
GENE FINDING IN EUKARYOTIC GENOMES USING EXTERNAL

INFORMATION AND MACHINE LEARNING TECHNIQUES

A Thesis

Presented to

The Academic Faculty

by

Paul D. Burns

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Biomedical Engineering

Georgia Institute of Technology

August 2013

COPYRIGHT (C) 2013 BY PAUL D. BURNS

GENE FINDING IN EUKARYOTIC GENOMES USING EXTERNAL

INFORMATION AND MACHINE LEARNING TECHNIQUES

Approved by:

Dr. Mark Borodovsky, Advisor

School of Biomedical Engineering

Georgia Institute of Technology

 Dr. Le Song

School of Computer Science and

Engineering

Georgia Institute of Technology

Dr. King Jordan

School of Biology

Georgia Institute of Technology

 Dr. Brani Vidakovic

Biomedical Engineering

Georgia Institute of Technology

Dr. Soojin Yi

School of Biology

Georgia Institute of Technology

 Date Approved: [May 8, 2013]

iv

ACKNOWLEDGEMENTS

 I am indebted to Prof. Mark Borodovsky for his steady support, guidance, and

persistent efforts to collaborate with numerous scientists, from which I have benefited

greatly. I would like to thank Alexandre Lomsadze, who so prolifically offered his

wealth of knowledge in Bioinformatics, and countless hours of valuable technical

assistance. I also thank Vladimir Shulaev, for the opportunity to contribute to the diploid

strawberry genome project (F. vesca), where I learned a great deal about the challenges

associated with eukaryotic genome annotation. I thank Dan Sargent and Kevin Folta who

provided strong leadership in the F. vesca publication process. In addition, I wish to

thank Judson Ward and Joshua Udall for inviting us to participate in the raspberry

genome project (R. idaeus). I am deeply thankful for the opportunity to openly

collaborate with Yang Li and Jian Ma on the RNA-seq mapping projects, and for their

generous sharing of computational resources. I thank Chinnappa Kodira for making many

novel eukaryotic genome assemblies available to me for analysis during my time here.

Finally, I wish to express my gratitude to the committee for their time and participation.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS AND ABBREVIATIONS xii

SUMMARY xiii

CHAPTER

1 Introduction 1

External sequence alignment 2

Mathematical sequence models 4

Challenges with model parameterization 6

2 Genome complexity 8

Limitations of the GeneMark-ES algorithm 8

G+C content and codon usage 10

Repetitive DNA sequence 16

3 RNA-seq: deep transcriptome sequencing 19

Transcript reconstruction 19

Short read alignment 20

Improving spliced alignment with DNA sequence models 22

SeqSweep 22

TrueSight 25

UnSplicer 26

 vi

Algorithm description 27

Results 36

Discussion of simulated data 56

Relationship to TrueSight 57

4 GeneMark-NGS: a conditional learning algorithm for eukaryotic gene finding 60

Conditional learning using RNA-seq alignments 63

Results 67

5 Genome assembly projects 72

Fragaria vesca (woodland strawberry) 73

Rubus idaeus (raspberry) 76

APPENDIX A: Codon usage frequencies in heterogeneous eukaryotic genomes 78

APPENDIX B: Coding potential feature analysis in SeqSweep 90

APPENDIX C: Definition of features used for splice junction classification in

UnSplicer 94

APPENDIX D: GeneMark-HB+: a pipeline developed for prediction of genes in plant

genomes 100

REFERENCES 111

VITA 118

 vii

LIST OF TABLES

Page

Table 2.1: Exon-level prediction performance of GeneMark-ES on several eukaryotic

genomes 10

Table 3.1: A list of introns found by spliced alignment of D. melanogaster EST

sequences to the RpS4 gene locus (FBgn0011284) 37

Table 3.2: Number of true positives (Tp), false positives (Fp), and specificity (Sp) for

five programs mapping simulated reads to A. thaliana 38

Table 3.3: The number of simulated reads aligned by each program (in millions of reads),

by read length 39

Table 3.4: The time and resources required by each of the five programs to map the

simulated reads to the A. thaliana reference genome 42

Table 3.5: Description of real RNA-seq data sets and reference genomes used for

comparison 43

Table 3.6: Comparison of the UnSplicer performance (with default threshold of 0.5) to

performance of other RNA-seq alignment tools 51

Table 3.7: Comparison of the number of annotated splice junctions in A. thaliana which

were found by each program by aligning the data set SRR360205 52

Table 3.8: The distribution of the length of exons flanking every prediction confirming an

annotated intron in A. thaliana 54

Table 3.9: Specificity of intron predictions is shown as a function of intron length for the

A. thaliana data set 55

Table 4.1: The GHMM sub-models and method of updating in each iteration of the

algorithm 67

Table 4.2: Genomes and associated RNA-seq data sets used for gene finding 68

Table 4.3: Gene prediction performance on test sets derived for each genome 71

Table 5.1: Gene prediction performance on F. vesca test set consisting of 633 genes 75

 viii

LIST OF FIGURES

Page

Figure 2.1: G+C content of several homogeneous genomes 9

Figure 2.2: G+C compositional distribution of four eukaryotic genomes used to find a

shared codon usage pattern 11

Figure 2.3: Positional frequencies of adenine in eukaryotic gene regions, compared with

the result from (Besemer, 1999) 12

Figure 2.4: Positional frequencies of cytosine in eukaryotic gene regions, compared with

the result from (Besemer, 1999) 13

Figure 2.5: Positional frequencies of guanine in eukaryotic gene regions, compared with

the result from (Besemer, 1999) 14

Figure 2.6: Positional frequencies of thymine in eukaryotic gene regions, compared with

the result from (Besemer, 1999) 15

Figure 3.1: Diagram of SeqSweep pipeline 23

Figure 3.2: Features used by SeqSweep to discriminate true SJs from false positives 23

Figure 3.3: Performance of SeqSweep when used to filter false positives from SJ predictd

by TopHat 25

Figure 3.4: The UnSplicer diagram 27

Figure 3.5: Scores of donor and acceptor sites defined by gapped alignments of RNA-seq

reads (from SRR360205 set) to genome of A. thaliana 29

Figure 3.6: Formation of positive training examples 30

Figure 3.7: Formation of negative training examples 31

Figure 3.8: A grid search was performed to find the best SVM 32

Figure 3.9: Performance of kernels with various values of (for a test set derived

from SRR360205 (A. thaliana) 34

Figure 3.10: We observe that for all examined RNA-seq data sets, regions similarly

situated in panels a,b,c,d in the parameter plane result in either under-

fitting or over-fitting the training data 35

Figure 3.11: Mapping performance of simulated reads with different lengths 40

 ix

Figure 3.12: Mapping performance of simulated reads with different lengths (low

coverage junctions) 41

Figure 3.13: Performance comparison of several RNA-seq mapping programs on the A.

thaliana data set 44

Figure 3.14: Performance comparison of several RNA-seq mapping programs on the C.

elegans data set 44

Figure 3.15: Performance comparison of several RNA-seq mapping programs on the D.

melanogaster data set 45

Figure 3.16: Performance comparison of several RNA-seq programs on the C.

neoformans data set 45

Figure 3.17: Reduction in spurious splice junction (SJ) prediction 47

Figure 3.18: Normalized reduction in spurious splice junction (SJ) prediction 48

Figure 3.19: Improvement in annotated splice junction (SJ) prediction 49

Figure 3.20: Normalized improvement in annotated splice junction (SJ) prediction 50

Figure 3.21: Ratio of predicted “coding” introns to “non-coding” as the probability

threshold is increased 53

Figure 3.22: Splice junctions predicted by five programs are graphically depicted in 10Kb

region of A. thaliana chromosome 1 56

Figure 3.23: Comparison of strawberry (F. vesca) intron length distributions found by

GeneMark-ES (blue) and one derived from alignment of EST sequences (red).

 59

Figure 4.1: A diagram of the basic concept of conditional learning applied in GeneMark-

NGS 64

Figure 4.2: G+C content histograms of each genome processed by GeneMark-NGS, made

by compositions of 2,000 nt non-overlapping intervals of the assembly. Each

genome in this group is homogeneous in G+C content, with the exception of C.

quinquefasciatus, which has a significant mode in a low G+C region. 68

Figure 4.3: The number of exons included in training for each genome, as a function of

iteration number 69

Figure 4.4: The quantity of coding sequence included in training, as a function of

iteration 70

Figure 5.1: Combining two sets of repetitive sequence annotations (GT and UGA) to

form a set which minimizes overlap with predicted native genes 74

 x

Figure 5.2: Prediction step by GeneMark-ES+ 76

Figure A.1: The number of genes found in each G+C bin from each of the four genomes

analyzed 79

Figure A.2: Codon usage patterns for AAA, AAC, AAG, AAT 81

Figure A.3: Codon usage patterns for ACA, ACC, ACG, ACT 81

Figure A.4: Codon usage patterns for AGA, AGC, AGG, AGT 82

Figure A.5: Codon usage patterns for ATA, ATC, ATG, ATT 83

Figure A.6: Codon usage patterns for CAA, CAC, CAG, CAT 83

Figure A.7: Codon usage patterns for CCA, CCC, CCG, CCT 84

Figure A.8: Codon usage patterns for CGA, CGC, CGG, CGT (arginine codons) 84

Figure A.9: Codon usage patterns for CTA, CTC, CTG, CTT 85

Figure A.10: Codon usage patterns for GAA, GAC, GAG, GAT 85

Figure A.11: Codon usage patterns for GCA, GCC, GCG, GCT 86

Figure A.12: Codon usage patterns for GGC, GGC, GGG, GGT 86

Figure A.13: Codon usage patterns for GTA, GTC, GTG, GTT 87

Figure A.14: Codon usage patterns for TAC and TAT (TAA and TAG are stop codons)87

Figure A.15: Codon usage patterns for TCA, TCC, TCG, TCT 88

Figure A.16: Codon usage patterns for TGC, TGG, TGT (TGA is a stop codon) 88

Figure A.17: Codon usage patterns for TTA, TTC, TTG, TTT 89

Figure B.1: Five test statistics (and associated detectors) which were compared for

effectiveness in false positive filtering of TopHat SJ predictions 91

Figure B.2: Venn diagram picturing the quantities involved in evaluation of marginal

improvement 92

Figure B.3: Marginal improvement ROC curves of five detectors on four data sets 93

Figure C.1: Alignment of a read of length to genomic DNA is split over an intron

bordered by two exons 95

 xi

Figure C.2: The coverage skew is based on a comparison of the number of full length

alignments on the flanks of a spliced intron (p,q) to the number of alignments

in the immediate interior 96

Figure C.3: Comparison of strawberry (F. vesca) intron length distributions found by

GeneMark-ES (blue) and one derived from alignment of EST sequences (red)

 97

Figure C.4: Frameshift and strand concordance features 99

Figure D.1: Diagram of GeneMark-HB+ 100

Figure D.2: Diagram of the modeling pipeline 103

Figure D.3: Diagram of semi-discriminative training in GeneMark-HB+ 105

Figure D.4: Effect of variation of blending parameter alpha on prediction performance of

coding exons of F. vesca 107

Figure D.5: Performance comparison of GeneMark-ES, GeneMark-HB+, and predictions

based on models derived from external sequence alignment only (Ext) 109

Figure D.6: Summary of prediction performance on 7 genomes 110

 xii

LIST OF SYMBOLS AND ABBREVIATIONS

DNA deoxyribonucleic acid

RNA ribonucleic acid

mRNA messenger RNA

NGS next generation sequencing

nt nucleotide(s)

ORF open reading frame

CDS coding sequence

G+C percentage of G and C nucleotides in a sequence

UTR untranslated region of a gene

EST expressed sequence tag

cDNA copy DNA, formed by reverse transcriptase acting on mRNA

HMM hidden Markov model

GHMM generalized hidden Markov model

SJ splice junction

Tp no. of true positives

Fn no. of false negatives

Fp no. of false positives

Sn sensitivity: Tp/(Tp+Fn)

Sp specificity: Tp/(Tp+Fp)

LR likelihood ratio

Pr probability

p probability density function

PSFM position specific frequency matrix

 xiii

SUMMARY

Gene finding in eukaryotic genomes is an essential part of a comprehensive

approach to modern systems biology. Most methods developed in the past rely on a

combination of computational prediction and external information about gene structures

from transcript sequences and comparative genomics. In the past, external sequence

information consisted of a combination of full-length cDNA and expressed sequence tag

(EST) sequences. Much improvement in prediction of genes and gene isoforms is

promised by availability of RNA-seq data. However, productive use of RNA-seq for gene

prediction has been difficult due to challenges associated with mapping RNA-seq reads

which span splice junctions to prevalent splicing noise in the cell. This work addresses

this difficulty with the development of methods and implementation of two new

pipelines: 1/ a novel pipeline for accurate mapping of RNA-seq reads to compact

genomes and 2/ a pipeline for prediction of genes using the RNA-seq spliced alignments

in eukaryotic genomes. Machine learning methods are employed in order to overcome

errors associated with the process of mapping short RNA-seq reads across introns and

using them for determining sequence model parameters for gene prediction. In addition to

the development of these new methods, genome annotation work was performed on

several plant genome projects.

1

CHAPTER 1

INTRODUCTION

 Efforts to determine the function of genes of all living organisms have been

ongoing for many decades. Today the most powerful method for understanding gene

function is by comparative genomics, which requires knowledge of the sequence of

nucleotides in and around the protein coding portion of a gene. In this general approach,

the nucleotide sequence of a gene (or its protein translation) is simply compared with

sequences of genes whose function is already known. Therefore, in this one important

sense, accurate prediction of gene sequences is critical for gene functions to be fully

understood. Understanding of gene function is also supported by sequences in or nearby

gene boundaries, such as transcription factor binding sites, and mobile elements.

 Eukaryotic protein coding genes are arranged along DNA sequence in intervals of

sequence which are transcribed and included in the mature mRNA. Due to existence of

introns which are spliced out of the transcript, a eukaryotic gene consists of alternating

intervals of sequence which are part of the mRNA (exons) and those which are spliced

out (introns). For those genes which code for proteins, a portion of the mRNA will

consist of sequence which will be translated into an amino acid chain by ribosomes. This

coding sequence (CDS) lies in the interior of the mRNA, such that at the DNA level CDS

is distributed across exonic regions. Any exons and introns upstream of the CDS start or

downstream of the CDS stop codon are referred as UTR (untranslated region) exons and

introns. The CDS start and stop will typically occur somewhere in the interior of an exon.

In computational gene finding, the exon-intron structure of this sequence which codes for

the protein is attempted to be predicted. This is a problem of major interest in biology for

the simple reason that the implied nucleotide sequence arising from such predictions

affects the outcome of comparative genomics analysis. Quite often, predicted gene

 2

sequences are incorporated into gene or protein databases which are subsequently used

for a variety of applications, including finding genes in novel genomes. Therefore,

achievement of accurate gene predictions is crucial for downstream scientific work.

External sequence alignment

Today the most reliable method for accurate gene finding is by sequencing full-

length cDNA molecules (a copy of the mRNA created by reverse transcriptase) and

aligning them to the reference DNA assembly to determine the gene structures on the

genome. Such sequences are typically very long (averaging around 2000 nt) and usually

contain the complete gene (or at least the protein coding sequence). The protein coding

sequence is reliably found by looking for long ORFs in these sequences. However this

method is extremely costly for finding all genes in a genome because the procedure is

very laborious and expensive. It is worth mentioning that even with all the resources

invested in the human genome over a period of about 15 years, there are today about

17,600 unique human genes having full length cDNAs sequenced (mgc.nci.nih.gov). Of

course, most genome projects will never enjoy this exquisite concentration of resources.

Therefore, alternate methods must be used in general.

Another method for transcriptome sequencing is by expressed sequence tags

(ESTs). ESTs are reads taken from cDNA typically from the 5’ or 3’ end of the molecule.

ESTs may also be taken from random locations if random oligonucleotide tags are used

in library preparation. The process was developed in the early 1990’s as a possible

shortcut to finding all genes in the human genome before a final assembly could be

created (Boguski, 1995). While initially cDNA libraries were sequenced with Sanger

technology, later such libraries would later be sequenced with next generation sequencing

(NGS) technology, such as that provided by machines available from Roche 454 Life

Sciences and Illumina.

 3

However, even with a combination of NGS and cDNA libraries created using

random primers, only a relatively small percentage of genes may have full coverage of

the mRNA with EST sequences. There are several reasons for this, such as non-uniform

gene expression level (over-representation of highly expressed genes), the cDNA itself

not covering a full gene, and the short read length. In addition, budgetary constraints limit

the amount of EST sequencing which can be performed. Scientists tend to give priority

for sequencing dollars to be spent on improving the reference DNA assembly of novel

genomes, rather than EST sequencing. As an example, in the R. idaeus genome project,

approximately 25,000 ESTs were used to assist gene finding. From this data set, only 334

protein coding genes were judged to be fully covered by EST sequences.

However, even with many related genomes sequenced, identification of the

complete set of genes in even model genomes remains incomplete. For instance, even for

extensively studied model genomes such as C. elegans, D. melanogaster, and A. thaliana,

there remain thousands of genes and missing gene features which are predicted by

computational methods (verify). Furthermore, the problem of gene identification in novel

genomes is even more highly dependent on computational prediction, due to very limited

full-length cDNA sequencing.

Today most transcriptome sequencing is done with a process known as RNA-seq,

in which cDNA molecules are sequenced by shotgun sequencing using NGS technology.

mRNA molecules are first fragmented into short lengths, then converted to cDNA (or

converted to cDNA, and then fragmented) to be compatible with deep sequencing NGS

methods (Wang 2009). This form of shotgun sequencing can enable production of short

reads covering the whole transcriptome with a fair degree of uniformity, and with very

high coverage and low cost. Such advantages promise to revolutionize gene finding and

are the principle reasons for the popularity of RNA-seq today.

