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SUMMARY 

Gene finding in eukaryotic genomes is an essential part of a comprehensive 

approach to modern systems biology. Most methods developed in the past rely on a 

combination of computational prediction and external information about gene structures 

from transcript sequences and comparative genomics. In the past, external sequence 

information consisted of a combination of full-length cDNA and expressed sequence tag 

(EST) sequences. Much improvement in prediction of genes and gene isoforms is 

promised by availability of RNA-seq data. However, productive use of RNA-seq for gene 

prediction has been difficult due to challenges associated with mapping RNA-seq reads 

which span splice junctions to prevalent splicing noise in the cell. This work addresses 

this difficulty with the development of methods and implementation of two new 

pipelines: 1/ a novel pipeline for accurate mapping of RNA-seq reads to compact 

genomes and 2/ a pipeline for prediction of genes using the RNA-seq spliced alignments 

in eukaryotic genomes. Machine learning methods are employed in order to overcome 

errors associated with the process of mapping short RNA-seq reads across introns and 

using them for determining sequence model parameters for gene prediction. In addition to 

the development of these new methods, genome annotation work was performed on 

several plant genome projects. 
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CHAPTER 1 

INTRODUCTION 

 

 Efforts to determine the function of genes of all living organisms have been 

ongoing for many decades. Today the most powerful method for understanding gene 

function is by comparative genomics, which requires knowledge of the sequence of 

nucleotides in and around the protein coding portion of a gene. In this general approach, 

the nucleotide sequence of a gene (or its protein translation) is simply compared with 

sequences of genes whose function is already known. Therefore, in this one important 

sense, accurate prediction of gene sequences is critical for gene functions to be fully 

understood. Understanding of gene function is also supported by sequences in or nearby 

gene boundaries, such as transcription factor binding sites, and mobile elements. 

 Eukaryotic protein coding genes are arranged along DNA sequence in intervals of 

sequence which are transcribed and included in the mature mRNA. Due to existence of 

introns which are spliced out of the transcript, a eukaryotic gene consists of alternating 

intervals of sequence which are part of the mRNA (exons) and those which are spliced 

out (introns). For those genes which code for proteins, a portion of the mRNA will 

consist of sequence which will be translated into an amino acid chain by ribosomes. This 

coding sequence (CDS) lies in the interior of the mRNA, such that at the DNA level CDS 

is distributed across exonic regions. Any exons and introns upstream of the CDS start or 

downstream of the CDS stop codon are referred as UTR (untranslated region) exons and 

introns. The CDS start and stop will typically occur somewhere in the interior of an exon. 

In computational gene finding, the exon-intron structure of this sequence which codes for 

the protein is attempted to be predicted. This is a problem of major interest in biology for 

the simple reason that the implied nucleotide sequence arising from such predictions 

affects the outcome of comparative genomics analysis. Quite often, predicted gene 
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sequences are incorporated into gene or protein databases which are subsequently used 

for a variety of applications, including finding genes in novel genomes. Therefore, 

achievement of accurate gene predictions is crucial for downstream scientific work. 

 

External sequence alignment 

Today the most reliable method for accurate gene finding is by sequencing full-

length cDNA molecules (a copy of the mRNA created by reverse transcriptase) and 

aligning them to the reference DNA assembly to determine the gene structures on the 

genome. Such sequences are typically very long (averaging around 2000 nt) and usually 

contain the complete gene (or at least the protein coding sequence). The protein coding 

sequence is reliably found by looking for long ORFs in these sequences. However this 

method is extremely costly for finding all genes in a genome because the procedure is 

very laborious and expensive. It is worth mentioning that even with all the resources 

invested in the human genome over a period of about 15 years, there are today about 

17,600 unique human genes having full length cDNAs sequenced (mgc.nci.nih.gov). Of 

course, most genome projects will never enjoy this exquisite concentration of resources. 

Therefore, alternate methods must be used in general. 

Another method for transcriptome sequencing is by expressed sequence tags 

(ESTs). ESTs are reads taken from cDNA typically from the 5’ or 3’ end of the molecule. 

ESTs may also be taken from random locations if random oligonucleotide tags are used 

in library preparation. The process was developed in the early 1990’s as a possible 

shortcut to finding all genes in the human genome before a final assembly could be 

created (Boguski, 1995). While initially cDNA libraries were sequenced with Sanger 

technology, later such libraries would later be sequenced with next generation sequencing 

(NGS) technology, such as that provided by machines available from Roche 454 Life 

Sciences and Illumina. 
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However, even with a combination of NGS and cDNA libraries created using 

random primers, only a relatively small percentage of genes may have full coverage of 

the mRNA with EST sequences. There are several reasons for this, such as non-uniform 

gene expression level (over-representation of highly expressed genes), the cDNA itself 

not covering a full gene, and the short read length. In addition, budgetary constraints limit 

the amount of EST sequencing which can be performed. Scientists tend to give priority 

for sequencing dollars to be spent on improving the reference DNA assembly of novel 

genomes, rather than EST sequencing. As an example, in the R. idaeus genome project, 

approximately 25,000 ESTs were used to assist gene finding. From this data set, only 334 

protein coding genes were judged to be fully covered by EST sequences. 

However, even with many related genomes sequenced, identification of the 

complete set of genes in even model genomes remains incomplete. For instance, even for 

extensively studied model genomes such as C. elegans, D. melanogaster, and A. thaliana, 

there remain thousands of genes and missing gene features which are predicted by 

computational methods (verify). Furthermore, the problem of gene identification in novel 

genomes is even more highly dependent on computational prediction, due to very limited 

full-length cDNA sequencing. 

Today most transcriptome sequencing is done with a process known as RNA-seq, 

in which cDNA molecules are sequenced by shotgun sequencing using NGS technology. 

mRNA molecules are first fragmented into short lengths, then converted to cDNA (or 

converted to cDNA, and then fragmented) to be compatible with deep sequencing NGS 

methods (Wang 2009). This form of shotgun sequencing can enable production of short 

reads covering the whole transcriptome with a fair degree of uniformity, and with very 

high coverage and low cost. Such advantages promise to revolutionize gene finding and 

are the principle reasons for the popularity of RNA-seq today. 

Nevertheless, there are many widely acknowledged technical challenges to be 

solved before such data can be very useful for reliable gene finding. Due to the short read 
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length (typically 50-150 bp) and high volume of reads, alignment to a reference genome 

assembly is a difficult computational task. Challenges include the presence of paralogous 

genes, and transcribed repetitive sequence (such as transposable elements), and reads 

spanning exon-exon splice junctions. Any of these features in a genome has the potential 

to make genomic mapping of some reads ambiguous. In particular, the presence of splice 

junctions created during the formation of mRNA requires a gapped alignment of reads to 

the genome. Optimal gapped alignment (Needleman-Wunch (Durbin, 1998)) of reads is 

not feasible to be carried out due to the huge volume of reads to be aligned in this 

fashion. Therefore, a fast but sub-optimal method is required to map RNA-seq to a 

reference genome. A new pipeline is proposed below, called UnSplicer, which achieves 

better accuracy for RNA-seq read mapping than all other comparable programs. 

 

Mathematical sequence models 

A third major component of gene finding relies on statistical modeling of genomic 

sequence. It should be mentioned that the process for gene finding in eukaryotic genomes 

is very different than a process suitable for prokaryotes. In prokaryotic genomes, due to 

the absence of introns in the genes, an effective method for finding protein coding 

regions is to simply search for long open reading frames (ORFs), or intervals in which a 

conspicuous absence of stop codons is observed. Given that in random sequence with 

50% G+C content, a stop codon should be observed in approximately 5% of all 

nucleotide triplets. So observation of an ORF longer than say 200 nt in this sequence 

already starts to look like coding sequence interval (albeit a short one). 

However in eukaryotic genomes, this procedure cannot be followed due to the 

presence of introns. When full-length cDNA are sequenced, then ORF finding is a viable 

strategy. This can be done by reconstructing the mRNA sequence by aligning available 

reads (EST or RNA-seq) to the genome, thereby finding the introns. Once the introns are 

found, they can be spliced out digitally, revealing the transcript sequence which can be 
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treated in a manner similar to prokaryotic genes. Of course, this ignores complications 

such as the presence of alternative isoforms, but for now we narrow our objective to 

finding the longest isoform of each gene. 

It was mentioned above that for a typical novel genome sequencing project, only a 

certain percentage of genes will have transcriptome reads aligned across the full length of 

the mRNA. The remaining genes must be found by a combination of partial alignment 

and mathematical prediction. The most important feature discriminating nucleotide 

sequences which code for proteins and sequences which are non-coding is the nucleotide 

composition. It was observed long ago that DNA sequence which codes for proteins has a 

very different composition compared with non-coding sequence. This difference has led 

to the development of statistical models for coding sequence composition, and 

appropriate statistical tests for determining presence or absence of coding sequence over 

an interval (Borodovsky, 1993). An extensively used probabilistic sequence model is the 

Markov chain, in which conditional probabilities for each of the four nucleotides (A, C, 

G, T) are known, given every context sequence of length m (immediately upstream of the 

nucleotide), where m is the model order. Given the arrangement of coding sequence as a 

series of 3-nucleotide long codons, 3-periodic Markov models were introduced in 1986 

(Borodovsky, 1986) and became an accepted and widely used model for coding 

sequence. 

The evolution of gene prediction algorithms over the years as culminated in 

generative sequence models (particularly the hidden Markov model, or HMM) as the best 

performing and most widely adopted method for computational gene prediction (Majoros 

2007, Lukashin 1998, Salzberg 1999, Besemer 2001, Stanke 2003, Korf 2004, Brejova 

2005, Lomsadze 2005, Delcher 2007). Efforts have been made to find alternative models 

which yield better performance than the HMM (particularly the generalized HMM 

(GHMM), or HMM with durations) but so far the evidence is inconclusive. New research 

in non-generative, discriminately trained sequence models shows promise (Bernal 2007, 
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DeCaprio 2007), but it remains unclear if new methods such as conditional random fields 

(CRFs) benefit from addition of new features (which could also be incorporated into a 

GHMM structure) or the discriminative training procedure itself. 

 

Challenges with model parameterization 

It is widely understood that a critical task in mathematical gene prediction is 

proper training of the model parameters. Since so many prediction algorithms rely on a 

similar sequence model (GHMM), the principal performance limitation seems to be the 

quality of the model parameters. Most gene prediction programs train coding sequence 

(CDS) and non-coding sequence models using verified gene examples, which are 

typically found by comparative genomics and EST alignment (Yeh 2001). However, in 

order to serve as a highly reliable training set for gene prediction, many hundreds of full 

genes should be available for training (DeCaprio 2007). 

A critical development in gene finding for compact genomes occurred with the 

introduction of GeneMark-ES (Lomsadze 2005). In this algorithm, an unsupervised 

machine learning approach to GHMM parameter learning is used for gene finding. In this 

algorithm, models for CDS and non-coding sequence, donor and acceptor splice site 

position specific frequency matrices (PSFMs), and feature durations (exons, introns, and 

intergenic regions) could be found without the need for training examples (which 

typically require an expert to prepare). Perhaps an even more important feature of 

GeneMark-ES is that its internally developed training set contains a very large number of 

genes (many thousands) compared with conventional methods. Conventionally, only 

highly expressed or highly conserved genes can be found with sufficient confidence to be 

used for training. This creates a problem of parameter bias, because highly expressed and 

highly conserved genes tend to have different codon usage patterns compared with more 

lowly expressed genes (Wald 2012, Mathe 1999). Indeed, it is the genes with low 



 7 

expression in which computational prediction methods must be relied upon to find. This 

bias in parameter training could be rather widespread, yet underreported because test sets 

are typically derived from external sequence alignment to highly expressed genes. 
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CHAPTER II 

GENOME COMPLEXITY 

 

 Several major challenges in gene finding are due to features of genome 

complexity associated with eukaryotes. This includes heterogeneity of G+C content in the 

genome, codon usage variation, and widespread presence of repetitive sequence. 

Limitations of the GeneMark-ES algorithm 

 At this point it is clear that we rely on computational gene prediction, 

which for best performance requires a good training set to establish parameters for the 

sequence model. It turns out that codon usage in a gene varies strongly with its G+C 

content. GHMMs are well suited to prediction of genes in a sequence having a G+C 

content which is uni-modal and relatively concentrated around the mean (less than 20% 

variation in G+C or so). Many whole genomic sequences possess this homogeneity in 

G+C, such as prokaryotic genomes and many compact eukaryotic genomes like as A. 

thaliana and D. melanogaster. In such cases, genes can be predicted with good accurately 

across the whole genome with a single set of parameters. We refer to such genomes as 

having homogeneous G+C content. However, many genomes are highly heterogeneous in 

their G+C composition. Mammalian genomes are an example of heterogeneous genomes. 

Also grasses, such as O. sativa and B. distachyon, have a somewhat heterogeneous 

composition. Some of these genomes possess isochores, which are islands of sequence 

with a relatively homogeneous composition. Genes within isochores (or regions with 

somewhat homogeneous G+C composition) may be predicted reliably if parameters 

appropriate for the G+C of the isochore are used. However, not all genes in 

heterogeneous genomes are contained in regions identifiable as isochores. In general, 

genomes with heterogeneous G+C require special procedures for gene prediction, 
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including the development of multiple parameter sets (from multiple training sets) and 

sequence segmentation into regions of similar G+C composition. 

 

Figure 2.1. G+C content of several homogeneous genomes. Sequences are cut into 2,000 

nt segments and %G+C composition is assessed for each segment. Histograms are 

determined based on the resulting set of G+C values. 

 

It turns out that GeneMark-ES will work successfully on genomes with 

homogeneous G+C composition, but fails on heterogeneous genomes. The fundamental 

problem is the algorithm’s use of a single set of HMM parameters which does not 

adequately describe genes in heterogeneous genomes. This limitation restricts the 

majority of its application to compact eukaryotic genomes. However, even within the 

realm of homogeneous genomes there remains room for improvement. In Fig. 2.1, G+C 

content histograms are shown for a number of homogeneous genomes. In Table 2.1, the 

performance of GeneMark-ES is shown for a test set on each of these genomes. Mean 

performance is about 85% accuracy (defined here as the average of sensitivity and 

specificity) for prediction of exon boundaries. For A. gambiae, C. sativus, and C. 

sinensis, accuracy is closer to 81-82%. Clearly there is room for improvement. 
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Table 2.1. Exon-level prediction performance of GeneMark-ES on several eukaryotic 

genomes. Performance was evaluated on test sets derived from EST sequence alignments 

to the genomes. 

 

G+C content and codon usage 

 In 1999, an evolutionary pattern of codon usage was discovered by analysis of 

several prokaryotic genomes having different genome G+C composition (Besemer, 

1999). In this work, a collection of fully sequenced prokaryotic genomes was used to 

quantify codon usage characteristics as a function of whole genome G+C content. One 

motivation for characterizing a universal codon usage was to develop universal Markov 

models which can be prepared for gene finding in homogeneous sequences with given 

G+C composition, regardless of how short is the length of the sequence. Codon usage 

from (Besemer, 1999) was used as the initial starting point models in the unsupervised 

training program GeneMark-ES. 
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Figure 2.2. G+C compositional distribution of four eukaryotic genomes used to find a 

shared codon usage pattern. The y-axis represents the number of genes found in a 1% 

G+C bin. 

 

However, this relationship had not been established for eukaryotic genomes. 

