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SUMMARY 

 

Human pluripotent stem cells (hPSCs) hold the potential to revolutionize cardiac tissue 

engineering. Because of their ability to proliferate and differentiate into all 

cardiomyocyte subtypes they represent an opportunity to regenerate virtually any tissue 

lost from the over 1 million cardiac disease patients in the United States alone. Studies 

have shown, however, that hPSCs which are not terminally differentiated pose a variety 

of risks including teratoma formation and lack of appropriate cell engraftment. It is 

therefore important to ensure that only well characterized cardiac subtypes are implanted 

into patients or used for research purposes. Current differentiation protocols generate a 

mixture of cardiac subtypes, and research on cardiac subtype specification is hampered 

by the lack of a high throughput method to distinguish cardiac subtypes. 

 

This thesis establishes the ability to identify, enrich and characterize cardiac subtypes 

using MBs. This will provide a robust tool for clinical use of hPSCs in cardiac cell 

therapy and for analysis of differentiation protocol effects on cardiac subtype formation. 
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CHAPTER 1 

MOLECULAR BEACONS: TOOLS TO DETECT MESSENGER RNA 

Molecular Beacon description and function 
 
 The ability to image specific ribonucleic acid (RNA) in living cells in real time 

can provide essential information on RNA synthesis, processing, transport, and 

localization. Visualizing the dynamics of RNA expression and localization in response to 

external stimuli will offer unprecedented opportunities for advancement in molecular 

biology, disease pathophysiology, drug discovery, and medical diagnostics. Over the past 

decade evidence has revealed the essential role that RNA molecules have in a wide range 

of functions in living cells, from physically conveying and interpreting genetic 

information, to essential catalytic roles, to providing structural support for molecular  

 

 

 

 
Figure 1, mRNA production in eukaryotic cells.  
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machines, and to modifying gene expression (Figure 1). These functions are realized 

through control of the expression level and stability, both temporally and spatially, of 

specific RNAs in a cell. Therefore, determining the dynamics and localization of RNA 

molecules in living cells will significantly impact molecular biology and medicine. 

 Of particular interest is the fluorescent imaging of specific messenger RNAs 

(mRNAs), both their expression level and subcellular localization, in living cells. As 

shown schematically in Figure 1, for eukaryotic cells a pre-mRNA molecule is 

synthesized in the cell nucleus. After processing, such as splicing and polyadenylation, 

the mature mRNAs are transported from the cell nucleus to specific sites in the 

cytoplasm. The mRNAs are then translated by ribosomes before being degraded by 

Rnases. The limited lifetime of mRNA enables a cell to alter protein synthesis rapidly in 

response to its changing needs. mRNA is always complexed with RNA-binding proteins 

to form a ribonucleoprotein (RNP). This has significant implications to the live cell 

imaging of mRNAs. Many in vitro methods have been developed to provide a relative 

(mostly semiquantitative) measure of gene expression level within a cell population using 

purified DNA or RNA obtained from cell lysate. These methods include polymerase 

chain reaction (PCR)(4), Northern hybridization (or Northern blotting) (5), expressed 

sequence tag (EST) (6), serial analysis of gene expression (SAGE) (7), differential 

display (8), and DNA microarrays (9). These technologies, combined with the rapidly 

increasing availability of genomic data for numerous biological entities, present exciting 

possibilities for understanding human health and disease. For example, pathogenic and 

carcinogenic sequences are increasingly being used as clinical markers for diseased 
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states. However, using in vitro methods to detect and identify foreign or mutated nucleic 

acids is often difficult in a clinical setting due to the low abundance of diseased cells in 

blood, sputum, and stool samples. Further, these methods cannot reveal the spatial and 

temporal variation of RNA within a single cell. 

 

 

 

 
 

Figure 2, Illustration of the structure of a molecular beacon. 

 

 

 Labeled linear oligonucleotide (ODN) probes have been used to study 

intracellularmRNA via in situ hybridization (ISH)(10), in which cells are fixed and 

permeabilized to increase the probe delivery efficiency. Unbound probes are removed by 

washing to reduce background and achieve specificity(11). To enhance the signal level, 

multiple probes targeting the same mRNA can be used (10). However, fixation agents 

and associated chemicals can have a considerable effect on signal level (12) and the 
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integrity of certain organelles, such as mitochondria. Fixation of cells by either cross-

linking or denaturing agents and the use of proteases in ISH assays may prevent the 

obtaining of an accurate description of intracellular mRNA localization. It is also difficult 

to obtain a dynamic picture of gene expression in cells using ISH methods. In order to 

detect RNA molecules in living cells with high specificity, sensitivity, and signal-to-

background ratio, especially for low abundance genes and clinical samples containing a 

small number of diseased cells, the probes need to recognize RNA targets with high 

specificity, convert target recognition directly into a measurable signal, and differentiate 

between true and false positive signals. It is important for the probes to quantify low gene 

expression levels with high accuracy, and have fast kinetics in tracking alterations in gene 

expression in real time. For detecting genetic alterations such as mutations, insertions, 

and deletions, the ability to recognize single nucleotide polymorphisms (SNPs) is 

essential. To achieve this optimal performance, it is necessary to have a good 

understanding of the structure–function relationship of the probes, probe stability, and 

RNA target accessibility in living cells. It is also necessary to achieve efficient cellular 

delivery of probes.  

MBs are a class of ODN probes that have been used previously for live cell RNA 

imaging. As illustrated in Figure 2, these probes are labeled at one end with a reporter 

fluorophore and at the other end with a quencher. MBs are designed to form a stem-loop 

hairpin structure in the absence of a complementary target so that fluorescence of the 

fluorophore is quenched. Hybridization with the target nucleic acid opens the hairpin and 

physically separates the fluorophore from quencher, allowing a fluorescence signal to be 

emitted upon excitation (Figure 2). This enables a molecular beacon to function as a 
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sensitive probe with a high signal-to-background ratio. Under optimal conditions, the 

fluorescence intensity of MBs can increase by > 200-fold upon binding to their targets. 

The ability to transduce target recognition directly into a fluorescence signal with high 

signal-to-background ratio has allowed MBs to enjoy a wide range of biological and 

biomedical applications, including real time monitoring of PCR, genotyping and mutation 

detection, multiple analyte detection, assaying for nucleic acid cleavage in real time, 

cancer cell detection, studying viral infection, and monitoring RNA expression and 

localization in living cells. MBs provide an enticing opportunity to optically track some 

of the most elusive events in molecular biology. Despite the complexity of interpreting 

molecular beacon results, MBs themselves are relatively simple molecules to synthesize. 

Designing MBs involves understanding a series of trade-offs between the specificity, 

sensitivity, and signal-to-background for beacons. In the following sections we discuss 

how the major aspects of a molecular beacon (probe sequence, hairpin structure, and 

fluorophore/quencher selection) determine beacon performance. 

Principle factors affecting the design of MBs 
 
Specificity 

 The most important property of a molecular beacon is its specificity, which can be 

loosely quantified as the difference in melting temperature between perfectly 

complementary hybrids and hybrids with single base mismatches. MBs typically exhibit a 

higher specificity for perfectly complementary nucleic acid targets than linear ODN 

probes do. It has been shown that properly designed MBs can readily discriminate 

between targets that differ by as little as a single nucleotide (13, 14). The reason is the 

energy penalty associated with unwinding the molecular beacon stem reduces binding to 
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mismatched targets because it is less energetically favorable. In experiments where the 

detection of SNPs is required, the specificity of MBs can be improved by increasing the 

stem length. A longer stem provides a wider set of conditions over which MBs can 

discriminate between two targets. This can be attributed to the enhanced stability of the 

molecular beacon stem–loop structure and the resulting smaller free energy difference 

between closed (unbound) MBs and molecular beacon–target duplexes, which generates  

 

 

 

A           B 

 
Figure 3, The effect of stem and loop length on the melting temperature of MBs. 
A) Melting temperature of MBs based on loop and stem length. B) Frequency of binding ebents 
based on identical loop and stem length conditions.  

 

 

a condition where a single base mismatch reduces the energetic preference of probe–

target binding. A longer stem also increases the signal-to-background ratio, since the 

more stable hairpin conformation reduces the probability of stem opening due to 

Brownian fluctuations and results in more efficient quenching of the fluorescent dye. The 
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type and number of nucleotides in a molecular beacon’s loop must be carefully designed 

for the chosen RNA target and the set of experimental conditions (13, 15). For example, 

in live cell studies it is desirable for the melting temperature of perfectly complementary 

hybrids to be above 37 ◦C and the melting temperature for hybrids with single base 

mismatches to be less than 37 ◦C (Figure 3). Both of these melting temperatures will 

increase with increasing loop length and decreasing stem length. If the melting 

temperatures are too high, it would not be possible to discriminate between perfectly 

complementary and mismatched targets under physiological conditions. On the other 

hand, if the melting temperatures are too low, a large number of MBs may open under 

physiological conditions, leading to a high level of background signal. The melting 

temperature of a molecular beacon can be tailored by changing its stem–loop structure, as 

demonstrated in Figure 3A. Changing the probe length of a molecular beacon may also 

influence the rate of hybridization, as demonstrated by Figure 3B, but generally to a 

lesser extent than changing the stem length. While both the stability of the hairpin probe 

and its ability to discriminate targets over a wider range of temperatures increase with 

increasing stem length, this is accompanied by a decrease in hybridization on-rate 

constant, as shown in Figure 3B. For example, MBs with a four-base stem had an on-rate 

constant up to 100 times greater than MBs with a six-base stem. 

 In addition to melting temperature considerations, the characteristics of the target 

sequence itself must be unique to guarantee specificity. The Basic Local Alignment 

Search Tool (BLAST) developed by the National Center for Biotechnology Information 

(NCBI) (16) or similar software can be used to select multiple target sequences of 15–25 

bases that are unique for the target RNA. For any target sequence selected there might be 
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multiple genes in the mammalian genome that have sequences differing by only a few 

bases. BLAST allows the selection of beacon target sequences that are not only unique 

for the specific RNA of interest, but also with minimal partial match between beacon 

sequence and the sequence of other RNAs. It is also necessary to select a target sequence 

with a balanced G–C content (the percentage of G–C pairs). A G–C mismatch carries a 

much larger energy penalty, enhancing specificity; however, the prevalence of C–G 

islands in the genome makes beacons with a high G–C content more likely to have off-

target interactions. Therefore, it is important to select a G–C-balanced and unique target 

sequence to ensure the specificity of MBs. 

 Several approaches can be taken to validate the signal specificity in live cells. The 

most common approach is to up- or down-regulate the expression level of a specific RNA 

and compare molecular beacon based imaging in live cells with RT-PCR data quantifying 

the RNA expression level. Complications may arise when the approach used to change 

the RNA expression level in living cells has an effect on multiple genes, leading to some 

ambiguity even when PCR and beacon results match. A common way to down-regulate 

 

 Once specificity has been guaranteed, the beacon must also be optimized for 

sensitivity, eg, maximizing the change in fluorescent intensity based upon a given 

concentration of target mRNA. Selecting an appropriate dye–quencher pair yields 

important benefits for the signal to background ratio, multiplexing ability, and 

the level of a single mRNA in live cells is to use small interfering RNA (siRNA) 

treatment, which typically leads to >80% reduction of the specific mRNA level when the

siRNA protocol is properly optimized. 

Sensitivity 
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fluorescence quantification of MBs. For example, a systematic study on a wide range of 

fluorophore–quencher combinations showed that the quenching efficiency (contact 

quenching) could vary between 57% and 98%(17). Quenching efficiencies could 

potentially be further improved by either using inorganic quenchers, such as gold, or by 

incorporating multiple quenchers into a single molecular beacon (18, 19). Alternatively, 

the signal intensity of MBs can be increased by using quantum dots or photoluminescent 

polymers (20-22). Initial studies have suggested that quantum-dot-based MBs only

exhibit a signal to background ratio of 6 : 1 due to inefficient quenching. Inefficient 

quenching is unlikely to be an issue for photoluminescent polymers, which exhibit a 

superquenching effect. When the fluorescence of any single repeat unit is quenched, the 

entire polymer chain responds in the same fashion. Long polymer chains can, therefore, 

be used to provide an amplified fluorescent signal that can be modulated by a single 

quencher. However, nonspecific interaction of the photoluminescent polymers prevents 

them from widespread application in live cell RNA detection assays (22). A more 

conventional way to increase signal-to-background ratio is to use multiple beacons to 

target the same RNA molecule. As an example, MBs were designed to target a sequence 

in the genome of bovine respiratory syncytial virus (bRSV) that has three exact repeats 

(23). Figure 4 shows the molecular beacon signal indicating the spreading of viral 

infection at days one, three, five, and seven post-infection (PI), which demonstrates the 

ability of MBs to monitor and quantify in real time the viral infection process. MBs were 

further used to image the viral genomic RNA (vRNA) of human RSV (hRSV) in live 

Vero cells, revealing the dynamics of filamentous virion egress, and providing insight 

into how viral filaments bud from the plasma membrane of the host cell(24). 
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Figure 4, Increasing molecular beacon signal after viral RNA expression.

