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ABSTRACT 

Anthropogenically introduced nitrogen has compromised environmental quality, but 

is an essential element for crop production, particularly corn production.  Increasing 

nitrogen use efficiency by adopting eco-innovations such as nitrogen soil testing, plant 

tissue testing and nitrogen transformation inhibitors can ameliorate this problem.  Data 

from the 2010 USDA Agricultural Resource Management Survey of corn producers was used 

to examine the factors affecting adoption of these practices.  Twenty-one percent of the 

1840 corn farmers had adopted nitrogen soil testing, three percent had adopted plant 

tissue testing and ten percent had adopted nitrogen inhibitors.  A multivariate probit 

regression found significant results for each category of explanatory variable that was 

examined.  Older farmers were less likely to adopt nitrogen soil testing and nitrogen 

inhibitors.  Farmers who did not obtain external nitrogen recommendations were less likely 

to adopt all three practices than farmers who received recommendations from a crop 

consultant.  Those who received recommendations from fertilizer dealers were less likely to 

adopt nitrogen soil testing. Those who indicated that high prices influenced their decision 

to plant corn on that field were more likely to adopt plant tissue testing but less likely to 

adopt the other two practices.  All regions were more likely to adopt nitrogen soil testing 

than the Midwest.  Those who adopted conservation tillage were more likely to adopt 

nitrogen inhibitors and those who received conservation payments were more likely to 

adopt nitrogen soil testing and plant tissue testing.  Adoption was also associated with the 

adoption of several other technologies.
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Chapter 1 — Introduction 

1.1 Motivation 

In the past decade the United States has increased corn production as increasing 

demand has raised prices (USDA 2014a). This demand has spurred farmers to bring millions 

of more acres into production1. Increased capacity can be coupled with new innovations 

that allow for increasing productivity per acre and better environmental stewardship 

(Pingali 2012; FAO 2002). But despite food security and economic benefits of increased U.S. 

corn production, there is increasing concern regarding biodegradation of aquatic 

ecosystems due to agricultural chemical inputs (Galloway et al. 2004; Mitsch et al. 1999).  

Anthropogenically introduced nitrogen for agricultural production has compromised 

water quality, biological diversity, and threatens human health all over the world 

(Robertson and Vitousek 2009; Galloway et al. 2004). Nitrogen fertilizer is largely produced 

by the Haber-Bosch process allowing for the dramatic increase in world food production in 

the last century (Sutton et al. 2011; Townsend et al. 2012). Nitrogen is an essential element 

for plant life and therefore in agriculture—meaning it cannot be replaced by technological 

substitutes, as chlorofluorocarbons were substituted in industrial processes by non-ozone 

depleting chemicals (Mosier et al. 2001). 

From 1961 to 2011, nitrogen fertilizer consumption in the US increased by 324% 

(USDA 2013). Corn is the most widely planted crop and receives the highest nitrogen 

                                                 
1 Reference Appendix 1 for official USDA numbers regarding acres, prices, and production. 
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application rates per acre (Ribaudo et al. 2012). The 2013 crop year saw an estimated 87.2 

million acres of corn harvested for grain that yielded almost 14 billion bushels —a 5 billion 

bushel jump from 2002 (USDA 2014b).  

Annual nitrogen application provides crops with needed nutrition. But over-

application (i.e. exceeding agronomic fertilizer targets) can occur because added nitrogen 

can serve as a form of insurance or risk management at a relatively low cost compared to 

potential yield loss (Williamson 2011; Billen et al. 2013). The USDA estimated that in 2006 

approximately 65% of surveyed cropland did not follow nitrogen best management 

practices (Ribaudo et al. 2011). This, coupled with other factors, makes agriculture in the 

U.S. and many other countries the leading source of non-point source pollution in surface 

and coastal waters (Warner 2008; OECD 2001).  

Additional nitrogen from agriculture has changed the global nitrogen cycle leading to 

severe impacts on aquatic systems and the organisms that rely on them (Billen et al. 2013).  

Nitrogen can be lost in surface and ground water leading to excess plant biomass and a 

depletion of oxygen (Billen et al. 2013; Chambers et al. 2011). A growing mobilized nitrogen 

imbalance has increased the need for greater nitrogen use efficiency (NUE) (Galloway et al. 

2004; Robertson and Vitousek 2009; Vitousek et al. 1997). NUE is the quantitative measure 

of grain produced per unit of fertilizer applied (Ciampitti and Vyn 2011) and will be used 

throughout this study when discussing agricultural eco-innovations.  

Farmers can increase NUE by adopting best management practices (BMPs), nitrogen-

efficient plant varieties, precision agriculture, and other eco-innovations that diminish 
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environmental externalities (Mosier et al. 2001; Tscharntke et al. 2012; Ribaudo et al. 2012; 

Chen et al. 2008). Eco-innovations or technological environmental innovations, change the 

ecological properties of a society’s metabolism (Huber 2008b). Changing a society’s 

metabolism refers to “new technologies and practices that change the operative structures 

and ecological properties of production and consumption, and thus relieve strain on 

resources and environmental sinks” (Huber 2008a:361).  

Innovations that protect health and the environment can include reducing negative 

externalities of contamination, increasing biological safety, and improving long -term 

ecosystem health (Kemp and Volpi 2008). Agricultural eco-innovations can possibly 

decrease cost and/or increase yield by being more efficient with inputs and reducing 

capital, labor, and energy-using outputs. A broad classification of agriculturally-based 

innovations includes: mechanical innovations (e.g. improving tractor equipment), biological 

innovations (hybrid seeds), chemical innovations (more efficient fertilizers), agronomic 

innovations (new tilling practices), biotechnological innovations (genetically modified 

organisms), and precision technologies (GPS and variable-rate technology) (Sunding and 

Zilberman 1999). Adoption of such innovations over time has changed global agricultural 

productivity (McBrantney, Whelan, and Ancev 2005; McBride and Daberkow 2003). 

Just as economic analysis takes into account the added cost and value at each stage 

of production, agricultural benefits and impacts need to consider all stages in order to 

capture truly eco-efficient farming practices. Knowledge of environmental processes, 

minimization of non-renewable inputs, and collective action towards natural resource 

solutions can be brought into a broadened sustainable production perspective as society 
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continues to face decreasing energy supplies and increased environmental  pollution (Elliot 

and Cole 1989; Pretty 2008). Therefore, analyzing adoption of agricultural eco-innovations 

is critical in both understanding and adjusting the way we present information and develop 

policy relating to agriculture and the environment.  The section below presents specific 

research questions and overall goals of this study.   

1.2 Specific Research Questions 

 What are determining factors affecting adoption by corn farmers of nitrogen soil 

testing, plant tissue testing, and nitrogen transformation inhibitors? 

 How do these factors compare to previous agricultural innovation adoption studies? 

 How do these research results help to improve farm practices, and educational 

outreach to promote voluntary adoption of environmentally sound practices that 

ultimately improve water quality? 

In order to understand factors that may influence adoption of NUE innovations, we 

must first understand the context and biological processes that occur. Examination of 

nitrogen fertilizer use and its relationship with the environment will be covered in the next 

chapter. Chapter 3 is a literature review on adoption and diffusion of innovations and their 

role in moving society towards a more sustainable farming system. Survey information and 

analytical methods are found in Chapter 4. Summary statistics, CART models, and 

multivariate regression results are analyzed and discussed in Chapter 5. Chapter 6 provides 

conclusions and final thoughts on this research.  
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Chapter 2 — Background 

Part of the problem in targeting agricultural nitrogen non-point source pollution is 

its complex nature and its widespread effects over millions of heterogeneous agents. 

Complexity of the nitrogen cycle “provides multiple points of management intervention; on 

the other hand, it hides interactions among different processes” (Robertson and Vitousek 

2009:99). The multifaceted framework and diverse stakeholder base creates a wicked 

problem (Rittel and Webber 1973).  

Classic problems in science and mathematics usually operate in restrained or “tame” 

environments where laws and theories are predictable and measurable (Rittel and Webber 

1973:160). Wicked problems are illustrated as having unpredictable outcomes and 

incorporating multiple user groups representing a variety of desired outcomes  (Batie 2008). 

Non-point source pollution from agriculture is a wicked problem. There is no ultimate 

solution, only a resolution of pollution mitigation by users (Arias et al. 2000).  

2.1 Nitrogen and Agriculture 

Agricultural history helps to explain the problems, policies, and productivity we have 

today (David, 1994). Therefore a basic historical introduction is critical in understanding the 

depth and breadth of environmental challenges linked to farm production. Regarding 

nitrogen, increasing use of fertilizers on crops started in the 19th century (Melillo 2012). 

Between the 1840s and 1930s hundreds of millions of tons of nitrogen-rich guano and 

sodium nitrate (NaNO3) were shipped to farmers in North America and Europe from Peru 

and Chile.  
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This increase in agricultural productivity during the Industrial Revolution is 

characterized by some as the ‘First Green Revolution’ (Melillo 2012). Historians usually refer 

to the Green Revolution as the array of programs and policies that increased production and 

synthetic inputs that occurred in the 1960s and 70s. US Green Revolution policies led to a 

fertilizer-intensive approach of food and fiber production that has had a profound 

anthropogenic impact on the global nitrogen cycle (Pretty et al. 2010). The USDA has been 

tracking plant nutrient fertilizer consumption since the 1960s. Figure 1 shows the dramatic 

increase nitrogen use over a fifty year period.     

 

Figure 1- U.S. Nitrogen Fertilizer Consumption Since 1960 
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2.2 The Nitrogen Cycle 

A rudimentary introduction to the nitrogen cycle is essential for implementing 

proper agricultural nutrient management and grasping the far reaching effects unnaturally 

high amounts of reactive nitrogen have on the surrounding ecosystem (Field 2004). When 

discussing nitrogen in general, N can be used as an abbreviation. When specifically 

discussing reactive nitrogen, many scientific papers use Nr as an abbreviation (Galloway et 

al. 2004), which includes biologically active ammonium (NH4
+) and nitrate-nitrogen (NO3

-).   

Nitrogen (N) is a limiting element in many terrestrial and aquatic ecosystems  

(Galloway et al. 2004). N is essential in agriculture because it promotes greater plant 

growth and increases crop quality (Mitsch et al. 1999). Reactive nitrogen (Nr) that escapes 

agricultural production negatively impacts terrestrial, fresh water, marine ecosystems, and 

human health (Connor et al. 2011; Galloway et al. 2003).  

Nitrogen cycles in different chemical states between the atmosphere, soil, and 

plants (Borton and Porter 2008). Nitrogen gas (N2) is the most common gas in the 

atmosphere, making up 78% by volume in dry air (Field 2004). A corn plant will only readily 

uptake two forms of Nr; ammonium (NH4
+) and nitrate-nitrogen (NO3

-) (Nelson and Huber 

1992). Two of the largest sources of nitrogen in the farm system are not readily used by 

plants, air and dead organic matter (DOM). The N2 double-bond in the atmospheric nitrogen 

gas is hard to break and therefore unusable by plants (Bardgett 2005). Over 90% of N in soil 

can be trapped as DOM which cannot be readily processed by plants. Plants will instead 

uptake ammonium or converted inorganic nitrogen in the soil that has occurred via 
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mineralization or N-fixing bacteria. The nitrogen cycle as it relates to water pollution and 

agriculture is shown in figure 2 below. 

Naturally introduced nitrogen can come from nitrogen fixing bacteria, soil 

microorganisms, and lighting strikes (Field 2004). Legumes can help accumulate plant-

useable nitrogen in the soil by hosting a symbiotic bacterium that converts organic nitrogen 

to inorganic nitrogen in the root zone (Connor et al. 2011). Rotating legume crops (like 

soybeans) with corn can help to both naturally replenish N in the soil and prevent crop 

specific diseases (Billen et al. 2013; Pretty 2008). Lightning can add Nr to the soil from 

volatized nitrogen in the atmosphere, but is only considered an important source of Nr in 

Source: (Robertson and Vitousek, 2009) 

Figure 2- Complexities of N Cyc le 
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areas that lack other large Nr sources (Galloway et al. 2004) and therefore is an insignificant 

Nr source for intensive industrial agriculture.   

2.2.1 Anthropogenic Changes  

Anthropogenic changes to the global nitrogen cycle can involve both redistribution 

of natural Nr sources or Nr from industrial fixation. As mentioned earlier, sodium nitrate 

can be mined and used as an Nr source. But until the late 1800s, nitrogen-fixing legumes 

and animal manure were primary sources of fertilizer for crop fields (Sutton et al. 2011). In 

the past, it was common to have both field crops and livestock—so waste manure was 

available on-site (Schroder 2005). Manure has benefits beyond Nr, including micronutrients 

and organic matter that helps build soil organic matter (Beckman and Livingston 2012). But 

its nutritional content can be unpredictable and depending on factors like proximity to 

manure source and manure state (solid or liquid) can be relatively expensive to apply 

compared to fertilizer from industrial fixation (Schroder 2005; Beckman and Livingston 

2012).  

In 1908, the Haber-Bosch process allowed cheap ammonia fertilizer to be created on 

an industrial scale (Sutton et al. 2011). Humans’ ability to produce massive amounts of Nr 

has allowed agriculture to feed the world—which cannot be discounted. However, 

producing massive amounts of Nr comes with a price. Both the intensive amount of energy 

(largely coming from fossil fuels) and the added Nr in the environment have led to 

increased pollution around the world (Sutton et al. 2011). 
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2.2.2 Water Quality and Agriculture  

Nitrate-nitrogen is highly mobile in water (Mitsch et al. 1999). Areas that have 

shallow groundwater that is used for human consumption can be at risk of nitrate pollution 

from agriculture. Once nitrates pollute groundwater, users must remove high level of 

nitrates before consumption—forcing secondary costs (Ribaudo et al. 2011). High nitrate 

levels in water can cause heart disease and methemoglobinemia (blue baby syndrome) (EPA 

2010). The EPA has set a maximum contaminant level for drinking water in the U.S. to 10 

milligrams per liter (mg/l) for nitrate-nitrogen. Figure 3 below is a map from the U.S. 

Geological Survey that shows areas at risk of nitrate contamination to s hallow ground water 

across the Continental U.S. (1999). Notice that areas known for intense agriculture, such as 

the Corn Belt, are dealing with higher levels nitrate pollution.  

Figure 3- Groundwater Nitrate Risk Map 
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Groundwater contamination is not the only environmental impact associated with 

movement of excess Nr. Eutrophication of surface waters can cause algae blooms, creating 

an oxygen level too low to support fish, shellfish, and other aquatic life (Field 2004). Excess 

mobile nitrogen leads to hundreds of hypoxic dead zones all over the world—many of which 

are directly related to increased fertilizer use (Field 2004; Billen et al. 2013). The decline of 

aquatic health in areas like the Gulf of Mexico has led to a decrease in recreational and 

commercial fisheries health affecting both the fishing industry and tourism (Mitsch et al. 

1999).  

2.3 Mitigating N Loss in Agriculture 

A crop field can lose applied fertilizer or naturally occurring nitrogen to water 

sources by soil erosion, denitrification2, runoff, volatilization, and leaching. Farm managers 

can take steps to minimize these losses by adjusting practices and adopting technology. 

Fertilizer applications can be timed and administered to foster efficient plant uptake before 

Nr leaches below the root zone (Connor et al. 2011). Leaching can be minimized by 

adjusting tile drainage and field contours which can decrease water movement on the 

surface and in subsurface soil (Mitsch et al. 1999).  

Depending on a variety of factors, commercial nitrogen fertilizer is usually applied in 

one or more of the following forms: nitrate, ammonia, ammonium, or urea (Mengel 1986). 