Therefore, to carry out this task we used a set of 5 eukaryotic genomes: human, rice (O. 

sativa), grass (B. distachyon), and honey bee (A. mellifera). The distribution of genes per 

G+C content is shown in Fig. 2 for each genome. Each annotated gene was assigned a 

G+C value by considering an interval starting at the start codon and ending at the stop 

codon (including all introns). If more than one isoform was annotated for a gene locus, 

then only the one with the longest CDS was considered. 
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Figure 2.3. Positional frequencies of adenine in eukaryotic gene regions, compared with 

the result from (Besemer, 1999). 
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Figure 2.4. Positional frequencies of cytosine in eukaryotic gene regions, compared with 

the result from (Besemer, 1999). 
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Figure 2.5. Positional frequencies of guanine in eukaryotic gene regions, compared with 

the result from (Besemer, 1999). 
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Figure 2.6. Positional frequencies of thymine in eukaryotic gene regions, compared with 

the result from (Besemer, 1999). 

 

With this set of genes as an input, we compared the positional frequencies of each 

nucleotide at 3 codon positions, and compared with the findings of the prokaryotic paper 

(Besemer, 1999). The results are shown in Figs. 2.3-2.6. For each of these plots, the x-

axis refers to mean frequency of the nucleotide type in a gene locus, while the y-axis 

refers to the frequency of the nucleotide type in a specific codon position. We found 

agreement with the earlier detected general trends in all cases, but with some significant 

differences. For example, the 1999 linear regression differs in slope with all of the 

nucleotides in position 1. In position 2, we find a significant difference in the form of a 

fixed offset. In addition, we observe a wide variation in A(2) in low-G+C genes. Finally, 

we observe visible nonlinear curvature in frequencies of all nucleotides in the 3
rd

 

position. 
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As in the prokaryotic case there are nonlinear relationships between codon usage 

and G+C composition. A cubic polynomial was fit to the mean value of codon usage 

frequencies of all 61 codon triplets as functions of G+C content (result shown in Figs. 

A2-A17). In some cases, such as the arginine codons CGA and CGT, there is a strong 

difference between native genes in one genome compared with other genomes. In these 

two codons, we see a strong divergence of honey bee genes from the trend followed by 

other genomes for these two codons. In addition, for the codon CGA, the B. distachyon 

genes have a significantly different pattern. Regardless, many codons stay close to the 

general trend, which supports the development of general purpose, pre-calculated 

sequence models. In this project, 5
th

 order Markov models were developed based on the 

cubic polynomials fitting each codon usage pattern, in 1% G+C bins in the interval 20-

70% G+C. In the construction of the 5
th

 order Markov parameters, sequential codons 

were assumed to be independent. These parameters are used as the starting point in 

unsupervised training for version 2.7 of GeneMark-ES. In addition, they have been used 

in the SeqSweep project (Chapter IV), and the GeneMark-blend+ pipeline (Chapter V). 

 

Repetitive sequence 

Despite the fact that many plant genomes have homogeneous G+C composition 

(see Fig.1), gene finding can be a difficult task due to the prevalence of repetitive 

sequence. In particular transposable elements (TEs) can occur in genomes with very high 

copy number, which may severely bias sequence parameters obtained by unsupervised 

training methods. While only a small number of TEs are actually “alive” in a genome 

(actively transcribed and translated), most copies in the genome have been inactivated by 

mutations accumulated over time. In other words, the bulk of copies are pseudogenes. 

The presence of pseudogenes interferes with eukaryotic gene finding because not only 



 17 

will many of the coding sequences be intact, but they may be present in very large 

numbers. 

Biologists are generally interested in finding native protein coding genes in a 

genome, as opposed to the proteins associated with TEs. Analysis of the TEs themselves 

is of interest to a more specialized community. For gene finding, we wish to locate such 

repetitive elements in order to prevent biasing model parameters in unsupervised training, 

and also to prevent them from becoming identified as false positive predictions. 

To find copies of TEs and other repeats in a DNA sequence, a set of 

representative TE sequences needs to be established. Subsequently, RepeatMasker (Smit 

et al http://repeatmasker.org) can be used to identify statistically significant copies of 

these sequences in the genome. However, a library of query sequences must be 

established first. To this end, the Repbase (Jurka 2005) database was established to 

archive a representative set of eukaryotic repetitive sequences. However, the majority of 

TEs in a genome are dissimilar in sequence to those discovered in genomes of related 

species. It is thought that TEs originate from RNA retroviruses which lost critical genes 

(not including the promoter and proteins such as reverse transcriptase). Due to the high 

mutation rate of viruses in general, it is not surprising that comparative genomics has 

limited utility in finding TEs in novel genomes. 

In order to find native TEs, a number of de novo repeat finder programs have 

been developed. These include RECON (Bao 2002), PILER (Edgar 2005), RepeatScout 

(Price 2005), and programs designed to find LTR retrotransposons such as LTR_STRUC 

(McCarthy 2003) and LTR_FINDER (Xu 2007). These programs employ a variety of 

strategies and differ greatly in terms of computational resources required to run them. In 

addition, performance assessment has been quite challenging due to scarcity of high 

quality annotations, and tremendous diversity in composition of TE families, their copy 

number, and incomplete representation of TEs in genome assemblies. We have found the 

http://repeatmasker.org/
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combination of Rebase with RepeatScout to be a good combination of tools for compact 

plant genomes. 
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CHAPTER III 

RNA-SEQ: DEEP TRANSCRIPTOME SEQUENCING 

 

The best use of RNA-seq transcriptome sequencing for gene finding remains an 

unresolved question. This chapter summarizes our progress in this area. 

 

Transcript reconstruction 

 

It was mentioned in Chapter II that transcriptome sequencing in practice has 

moved to RNA-seq technology. There are several advantages to RNA-seq compared with 

conventional EST sequencing, including a lower required number of molecules, ability to 

measure gene expression with high dynamic range, and lower cost (Wang 2009, Trapnell 

2010, Roberts 2011). Recent advances in RNA-seq have even enabled single nucleotide 

resolution of RNA secondary structure (Lucks, 2011). Perhaps the most important feature 

of RNA-seq is the huge volume of reads which are typically produced. Current 

generation of Illumina machines (for example, HiSeq 2000) are advertised to produce 3 

billion 100 base paired-end reads per run (300 Gb). Use of this technology is becoming 

widespread, emphasizing the importance of developing efficient algorithms for 

processing large volume of sequences. 

Two well established scientific uses for RNA-seq data are transcript 

reconstruction and measurement of gene expression. Attention is focused on transcript 

reconstruction here because it is closely related to gene finding in general. 

The two major strategies for transcript and isoform reconstruction from RNA-seq 

data are: i/ mapping and assembly, and ii/ de novo assembly. The former programs align 

reads to a reference genome as part of the process for transcript construction. Programs 

which map and assemble include Cufflinks (Trapnell 2010, Roberts 2011) and Scripture 

(Guttman 2010). Indeed both of these programs use TopHat (Trapnell 2009) to align 

reads to the genome, then by using a combination of splice junction alignments and 

paired-end linkage, a transcript graph structure is constructed to allow one or more 
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isoforms to be enumerated. Pure de novo transcriptome assemblers (using no reference 

genome) include ABySS (Simpson 2009, Birol 2009) and Trinity (Grabherr 2011). The 

de novo assemblers are very useful when the reference genome is either unavailable or 

incomplete. However, despite their advantages the de novo pipelines require substantial 

computational resources. Additional drawbacks to de novo assembly include lower 

sensitivity to genes expressed at a low level, and also susceptibility to creation of false 

positive “genes” from contaminating sequence in the mRNA library. 

 

Short read alignment 

 

Given that genomic mapping is such an important process in transcript 

reconstruction (and therefore gene prediction), we focused on this critical step. Due to the 

presence of exon-exon splice junctions (SJ) in mRNA molecules, sequence reads may be 

considered to be members of one of two sets: i/ reads which align fully to an exon and ii/ 

reads which span a splice junction. In general, development of mapping programs has 

focused on these two kinds of alignments separately. 

For mapping reads without a gap, several programs have been developed over the 

years. However, the winning strategy seems to have emerged: application of the 

Burrows-Wheeler Transform. This technique has been implemented in software tools 

such as BWA (Li H 2008, 2009), SOAP (Li R 2009), and Bowtie (Langmead 2009). 

While full length alignment mapping optimization is by no means a “solved problem,” it 

is arguably solved to a further extent compared to the problem of mapping reads which 

span splice junctions. 

Alignment of reads spanning splice junctions (SJs) is a critical task in transcript 

reconstruction. Much like full length read alignment, the optimal gapped alignment 

algorithm (Needleman-Wunch) is impractical due to the large volume of reads. Many 

programs which carry out various gapped alignment algorithms for RNA-seq reads have 

been proposed. Software tools of this category include TopHat, MapSplice (Wang 2010), 
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SpliceMap (Au 2010), GSNAP SOAPsplice (Huang 2011), and PASSion (Zhang 2012). 

TopHat uses an exon inference method using reads mapped without gaps to derive exon 

(and intron) boundaries. MapSplice uses an “anchor and extend” approach for mapping 

read segments situated near and over splice junctions. Iterative remapping of reads and 

read segments in parallel with splice junction inference and filtering of false positives in 

post processing are the hallmarks of the most recently developed tools. For instance, 

PASSion and SOAPsplice use paired-end information to eliminate bogus alignments. 

Despite investing significant efforts in the intense developments, all tools existing to date 

suffer from a high rate of false positives as compared with tools which align EST 

sequences such as BLAT (Kent 2001) and GMAP (Wu 2005). 

There are two major reasons for the high rate of spurious SJ prediction of RNA-

seq mapping programs: 1/ concessions for suboptimal alignment in order to trade 

accuracy for speed, and 2/ widespread noisy splicing in the cell which is revealed by deep 

sequencing. Significant efforts have been made to address the major problems with 

reason 1. As for reason 2, recent work has convincingly demonstrated that most instances 

of novel SJs, which are observed when mapping high throughput transcriptome sequence 

data, are manifestations of biochemical noise associated with the splicesosome (Melamud 

2009, Pickrell 2010). Indeed, when random models of splicing error are assumed, 

patterns of experimentally inferred novel introns are closely matched (Melamud 2009). 

Furthermore, most novel introns show no conservation across species (Pickrell 2010). 

This suggests that most novel introns found by alignment of RNA-seq are caused by 

splicing noise. Indeed, even as read lengths achievable by NGS have increased, the 

number of detected novel isoforms has not dwindled (Trapnell 2010, Marquiz 2012, 

Daines 2011). This alone does not necessarily imply that there is no biological function 

associated with such novel transcripts. Rather, we suggest that novel introns should be 

assessed by the full weight of evidence supporting them—including DNA sequence 
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patterns. We propose a scoring mechanism for assessing introns based on their similarity 

to patterns of introns associated with functional gene isoforms. 

 

Using DNA sequence models to improve intron prediction 

In 2011, we began investigating the possibility of using probabilistic DNA 

sequence models determined by unsupervised training (GeneMark-ES) to improve the 

state-of-the-art in SJ prediction using RNA-seq spliced alignment information. Naturally, 

this would limit applicability of the new algorithm to genomes with homogeneous G+C 

composition. However, a large number, a majority, of sequenced genomes satisfy this 

requirement, so work proceeded on the first algorithm. 

 

SeqSweep 

The first concept developed involved filtering SJ predictions made by another 

pipeline (such as TopHat). A diagram of the pipeline, called SeqSweep, is illustrated in 

Fig. 3.1. SJ predictions made by an alignment program are filtered for false positives 

using sequence based models. Fig. 3.2 shows a diagram of a candidate intron, and the 

four features used to perform discrimination: donor and acceptor splice site models 

(position specific frequency matrices), intron length, and coding potential on the exon 

sequences flanking the intron. 
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Figure 3.1 Diagram of SeqSweep pipeline. The algorithm in the green block filtered the raw 

SJ predictions made by the gapped alignment program. 

 

 
Figure 3.2. Features used by SeqSweep to discriminate true SJs from false positives: donor 

and acceptor position specific frequency matrices (represented by logos here), intron length 

distribution, and coding potential found on the intron flanking sequences. 

 

 

SeqSweep was developed to use all above features, using a naïve statistic for 

coding potential (no reading frame dependence). The history of coding potential as a 

feature for SJ classification is a rather complicated one, and it is discussed in detail in 
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Appendix B. In SeqSweep, coding potential was calculated using the eukaryotic heuristic 

models for CDS (described in Appendix A). A local value of G+C content for each 

gapped alignment is calculated by averaging the content of sequence 1 Kb upstream of 

the donor, and 1 Kb downstream of the acceptor. A set of four thresholds (one in each 

feature dimension) were used so that if any one feature score does not exceed its 

threshold, the SJ will be rejected. Theshold values were established conservatively to 

maximize the benefit of this type of classification. Various threshold levels were 

evaluated by sampling randomly 1,000 values in a parameter hyperbox using limits 

established based on experience working with spliced alignments of short reads. The 

discrimination power of SeqSweep was evaluated on an RNA-seq data set SRR100213 

aligned to A. thaliana (a compact genome) using model parameters found by GeneMark-

ES. This data set consisted of 26.3 million single-end reads of length 36 nt. A scatter plot 

was created in which Sn and Sp are shown for each set of thresholds (one point for each 

threshold tuplet). In this plot (Fig. 3.3), sensitivity is defined as the number of detected 

true SJ divided by the total number of annotated SJ in A. thaliana (TAIR 10). The 

TopHat performance without filtering is represented by the most lower-right point on the 

plot. A substantial improvement in specificity is demonstrated using this method: with an 

appropriately selected threshold tuple in parameter space, approximately 1,200 false 

positives may be removed (2% increase in specificity) in this data set with only 130 true 

positives removed (9.2:1 filtering ratio). 
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Figure 3.3 Performance of SeqSweep when used to filter false positives from SJ predictd by 

TopHat. Different colored points correspond to different subsets of features used in filtering. 

The best performance is obtained by using all features together. 

 

With this promising start, we focused our effort on development of a complete 

RNA-seq alignment pipeline with collaborators Jian Ma and Yang Li from the University 

of Illinois Urbana-Champaign. Lessons from SeqSweep were incorporated into two 

different successful algorithms, described below. 

 

TrueSight 

A successful collaboration with scientists at the University of Illinois Urbana-

Champaign resulted in the development of TrueSight—the first RNA-seq alignment 

program to use DNA sequence features to improve SJ prediction accuracy (Li Y 2012). 

We provide a cursory description of TrueSight because we were not primary authors. The 

TrueSight pipeline uses Bowtie to map all reads to the genome without gaps. Reads 

which do not map with Bowtie are mapped using the “anchor and extend” concept used 

by other programs, such as MapSplice. TrueSight’s gapped alignment output includes 

reads having multiple candidate alignments—ambiguous mappings. All uniquely mapped 

and ambiguously mapped reads are subsequently classified by an algorithm which 
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calculates several statistics for each candidate gapped alignment. In the next step, 

TrueSight collects a number of features associated with each SJ candidate. There are a 

total of 10 features used for classification. Some features are based on alignment 

characteristics, such as the number of reads aligned across a SJ, while others are based on 

DNA sequence models, such as donor and acceptor site Markov model likelihood scores. 