Nevertheless, there are many widely acknowledged technical challenges to be

solved before such data can be very useful for reliable gene finding. Due to the short read

 4

length (typically 50-150 bp) and high volume of reads, alignment to a reference genome

assembly is a difficult computational task. Challenges include the presence of paralogous

genes, and transcribed repetitive sequence (such as transposable elements), and reads

spanning exon-exon splice junctions. Any of these features in a genome has the potential

to make genomic mapping of some reads ambiguous. In particular, the presence of splice

junctions created during the formation of mRNA requires a gapped alignment of reads to

the genome. Optimal gapped alignment (Needleman-Wunch (Durbin, 1998)) of reads is

not feasible to be carried out due to the huge volume of reads to be aligned in this

fashion. Therefore, a fast but sub-optimal method is required to map RNA-seq to a

reference genome. A new pipeline is proposed below, called UnSplicer, which achieves

better accuracy for RNA-seq read mapping than all other comparable programs.

Mathematical sequence models

A third major component of gene finding relies on statistical modeling of genomic

sequence. It should be mentioned that the process for gene finding in eukaryotic genomes

is very different than a process suitable for prokaryotes. In prokaryotic genomes, due to

the absence of introns in the genes, an effective method for finding protein coding

regions is to simply search for long open reading frames (ORFs), or intervals in which a

conspicuous absence of stop codons is observed. Given that in random sequence with

50% G+C content, a stop codon should be observed in approximately 5% of all

nucleotide triplets. So observation of an ORF longer than say 200 nt in this sequence

already starts to look like coding sequence interval (albeit a short one).

However in eukaryotic genomes, this procedure cannot be followed due to the

presence of introns. When full-length cDNA are sequenced, then ORF finding is a viable

strategy. This can be done by reconstructing the mRNA sequence by aligning available

reads (EST or RNA-seq) to the genome, thereby finding the introns. Once the introns are

found, they can be spliced out digitally, revealing the transcript sequence which can be

 5

treated in a manner similar to prokaryotic genes. Of course, this ignores complications

such as the presence of alternative isoforms, but for now we narrow our objective to

finding the longest isoform of each gene.

It was mentioned above that for a typical novel genome sequencing project, only a

certain percentage of genes will have transcriptome reads aligned across the full length of

the mRNA. The remaining genes must be found by a combination of partial alignment

and mathematical prediction. The most important feature discriminating nucleotide

sequences which code for proteins and sequences which are non-coding is the nucleotide

composition. It was observed long ago that DNA sequence which codes for proteins has a

very different composition compared with non-coding sequence. This difference has led

to the development of statistical models for coding sequence composition, and

appropriate statistical tests for determining presence or absence of coding sequence over

an interval (Borodovsky, 1993). An extensively used probabilistic sequence model is the

Markov chain, in which conditional probabilities for each of the four nucleotides (A, C,

G, T) are known, given every context sequence of length m (immediately upstream of the

nucleotide), where m is the model order. Given the arrangement of coding sequence as a

series of 3-nucleotide long codons, 3-periodic Markov models were introduced in 1986

(Borodovsky, 1986) and became an accepted and widely used model for coding

sequence.

The evolution of gene prediction algorithms over the years as culminated in

generative sequence models (particularly the hidden Markov model, or HMM) as the best

performing and most widely adopted method for computational gene prediction (Majoros

2007, Lukashin 1998, Salzberg 1999, Besemer 2001, Stanke 2003, Korf 2004, Brejova

2005, Lomsadze 2005, Delcher 2007). Efforts have been made to find alternative models

which yield better performance than the HMM (particularly the generalized HMM

(GHMM), or HMM with durations) but so far the evidence is inconclusive. New research

in non-generative, discriminately trained sequence models shows promise (Bernal 2007,

 6

DeCaprio 2007), but it remains unclear if new methods such as conditional random fields

(CRFs) benefit from addition of new features (which could also be incorporated into a

GHMM structure) or the discriminative training procedure itself.

Challenges with model parameterization

It is widely understood that a critical task in mathematical gene prediction is

proper training of the model parameters. Since so many prediction algorithms rely on a

similar sequence model (GHMM), the principal performance limitation seems to be the

quality of the model parameters. Most gene prediction programs train coding sequence

(CDS) and non-coding sequence models using verified gene examples, which are

typically found by comparative genomics and EST alignment (Yeh 2001). However, in

order to serve as a highly reliable training set for gene prediction, many hundreds of full

genes should be available for training (DeCaprio 2007).

A critical development in gene finding for compact genomes occurred with the

introduction of GeneMark-ES (Lomsadze 2005). In this algorithm, an unsupervised

machine learning approach to GHMM parameter learning is used for gene finding. In this

algorithm, models for CDS and non-coding sequence, donor and acceptor splice site

position specific frequency matrices (PSFMs), and feature durations (exons, introns, and

intergenic regions) could be found without the need for training examples (which

typically require an expert to prepare). Perhaps an even more important feature of

GeneMark-ES is that its internally developed training set contains a very large number of

genes (many thousands) compared with conventional methods. Conventionally, only

highly expressed or highly conserved genes can be found with sufficient confidence to be

used for training. This creates a problem of parameter bias, because highly expressed and

highly conserved genes tend to have different codon usage patterns compared with more

lowly expressed genes (Wald 2012, Mathe 1999). Indeed, it is the genes with low

 7

expression in which computational prediction methods must be relied upon to find. This

bias in parameter training could be rather widespread, yet underreported because test sets

are typically derived from external sequence alignment to highly expressed genes.

 8

CHAPTER II

GENOME COMPLEXITY

 Several major challenges in gene finding are due to features of genome

complexity associated with eukaryotes. This includes heterogeneity of G+C content in the

genome, codon usage variation, and widespread presence of repetitive sequence.

Limitations of the GeneMark-ES algorithm

 At this point it is clear that we rely on computational gene prediction,

which for best performance requires a good training set to establish parameters for the

sequence model. It turns out that codon usage in a gene varies strongly with its G+C

content. GHMMs are well suited to prediction of genes in a sequence having a G+C

content which is uni-modal and relatively concentrated around the mean (less than 20%

variation in G+C or so). Many whole genomic sequences possess this homogeneity in

G+C, such as prokaryotic genomes and many compact eukaryotic genomes like as A.

thaliana and D. melanogaster. In such cases, genes can be predicted with good accurately

across the whole genome with a single set of parameters. We refer to such genomes as

having homogeneous G+C content. However, many genomes are highly heterogeneous in

their G+C composition. Mammalian genomes are an example of heterogeneous genomes.

Also grasses, such as O. sativa and B. distachyon, have a somewhat heterogeneous

composition. Some of these genomes possess isochores, which are islands of sequence

with a relatively homogeneous composition. Genes within isochores (or regions with

somewhat homogeneous G+C composition) may be predicted reliably if parameters

appropriate for the G+C of the isochore are used. However, not all genes in

heterogeneous genomes are contained in regions identifiable as isochores. In general,

genomes with heterogeneous G+C require special procedures for gene prediction,

 9

including the development of multiple parameter sets (from multiple training sets) and

sequence segmentation into regions of similar G+C composition.

Figure 2.1. G+C content of several homogeneous genomes. Sequences are cut into 2,000

nt segments and %G+C composition is assessed for each segment. Histograms are

determined based on the resulting set of G+C values.

It turns out that GeneMark-ES will work successfully on genomes with

homogeneous G+C composition, but fails on heterogeneous genomes. The fundamental

problem is the algorithm’s use of a single set of HMM parameters which does not

adequately describe genes in heterogeneous genomes. This limitation restricts the

majority of its application to compact eukaryotic genomes. However, even within the

realm of homogeneous genomes there remains room for improvement. In Fig. 2.1, G+C

content histograms are shown for a number of homogeneous genomes. In Table 2.1, the

performance of GeneMark-ES is shown for a test set on each of these genomes. Mean

performance is about 85% accuracy (defined here as the average of sensitivity and

specificity) for prediction of exon boundaries. For A. gambiae, C. sativus, and C.

sinensis, accuracy is closer to 81-82%. Clearly there is room for improvement.

 10

Table 2.1. Exon-level prediction performance of GeneMark-ES on several eukaryotic

genomes. Performance was evaluated on test sets derived from EST sequence alignments

to the genomes.

G+C content and codon usage

 In 1999, an evolutionary pattern of codon usage was discovered by analysis of

several prokaryotic genomes having different genome G+C composition (Besemer,

1999). In this work, a collection of fully sequenced prokaryotic genomes was used to

quantify codon usage characteristics as a function of whole genome G+C content. One

motivation for characterizing a universal codon usage was to develop universal Markov

models which can be prepared for gene finding in homogeneous sequences with given

G+C composition, regardless of how short is the length of the sequence. Codon usage

from (Besemer, 1999) was used as the initial starting point models in the unsupervised

training program GeneMark-ES.

 11

Figure 2.2. G+C compositional distribution of four eukaryotic genomes used to find a

shared codon usage pattern. The y-axis represents the number of genes found in a 1%

G+C bin.

However, this relationship had not been established for eukaryotic genomes.

Therefore, to carry out this task we used a set of 5 eukaryotic genomes: human, rice (O.

sativa), grass (B. distachyon), and honey bee (A. mellifera). The distribution of genes per

G+C content is shown in Fig. 2 for each genome. Each annotated gene was assigned a

G+C value by considering an interval starting at the start codon and ending at the stop

codon (including all introns). If more than one isoform was annotated for a gene locus,

then only the one with the longest CDS was considered.

 12

Figure 2.3. Positional frequencies of adenine in eukaryotic gene regions, compared with

the result from (Besemer, 1999).

 13

Figure 2.4. Positional frequencies of cytosine in eukaryotic gene regions, compared with

the result from (Besemer, 1999).

 14

Figure 2.5. Positional frequencies of guanine in eukaryotic gene regions, compared with

the result from (Besemer, 1999).

 15

Figure 2.6. Positional frequencies of thymine in eukaryotic gene regions, compared with

the result from (Besemer, 1999).

With this set of genes as an input, we compared the positional frequencies of each

nucleotide at 3 codon positions, and compared with the findings of the prokaryotic paper

(Besemer, 1999). The results are shown in Figs. 2.3-2.6. For each of these plots, the x-

axis refers to mean frequency of the nucleotide type in a gene locus, while the y-axis

refers to the frequency of the nucleotide type in a specific codon position. We found

agreement with the earlier detected general trends in all cases, but with some significant

differences. For example, the 1999 linear regression differs in slope with all of the

nucleotides in position 1. In position 2, we find a significant difference in the form of a

fixed offset. In addition, we observe a wide variation in A(2) in low-G+C genes. Finally,

we observe visible nonlinear curvature in frequencies of all nucleotides in the 3
rd

position.

 16

As in the prokaryotic case there are nonlinear relationships between codon usage

and G+C composition. A cubic polynomial was fit to the mean value of codon usage

frequencies of all 61 codon triplets as functions of G+C content (result shown in Figs.

A2-A17). In some cases, such as the arginine codons CGA and CGT, there is a strong

difference between native genes in one genome compared with other genomes. In these

two codons, we see a strong divergence of honey bee genes from the trend followed by

other genomes for these two codons. In addition, for the codon CGA, the B. distachyon

genes have a significantly different pattern. Regardless, many codons stay close to the

general trend, which supports the development of general purpose, pre-calculated

sequence models. In this project, 5
th

 order Markov models were developed based on the

cubic polynomials fitting each codon usage pattern, in 1% G+C bins in the interval 20-

70% G+C. In the construction of the 5
th

 order Markov parameters, sequential codons

were assumed to be independent. These parameters are used as the starting point in

unsupervised training for version 2.7 of GeneMark-ES. In addition, they have been used

in the SeqSweep project (Chapter IV), and the GeneMark-blend+ pipeline (Chapter V).

Repetitive sequence

Despite the fact that many plant genomes have homogeneous G+C composition

(see Fig.1), gene finding can be a difficult task due to the prevalence of repetitive

sequence. In particular transposable elements (TEs) can occur in genomes with very high

copy number, which may severely bias sequence parameters obtained by unsupervised

training methods. While only a small number of TEs are actually “alive” in a genome

(actively transcribed and translated), most copies in the genome have been inactivated by

mutations accumulated over time. In other words, the bulk of copies are pseudogenes.

The presence of pseudogenes interferes with eukaryotic gene finding because not only

 17

will many of the coding sequences be intact, but they may be present in very large

numbers.

Biologists are generally interested in finding native protein coding genes in a

genome, as opposed to the proteins associated with TEs. Analysis of the TEs themselves

is of interest to a more specialized community. For gene finding, we wish to locate such

repetitive elements in order to prevent biasing model parameters in unsupervised training,

and also to prevent them from becoming identified as false positive predictions.

To find copies of TEs and other repeats in a DNA sequence, a set of

representative TE sequences needs to be established. Subsequently, RepeatMasker (Smit

et al http://repeatmasker.org) can be used to identify statistically significant copies of

these sequences in the genome. However, a library of query sequences must be

established first. To this end, the Repbase (Jurka 2005) database was established to

archive a representative set of eukaryotic repetitive sequences. However, the majority of

TEs in a genome are dissimilar in sequence to those discovered in genomes of related

species. It is thought that TEs originate from RNA retroviruses which lost critical genes

(not including the promoter and proteins such as reverse transcriptase). Due to the high

mutation rate of viruses in general, it is not surprising that comparative genomics has

limited utility in finding TEs in novel genomes.

In order to find native TEs, a number of de novo repeat finder programs have

been developed. These include RECON (Bao 2002), PILER (Edgar 2005), RepeatScout

(Price 2005), and programs designed to find LTR retrotransposons such as LTR_STRUC

(McCarthy 2003) and LTR_FINDER (Xu 2007). These programs employ a variety of

strategies and differ greatly in terms of computational resources required to run them. In

addition, performance assessment has been quite challenging due to scarcity of high

quality annotations, and tremendous diversity in composition of TE families, their copy

number, and incomplete representation of TEs in genome assemblies. We have found the

http://repeatmasker.org/

 18

combination of Rebase with RepeatScout to be a good combination of tools for compact

plant genomes.

 19

CHAPTER III

RNA-SEQ: DEEP TRANSCRIPTOME SEQUENCING

The best use of RNA-seq transcriptome sequencing for gene finding remains an

unresolved question. This chapter summarizes our progress in this area.

Transcript reconstruction

It was mentioned in Chapter II that transcriptome sequencing in practice has

moved to RNA-seq technology. There are several advantages to RNA-seq compared with

conventional EST sequencing, including a lower required number of molecules, ability to

measure gene expression with high dynamic range, and lower cost (Wang 2009, Trapnell

2010, Roberts 2011). Recent advances in RNA-seq have even enabled single nucleotide

resolution of RNA secondary structure (Lucks, 2011). Perhaps the most important feature

of RNA-seq is the huge volume of reads which are typically produced. Current

generation of Illumina machines (for example, HiSeq 2000) are advertised to produce 3

billion 100 base paired-end reads per run (300 Gb). Use of this technology is becoming

widespread, emphasizing the importance of developing efficient algorithms for

processing large volume of sequences.

Two well established scientific uses for RNA-seq data are transcript

reconstruction and measurement of gene expression. Attention is focused on transcript

reconstruction here because it is closely related to gene finding in general.

The two major strategies for transcript and isoform reconstruction from RNA-seq

data are: i/ mapping and assembly, and ii/ de novo assembly. The former programs align

reads to a reference genome as part of the process for transcript construction. Programs

which map and assemble include Cufflinks (Trapnell 2010, Roberts 2011) and Scripture

(Guttman 2010). Indeed both of these programs use TopHat (Trapnell 2009) to align

reads to the genome, then by using a combination of splice junction alignments and

paired-end linkage, a transcript graph structure is constructed to allow one or more

 20

isoforms to be enumerated. Pure de novo transcriptome assemblers (using no reference

genome) include ABySS (Simpson 2009, Birol 2009) and Trinity (Grabherr 2011). The

de novo assemblers are very useful when the reference genome is either unavailable or

incomplete. However, despite their advantages the de novo pipelines require substantial

computational resources. Additional drawbacks to de novo assembly include lower

sensitivity to genes expressed at a low level, and also susceptibility to creation of false

positive “genes” from contaminating sequence in the mRNA library.

Short read alignment

Given that genomic mapping is such an important process in transcript

reconstruction (and therefore gene prediction), we focused on this critical step. Due to the

presence of exon-exon splice junctions (SJ) in mRNA molecules, sequence reads may be

considered to be members of one of two sets: i/ reads which align fully to an exon and ii/

reads which span a splice junction. In general, development of mapping programs has

focused on these two kinds of alignments separately.

For mapping reads without a gap, several programs have been developed over the

years. However, the winning strategy seems to have emerged: application of the

Burrows-Wheeler Transform. This technique has been implemented in software tools

such as BWA (Li H 2008, 2009), SOAP (Li R 2009), and Bowtie (Langmead 2009).

While full length alignment mapping optimization is by no means a “solved problem,” it

is arguably solved to a further extent compared to the problem of mapping reads which

span splice junctions.

Alignment of reads spanning splice junctions (SJs) is a critical task in transcript

reconstruction. Much like full length read alignment, the optimal gapped alignment

algorithm (Needleman-Wunch) is impractical due to the large volume of reads. Many

programs which carry out various gapped alignment algorithms for RNA-seq reads have

been proposed. Software tools of this category include TopHat, MapSplice (Wang 2010),

 21

SpliceMap (Au 2010), GSNAP SOAPsplice (Huang 2011), and PASSion (Zhang 2012).

TopHat uses an exon inference method using reads mapped without gaps to derive exon

(and intron) boundaries. MapSplice uses an “anchor and extend” approach for mapping

read segments situated near and over splice junctions. Iterative remapping of reads and

read segments in parallel with splice junction inference and filtering of false positives in

post processing are the hallmarks of the most recently developed tools. For instance,

PASSion and SOAPsplice use paired-end information to eliminate bogus alignments.

Despite investing significant efforts in the intense developments, all tools existing to date

suffer from a high rate of false positives as compared with tools which align EST

sequences such as BLAT (Kent 2001) and GMAP (Wu 2005).