 

 

 

 In addition to creating brighter fluorescent labels or adding multiple labels to each

mRNA, the excitation and emission peaks of the labels are also important. Red-shift

fluorophores can be used to improve signal-to-background in live cells by elimina

interfering effects that result from autofluorescence. It is also possible to use lanthanide 

chelate as the donor in a dual-FRET probe assay and perform time-resolved 

measurements to dramatically increase the signal-to-background ratio (25). As 

fluorescent imaging strategies have advanced, there has been a general trend toward

more quantitative measurements of fluorescent signals, with the ultimate goal being 

absolute quantification. The absolute quantification of fluorescence could allow the e
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number of fluorophores within a compartment/cell to be quantified and correspondingly 

allow the number of target genes, proteins, or enzymes to be quantified. However, factor

such as nonspecific protein interactions and pH could have a dramatic effect on the 

fluorescence intensity of some fluorophores. Therefore, if accurate fluorescence 

measurements are desirable, it is necessary to select fluorescent labels that are insen

to their environment. Recently, it has been shown that although the fluorescence intens

of a few fluorophores (e.g., fluorescein) was highly susceptible to the intracellular 

environment, other fluorophores (e.g., Dylight 649, Alexa647, and Alexa750) were 

insensitive to the intracellular environment (26). 

 

s 

sitive 

ity 

Cellular factors affecting molecular beacon performance 

Accessibility 

A critical issue in molecular beacon design is target accessibility. It is well known that 

proteins are constantly bound to functional mRNA molecules in living cells, forming a 

ribonucleoprotein (RNP). Furthermore, an mRNA molecule often has double stranded 

portions and forms secondary (folded) structures (Figure 5). It is therefore necessary to 

avoid targeting mRNA sequences that are double stranded or occupied by RNA-binding 

proteins. These sites require the molecular beacon to compete off the RNA-binding 

protein or RNA strand in order to hybridize to the target. This competition is 

hypothesized to contribute to a lack of signal when certain MBs designed for a specific 

mRNA are delivered to living cells. Although predictions of mRNA secondary structure 

can be made using software such as Beacon Designer (www.premierbiosoft.com) and 

mfold (http://www.bioinfo.rpi.edu/applications/mfold/old/dna/), they may be inaccurate 

due to limitations of the biophysical models used and a limited understanding of protein–
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RNA interaction. For each target mRNA, therefore, it may be necessary to synthesize 

multiple unique molecular beacon sequences along the target RNA and test them in living 

cells to select the best target sequence.  

 

 

 

 

 of BMP-

). 

NA 

 
Figure 
The cartoon depicts a target RNA which is bound to RNA-binding proteins and has double stranded regions, 

5, RNA accessibility issues. 

preventing the hybridization of molecular beacons. 

 

 

 

 To uncover the possible molecular beacon design rules, the accessibility

4 mRNA was studied using different beacon targets for the same mRNA sequence (27

Specifically, MBs were designed to target the start codon, the termination codon, siR

sites, antisense ODN probe sites, and random sites. All the target sequences were run 
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through the BLAST database to ensure that they were unique to BMP-4 mRNA. Of the 

eight MBs designed to target BMP-4 mRNA, it was found that only two beacons resulted 

in a strong signal inside cells. The positive beacons targeted the start codon region a

the termination codon region. It was also found that shifting the target sequence o

molecular beacon by just a few bases towards the 3or 5ends would significantly reduce 

the fluorescence signal from beacons in a live cell assay. This indicates that the target 

accessibility is quite sensitive to the location of the targeted sequence. These results

together with MBs validated previously, suggest that the start codon and termination

codon regions and the exon–exon junctions are of

nd 

f a 

, 

 

ten more accessible than other locations 

in an mRNA. 

elivery of MBs to cells 

 One of the critical steps in the accurate detection of RNA molecules in living cells 

is the efficient delivery of synthetic probes into the cytoplasm. ODN-based probes are 

generally prevented from gaining access to the cytoplasm due to the cell membrane (28). 

Once the probes enter the cells successfully the fraction of probes that are free to 

hybridize intracellular RNA also becomes a concern. Numerous studies have shown that 

MBs are rapidly sequestered into the nucleus once introduced into cells; however, there 

have been an equal number of studies that did not observe this pattern of intracellular 

distribution. It is not clear whether these differences are cell line dependent, dependent on 

the method of delivering MBs, or due to some other variable. Nonetheless, several 

methods have been introduced to prevent nuclear sequestration. Specifically, MBs have 

been conjugated to large proteins (or nanoparticles) that prevent their passage through 

nuclear pores and they have been linked to tRNAs that drive nuclear export (29-32). 

D
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Common techniques that have been used to deliver ODNbased RNA imaging probes in

live cells include microinjection, polycationic molecules (such as liposomes and 

dendrimers), electroporation, cell-penetr

to 

ating peptides (CPPs) or steptolysin O (SLO). 

icroinjection 

Microinjection is, perhaps, one of the most direct methods for ensuring the 

elivery of ODN probes into the cytoplasm of live cells. This method is advantageous 

because it removes the question of whether beacons have crossed the cell membrane or 

not. Numerous studies have delivered MBs to a small number of cells and used 

microscopy to determine the subcellular localization of the probes (33). Microinjection is 

unsuitable for population-based confirmation of beacon results due to the relatively low 

number of cells that can be analyzed at any given time. Further, microinjection can often 

be damaging to the cell and may interfere with normal cell function. Because of these 

drawbacks, many investigators use alternative methods that result in higher delivery 

throughput and less physical damage than microinjection. 

C

 ed to deliver MBs into living cells. These 

ansfection agents generally form lipoplexes with MBs, which can sometimes stabilize 

Bs in their hairpin confirmation. While these agents have been found to be effective in 

me studies (34), others have found that many commercial transfection agents result in 

eir 

M

 

d

ationic Transfection Agents 

Cationic transfection agents can be us

tr

M

so

punctate fluorescent patterns that appear to be indicative of endosomal entrapment (35). 

ODN probes that enter into the endosomal/lysosomal pathway are rapidly degraded by 

nucleases and the acidic environment (36). Consequently, even when transfection 

methods allow for endosomal/lysosomal escape, only 0.01–10% of the probes retain th
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functionality (37). Furthermore, probe delivery via the endocytic pathway typically takes

2–4 h. This long time period required increases the likelihood of molecular beacon 

degradation due to cellular nucleases. 

Electroporation 

 To avoid the deleterious effects associated with endosomal entrapment, methods 

such as electroporation have been used to deliver ODNs directly into the cytoplasm of 

living cells. Although, electroporation has traditionally been associated with low cell 

viability, recent advances in electroporation technology, such as the ability to perform

electroporation in microliter-volume spaces (e.g., pipette tips), has led to a reduction in 

the many harm

 

 

ful events associated with this process, including heat generation, metal 

n, and oxide formation. This microliter-volume 

so cells 

. 

d 

cells 

ion dissolution, pH variatio

electroporation process is known as microporation. Recently, it was shown that 

microporation could lead to the uniform cytosolic distribution of ODN probes in live 

cells with a transfection efficiency of 93% and an average viability of 86% (31). A 

unique advantage of microporation is that delivery of ODN probes takes seconds, 

can be analyzed immediately for RNA content. Conversely, a potential disadvantage is 

that most electroporation techniques require cells to be detached from the culture surface

Therefore, it is several hours before the cells re-adhere to cell culture plate surfaces an

RNA localization can be imaged. 

Chemical Permeabilization 

 Another non-endocytic delivery method is toxin-based cell membrane 

permeabilization. One popular reagent is SLO, which is a pore-forming bacterial toxin 

that has been used as a simple and rapid means of introducing ODNs into eukaryotic 
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(38-41). SLO binds as a monomer to cholesterol and oligomerizes into a ring-shaped 

structure to form pores of approximately 25–30 nm in diameter, allowing the influ

both ions and macromolecules. An essential feature of this technique is that the toxin-

x of 

ization is reversible (38). This can be achieved by introducing ODNs 

ormal 

NA 

es 

 peptide. To date, the most 

IV-1 Tat peptide and its derivatives, owing to their small 

 

based permeabil

with SLO under serum-free conditions and then removing the mixture and adding n

media with serum and calcium (38, 41). Since cholesterol composition varies with cell 

types, the permeabilization protocol needs to be optimized for each cell type by varying 

temperature, incubation time, cell number, and SLO concentration. Typically, R

localization can be assessed 30 min to 2 h following the introduction of ODN probes into 

cells using SLO-based delivery. 

Cell-Penetrating Peptide 

 CPPs have been used to introduce proteins, nucleic acids, and other biomolecul

into living cells (42-44). Among the family of peptides with membrane translocating 

activity are antennapedia, HSV-1 VP22, and the HIV-1 Tat

widely used peptides are the H

size and high delivery efficiency. The Tat peptide is rich in cationic amino acids, 

especially arginines, which are very common in many of the CPPs. However, the exact 

mechanism for CPP-induced membrane translocation remains elusive. A wide variety of 

cargos have been delivered to living cells both in cell culture and in tissue using CPPs 

(44, 45). For example, Allinquant et al. (46) linked antennapedia peptide to the 5’ end of 

DNA ODNs (with biotin on the 3 end) and incubated both peptide-linked ODNs and 

ODNs alone with cells. By detecting biotin using streptavidin–alkaline phosphatase

amplification, it was found that the peptide-linked ODNs were internalized very 
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efficiently into all cell compartments compared with control ODNs. No indication of 

endocytosis was found. Similar results were obtained by Troy et al.(47), with a 100-

increase in antisense delivery efficienc

fold 

y when ODNs were linked to antennapedia 

-linked MBs were internalized into living cells within 30 min with 

n 

e 

d to cells 

lar 

o-

robes such as MBs have the potential to address a 

at require sensitive detection of genomic sequences. For 

ple, MBs are used as a too

homogeneous in vitro assays (49, 50). Surface-immobilized MBs used in microarray 

peptides. Peptide

nearly 100% efficiency. Peptide-based delivery did not interfere with molecular beacon 

binding to survivin or GAPDH, since similar levels of fluorescence and a similar patter

of localization was seen in cells with beacons delivered using alternative means. 

 Peptide-linked MBs show impressive potential as an all-in-one molecule capabl

of self-delivery, targeting, and reporting in live cells. Peptide-linked MBs can also be 

delivered using an SLO-based approach to target RNA molecules in the cell nucleus by 

attaching a nuclear localization signal (NLS) peptide to a molecular beacon. MBs 

designed to target snRNAs U1 and U2 were linked to NLS peptides and delivere

using the SLO-based reversible membrane permeabilization method. The small nucleo

RNA U3 was delivered into the nuclei of live HeLa cells, and the localization and c

localization (U1 and U2) of these nuclear RNAs was imaged (48). This delivery method 

can potentially be used to image transcriptional and post-transcriptional processing of 

RNAs in the nucleus of living cells. 

Conclusions and Future Directions 

 Nanostructured molecular p

wide range of applications th

exam l for the detection of single-stranded nucleic acids in 

assays allow for the high throughput parallel detection of nucleic acid targets while 

avoiding the difficulties associated with PCR-based labeling (49, 51). Another novel 
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application of MBs is the detection of double stranded DNA targets using protein nuc

acids (PNA) “openers” that form triplexes with the DNA strands (52). Further, proteins

can be detected by synthesizing “aptamer molecular beacon,” which, upon binding to a

protein, undergoes a conformational change that results in the restoration of fluorescence 

 The most exciting application of nanostructured ODN probes, however, is living-

cell gene expression detection. MBs can detect endogenous mRNA in living cells with 

high specificity, sensitivity, and signal-to-background ratio. Thus, MBs have the potentia

to provide a powerful tool for laboratory and clinical studies of gene expression in vi

For example, MBs can be used in high throughput cell-based assays to quantify and 

monitor the dose-dependent chan

leic 

 

 

(53, 54). 

l 

vo. 

ges of specific mRNA expression in response to 

detect and quantify the expression of specific 

genes in living cells will also facilitate disease studies, such as viral infection detection 

 in 

nals, 

e 

possible selfquenching effect of the reporter, especially when mRNA is highly localized. 

Since the fluorescence intensity of the reporter may be altered by the intracellular 

environment, it is also necessary to create an internal control by, for example, injecting a 

, 

 

small 

number of cells (typically less than 1000) are observed. Therefore, the average copy 

different drug leads. The ability of MBs to 

and cancer diagnosis. 