DNA model parameters are found by unsupervised training by using DNA sequence 

associated with a subset of SJ candidates as a training set. Classification is performed by 

a hyperplane boundary in feature space, which is found by expectation maximization on 

an objective likelihood function. The program is very successful in terms of performance: 

the publication demonstrates superior performance to several other alignment programs 

on several data sets. 

Many of these features require DNA sequence models (splice site models, and a 

coding sequence model) which are determined by a subset of initial SJ candidates (those 

having several read alignments confirming them). 

 

UnSplicer 

The work on SeqSweep and TrueSight led to the development of a more effective 

approach to classification for compact genomes with homogeneous G+C composition. 

First, for such genomes the proven de novo unsupervised training algorithm of 

GeneMark-ES can be used to find DNA model parameters. Second, the method of 

selection of training sets for SJ classification in TrueSight could be improved upon. 

Third, the use of coding potential as a feature could be replaced with an alternative 

method which does not prevent detection of UTR introns. Finally, the hyperplane 

boundary itself could be generalized to a non-planar boundary. From these ideas, the 

concept of UnSplicer emerged. 
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Figure 3.4 The UnSplicer diagram. In the first step RNA-seq reads are attempted to be 

aligned to the reference genome without gaps (by Bowtie). Second, unmapped reads are 

attempted to be aligned with gaps by an anchor-extension algorithm (same as in 

TrueSight). Third, remaining unmapped reads are remapped to pseudotranscripts 

reconstructed using predicted splice junctions (by Bowtie). Forth, an SVM classifier is 

used to assign a probability-like score to each splice junction candidate and final 

predictions are made. 

 

Algorithm description 

UnSplicer shares with TrueSight several components such as ungapped (full 

length) read alignment and “anchor and extend” alignment modules for an initial attempt 

of a read gapped alignment to genomic sequence. A block diagram of UnSplicer is shown 

in Fig. 3.4. The ungapped alignment is accomplished using Bowtie (Langmead 2009). 

Reads unmapped by Bowtie as a whole are divided into short (18-25 nt) non-overlapping 

segments, with each segment now attempted to be separately aligned by Bowtie. Short 

segments not aligned by Bowtie are likely to overlap splice junctions. These “missing” 

segments are attempted to be aligned by a method described in (Li Y 2012), because such 

segments may overlap splice junctions. An alignment is built on the genome fragment 

delimited by the alignments of the fragments adjacent to the missing fragment. 
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Alignment starts from the RNA-seq segment borders working into its interior until intron 

boundaries are delineated. 

After finding an initial set of SJ candidates in this fashion, all reads which still 

remain unmapped to the genome are attempted to be mapped across all splice junctions 

found from this step. DNA sequence flanking predicted introns are combined to form 

continuous sequences which serve as targets for alignment to this remaining set of 

unmapped reads. For details on the remapping methodology, refer to (Burns, 2013). 

The second major part of SJ classification in UnSplicer is finding parameters for 

the sequence models. In fact, sequence parameters are determined prior to running the 

alignment pipeline. For compact genomes with homogeneous G+C composition, 

GeneMark-ES predicts intron boundaries with 90% or better sensitivity and specificity 

(Lomsadze 2005, Ter-Hovhannisyan 2008). GeneMark-ES models donor and acceptor 

splice sites by hidden states with fixed duration (emitting sequences described by position 

specific frequency models (PSFMs)) while exons and introns correspond to hidden states 

with variable duration (emitting sequences described by Markov chains). The donor 

PSFM spans 3 nt nucleotides upstream of the intron 5’ end, and 6 nt downstream. The 

acceptor PSFM spans 20 nt nucleotide upstream of the intron 3’ end, and 1 nt 

downstream. The PSFM models, considered as non-uniform Markov chains, may be of 

either zero or first order. Particularly, for all examples discussed below, the donor and 

acceptor PSFMs are of the first order; all these genomes have at least 5 MB of sequence 

assembled into long contigs (with N50 larger than 20 kB). 
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Figure 3.5. Scores of donor and acceptor sites defined by gapped alignments of RNA-seq 

reads (from SRR360205 set) to genome of A. thaliana. The scores are computed with 

PSFM parameters determined by GeneMark-ES. The blue dots represent splice junctions 

annotated in TAIR10. Red dots correspond to not annotated splice junctions. 

 

As with SeqSweep, donor and acceptor site PSFMs used by UnSplicer are used to 

define log likelihood ratio scores of candidate splice junctions. For instance, Fig. 3.5 

shows log odds scores of donor and acceptor sites mapped by gapped alignments of 

RNA-seq reads (SRR360205 set) to genome of Arabidopsis thaliana. Thus mapped splice 

junctions are divided into annotated (shown by blue dots) and not-annotated (shown by 

red dots) with respect to the TAIR 10 annotation of A. thaliana genome. The gene models 

predicted by GeneMark-ES allow construction of two additional features useful for 

detection of true of splice junctions by UnSplicer. The first feature is the frame shift 

indicator taking value one, if a predicted intron is situated inside a coding sequence such 

that the reading frame shifts upon splicing out the intron. Otherwise, the frame shift 

indicator takes a value of zero. The second feature is the strand concordance indicator 

taking value one if the mapped intron appears in the opposite strand of a predicted gene 

and value zero otherwise. An illustration of these two features for several examples is 

shown in Fig. C4. Notably, seven of the nine features used by UnSplicer are among the 
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set used by TrueSight. The two new features of UnSplicer are the frame shift and strand 

concordance indicators. The introns of the ab initio gene predictions are not explicitly 

used by UnSplicer, because prediction accuracy varies from one genome to another. Less 

variant are coding frame and coding strand, which are much more reliable features for 

diverse genomes. 

Classification of candidate introns is based on construction of a decision boundary 

in feature space. All nine features are derived from two data sources: read alignments and 

genomic sequence. Alignment-based features are effectively:  i/ gapped (alignment) 

coverage skew, ii/ gapped alignment depth (the number of alignments confirming a splice 

junction), iii/ gap (intron) length, iv/ entropy, and v/ read overhang length. While these 

features were described in detail in (Li Y 2012), there are few minor differences which 

are described here, in Appendix C.  

Figure 3.6. Formation of positive training examples. A set of positive examples was 

formed from read alignments having both a short overhang longer than 20 nt and an 

entropy score higher than 20 (as indicated by green arrows). The figures were made for 

alignments of RNA-seq reads (SRR042297 set) to the D. melanogaster genome. 

 

We used a RBF SVM algorithm (Burges 1998) with Gaussian kernel to classify 

the splice junctions (introns). To determine the SVM parameters and decision boundary, 

we selected training sets of positive and negative examples. A procedure for selecting the 

training set was developed with the intention to see positive SJ examples nearly all 

annotated (“true” SJ) by an external source (e.g. the expert made genome annotation), 
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and negative examples nearly all not annotated (“false” SJs). The training set consisted of 

5000 positive and 5000 negative examples for each genome considered. Positive 

examples were selected by sampling candidate SJs with high values for shortest overhang 

(> 20 nt) complemented by high value of entropy (>20). Distributions of these two 

features for both true and false SJs in D. melanogaster are shown in Fig. 34. Out of this 

set of positive SJs, more than 98% were annotated in Flybase. For reads shorter than 60 

nt, the overhang threshold is determined by          , where   is the half the read 

length. This heuristic rule is required to maintain a reasonably large number of positive 

examples in the training set for short reads. 

 
Figure 3.7. Formation of negative training examples. Normalized histograms are shown 

for shortest overhang values and coverage skew scores for gapped alignments of A. 

thaliana RNA-seq reads (SRR360205 set). The set of candidate splice junctions with the 

shortest overhang value (< 3) is highly enriched with negative examples. Similarly, 

enriched with negative examples is the set of candidate splice junctions with coverage 

skew score less than -1. Splice junctions with scores situated in either of the green 

regions (shown above) were labeled as negatives. 

 

Negative examples were selected by sampling candidate SJs with either a 

coverage skew score less than -1 or a shortest overhang length of 2 nt or less. Fig. 35 

shows the distribution of shortest overhang length and coverage skew score for true and 

false junctions obtained by gapped alignment of RNA-seq reads (from SRR360205 set) to 

the genome of A. thaliana. Among this set of negatives, less than 1% were annotated in 

TAIR 10. 
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Use of the three features (overhang, entropy, and coverage skew) to define a 

training set leaves six features for use in the algorithm of classification: donor and 

acceptor site score, intron length, frame shift indication, strand error indication, and 

gapped alignment depth. For A. thaliana RNA-seq reads from SRR360205 set UnSplicer 

found 164,373 splice junction candidates with canonical splice sites dinucleotides. As 

mentioned above we used the LIBSVM package (0) to train an RBF SVM classifier using 

the training set of 10,000 splice junctions. To find optimal parameters for the Gaussian 

kernel a grid search was performed for combinations of kernel width ( ) and error cost 

(c). For each pair of values ( ,c), the SVM was trained and used for prediction on a 

development set comprised of 10,000 randomly selected splice junction candidates which 

did not belong to the training set. The label, true or false, for each splice junction in the 

development set was defined with respect to the ab initio gene models made by 

GeneMark-ES. 

 

Figure 3.8. A grid search was performed to find the best SVM kernel parameters  and c, 

where   
 

  . The optimal point with respect to Tp-Fp was            = (-7,-2). 

 

We searched for the values of   and c delivering the highest value of classification 

criterion: the number of true positives minus false positives by with respect to the splice 

junction labels. Fig. 3.8 visualizes values of the criterion on a ( ,c) grid for the above 
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mentioned development set of 10,000 splice junctions produced by UnSplicer aligning 

SRR360205 RNA-seq reads to the A. thaliana genome. In this figure, the result of a grid 

search for A. thaliana RNA-seq data is shown, which results in values of (           to 

be (-2,-7). It has been shown that good parameters for kernel SVMs tend to lie inside a 

pocket in the (     plane (Keerthi 2003). Indeed, this pocket is visible in the lower left 

plot in Fig. 3.9, where “Tp-Fp” is shown over the parameter plane. The sweet spot runs 

along a diagonal ridge (colored deep red in the figure). Indeed, as we consider the 

performance measure Tp-Fp over four data sets, we see a similar pattern (Fig. 3.10). 

Congruent regions across all four data sets in the       parameter plane result in under-

fitting (test junctions are labeled the same way), or over-fitting (all test points are labeled 

as false unless they happen to lie very close to a positive training sample). A pocket of 

good performance consistently lies on a ridge starting from roughly             

       and extends from there with a slope of -1 in the log plane as shown in the figure. 

It was not surprising to observe this feature, as this is reported to be a general property of 

RBF SVMs (Keerthi 2003). Indeed, because of this consistency, the grid search is 

restricted to a region in the vicinity of this ridge in order to reduce the computational cost 

of the search. Following the ridge along its length, with   increasing and   decreasing, the 

decision boundary increasingly approximates a hyperplane. We observe most clearly in 

C. elegans that the best performance is obtained by a boundary very different from a 

hyperplane—specifically in a region near                   . This demonstrates that 

the more flexible RBF SVM notably improves performance compared with a hyperplane 

boundary. 
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Figure 3.9. Performance of kernels with various values of (     for a test set derived 

from SRR360205 (A. thaliana). “True” and “false” labels were derived from the ab initio 

gene predictions made by GeneMark-ES. In this example, the grid search found the best 

pair at log(c) = -7, and log( ) = -2. 
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Figure 3.10. We observe that for all examined RNA-seq data sets, regions similarly 

situated in panels a,b,c,d in the       parameter plane result in either under-fitting or 

over-fitting the training data. It is also observed that a similarly situated ridge (with a 

pocket of highest values of the criterion function) produces the best overall performance 

in each case. 

 

All training is performed on canonical junctions. After the parameters (     are 

found by the grid search, all non-labeled canonical splice junctions are predicted by the 

SVM. After training and prediction of canonical junctions, prediction of non-canonical 

junctions is performed using the same decision boundary used for canonical junctions 

After the kernel parameters are found, the SVM classification was made for all   

(          for data set SRR360205)  candidate splice junctions. A probability score 

          was assigned to each predicted splice junction using the method described 

in (0). A sigmoid function was used to define the probability score, such that for each 

input feature vector    
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where          represents class (1 is a “true” splice junction label, and 0 is “false”),       

is the decision value at point   (+1 or -1, then averaged over a 5-fold cross validation), 

    are constants found by maximizing the likelihood of training data, and    is a 

normalizing constant chosen so that                                          

Each candidate splice junction was ranked with the probability score. While the 

default classification threshold was set as 0.5, a full receiver operating curve (ROC) 

could be defined by variation of the detection threshold over [0,1]. Any point of the ROC 

could be chosen as an operating point of classification by the user. 

 

Results 

We begin with a demonstration of the prevalence of noisy splicing. The ribosomal 

protein RpS4 in D. melanogaster is a highly expressed gene with two isoforms and five 

annotated introns. Alignment of EST sequences (downloaded from NCBI) using the 

program BLAT to the RpS4 gene locus results in a set of 33 spliced alignments shown in 

Table 3.1. The five annotated introns are indicated with a ‘**’ label on the left, and the 

number to the left of the FlyBase record name (FBgn0011284) is the number of EST 

alignments across that intron. The 28 spurious introns found by EST alignment are most 

likely due to a combination of mapping error and splicing noise because their boundaries 

are dispersed but generally nearby annotated introns. If any of these 28 candidate novel 

introns are to be predicted, some additional supporting evidence would be required. This 

is the motivation for using DNA sequence features. 
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Table 3.1. A list of introns found by spliced alignment of D. melanogaster EST 

sequences to the RpS4 gene locus (FBgn0011284).  Columns: 1 (number of alignments), 

2 (locus name), 3-4 (intron boundaries inferred by gapped alignment). The introns in the 

FlyBase annotation are indicated with a ** on the left. 
 

 

The UnSplicer was compared with four other RNA-seq alignment programs: 

TrueSight v0.06, TopHat v2.0.8, PASSion v1.2.0, and SOAPsplice v1.9. Due to a large 

number of false positives observed in the runs of MapSplice (Li 2012, Zhang 2012) and 

GSNAP (Wu 2010), it was not practical to include these results in the comparison. Two 

different simulation experiments were performed in order to compare the programs, in 

addition to several real data sets 
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The five RNA-seq mapping programs were evaluated by mapping simulated 

reads. Maq (Li 2008) was used (with sequencing error parameter r = 0.02) to simulate 

reads derived from 41,671 A. thaliana full-length cDNA sequences. Three different 

simulated paired-end read sets were created, each consisting of 5 million paired-end 

sequences with length 50 nt, 75 nt, and 100 nt. Reads were generated from transcripts 

according to expression levels found by alignment of a real data set (SRR360205) using 

TopHat, then using Cufflinks (Trapnell 2010) to quantify expression level. The number 

of true positives and false positives found by each program, as well as specificity, is 

shown in Table 3.2. Three results are reported for UnSplicer, corresponding to three 

different probability score thresholds (0.1, 0.5, and 0.9). The threshold value appears next 

to the column title in parentheses. It is worth noting that the number of false positives is 

very effectively reduced by selecting a high threshold for UnSplicer. For UnSplicer (0.9), 

the false positive incidence is less than 1 per 400 predictions. While some programs 

perform marginally better than others, it is clear that all programs perform quite well on 

simulated data. Summarizing these results, UnSplicer has the highest specificity, while 

TrueSight has the highest overall sensitivity (with SOAPsplice slightly higher for the 75 

nt reads). 