There are two major reasons for the high rate of spurious SJ prediction of RNA-

seq mapping programs: 1/ concessions for suboptimal alignment in order to trade

accuracy for speed, and 2/ widespread noisy splicing in the cell which is revealed by deep

sequencing. Significant efforts have been made to address the major problems with

reason 1. As for reason 2, recent work has convincingly demonstrated that most instances

of novel SJs, which are observed when mapping high throughput transcriptome sequence

data, are manifestations of biochemical noise associated with the splicesosome (Melamud

2009, Pickrell 2010). Indeed, when random models of splicing error are assumed,

patterns of experimentally inferred novel introns are closely matched (Melamud 2009).

Furthermore, most novel introns show no conservation across species (Pickrell 2010).

This suggests that most novel introns found by alignment of RNA-seq are caused by

splicing noise. Indeed, even as read lengths achievable by NGS have increased, the

number of detected novel isoforms has not dwindled (Trapnell 2010, Marquiz 2012,

Daines 2011). This alone does not necessarily imply that there is no biological function

associated with such novel transcripts. Rather, we suggest that novel introns should be

assessed by the full weight of evidence supporting them—including DNA sequence

 22

patterns. We propose a scoring mechanism for assessing introns based on their similarity

to patterns of introns associated with functional gene isoforms.

Using DNA sequence models to improve intron prediction

In 2011, we began investigating the possibility of using probabilistic DNA

sequence models determined by unsupervised training (GeneMark-ES) to improve the

state-of-the-art in SJ prediction using RNA-seq spliced alignment information. Naturally,

this would limit applicability of the new algorithm to genomes with homogeneous G+C

composition. However, a large number, a majority, of sequenced genomes satisfy this

requirement, so work proceeded on the first algorithm.

SeqSweep

The first concept developed involved filtering SJ predictions made by another

pipeline (such as TopHat). A diagram of the pipeline, called SeqSweep, is illustrated in

Fig. 3.1. SJ predictions made by an alignment program are filtered for false positives

using sequence based models. Fig. 3.2 shows a diagram of a candidate intron, and the

four features used to perform discrimination: donor and acceptor splice site models

(position specific frequency matrices), intron length, and coding potential on the exon

sequences flanking the intron.

 23

Figure 3.1 Diagram of SeqSweep pipeline. The algorithm in the green block filtered the raw

SJ predictions made by the gapped alignment program.

Figure 3.2. Features used by SeqSweep to discriminate true SJs from false positives: donor

and acceptor position specific frequency matrices (represented by logos here), intron length

distribution, and coding potential found on the intron flanking sequences.

SeqSweep was developed to use all above features, using a naïve statistic for

coding potential (no reading frame dependence). The history of coding potential as a

feature for SJ classification is a rather complicated one, and it is discussed in detail in

 24

Appendix B. In SeqSweep, coding potential was calculated using the eukaryotic heuristic

models for CDS (described in Appendix A). A local value of G+C content for each

gapped alignment is calculated by averaging the content of sequence 1 Kb upstream of

the donor, and 1 Kb downstream of the acceptor. A set of four thresholds (one in each

feature dimension) were used so that if any one feature score does not exceed its

threshold, the SJ will be rejected. Theshold values were established conservatively to

maximize the benefit of this type of classification. Various threshold levels were

evaluated by sampling randomly 1,000 values in a parameter hyperbox using limits

established based on experience working with spliced alignments of short reads. The

discrimination power of SeqSweep was evaluated on an RNA-seq data set SRR100213

aligned to A. thaliana (a compact genome) using model parameters found by GeneMark-

ES. This data set consisted of 26.3 million single-end reads of length 36 nt. A scatter plot

was created in which Sn and Sp are shown for each set of thresholds (one point for each

threshold tuplet). In this plot (Fig. 3.3), sensitivity is defined as the number of detected

true SJ divided by the total number of annotated SJ in A. thaliana (TAIR 10). The

TopHat performance without filtering is represented by the most lower-right point on the

plot. A substantial improvement in specificity is demonstrated using this method: with an

appropriately selected threshold tuple in parameter space, approximately 1,200 false

positives may be removed (2% increase in specificity) in this data set with only 130 true

positives removed (9.2:1 filtering ratio).

 25

Figure 3.3 Performance of SeqSweep when used to filter false positives from SJ predictd by

TopHat. Different colored points correspond to different subsets of features used in filtering.

The best performance is obtained by using all features together.

With this promising start, we focused our effort on development of a complete

RNA-seq alignment pipeline with collaborators Jian Ma and Yang Li from the University

of Illinois Urbana-Champaign. Lessons from SeqSweep were incorporated into two

different successful algorithms, described below.

TrueSight

A successful collaboration with scientists at the University of Illinois Urbana-

Champaign resulted in the development of TrueSight—the first RNA-seq alignment

program to use DNA sequence features to improve SJ prediction accuracy (Li Y 2012).

We provide a cursory description of TrueSight because we were not primary authors. The

TrueSight pipeline uses Bowtie to map all reads to the genome without gaps. Reads

which do not map with Bowtie are mapped using the “anchor and extend” concept used

by other programs, such as MapSplice. TrueSight’s gapped alignment output includes

reads having multiple candidate alignments—ambiguous mappings. All uniquely mapped

and ambiguously mapped reads are subsequently classified by an algorithm which

 26

calculates several statistics for each candidate gapped alignment. In the next step,

TrueSight collects a number of features associated with each SJ candidate. There are a

total of 10 features used for classification. Some features are based on alignment

characteristics, such as the number of reads aligned across a SJ, while others are based on

DNA sequence models, such as donor and acceptor site Markov model likelihood scores.

DNA model parameters are found by unsupervised training by using DNA sequence

associated with a subset of SJ candidates as a training set. Classification is performed by

a hyperplane boundary in feature space, which is found by expectation maximization on

an objective likelihood function. The program is very successful in terms of performance:

the publication demonstrates superior performance to several other alignment programs

on several data sets.

Many of these features require DNA sequence models (splice site models, and a

coding sequence model) which are determined by a subset of initial SJ candidates (those

having several read alignments confirming them).

UnSplicer

The work on SeqSweep and TrueSight led to the development of a more effective

approach to classification for compact genomes with homogeneous G+C composition.

First, for such genomes the proven de novo unsupervised training algorithm of

GeneMark-ES can be used to find DNA model parameters. Second, the method of

selection of training sets for SJ classification in TrueSight could be improved upon.

Third, the use of coding potential as a feature could be replaced with an alternative

method which does not prevent detection of UTR introns. Finally, the hyperplane

boundary itself could be generalized to a non-planar boundary. From these ideas, the

concept of UnSplicer emerged.

 27

Figure 3.4 The UnSplicer diagram. In the first step RNA-seq reads are attempted to be

aligned to the reference genome without gaps (by Bowtie). Second, unmapped reads are

attempted to be aligned with gaps by an anchor-extension algorithm (same as in

TrueSight). Third, remaining unmapped reads are remapped to pseudotranscripts

reconstructed using predicted splice junctions (by Bowtie). Forth, an SVM classifier is

used to assign a probability-like score to each splice junction candidate and final

predictions are made.

Algorithm description

UnSplicer shares with TrueSight several components such as ungapped (full

length) read alignment and “anchor and extend” alignment modules for an initial attempt

of a read gapped alignment to genomic sequence. A block diagram of UnSplicer is shown

in Fig. 3.4. The ungapped alignment is accomplished using Bowtie (Langmead 2009).

Reads unmapped by Bowtie as a whole are divided into short (18-25 nt) non-overlapping

segments, with each segment now attempted to be separately aligned by Bowtie. Short

segments not aligned by Bowtie are likely to overlap splice junctions. These “missing”

segments are attempted to be aligned by a method described in (Li Y 2012), because such

segments may overlap splice junctions. An alignment is built on the genome fragment

delimited by the alignments of the fragments adjacent to the missing fragment.

 28

Alignment starts from the RNA-seq segment borders working into its interior until intron

boundaries are delineated.

After finding an initial set of SJ candidates in this fashion, all reads which still

remain unmapped to the genome are attempted to be mapped across all splice junctions

found from this step. DNA sequence flanking predicted introns are combined to form

continuous sequences which serve as targets for alignment to this remaining set of

unmapped reads. For details on the remapping methodology, refer to (Burns, 2013).

The second major part of SJ classification in UnSplicer is finding parameters for

the sequence models. In fact, sequence parameters are determined prior to running the

alignment pipeline. For compact genomes with homogeneous G+C composition,

GeneMark-ES predicts intron boundaries with 90% or better sensitivity and specificity

(Lomsadze 2005, Ter-Hovhannisyan 2008). GeneMark-ES models donor and acceptor

splice sites by hidden states with fixed duration (emitting sequences described by position

specific frequency models (PSFMs)) while exons and introns correspond to hidden states

with variable duration (emitting sequences described by Markov chains). The donor

PSFM spans 3 nt nucleotides upstream of the intron 5’ end, and 6 nt downstream. The

acceptor PSFM spans 20 nt nucleotide upstream of the intron 3’ end, and 1 nt

downstream. The PSFM models, considered as non-uniform Markov chains, may be of

either zero or first order. Particularly, for all examples discussed below, the donor and

acceptor PSFMs are of the first order; all these genomes have at least 5 MB of sequence

assembled into long contigs (with N50 larger than 20 kB).

 29

Figure 3.5. Scores of donor and acceptor sites defined by gapped alignments of RNA-seq

reads (from SRR360205 set) to genome of A. thaliana. The scores are computed with

PSFM parameters determined by GeneMark-ES. The blue dots represent splice junctions

annotated in TAIR10. Red dots correspond to not annotated splice junctions.

As with SeqSweep, donor and acceptor site PSFMs used by UnSplicer are used to

define log likelihood ratio scores of candidate splice junctions. For instance, Fig. 3.5

shows log odds scores of donor and acceptor sites mapped by gapped alignments of

RNA-seq reads (SRR360205 set) to genome of Arabidopsis thaliana. Thus mapped splice

junctions are divided into annotated (shown by blue dots) and not-annotated (shown by

red dots) with respect to the TAIR 10 annotation of A. thaliana genome. The gene models

predicted by GeneMark-ES allow construction of two additional features useful for

detection of true of splice junctions by UnSplicer. The first feature is the frame shift

indicator taking value one, if a predicted intron is situated inside a coding sequence such

that the reading frame shifts upon splicing out the intron. Otherwise, the frame shift

indicator takes a value of zero. The second feature is the strand concordance indicator

taking value one if the mapped intron appears in the opposite strand of a predicted gene

and value zero otherwise. An illustration of these two features for several examples is

shown in Fig. C4. Notably, seven of the nine features used by UnSplicer are among the

 30

set used by TrueSight. The two new features of UnSplicer are the frame shift and strand

concordance indicators. The introns of the ab initio gene predictions are not explicitly

used by UnSplicer, because prediction accuracy varies from one genome to another. Less

variant are coding frame and coding strand, which are much more reliable features for

diverse genomes.

Classification of candidate introns is based on construction of a decision boundary

in feature space. All nine features are derived from two data sources: read alignments and

genomic sequence. Alignment-based features are effectively: i/ gapped (alignment)

coverage skew, ii/ gapped alignment depth (the number of alignments confirming a splice

junction), iii/ gap (intron) length, iv/ entropy, and v/ read overhang length. While these

features were described in detail in (Li Y 2012), there are few minor differences which

are described here, in Appendix C.

Figure 3.6. Formation of positive training examples. A set of positive examples was

formed from read alignments having both a short overhang longer than 20 nt and an

entropy score higher than 20 (as indicated by green arrows). The figures were made for

alignments of RNA-seq reads (SRR042297 set) to the D. melanogaster genome.

We used a RBF SVM algorithm (Burges 1998) with Gaussian kernel to classify

the splice junctions (introns). To determine the SVM parameters and decision boundary,

we selected training sets of positive and negative examples. A procedure for selecting the

training set was developed with the intention to see positive SJ examples nearly all

annotated (“true” SJ) by an external source (e.g. the expert made genome annotation),

 31

and negative examples nearly all not annotated (“false” SJs). The training set consisted of

5000 positive and 5000 negative examples for each genome considered. Positive

examples were selected by sampling candidate SJs with high values for shortest overhang

(> 20 nt) complemented by high value of entropy (>20). Distributions of these two

features for both true and false SJs in D. melanogaster are shown in Fig. 34. Out of this

set of positive SJs, more than 98% were annotated in Flybase. For reads shorter than 60

nt, the overhang threshold is determined by , where is the half the read

length. This heuristic rule is required to maintain a reasonably large number of positive

examples in the training set for short reads.

Figure 3.7. Formation of negative training examples. Normalized histograms are shown

for shortest overhang values and coverage skew scores for gapped alignments of A.

thaliana RNA-seq reads (SRR360205 set). The set of candidate splice junctions with the

shortest overhang value (< 3) is highly enriched with negative examples. Similarly,

enriched with negative examples is the set of candidate splice junctions with coverage

skew score less than -1. Splice junctions with scores situated in either of the green

regions (shown above) were labeled as negatives.

Negative examples were selected by sampling candidate SJs with either a

coverage skew score less than -1 or a shortest overhang length of 2 nt or less. Fig. 35

shows the distribution of shortest overhang length and coverage skew score for true and

false junctions obtained by gapped alignment of RNA-seq reads (from SRR360205 set) to

the genome of A. thaliana. Among this set of negatives, less than 1% were annotated in

TAIR 10.

 32

Use of the three features (overhang, entropy, and coverage skew) to define a

training set leaves six features for use in the algorithm of classification: donor and

acceptor site score, intron length, frame shift indication, strand error indication, and

gapped alignment depth. For A. thaliana RNA-seq reads from SRR360205 set UnSplicer

found 164,373 splice junction candidates with canonical splice sites dinucleotides. As

mentioned above we used the LIBSVM package (0) to train an RBF SVM classifier using

the training set of 10,000 splice junctions. To find optimal parameters for the Gaussian

kernel a grid search was performed for combinations of kernel width () and error cost

(c). For each pair of values (,c), the SVM was trained and used for prediction on a

development set comprised of 10,000 randomly selected splice junction candidates which

did not belong to the training set. The label, true or false, for each splice junction in the

development set was defined with respect to the ab initio gene models made by

GeneMark-ES.

Figure 3.8. A grid search was performed to find the best SVM kernel parameters and c,

where

 . The optimal point with respect to Tp-Fp was = (-7,-2).

We searched for the values of and c delivering the highest value of classification

criterion: the number of true positives minus false positives by with respect to the splice

junction labels. Fig. 3.8 visualizes values of the criterion on a (,c) grid for the above

 33

mentioned development set of 10,000 splice junctions produced by UnSplicer aligning

SRR360205 RNA-seq reads to the A. thaliana genome. In this figure, the result of a grid

search for A. thaliana RNA-seq data is shown, which results in values of (to

be (-2,-7). It has been shown that good parameters for kernel SVMs tend to lie inside a

pocket in the (plane (Keerthi 2003). Indeed, this pocket is visible in the lower left

plot in Fig. 3.9, where “Tp-Fp” is shown over the parameter plane. The sweet spot runs

along a diagonal ridge (colored deep red in the figure). Indeed, as we consider the

performance measure Tp-Fp over four data sets, we see a similar pattern (Fig. 3.10).

Congruent regions across all four data sets in the parameter plane result in under-

fitting (test junctions are labeled the same way), or over-fitting (all test points are labeled

as false unless they happen to lie very close to a positive training sample). A pocket of

good performance consistently lies on a ridge starting from roughly

 and extends from there with a slope of -1 in the log plane as shown in the figure.

It was not surprising to observe this feature, as this is reported to be a general property of

RBF SVMs (Keerthi 2003). Indeed, because of this consistency, the grid search is

restricted to a region in the vicinity of this ridge in order to reduce the computational cost

of the search. Following the ridge along its length, with increasing and decreasing, the

decision boundary increasingly approximates a hyperplane. We observe most clearly in

C. elegans that the best performance is obtained by a boundary very different from a

hyperplane—specifically in a region near . This demonstrates that

the more flexible RBF SVM notably improves performance compared with a hyperplane

boundary.

 34

Figure 3.9. Performance of kernels with various values of (for a test set derived

from SRR360205 (A. thaliana). “True” and “false” labels were derived from the ab initio

gene predictions made by GeneMark-ES. In this example, the grid search found the best

pair at log(c) = -7, and log() = -2.

 35

Figure 3.10. We observe that for all examined RNA-seq data sets, regions similarly

situated in panels a,b,c,d in the parameter plane result in either under-fitting or

over-fitting the training data. It is also observed that a similarly situated ridge (with a

pocket of highest values of the criterion function) produces the best overall performance

in each case.

All training is performed on canonical junctions. After the parameters (are

found by the grid search, all non-labeled canonical splice junctions are predicted by the

SVM. After training and prediction of canonical junctions, prediction of non-canonical

junctions is performed using the same decision boundary used for canonical junctions

After the kernel parameters are found, the SVM classification was made for all

(for data set SRR360205) candidate splice junctions. A probability score

 was assigned to each predicted splice junction using the method described

in (0). A sigmoid function was used to define the probability score, such that for each

input feature vector

 36

where represents class (1 is a “true” splice junction label, and 0 is “false”),

is the decision value at point (+1 or -1, then averaged over a 5-fold cross validation),

 are constants found by maximizing the likelihood of training data, and is a

normalizing constant chosen so that

Each candidate splice junction was ranked with the probability score. While the

default classification threshold was set as 0.5, a full receiver operating curve (ROC)

could be defined by variation of the detection threshold over [0,1]. Any point of the ROC

could be chosen as an operating point of classification by the user.

Results

We begin with a demonstration of the prevalence of noisy splicing. The ribosomal

protein RpS4 in D. melanogaster is a highly expressed gene with two isoforms and five

annotated introns. Alignment of EST sequences (downloaded from NCBI) using the

program BLAT to the RpS4 gene locus results in a set of 33 spliced alignments shown in

Table 3.1. The five annotated introns are indicated with a ‘**’ label on the left, and the

number to the left of the FlyBase record name (FBgn0011284) is the number of EST

alignments across that intron. The 28 spurious introns found by EST alignment are most

likely due to a combination of mapping error and splicing noise because their boundaries

are dispersed but generally nearby annotated introns. If any of these 28 candidate novel

introns are to be predicted, some additional supporting evidence would be required. This

is the motivation for using DNA sequence features.