Nitrogen fertilizer can come in dry and liquid forms with application method varying from 

                                                 
2 Denitrification is a natural process “carried out by microorganisms in anaerobic conditions with 

nitrate acting as a terminal electron acceptor, result[ing] in the loss of nitrogen as it is converted to gaseous 

nitrous oxide (N2O and molecular nitrogen (N2)” (Mitsch et al. 1999:43).  
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surface to subsurface application. A farmer may choose to apply some or all fertilizer in the 

fall well before planting season because of better soil conditions, time savings, and labor 

and equipment demands (Randall and Vetsch 2005). 

Timing, rate, nitrogen form, and application method are all valuable components of 

N management because a plant’s need for nutrients changes throughout the growing 

season. Figure 4 on the following page shows the varying nitrogen uptake in a typical corn 

plant. N uptake is relatively low at planting then rapidly increases at the end of June. In 

corn, one bushel can contain approximately 1 pound of nitrogen with close to half that 

nitrogen in the grain (Martin, Waldren, and Stamp 2006). Adequate and timely plant-

available nitrogen affects both grain number and grain weight (Liu et al. 2011).  

From a managerial perspective, crop nutrition must focus on meeting the nutritional 

needs of the plant not just applying a certain rate to a field (Connor et al. 2011). This means 

using the right amount of fertilizer at the right time. Proper timing and quantity can 

Figure 4 - Timing of nitrogen uptake in corn  

 

Source: Iowa State University Extension 

 

https://www.pioneer.com/home/site/us/agronomy/library/template.CONTENT/guid.E342523E-4706-4A4D-904E-80DDD799E537
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minimize nitrogen losses and decrease the farmer’s fertilizer cost (Ribaudo et al. 2011). 

Some methods include side-dressing, variable rate N applications, and nitrogen-

transformation inhibitors. But farmers must take a holistic approach by incorporating a 

variety of technologies and practices if mitigation of non-point source pollution is to be 

observed on a large scale (Mitsch et al. 1999).  

2.4 Three Dependent Variables: NUE Innovations 

Three nitrogen-use efficiency innovations were selected as dependent variables in 

the following adoption study. These three nitrogen efficient technologies have not been 

extensively studied: nitrogen soil testing, plant tissue testing, and nitrogen transformation 

inhibitors. A detailed description of each technology helps to explain both their value and 

role in increasing NUE in a farming system.  

2.4.1 Nitrogen Soil Testing 

A common tool for increasing NUE is the nitrogen soil test, which can use field-level 

data to help farmers decide on application quantities (Williamson 2011). This is both the 

oldest and most common of the three technologies being examined (Ribaudo et al. 2012). 

Soil testing determines the level of available nutrients in the soil  (Peters and Laboski 2013). 

Nitrogen soil testing predicts the amount of plant-available nitrogen in the soil so preseason 

and in-furrow side-dressing applications can be more precise (Brouder and Mengel 2003). 

The Natural Resource Conservation Service (NRCS 2012) recommends soil nitrate and 

organic N testing as part of annual nutrient management practices to reduce nitrogen loss. 

It is recommended that at least one sample per five acres be taken (NRCS 2012), costing 

anywhere from $20-50 for each nitrogen soil test (MU-Extension 2012; Rutgers 2014). 
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Previous 2001 and 2005 ARMS data showed corn farmers that use soil testing can reduce 

overall commercial fertilizer application compared to non-adopters (Williamson 2011).  

2.4.2 Nitrogen Transformation Inhibitors 

In conjunction with this informative tool, nitrogen transformation inhibitors can be 

an added input to fertilizer applications in order to decrease volatilization and leaching 

(Upadhyay and Tewari 2011). This practice can be especially valuable for fall nitrogen 

applications (Frazen 2011). Both nitrogen transformation inhibitors and controlled-release 

fertilizer are recommended by NRCS as nutrient management conservation practices  (2012). 

There are three classifications of nitrogen transformation inhibitors and controlled-release 

fertilizer. 

Nitrification inhibitors (NI) are chemicals that help reduce the transformation of 

nitrogen in the ammonium form to the nitrate form, and thus reduce losses of reactive 

nitrogen. These chemicals kill or interfere with the metabolism of bacteria that cause 

nitrification (Trenkel 2010). The enzymes that convert ammonium to nitrate are blocked, 

helping delay the conversion to prolong nitrogen in the root zone since nitrate is more 

mobile and susceptible to leaching. A common NI is N-Serve® by Dow AgroSciences which 

costs an estimated $8 an acre (Dow 2014).  

Urease inhibitors help to block the enzyme urease from converting urea to volatile 

ammonia (Trenkel 2010). Ammonium is converted to ammonia gas in the soil until it 

reaches equilibrium. When this gas is exposed at or near the surface, the gas can volatilize 

and be blown away, decreasing the overall nitrogen content in the soil and under certain 
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conditions increasing NxO emissions (Upadhyay and Tewari 2011). The urease inhibitor can 

be applied to anhydrous ammonia, dry urea, and manure (Frazen 2011). A popular urease 

inhibitor is Agrotain® which also costs about $8 an acre depending on fertilizer application 

rate (Jackson 2012).  

Finally, controlled-release urea is a urea pellet that is covered in a material that 

slows the microbial activity around dry urea (Trenkel 2010). Thickness and imperfections in 

the coating slow release time and therefore delay plant-available nitrogen (Schwab and 

Murdock 2010). One coating type can be made of sulfur, which can be expensive. Another is 

PCU or poly-coated urea, which is a polymer coated urea that releases when adequate 

temperatures and/or moisture levels dissolve the outer coating. A leading PCU coated 

fertilizer called ESN® is priced at around $0.10/lb. higher than uncoated urea (Silva 2011). 

Different studies have found that the increased cost of nitrogen transformation inhibitors 

can be offset by preservation of fertilizer (Upadhyay and Tewari 2011; Frazen 2011).  

2.4.3 Plant Tissue Testing 

Along with detailed soil information, plant tissue testing gives farmers’ quantitative 

nutrient content information (Schulte and Kelling 2013). Samples can be taken at different 

stages in the growing season, providing in-season feedback on both macro- and micro-

nutrients, thus helping to diagnose early health problems and gage the effectiveness of a 

fertility program (McGinnis et al. 2013). This technique measures the essential nutrients 

being used by the plant—which they cannot obtain from soil tests because of weather, 

chemical factors, and genetic variability (Ma et al. 2005; Schulte and Kelling 2013). A plant 

tissue sample will contain leaves from a minimum of 20 randomly selected plants from an 
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area or field of interest. Each analysis typically costs $10-30 (McGinnis et al. 2013; MU-

Extension 2012).   

2.5 Other Innovations for Nitrogen Management 

Table 1 in Chapter 4 lists all the variables used in this study and provides a brief 

description. The following section is designed for readers without a strong agriculture 

background. Included is an introduction to precision agricultural technology and three 

technology variables used in the regression that complement the practices of interest.  

2.5.1 Precision Agriculture  

Generically defined, precision agriculture (PA) is “that kind of agriculture that 

increases the number of (correct) decisions per unit area of land per unit time with 

associated net benefits” (McBrantney et al. 2005:8). This enhanced management strategy 

helps inform and improve farm-level decisions (Batte and Arnholt 2003). Precision farming 

can improve input selection for seed, pesticide, fertilizer, irrigation, and other inputs  (Koch 

and Khosla 2003). Enhanced selection can then be economically optimized to enhance 

efficiency of application area and timing (McBrantney et al. 2005; Koch and Khosla 2003). 

Both impacts on farm inputs help to tailor management decisions to field needs—hopefully 

resulting in less environmental impact (Schimmelpfennig and Ebel 2011).  

2.5.2 Satellite Soil Maps 

Satellite soil maps are field-level maps farmers can acquire that contain a variety of 

information (depending on the source). Simple maps can be used to get a general idea of 

soil type in a field. Alternatively in-depth maps can be created through agriculture service 
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agencies that give details on soil types and management systems, drainage patterns, 

organic concentration, and management zones (SIC 2013). These types of maps aid in both 

in-season and pre-planting decisions that ultimately make field management more precise 

and efficient.   

2.5.3 Remote Sensing 

For farmers, remote sensing assesses their fields without physically touching them. 

Specifically, 

“Remote sensing is the practice of deriving information about the Earth’s land and 
water surfaces using images acquired from an overhead perspective, using 

electromagnetic radiation in one or more regions of the electromagnetic 
spectrum, reflected or emitted from the Earth’s surface” (Campbell and Vynne 

2012:6).  
 
These remote sensing images can be taken from satellites and aircraft, giving the 

field manager an aerial view. Though this technology has existed since the 1950s, further 

advancements and benefits including decreased cost have made it recently appealing to the 

agricultural sector (Nowatzki et al. 2004). Now plant health can be determined by be 

comparing the spectral signatures from energy the crop reflects to known signatures of 

nutritional value.   

Remote sensing can also be combined to create geospatial data that pinpoints areas 

on the images with GIS (geographical information system) and others like it. This geospatial 

overlay began in the 1980s but did not fully mature until the mid-2000s (Campbell and 

Vynne 2012). Farmers can use images to look for nutrient deficiencies, diseases, water 

deficiency or surplus, weed infestations, insect damage, hail damage, wind damage, and 

herbicide damage (Nowatzki et al. 2004:1). These images are usually interpreted through a 
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company or extension service that provides a farmer with a color scaled map showing 

nutrient deficient areas on his or her field.   This information can then be relayed to variable 

rate technology (VRT) applications for precise fertilizer and pesticides applications 

(Nowatzki et al. 2004).  

2.5.4 Variable Rate Fertilizer 

Variable rate fertilizer technology is a site-specific management tool that allows 

operators to vary the application rate of fertilizer across their field. This technology relies 

on other management practices to be fully implemented which may include soil testing and 

GPS guidance (NDSU 2013). Field zone application maps and GPS in-cab helps to accurately 

execute variations in fertilizer application across fields (Zhang et al. 2010). Farmers can also 

hire consultants to create maps and develop variable rate fertilizer plans (Batte and Arnholt 

2003). For application simplicity, fields are commonly divided into zone management areas 

with different soil types, yield goals, and application rates  (NDSU 2013; Zhang et al. 2010). 

This technology can increase NUE and has the potential to increase profitability (Colaco et 

al. 2012).  

2.6 Background Conclusions 

This chapter briefly summarized the foundation of scientific and agricultural 

knowledge needed to further explore adoption of NUE eco-innovations by farmers. 

Understanding the nitrogen cycle and its relationship to agriculture and surrounding 

ecosystems will aid in grasping both the magnitude and urgency of increased Nr agricultural 

non-point source pollution. Chapter 3 will now build on this dialogue by discussing adoption 

of innovations and highlighting predictors in adoption of agricultural eco-innovations. 
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Chapter 3 — Literature Review 

3.1 Introduction 

Adoption of innovation research made exponential progress in the mid-1950s.  Early 

sociology and economic literature tended to approach this topic from different directions. 

Sociologists focused heavily on social ties and information channels while early economists 

focused more on macro effects of innovations’ impact on economic productivity (Antonelli 

2003; Rogers 2003). Everett M. Rogers’ now classic book, Diffusion of Innovations 

(published in 1962 and updated in 1971, 1983, 1995, and 2003) is referenced by most 

researchers in the field of adoption of innovations. Today, adoption and diffusion literature 

is very much a multi-disciplinary research effort with books and articles in rural sociology 

(Prokopy et al. 2008; Rogers 2003), economics (Pannell et al. 2006; Ruttan 1997), business 

(Baptista 1999), and marketing (Tidd 2010; Goldenberg et al. 2010).   

3.2 Innovation 

“An innovation is an idea, practice, or object that is perceived as new by an 

individual” (Rogers 2003:12).  This means that innovations maybe a disembodied process or 

an embodied product (Sunding and Zilberman 1999), like a new way to till a field 

(disembodied) or a GPS guidance system (embodied). In some cases, an embodied 

innovation can further be separated as the tool that embodies the technology or hardware 

(GPS system in a tractor) and the knowledge base for the tool or software (actually 

operating it) (Rogers 2003).  
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An innovation has five main characteristics; (1) relative advantage, (2) compatibility, 

(3) complexity, (4) trialability, (5) observability (Rogers 2003). These characteristics are 

critical for individual adoption decisions of an innovation or technology3. In analyzing 

relative advantage it is useful to differentiate primary and secondary attributes of an 

innovation (Tidd 2010). Primary attributes are invariant and intrinsic to a particular 

innovation, regardless of adopter perspective. Whereas secondary attributes vary with the 

adopter perception of compatibility and relative advantage. The difference in secondary 

attributes across a potential adopter population is known as the “attribute gap” and the 

size of this gap sometimes can indicate innovation success  (Tidd 2010:21).  

Compatibility of an innovation involves the degree to which an innovation is 

compatible with a potential adopter in both values and experience (Rogers 2003). 

Complexity deals with the level of understanding needed to adopt an innovation. Trialability 

involves the degree to which a potential adopter can experience the innovation, decreasing 

uncertainty. Finally, observability is concerned with visibility of an innovation—influencing 

peer-to-peer networks (Rogers 2003). 

3.2.1 Eco-Innovation 

The term eco-innovation will be defined from Kemp and Pearson’s 2007 study as the, 

“[T]he production, application or exploitation of a good, service, production process, 

organizational structure, or management or business method that is novel to the firm or user 
and which results, throughout its life cycle, in a reduction of environmental risk, pollution and 

the negative impacts of resource use (including energy use) compared to relevant alternatives” 
(7). 

                                                 
3 It is important to note that though innovation and technology are sometimes used synonymously, 

technology is “a design for instrumental action that reduces the uncertainty in the cause-effect relationships 

involved in achieving a desired outcome” (Rogers 2003) 
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Recall from Chapters 1 and 2 that environmental problems are very complex and 

more often there are less harmful alternatives rather than true solutions. Two key points to 

this definition; 1) it restates our original innovation definition 2) it adds a caveat of reducing 

negative environmental impact compared to relevant alternatives. Therefore an innovation 

does not have to be created specifically for environmental benefit, but rather if it does 

reduce negative environmental impact (compared to alternatives) can be brought under the 

umbrella of eco-innovation. 

All innovations are shaped by their environment. They are influenced by social 

systems, knowledge, previous technologies, ecological constraints, market conditions, 

infrastructure, etc. (Kemp and Pearson 2007; Rogers 2003). Determinants of eco-

innovations come from four main sources: technology, market, regulation, and farm specific 

factors. This simple framework is adapted for agriculture from Horbach et al. (2012) in 

Figure 4.  

Adapted from (Horbach et al.  2012) 

Agricultural 
Eco-

innovation

Technology

Market Regulation

Farm 
Specific 
Factors

Figure 4 - Determinants of Agricultural  Eco -innovation  
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These determinants can play a big role in the development of eco-innovations. 

Current technologies can be enhanced and refined. The market can demand more precise 

technologies that increase yield as corn prices increase. Farm regulations can prohibit 

federal subsidies unless certain conservation practices are met. Farm specific factors may 

dictate need for in-season fertilizer applications or efficient irrigation technology due to 

geographic location (Frazen 2011).  

All four broad determinants impact the five characteristics of an innovation. 

Therefore to fully understand adoption of an eco-innovation, one must understand the 

innovation itself and its surrounding factors. These determinant factors can directly relate 

to factors influencing farmer adoption and diffusion of eco-innovations.     

3.3 Adoption and Diffusion 

Rogers (2003:5) defines diffusion as “the process by which an innovation is 

communicated through certain channels over time among members of a social system.  It is 

a special type of communication, in that messages are concerned with new ideas”. While 

interconnected, adoption and diffusion are individual concepts (Metcalfe 1988). Adoption 

“is generally considered to be the decision to do or acquire something” (Tidd 2010:5) i.e. 

the process of decision making.  Diffusion is “concerned with how the economic significance 

of a new technology (i.e. market share) changes over time” (Leite and Teixeira 2011:126). 

