic range, 
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and analyzed tone responses from lateral sites the same way we did for natural pup 

calls. However, because we had far fewer trials for our tone stimuli (~15/tone) 

compared to our pup call stimuli (~50/call x 18 calls), we had to pool responses for 5 

adjacent, logarithmically-spaced tones. Even still, the reduced trials made our 

normalized SU firing rate estimates noisy. Moreover, because there was a floor in SU 

spiking, relative changes in the strength of SU inhibition were harder to quantify. Thus, 

since we found that SU inhibition was correlated with LFP phase precision, we relied on 

the latter for this analysis. 

Comparing LFP phase precisions for high-ultrasonic tones between 60-80 kHz, we 

found a significant increase in mothers compared to virgins at lateral band call-inhibited 

SU sites (Fig. 2.7B1, top panel). This was a more than 50% improvement, computed by 

taking the (bootstrap) mean difference in the group-averaged phase precisions during 

the tone. This enhancement was relatively specific for the natural pup call frequency 

range: varying the center tone frequency outside of this range caused the improvement 

to drop from its peak (Fig. 2.7C). Some weak frequency generalization was nevertheless 

apparent. When tone frequencies between 30-40 kHz were examined, a group 

difference was still found (Fig. 2.7B1, lower panel), but it was smaller, and the time 

interval for significance was shorter. Thus, call-inhibited SU sites in mothers had a 

significant increase in tone-evoked phase precision for frequencies starting above ~30 

kHz, with greatest enhancement spanning the natural pup call range. In contrast, at call- 

excited SU sites, the phase precision time course for 60-80 kHz tones was not different  
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Figure 2.7: Differences between mothers and virgins were particularly enhanced for tone frequencies 
falling in the natural pup call range. (A1 and B1) Comparison of 60-80 kHz (upper panels) and 30-40 kHz 
(lower panels) tone-evoked LFP phase trajectories, averaged across lateral band LFPs. The magnitude of 
phase precisions was higher for the latter frequencies since lateral band sites should be more responsive 
to them. No significant differences between mothers and virgins were found for call-excited sites for 
either tonal stimulus. However, mothers and virgins did differ significantly at call-inhibited sites for both 
tonal stimuli. Excited Nmothers=7, Nvirgins=5. Inhibited Nmothers=7, Nvirgins=6. (B) Frequency-dependence of 
tone-evoked LFP phase precision enhancement in mothers compared to virgins for call-excited (blue) and 
-inhibited (red) sites. Each point pooled trials from 5 logarithmically-spaced tone frequencies centered on 
that point. Population-averaged phase precision trajectories were computed separately for call-excited 
and -inhibited SU sites from each animal group. The average difference (solid lines) between trajectories 
(mother – virgin) over the duration of the tone quantified the precision enhancement relative to virgins. 
Shaded bands represent 95% confidence intervals computed by bootstrapping across sites. We found a 
significant increase only for LFPs at call-inhibited SU sites, with the greatest differences for frequencies 
falling in the natural pup call range (dashed vertical lines). A smaller but still significant difference was also 
apparent for tone frequencies above ~30 kHz. 
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between virgins and mothers (Fig. 2.7A1, top panel). The percentage increase relative to 

virgins was also non-significant across all tone frequencies (0% line lies within the 95% 

confidence interval, blue band in Fig. 2.7C). Finally, neither call-excited nor -inhibited 

sites with LFP BF>50 kHz exhibited significant differences (data not shown). 

 

2.4: Discussion 

Earlier studies of auditory cortical communication sound encoding have almost 

entirely focused on excitatory neural responses (Wang et al., 1995; Medvedev and 

Kanwal, 2004; Syka et al., 2005; Wallace et al., 2005; Liu et al., 2006; Liu and Schreiner, 

2007; Recanzone, 2008; Huetz et al., 2009). Inhibition has previously been considered 

only in so far as it shapes an individual cortical neuron’s receptive field and excitatory 

responsiveness to calls (Narayan et al., 2005; Razak and Fuzessery, 2006). This work on 

ultrasonic call processing in the awake mouse demonstrates an alternative role for 

inhibition in the distributed cortical representation of species-specific vocalizations. Its 

importance was revealed through a plasticity that yielded more robust inhibition to 

ultrasonic pup call frequencies by neural sites tuned to lateral frequencies. The data 

suggests lateral band inhibition can enhance the cortical contrast in the population 

representation of a communication call. Here we relate this work to prior studies, 

interpret our plasticity data, and propose its function for improving call detection in 

background noise. 
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2.4.1: Relation to prior studies 

This study took advantage of a known behavioral change in the recognition of a 

natural communication call to search for auditory cortical correlates of its behavioral 

relevance, a strategy previously applied in anesthetized mice (Liu et al., 2006; Liu and 

Schreiner, 2007). Here we investigated cortical coding in awake mice for the first time, 

and focused only on neural changes relevant for detection by pooling responses across 

calls. Some conclusions remained consistent. Both the current and previous work 

suggest plasticity in feedforward activity because mothers showed a more 

“synchronized” response onset across the auditory cortex. Nevertheless, the data in this 

study are fundamentally different and could not have been predicted from the 

anesthetized work. Whereas earlier conclusions were based on changes in excitatory 

neural responses, here we found that half of the SUs that responded to calls did so in a 

purely inhibitory manner (Table 2.1). In fact, call-evoked pure inhibition has rarely been 

reported, perhaps for methodological reasons. MU recordings may obscure the 

inhibition of individual neurons by sounds. Ketamine anesthesia may disinhibit 

(Bergman, 1999; Behrens et al., 2007) or otherwise modulate (Syka et al., 2005) or 

synchronize (Greenberg et al., 2008) cortical excitation. Neuron search strategies may 

also differ. Most studies first characterize units by their excitatory tone response area 

and BF, yet many of our call-inhibited SUs did not have excitatory tonal responses (18 of 

25, Table 2.1); a “best” frequency for all SUs was instead based on the surrounding 

populations’ response to tones (i.e. LFP BF). Even when inhibited SU responses to 

natural calls have been reported in an awake animal though (Recanzone, 2008), the 
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fraction of neurons has been very small, and has varied according to the call (0-10%). 

Hence, a final possibility is that single frequency ultrasonic calls may be more likely to 

evoke pure inhibition than the broad-band calls used in other studies. 

 

2.4.2: Robust plasticity in inhibition rather than excitation 

Our data suggests this inhibition may be functionally relevant for detecting pup 

calls since it systematically changed in its strength, particularly in the lateral band, in a 

manner that correlated with the call’s behavioral significance. These results were 

observed both directly in the SU data (Fig. 2.3B, 2.6B inset), and indirectly through 

associated changes in the surrounding local network (Fig. 2.5B, 2.6B). Whether the 

changes here arise from pup experience, hormonal changes associated with pregnancy 

or lactation, or attention remains to be investigated. 

Despite the robust plasticity in evoked SU inhibition, our data did not 

demonstrate a significant change between virgins and mothers in pooled SU excitation 

(Fig. 2.3A) for either the high-ultrasonic or lateral frequency bands (Fig. 2.6A Insets), 

although there may be a trend towards greater strengths for high-ultrasonic SUs in 

mothers. In other words, enhancing the “average” excitation per “typical” SU may not 

be necessary to improve the detection of pup calls. Distributed excitation may serve a 

different role in communication processing, such as discriminating calls. 

There are two qualifications to this. First, cortical neurons are not all identical, 

and we likely do not record equally from all types. In particular, our high-impedance 

tungsten electrodes may be less sensitive to spikes from smaller interneurons than to 
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larger pyramidal cells (Towe and Harding, 1970; Gold et al., 2006). The latter is likely the 

“typical” SU that we detect, as they make up 70-80% of cortical neurons (DeFelipe and 

Farinas, 1992). Such a recording bias may explain why we did not see a systematic 

change in SU excitation arising from inhibitory interneurons that presumably generate 

the stronger inhibition we reported here. In support of this, a recent study by Cohen et 

al. (2011) demonstrated that in the anesthetized auditory cortex of mothers, fast spiking 

neurons (putative inhibitory interneurons) show a more robust response to pup 

vocalizations in mothers but not virgins. This finding agrees with the idea that the 

stronger call-inhibited SUs observed in this study consist mostly of pyramidal cells.  

Second, lack of change in “average” excitation does not preclude differential 

plasticity that depends on systematic variations within this study’s pool of “typical” SUs. 

This may be especially relevant for high-ultrasound-tuned excitatory neurons. For 

example, three SUs in mothers had noticeably higher normalized spike rates (affecting 

the PSTH in Fig. 2.3A3 and the box plot in the inset of Fig. 2.6A2). These may be part of a 

specialized neuronal subcategory that emerged in mothers. The high variability in types 

of excitation makes it difficult to distinguish these. Thus, we did not further sub-classify 

SUs based on their excitatory response time courses, since sample sizes would have 

been too small to make reliable conclusions. In support of possible subtle changes in 

excitation that elude our current methods, we did find more offset (latency >40 ms) and 

sustained (duration >50 ms) SUs in mothers. Furthermore, individual excitatory 

receptive fields may also be changing, which could improve call discrimination. This 

could occur without affecting overall evoked excitation and call detection. 
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In parallel with these SU results, our LFP data did not show changes in the 

network activity associated with SU excitation, although it did for inhibition (Fig. 2.5, 

2.6). Although this is a serendipitous finding for our plasticity analysis, it is not entirely 

clear why a coarse measure of neural activity such as the LFP would show different 

changes depending on the response of a co-recorded SU. Instead, we mention here two 

possible, non-exclusive scenarios. First, there may be spatial clustering in SU response 

types, as has been reported for vocalization responses in the anesthetized guinea pig 

(Wallace et al., 2005). Second, the dominant sources contributing to the LFP may arise 

from a spatially restricted region (Katzner et al., 2009), and these sources differ 

depending on whether the co-recorded SU is inhibited or excited. For example, 

inhibition of a pyramidal cell can come from fast perisomatic inhibition by nearby basket 

cells (Freund and Katona, 2007). Each basket cell initiates synchronous inhibitory 

postsynaptic potentials in many pyramidal cells within its localized region of innervation 

(Miles et al., 1996). Such currents may be less consistent or weaker around pyramidal 

cells that are excited by calls. If plasticity occurs primarily in the inhibitory network, the 

LFP around excited SUs might not then easily reveal this.  

A difference between excitation and inhibition was also apparent in how the LFP 

phase precision correlates to the strength of SU spiking, irrespective of the plasticity 

between animal groups. Phase precision measures response variability across trials, 

which can arise here from either random neural noise for each call, or systematic 

variation for acoustically different calls. If different calls elicit similar neural responses, 

then the latter component is minimized. This is the case for call-inhibited but less so for 
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-excited SU sites. Most of our call-inhibited SUs were uniformly inhibited by most, if not 

all, the calls, whereas the response to different calls by call-excited SUs was typically 

more varied. Hence, our pooled phase precision at call-inhibited SU sites reflects neural 

noise more directly, and reveals an intriguing correlation with the strength of SU 

inhibition: LFP trajectories, which include both synaptic and spiking contributions, 

become less variable as the co-recorded SU’s spiking drops to zero. This relation justified 

interpreting increases in tone-evoked phase precision as indicative of enhanced 

inhibitory strength (Fig. 2.7). In further support of this, differences between virgins and 

mothers were similar even when we compared average call-specific (instead of call-

pooled) phase precision trajectories. This suggests that mean response differences 

across calls were not a major contribution to the LFP variability at call-inhibited sites. For 

call-excited SUs, systematic variations in the pattern of mean firing for individual calls 

could degrade a site’s pooled LFP phase precision, independent of the SU’s excitatory 

strength. Thus, these measures were uncorrelated at call-excited sites. 

 

2.4.3: Hypothesized role of enhanced inhibition in the lateral band 

How might a more robust inhibitory response at the population level functionally 

improve communication sound detection? Accumulating evidence suggests the auditory 

cortex changes to more powerfully represent sounds that acquire behavioral meaning 

(Fritz et al., 2003; Weinberger, 2004). Inhibitory plasticity may help achieve this by 

enhancing the neural contrast in a sound’s distributed cortical code. A model based on 

our results illustrates how this might work (Fig. 2.8). An emitted pup call (upper right) 



 54 

excites the ultrasound region of the basilar membrane, and is transduced into a neural 

signal that feeds forward through subcortical stations to the auditory cortex, evoking a 

distributed response spanning both the high-ultrasonic (solid bars) as well as lateral 

(hatched bars) frequency bands. In each region, (presumed) pyramidal cell activity is 

divided into call-excited or -inhibited classes. Normalized evoked spike rates (relative to 

spontaneous activity) for a virgin (gray) or mother (black) are represented by bar 

heights. If pooled spike rates are not significantly different between groups, rates are 

depicted as equal for simplicity. Hence, only the call-inhibited sites in the mother’s 

lateral band are shown as significantly lower. Assuming simple one-to-one integration of 

call-excited and -inhibited activity in a frequency band-specific fashion, this would 

produce a downstream representation with a greater contrast in mothers between the 

frequency region that should represent the pup call (high-ultrasound) and lateral 

frequency areas. 

 Why would enhancement of population-level contrast be advantageous for call 

processing? If calls were emitted in the presence of broadband background noise, call-

evoked lateral band inhibition could help suppress this noise, helping the neural activity 

in the high-ultrasonic band to stand out more clearly. In fact, we actually found some 

generalization in mothers of the enhanced inhibition at laterally-tuned sites for lower 

frequencies as well (Fig. 2.7). Whether this inhibition can add to the call-evoked 

inhibition must be tested in future two-tone or masking experiments. Finally, such a 

coding scheme is reminiscent of attention-related gain changes of auditory cortical 

neurons during a tone-in-broadband noise detection task in ferrets (Atiani et al., 2009). 
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That study observed stronger suppression of excitatory activity for neurons tuned to 

sites “far” from the target frequency. On the other hand, our main effect was stronger 

inhibition at these sites to the target sound (pup call) alone. In both scenarios, the 

hypothesized outcome would be enhanced neural contrast for the target. 

 

 

Figure 2.8: Hypothesized model to enhance a pup call’s neural contrast. CN: cochlear nucleus; SOC: 
superior olivary complex nuclei; IC: inferior colliculus; MGB: medial geniculate body. See text for details. 
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CHAPTER 3 

DIFFERENTIAL ROLES OF EXPERIENCE AND 

PHYSIOLOGICAL STATE ON PLASTICITY 

In the previous chapter, we demonstrated that socially acquired natural 

vocalizations resulted in call-evoked inhibitory plasticity in the auditory cortex of 

mothers. While these changes could have resulted from pup experience alone, intrinsic 

factors such as physiological state (hormones, arousal, and attention) may have also 

played a role. In this chapter, we begin to study how these factors contribute to 

plasticity by recording neural responses in co-caring females, and comparing them to 

mothers and virgins. Cocarers are adult virgins that gain experience with pups while 

helping a mother care for her litter and show pup call recognition behavior (Ehret et al., 

1987). However, they physiologically differ from mothers during this experience 

because they do not undergo pregnancy or parturition. Using the same techniques in 

chapter 2, we recorded single neurons and their responses to pup vocalizations in the 

primary auditory cortex of awake mice. We used the SU call-evoked inhibition found 

previously as a proxy for detecting plasticity, and explored the role of maternal 

physiological state and experience on sensory cortical plasticity. In addition, we 

assessed the relevance of these cortical changes by testing the behavioral performance 

of each animal group in a two-choice alternative test that compared their approach 

responses to pup calls versus neutral tones.  
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3.1: Introduction 

The adult auditory cortical representation of sounds can be dynamic, undergoing 

plasticity to reflect changes in behavioral relevance. It is clear now that plasticity can 

depend on the most salient acoustic feature learned (see 1.4.1). However, while 

experience dependent plasticity is a well-studied phenomenon in the auditory cortex, 

we still do not fully understand how this plasticity is affected by how sound experience 

is acquired, or how our intrinsic state affects this process. A recent study by David et al. 

(2012) has begun to uncover the former; by changing the valence of the stimulus 

(appetitive versus aversive), both training procedures resulted in plasticity, but with 

opposite sign. Thus, differences in plasticity can occur from how an animal learns the 

significance of a sound, but how does an animal’s intrinsic physiological state affect 

these changes? 

The physiological state of the animal such as the hormonal state and its effects 

on the auditory system have been well studied, and can regulate processing in a number 

of animals (see 1.3.2). For example, estrogen is a hormone associated with pregnancy 

and maternal behavior that also affects neural excitability in the auditory system of 

birds (Tremere et al., 2009). In fact, a number of studies have demonstrated that the 

application of estrogen to the caudomedial nidopallium in the bird, a cortical-like 

auditory region, can facilitate auditory processing for species-specific vocalizations 

(Tremere et al., 2009; Remage-Healey et al., 2010; Maney and Pinaud, 2011; Tremere 

and Pinaud, 2011). However, much less is known about its influence in the mammalian 

auditory cortex, and its effects on the learning of sounds.  
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The maternal model of acoustic communication between offspring and adult 

females offers the opportunity to explore this question and dissociate how hormones 

and experience contribute to auditory cortical plasticity. After birth, mouse pups emit 

bouts of USVs that are behaviorally relevant to the mother but not the pup-naïve virgin 

(Ehret et al., 1987; Ehret, 1989, 2005). Neural correlates for this behavioral difference 

have been demonstrated in the auditory cortex of both anesthetized (Liu and Schreiner, 

2007; Cohen et al., 2011) and awake animals (see Chapter 2). In particular, we 

demonstrated in chapter 2 that awake-restrained mothers, measured after weaning, 

have a greater pup call-evoked SU inhibition compared to virgins. The question then is 

whether these changes are a result of pup experience alone, or whether the maternal 

physiological state also plays a role. Cocarers, which are virgins with pup experience, do 

not undergo the hormonal changes associated to motherhood, but still show behavioral 

differences from pup-naïve mice in an ultrasound recognition task (Ehret et al., 1987). 

Thus, to begin to dissociate the effects of hormones and experience on cortical 

plasticity, we first recorded from cocarers at the same time point as mothers, after pup 

weaning. These results then motivated further experiments discussed in this chapter on 

cocarers that were recorded early during their pup experience (early cocarers).  

Here, we confirm using SU recordings only that mothers have greater call-evoked 

inhibition when compared to both virgins and cocarers in the “lateral band” (A1 and 

AAF, but not UF). Next, recording from early cocarers during pup experience, we find 

that their call-evoked inhibition was more similar to mothers. This led us to suggest that 

inhibitory plasticity is not maintained in cocarers, and that the maternal physiological 
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state contributes to the retention of auditory cortical changes. Based on this, we find 

that this retention may occur through a decrease in the spontaneous activity and 

hypothesize that this change acts as a mechanism to preserve the experience-

dependent cortical plasticity.  Finally, we provide support for this hypothesized 

mechanism for maintaining call-recognition by demonstrating that cortical changes 

correlate with differences in behavioral performance across animal groups.  

 

3.2: Methods 

 The electrophysiological recording, surgical methods, acoustic stimuli, and 

statistical tests used in this chapter are located in appendix A, B and C. In addition, 

details of the SU analyses used in this chapter can be found in section 2.2.1. In this 

chapter, the electrophysiology data comes from 47 female CBA/CaJ mice all between 14 

and 24 weeks old at the time of surgery. From these animals, we recorded 393 SUs, 352 

that were in core auditory areas. For the behavioral experiments, 34 female mice were 

used for 197 number of test trials. A list of all the animals used in this chapter can be 

found in appendix A.  

 

3.2.1: Auditory brainstem recordings 

ABRs were performed only on those animals used in our behavioral tests. ABRs 

were conducted inside a soundproof anechoic chamber to test each animal’s threshold 

of hearing to different tone frequencies. Animals were first anesthetized using a mixture 

of Ketamine and Xylazine (4 parts 100 mg/kg Ketamine: 1 part 5 mg/kg Xylazine), and a 
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maintenance dosage was prepared (6 parts Ketamine: 1 part Xylazine). Once the animal 

showed no reflexive response to a light toe pinch, it was placed onto a Styrofoam bed 

with its right ear 11 cm from a speaker on a vibration-isolation table. Subdermal needles 

connected to a RA4LI headstage (Tucker Davis Technologies) were used to record the 

ABRs with the ground placed ventral lateral to the left external pinna, the reference 

electrode ventral lateral to the right external pinna, and the recording electrode at the 

vertex of the skull. The brainstem signals were recorded at 25 kS/s and band pass 

filtered from 100 Hz to 3 kHz. Stimuli were played 500 times presented at a rate of 19 Hz 

and in 5 dB steps to obtain an averaged ABR for a specific tone frequency at different 

amplitude levels. The threshold was then defined as the lowest amplitude level that 

could evoke an auditory response.  

 

3.2.2: Estrus cycle monitoring 

 The animal’s estrus state was monitored by vaginal cytology using methods 

described previously (Shepard and Liu, 2011). Following each behavioral experiment, a 

pipette with 0.9% sterile saline was used to flush the animal’s vagina. Several drops of 

this solution was then ejected onto a pre-cleaned glass microscope slide, and visualized 

under a light microscope at 4X magnification. The animals typically cycled through four 

different phases: proestrus, estrus, metestrus, and diestrus, with each phase marked by 

a distinct mixture of cornified epithelial cells, leukocytes, and cuboidal cells. During 

proestrus, the uterine line is building up and generally has a low epithelial cell density 

(Figure 3.1A). Estrus occurs when the uterine lining has been built up, and therefore the 
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cornified epithelial cell density will be high, but the amount of leukocytes will be low 

(Figure 3.1B). Following this, metestrus occurs as the female is shedding her uterine 

lining, and the samples will show a high density of epithelial cells, leukocytes, and 

cuboidal cells (Figure 3.1C). Finally, during diestrus, the uterine lining has been shed and 

the slide will show a greater abundance of leukocytes and cuboidal cells, but a very low 

density of epithelial cells (Figure 3.1D). 

 

 

Figure 3.1: Vaginal cytology identification. This figure shows the four phases, (A) proestrus with the lower 
cell density, (B) estrus with the high density of cornified epithelial cells and low density of leukocytes, (C) 
metestrus which follows estrus and typically shows a greater number of leukocytes, and (D) diestrus 
where there is typically a higher density of leukocytes and a lower density of either the epithelial or 
cuboidal cells.  
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3.2.3: Two alternative choice task 

All behavior tests were performed inside a soundproof anechoic chamber under 

dim red light. In the text below, the x-direction refers to the horizontal axis in figure 3.3, 

and the y-direction refers to the vertical axis in figure 3.3. Animals were tested on an 

elevated W-maze (35.5 cm from ground, 80 cm length, 3.5 cm high walls, 33 cm from 

long edge to nest in the y-direction, 30 cm from long edge to open end in the y-

direction) with speakers located 60 cm away from the nest depression (Fig. 3.2). In 

addition, there were two servo-controlled doors (Hitec HS-7950TH, Poway, CA) that 

were 24.5 cm long and 13.5 cm high. The stands holding up each door were located 18 

cm from the maze in the x-direction, and 5 cm from the maze in the y-direction.  

The doors were controlled remotely using a digital pulse width signal from an 

RX5-2 (Tucker Davis Technologies). Servos were first reprogrammed using an HPP-21 

(Hitec HS-7950TH, Poway, CA) where a 1ms pulse width command was set to 0 degrees, 

and the 2.1ms pulse width command was set to 180 degrees. Code written in RPvdsEx 

allowed the user to control the position of the doors in real time. During the 

experiment, a 1ms pulse width sent to the servos would close the doors around the 

nest, 2.05ms was used to open the doors, and 1.9ms was used to open the doors at 

approximately 160 degrees. Only when the doors were in the 160-degree position, could 

the animal explore the entire maze. To prevent the animal from being able to burrow 

underneath the doors in the fully open or closed configuration, three plastic barriers 

were attached to the maze using Neodymium magnets (K&J Magnetics Inc., Jamison, 
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PA). The barriers were 3 cm tall and located underneath where the doors were fully 

open or closed (Fig. 3.3, green line).  