 37

Table 3.1. A list of introns found by spliced alignment of D. melanogaster EST

sequences to the RpS4 gene locus (FBgn0011284). Columns: 1 (number of alignments),

2 (locus name), 3-4 (intron boundaries inferred by gapped alignment). The introns in the

FlyBase annotation are indicated with a ** on the left.

The UnSplicer was compared with four other RNA-seq alignment programs:

TrueSight v0.06, TopHat v2.0.8, PASSion v1.2.0, and SOAPsplice v1.9. Due to a large

number of false positives observed in the runs of MapSplice (Li 2012, Zhang 2012) and

GSNAP (Wu 2010), it was not practical to include these results in the comparison. Two

different simulation experiments were performed in order to compare the programs, in

addition to several real data sets

 38

The five RNA-seq mapping programs were evaluated by mapping simulated

reads. Maq (Li 2008) was used (with sequencing error parameter r = 0.02) to simulate

reads derived from 41,671 A. thaliana full-length cDNA sequences. Three different

simulated paired-end read sets were created, each consisting of 5 million paired-end

sequences with length 50 nt, 75 nt, and 100 nt. Reads were generated from transcripts

according to expression levels found by alignment of a real data set (SRR360205) using

TopHat, then using Cufflinks (Trapnell 2010) to quantify expression level. The number

of true positives and false positives found by each program, as well as specificity, is

shown in Table 3.2. Three results are reported for UnSplicer, corresponding to three

different probability score thresholds (0.1, 0.5, and 0.9). The threshold value appears next

to the column title in parentheses. It is worth noting that the number of false positives is

very effectively reduced by selecting a high threshold for UnSplicer. For UnSplicer (0.9),

the false positive incidence is less than 1 per 400 predictions. While some programs

perform marginally better than others, it is clear that all programs perform quite well on

simulated data. Summarizing these results, UnSplicer has the highest specificity, while

TrueSight has the highest overall sensitivity (with SOAPsplice slightly higher for the 75

nt reads).

Table 3.2. Number of true positives (Tp), false positives (Fp), and specificity (Sp) for five

programs mapping simulated reads to A. thaliana.

Tp
UnSplicer

(0.1)

UnSplicer

(0.5)

UnSplicer

(0.9)
TrueSight Tophat SOAPsplice PASSion

50 nt 81595 79584 68332 84133 79056 82216 82113

75 nt 84680 83874 78110 84831 84246 85137 84355

100 nt 85168 83646 75936 85950 85714 84815 84471

Fp
UnSplicer

(0.1)

UnSplicer

(0.5)

UnSplicer

(0.9)
TrueSight Tophat SOAPsplice PASSion

50 nt 726 405 161 1722 2953 502 2159

75 nt 807 427 183 858 2857 496 1815

100 nt 811 430 155 1614 3259 501 1765

Sp (%)
UnSplicer

(0.1)

UnSplicer

(0.5)

UnSplicer

(0.9)
TrueSight Tophat SOAPsplice PASSion

50 nt 99.12 99.49 99.76 97.99 96.40 99.39 97.44

 39

75 nt 99.06 99.49 99.77 99.00 96.72 99.42 97.89

100 nt 99.06 99.49 99.80 98.16 96.34 99.41 97.95

Table 3.3 reveals the total number of reads aligned by each program. Since there

were 5 million paired-end reads given as input, the maximum number of aligned reads is

10 million. Tophat and SOAPsplice emerge as winners in this category, although TopHat

predicted the largest number of false positive spliced alignments. Based on simulated

read alignment, it would appear that SOAPsplice is the best alignment program. When

we examine real data, we see a very different result (below).

Table 3.3. The number of simulated reads aligned by each program (in millions of reads),

by read length.

UnSplicer TrueSight Tophat SOAPsplice PASSion

50 nt 9.560 9.394 9.905 9.599 8.896
75 nt 8.017 7.924 8.393 8.422 8.299

100 nt 6.953 6.873 7.325 7.424 7.790

We examined the effect of alignment depth on intron prediction accuracy. Figure

3.11 shows the number of correct and spurious predictions made by each program as a

function of alignment depth. TopHat makes the largest number of correct predictions as

the alignment depth increases (panels a,c,e). However, TopHat also predicts the most

spurious introns (panels b,d,f) for all read lengths. TrueSight also has high sensitivity,

with fewer spurious predictions compared to TopHat, but more spurious predictions

compared to other programs. SOAPsplice predicts the fewest correct introns with high

alignment coverage, but also the fewest spurious introns (with depth greater than 10). For

greater detail at low coverage depths, Figure 3.12 shows those introns predicted with low

alignment coverage. We notice that variation in the pattern of correct predictions

decreases with increasing read length. The notable exception is SOAPsplice, which

predicts many more correct SJ at low coverage (1-5 alignments) compared to all other

programs. A second fact is that UnSplicer predicts the least number of false positives for

SJs with only 1-2 reads aligning across them. Both TopHat and PASSion predict a large

number of false positives at low alignment depth.

 40

Figure 3.11. Mapping performance of simulated reads with different lengths. Panels a,c,e

show the number of correct and panels b,d,f show spurious predictions made by each

program on the simulated reads as a function of alignment depth. Panels a and b show the

results for the 50 nt paired-end reads, panels c and d correspond to the 75 nt reads, and

panels e and f correspond to 100 nt reads.

 41

Figure 3.12. Mapping performance of simulated reads with different lengths (low

coverage junctions). Correct and spurious predictions made for splice junctions with low

alignment depth. Panels a,c,e show the number of correct predictions and panels b,d,f

show spurious predictions made by each program on the simulated reads. Panels a and b

show the results for the 50 nt paired-end reads, panels c and d correspond to the 75 nt

reads, and panels e and f correspond to 100 nt reads.

All experiments were performed on a 16 processor multi-user Linux system. It is

not generally feasible to a run program in isolation, nor would this typically be the case in

automated pipelines. Therefore, two measures of computational cost are reported: total

elapsed time (“wall clock” time), and the CPU time for each program. CPU time is a

 42

measure of time in which processors are occupied by the program. All 5 compared

programs are multi-threaded, so we specified 8 threads to be used for each program. A

comparison of computational cost for alignment of the simulated reads are shown in

Table 3.4. Because 8 threads are allowed, the CPU time is often much greater than the

wall clock time. The fastest program are TopHat, with SOAPsplice a close second.

However, for 100 nt long reads, SOAPsplice slows considerably. For 100 nt long reads,

run times for UnSplicer and TrueSight are close to SOAPsplice. It is worth noting that

while TopHat is the speed king in this group, our results indicate that among the 5

programs compared, it is clearly the least accurate for spliced alignment. The most costly

program to run is PASSion, which required 7-8 hours of wall time with 8 threads.

UnSplicer and TrueSight are on par with each other, typically requiring 1-2 hours of wall

time.

Table 3.4. The time and resources required by each of the five programs to map the

simulated reads to the A. thaliana reference genome. All times are shown in

(hours:minutes).

Wall clock
(h:m) UnSplicer TrueSight Tophat SOAPsplice PASSion

50 nt 1:29 1:13 0:22 0:15 7:54
75 nt 1:39 1:31 0:19 0:45 8:43

100 nt 2:08 1:55 0:28 1:45 7:34
SRR360205

(76 nt) 5:37 5:19 1:10 3:55 34:29

 CPU time
(h:m) UnSplicer TrueSight Tophat SOAPsplice PASSion
50 nt 3:51 3:09 0:51 0:50 10:18
75 nt 3:27 4:00 0:58 2:55 15:06

100 nt 4:36 4:53 1:29 5:28 22:02
SRR360205

(76 nt) 13:23 19:49 6:26 23:35 102:42

 43

Table 3.5. Description of real RNA-seq data sets and reference genomes used for

comparison.

Species Data set (SRA

no.)

Read length

(bp)

No. pairs

(millions)

Genome ver. Annotation

ver.

A. thaliana SRR360205 76 20.9 TAIR10 TAIR10

C. elegans SRR359066 101 12.2 Ce10 RefSeq, Ensembl

D. melanogaster SRR042297 75 13.6 r5.42 r5.42

C. neoformans SRR563164 101 5.7 Broad Institute* Broad Institute*

* Cryptococcus neoformans var. grubii H99 Sequencing Project, Broad Institute of Harvard and MIT

To assess the performance on real data sets for compact genomes, we used RNA-

seq data sets available for four different species: A. thaliana, C. elegans, D.

melanogaster, and the fungus C. neoformans (as summarized in Table 3.5) and counted

the number of intron predictions which were in agreement with the annotation and the

number which were novel (not annotated). Figs. 3.13-3.16 depict the performance of each

program in terms of the number of confirmed introns (previously annotated) compared to

the number of predicted novel introns (not annotated). Because both UnSplicer and

TrueSight provide probability scores for each splice junction we could build a “receiver

operating characteristic,” or ROC curve. Predicted introns are ranked by probability

score, and the ROC curve may be defined by variation of the detection threshold over

[0,1]. Results produced by other programs are represented by single points.

 44

Figure 3.13. Performance comparison of several RNA-seq mapping programs on the A.

thaliana data set. ROC curve for UnSplicer (blue curve) and TrueSight (red curve);

TopHat (green +), PASSION (violet star), and SOAPsplice (black X). The UnSplicer

ROC curve shows higher performance, with fewer novel introns predicted for a given

number of predicted splice junctions.

Figure 3.14. Performance comparison of several RNA-seq mapping programs on the C.

elegans data set. Labels are the same as in the previous figure.

 45

Figure 3.15. Performance comparison of several RNA-seq mapping programs on the D.

melanogaster data set.

Figure 3.16. Performance comparison of several RNA-seq programs on the C.

neoformans data set. The UnSplicer ROC curve demonstrates higher level of

discrimination between true and false splice junctions compared with all other pipelines,

with the exception of marginal improvement by TrueSight when a very low detection

threshold is used.

 46

It is expected that the vast majority of introns predicted by mapping programs

which have no match in the annotation are spurious. That is, they arose from mapping

errors or splicing noise (or both). This is particularly true for the model genomes, which

have a large number of EST sequences supporting gene structures. In order to compare

the performance of the five programs, we use novel introns as a rough measure of

spurious introns. Therefore, we believe prediction of fewer novel introns is strong

evidence of better overall prediction performance.

For the RNA-seq data sets in Table 3.5 UnSplicer demonstrated the best

performance by a substantial margin (Figs. 3.13-3.16). In A. thaliana and C. neoformans,

the difference with other programs was most pronounced, with UnSplicer predicting the

smallest number of spurious introns. UnSplicer reported about 5,500 or 6,600 more

introns confirming the respective annotations, compared with TopHat and SOAPsplice,

for an equal number of reported novel junctions. TrueSight detected a small number

(134) of true positives in C. neoformans not found by UnSplicer if the probability

threshold is set to zero. However, UnSplicer can filter spurious introns much more

effectively, as is evident in Fig. 3.16.

Fig. 3.17 compares the number of novel introns predicted by each program to the

number predicted by UnSplicer. The data in Fig. 3.17 are found by finding the difference

between the number of novel introns predicted by each program and the number

predicted by UnSplicer at the point on the ROC curve matching the corresponding

program’s annotated predictions. In other words, the difference is considered along the

abscissa in Figs. 3.13-3.16. This difference is labeled as a reduction in spurious introns,

because it is expected that most such introns are due to splicing noise. For TopHat,

PASSion, and SOAPsplice, the reductions are shown as points, while TrueSight appears

as a curve. A substantial reduction in spurious predictions is seen compared to all

programs and in all data sets, with the lone exception of TrueSight in C. neoformans for a

very low probability score threshold (mentioned above).

 47

In Fig. 3.18, these results are presented as percent reductions in spurious

predictions, relative to the number of spurious predictions made by each program. Most

reductions are very substantial, particularly TopHat which can be matched by UnSplicer

in sensitivity with 60-80% reduction in spurious predictions in A. thaliana, C. elegans,

and C. neoformans. Compared to TrueSight, spurious predictions are reduced by 20-50%,

which demonstrates the advantages of UnSplicer on compact genomes.

Figure 3.17. Reduction in spurious splice junction (SJ) prediction. Panels a-d compare the

number of spurious splice junctions predicted by each program on the four data sets, to

the number predicted by UnSplicer. The reduction is evaluated at a point on the

UnSplicer ROC curve matching each compared program’s predictions confirming the

annotation.

 48

Figure 3.18. Normalized reduction in spurious splice junction (SJ) prediction. Panels a-d

compare the number of spurious splice junctions predicted by each program on the four

data sets, to the number predicted by UnSplicer. The reduction is calculated as a percent

reduction achieved by UnSplicer compared to each program.

Fig. 3.19 compares the number of additional annotated introns found by

UnSplicer to the number found by other programs. This is essentially the difference

between UnSplicer and the other programs along the vertical direction in the ROC curves

(Figs. 3.13-3.16). In virtually all cases, UnSplicer confirms thousands of introns more

than other programs when the number of spurious predictions is matched. In Fig. 3.20,

these increases are shown as a percentage gain compared to each program. In D.

melanogaster, UnSplicer finds ~1,500 additional annotated introns compared to the

programs TopHat, PASSion, and TrueSight. In A. thaliana, UnSplicer finds many

thousands of additional confirmed introns compared to the other DNA-aware program

TrueSight.

 49

Figure 3.19. Improvement in annotated splice junction (SJ) prediction. Panels a-d show

the number of additional annotated splice junctions found by UnSplicer compared to

other programs on the four data sets.

 50

Figure 3.20. Increase in predictions of annotated splice junctions (SJ) by UnSplicer

compared to four other programs. The percent increase is determined by (TpU-Tp)/Tp),

where Tp is the number of true positives (annotated) SJ predicted by a program, and TpU

is the number of true positives predicted by UnSplicer. A threshold value for UnSplicer is

selected so that the number of confirmed annotated SJ predictions by UnSplicer matches

the number of the corresponding program.

Table 3.6 compares the prediction accuracy of UnSplicer when a threshold value

of 0.5 is used with the four other programs. UnSplicer consistently predicts introns with

the highest value of annotated predictions (Tp) minus novel predictions (Fp), which is a

measure of general performance. UnSplicer predicts the lowest number of novel introns,

with the exception of PASSion on the C. neoformans data set. In this case, PASSion has

slightly fewer novel predictions, but at the cost of about 2,500 fewer annotated

predictions compared to UnSplicer. In general, UnSplicer outperforms PASSion because

the ROC curve lies above and to the left of the point represented by PASSion (Fig. 3.16).

A threshold value of zero was selected for TrueSight in this table because that threshold

 51

was used in the TrueSight publication (Li, 2012). In summary, on all data sets evaluated

the best overall performance was achieved by UnSplicer.

Table 3.6. Comparison of the UnSplicer performance (with default threshold of 0.5) to

performance of other RNA-seq alignment tools.

 UnSplicer

(thresh.=0.5)

TrueSight

(thresh.=0)

TopHat PASSion SOAPsplice

A. thaliana Tp 92,818 99,051 98,368 93,934 100,416

Fp 4,711 14,770 28,730 11,654 22,418

Tp-Fp 88,107 84,281 69,638 82,280 77,998

Sp (%) 95.17 87.02 77.40 88.96 81.75

C. elegans Tp 61,529 63,847 44,213 60,247 43,043

Fp 5,983 11,201 10,226 6,005 8,327

Tp-Fp 55,546 52,646 33,987 54,242 34,716

Sp (%) 91.14 85.07 81.22 90.94 83.79

D.

melanogaster

Tp 32,624 34,441 33,936 33,260 35,117

Fp 4,168 7,876 10,021 7,306 9,891

Tp-Fp 28,456 26,555 23,915 25,954 25,226

Sp (%) 88.67 81.39 77.20 81.99 78.02

C.

neoformans

Tp 29,273 30,314 24,288 26,723 23,202

Fp 6,637 12,300 9,534 5,482 9,531

Tp-Fp 22,636 18,014 14,754 21,241 13,671

Sp (%) 81.52 71.14 71.81 82.98 70.88

Because UnSplicer uses some features derived from gene prediction, it should be

examined whether it can detect as many introns which connect non-coding exons as other

programs. This would include UTR introns and introns inside non-coding genes. Table

3.7 shows the number of annotated A. thaliana introns which were detected by each

program, categorized as either “coding” (connecting coding exons) or “non” (connecting

non-coding exons). A junction is non-coding only if the nucleotide immediately adjacent

 52

to the intron in both exons is non-coding in all annotated isoforms. The ratio of coding-

to-non is shown in the bottom row of the table. A high ratio would indicate a bias for

detecting introns in coding regions over non-coding. Surprisingly, PASSion has the

highest ratio of all programs (excluding the high threshold case with UnSplicer). We

attribute this high ratio to PASSion’s pattern growth algorithm, which preferentially

detects “coding” introns compared to “non-coding”. UnSplicer (0.5) also has a relatively

high ratio, but only 15% higher compared to the more conventional aligners such as

TopHat and SOAPsplice. While this difference is notable, it is a natural artifact of the

detection problem in that there is more evidence available to reject spurious junctions in

coding regions. This point is more clearly illustrated in Fig. 3.21, where UnSplicer’s ratio

of coding to non-coding intron detections increases with increasing probability threshold.

Also shown is the ratio for TrueSight, which is nearly invariant to probability score. We

suspect that the reason for this is that TrueSight’s frame-less coding sequence model,

which is the basis for its coding potential score, does not play a major role in SJ

discrimination in this example.

Table 3.7. Comparison of the number of annotated splice junctions in A. thaliana which

were found by each program by aligning the data set SRR360205. Junctions connection

coding exons are labeled as ‘coding’ and all others ‘non’. The ratio is the number of

confirmed annotated coding SJs divided by the number of confirmed non-coding SJs. The

UnSplicer numbers are determined by considering all predictions having probability

scores greater than the thresholds: 0.1, 0.5, and 0.9.