 There are a number of challenges in detecting and quantifying RNA expression

living cells. In addition to issues of probe design and target accessibility, quantifying 

gene expression in living cells in terms of mRNA copy number per cell poses a 

significant challenge. It is necessary to distinguish true signal from background sig

to determine the fraction of mRNA molecules hybridized with probes, and to quantify th

known quantity of additional fluorescently labeled ODNs into the same cells and 

obtaining the corresponding fluorescence intensity. Further, unlike in RT-PCR studies

where the mRNA expression is averaged over a large number of cells (usually over 1

million), in optical imaging of mRNA expression in living cells only a relatively 
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number per cell may change with the total number of cells observed due to the (often 

large) cell-to-cell variation of mRNA expression. 

 Another issue in living-cell gene detection using hairpin ODN probes is the

possible effect of probes on normal cell function, such as protein expression. As revealed 

exogenous ODN to mRNA can have a profound impact on protein expression levels and 

even cell fate. For example, tight binding of the probe to the translation start site may 

block mRNA translation. Binding of a DNA probe to mRNA can also trigger RNa

 

in the antisense therapy research, complementary pairing of a short segment of an 

se H-

ediate  

be observed for at least 4 h, whereas visualization of mRNA with hairpin probes requires 

ith peptide-based delivery have the potential to 

detect specific RNAs in tissue samples, animals, or even humans. It is also possible to use 

lanthanide chelate as the donor in a dual-FRET probe assay and perform time-resolved 

expression in vivo, and provide a powerful tool for basic and clinical studies of human 

health and disease. There are many possibilities for nanostructured ODN probes to 

m d mRNA degradation. However, the probability of eliciting antisense effects with

hairpin probes may be very low, because low concentrations of probes (<200 nm) are 

used for mRNA detection in contrast to the high concentrations (typically 20 μm;(40)) 

employed in antisense experiments. Furthermore, antisense effects are generally unable to 

less than 2 h after delivery. Well-designed experiments should carry out a systematic 

study of possible antisense effects, especially for MBs with 2-O-methyl backbone, which 

may bind to mRNA for longer periods of time. As a new approach for in vivo gene 

detection, the nanostructured probes can be further developed to have enhanced 

sensitivity and a wider range of applications. Hairpin ODN probes with near infrared 

(NIR) dye as the reporter combined w

measurements to dramatically increase the signal to noise ratio, thus achieving high 

sensitivity in detecting low abundance genes. 

 Although very challenging, the development of these and other nanostructured 

ODN probes will significantly enhance our ability to image, track, and quantify gene 
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become clinical tools for disease detection and diagnosis. For example, MBs could be 

used to perform cell-based early cancer detection using clinical samples, including blood

saliva, and other bodily fluid. In this case, cells in the clinical sample are separated and 

MBs designed to target specific cancer genes are delivered to the cytoplasm for detecting 

mRNAs o

, 

f the cancer biomarker genes. Cancer cells having a high level of the target 

l 

mple 

n vivo 

a powerful clinical tool for disease detection and diagnosis. 

mRNAs (such as survivin) or mRNAs with specific mutations that cause cancer (such as 

K-ras codon 12 mutations) would show a high level of fluorescence signal, while norma

cells would show just low background signal. In this approach, the target mRNAs would 

not be diluted compared with the approaches using cell lysate. Thus, a molecular-

beaconbased assay has the potential to positively identify cancer cells in a clinical sa

with high specificity and sensitivity. It may also be possible to detect cancer cells i

by using NIR-dye-labeled MBs in combination with endoscopy. Although there remain 

significant challenges, imaging methods using nanostructured probes have a great 

potential in becoming 
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CHAPTER 2 

CARDIOMYOCYTE DEVELOPMENT IN STEM CELLS 

Cellular therapies have the potential to replace or regenerate damaged cardiac muscle, a 

novel therapeutic option that would help millions of patients a year in the US alon

Previous studies have shown that undifferentiated cells are unsuitable for implantation 

have shown that the delivery of terminally differentiated cells is likely to be safe and the 

next round of studies to demonstrate efficacy is now underway (57). Early results purp

to show that there is an effect on the injured tissue, although cellular engraftment may not

be as important as paracrine signaling effects (57). While methodologies for generating 

cardiomyocytes (CMs) from hPSCs are rapidly improving, numerous hurdles stand in the

way of their clinical use. All protocols which do not require genetic manipulation result

terminally differentiated cardiomyocytes (58-60). The current gold 

activinA/BMP-4 protocol yielded > 30% of CMs (61). Novel methods promise to del

significantly higher yields of CMs with more than 40% of cells becoming CMs, howe

none of these techniques can match the purity of genetic manipulation techniques which 

can lead to up to 98% pure populations. One of the major challenges confronting the fie

is therefore the development of reproducible isolation techniques that allow scalable 

e (55). 

due to the danger of teratoma formation(56), but several experiments and clinical trials 

ort 

 

 

 

in heterogeneous populations of cells which may not be as efficacious or safe as 

standard 

iver 

ver 

ld 

purification of cardiomyocytes. Considerable upscaling, effective enrichment, and 

the purification methods should be developed for robust research and clinical use in 

future. 
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Developmental cardiomyocyte biology 

 Embryonic stem cells can be induced towards the mesodermal pathway by the 

stimulation of the bone morphogenic protein (BMP) pathway (62). Afterwards 

(63). Cardiomyocytes (CMs) develop in vivo from the mesodermal lineage (Figure 6A), 

specifically from the lateral plate (1). Portions of this tube continue to proliferate, 

expanding to become recognizable heart chambers, while non-proliferating sections 

become the conduction system of the heart (Figure 6B)(1).  

 

 

mesodermal cells begin to form the circulatory cells, and most importantly the heart tube 

 

A

 
B 

 
 
Figure 6, Cardiac development in vitro and in vivo. 
A) Cardiac differentiation pathway with essential internal biomarkers indicated and B) in vivo 
organization of the primitive heart tube and adult heart demonstrating the maturity of cells at early 
stages of differentiation(1). 
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Cardiomyocytes were first pr embryonic stem cells hESCs in 

2001 by the Gepstein group in Israel(64). Further research elucidated the essential factors 

propelling embryonic stem cells down the mesodermal lineage by treatment with BMP to 

 a novel therapeutic option that would help millions of patients a year in the US 

72). Previous studies have shown that undifferentiated cells are unsuitable for 

oduced in human 

increase the percentage of CMs in each batch(65). Immediately after the discovery of 

induced pluripotent stem cells (iPSCs), the state of the art protocol was applied to turn 

these cells into CMs(66). Since then, a variety of protocols incorporating 3D cues(67), 

precise temporal control of chemical stimuli (62), and co-cultures (68) have been 

developed to increase the number of CMs produced from hESCs. These efforts have 

significantly improved the number of CMs which can be produced as measured by flow 

cytometry or other destructive forms of measurement. 

Several companies now offer CMs produced in commercial processes, usually 

identified through the insertion of a fluorescent protein into a cardiac gene such as 

myosin heavy chain. These cells have been used by various diagnostic companies to 

establish programs such as CardioCHECK(69) and for preclinical assays which many in 

the pharmaceutical industry now regard as more predictive than animal models(70). Cells 

believed to be CMs have also been used in several clinical trials, notably the ALCADIA, 

CADUCEUS, and SCIPIO trials (57). While CM cells are not currently believed to 

integrate into host tissues, there is a strong consensus that their paracrine effects are 

beneficial to the repair and regrowth of injured heart muscles(71). 

Current challenges and opportunities in cardiomyocyte development 

Cellular therapies have the potential to replace or regenerate damaged cardiac 

muscle,

alone(
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implantation due to the veral experiments and 

 be 

ay. While 

 

s 

f cells 

 (58-

yielded > 30% of CMs(61). 

ovel methods promise to deliver significantly higher yields of CMs with more than 40% 

f cells becoming CMs (Figure 7), however none of these techniques can match the 

purity of genetic manipulation techniques which can lead to up to 98% pure populations. 

One of the major challenges confronting the field is therefore the development of 

reproducible isolation techniques that allow scalable purification of cardiomyocytes. The 

considerable upscaling, effective enrichment, and purification methods should be 

developed for robust research and clinical use in the future. 

 danger of teratoma formation(73), but se

clinical trials have shown that the delivery of terminally differentiated cells is likely to

safe(71), and the next round of studies to demonstrate efficacy is now underw

methodologies for generating cardiomyocytes (CMs) from hPSCs are rapidly

improving(62), numerous hurdles stand in the way of their clinical use(56). All protocol

which do not require genetic manipulation result in heterogeneous populations o

which may not be as efficacious or safe as terminally differentiated cardiomyocytes

60). The current gold standard activinA/BMP-4 protocol 

N

o
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s this 

icted 

 as cardiac progenitor 

cells(74). Although this approach is efficient, it  

not compatible with clinical use. The second approach is to isolate CMs by physical 

separation using a Percoll gradient(75). The purity of the cells is problematic due to the 

lack of biochemical markers involved in this method. The third approach is based on 

A 

 
B 

 
C 

 
re 7, Cardiomyocyte generation procedures and current cell purity 

 A) The current standard cytokine protocol developed by the Keller lab, B) an improved protoc
generated by the Yoon lab, C) and the percentage of CMs in a differentiating culture determined

Figu
ol 

 by 
flow cytometry using the cardiac-specific Tnnt2 marker. 

 

 

 

A number of approaches have been developed for purifying CMs toward

end. The first approach is to use a fluorescent reporter gene driven by a CM--restr

promoter such as NKX2.5, ISL1 or MHC to isolate CMs as well

requires genetic modification and thus is
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selecting cardiac progenitors, but not mature CMs, using surface markers such as 

KDR(76) or PDGFRA(62). This population also contains endothelial and smooth muscle 

populations with a mixture of CMs. Another non-genetic method for isolating hPSC-

derived CMs is based on the use of the mitochondrial dye tetramethylrhodamine methyl 

ester perchlorate (TMRM). Because this dye only functions in CMs with high 

mitochondrial density, it does not detect most of the immature CMs in the cultures. 

Lastly, the recent identification of surface markers expressed on human pluripotent stem 

cell (PSC)-derived CMs, EMILIN(60, 62), SIRPA(77, 78)and VCAM-1(78) allowed 

isolation of highly enriched populations of CMs by fluorescent activated cell sorting 

(FACS) or magnetic bead-based sorting (MACS®). However, these markers are not 

specific for CMs and their expression levels in the brain and the lung are higher than the 

heart, raising significant concerns regarding their authenticity as a single isolation marker 

for CMs(78, 79). 

A method that allows tracking cardiac subtypes in a high throughput manner will 

accelerate research into the regulation of cardiac subtype specification. Currently, cardiac 

subtypes are distinguished by electrophysiology, a labor intensive and time consuming 

process that can only be performed by highly skilled electrophysiologists. Here we report 

the development of molecular beacon based methods for high throughput separation of 

cardiomyocytes and cardiomyocyte subtypes. Results from this study will not only 

significantly advance the application of hPSCs in safe cell therapy but also facilitate other 

applications of these cardiomyocytes such as in drug discovery and toxicity screening and 

in the study of heart development and diseases (70, 80, 81). 
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CHAPTER 3 

DEVELOPING MOLECULAR BEACONS TO TARGET 

CARDIOMYOCYTE SPECIFIC MRNA 

hPSCs show a huge potential for regeneration, however previous studies have 

shown that terminally differentiated cells must be implanted to avoid in vivo teratoma 

formation. The ALCADIO, SCIPIO, and CADUCEUS clinical trials have already 

produced Phase 1 results using terminally differentiated cells, which appear to indicate a 

reduction in fibrous scar tissue and without an accompanying increase in ventricular 

ejection fraction32. This may be due to the low percentage of cardiomyocytes contained 

in the implanted cells. A high throughput method for separating cardiomyocytes from 

diffe ally 

diffe

 number of approaches have been developed for purifying CMs from 

differentiating cultures of hPSCs. The traditional approach is to use a fluorescent reporter 

gene driven by a CM--restricted promoter such as NKX2.5 (78), ISL1 (82) or MHC (83) 

to isolate CMs as well as cardiac progenitor cells. Although this approach is efficient, it 

requires genetic modification and thus is not compatible with clinical use. Another 

standard approach is to isolate CMs by physical separation using a Percoll gradient (61, 

75). The purity of the cells is problematic due to the lack of biochemical markers 

involved in this method. A recently developed approach is based on selecting cardiac 

progenitors, but not mature CMs, using surface markers such as KDR11 or PDGFRA12. 

This population also contains endothelial and smooth muscle populations with a mixture 

of CMs. Another new method for isolating hPSC-derived CMs is based on the use of the 

rentiating cultures of hPSCs is therefore needed to implant high purity, termin

rentiated cardiomyocytes in clinical therapies. 

A
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mitochondrial dye tetramethylrhodamine methyl ester perchlorate (TMRM) (84). 