 

 

Figure 3.2: The two-alternative choice behavioral setup. The figure shows the design of the elevated W-
maze and the placement of the doors and speakers. The black block in the center represents the camera 
mounted above the maze recording the animal’s movement and feeding back this information to the 
Cleversys computer program. When the test starts, the animal’s position in the nest (region located 
behind the 2 doors) cues the sound playback to begin, and a sequence of three pup calls and three tones 
are played back from opposing speakers. The sequence of three calls (amplitude envelopes on top, 
frequencies on bottom) is shown above the left speaker. The corresponding bout of three tones is shown 
above the speaker on the right. During the playback, the sequence of sounds were alternated, with a 
silent gap between each bout. The period of time from the start of one bout to the start of the second 
was 1.6 seconds. In addition, for each behavior experiment, the playback of calls and tones were 
alternated between the left and right speakers to eliminate possible left/right room biases. In this image, 
the doors are at the 0-degree position.  

 

 

Mothers, late cocarers, and early cocarers were tested for three consecutive 

days with four pups aged P6-P8. For post-weaned mothers and cocarers, the four pups 

came from a donor litter, while for early cocarers, the four pups came from the litter in 
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which they were co-caring. Prior to each test day, 70% ethanol was used to wipe down 

the elevated W-maze, and clean Alpha-Dri bedding was added. The mouse was then 

placed onto the W-maze with four pups in the nest area for a one hour habituation 

(Nest Area, Fig. 3.3). During this time, the experimenter remained outside the anechoic 

sound chamber while the mouse was habituated to the sound of the servo-controlled 

doors. Periodically, the experimenter would enter the chamber and displace pups from 

the nest to motivate retrieval behavior. The number of times this occurred per animal 

varied, but each animal would perform at least two retrievals prior to the test. The goal 

was to motivate the mouse to retrieve pups from various areas of the maze until they 

could consistently retrieve multiple pups at the ends of the W-maze back to the nest.  

Following habituation, two sound preference tests were performed, spaced 

approximately 1 hour apart. Prior to each sound test, we first motivated the mouse by 

scattering pups and eliciting a retrieval response. Two pups were placed on the left and 

right sides of the nest depression at equivalent distances, and the mouse was monitored 

using video tracking software (TopScan by Cleversys, Reston, VA). If during this test, a 

female mouse did not retrieve within 10 minutes, we did not continue with the sound 

preference test. For mice that did retrieve, we allowed them to explore the W-maze 

post-retrieval. We closed the servo-controlled doors following their return to the nest. 

Once the doors closed, two pups were removed from the nest, and then the two-

alternative choice test began (for sound stimuli see Appendix B). The doors opened after 

approximately 30 seconds of sound playback to allow the mouse time to perceive each 

sound. Once the mouse made a decision and moved 18 cm from the center of the maze 
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towards one speaker, both speakers were switched off (dotted line, Figure 3.3). In total, 

we collected data for at most six pup retrieval and sound preference tests for each 

animal.   

 

 

Figure 3.3: Visual tracking of the animal in the behavioral setup. The figure shows a top down schematic 
of the behavioral setup. The gray boxes in the upper left and right are the speakers playing back either 
tones or pup vocalizations. The gray line shows the animal’s travel in the nest area prior to making a 
decision to go towards the left side first (red trace). After moving left first, the animal proceeds to go to 
the right side (black trace). Each dot in the trace represents 0.33 seconds of time, and the entire trace 
represents the first 150 seconds of an experiment. Dotted vertical lines in the maze show the point at 
which left and right sides are defined.  

 

 

 Visual tracking the animal’s center of mass during the behavioral tests provided 

quantitative information about the animal’s behavior. During each two-alternative 

choice test, the animal’s first decision to move towards one speaker or the other was 

scored. Once the servo-controlled doors opened, the animal had to cross a line 18 cm 

away from the center of the maze to count as a decision. Figure 3.3 illustrates this event 

by the points where the gray trace changes to the colored trace.  
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 During each experiment, Cleversys would output in real time the location of the 

animal. We used this to quantify the amount of time the animal spent in each arm, and 

the time spent exploring the maze before returning to the nest. In this setup, the nest 

area was considered the square in the middle. A measure of behavior that we computed 

was the time spent exploring the maze. This consisted of the time between when an 

animal left the nest following a test until their first return back to the nest. For example, 

following the retrieval of all four pups, if the animal did not leave the nest to explore the 

maze then the exploration time was 0ms. However, if the animal left the nest following 

retrieval to explore the maze and returned 1 minute later, then the exploration time 

was 60ms. This exploration time was computed for animals searching the maze post-

retrieval of all pups, and during the pup call test. We also quantified pup retrieval times 

for each test (up to 6 total pup retrievals per animal). This was computed by marking the 

time at which all pups were scattered, and noting when the animal retrieved all pups 

back to the nest area.  

Estrus cycle was monitored to investigate its potential effect on behavioral 

performance. To compute whether the two-alternative choice task was dependent on 

the estrus state, the proportion of responses to the pup call speaker was measured on 

each day and labeled as either proestrus, metestrus, estrus, or diestrus (see Figure 3.1). 

For example, if an animal in metestrus went towards the pup call speaker twice out of 

two experiments, the proportion would be 1. Alternatively, if the animal went to the 

tone speaker twice out of two experiments, the proportion would be 0. This allowed us 

to create a distribution of proportions for the different estrus states (diestrus, estrus, 
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metestrus, proestrus) to analyze the effects of the reproductive cycle on behavioral 

performance.  

 

3.2.4: LFP and SU classification and analysis 

Pup call and tone responsive SU PSTH’s were classified using methods previously 

described (Galindo-Leon et al., 2009). Briefly, SU response duration was determined by 

finding the half-min of the smoothed spike rate (convolution of individual spikes with a 

Gaussian smoothing function, 5 ms standard deviation), and determining the time over 

which the smoothed spike rate stayed below the half-min value. To determine if there 

were differences between animal groups in the pooled spike rate for call-inhibited SUs, 

each smoothed, time-dependent spike rate function was normalized by the average 

spontaneous rate during the blank trial and then pooled over SUs. The strength of SU 

inhibition was quantified by integrating the actual spike count over a period from 5 to 

65 ms (accounting for the longest duration pup call plus an initial neural delay and any 

offset responses) and dividing by the spontaneous rate.  

Using each SUs call-inhibited strength and duration of responses, we created a 

contour plot of bootstrapped means. For each animal group, we sampled from the SU 

data set with replacement, and then used this to get a mean of the strength and 

duration of the samples. We performed this operation 10,000 times and then used the 

mean values to create a 2D histogram. The bin widths of the 2D histogram were 

computed in a way so that each bin would on average cover approximately 5% of the 
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data. We then performed a 2D smoothing procedure that is shown below in equation 

3.1. In this case, N is the resultant smoothed matrix, and V is the original input matrix.   
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To compute the spontaneous rate for both calls and tones for responsive and non-

responsive SUs, we took the spiking activity in the 200 ms prior to stimulus onset for all 

trials (900 trials of pup calls, 600 trials for tones).  

To correct for LFP phase delays introduced by data acquisition filters, and action 

potential contamination, techniques were used similar to those introduced previously 

(Galindo-Leon et al., 2009; Galindo-Leon and Liu, 2010). The LFP tuning curves were 

computed based on its response to the tone frequencies (6.5 to 95 kHz) at 60 dBSPL. 

First, the nth mean LFP response was computed by averaging all the trials from the n-

1:n+1 frequencies (Fig. 3.6B). Then, the value of the largest deflection of the mean LFP 

between stimulus onset to onset+70ms was taken. The LFP tuning curve was then 

defined as this deflection magnitude as a function of stimulus frequency (Fig. 3.6D). The 

LFP BF was defined as the frequency with the largest negative deflection. In addition, 

the LFP tuning curve was used to create a frequency color map (Fig. 3.7A) to 

approximate anatomical regions such as UF, AAF, A1, A2, and DP. These regions were 

defined based on three factors: the recording site’s LFP BF, the bandwidth of the tuning 

curve, and its frequency relative to the surrounding recording sites. Each auditory field 
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was defined based on the characteristics of each region previously found in Stiebler et 

al. (1997). A UF recording hole generally had an LFP BF greater than ~45 kHz and a more 

localized excitatory response to the ultrasonic frequencies. AAF was typically defined as 

the holes ventral to UF holes, and showed LFP BFs below ~45 kHz with excitatory 

responses across a broad frequency range. The approximation of UF and AAF helped to 

define A1, which was caudal relative to AAF and following the tonotopic reversal. 

Finally, recording sites that were located in the middle of the rostral to caudal tonotopic 

reversal were labeled as joint A1 and AAF. Any recording holes that demonstrated no 

reliable LFP responses to the frequency tones but showed auditory responsiveness to 

pup calls were labeled as DP if caudal to A1, and A2 if ventral to A1 and AAF holes.  

 

3.3: Results 

3.3.1: Long-term inhibitory plasticity is not a result of pup experience 

alone 

To investigate whether an animal’s intrinsic state influences cortical inhibitory 

plasticity, we recorded SUs from core AC (Kaas and Hackett, 2000) of 14 cocarers to 

compare to 13 mothers and 14 naïve virgins. In our experiments, naïve virgins were 

female mice that had no breeding experience or contact with pups during adulthood. In 

contrast, cocarers were virgin mice that had the same amount of exposure to pups as a 

mother, by being co-housed with a mother while caring for its pups. In this chapter, 

both mothers and cocarers were mice that had 21 days of pup experience (from 
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parturition to weaning), but cocarers differed from mothers because they did not 

undergo the physiological changes due to pregnancy, parturition and lactation. Over all 

the electrophysiology experiments, we recorded a total of 323 core SUs between 300-

700um depth. Considering all units, we found no significant differences in the 

spontaneous activity across animal groups (Fig. 3.4A and B). 

 

 

Figure 3.4: Animal groups show no differences in spontaneous rates of firing for all recorded SUs. (A) 
Shows the proportion of spontaneous rates among all SUs that were recorded from mothers (black, N = 
109), virgins (gray, N = 100), and cocarers (blue, N = 98). (B) Animal groups show no differences in their 
spontaneous rates (ANOVA, F(2,304) = 2.4, p > 0.05). Note: Data was square-root transformed prior to 
performing the ANOVA test (see Appendix C).  

 

 

Consistent with our previous study Galindo-Leon et al., 2009), we found no 

significant differences in the proportion of call-inhibited SUs across recordings: 36/114 

(32%) SUs in mothers, 22/100 (22%) in cocarers, and 27/108 (25%) in virgins (Pearson χ2 

(2, N=322) = 2.7, p > 0.05). Moreover, when we pooled the call-inhibited SU responses 

to the 18 different pup ultrasounds, we found that the PSTH strength and duration were 

similar between cocarers and virgins (Fig. 3.5A). In contrast, mothers had significantly 

greater duration and strength of inhibition when compared to virgins (Fig. 3.5B and  
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Figure 3.5: Comparing SU call-evoked inhibition in core areas UF, A1, and AAF. (A) Mothers (black) show a 
stronger call-evoked inhibition when compared to virgins (gray) and cocarers (blue) in their population-
averaged spike rate normalized by the spontaneous rate. (B) Mothers show a significantly lower 
normalized rate derived by integrating the spike count over the stimulus period and dividing by the 
spontaneous rate (Kruskal-Wallis, χ

2 
(2,82) = 13.0, p < 0.01, Fisher’s LSD post hoc: M-V, p<0.05; M-C, 

p<0.05; C-V, n.s.). (C) Mothers show significantly longer durations of inhibition compared to virgins, but 
cocarers were not different from mothers or virgins (Kruskal-Wallis, χ

2 
(2,82) = 11.6, p < 0.01, Fisher’s LSD 

post hoc: M-V, p<0.05; M-C, n.s.; C-V, n.s.). The number of SUs used in each figure is the following: 
Nmothers=37, Nvirgins=23, Ncocarers=27 

 

 

C). Interestingly, although SUs from mothers were more deeply inhibited compared to 

cocarers, they were not significantly different in their durations. Hence, these results 

demonstrate that although the overall call-inhibited SU responses of cocarers were 

more similar to virgins, they were not entirely like one group or the other. Therefore, 



 72 

pup experience alone cannot account for all of the differences in call-evoked inhibition 

between mothers and virgins.  

 

3.3.2: Inhibitory plasticity dominated by sites in A1 and AAF 

Given that the pup vocalizations are in the ultrasonic frequency range (60-80 

kHz), we wondered whether the inhibitory plasticity occurred uniformly in all core 

auditory cortical areas. In the mouse auditory cortex, Stiebler et al. (1997) 

demonstrated that multi-units in UF generally respond to frequencies above 45 kHz, 

whereas those in A1 and AAF have lower BFs and opposing caudal to rostral frequency 

gradients. Our recordings in the awake mouse consisted of mainly SUs (for neural coding 

studies) and their co-recorded LFPs. Since tonotopy in the auditory cortex is mainly 

visible at a coarse population and much more variable at the SU level (Bandyopadhyay 

et al., 2010), we assumed the LFP would be a better guide for visualizing the BF map. We 

evaluated this assumption by comparing the BFs and tuning curves for pairs of SUs and 

their co-localized LFPs recorded along the same cortical column at different depths 

(between 300-700 um) in the same electrode penetration.  

In total, we found 37 such pairs of recordings, and their average depth difference 

was 121.1 um with a standard deviation of 94.2 um. For each SU, we first defined the 

interval to count spikes to create a tuning curve (see 2.2.1). The BF was then determined 

by the frequency that evoked the greatest number of spikes during this period (Fig. 3.6A 

and C). For each co-recorded LFP, a tuning curve was created by taking the value of the 

greatest negative deflection that occurred during the sound stimulus (0-70ms, black  
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Figure 3.6: SU frequency response within each recording location is more variable compared to the co-
recorded LFP. Red color represents the recorded SUs, and the green color represents the co-recorded 
LFPs. (A) Example SUs from one recording location. SU1694 was recorded at a depth of 483 um, and 
SU1695 was recorded at a depth of 584 um. The black bar at the top shows the start and duration of the 
tone stimulus, and the vertical brown bars represent the period in which spikes are counted to produce 
the SU tuning curve. (B) Figure shows the co-recorded LFPs (green) for SU1694 (LFP2021) and SU1695 
(LFP2023). Each trace shows the average LFP response at that frequency with 0 ms being the onset of the 
stimulus. (C) Based on the window of spiking activity in the panels of A, tuning curves are generated for 
both SUs with the black line representing SU1694 and the gray line representing SU1695. The tuning 
curves are then normalized so that the area under the curves sum to one. (D) The corresponding LFP 
tuning curves, where the black line represents LFP2021 and the gray line represents LFP2023. The tuning 
curves are also normalized so that the area under the curves sum to one. (E) The BF difference in octaves 
log2(BF1/BF2), is computed between each pair of recordings. Co-recorded LFPs show significantly lower BF 
differences compared to SUs (Wilcoxon Sign Rank, z=3.1, NSU= NLFP =37, p < 0.01). (F) For each pair of 
recordings, a tuning curve correlation coefficient (CC) is computed. Examples of these values are in C and 
D, where the SUs have a CC of -0.49, and the LFPs have a CC of 0.82. The LFPs show a much higher tuning 
curve correlation compared to the two recorded SUs (Tuning Curve Correlation: Wilcoxon Sign Rank, 
z=5.1, NSU=37, NLFP=37, p < 0.001). NSU=37, NLFP=37. 
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bar at top of Fig. 3.6B) for each frequency. The LFP BF was then defined as the 

frequency that evoked the largest negative deflection (Fig. 3.6D). 

To compare the variability between SU and LFP BFs within each recording 

column, we measured the octave difference in BF between the two SUs or LFPs as 

log2(BF1/BF2), where BF1 (BF2) was the larger (smaller) of the two BFs. For example, two 

BFs that were identical would produce a difference of zero. We found that SUs were 

significantly more variable in their BF values within a column compared to LFPs (Fig. 

3.6E). To assess differences in the tuning curves themselves, we computed correlation 

coefficients between the 37 pairs of SU or LFP recordings, and compared these between 

SUs and LFPs. LFP tuning curves were significantly more similar across sites compared to 

SUs (Fig. 3.6F). Interestingly, the BF difference and tuning curve correlation measures 

for both SUs and LFPs were not correlated with the depth difference between 

recordings (corrcoef, Tuning Curve Correlation: ccSU = 0.07, ccLFP = -0.05; BF change: ccSU 

= -0.11, ccLFP = 0.07, all p>0.05). These results confirm that in the awake mouse, SU tone 

responses in a given auditory cortical column are more variable compared to their co-

recorded LFPs, and making the LFP more useful in identifying the likely cortical field (UF, 

AAF, A1, and AAF/A1) for recording sites in the awake animal.  

Using the LFP, we found a similar tonotopic progression to Stiebler et al. (1997). 

This occurred mainly in the second row of holes in our stereotaxically prepared 

recording grid, with the BF gradient reversal (see 1.1.2) occurring in the second or third 

column corresponding to 60% or 70% respectively of the distance between Bregma and 

Lambda (Fig. 3.7A). This row generally covered the rostral to caudal transition from AAF  
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Figure 3.7: (A, B) Each box represents a recording location in the mouse auditory cortex, and shows the 
left portion of figure A as a color plot, with negative LFP deflections as red and positive deflections as 
blue. The color limits are set to the maximum positive and negative deflections found in the entire map. 
The black line shows the LFP BF for that recording hole. The high frequency value in the upper left 
represents UF. Note the tonotopic reversal in the second row, which shows the rostral to caudal transition 
from AAF to A1. (C, D) Cumulative density functions show that the distributions of each SU recording site’s 
LFP BF is not different between mothers (black), cocarers (blue), or virgins (gray) in regions defined as A1 
and AAF or UF (UF: Kruskal-Wallis, χ

2 
(2,26) = 1.3, p > 0.05; A1 and AAF: ANOVA, F

 
(2,53) = 1.1, p > 0.05). 

For A1 and AAF: Nmothers = 21, Ncocarers = 17, Nvirgins = 18, for UF: Nmothers = 15, Ncocarers = 10, Nvirgins = 4. 

 

 

to A1. Due to the similarities between AAF and A1 in their tone responses, and our 

lower density recording grid (~400 um), we were not able to identify the exact end of 

AAF and start of A1. Thus, these areas were labeled as AAF/A1. In the top row, we found  

that the more caudal holes were typically associated with either A1 or AAF/A1 

depending on the broadness of its frequency response and LFP BF, whereas the more 

rostral 2 holes usually contained sites with high frequency BF’s above 45 kHz, 

corresponding to UF. Occasionally, a more caudally located hole in rows one and two 
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would show a break from the tonotopic gradient with a much higher frequency BF, 

and/or a much weaker relative LFP response, suggestive of the DP field.  Thus, we were 

able  to use the LFP response to tone frequencies as a way to determine whether 

recorded SUs came from more primary core areas (A1, AAF, UF) or more secondary non-

core areas (A2, DP). Those SUs that were defined as being in non-core areas were 

subsequently excluded from all the data analysis. To analyze the responses in the core 

areas, we defined the areas with BFs lateral to the pup call range as A1 and AAF, which 

consisted of any recordings from AAF, A1, or AAF/A1; and we defined contiguous more 

rostral-dorsal areas with BFs in the pup call range as UF. It should be noted that during 

the designation of auditory fields for each animal, we had no prior knowledge of the 

locations of recorded SUs.  

Over UF, A1 and AAF, we found no differences in each animal group’s 

distribution of LFP BFs in either auditory field for all SUs (UF: Kruskal-Wallis, χ2 (2,91) = 

2.6, p > 0.05; A1 and AAF: Kruskal-Wallis, χ2 (2,197) = 2.2, p > 0.05) or call-inhibited SUs 

only (Fig. 3.7C and 3.7D). In addition, we found no changes in the LFP tuning curves 

between the animal groups for UF or A1 and AAF (data not shown). For all groups the 

mean and standard deviation of call-inhibited UF LFP frequencies was 52.2 ± 6.1 kHz, 

and for LFP frequencies in A1 and AAF it was 29.3 ± 15.4 kHz. Looking at all recorded 

SUs, the LFP BF mean and standard deviation in UF was 52.5 ± 9.7 kHz, and for A1 and 

AAF  26.2 ± 16.5 kHz. To compare our LFP BF results to the multi-units CF results found 

previously, we looked at the proportion sites tuned greater or less than 50 kHz. In the 

UF region, we found 69% of sites with LFP BFs greater than 50 kHz, whereas Stiebler 
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found 76% of recording sites above 50 kHz. In the A1 and AAF regions, we found 91% of 

sites with LFP BFs less than 50 kHz, whereas Stiebler found 100% of their recording sites 

below 50 kHz. Hence, our data shows similarities to those found previously, where the 

differences could result from the state of the animal during experiments (awake versus 

anesthetized), animal model (CBA/CaJ versus NMRI), and recording technique (MU 

versus LFP).   

Using the above auditory field segregation, we compared the call-inhibited SU 

responses in mothers, cocarers, and virgins separately for UF and for A1 and AAF 

together. In contrast to UF, A1 and AAF were included together because these regions 

had similar LFP BF ranges, and consisted of BFs more lateral to the pup call frequency 

range. In UF, we found no differences between mothers, cocarers, and virgins (Duration: 

Kruskal-Wallis, χ2 (2,26) = 3.9, p > 0.05; Strength: ANOVA, F(2,26) = 1.6, p > 0.05). 

However, the call-inhibited differences we found previously in figure 3.5 were 

consistent with those SUs located in A1 and AAF. Again, the mothers had significantly 

stronger (Fig. 3.8B) and longer duration (Fig. 3.8C) of call-evoked inhibition compared to 

virgins, whereas cocarers did not. These results demonstrated that there was a greater 

plasticity in the call-inhibited SU responses in A1 and AAF, auditory fields with BFs 

lateral to the pup call frequencies. This suggests that pup experience alone (cocarers) 

does not account for the differences between mothers and virgins, and that the 

maternal physiological state must play a role in the observed cortical inhibitory 

plasticity.  
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Figure 3.8: Greatest differences in call-evoked SU inhibition occurs in A1 and AAF. (A) Mothers (black) 
show a stronger call-evoked inhibition when compared to virgins (gray) and cocarers (blue) in their 
population-averaged spike rate in fields A1 and AAF. (B) Mothers show a significantly lower normalized 
rate (Kruskal-Wallis, χ

2 
(2,53) = 10.2, p < 0.01, Fisher’s LSD post hoc: M-V, p<0.05; M-C, p<0.05; C-V, n.s.). 

This rate is derived by integrating the spike count over the stimulus period and dividing by the 
spontaneous rate. (C) Mothers show significantly longer durations of inhibition compared to virgins, 
whereas cocarers are not different from mothers or virgins (Kruskal-Wallis, χ

2 
(2,53) = 8.1, p < 0.05, 

Fisher’s LSD post hoc: M-V, p<0.05; M-C, n.s.; C-V, n.s.). For A1 and AAF: Nmothers = 21, Ncocarers = 17, Nvirgins = 
18. 

 

 

3.3.3: Physiological state influences maintenance of cortical plasticity 

The similarity of cocarers to virgins was a surprise. This was because previous 

work showed that both a mother and a cocarer with at least 5 days of pup experience 

could behaviorally recognize pup vocalizations over a neutral sound (Ehret, 1989). 
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However, they also found that call recognition deteriorated in an ovariectomized 

cocarer one month after pup weaning, but not in the mother. Given this, we wondered 

whether the lack of difference between late cocarers and naïve virgins was because 

experience had no effect on cortical plasticity, or if changes might have occurred early 

during pup experience, but had since decayed. This therefore motivated new 

experiments on early cocarers during the initial stages of their experience with pups. 

Here, we will refer to cocarers recorded post-weaning as late cocarers, and those during 

pup experience as early cocarers.  

 For this study, early cocarers had pup experience prior to surgery through post-

parturition day 6, near the peak in pup vocal activity, before being isolated for surgery 

and recording. Recordings were taken from post-parturition days 9 through 11 (Fig. 