Table 3.2. Number of true positives (Tp), false positives (Fp), and specificity (Sp) for five 

programs mapping simulated reads to A. thaliana. 

Tp 
UnSplicer 

(0.1) 

UnSplicer 

(0.5) 

UnSplicer 

(0.9) 
TrueSight Tophat SOAPsplice PASSion 

50 nt 81595 79584 68332 84133 79056 82216 82113 

75 nt 84680 83874 78110 84831 84246 85137 84355 

100 nt 85168 83646 75936 85950 85714 84815 84471 

        

Fp 
UnSplicer 

(0.1) 

UnSplicer 

(0.5) 

UnSplicer 

(0.9) 
TrueSight Tophat SOAPsplice PASSion 

50 nt 726 405 161 1722 2953 502 2159 

75 nt 807 427 183 858 2857 496 1815 

100 nt 811 430 155 1614 3259 501 1765 

        

Sp (%) 
UnSplicer 

(0.1) 

UnSplicer 

(0.5) 

UnSplicer 

(0.9) 
TrueSight Tophat SOAPsplice PASSion 

50 nt 99.12 99.49 99.76 97.99 96.40 99.39 97.44 



 39 

75 nt 99.06 99.49 99.77 99.00 96.72 99.42 97.89 

100 nt 99.06 99.49 99.80 98.16 96.34 99.41 97.95 

 

Table 3.3 reveals the total number of reads aligned by each program. Since there 

were 5 million paired-end reads given as input, the maximum number of aligned reads is 

10 million. Tophat and SOAPsplice emerge as winners in this category, although TopHat 

predicted the largest number of false positive spliced alignments. Based on simulated 

read alignment, it would appear that SOAPsplice is the best alignment program. When 

we examine real data, we see a very different result (below). 

Table 3.3. The number of simulated reads aligned by each program (in millions of reads), 

by read length. 

 
UnSplicer TrueSight Tophat SOAPsplice PASSion 

50 nt 9.560 9.394 9.905 9.599 8.896 
75 nt 8.017 7.924 8.393 8.422 8.299 

100 nt 6.953 6.873 7.325 7.424 7.790 
 

We examined the effect of alignment depth on intron prediction accuracy. Figure 

3.11 shows the number of correct and spurious predictions made by each program as a 

function of alignment depth. TopHat makes the largest number of correct predictions as 

the alignment depth increases (panels a,c,e). However, TopHat also predicts the most 

spurious introns (panels b,d,f) for all read lengths. TrueSight also has high sensitivity, 

with fewer spurious predictions compared to TopHat, but more spurious predictions 

compared to other programs. SOAPsplice predicts the fewest correct introns with high 

alignment coverage, but also the fewest spurious introns (with depth greater than 10). For 

greater detail at low coverage depths, Figure 3.12 shows those introns predicted with low 

alignment coverage. We notice that variation in the pattern of correct predictions 

decreases with increasing read length. The notable exception is SOAPsplice, which 

predicts many more correct SJ at low coverage (1-5 alignments) compared to all other 

programs. A second fact is that UnSplicer predicts the least number of false positives for 

SJs with only 1-2 reads aligning across them. Both TopHat and PASSion predict a large 

number of false positives at low alignment depth. 
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Figure 3.11. Mapping performance of simulated reads with different lengths. Panels a,c,e 

show the number of correct and panels b,d,f show spurious predictions made by each 

program on the simulated reads as a function of alignment depth. Panels a and b show the 

results for the 50 nt paired-end reads, panels c and d correspond to the 75 nt reads, and 

panels e and f correspond to 100 nt reads. 
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Figure 3.12. Mapping performance of simulated reads with different lengths (low 

coverage junctions). Correct and spurious predictions made for splice junctions with low 

alignment depth. Panels a,c,e show the number of correct predictions and panels b,d,f 

show spurious predictions made by each program on the simulated reads. Panels a and b 

show the results for the 50 nt paired-end reads, panels c and d correspond to the 75 nt 

reads, and panels e and f correspond to 100 nt reads. 

 

All experiments were performed on a 16 processor multi-user Linux system. It is 

not generally feasible to a run program in isolation, nor would this typically be the case in 

automated pipelines. Therefore, two measures of computational cost are reported: total 

elapsed time (“wall clock” time), and the CPU time for each program. CPU time is a 
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measure of time in which processors are occupied by the program. All 5 compared 

programs are multi-threaded, so we specified 8 threads to be used for each program. A 

comparison of computational cost for alignment of the simulated reads are shown in 

Table 3.4. Because 8 threads are allowed, the CPU time is often much greater than the 

wall clock time. The fastest program are TopHat, with SOAPsplice a close second. 

However, for 100 nt long reads, SOAPsplice slows considerably. For 100 nt long reads, 

run times for UnSplicer and TrueSight are close to SOAPsplice. It is worth noting that 

while TopHat is the speed king in this group, our results indicate that among the 5 

programs compared, it is clearly the least accurate for spliced alignment. The most costly 

program to run is PASSion, which required 7-8 hours of wall time with 8 threads. 

UnSplicer and TrueSight are on par with each other, typically requiring 1-2 hours of wall 

time. 

Table 3.4. The time and resources required by each of the five programs to map the 

simulated reads to the A. thaliana reference genome. All times are shown in 

(hours:minutes). 

Wall clock 
(h:m) UnSplicer TrueSight Tophat SOAPsplice PASSion 

50 nt 1:29 1:13 0:22 0:15 7:54 
75 nt 1:39 1:31 0:19 0:45 8:43 

100 nt 2:08 1:55 0:28 1:45 7:34 
SRR360205 

(76 nt) 5:37 5:19 1:10 3:55 34:29 

      CPU time 
(h:m) UnSplicer TrueSight Tophat SOAPsplice PASSion 
50 nt 3:51 3:09 0:51 0:50 10:18 
75 nt 3:27 4:00 0:58 2:55 15:06 

100 nt 4:36 4:53 1:29 5:28 22:02 
SRR360205 

(76 nt) 13:23 19:49 6:26 23:35 102:42 
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Table 3.5. Description of real RNA-seq data sets and reference genomes used for 

comparison. 

 

Species Data set (SRA 

no.) 

Read length 

(bp) 

No. pairs 

(millions) 

Genome ver. Annotation 

ver. 

A. thaliana SRR360205 76 20.9 TAIR10 TAIR10 

C. elegans SRR359066 101 12.2 Ce10 RefSeq, Ensembl 

D. melanogaster SRR042297 75 13.6 r5.42 r5.42 

C. neoformans SRR563164 101 5.7 Broad Institute* Broad Institute* 

* Cryptococcus neoformans var. grubii H99 Sequencing Project, Broad Institute of Harvard and MIT 

 

To assess the performance on real data sets for compact genomes, we used RNA-

seq data sets available for four different species: A. thaliana, C. elegans, D. 

melanogaster, and the fungus C. neoformans (as summarized in Table 3.5) and counted 

the number of intron predictions which were in agreement with the annotation and the 

number which were novel (not annotated). Figs. 3.13-3.16 depict the performance of each 

program in terms of the number of confirmed introns (previously annotated) compared to 

the number of predicted novel introns (not annotated). Because both UnSplicer and 

TrueSight provide probability scores for each splice junction we could build a “receiver 

operating characteristic,” or ROC curve. Predicted introns are ranked by probability 

score, and the ROC curve may be defined by variation of the detection threshold over 

[0,1]. Results produced by other programs are represented by single points. 
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Figure 3.13. Performance comparison of several RNA-seq mapping programs on the A. 

thaliana data set. ROC curve for UnSplicer (blue curve) and TrueSight (red curve); 

TopHat (green +), PASSION (violet star), and SOAPsplice (black X). The UnSplicer 

ROC curve shows higher performance, with fewer novel introns predicted for a given 

number of predicted splice junctions. 

 
Figure 3.14. Performance comparison of several RNA-seq mapping programs on the C. 

elegans data set. Labels are the same as in the previous figure. 
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Figure 3.15. Performance comparison of several RNA-seq mapping programs on the D. 

melanogaster data set. 

 

 
Figure 3.16. Performance comparison of several RNA-seq programs on the C. 

neoformans data set. The UnSplicer ROC curve demonstrates higher level of 

discrimination between true and false splice junctions compared with all other pipelines, 

with the exception of marginal improvement by TrueSight when a very low detection 

threshold is used. 
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It is expected that the vast majority of introns predicted by mapping programs 

which have no match in the annotation are spurious. That is, they arose from mapping 

errors or splicing noise (or both). This is particularly true for the model genomes, which 

have a large number of EST sequences supporting gene structures. In order to compare 

the performance of the five programs, we use novel introns as a rough measure of 

spurious introns. Therefore, we believe prediction of fewer novel introns is strong 

evidence of better overall prediction performance. 

For the RNA-seq data sets in Table 3.5 UnSplicer demonstrated the best 

performance by a substantial margin (Figs. 3.13-3.16). In A. thaliana and C. neoformans, 

the difference with other programs was most pronounced, with UnSplicer predicting the 

smallest number of spurious introns. UnSplicer reported about 5,500 or 6,600 more 

introns confirming the respective annotations, compared with TopHat and SOAPsplice, 

for an equal number of reported novel junctions. TrueSight detected a small number 

(134) of true positives in C. neoformans not found by UnSplicer if the probability 

threshold is set to zero. However, UnSplicer can filter spurious introns much more 

effectively, as is evident in Fig. 3.16. 

Fig. 3.17 compares the number of novel introns predicted by each program to the 

number predicted by UnSplicer. The data in Fig. 3.17 are found by finding the difference 

between the number of novel introns predicted by each program and the number 

predicted by UnSplicer at the point on the ROC curve matching the corresponding 

program’s annotated predictions. In other words, the difference is considered along the 

abscissa in Figs. 3.13-3.16. This difference is labeled as a reduction in spurious introns, 

because it is expected that most such introns are due to splicing noise. For TopHat, 

PASSion, and SOAPsplice, the reductions are shown as points, while TrueSight appears 

as a curve. A substantial reduction in spurious predictions is seen compared to all 

programs and in all data sets, with the lone exception of TrueSight in C. neoformans for a 

very low probability score threshold (mentioned above). 
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In Fig. 3.18, these results are presented as percent reductions in spurious 

predictions, relative to the number of spurious predictions made by each program. Most 

reductions are very substantial, particularly TopHat which can be matched by UnSplicer 

in sensitivity with 60-80% reduction in spurious predictions in A. thaliana, C. elegans, 

and C. neoformans. Compared to TrueSight, spurious predictions are reduced by 20-50%, 

which demonstrates the advantages of UnSplicer on compact genomes. 

 

 

Figure 3.17. Reduction in spurious splice junction (SJ) prediction. Panels a-d compare the 

number of spurious splice junctions predicted by each program on the four data sets, to 

the number predicted by UnSplicer. The reduction is evaluated at a point on the 

UnSplicer ROC curve matching each compared program’s predictions confirming the 

annotation. 
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Figure 3.18. Normalized reduction in spurious splice junction (SJ) prediction. Panels a-d 

compare the number of spurious splice junctions predicted by each program on the four 

data sets, to the number predicted by UnSplicer. The reduction is calculated as a percent 

reduction achieved by UnSplicer compared to each program. 

 

Fig. 3.19 compares the number of additional annotated introns found by 

UnSplicer to the number found by other programs. This is essentially the difference 

between UnSplicer and the other programs along the vertical direction in the ROC curves 

(Figs. 3.13-3.16). In virtually all cases, UnSplicer confirms thousands of introns more 

than other programs when the number of spurious predictions is matched. In Fig. 3.20, 

these increases are shown as a percentage gain compared to each program. In D. 

melanogaster, UnSplicer finds ~1,500 additional annotated introns compared to the 

programs TopHat, PASSion, and TrueSight. In A. thaliana, UnSplicer finds many 

thousands of additional confirmed introns compared to the other DNA-aware program 

TrueSight. 
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Figure 3.19. Improvement in annotated splice junction (SJ) prediction. Panels a-d show 

the number of additional annotated splice junctions found by UnSplicer compared to 

other programs on the four data sets. 
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Figure 3.20. Increase in predictions of annotated splice junctions (SJ) by UnSplicer 

compared to four other programs. The percent increase is determined by (TpU-Tp)/Tp), 

where Tp is the number of true positives (annotated) SJ predicted by a program, and TpU 

is the number of true positives predicted by UnSplicer. A threshold value for UnSplicer is 

selected so that the number of confirmed annotated SJ predictions by UnSplicer matches 

the number of the corresponding program. 

 

Table 3.6 compares the prediction accuracy of UnSplicer when a threshold value 

of 0.5 is used with the four other programs. UnSplicer consistently predicts introns with 

the highest value of annotated predictions (Tp) minus novel predictions (Fp), which is a 

measure of general performance. UnSplicer predicts the lowest number of novel introns, 

with the exception of PASSion on the C. neoformans data set. In this case, PASSion has 

slightly fewer novel predictions, but at the cost of about 2,500 fewer annotated 

predictions compared to UnSplicer. In general, UnSplicer outperforms PASSion because 

the ROC curve lies above and to the left of the point represented by PASSion (Fig. 3.16). 

A threshold value of zero was selected for TrueSight in this table because that threshold 
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was used in the TrueSight publication (Li, 2012). In summary, on all data sets evaluated 

the best overall performance was achieved by UnSplicer. 

Table 3.6. Comparison of the UnSplicer performance (with default threshold of 0.5) to 

performance of other RNA-seq alignment tools. 

 UnSplicer 

(thresh.=0.5) 

TrueSight 

(thresh.=0) 

TopHat PASSion SOAPsplice 

A. thaliana  Tp  92,818  99,051  98,368  93,934  100,416  

Fp  4,711  14,770  28,730  11,654  22,418  

Tp-Fp  88,107  84,281  69,638  82,280  77,998  

Sp (%)  95.17  87.02  77.40  88.96  81.75  

C. elegans  Tp  61,529  63,847  44,213  60,247  43,043  

Fp  5,983  11,201  10,226  6,005  8,327  

Tp-Fp  55,546  52,646  33,987  54,242  34,716  

Sp (%)  91.14  85.07  81.22  90.94  83.79  

D. 

melanogaster  

Tp  32,624  34,441  33,936  33,260  35,117  

Fp  4,168  7,876  10,021  7,306  9,891  

Tp-Fp  28,456  26,555  23,915  25,954  25,226  

Sp (%)  88.67  81.39  77.20  81.99  78.02  

C. 

neoformans  

Tp  29,273  30,314  24,288  26,723  23,202  

Fp  6,637  12,300  9,534  5,482  9,531  

Tp-Fp  22,636  18,014  14,754  21,241  13,671  

Sp (%)  81.52  71.14  71.81  82.98  70.88  

 

Because UnSplicer uses some features derived from gene prediction, it should be 

examined whether it can detect as many introns which connect non-coding exons as other 

programs. This would include UTR introns and introns inside non-coding genes. Table 

3.7 shows the number of annotated A. thaliana introns which were detected by each 

program, categorized as either “coding” (connecting coding exons) or “non” (connecting 

non-coding exons). A junction is non-coding only if the nucleotide immediately adjacent 
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to the intron in both exons is non-coding in all annotated isoforms. The ratio of coding-

to-non is shown in the bottom row of the table. A high ratio would indicate a bias for 

detecting introns in coding regions over non-coding. Surprisingly, PASSion has the 

highest ratio of all programs (excluding the high threshold case with UnSplicer). We 

attribute this high ratio to PASSion’s pattern growth algorithm, which preferentially 

detects “coding” introns compared to “non-coding”. UnSplicer (0.5) also has a relatively 

high ratio, but only 15% higher compared to the more conventional aligners such as 

TopHat and SOAPsplice. While this difference is notable, it is a natural artifact of the 

detection problem in that there is more evidence available to reject spurious junctions in 

coding regions. This point is more clearly illustrated in Fig. 3.21, where UnSplicer’s ratio 

of coding to non-coding intron detections increases with increasing probability threshold. 