SJ

type

UnSplice

r (p=0.1)

UnSplicer

(p=0.5)

UnSplice

r (p=0.9)
TrueSight TopHat SOAPsplice PASSion

coding 92306 88980 70902 92977 92682 94207 93934

non 5737 5073 3331 6074 6047 6218 5236

coding

/ non
16.09 17.54 21.29 15.31 15.33 15.15 17.94

 53

Figure 3.21. Ratio of predicted “coding” introns to “non-coding” as the probability

threshold is increased.

The anchor-and-extend technique used by UnSplicer to find gapped alignments

will have some impact on detection performance of introns which have short exons

flanking them. This is due to the fact that reads aligned in this fashion cannot be mapped

across SJs at both ends of a short exon unless the exon is sufficiently long. Reads mapped

across only one SJ are not affected. We compared the effect of exon length on detection

sensitivity of the five programs on the A. thaliana data set. The set of all detections

confirming annotated introns was constructed for each program. A separate set of exons

was made by including the two flanking exons for each intron in the intron set. A

distribution of the lengths of the exons was calculated. In Table 3.8, the number of

detected introns is shown for each program for different intervals of flanking exon length.

All introns predicted by UnSplicer are considered (the probability score threshold is zero

in this case). UnSplicer is the most sensitive for introns next to exons having length 25 nt

or shorter. This supports the anchor-and-extend approach for finding introns.

 54

Table 3.8. The distribution of the length of exons flanking every prediction confirming an

annotated intron in A. thaliana. All introns predicted by UnSplicer are considered

(threshold = 0). The anchor-and-extend strategy used by UnSplicer improves detection

sensitivity of introns adjacent to short exons compared to other programs

exon length

(nt)
PASSion TrueSight UnSplicer TopHat SOAPsplice

1-24 479 378 482 382 470

25-49 7690 8066 8049 8048 8227

50-99 57102 59904 59483 59757 60678

100-199 64133 67758 67629 67539 68722

200-499 43965 46483 46548 46311 47048

500- 14499 15513 15535 15421 15705

Next we compared the prediction specificity of each program as a function of

intron length in the A. thaliana data set. The intron predictions made by each program

were partitioned into subsets according to their length. The specificity was calculated for

each subset of predictions. In general, we expect specificity to drop as with increasing

intron length because single-nucleotide precision of feature boundary prediction requires

more discrimination power with increasing length. Table 3.9 confirms that each program

exhibits a monotonically decreasing specificity with increasing intron length, with the

exception of UnSplicer. UnSplicer (with a probability threshold of 0.5) predicts with a

high and fairly constant specificity (94-95%) up to a length of 2000 nt. For all introns

longer than 2000 nt, specificity drops dramatically. However, even in that case,

UnSplicer’s specificity is 2.5 times higher compared to the next best program

(TrueSight). We observe that most programs severely over-predict long introns, with a

ratio of novel to annotated introns from 6.8:1 (TrueSight) to 56:1 (TopHat).

 55

Table 3.9. Specificity of intron predictions is shown as a function of intron length for the

A. thaliana data set. There were no annotated introns predicted by any program shorter

than 50 nt.

intron length

(nt)
UnSplicer TrueSight TopHat SOAPsplice PASSion

50-99 94.8283 95.7735 90.0762 89.6227 95.3515

100-199 93.7958 93.0739 82.5879 82.1278 91.7287

200-499 93.7966 90.6623 74.6497 74.761 86.3691

500-1999 95.6146 79.2293 41.8709 49.4626 57.6031

2000- 38.7097 14.9718 1.7883 11.1531 4.3651

As a final illustrative example, in Fig. 3.22 we show results of splice junction

predictions by several programs, PASSion, SOAPSplice, TopHat, TrueSight and

UnSplicer, graphically depicted for a 10 Kb region of chromosome 1 of A. thaliana

carrying three multi-exon protein coding genes, as annotated in TAIR. UnSplicer predicts

no false positive splice junctions in this region. All other programs while predicting the

same number of true positives as UnSplicer predict few false positives.

 56

Figure 3.22. Splice junctions predicted by five programs are graphically depicted in 10Kb

region of A. thaliana chromosome 1. True positive splice junctions (matching

annotation) are shown in green while false positives are shown in red in the FP panel for

a corresponding program. The three genes annotated in the region are graphically

depicted in the bottom. UnSplicer predicts no false positives in this region.

Discussion of simulated data

There is a clear gulf between the results of simulation and alignment of real data.

This is caused by the absence of splicesosome noise modeling in read generating

simulations. In this comparison, we use well annotated genomes to conclude UnSplicer is

much more effective at predicting introns in compact genomes compared to other

programs. Simulated data is of limited use in evaluation of spliced alignment programs,

 57

and can lead to incorrect conclusions if used in isolation. Our simulation results

suggested that SOAPsplice was a superior alignment program. However, results on real

data reveal considerable deficiencies of SOAPsplice. UnSplicer predicts nearly 10,000

fewer spurious introns compared to SOAPsplice in the real A. thaliana data set, whereas

in simulated data on the same genome the two programs appeared to be very comparable.

In addition, with simulated reads SOAPsplice found many more read alignments

compared to UnSplicer. However, with real A. thaliana data, UnSplicer mapped 33.7

million reads, while SOAPsplice only mapped 26.1 million.

Relationship to TrueSight

UnSplicer and TrueSight have three major differences: i/ in derivation of DNA

sequence model parameters, ii/ in training set selection (for classification), iii/ in

classification algorithm. UnSplicer derives model parameters by use of GeneMark-ES

(conducting unsupervised training on a reference genome), while TrueSight derives

parameters directly from the training set of splice junctions. A danger of reliance on

RNA-seq alignments for deriving model parameters is a possibility of bias in parameters

of the protein-coding sequence model due to overrepresentation of highly expressed

genes. It is well known that for in prokaryotic and eukaryotic genomes, codon usage of

highly expressed genes differs from codon usage of genes expressed at moderate and low

levels (see for example, Duret 1999, Moriyama 1998). UnSplicer avoids this problem

because GeneMark-ES trains parameters based on a large number of genes (many

thousands).

The training set for the UnSplicer classifier is guided by a different set of heuristic

rules (described above), in comparison with rules used in TrueSight. The training set of

positive examples in TrueSight is formed from the set of all splice junctions with

canonical splice sites for which: i/ no mismatch errors occur in the alignment and ii/ the

splice junction is confirmed by 5 or more alignments. The set of negative examples is

 58

taken from the set of gapped alignments spanning introns with non-canonical splice sites,

such that: i/ the SJ is confirmed by only one alignment, and ii/ the short side of the

aligned RNA read is close to the admitted minimum, either 8 or 9 nt. These training sets

are also used for deriving sequence model parameters.

The third major difference is in the design of the classification algorithm.

TrueSight finds a decision boundary by the expectation maximization (EM) algorithm

maximizing a likelihood of all candidate splice junctions presented to the classifier. The

EM algorithm is searching for a hyperplane boundary separating positive and negative

examples in the training set. UnSplicer uses the training set to find parameters of a

Gaussian kernel SVM that maximizes agreement with ab initio gene predictions on a

development set.

In addition to the three major differences between UnSplicer and TrueSight, few

more minor differences exist. For instance, instead of the coding potential used by

TrueSight, we use two binary indicators, strand concordance and frame shift indication.

These indicators have zero value for true introns (both protein-coding and UTR introns)

and non-zero value for many false positives. Also, UnSplicer uses an intron length

distribution provided by GeneMark-ES in the gap length feature which is essentially a

log-likelihood that an intron has a given length. Intron length distributions derived by

GeneMark-ES show good agreement with empirical distributions determined from

transcript sequence alignments. In an example for the strawberry genome (F. vesca)

shown in Fig. 6 one can see that intron length distribution inferred by GeneMark-ES

nearly coincides with one determined from transcript sequence alignments (Fig. 3.23). As

the intron length related feature TrueSight uses a score defined as follows: for an intron

of length , the score is zero if , otherwise it is , where is the

length for which 95% of candidate introns are shorter. Also, in TrueSight donor and

acceptor site log likelihood scores are summed together in a single feature, while

UnSplicer has two separate features.

 59

Figure 3.23. Comparison of strawberry (F. vesca) intron length distributions found by

GeneMark-ES (blue) and one derived from alignment of EST sequences (red).

Use of GeneMark-ES makes UnSplicer applicable to newly sequenced genomes

with no annotation where RNA-seq data have become available as well. On the other

hand dependence of GeneMark-ES restricts UnSplicer to genomes with homogeneous

G+C content. In nonhomogeneous genomes, such as large gnomes of animals, a separate

training procedure must to be carried out to derive sequence model parameters needed for

UnSplicer.

Lastly, we should note that UnSplicer performs the remapping and filtering steps

prior to classification while TrueSight performs these steps after classification. The

change of order in UnSplicer was made since the classification algorithm uses the

number of alignments across a splice junction as one of the input features.

 60

CHAPTER IV

GENEMARK-NGS: A CONDITIONAL LEARNING ALGORITHM

FOR EUKARYOTIC GENE FINDING

Many years of development of eukaryotic gene finding techniques have led to a

few basic methodologies which are widely used today. The most reliable systematic

method of gene finding today is alignment of full-length cDNA sequences to a reference

genome, and testing long open reading frames (ORFs) in the transcript sequences. Such

cDNA sequences should ideally be constructed from long-read sequencing technology,

due to difficulty in resolving correct isoform structures using short-read sequences. This

isoform ambiguity may be alleviated somewhat with paired-end sequencing using

carefully chosen fragment length variations. To date, iron clad gene prediction still

requires long read sequences for full-length cDNA construction. However, outside of a

few extensively studied model organisms, full-length cDNA construction from long-reads

is rarely performed due to the relatively high expense of obtaining these sequences.

Comparative genomics (Korf 2001, Allen 2004, Gross 2006) is also commonly

used to support gene finding. Conserved protein domains shared by related species are

found in the target genome, and used to support exon-intron structures where possible. In

(Kellis 2003), gene finding by comparative genomics was demonstrated to find 90% of

genes in genomes of several species of novel yeast genomes. The methods rely on a

combination of access to many related genome assemblies, and existence of long ORFs in

DNA sequence, which is generally not the case in higher eukaryotes which have much

shorter exons. In addition, simultaneous sequencing of several larger and more complex

genomes is not nearly as practical compared with yeast genomes. Furthermore, in many

cases novel genomes are assembled with no available genomes of close biological

relatives from which gene structure indications in target genome can be inferred.

 61

Therefore in practice, comparative genomics is of limited value in annotation of full gene

structures of eukaryotes.

Today, most transcriptome sequencing is performed by RNA-seq experiments due

to production of large volumes of reads for low cost (Martin 2011, Wang 2009). Indeed,

sequence production with this new apparatus is so great, efforts have been made to

assemble entire transcriptomes with batches of RNA-seq runs (see Martin 2011, and

references within). Two fundamentally different approaches have been proposed for this

purpose: 1/ mapping reads to a reference genome, and assembling transcripts (Guttman

2010, Trapnell 2010), and 2/ de novo assembly of transcripts (Simpson 2009, Birol 2009,

Grabherr 2011). The principle advantage of de novo assembly is the ability to reconstruct

gene transcripts which are not found in the reference genome assembly (or even without a

genome assembly altogether). Disadvantages include lower sensitivity to genes with low

expression, false transcripts made from contaminating sequences in the RNA-seq

experiment, and a requirement for much greater computational resources compared to

mapping-and-assembly methods. If it were possible to assemble the entire transcriptome

with RNA-seq reads, then the problem of gene finding in eukaryotes would be greatly

simplified due to removal of exon-intron structures from the detection problem. Of

course, this can only work on those transcripts which have been sufficiently reconstructed

so that the protein coding region may be correctly identified in its entirety. The set of

assembled transcripts for which coding sequences are fully covered will represent some

fraction of all genes in a genome—a fraction dependent on the depth of sequencing

performed as well as the variety of cell conditions and tissue types used for library

construction. A successful application of de novo transcriptome assembly was reported

(Grabherr 2011) in which roughly 90% of protein coding genes of S. pombe were

assembled into transcripts by the Trinity pipeline. Less successful was the transcriptome

assembly from mouse sequences, resulting in assembly of a little over half of known

genes. In (Guttman 2010), a similar result of roughly 55% of known mouse genes were

 62

recovered in full length with the program Scripture. The difference in genome coverage

could be related to more stable or more extensive heterochromatin in the mouse genome

compared to yeast.

Whether 10% or 50% of genes remain to be found, these recent results

demonstrate computational gene finding methods are still required even with available

deep transcriptome sequencing technology. Perhaps the most widely adopted and

successful algorithm class for eukaryotic gene prediction is the generalized hidden

Markov model (GHMM), which has been incorporated into many gene finders, such as

GenomeScan (Yeh 2001) and Augustus (Stanke 2003), and GeneMark.hmm (Lukashin

1998). The GHMMs used by these programs require a training set to obtain parameters

for prediction. A traditional approach to preparing a training set would involve alignment

of full-length cDNA or other available long-read sequences of cellular RNA to a

reference genome in order support highly reliable prediction of a small percentage of

protein coding genes, which may then serve as a training set to find parameters for

sequence models used by gene prediction algorithms.

Even when limited long-read transcript sequences are available, their scarcity

tends to provide support to the most highly expressed genes in a genome. Derivation of

sequence model parameters from a subset of genes which is overrepresented with highly

expressed genes results in biased parameters. This bias is caused by differences in codon

usage in genes having different constitutive expression level (Sharp 2010). This fact has

been pointed out before (Rogic 2001), yet overlooked by many scientists because test sets

used to measure gene prediction performance tend to be overrepresented by highly

expressed genes.

A challenge for computational gene prediction is to incorporate the wealth of

RNA-seq information in a productive fashion for finding functional protein coding genes

over a whole genome. RNA-seq data tends to be somewhat error prone, with

contributions originating from natural cell splicing errors, steps associated with cDNA

 63

library preparation, sequencing, and the error-prone process of spliced alignment. The

challenge is to find a method for parameter training which prevents such errors associated

with RNA-seq to be incorporated into GHMM model parameters. We propose a new

pipeline called GeneMark-NGS, which solves this problem using a combination of the

RNA-seq mapping program UnSplicer (Burns, submitted for pub.) and GeneMark.hmm.

GeneMark-NGS is the first gene prediction program which uses RNA-seq spliced

alignments to improve GHMM model parameters for more accurate gene prediction.

Conditional learning using RNA-seq alignments

In GeneMark-NGS, RNA-seq spliced alignments to a reference genome are used

to assist in training GHMM parameters for gene prediction. GHMM parameters are found

by an iterative machine learning approach which incorporates spliced alignments into

predicted exon confirmations, and predicted exons into spliced alignment predictions.

The basic concept we propose is a form of conditional learning illustrated in

Figure 4.1. Splice junction detection is performed by UnSplicer and gene prediction with

GeneMark.hmm. The two programs are used together in a ping-pong iterative fashion—

UnSplicer providing intron confirmations and intron sub-models to GeneMark.hmm, and

GeneMark.hmm providing gene predictions and improved model parameters back to

UnSplicer. Each predictive algorithm is conditioned to some extent on the input provided

by the other.

 64

Figure 4.1. A diagram of the basic concept of conditional learning applied in GeneMark-

NGS.

Due to available deep sequencing of transcriptomes, support for tens of thousands

of introns are obtained with most RNA-seq data sets. In this new method, introns found

by UnSplicer are compared with exons predicted by GeneMark.hmm. If an exon is in

agreement with a gapped alignment—that is, if a predicted exon shares an intron

boundary predicted by a gapped alignment—then the sequence in that exon will be

included in the set of coding sequence used to train a Markov model for the next

iteration. Such exons are highly likely to be biological exons containing coding sequence

because two different sources of evidence confirm a boundary with single-nucleotide

precision. The sequence within all such exons is used to train a Markov chain which

models coding sequence (CDS). The CDS Markov chain parameters are part of a larger

set of GHMM parameters used for the next iteration of predictions.

The process begins with alignment of available RNA-seq to the reference genome

using UnSplicer in a special conservative mode. In the conservative mode, UnSplicer

does not make use of features derived from DNA sequence to classify candidate splice

junctions. Instead, only the following features are used to select the initial intron

predictions: coverage skew, entropy, and alignment depth (the number of alignments

across a splice junction). Only gapped alignments across canonical introns are considered

in this process, and only canonical introns are predicted by GeneMark.hmm. A set of

 65

“positives” and “negatives” are selected according to the training set selection criteria

described in Chapter III. Additionally, introns having 5 or more gapped alignments

confirming them are added to this set of “positives.” All splice junctions in the positive

set are given non-zero probability scores. All those remaining are given a probability

score of 0. The positive set establishes an initial set of introns from which empirical

donor and acceptor position specific frequency matrices (PSFMs) and intron length

distribution are derived.

Next, the first prediction step is performed by GeneMark.hmm using GHMM

parameters comprised if the intron sub-models described above, along with heuristic

parameters for coding and non-coding sequence Markov chains (Besemer 1999).

The final step of the first iteration is the update of model parameters. In this step,

new Markov chain parameters describing coding and non-coding sequence and PSFM

parameters for gene start and stop contexts are derived from the set of predictions. The

parameters are found by maximum likelihood estimation, using example sequences for

each type. Gene start and stop contexts are derived from all predicted genes having more

than 300 nt of coding sequence. Non-coding sequences are found by collecting predicted

intergenic and intron sequences. Coding sequences, however, are selected very carefully

in order to minimize the amount of non-coding sequence (or out-of-frame coding

sequence) which may contaminate the set of predicted coding sequences. Coding

sequences are found in two ways: 1/ sequence inside all open reading frames (ORFs)

longer than 1000 nt and 2/ all predicted exons which border any intron boundary

supported by UnSplicer (regardless of probability score). All remaining GHMM

parameters (transition probabilities) are calculated according to the method adopted in

GeneMark-ES.