Because this dye only functions in CMs with high mitochondrial density, it does not 

detect most of the immature CMs in the cultures (77). Lastly, the recent identification of 

surface markers expressed on human PSC-derived CMs, EMILIN2 (85), SIRPA (77, 78), 

and VCAM-1 (78, 86) allowed isolation of highly enriched populations of CMs by FACS 

or magnetic bead-based sorting (MACS®). However, these markers are not specific for 

CMs and their expression levels in the brain and the lung are higher than the heart, 

raising significant concerns regarding their authenticity as a single isolation marker for 

CMs (78, 79). The objective of this specific aim is to address these issues by developing a 

novel method to purify hPSC-derived CMs via MBs targeting mRNA of CM-specific 

genes uniquely expressed in CMs. 

mRNA target selection and MB design 

To determine optimal candidate genes detectable by MBs, we performed 

quantit

g steps were carried out at 

60Ԝ°C. Relative mRNA expression of target genes was calculated with the comparative 

ative reverse transcriptase PCR (qRT-PCR) analysis on known cardiac specific 

genes and transcription factors using mRNAs extracted from freshly isolated mouse adult 

CMs and human neonatal heart tissues (Figure 8). Total RNA was prepared with the 

RNeasy mini plus kit (Qiagen) according to the manufacturer's instructions. The 

extracted RNA (100 ng to 1 mg) was reverse transcribed into cDNA (reverse 

transcription) via Taqman reverse transcription reagents including random hexamers, 

oligo (dT), and MultiScribe™ MuLV reverse transcriptase (Applied Biosystems). qPCR 

was performed on a 7500 Fast Real Time PCR system (Applied Biosystems) using Fast 

SYBR Green master mix (Applied Biosystems). All annealin
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threshold cycle (CT) method. All target genes were normalized to GAPDH in 

multiple  gene 

of interest−CT GA ch target mRNA 

by subtracting the mean value of GAPDH (relative expression = 2‐ΔCT). The well  

 

 

 

xed reactions performed in triplicate. Differences in CT values (ΔCT = CT

PDH in experimental samples) were calculated for ea

 

 

 
G 

 
Figure 8, Cardiomyocyte RT-PCR and HL1 cell CM characteristics 

presence of B) sarcomeric myosin, C) organized sarcomeric myosin, D) natriuretic 

human neonatal heart tissues. 

Morphological characteristics of HL1 cells with ICC staining demonstrating the 

peptide A, E) titin, F) and alpha-actinin. qRT-PCR using mouse adult CMs and 
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known cardiac structural genes, cardiac troponin T (TNNT2, also known as cTNT

myosin heavy chain (MYH6/7, also known as MHC) were most highly expressed in b

samples and thus were determined as targets for MBs. We then decided to use the HL1a 

cell line (a generous gift from Dr. Claycomb) as a rapid in vitro testing platform. As 

shown in Figure 8 A-F, HL1a cells express several well known cardiac proteins and so 

provide a simple positive control system for beacon testing. 

 We designed five MBs (Appendix A) targeting unique sites in TNN

MYH6/7 mRNA for both mouse and human cells using design rules determined by 

previous publications 38,39 and BLAST searches to ensure uniqueness. We predicted the 

secondary structure of our target mRNA molecules using mFOLD and identified areas 

which are unlikely to be double stra

) and 

oth 

T2 or 

nded in the cytoplasm. We further limited our search 

to areas of the mRNAs that ith all of 

these d sites. 

Verification of MB specificity 
erfectly 

lar beacon 

was 

 

f 

were exactly the same in mouse and human genes. W

esign constraints we arrived at a small number of molecular beacon target 

These MBs were synthesized with a Cy3 fluorophore on the 5’ end and a Black Hole 

Quencher 2 on the 3’ end. 

 We quantified beacon fluorescence signal when hybridized to p

complementary and mismatched targets by incubating 500 nM molecu

solutions with target solution of increasing concentrations (Figure 9). Beacon signal 

recorded using a microplate reader and normalized by the signal in wells with beacon

only. All beacons displayed a linear response to increasing concentrations o

complementary target and a low response to mismatched targets.   
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 In order to determine the most efficient transfection method

MBs into living cells we compared Streptolysin O (38), Lipofectamine 2000 (87, 88),  

 

 

 to deliver 

 

 

 

 

Lullaby (89, 90), nucleofection (91-93), electroporation (94) and microinjection 

(31). To quantify the delivery efficiency, we designed an MB which has a nonspecific 

 

 
 
Fi  9, Verification of MB specificity. 
  Microplate data showing that MBs bind to complementary synthetic oligonucleotides 
but not those with mismatches in the sequence  

gure
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sequence with FAM dyes conjugated to both 5’ and 3’ ends, allowing the probe t

fluoresce regardless of its open or closed conformation. For all nucleofection studies,

target cells were dissociated by treatment with Accutase (e-bioscience) and filtered

through a 40-µm cell strainer (BD science) immediately before nucleofection. 

dissociated cells (0.5-1 × 106) were carefully suspended in 100 µl of nucleofect

solution V (Lonza) maintained at room temperature, and 0.5 

o 

 

 

The 

or 

µl of 500 nM MB was added 

for eac  react  

ction, 

or 

 

 

h ion. Nucleofection was performed using a Nucleofector II (Amaxa

Biosystems) set to the A033 nucleofector program. After termination of nucleofe

500 µl of cold DMEM/F12 media was added to the reaction cuvette and the contents 

were gently transferred into a clean tube by a flexible pipette (Lonza). All procedures f

nucleofection were performed inside a biological safety cabinet (Labconco) in the dark to

prevent light induced nonspecific reaction of MB. Subsequently, 1 ml of pre-warmed 

DMEM/F12 media was added into each tube and further incubated in a 5% CO2  
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osphere at 37°C for 10 min for MB reaction. We delivered the nonspecific 

MB into a range of different cell lines including HL-1 CMs, smooth muscle cells, mouse 

embryonic fibroblasts and m

  A       B 

 
  C 

 
Figure 10, CMs cause an increase only in CM-specific MB fluorescence. 
A) A random beacon delivered to HL-1 CMs does not cause an increase in fluorescence, however B) 
MHC-1 MB significantly increases its fluorescent intensity in HL-1 CMs. C) Flow cytometry sh wing 
that non-CM cell lines do not cause an increase in beacon fluorescent si

o
gnal. 

 

 

atm

ouse embryonic stem cells. Flow cytometry analysis 

demonstrated that regardless of cell type, nucleofection consistently resulted in 
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internalized MBs in >95% of the cells, demonstrating the highest delivery efficiency 

among the methods tested. All FACS recordings were taken by centrifuging cells at 2000 

rpm for 2 min, resuspended in DMEM/F12 basal media, and maintained on ice for 20 

min to recover. Cells were then analyzed using a C6 Flow Cytometer (BD Biosciences) 

or sorted using a BD FACS Aria II cell sorter (BD Biosciences). Beacon signal was 

recorded using a 561 nm laser with a 585/15 nm emission filter to optimally excite and 

detect Cy3. Data were analyzed using FlowJo software (Treestar). 

We determined the sensitivity and specificity of MBs designed to target CM-

specific mRNAs using our HL1 test system. Each of the candidate MBs targeting TNNT2 

or MHC mRNA was delivered into live HL-1 CMs by nucleofection and the efficacy was 

analyzed by flow cytometry. The results showed that one MB, designated as MHC1-MB, 

produced a much higher rate of MB signal positive cells in flow cytometry analysis 

(98.9%) compared to other MBs (TNT1, -2, -3 and MHC2). Microscopic fluorescence 

imaging also confirmed these results (data not shown). To determine the specificity of the 

MHC1-MB, a ‘random’-sequence MB (‘random beacon’) which has a 16-base target 

sequence that does not match with any sequence in the mouse or human genome, was 

delivered as a negative control and displayed negligible fluorescence in HL-1 CMs 

(Figure 10). This ruled out the possibility that the fluorescence signal from MHC1-MB 

was due to nonspecific interactions and/or probe degradation by endonucleases. To 

further verify the specificity of the MHC1-MB, we delivered MHC1-MB into SMCs, 

mouse aortic endothelial cells (MECs), mouse cardiac fibroblasts (CFs) and mESCs, 

which are the most likely potential contaminating cell types in differentiating PSC 

cultures. Flow cytometry analysis showed that less than 5% of these cells displayed a 

34 
 



d ts suggest high specificity of the 

MHC1-MB for detecting the CM lineage. 

 Characterization of beacon positive cells 
 

To determine whether the MHC1-MB can be used to isolate CMs from 

d s, our collaborators in Dr. Yoon’s lab first established a system 

to efficiently differentiate mESCs into CMs. Flow cytometry analysis demonstrated that 

the percentage of Tnnt2-positive cells were 13.4% and 47.1% at days 4 and 9, 

respectively. Immunostaining further demonstrated that cells dissociated from beating 

clumps displayed CM-specific proteins such as Tnnt2, Tnni3 and α-Actn1 (also known as 

α-sarcomeric actinin), confirming their CM nature. The results with mouse iPSCs were 

similar (data not shown). For immunostaining assays, cells were fixed with 4% PFA for 

10 min at room temperature, washed twice with PBS, and permeabilized with 0.1% 

Triton X-100 in PBS for 10 min. Cells were then blocked with 1% BSA in PBS for 60 

m gma; 1:100), mouse anti-

T e 

cells were washed three times with 1% Tween 20 in PBS and incubated with anti-mouse 

IgG– Alexa Fluor 594 (Invitrogen; 1:1000) or anti-rabbit IgG–Alexa Fluor 488 

(Invotrogen; 1:1000) in PBS for 1 h at room temperature. DAPI was used for nuclear 

staining. The samples were visualized under a fluorescent microscope (Nikon) and a 

Zeiss LSM 510 Meta confocal laser scanning microscope and LSM 510 Image software 

(CLSM, Carl Zeiss). 

etectable fluorescence signal (Figure 10C). These resul

ifferentiating mouse PSC

in at room temperature and incubated with anti-ACTN2 (Si

NNT2 (NeoMarkers; 1:100), or rabbit anti-cTnI (Abcam; 1:100) at 4°C overnight. Th
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After establishing the differentiation system, we attempted to isolate CMs from 

differentiating mESCs using MBs. The differentiating mESCs at day 9 were nucleofected 

to deliver MHC1-MB and subjected to FACS. The percentage of cells positive for 

fluorescence signal from MHC1-MB was 49.2 ± 4.8% (Figure 11A). There was high 

concordance between the rate of Tnnt2-positive cells (47.1%) and MHC1-MB positive 

cells (49.2%) analyzed by flow cytometry, supporting the specificity of MHC1-MB for 

detecting mESC-derived CMs. Most importantly, 98.4% of these FACS-sorted MHC1- 

 

 

 

 

A   B   C 

 

 

 
Figure 11, MHC-MB delivery to mouse embryonic stem cells 
mESC (A), hESC (B), and iPSC (C) differentiating cultures. ICC staining of TNNI3 
and TNNT2 in iPSCs after beacon based sorting (D). qRT-PCR after sorting where the 
top row represents cardiac specific genes which are upregulated while the lower row 
represents non-cardiac genes downregulated following beacon sorting (E).  
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MB positive cells exhibited Tnnt2 expression in flow cytometry. Immunocytochemistry

further verified that virtually all MHC1-M

 

B sorted cells stained positive for Tnnt2 and 

Actn2. qRT-PCR analyses demonstrated that these purified cells expressed at least 2 to 6-

fold higher levels of Tnnt2, MHC, and Myl2 compared to the pre-sorted population. 

Other l

 (BJ1; Gift from Dr. George Daley and Inhyun Park) (95, 96). Our 

differentiation system for CMs from hESCs worked similarly to hiPSCs, yielding ~40.7% 

ineage genes were either expressed at negligible levels (Acta2, Ddr2, Gata4 and 

Sox17 or were non-detectable (Pecam1, Myogenic differentiation 1 (MYOD) and Neuro 

D) in the MB-purified CMs (data not shown). 

Similarly, we investigated the utility of MB-based cell sorting for human PSC-

derived CMs. Flow cytometry analysis demonstrated that the percentage of TNNI3-

positive cells were 10.2% and 43.1% at days 9 and 13, respectively. We delivered 

MHC1-MBs to the cardiomyogenically differentiating hESCs at day 13. Flow cytometry 

analysis showed that the percentage of cells positive for MHC1-MB signal was 46.3% 

(Figure 11B), and these MHC1-MB positive cells exhibited TNNI3 expression at 97.6 ± 

1.4% by flow cytometry. Almost all cells were stained positively for TNNT2 and TNNI3 

and showed CM-like morphologies by immunocytochemistry. qRT-PCR analysis showed 

a significant increase in expression levels of CM-specific genes (TNNT2, MHC, and 

MYL2) and decrease in expression levels of genes specific for smooth muscle cells 

(SMC) (CALPONIN), fibroblast (THY1), skeletal myocyte (MYOD), neural lineages 

(NEUROD), and EC (PECAM1), suggesting enrichment of CMs and elimination of other 

lineage cells by cell sorting based on MHC1-MB signal. 

We further determined the utility of MHC1-MB in isolating CMs from 

differentiating hiPSCs
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of cTN

h 

specificity and efficiency. We observed that the MBs targeting MHC identified up to 

98% of an immortalized mouse CM cell line but less than 10% of the non-CM cells. 