Also shown is the ratio for TrueSight, which is nearly invariant to probability score. We 

suspect that the reason for this is that TrueSight’s frame-less coding sequence model, 

which is the basis for its coding potential score, does not play a major role in SJ 

discrimination in this example. 

Table 3.7. Comparison of the number of annotated splice junctions in A. thaliana which 

were found by each program by aligning the data set SRR360205. Junctions connection 

coding exons are labeled as ‘coding’ and all others ‘non’. The ratio is the number of 

confirmed annotated coding SJs divided by the number of confirmed non-coding SJs. The 

UnSplicer numbers are determined by considering all predictions having probability 

scores greater than the thresholds: 0.1, 0.5, and 0.9. 

SJ 

type 

UnSplice

r (p=0.1) 

UnSplicer 

(p=0.5) 

UnSplice

r (p=0.9) 
TrueSight TopHat SOAPsplice PASSion 

coding 92306 88980 70902 92977 92682 94207 93934 

non 5737 5073 3331 6074 6047 6218 5236 

coding 

/ non 
16.09 17.54 21.29 15.31 15.33 15.15 17.94 
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Figure 3.21. Ratio of predicted “coding” introns to “non-coding” as the probability 

threshold is increased. 

 

The anchor-and-extend technique used by UnSplicer to find gapped alignments 

will have some impact on detection performance of introns which have short exons 

flanking them. This is due to the fact that reads aligned in this fashion cannot be mapped 

across SJs at both ends of a short exon unless the exon is sufficiently long. Reads mapped 

across only one SJ are not affected. We compared the effect of exon length on detection 

sensitivity of the five programs on the A. thaliana data set. The set of all detections 

confirming annotated introns was constructed for each program. A separate set of exons 

was made by including the two flanking exons for each intron in the intron set. A 

distribution of the lengths of the exons was calculated. In Table 3.8, the number of 

detected introns is shown for each program for different intervals of flanking exon length. 

All introns predicted by UnSplicer are considered (the probability score threshold is zero 

in this case). UnSplicer is the most sensitive for introns next to exons having length 25 nt 

or shorter. This supports the anchor-and-extend approach for finding introns. 
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Table 3.8. The distribution of the length of exons flanking every prediction confirming an 

annotated intron in A. thaliana. All introns predicted by UnSplicer are considered 

(threshold = 0). The anchor-and-extend strategy used by UnSplicer improves detection 

sensitivity of introns adjacent to short exons compared to other programs 

exon length 

(nt) 
PASSion TrueSight UnSplicer TopHat SOAPsplice 

1-24 479 378 482 382 470 

25-49 7690 8066 8049 8048 8227 

50-99 57102 59904 59483 59757 60678 

100-199 64133 67758 67629 67539 68722 

200-499 43965 46483 46548 46311 47048 

500- 14499 15513 15535 15421 15705 

 

Next we compared the prediction specificity of each program as a function of 

intron length in the A. thaliana data set. The intron predictions made by each program 

were partitioned into subsets according to their length. The specificity was calculated for 

each subset of predictions. In general, we expect specificity to drop as with increasing 

intron length because single-nucleotide precision of feature boundary prediction requires 

more discrimination power with increasing length. Table 3.9 confirms that each program 

exhibits a monotonically decreasing specificity with increasing intron length, with the 

exception of UnSplicer. UnSplicer (with a probability threshold of 0.5) predicts with a 

high and fairly constant specificity (94-95%) up to a length of 2000 nt. For all introns 

longer than 2000 nt, specificity drops dramatically. However, even in that case, 

UnSplicer’s specificity is 2.5 times higher compared to the next best program 

(TrueSight). We observe that most programs severely over-predict long introns, with a 

ratio of novel to annotated introns from 6.8:1 (TrueSight) to 56:1 (TopHat). 
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Table 3.9. Specificity of intron predictions is shown as a function of intron length for the 

A. thaliana data set. There were no annotated introns predicted by any program shorter 

than 50 nt. 

intron length 

(nt) 
UnSplicer TrueSight TopHat SOAPsplice PASSion 

50-99 94.8283 95.7735 90.0762 89.6227 95.3515 

100-199 93.7958 93.0739 82.5879 82.1278 91.7287 

200-499 93.7966 90.6623 74.6497 74.761 86.3691 

500-1999 95.6146 79.2293 41.8709 49.4626 57.6031 

2000- 38.7097 14.9718 1.7883 11.1531 4.3651 

  

As a final illustrative example, in Fig. 3.22 we show results of splice junction 

predictions by several programs, PASSion, SOAPSplice, TopHat, TrueSight and 

UnSplicer,  graphically depicted for a 10 Kb region of chromosome 1 of A. thaliana 

carrying three multi-exon protein coding genes, as annotated in TAIR. UnSplicer predicts 

no false positive splice junctions in this region. All other programs while predicting the 

same number of true positives as UnSplicer predict few false positives. 
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Figure 3.22. Splice junctions predicted by five programs are graphically depicted in 10Kb 

region of A. thaliana chromosome 1.  True positive splice junctions (matching 

annotation) are shown in green while false positives are shown in red in the FP panel for 

a corresponding program. The three genes annotated in the region are graphically 

depicted in the bottom. UnSplicer predicts no false positives in this region. 

 

Discussion of simulated data 

There is a clear gulf between the results of simulation and alignment of real data. 

This is caused by the absence of splicesosome noise modeling in read generating 

simulations. In this comparison, we use well annotated genomes to conclude UnSplicer is 

much more effective at predicting introns in compact genomes compared to other 

programs. Simulated data is of limited use in evaluation of spliced alignment programs, 
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and can lead to incorrect conclusions if used in isolation. Our simulation results 

suggested that SOAPsplice was a superior alignment program. However, results on real 

data reveal considerable deficiencies of SOAPsplice. UnSplicer predicts nearly 10,000 

fewer spurious introns compared to SOAPsplice in the real A. thaliana data set, whereas 

in simulated data on the same genome the two programs appeared to be very comparable. 

In addition, with simulated reads SOAPsplice found many more read alignments 

compared to UnSplicer. However, with real A. thaliana data, UnSplicer mapped 33.7 

million reads, while SOAPsplice only mapped 26.1 million. 

 

Relationship to TrueSight 

UnSplicer and TrueSight have three major differences: i/ in derivation of DNA 

sequence model parameters, ii/ in training set selection (for classification), iii/ in 

classification algorithm. UnSplicer derives model parameters by use of GeneMark-ES 

(conducting unsupervised training on a reference genome), while TrueSight derives 

parameters directly from the training set of splice junctions. A danger of reliance on 

RNA-seq alignments for deriving model parameters is a possibility of bias in parameters 

of the protein-coding sequence model due to overrepresentation of highly expressed 

genes. It is well known that for in prokaryotic and eukaryotic genomes, codon usage of 

highly expressed genes differs from codon usage of genes expressed at moderate and low 

levels (see for example, Duret 1999, Moriyama 1998). UnSplicer avoids this problem 

because GeneMark-ES trains parameters based on a large number of genes (many 

thousands). 

The training set for the UnSplicer classifier is guided by a different set of heuristic 

rules (described above), in comparison with rules used in TrueSight. The training set of 

positive examples in TrueSight is formed from the set of all splice junctions with 

canonical splice sites for which: i/ no mismatch errors occur in the alignment and ii/ the 

splice junction is confirmed by 5 or more alignments. The set of negative examples is 
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taken from the set of gapped alignments spanning  introns with non-canonical splice sites, 

such that: i/ the SJ is confirmed by only one alignment, and ii/ the short side of the 

aligned RNA read is close to the admitted minimum, either 8 or 9 nt. These training sets 

are also used for deriving sequence model parameters. 

The third major difference is in the design of the classification algorithm. 

TrueSight finds a decision boundary by the expectation maximization (EM) algorithm 

maximizing a likelihood of all candidate splice junctions presented to the classifier. The 

EM algorithm is searching for a hyperplane boundary separating positive and negative 

examples in the training set. UnSplicer uses the training set to find parameters of a 

Gaussian kernel SVM that maximizes agreement with ab initio gene predictions on a 

development set. 

In addition to the three major differences between UnSplicer and TrueSight, few 

more minor differences exist. For instance, instead of the coding potential used by 

TrueSight, we use two binary indicators, strand concordance and frame shift indication. 

These indicators have zero value for true introns (both protein-coding and UTR introns) 

and non-zero value for many false positives. Also, UnSplicer uses an intron length 

distribution provided by GeneMark-ES in the gap length feature which is essentially a 

log-likelihood that an intron has a given length.  Intron length distributions derived by 

GeneMark-ES show good agreement with empirical distributions determined from 

transcript sequence alignments. In an example for the strawberry genome (F. vesca) 

shown in Fig. 6 one can see that intron length distribution inferred by GeneMark-ES 

nearly coincides with one determined from transcript sequence alignments (Fig. 3.23). As 

the intron length related feature TrueSight uses a score defined as follows: for an intron 

of length  , the score is zero if        , otherwise it is             , where       is the 

length for which 95% of candidate introns are shorter. Also, in TrueSight donor and 

acceptor site log likelihood scores are summed together in a single feature, while 

UnSplicer has two separate features. 
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Figure 3.23. Comparison of strawberry (F. vesca) intron length distributions found by 

GeneMark-ES (blue) and one derived from alignment of EST sequences (red). 

 

Use of GeneMark-ES makes UnSplicer applicable to newly sequenced genomes 

with no annotation where RNA-seq data have become available as well.  On the other 

hand dependence of GeneMark-ES restricts UnSplicer to genomes with homogeneous 

G+C content. In nonhomogeneous genomes, such as large gnomes of animals, a separate 

training procedure must to be carried out to derive sequence model parameters needed for 

UnSplicer.  

Lastly, we should note that UnSplicer performs the remapping and filtering steps 

prior to classification while TrueSight performs these steps after classification. The 

change of order in UnSplicer was made since the classification algorithm uses the 

number of alignments across a splice junction as one of the input features. 

  



 60 

CHAPTER IV 

GENEMARK-NGS: A CONDITIONAL LEARNING ALGORITHM 

FOR EUKARYOTIC GENE FINDING  

Many years of development of eukaryotic gene finding techniques have led to a 

few basic methodologies which are widely used today. The most reliable systematic 

method of gene finding today is alignment of full-length cDNA sequences to a reference 

genome, and testing long open reading frames (ORFs) in the transcript sequences. Such 

cDNA sequences should ideally be constructed from long-read sequencing technology, 

due to difficulty in resolving correct isoform structures using short-read sequences. This 

isoform ambiguity may be alleviated somewhat with paired-end sequencing using 

carefully chosen fragment length variations. To date, iron clad gene prediction still 

requires long read sequences for full-length cDNA construction. However, outside of a 

few extensively studied model organisms, full-length cDNA construction from long-reads 

is rarely performed due to the relatively high expense of obtaining these sequences. 

Comparative genomics (Korf 2001, Allen 2004, Gross 2006) is also commonly 

used to support gene finding. Conserved protein domains shared by related species are 

found in the target genome, and used to support exon-intron structures where possible. In 

(Kellis 2003), gene finding by comparative genomics was demonstrated to find 90% of 

genes in genomes of several species of novel yeast genomes. The methods rely on a 

combination of access to many related genome assemblies, and existence of long ORFs in 

DNA sequence, which is generally not the case in higher eukaryotes which have much 

shorter exons. In addition, simultaneous sequencing of several larger and more complex 

genomes is not nearly as practical compared with yeast genomes. Furthermore, in many 

cases novel genomes are assembled with no available genomes of close biological 

relatives from which gene structure indications in target genome can be inferred. 
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Therefore in practice, comparative genomics is of limited value in annotation of full gene 

structures of eukaryotes. 

Today, most transcriptome sequencing is performed by RNA-seq experiments due 

to production of large volumes of reads for low cost (Martin 2011, Wang 2009). Indeed, 

sequence production with this new apparatus is so great, efforts have been made to 

assemble entire transcriptomes with batches of RNA-seq runs (see Martin 2011, and 

references within). Two fundamentally different approaches have been proposed for this 

purpose: 1/ mapping reads to a reference genome, and assembling transcripts (Guttman 

2010, Trapnell 2010), and 2/ de novo assembly of transcripts (Simpson 2009, Birol 2009, 

Grabherr 2011). The principle advantage of de novo assembly is the ability to reconstruct 

gene transcripts which are not found in the reference genome assembly (or even without a 

genome assembly altogether). Disadvantages include lower sensitivity to genes with low 

expression, false transcripts made from contaminating sequences in the RNA-seq 

experiment, and a requirement for much greater computational resources compared to 

mapping-and-assembly methods. If it were possible to assemble the entire transcriptome 

with RNA-seq reads, then the problem of gene finding in eukaryotes would be greatly 

simplified due to removal of exon-intron structures from the detection problem. Of 

course, this can only work on those transcripts which have been sufficiently reconstructed 

so that the protein coding region may be correctly identified in its entirety. The set of 

assembled transcripts for which coding sequences are fully covered will represent some 

fraction of all genes in a genome—a fraction dependent on the depth of sequencing 

performed as well as the variety of cell conditions and tissue types used for library 

construction. A successful application of de novo transcriptome assembly was reported 

(Grabherr 2011) in which roughly 90% of protein coding genes of S. pombe were 

assembled into transcripts by the Trinity pipeline. Less successful was the transcriptome 

assembly from mouse sequences, resulting in assembly of a little over half of known 

genes. In (Guttman 2010), a similar result of roughly 55% of known mouse genes were 



 62 

recovered in full length with the program Scripture. The difference in genome coverage 

could be related to more stable or more extensive heterochromatin in the mouse genome 

compared to yeast. 

Whether 10% or 50% of genes remain to be found, these recent results 

demonstrate computational gene finding methods are still required even with available 

deep transcriptome sequencing technology. Perhaps the most widely adopted and 

successful algorithm class for eukaryotic gene prediction is the generalized hidden 

Markov model (GHMM), which has been incorporated into many gene finders, such as 

GenomeScan (Yeh 2001) and Augustus (Stanke 2003), and GeneMark.hmm (Lukashin 

1998). The GHMMs used by these programs require a training set to obtain parameters 

for prediction. A traditional approach to preparing a training set would involve alignment 

of full-length cDNA or other available long-read sequences of cellular RNA to a 

reference genome in order support highly reliable prediction of a small percentage of 

protein coding genes, which may then serve as a training set to find parameters for 

sequence models used by gene prediction algorithms. 

Even when limited long-read transcript sequences are available, their scarcity 

tends to provide support to the most highly expressed genes in a genome. Derivation of 

sequence model parameters from a subset of genes which is overrepresented with highly 

expressed genes results in biased parameters. This bias is caused by differences in codon 

usage in genes having different constitutive expression level (Sharp 2010). This fact has 

been pointed out before (Rogic 2001), yet overlooked by many scientists because test sets 

used to measure gene prediction performance tend to be overrepresented by highly 

expressed genes. 