Thus, adoption is an individual (micro) concept and diffusion is an aggregate (macro) 

concept.   
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The generic pre-diffusion phase is made up of two parts; invention and development 

(Goel 1999).  The pre-diffusion phase is viewed as complete by researchers when adoption 

has reached a threshold percentage of the population (Rogers 2003).  This indicates that an 

innovation is available for adoption on a large scale, marking the beginning of the diffusion 

curve (Easingwood and Lunn 1992; Tidd 2010).  

Diffusion of an innovation is typically conveyed by a generic S-shaped curve. The 

curve stylizes the common phenomenon observed, where diffusion rate rises then falls over 

time. This is presumed to occur in an atmosphere of “democratic equality of opportunity in 

respect to the interacting issue” (Dodd 1955:398). The S-shaped curve commonly starts 

after the pre-diffusion phase which is marked at a population adoption percentage (ex. 

10%) (Geroski 2000).  

3.3.1 Epidemic Model 

The epidemic model has been a widely used in explaining diffusion (Tidd 2010; 

Meade and Islam 2010). Time distributions of adoption can result from “contagious” 

information about profitability or efficiency. Relating to medicine, contagion or epidemic 

models for disease are used as a proxy for modeling the spread of information (Antonelli 

2003). However, the epidemic model is unrealistic in that adoption is assumed to occur in a 

static homogenous population were everyone is equally likely to catch the disease (Coombs 

et al. 1987), starting at introduction and ending at saturation (Meade and Islam 2010; Goel 

1999; Rogers 2003).  
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The S-shaped or sigmoid curve is common in explaining a diffusion pattern in a 

population (Barnett 2011). A special case of the logistic function is shown as a diffusion 

equation below. The P is the cumulative number of adopters or percent of population and t 

is time where t=1 is maturity of diffusion (Barnett 2011:104; Menard 2009).  

    𝑷𝒕 =
𝟏

𝟏+𝒆−𝒕   (1) 

The initial growth stage of early adopters to majority adopters (0 < t < ½) is 

exponential. The growth begins decaying exponentially after 50% (saturation) and then 

continues to slow (½< t < 1) until t=1, when growth stops (Barnett 2011). It is important to 

point out that empirically, this late growth usually occurs slower than an S-shaped model 

would predict. Asymmetric properties stem from varying diffusion rates in the population 

group (Geroski 2000).  A related theory is that of imitation.  Schumpeter viewed imitation as 

the methodological driver of technology diffusion (Schumpeter 1934), where 

entrepreneurial innovation successes lead to imitation of that innovation in the market. 

The S-shaped curve can be used to divide adopters into groups by measuring the 

relative rate of speed at which an innovation is adopted and thus the innovativeness of that 

society (Rogers 2003). Rogers (2003) describes innovativeness as, the ability of a person to 

adopt new innovations in comparison to their social system. “Adopter categories, the 

classifications of member of a social system on the basis of innovativeness, include: (1) 

innovators, (2) early adopters, (3) early majority, (4) late majority, and (5) laggards” (22). 

Rogers characterized early adopters as better educated, have more upward social mobility, 

higher social status, larger-sized units or in this case farms, and have greater wealth 
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compared to later adopters (Diffusion of Innovation 2003:288). Below in figure 5, a graph 

displaying both S-curve diffusion (on top) and adopter categories (in center) which show the 

relationship between cumulative adoption and number of adopters in each of the five 

periods. These labels include generalized character contrasts “but are often crude 

caricature rather than empirical taxonomies, and reflect a strong innovation bias” (Tidd 

2010:9).   

Figure 5- Stylized Diffusion Curve 

 

Another way of describing a typical diffusion study is by substituting t in the previous 

equation for –α-βt, where α determines the starting point of the diffusion curve and β is the 

slope of the curve, shown in equation 2 below (Coombs et al. 1987:122). This allows for 

varying start times and various rates of diffusion to be entered into the S-shaped equation. 

Different β-coefficients were used in this type of equation for Grilliches’ hybrid corn study 

(1957) mentioned later in this chapter.  

    𝐱(𝐭) =
𝟏

𝟏+𝐞
(−𝛂−𝛃𝐭)   (2) 

Source: (Meade and Islam 2010) 
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3.3.2 Bass Model 

A well-known diffusion model called the Bass model was developed by quantitative 

marketing scientist, Frank Bass (Meade and Islam 2010). Bass (1969) suggested individuals 

are influenced by a desire to innovate (coefficient, p) and a need to imitate other 

individuals in the industry (coefficient, q), prefaced by Schumpeter’s theory of imitation 

(1934) as a vehicle for diffusion. This imitation effect is also called an epidemic or contagion 

effect (Meade and Islam 2010). These coefficients form an S-shaped curve driven by 

proportion of adopters at time t (A(t)), where (q/p)>1. This model (equation 3, below) 

assumes that the adopting individuals are homogenous and fully connected; therefore a 

macro-level model could be construed (Bass 1969).  

    𝑨(𝒕) =
𝟏 −𝐞𝐱𝐩[−(𝒑+𝒒)𝒕]

𝟏+𝐞𝐱𝐩 (
𝒒

𝒑
)[−(𝒑+𝒒)𝒕]

  (3) 

Many econometricians criticized Bass’s homogenous social model because it did not 

incorporate the economic factors like income that change overtime despite the fact it 

closely modeled diffusion data (Bass et al. 1994; Bonus 1973; Meade and Islam 2010). 

Rogers (1962) argued that normally distributed individual adoption model shape was 

observed because of a population relatedness to the innovation and how heterogeneous 

the population is in their propensity to innovate (p).  

Bass’s original model later evolved into the ‘Generalized Bass Model’ which included 

decision variables and hazard rate4  (Bass et al. 1994). The model presumes that early 

                                                 
4 Hazard rate is the “proportion adopting at time T given that adoption has not yet occurred” (Bass, 

Krishnan, and Jain 1994).  
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adopters are mostly influenced by media while the later adopters are persuaded by 

communication channels. This model is influential in economics and marketing (Tidd 2010), 

and produces a skewed S-shaped curve with necessary flexibility for heterogeneous 

attributes.   

3.4 Technology and Adoption  

People and the environment are extraordinarily complex. The answers for improving 

ecosystem health by predicting human behavior are equally complex and must be 

calculated under uncertainty and with imperfect understanding. When integrating complex, 

nested systems into framework and theory, the extraordinary diversity and complexity of 

the world must be acknowledged (Ostrom and Basurto 2011). For adoption studies, this 

leads to particular variables of interest representing aspects of adoption from previous 

investigations typically focused on micro-level behavior (Rogers 2003). These variables 

could be education, age, time taken for adoption decisions, business practices, information 

source, comparative financial capabilities, and geographic location (Rogers 2003; Prokopy et 

al. 2008; Katz et al. 1963). 

3.4.1 Previous Diffusion and Adoption Studies 

A seminal study of diffusion of innovation was by Ryan and Gross  (1943) in Iowa 

State’s Department of Rural Sociology. “Diffusion of Hybrid Corn in Two Iowa Communities” 

attempted to explain the role of different communication channels and factors affecting the 

rate of adoption. The study used 259 respondent surveys to analyze adoption of hybrid corn 

technology. With adoption as the dependent variable, this study established the traditional 

research methodology used for future diffusion studies (Rogers 2003).   
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Sharing of information was the catalyst behind Grilliches’ (1957) hybrid corn study. 

Griliches analyzed diffusion of hybrid seed in different states . Different states had different 

starting points based on a threshold of hybrid seed planted acres. A 10% threshold 

indicated proper development of regional varieties and adequate availability of seeds, 

allowing for spread of superior hybrids in a state. From this farmer adoption template, 

hybrid seed companies and public sector entities were guided by the expected returns on 

investment, projection of technology development, and anticipated yield (Griliches 1957). 

The results of this five state study are shown in Figure 6. Notice the different years used as 

starting times for each state and their S-shaped diffusion curve. 

Figure 6- Diffusion of Hybrid Corn 

 

3.5 Influential Variables in Adoption of Agricultural Technology 

Analyzing adoption behavior of a society as previously described allows for 

conservation efforts to be better aimed and carried out instead of forcing a one-size fits all 

approach to outreach and policy (Cooter et al. 2012; Miller et al. 2008; Soule 2001). “The 

key to successful fact-based decision-making is not simply the capture of facts as data, but 

Source: (Griliches 1957) 
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the relationship of that data” (Weber 2005:19). This means scientific reasoning should be 

behind every selected independent variable followed by critical analysis  of those findings.   

However necessary, modeling adoption and diffusion of NUE and BMPs is 

challenging. In the case of nitrogen pollution, it is infeasible to involve every farmer (i.e. 

stakeholder) on an individual basis. Understanding user groups, behavior, and tendencies 

are then vital for prudent policy development and targeted outreach—increasing the need 

for eco-innovation adoption studies. Modeling adoption of agricultural eco-innovations that 

contribute to nitrogen mitigation can assist in taming this wicked problem.  

Below are a series of important variables found in prior analyses of adoption of 

agricultural technology. Each section has a brief summary of synthesized research. 

Universality of variable influence on adoption is rare. Knowler and Bradshaw’s (2007) 

synthesis of 31 empirical studies on conservation agriculture adoption found few if any 

universal variables that predict adoption. But these synthesized research findings help 

develop and justify hypothesized variables of influence particular to this study.  

3.5.1 The Farmer: Education and Information  

3.5.1.1 Information Sources  

Understanding information inputs in the innovation processes contribute to 

understanding of the potential user's communication and collaboration trends as they are 

associated with adoption (Coombs et al. 1987; Mowery and Rosenberg 1979). The 

importance of communication channels and proximity to other adopters was shown in early 
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technology adoption studies (Dodd 1955; Griliches 1957; Mansfield 1961; Ryan and Gross 

1943).  

A common source of information studied by agricultural economics and rural 

sociology is the amount of interaction or information a farmer has with an agricultural 

extension agency. This coincides to Rogers (1962), Grilliches (Hybrid Corn: An exploration in 

the economics of technological change 1957), and Ryan and Gross’s (1943) original 

emphasis on proximity to communication channels and type of social ties. Prokopy et al. 

(2008) concluded that utilization of social networks and access to information are critical in 

increasing farmers’ likelihood to adopt.  Miller et al. (2008) found that a relationship or 

proximity to an extension agent was significant in increasing adoption. Other studies also 

found that contact with agricultural extension information sources increase the likelihood 

to innovate compared to farmers without extension contact (Wozniak 1986). But whether it 

be number of visits to an extension agency (Koundouri, Nauges, and Tzouvelekas 2006), or 

general communication (Wozniak 1986), the extension variable has been shown to have 

inconsistent significance (Daberknow and McBride 1998; McBride and Daberkow 2003; Saha 

et al. 1994; Soule 2001). However, since the early 1990s farmers have greater access to 

better information which could undermine the impact of the extension role with farmers  

(McBrantney, Whelan, and Ancev 2005; McBride and Daberkow 2003).  

3.5.1.2 Human Capital and Education  

Human capital and differences in knowledge of new technology have been shown to 

change the likelihood of adoption (Wozniak 1986; Khanna et al. 1999). Increasing human 

capital by higher education or training “enhances one’s ability to receive, decode, and 
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understand information, and that information processing and interpretation is important 

for performing or learning to perform many jobs” (Nelson and Phelps 1966:69). An increase 

in human capital creates a ‘worker effect’—the marginal product of education, and 

‘allocative effect’—the allocative enhancement of current resources due to increased 

education (Welch 1970:42). Economic research has shown that an allocative effect has 

stronger analytical power than ‘entrepreneurial capacity’ (Huffman 1974; Welch 1970).  

Farmers with more education get more additional benefit from information sources 

because of their heightened ability to ‘decode information’ (Huffman 1974). Huffman found 

that education and agricultural extension contact had a positive impact in nitrogen 

efficiency and hypothesized that agricultural extension agents can be “substitutes for some 

of the advantages associated with additional schooling” (96). In this context extension, 

consultant, contractor, or fertilizer dealer contact may increase human capital. But in 

today’s high tech information age the role of personal interactions may be changing 

because of integration of user-friendly technology (i.e. cell phones, tablets, and farming 

applications) (Klerkx et al. 2012).  

Education and information help decision makers overcome “resistance created by 

adoption costs and uncertainty” (Wozniak 1986:110). Feder and Slade (1984) found that 

larger farmers were more likely to allocate larger amounts of resources to the acquisition of 

education and information, leading to earlier adoption of new technology. Other studies 

confirmed education significance (Daberknow and McBride 1998; McBride and Daberkow 

2003; Khanna 2001; Soule 2001; Huffman 1974; Koundouri et al. 2006; Gould and Saupe 

1989)  
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But not all studies found education to be significant (Saha et al. 1994; Fuglie and 

Bosch 1995; Soule 2001). However the trend remains that as more adoption-related 

information is available and knowledge capital is better able to decipher the information—

making adoption is more likely (Rogers 2003; Prokopy et al. 2008; Klerkx et al. 2012). 

3.5.1.3 Age and Experience 

Age and experience differ from education and have been found to have mixed 

results in adoption studies (Knowler and Bradshaw 2007). Commonly, age is thought to be 

negatively related to adoption because of shorter time horizons and lack of willingness to 

change (Roberts et al. 2004; Rogers 2003; Upadhyay et al. 2002a).  Sometimes the 

particular technology matters; for example Gould, et al. (1989) found soil erosion was more 

likely recognized by older more experienced farmers but alternative tillage practices are 

more readily adopted by younger less experienced farmers. Wozniak (1986) found that 

though education was positively significant for use of a new cattle feed additive, experience 

was significantly negative—indicating that newer members of an industry may be more apt 

to try new things. But experience is commonly not a significant factor in eco-innovation 

adoption studies (Fuglie and Bosch 1995; Khanna 2001).   

Torbett et al (2008) found that farmers over 50 were actually more likely to use 

precision farming technology for nitrogen fertilizer efficiency. They hypothesize that the 

experienced older farmers are able to “recognize and reap the benefits of improvements in 

N efficiency more than younger adopters” (Torbett et al. 2008:144).  But a study done a 

decade earlier by Daberkow and McBride (1998) using the 1996 ARMS survey contrasted 

this notion, finding farmers under 50 were more likely to adopt precision technology. Other 
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studies also support the generalized concept of younger farmers being more likely to adopt 

new practices than older ones (McBride and Daberkow 2003; Roberts et al. 2004).  

A study by Napier and Tucker (2001) found that ability to recognize watershed issues 

had a weak but positively significant impact on adoption of watershed protection policies, 

but found no one factor extremely important to adoption. Other studies found experience 

was significant in influencing adoption decision of farmers  (Ervin and Ervin 1982; Saha et al. 

1994; Daberknow and McBride 1998). However, several studies did not find experience to 

be a significant factor whatsoever (Fuglie and Bosch 1995). These studies differed on 

particular innovations, but the variety of outcomes reveals the interaction of other 

influential variables on adoption.    

3.5.1.4 Off-Farm Employment 

Off-farm employment has been found to be negatively associated with adoption in a 

variety of studies and is usually associated with smaller farm size (i.e. part-time farmers) 

(Knowler and Bradshaw 2007). Off-farm income allows some farmers to increase household 

income, avoid income variability, and lower risk (Fernandex-Cornejo et al. 2005; Gould and 

Saupe 1989; Mishra and Goodwin 1997; Gould et al.  1989; Upadyay et al. 2002b).      