When these MBs were delivered into both mouse and human PSCs derived CMs, 41 to 

49% of t s MB positive populations. More than 97% of the MB+ 

culture expressed cTNT/I determined by intracellular flow cytometry. Their identity as 

CMs was verified by immunocytochemistry and qRT-PCR, indicating that the beacon 

sorting did not disrupt processes essential to CM survival. 

From a functional standpoint, stable action potentials (APs) were recorded from 

CMs purified via MHC1-MB that were cultured for 7-14 days after FACS sorting. Three 

major types of APs were observed such as nodal-like (6 of 46), atrial

ventricular-like (29 of 46) APs (Figure 12a). These results indicate that cells purified via 

CM-specific MB are electrophysiologically intact and functional CMs and can maintain 

their functional characteristics in culture. 

I-positive CMs at day 13. MHC1-MB was delivered into differentiating hiPSCs at 

day 13 and the percentage of cells positive for MHC1-MB analyzed by flow cytometry 

was ~45.5%. Immunostaining with TNNI3 or ACTN2 identified almost all cells as CMs 

and qRT-PCR assay showed increased level of CM-specific genes and negligible levels 

of other lineage gene expression (Figure 11C). 

Our results clearly show that MBs designed to target CM-specific mRNA in live 

cells can isolate functional CMs from differentiating mouse and human PSCs with hig

he cells were identified a  

-like (11 of 46) and 
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Figure 12, Functional characterization of sorted CMs 
A) Representative electrophysiology recordings indicating the types 
of APs recorded from culture and B) in vivo implantation 

unpurified cells.  
examination results clearly displaying tumorigenicity from 

To determine the behavior and effects of MB-based purified CMs in ischemic 

myocardium, purified or unpurified CMs derived from mESCs or the same volume of 

PBS were injected into the myocardium after induction of myocardial infarction (MI) in 
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mice. Echocardiography was performed weekly to measure cardiac remodeling and 

function. One week later, however, in the mice receiving unpurified CMs, a distinct mass 

was observed in the left ventricular lumen of the hearts, which grew over 4 weeks. Post-

mortem examination at 3-4 weeks revealed tumor masses in 11 out of 12 mice (Figure 

12B). By careful gross examination, tumors invaded internally into myocardium and 

externa

tochemistry for cardiac tissues 

injected

ontrast to genetic engineering approaches this 

technique can quickly and easily be applied to other highly expressed genes of interest 

and does not result in permanent alterations to the cell. This approach also has the 

advantage of detecting cardiomyocytes throughout the differentiation process, as MHC 

lly into the pericardium. Cardiac tissues were fixed and stained with hematoxylin 

and eosin (H&E). Microscopic examination revealed that all tumors consisted of 

structures derived from all three embryonic germ layers, indicating teratomas. However, 

we did not detect tumors in any of the mice receiving MB-based purified CMs or PBS 

over the same follow-up period by echocardiographic or histologic examination. Tumor 

formation in unpurified-CM injected mice did not allow appropriate functional 

comparison between mice receiving unpurified- and purified CMs. However, purified 

CM injected mice showed a higher ejection fraction than PBS-injected mice, indicating 

improved cardiac function. We next conducted immunohis

 with purified CMs. Confocal microscopic examination demonstrated that 

injected CMs (DiI-positive) were engrafted as clusters, survived robustly for 4 weeks and 

expressed representative CM proteins. Taken together, these results suggest that injected 

MB-purified CMs are integrated into ischemic myocardium and are functional in vivo. 

MB technology presents unique properties as a probe for enriching target cells 

based on mRNA expression levels. In c
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and TNNT2 are both expressed continuously in adult cardiomyocytes. We predict that 

this technique will gain wide acceptance and usage in the broader academic community 

interested in generating high purity cardiomyocytes for a new generation of experiments 

to better characterize cardiac development. 
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CHAPTER 4 

DEVELOPING MOLECULAR BEACONS TO TARGET 

VENTRICULAR CM-SPECIFIC MRNA 

 

Heart failure is the leading cause of death worldwide, and current therapies including 

surgical and pharmacological interventions are only capable of delaying the progression 

of this detrimental disease(97). Particularly, patients suffering from MI which is one of 

the major causes of morbidity and mortality, have deteriorated ventricular heart function 

due to a loss of significant number of ventricular cardiomyocytes (CMs)(98). It has been 

well known that ventricular CM is the most extensively affected cardiac cell type when 

MI occurs(99). Due to the minimal ability of the adult mammalian heart to regenerate 

against lost or damaged ventricular CMs, there is great interest to identify potential 

cellular sources and strategies to regenerate new ventricular myocardium(100). 

Specifically, for treatment of MI, transplantation of a sufficient quantity of ventricular 

CMs, rather than other types of CMs such as nodal or atrial CMs, is preferred(101). 

Therefore, it is of great interest to generate a renewable source of ventricular CMs for 

cell-based therapies to treat MI patients. 

 Pluripotent stem cells including both embryonic stem cells (ESCs) and recently 

identified induced pluripotent stem cells (iPSCs) can self-renew and pluripotent, 

indicating they have the ability to develop into any type of cell, including CMs(61, 102). 

Importantly, several previous studies reported that PSC-derived CMs consist of distinct 

types of chamber specific CMs such as nodal, atrial, and ventricular(61). Hence, using in 

vitro differentiation methods, ventricular CMs generated from ESCs are considered as a 
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valuable source for potential cell-based cardiac regeneration therapy and as experimental 

models for human heart diseases. However, a problem is that there is no available method 

to selectively isolate ventricular CMs derived from PSCs, which typically consist of 

heterogeneous populations: atrial-, ventricular-, or nodal-like phenotypes as determined 

by electrophysiological analysis of APs. Since, the CMs comprising each heart chamber 

have unique functional, structural, and electrophysiological characteristics(103), it is 

obvious that transplantation with a mixed population of chamber specific CMs may cause 

arrhythmia and/or defective cardiac function due to inappropriate electromechanical 

integration of the grafted cells with the host myocardium(104). 

Ventricular cardiomyocyte mRNA selection 
 
 Previously, a number of research groups have established transgenic murine ESC 

(mESC) and embryonic carcinoma cell lines(105-107), which have a fluorescent reporter 

gene driven by a Mlc2v (or Myl2) promoter, for the isolation of ventricular CMs. 

However, their approaches require genetic modification and therefore are incompatible 

for clinical use. Hence, there is high demand for the development of a system to 

selectively enrich a pure population of ventricular CMs, which is ideal for the purpose of 

cardiac regenerative therapy, as ventricular CMs are mainly responsible for cardiac 

contractile function. 

  Accordingly, we have developed a novel strategy to enrich ventricular 

cardiomyocytes (VCMs) from differentiating PSCs by targeting Iroquois homeobox gene 

4 (Irx4), a transcription factor that is specifically expressed in ventricular tissue but not in 

atrial tissue(108, 109). We hypothesized that MBs hybridized to Irx4 mRNAs could 

enable isolation of VCMs from a mixed population. 

43 
 



 Therefore, in the second aim irst developed protocols to 

different

ventricular CMs an Ms by applying 

MBs targeting ventricular CM-specific mRNAs followed by FACS sorting. Our results 

suggest the possibility of purifying ventricular CMs at a high efficiency and specificity 

from PSC differentiation cultures with this innovative and clinically compatible 

purification system. 

 We selected Irx4 after an extensive literature search as a target gene for 

generating ventricular CM-specific MBs (108-110). We then measured mRNA 

expression levels of Irx4 via quantitative RT-PCR (qRT-PCR) analysis in CMs isolated 

from either ventricles or atria of mouse adult hearts. We also measured Myl2, which is a 

well-defined ventricular CM-specific gene, as a positive control. The results showed that 

Irx4 is robustly expressed in ventricular CMs but not atrial CMs. The expression levels of 

both Irx4 and Myl2 mRNAs were substantially higher in mouse ventricular CMs 

compared to atrial CMs, indicating that Irx4 is a viable target for MB selection. 

eting distinct sites on the mouse Irx4 mRNA 

d 

nd to 

 

 of this thesis we f

iate mouse ESCs into CMs which included a substantial percentage of 

d also devised a strategy to isolate these ventricular C

Molecular beacon development for the detection of ventricular CM mRNA 

 We designed four IRX4 MBs targ

using design rules optimized in our previous publications 24, 26, 28. In addition, we use

mFold (111) and the RNA Composer Webserver (112) to model our IRX4 MBs a

predict binding site availability in the target mRNAs (Figure 13A). These IRX4 MBs 

were synthesized with a Cy3 fluorophore on the 5’ end and a Black Hole Quencher 2 on 

the 3’ end as specified in Table 1. We quantified MB fluorescence signals when 

hybridized to perfectly complementary or mismatched synthetic targets by incubating 500

44 
 



nM MB solution with targets of increasing concentrations (60-500 nM). IRX4 MB 

signals were recorded using a microplate reader and normalized to the signals in wells 

with beacon only. All IRX4 MBs displayed a linear response to increasing concentrat

of complementary targets and a low response to mismatched targets (Figure 13B).  

 

 

 

ions 

 

 

A 

 
B

 
Figure 13, Ventricular MB design and verification 
A) Lowest energy 3D molecular dynamics simulation used to identify 

IRX4 MBs demonstrating a linear response to additional target 
oligonucleotide and no response to mismatched oligos.   

 

potentially accessible sites on IRX4 mRNA  B) microplate data from 
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Delivery of MBs into the cells 

 After attempting several different delivery methods for transfection of M

found that nucleofection with nucleofection solution V and program A033 (Lonza) was 

an efficient method to deliver MBs to a variety of cell types28. To further refine this 

system, we also designed two distinct MBs to act as controls. A nonspecific interaction 

indicator MB (RQ) contains a random 20 bp loop sequence which is not similar t

known RNA in mous

Bs, we 

o any 

e cells, so any fluorescence would indicate an undesirable 

echan  

MBs 

rate 

s into 

mouse embryonic fibroblasts (mEFs), which do not express IRX4, by nucleofection, and 

analyzed the cells which showed false positive signals using flow cytometry. Among the 

three MBs (IRX4-1, -2, and -3) examined, the MBs designated as IRX4-1 and IRX4-2 

yielded significantly lower rates of MB positive cells on mEFs (IRX4-1: 0.9 ± 0.1%, and 

IRX4-2: 1.4 ± 0.1%). In contrast, IRX4-3 displayed a high percentage of false positive 

signals (IRX4-3: 40.6 ± 3.8%) in mEFs. Hence both IRX4-1 and IRX4-2 were selected 

for further experiments and IRX4-3 was eliminated from the list of candidates  

 

m ism. A confirmation of delivery control MB (UQ) used the same random

sequence but does not contain a quencher so that it fluoresces at all times. Both 

were delivered to cells to ensure that transfection was efficient and that MB signal was 

specific to the targeted sequence.  

Optimal Beacon Selection 

 In order to select the best MB to efficiently identify ventricular CMs, we 

examined the specificity, sensitivity and reliability of each IRX4 MB in three sepa

systems. To determine the specificity of MBs, we delivered each of the IRX4 MB
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(Figure 14A). IRX4-1, and -

2), each of the atal ventricular CMs 

and analyzed with flow cytometry. IRX4-2 MB identified a substantially higher 

%) compared to IRX4-1 MB (17.9 ± 2.1%). 

 
Figure 14, Optimal ventricular MB selection 
A) Ventricular MB selection in embryonic fibroblasts after delivering 
three different IRX4 MBs designed to identify Irx4 mRNAs into mouse 
embryonic fibroblasts. N = 3. (B) Flow cytometric analysis of neonatal 
mouse ventricular CMs treated with control MB versus two IRX4 MBs 

rgeting Irx4 mRNAs. N = 3. (C) Flow cytometric analysis of HL-1 
CMs treated with control MB versus IRX4-2-MB. N = 3. The numbers 
in each panel represent the percentages of fluorescent cells. 

ta

 Next, to evaluate the sensitivity of the two candidate MBs (

 candidate IRX4 MBs was delivered into mouse neon

percentage of ventricular CMs (85.8 ± 3.7
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Based on these results, we decided to use IRX4-2 MB as a final candidate for enriching 

e mE

2. 

MCs, 

SCs, 

d 

ignals. These results clearly demonstrate that IRX4-2 

g ventricular CMs. 

o 

 to enrich 

ESC-derived CMs. Percoll mediated-separation typically produces three layers of cells 

th SC-derived ventricular CMs (Figure 14B). 