3.9A). In total, we collected data from six animals, isolating 45 SUs, 13/45 of which were 

call-inhibited (29%) in the core fields at depths between 300-700um, and 8/13 of which 

were designated as A1 and AAF sites. Because of the lower N size (N=8) in our early 

cocarer group, we employed a bootstrap method to estimate the population mean and 

confidence intervals for our two measures of call-evoked inhibition (strength or SNR, 

and duration). Briefly, we performed a bootstrap where we sampled each group’s SU 

data set with replacement, preserved the starting N size, and computed a mean 

duration and strength for this sampled data set. This was iterated 10,000 times, and we 

created a 2D contour of the 95% confidence interval around the bootstrap means for 

these measures. We found that for these two features, the confidence regions for the 

early cocarers and mothers lie on top of each other, whereas late cocarers are shifted 
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towards weaker SNRs (Fig. 3.9B). Interestingly, we also found a subset of call-inhibited 

SUs in the early cocarers with durations of inhibition much longer than the other animal 

groups, lasting well beyond the stimulus period (bottom right inset, Fig. 3.9B).  

 While these results clearly illustrate how early cocarers are more similar to 

mothers, for completeness we also quantified the measures of inhibition used in the 

previous figures in 3.9C, D, and E. We found that early cocarers were not significantly 

different from mothers, but significantly different from late cocarers in their call-

inhibited SU PSTH responses and strength of inhibition (Fig. 3.9C and D). While both 

mothers and early cocarers showed higher average durations of inhibition compared to 

late cocarers none of the animal groups were statistically different from one another 

(Fig. 3.9E). Hence, recent experience with pups can result in auditory cortical inhibitory 

plasticity, but the maternal physiological state during this experience must be important 

in maintaining this plasticity over longer periods. The fact that the strength of inhibition, 

but not the duration, between early and late cocarers are different suggests that pup 

experience and the maternal physiological state may affect specific features of 

inhibition to varying degrees. 

 

3.3.4: Physiological state selectively reduces spontaneous activity 

Although our recordings in mothers  are performed after the hormones related 

to pregnancy and parturition have returned to levels more similar to virgins, we 

wondered whether the changes caused by the maternal physiological state during pup 

experience could have also affected other spiking characteristics of auditory cortical  
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Figure 3.9: Early cocarers are more similar to mothers in their call-inhibited SU responses in fields A1 and 
AAF. (A) Time line shows the period where early cocarers (orange) are recorded versus the mothers 
(black) and late cocarers (blue). Early cocarers are recorded from post-parturition day 9 through 11 
whereas both mothers and late cocarers are recorded post-weaning. (B) Plots (see Methods) show 
contours for 25, 50, 75, and 95% of the bootstrapped means for duration and strength. Early cocarers, but 
not late cocarers, overlap with mothers in this SU strength/duration space. Insets show example PSTH 
responses to all 18 calls and dots show their measured duration and strength. (C) Both mothers and early 
cocarers show stronger averaged call-inhibited SU responses when compared to late cocarers. (D) 
Mothers and early cocarers show a significantly lower normalized rate when compared to late cocarers 
(Kruskal-Wallis, χ

2 
(2,45) = 10.3, p < 0.01, Fisher’s LSD post hoc: M-C, p<0.05; M-EC, n.s.; C-EC, p<0.05). (E) 

Although both mothers and early cocarers have mean durations higher than late cocarers, the groups are 
not different (Kruskal-Wallis, χ

2 
(2,45) = 2.6, p > 0.05). For A1 and AAF: Nmothers = 21, Ncocarers = 17, Nearly 

cocarers = 9. 
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neurons. A number of studies have demonstrated that reproductive hormones can 

affect the spontaneous activity in a number of different areas including the amygdala 

(Schiess et al., 1988) cerebellum (Smith et al., 1988), and barrel cortex (Kis et al., 2001). 

Based on this, we measured the spontaneous firing rates (see Methods 3.2.4) in our 

data for neurons that were call-responsive, and those that were not. Interestingly, we 

found that there was a significant interaction between the animal group and call-

responsiveness F(3,344) = 4.7, p<0.01, and an overall main effect of responsiveness 

F(1,344) = 35.7, p<0.001 (Fig. 3.10A). The main effect of responsiveness indicated that 

considering all animals together, a SU was more likely to respond to vocalizations if its 

spontaneous firing rate was higher. However, the significant interaction tells us that this 

effect of responsiveness was not consistent across all animal groups. For call-responsive 

neurons in mothers, there was a significantly lower spontaneous firing rate compared to 

virgins, late cocarers, and early cocarers, while the latter three animal groups were not 

different from each other (Fig. 3.10C, left bars). In contrast, spontaneous rates for non 

call-responsive SUs were not significantly different across groups (Fig. 3.10C, right bars).  

To test whether these changes were specific to call-responsive SUs, we used the 

same set of SUs to identify neurons that were responsive or non-responsive to pure 

tones from an equivalent octave range of frequencies as our pup calls, namely 20-28 

kHz. Specifically the five tones presented in this range were 20.6, 22.2, 23.9, 25.7, 27.6 

kHz. Figures 3.10B and D show that while we still found a significant main effect of 

responsiveness, F(1,323) = 49.2, p<0.001, there was now no significant interaction 

between group and tone-responsiveness, F(3,323) = 0.3, p>0.05. Importantly, unlike 
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calls, the effect of tone-responsiveness in mothers was similar to the other animal 

groups (Fig. 3.10D). Taken together, this data suggests that the maternal physiological 

state plays a role in selectively suppressing the spontaneous firing rates of neurons that 

are call-responsive, possibly as a way to facilitate the maintenance of the long-term 

cortical inhibitory plasticity in mothers.   

 

 

Figure 3.10: Mothers (black) differ from all other animal groups in its intrinsic firing rates for neurons that 
are call-responsive, but not for tone-responsive SUs. (A, C) For virgins (gray), late cocarers (blue), and 
early cocarers (orange), a neuron that is call responsive generally has a higher intrinsic firing rate. 
However, for mothers, the call-responsive SUs have a significantly lower firing rate compared to the other 
3 groups. For call-non-responsive SUs, there were no differences in the intrinsic firing rate. For call-
responsive: Nmothers = 72, Nvirgins = 59, Ncocarers = 68, Nearly cocarers = 30 (Fisher’s LSD post hoc: M-V/M-C/M-EC, 
p<0.05; V-C/V-EC/C-EC,  n.s.).  For call non-responsive: Nmothers = 37, Nvirgins = 41, Ncocarers = 30, Nearly cocarers = 
15 (Fisher’s LSD post hoc: M-V/M-C/M-EC/V-C/V-EC/C-EC,  n.s.). (B,D) When comparing to tone-
responsiveness to 20-28kHz tones (4 tones total), all groups showed a higher intrinsic firing rate for those 
that are tone-responsive, compared to those that are tone non-responsive. We found no group 
differences in these two categories. Note: To perform statistical tests, we used a square root 
transformation of the data (see Appendix C for explanation). For tone-responsive: Nmothers = 69, Nvirgins = 
77, Ncocarers = 67, Nearly cocarers = 27. For tone non-responsive: Nmothers = 29, Nvirgins = 19, Ncocarers = 27, Nearly 

cocarers = 16.  
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3.3.5: Physiological state influences long-term salience of pup calls 

The call-inhibited SU data suggests that both mothers and cocarers undergo 

significant auditory cortical changes that correlate with prior experience with pups. In 

addition, the data demonstrates that the physiological changes that a mother 

experiences from pregnancy and parturition may play a role in retaining this inhibitory 

plasticity. Thus, we were motivated to test whether these differences between mothers 

and cocarers correlate with call recognition behavior.  

To test the call-evoked behavioral response in mothers, late cocarers, and early 

cocarers, we implemented a two-alternative pup call detection task (see Methods, 

3.2.3) designed to provide more automation compared to the classic paradigm used by 

Ehret (Ehret et al., 1987; Ehret, 1989). Briefly, animals were first habituated to the 

testing apparatus for approximately one hour prior to each experiment and then we 

performed a pup retrieval test. This consisted of scattering pups symmetrically 

throughout the maze so as not to introduce a left right bias. Following retrieval of all 

pups back to the nest, we allowed the animal to explore the maze until she returned to 

the nest for at least thirty seconds. At this point, we remotely activated the servo-

controlled doors to keep the animal in the nest area and then began the two-alternative 

choice test. Once the test started we kept the animal in the nest for thirty seconds while 

we played back bouts of pup calls from a speaker positioned on one side of the maze, 

which alternated with a speaker placed on the opposite side playing back tones 

centered around 20 kHz. We did this to ensure that the animals were likely to listen to 

the sounds before making a choice. After thirty seconds, we remotely sent a signal to 
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open the servo-controlled doors allowing the animal to exit the nest and then scored 

whether it moved towards the pup call or tone speaker. In total, we recorded 75 

experiments from 13 mothers, 74 experiments from 13 late cocarers, and 48 

experiments from 8 early cocarers. 

 

 

Figure 3.11: The proportion of responses towards the pup call speaker per animal in mothers (black), early 
cocarers (orange), and late cocarers (blue). Figure shows the mean and standard error for each animal 
group. Animal groups show no differences in their proportion of approaches (Kruskal-Wallis, χ

2 
(2,31) = 

3.8, p > 0.05). Notice though that both mothers and early cocarers show a higher proportion of call 
approaches compared to the late cocarers.  

 

 

We first evaluated the total proportion of approaches towards the pup call 

speaker in each animal group. Although we found no statistically significant differences 

between the animal groups, our data showed that both mothers and early cocarers 

approached the pup call speaker a greater number of times compared to late cocarers 

(Fig. 3.11). In addition, 7/13 (54%) mothers and 5/8 (63%) early cocarers performed the 

call recognition task above the 0.5 chance level, while only 2/13 (15%) late cocarers 

performed greater than chance. From this, it is clear that mothers and early cocarers 
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may be more responsive to the pup calls compared to late cocarers. In support of this, 

we found that late cocarers had approximately twice the number of experiments where 

they made no response to the sound playback. This consisted of 5 experiments in 

mothers (6.7%), 11 experiments in late cocarers (14.9%), and 4 experiments in early 

cocarers (8.3%). 

How then does this relate to the call recognition studies by Ehret? Comparing 

our analysis above to that of Ehret, we found distinct differences in their method of 

quantifying pup call approaches. Importantly, they included only those trials where an 

animal approached a speaker, and compared the total number of approaches towards 

the pup call or tone playback speaker across all animals studied (Ehret, 1982). Using 

Ehret’s method of quantifying pup call approaches, we first removed the experiments 

where the animal made no decision. We then evaluated the total number of times the 

animals within each group approached the pup call speaker compared to the tone 

speaker. We found that both mothers and early cocarers approached the pup call 

speaker a significantly greater number of times when compared to chance. In contrast, 

the late cocarers showed no differences from chance level performance (Fig. 3.12). 

These results would suggest that the differences in SU inhibitory plasticity found earlier 

between mothers, early cocarers, and late cocarers may be correlated with the animal 

group’s pup call detection and approach behavior. Interestingly, although our mother 

and early cocarer results match those found by previous studies (Ehret et al., 1987; 

Ehret, 1989), our late cocarer results differ. Ehret previously demonstrated in a number 

of tests that mothers, early cocarers, and late cocarers approached a speaker playing 
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back 50 kHz tone bursts over a speaker playing back 20 kHz tones significantly greater 

than chance. This difference in the performance of late cocarers could be attributed to 

the use of different mouse strains (inbred CBA/CaJ versus outbred NMRI), testing 

methods (W-maze with servo controlled doors versus straight platform), sound playback 

type (synthesized pup vocalizations versus 50 kHz tone bursts), and habituation time or 

tests per day (1 hour habituation and 2 tests per day versus 6 hours habituation and 6 

tests per day). Regardless of these differences in testing procedures, it is important to 

note that Ehret also demonstrated that cocarers tested one month after pup weaning 

no longer significantly responded to the speaker playing back ultrasounds, whereas 

mothers did. Hence, consistent with our results, there is still a difference in NMRI mice 

in the maintenance of pup call salience between mothers and cocarers.  

 

 

Figure 3.12: The number of approaches towards the pup call versus tone speaker in mothers (black), early 
cocarers (orange), and late cocarers (blue). Mothers approach the pup call speaker significantly more than 
the tone speaker (43 call: 27 tone, 61.4% call side, Binomial Test z=1.9, p<0.05, 1-tailed). Cocarers do not 
show a preferential approach response to either side (33 call: 30 tone, 52.3% call side, Binomial Test, 
z=0.4, p>0.05, 1-tailed). Early cocarers show preference for the pup call speaker (28 call: 16 tone, 63.4% 
call side, Binomial Test, z=1.8, p<0.05, 1-tailed). The black line represents chance level performance.  
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While Ehret’s studies looked mostly at the proportion of approaches towards 

ultrasounds, we wondered whether the animal groups differed in other measures of 

behavior, such as exploration times or pup call retrieval. To quantify whether the sound 

playback influenced an animal’s exploration we measured the amount of time each 

animal spent searching the W-maze immediately following retrieval of pups back to the 

nest (3.13A, post-retrieval) and the two-alternative choice sound test (Fig. 3.13A, post-

call test). In figure 3.13A, the y-axis represents the amount of time spent searching 

between when the animal first leaves the nest (following retrieval or call playback test) 

to its first return back to the nest area. We compared these two exploration times using 

a mixed between-within subjects repeated measures ANOVA and found a significant 

interaction between the animal group and test (ANOVA, F(2, 165) = 5.3, p<0.01). Given 

this significant interaction, we proceeded to do a multivariate ANOVA on the 

exploration times and found no significant differences in the post-retrieval times, but 

differences between mothers, early cocarers, and late cocarers in their post-call test 

exploration times (Fig. 3.13A). In addition, figure 3.13B shows the difference in 

exploration times within each experiment, and again demonstrates that both early 

cocarers and mothers spend a significantly longer time searching following the call 

playback test. These results suggest that mothers and early cocarers, but not late 

cocarers, have a greater motivation to search for pups. However, is this greater 

motivation simply due to each animal’s intrinsic level of motivation to retrieve pups? 

We addressed this question by quantifying the average amount of time the animal took 

to retrieve each pup back to the nest. Overall, we found no differences in the pup 
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retrieval times (Kruskal-Wallis, χ2 (2,187) = 2.0, p > 0.05, Fig. 3.14B). This further 

supports the idea that the cortical inhibitory plasticity in mothers and early cocarers 

may be correlated with the behavioral relevance of pup vocalizations and that 

reproductive experience influences the long-term saliency of these sounds. 

 

 

Figure 3.13: During the call test, mothers (black) and early cocarers (orange) show greater exploration 
times during their first search of the maze compared to late cocarers (blue). (A) The figure demonstrates 
the amount of time the animal explores the maze prior to their first return to the nest in the W-maze. 
Following the retrieval of pups back to the nest, the three groups show no differences in the amount of 
time exploring the maze. However, during the call playback test, both mothers and early cocarers explore 
the maze for a longer period of time when compared to late cocarers (Post-retrieval test: ANOVA, F(2, 
165) = 0.08, p>0.05; Post call-test: ANOVA, F(2, 165) = 8.4, p<0.001; M-C:p<0.05, EC-C:p<0.05, EC-M: n.s.). 
(B) Bars demonstrate the within subjects difference in post-call test exploration time versus post-retrieval 
exploration time. A mean of zero indicates that the animal spends an equivalent amount of time exploring 
the maze following both tests, and a positive mean indicates that the animal spends more time exploring 
the maze following the call-test compared to the retrieval test. Both mothers and early cocarers explore 
for a greater amount of time following the call test compared to late cocarers (ANOVA, F(2, 165) = 4.5 
p<0.05; M-C: p<0.05, EC-C:p<0.05, M-EC: n.s.). 

 

 

Although we found clear differences in mothers and early cocarers’ proportion 

of approaches and exploration times, there is the possibility that alternate intrinsic 

factors may play a role in driving these changes. This includes the estrus cycle of the 

animal, habituation to the apparatus, the animal’s threshold of hearing, and their 
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motivation to perform pup retrieval. In mice, the estrus state has been shown to affect 

an animal’s perception of acoustic meaning (Ehret and Schmid, 2009), and can even 

alter the brainstem auditory neural responses in humans (Elkind-Hirsch et al., 1992). 

Therefore, to study whether the estrus state of the animal influenced its behavioral 

performance, we recorded the estrus cycle in a subset of animals (10 mothers, 8 early 

cocarers, 10 late cocarers). If the cycle state could not be defined as one of the four 

stages (see Methods, Fig. 3.1), data for that day was not included in this analysis. In our 

results, we found no consistent estrus dependent effects on both the two-alternative 

choice task (Table 3.1) and no influence on the animal’s exploration time. Specifically, 

there were no interaction effects between the estrus state and the exploration times 

(F(3,126)=.109, p>0.05), or between the animal group and exploration times 

(F(6,126)=.361, p>0.05). Although our measures of behavior showed no dependent 

effects, it is possible that the estrus state influenced behavior in a more specific way. 

Nonetheless, we can conclude that for the differences found previously, the estrus state 

did not play a role in these behavioral measures.  

In our experimental design, the mouse remains in the nest area for thirty 

seconds while two speakers are playing back both ultrasounds and tones centered 

around 20 kHz. Given that the speakers were placed equidistant from the nest, it is 

possible then that an animal’s threshold of hearing ultrasounds versus 20kHz could 

affect both the proportion of approaches and exploration times. To test this hypothesis, 

we recorded the ABR thresholds to both 64kHz and 20kHz in every animal (see Methods 

3.2.1). Overall, we found no interaction effect between group and the ABR response 
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thresholds using a repeated measures ANOVA (ANOVA, F(2,31) = 0.82, p>0.05, Fig. 

3.14A). These results further support those found previously in our lab (Miranda et al., 

in review) that the ABR thresholds to a series of tones (8, 16, 32, 64, and 80 kHz) were 

not different between mothers, cocarers, and virgins. Here we showed that early 

cocarers also did not differ in their response thresholds. In addition, we found no 

correlation between the behavioral performance or the exploration times and the 

threshold response to 20 or 64 kHz (data not shown). In conclusion, we demonstrate 

here that pup experience alone can result in the acquisition of the behavioral relevance 

of pup calls. However, the distinct physiological changes that occur associated with 

pregnancy and parturition affect the long-term saliency of pup calls both cortically and 

behaviorally.  

 

Table 3.1: Table shows the proportion of approaches towards the pup call speakers dependent on the test 
days and the estrus cycle.   
 

 

Mother Early Cocarer

Test Day 1 15/26 (58%)

Test Day 2 14/24 (58%)

Test Day 3 14/20 (70%)

Proestrus

Estrus

Metestrus

Diestrus

Cocarer

10/22 (45%)

13/24 (54%)

10/17 (59%)

10/15 (67%)

8/15 (53%)

10/14 (71%)

8/10

7/10

7/13

6/11

3/5

4/6

5/11

3/11

7/14

11/22 13/1711/14
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Figure 3.14: Figures demonstrate that there are no differences between the animal groups in their 
threshold of hearing 20 and 64 kHz, and in their average pup retrieval times. Mothers are black, late 
cocarers are blue, and early cocarers are orange. (A) Animal groups show no significant differences in 
their ABR thresholds to 20 kHz or 64 kHz tones. These tones represent the approximate frequencies of the 
sounds played back during the experiment. (B) Testing the animal’s ability to retrieve pups displaced from 
the nest, groups show no significant differences in the pup retrieval times.  

 

 

3.4: Discussion 

Our results above have begun to dissociate the effects of experience and 

physiological state on inhibitory plasticity in the sensory cortex of awake (head-

restrained) mice. Similar to the work in chapter 2 comparing pup call-evoked cortical 

responses, we found that mothers showed significantly stronger and longer durations of 

SU call-evoked inhibition compared to virgins, primarily in “lateral band” auditory fields 

A1 and AAF. Mothers undergo distinct physiological changes during pup experience, and 

to understand how pup experience alone influences auditory plasticity, we recorded 

from cocarers. We found that cocarers were more similar to virgins in their average 

PSTH and strength of pup call-evoked inhibition, but were not different from mothers or 

virgins in their duration of inhibition.  



 93 

Although cocarers showed auditory cortical responses more similar to virgins, 

previous behavioral studies demonstrated that cocarers early in their pup experience do 

show pup call recognition (Ehret et al., 1987). Those results combined with the fact that 

our neural recordings in cocarers and mothers occurred 12-23 days after pups stopped 

emitting ultrasounds (Noirot, 1972; Scattoni et al., 2009), led us to study cocarers at an 

earlier time point. By recording from early cocarers (6 days pup experience), we found 

that their average PSTH and strength of call-evoked inhibition were more similar to 

mothers, but not late cocarers. These results suggest that experience can produce 

plasticity in call-evoked cortical responses; however, the maternal physiological state 

likely helps maintain these changes for the long term.   

How might the cortex mediate the retention of these changes? Investigating 

further, we found suppression in the spontaneous activity of call-responsive neurons in 

mothers. We hypothesize that while the strength of call-evoked inhibition decays in the 

cocarer, maternal physiological state acts to maintain these changes in the mother by 

decreasing the spontaneous activity, specifically for those neurons that are pup call-

responsive. Indeed, studies have shown that increasing spontaneous activity can result 

in faster decay of plasticity in the amygdala (Li et al., 2009), and in retinotectal neurons 

after the induction of LTP/LTD (Zhou et al., 2003).  

While the call-inhibited SU data supports this hypothesis, the question remains 

whether these differences are correlated with each animal group’s behavioral 

recognition of pup calls. To address this, we used a two-alternative choice test and 

found that mothers and early cocarers, but not late cocarers, approached the pup call 
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speaker significantly more times than the tone speaker, and explored the maze for a 

significantly longer period of time. Therefore, we find that while very recent pup 

experience can result in cortical plasticity for pup calls, the maternal physiological state 

facilitates long-term maintenance of these changes. We further suggest that this 

maintenance could be mediated by selectively suppressing the spontaneous activity of 

call-responsive neurons, as observed in mothers to “protect” against plasticity decay. 

Finally, our data supports the idea that the observed lateral band inhibitory plasticity is 

a functionally relevant correlate of call recognition. Specifically, mothers and early 

cocarers, but not late cocarers showed preferred approach to pup calls, which maps 

onto the pattern of cortical inhibitory plasticity.  

 

3.4.1: Relation to prior studies 

Our previous study in chapter 2 demonstrated that mothers had stronger and 

longer call-evoked SU inhibition compared to virgins, and by analyzing the LFP, these 

differences were primarily attributed to auditory cortical regions tuned to frequencies 

lower than the ultrasonic pup calls. These findings led us to suggest that the changes in 

call-evoked inhibition enhance the contrast between the activity of ultrasonic and 

lateral frequency neural populations to improve the detection of pup calls. Our current 

study confirms this result using only SUs. Whereas the SU call-inhibited strength and 

duration were not significantly different in UF (auditory field with BFs closer to the pup 

call range), mothers showed greater call-evoked SU inhibition in A1 and AAF (auditory 

fields with BFs much lower than the pup ultrasounds).  
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In addition to the auditory cortical work, the effects of motherhood and pup 

experience have also been studied electrophysiologically in the somatosensory cortex. 

Mapping the somatosensory cortex (areas serving the ventrum skin) in the anesthetized 

rat, Rosselet et al. (2006) found plasticity in receptive field size and cortical map 

organization of the ventral abdomen in lactating and nursing mothers compared to 

virgins. In addition, Xerri et al. (1994) demonstrated that this plasticity was not derived 

solely from the physiological changes associated with pregnancy and parturition, but 

were due to the mother’s interaction with pups during the lactating period. Although 

the previous studies did not find long-term retention of cortical plasticity in mothers, 

our findings may not be directly comparable due to differences in the specific measures 

studied (excitation versus inhibition), sensory systems, species, or because our cortical 

recordings are taken from awake animals. In our model system, the effects of 

anesthesia itself have been demonstrated in the auditory cortex, as mothers differed 

from virgins in their excitatory response to pup calls in the anesthetized animal (Liu and 

Schreiner, 2007), and in their inhibitory responses in the awake preparation (Galindo-

Leon et al., 2009). Regardless, studies in both somatosensory and auditory cortices 

demonstrate that pup experience dynamically changes the mother’s sensory 

representations of pup stimuli.  