Operators whose major occupation was off-farm employment were found to be less 

aware of new agricultural technologies (Daberknow and McBride 1998; McBride and 

Daberkow 2003; Gould and Saupe 1989; Gould et al. 1989). The reliance on off-farm income 

was negatively correlated with involvement in educational outreach, farm size, and receipts 

of government payments in a study of off-farm income and its effects on Kansas farmer 
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characteristics (Mishra and Goodwin 1997). In a nationwide survey Fernandez-Cornejo et al. 

(2005) found adoption of herbicide tolerant soybeans to be positively related to off-farm 

income—interpreting this as a possible savings in management time for weed control. 

Again, innovation-specific attributes dictated the relation between adoption and off-farm 

income in many studies (Gedikoglu et al. 2011). 

3.5.2 Location, and Size 

3.5.2.1 Farm Size and Capital Accumulation   

Theoretically, economies of scale would lead large firms (farms) to adopt innovations 

sooner because of their increased payoff to investment ratio (Antonelli 2003; Goel 1999; 

Leite and Teixeira 2011). Huffman’s findings on nitrogen technology found economies of 

scale with adoption of nitrogen efficiency practices  (Huffman 1974). A meta-analysis by 

Prokopy et al. (2008) suggests that BMP efforts should be directed toward farmers with 

larger acreages and more income and capital. Soule (2001) found N inhibitors and plant 

tissue testing were more readily adopted by farmers with high sales using the 1996 corn 

ARMS data.  

Other similar studies also found the amount of land and capital was an influential 

variable (Feder and Slade 1984). A survey of conservation agriculture adoption found 

overall impact of farm size and capital holdings in studies inconclusive (Knowler and 

Bradshaw 2007) and farm size or acres in operation was found negatively correlated (Clay et 

al. 1998; Khanna 2001) or insignificant (Nowak 1987) in other research. Overall the 

innovation itself seemed to be important in the significance of farm size and adoption when 

evaluating conservation and environmental innovations.  
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In some adoption studies land ownership status has been assessed when predicting 

adoption. Based on Knowler and Bradshaw’s survey of adoption literature (Farmers’ 

adoption of conservation agriculture: A review and synthesis of recent research 2007), land 

tenure not been an important factor in assessing adoption. But in relation to the 

implementation of conservation practices, some studies did indicate that rented or leased 

land was negatively associated with adoption (Khanna 2001; Soule 2001). Upadyay et al. 

(2002a; 2002b) found insignificant negative impacts on land rented and conservation 

adoption—concluding that shorter time horizons could be affecting adoption of BMPs. The 

shorter time horizon of renters and adoption tends to be substantiated by the economic 

theory of rational choice.    

3.5.2.2 Profitability 

Profitability of an innovation as perceived by the farmer tends to be evaluated prior 

to adoption and can be significant in the decision to adopt or not adopt an eco-innovation 

(Napier and Tucker 2001; Prokopy et al. 2008). A study on watershed protection by farmers 

in three states found that profitability was the highest ranked factor in adoption decisions 

(Napier and Tucker 2001). Profitability from potential calculated yield based on theoretical 

implementation was also highly significant in predicting adoption in other agricultural 

innovation studies (Koundouri et al. 2006; Saha et al. 1994; Ryan and Gross 1943).  

The potential valuation of profitability by a farmer can be sometimes far lower than 

the valuation of adoption to society (Ervin and Mill 1985; Napier and Tucker 2001). This is 

because the lack of social-benefit payment for adoption practices are not always present in 

the farmer’s valuation (Ervin and Mill 1985; Koundouri et al. 2006). This can sometimes be 
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due to a shorter planning horizon in calculating benefit compared to benefit by society 

(Gardner and Barrows 1985). This means that farmer’s age and passage of the family farm is 

an added factor when calculating profitability as it pertains to the environment (Gardner 

and Barrows 1985; Robertson and Vitousek 2009).  

3.5.2.3 Geographic and Location Dummy Variables 

Geographic location dictates climate, restricts plant species, and can isolate 

demographic characteristics. Therefore, adoption rates can also vary by region (Griliches 

1957; Rogers 2003). Making geography endogenous in an adoption model can be done with 

a number of variables; regional dummy variables, soil type, climate, average rainfall, 

proximity to a metropolitan area, etc.  Khanna (2001) found that farm location both with 

state dummy variables and soil type was a key variable in influencing adoption of site-

specific technologies. Farmers with higher quality soils had a higher probability of adopting, 

but greatest environmental impacts are generated on lower productive soils. This indicates 

potential societal benefit from a targeted educational outreach to farmers with lower 

quality soils (Khanna 2001).  

Several studies found regional variables to be significant for the awareness of 

environmental problems and adoption of new techniques (Griliches 1957; Ribaudo et al. 

2011; Roberts et al. 2004). Studies that examined fertilizer management or application 

techniques also found farm location to be a significant factor in management (Soule 2001). 

Other geographic-related variables like amount of precipitation, temperature and irrigation 

practices have been shown to be positively correlated with nitrogen management 

techniques (Soule 2001). In particular, studies found strong links between adoption and 
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non-adoption of nitrogen management techniques based on wet climate/irrigation and 

dryer climates/non-irrigation (Fuglie and Bosch 1995).  

3.5.3 Technologies and Technology Bundling 

Many times certain technologies will be used/adopted in bundles. A USDA 

publication using 2001 and 2005 corn ARMS (Agricultural Resource Management Survey) 

data showed that farmers who adopted GPS mapping systems had significantly higher yields 

than non-adopters (Schimmelpfennig and Ebel 2011). This also is true for both variable rate 

technology (VRT) and yield monitor adoption. VRT uses GPS readings to target specific 

application to parts of the field. Early on, many farmers found VRT complex, which hindered 

early adoption (Khanna et al.  1999; McBrantney et al. 2005). A Texas study found that 

younger farmers managing larger farms were more likely to adopt VRT (Napier and Tucker 

2001). The 2005 Corn ARMS data showed that 12% of farmers had adopted VRT 

(Schimmelpfennig and Ebel 2011).  

3.5.3.1 Farm Practices and Technology Bundling 

Like technology, different farm practices can be adopted separately or in number. 

Schimmelpfenning and Ebel (2011) suggest a three-step adoption approach to precision 

agriculture practices starting with a yield monitor, then site-specific soil maps, and finally 

VRT. Soil test results can be incorporated into farm practices and fertilizer management 

technology.  

Certain farm practices can be implemented to prevent soil erosion and nitrogen loss 

that also increase profit (win-win). Commonly modeled practices are no till or conservation 
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till, cover crop adoption, soil testing, and filter or buffer strips  (Upadhyay et al. 2002a; 

Buckley et al.  2012; Knowler and Bradshaw 2007). In Upadhyay et al. (2002a) adopters of 

more than one conservation practice were more significantly contrasted with non-adopters 

than single practice adopters were with non-adopters.  

3.6 Importance of Further Adoption Studies 

Extreme stress on environmental ecosystems or environmental institutions facilitates 

an opportunity for innovation, techno-scientific and behavioral modifications, along with 

adoption of better management processes and tools (Lach et al. 2005). Paramount to 

success is involving all users as owners of the problems (Arias et al. 2000). Their 

involvement is important for appropriate design elements along with establishment of a 

feedback loop for proposed and implemented solutions (Rittel and Webber 1973)—making 

research studies on these topics necessary in order to refine planned action.  

3.6.1 Movement towards Mitigation 

Many scientific fields use empirical phenomena to help bolster general laws (Ostrom 

1991). But “economics is a different type of science, based on the power of deductive 

theories derived from a minimum number of basic assumptions about the individual and 

how individuals are related to one another and a physical world” (237). Because of this, 

economics becomes a powerful microscope for investigating social and environmental 

problems.  

Under rational choice, the rational farmer has three main elements: 1) 

methodological individualism, 2) utility-maximization, and 3) existence of various 
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institutional or strategic constraints on individual choice (Pollack 2006). This “theory of 

advice” helps inform individuals and institutions, about how best to achieve objectives, 

especially when it comes to environmental resources (Ostrom 1991:238). Naturally, as 

incentives and benefits change, farmer response to environmental problems may also 

change (Clearfield and Osgood 1986; Miller et al. 2008; Pingali 2012).  

Farm sector diffusion of labor-saving and productivity enhancing innovations is fairly 

well studied (Rogers 2003). These two types of innovations can reduce marginal cost and as 

a result increase profit—making adoption in the farmer’s self-interest (Miller, Mariola, and 

Hansen 2008). But environmental innovation does not always inherently increase efficiency 

and decrease cost, in fact adoption may increase farmer’s cost and risk depending on the 

innovation (Knowler and Bradshaw 2007). Adding to this problem, environmental market 

failure can construct a scenario where society bears the cost of pollution while the 

landowner generates profit or a landowner bears the cost of pollution mitigation and 

society largely receives benefit (Miller et al. 2008; Anderson and Leal 2001).   

Specifically for more environmentall y sustainable adoption practices, individual 

adoption needs to be carefully analyzed. In economics, profit is not always the defining 

objective; instead perception of benefits to a farmer’s personal utility curve is theorized 

(Miller et al. 2008). This complexity and adopter variance is why a variety of factors need to 

be examined when attempting to model conservation practices and eco-adoption (Knowler 

and Bradshaw 2007; Miller et al. 2008). The next chapter will discuss the methods used in 

this study to model eco-innovation adoption.   
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Chapter 4 – Methods and Hypotheses 

4.1 USDA ARMS Survey 

This study uses secondary data collected by the USDA. The Agricultural Resource 

Management Survey (ARMS) is the “USDA’s primary source of information on the financial 

condition, production practices, and resource use of America’s farm businesses and the 

economic well-being of America’s farm households” (ERS 2012b). The survey is sponsored 

by the Economic Research Service (ERS) and the National Agricultural Statistics Service 

(NASS). The ARMS survey began in 1996 in an effort to combine USDA information on costs, 

practices, and returns, which had been collected since 1975 (ERS 2012b). Today ARMS data 

is used by the USDA and other government agencies to estimate agricultural statistics, 

monitor trends, and analyze policy and potential policy impacts by linking field-level 

descriptors of production to the economic characteristics of the farm operation.   

The ARMS survey is a national survey of Continental United States farms. The survey 

covers specific crops on a rotating basis with major commodities (corn, soybeans, wheat, 

cotton, dairy, and hogs) being surveyed more frequently than others. This survey is  

sensitive because it contains spatial information; because of this, ARMS data is available to 

researchers on a limited basis. Researchers can request access to raw ARMS data “who have 

collaborative projects with ERS or NASS that contribute to USDA’s public sector mission” 

(ERS 2012c). 



 

41 
 

4.1.1 Understanding the ARMS Survey  

The survey is done in a series of one-on-one interviews with farm operators. It is 

important to note that the USDA generally considers a “farm” to be an establishment that 

sold or normally sells at least $1,000 of agricultural products in the course of a year (ERS 

2012a). This survey is conducted in three phases as shown in the schematic below. Phase I 

is carried out during the summer of the reference year and is a “screening questionnaire 

used to improve survey efficiency” and does not go into the user data files  (ERS 2012a). 

Phase II is completed in the fall and winter of the reference year. The second phase is 

similar to the former Cropping Practices Survey, collecting data at the individual field or 

production level. The Phase II survey is broken into a series of commodity surveys, shown in 

figure 8, that gather detailed information on production inputs, management practices, and 

commodity cost of production (ERS 2012a). Phase III data are collected in the spring of the 

Phase I 

(June-August) • Screening

Phase II 

(October-December)

• Field-level practices, chemical and 
resource use

• Production practices, technology 
adoption and cost reports

Phase III 
(February-April)

• Cost and returns of farm, 
household, labor, and assets

Figure 7- ARMS Phases 
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year following the reference year to acquire costs of production and returns of investment. 

This phase is “designed to represent all U.S. farms and focuses on farm income and 

expenditures, farm financial arrangements, and other characteristics of the farm business 

and farm household” (ERS 2012a). Phase III also contains farm income, expenses, financial 

household data, and finance practices.  

4.1.2 Survey Design and Quality 

The ARMS survey is collected in a multi-phase process with probability-weighted 

survey sampling (ERS 2012a).  The sample design is considered multi-frame because it uses 

two methods to select farms for the survey. A primary sample is taken from the NASS List 

Frame, which is a list of farms and information on type and size that is compiled from the 

So urce:  USDA, (ERS 2012a) 

Figure 8- ARMS Phase II Diagram 
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Census of Agriculture and other NASS surveys. The second sampling source helps to include 

farms that are not in the List Frame. This is done by randomly selecting farms that are in 

particular land use segments so the farmers of the target survey crop can be represented 

geographically (ERS 2012a). Variables from both sample selections are then cross-checked 

to make sure there are not duplicates. Using this sampling technique allows the survey to 

represent farmers accurately so as to extract statistics and trends and apply them to U.S. 

farm policy.  

Survey data are collected in personal interviews by trained enumerators. The 

interviewer sits with the farm operator and a manual outline of the questionnaire that 

explains the procedure for each phase of the survey (ERS 2012a).  The detailed directions 

help to aid interpretation of each answer so all surveyed farmers are asked the same type 

of question and give the appropriate response. Once the surveys are completed, the 

enumerators’ questionnaires are reviewed by a superior for completeness, consistency, and 

error.  The NASS supervisory statisticians further review each response before it is keyed 

into electronic format (ERS 2012a). Then a computer program will check for possible errors 

or outliers and if detected will then be further examined by a statistician. 

4.1.3 The 2010 Corn Survey 

The ARMS survey on US corn producers was completed in 1996, 1997, 1998, 1999, 

2000, 2001, 2005, and 2010. ERS estimates that around 80 million acres of land in the 

heartland region are planted to corn, with the greatest percentage of the harvested crop 

going to livestock feed. The large impact of corn on the economy and the environment 
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make US corn producers an important group to study—specifically the analysis of fertilizer 

use and BMPs (Daberknow and McBride 1998).  

4.2 Decision Tree Analysis 

Decision tree analysis helps explain the variation of a single variable of interest by 

one or more explanatory variables in the dataset (De'ath and Fabricius 2000). For the 

purposes of this study, all variables in the classification tree are either binary or categorical. 

Trees are represented graphically, starting with a rooted node of the single variable of 

interest and branching into leaves (or child nodes). These leaves represent a group and 

usually display summary statistics (De'ath and Fabricius 2000). 

4.2.1 CART Analysis 

Classification and regression tree analysis, or CART for short, is a nonparametric 

modeling method. CART models “recursively partition to find increasingly homogeneous 

subsets based on independent variable splitting criteria using variance minimizing 

algorithms” (Zheng et al. 2009:101). CART selects an independent variable with variance 

minimizing algorithms to best reduce deviation in response to the dependent variable 

(Herold et al. 2003). This selected independent variable creates a binary split that forms 

two stems. Each stem has a node called a child node that represents a group, in this case 

farmer groups. The method repeats itself from each node until no more sub-groups can be 

made that reduce deviation from the response variable or the number of observations in a 

node gets too small. The last nodes on branch are called terminal nodes. Tree growth can 
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also be stopped by the researcher by limiting the minimum number of observations in a 

child node or limiting the number of stems a tree can have.  

The CART models were created in IBM® SPSS version 9.2. The target or dependent 

variable is denoted a Y and the set of all predictor variables 1 through M are denoted as 

Xm,m=1,….M . Child nodes are formed from the target variable (Y) by variance minimizing 

algorithms that partition the data into homogenous subsets  (Zheng et al. 2009; IBM 2011). 

These CART models can be observed in the following chapter with each of the three 

dependent variables selected in the research as a target variable.      