A challenge for computational gene prediction is to incorporate the wealth of 

RNA-seq information in a productive fashion for finding functional protein coding genes 

over a whole genome. RNA-seq data tends to be somewhat error prone, with 

contributions originating from natural cell splicing errors, steps associated with cDNA 
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library preparation, sequencing, and the error-prone process of spliced alignment. The 

challenge is to find a method for parameter training which prevents such errors associated 

with RNA-seq to be incorporated into GHMM model parameters. We propose a new 

pipeline called GeneMark-NGS, which solves this problem using a combination of the 

RNA-seq mapping program UnSplicer (Burns, submitted for pub.) and GeneMark.hmm. 

GeneMark-NGS is the first gene prediction program which uses RNA-seq spliced 

alignments to improve GHMM model parameters for more accurate gene prediction. 

 

Conditional learning using RNA-seq alignments 

In GeneMark-NGS, RNA-seq spliced alignments to a reference genome are used 

to assist in training GHMM parameters for gene prediction. GHMM parameters are found 

by an iterative machine learning approach which incorporates spliced alignments into 

predicted exon confirmations, and predicted exons into spliced alignment predictions. 

The basic concept we propose is a form of conditional learning illustrated in 

Figure 4.1. Splice junction detection is performed by UnSplicer and gene prediction with 

GeneMark.hmm. The two programs are used together in a ping-pong iterative fashion—

UnSplicer providing intron confirmations and intron sub-models to GeneMark.hmm, and 

GeneMark.hmm providing gene predictions and improved model parameters back to 

UnSplicer. Each predictive algorithm is conditioned to some extent on the input provided 

by the other. 
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Figure 4.1. A diagram of the basic concept of conditional learning applied in GeneMark-

NGS. 

 

Due to available deep sequencing of transcriptomes, support for tens of thousands 

of introns are obtained with most RNA-seq data sets. In this new method, introns found 

by UnSplicer are compared with exons predicted by GeneMark.hmm. If an exon is in 

agreement with a gapped alignment—that is, if a predicted exon shares an intron 

boundary predicted by a gapped alignment—then the sequence in that exon will be 

included in the set of coding sequence used to train a Markov model for the next 

iteration. Such exons are highly likely to be biological exons containing coding sequence 

because two different sources of evidence confirm a boundary with single-nucleotide 

precision. The sequence within all such exons is used to train a Markov chain which 

models coding sequence (CDS). The CDS Markov chain parameters are part of a larger 

set of GHMM parameters used for the next iteration of predictions. 

The process begins with alignment of available RNA-seq to the reference genome 

using UnSplicer in a special conservative mode. In the conservative mode, UnSplicer 

does not make use of features derived from DNA sequence to classify candidate splice 

junctions. Instead, only the following features are used to select the initial intron 

predictions: coverage skew, entropy, and alignment depth (the number of alignments 

across a splice junction). Only gapped alignments across canonical introns are considered 

in this process, and only canonical introns are predicted by GeneMark.hmm. A set of 
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“positives” and “negatives” are selected according to the training set selection criteria 

described in Chapter III. Additionally, introns having 5 or more gapped alignments 

confirming them are added to this set of “positives.” All splice junctions in the positive 

set are given non-zero probability scores. All those remaining are given a probability 

score of 0. The positive set establishes an initial set of introns from which empirical 

donor and acceptor position specific frequency matrices (PSFMs) and intron length 

distribution are derived. 

Next, the first prediction step is performed by GeneMark.hmm using GHMM 

parameters comprised if the intron sub-models described above, along with heuristic 

parameters for coding and non-coding sequence Markov chains (Besemer 1999). 

The final step of the first iteration is the update of model parameters. In this step, 

new Markov chain parameters describing coding and non-coding sequence and PSFM 

parameters for gene start and stop contexts are derived from the set of predictions. The 

parameters are found by maximum likelihood estimation, using example sequences for 

each type. Gene start and stop contexts are derived from all predicted genes having more 

than 300 nt of coding sequence. Non-coding sequences are found by collecting predicted 

intergenic and intron sequences. Coding sequences, however, are selected very carefully 

in order to minimize the amount of non-coding sequence (or out-of-frame coding 

sequence) which may contaminate the set of predicted coding sequences. Coding 

sequences are found in two ways: 1/ sequence inside all open reading frames (ORFs) 

longer than 1000 nt and 2/ all predicted exons which border any intron boundary 

supported by UnSplicer (regardless of probability score). All remaining GHMM 

parameters (transition probabilities) are calculated according to the method adopted in 

GeneMark-ES. 

In Table 4.1, a number of GHMM sub-model parameter types utilized by 

GeneMark.hmm are listed down the rows. The columns correspond to GeneMark-NGS 

iterations. In each cell, the method of deriving each parameter is indicated. There are 
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three (3) principal methods for obtaining model parameters: 1/ heuristic rules (for initial 

CDS and non-coding sequence Markov chain parameters), 2/ estimation based on the 

prior round of GeneMark.hmm predictions (conditioned on agreement with UnSplicer 

intron predictions in the case of CDS), and 3/ estimation based on a prior round of 

UnSplicer intron predictions. In the initial model, we mentioned that the donor and 

acceptor PSFMs and intron duration are derived from intron predictions made by 

UnSplicer (in a conservative mode). These parameters are labeled “UnSplicer (ini)” in 

Table 4.1. Splice site models in all frames are represented by the same parameters in this 

step. Exon durations (length distributions) are modeled as uniform in the first iteration. 

Prediction and update steps are carried out in iterations 0 and 1 with no changes to 

the intron sub-models. The method of GeneMark-ES is used to update gene start and stop 

context models, and the non-coding sequence Markov model. Starting with iteration 1, 

exon durations are also updated by the method of GeneMark-ES. Coding sequence model 

parameters are based on sequence found in those predicted exons either having support 

from UnSplicer alignments or single-exon genes predicted longer than 1000 nt. 

Gene predictions and the model parameters from iteration 1 are given as input to 

UnSplicer to support the second round of intron predictions from RNA-seq alignment. 

UnSplicer is run in the usual fashion in this step, discriminating candidate splice 

junctions using a set of 9 different features. Two of those features (strand concordance 

and frame shift indication) require gene predictions on the whole genome. The gene 

predictions are made by GeneMark.hmm using the model parameters in labeled “iter 1” 

in Table 1. UnSplicer assigns new probability scores to each candidate intron. This 

results in a more accurate set of likely introns (with probability score   0.5) from which 

new donor and acceptor PSFMs and intron duration are derived for iteration 2. In this 

step, the set of introns is partitioned into three different sets according to their inferred 

reading frame (their position in a codon) in order to derive frame-dependent models for 
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splice sites. Two additional GeneMark-NGS iterations are carried out (iterations 3 and 4), 

in order to allow the model parameters to reach convergence to a final point. 

Table 4.1. The GHMM sub-models and method of updating in each iteration of the 

algorithm. Key: heuristic = initial parameters parameters based on (Besemer 1999), ES = 

GeneMark-ES algorithm, UnSplicer (ini) = initial UnSplicer (used in conservative mode), 

UnSplicer = parameters based on intron predictions made by UnSplicer, uniform = 

uniform length distribution, unch = unchanged from last iteration. 

 
 

Results 

GeneMark-NGS was run on the D. melanogaster genome and four mosquito 

genomes downloaded from VectorBase (Megy, 2012): A. gambiae, A. stephensi, A. 

aegypti, and C. quinquefasciatus genomes. These five genomes were selected due to their 

size variation, and availability of public RNA-seq data sets (refer to Table 4.2). The 

genome sizes vary from 158 MB (A. stephensi) to 1.31 GB (A. aegypti). The genomes all 

generally have homogeneous G+C content, as shown in Fig. 4.2. The genome of C. 

quinquefasciatus is a possible exception, due to the presence of a low G+C bump in its 

composition. However, the low G+C content in this genome is caused by repetitive 

elements, and not variation in composition of native genes. 
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Table 4.2. Genomes and associated RNA-seq data sets used for gene finding. 

 

 

 

Figure 4.2. G+C content histograms of each genome processed by GeneMark-NGS, made 

by 2,000 nt non-overlapping intervals of the assembly.  Each genome in this group is 

homogeneous in G+C content, with the exception of C. quinquefasciatus, which has a 

significant mode in a low G+C region. 
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In each iteration of GeneMark-NGS, a number of predicted exons will be 

confirmed by introns found by UnSplicer. If the conditional learning is successful, it is 

expected that the number of confirmed exons will increase with each iteration. Indeed, 

this is the case as shown in Fig. 4.3. Exons confirmed on just one side or on both sides 

are categorized. In general, a steady monotonic increase in the number of confirmed 

exons is achieved with each iteration, until the number levels off. At iteration 2, the 

second round of intron predictions are provided by UnSplicer. At this point, a sharp 

increase in the number of confirmed exons is seen in A. gambiae and D. melanogaster. 

This trend is also apparent in the amount of coding sequence contributing to training the 

coding sequence Markov model parameters (Fig. 4.4). The amount of sequence in 

training levels off at iteration 2 for three of the four genomes. For A. gambiae, there is a 

significant improvement on the last step, suggesting that additional iterations may result 

in better performance for that genome. 

Figure 4.3. The number of exons included in training for each genome, as a function of 

iteration number. 



 70 

 

Figure 4.4. The quantity of coding sequence included in training, as a function of 

iteration. 

Gene prediction performance of GeneMark-ES and GeneMark-NGS was 

compared on test sets for each of the five genomes listed in Table 4.3. Sensitivity (Sn) 

and specificity (Sp) were calculated for each of eight different gene features: internal 

exons, gene start (initiation), gene stop (termination), introns, donors, acceptors, and 

nucleotides. The numbers are shown normalized to percentages. Bold face indicates the 

better score for each feature. GeneMark-NGS scores higher in both sensitivity and 

specificity for many features, particularly in A. gambiae and C. quinquefasciatus. In cases 

when GeneMark-ES has a higher Sn (or Sp) than GeneMark-NGS, GeneMark-NGS will 

have higher score for Sp (or Sn). When we compare the two programs using the 

performance measure (Sn+Sp)/2 (Table 4.4), we see that GeneMark-NGS scores higher 

in the vast majority of cases. GeneMark-NGS most dramatically outperforms GeneMark-

ES in prediction of exon boundaries and gene starts. Improvement in internal exon 

performance varies from 3.5-13.1%. Internal exon prediction performance improvement 

is quite dramatic for the 4 VectorBase genomes—ranging from 5.85-16.3% marginal 

increase in performance. 
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Table 4.3 Gene prediction performance on test sets derived for each genome. Columns: 

ES = GeneMark-ES, SM = GeneMark-NGS, diff = GeneMark-NGS score – GeneMark-

ES score. Sn and Sp are given as percentages. 
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CHAPTER V 

GENOME ANNOTATION PROJECTS 

 

Over the past several years, the genomes of many important plants and animals 

have been sequenced and annotated. We have participated in several such projects, 

notably Fragaria vesca (woodland strawberry), Citrus sinensis (sweet orange), Citrus 

clementina (clementine orange), and Rubus idaeus (raspberry). These genome projects 

are more complex compared to genomes of model organisms which in the past have been 

the focus of gene prediction algorithms (Lomsadze, 2005). 

A major challenge for gene finding in these novel genomes is detection of 

repetitive elements in the DNA sequence. The presence of repetitive elements interferes 

with algorithms for finding native protein coding genes due to their high copy number 

and contamination of the sequence with pseudogenes. Most repetitive sequence in 

eukaryotes is composed of transposable elements (TEs) (Feschotte 2009). In plant 

genomes, most TEs use a retroviral mechanism to introduce new copies in the genome. 

These elements are called retrotransposons, e.g. frequent in plant long terminal repeat 

(LTR) retrotransposons. The presence of TEs can be disruptive to gene finding 

algorithms such as GeneMark-ES because high copy number TEs can bias GHMM model 

parameters found by unsupervised training. This has the effect of reducing the 

performance of the GHMM for native gene finding. TEs are known to be responsible for 

a tremendous amount of DNA remodeling and rapid genome evolution. Indeed, while 

comparative genomics is useful for finding native protein coding genes, it is not a very 

effective method for finding TEs due to their rapid evolution. This places much of the 

burden of finding TEs in novel genomes on de novo algorithms. Many such de novo 

programs have been developed to find TEs in genomes, such as RepeatScout (Price 2005) 

and PILER (Edgar 2005). Programs which attempt to find LTR retrotransposons using 
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basic structural knowledge have also been developed, such as LTR_STRUC (McCarthy 

2003), LTR_FINDER (Xu 2007), and LTRharvest (Ellinghaus 2008). Each of these 

programs can be used to develop libraries of consensus sequences, which can then be 

augmented with TE sequences found in closely related species (available at Repbase). 

The combined library may then be used to mask the DNA sequence for gene finding with 

GeneMark-ES. 

Fragaria vesca (woodland strawberry) 

For gene prediction in the F. vesca project, a combined approach to repeat 

masking was adopted. The structural LTR detection program LTR_STRUC was used in 

addition to RepeatScout. The output sequences from these programs were combined with 

a collection of TE sequences from Repbase taken from the rosaceae clade. All combined, 

the collection masked 31.8% of the F. vesca assembly (68 MB out of 218 MB 

assembled). 

After masking, the program GeneMark-ES was used to predict genes. The F. 

vesca genome is quite homogeneous in G+C content (much like A. thaliana), making it a 

good candidate for the machine learning algorithm used by GeneMark-ES. Next, the 

alignment of available EST sequences was performed using BLAT. Alignments were 

clustered and gene stops and starts predicted on mapped transcript sequences, as 

described in the modeling pipeline in GeneMark-HB+ (Appendix D). This produced a 

reliable test set of 633 genes to be used for assessment of gene prediction accuracy. The 

prediction performance on the test set is shown in Table 5.1. 

A team at the University of Georgia (UGA) (Wang, Bennetzen) also performed 

work attempting to identify LTR retrotransposons in F. vesca. We therefore developed a 

pipeline to find the best set of gene predictions combining the UGA repeat annotations 

with our own. In Fig. 5.1, the process is illustrated with the pipelines labeled “GT” and 

“UGA. The idea is to mask the DNA sequence with both libraries repeats (separately), 

and recover genes which are masked by one pipeline but not the other. In the example 
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shown in Fig. 5.1, there are 4 such genes. Each of the 4 genes are aligned to protein 

sequences in the non-redundant (NR) protein database (from NCBI) using BLASTp. A 

gene will be recovered if has at least one significant hit in the alignment, and that hit 

satisfies two conditions 1/ not labeled as a hypothetical gene, and 2/ not labeled as 

reverse transcriptase (commonly found in LTR retrotransposons). 

 
Figure 5.1. Combining two sets of repetitive sequence annotations (GT and UGA) to 

form a set which minimizes overlap with predicted native genes. 

 

A test set consisting of 666 complete genes was constructed by alignment of 

47,230 EST sequences to the genome using BLAT. Gene prediction performance on the 

test set was evaluated using GHMM parameters found by GeneMark-ES on the repeat 

masked sequence. The performance (shown in Table 5.1) is specified for individual gene 

features: exons (initial, terminal, and internal), introns, and donor and acceptor 

boundaries. Overall nucleotide prediction accuracy is shown as well. The prediction 
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performance is quite good for all features—in particular we found over 90% Sn and Sp 

for donor and acceptor site preditions. 