How might call-evoked SU inhibition be mediated in the auditory cortex? Given 

our use of high-impedance tungsten electrodes, which is thought to be more sensitive 

to recording pyramidal neurons (Towe and Harding, 1970; Gold et al., 2006), and the 

fact that they make up 70-80% of cortical neurons (DeFelipe and Farinas, 1992), our call-
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evoked inhibited SU data likely reflects the responses of these cells. One source of 

inhibition onto pyramidal cells comes from inhibitory interneurons (fast spiking cells) 

(Gonzalez-Burgos et al., 2005; Freund and Katona, 2007), and thus the prolonged and 

deepened inhibition in the mother and early cocarer could be a result of stronger feed-

forward inhibition from fast-spiking inhibitory interneurons. Under this assumption, our 

results agree with a recent study from Cohen et al. (2011), which found that in the 

anesthetized mother, auditory cortical fast spiking neurons respond more robustly to 

pup calls.  

Aside from the natural communication context, other recent studies have also 

demonstrated plasticity in stimulus-evoked suppression as a consequence of 

instrumental conditioning. Two studies in particular, were performed in the awake 

auditory cortex of ferrets, which were trained on either a negative reinforcement task 

(Atiani et al., 2009), or both positive and negative reinforcement tasks (David et al., 

2012). In Atiani et al. (2009), ferrets were conditioned to stop licking a waterspout upon 

detection of a target tone within a background noise to avoid a shock. Interestingly, if 

the target tone was at a frequency away from the BF of a recorded neuron, then that 

neuron’s activity was generally suppressed. To some degree, their suppression results 

parallel our data, since SUs tuned to frequencies away from the “target” pup call range, 

in our case A1 and AAF, showed greater call-evoked inhibition. In addition, David et al. 

(2012) recently demonstrated in the same animal model (ferrets), that changing the 

reinforcement task (positive versus negative) directly altered the neural response at the 

target tone (enhanced inhibition versus excitation). It is clear then that the auditory 
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cortex can undergo stimulus-evoked plasticity in SU inhibition, but that the way in which 

this occurs can depend specifically on how an animal learns a sound’s behavioral 

relevance.  

 

3.4.2: Role of maternal physiological state in plasticity maintenance 

There is now evidence that plasticity can differ in the adult auditory cortex 

dependent on the sound experience, but the question remains as to how the 

physiological state affects this process. In the rodent model of motherhood, pup 

experience alone can induce maternal behavior. However, the physiological changes 

that occur during pregnancy and parturition facilitate its onset and maintenance (Moltz 

et al., 1970; Numan et al., 1977; Bridges, 1984; Orpen and Fleming, 1987; Fleming and 

Sarker, 1990; Scanlan et al., 2006; Stolzenberg et al., 2007; Stolzenberg and Rissman, 

2011). Indeed, pup experience and maternal hormones have been shown to play critical 

roles in the behavioral recognition of pup ultrasounds (Ehret, 1982; Ehret et al., 1987; 

Ehret, 1989; Koch and Ehret, 1989). In fact, a study by Ehret and Koch (1989) 

demonstrated in a two-alternative sound preference test that both mothers and 

ovariectomized cocarers, but not pup-naïve virgins, preferentially approached a speaker 

playing back ultrasounds. Interestingly, one month after weaning, this ultrasound 

preference was retained in mothers, but not in ovariectomized cocarers. Consistent with 

this, our study found that both call-evoked inhibitory plasticity and behavioral call 

recognition decayed in the cocarer. Incidentally though, the time period for recognition 

decay in Ehret’s work differed from both our cortical and behavioral findings. The fact 
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that they observed decay only after one month, and we observed it as early as 1-2 

weeks could be due to mouse strain differences (NMRI versus CBA/CaJ), since strains 

can differ in their maternal behavior (Priebe et al., 2005). Nevertheless, both results 

indicate that pup call recognition can be acquired through experience, but that the 

maternal physiological state during acquisition helps to retain the changes in the 

behavioral and cortical representation of pup ultrasounds. 

Certainly, maternal experience plays an important role in lifelong plasticity and 

can facilitate future rearing behavior (Bridges, 1975; Scanlan et al., 2006). Additionally, 

motherhood can improve memory task performance when compared to virgin females, 

even when tested long after maternal experience has ended (Kinsley et al., 1999; 

Gatewood et al., 2005; Love et al., 2005; Lemaire et al., 2006; Pawluski et al., 2006; 

Macbeth et al., 2008). Our current study further supports these ideas that motherhood 

imparts long lasting changes and extends this to the auditory cortex of awake mice. 

During pregnancy, parturition, and lactation, the mother undergoes fluctuations in 

hormones and neuromodulators such as estrogen, progesterone, prolactin, oxytocin, 

and dopamine, all of which may contribute to this plasticity (Miranda and Liu, 2009).  

The mesolimbic dopaminergic system and its interaction with maternal 

hormones may play an important role in our findings. Dopamine has been shown to be 

important for long-term maternal memory (Byrnes et al., 2002; Afonso et al., 2008; 

Parada et al., 2008; Afonso et al., 2009; Numan and Stolzenberg, 2009), and has direct 

effects on auditory cortical plasticity (Stark and Scheich, 1997; Bao et al., 2001; Kudoh 

and Shibuki, 2006; Schicknick et al., 2008; Hui et al., 2009). In fact, Schicknick et al. 
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(2012) recently demonstrated in the gerbil that auditory cortical dopamine activity after 

learning to discriminate sounds improved memory consolidation. These studies lead us 

to speculate that the dopaminergic system may be modulated by maternal hormones 

(estrogen, progesterone, prolactin) to help prime the neural circuits that receive pup 

stimuli and contribute to the retention of this auditory cortical plasticity. 

 

3.4.3: Decreased spontaneous activity involved in plasticity retention 

 A surprising finding from our work was the observation that spontaneous activity 

in call-responsive neurons was suppressed in mothers compared to the different virgin 

groups. The fact that this difference was not apparent for mothers’ tone-responsive 

neurons suggests that this suppression is selective for pup calls, and may be functionally 

important for call processing or memory in the mother. In line with our findings, there is 

evidence suggesting that a suppression of spontaneous rate could play a role in the 

retention of cortical plasticity. In studying synaptic plasticity in developing circuits, Zhou 

and colleagues demonstrated that spontaneous activity of tectal neurons rapidly 

reversed the long-term potentiated and depressed synaptic modifications of 

retinotectal neurons (Zhou et al., 2003). This attests to the detrimental effects of 

spontaneous firing for maintaining synaptic plasticity. Presumably, higher spontaneous 

rates would produce faster decays. This notion has been validated through modeling. 

First, Li and colleagues created a biophysical network simulation of the lateral amygdala 

to model conditioned fear memory (Li et al., 2009). They found that increased 

spontaneous firing resulted in a faster decay of plasticity and hypothesized that low 
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spontaneous firing, typically observed in the lateral amygdala, acts to preserve fear 

memory through decreased Hebbian weakening.  

Why does the decrease in spontaneous rate only affect a mother’s call-

responsive neurons? A recent study by Masquelier and colleagues provided evidence for 

this by modeling the response properties of a single neuron that underwent spike timing 

dependent plasticity (STDP). Using a simple leaky integrate-and-fire neuron and a 

population of stochastically and independently firing afferents, they found that the 

neuron converged to a state where a specific pattern of inputs was required for the 

post-synaptic neuron to fire. Importantly, the selectivity for a specific pattern of inputs 

left the neurons with very low spontaneous firing rates, whereas neurons with higher 

spontaneous rates were less selectively activated (Masquelier et al., 2008). Together 

these studies suggest that lowering a neuron’s spontaneous rate might be an effective 

mechanism to preserve synaptic plasticity for specific stimuli. To our knowledge, we are 

the first to demonstrate this experimentally through the result that suppressed 

spontaneous activity, specifically in call-responsive neurons in mothers, correlates with 

longer maintenance of lateral band inhibitory plasticity.  

 Finally, since dopamine facilitates the long-term consolidation of maternal 

memory and auditory learning, as discussed above, is there evidence that it alters neural 

spontaneous activity? Indeed, studies in the basolateral amygdala have demonstrated 

that dopamine can play a role in the increase and decrease of spontaneous activity 

(Rosenkranz and Grace, 1999, 2002). In addition, it was found that the application of 

dopamine suppressed the spontaneous firing rates of pyramidal tract neurons in the 
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rodent motor cortex (Awenowicz and Porter, 2002). Therefore, based on these studies 

and dopamine’s known roles in auditory cortical plasticity, we hypothesize that 

dopamine plays a role in suppressing spontaneous activity of call-responsive neurons in 

the mother; and this consequently helps to preserve the SU response to pup 

vocalizations. 

In conclusion, we have shown that very recent pup experience alone can result 

in auditory cortical inhibitory plasticity, though the maternal physiological state helps to 

maintain this plasticity. We found that these cortical changes correlate with differences 

in behavioral recognition of pup calls, and we hypothesize that the maintenance of this 

long-term plasticity is mediated by selectively suppressing the spontaneous firing of call-

responsive SUs. Our results from a natural behavioral context emphasize the need to 

understand how the intrinsic state of the animal can influence experience-dependent 

plasticity and the need to study this in the awake animal. Moreover, we speculate that 

these changes in cortical inhibition lead to behavioral improvements in pup call 

detection, and that the maternal state helps in the consolidation of cortical plasticity to 

provide more rapid induction of future maternal behavior.  
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CHAPTER 4 

DISTINCT SUBSETS OF CORTICAL NEURONS ENCODE THE 

ACOUSTIC FEATURES AND PERCEPTUAL RELEVANCE OF 

NATURAL SOUNDS 

Much of the work in this chapter was published in Journal of Neurophysiology: Lin, F.G., 

Liu, R.C. (2010) Subset of thin spike cortical neurons preserve the peripheral encoding of 

stimulus onsets. Journal of Neurophysiology 104 (6): 3588-3599. Portions of this chapter 

were not included in this manuscript and will be published elsewhere.  

Pup calls are an acoustically variable class of sounds and can differ in their 

frequency, duration, and amplitude envelope. In addition, for some animals, these 

vocalizations also carry behavioral significance. An important question in auditory 

neuroscience is how neurons in our cortex encode these features. Previously in chapter 

2, we demonstrated that call-evoked excitation was variable and showed onsets, 

offsets, and sustained responses to calls. This is not entirely surprising, as auditory 

cortical neurons are complex in their response properties and can be temporally precise 

and sluggish (Nelken, 2004), possibly as a way to represent the variety of acoustic 

features. In this chapter, we utilize this idea to segregate the diversity in our call-excited 

cortical responses. We use a modeling approach to explore how the neural 

representation of sound features is transformed from the periphery to the auditory 
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cortex. In theory, doing this identifies whether there are different populations of 

neurons: those that faithfully encode the acoustic features, and those that process more 

complex properties of the sound (e.g. salience, context)  

 

4.1: Introduction 

The neocortex is marked not only by a stereotypy in its microcircuitry (Kozloski et 

al., 2001; Silberberg et al., 2002), but also by a diversity in the cell types making up these 

circuits (DeFelipe and Farinas, 1992; DeFelipe, 1993; Kawaguchi and Kubota, 1997). It 

may not be too surprising then that a variety of spiking patterns, which may contain 

transient (Hromadka et al., 2008) and/or sustained (Wang et al., 2005) components, is 

often observed across a population of neurons in response to a single class of stimuli 

(Evans and Whitfield, 1964; Chechik et al., 2006; Bartho et al., 2009; Galindo-Leon et al., 

2009). In auditory cortex, such different responses presumably reflect diversity in how 

neurons are sensitive to acoustic features within sounds (Sadagopan and Wang, 2009; 

Atencio and Schreiner, 2010), and different complex nonlinearities (Ahrens et al., 2008; 

Atencio et al., 2008; Sadagopan and Wang, 2009) probably underlie how these neurons 

encode subtle variations in stimuli (Bar-Yosef et al., 2002; Bar-Yosef and Nelken, 2007). 

Nevertheless, the degree to which diversity in acoustic sensitivity actually maps onto 

cortical cell type diversity, or instead reflects an encoding strategy amongst presumed 

pyramidal cells (Chechik et al., 2006; Wang, 2007), is poorly understood. 

Addressing this problem requires identifying cell types from in vivo recordings in 

(ideally awake) animals listening to systematically varying sounds, while sampling 
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enough neurons to quantify diversity. The latter favors extracellular methods, where a 

common strategy is to sort SUs based on their extracellular action potential duration 

(Bartho et al., 2004; Atencio and Schreiner, 2008; Hromadka et al., 2008; Wu et al., 

2008). Intracellular studies with morphological assessments have demonstrated that 

this duration correlates with various types of cortical neurons (McCormick et al., 1985; 

Gray and McCormick, 1996; Nowak et al., 2003). For example, many thin spike SUs 

(those with short peak-peak durations) are thought to correspond to suspected 

inhibitory interneurons (Swadlow, 2003), thereby providing one means to approach the 

cataloging of cellular diversity. 

To dissect the variety in acoustic sensitivity, we started with the concept that 

successive stages of processing likely create more nonlinear neurons (Ahmed et al., 

2006; Atencio et al., 2009). The corollary of this is to expect that cortical neurons would 

be highly nonlinear compared to auditory nerve (AN) fibers, potentially encoding 

acoustic features very differently. Indeed, temporal modulation is one example where 

the encoding is systematically transformed from the periphery to the cortex 

(Eggermont, 2001). In contrast, sound onset encoding can actually be quite comparable 

between AN fibers and at least some auditory cortical neurons (Phillips and Hall, 1990; 

Heil and Irvine, 1997; Heil and Neubauer, 2003). Specifically, the first spike latency (FSL) 

in both areas depend similarly on the acceleration of the amplitude envelope (Heil and 

Irvine, 1997), likely reflecting a common mechanism for nonlinear amplitude envelope 

integration (Heil, 2004). However, these conclusions were based on studies in 

anesthetized animals, and a recent report comparing cortical FSLs in anesthetized versus 
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awake conditions has demonstrated coding differences between the two (Ter-Mikaelian 

et al., 2007). How closely then might cortical FSLs in awake animals follow the 

mechanism for onset sensitivity observed at the AN, and can the degree of similarity be 

meaningfully used to classify encoding diversity? 

To answer these questions, we directly modeled the nonlinear envelope 

integration mechanism that can be found at the auditory periphery (Neubauer and Heil, 

2008), and asked how well the same mechanism, when extended to the auditory cortex, 

predicted its FSLs. We applied this to cortical neurons from awake mice listening to 

species-specific communication calls. Such natural vocalizations are thought to be 

discriminated in auditory cortical activity based on the temporal pattern of spiking (Gehr 

et al., 2000; Schnupp et al., 2006; Liu and Schreiner, 2007; Huetz et al., 2009), thereby 

motivating the study of FSLs for this class of sounds. We found that the error our model 

produced in predicting call-evoked FSLs spanned a large range, but was not randomly 

distributed across SUs. There were systematic differences in sound encoding properties 

of neurons whose call-evoked FSLs were best versus poorly predicted by the model, 

presumably due to higher nonlinearities in the latter group. Most notably, the neurons 

whose call-evoked FSLs were best predicted tended to have thin spikes, potentially 

indicative of their being putative fast spiking interneurons. In addition, the subset of 

poorly predicted neurons demonstrated dissimilar responses to pup calls versus adult 

calls, two sounds that share similar acoustic features but are perceptually distinct. 

Hence, our forward model and data leads us to hypothesize that 1) neurons that best 

preserve the peripheral mechanism for onset encoding in the auditory cortex may 
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actually be inhibitory rather than excitatory, and 2) those neurons that do not play a 

role in encoding acoustic features may be recruited through behavioral experience to 

represent a sound’s perceptual relevance.  

 

4.2: Methods 

 In this chapter, the model used SU data from (55 SUs that satisfied criterion) 9 

virgin females, 7 mothers, 9 cocarers. In section 4.3.4 and 4.3.5, we used principles 

learned from the model to segregate neurons in our entire population of recorded SUs 

from  14 virgin females, 13 mothers, 14 cocarers  CBA/CaJ mice. All mice were between 

14 and 24 weeks old at the time of surgery. An animal name list for this chapter is listed 

in appendix A. Methods on the electrophysiology recordings, surgery, and acoustic 

stimuli are located in appendices A and B. The methods listed below are specific to this 

chapter.   

 

4.2.1: SU analyses 

The bandwidth of the frequency tuning curve was identified as the difference 

between the highest and lowest frequencies with spike rates exceeding this half-max 

value.  The tuning quality was then defined as the SU’s BF divided by the bandwidth. To 

estimate the temporal precision of first spikes across trials for each call, a measure 

analogous to the vector strength (Goldberg and Brown, 1969) was used. First, a period 

was mapped from 0-100 ms relative to tonset to phases from 0 to 2π. Across all the trials 

for a particular call, each first spike was converted into a unit vector with a phase 



 107 

corresponding to its latency, and then these were vector averaged together. For 

example, if for all trials, the first spike occurred at 10 ms post-stimulus, the length of the 

resultant vector for that call would be 1; if the first spikes were uniformly dispersed 

throughout the period, the vector would be equal to 0. Additional standard SU analyses 

can be found in chapter 2.2.1.  

The SU action potential waveform was also used to separate neurons into thin 

(putative inhibitory interneurons) and thick spiking groups (putative pyramidal neurons). 

The peak-to-peak time of the average spike waveform was used (Wu et al., 2008), and 

the entire population exhibited a clear bimodal distribution (Fig. 4.1E). This resulted in 

thin and thick spiking SUs being classified as having peak-to-peak times less than or 

greater than 0.35 ms, respectively. Throughout the recordings, thick spiking cells were 

encountered more frequently (65%), as might be expected if they correspond to cortical 

pyramidal neurons (Markram et al., 2004).  

 

4.2.2: Van Rossum metric 

 To estimate the dissimilarity between the spiking responses to two different 

calls, the van Rossum metric was used (van Rossum, 2001). To compute the van Rossum 

distances, each spike train was first convolved with a decaying exponential function 

(equation 4.1).  
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Figure 4.1: SU Recordings. Example (A1) single trial, (A2) spike waveform, (A3) ISI distribution with (inset) 
expansion of the region between 0-5 ms, for (A) SUnitID 1823; (B) SUnitID 1719; (C) SUnitID 1498; and (D) 
SUnitID 1421. Mean spike waveform shown in black, with gray lines displaying all spikes. (E) The 
histogram inset demonstrates the percentage of thin and thick spikes in our entire population of cells. The 
figure shows the distribution of thin and thick spikes for the cells used to predict the first spike response 
to pup calls. Based on the overall population, we called spikes with a peak to peak time less than 0.35ms 
thin spikes, and those with greater than 0.35ms, thick spikes.   
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In equation 4.1, H(t) is the Heaviside step function, M is the total number of spikes in 

the spike train, and τ is the exponential decay constant. From here, a distance was 

computed between two spike trains by equation 4.2, where Dij is the van Rossum 

distance (VR distance) between spike trains i and j, and T is the length of the window. 
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Dij, which we will call the VR distance, was used to compare how well call-responsive 

SUs can distinguish between two different call vocalizations versus how well it can 

distinguish the two calls from its spontaneous activity. The reference spontaneous 

activity consisted of a trial in our recordings in which no sound was presented.  

To do this, we measured both the inter-call distance (discrimination) and the 

call-to-blank distances (detection). For example, in figure 4.4  we computed a VR 

distance between calls 13 and 18, and divided this by the average of the distances for 

call 13-blank and call 18-blank. Thus, if this fraction exceeds 1, the spike patterns 

between calls are greater in their difference than the spike patterns between the calls 

and spontaneous. Given that the longest pup vocalizations are ~60ms in length, we used 

only spikes from onset to onset+100ms to account for any offset type neural activity. 

However, the short time window combined with the low spiking rates of some neurons 

resulted in a number of spike trains with only zero or one spike. Recall that for our call 

playback, up to 50 trials of a SU’s response was recorded to each pup call. Thus, to 
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account for the low spike numbers, but retain the stimulus information present in the 

100ms time window, a distance was computed for a “collapsed” spike train. This is a 

spike train that includes all spikes in all trials. Specifically, this involved collapsing the 

spike times in all trials of the same stimulus into a single spike train, and then computing 

a VR distance. If in the spike train there were two spikes with identical times, one of the 

spike times was jittered by the smallest amount possible bounded by our sampling rate 

of the spiking data (0.0001 ms). To give an example of this effect, we used a time 

constant of 10ms, and took a spike train with 10 spikes from our data. We compared 

this spike train to a jittered version of itself and produced a distance of 7.7 x 10-5. This is 

several orders of magnitude less than the smallest distance in figure 4.4A, and thus does 

not bias the actual computed distances.   

To evaluate the inter-call, call-to-blank, or the detect/discrimination measures, 

we used a time constant of 10 ms similar to the values used in two previous studies 

(Narayan et al., 2006; Wang et al., 2007), which derived this value as the optimal time 

constant for neural discrimination of conspecific songs. The 10 ms time constant was 

implemented because the resultant V(t) function (Eq. 4.1) is well matched to the 

temporal nature of excitatory post-synaptic potentials in the auditory cortex (Wehr and 

Zador, 2005).  

 

4.2.3: Estimating first spike latencies 

To estimate the FSL in response to a stimulus, different techniques have been 

applied in the literature (Chase and Young, 2007; Ter-Mikaelian et al., 2007; Pawlas et 
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al., 2010). While each has advantages and disadvantages, the choice of algorithm 

appeared not to be critical for our purposes since different methods we implemented 

produced similar conclusions. Here we present results based on a binless method 

previously described by (Chase and Young, 2007), since it implements a statistical 

criterion that in principle accounts for the possibility that spontaneously arising first 

spikes can bias the latency estimate. Briefly, it collapses spike trains across trials into a 

list of all spikes, and essentially asks whether the number of spikes occurring within a 

particular post-onset interval exceeds what would be expected based on a Poisson 

distribution with a mean rate defined by spontaneous activity and accounting for the 

number of trials (measured here between -150 to 0 ms re. stimulus onset, tonset). The 

intervals progressively increment in time steps defined by the difference between the 

nth post-onset spike (tn) and our reference time (fixed here at tref = tonset + 5 ms, safely 

accounting for the shortest possible synaptic delays to the cortex, e.g. (Heil and Irvine, 

1997)). We chose n to start at 6, comparable to that used by (Chase and Young, 2007). 

The FSL was defined as the time tn at which the probability that at least n spikes in tn – 

tref could have been due to spontaneous Poisson firing first dropped below a threshold 

p≤0.01. Spike times after tonset + 100 ms were not included, since this was beyond when 

even offset spiking to the longest stimuli would occur. We found our choice of 

parameters provided fairly consistent yet more rigorous estimates of what would be 

identified as the FSL “by eye” for both pure tone and call data sets. If the spiking 

response to a particular pup call never satisfied the p≤0.01 criterion, no statistically valid 

FSL was defined.  
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4.2.4: Cortical LIEFTS model  

While different models could be implemented to predict cortical FSLs, we chose 

to use a “functional” peripheral model (Neubauer and Heil, 2008), which has been 

physiologically validated for AN fiber FSLs (Heil et al., 2008), and which can be 

straightforwardly applied to the cortex. We preferred this over more complex 

subcortical models (Fishbach et al., 2001; Fishbach et al., 2003; Dugue et al., 2010), 

which can involve more parameters to predict cortical activity, since our purpose was to 

focus on how functionally similar the nonlinear envelope integration mechanism was 

between the periphery and cortex for encoding sound onsets. 

The LIEFTS model (Neubauer and Heil, 2008) we applied accounts for a physical 

delay (Lmin) between the external stimulus and the inner hair cell response, integrates 

the amplitude envelope with an exponentially decaying weighting function ( )( tPli ), and 

applies a biophysically plausible cubic nonlinearity (Heil and Neubauer, 2003; Heil et al., 

2008) to derive a stimulus-driven rate of neurotransmitter release: 
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The sensitivity k captures all linear proportionality factors up to this stage, t  is the 

time shifted by Lmin, and τ represents the integration time constant. )( tR  constitutes 
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the hazard function of the distribution function for first spikes (Neubauer and Heil, 

2008), and can be used to generate the FSL probability density function (PDF), 
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spontR  represents the spontaneous discharge rate, which can be estimated from the 

spontaneous spiking in the absence of stimuli.  

To test whether this model can predict cortical first spike responses to natural 

calls, we increased the physical delay Lmin, and generalized the sensitivity across 

frequencies k(f). Intuitively, these changes presumed that the timing of first cortical 

spikes elicited by a call can be explained by a similar nonlinearity as observed in ANFs, 

after accounting for a longer transmission distance, and a change in gain for different 

frequency channels. This frequency-dependent gain could arise either from the intrinsic 

frequency-dependent sensitivity of individual ANFs, or in the convergence of different 

frequency channels in the feed-forward circuit to the cortex. Only responses to pure 

tone stimuli were needed to build the model, which was then tested for pup call stimuli. 