In Table 4.1, a number of GHMM sub-model parameter types utilized by

GeneMark.hmm are listed down the rows. The columns correspond to GeneMark-NGS

iterations. In each cell, the method of deriving each parameter is indicated. There are

 66

three (3) principal methods for obtaining model parameters: 1/ heuristic rules (for initial

CDS and non-coding sequence Markov chain parameters), 2/ estimation based on the

prior round of GeneMark.hmm predictions (conditioned on agreement with UnSplicer

intron predictions in the case of CDS), and 3/ estimation based on a prior round of

UnSplicer intron predictions. In the initial model, we mentioned that the donor and

acceptor PSFMs and intron duration are derived from intron predictions made by

UnSplicer (in a conservative mode). These parameters are labeled “UnSplicer (ini)” in

Table 4.1. Splice site models in all frames are represented by the same parameters in this

step. Exon durations (length distributions) are modeled as uniform in the first iteration.

Prediction and update steps are carried out in iterations 0 and 1 with no changes to

the intron sub-models. The method of GeneMark-ES is used to update gene start and stop

context models, and the non-coding sequence Markov model. Starting with iteration 1,

exon durations are also updated by the method of GeneMark-ES. Coding sequence model

parameters are based on sequence found in those predicted exons either having support

from UnSplicer alignments or single-exon genes predicted longer than 1000 nt.

Gene predictions and the model parameters from iteration 1 are given as input to

UnSplicer to support the second round of intron predictions from RNA-seq alignment.

UnSplicer is run in the usual fashion in this step, discriminating candidate splice

junctions using a set of 9 different features. Two of those features (strand concordance

and frame shift indication) require gene predictions on the whole genome. The gene

predictions are made by GeneMark.hmm using the model parameters in labeled “iter 1”

in Table 1. UnSplicer assigns new probability scores to each candidate intron. This

results in a more accurate set of likely introns (with probability score 0.5) from which

new donor and acceptor PSFMs and intron duration are derived for iteration 2. In this

step, the set of introns is partitioned into three different sets according to their inferred

reading frame (their position in a codon) in order to derive frame-dependent models for

 67

splice sites. Two additional GeneMark-NGS iterations are carried out (iterations 3 and 4),

in order to allow the model parameters to reach convergence to a final point.

Table 4.1. The GHMM sub-models and method of updating in each iteration of the

algorithm. Key: heuristic = initial parameters parameters based on (Besemer 1999), ES =

GeneMark-ES algorithm, UnSplicer (ini) = initial UnSplicer (used in conservative mode),

UnSplicer = parameters based on intron predictions made by UnSplicer, uniform =

uniform length distribution, unch = unchanged from last iteration.

Results

GeneMark-NGS was run on the D. melanogaster genome and four mosquito

genomes downloaded from VectorBase (Megy, 2012): A. gambiae, A. stephensi, A.

aegypti, and C. quinquefasciatus genomes. These five genomes were selected due to their

size variation, and availability of public RNA-seq data sets (refer to Table 4.2). The

genome sizes vary from 158 MB (A. stephensi) to 1.31 GB (A. aegypti). The genomes all

generally have homogeneous G+C content, as shown in Fig. 4.2. The genome of C.

quinquefasciatus is a possible exception, due to the presence of a low G+C bump in its

composition. However, the low G+C content in this genome is caused by repetitive

elements, and not variation in composition of native genes.

 68

Table 4.2. Genomes and associated RNA-seq data sets used for gene finding.

Figure 4.2. G+C content histograms of each genome processed by GeneMark-NGS, made

by 2,000 nt non-overlapping intervals of the assembly. Each genome in this group is

homogeneous in G+C content, with the exception of C. quinquefasciatus, which has a

significant mode in a low G+C region.

 69

In each iteration of GeneMark-NGS, a number of predicted exons will be

confirmed by introns found by UnSplicer. If the conditional learning is successful, it is

expected that the number of confirmed exons will increase with each iteration. Indeed,

this is the case as shown in Fig. 4.3. Exons confirmed on just one side or on both sides

are categorized. In general, a steady monotonic increase in the number of confirmed

exons is achieved with each iteration, until the number levels off. At iteration 2, the

second round of intron predictions are provided by UnSplicer. At this point, a sharp

increase in the number of confirmed exons is seen in A. gambiae and D. melanogaster.

This trend is also apparent in the amount of coding sequence contributing to training the

coding sequence Markov model parameters (Fig. 4.4). The amount of sequence in

training levels off at iteration 2 for three of the four genomes. For A. gambiae, there is a

significant improvement on the last step, suggesting that additional iterations may result

in better performance for that genome.

Figure 4.3. The number of exons included in training for each genome, as a function of

iteration number.

 70

Figure 4.4. The quantity of coding sequence included in training, as a function of

iteration.

Gene prediction performance of GeneMark-ES and GeneMark-NGS was

compared on test sets for each of the five genomes listed in Table 4.3. Sensitivity (Sn)

and specificity (Sp) were calculated for each of eight different gene features: internal

exons, gene start (initiation), gene stop (termination), introns, donors, acceptors, and

nucleotides. The numbers are shown normalized to percentages. Bold face indicates the

better score for each feature. GeneMark-NGS scores higher in both sensitivity and

specificity for many features, particularly in A. gambiae and C. quinquefasciatus. In cases

when GeneMark-ES has a higher Sn (or Sp) than GeneMark-NGS, GeneMark-NGS will

have higher score for Sp (or Sn). When we compare the two programs using the

performance measure (Sn+Sp)/2 (Table 4.4), we see that GeneMark-NGS scores higher

in the vast majority of cases. GeneMark-NGS most dramatically outperforms GeneMark-

ES in prediction of exon boundaries and gene starts. Improvement in internal exon

performance varies from 3.5-13.1%. Internal exon prediction performance improvement

is quite dramatic for the 4 VectorBase genomes—ranging from 5.85-16.3% marginal

increase in performance.

 71

Table 4.3 Gene prediction performance on test sets derived for each genome. Columns:

ES = GeneMark-ES, SM = GeneMark-NGS, diff = GeneMark-NGS score – GeneMark-

ES score. Sn and Sp are given as percentages.

 72

CHAPTER V

GENOME ANNOTATION PROJECTS

Over the past several years, the genomes of many important plants and animals

have been sequenced and annotated. We have participated in several such projects,

notably Fragaria vesca (woodland strawberry), Citrus sinensis (sweet orange), Citrus

clementina (clementine orange), and Rubus idaeus (raspberry). These genome projects

are more complex compared to genomes of model organisms which in the past have been

the focus of gene prediction algorithms (Lomsadze, 2005).

A major challenge for gene finding in these novel genomes is detection of

repetitive elements in the DNA sequence. The presence of repetitive elements interferes

with algorithms for finding native protein coding genes due to their high copy number

and contamination of the sequence with pseudogenes. Most repetitive sequence in

eukaryotes is composed of transposable elements (TEs) (Feschotte 2009). In plant

genomes, most TEs use a retroviral mechanism to introduce new copies in the genome.

These elements are called retrotransposons, e.g. frequent in plant long terminal repeat

(LTR) retrotransposons. The presence of TEs can be disruptive to gene finding

algorithms such as GeneMark-ES because high copy number TEs can bias GHMM model

parameters found by unsupervised training. This has the effect of reducing the

performance of the GHMM for native gene finding. TEs are known to be responsible for

a tremendous amount of DNA remodeling and rapid genome evolution. Indeed, while

comparative genomics is useful for finding native protein coding genes, it is not a very

effective method for finding TEs due to their rapid evolution. This places much of the

burden of finding TEs in novel genomes on de novo algorithms. Many such de novo

programs have been developed to find TEs in genomes, such as RepeatScout (Price 2005)

and PILER (Edgar 2005). Programs which attempt to find LTR retrotransposons using

 73

basic structural knowledge have also been developed, such as LTR_STRUC (McCarthy

2003), LTR_FINDER (Xu 2007), and LTRharvest (Ellinghaus 2008). Each of these

programs can be used to develop libraries of consensus sequences, which can then be

augmented with TE sequences found in closely related species (available at Repbase).

The combined library may then be used to mask the DNA sequence for gene finding with

GeneMark-ES.

Fragaria vesca (woodland strawberry)

For gene prediction in the F. vesca project, a combined approach to repeat

masking was adopted. The structural LTR detection program LTR_STRUC was used in

addition to RepeatScout. The output sequences from these programs were combined with

a collection of TE sequences from Repbase taken from the rosaceae clade. All combined,

the collection masked 31.8% of the F. vesca assembly (68 MB out of 218 MB

assembled).

After masking, the program GeneMark-ES was used to predict genes. The F.

vesca genome is quite homogeneous in G+C content (much like A. thaliana), making it a

good candidate for the machine learning algorithm used by GeneMark-ES. Next, the

alignment of available EST sequences was performed using BLAT. Alignments were

clustered and gene stops and starts predicted on mapped transcript sequences, as

described in the modeling pipeline in GeneMark-HB+ (Appendix D). This produced a

reliable test set of 633 genes to be used for assessment of gene prediction accuracy. The

prediction performance on the test set is shown in Table 5.1.

A team at the University of Georgia (UGA) (Wang, Bennetzen) also performed

work attempting to identify LTR retrotransposons in F. vesca. We therefore developed a

pipeline to find the best set of gene predictions combining the UGA repeat annotations

with our own. In Fig. 5.1, the process is illustrated with the pipelines labeled “GT” and

“UGA. The idea is to mask the DNA sequence with both libraries repeats (separately),

and recover genes which are masked by one pipeline but not the other. In the example

 74

shown in Fig. 5.1, there are 4 such genes. Each of the 4 genes are aligned to protein

sequences in the non-redundant (NR) protein database (from NCBI) using BLASTp. A

gene will be recovered if has at least one significant hit in the alignment, and that hit

satisfies two conditions 1/ not labeled as a hypothetical gene, and 2/ not labeled as

reverse transcriptase (commonly found in LTR retrotransposons).

Figure 5.1. Combining two sets of repetitive sequence annotations (GT and UGA) to

form a set which minimizes overlap with predicted native genes.

A test set consisting of 666 complete genes was constructed by alignment of

47,230 EST sequences to the genome using BLAT. Gene prediction performance on the

test set was evaluated using GHMM parameters found by GeneMark-ES on the repeat

masked sequence. The performance (shown in Table 5.1) is specified for individual gene

features: exons (initial, terminal, and internal), introns, and donor and acceptor

boundaries. Overall nucleotide prediction accuracy is shown as well. The prediction

 75

performance is quite good for all features—in particular we found over 90% Sn and Sp

for donor and acceptor site preditions.

Table 5.1. Gene prediction performance on F. vesca test set consisting of 633 genes.

Feature Sensitivity (%) Specificity (%)

internal exons 88.4 88.0

introns 85.8 86.5

donor 90.7 91.4

acceptor 90.7 91.2

all exons 83.9 84.4

initial exons 81.8 82.4

terminal exons 82.9 82.7

nucleotide 96.7 94.9

A procedure for gene prediction was established based on earlier unpublished

work (Lomsadze, Ter-Hovhannisyan, Borodovsky). The algorithm, called GeneMark-

ES+, is similar to the method of incorporating external information for gene prediction

used by Augustus. In this method, high quality EST alignments to the genome are given a

very high likelihood score (see Fig. 5.2). The Viterbi parse of the DNA sequence by the

GHMM will select exon-intron boundaries confirmed by alignment with high likelihood.

The resulting parse is sometimes called a conditional maximum likelihood parse. This

procedure resulted in 34,809 genes predicted on the 214 MB genome. There were 5915

single exon genes predicted and an average of 5.0 exons per gene (4.0 introns per gene).

The average gene length was 1160 nt and the average intron length was 407 nt.

 76

Figure 5.2. Prediction step by GeneMark-ES+. The output parse is constrained to predict

features found from EST alignments, thereby producing a conditional maximum

likelihood parse.

Rubus idaeus (raspberry)

The genome of Rubus ideaus (raspberry) of the Heritage variety was sequenced

with NGS technology in 2011. Assembly of the genome was a challenge due to a very

high degree of heterozygous composition of the chromosomes (the plant is a diploid).

Gene finding on the raspberry assembly sequences involved some trial and error, since it

was not known what kind of assembly would be optimal for gene prediction. An

assembly which was more faithful to an individual haplotype was highly fragmented,

making unsupervised training less accurate. A merged genome assembly was preferred,

since it resulted in a much larger number of long contigs which could be used for

unsupervised training. The gene sequences in the “merged” assembly were not

necessarily faithful to a haplotype, but the gene predictions are more reliable.

The GeneMark-HB+ pipeline was used to predict genes for this assembly

(Appendix D). 352 complete gene structures were found by alignment of EST sequences,

 77

using the modeling pipeline in GeneMark-HB+. 175 (about half) genes were used as a

development set for semi-discriminative training to find the optimal blending parameter

for construction of the final parameters used for gene prediction. The accuracy of the

final model is quite good—about 90% Sn and Sp predicting donor sites, 91% for acceptor

sites, and 1-2% better than GeneMark-ES for predicting internal exons (Fig. D.5, panel

b). Prediction of initial exons is significantly better compared to GeneMark-ES.

 78

APPENDIX A

CODON USAGE PATTERNS IN HETEROGENEOUS

EUKARYOTIC GENOMES

 The concept of heuristic model parameters was proposed and developed for

prokaryotic genomes in 1999 (Besemer, 1999). The main idea is to derive a set of

universal parameters (depending on G+C content only) which can be used to discriminate

CDS from non-coding sequence. Such parameters have application in metagenomic gene

finding, for example. In eukaryotes, a similar concept is useful for detection of protein

coding splice junctions and gene finding in heterogeneous genomes.

Codon Usage

 Prokaryotic genomes are different from eukaryotic genomes in many ways, but a

difference we focus on here is that prokaryotic genomes are almost all homogeneous in

G+C content, while only some eukaryotic genomes are homogeneous. Besemer analyzed

genes in 17 prokaryotic genomes having whole genome G+C content collectively over a

broad range. All genes in a genome were analyzed to determine the mean codon usage

(distribution of codon frequency for each of the 63 coding codons). This distribution

defines a codon usage at a specific G+C level. Due to heterogeneous G+C content, this

codon usage in eukaryotes must be calculated differently.

We define the G+C level of a eukaryotic gene as the percentage of G+C

nucleotides in the genome in the interval from the start codon to the stop codon. This

includes intron sequences. Whenever multiple isoforms are annotated at a locus, the one

having the longest CDS length is selected as the representative isoform. All genes are

assigned to a G+C bin, varying from 20-70% in increments of 1%. Mean codon usage is

then calculated for each bin, according to the genes assigned to that bin. For

 79

heterogeneous genomes, this results in a set of codon usage distributions (one for each

G+C bin) over a range of G+C bins found in that genome. In order to capture additional

genomic diversity, and broaden the range of observed G+C, four (4) different genomes

were considered: human, A. mellifera (honey bee), B. distachyon (grass), and O. sativus

(rice). A histogram of the number of genes in each genome found in each G+C bin is

shown in Fig. A1. Codon usage for each of 63 codons as a function of G+C content is

shown in Figs. A1-A16. Mean codon usage derived from each genome is shown as a dot

of the same color (refer to the legend in the graphs).

Figure A.1. The number of genes found in each G+C bin from each of the four genomes

analyzed.

Several features are noteworthy. First of all, the honey bee genome has a very low

G+C content in general, and all annotated genes have a calculated G+C value from 20-

30%. Other genomes have few genes in those bins. Second, the relationship between

codon frequency and G+C is clearly nonlinear in most cases. A third degree polynomial

fit to all the shown data (by least-squares with equal weight) is shown in each graph as a

 80

black dashed line. Third, some codons have usage relationships which are well conserved

over all four genomes while others have very notable differences. For example, the lysine

codon AAA (Fig. A.2) and isoleucine codon ATT (Fig. A.5) are closely patterned in all

genomes. However, consider the arginine codons CGA and CGT (Fig. A.8). In these

examples, not only is the variation in usage spread significantly, but in honey bee an

increase in usage of these codons is seen with an increase in G+C (as expected), while a

decreasing trend is seen in all other genomes with increasing G+C. Both the values of

codon usage and the trend differ among the genomes in those examples.

Eukaryotic heuristic parameters

Heuristic coding sequence Markov model parameters are found by using a least-

squares curve fit (3
rd

 degree polynomials) to determine codon usage frequency for all

coding codons. A 6-mer frequency table is then derived by assuming adjacent codons are

independent. 5
th

 order Markov model parameters are derived from the 6-mer frequency

table inside GeneMark.hmm. For each G+C content bin, frequencies for each of 64

codons (where pseudocounts are assigned in all cases where stop codons occur) are

multiplied with all other codon frequencies to yield 64
2
=4096 6-mer frequencies for each

frequency bin. As a final step, each set of 4096 frequencies are normalized to sum to 1 to

form the parameters for each G+C bin.

 81

Figure A.2. Codon usage patterns for AAA, AAC, AAG, AAT.

Figure A.3. Codon usage patterns for ACA, ACC, ACG, ACT.

 82

Figure A.4. Codon usage patterns for AGA, AGC, AGG, AGT.

 83

Figure A.5. Codon usage patterns for ATA, ATC, ATG, ATT.

Figure A.6. Codon usage patterns for CAA, CAC, CAG, CAT.

 84

Figure A.7. Codon usage patterns for CCA, CCC, CCG, CCT.

Figure A.8. Codon usage patterns for CGA, CGC, CGG, CGT (arginine codons).

 85

Figure A.9. Codon usage patterns for CTA, CTC, CTG, CTT.

Figure A.10. Codon usage patterns for GAA, GAC, GAG, GAT.

 86

Figure A.11. Codon usage patterns for GCA, GCC, GCG, GCT.

Figure A.12. Codon usage patterns for GGC, GGC, GGG, GGT.

 87

Figure A.13. Codon usage patterns for GTA, GTC, GTG, GTT.

Figure A.14. Codon usage patterns for TAC and TAT (TAA and TAG are stop codons).

 88

Figure A.15. Codon usage patterns for TCA, TCC, TCG, TCT.

Figure A.16. Codon usage patterns for TGC, TGG, TGT (TGA is a stop codon).

 89

Figure A.17. Codon usage patterns for TTA, TTC, TTG, TTT.