4.2.2 Applicability of Decision Tree Analysis in this Study 

CART analysis can be beneficial in complex and unbalanced datasets where variable 

relationships may be non-linear and have strong interactions (De'ath and Fabricius 2000; 

Bel et al. 2009). “The commonly used exploratory and statistical modeling techniques often 

fail to find meaningful ecological patterns” (De'ath and Fabricius 2000:3178), which can be 

an issue when analyzing a large dataset from a secondary source.  

CART models have been used in ecology (Bel et al. 2009; Tittonell et al. 2008), 

medical research (Lewis 2000), and marketing analytics (Coussement et al. 2014). 

Particularly for marketing, decision trees can be valuable in segmenting customers, taking a 

heterogeneous group of customers and splitting them into smaller more homogenous 

groups in order to target customers and understand related behavior (McCarty and Hastak 

2007). CART may detect interactions between variables that may be hard to detect using 

only regression techniques (Lewis 2000; Coussement et al. 2014). Businesses use decision 
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trees “because of their combination of simplicity, transparency, and strong performance”  

(Coussement et al. 2014:2). They have the benefit of using many independent variables in 

the model which hinders the market researcher from altering the outcome with 

preconceived notions (Qi et al. 2008). 

Tree analysis and probit regression are complementary, allowing for estimation of 

the entire group and segmentation of that group into smaller groups that help link farm 

characteristics and operator behavior (Qi et al. 2008). These two approaches together allow 

for better understanding of the drivers of farmer adoption in our survey. 

4.3 Multivariate Probit Regression 

The studies of adoption and factors that influence the probability of adoption 

commonly use a form of probit or logit model (Hahn and Soyer 2005). Focusing on NUE 

technology, a farmer either adopts (y=1) or does not adopt (y=0) a technology, forming the 

dependent variable. Then, given a variety of factors that influence adoption likelihood for a 

farmer (𝑥1,𝑥2, 𝑥3,… 𝑥𝑘), the probability of adoption is denoted as, 𝑝𝑖 = 𝑃(𝑌𝑖 = 1|𝑥𝑖) 

(Greene 2003). For probit models, we assume pi is given by the standard normal 

distribution, Φ(𝑥 ′𝛽). The probit regression is as follows, 

         𝑃(𝑦 = 1|𝑥) =  Φ(𝑥′𝛽)     (4) 

Probit models have been favored for relative ease of computation and modelling of 

covariance structure (O'Brien and Dunson 2004; Khanna 2001). More explanatory variables 

can then be added to the model where 𝑥 = 𝑥1,𝑥2, … 𝑥𝑘 and 𝛽 = 𝛽1 … 𝛽𝑘  are coefficients for 

each corresponding x variable.  
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An analyst can extend the probit model to study adoption of two or more dependent 

variables. This allows for joint prediction of adoption choices. This paper follows Greene 

(Econometric Analysis 2003) in developing the multivariate probit model shown on the next 

page for three dependent variables; 

𝑦1 = 𝑋1𝛽1 + 𝜀1, 𝑦1 = 1 if technology 1 is adopted, 0 otherwise, 

𝑦2 = 𝑋2𝛽2 + 𝜀2 , 𝑦2 = 1 if technology 2 is adopted, 0 otherwise, 

𝑦3 = 𝑋3𝛽3 + 𝜀3 , 𝑦3 = 1 if technology 3 is adopted, 0 otherwise, (5) 

The error terms, variance, and covariance denoted as, 

𝐸(𝜀1|𝑋1, 𝑋2,𝑋3) = 𝐸(𝜀2|𝑋1, 𝑋2,𝑋3) = 𝐸(𝜀3|𝑋1, 𝑋2, 𝑋3)=0,    (6) 

𝑉𝑎𝑟(𝜀1|𝑋1, 𝑋2, 𝑋3) = 𝑉𝑎𝑟(𝜀2|𝑋1,𝑋2, 𝑋3) = 𝑉𝑎𝑟(𝜀3|𝑋1, 𝑋2,𝑋3)=1,  (7) 

      𝐶𝑜𝑣(𝜀1, 𝜀2, 𝜀3|𝑋1, 𝑋2, 𝑋3) = 𝜌      (8) 

The first two equations mean the error terms have a multivariate normal distribution 

where the expected values of the error terms equal zero and variances equal one. The 𝜌 

term represents covariance between the error terms. If this is found to be significant, the 

sign of 𝜌 indicates the direction of the correlation (Greene 2003; Khanna 2001). In the case 

of our technologies, a positive 𝜌 means that adoption of the first technology increases the 

likelihood of adopting the second.  

Before interpreting the results in the following chapter, it is important to note that 

all three continuous variables (farmer’s age, acres in operation, yield goal per acre) were 

transformed by a logarithm for the multivariate probit regression. This was done to shrink 
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the range of the variables in order to converge the algorithm. The ConservationTillage 

binary variable was created to represent conservation, no till, and minimum till farmers, 

with zero being none of those three practices. The Filter/Buffer variable was combined in a 

similar manner, where one represents farmers with filter strips or riparian buffers to 

protect water quality. The remaining variables are binary and were not altered from the 

original USDA ARMS dataset.    

4.4 Specific Hypotheses 

Explanatory variables used in the regression model and their hypothesized signs are 

given in table 1 below. In our model, independent variables fall into four main categories: 

education and information, location and size, farm practices , and technology. Education and 

information predictors include higher level of schooling and sources of information 

(consultant, contractor5, extension agents and fertilizer dealers). These variables assume a 

link between education and knowledge (Knowler and Bradshaw 2007) and have been shown 

to increase likelihood of adoption (Khanna et al. 1999); other similar studies found mixed 

results for both education and information sources  (Daberknow and McBride 1998; McBride 

and Daberkow 2003; Saha et al. 1994; Soule 2001). Age is another commonly studied 

adoption indicator. Older farmers typically have shorter planning horizons  (Roberts et al. 

2004), but the influence age has on adoption probability can vary with the nature of 

individual innovations (Knowler and Bradshaw 2007; Torbett et al. 2008). For this study 

younger farmers are predicted to have a higher likelihood of adoption of NUE’s based on an 

                                                 
5 Contract farming means there is an agreement between a buyer and seller for farm products (FAO 

2013). Contractors can supply technical advice and farm inputs.  
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increased time horizon and more time to learn-by-using the innovations (Rogers 2003; 

McBride and Daberkow 2003; Khanna 2001).  

In addition to farmer characteristics and information sources, a variable called 

HighPrices was added as a proxy for farmer’s motivation to plant corn in 2010 instead of 

another crop. This variable could be positively related to adoption of win-win technologies 

since these farmers are focused on increasing profitability, or it could be negatively related 

to adoption if the practices are viewed as just environmentally friendly.  The last variable in 

this category is federal crop insurance which is predicted to be positively related to 

adoption. Federal crop insurance was not subject to environmental compliance in 2010 

(Claassen 2012), however it can be thought of as a substitute for more nitrogen fertilizer 

application ‘insurance’ and may reduce overuse (Mulvaney et al. 2008; Huang et al. 2000; 

Ribaudo et al. 2011). 

Location and size variables include regional dummy variables, with Midwest being 

chosen as the base since it is the largest corn producing region.  Like similar studies, we 

expect that our three win-win technologies would have higher adoption rates in regions 

where they are most profitable (Beckman and Livingston 2012; Gedikoglu and McCann 

2012).  Other adoption studies using ARMS survey data that examined fertilizer 

management or application techniques found farm location to be a significant factor in 

management (McBride and Daberkow 2003; Khanna 2001; Chang and Boisvert 2009). As 

mentioned earlier, farm size and farm income can increase the likelihood of adoption in 

many cases based on economies of scale and increased ability to bear risk (Khanna 2001; 
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Roberts et al. 2004). The prediction in our model is that increasing farm size leads to 

increased likelihood of adoption. 

Current adoption of farm practices can be an important predictor of NUE innovation 

adoption (Knowler and Bradshaw 2007). Environmental awareness has been found to be an 

indicator of likelihood of adoption, especially related to conservation practices like no till  

(Prokopy et al. 2008). Our study hypothesizes that adoption of either conservation or no till 

practices (ConservationTillage) will be positive indicators of adoption. This BMP practice can 

be a ‘win-win’ by increasing soil productivity and decreasing time in the field (Knowler and 

Bradshaw 2007).  Similarly, adoption of filter/riparian buffer strips is also expected to have 

a positive influence as a proxy for environmental awareness. For farmers using manure, a 

decrease in NUE adoption is predicted since 92% of corn acres from 2001 to 2010 that used 

manure did not meet rate, timing, and method criteria for USDA’s good nitrogen 

management (Ribaudo et al.  2012). Nitrogen transformation inhibitors can be added to 

manure to reduce the loss of nitrogen via volatilization, as recommended by the NRCS 

nutrient management conservation practice standard (NRCS 2012).  Two practices 

additional practices expected to coincide with adoption of NHibs and controlled-release 

fertilizers are irrigation and fall fertilizer application. Irrigation creates a heightened need 

for nitrogen preservation after application—therefore nitrogen inhibitor/control-release 

fertilizer can be beneficial (Halvorson et al. 2010; Chen et al. 2008). Fall nitrogen application 

can also benefit from a slowed fertilizer release since it is applied well before planting 

season (Schwab and Murdock 2010).  
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In order to reduce externalities from agriculture, the federal government has 

developed conservation programs that subsidize farmers to adopt environmentally friendly 

practices like the Environmental Quality Incentives Program (EQIP) (Ribaudo et al. 2011). 

We expect participation in federal and state programs to increase the likelihood of adoption 

of these practices, captured in the binary variable ConservationPayments. There may also 

be state or local regulations that require decreased N applications in some areas which 

would also increase adoption. This can occur in particular watersheds like the Chesapeake 

Bay and is represented by a binary variable called Nreq. 

Technology-related independent variables can be indicators of willingness to adopt 

other technologies (Knowler and Bradshaw 2007). Included in this model are technologies 

with a range of cost and sophistication. Variable rate application of nitrogen can adjust 

application rates across a field. This technology can be expensive and benefit from 

economies of scale, but when used increases NUE in the farm system (Khanna 2001). Some 

farmers are planting pretreated seeds that are coated with pesticides, insecticides, and/or 

nematode treatment which reduces early aerial spraying. Using this technology is expected 

to positively affect adoption. The last two technology variables are GPS soil mapping and 

remote sensing technology. Both serve different agricultural management purposes and 

help represent the farmer’s innovativeness. GPS soil mapping means a farmer has done soil 

testing on his field. Remote sensing allows in-season N variability at various growth stages 

(Shaver et al. 2007). By including a wide variety of technology variables in the model, 

identifiers for influential factors in NUE technology adoption can be better identified.  
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Variable 

Categories 
Variable 

Predic ted 

Sign 
Definition  

Education  

& 
Information 

Sources 

Age - Age of principal operator 

Col lege + 
Education variable where 1 is operator that went to college 

or graduated and 0 is otherwise.  

ExtensionRec + Extension recommended (1=yes; 0=no).   

ContractorRec + Contractor recommendation for nitrogen (1=yes; 0=no). 

CropConsult + 
Consultant recommendation for nitrogen. Base variable for 
information source (1=yes; 0=no). 

FertilizerDlr -  Fertilizer dealer recommendation for nitrogen (1=yes; 0=no).         

NoRecommendation - 
Did not receive nitrogen recommendation from four 

previous sources (1=yes; 0=no). 

HighPrices + Planted corn because of expected high prices (1=yes; 0=no). 

CropInsurance  + Federal Crop Insurance (1=yes; 0=no). 

Location  
& 

Farm Size 

Acres + Acres in operation. 

YldGoal + Yield goal in pounds per acre. 

Midwest + 
NASS Midwest region of US. Base regional dummy variable in 

regression.  

P lains - NASS Plains region of US (1=yes; 0=no). 

Atlantic -  NASS Atlantic region of US (1=yes; 0=no). 

South - NASS South region of US (1=yes; 0=no). 

West - NASS West region of US (1=yes; 0=no). 

Practices 

ConservationTillage + 
Conservation till, No Till, and/or Minimum Tillage (1=yes; 
0=no). 

ConservationPayment + 
Received conservation payment from government (1=yes; 
0=no).  

Fi lter/Buffer + 
Had filter strips and/or conservation buffer, riparian buffer 

or field strips (1=yes; 0=no). 

Manure - Manure applied as fertilizer (1=yes; 0=no). 

Irrigate + Irrigated corn field. 

Fal lNapp + 40% or more fertilizer application in the fall (1=yes; 0=no). 

ReducedNrequired + 
Reduced nitrogen application on field because of 

government requirement.  

Technology  

VariableRateN + 
Variable rate application for N. Used to spot treat areas of 
field with more or less fertilizer (1=yes; 0=no). 

PretreatedSeed + 
Used pretreated seed. Insecticide, fungicide, and/or 
nematode treatment (1=yes; 0=no). 

GPSsoilmap + GPS map of soil properties of field (1=yes; 0=no).      

RemoteSensing + 
Used remote sensing technology on field for early detection 

of crop health (1=yes; 0=no). 

 

Table 1- Variable Names, Predicted Signs, and Definitions  
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Chapter 5 – Summary Statistics, CART 
Models, and Regression Results 

This results and discussion chapter begins with summary statistics along with charts 

that depict both variable attributes and relations. Then CART models are analyzed in an 

effort to segment farmers and find potential “bundles” of technologies and practices those 

surveyed may be using. Finally, multivariate regression results will be discussed in-depth. 

5.1 Summary Statistics  

Summary statistics for the 1840 observation dataset used from the 2010 ARMS Corn 

Survey are found in table 2. Approximately 21% of farmers conducted N tests on soil. 

Adoption rates of plant tissue testing and nitrogen inhibitor/controlled-release fertilizer 

were lower, with 3% and 10% of farmers, respectively. For the primary operators, the 

average age was around 55 years old, with approximately half of those operators having 

received some kind of college education.  The four information sources listed (contractor, 

consultant, extension agent, fertilizer dealer) provide insight into influential entities. Almost 

500 farmers said they received nitrogen recommendations from their fertilizer dealer. Over 

half of those surveyed said they did not receive any nitrogen fertilizer recommendations.  

A majority of the corn farmers in the survey (1071) were from the Midwest region 

which represents the largest corn growing region. Smaller corn growing regions like the 

West and South make up only 4.4% of the survey while Atlantic and Plains regions make up 

37%. The operating field size has a mean of 1030 acres.  Ranges are not presented because 
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the minimum and maximum number acre numbers could reveal a particular farmer’s farm 

size, which is not allowed by researchers using ARMS data.  

Field and fertilizer practices varied. Conservation, no till, or minimum tillage 

practices were adopted by 974 of the 1840 farmers (53%). The number of farmers receiving 

conservation payments and/or leaving room for field buffer strips and riparian grass filters 

made up 12% and 14% of the survey, respectively. Corn famers applying manure made up 

36% of the dataset compared to the 2006 ARMS corn dataset that had 16% manure usage 

(Ribaudo et al. 2011). In certain areas of the country it is difficult to get fertilizer on the 

field in the spring due to late winters and wet springs. Fall fertilizer application is done by 

some farmers in these growing conditions. Approximately 19% of those surveyed applied 

40% or more of their nitrogen fertilizer in the fall.  