 To further test its specificity, we examined the IRX4-2 MB with HL-1 CMs, an 

immortalized mouse atrial CM cell line known to retain atrial CM characteristics31, 3

The results from flow cytometry analysis demonstrated that less than 2% of HL-1 CMs 

displayed positive signals for IRX4-2 MBs, further supporting their specificity for 

ventricular CMs (Figure 14C). We next tested the IRX4-2 MBs against mouse S

mouse aortic endothelial cells (mECs), mouse cardiac fibroblasts (mCFs) and mE

which are the most likely contaminating cell types in cardiomyogenically differentiate

PSC cultures. Flow cytometry analysis showed that fewer than 3% of those cells 

displayed detectable fluorescence s

MB is specific for identifyin

Generation of ventricular CMs from mouse ESCs 

 To ensure stable production of mESC-derived ventricular CMs, we first 

established an embryoid body (EB)-mediated CM different system. Briefly, 

undifferentiated mouse ESCs (J1) maintained on mouse embryonic fibroblast (STO) 

feeder cells were enzymatically detached to form EBs. Since EB-induced differentiation 

alone is not sufficient for producing a high percentage of CMs, we plated day-4 EBs int

a fibronectin coated dish and added ascorbic acid (50 µg/ml) to enhance CM 

differentiation. Spontaneously beating clumps began to appear 3-4 days after plating. 

After 7 days of CM differentiation on monolayer cultures we enzymatically dissociated 

the cells and applied them to a discontinuous Percoll gradient (40.5% to 58.5%)

m
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and the bottom layer was reported to include a higher percentage of CMs34. Thus, the 

cells in the bottom layer were collected and cultured for another 7 days in the presence of 

cyclosporine A (30 µg/ml) to further induce CM differentiation35. 

 qRT-PCR analyses revealed dynamic changes in the expression of CM-specific 

genes in our differentiation system indicative of efficient CM differentiation. Expression 

of cardiac contractile genes (Tnnt2 and Mhc), and genes for atrial (Mlc2a), and 

ventricular CMs (Myl2 and Irx4) began to appear 7 days after culture. Expression of 

Myl2 and Irx4 continuously increased until day 18 (Figure 15A). 

 

 

 

A 

 

B   
Figure 15, Differentiation of mESCs into ventricular CMs and 
impact of MB sorting 
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 We next carried out immunocytochemistry and flow cytometry to further 

characterize the cell population at da unoy 18. Imm

etry analy

cytochemistry demonstrated that day 

ular 

ike CMs. We used a pre-validated 

ort the cells. Flow cytometry results 

al 

 using 

Characterization of beacon positive cells 

 The IRX4-2 MB positive CMs began to beat spontaneously within 48 hrs and 

continued to beat vigorously for up to two weeks. Only a small number of cells beat in 

the IRX4-2 MB-negative plate. 1-3 days after FACS sorting, we conducted flow 

cytometry analyses using TNNT2 and MYL2 antibodies to quantify the percentage of 

18 cells significantly expressed CM-specific proteins including ACTN2 (α-sarcomeric 

actinin), TNNT2 (cardiac troponin T), and MHC6/7 confirming their CM nature. A 

substantial number of cells which were positive for ACTN2, TNNT2 and MYH6/7 

concomitantly expressed MYL2 (or MLC2V) which is a specific protein for ventric

CMs. Flow cytom ses showed that the percentage of TNNT2 and MYL2 

positive cells were 67.9 ± 4.5% and 39.2 ± 3.8%, respectively. These results clearly 

indicate efficient generation of CMs with a significant percentage of ventricular CMs 

through our CM differentiation system. 

 After establishing the CM differentiation system, we delivered IRX4-2 MB to the 

18-day differentiated cells to isolate ventricular-l

nucleofection protocol to deliver the MB and FACS-s

showed that 41.3 ± 5.8% of cells were positive for IRX4-2 MB fluorescence sign

(Figure 15B). This number is similar to the detection rate of ventricular CMs

antibody-based (39.2% of Myl2-positive cells) methods. We then conducted FACS 

sorting for IRX4-2 MB and the MB positive CMs were seeded onto fibronectin coated 

plates for further experiments. 
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CMs and ventricular-like CMs in IRX4-2-MB positive cells. Almost all sorted IRX4-2 

MB positive cells expressed TNNT2 and MYL2 (TNNT2: 97.2% ± 3.4% and MYL2: 

91.6 ± 5.1%) indicating efficient enrichment of mESC-derived ventricular CMs by IRX4-

ntricular 

e distinct. In primary 

 

 

 

 

 

2-MB sorting (Figure 15B). 

Electrophysiological characteristics of sorted cells 

To investigate the electrophysiological characteristics of IRX4-2 MB-purified ve

CMs, we performed whole-cell patch clamp analyses (Figure 16). It is known that 

electrophysiological characteristics of ventricular or atrial CMs ar

 

 

A      B 

 
 
 
Figure 16, Electrophysiology of cells sorted based on IRX4 MB fluorescence 
(A) Action potentials of the IRX4-2 MB-positive and -negative cells. Shown are representative 
configurations of the action potentials from IRX4-2 MB-positive (A) and negative cells (B). 
Action potentials were measured from 50 cells from either IRX4-2 MB-positive or -negative 
cells
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adult CMs, average action potential duration (APD) of ventricular CMs is signific

longer than APDs of atrial CMs (113). The primary CMs in fetal stage showed similar 

patterns of APD at 90% of repolarization (APD90; ventricular CMs: 140 ± 7 ms vs. atri

CMs: 95 ± 7 ms) (114). In addition, CMs derived from mESCs displayed similar 

differences in electrophysiological characteristics between ventricular CM (APD50:

 

 

 

antly 

al 

 99.3  

 

 
        B 

 

 (A) Immunocytochemistry for Actn2, Tnn2, and Myh6/7 on IRX4-2 MB-positive cells sorted from 

MB-positive and -negative cells measured by qRT-PCR. Y axis represents relative mRNA expre

Figure 17, RNA and protein expression profiles of sorted and unsorted cells 

mESC cultures. Scale bars, 20 µm. (B) mRNA expression of cardiac and non-cardiac genes in  IRX4-2 
ssion of 

target genes to GAPDH.  *P < 0.05 compared to pre-sorted group. N = 3.  
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± 15.9 ms, APD90: 151.4 ± 22.1 ms) and atrial (APD50: 20.7 ± 7.2 ms, APD90: 60.6 ± 

17 ms) (115). We observed that the APD50 of IRX4-2-MB positive and negative CMs 

were 159 ± 21.7 ms and 35 ± 7.8 ms, respectively (P < 0.01). Furthermore, the average 

upstroke slope of IRX4-2-MB positive and negative CMs were 251 ± 43.7 and 126.7 ± 

d on these results, we concluded 

-2 

To determine the contractile properties of IRX4-2 MB-based sorted CMs, we 

erformed real time intracellular calcium [Ca2+]i imaging analysis. Spontaneous calcium 

ansients were recorded where increasing calcium is measured and fluorescence intensity 

is no ge calcium intensity along 

each point of the line indicates a cyclic calcium transient. Collectively, these results 

clearly show that the majority of the enriched IRX4-2 MB positive cells were 

functionally intact ventricular CMs. 

Biochemical characterization of FACS-sorted ventricular CMs  

 To examine the cardiac identity and homogeneity of the ventricular CMs purified 

with IRX4-2 MB, immunocytochemistry was conducted with antibodies against various 

CM- ventricular CM 

mark , 

immunocytochemistry demonstrated that almost all IRX4-2-based enriched ventricula

Ms exhibited ACTN2, TNNT2, and MYH6/7. Furthermore, a positive 

munoreactivity for MYL2 was found in all of the IRX4-2 MB positive ventricular 

51.9 mV/ms, respectively (P < 0.01) (Figure 16). Base

that 98% of IRX4-2 MB positive cells possessed ventricular-type APs (49 out of 50 cells) 

whereas atrial- or nodal-type APs were not observed. Approximately 24% of IRX4

MB-negative cells exhibited an atrial-like AP (12 out of 50 cells). 

 

p

tr

rmalized to the baseline measured at time 0 (Fo). Avera

specific markers (ACTN2, TNNT2 and MYH6/7 and MYL2) and 

er (MYL2) 2-3 days after FACS sorting and cultures. As shown in Figure 17A

r 

C

im
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CMs (Figure 17A). Importantly, these IRX4-2 MB positive ventricular CMs abundantly

expressed GJA1 (known as connexin 43), an important connexin isoform in the formati

of gap junctions between ventricular CMs, indicating that these enriched ventricular CMs 

possess the functional capability of forming cardiac junctions. qRT-PCR analyses

demonstrated that expression of ventricular CM genes Irx4 and Myl2 as well as general 

 

on 

 further 

M genes were substantially enriched in IRX4 MB positive cells compared to the IRX4 

B-negative cell population (Figure 17B). Furthermore, these IRX4 MB positive cells 

owed a significant increase in expression of general CM-specific genes (Tnnt2, and 

Myh6/7) compared to the IRX4 MB-negative cells (Figure 17B). Genes representing 

atrial specific CMs (Myl7) or other cell types were either expressed at negligible levels 

(Acta2, Ddr2, and MYOD) or were non-detectable (Pecam1, and Neuro D) in the IRX4 

MB positive. 

 Taken together, the results clearly demonstrate that IRX4-2 MBs that target 

ventricular CM-specific mRNA in live cells allow isolation of functional ventricular CMs 

from differentiating mESCs with high specificity and efficiency. Despite the importance 

of ventricular CMs for cell-based therapy and drug development, no studies reported 

isolation of ventricular CMs from genetically unmodified stem cells. We generated 

homogeneous ventricular-type CMs from mESCs, without altering genomes, via MB-

based sorting for Irx4, a ventricular CM-specific transcription factor. This method 

yielded functional ventricular CMs with high specificity and efficiency. Nucleofection of 

a nabled enrichment of 

v

d ations in 

C

M

sh

 selected MB targeting mRNA of Irx4 followed by FACS sorting e

entricular-type CMs to 92% from differentiating mESCs. These purified CMs 

emonstrated ventricular CM-like APs at ~98% and Ca2+ oscill

54 
 



electrophysiological studies, suggesting functionally intact ventricular CMs. These cells 

showed coordinated contraction and survived more than 2 weeks in culture while 

maintaining their phenotype. 

Over the past decade, there has been notable advancement in the methodologies 

for generating PSCs (116, 117)and producing CMs from PSCs, raising our expectations 

for using stem cell-derived CMs for cardiac repair (61, 102). However, all reported CM 

differentiation protocols generate heterogeneous CMs mixed with other cell population

Several recent studies reported non-genetic methods for isolating g

s. 

eneral CMs (77, 118). 

s. 

s. 

cular CMs 

ied mESCs in which a fluorescence reporter gene 

l for basic research, 

 ventricular 

fy 

However, these protocols still generate heterogeneous CMs, not chamber specific CM

Given the major role of ventricular CMs for cardiac contractile function, it would be 

important to develop a non-genetic method to isolate ventricular CMs from 

differentiating PSCs, which will be of value to many preclinical and clinical application

 Studies have reported isolation of ventricular CMs derived from transgenic 

mESCs (105, 107) or embryonic carcinoma cell lines (74). For example, ventri

were isolated from genetically modif

was driven by a promoter of Myl2 (105, 107, 119, 120). While usefu

these genetic methods cannot be used for clinical applications or disease modeling due to 

genetic modifications. Cell sorting with specific surface markers is a preferred method 

for isolating target cells from PSC cultures. However, no unique surface markers are 

known for ventricular CMs, and to identify and validate such markers and develop 

antibodies would require considerable resources. 

 Our strategy was to directly target intracellular mRNAs of known

CM-specific genes. This approach avoids genetic modifications and the need to identi
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specific surface markers. We focused on Irx4, which is known to be a more specific 

identifier of ventricular CMs than Myl2 (121, 122). Irx4 plays a critical role in regulating 

chamber specific gene expression in the developing heart and is involved in determining 

ventricular cell specification (108, 109). Its expression is restricted to the ventricles 

throughout the developmental as well as postnatal periods (108, 123). 

 The uniqueness of this study is in being the first to target a transcription factor for

isolating target cells. MB technology marks desired cells by targeting specific mRNA 

sequences (124-126). Recently we reported that this technology allowed sorting of 

general CMs from differentiating human and mouse PSCs (127). However, in that stud

the targets were mRNAs of structural proteins such as MYH and TNNT2. As mRNAs of

structural proteins are present in abundant copies, the likelihood of successful isolation 

was relatively

 

y, 

 

 high. In fact, we initially tried another transcription factor, NKX2.5, as a 

, our 

 

get 

r the 

very 

ted seven 

target in that study, but were not able to sufficiently label general CMs. In this study

improved design technology enabled us to isolate ventricular CMs by targeting a 

transcription factor. To prove the specificity in this study, we carried out extensive assays

to ensure that the MB signal was a precise indicator of ventricular CMs based on the 

hybridization of the probe to IRX4. We tested the MBs in solution with synthetic tar

ODNs that varied from the ideal sequences by six bp, the closest that a BLAST search 

through the mouse transcriptome allowed. However, a major challenge was whethe

designed MBs could be hybridized to a sufficient quantity of target mRNA sequences to 

allow sorting of ventricular CMs. Among three designed MBs, one of them, IRX4-2 MB, 

was bound sufficiently to allow cell sorting. Another difficulty was to find a deli

method to deliver enough MBs to sufficiently label target mRNAs. We tes
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transfection methods to deliver MBs into living cells, Streptolysin O, Lipofectamin 2000,

Lullaby, electroporation, microinjection and nucleofection, and found that nucleof

in a specific buffer induced m

 

ection 

aximal target delectability with minimal cell toxicity (data 

not sho

 

linical and 

ethod e 

ough 

xpect that this MB-mediated cell 

rial 

wn). Cytotoxic effects of MB themselves within the cells were reported 

negligible. We and others have found that MBs degrade within a few hours in the cells so

that their effects on cell viability or cell identity are insignificant (31, 124-127). Even 

with repetitive transfections of MBs, we did not observe phenotypic or functional 

changes, as evidenced by unaffected spontaneous contraction and immunocytochemistry 

assays. 