 90

APPENDIX B

CODING POTENTIAL FEATURE ANALYSIS IN SEQSWEEP

There are many reasonable options in selection of a feature derived from intron

flanking sequence. It is desirable to account for the 3-periodic nature of the coding

sequence, and the fact that the intron can interrupt a codon in any of 3 positions. A

comparison of several candidate test statistics was performed on SJ predictions made by

TopHat on four different RNA-seq data sets. The statistics (and detectors) are listed in

Fig. B.1. Upstream (5’) and downstream (3’) sequences flanking an intron (of length L)

are denoted by by and , respectively. Sequences in the interior of the intron, but at

the 5’ and 3’ ends are labeled and , respectively. Each of these sequences also has

length N (equal to 96 nt in examples here). is the coding sequence model starting in

frame i, and is a non-coding sequence model. (without a subscript) is a

frameless coding sequence model, formed by a weighted average of models in all three

frames such that frame 1 is given 50% weight and frames 2 and 3 are weighted 25% each.

Prior probabilities and (in statistic 5) are set to 0.5 by default.

 91

Figure B.1. Five test statistics (and associated detectors) which were compared for

effectiveness in false positive filtering of TopHat SJ predictions. A description of the notation

is provided in the text. A detection value of indicates a SJ confirmation, otherwise it is

a false positive.

The coding and non-coding sequence models were taken from the eukaryotic

heuristic models described in another chapter. Since these models vary with G+C content,

appropriate models must be selected for each candidate intron. Here we calculate G+C by

counting the number of ‘C’ and ‘G’ nucleotides in the 1Kb sequence upstream and 1Kb

downstream of the intron, and divide by 2,000. Then converting the ratio to a percentage,

and rounding to the nearest whole 1%, the appropriate model parameters are selected.

 92

Figure B.2. Venn diagram picturing the quantities involved in evaluation of marginal

improvement.

The likelihood ratio
 is the same as the coding potential feature used in

the program TrueSight (discussed in the next section). The statistic
 generalizes

it to a frame sensitive model. All remaining statistics were concepts evaluated for

possible replacement of the Ma/Li coding potential statistic.

Each of these detectors was evaluated on sets of SJ predictions made by TopHat.

A measure of filtering performance called marginal improvement is defined (refer to the

Venn diagram in Fig. B.2). The SJ predictions are comprised of some number of true

positives (agreement with annotation) and false positives (not annotated). The

process of filtering will remove some number in each set: and (shaded region).

For a given detection threshold, we assess the filtering performance by monitoring the

ratios and which together we call marginal improvement. As the

detection threshold is varied, we trace out marginal improvement ROC curves (Fig. B.3).

The ideal point on these plots is the lower right-hand corner (filtering all false positives,

and no filtering true positives). The best statistic in terms of marginal improvement is

arguably the statistic, which uses likelihood ratios of sequences flanking the

 93

intron as well as the full intron sequence itself. However, in every example this detector

removes about 20% of true positives, even with accommodating threshold levels. The

reason for this is probably due to filtering out true UTR introns, which have no coding

sequence flanking them. However, the Ma/Li detector (with no frame) does not have this

strong filtering effect on UTR introns, probably because the statistic has weaker

discrimination power. Unfortunately, a 20% reduction in sensitivity will make this

filtering procedure uncompetitive with other methods. Based on this result, we tested a

classification method in which candidate UTR and coding introns were attempted to be

separated, so that different classifiers could be applied to each group.

Figure B.3. Marginal improvement ROC curves of five detectors on four data sets. The

accuracy of the SJ predictions by TopHat vary tremendously due to differences in the number

of reads, read length, and sequencing technology used.

 94

APPENDIX C

DEFINITION OF FEATURES USED FOR SPLICE JUNCTION

CLASSIFICATION IN UNSPLICER

UnSplicer calculates nine features for each candidate splice junction: five

alignment features, and four sequence derived features. Some of the UnSplicer features

have also been described in the TrueSight publication (Li, 2013).

Alignment depth score

The alignment depth D is the number of reads aligned across the splice junction.

This number also includes the reads aligned across the junction in the second attempt,

with the initially predicted intron spliced out. The alignment depth score is equal to

log(D).

Max shortest overhang length

Let a read of length L be aligned across a splice junction so that n nucleotides are

aligned on the upstream to the junction and L-n are aligned downstream. The length of

the shorter side of the alignment equals We are concerned about reliability

of splice junctions that have consistently short shorter overhangs regardless of the side.

Let say a junction has D alignments, with overhang lengths on the 5’ end and

on the 3’ end, with . We define the max shortest overhang length as

overhang = .

The gapped alignment pipeline has a hard-coded minimum threshold of 8nt for

overhang for any splice junction candidate; this feature is defined as:

overhang score = |8 – overhang|

Entropy

A read which spans a splice junction may be split by the splice junction at some

position i (i nt aligned on the 5’ side of SJ and nt on the 3’ side of SJ, see Fig. C.1).

Considering a population of reads aligned across a given SJ, we construct an empirical

 95

distribution of frequencies , where is the number of reads split at position .

The entropy is then determined by

Figure C.1. Alignment of a read of length to genomic DNA is split over an intron

bordered by two exons. The read is split at positions i and i+1, where . Position

i is aligned to p-1 and position i+1 is aligned to q+1.

Coverage skew

The coverage skew is a measure of the difference in RNA expression level of the

DNA sequence flanking a putative intron and of the sequence in the intron interior. A

diagram illustrating the calculation of coverage skew is shown in Figure C.2. A count of

full length alignments is tallied in four intervals: upstream and downstream of p (the 5’

end of putative intron), and intervals upstream and downstream of q (the 3’ end). The

coverage skew score is simply the difference in the number of reads aligned to the intron

exterior flanking intervals of length L and the intron interior intervals of length L (L is

the length of the reads).

DNA

sequence
putative intron

boundary (p,q)

read position i

p q

 96

Figure C.2. The coverage skew is based on a comparison of the number of full length

alignments on the flanks of a spliced intron (p,q) to the number of alignments in the

immediate interior. For true splice junctions, it is expected that the sequence on the flanks

will generally be expressed more highly than the sequence in the interior. Therefore, the

quantities Ap-Bp and Aq-Bq would generally be positive, and the skew score will be

positive for nearly all true splice junctions. However, many false positives have a

negative skew score (Figure 3 in the article), which makes this feature useful for negative

set selection.

Gap (intron) length

The intron length score is obtained from the intron length distribution determined

by GeneMark-ES. The length score is simply the log of frequency of introns having given

length. The intron length distribution is calculated from the set of introns predicted by

GeneMark-ES in the last iteration of unsupervised derivation of the training set. A

uniform kernel is used to smooth the distribution function. For genomes with

homogeneous G+C content we have observed that the intron length distribution derived

from EST gapped alignments is close to the length distribution derived by GeneMark-ES,

see Fig. C.3, showing the example of Fragaria vesca genome.

 97

Figure C.3. Comparison of strawberry (F. vesca) intron length distributions found by

GeneMark-ES (blue) and one derived from alignment of EST sequences (red).

Donor and acceptor splice site score

The donor and acceptor splice sites are modeled by two separate position weight

matrices (PWMs). The PWM score is defined as a logarithm of the ratio of the likelihood

that the site sequence is generated by the position dependent site model and the likelihood

that the site sequence is generated by a background model. The likelihood score for a

zero-order site and background models can be written as

where is the width of the model and is the site position. For the first-order site

and background models, the score will be found as

 .

The order of the site model is dependent on the number of the size of the training

set defined by GeneMark-ES. Normally, the models will have the first order. Note that

the splice site canonical dinucleotides do not contribute to the PWM score of either the

 98

donor or acceptor. The site model

 is found by calculating positional nucleotide (or

conditional dinucleotide) frequencies.

Strand concordance indicator

The strand concordance indicator is a binary feature which equals to one if one or

both ends of the read are aligned with the genomic sequence which resides in the

opposite strand to ab initio predicted (annotated) gene. There are three conditions that

should be fulfilled. The first condition is that the splice junction strand is identifiable

from the terminal dinucleotide sequences. If the canonic splice site dinucleotide sequence

is one of GT-AG, G+C-AG, AT-AC, then the strand is identifiable. Otherwise, no strand

is inferred. The second condition is that either p or q, the intron border position in

genomic DNA, must lie inside a predicted gene. This means that either p or q (or both)

falls between the first nucleotide of a predicted start codon and last nucleotide of the gene

stop codon. The third condition is that the inferred strand of the splice junction is

different from a strand of a predicted gene overlapping with positions p or q (or both). If

all three conditions are met, the strand error indicator equals 1. Otherwise it is zero. This

strand concordance indicator feature (as well as the frame shift indicator feature)

assignments is illustrated in Fig. C.4.

Frame shift indicator

The frame shift indicator feature is similar to the feature above. It is a binary

feature that requires three conditions to hold for value of one to be assigned. First, for a

junction (p,q), both p and q must lie interior to a gene predicted by GeneMark-ES

delimited by the first nucleotide of a predicted start codon, and the last nucleotide of the

predicted stop codon. Second, the upstream and downstream regions from the junction

(p,q) are predicted as coding exons. Third, the predicted reading frame in these exons

connected by the splice junction (p,q) are in agreement. The frame shift feature equals to

one if all three conditions hold, otherwise it is zero.

 99

Figure C.4. Frameshift and strand concordance features: a/ the candidate SJ agrees with

an ab initio predicted intron, both indicators are equal to zero; b/ one boundary falls into

the interior of a predicted coding exon, a frameshift will occur if the interval length L is

not a multiple of three, c/ same as in (b), except that the intron is located in the opposite

strand to the predicted gene, therefore the strand concordance feature is equal to one; d/

the intron includes predicted exon of length M, resulting in a frame shift if M is not a

multiple of 3; e/ both indications are zero because the predicted intron does not overlap

with a predicted gene.

 100

APPENDIX D

GENEMARK-HB+: A PIPELINE DEVELOPED FOR PREDICTION

OF GENES IN PLANT GENOMES

A new method for gene finding was developed which incorporates external

evidence (EST alignments) for training GHMM parameters, in addition to a semi-

discriminative parameter blending with heuristic parameters. The name GeneMark-HB+

is given to emphasize the heuristic blending performed in the semi-discriminative

training step in the pipeline. The pipeline consists of 4 main steps: 1/ EST pipeline, 2/

semi-supervised training, 3/ semi-discriminative training, and 4/ final prediction step. In

Figure D1, a block diagram of the pipeline is shown.

Figure D.1. Diagram of GeneMark-HB+. The pipeline includes an EST alignment and

clustering pipeline, a sequence modeling pipeline, semi-discriminative training, and final

prediction step.

The EST pipeline

 101

The EST pipeline is a collection of programs which perform EST alignment and

clustering, unsupervised Markov model training on mapped transcripts, then subsequent

development of submodels used in later steps.

The pipeline begins by removing noise from the raw EST sequences in the form

of vectors, adaptors, and bacterial sequences using programs SeqClean

(http://compbio.dfci.harvard.edu/tgi/software/) and UniVec

(http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html). These are sequences which

contaminate a sequencing library caused by inevitable sample preparation and

biochemical errors in the experiment. Subsequently, the sequences are aligned to the

genome using the program BLAT (Kent, 2001). Alignments are then post-processed to

minimize errors. For instance, all EST alignments shorter than 100 nt, or which have less

than 90% sequence identity in the alignment to the genome are eliminated. Gapped

alignments are also filtered in order to minimize intron prediction errors. Alignment gaps

(introns) longer than 10 kb are eliminated for small and medium sized genomes, since the

error rate for longer gapped alignments is quite high. Intron terminal dinucleotides are

scored according to prior probabilities, so that any score less than a threshold will result

in elimination of the gapped alignment. Clustering alignments by locus results in a set of

candidate transcripts and transcript fragments.

Unsupervised training and Start/stop annotation

The mapped transcript sequences are subsequently provided to the program

GeneMarkS (Besemer, 2001) with introns spliced out. GeneMark-S uses an unsupervised

training technique to find parameters of a GHMM designed to parse sequences into

single-exon genes. The program was designed to be used for gene finding in prokaryotic

genomes, but it includes an option to make it suitable for use on eukaryotic mRNA

sequences (having no ribosomal binding site). These parameters are then used by

http://compbio.dfci.harvard.edu/tgi/software/
http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html

 102

GeneMarkS to predict all genes or partial genes in the transcript sequences. The process

is illustrated in Fig. D.2.

The existence and location of such predicted CDS start and stop coordinates

within a consensus fragment can occur in 4 distinct scenarios: 1/ a transcript with one

complete gene coding sequence (start and stop predicted inside) 2/ a partial gene with

either a CDS start or stop predicted inside (but not both), 3/ a transcript fragment with no

CDS predicted inside, 4/ a fragment with more than one gene CDS predicted (any

combination of more than one complete or partial gene). The only fragment types in

which the predicted start and stop coordinates are not thrown out are 1 and 2. However,

even in types 1 and 2, the predicted CDS is required to be longer than 300 nt. In addition,

all predicted CDS starts must occur than 100 nt downstream from the 5’ end of the

sequence. However, in some cases the CDS start has an upstream in-frame stop codon in

the transcript. In such cases the 100 nt distance requirement is nullified. This filter is

designed to prevent truncating genes with unsequenced 5’ ends. Another filter is the

requirement for canonical splice sites (GT-AG dinucleotides at the 5’ and 3’ terminal

ends of each intron). The reason for this is that not only are the vast majority of introns

canonical in this sense, but also the probability of error for non-canonical splice junction

alignment is much higher compared with canonical for all EST alignment programs (van

Nimwegen, 2006), In addition, any sequence for which the gene strand implied by

alignment does not match the strand implied by GeneMarkS is thrown out.

 103

Figure D.2. Diagram of the modeling pipeline. Clusters of alignments of EST to the

genome are used as input to GeneMark-S for unsupervised training.

Modeling pipeline: GHMM submodel calculation

All introns, exons, and CDS start and stop boundaries found by the EST pipeline

are compiled into a list called gene footprints. The footprints are used not only for

GHMM parameter estimation, but also to provide support to these features in the final

prediction step.

The introns found by EST alignment are used to calculate position specific

frequency matrices (PSFMs) for donor and acceptor sites. If more than 2000 introns are

found by EST alignment (meeting the quality criteria discussed above), then these PSFM

models will be first order. Otherwise, zero order models are calculated. The GeneMark-S

Markov model (obtained by unsupervised parameter learning on transcripts) provides 3-

periodic, n
th

 order parameters which characterize CDS, in addition to an n
th

 order non-

coding sequence model. The default order of the Markov models (n) is two (2) in this

pipeline. Higher orders are possible if the quantity of CDS found by GeneMark-S is

sufficient. If enough introns are found by alignment, an accurate intron length distribution

 104

may be obtained as well. The length distribution is always calculated, requiring the

program user to verify that the quality is suitable for gene prediction. Thus, five

submodels may be derived from the EST pipeline: donor and acceptor PSFMs, coding (3-

periodic) and non-coding sequence Markov models, and the intron length distribution.

A set of all externally verified genes is found by selecting those satisfying three

criteria: 1/ predicted start and stop codons are found by the EST pipeline on the

transcript, 2/ the gene length is at least 300 nt, and 3/ all introns have canonical terminal

dinucleotides (GT-AG). This full set of genes is partitioned into two sets: a development

set and a test set. The development set is used for semi-discriminative training, while the

test set is used for final evaluation.

Semi-discriminative training

Two different training strategies are followed, with the supervised model

parameters derived in the previous step as a starting point. The two strategies are called

Type 0 and Type 1 (Fig. D3). In Type 0 training, unsupervised training is carried out by

the GeneMark-ES algorithm, using a starting model with parameters developed from the

analysis of eukaryotic genomes described in Appendix A. The G+C% content of the

target genome is calculated and the appropriate heuristic model for that level is used as

the starting point for training. In Type 1 training, the externally derived model (from the

modeling pipeline) is used as a starting point, and 3 iterations of machine learning are

performed so that all parameters are updated. In the first iteration, donor and acceptor

splice site models are derived for each reading frame separately (for introns found in each

position in a codon), in addition to all feature durations. All GHMM parameters are

updated in the two subsequent iterations. After Type 0 and Type 1 training, the better

model is found by scoring them on exon-level (Sn+Sp)/2 on the development set. The

selected model is referred to as
 .

 105

Figure D.3. Diagram of semi-discriminative training in GeneMark-HB+. Starting with

model parameters derived from EST alignment, two training strategies are attempted and

scored on a development set. The better parameters are chosen as input for blending with

heuristic models. The final model is chosen as the blended model scoring highest against

the development set.

The quality of submodels derived from alignment of EST sequences depends on

the number of gene structures are revealed by alignment, and whether the codon usage of

these genes is representative of the full set of genes in the genome. In general, the genes

found by alignment will favor the highly expressed genes, which tend to have slightly

different codon usage compared than genes expressed at lower levels (Mathe, 1999).

Therefore, coding sequence models derived from EST alignments will tend to be biased.

This may lead to a bias in
 , particularly if Type 1 training is used because it

undergoes only 3 iterations of training. A more general approach to formation of a

starting point model for parameter learning is a blended model, which consists of

submodels found by

 h

where, h is the eukaryotic heuristic starting model (Appendix A), and is the

combined model. In general, the best value of the scalar blending factor (0 < a < 1) is

closer to 0 when little or no alignment information is available, and closer to 1 when

 106

alignment information is plentiful. Substantial differences in gene expression can lead to

biases in GHMM parameters derived from alignments (highly expressed genes will be

overrepresented).

From the set of EST alignments, a test set is constructed. The test set consists of

all alignments which form transcripts containing one (and only one) complete CDS with

a minimum length of 300 nt as predicted by GeneMark-S. The full test set is partitioned

into two sets: a development set, and a final test set. The development set is a set of genes

which will be used for semi-discriminative training. The test set is only used for final

evaluation.

In semi-discriminative training, the “optimal” blending () parameters are sought

which maximize prediction performance on the development set. The 3 blending

parameters used in the final blending step are donor PSFM, acceptor PSFM, and the

coding sequence Markov chain model. In practice, this search for the optimal 3-

dimensional vector of blending parameters may be found by a simplified brute force grid

search approach, in which a collection of pre-defined samples in this space are scored and

the “optimal” point is declared as that point which yields the best score. Practically, a 3-

dimensional grid search is not feasible due to the time required to evaluate each point.