We have implemented the cortical LIEFTS model by optimizing different combinations of 

essential parameters (Lmin, k, and τ) (Heil et al., 2008). For simplicity and because our 

conclusions are not essentially altered, we describe here just the results for when τ was 
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set to 1.4 ms (based on an estimate of the time constant of the membrane of the inner 

hair cell (Raybould et al., 2001)), and Lmin and k were determined as described below.  

 

 

Figure 4.2: Cortical LIEFTS model. Schematic diagram of the cortical LIEFTS model.  

 

 

We began by using the (Chase and Young, 2007) statistical method to find the 

FSLs for BF tones of varying amplitudes (Fig. 4.3A and B), allowing us to construct a 

latency-level function (open squares, Fig. 4.3B). To minimize the number of parameters 

to fit, we set Lmin to 0.75x the estimated FSL for the loudest tone at 70 dBSPL (dashed 
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line, Fig. 4.3B). In a limited number of cases (e.g. SUs that were clearly non-monotonic), 

we set Lmin to 0.75x the shortest FSL. Rspont was set to the average spontaneous rate 

prior to the stimulus for all trials. We then solved for the value of k at BF through Eqs. 

4.3 and 4.4 by using an unconstrained nonlinear optimization based on the Nelder-

Mead simplex method (MATLAB Fminsearch). We took the time at the mode of the PDF 

as the predicted FSL. We compared this (filled black circles, Fig. 4.3B) to the 

experimental FSL (open squares, Fig. 4.3B) to find the optimal value for k that minimized 

the RMS of the logarithm (base 10) of their ratio (root mean-square error, RMSE) 

averaged across dBSPL.  

At frequencies away from a neuron’s BF, we determined k(f) by scaling the 

sensitivity to match FSL predictions to the derived FSLs for pure tones at different 

frequencies (Fig. 4.3C). Experimental latencies were generally longer at the highest 

ultrasonic frequencies, indicating that cochlear delays were not responsible for the 

observed spread in latencies at these frequencies. If for a specific tone frequency fo, no 

first spike was statistically found, we set k(fo) to a SU-specific lower bound value. This 

was determined by when the peak probability of a predicted, acoustically driven first 

spike just exceeded the probability for a spontaneously generated first spike. FSLs for 

communication calls were then predicted (Fig. 4.3D) by interpolating a k(f) that matched 

the starting frequency of a call. Starting frequencies were used because the single 

frequency calls themselves exhibited little frequency modulation near the onsets.  
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Figure 4.3: Cortical LIEFTS model (A) The figure shows the spiking response to different amplitudes (30-70 
dBSPL, alternating gray and white bars) at its BF. The raster plot illustrates the first spike after stimulus 
onset (black diamonds) and the spikes during the spontaneous period and after the first spike (gray 
diamonds). The open rectangles represent the FSL as defined by (Chase and Young, 2007) method.  (B) 
The figure shows the first spike latencies at each dBSPL (open squares) and the fitted response (black 
circles) with the defined Lmin (dotted line). (C) The frequency response is shown on the left with the first 
spikes following stimulus onset (black) and the following spikes (gray). We played pure tones and each 
stimulus is shown in alternating gray and white bars. We also show the corresponding linearly 
interpolated k(f) fitted to correct for changes in FSL dependent on frequency plotted logarithmically. (D) 
The figure shows the cortical LIEFTS model-predicted versus experimental FSL with (closed circles) and 
without (open squares) k(f) dependence. (E) For call #7, we show the Gaussian smoothed experimental 
first spikes (gray), and the cortical model prediction. (F) The figure demonstrates the relationship between 
the FSL and its latency variability for all SUs (black dots,). We found a similar power law fit (solid gray line) 
to a previous cortical FSL study in anesthetized animals (Heil and Irvine), shown as the dotted line.    
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Although implementing the model as described above could be effective for 

predicting FSLs based on the PDF mode, the predicted PDF width systematically 

underestimated the observed trial-by-trial variability in FSLs (e.g. Fig. 4.3E). This 

underestimation of the PDF width may be a result of the fact that the cortical LIEFTS 

model does not account for the firing rate saturation that may occur at higher stimulus 

amplitudes (Heil et al. 2008), and/or because temporal precision likely deteriorates after 

the multiple synapses leading to higher auditory stations. Indeed, consistent with 

previous reports (Heil and Irvine, 1997; Ter-Mikaelian et al., 2007), we found a 

systematic increase in the FSL standard deviation with increasing FSL. For this, we 

extracted a distribution of experimental first spike times for each stimulus (pure tones 

eliciting evoked first spikes for 50, 60, and 70 dBSPL) for SUs whose spontaneous spike 

rates <5 Hz, and whose post-stimulus first spike time distributions significantly differed 

from spontaneous first spike times (re. arbitrary reference time during silence, 

Kolmogorov-Smirnov test, p<0.05). This led to a power law relationship (Fig. 4.3F, solid 

line): )(*07.0)( 3.1FSLFSL  . Combining all of the above steps together, we arrived at 

a call-by-call prediction for each SU (Fig. 4.3D). Overall prediction quality for each SU 

was then measured by the relative RMSE (defined above) taken between predicted and 

experimental pup call FSLs, but averaged only across calls with significant experimental 

FSLs.  

 

4.3: Results 
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We recorded SUs from awake, head-restrained mice, which included call-excited, 

-inhibited, and non-responsive neurons. Previous results demonstrated that while call-

inhibited SUs showed a consistent suppressed response to the pup calls, call-excited SUs 

were much more variable (Fig. 2.2 and 2.3). In light of this, we wondered whether the 

greater diversity in call-excited SUs could play a more important role in encoding the 

pup calls’ acoustic features. We investigated this by using the van Rossum metric, a 

method that evaluates the dissimilarity between two spike trains. 

We used our population of call-excited and –inhibited SUs, and computed an 

inter-call (discrimination) distance, and a call-to-blank (detection) distance. To 

determine how well the two groups can differentiate between acoustic features, we 

chose to compare two pup calls that were different in both their frequencies and 

amplitude envelopes (calls 13 and 18, Fig. B.1). In this comparison, we found that call-

inhibited SUs showed a greater detection as most of their points were below the unity 

line (Wilcoxon Sign Rank, z=5.4, N=84, p<0.00001, Fig. 4.4A). In contrast, most of the 

call-excited SUs were above the unity line (Wilcoxon Sign Rank, z=2.6, N=84, p<0.05, Fig. 

4.4A). We further evaluated these differences by defining a value that showed how well 

SU spike trains could differentiate between two calls relative to their ability to 

differentiate between a call and its spontaneous activity (Fig. 4.4B). These results 

suggest that in comparison to the call-inhibited SUs, the call-excited SUs may play a 

greater role in encoding the acoustic features of different vocalizations.  
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Figure 4.4: The VR inter-call and call-to-blank distances for call-excited (black) and call-inhibited (gray) 
SUs. (A) The figure shows the inter-call distances on the y-axis and the corresponding call-to-blank 
distances on the x-axis. Notice that for inhibited SUs (gray), most of the points lie below the unity line 
suggesting that inhibited SUs generally have a greater call-to-blank distance compared to their inter-call 
spike pattern distance. The insets in the figure show the frequency and amplitude envelope of the two 
calls compared here. These correspond to calls 13 and 18 (see Appendix B). (B) The cumulative 
distribution function shows the values of the van Rossum inter-call distance divided by the call-to-blank 
distance for each SU.  

 

 

While this example clearly demonstrates a difference in call-excited and –

inhibited SUs in their ability to differentiate between vocalizations, these two calls differ 

dramatically. The question remains as to how the two types of SUs encode the sounds 

when only a single parameter is changed, i.e. duration, frequency, or amplitude 

envelope. For example, by comparing calls 15 and 16, the frequency and durations are 

relatively similar, but the amplitude envelopes differ. Doing this, we found that in fact, 

the populations of both call-excited and –inhibited SUs have similar 

discrimination/detect values (Kolmogorov-Smirnov, D = 0.21, p>0.05). Although in this 

comparison the groups did not differ, call-excited neurons in general showed greater 
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inter-call distances relative to their call-to-blank distances. In support of this, looking at 

how the two groups encode durations, we could make six comparisons in the pup calls 

(1-13, 2-14, 3-15, 4-16, 5-17, 6-18, see Appendix B). Using the Kolmogorov-Smirnov test, 

we found that in 4/6 of these comparisons, call-excited SUs had higher 

discrimination/detect values, and in 2/6 they were not different from call-inhibited SUs 

(data not shown). Thus, in general, the call-excited neurons may play a greater role in 

encoding the diversity of acoustic features in pup calls.    

How then do auditory cortical SUs encode acoustic features using excitation? It 

has been suggested that sensory stimuli can be represented as either a firing rate based 

on the average number of spikes per unit time, or a temporal code, which depends on 

the precise timing of spikes. While studies have demonstrated that both methods can 

represent different stimulus features, the latency of the first spike following stimulus 

onset is a particularly  rapid and reliable way of encoding information in the auditory, 

somatosensory, and visual systems (Heil, 2004; Johansson and Birznieks, 2004; Gollisch 

and Meister, 2008). Therefore, in an attempt to understand how neurons in the awake 

mouse auditory cortex encode natural vocalizations, we characterized the first spike 

latency of pup-call excited SUs and modeled their dependence on specific acoustic 

features. To do so, we required a SU to have an overall excitatory response to three 

stimulus sets, including pure tones of different frequencies at 60 dBSPL, pure tones of 

the same frequency (BF) at different dBSPLs, and a collection of 18 ultrasound pup calls 

at 65 dBSPL. Only 55 of the SUs in our database satisfied our restriction criterion, since 

many SUs could be overall inhibited (Galindo-Leon et al., 2009) or nonresponsive to one 
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or more stimulus set. For each SU, we fitted the cortical LIEFTS model to predict its FSLs 

for pup calls that elicited statistically significant experimental FSLs by the (Chase and 

Young, 2007) method. Of the 55 SUs, four were further excluded from population 

summaries because for them, no individual pup call evoked a statistically significant 

experimental FSL, even though they had an overall excitatory response. 

 

4.3.1: Prediction errors segregated distinct groups of SUs 

The prediction error, characterized by the RMSE, spanned a large range 

equivalent to a 7.2% to 167% difference between predicted and experimental FSLs. 

Figure 4.5A-C shows these on a per-call (x) as well as an averaged per-SU (solid symbols) 

basis for SUs segregated into RMSE quartiles: QBest contained the 25% of SUs with the 

lowest prediction errors for these pup calls; QPoor, 25% with the largest prediction 

errors; QMid, 50% around the median. Points for both calls and SUs were close to the 

diagonal for the QBest group, but began deviating from it for the QMid and QPoor groups. If 

predicted and experimental FSLs were uncorrelated for all SUs regardless of the size of 

the error, then the model would simply be inappropriate for capturing the mechanisms 

that generate cortical first spikes (Bar-Yosef and Nelken, 2007). However, we found that 

QBest SUs had a strong correlation between prediction and experiment (Fig. 4.5A, cc = 

0.83, p<0.001), and even QPoor had a weak correlation (Fig. 4.5C, cc = 0.21, p<0.05). This 

indicates that the cortical LIEFTS model can at least partially explain the mechanism for 

FSLs, albeit to varying degrees for different cortical SUs. 
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Figure 4.5: Prediction errors segregate SUs. (A, B, C) For each group, the figure illustrates the individual 
predicted versus experimental FSL (crosses), and the mean predicted FSL versus the mean experimental 
FSL for each SU (circles – thin spikes, triangles – thick spikes). (D) The figure demonstrates the relationship 
between the relative RMS prediction error and the SU’s BF. The dotted line represents 50 kHz and shows 
that the proportions of cells above and below 50 kHz are no different between the three groups. There 
were a total of 13 SUs in QBest (black symbol), 25 cells in QMid (gray symbol), and 13 cells in QPoor(open 
symbol). The group designation refers to whether a SU’s pup call-excited response is well predicted (QBest, 
top quartile), poorly predicted (QPoor, bottom quartile) or within the middle 50% (QMid ) of prediction 
errors across the population.  

 

 

This result was not trivially due to better ultrasound responsiveness on the part 

of QBest SUs. The range of BFs was not different between groups (ANOVA, F(2,48) = 0.47, 

p>0.05), and 38-44% of SUs in each group actually had BFs above 50 kHz (Fig. 4.5D), 

where SUs typically showed clear responses to at least a few of the calls in the 60-80 kHz 

pup call range. On the other hand, whether the magnitude of a SU’s prediction error 

was small or large also did not appear to be random. In particular, a spike waveform 

analysis revealed that all QBest SUs had thin spikes (circles in Fig. 4.5D), even though both 
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QPoor and QMid contained an approximately equal mix of SUs with thin and thick 

(triangles) spikes (binomial, QMid: 11/25 thin; QPoor: 6/13 thin, p>0.05, two-tailed). This 

suggests that SUs with the smallest prediction errors may be biophysically distinct from 

those with large errors (Hasenstaub et al., 2010).  

This led us to ask whether prediction error correlated with differences in other 

characteristics. Indeed, QBest SUs were distinct in the nature of their nonlinear encoding 

of sound onsets. Figure 4.6 shows the rasters and pooled PSTHs to 3 calls (upper half of 

each panel) and 3 frequency- and duration-matched pure tones (lower half) for 6 SUs 

tuned to frequencies above (A-C) or below (D-F) 50 kHz, falling into either the QBest (A 

and D), QMid (B and E) or QPoor (C and F) groups. The two QBest examples (Fig. 4.6A and D) 

exhibited robust onset responses for both tones and calls, with the response strength 

dropping as frequency increased. Because of the slight differences in mean amplitude 

(60 dBSPL for pure tones versus 65 dBSPL for calls) and amplitude onsets (10 ms cos2 

ramp for pure tones versus rapid onsets for calls), call and tone responses were not 

always identical (compare call 17 to the 76 kHz tone response for SUnitID 1773). 

Importantly though, the nonlinearities in the cortical LIEFTS model correctly accounted 

for these acoustic differences. 

In the case of QMid and QPoor though, some calls elicited responses that were 

completely unexpected based on the tone response, even though the calls were single 

frequency whistles. For example, SUnitID 1363 (Fig. 4.6C) responded transiently to tone 

onsets, but fired robustly near call offsets. Similarly, the response of QMid SUnitID 1355 
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Figure 4.6: Correspondence between tone and call responses varied systematically across groups. (A-F) 
This figure illustrates two examples from each group (QBest – left column, QMid – middle column, QPoor – 
right column), SUs with BF’s greater than 50kHz (top row), and less than 50kHz (bottom row). For each 
example, the figure shows the response to three different frequency calls with the longest durations 
(upper panel), and the corresponding response to pure tone frequencies (lower panel). Within each panel, 
the raster plot and a binned representation of the spikes (2 ms bins) is shown with stimuli separated by 
lines. The bar above the binned histogram represents both the start and duration of the stimuli (pure 
tones ~ 70ms and longest duration calls ~60ms).  
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 (Fig. 4.6E) to tones was imprecise, but was well locked to sound onset for calls. On the 

other hand, QPoor SUnitID 1594 (Fig. 4.6F) fired transiently and reliably for tones, but was 

unresponsive to calls 13, 15, and 17. We also observed call-evoked onset inhibition in 

some SUs, like QMid SUnitID 1745 in response to call 17 (Fig. 4.6B). Such inhibition was 

not accounted for by our purely excitatory model. Hence, the failure of the cortical 

LIEFTS model for QMid and QPoor SUs coincided with cases where the response to pure 

tones could not be extrapolated to explain actual call-evoked responses, suggesting 

more complex sensitivities to the acoustics of a sound’s onset.   

 

4.3.2: SU groups differed in their response to natural call onsets 

Indeed, sensitivity to onset frequency was noticeably more consistent for QBest 

compared to QPoor SUs, based on the statistically estimated FSL for individual natural 

calls. QBest and QMid SUs had clearly delayed FSLs for higher versus lower frequency calls 

(Fig. 4.7A, black and gray dots, signed-test, zQB = 5.1, NQB = 39, p < 0.001, zQM = 3.9, NQM 

= 48, p < 0.001), whereas FSLs for QPoor SUs were not systematically different (open dots, 

signed-test, zQP = 0.6, NQP = 11, p > 0.05). Similarly, QBest and QMid SUs showed 

significantly later FSLs for slower amplitude onsets compared to faster onsets (Fig. 4.7B, 

black and gray dots, respectively, mostly above the diagonal, signed-test, zQP = 2.8, NQP = 

19, p < 0.01, zQM = 3.5, NQM = 2, p < 0.001). However, FSLs for QPoor SUs across their 

populations were not significantly different for the two types of sounds (open dots, 

signed-test, zQP = 0, NQP = 5, p > 0.05), suggesting that the shape of the ultrasounds’ 

envelope onset was not a reliable driver of their first spikes.  
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Figure 4.7: Systematic acoustic differences reflected across the population of cortical FSLs. (A) For all the 
predicted cells, we plotted the FSL to low (calls 1, 2, 7, 8, 13, 14) versus high (calls 5, 6, 11, 12, 17, 18) 
frequency pup calls. For example, the FSL to call 1 would be plotted against call 5, and the FSL to call 2 
would be plotted against call 6 and so on. Those calls that did not evoke a FSL were not included. The 
overall population shows a latency dependence on frequency as the majority of points lie above the unity 
line. (B) For the same cells and significant first spike distributions, we show the first spike response to 
both a fast (calls 7, 13) and a slow (calls 8, 14) amplitude envelope onset calls with similar starting 
frequencies. Again, responses to call 7 were plotted against 8, and 13 against 14. The population shows a 
significant later latency for the slower amplitude envelope onset ramp.    

 

 

Figure 4.7 also suggests that the absolute latencies of pup-excited responses 

may be systematically different between groups. QBest FSLs were generally earlier than 

QPoor FSLs on a per-call basis (Fig. 4.8A), and averaged per-SU (ANOVA, F(2,48) = 10.7, p < 

0.001, Fisher’s LSD post hoc: QBest-QMid, p<0.05; QBest-QPoor, p<0.05; QMid-QPoor,  p<0.05). 

Moreover, first spikes were also more precisely timed trial-by-trial (quantified by vector 

strength, see Methods) for QBest compared to QPoor, on a per-call basis (Fig. 4.8B), as well 

as averaged per-SU (ANOVA, F(2,48) = 3.2, p < 0.05, Fisher’s LSD post hoc: QBest-QMid, 

n.s.; QBest-QPoor, p<0.05; QMid-QPoor, n.s.). Another difference between the best and worst 

predicted SUs arose in the selectivity for individual calls.  QBest SUs generally exhibited 

statistically significant FSLs to far more of the calls than QPoor SUs (Fig. 4.8C). This result 
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could not be explained simply by a difference in spontaneous firing between groups (Fig. 

4.8D).  

 

 

Figure 4.8: Group differences are nontrivial. (A) We took the mean of the FSLs per-call and found a 
significant difference between each group. QBest is the solid black line, QMid is the solid gray line, and QPoor 
is the dotted black line (Kruskal-Wallis, χ

2 
(2,509) = 135.3, p < 0.001, Fisher’s LSD post hoc: QBest-QMid, 

p<0.05; QBest-QPoor, p<0.05; QMid-QPoor,  p<0.05). (B) We computed the timing precision for each SU based 
on a measure analogous to the vector strength (see Experimental Procedures), and found that there was a 
significant difference between each group of SUs (Kruskal-Wallis, χ

2 
(2,509) = 79.3, p < 0.001, Fisher’s LSD 

post hoc: QBest-QMid, p<0.05; QBest-QPoor, p<0.05; QMid-QPoor,  p<0.05). (C) For each SU, we computed the 
number of pup calls in which there was a statistically significant FSL response (Kruskal-Wallis, χ

2 
(2,48) = 

7.3, p < 0.05, Fisher’s LSD post hoc: QBest-QMid, n.s.; QBest-QPoor, p<0.05; QMid-QPoor, n.s.). We found a 
significant difference between QBest and QPoor.(D) The figure shows that the spontaneous rate was not 
significantly different between each group of SU’s (, Kruskal-Wallis, χ

2 
(2,48) = 4.1, p > 0.05). 

 

 

4.3.3: SUs differed in their discharge patterns and spike waveforms 

Strikingly, FSL prediction error also correlated with systematic differences in 

spiking after the first spike. This is evident from comparing the call-evoked PSTHs for the 
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3 groups (Fig. 4.9A, population-averaged and pooled over all 18 calls, normalized by 

spontaneous rate and smoothed). QBest SUs (thick black line) consistently showed strong 

transient firing at sound onset. Some SUs, such as SUnitID 1773 (Fig. 4.6D), also 

produced sustained firing, but this was not that common. On the other hand, the 

averaged discharge pattern for QPoor SUs (thin dashed line) was somewhat delayed, 

lacked a strong onset, and instead held a more stable level of firing during and beyond 

the stimulus. Finally, QMid SUs exhibited a more heterogeneous group of responses that 

seemed to exhibit response characteristics between QBest and QPoor. These data indicate 

that SU groups differed not only in terms of how they fired first spikes, which was the 

basis for classifying them, but also in terms of how they fired subsequent spikes.  

The population differences were apparent even at the individual SU level. 

Evaluating call-pooled, normalized PSTHs on a SU-by-SU basis, QBest SUs (Fig. 4.9B, black 

symbols) had significantly shorter half-max PSTH durations (right panel) and earlier half-

max PSTH latencies (bottom panel) compared to QPoor. The majority of QBest SUs 

therefore clustered tightly towards the lower left corner of Fig. 4.9B, where transient 

onset SUs should lie, while QPoor SUs were generally found more to the right and upper 

portions of Fig. 4.9B, where offset and more sustained SUs should lie. QMid SUs were 

scattered throughout this plane, and were not different from QPoor SUs in PSTH duration, 

but were for PSTH latencies. As a result, having a transient onset response to calls was 

not sufficient for a SU to belong to QBest (gray and black symbols in lower left quadrant 

of Fig. 4.9B, <20 ms latency and <20 ms duration), although it was an important factor 

(11/13 black symbols are in that quadrant). A summary of direct comparisons between  
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Figure 4.9: SU groups differ in their discharge pattern and spike waveforms. (A) For each group, we 
pooled their SU PSTH responses to all 18 pup calls normalized by the spontaneous rate. QBest is the solid 
black line, QMid is the solid gray line, and QPoor is the dotted black line. (B) The scatter plot shows the 
latency from stimulus onset to the half-max of the PSTH to all 18 calls, and the duration is the amount of 
time the PSTH remains above this value. The circles and triangles correspond to thin or thick spikes (see 
Methods), and the hatched symbols mark those cells that were pup call-excited but did not have first 
spike distributions significantly different from spontaneous. The lower boxplot represents the median and 
range of the latency to the half-max for all three groups (Kruskal-Wallis, χ

2 
(2,48) = 15.9, p < 0.01, Fisher’s 

LSD post hoc: QBest-QMid, n.s.; QBest-QPoor, p<0.05; QMid-QPoor, p<0.05). The QBest cells had significantly earlier 
pup call responses compared to QPoor, but not QMid. In addition, there was also a significant difference 
between QMid and QPoor. The right boxplot represents the median and range of the duration of the 
response for all three groups. We found that QBest had significantly shorter durations of responses 
compared to QMid and QPoor, but QMid and QPoor did not show significant differences (Kruskal-Wallis, χ

2 

(2,48) = 9.3, p < 0.01, Fisher’s LSD post hoc: QBest-QMid, p<0.05; QBest-QPoor, p<0.05; QMid-QPoor, n.s.).  
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QBest and QPoor properties is shown in Table 4.1, Box 1, reiterating the systematic call 

encoding differences that emerged simply by grouping SUs according to their relative 

FSL prediction error under the cortical LIEFTS model. By using relative error, we did not 

artificially bias our results towards SUs with earlier, less variable FSLs (Fig. 4.3F). Indeed, 

two QBest SUs in Fig. 4.9B fell outside of the onset-transient group because they had 

noticeably later and longer responses. Thus, it is interesting to find that the majority of 

QBest SUs nevertheless were among the earliest firing in response to calls.  