 This unprecedented production of homogeneous and functional PSC-derived 

ventricular CMs using non-transgenic approach will yield new avenues for c

research applications. First, a pure population of ventricular CMs generated by this 

m  offers a safer and effective option for cell therapy and tissue engineering. Th

mixed populations of PSC-derived CMs are more likely to cause abnormal electrical 

activity16 or less efficient contractile function50. From a research perspective, the MB-

purified ventricular CMs represent a powerful in vitro tool for disease investigation and 

drug discovery. They could be used for better defined in vitro cardiac disease models for 

genetic or idiopathic cardiac diseases such as long QT syndrome (128, 129). They can 

also serve as an in vitro model to test chamber specific effects of cardiac drugs (130). 

These purified CMs will yield more accurate genetic and epigenetic information thr

high throughput sequencing techniques. We also e

sorting method can be applied for isolating other cardiac cells such as nodal cells or at

CMs. By eliminating the need for expensive efforts to identify surface markers and 
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generating antibodies, this new technology can be further expanded to isolation of oth

cell types from PSCs such as neuronal cells or pancreatic β-cells. 

 

er 
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CHAPTER 5 

ISOLATION OF NODAL AND WORKING CARDIOMYOCYTES 

USING MOLECULAR BEACONS 

 hPSCs can be differentiated into working (atrial and ventricular)- and nodal-type 

cardiomyocytes, which are suitable for different applications: enriched working-type cells 

without the contamination of nodal-type cells for repairing injured ventricular 

myocardium, and enriched nodal-type cells for developing a biological pacemaker to treat 

arrhythmias caused by cell loss or dysfunction in pacemaker tissues (e.g. patients with 

congenital heart defects). However, none of the existing methods generate homogeneous 

cells for a specific subtype, and methods for the isolation and enrichment of each subtype 

have not been well developed. Research on cardiac subtype specification has been 

challenging due to the lack of an analysis tool that can be used in a high throughput 

platform to distinguish and enrich cardiac subtypes. This chapter details progress in 

tracking, enriching and characterizing cardiac subtypes using MBs. This technology will 

allow us to generate highly homogeneous nodal- or working-type cell populations and 

therefore facilitate future applications of hPSCs in cardiac cell therapy as well as in drug 

discovery and toxicity screening. It can also help accelerate studies to understand the 

regulation of cardiac subtype specification from hPSCs, which could shed light on heart 

development and diseases. 

  Cardiac subtypes are currently distinguished by measuring the action potential of 

single beating cells using the patch clamp technique, which is labor intensive and time 

consuming (114). A higher throughput method will therefore be an important tool for the 

advancement in basic research and practical applications of cardiac subtypes. To this end, 
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we designed MBs to target cardiac subtype-specific mRNAs, evaluated methods for 

efficient delivery of these MBs into living cells, and determined their specificity and 

nsitivity using both fluorescence imaging and flow cytometry assays with known cell 

types. We quantified the expression levels of cardiac subtype genes in model cells as well 

as differentiated cells derived from hPSCs using both MBs and RT-PCR, and determined 

their correlation. 

  Cardiac subtypes have distinct molecular and cellular features, such as 

mitochondrial content (118), proliferation rate (131) and specific gene expression (77, 

86), which can be used to confirm specificity of the subtypes isolated based on MBs. In 

addition, each cardiac subtype has its unique electrophysiological phenotype (114), an 

important criterion for the confirmation of subtype specificity. We plan use the MBs to 

enrich putative nodal and working cardiomyocytes. evaluate molecular and cellular 

characteristics, and then confirm their functional properties by electrophysiology. 

Specific experiments include the detection of mitochondrial content, proliferation 

capacity, expression of gap junction channels and other subtype-associated genes, and the 

measurement of APs. In addition, we will evaluate if simultaneous detection of multiple 

markers using the MBs is required for accurate identification of cardiac subtypes.  

Identification of target mRNAs 
 
 Differentiation of hPSCs into cardiomyocytes was induced using an established 

growth factor-guided method (61, 132). Briefly, cells were plated on a monolayer before 

the differentiation protocol began. Cells were then incubated with a growth media 

supplemented with 100 ng/ml activin A and 10 ng/ml BMP4. Cells were incubated in the 

medium for 14 days, at which point the cells displayed spontaneous contraction in 

se
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culture. In addition between 40 and 6 ssed alpha-actinin, a 

ca

 

 

 

 

0% of cells expre

rdiomyocyte biomarker, as assessed by flow cytometry. 

 

      

   
 
Figure 18, Expression of nodal and working genes in a differentiating culture 
A) Expression of nodal cell markers TBX3, HCN4, and SHOX2 in 
differentiating cells on each day of differentiation.  B) Expression of 
working cell markers MYL7, MYL2, NPPB, NPPA, and SCN5A 
during the differentiation process.  

A B 

 

 

 RNA was isolated from cells each day during the differentiation procedure and 1 

ug was converted to cDNA. The total cDNA was then analyzed using TaqMan RT-PCR 
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for the presence of nodal specific genes including SHOX2, TBX3, and HCN4 (Figure

18A) as well as working cell genes such as NPPA, NPPB, MYL2, and MYL7, and 

SCN5A (Figure 18B). As shown in  Figure 18 the largest change in expression occurs in

NPPA. The several thousand fold increase is likely to occur in approximately 40% of the 

cells, indicating hundreds, if not thousands of copies of this gene in each target cell. 

 In addition

 

 

, several publications have shown that NPPA is ubiquitously expressed 

mm

 We used a variety of MB designs to target NPPA. These include DNA MBs, 

Locked nucleic acid (LNA) MBs (2), and Reference Dye Molecular Beacons (RBMBs) 

(3). DNA MBs are the same as described in previous aims, however LNA MBs and 

RBMBs are alternative desig s over the standard MB 

 

008 

in i ature working cells (133) but not expressed in the sunus venosus or 

atrioventricular canal of the primordial heart tube which develops into the cardiac 

conduction system (1, 134, 135). It is a secreted factor which is closely associated with 

myosin heavy chain and participates in the BMP4 cardiac differentiation pathway. 

Because of the abundant expression of NPPA in target cells and because of its central 

role in cardiac differentiation we decided to target NPPA for the isolation of working 

cells from a differentiating culture. 

Molecular beacon development for the detection of working CM mRNA 
 

ns which offer potential advantage

design. LNA is a variation on the standard RNA chemistry that significantly improves 

nuclease resistance and binding affinity due to the linkage of the 2’ oxygen and 4’ carbon 

of the sugar backbone (Figure 19A). MBs which incorporate LNAs have an increased

affinity for their target sequence and a decreased tolerance for mismatches due to the high 

enthalpies involved in LNA Watson-Crick bonds. RBMBs were first developed in 2
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by Chen et al, and are advantageous due to the incorporation of an unquench

dye on each MB (Figure 19B). This allows each experiment 

ed reference 

to track the location and 

uantity of both quenched and unquenched beacons inside cells, and it allows the probe 

 use cellular RNAi transport mechanisms to be exported from the nucleus. 

 

 

q

to

 

A            B 

 
C             D 

 
 
E 

  
 
Figure
A) Illu  

 

 19, Molecular beacon designs and validation 
stration of the chemical modification which makes LNA bases uniquely nuclease resistant(2) B) A

cartoon depicting the strategy for RBMB target hybridization and reference dye fluorescence(3) C) DNA
microplate data D) LNA microplate data E) RBMB microplate data from the reference dye and reporter dye.
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 mFold (111) and the RNA Composer Webserver (112) were used to mo

NA and to predict binding site availability in the target mRNAs. We designed 15

beacons t PPA using DNA, L

(Figu

Development of positive control cell lines 
 

del NPP

mR

argeting N

A 

 

NA, and RBMB backbones (Appendix A). MBs 

were synthesized with a range of fluorophores and quenchers as described in Appendix 

A. We quantified MB fluorescence signals when hybridized to perfectly complementary 

or mismatched synthetic targets by incubating 500 nM MB solution with targets of 

increasing concentrations (60-500 nM). NPPA MB signals were recorded using a 

microplate reader and normalized to the signals in wells with beacon only. All NPPA 

MBs displayed a linear response to increasing concentrations of complementary targets 

and a low response to mismatched targets (Figure 19C-E). The signal to noise ratio for 

LNA MBs appeared to significantly increase in comparison to a similar DNA MB (Figure 

19D), which matches predictions for an increased binding affinity to its target sequence. 

The reference dye in the RBMBs was also detected at equal intensities in each well 

re 19E). 

 HL1 cells would not be an ideal control line since all of these cells express atrial 

genes. In addition more precise positive control cell lines would differ only in the 

expression of the target gene. To recapitulate immature working and nodal cell conditions 

we decided to construct positive control cell lines by transfecting immortalized cell lines 

with plasmids expressing target genes. A plasmid expressing both NPPA and puromycin 

resistance genes was ordered from Origene and transformed into E. Coli to create a 

bacterial stock. The plasmid was maxi-prepped from the bacterial stock using a Qiagen 

Maxi-prep kit and then confirmed the sequence of plasmid through the custom 
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sequencing service from MWG. The plasmid was then transfected into CHO cells and 

3T3 cells using Lipofectamine 2000. Briefly, 2 uL of Lipofectamine 2000 was incubated 

in 150 uL of Optimem for 5 minutes while 2 ug of plasmid was diluted into 150 uL of 

ptimem. The lipid and plasmid solutions were combined and allowed to complex for 20 

r 

transfection efficiency. 70-90% of CHO cells were GFP positive, while only 20-40% of 

3T3 cells were GFP positive (data not shown) after the transfection procedure.  

 

 

O

minutes, after which the entire solution was added to a 6 well plate of cells (either 3T3 o

CHO cells). Transfection was allowed to proceed for 24 hours before the media was 

replaced. A control plasmid expressing only GFP was also transfected to analyze 

 

  
    B 

  
 
Figure 20, Characterization of NPPA positive control cell lines 
A) Immunocytochemistry data and B) RT PCR data demonstrating 
that stably transfected cells express significant quantities of 
NPPAduring extended cell culture
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 l puromycin for 1 week, 

during which time 100% of the GFP expressing cells died. Single cells were placed in 

each well of a 96 well plate and maintained under selective pressure for 3 weeks. RNA 

was isolated from surviving colonies and analyzed for NPPA expression. The colony 

expressing the most NPPA was selected and propagated as a positive control cell line. 

Cells were subjected to selective pressure (15 ug/mL puromycin) for 3 out of every 7 

d

 The positive control cell line (CHO-NPPA) was analyzed using 

immunocytochemistry (Figure 20A), which indicated that 85-90% of cells in the culture 

expressed NPPA. In addition NPPA expression was analyzed at the second and 18th 

passage after colony selection, showing a significant upregulation in comparison to 

untransfected cells and similar levels of expression. The cell line did not display 

significantly altered morphology or proliferation rates for at least 18 passages, indicating 

that the plasmid integration did not significantly disrupt essential cell maintenance 

pathways. Each cell should express several hundred copies of NPPA, providing a 

conservative predictor of the ability of MBs to discriminate between target mRNA and 

o

 

NPPA expressing cells were selected using 15 ug/m

ays to maintain stable gene expression. 

ther mRNA in a cellular environment. 

To test each NPPA beacon for sensitivity and specificity we transfected both 

NPPA-CHO and CHO cells with NPPA MBs. Briefly, 1 million cells were trypsinized, 

and the trypsin was neutralized with growth media containing 10% FBS. Cells were 

rinsed in PBS and then resuspended in nucleofection solution containing 500 nM MB. 

Cells were then nucleofected using the Amaxa Nucleofector program U024 and either 

plated onto gelatin coated glass slides or kept in suspension for flow cytometry. A 
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random quenched MB as described in Aim 2 was delivered to each cell type during

experiment to ensure that nonspecific effects were not causing MBs to open (Figure 21

A). In addition a random unquenched MB was delivered to assess delivery efficiency. 