The four technology variables were adopted at different levels. Variable rate 

fertilizer was only used by 121 farmers out of 1840 (7%). However, farmers applying 

pretreated seed was widely adopted (50%). The two field mapping variables, GPS soil maps 

and remote sensing, were used by 11% and 6% respectively. Overall the summary statistics 

help to give a snapshot of agricultural practices across the nation in 2010.   
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Table 2 - Descriptive Statistic s of Variables Used in Probit Regression  

  N=1840  Mean Std. Error 

Variable 
Categories Dependent Variables 

  

NUE 
Innovations 

NSoi lTest 0.21 0.41 

PlantTishTest 0.03 0.17 

NHib 0.10 0.30 

 Explanatory Variables   

Education 
and 

Information 
Sources 

Age 54.68 12.37 

Col lege 0.48 0.50 

ExtensionRec 0.04 0.20 

ContractorRec 0.01 0.10 

CropConsult 0.16 0.37 

FertilizerDlr 0.27 0.44 

NoRecommendation 0.52 0.49 

HighPrices 0.02 0.14 

CropInsurance  0.62 0.49 

Location 
and Farm 

Size 

Acres 1030.48 1832.46 

YldGoal 139.59 54.91 

Midwest 0.58 0.49 

Plains 0.22 0.42 

Atlantic 0.15 0.36 

South 0.03 0.17 

West 0.01 0.12 

Practices 

ConservationTillage 0.53 0.50 

ConservationPayment 0.12 0.32 

Fi l ter/Buffer 0.14 0.35 

Manure 0.36 0.48 

Irrigate 0.08 0.27 

Fal lNapp 0.19 0.40 

ReducedNrequired 0.04 0.20 

Technology 

VariableRateN 0.07 0.25 

PretreatedSeed 0.50 0.50 

GPSsoilmap 0.11 0.31 

RemoteSensing 0.06 0.25 
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5.1.1 Simultaneous Adoption of Variables  

Two important categorical variables in the regression are regions and nitrogen 

recommendation sources. Below, in table 3, these categorical variables are cross-

referenced with the three dependent NUE variables. Nitrogen soil testing is the most 

popular of the three and has many users in both the Midwest and Plains region with the 

fewest in the West. Nitrogen transformation inhibitors is the second most popular with 

most of its users being in the Midwest region and only 5 being from the South and West 

NASS regions. Plant tissue testing has the least users of the three NUE dependent variables 

with Midwest and Plains farmers making up the large majority.  For every region, the most 

adopted practice was nitrogen soil testing followed by nitrogen transformation inhibitors 

and plant tissue testing.  However, in the Midwest, the numbers of farmers adopting 

nitrogen soil testing and nitrogen transformation inhibitors were almost equal which was 

not the case for any other region.  

Table 3- Dependent Variables and NASS Regions   

  
N Soil Test 

Nitrogen 
Transformation 

Inhibitors 

Plant Tissue Test 

Atlantic  Region 74  25  7 

Midwest Region 144 138 31 

Plains Region 136  21 13 

South Region  18   3  2 

West Region  11   2  0 

Total 383 189 53 
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In table 4, the four recommendation variables reveal adopters’ information sources 

of nitrogen rates in relation to the three NUE innovations. The two most common sources 

for nitrogen rate recommendations came from consultant and fertilizer dealer 

recommendations.  Only 18 farmers surveyed said they received contractor nitrogen 

recommendations—15 of these farmers adopted one of the three studied NUE innovations. 

It was also the only information source that was related to higher adoption of plant tissue 

testing than nitrogen transformation inhibitors. 

Table 4 - Dependent Variables and N Recommendation Sources 

 
N Soil Test 

Nitrogen 

Transformation 
Inhibitors 

Plant Tissue Test 

Consultant Rec 120 54 16 

Extension Rec 24 13 5 

Fertilizer Dealer Rec 118 71 16 

Contractor Rec 10 1 3 

Total 272 139 40 

Dependent Variables and N Recommendation Sour  

Table 5 shows a list of farm practices on the top and those same farm practices in 

the same order along the side. This is in a similar format to a correlation matrix. The grey 

boxes on the diagonal represent the number of farmers using that technology (e.g. 383 N 

soil test adopters adopted N soil testing). The remaining cells in the column represent the 

number of farmers that adopted the technology and also adopted another technology in 

the data (47 of those 383 N soil test adopters also used a nitrogen transformation inhibitor). 

Table 6 on the next page shows percentage of adoption, with the grey diagonal boxes being 
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100% and the remaining cells in each column representing a percentage of those adopting 

the technology in the column heading also adopting the technology in the row heading.  

Table 5- Practice Adoption Percentage 

Table 6- Practice Adoption Count 

N Soil Test
100% 25% 64% 24% 22% 18% 53% 19% 25%

Nitrogen 

Inhibitors
12% 100% 21% 13% 12% 8% 13% 8% 9%

Plant Tissue Test
9% 6% 100% 4% 4% 2% 4% 2% 4%

No Till and/or 

Conservation Till 62% 68% 77% 100% 54% 39% 65% 42% 57%

Filter or Buffer 

Strips 15% 17% 19% 15% 100% 17% 10% 16% 19%

Manure
32% 28% 26% 27% 43% 100% 21% 100% 100%

Irrigated field
20% 10% 11% 9% 5% 5% 100% 4% 5%

Fall Fertilizer App
18% 16% 13% 16% 22% 54% 9% 100% 48%

Reduce N Req
5% 4% 6% 5% 6% 12% 3% 10% 100%

*Note: Percentages in this table were calculated by taking the cell in the corresponding column of the previous table, dividing it by the 

corresponding grey box in that column, and multiplying it by 100. 

Number of 

Adopters

N Soil 

Test

Nitrogen 

Inhibitors

Plant 

Tissue Test

No Till and/or 

Conservation 

Till

Filter or 

Buffer 

Strips

Manure 
Irrigated 

field

Fall 

Fertilizer 

App

Reduce N Req

N Soil Test
383 47 34 237 59 122 75 68 19

Nitrogen 

Inhibitors 47 189 11 129 32 52 18 30 7

Plant Tissue Test
34 11 53 41 10 14 6 7 3

No Till and/or 

Conservation Till 237 129 41 974 143 262 91 152 44

Filter or Buffer 

Strips 59 32 10 143 263 113 14 57 15

Manure
122 52 14 262 113 664 30 358 77

Irrigated field
75 18 6 91 14 30 141 13 4

Fall Fertilizer App
68 30 7 152 57 358 13 358 37

Reduce N Req
19 7 3 44 15 77 4 37 77
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The three most common practices are no till and/or conservation tillage (974), 

manure use as fertilizer (664), and fall fertilizer application (358). Particularly for our three 

dependent variables, no till/conservation till was widely adopted with 77% of plant tissue 

testers using this practice. N soil testing was commonly adopted by farmers that irrigated 

fields (53%).  

In table 5, 77 farmers indicated they had a reduced N requirement, all used manure 

as fertilizer (100%). In the estimated correlation matrix these two variables are positively 

correlated at the 0.6 level (anything above a 0.5 is problematic). Also every farmer that 

applied more than 40% of his crop fertilizer in the fall used manure (100%). Again these 

variables were positively correlated. If you look at these two statistics in reverse, of the 664 

manure users 54% applied fertilizer in the fall and only 12% claimed they had a reduced 

nitrogen requirement. Ribaudo et al. (2012) found that most farmers using manure 

produced it in their farming operation. Farmers applying manure in the fall could possibly 

be both for fertilizing for spring crops and getting rid of excess manure due to limited 

storage. For this reason manure will be removed from the multivariate probit regression. 

Two variables related to water quality are conservation/no tillage and riparian filter 

or grass buffer strips. Riparian filter strips or grass buffers help to capture nitrogen runoff, 

as well as other nutrients, before it can enter a water system. Both conservation and no till 

help prevent soil erosion and increase organic matter, preventing rapid leaching and N loss 

via runoff. Roughly half the farmers that had filter or buffer strips (54%) also did 

conservation/no till. But only 15% of farmers doing conservation/no till had filter or buffer 

strips on the edges of their field. 
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Tables 7 and 8 give technology counts and percentage of adoption by farmers from 

the survey. The first three technologies are the three NUE dependent variables. Several 

farmers adopted more than one of these technologies, indicating that a multivariate 

regression may be useful. Looking at the percentage table, notice that 64% of plant tissue 

testers did a nitrogen soil test compared to only 25% of N transformation inhibitor users. 

Pretreated seed was widely adopted by many of the 1840 farmers surveyed.  

Two variables with under 125 adopters in the survey are variable rate technology for 

fertilizer application and remote sensing. A third of these high tech users also did an N soil 

test (33-31%). But out of the same group only 10% and 7% respectively, used plant tissue 

testing. Overall, technology adoption for three of the four variables was fairly low 

compared to non-adopters. 

Table 7- Technology Adoption Count   

Number of 

Adopters

N Soil 

Test

Nitrogen 

Inhibitors

Plant 

Tissue 

Test

VRT for 

N app

Pretreated 

Seed

GPS Soil 

Maps

Remote 

Sensing

N Soil Test 383 47 34 41 214 63 39

Nitrogen 

Inhibitors 47 189 11 27
126 36

24

Plant 

Tissue 

Test 34 11 53 7

33 15

12

VRT for N 

app
41 27 7 121 82 39 19

Pretreated 

Seed
214 126 33 82 915 132 72

GPS Soil 

Maps
63 36 15 39 132 201 48

Remote 

Sensing
39 24 12 19 72 48 118
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Table 8- Technology Adoption Percentage 

 

Tables 3 through 8 show co-adopted technologies and practices U.S. corn farmers 

were using in 2010. These tables also give insight into the three dependent variables and 

the farmers who did and did not adopt them. These summary statistics and cross-tabs are 

valuable in establishing a baseline for the large farmer survey but are also a useful 

reference when analyzing CART models and regressions post hoc. 

5.2 CART Models 

The CART decision tree can be read starting at the target variable. Multiple nodes 

are the result of multiple splits by a particular variable creating child nodes that have one or 

more corresponding parent nodes creating a string of explanatory variables back to the 

target variable. In this paper the decision tree will be read from top to bottom.  

N Soil Test 100% 25% 64% 34% 23% 31% 33%

Nitrogen 

Inhibitors
12% 100% 21% 22% 14% 18% 20%

Plant 

Tissue 

Test

9% 6% 100% 6% 4% 7% 10%

VRT for N 

app
10% 13% 23% 100% 9% 19% 16%

Pretreated 

Seed
11% 14% 13% 68% 100% 66% 61%

GPS Soil 

Maps
56% 67% 62% 32% 14% 100% 41%

Remote 

Sensing
16% 19% 28% 16% 8% 24% 100%

*Note: Percentages  in this  table were ca lculated by taking the cel l  in the corresponding column of the 

previous  table, dividing i t by the corresponding grey box in the column, and multiplying i t by 100. 
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5.2.1 How to Read a CART Model  

The first CART model shown (figure 9) has nitrogen soil testing as the researcher-

assigned binary dependent variable. The dependent or target variable is at the top of the 

chart at Node 0. Inside Node 0, the 0 represents non-adopters and 1 represents adopters. A 

number is directly across from the 0 or 1 which indicates the number of observations in the 

survey that adopted or did not adopt. For nitrogen soil testing, 1457 farmers did not use it 

and 383 did. Node 0 then breaks into two child nodes based on whether farmers irrigated 

their field, 1 meaning ‘Yes’ and 0 meaning ‘No’. Starting on the left with Node 1, of the 383 

nitrogen soil testers 308 did not irrigate—representing 18.1% of all non-irrigators in the 

survey sample. Of the 1457 farmers that did not use nitrogen soil testing, 1391 did not 

irrigate their fields. So each node shows a 1 (indicating N soil test adopters) and 0 

(indicating those not using N soil tests) that follow the split criteria—in this case irrigation. 

Node 1 then splits into two child nodes (Nodes 3 and 4) by whether or not a farmer was in 

the Midwest Region. Looking at Node 3, 140 of the 308 non-irrigating nitrogen soil test 

farmers live in the Midwest Region making up 13.2% of all non-irrigating Midwestern 

farmers.  

The key to not getting lost in the child node numbers is to remember that the 1’s in 

the box indicate the number of farmers in a subgroup based on the dependent variable. The 

0’s indicate those farmers that did not adopt the dependent variable but still follow the 

splitting criteria. In each node these 1’s and 0’s help the researcher determine if meaningful 

or distinct splits are being obtained. One can now trace out farmer segments. For example, 

look in node 8 in Figure 9 and follow it up the tree; 38 of the 383 that used nitrogen soil 
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testing had consultant recommendations, lived in the Midwest Region, and did not irrigate 

their fields. 

Below are the CART models for nitrogen soil testing, nitrogen transformation 

inhibitors, and plant tissue testing. The model summary indicates the variables the model 

could select to grow the decision tree. Tables 10, 12, and 14 display the statistics for the 

adjacent model. Because CART statistical techniques and variance-minimizing algorithms 

were not discussed in-depth these risk and predictability numbers will not be highlighted. 

However, it is important to state that all three models were sufficient. Note that in all three 

models all binary and categorical variables used in the multivariate probit regression are 

also present but only some are included by the model based on splitting algorithm criteria. 

5.2.2 Nitrogen Soil Testing CART Model 

This model has 10 nodes branching from the target variable N soil testing; forming 3 

levels that include 3 variables. The first split is on field irrigation, where 75 N soil test 

adopters irrigated making up 53.2% of all irrigators in the n=1840 survey. Of the 75, 39 

farmers received a nitrogen recommendation from a consultant as seen in node 6. In 

comparison, a majority (53 of 66) of non-adopters of N soil testing farmers that irrigated 

their field did not get a consultant recommendation.  

From the left, non-irrigating farmers in node 1 split by Midwest region are in nodes 3 

and 4. Both these nodes split into terminal child nodes (7, 8, 9, and 10) by consultant 

recommendation with the majority in both terminal splits being farmers that did not receive 

a consultant recommendation. Not every decision tree will reveal valuable information. In 
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this case however, farmers surveyed that did N soil testing fell into two distinct groups; 

irrigators (308) and non-irrigators (75). Farmers that irrigated were likely (52%) to have 

used a consultant recommendation. So of all the farmers in the dataset that both irrigated 

and used a consultant for N recommendation, 75% also performed a nitrogen soil test (node 

6).This 39 person sub-group could be considered “irrigating N soil testing consultant-using” 

farmers.  

 

Specifications 

Growing Method CART 

Dependent Variable Nitrogen Soil Test 

Independent Variables 

Education, Fall Fertilizer App, Fed Crop 

Insurance, Filter/Buffer Strips, Plant Corn 

bc of High Price, Irrigated Field, Manure 

Used, Midwest, South, Atlantic, West, 

Plains No Till and/or Conservation Till, 

Remote Sensing, Soil Types Mapped w/ 

GPS, Pretreated Seed, VRT N app, Reduced 

N Requirement, Conservation Payment, 

Consultant Rec, Extension Rec, Fertilizer 

Dealer Rec, Contractor Rec, No 

Recommendations for 4 Sources 

Validation None 

Maximum Tree Depth 3 

Minimum Cases in 

Parent Node 

100 

Minimum Cases in 

Child Node 

20 

Independent Variables 

Included 

Irrigated field, Midwest Region, Consultant 

Rec 

Results 

Number of Nodes 11 

Number of Terminal 

Nodes 

6 

Depth 3 

Table 9-- N Soil Test CART Model Summary 
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Nitrogen Soil Test CART  Risk 

Estimate .194 

Std. Error .009 

  

Observed 
Predicted 

.00 1.00 Percent Correct 

.00 1444 13 99.1% 

1.00 344 39 10.2% 

Overall Percentage 97.2% 2.8% 80.6% 

Growing Method: CART 

Dependent Variable: Nitrogen Soil Test 

 

Figure 9- Nitrogen Soil Test Classificat ion and Regression Tree 

Table 10- N Soi l  Test Model Statistic s  
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5.2.3 Nitrogen Transformation Inhibitor CART Model 

This model has 13 nodes branching from the target variable Nitrogen Transformation 

Inhibitors forming 3 levels that include 5 variables. The first split is on a variable indicating 

no nitrogen recommendations from the four surveyed sources. For nitrogen transformation 

inhibitor adopters (189), node 1 shows 79 said they did not receive nitrogen 

recommendations for the 2010 crop year from the four surveyed sources. Node 1 then 

splits by pretreated seed users. Of the previous 79 farmers, 56 used pretreated seed with 

39 of these 56 being from the Midwest region (node 9). Of the 79 farmers in node 1, 23 did 

not use pretreated seed (node 3), 16 of which did no till and/or conservation till (node 7). 