Instead, a small set of 21 points in this space is evaluated. The 21 points are found on a

diagonal cut along donor and acceptor PSFM dimensions (10 points), and another

diagonal cut along all 3 dimensions (10 points), and one additional point for the model

 (no blending). The score is defined as (Sn+Sp)/2 for all predicted exons. The

parameters with the highest score are taken as the final GHMM parameters, which are

used for the prediction step of the pipeline.

 107

Figure D.4. Effect of variation of blending parameter alpha on prediction performance of

coding exons of F. vesca. Blue circles correspond to performance when
 Markov

model parameters are used (blending occurs on donor and acceptor PSFM models only).

Red squares correspond to performance when blending is applied to the Markov model

parameters in addition to the PSFMs. The lower left corner of the graph corresponds to

regular GeneMark-ES performance.

Fig. D.4 shows an example from Fragaria vesca, in which final blending

performance on the 21 sets of blending parameters is compared. 11 of the 21 blending

parameter sets do not incorporate any Markov model (coding and non-coding sequence)

information from the ESTs (colored in blue), while 10 parameter sets do include

sequence models (colored red) with blending values equal to that used for donor and

acceptor PSFMs. This figure shows a 4% exon prediction accuracy improvement is

possible on the development set merely by searching for suitable blending parameters. In

this particular example, an alpha value of 0.4 is approximately optimal, but this value

changes depending on the genome, and quantity of available EST sequences.

In Fig. D.5 (panels a and b), the performance of GeneMark-HB+ is compared to

GeneMark-ES and a model which is fully derived from external sequence aligment (the

 108

output of the modeling pipeline). The genomes evaluated are nearly all plant genomes,

due to involvement in many plant genome projects. The mosquito genome A. gambiae is

included due to its similarity to the plant genomes in terms of size and G+C composition.

In Fig. D5, each genome has two yellow numbers next to it, labeled as (m/n). m is the

number of genes in the development set and n is the number of genes in the test set. The

test set is used to assess the performance of gene prediction, which is evaluated using 8

different performance metrics: internal exon, donor boundaries, acceptor boundaries,

introns, all exons, initial exons, terminal exons, and nucleotide coverage. In general, there

is no clear winner between ES and HB+ in this comparison, although both are clearly

superior to the externally derived model. In Fig. D6, ES and HB+ are compared by the

number of features each is found to score higher for all 8 features across all 7 genomes

considered. A point is given for each feature a program scores highest (Sn+Sp)/2, or ties

with highest. The result is a measure of aggregate performance. HB+ scores higher than

ES at a ratio of about 3:2.

 109

Figure D.5. Performance comparison of GeneMark-ES, GeneMark-HB+, and predictions

based on models derived from external sequence alignment only (Ext). Performance is

shown for 8 different features for 7 different genomes. Bold face Sn,Sp pairs indicate the

highest level of (Sn+Sp)/2.

 110

Figure D.6. Summary of prediction performance on 7 genomes. Each number represents

the number of features for which that program achieved the highest value of (Sn+Sp)/2.

An asterisk (*) indicates that at for at least one feature, the two programs had the same

value of (Sn+Sp)/2. The number of features for A. gambiae do not sum to 8 because in

that case the external model scored the highest nucleotide-level performance.

 111

REFERENCES

[1] Boguski M, “The Turning Point in Genome Research,” Trends in Biochemical

Sciences 20:295-6, 1995.

[2] Durbin R, Eddy S, Krogh A, and Mitchinson G, Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press,

1998.

[3] Borodovsky M and McIninch J, “GeneMark: parallel gene recognition for both

DNA strands,” Computers & Chemistry, 1993, Vol. 17, No. 19, pp. 123-133.

[4] Delcher A, Bratke K, Powers E, and Salzberg S, “Identifying bacterial genes and

endosymbiont DNA with Glimmer,” Bioinformatics, 2007.

[5] Yeh RF, Lim LP, and Burge CB, Computational inference of homologous gene

structures in the human genome. Genome Research (2001) May; 11(5):803-16.

[6] Salzberg S, Pertea M, et al, “Interpolated Markov models for eukaryotic gene

finding,” Genomics 59(1): 24-31, 1999.

[7] Besemer J, Lomsadze A, and Borodovsky M, “GeneMarkS: a self-training method

for prediction of gene starts in microbial genomes. Implications for finding sequence

motifs in regulatory regions,” Nucleic Acids Research, 2001, Vol. 29, No. 12, 2607-

2618.

[8] Lomsadze A, Ter-Hovhannisyan V, Chernoff Y, and Borodovsky M, “Gene

identification in novel eukaryotic genomes by self-training algorithm,” Nucleic

Acids Research, 2005, Vol. 33, No. 20, 6494-6506.

[9] Ter-Hovhannisyan V., Lomsadze A., Chernoff Y. and Borodovsky M. "Gene

prediction in novel fungal genomes using an ab initio algorithm with unsupervised

training." Genome Research, 2008, Dec 18(12):1979-90.

[10] Lukashin A and Borodovsky M, “GeneMark.hmm: new solutions for gene finding,”

Nucleic Acids Research, 1998, Vol. 26, No. 4, pp. 1107-1115.

 112

[11] DeCaprio D, Vinson J, Pearson M, Montgomery P, Doherty M, and Galagan J,

“Conrad: gene prediction using conditional random fields,” Genome Research, 2007

Sep; 17(9): 1389-98.

[12] Bernal A, Crammer K, Hatzigeorgiou A, and Pereira F, “Global discriminative

learning for higher-accuracy computational gene prediction,” PLOS Computational

Biology 2007 March; 3(3): e54.

[13] Stanke M and Waack S, “Gene prediction with a hidden Markov model and a new

intron submodel,” Bioinformatics 2003 Oct; 19.

[14] Stanke M, “Gene Prediction with a Hidden Markov Model,” Ph.D. Dissertation,

Gottingen, 2003.

[15] Mathe C, Peresetsky A, Dehais P, Van Montagu M, Rouze P, “Classification of

Arabidopsis thaliana Gene Sequences: Clustering of Coding Sequences into Two

Groups According to Codon Usage Improves Gene Prediction,” Journal of

Molecular Biology (1999) 285, 1977-1991.

[16] Wald N, Alroy M, Botzman M, and Margalit H, “Codon usage bias in prokaryotic

pyrimidine-ending codons is associated with the degeneracy of the encoded amino

acids,” Nucleic Acids Research, 2012 August; 40(15): 7074-7083.

[17] Majoros WH, Methods for computational gene prediction, Cambridge University

Press, 2007.

[18] Wang Z, Gerstein M, and Snyder M, RNA-seq: a revolutionary tool for

transcriptomics, Nature Review Genetics 2009 January; 10(1): 57-63.

[19] Besemer J and Borodovsky M, Heuristic approach to deriving models for gene

finding (1999), Nucleic Acids Research, Vol. 27, No. 19, pp. 3911-3920.

[20] A.F.A. Smit, R. Hubley & P. Green RepeatMasker at http://repeatmasker.org

[21] Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz,

J. Repbase Update, a database of eukaryotic repetitive elements. (2005) Cytogentic

and Genome Research 110:462-467.

http://repeatmasker.org/

 113

[22] McCarthy EM and McDonald JF, LTR_STRUC: a novel search and identification

program for LTR retrotransposons, Bioinformatics (2003), Vol. 19, no. 3, pp. 362-

367.

[23] Xu Z and Wang H, LTR_FINDER: an efficient tool for the prediction of full-length

LTR retrotransposons (2007), Nucleic Acids Research, Jul;35(Web Server

issue):W265-8. Epub 2007 May 7.

[24] Bao Z and Eddy SR, Automated de novo identification of repeat sequence families

in sequenced genomes (2002), Genome Research, 12:1269-1276.

[25] Price AL, Jones, NC, and Pevzner PA, De novo identification of repeat families in

large genomes, Bioinformatics (2005), Vol. 21, Suppl. 1, pp. i351-i358.

[26] Edgar RC and Myers EW, PILER: identification and classification of genomic

repeats (2005), Bioinformatics, Vol. 21 Suppl. 1 2005, pp.. i152-i158.

[27] Grabherr MG, Haas BJ, Yassour M et al, Full-length transcriptome assembly from

RNA-seq data without a reference genome (2011) Nature biotechnology 29, pp. 644-

652.

[28] Roberts A, Trapnell C, Donaghey J, Rinn J, Pachter L, Improving RNA-seq

expression estimates by correcting for fragment bias (2011) Genome Biology,

12:R22.

[29] Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, van Baren M, Salzberg S,

Wold B, Pachter L, Transcript assembly and quantification by RNA-seq reveals

unannotated transcripts and isoform switching during cell differentiation (2010)

Nature biotechnology, Vol. 28, no. 5, pp. 511-515.

[30] Simpson J, Wong K, Jackman S, Schein J, Jones S, Birol I, ABySS: A parallel

assembler for short read sequence data (2009), Genome Research (June); 19(6):

1117-1123.

[31] Birol I, Jackman S, Nielsen C, Qian J, Varhol R, Stazyk G, Morin R, Zhao Y, Hirst

M, Schein J, Horsman D, Connors J, Gascoyne R, Marra M, Jones S, De novo

transcriptome assembly with ABySS (2009) Bioinformatics 25(21):2872-2877.

 114

[32] Guttman M, Garber M, Levin J Donaghey J, Robinson J, Adiconis X, Fan L, Koziol

M, Gnirke A, Nusbaum C, Rinn J, Lander E, Regev A, Ab initio reconstruction of

cell type-specific transcriptomes in mouse reveals the conserved multi-exonic

structure of linkRNAs (2010) Nature biotechnology, 28, pp. 503-510.

[33] Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with

RNA-Seq. (2009) Bioinformatics 25, 1105–1111.

[34] Li H and Durbin R. (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, July 15; 25(14): 1754-1760.

[35] Li H, Ruan J, and Durbin R. (2008) Mapping short DNA sequencing reads and

calling variants using mapping quality scores. Genome Research, 18:1851-1858.

[36] Li R, LiY, Kristiansen K, and Wang J. (2008) SOAP: short oligonucleotide

alignment program. Bioinformatics, 24:713-714.

[37] Langmead B, Trapnell C, Pop M, Salzberg SL. (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol

10:R25.

[38] Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski

P, Grimm SA, Perou CM et al. (2010) MapSplice: accurate mapping of RNA-seq

reads for splice junction discovery. Nucleic acids research, 38, e178.

[39] Zhang Y, Lameijer EW, t Hoen PA, Ning Z, Slagboom PE and Ye K. (2012)

PASSion: a pattern growth algorithm-based pipeline for splice junction detection in

paired-end RNA-Seq data. Bioinformatics, 28, 479-486.

[40] Huang S, Zhang J, Li R, Zhang W, He Z, Lam T, Peng Z, and Yiu S. (2011)

SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-seq

data. Frontiers in Genetics, 2:46.

[41] Au KF, Jiang H, Lin L, Xing Y, Wong WH. (2010) Detection of splice junctions

from paired-end RNA-seq data by SpliceMap. Nucleic Acids Research, Aug;

38(14):4570-8, Epub 2010 Apr 5.

[42] Kent WJ, (2001) BLAT—The BLAST-like alignment tool, Genome Research.

12:656-664.

 115

[43] Wu TD and Watanabe CK. (2005) GMAP: a genomic mapping and alignment

program for mRNA and EST sequences. Vol. 21 no. 9, pp. 1859-1875.

[44] Li Y, Li-Byarlay H, Burns P, Borodovsky M, Robinson GE, Ma J. TrueSight: a new

algorithm for splice junction detection using RNA-seq. (2012) Nucleic Acids

Research, doi: 10.1093/nar/gks1311. First published online: December 18.

[45] Burges C. (1998) A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery 2, 121-167.

[46] Chang C and Lin C. (2011) LIBSVM : a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1--27:27. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[47] G. Pertea, et al (2003). "TIGR Gene Indices clustering tools (TGICL): a software

system for fast clustering of large EST datasets." Bioinformatics Mar 22(19(5)):

651-652.

[48] van Nimwegen, et al. (2006). "SPA: A Probabilistic Algorithm for Spliced

Alignment." PLoS Genetics 2(4): 587-605.

[49] Lucks J, Mortimer S, Trapnell C, Luo S, Aviran S, Schroth G, Pachter L, Duodna J,

and Arkin A. (2011). "Multiplexed RNA structure characterization with selective 2’-

hydroxyl acylation analyzed by primer extension sequencing (SHAPE-seq)." PNAS

June 3.

[50] Allen J and Salzberg S (2005). "JIGSAW: integration of multiple sources of

evidence for gene prediction" Bioinformatics, Vol. 21 no. 18, pp. 3596-3603.

[51] Allen J, Pertea M, and Salzberg S (2004). "Computational gene prediction using

multiple sources of evidence" Genome Research, 14(1).

[52] Gross S and Brent M (2006). "Using multiple alignments to improve gene

prediction" Journal of Computational Biology, 13(2), pp. 379-393.

[53] Megy, K. et al. (2012) VectorBase: improvements to a bioinformatics resource for

invertebrate vector genomics. Nucleic Acids Research 40: D729-734; PMID:

22135296.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

 116

[54] Feschotte C, Keswani U, Ranganathan N, Guibotsy M, and Levine D (2009)

“Exploring Repetitive DNA Landscapes Using REPCLASS, a Tool That Automates

the Classification of Transposable Elements in Eukaryotic Genomes,” Genome

Biology and Evolution, Vol. 1, pp. 205-220.

[55] Ellinghaus D, Kurtz S, and Willhoeft U (2008) “LTRharvest, an efficient and

flexible software for de novo detection of LTR retrotransposons,” BMC

Bioinformatics, 9:18.

[56] McCarthy EM and McDonald JF (2003) “LTR_STRUC: a novel search and

identification program for LTR retrotransposons,” Bioinformatics Vol 18, issue 3,

pp. 362-367.

[57] Pontaroli AC, Rogers R, Zhang Q, Shields M, Davis T, Folta K, SanMiguel P, and

Bennetzen J (2009), “Gene content and distribution in the nuclear genome of

Fragaria Vesca,” The Plant Genome, Vol. 2, No. 1.

[58] Martin J and Wang Z (2011), Next-generation transcriptome assembly, Nature

Reviews Genetics 12, 671-682 (October 2011).

[59] Melamud E and Moult J. (2009) Stochastic noise in splicing machinery. Nucleic

Acids Research, Vol. 37, No. 14, pp. 4873-4886.

[60] Pickrell JK, Pai AA, Gilad Y, Pritchard JK (2010) Noisy Splicing Drives mRNA

Isoform Diversity in Human Cells. PLoS Genet 6(12): e1001236.

[61] Marquiz Y, Brown J, Simpson C, Barta A, and Kalyna M. (2012) Transcriptome

survey reveals increased complexity of the alternative splicing landscape in

Arabidopsis. Genome Research June; 22(6), pp. 1184-1195.

[62] Daines B, Wang H, Wang L, Li Y, Han Y, Emmert D, Gelbart W, Wang X, Li W,

Gibbs R, and Chen R. (2011) The Drosophila melanogaster transcriptome by

paired-end RNA sequencing. Genome Research February; 21(2), pp. 315-324.

[63] Wu TD and Nacu S. (2010) Fast and SNP-tolerant detection of complex variants and

splicing in short reads, Bioinformatics. Vol. 26, no. 7, pp. 873-881.

 117

[64] Moriyama EN, and Powell J R. (1998) Gene length and codon usage bias in

Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic

Acids Research, Vol 26(13); July 1.

[65] Duret L and Mouchiroud D. (1999) Expression pattern and , surprisingly, gene

length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis, PNAS

vol. 96 no. 8.

[66] Keerthi SS and Lin CJ. (2003) Asymptotic behaviors of support vector machines

with Gaussian kernel. Neural Computation, 15(7):1667-1689.

[67] Zhang Y, Lameijer EW, t Hoen PA, Ning Z, Slagboom PE and Ye K. (2012)

PASSion: a pattern growth algorithm-based pipeline for splice junction detection in

paired-end RNA-Seq data. Bioinformatics, 28, 479-486.

[68] Sharp PM, Emery LR, Zeng K (2010), “Forces that influence the evolution of codon

bias,” Philosophical Transactions of the Royal Society B: Biological Sciences, v.365

(1544).

[69] Rogic S, Mackworth A, Ouellette F (2001), “Evaluation of gene-finding programs

on mammalian sequences,” Genome Research 11, pp. 817-832.

[70] Kellis M, Patterson N, Endrizzi M, Birren B, and Lander E (2003), Sequencing and

comparison of yeast species to identify genes and regulatory elements, Nature 423,

pp. 241-254.

[71] Korf I (2004) Gene finding in novel genomes, BMC Bioinformatics 5; 59.

[72] Korf I, Flicek P, Duan D, Brent MR (2001) Integrating genomic homology into gene

structure prediction, Bioinformatics 17; Suppl 1.

[73] Brejova B, Brown DG, Li M, Vinar T (2005) ExonHunter: a comprehensive

approach to gene finding, Bioinformatics 21; Suppl. 1.

[74] Borodovsky M.Yu., Sprizhitskii Y.A., Golovanov E.I., and Aleksandrov A.A.

"Statistical Patterns in Primary Structures of the Functional Regions of the Genome

in Escherichia Coli." Molekular Biology, 1986, Vol. 20, pp. 826-833, 833-840,

1144-1150.

 118

VITA

PAUL D. BURNS

BURNS was born in Huntsville, Alabama. He studied electrical engineering at

Auburn University, where he received BSEE and MSEE degrees in 1992 and 1995,

respectively. He worked in the field of radar systems for 14 years, working at Dynetics,

Magnacom, and Georgia Tech Research Institute. While at GTRI, he became recognized

as a subject matter expert in multi-sensor, multi-target tracking, and he taught short

course lectures on advanced tracking concepts and sensor registration. In 2009 he was

lured into the world of biology to pursue a doctorate in Bioinformatics at Georgia Tech.