 

Table 4.1: Using relative or absolute error segregates a similar population of QBest and QPoor SUs. The table 
shows the mean and standard error values for each of the analyses that were done previously for groups 
segregated using RMS relative error (box 1), and RMS absolute error (box 2). Box 3 represents those SUs 
that were segregated by both methods. For significance: *-p<0.05,**-p<0.01,***-p<0.001, n.s. - not 
significant.  
 

 

 

 

This raises the question of whether absolute timing error might be more 

pertinent for segregating SUs. To address this, we re-segregated SUs into quartiles 

based on the RMS absolute FSL difference between prediction and experiment (Table 
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4.1, Box 2), keeping all fits and predictions the same. Importantly, we reached the same 

overall conclusions concerning differences between properties of QBest and QPoor SUs, in 

some cases at even greater levels of significance. Moreover, 9 (10) SUs remained in the 

lowest (highest) error quartile regardless of whether relative or absolute measures were 

employed (Table 4.1, Box 3). All differences between these intersected groups of QBest 

and QPoor SUs remained significant. These results provide confidence that one subgroup 

of short latency, precisely firing, mostly transient cortical SUs likely encode the acoustic 

onsets of these calls in a similar way as at the auditory periphery. 

Finally, since the QBest SUs all had thin spikes, we evaluated criteria that might 

indicate whether thin spike SUs correspond to suspected fast-spiking interneurons 

(Table 4.2). Ignoring error grouping, we found that our thin spike SUs had significantly  

higher spontaneous firing rates and were recorded at a shallower depth than thick spike 

SUs. Moreover, the bandwidth of the tonal frequency response curves was significantly 

larger for the former (smaller quality factor, defined by BF/BW, see Experimental 

Procedures). In response to pup calls, FSLs were also significantly earlier for thin spike 

SUs. These results suggest that as a population, thin spike SUs have characteristics 

consistent with being possible fast-spiking interneurons, although we cannot definitively 

know this for any one SU without intracellular recordings. Importantly though, the 

differences between QBest and QPoor SUs was not just due to a change in the balance 

between thin and thick spike SUs. Restricting only to thin spike SUs in both groups, we 

found that the FSL and FSL precision per-SU and per-call, as well as the PSTH half-max 

were still significantly different, even though spontaneous activity and tuning bandwidth 
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were not (presumably since all SUs had thin spikes). Although we did not find a 

significant difference in the number of call responses, a trend similar to the one found in 

Table 4.1 was present (T-test, t = 2.0, df = 17, p = 0.06; QBest: 12.2 ± 1.6; QPoor: 7.2 ± 1.2). 

Hence, the degree to which a SU’s onset response to pup calls follows the cortical LIEFTS 

model appears to segregate out a distinct subpopulation of thin spiking neurons, some 

of which may be putative fast spiking inhibitory interneurons.  

 

4.3.4: Call responses in a subset of QPoor neurons are selectively modulated 

by a sound’s behavioral relevance 

QBest and QPoor neurons clearly show distinct differences in how they encode pup 

vocalizations. Indeed, we demonstrated previously that QBest neurons are a distinct 

subset and represent the simple acoustic features of pup calls, such as its amplitude 

envelope and onset frequency. There is evidence that in addition to these acoustically 

faithful representations of sound in the auditory cortex, there are also neurons that 

carry more information about higher order acoustic features of the stimulus (Chechik et 

al., 2006). Thus, given the model’s poor ability to predict how QPoor SUs encode simple 

acoustic features, we wondered whether these SUs instead play a role in encoding other 

higher order features.  

The mouse ultrasonic communication system provides the opportunity to study 

this question because both pup and adult calls are sounds that are semantically distinct 

(see 1.3.1), but overlap in their simple acoustic features of onset frequency and duration 

(see Appendix B). To understand whether QPoor SUs encode higher order acoustic 
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features, we compared their responses to a set of pup and adult calls, stimuli that were 

acoustically matched in onset frequency and duration, but differed in both the 

frequency modulation and behavioral relevance. We looked first at the responses of the 

10 intersected QPoor SUs (Table 4.1, box 3), which consisted of 6 mother, 4 cocarer, and 0 

virgin neurons.  

Given the differences in call recognition and cortical inhibitory plasticity found 

previously between mothers and cocarers, we wondered whether they would also show 

differences their encoding of pup and adult calls. In principle, if the neurons were 

faithful in their basic encoding of sound onset frequency and duration, the overall 

responses to pup and adult calls were expected to be the same (Figure B.1, pup call i is 

acoustically matched to adult call i+18). In support of this, we found that our QBest SUs 

indeed showed no differences in their overall responses to pup or adult calls (Wilcoxon 

Sign Rank, W=22, p>0.05), and no animal group dependencies. Interestingly though, 

when comparing the intersected QPoor SUs between animal groups, we found that 

mothers but not cocarers showed a greater response to pup calls compared to adult 

calls (Fig. 4.10A3 and B3, Mothers N=6: Wilcoxon Sign Rank, W=0, p<0.05; Cocarers N=4: 

Wilcoxon Sign Rank, W=4, p>0.05).  

  Figure 4.10 suggests that a subset of neurons in the awake auditory cortex of 

mothers may be differentially encoding the higher order acoustic differences between 

pup and adult calls. To further study this, we wondered whether this difference in call 

responsiveness occurred among other neurons within our data set with QPoor-like 

response characteristics (i.e. spike shape, response latency, and spontaneous rate). We 
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Figure 4.10: Mothers QPoor SUs show selective enhancement for the class of more salient pup calls versus 
less salient adult calls, which is not observed in cocarers. (A1, B1) Figures show examples of the responses 
to the 18 different pup calls (A2 and B2) and the responses to the 18 different adult calls. Notice that in 
the mother there is a large difference between its response to pup and adult calls whereas the cocarer 
show more similar responses. Both SUs presented here were classified as thick spiking. The black bar 
starting at 0 time shows the length of the longest call stimulus. (A3) Dividing the number of spikes from 0-
100ms by the number of spikes during an equivalent spontaneous period, we found that the 6 QPoor SUs in 
mothers showed stronger responses to the pup calls (black dots) compared to the adult calls (gray dots). 
(B1) In contrast, the 4 QPoor SUs in cocarers did not show differences between the pup and adult calls.  
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selected for units by restricting our larger data set, finding those neurons within 1 

standard deviation of the QPoor mean for three characteristics (Table 4.1, box 3, thick 

spike only, mean ± 1*standard deviation: 19.9<PSTH_onset<58.7ms; 0<spont 

rate<5.3spk/s).  

From this, we were able to segregate out 11 mother, 3 early cocarer, 8 cocarer, 

and 7 virgin SUs. Based on the more similar nature of evoked responses in mothers and 

early cocarers discussed in chapter 3, we combined their responses (N = 13), and 

contrasted them against cocarers and virgins (N = 10), which were also more similar to 

each other in evoked responses. We found that mothers and early cocarers together 

had a much larger response to pup calls and in fact showed a significant enhancement in 

their call-excited response to pup over adult calls (Fig. 4.11A1 and A2, Wilcoxon Sign 

Rank, W=2, p<0.001). Importantly, 13 out of the 14 SUs (93%) in this group showed a 

greater response to pup calls compared to adult calls (Fig. 4.11A2). In contrast, we 

found no significant differences in the call-excited responses for cocarers and virgins 

(Fig. 4.11B1 and B2, Wilcoxon Sign Rank, W=30, p>0.05). In addition, we found that 

these changes were not a result of SU BF differences when comparing the neurons in 

mothers and early cocarers to those in virgins and cocarers (t-test, t=1.01, df=20, 

p>0.05). This suggests that a subset of call-excited neurons in mothers and early 

cocarers selectively enhances its response to a sound dependent on its behavioral 

saliency. 

We next wondered whether these changes were specific to those SUs with QPoor 

characteristics. To do this, we restricted our larger data set in a similar way to find those 



 136 

 

 

 

Figure 4.11: Mothers and early cocarers differentially respond to pup and adult calls when compared to 
virgins and cocarers. (A1) Shows the mean PSTH response (Nmothers = 11, Nearly cocarers = 3) to the 18 pup calls 
(black line) and 18 adult calls (gray line). There is a clear difference in the mean PSTH responses, 
normalization was performed by dividing the intrinsic firing rate. (A2) Demonstrates that for these SUs, 
they respond preferentially to pup calls over adult calls. (B1) The mean PSTH response (Nvirgins = 7, Ncocarers 

= 8) to the 18 pup calls and 18 adult calls. For virgins and cocarers, we found no difference in their 
responses to pup and adult calls. The normalized spike count was computed by integrating the spikes 
from 200-300ms based on the mean length of responsiveness in A1 and B1. 
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neurons within 1 standard deviation of the QBest mean for the same three characteristics 

(Table 4.1, box 3, thin spike only, mean ± 1*standard deviation: 7.1< PSTH_onset 

<12.5ms; 0<spont rate<29.2spk/s). Doing this, we were able to segregate out 6 mother, 

2 early cocarer, 10 cocarer, and 1 virgin SU. Similar to figure 4.11, we combined the 

responses of mothers and early cocarers (N=8), and contrasted them against cocarers 

and virgins (N=11). Unlike for QPoor SUs, we found no differences in how the animal 

groups respond to pup and adult calls in their overall PSTH (Fig. 4.12A1 and B1). In 

addition, the animal groups also showed no differences in their normalized spike counts 

in response to either pup or adult calls (Fig. 4.12 A2 and B2, M/EC: Wilcoxon Sign Rank, 

W=7,p>0.05; V/C: Wilcoxon Sign Rank, W=27, p>0.05). Similar to the QPoor-like SUs, the 

QBest-like SUs also showed no differences in their SU BFs when comparing mothers and 

early cocarers to virgins and cocarers (t-test, t=1.64, df=13, p>0.05). This suggests then 

that for the QBest SUs, our model could accurately predict their first spike responses to 

the simple acoustic features, and that changing the behavioral relevance of the stimulus 

did not affect this process. In contrast, we found that how QPoor SUs encoded the calls 

were affected by their behavioral relevance, and may be more sensitive to specific 

higher order features possibly to facilitate downstream areas in the discrimination of 

pup calls.  

To further test this, we explored whether the spike patterns of the QPoor SUs 

might also be more sensitive to the acoustic differences between pup and adult calls. 

Although the pup and adult calls we used in playback were matched in their onset 

frequency and durations, figure B.1 clearly shows distinct differences in other acoustic  
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Figure 4.12: For well predicted SUs, animal groups do not differentially respond to pup and adult calls. 
(A1) Shows the mean PSTH response (Nmothers = 6, Nearly cocarers = 2) to the 18 pup calls (black line) and 18 
adult calls (gray line). We found no differences in their overall mean PSTH responses, or the normalized 
spike count (A2). (B1) The mean PSTH response (Nvirgins = 1, Ncocarers = 10) to the 18 pup calls and 18 adult 
calls. For virgins and cocarers, we found no difference in their responses to pup and adult calls. The 
normalized spike count was computed by integrating the spikes from 200-300ms based on the mean 
length of responsiveness in A1 and B1. 
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features (i.e. frequency modulation). Hence, we asked whether after matching for the 

simple features (onset frequency and duration), whether these SUs would fire spike 

patterns that would better separate the response of an adult call from its frequency and 

duration matched pup call, compared to another frequency and duration matched adult 

call. We addressed this using the van Rossum metric to compute the distances between 

two stimulus evoked collapsed spike trains (see Methods 4.2.2). For the 18 calls, we 

computed a mean pup-adult call distance matched in their onset frequency and 

duration. As a relative measure of how well each SU differentiated between the two 

calls, we directly compared this mean distance to the SU’s ability to discriminate 

between two frequency and duration matched adult calls (Fig B.1, call 19 vs. 22, 25 vs. 

28, 31 vs. 34 etc.). In total, there were nine matched adult-adult call pairs, and the 

average distances between these pairs was considered the adult-adult call distance.  

For the SUs with QBest-like characteristics, we found no animal group differences 

in their pup-adult call distance compared to their adult-adult call distance (Fig. 4.13A1; 

M/EC: Wilcoxon Sign Rank, W=8, p>0.05; V/C: Wilcoxon Sign Rank, W=31, p>0.05). In 

addition, we found no differences between these two animal groups in their pup-adult 

call distance normalized by their adult-adult call distances (Inset, Fig. 4.13A1, Mann-

Whitney, U=24, NM/EC=8, NV/C=11, p>0.05, 2-tailed). This is demonstrated by the example 

SU in figure 4.13A2, where its spiking responses to the pup calls are similar to its 

responses to the adult calls. In contrast, for the subset of SUs with QPoor-like 

characteristics, we found for the SUs in mothers and early cocarers, they had a 

significantly greater pup-adult call distance compared to their adult-adult call distance  
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Figure 4.13: SUs with QPoor, but not QBest, like characteristics in mothers and early cocarers show unique 
spike pattern responses to the behaviorally salient pup calls, but not the acoustically matched less salient 
adult calls. (A1, B1) The van Rossum spike train distances between a pup call and the adult call (x-axis) 
plotted against an adult call and its frequency and duration matched adult call (y-axis) for the QBest SUs 
(A1) and the QPoor SUs (B1). Notice that in B1 most of the points from mothers and early cocarers lie below 
the unity line while virgins and cocarers are along the line. This indicates that SUs in mothers and early 
cocarers show greater spike train differences between pup and adult matched calls. Inset shows the pup-
adult call distance divided by the adult-adult call distance. There was a significant difference in this 
distance value between animal groups. (A2, B2) Figures show examples of SUs in each subset with the 
lower raster and PSTH plot showing the response to 18 pup calls, and the upper raster and PSTH showing 
the corresponding response to the 18 adult calls. Black bar indicates the stimulus period.  
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(Fig. 4.13A1, Wilcoxon Sign Rank, W=0, p<0.001). In comparison, the SUs in virgins and 

cocarers were located closer to the unity line (Wilcoxon Sign Rank, W=47, p>0.05). 

Moreover, mothers and early cocarers had a significantly greater pup-adult call distance 

normalized by the adult-adult call distances (Inset, Fig. 4.13A1, Mann-Whitney, U=33, 

NM/EC=14, NV/C=15, p<0.01, 2-tailed). These results further support the idea that unlike 

the well predicted subset of SUs, the QPoor-like subset of SUs are more sensitive to the 

higher order acoustic differences between pup and adult calls, both in their spike 

patterns and in their strength of response.  

These results demonstrates that there is a subset of acoustically faithful cortical 

thin spiking neurons, and also a subset of thick spiking neurons that seemingly encode 

the behavioral relevance of pup vocalizations. Importantly, neurons in the latter group 

in mothers and early cocarers show a preferential response to pup calls, possibly tuned 

to a more subtle acoustic feature of these calls (Fig. 4.13B). Taken together, we 

demonstrate that subsets of neurons in core auditory cortex play different roles in 

representing both the acoustic and perceptually relevant information in natural 

vocalizations. This further supports the idea that hierarchical processing occurs at the 

level of core auditory cortex, and that through pup experience it undergoes plasticity in 

both call-inhibited and –excited neurons, which may functionally enhance an animal’s 

call detection and discrimination.  

 

4.4: Discussion 
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A main conclusion of this work was that diversity in auditory cortical responses 

to sound onsets can be meaningfully sorted according to a computational model of 

peripheral encoding, permitting a principled way of pruning a heterogeneous collection 

of units down to those that may be more likely to represent the perceptual relevance of 

a category of natural communication sounds. Using data collected from awake mice, we 

arrived at this by applying the LIEFTS model of sound pressure integration to predict 

cortical responses (Fig. 4.3). Cortical SUs whose responses to ultrasonic calls were best 

predicted by this model were systematically different from poorly predicted SUs (Fig. 

4.5): the former responded to more calls with earlier and more precise transient onsets 

(Figs. 4.8, 4.9), and had greater sensitivity to the acoustic features of natural call onsets 

(Fig. 4.7). The latter were generally more call-selective, fired later and less precisely (Fig. 

4.8, 4.9), and were not consistently sensitive to sound frequency and amplitude 

envelope (Fig. 4.7). In particular, their first spikes did not closely follow the peripheral 

mechanism for responding to sound onsets, and these SUs were acoustically responsive 

since all showed an excitation to the calls as a whole. Their call responsiveness became 

selectively enhanced for a more salient class of sounds based on experience. This may 

have arisen from higher nonlinearities created de novo by processing within the central 

auditory system, which tuned the neurons into more subtle acoustic features that would 

distinguish this class of communication sounds. Indeed, an obvious difference between 

pup and adult calls is the more modulated frequency trajectory of adult calls after the 

initial onset. Hence, our results suggest that hierarchical processing by the core auditory 

cortex may preserve a peripheral encoding of stimulus onsets within some short latency, 
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thin spike cortical neurons, and construct a more complex acoustic selectivity within 

other neurons depending on behavioral relevance (Fig. 4.11, 4.13). 

 

4.4.1: Model caveats 

First, we used a functional rather than a detailed model of subcortical circuitry 

(Dugue et al., 2010), incorporating only effective excitatory input across frequency 

channels. Inhibition, while not explicitly included, could have contributed as long as it 

did not abolish the excitatory response, and might explain why some observed latencies 

were longer than predicted (Fig. 4.5C). Moreover, interactions between frequency 

channels simultaneously excited by a sound were ignored, since we assumed that only 

the channel centered at a sound’s initial frequency contributed to the cortical neuron’s 

acoustic sensitivities. Our particular class of ultrasonic calls contained single frequencies 

with little frequency modulation, so this “winner-take-all” approach ensured that the 

frequency channel that should respond best had the strongest influence. Indeed, an 

earlier multiunit study in anesthetized mice also using pup calls corroborated that 

auditory cortical spiking on average does not detect the mild frequency modulation in 

these calls (Liu et al., 2006). Nevertheless, while our assumption appeared valid for our 

best predicted SUs, the poorer predictions of some other SUs may have arisen from 

sensitivity to a call’s precise frequency trajectory. Importantly though, this would still 

mark a distinction between how the acoustics of sound onsets drive spiking in QPoor vs. 

QBest SUs.  
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Second, our model was relatively simplistic, but had the advantage of only 

needing to optimize the parameter k to be able to predict FSLs that were significantly 

correlated with experimental FSLs for all SU groups. In implementing the LIEFTS model, 

we have also tried using a multi-step fitting procedure (Heil et al., 2007) to 

simultaneously optimize either k and Lmin, or k, Lmin and τ . While more complex, these 

cases nevertheless produced comparable differences in the physiological properties of 

segregated SUs, thus providing some assurance that our conclusions were not highly 

sensitive to the details of model implementation.  

Third, although incorporating a frequency dependent k(f) accounted for the FSL 

of QBest SUs to the ultrasonic whistles, its validity for predicting either subsequent spikes 

or more complex sound (e.g. noise or multiharmonic calls) responses was not directly 

evaluated. In principle, the LIEFTS algorithm can model hair cell neurotransmitter 

release rate throughout a sound and can be combined with a cochlear filter bank 

(Fishbach et al., 2001; Fishbach et al., 2003). Combinations of central excitation and 

inhibition could then be fitted, creating cortical discharge patterns that could be 

matched to data. Importantly though, these steps were unnecessary to draw the 

conclusions reached here about the distinct, stereotyped properties of QBest SUs. 

 

4.4.2: Classification of thin and thick spike SUs 

Since our QBest SUs all had thin spike waveforms, it is tempting to speculate that 

these map onto a functionally distinct subset of cortical neurons. The idea that cortical 

cell types can be classified at least partly by extracellular spike durations has support. 
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Theoretically, thin spikes may reflect neuronal expression of particular variants of 

potassium and sodium voltage-gated ion channels that help minimize energy 

consumption during rapid spiking (Hasenstaub et al., 2010). Experimentally, 

electrophysiological and morphological traits of thin and thick spike neurons recorded 

intracellularly are clearly different. The latter are often regular-spiking pyramidal or 

spiny stellate neurons that have long after-hyperpolarizations, adapt strongly to 

depolarizing currents, and are found across cortical layers 2-6 (McCormick et al., 1985). 

However, regular-spiking nonpyramidal neurons can also have thicker spikes (Kawaguchi 

and Kubota, 1993, 1997), indicating that some interneurons may be present along with 

pyramidal cells in a population of thick spike SUs. Neurons with thin spikes can 

correspond to either chattering pyramidal cells or fast spiking GABAergic interneurons, 

both of which tend to lie more in supragranular and granular cortical layers (Gray and 

McCormick, 1996; Azouz et al., 1997; Nowak et al., 2003). Between them, fast spiking 

neurons fire more rapidly with very little spike-frequency adaptation during depolarizing 

current injection (McCormick et al., 1985). Chattering neurons produce bursts that give 

rise to a clearly bimodal ISI distribution, during both current injection (Nowak et al., 

2003) and long duration sensory stimulation (Gray and McCormick, 1996). 

Clearly then, intracellular recordings with morphological identifications are 

needed to unequivocally identify thin spike neurons as fast spiking GABAergic 

interneurons, even though this is often assumed to hold for most thin spiking SUs 

(Swadlow, 2003; Atencio and Schreiner, 2008). Hence, some degree of error is possible 

in inferring that our thin spike SUs may be mostly fast spiking interneurons, especially 
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given the comparatively frequent rate at which we encountered thin spike SUs without 

directly targeting them (compare (Atencio and Schreiner, 2008) and (Rose and 

Metherate, 2005) to (Wu et al., 2008)). In fact, in a few instances (4/34 thin spike SUs), 

we did observe bimodal ISI distributions of the type previously associated with 

chattering cells (Gray and McCormick, 1996; Nowak et al., 2003), including the SU 

illustrated in Fig. 4.1B. However, since ISI parameters can depend on the nature of the 

stimulation (Azouz et al., 1997), and our sounds were themselves very brief, this should 

not be taken as definitive evidence for chattering neurons. 

 

Table 4.2: Thin and thick spiking SUs have different characteristics. The table shows the number of thin 
and thick spiking SUs. There were significant differences between the two groups of SUs in the 
spontaneous rate, tuning width, recording depth, FSL per-call, and the FSL per-SU.  
 

 

 

 

In favor of the possibility that our thin spike population might nevertheless be 

dominated by suspected fast-spiking interneurons, we found that the average depth of 

the recording sites for thin spike SUs was significantly shallower than for thick spike SUs 

(Table 4.2), consistent with the expected spatial distribution described above. 

# of SUs 30 21

Spont Rate [spk/s] 10.6 ± 2.0 2.2 ± 0.4

Tuning Width [BF/BW] 1.9 ± 0.1 2.7 ± 0.1

FSL per-call [ms] 22.6 ± 0.8 41.4 ± 1.6

FSL per-SU [ms] 24.3 ± 2.3 45.0 ± 3.2

***

***

***

***

Thin Spks Thick Spks

Depth rel. Surface [um] *484.1 ± 20.5 553.4 ± 18.8
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Moreover, the characteristics of our thin spike SU population (Table 4.2) were in 

agreement with other reports about extracellularly-identified “suspected interneurons” 

(Swadlow et al., 1998; Bruno and Simons, 2002; Atencio and Schreiner, 2008): higher 

spontaneous rate, broader stimulus tuning (to frequency in our case) and earlier 

latencies relative to the thick spike SUs. Note that these differences remained significant 

even if the four SUs with bimodal ISIs were removed from the comparisons in Table 4.2 

(data not shown). Furthermore, although 3 of these SUs fell into the QBest group by 

relative error segregation, these were the longest latency SUs in that group (three black 

circles in center of Fig. 4.9B). Since none were among the intersected QBest group, where 

differences between QBest and QPoor SUs actually became more significant, this further 

supports the possibility that most of our best predicted SUs form one physiologically 

distinct group that may correspond to suspected fast spiking interneurons. 

If the above were true, then we should ask why neurons that more faithfully 

preserve the peripheral nonlinear mechanism for sound onset encoding might convey 

inhibition rather than excitation in the cortex. Speculatively, one answer may be simply 

that purely excitatory scaling with the integrated envelope could be too metabolically 

costly to encode sounds (Hasenstaub et al., 2010), and might also saturate the dynamic 

range of neuronal spiking. Indeed, sparse cortical coding has been hypothesized to be 

enabled by precisely timed inhibition (Wolfe et al., 2010). In addition, work from other 

sensory systems indicates that fast-spiking interneurons relay a feed-forward inhibition 

from the thalamus (Gibson et al., 1999). The best evidence comes from the 

somatosensory cortex of rodents, where fast-spiking interneurons receive strong 



 148 

monosynaptic thalamic input (Porter et al., 2001; Cruikshank et al., 2007) at short 

latencies (Yamamoto et al., 1988; Agmon and Connors, 1992; Welker et al., 1993). 