So 16 N transformation inhibitor adopters did not receive an N recommendation, did not 

use pretreated seeds, but did do no till or conservation till on their corn field.  

This model splits first into two groups; those who received N recommendations and 

those who did not. From the right, we see that a majority (110 of 189) of our nitrogen 

transformation inhibitor adopters received some kind of nitrogen recommendation from 

one of four sources. In node 2, 731 total farmers received nitrogen recommendations from 

our four sources—15% of which were nitrogen transformation inhibitor adopters. Node 2 

then splits by Midwest region where 84 of the 110 farmers are from. Also interesting to 

note, looking at the totals in node 2 and 5—731 farmers in the survey said they received N 

recommendations from one of our 4 sources, 450 of which were from the Midwest region. 

So farmers from the Midwest region made up 58% of our survey (shown in summary 

statistics table 2) and 62% of those receiving N recommendations.  From the CART model 
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one can infer that a sub-group of nitrogen transformation inhibitors are “Midwestern N 

recommendation-seeking” farmers.  

Table 11- Nitrogen Transformation Inhibitor CART Model Summary 

Specifications 

Growing Method CART 

Dependent Variable Nitrogen Transformation Inhibitors 

Independent 

Variables 

Education, Fall Fertilizer App, Fed Crop 

Insurance, Filter/Buffer Strips, Plant Corn 

bc of High Price, Irrigated Field, Manure 

Used, Midwest, South, Atlantic, West, 

Plains No Till and/or Conservation Till, 

Remote Sensing, Soil Types Mapped w/ 

GPS, Pretreated Seed, VRT N app, 

Reduced N Requirement, Conservation 

Payment, Consultant Rec, Extension Rec, 

Fertilizer Dealer Rec, Contractor Rec, No 

Recommendations for 4 Sources 

Validation None 

Maximum Tree 

Depth 
3 

Minimum Cases in 

Parent Node 
100 

Minimum Cases in 

Child Node 
20 

Results 

Independent 

Variables Included 

No N Recommendations, Remote 

Sensing, Pretreated Seed, No Till and/or 

Conservation Till, Midwest Region,  

Number of Nodes 13 

Number of Terminal 

Nodes 
7 

Depth 3 
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Figure 10- Nitrogen Transformation Inhibitor Classification and Regression Tree 
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5.2.4 Plant Tissue Testing CART Model 

Not surprisingly, given the relatively low number of adopters, the following plant 

tissue CART model is small with 7 nodes and 4 variables forming 3 levels. In node 0, there 

are 53 farmers using plant tissue testing and 1787 not. The first split is on whether or not 

the farmer used remote sensing. Node 2 has 12 of the 53 adopting remote sensing 

technology (22.6%), making up 10.2% of all remote sensing adopters. For non-remote 

sensing adopters in node 3, 41 of the 53 farmers then split on receiving conservation 

payments (1 = 14, 0 =179). Non-conservation payment recipients in node 3 then split by GPS 

soil maps with 7 plant tissue testers in node 6. This tree is relative weak compared to the 

previous two in that the breaks do not give us easily describable or particularly meaningful 

segments. Tree diagrams tend to work better with a higher number of users adopting the 

target variable.   

 

 Risk 

Estimate .103 

Std. Error .007 

  

Observed Predicted 

.00 1.00 Percent Correct 

.00 1651 0 100.0% 

1.00 189 0 0.0% 

Overall Percentage 100.0% 0.0% 89.7% 

Growing Method: CART 

Dependent Variable: Nitrogen Transformation Inhibitors  

 

Table 12- Nitrogen Transformation Inhibitor CART Statistics 
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Table 13- Plant Tissue CART Model Summary 

Specifications 

Growing Method CART 

Dependent Variable Plant Tissue Test 

Independent 

Variables 

Education, Fall Fertilizer App, Fed Crop 

Insurance, Filter/Buffer Strips, Plant Corn 

bc of High Price, Irrigated Field, Manure 

Used, Midwest, South, Atlantic, West, 

Plains No Till and/or Conservation Till, 

Remote Sensing, Soil Types Mapped w/ 

GPS, Pretreated Seed, VRT N app, 

Reduced N Requirement, Conservation 

Payment, Consultant Rec, Extension Rec, 

Fertilizer Dealer Rec, Contractor Rec, No 

Recommendations for 4 Sources 

Validation None 

Maximum Tree 

Depth 
3 

Minimum Cases in 

Parent Node 
100 

Minimum Cases in 

Child Node 
20 

Results 

Independent 

Variables Included 

Remote Sensing, Conservation Payment, 

Soil Types Mapped w/ GPS 

Number of Nodes 7 

Number of Terminal 

Nodes 
4 

Depth 3 
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Figure 11- P lant Tissue Testing Classif ication and Regression Tree  
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5.2.5 CART Model Conclusions 

To recap, a CART model will “recursively partition to find increasingly homogeneous 

subsets based on independent variable splitting criteria using variance minimizing 

algorithms” (Zheng et al. 2009:101). In all three CART models there was a different variable 

for the initial split from node 0; N soil testing and irrigation, N transformation inhibitors and 

no N recommendation sources, plant tissue testing and remote sensing. These models then 

broke into three levels with 7-13 nodes. The N soil testing and N transformation CART 

models were more robust, showing nodes with larger farmer numbers.  

 The N soil test CART model revealed that half of irrigating N soil testing farmers 

talked to a consultant about their N application quantity. For N transformation inhibitors, 

110 of the 189 received N application advice from one of our four sources (consultant, 

contractor, extension agent, or fertilizer dealer) for the 2010 season, indicating an 

increased adoption rate if a farmer is contacting an outside source. The plant tissue testing 

Plant Tissue Testing CART Risk 

Estimate .029 

Std. Error .004 

  

Observed 
Predicted 

.00 1.00 Percent Correct 

.00     1787 0 100.0% 

1.00 53 0 0.0% 

Overall Percentage 100.0% 0.0% 97.1% 

Growing Method: CRT 

Dependent Variable: Plant Tissue Testing 

 

Table 14- Plant Tissue CART Statistics 
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model revealed that 22.6% of farmers in the survey using remote sensing also utilized plant 

tissue tests to check crop health and nutrient quantities.  

5.3 Multivariate Probit Regression Analysis 

Now that summary statistics and CART models have been examined, multivariate 

probit regression results will be analyzed. These results are found in table 16. This type of 

regression is common in adoption studies and should reveal reliable indicators for adoption 

of the NUE dependent variables. The beta coefficients for each independent variable should 

not be interpreted the same as a standard regression. For this model the coefficient values 

measure the conditional probability changes in adoption given the level of the independent 

variables, holding all other variables constant. Refer to table 1 to note the base categories 

for the categorical variables.  The intercept includes the base categories for the variables.  

The discussion will focus on the significance of the variable in the regression and its positive 

or negative relationship to the probability of adoption.    

5.3.1 Regression Results 

In the adoption literature, it has been found that in some cases, technologies are 

adopted as part of a package, i.e. that adoption of some practices are correlated.  The null 

hypothesis for this regression is that the three dependent variables are uncorrelated. Table 

15 shows ρ estimates for adoption using a multivariate probit approach. The estimated 

correlation coefficient parameters show that the null hypothesis is rejected at the 1% level 

for plant tissue and nitrogen soil testing and at the 5% level for plant tissue testing and 

nitrogen inhibitors—justifying the use of a multivariate probit regression. We fail to reject 

the null hypothesis that ρ is zero for nitrogen soil testing and nitrogen inhibitor use.  This 
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supports the finding from the summary statistics that those who adopt plant tissue testing 

have also adopted a range of other practices.  For the two significant cases, a positive value 

for ρ indicates that factors outside of the model that influence the adoption of nitrogen soil 

testing increase the likelihood of adopting plant tissue testing—likewise factors influencing 

the adoption of plant tissue testing also increase the likelihood of adopting nitrogen 

inhibitors or controlled-release fertilizers.      

 

Given the wide variety of explanatory variables in the model, we examined 

correlation coefficients for pairs of variables as well as testing for multicollinearity in the 

regressions as a whole. The absolute values of the correlation coefficients were all less than 

0.4 once manure was removed. The individual regressions found 

no multicollinearity problems using variance inflation factor (VIF). The VIF for all variables in 

the model was less than 2.7 while a VIF of 10 or greater indicates that a variable may be 

deemed a linear combination of other independent variables in the model (Chen et al. 

2003).    

For models with categorical dependent variables, the traditional ordinary least 

squares measure of fit, R2, cannot be used.  In addition, the regressions have categorical 

independent variables so the appropriate measure is the max-rescaled R2 value, a 

likelihood-based measure that is calculated by SAS (Stokes and Davis 2009) .  The measure 

ranges from 0 to 1 with higher values indicating better fit.  Max-rescaled R2 values for the 

Table 15- Multivariate Regression Correlation Coeffic ient Results  

Dependent Variable Correlation Combinations 

NSoilTest and PlantTishTest 0.499*** 

PlantTishTest and NHib 0.178* 
NSoilTest and NHib 0.060 
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three individual probit regressions ranged from 0.193 for nitrogen soil testing to 0.164 for 

the other practices, as shown in table 16. 

 Explanatory variables related to education and information sources had varied 

significance across the three dependent variables. Natural log of age was negatively 

associated with both nitrogen soil testing (p<1%) and nitrogen inhibitors (p<5%). This is in 

line with our hypothesis that older farmers are less likely to adopt these technologies. 

Higher education level and use of extension recommendations were insignificant for all 

three technologies. Compared to the base category of consultant recommendations, 

nitrogen soil testing was positively related to contractor recommendations, and negatively 

related to fertilizer dealer recommendations. Fertilizer dealers have an incentive to sell 

more not less nitrogen fertilizer.  The variable for ‘no nitrogen recommendation’ was 

negative and highly significant for all three dependent variables compared to the base 

category. This makes sense and fits with our prediction that farmers would be less likely to 

adopt NUE technologies if they did not seek outside recommendations. Planting corn due to 

high prices was significant for all practices with plant tissue testing being positive and the 

other two negative. One possibility for this result is that managers are more concerned 

about maximizing yields when prices are high; thus, they are less worried optimizing N use. 

Plant tissue testing occurs during the growing season.  If prices are high, farmers could be 

more likely to test for micro-nutrient stress in order to make sure that they maximize yield. 

Finally, the last variable in the first category is federal crop insurance—which is significant 

only for plant tissue testing. Some insurance companies require plant tissue testing if 
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farmers are to get a discount for planting geographically appropriate GMO seed (USDA 

2009). 

The second variable category is location and farm size. Natural log of acres is a proxy 

for farm operation size and economies of scale. For nitrogen inhibitors ln(acres) was 

positive and significant at the 1% level. None of the coefficients for expected yield per acre 

were significant. The regression contained 4 regions with Midwest as the base. Warmer 

regions like the Plains, South, and West were negatively correlated with adoption of 

nitrogen inhibitors. This result aligns with the use of nitrogen inhibitors in colder climates  

(Chen et al. 2008). Nitrogen soil testing showed the four regions in the regression were 

positive and significant at either the 1% or 5% level compared to the Midwest. Plant tissue 

testing did not have any significant regional coefficients, ceteris paribus.  

A possible indicator for likelihood of adoption can be adoption of previous 

innovations, both technologies and practices. Farmers’ receipt of some type of state or 

federal money for conservation was positively associated with adoption of both nitrogen 

soil testing (p<5%) and plant tissue testing (p<1%).  No NRCS funding is available for 

nitrogen transformation inhibitors so it is not surprising that conservation funding was not 

associated with adoption of this practice. This increased likelihood of adoption shows that 

conservation payments encourage soil and plant testing, as expected. This was also the case 

with conservation tillage/no till which was positively associated with plant tis sue testing 

(p<10%) and nitrogen transformation inhibitors (p<1%). These results indicate that farmers 

who are interested in conservation and improving environmental quality are more likely to 

adopt these specific NUE practices.  
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Table 16- Multivariate Probit Regression Results  for Three NUE Eco -innovations 

Variable 
Categories 

Explanatory Variables 

Nitrogen Soil 
Testing 

Plant Tissue 
Testing 

Nitrogen 
Inhibitors 

Education 
and 

Information 
Sources 

LN(Age) -0.494*** -0.30 -0.432** 

Col lege  0.11  0.17  0.01 

ExtensionRec -0.21 -0.05 -0.08 

ContractorRec  0.615**  0.50 -0.78 

CropConsult  BASE   

FertilizerDlr -0.242** -0.32* -0.05 

NoRecommendation -0.581*** -0.35* -0.370*** 

HighPrices -0.833***  0.62** -1.034** 

CropInsurance   0.062  0.41**  0.06 

Location and 

Farm Size 

LN(Acres) -0.014 -0.07  0.146*** 

LN(YldGoal)  0.079  0.09  0.07 

Midwest  BASE   

Plains  0.578*** -0.12 -0.906*** 

Atlantic  0.665***  0.01 -0.15 

South  0.735***  0.19 -0.561* 

West  0.584** -3.95 -0.939** 

Practices 

ConservationTillage  0.09  0.252*  0.293*** 

ConservationPayment  0.239**  0.520*** -0.05 

Fi l ter/Buffer  0.12 -0.12  0.14 

Manure Removed     

Irrigate  0.595***  0.09  0.400** 

Fal lNapp  0.065 -0.22 -0.01 

ReducedNrequired  0.195  0.31 -0.25 

Technology 

VariableRateN  0.20  0.04  0.372** 

PretreatedSeed -0.01  0.05  0.327*** 

GPSsoilmap  0.303***  0.28 -0.02 

RemoteSensing  0.20  0.482**  0.350** 

Intercept Intercept  0.64 -1.21 -0.84 

Fit  Individual Regression R2  0.193 0.164 0.164 

Note: Merged Phase II and Phase III ARMS data for corn producers for 2010 were used. Estimates are statistically 
significant at the 0.01***, 0.05**, and 0.1* levels.   
 

However, filter or riparian buffer strips, reduced nitrogen requirement, and fall 

fertilizer application were all insignificant in predicting likelihood of adoption, ceteris 
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paribus.  The non-significant results for the latter two variables are cause for concern since 

the potential for negative environmental impacts is heightened.  Irrigation has a positive 

effect on N soil testing and nitrogen inhibitors at the 1% and 5% level of significance 

respectively.  Farmers that use irrigation tend to have a high investment tied to field 

productivity and are concerned with N retention in soils  (Robertson and Vitousek 2009), and 

this is reinforced in the regression results. 

Four technologies were chosen as explanatory variables in the model, again acting as 

a proxy for farmer innovativeness. The use of variable rate fertilizer, a capital intensive 

technology, showed a positive effect on adoption of nitrogen inhibitors (p<5%). The use of 

pretreated seed with insecticide, fungicide, and/or nematode coating was also positively 

associated with nitrogen inhibitor adoption (p<1%). Both NHibs and pretreated seed are 

additives to traditional farm inputs. The utilization of GPS soil maps was positively 

associated with adoption of nitrogen soil testing at the 1% level. This means that managers 

with GPS soil mapping may overlay recent nitrogen soil testing data. Finally remote sensing 

technology increased the likelihood of adoption for plant tissue testing and nitrogen 

inhibitors at the 5% level. This significance shows an added concern for timing-appropriate 

nitrogen by farmers using this technology.  