 

Table 5.1. Gene prediction performance on F. vesca test set consisting of 633 genes. 

Feature Sensitivity (%) Specificity (%) 

internal exons 88.4 88.0 

introns 85.8 86.5 

donor 90.7 91.4 

acceptor 90.7 91.2 

all exons 83.9 84.4 

initial exons 81.8 82.4 

terminal exons 82.9 82.7 

nucleotide 96.7 94.9 

 

A procedure for gene prediction was established based on earlier unpublished 

work (Lomsadze, Ter-Hovhannisyan, Borodovsky). The algorithm, called GeneMark-

ES+, is similar to the method of incorporating external information for gene prediction 

used by Augustus. In this method, high quality EST alignments to the genome are given a 

very high likelihood score (see Fig. 5.2). The Viterbi parse of the DNA sequence by the 

GHMM will select exon-intron boundaries confirmed by alignment with high likelihood. 

The resulting parse is sometimes called a conditional maximum likelihood parse. This 

procedure resulted in 34,809 genes predicted on the 214 MB genome. There were 5915 

single exon genes predicted and an average of 5.0 exons per gene (4.0 introns per gene). 

The average gene length was 1160 nt and the average intron length was 407 nt. 
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Figure 5.2. Prediction step by GeneMark-ES+. The output parse is constrained to predict 

features found from EST alignments, thereby producing a conditional maximum 

likelihood parse. 

 

Rubus idaeus (raspberry) 

The genome of Rubus ideaus (raspberry) of the Heritage variety was sequenced 

with NGS technology in 2011. Assembly of the genome was a challenge due to a very 

high degree of heterozygous composition of the chromosomes (the plant is a diploid). 

Gene finding on the raspberry assembly sequences involved some trial and error, since it 

was not known what kind of assembly would be optimal for gene prediction. An 

assembly which was more faithful to an individual haplotype was highly fragmented, 

making unsupervised training less accurate. A merged genome assembly was preferred, 

since it resulted in a much larger number of long contigs which could be used for 

unsupervised training. The gene sequences in the “merged” assembly were not 

necessarily faithful to a haplotype, but the gene predictions are more reliable. 

The GeneMark-HB+ pipeline was used to predict genes for this assembly 

(Appendix D).  352 complete gene structures were found by alignment of EST sequences, 
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using the modeling pipeline in GeneMark-HB+. 175 (about half) genes were used as a 

development set for semi-discriminative training to find the optimal blending parameter 

for construction of the final parameters used for gene prediction. The accuracy of the 

final model is quite good—about 90% Sn and Sp predicting donor sites, 91% for acceptor 

sites, and 1-2% better than GeneMark-ES for predicting internal exons (Fig. D.5, panel 

b). Prediction of initial exons is significantly better compared to GeneMark-ES.



 78 

APPENDIX A 

 

CODON USAGE PATTERNS IN HETEROGENEOUS 

EUKARYOTIC GENOMES 

 

 The concept of heuristic model parameters was proposed and developed for 

prokaryotic genomes in 1999 (Besemer, 1999). The main idea is to derive a set of 

universal parameters (depending on G+C content only) which can be used to discriminate 

CDS from non-coding sequence. Such parameters have application in metagenomic gene 

finding, for example. In eukaryotes, a similar concept is useful for detection of protein 

coding splice junctions and gene finding in heterogeneous genomes. 

Codon Usage 

 Prokaryotic genomes are different from eukaryotic genomes in many ways, but a 

difference we focus on here is that prokaryotic genomes are almost all homogeneous in 

G+C content, while only some eukaryotic genomes are homogeneous. Besemer analyzed 

genes in 17 prokaryotic genomes having whole genome G+C content collectively over a 

broad range. All genes in a genome were analyzed to determine the mean codon usage 

(distribution of codon frequency for each of the 63 coding codons). This distribution 

defines a codon usage at a specific G+C level. Due to heterogeneous G+C content, this 

codon usage in eukaryotes must be calculated differently. 

We define the G+C level of a eukaryotic gene as the percentage of G+C 

nucleotides in the genome in the interval from the start codon to the stop codon. This 

includes intron sequences. Whenever multiple isoforms are annotated at a locus, the one 

having the longest CDS length is selected as the representative isoform. All genes are 

assigned to a G+C bin, varying from 20-70% in increments of 1%. Mean codon usage is 

then calculated for each bin, according to the genes assigned to that bin. For 
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heterogeneous genomes, this results in a set of codon usage distributions (one for each 

G+C bin) over a range of G+C bins found in that genome. In order to capture additional 

genomic diversity, and broaden the range of observed G+C, four (4) different genomes 

were considered: human, A. mellifera (honey bee), B. distachyon (grass), and O. sativus 

(rice). A histogram of the number of genes in each genome found in each G+C bin is 

shown in Fig. A1. Codon usage for each of 63 codons as a function of G+C content is 

shown in Figs. A1-A16. Mean codon usage derived from each genome is shown as a dot 

of the same color (refer to the legend in the graphs). 

 

Figure A.1. The number of genes found in each G+C bin from each of the four genomes 

analyzed. 

 

Several features are noteworthy. First of all, the honey bee genome has a very low 

G+C content in general, and all annotated genes have a calculated G+C value from 20-

30%.  Other genomes have few genes in those bins. Second, the relationship between 

codon frequency and G+C is clearly nonlinear in most cases. A third degree polynomial 

fit to all the shown data (by least-squares with equal weight) is shown in each graph as a 



 80 

black dashed line. Third, some codons have usage relationships which are well conserved 

over all four genomes while others have very notable differences. For example, the lysine 

codon AAA (Fig. A.2) and isoleucine codon ATT (Fig. A.5) are closely patterned in all 

genomes. However, consider the arginine codons CGA and CGT (Fig. A.8). In these 

examples, not only is the variation in usage spread significantly, but in honey bee an 

increase in usage of these codons is seen with an increase in G+C (as expected), while a 

decreasing trend is seen in all other genomes with increasing G+C. Both the values of 

codon usage and the trend differ among the genomes in those examples. 

 

Eukaryotic heuristic parameters 

Heuristic coding sequence Markov model parameters are found by using a least-

squares curve fit (3
rd

 degree polynomials) to determine codon usage frequency for all 

coding codons. A 6-mer frequency table is then derived by assuming adjacent codons are 

independent. 5
th

 order Markov model parameters are derived from the 6-mer frequency 

table inside GeneMark.hmm. For each G+C content bin, frequencies for each of 64 

codons (where pseudocounts are assigned in all cases where stop codons occur) are 

multiplied with all other codon frequencies to yield 64
2
=4096 6-mer frequencies for each 

frequency bin. As a final step, each set of 4096 frequencies are normalized to sum to 1 to 

form the parameters for each G+C bin. 
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Figure A.2. Codon usage patterns for AAA, AAC, AAG, AAT. 

 

Figure A.3. Codon usage patterns for ACA, ACC, ACG, ACT. 
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Figure A.4. Codon usage patterns for AGA, AGC, AGG, AGT.  
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Figure A.5. Codon usage patterns for ATA, ATC, ATG, ATT. 

 

 
Figure A.6. Codon usage patterns for CAA, CAC, CAG, CAT. 
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Figure A.7. Codon usage patterns for CCA, CCC, CCG, CCT. 

 

 
Figure A.8. Codon usage patterns for CGA, CGC, CGG, CGT (arginine codons). 
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Figure A.9. Codon usage patterns for CTA, CTC, CTG, CTT. 

 

 
Figure A.10. Codon usage patterns for GAA, GAC, GAG, GAT. 
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Figure A.11. Codon usage patterns for GCA, GCC, GCG, GCT. 

 

 
Figure A.12. Codon usage patterns for GGC, GGC, GGG, GGT. 
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Figure A.13. Codon usage patterns for GTA, GTC, GTG, GTT. 

 

 
Figure A.14. Codon usage patterns for TAC and TAT (TAA and TAG are stop codons). 
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Figure A.15. Codon usage patterns for TCA, TCC, TCG, TCT. 

 

 
Figure A.16. Codon usage patterns for TGC, TGG, TGT (TGA is a stop codon). 
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Figure A.17. Codon usage patterns for TTA, TTC, TTG, TTT. 
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APPENDIX B 

CODING POTENTIAL FEATURE ANALYSIS IN SEQSWEEP 

There are many reasonable options in selection of a feature derived from intron 

flanking sequence. It is desirable to account for the 3-periodic nature of the coding 

sequence, and the fact that the intron can interrupt a codon in any of 3 positions. A 

comparison of several candidate test statistics was performed on SJ predictions made by 

TopHat on four different RNA-seq data sets. The statistics (and detectors) are listed in 

Fig. B.1. Upstream (5’) and downstream (3’) sequences flanking an intron (of length L) 

are denoted by by     and    , respectively. Sequences in the interior of the intron, but at 

the 5’ and 3’ ends are labeled     and    , respectively. Each of these sequences also has 

length N (equal to 96 nt in examples here).      is the coding sequence model starting in 

frame i, and     is a non-coding sequence model.     (without a subscript) is a 

frameless coding sequence model, formed by a weighted average of models in all three 

frames such that frame 1 is given 50% weight and frames 2 and 3 are weighted 25% each. 

Prior probabilities      and      (in statistic 5) are set to 0.5 by default. 
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Figure B.1. Five test statistics (and associated detectors) which were compared for 

effectiveness in false positive filtering of TopHat SJ predictions. A description of the notation 

is provided in the text. A detection value of     indicates a SJ confirmation, otherwise it is 

a false positive. 

 

The coding and non-coding sequence models were taken from the eukaryotic 

heuristic models described in another chapter. Since these models vary with G+C content, 

appropriate models must be selected for each candidate intron. Here we calculate G+C by 

counting the number of ‘C’ and ‘G’ nucleotides in the 1Kb sequence upstream and 1Kb 

downstream of the intron, and divide by 2,000. Then converting the ratio to a percentage, 

and rounding to the nearest whole 1%, the appropriate model parameters are selected. 
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Figure B.2. Venn diagram picturing the quantities involved in evaluation of marginal 

improvement. 

 

 

The likelihood ratio        
         is the same as the coding potential feature used in 

the program TrueSight (discussed in the next section). The statistic        
        generalizes 

it to a frame sensitive model. All remaining statistics were concepts evaluated for 

possible replacement of the Ma/Li coding potential statistic. 

Each of these detectors was evaluated on sets of SJ predictions made by TopHat. 

A measure of filtering performance called marginal improvement is defined (refer to the 

Venn diagram in Fig. B.2). The SJ predictions are comprised of some number of true 

positives    (agreement with annotation) and false positives    (not annotated). The 

process of filtering will remove some number in each set:     and     (shaded region). 

For a given detection threshold, we assess the filtering performance by monitoring the 

ratios        and        which together we call marginal improvement. As the 

detection threshold is varied, we trace out marginal improvement ROC curves (Fig. B.3). 

The ideal point on these plots is the lower right-hand corner (filtering all false positives, 

and no filtering true positives). The best statistic in terms of marginal improvement is 

arguably the             statistic, which uses likelihood ratios of sequences flanking the 
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intron as well as the full intron sequence itself. However, in every example this detector 

removes about 20% of true positives, even with accommodating threshold levels. The 

reason for this is probably due to filtering out true UTR introns, which have no coding 

sequence flanking them. However, the Ma/Li detector (with no frame) does not have this 

strong filtering effect on UTR introns, probably because the statistic has weaker 

discrimination power. Unfortunately, a 20% reduction in sensitivity will make this 

filtering procedure uncompetitive with other methods. Based on this result, we tested a 

classification method in which candidate UTR and coding introns were attempted to be 

separated, so that different classifiers could be applied to each group. 

 
Figure B.3. Marginal improvement ROC curves of five detectors on four data sets. The 

accuracy of the SJ predictions by TopHat vary tremendously due to differences in the number 

of reads, read length, and sequencing technology used. 
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APPENDIX C 

DEFINITION OF FEATURES USED FOR SPLICE JUNCTION 

CLASSIFICATION IN UNSPLICER 

UnSplicer calculates nine features for each candidate splice junction: five 

alignment features, and four sequence derived features. Some of the UnSplicer features 

have also been described in the TrueSight publication (Li, 2013). 

Alignment depth score 

The alignment depth D is the number of reads aligned across the splice junction. 

This number also includes the reads aligned across the junction in the second attempt, 

with the initially predicted intron spliced out. The alignment depth score is equal to 

log(D). 

Max shortest overhang length 

Let a read of length L be aligned across a splice junction so that n nucleotides are 

aligned on the upstream to the junction and L-n are aligned downstream. The length of 

the shorter side of the alignment equals             We are concerned about reliability 

of splice junctions that have consistently short shorter overhangs regardless of the side.   

Let say a junction has D alignments, with overhang lengths    on the 5’ end and       

on the 3’ end, with          . We define the max shortest overhang length as 

overhang =                  . 

The gapped alignment pipeline has a hard-coded minimum threshold of 8nt for 

overhang for any splice junction candidate; this feature is defined as: 

overhang score = |8 – overhang| 

Entropy 

A read which spans a splice junction may be split by the splice junction at some 

position i (i nt aligned on the 5’ side of SJ and     nt on the 3’ side of SJ, see Fig. C.1). 

Considering a population of   reads aligned across a given SJ, we construct an empirical 
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distribution of frequencies        , where    is the number of reads split at position  . 

The entropy is then determined by 

          
 

   
 

 
Figure C.1. Alignment of a read of length   to genomic DNA is split over an intron 

bordered by two exons. The read is split at positions i and i+1, where      . Position 

i is aligned to p-1 and position i+1 is aligned to q+1.  

 

Coverage skew 

The coverage skew is a measure of the difference in RNA expression level of the 

DNA sequence flanking a putative intron and of the sequence in the intron interior. A 

diagram illustrating the calculation of coverage skew is shown in Figure C.2. A count of 

full length alignments is tallied in four intervals: upstream and downstream of p (the 5’ 

end of putative intron), and intervals upstream and downstream of q (the 3’ end). The 

coverage skew score is simply the difference in the number of reads aligned to the intron 

exterior flanking intervals of length L and the intron interior intervals of length L (L is 

the length of the reads).  

DNA 

sequence 
putative intron 

boundary (p,q) 

read position i 

p q 
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Figure C.2. The coverage skew is based on a comparison of the number of full length 

alignments on the flanks of a spliced intron (p,q) to the number of alignments in the 

immediate interior. For true splice junctions, it is expected that the sequence on the flanks 

will generally be expressed more highly than the sequence in the interior. Therefore, the 

quantities Ap-Bp and Aq-Bq would generally be positive, and the skew score will be 

positive for nearly all true splice junctions. However, many false positives have a 

negative skew score (Figure 3 in the article), which makes this feature useful for negative 

set selection. 

 

Gap (intron) length 

The intron length score is obtained from the intron length distribution determined 

by GeneMark-ES. The length score is simply the log of frequency of introns having given 

length. The intron length distribution is calculated from the set of introns predicted by 

GeneMark-ES in the last iteration of unsupervised derivation of the training set. A 

uniform kernel is used to smooth the distribution function.  For genomes with 

homogeneous G+C content we have observed that the intron length distribution derived 

from EST gapped alignments is close to the length distribution derived by GeneMark-ES, 

see Fig. C.3, showing the example of Fragaria vesca genome. 
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Figure C.3. Comparison of strawberry (F. vesca) intron length distributions found by 

GeneMark-ES (blue) and one derived from alignment of EST sequences (red). 