Furthermore, anatomical analysis of visual cortex also suggests that basket cells 

(thought to be one type of fast-spiking neuron (Kawaguchi et al., 1995)) receive targeted 

albeit sparse thalamic synaptic input (Freund et al., 1985; Ahmed et al., 1997). In 

addition, studies in an auditory thalamocortical slice preparation have found that 

presumed fast-spiking interneurons in layers 1-4 receive relatively short latency 

monosynaptic input upon thalamic stimulation (Rose and Metherate, 2005; Verbny et 

al., 2006). Thus, the fact that our QBest SUs were all thin spiking cells with both shorter 

and more precise latencies suggests that fast-spiking interneurons could be receiving 

direct thalamic input (Fig. 4.14A).  

Do fast-spiking interneurons then serially inhibit excitatory pyramidal cells in 

auditory cortex, as implied by the proposed feed-forward circuit in Fig. 4.14A? This may 

not be the case for all fast-spiking cells. Different types of fast-spiking cells that are 

GABAergic can form unique connections with excitatory cells. This includes basket cells 

that form synapses onto the soma and proximal dendrites (Kisvarday et al., 1985; 

Freund et al., 1986; Freund and Katona, 2007), and chandelier cells that form axo-axonic 

connections (Howard et al., 2005). In particular, the latter have longer sensory-evoked 

latencies, suggesting activation by local cortical circuits rather than thalamic afferents 

(Zhu et al., 2004; Howard et al., 2005). Hence, only a subset of fast-spiking interneurons 

likely conveys direct feed-forward inhibition, which is consistent with our finding that 

only a subset of transient onset, thin spike neurons are QBest. If this direct feed-forward 
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inhibition exists, one prediction would be that the activity of the post-synaptic targets of 

these fast-spiking interneurons should reflect this inhibition. Indeed, in the 

somatosensory cortex, fast-spiking cells generally fire earlier than pyramidal cells 

(Yamamoto et al., 1988; Agmon and Connors, 1992; Welker et al., 1993), probably 

because the former receive stronger monosynaptic excitatory postsynaptic potentials 

(Porter et al., 2001; Cruikshank et al., 2007). However, such a cell-type difference in 

postsynaptic potentials has not been found in auditory cortex (Rose and Metherate, 

2005; Verbny et al., 2006). Consequently, disynaptic inhibition in layer 1-4 auditory 

cortical pyramidal cells elicited by thalamic stimulation in vitro is rarely observed (Rose 

and Metherate, 2005; Verbny et al., 2006), although it can be seen in layer 5 pyramidal 

cells (Hefti and Smith, 2000). On the other hand, in vivo, anesthetized, intracellular 

studies can detect slightly delayed inhibitory inputs that are approximately balanced 

with excitation (Wehr and Zador, 2003; Zhang et al., 2003), but whether this is 

disynaptically driven from thalamic input is not known. Hence, the role of direct 

thalamic feed-forward inhibition in auditory cortex is not so clear. We have on occasion 

observed a brief inhibition of spiking at sound onset before the excitation of a thick-

spike neuron (Fig. 4.14B), demonstrating at least some overt evidence in an awake 

animal for effective feed-forward inhibition in auditory cortex. 

Considering the role of thin and thick spiking neurons more abstractly based on 

our QBest and QPoor results, it may be that the functional role of pyramidal neurons in 

auditory cortex is not simply to represent acoustic features, but to extract so-called 

auditory objects (Ulanovsky et al., 2004). In this case, perhaps the activity of 
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“acoustically-faithful” feedforward inhibition might serve to synchronize different 

pyramidal neurons encoding higher-level features of auditory objects (Bush and 

Sejnowski, 1996). 

 

 

Figure 4.14: The proposed function of QBest SUs. (A) Schematic for the proposed function of well predicted 
SUs (black), a subset of fast spiking inhibitory interneurons in the auditory cortex. We hypothesize that 
these cells are involved in a feed forward thalamocortical inhibition circuit and are disynaptically 
connected to excitatory thick spiking cells. The excitatory cells along with other fast spiking cells that were 
part of the QMid and QPoor groups are in gray. Synaptic inhibition is represented by the line, whereas 
excitation is represented by the arrow. (B) Potential evidence of this hypothesized model is demonstrated 
by SUs 1361 and 1776’s response to pup calls. Both SUs are thick spiking cells based on their peak to peak 
times and shows early inhibition following the onset of the sound (red bar).  

 

 

4.4.3: Relation to prior work on first spike coding 

Our analysis of first spikes contributes to a growing literature on this particular 

feature of the spiking code. There is evidence from the visual (Oram and Perrett, 1992; 

Thorpe et al., 1996) and somatosensory (Johansson and Birznieks, 2004) systems 

suggesting that these spikes carry perceptually and behaviorally relevant information for 
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fast sensory decisions (Thorpe et al., 2001). For audition, the cortical LIEFTS model 

essentially converted the strength of an acoustic stimulus into a first spike timing delay 

by trading quieter sound pressures for longer latencies in QBest SUs (Fig. 4.3A and B). 

Thorpe (1990), proposed exactly this kind of “analog-to-delay” converter as a basis for a 

“rank-order” spike timing based population code (Thorpe et al., 2001). Notably, to 

decode such a representation, a feed-forward shunting inhibitory circuit pooling across 

converging inputs has been suggested (Thorpe, 1990; Thorpe et al., 2001), a role 

potentially filled by the best predicted, putative fast spiking SUs. 

Second, our FSL data for natural calls complemented earlier studies of cortical 

FSL that used simpler synthetic stimuli (pure or frequency-modulated tones and noise 

bursts), carried out mainly in anesthetized preparations (Phillips and Hall, 1990; Heil, 

1997; Heil and Irvine, 1997; Phillips, 1998; Nelken and Versnel, 2000; Fishbach et al., 

2001; Furukawa and Middlebrooks, 2002). While first spikes were generally found to be 

early and precise in those cases, (Ter-Mikaelian et al., 2007)), recently concluded that 

cortical FSLs for BF tones become later and less precise in awake animals (but see (Huetz 

et al., 2009) for an example where overall temporal resolution for discriminating certain 

sounds can become finer). Our data (Fig. 4.3F) was consistent with Ter-Mikaelian (2007), 

since our FSL standard deviations were quantitatively similar to their awake cortical 

data. Interestingly, they found a few neurons (roughly 9/54 = 17%) with short latencies 

<20 ms and high precision <2 ms. Their population PSTH for sinusoidally amplitude-

modulated tones also revealed a strong, distinct spiking contribution in the awake A1 

from short-latency cells. Our results suggest that rather than simply representing 
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variability in cortical responses, these neurons may have corresponded to a 

systematically separable subpopulation of cortical neurons analogous to our QBest SUs.  

Finally, our work extended prior cortical modeling efforts that used selected data 

collected from anesthetized animals (Heil, 1997; Fishbach et al., 2001; Fishbach et al., 

2003; Heil, 2004). In contrast to their focus on responses with prominent onsets, we did 

not preselect response types, requiring only an excitatory response from which we 

could extract first spikes. This led us to conclude that most cortical SUs in awake animals 

actually have responses to sound onsets that are not well described by the nonlinear 

envelope integration mechanism at work in auditory nerve fiber firing (Heil et al., 2008; 

Neubauer and Heil, 2008). This could be considered either trivial because of the high 

number of intervening processing stages, in which case the success for the best 

predicted SUs is surprising, or unexpected because of this mechanism’s success in 

anesthetized animals (Phillips and Hall, 1990; Heil and Irvine, 1997).  

 

4.4.4: Implications for hierarchical processing 

The fact that QBest SUs in the auditory cortex preserve the peripheral mechanism 

for sound onset integration suggests that neurons in earlier auditory stations should 

show a similar encoding of sound onsets. In particular, the presence of strong transient 

responses has been documented subcortically in both anesthetized (Pfeiffer, 1966; 

Rhode and Smith, 1986b, a; Blackburn and Sachs, 1989; Syka et al., 2000; Woolley and 

Casseday, 2004; Zheng and Escabi, 2008) and non-anesthetized preparations (Pollak et 

al., 1978; Shofner and Young, 1985). However, classifying neurons solely by their onset 
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PSTH may not be equivalent to identifying QBest neurons because discharge patterns can 

change depending on acoustic stimuli (Pfeiffer, 1966; Pollak et al., 1978; Wang et al., 

2005). In fact, we found onset components to call responses even among non-QBest SUs 

(Fig. 4.9B), as well as sustained components for some stimuli among QBest SUs (e.g. Fig. 

4.3C and 4.6D). Thus, future studies could benefit from classifying auditory neurons by 

their expected (i.e. modeled) transformation of sounds instead of their stimulus-specific 

PSTH. This may provide a more consistent taxonomy that reflects the neural sensitivities 

to acoustic features like sound amplitude.  

Functionally, QBest and QPoor SUs differed in their sound encoding and in principle 

might be distinct neuronal groups at the same level of cortical processing (e.g. different 

pyramidal cells). In particular, QBest SUs may preserve the peripheral mechanism to 

sound onsets, whereas QPoor SUs may represent subsequent acoustic modulations or 

non-auditory information such as the sound’s behavioral relevance. This difference 

could relate to the stimulus-synchronized and non-stimulus-synchronized neurons 

reported in the awake marmoset auditory cortex (Lu et al., 2001). However, results from 

our spike waveform analysis argue strongly against a parallel representation by the 

same cell type. Instead, by utilizing this forward model, we found a set of QBest SUs, 

which were all thin spiking neurons with earlier and more transient first spike responses 

that may instead be a hierarchically different class of neurons from those in the later-

firing, call-selective QPoor group.  

Indeed, by using the call response characteristics of the QPoor subset as a 

template for selecting similar neurons from the heterogeneous population recorded, we 
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demonstrated that thick spiking neurons, which were least faithful to a peripheral sound 

encoding in mothers and early cocarers, had an increased response to pup calls 

compared to acoustically matched adult calls. This suggests that acquiring the 

significance of a class of communication sounds engaged the auditory cortex in a way, 

which selectively enhanced those sounds’ representation. How is this enhancement 

achieved? Using the van Rossum metric, we found that these neurons were selective for 

more complex acoustic features which must distinguish pup from adult calls, such as the 

calls’ precise frequency trajectories. This was not the case in virgins and cocarers. This 

suggests that in core auditory cortex, pup experience has reshaped the encoding of pup 

calls so that the acoustic features which can better discriminate the more salient sound 

class (pup calls) from the less salient one (adult calls) are being “learned”.  

 Plasticity is a well-studied phenomenon in the adult auditory cortex. Certainly, by 

training an animal to either detect or discriminate specific acoustic features, the 

auditory cortex undergoes changes that correlate with the most behaviorally salient 

features (Wetzel et al., 1998; Ohl et al., 1999; Beitel et al., 2003; Polley et al., 2006; van 

Wassenhove and Nagarajan, 2007). Our findings now demonstrate how natural 

communication experience can change the sensitivity of a distinct subset of single 

neurons in the auditory cortex to the defining acoustic features that facilitate the 

recognition of pup calls. 

 The results here begin to bridge our understanding of plasticity and its role in the 

processing of natural communication sounds. Species-specific vocalizations are an 

important class of signals because of its roles in a variety of social interactions. A 
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number of studies have demonstrated that neurons in the auditory cortex are 

combination sensitive and can differentially respond to a species-specific call over its 

time-reversed version (Wang et al., 1995; Wang, 2000; Wang and Kadia, 2001). How 

these differences arise though is unclear, as they could be innate or the result of 

auditory experience during development. In addition, it has been argued that this 

response asymmetry is not evidence for call selectivity, as training ferrets with these 

vocalizations does not lead to the same results (Schnupp et al., 2006). Instead, it is 

suggested that call specificity occurs at higher order cortical areas (Rauschecker and 

Tian, 2000), but how this representation is facilitated by core areas is not yet clear. Our 

results here provide some answers to these questions. We suggest that neurons in the 

auditory cortex are not call-specific in their responses, but instead through experience, 

change to encode the acoustic features that represent the most behaviorally salient 

parts of the sound. We hypothesize that this change at the level of primary auditory 

cortex facilitates the downstream encoding of sounds as acoustic objects, and that this 

subset of neurons are involved in the core to non-core auditory cortical transformation 

of the acoustic features to its behavioral recognition.   
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CHAPTER 5 

CONCLUSION 

5.1: Summary 

 Our acoustic environment is incredibly complex, providing a diversity of sounds 

to characterize the world around us. From the hum of the computer, to the ring of an 

alarm, our auditory system facilitates the processing of these sounds to mediate the 

appropriate response. Communication is a critical part of this, but how we transform 

speech sounds from their acoustic structure to their behavioral meaning remains 

unanswered. The goal of this dissertation was to begin addressing this question by 

investigating how changes in the behavioral relevance of a communication sound alter 

the neural representation. We hope that by developing an understanding of these 

changes, we can then create a framework to explore how the auditory cortex 

functionally contributes to sound recognition and behavior.  

 To study the above question, we recorded neural activity from awake-restrained 

mice and utilized an ultrasonic communication system between mouse pups and adult 

females. Comparing the SU and LFP responses in animals that either do (mothers) or do 

not (pup-naïve virgins) recognize pup ultrasounds, we found greater call-evoked 

inhibition in mothers. Importantly, this difference was most apparent for recording sites 

whose preferred frequency was lower than the pup calls’ high-ultrasonic frequency 

range.  
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What then could be the functional consequence of these results? Recall that in 

section 1.1.2, we discussed that the mouse auditory cortex was spatially distinct in its 

frequency responsiveness. This implies that neurons with their BFs in the call frequency 

range may be clustered together, whereas those neurons with much lower BFs may be 

located in a different region of auditory cortex. Given this, our results suggest that the 

greater call-evoked inhibition in neurons tuned to frequencies lateral to the pup call 

range acts to enhance the contrast in the spatial representation of pup calls. This finding 

of inhibitory plasticity in the “lateral band” is unique in its idea, as past studies of 

auditory plasticity have mostly demonstrated an enhancement of the excitatory 

responses to a trained target frequency (Weinberger and Diamond, 1987; Bakin and 

Weinberger, 1990; Fritz et al., 2003). Thus, in this natural communication system, we 

hypothesize that the change in the calls’ behavioral relevance leads to an enhanced 

representation in the auditory cortex that facilitates downstream areas in the detection 

and discrimination of the pup calls. 

 The results in chapter 2 raised a number of important questions, one of which 

was how pup experience and/or maternal physiological state would affect inhibitory 

plasticity. Pregnancy, parturition, and lactation can lead to distinct physiological changes 

in the mother, and while experience and learning are known to be correlated with 

auditory cortical plasticity, how the intrinsic state of the animal interacts with this 

experience is less well understood. To address this, we recorded from cocarers, a group 

that has had pup experience and recognize pup calls as behaviorally relevant (Ehret, 

1982; Ehret et al., 1987). Looking primarily at neurons in the auditory fields with 
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frequencies lateral to the pup call range (A1 and AAF), we found that cocarers were 

more similar to virgins in their features of call-evoked inhibition. This might lead one to 

suppose that pup experience alone does not play a role in inhibitory plasticity. However, 

two specific studies made us  question this conclusion. The first is based on a study 

demonstrating that while post-weaned cocarers and mothers could behaviorally 

recognize calls, mothers, but not cocarers continued to show call recognition behavior 

one month later (Ehret, 1989). The second is the fact that isolated pups stop emitting 

ultrasound calls by post-parturition day 13, approximately nine days prior to the start of 

our recordings (Hahn et al., 1998). In particular, the former study suggested that 

experience induced changes may decay over time in the cocarer. This motivated us to 

record from a group of early cocarers (post-parturition 9-11) and target SUs in A1 and 

AAF to look at their lateral band inhibition. From this, we found that early cocarers 

showed call-inhibited responses more similar to mothers. These results allowed us to 

revise our previous conclusion to suggest that pup experience indeed could result in 

cortical plasticity, but that maternal physiological state plays a role in retaining this 

plasticity long after the pups have stopped vocalizing.  

 This new finding led us to explore two additional questions: first, what 

mechanism might help maintain inhibitory plasticity in the mother, and second, whether 

this plasticity correlated with call recognition behavior. To answer the first, we 

discovered that unlike any of the virgin animal groups, mothers showed lower 

spontaneous activity in their call-responsive neurons. Importantly, we did not find these 

same differences when looking at neurons responsive to synthetic pure tones. This 
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suggested that the change in spontaneous firing was selective only for those neurons in 

the mother that responded to behaviorally relevant pup calls, leading us to hypothesize 

that this may be related to the maintenance of cortical plasticity. In support of this, 

recent modeling studies in the lateral amygdala demonstrated that low spontaneous 

rates can help to preserve plasticity through decreased Hebbian synaptic weakening (Li 

et al., 2009). Thus, our results suggest that the maternal physiological state may 

promote the long-term maintenance of synaptic plasticity, and that decreasing the 

spontaneous activity of call-responsive neurons mediates these changes.  

These results led to our second question, which was to understand whether this 

cortical plasticity correlated with call recognition behavior. We addressed this in chapter 

3 by using a two-alternative choice test. Here, we designed a novel closed loop feedback 

behavioral test with two servo-controlled doors. This provided us with the ability to 

remotely control the position of the animal during sound playback, and the exact time 

at which playback would stop. During each test, we placed two speakers at opposing 

ends of our W-maze apparatus, with one playing back pup calls, and the other a neutral 

tone sequence. Based on the number of approaches towards the pup call speaker and 

the time spent searching the maze following playback, we found that both mothers and 

early cocarers showed call recognition behavior, but late cocarers did not. Thus, our 

cortical inhibitory plasticity results correlated with call recognition behavior.  

 Given this correlation, we speculate that preserving lateral band inhibitory 

plasticity has functional benefits for the mother. A number of studies have shown that 

the physiological changes associated with motherhood contribute to the consolidation 
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of long-term maternal behavior (Bridges, 1975; Scanlan et al., 2006). In addition, both 

primiparous (1 litter) and multiparous (>1 litter) mothers show an improvement in 

memory task performance long after pup weaning, when compared to their virgin 

counterparts (Kinsley et al., 1999; Gatewood et al., 2005; Love et al., 2005; Lemaire et 

al., 2006; Pawluski et al., 2006; Macbeth et al., 2008). Therefore, we hypothesize then 

that the retention of these cortical changes facilitates the rapid induction of future 

maternal behavior by improving the detection or discrimination of pup calls. 

Much of the work in chapters 2 and 3 looked primarily at call-evoked inhibition; 

however, this is obviously only part of the story. Although we did not find changes in the 

overall call-excited responses (see Chapter 2), we cannot ignore the possibility that our 

initial approach may have failed to uncover more subtle changes. In the auditory cortex, 

the stimulus evoked spiking of excited neurons showed a myriad of different response 

characteristics. This includes onset, offset, sustained, and any combination of the three. 

Due to this variability, we began by studying a small piece of this puzzle – how excited 

neurons encode natural sound onsets in the hopes that systematic differences in this 

might distinguish different types of neurons. 

Auditory cortical neurons can encode different aspects of acoustic information. 

This varies from the acoustically faithful to the more complex context-dependent 

representation of a sound. To segregate the diversity in excitatory neural responses, we 

started with the idea that complexity in the neural representation increases at higher 

stages of auditory processing (Ahmed et al., 2006; Atencio et al., 2009). However, 

studies in the anesthetized auditory cortex demonstrated that even at the level of 
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cortex, there are neurons that encode sound onsets similar to the auditory periphery 

(Heil and Irvine, 1997). Thus, to understand how natural sound onsets are encoded in 

the auditory cortex, we utilized a previously described physiological model of the 

auditory nerve fiber’s encoding of acoustic structure.  

Applying this model, we identified a group of acoustically faithful (well-

predicted) cortical neurons, and another that showed more nonlinear or unpredicted 

responses to the pup calls (poorly predicted). Interestingly, for the group of well-

predicted neurons, the animal groups showed no overall differences in their response to 

pup and adult calls, two classes of sounds that are acoustically similar but distinct in 

their behavioral meaning. In contrast, for the most poorly predicted neurons which may 

be higher in the processing hierarchy, mothers and early cocarers showed distinct 

differences in their excitatory responses to pup and adult calls compared to cocarers 

and virgins. Thus, our data suggests two things: first, that there is a subset of neurons 

that preserve the peripheral encoding of natural sound onsets, and second, that a 

different subset of neurons distinct in their call response properties can selectively 

enhance their encoding of a sound class when it gains behavioral relevance.  

 In this dissertation, we set out to understand how auditory cortical neurons 

encode behaviorally relevant communication sounds. Using the mouse ultrasonic 

communication system, this thesis is the first to describe how auditory cortical neurons 

in the awake-restrained mouse encode pup vocalizations. In doing so, we have created a 

framework that will allow us to study in more depth the functional purpose of inhibitory 
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and excitatory plasticity, how this coding is affected by the maternal physiological state, 

and how it contributes to sound recognition and behavior.  

 

5.2: Future Directions 

The work in this dissertation has opened the door to a number of new questions 

that need to be addressed for us to approach a more complete understanding of how 

the auditory cortex translates acoustic features into meaning, and how it uses this to 

promote behavioral action. Specifically, we want to understand exactly how the 

auditory cortex encodes pup vocalizations that lead to pup retrieval behavior, and how 

specific maternal hormones affect experience dependent plasticity.  

One of the first questions that stems from this work is whether our results are 

involved in auditory processing during active behavior in a single animal. In order to 

study this, we need the ability to record from freely behaving mice. I have begun to 

solve this problem by designing a working prototype for a chronic electrode implant that 

can record SUs, MUs, or LFPs (see Appendix D). Using the prototype, we tested its long 

term recording feasibility by implanting a virgin female mouse and recording SU 

responses for 35 days. Figure 5.1 shows two recorded SUs that have similar tuning 

curves, but actually respond to the frequency tones in opposing ways. With this implant, 

we were able to record two different SUs from the same electrode 20 days apart, and 

up to 30 days after surgery.  
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Figure 5.1: SU recordings taken from implanted electrode microdrive system. (A) Two SUs were recorded 
20 days apart from the same implanted electrode and the black and red traces show examples of a single 
spike train response to a frequency tone. (B)The tuning curves for each SU, where the top unit (black 
trace) was excited by tone frequencies, and the bottom unit (red trace), was inhibited by the tone 
frequencies. (C) Shows the ISI of the spikes recorded during the tone frequency playback, which included 
a total of 40 frequencies and 600 trials with each trial having a 600 ms long recording length. Notice that 
there are no spikes in the 0-2ms bins for both units.  

 

 

The idea then is to combine the electrode microdrive implant with our design of 

the closed loop behavioral paradigm in chapter 3 to explore how neurons encode pup 

calls during recognition behavior. This will inevitably provide us with more insight as to 

how neurons encode pup calls during passive and active behavior so that we might 

better understand how the auditory cortex processes sounds at the single neuronal 

level. A second question that stems from this work is the functional purpose of greater 

call-evoked cortical inhibition. While we have hypothesized a model of greater call-

evoked inhibition to facilitate pup call detection, its functional purpose needs to be 

tested. The question then is whether call recognition behavior correlates with 

suppression in A1 and AAF relative to UF. For example, we could approach this by 

implanting electrodes across UF, A1, and AAF, and then testing the call recognition 
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behavior of the animal in a background noise. By varying the intensity of the background 

noise, there is presumably a point at which the mothers and early cocarers begin to 

perform the call recognition task at chance levels. With the implanted electrodes, we 

can compare the activity across auditory fields in the low versus high intensity noise 

task, and correlate the suppression activity across fields with behavioral performance.  