 

 each 

 

 
 
 
 

 

 

 

 The NPPA 680 DNA and LNA beacons were observed to be more fluorescent in 

CHO-NPPA cells than in CHO cells (Figure 21). In addition fluorescence microscopy 

 
 

Flow c
micros

Figure 21, NPPA MBs in positive control cell lines 
ytometry data showing beacon signal in positive and negative control cells and fluorescence 
copy image of  LNA NPPA MB in CHO-NPPA cytoplasm.  
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was used to determine that the NPPA MB signal originated from cytoplasmic, rather than 

nuclear loci. NPPA MBs selected through this process carried a high degree of reliability 

ecause control beacons with identical ODN modifications behaved similarly in both 

CHO and CHO-NPPA cells, eliminating several systemic artifacts. In addition the only 

difference between CHO and CHO-NPPA cells was the expression of a single exogenous 

gene, which should be less drastic than the changes induced by differentiation systems 

used to test previous beacons. Finally, the detection of MB signal in cytoplasmic loci also 

reduced fears of systemic artifact which may be caused by nuclease activity, which 

occurs at the highest rate in the nucleus. 

 

 

 

 

b

Delivery of MBs into stem cells 

 

 
 

20 ms, 2 pulse 
conditions as well as the 1400 V, 20 ms, 2 pulse method due to their high transfection efficiency and low rate of 
false positives 

Figure 22, Optimization of Neon transfection in cardiomyocytes. 
A) A wide range of transfection conditions were attempted, however we selected the 1500 V, 
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 Due to low cell yields in previous aims we decided to test out the Neon 

transfection system, recommended in several publications(3, 28, 31, 33) for stem cell 

transfections because of its reduction in cell death and high transfection efficiency. In 

addition the 10 uL Neon transfection kit allows the use of 100,000 cells per transfection, 

rather than the 1 n cells used for nucleofection. Due to the expense of stem cell 

culture and the long development time required for cardiomyocytes the order of 

magnitude reduction in cell numbers becomes an important consideration. 

 Towards this end we tested 30 different parameter sets based on optimization 

parameters suggested by the literature and the manufacturer. We used positive control 

MBs to evaluate transfection efficiencies using very similar types of probes, and false 

positives were a d MBs. The 

random negative d cell s ze or 

o 

 

 millio

ssessed by transfecting random loop sequence quenche

 MBs served the dual purpose fo detecting increase i

increased nuclease activity which is associated with cell death or stress. We found tw

parameter sets, 1500/30/2 and 1400/20/2 which resulted in a high transfection rate, low

false positive rate, and high cell viability.  
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 the 

d high specificity in the immortalized cell line also appeared to be sensitive 

 cardiomyocyte differentiated from stem cells. Upon further testing, however, we were 

ot able to reliably reproduce our results. We optimized our procedure for different days, 

nding that old CMs were easier to transfect with the more stringent 1500/30/2 protocol, 

while day 14 CMs showed higher efficiency with the 1400/20/2 protocol. We also varied 

the time that beacons were incubated in cells before analysis, the temperature that they 

were incubated in, the centrifugation speed that they were rinsed at, and the media that 

A      B 

 
Figure 23, Comparison of cells transfected with either the Amaxa or Neon electroporation 
systems. 

transfected with MHC MB using the Neon transfection system. 
A) Differentiated CMs nucleofected with MHC MB. B) Cells from the same differentiation protocol 

 

 

 

 When we transfected the NPPA MBs identified as potential matches by

positive ontrol cell line assay, we were excited to find that the beacons that 

demonstrate

 c

to

n

fi
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they were incubated in both after transfection and during flow cytometry. We were not 

able to see a significant effect due to any of these variables. 

 To further troubleshoot this issue we compared Neon transfection to the gold 

standard nucleofection approach developed in previous aims. We found that the most 

important variables in the protocol were the type of enzyme used for dissociation and 

number of cells. We also found that while Neon transfection did show similar effects, the 

fluorescent intensity of MHC MBs was significantly reduced in comparison to 

nucleofection (Figure 23B) and the results were significantly more variable even when 

experimental conditions were carefully controlled to reduce the effect of human error. 

Because of this comparison we decided to proceed with nucleofection rather than Neon 

transfection for further trials. 

NPPA MB transfection 

  the 

nucleofection protocol described in previous aims. We saw that there were significantly 

fewer NPPA positive cells than MHC positive cells. In addition the number of cells 

detected as NPPA or MHC positive varied directly with the observed number of beating 

cells in culture. This number was also quantified using α-actinin staining after the third 

experiment. To quantify the difference between MHC and NPPA MB positive cells 

among different cohorts of differentiated CMs, we normalized the beacon positive cells 

to the MHC MB  cells from the same cohort. We found that the number of MHC+ cells 

was within 5% of the number of α-actinin positive cells in our control experiment. More 

importantly, the number of NPPA+ cells is consistently 30% of the number of MHC+ 

cells. This is a promising sign that the MBs are functioning appropriately and that the 

We delivered NPPA beacons into differentiated cardiomyocytes using

+
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NPPA MBs are selecting a specific subset of cells which varies proportionally with the 

number of differentiated CMs in culture. 

 

 

 

 

 

In conclusion, we have developed both a more accurate system for quickly 

reeni bly 

. IN 

 

A     B 

 
Figure 24, NPPA+ cells in a differentiating culture vary based on the efficiency of CM differentiation 
A) NPPA positive cells in a differentiing culture. B) NPPA+ cells normalized to the number of CMs 
in 3 cohorts  

 

sc ng MBs as well as MBs specific for an important subset of CM cells. Sta

transfected cells used as a positive control system introduce an additional level of 

experimental rigor to molecular beacon specificity testing due to the reduction in 

dynamic variable in comparison to differentiating or metabolically altered cells. The 

higher success rates that we saw based on results from the positive control cell line 

significantly reduced the cost and time associated with beacon specificity testing
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addition, this could allow a wider distribution of labor, so that labs without stem cell 

expertise could provide preliminary data on the usefulness of a specific molecular beac

before providing it to a stem cell lab. 

The working CMs that we have isolated using NPPA MBs will be extremely

useful to researchers interested in deconvolving the effects of nodal and working c

either implantation or drug testing. We expect to see a significant reduction in arrythmias 

and increased conductance when implanting working cells into live hearts. In addition, if

both NPPA and MHC beacons are used to i

on 

 

ells on 

 

solate CMs we would expect to see a further 

duction in the number of undesired cell types present in a cell population. This would 

duce the chance of tumorigenesis arising from the implantation of stem cells into tissue 

). During drug testing working CMs will display more uniform characteristics of 

b ent of more sensitive 

assays(114). In addition the use of non-genetic isolation methods will enable the 

development of methods directly applicable to large numbers of iPS cells differentiated in 

parallel, expanding the information which can be gleaned from preclinical assays (80).. 

 

re

re

(136

oth conduction and contraction, allowing the developm
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CHAPTER 6 

Circulation. August 2013 

ile B , 

embryonic stem cells through molecular beacons targeting a ventricle-specific 

differentiating pluripotent stem cells using molecular beacons.” Nature Protocols. Under 

differentiation embryonic stem cells based on atrial natriuretic factor messenger RNA.” 

CONCLUSIONS AND FUTURE CHALLENGES 

 In the three aims of this thesis, the field of cardiac engineering has been advanced 

by the development of protocols for the isolation of specific subsets of cardiomyocytes. 

This advance promises to be a significant boon for both cell therapy and drug testing 

research by increasing control over the inputs of both systems. To publicize these 

advancements we have published our work in the following research articles: 

 

Wile B, Ban K, Kim S, Park H, Byun J, Cho K, Saafir T, Song M, Yu S, Wagner M, 

Yoon Y, Bao G. 2013. “Purification of cardiomyocytes from differentiating pluripotent 

stem cells using molecular beacons targeting cardiomyocyte specific mRNA.” 

 

W , Ban K, Cho K, Kim S, Song M, Singer J, Syed A, Yu S, Wagner M, Yoon Y

Bao G, “Non-genetic purification of ventricular cardiomyocytes from differentiating 

transcription factor.” In the submission process. 

 

Wile B, Ban K, Yoon Y, Bao G,“Isolation of high purity cardiomyocytes from 

Review. 

 

Wile B, Jha R, Xu C, Bao G. “Purification of working cardiomyocytes from 

Manuscript in preparation. 
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Future opportunities using beacons in developmental biology 

 We have proven MBs to be a versatile tool which can select various cell types 

based on abundantly expressed RNA. While this thesis was targeted towards isolating 

cardiac cells, the opportunity exists to apply the same technique to isolate cell types 

useful in other areas of developmental biology. Neural, pancreatic, and hepatic 

developmental biology may benefit from the use of MBs to isolate appropriate cell types. 

 We have spoken with researchers at Emory and the Joslin Diabetes Center about 

several of the current roadblocks in neural and pancreatic developmental biology. For 

neural cell cultures, it is extremely difficult to isolate neurons without contaminating glial 

cells. Glial cells can significantly affect downstream assays, and they can quickly 

dominate a neural culture and disrupt measurements (139). Likewise, primary pancreatic 

beta cells can only be purified using an arduous procedure including a sucrose gradient. 

The resulting mixture of cells can include alpha cells; several research questions are 

predicated on the interplay between alpha and beta pancreatic cells, so the lack of control 

in this area hinders sensitive assays (140). MBs could be developed to highly expressed 

se articles, in addition to numerous conference posters and presentations, h

spawned numerous collaborations and opened avenues to new research questions. We are

actively exploring as many of these stories as possible, and we hope that this will gro

into an active area of research for years to come. 

At the same time, RNA research is becoming more and more widely recognized as a

essential field in its own right. The prevalence of transcriptomics as well as the rapid

advance of in situ RNA probes such as MBs (127), mTRIPS (137), and nanoflares (138) 

will all provide new and essential tools to advance this area of investigation. 
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mRNAs eliable separation method. Currently 

transfection methods are limiting MBs in this area, but nucleofection has not been tried in 

either situation, leaving room for improvement. 

 MBs as a tool to isolate specific cell types 

The advent of both iPS cells and gene modification technology point to novel and 

even more exciting future uses for M

differentiated progeny cells b

utility in this regard has already been proven in Chapter 3 of this thesis, however this 

could be expanded to accelerate the research process with banks of iPS cells used to 

study specific mutations, such as the LQT1 mutation(80). In addition MBs could be used 

to separate cardiac subtypes to analyze the effect of mutations in different functional 

capacities. 

These mutations could also be induced by gene modification technologies, such as 

clustered regularly interspaced short palindromic repeats (CRISPR) or Transcription 

activator-like effector nucleases (TALENs), in standard hESC lines to provide models for 

research. Currently gene modification technologies suffer from a very low correction 

rate, making them difficult and expensive to work with because of the sensitivity needed 

to detect successful modifications(141). MBs could be used to select only the modified 

cell lines, thereby greatly speeding up the process of generating novel cell lines. In 

addition, MBs could be incorporated into the gene modification process to increase the 

potency of cell therapies by ensuring that every cell reimplanted into patients has been 

corrected rather than the current proportions of between 5 and 20%. 

 

in either of these cell types for a more r

Bs. MBs are the perfect tool to identify iPS cells or 

ecause they do not require genetic modification. Their 
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APPENDIX A: OLIGONUCLEOTIDE SEQUENCES 

 

 

 

 

Chapter 4: 

 

 

 

Chapter 3: 
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Chapter 5: 

Probe Name  Probe Sequence 
Complex Melting 

Tm 
NPPA_3_UTR_a  CCTCACCCTGCTTGTCCTCCCTGGCTGTTATGTGAGG  71 
NPPA_3_UTR_b  ACCTCTTGCAGTCTGTCCCTAGGAGGT  66.3 
NPPA_3_UTR_c  CATCACCATGGCAACAAGATGACACAAATGCGTGATG  65.1 
NPPA_5_UTR_a  ACCTCTCTTGGCCTACGTCTGTCCCTAGAGGT  71 
NPPA_antis_a  ACTGGATCTCTCTGGGCTGGGCTGACTTCCAGT  71.7 

NPPALoop150  CTAGCCGGGCACGACCTCATCTTCTAAAGGCTAG  61.3 
NPPALoop190  CATAGCTTCTTCATTCGGCTCACTGAGCTATG  60.2 

NPPA_L680  CACAGTGTTGACAGGAAGCTGCAGCTGTG  66.7 

NPPA_L750  CTGCCAATGCATGGGGTGGGAGAGGCAG  69.9 
NPPA_antis_a_str  CCTCGATCTCTCTGGGCTGGGCTGACTTCGAGG  70.1 
NPPA_antis_b  CATCGAATCCATCAGGTCTGCGTTGGACGATG  67.3 

   RBMBs    

NPPA_RBMB 
[Cy5]CATCGAATCCATCAGGTCTGCGTTGGA 

CGATGGACGGCAGCGTGCAGCTCTT 
67.3 

NPPA_RBMB_Stem  [Cy3]GAGCTGCACGCTGCCGTC[BHQ‐3]  69.3 
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