 

Donor and acceptor splice site score 

The donor and acceptor splice sites are modeled by two separate position weight 

matrices (PWMs). The PWM score is defined as a logarithm of the ratio of the likelihood 

that the site sequence is generated by the position dependent site model and the likelihood 

that the site sequence is generated by a background model. The likelihood score for a 

zero-order site and background models can be written as 

      
  

     

  
     

 

   

 

where   is the width of the model and   is the site position. For the first-order site 

and background models, the score will be found as 

     
  

     

  
     

     
  

          

  
          

   
   . 

 

The order of the site model is dependent on the number of the size of the training 

set defined by GeneMark-ES. Normally, the models will have the first order. Note that 

the splice site canonical dinucleotides do not contribute to the PWM score of either the 
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donor or acceptor. The site model   
 
 is found by calculating positional nucleotide (or 

conditional dinucleotide) frequencies. 

Strand concordance indicator 

The strand concordance indicator is a binary feature which equals to one if one or 

both ends of the read are aligned with the genomic sequence which resides in the 

opposite strand to ab initio predicted (annotated) gene. There are three conditions that 

should be fulfilled. The first condition is that the splice junction strand is identifiable 

from the terminal dinucleotide sequences. If the canonic splice site dinucleotide sequence 

is one of GT-AG, G+C-AG, AT-AC, then the strand is identifiable. Otherwise, no strand 

is inferred. The second condition is that either p or q, the intron border position in 

genomic DNA, must lie inside a predicted gene. This means that either p or q (or both) 

falls between the first nucleotide of a predicted start codon and last nucleotide of the gene 

stop codon. The third condition is that the inferred strand of the splice junction is 

different from a strand of a predicted gene overlapping with positions p or q (or both). If 

all three conditions are met, the strand error indicator equals 1. Otherwise it is zero. This 

strand concordance indicator feature (as well as the frame shift indicator feature) 

assignments is illustrated in Fig. C.4. 

Frame shift indicator 

The frame shift indicator feature is similar to the feature above. It is a binary 

feature that requires three conditions to hold for value of one to be assigned. First, for a 

junction (p,q), both p and q must lie interior to a gene predicted by GeneMark-ES 

delimited by the first nucleotide of a predicted start codon, and the last nucleotide of the 

predicted stop codon. Second, the upstream and downstream regions from the junction 

(p,q) are predicted as coding exons. Third, the predicted reading frame in these exons 

connected by the splice junction (p,q) are in agreement. The frame shift feature equals to 

one if all three conditions hold, otherwise it is zero. 
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Figure C.4. Frameshift and strand concordance features: a/ the candidate SJ agrees with 

an ab initio predicted intron, both indicators are equal to zero; b/ one boundary falls into 

the interior of a predicted coding exon, a frameshift will occur if the interval length L is 

not a multiple of three, c/ same as in (b), except that the intron is located in the opposite 

strand to the predicted gene, therefore the strand concordance feature is equal to one; d/ 

the intron includes predicted exon of length M, resulting in a frame shift if M is not a 

multiple of 3; e/ both indications are zero because the predicted intron does not overlap 

with a predicted gene. 
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APPENDIX D 

GENEMARK-HB+: A PIPELINE DEVELOPED FOR PREDICTION 

OF GENES IN PLANT GENOMES 

A new method for gene finding was developed which incorporates external 

evidence (EST alignments) for training GHMM parameters, in addition to a semi-

discriminative parameter blending with heuristic parameters. The name GeneMark-HB+ 

is given to emphasize the heuristic blending performed in the semi-discriminative 

training step in the pipeline. The pipeline consists of 4 main steps: 1/ EST pipeline, 2/ 

semi-supervised training, 3/ semi-discriminative training, and 4/ final prediction step. In 

Figure D1, a block diagram of the pipeline is shown. 

 

Figure D.1. Diagram of GeneMark-HB+. The pipeline includes an EST alignment and 

clustering pipeline, a sequence modeling pipeline, semi-discriminative training, and final 

prediction step. 

 

The EST pipeline 
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The EST pipeline is a collection of programs which perform EST alignment and 

clustering, unsupervised Markov model training on mapped transcripts, then subsequent 

development of submodels used in later steps. 

The pipeline begins by removing noise from the raw EST sequences in the form 

of vectors, adaptors, and bacterial sequences using programs SeqClean 

(http://compbio.dfci.harvard.edu/tgi/software/) and UniVec 

(http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html). These are sequences which 

contaminate a sequencing library caused by inevitable sample preparation and 

biochemical errors in the experiment. Subsequently, the sequences are aligned to the 

genome using the program BLAT (Kent, 2001). Alignments are then post-processed to 

minimize errors. For instance, all EST alignments shorter than 100 nt, or which have less 

than 90% sequence identity in the alignment to the genome are eliminated. Gapped 

alignments are also filtered in order to minimize intron prediction errors. Alignment gaps 

(introns) longer than 10 kb are eliminated for small and medium sized genomes, since the 

error rate for longer gapped alignments is quite high. Intron terminal dinucleotides are 

scored according to prior probabilities, so that any score less than a threshold will result 

in elimination of the gapped alignment. Clustering alignments by locus results in a set of 

candidate transcripts and transcript fragments. 

 

Unsupervised training and Start/stop annotation 

The mapped transcript sequences are subsequently provided to the program 

GeneMarkS (Besemer, 2001) with introns spliced out. GeneMark-S uses an unsupervised 

training technique to find parameters of a GHMM designed to parse sequences into 

single-exon genes. The program was designed to be used for gene finding in prokaryotic 

genomes, but it includes an option to make it suitable for use on eukaryotic mRNA 

sequences (having no ribosomal binding site). These parameters are then used by 

http://compbio.dfci.harvard.edu/tgi/software/
http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html
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GeneMarkS to predict all genes or partial genes in the transcript sequences. The process 

is illustrated in Fig. D.2. 

The existence and location of such predicted CDS start and stop coordinates 

within a consensus fragment can occur in 4 distinct scenarios: 1/ a transcript with one 

complete gene coding sequence (start and stop predicted inside) 2/ a partial gene with 

either a CDS start or stop predicted inside (but not both), 3/ a transcript fragment with no 

CDS predicted inside, 4/ a fragment with more than one gene CDS predicted (any 

combination of more than one complete or partial gene). The only fragment types in 

which the predicted start and stop coordinates are not thrown out are 1 and 2. However, 

even in types 1 and 2, the predicted CDS is required to be longer than 300 nt. In addition, 

all predicted CDS starts must occur than 100 nt downstream from the 5’ end of the 

sequence. However, in some cases the CDS start has an upstream in-frame stop codon in 

the transcript. In such cases the 100 nt distance requirement is nullified. This filter is 

designed to prevent truncating genes with unsequenced 5’ ends. Another filter is the 

requirement for canonical splice sites (GT-AG dinucleotides at the 5’ and 3’ terminal 

ends of each intron). The reason for this is that not only are the vast majority of introns 

canonical in this sense, but also the probability of error for non-canonical splice junction 

alignment is much higher compared with canonical for all EST alignment programs (van 

Nimwegen, 2006), In addition, any sequence for which the gene strand implied by 

alignment does not match the strand implied by GeneMarkS is thrown out. 
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Figure D.2. Diagram of the modeling pipeline. Clusters of alignments of EST to the 

genome are used as input to GeneMark-S for unsupervised training. 

 

Modeling pipeline: GHMM submodel calculation 

All introns, exons, and CDS start and stop boundaries found by the EST pipeline 

are compiled into a list called gene footprints. The footprints are used not only for 

GHMM parameter estimation, but also to provide support to these features in the final 

prediction step. 

The introns found by EST alignment are used to calculate position specific 

frequency matrices (PSFMs) for donor and acceptor sites. If more than 2000 introns are 

found by EST alignment (meeting the quality criteria discussed above), then these PSFM 

models will be first order. Otherwise, zero order models are calculated. The GeneMark-S 

Markov model (obtained by unsupervised parameter learning on transcripts) provides 3-

periodic, n
th

 order parameters which characterize CDS, in addition to an n
th

 order non-

coding sequence model. The default order of the Markov models (n) is two (2) in this 

pipeline. Higher orders are possible if the quantity of CDS found by GeneMark-S is 

sufficient. If enough introns are found by alignment, an accurate intron length distribution 
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may be obtained as well. The length distribution is always calculated, requiring the 

program user to verify that the quality is suitable for gene prediction. Thus, five 

submodels may be derived from the EST pipeline: donor and acceptor PSFMs, coding (3-

periodic) and non-coding sequence Markov models, and the intron length distribution. 

A set of all externally verified genes is found by selecting those satisfying three 

criteria: 1/ predicted start and stop codons are found by the EST pipeline on the 

transcript, 2/ the gene length is at least 300 nt, and 3/ all introns have canonical terminal 

dinucleotides (GT-AG). This full set of genes is partitioned into two sets: a development 

set and a test set. The development set is used for semi-discriminative training, while the 

test set is used for final evaluation. 

 

Semi-discriminative training 

Two different training strategies are followed, with the supervised model 

parameters derived in the previous step as a starting point. The two strategies are called 

Type 0 and Type 1 (Fig. D3). In Type 0 training, unsupervised training is carried out by 

the GeneMark-ES algorithm, using a starting model with parameters developed from the 

analysis of eukaryotic genomes described in Appendix A. The G+C% content of the 

target genome is calculated and the appropriate heuristic model for that level is used as 

the starting point for training. In Type 1 training, the externally derived model (from the 

modeling pipeline) is used as a starting point, and 3 iterations of machine learning are 

performed so that all parameters are updated. In the first iteration, donor and acceptor 

splice site models are derived for each reading frame separately (for introns found in each 

position in a codon), in addition to all feature durations. All GHMM parameters are 

updated in the two subsequent iterations. After Type 0 and Type 1 training, the better 

model is found by scoring them on exon-level (Sn+Sp)/2 on the development set. The 

selected model is referred to as    
 . 
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Figure D.3. Diagram of semi-discriminative training in GeneMark-HB+. Starting with 

model parameters derived from EST alignment, two training strategies are attempted and 

scored on a development set. The better parameters are chosen as input for blending with 

heuristic models. The final model is chosen as the blended model scoring highest against 

the development set. 

 

The quality of submodels derived from alignment of EST sequences depends on 

the number of gene structures are revealed by alignment, and whether the codon usage of 

these genes is representative of the full set of genes in the genome. In general, the genes 

found by alignment will favor the highly expressed genes, which tend to have slightly 

different codon usage compared than genes expressed at lower levels (Mathe, 1999). 

Therefore, coding sequence models derived from EST alignments will tend to be biased. 

This may lead to a bias in    
 , particularly if Type 1 training is used because it 

undergoes only 3 iterations of training. A more general approach to formation of a 

starting point model for parameter learning is a blended model, which consists of 

submodels found by 

           
        h    

where,  h    is the eukaryotic heuristic starting model (Appendix A), and        is the 

combined model. In general, the best value of the scalar blending factor (0 < a < 1) is 

closer to 0 when little or no alignment information is available, and closer to 1 when 
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alignment information is plentiful. Substantial differences in gene expression can lead to 

biases in GHMM parameters derived from alignments (highly expressed genes will be 

overrepresented). 

From the set of EST alignments, a test set is constructed. The test set consists of 

all alignments which form transcripts containing one (and only one) complete CDS with 

a minimum length of 300 nt as predicted by GeneMark-S. The full test set is partitioned 

into two sets: a development set, and a final test set. The development set is a set of genes 

which will be used for semi-discriminative training. The test set is only used for final 

evaluation. 

In semi-discriminative training, the “optimal” blending ( ) parameters are sought 

which maximize prediction performance on the development set. The 3 blending 

parameters used in the final blending step are donor PSFM, acceptor PSFM, and the 

coding sequence Markov chain model. In practice, this search for the optimal 3-

dimensional vector of blending parameters may be found by a simplified brute force grid 

search approach, in which a collection of pre-defined samples in this space are scored and 

the “optimal” point is declared as that point which yields the best score. Practically, a 3-

dimensional grid search is not feasible due to the time required to evaluate each point. 

Instead, a small set of 21 points in this space is evaluated. The 21 points are found on a 

diagonal cut along donor and acceptor PSFM dimensions (10 points), and another 

diagonal cut along all 3 dimensions (10 points), and one additional point for the model 

   
  (no blending). The score is defined as (Sn+Sp)/2 for all predicted exons. The 

parameters with the highest score are taken as the final GHMM parameters, which are 

used for the prediction step of the pipeline. 
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Figure D.4. Effect of variation of blending parameter alpha on prediction performance of 

coding exons of F. vesca. Blue circles correspond to performance when    
  Markov 

model parameters are used (blending occurs on donor and acceptor PSFM models only). 

Red squares correspond to performance when blending is applied to the Markov model 

parameters in addition to the PSFMs. The lower left corner of the graph corresponds to 

regular GeneMark-ES performance. 

 

Fig. D.4 shows an example from Fragaria vesca, in which final blending 

performance on the 21 sets of blending parameters is compared. 11 of the 21 blending 

parameter sets do not incorporate any Markov model (coding and non-coding sequence) 

information from the ESTs (colored in blue), while 10 parameter sets do include 

sequence models (colored red) with blending values equal to that used for donor and 

acceptor PSFMs. This figure shows a 4% exon prediction accuracy improvement is 

possible on the development set merely by searching for suitable blending parameters. In 

this particular example, an alpha value of 0.4 is approximately optimal, but this value 

changes depending on the genome, and quantity of available EST sequences. 

In Fig. D.5 (panels a and b), the performance of GeneMark-HB+ is compared to 

GeneMark-ES and a model which is fully derived from external sequence aligment (the 
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output of the modeling pipeline). The genomes evaluated are nearly all plant genomes, 

due to involvement in many plant genome projects. The mosquito genome A. gambiae is 

included due to its similarity to the plant genomes in terms of size and G+C composition. 

In Fig. D5, each genome has two yellow numbers next to it, labeled as (m/n). m is the 

number of genes in the development set and n is the number of genes in the test set. The 

test set is used to assess the performance of gene prediction, which is evaluated using 8 

different performance metrics: internal exon, donor boundaries, acceptor boundaries, 

introns, all exons, initial exons, terminal exons, and nucleotide coverage. In general, there 

is no clear winner between ES and HB+ in this comparison, although both are clearly 

superior to the externally derived model. In Fig. D6, ES and HB+ are compared by the 

number of features each is found to score higher for all 8 features across all 7 genomes 

considered. A point is given for each feature a program scores highest (Sn+Sp)/2, or ties 

with highest. The result is a measure of aggregate performance. HB+ scores higher than 

ES at a ratio of about 3:2. 
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Figure D.5. Performance comparison of GeneMark-ES, GeneMark-HB+, and predictions 

based on models derived from external sequence alignment only (Ext). Performance is 

shown for 8 different features for 7 different genomes. Bold face Sn,Sp pairs indicate the 

highest level of (Sn+Sp)/2. 
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Figure D.6. Summary of prediction performance on 7 genomes. Each number represents 

the number of features for which that program achieved the highest value of (Sn+Sp)/2. 

An asterisk (*) indicates that at for at least one feature, the two programs had the same 

value of (Sn+Sp)/2. The number of features for A. gambiae do not sum to 8 because in 

that case the external model scored the highest nucleotide-level performance. 
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