 A third question we can now address with a working chronic electrode implant is 

how the cortical plasticity is either retained or lost over time. In chapter 3, we 

demonstrated that SUs show stronger call-inhibited responses early in their pup 

experience, but decays to pup-naïve virgin levels following pup weaning. By using the 

chronic electrode implant, there is the opportunity to place several electrodes in a virgin 

prior to pup experience to investigate how the cortical responses to calls change over 

time. This should bring to light when the changes occur and disappear, and by using the 

behavioral experiment, we can test whether the magnitude of these changes correlate 

with call recognition performance.  

 Associated to this, a fourth question is whether changes in cortical inhibitory 

plasticity in cocarers is a result of its gonadal hormones. To address this, we should 

perform electrophysiology and behavior experiments in two groups of cocarers: 

ovariectomized (OVX) and OVX with hormone replacement. Ovariectomy is the removal 

of the ovaries and results in the loss of gonadal hormones such as estrogen and 

progesterone. While an OVX cocarer can still perform maternal behavior (Stolzenberg 

and Rissman, 2011), it is unknown how this might affect the auditory cortical processing 

of pup calls. Thus, if the OVX cocarers show similar changes in call-evoked inhibition at 
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the early (P9-11) and late (P21-35) time points, then we can conclude that these cortical 

changes are a result of only pup experience.    

 A fifth question deals with understanding how the maternal physiological state 

contributes to the long-term retention of cortical plasticity. In chapter 3, we had 

proposed that the dopaminergic system interacts with the maternal physiological state 

to play a role in this consolidation. To test this hypothesis, one possibility is to implant a 

cannula over the auditory cortex for the application of dopamine antagonists. In this 

case, a mother could be given a dopamine antagonist during pup experience and then 

recorded at post-weaning to test if its strength of call-evoked inhibition is more similar 

to cocarers. This would help to suggest the role that dopamine plays in the long-term 

consolidation of auditory cortical plasticity. 

 A sixth question we should further explore is how sounds are encoded at 

different stages of the auditory pathway. One idea is that as information progresses 

along the auditory system, the subcortical structures encode a greater amount of the 

acoustic information, but higher order areas (e.g. secondary auditory areas) increasingly 

respond selectively. By recording neurons and their responses to tones and 

vocalizations, we can ask whether lower areas, such as the inferior colliculus show a 

greater proportion of acoustically faithful neurons, while higher order areas, such as DP 

or A2 show a greater proportion of neurons encoding the behavioral relevance. Through 

this, we can begin to understand how the ascending auditory system encodes sound and 

how each stage represents and extracts acoustic information. Together, these future 

studies can help uncover how the auditory cortex changes when the relevance of a 
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sound changes, and its functional purpose in driving behavior. In addition, it will further 

reveal how the internal physiological state during sound experience influence this 

cortical plasticity. 
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APPENDIX A 

A.1: Experimental Animals 

Experiments were carried out on CBA/CaJ female mice, all between 14 and 24 

weeks old. For both electrophysiological and behavioral experiments, four different 

groups of female mice were used: virgins, cocarers, early cocarers, and mothers. Virgins 

are female mice that have had no contact with pups and no breeding experience. In 

contrast, cocarers are virgin mice that have had the same amount of pup experience as 

a mother. Both cocarers and mothers are mice that have had 21 days of pup experience 

and tested within 2 weeks of pup weaning. Early cocarers are animals tested following 6 

days of pup experience. Animals were housed under a reversed light cycle (14 hours 

light/10 hours dark), had access to food and water ad libitum, and were tested during 

their dark cycle, corresponding to the active period for mice. A total of 13 mothers, 14 

cocarers, 6 early cocarers, and 14 virgins were used for electrophysiology. A total of 13 

mothers, 13 cocarers, and 7 early cocarers were used for behavior experiments.  

 

Table A.1: Animal list used for chapter 2. 
 

Animal Group Animal Group 

E06081002A Mother E06111301A Virgin 

J07012301A Mother E06120301A Virgin 

J07012302A Mother E06120303A Virgin 

J07012302B Mother E06120304A Virgin 

J07012303A Mother E06120304B Virgin 

J07012305C Mother E06120305A Virgin 

J07012306C Mother E08060804A Virgin 

  J07012303C Virgin 
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Table A.2: Animal list used for chapter 3. 

 
Electrophysiology 

  

        
Behavior 

Animal Group Animal Group 

 

Animal Group 

J07012302B Mother E09012903A Early Cocarer 

 

E411010401B Mother 

J07012302A Mother E09033103A Early Cocarer 

 

E311011401A Mother 

J07012301A Mother E09060903A Early Cocarer 

 

E711010702A Mother 

J07012306C Mother E09060306A Early Cocarer 

 

E311011403B Mother 

E08053002A Mother E09061803A Early Cocarer 

 

E311020601A Mother 

E08091401A Mother E09062303A Early Cocarer 

 

E311011501A Mother 

J07012305C Mother E06111301A Virgin 

 

E311030202B Mother 

E08060601B Mother E06120305A Virgin 

 

E411030701A Mother 

E09081201A Mother E06120304A Virgin 

 

E411031503A Mother 

E09081202A Mother E06120303A Virgin 

 

E311031503A Mother 

E06081002A Mother E06120301A Virgin 

 

E411032003B Mother 

J07012303A Mother E06120304B Virgin 

 

E411042401B Mother 

E08042401A Mother J07012303C Virgin 

 

E411050501A Mother 

E08021802A Cocarer E08060804A Virgin 

 

E711010704A Cocarer 

E08031702A Cocarer E08082801A Virgin 

 

E411010403B Cocarer 

J07012305A Cocarer E08082901B Virgin 

 

E311030203B Cocarer 

E07112104A Cocarer E08082802A Virgin 

 

E311031505A Cocarer 

J08040802A Cocarer E09091901A Virgin 

 

E411030703A Cocarer 

E07040402A Cocarer E09092202A Virgin 

 

E411031504A Cocarer 

E07041603A Cocarer E09092201A Virgin 

 

E411031505A Cocarer 

E07050701A Cocarer     
 

E311031504A Cocarer 

E08031002A Cocarer     
 

E411032005B Cocarer 

E08102001A Cocarer     
 

E411040302A Cocarer 

E08102003A Cocarer     
 

E411041802B Cocarer 

E07112904A Cocarer     
 

E411050502A Cocarer 

E08030402A Cocarer     
 

E411032403A Early Cocarer 

E08022702B Cocarer     
 

E411040304B Early Cocarer 

        
 

E411040702A Early Cocarer 

        
 

E411041803A Early Cocarer 

        
 

E411041904A Early Cocarer 

        
 

E511042104A Early Cocarer 

        
 

E411043003A Early Cocarer 
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Table A.3: Animal list used for chapter 4.  
 

Animal Group Animal Group Animal Group 

E07050701A Cocarer E08042401A Mother E06120303A Virgin 

E08021802A Cocarer E08053002A Mother E06120304A Virgin 

E08022702B Cocarer E08060601B Mother E06120304B Virgin 

E08030402A Cocarer E08091401A Mother E06120305A Virgin 

E08031002A Cocarer J07012302A Mother E08060804A Virgin 

E08031702A Cocarer J07012303A Mother E08082801A Virgin 

E08102003A Cocarer J07012306C Mother E08082802A Virgin 

J07012305A Cocarer   E08082901B Virgin 

J08040802A Cocarer   J07012303C Virgin 

 

 

A.2: Surgery 

Aseptic surgery was performed to stereotaxically define a recording grid over the 

left auditory cortex and implant a head post. Animals were first anesthetized using 

Isofluorane (2-5%, with O2), and then placed on a heating pad (Harvard Apparatus, 

Holliston, MA) set to 37°C. The animal’s head was secured using a sliding nose clamp in 

a stereotax (Model 900, David Kopf Instruments, Tujunga, CA), and hair on the top of 

the head was removed with Nair. After applying lidocaine jelly (5%) along the midline of 

the head, an incision was made and Schwartz vessel clips (World Precision Instruments, 

Sarasota, FL) were used to expose the skull. Using a periosteal elevator, the left 

temporal muscle was separated from the skull to access the AC, and then the positions 

of Bregma and Lambda were stereotaxically measured. The angle of the head was 

adjusted until both points were at the same height. Using the coordinate positions of 

Bregma and Lambda, a 5 column by 3 row recording grid (Fig. A.1) was marked onto the 

skull using a stiff wire mounted on a stereotaxic manipulator. The wire applied India Ink 
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to the skull to make dots that were ~100um in diameter. The columns were located at 

50% to 90% of the Bregma-Lambda distance (~3.8 mm to 4.6 mm), measured from 

Bregma in 10% steps, while the rows were defined as 1.5, 2.0 and 2.5 mm below 

Bregma.  

 

 

Figure A.1: Auditory Cortex Grid. Figure demonstrates the location of the 5 column x 3 row grid over the 
left AC relative to Bregma and Lambda.  

 

 

Following the placement of the recording grid, a flat-head machine screw was 

inverted and placed on the midline equidistant from Bregma and Lambda, secured using 

a UV-cured dental cement (MaxCem Kerr, Orange, CA). In addition, two inverted, flat-

head bone screws (Small Parts, Miramar, FL) were placed ventral rostral and ventral 
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caudal to the recording grid. A thin layer of dental cement was then spread over the grid 

and other exposed areas of skull, and the incision was sutured.  

After surgery, the animal’s behavior was monitored and Buprenorphine (0.05 

mg/kg) was administered once it began to awaken. Electrophysiology recordings began 

after two days of rest, at which point their weight and activity levels returned to normal. 

If the animal’s weight decreased by more than 15% of its pre-surgery body weight, it 

was no longer used for recordings.  

 

A.3: Electrophysiology 

 During electrophysiology, the recording electrode was connected to a RA16AC 

high impedance headstage, which fed to a RA16PA medusa preamplifier (Tucker Davis 

Technologies).  An 18-pin DIP connector was pre-soldered to connect to the RA16AC 

headstage connector with channel one connected to the recording electrode, and 

channels 2-16 soldered together with the ground terminal. Then, the entire DIP 

connector was covered with silicone to act as an electrical insulator. Both the RA16AC 

and the connected DIP were attached to a micromanipulator with a hydraulic microdrive 

prior to each recording session. 

On the day of recording, the animal was first re-anesthetized with isofluorane 

and the head was secured using the stereotax. Holes (approximately 150 um in 

diameter) were drilled with an insect needle held by a pin vise (Fine Science Tools, 

Foster City, CA) in places previously marked by the recording grid. In addition, a hole for 

the ground wire was drilled in the left frontal cortex. Two hours after recovering from 
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this procedure, the animal was handled for 10 minutes and then placed into a 

homemade cylindrical (~3 cm diameter) restraint device. This plastic tube restraint was 

lined with foam in order to secure the animal’s body while the head remained exposed 

(Fig. A.1). The animal was then suspended by rubber bands held by two metal bars on a 

vibration-isolation table in an anechoic chamber (Industrial Acoustics, New York, NY, 

USA). The animal’s head was immobilized by placing the implanted screw in a 

restraining post positioned at approximately 45 degrees with its right ear 11 cm from a 

speaker. Each recording typically lasted 3-4 hours, and excessive movement or signs of 

stress signaled the end of an experiment.  

 Electrophysiological recording locations were stereotaxically targeted by a grid of 

holes over the left auditory cortex, covering mainly UF, A1, AAF (Galindo-Leon et al., 

2009). Prior to inserting the recording electrode, a ground wire (stainless steel, 127 um 

diameter), was placed approximately 0.5-1 mm deep into the left frontal cortex.  Then a 

6 MΩ Tungsten electrode (FHC, Bowdoin, ME) was secured in a micromanipulator 

(World Precision Instruments), and positioned orthogonal to the AC. It was first 

advanced manually to ~200 um from the drilled hole, and then moved further using a 

hydraulic microdrive (FHC), while monitoring the activity on a computer speaker. The 

electrode was advanced at 10 um/s until there was change in the background noise 

level, which occurs when the electrode touches the cortical surface. This point was 

defined as the reference depth, and then the electrode was advanced quickly to 700 um 

depth at 500 um/s to minimize cortical dimpling. All recordings were located between 

300 and 700 um relative to the reference depth (layers 3, 4 and 5, see supplemental 
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figure from Rothschild et al., 2010), and the average depth of all SU recordings was 536 

um.  

 At each recording site, SUs and LFPs were co-recorded from the same electrode. 

Single units were isolated by moving the electrode towards the cortical surface in 5 um 

steps until the signal to noise level of the action potential was optimized. In BrainWare 

(Tucker Davis Technologies, Alachua, FL), spikes were detected using positive and 

negative thresholds, high-pass filtered at 300 Hz, low-pass filtered at 6 kHz and sampled 

at 24 kS/s. In addition, LFPs were high-pass filtered at 2 Hz, low-pass filtered at 300 Hz, 

and notch filtered at 60 Hz.  

 

A.3.1: Single neuron extracellular recording 

 During the recording session, SUs were determined in BrainWare based on a 

number of characteristics in their action potential waveforms and spike times. Isolation 

of the SU was based on the absence of spikes during the absolute refractory period 

(within 1 ms), and on a cluster analyses of its various spike features (first vs. second 

peak amplitudes, vs. peak-peak times, vs. trigger-trigger times, vs. peak-trigger times, 

and vs. spike area). Figure 4.1A-D shows four different SUs with different signal to noise 

levels (4.1A1-D1), action potential shapes (4.1A2-D2), and the corresponding interspike 

intervals (4.1A3-D3). The insets in figures 4.1A3-D3 demonstrate the absence of spiking 

during a refractory period. In several cases, multiple SUs were recorded at one location 

and could be extracted by clustering based on spike features in BrainWare.  

 



 174 

A.3.2: Local field potential recording 

At each SU location, an LFP was recorded simultaneously. Offline, the signals 

were then despiked by deleting a -0.5 to 4 ms window around each spike and replacing 

it with a spline-interpolated signal, decimated (keep every 24th point), and low pass 

filtered (Parks-McClellan optimal equiripple FIR filter, transition band between 90 and 

100 Hz) forward and backward to eliminate traces of action potentials without 

introducing phase delays (Galindo-Leon and Liu, 2010).  

 

A.4: Single Unit IDs for QBest and QPoor-like Neurons  

Table A.4: SUnitID list used for section 4.3.4.  
 

Group SUnitID SU Group 
 

Group SUnitID SU Group 

Mother 1415 QPoor 
 

Virgin 1789 QPoor 

Mother 1720 QPoor 
 

Virgin 1760 QPoor 

Mother 1727 QPoor 
 

Virgin 1005 QPoor 

Mother 1728 QPoor 
 

Virgin 1758 QPoor 

Mother 1378 QPoor 
 

Virgin 1687 QPoor 

Mother 1498 QPoor 
 

Mother 1381 QBest 

Mother 1740 QPoor 
 

Mother 1412 QBest 

Mother 1916 QPoor 
 

Mother 1743 QBest 

Mother 1370 QPoor 
 

Mother 1745 QBest 

Mother 1738 QPoor 
 

Mother 1513 QBest 

Mother 1739 QPoor 
 

Mother 1918 QBest 

Early Cocarer 1861 QPoor 
 

Early Cocarer 1906 QBest 

Early Cocarer 1856 QPoor 
 

Early Cocarer 1886 QBest 

Early Cocarer 1901 QPoor 
 

Cocarer 1403 QBest 

Cocarer 1804 QPoor 
 

Cocarer 1805 QBest 

Cocarer 1662 QPoor 
 

Cocarer 1695 QBest 

Cocarer 1821 QPoor 
 

Cocarer 1823 QBest 

Cocarer 1592 QPoor 
 

Cocarer 1594 QBest 

Cocarer 1590 QPoor 
 

Cocarer 1636 QBest 

Cocarer 1598 QPoor 
 

Cocarer 1644 QBest 

Cocarer 1697 QPoor 
 

Cocarer 1652 QBest 

Cocarer 1699 QPoor 
 

Cocarer 1698 QBest 

Virgin 1679 QPoor 
 

Cocarer 1601 QBest 

Virgin 1772 QPoor 
 

Virgin 1773 QBest 
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APPENDIX B 

B.1: Acoustic Stimuli 

During both electrophysiological and behavioral experiments, pure tone 

frequencies and natural pup vocalizations were played back to the animals. To present 

sound stimuli, the output from the digital-analog converter (sample rate of 223214.2857 

samples/s), was passed through a PA5 programmable attenuator to an SA1 stereo 

amplifier module. The sound delivery system was calibrated by TDT software using a 

Brüel and Kjær (B&K, Norcross, GA, USA) 1/4" free-field microphone coupled to a B&K 

2669 preamp and 2690 amplifier. Stimuli were generated using Tucker-Davis 

Technologies (TDT, Alachua, FL, USA) System 3 hardware and software and presented 

through the BrainWare application via modules programmed in the RPvdsEx 

environment.  

 

B.1.1: Tones 

For the electrophysiological recordings, auditory responses were located using 

pure tone frequencies. Tones were played at 60 dBSPL for 60 ms and had 10 ms cos2 

onset and offset ramps. To derive frequency response curves, 40 different tones 

logarithmically spaced ranging from 6.4 to 95 kHz were presented randomly every 600 

ms and repeated either 5 or 15 times. If a SU had an excitatory response to tones and a 

BF could be defined, a tonal rate level function was derived by playing the SUs BF 
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frequency from 30 to 70 dBSPL. The tones were presented in increments of 10 dBSPL, 

and repeated 10 times per amplitude in a blocked format.  

Tones were also used during ABRs to assess an animal’s threshold of hearing. 

Stimuli were generated using TDT SigGenRP software and presented through a  

speaker placed 11 cm away from the right ear of the anesthetized animal. Pure tones 

(20 and 64 kHz) of 3 ms in duration with 1.5 ms rise/fall times were presented at a rate 

of 21 Hz 500 times in 5 dB steps. In addition, clicks with a duration of 0.5 ms were 

presented at a rate of 19 Hz. These tone frequencies were chosen to span the previously 

reported audible and ultrasonic ranges of CBA/CaJ hearing (Liu et al., 2003; Radziwon et 

al., 2009). 

 

B.1.2: Natural sounds 

Eighteen pup and adult vocalizations were drawn for playback (Liu et al., 2003) 

from a library of natural ultrasonic CBA/CaJ vocalizations (Fig. B.1). Sound snippets were 

high pass filtered in software (25 kHz corner, 8-order Butterworth filter, butter, 

MATLAB), spectrally denoised (Liu et al., 2003), and then Hilbert transformed to extract 

the instantaneous frequency and amplitude envelope. These were used to re-synthesize 

a clean version of each pup call on a silent background, multiplied by a 0.5 ms cos2 onset 

and offset function, and scaled to a target RMS amplitude corresponding to 65 dBSPL. A 

maximum of fifty trials (600 ms long) of each pup call along with a blank stimulus were 

presented in random order, with sound onset usually beginning at 200 ms after trial 
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onset. Occasionally, a SU drifted sufficiently in amplitude that it could no longer be 

isolated, in which case the call stimuli were terminated with fewer trials. 

 

B.1.3: Behavioral stimuli 

For the behavioral experiments, two different stimuli were used in the two 

alternative choice test. This consisted of the mouse hearing alternating bouts of 2-5 

randomized pup calls and randomized tones separated by one second of silence. The 

pup calls were chosen from four different vocalizations (calls 7, 10, 13 and 16, see figure 

B.1) with a RMS amplitude of 70 dBSPL measured at the nest depression. These four 

calls varied in both frequency (65, 71, or 74 kHz), and duration (35 or 55ms). In addition, 

the opposing speaker played a bout of pure tones (5ms cos2 onset and offset function, 

55 dBSPL at nest depression) that also varied in frequency (19, 20, or 21 kHz), and 

duration (35 or 55ms) to match the stimulus variability in our pup call stimuli.  
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Figure B.1: Acoustic structure of pup and adult calls. (A) Illustration of the pup call stimuli amplitude 
envelopes (top row), and their frequency spectrograms (bottom row). The calls are ordered with 
frequency ascending from left to right panel in each row and with duration increasing from bottom to top 
panel in each column. (B) Illustration of the adult call stimuli with their amplitude envelopes and 
frequency trajectories.   
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APPENDIX C 

C.1: Statistical Tests 

Parametric and non-parametric statistical tests were used to compare group 

differences. Parametric tests were used only if all groups were normally distributed and 

did not statistically differ in their variances. Using a significance criterion of p<0.05, we 

used the two-tailed Lilliefors goodness-of-fit test for normality, and a two-tailed F-test 

for variance. If all groups satisfied both criterion then we proceeded to test for group 

differences using the analysis of variance (ANOVA) or an unpaired t-test if only two 

groups were being compared. If any of the groups failed the test for normality or 

variance, group differences were tested using a Kruskal-Wallis for multiple groups, or 

the Mann-Whitney U (U reported is the min,(U1,U2)), if only two groups were being 

compared. If either the ANOVA or the Kruskal-Wallis test returned p<0.05, we 

performed group comparisons using Fisher’s least significant difference criterion. If 

however two groups of data show inequality of variances we used the unequal variance 

test on the original data (if the data is normal, Satterthwaite t-test). This involves 

differences in the computation of the test statistic t and the degrees of freedom 

(Ruxton, 2006). When comparing two time traces from different animal groups, we used 

an N-way analysis of variance followed by multcompare using Fisher’s least significant 

difference method for correcting multiple pairwise t-test comparisons at each time 

point.  
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For the two-choice alternative choice test, we used a binomial test to investigate 

whether the proportion of pup call responses differs from chance level (50%). To test 

the effects of the call test on the exploration times of the different groups of animals we 

used only those tests where there was paired data, a post-retrieval and post-call test 

exploration times. In order to use the repeated measures ANOVA, we transformed the 

data using logarithms, which resulted in exploration times for the three different animal 

groups having normally distributed data that also did not violate the equality of 

variances. If there was a significant interaction effect between time and group we 

proceeded to perform an ANOVA with a multiple comparisons using Fisher’s least 

significant difference criterion. For testing spontaneous rates, we performed a square 

root transformation of the data. The square root transformation is one that has often 

been used to convert neural activity (firing rate) with a Poisson distribution to a normal 

distribution (Baker et al., 2002; Prince et al., 2002; Ogawa and Komatsu, 2004; Hayden 

and Gallant, 2005). This transformation is often applied when the variances of the data 

are proportional to the means, and is often applied to data when the samples are taken 

from a Poisson distribution (Zar, 1999).  

Significance of the phase precision was computed by the Rayleigh statistic 

(Fisher, 1993), and depended only on the number of trials. For pup calls and responses 

to tones, at a significance level of p ≤ 0.05, NpR )log( should be larger than 0.058 

for N = 900 trials and 0.199 for N = 75 trials, respectively. We discarded the phase 

precision for an LFP site if it did not exceed this significance level during the stimulus 

period.  
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APPENDIX D 

D.1: Electrode Microdrive Implant Design  
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The implant was drawn in Solidworks 4.0 and several views of the prototype 

design are shown in the figures above. The basic design consists of a number of parts 

which include: an upper and lower plastic base each with three milled holes (~1.0 mm 

diameter), two 19 gauge guide tubes, four 27 gauge guide tubes for the electrodes, four 

Tungsten 6 MΩ (FHC) electrodes, a 00-90 machined screw, and two 00-90 hex nuts. The 

two outer 19 gauge guide tubes are cemented to the base, whereas the upper white 

rectangle can freely move in the vertical axis. In addition, the lower 00-90 hex nut is 

attached to the base, preventing it from moving, but allowing the 00-90 screw to move. 

With the given thread distances on the 00-90, we can measure the depth of electrode 

penetration while the implant is in the brain. The only object permanently attached to 

the upper white rectangle are the four 27 gauge guide tubes and the four electrodes. 

Therefore, when the 00-90 screw is being turned clockwise (driving downwards), the 

upper rectangle and the electrodes will move downwards together. This design was 

implanted in the mouse primary auditory cortex and shown to be able to record SUs 

from an awake-restrained mouse for up to 30 days (See Fig. 5.1).  

 

Table D.1: Parts list for the electrode implant design.  
 

  Length [mm] Width [mm] Height [mm] Gauge 

Lower Base 7.7 2.7 4.0 NA 

Upper Base 7.7 5.0 4.0 NA 

Electrode Guide Tube NA NA 9.0 27.0 

Guide Posts NA NA 13.5 19.0 

     Screw (J.I. Morris) 00-90        

Weight 0.5 g       

Electrodes (FHC) 20mm 6MΩ 125um shank   
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