The multivariate probit analysis indicates that adoption of nitrogen soil testing is 

positively correlated with adoption of plant tissue testing and adoption of plant tissue 

testing was positively correlated with nitrogen inhibitor or controlled-release fertilizer use. 

As expected, older farmers were less likely to adopt the NUE eco-innovations (if the effect 

was significant).  All three practices were less likely to be adopted by farmers receiving no 
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nitrogen fertilizer recommendations compared to recommendations from a consultant. This 

result indicates decreased likelihood of NUE adoption for those farmers not actively seeking 

input on nitrogen management.  

For the nitrogen soil testing model, all four regions were positive and significant, 

indicating that those regions were more likely than the Midwest, all else equal, to use this 

practice.  Receipt of conservation payments was positive for both nitrogen soil testing and 

plant tissue testing, which follows the NRCS suggestions for conservation practices. This, 

along with indication of increased NUE practice adoption by those using conservation tillage 

implies that environmental concerns may be a driver for adoption of these win-win 

practices, although there was no significant effect of having filter/riparian buffers. Nitrogen 

inhibitors and controlled-release fertilizers showed a strong connection to current 

technology implementation, with 3 of the 4 innovations being positively associated with 

adoption. 

This adoption model helped to reveal influential variables for three NUE dependent 

variables, contributing to the previous body of research reviewed in chapters 3 and 4. These 

findings reinforce the predictability of certain factors like age and information, as well as 

the complexity of the adoption process and researchers’ lack of understanding of all 

influential factors affecting farmer adoption of eco-innovations. The regression results also 

revealed that there are still many factors outside the model that are influencing adoption. 

This research study will be further discussed in the following chapter along with concluding 

remarks and potential future research.  
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Chapter 6 — Conclusions 

The main source of nitrogen non-point source pollution in the environment is caused 

by agriculture (Ribaudo et al. 2011). Further adoption of NUE innovations is important for 

U.S. water quality and increased sustainability of agriculture (Pretty 2008; Ribaudo et al. 

2012).  Information about the multidimensional factors associated with the adoption of 

NUE innovations can help shape policy design and tailor outreach by both private and 

government entities. 

In analyzing the 2010 USDA ARMS data, this researcher tried to look at summary 

statistics, CART models, and multivariate probit regression results to understand drivers of 

adoption for three NUE innovations. Technology or practice variables like no 

till/conservation till and pretreated seed were widely adopted by participants evaluated in 

the survey. Both co-adopted table 5 and 7 indicated technologies and practices that were 

commonly (or uncommonly) adopted together.  

The three CART models revealed three different initial variable splits for our three 

dependent variables; N soil testing and irrigation, N transformation inhibitors and no N 

recommendation sources, plant tissue testing and remote sensing. This segment 

information means that extension agents and consultants could target farmers that irrigate 

that are not using N soil testing with information on its benefits, possibly getting a move 

receptive audience to NUE literature than non-irrigating farmers. For farmers that are 

receiving information from one of the four studied sources, they may also be receptive to 

using a nitrogen transformation inhibitor given many current Nhib users are active 
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information-seekers.  Fertilizer dealers may be interested in this technology since, while it 

may reduce N applications, sales of the inhibitors are a source of revenue.  This also means 

that consultants, extension agents, contractors, and fertilizer dealers could be a potential 

survey source for understanding how to better increase NUE innovation adoption in the US. 

All this information preceded the multivariate regression results that tested the hypotheses 

posed in Chapter 4.  

When comparing the CART models and regression results, all first breaks in each tree 

were significant in the regression; N soil testing and irrigation, N transformation inhibitors 

and no N recommendation sources, plant tissue testing and remote sensing. For N soil 

testing, 75 of the 383 adopters also irrigated their fields. Irrigation was positively related to 

adoption in the regression (.595**). No nitrogen recommendation was negatively related to 

adoption of nitrogen transformation inhibitors (-0.370***), with 79 of the 189 adopters 

receiving no recommendation from the four surveyed sources. Finally, the plant tissue 

testing CART model first split on remote sensing. When comparing that to the regression 

results, it seems the CART model could have possibly first split by VRT or no 

recommendation instead of remote sensing (which the variance minimizing-algorithm 

selected). Considering all three influential variables, the co-adoption of other technologies 

or access to information seems to be related to adoption of plant tissue testing.  Combined 

with the finding that adoption of plant tissue testing was related to both of the other NUE 

technologies, it seems that farmers who adopt this technology are in general very 

innovative farmers.  They may thus fit the general category of “innovators” as described by 

Rogers (2003).    
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This study used 2010 ARMS data from the USDA, which gives an in-depth, national 

representation of corn farmers and their financial and field management practices. The 

sample was large enough (n=1840) to help validate our multivariate probit regression 

results. This dataset is reviewed by USDA workers and policy developers as an indicator of 

current farm life—which adds to both the legitimacy and applicability of the outcomes.  

However, there are few variables in the survey relating directly to environmental attitudes 

and behavioral motives. The absence of this type of information can be a weak point when 

analyzing farmer behavior (Prokopy et al. 2008). This was a weakness in the regression 

analysis and was one of the likely reasons for overall low statistical significance in the 

regression model.  

Another weakness in this study was the lack of spatial details relating to geographic 

location and soil type. Though regional dummies and irrigation were used, this did not 

appropriately substitute for field fertility and soil drainage and may thus relate to the low 

explanatory power of the model. A better proxy would have been to use soil classification 

type of the surveyed field and possibly more specific locations like state. Future studies 

should consider adding a soil type dummy that can help to incorporate geospatial 

information that allows for incorporation of agroecological attributes .  

According to NRCS, not applying nitrogen fertilizer in the fall for spring crops is part 

of good nitrogen management (NRCS 2012). Fall nitrogen application was insignificant in all 

three regressions and did not appear in the CART models. This is concerning since fall 

nitrogen application already decreases NUE and increases possibility of N loss to waterways 

(Ribaudo et al. 2012). Further research needs to be conducted on farmers that are applying 
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fertilizer in the fall. This also needs to include manure users, all of which applied fall 

fertilizer in our survey sample. Policy in Europe bans spreading of manure and fertilizer in 

late fall and winter (van Grinsven et al. 2012). Some states like Wisconsin prohibit applying 

fertilizer on frozen ground (Vanegreen 2014). But federal policy might be a possible solution 

in the US if farmers applying fall fertilizer are not following other best management 

practices and putting water quality at risk.  

Previous literature has found mixed results when analyzing predictors of agricultural 

eco-innovation adoption (Knowler and Bradshaw 2007; Prokopy et al. 2008). In this study, 

we examined four categories of independent variables to try and capture a breadth of 

possible influential factors. The results revealed that some predictors like information 

sources and age are associated with NUE innovation adoption. But there are still many 

factors outside the model which are driving the decision to use these three innovations.  

For example, lack of precise geospatial dummies and personality characteristics such as 

innovativeness may have played a role in the low R2 values observed in this study.   

The strong and contradictory effects of the variable HighPrices need to be 

investigated. How are farmers responding to increased prices of corn—and what are they 

doing in their farming system to adapt beyond increasing acreage? Further research is 

needed to help explain the drivers of eco-innovation adoption and what measures 

agribusiness and government should take to increase its use.  

The reduced adoption by farmers who did not receive any nutrient 

recommendations implies there is a role for expanded education efforts relating to nitrogen 
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use efficiency. Several states have implemented low level fertilizer taxes that had little 

impact on farmer usage (Ribaudo et al. 2011), but fertilizer limits have had some positive 

effects on water quality in Europe (van Grinsven et al. 2012).  The national problem of 

agricultural nitrogen pollution highlights tradeoffs between environmental quality and 

profitability of agriculture.  However, new, win-win technologies provide a potential way to 

reduce this conflict.  More generally, addressing environmental and natural resource issues 

involves understanding the physical, biological, and institutional environment as well as its 

connection to technology, public choice, abatement costs, and transaction costs (McCann 

2013).  
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Appendix 1 — USDA Corn Statistics from 2006-2013 

This table contains corn data from the USDA from 2006 to 2013 (USDA 2014a). In this 

time frame the following all increased: planted corn acres, production in bushels, and 

weighted-average price per. The yield per acre went up and down from 2006-13 but 

remained fairly stagnate on a nationwide scale.  

 

 

Planted 

acreage 

(Million acres)

Harvested for 

grain (Million 

acres)

Production 

(Million 

bushels)

Yield per 

harvested acre 

(Bushels per 

acre)

Weighted-

average farm 

price (dollars 

per bushel) 2/

Loan rate 

(dollars per 

bushel)

2006/07
78.33 70.64 10,531.12 149.10 3.04 1.95

2007/08
93.53 86.52 13,037.88 150.70 4.20 1.95

2008/09
85.98 78.57 12,091.65 153.90 4.06 1.95

2009/10
86.38 79.49 13,091.86 164.70 3.55 1.95

2010/11
88.19 81.45 12,446.87 152.80 5.18 1.95

2011/12
91.94 83.99 12,359.61 147.20 6.22 1.95

2012/13
97.16 87.38 10,780.30 123.40 6.89 1.95

2013/14
95.37 87.67 13,925.15 158.80 4.25-4.75 1.95

1/ Corn and sorghum, September-August; barley and oats, June-May. Latest data maybe preliminary or projected.

2/ U.S. season-average price based on monthly price received by farmers weighted by monthly marketings.  Prices

do not include an allowance for loans outstanding and government purchases.  Latest data are from  World Agricultural 

Supply and Demand Estimates.

Source: USDA, National Agricultural Statistics Service, Crop Production and Agricultural Prices; and USDA, 

World Agricultural Outlook Board, World Agricultural Supply and Demand Estimates.

Data run: 3/12/2014

Corn: Planted acreage, harvested acreage, production, yield, and farm price

Commodity 

and mkt yr 1/

Corn

Table 17- U.S. Corn Production from 2006-2013 
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Appendix 2 — USDA 2010 ARMS Phase 2 Corn Survey: Selected 
Sections 

The following sections from the USDA 2010 ARMS Corn Survey contain questions 

that became variables in the multivariate regression.   

Project 906 - ARMS Phase II   QID 072011   OMB No. 0535-0218    Approv al Expires 12/31/2011  

 
AGRICULTURAL RESOURCE MANAGEMENT SURVEY  

 NATIONAL  
 AGRICULTURAL  

 

CORN PRODUCTION PRACTICES   STATISTICS  

SERVICE  

  

   

  

AND COSTS REPORT  
for 2010  

  

U.S. Department of  Agriculture, Rm 
5030, South Building  
1400 Independence Av e., S.W.  
Washington, DC 20250-2000  
Phone: 1-800-727-9540   
Fax: 202-690-2090   
Email: nass@nass.usda.gov   

VERSION  

  

2  

ID  

  
___ ___ ___ ___ ___ ___ ___ ___ ___  

TRACT  

  

01  

SUBTRACT  

  
___ ___  

T-TYPE  

  

0  

TABLE  

  

000  

LINE  

  

00  
  

   

 CONTACT RECORD   

DATE  TIME   NOTES  

       

       

       

  

INTRODUCTION:    

[Introduce yourself, and ask for the operator.  Rephrase in your own words .]  

  
We are collecting information on practices and costs to produce corn and need your help to make the information as accurate as possible.  
Authority for collection of information on the Corn Production Practices and Costs Report is Title 7, Section 2204 of the U.S . Code.  This 
information will be used for economic analysis and to compile and publish estimates for your region and the United States.  Under Tit le 7 
of the U.S. Code and CIPSEA (Public Law 107-347), facts about your operation are kept confidential and used only for statistical purposes.  
Response is voluntary.  

  
We encourage you to refer to your farm records during the interview .  

    

  H H M M  

BEGINNING TIME  
  [MILITARY]  

    

  SCREENING BOX  

0006  

  

  

   

  

0004  

__ __ __ __  
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 1  

LAND-USE PRACTICE  

2  

  
Was this 
practice  
used?  

  

  

  

  

  

  

  

  
YES = 1  

3  

  
What year was 
this practice  
first used?  

  

  

  

  

  

  

  

  
YEAR  

4  

  
Was (or will there be) an 
incentive or cost-share 

received from:  
  

1 Environmental Quality 
Incentives Program (EQIP)?  

2 Conservation Security or 
Conservation Stew ardship 
Programs (CSP)?  

3 Conservation Reserve 
Program (CRP)?  

4 Any other Federal, State, 
Local or non-government 
source?  

  CODE  

a.  Structures for soil erosion control?. . . . . . . . . . . . . . . . . . . . .  

1421  

  

    

 

  (i) Terraces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

1420  1441  

__ __ __ __  

1451  

 

  (ii) Grade stabilization structures. . . . . . . . . . . . . . . . . . . . .   

1422  1442  

__ __ __ __  

1452  

b.  Structures for storm water runoff control/handling?. . . . . . .   

1423      

 

  (i) Grassed waterways. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1438  1443  

__ __ __ __  

1453  

 

  (ii) Structures for water control basins. . . . . . . . . . . . . . . . .   

1424  1444  

__ __ __ __  

1454  

c.  Filter strips or other conservation buffers?. . . . . . . . . . . . . .   

1425      

 

  (i) Filter strips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1426  

  

1445  

__ __ __ __  

1455  

 

  (ii) Field borders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

1427  1446  

__ __ __ __  

1456  

 

  (iii) Riparian buffers (i.e., grass buffers). . . . . . . . . . . . . . . .   

1428  1447  

__ __ __ __  

1457  

d.  Other Practices?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

1435      

 

  (i) Contour farming and strip cropping. . . . . . . . . . . . . . . . .  

1434  

  

1448  

__ __ __ __  

1458  

 

  (ii) Conservation tillage / no-till. . . . . . . . . . . . . . . . . . . . . . .  

1437  

  

1449  

__ __ __ __  

1459  

 

  (iii) Other Practices  [Specify ___________________ ] . . .   

1436  1450  

__ __ __ __  

1460  
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 CODE  

28.  Has the Natural Resource Conservation Service  (NRCS) classified any  
  part of this field as “Highly Erodible”?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

29.  Have you been notified by NRCS that this field contains a wetland?. . . . . . . . . . . . . . . . .  YES = 1  

    

30.  In 2010, did you receive technical assistance for planning, installing,  

  maintaining, or using conservation practices or systems on this field?     
  (Include grassed waterways and filter strips or riparian buffers, or drainage area, on or adjoining this field.   

  Include assistance from any source whether paid for or free.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

  

      

31.  Is this field included in an existing conservation program contract for which you or the landlord have received  

(or expect to receive) cost sharing payments,  stewardship payments, or incentive payments?  [Be sure to consider 
grassed waterways   

 and filter strips or riparian buffers, or drainage area, on or adjoining this field .  Also, be sure to     

consider payments that are part of this contract but were made before 2010 or payments that are  

anticipated for future years.]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

  

   [If item 31 is YES, ask item 31a;  
   else go to item 31b.]       

 a.  Have you received  

  (or will you receive)    cost sharing or incentive 

payments from--- . . . . . . . . .   

  

 b. Was this field included  

 in a conservation   program application  that was rejected 

from--- . . . . . . . . .   

   

32.  During 2010, did any written plan of the following types 

cover this field---  

   (A “written plan” is a plan prepared in accordance with Federal, State, or district standards. )  

 1  

  

WRITTEN PLAN TYPE  

2  

  

Was this type of 
written  

plan used?  

  

  

  

  

  

  

   

3  

  
What year was 

this plan  
implemented?  

  

  

  

  

  

  

  

  

4  

  
For any practice that is part of this plan, 

was (or will there be) an incentive  
or cost-share payment received from:  

  

1 Environmental Quality Incentives  
  Program (EQIP)?  

2 Conservation Security or 
Conservation  Stew ardshio Programs (CSP)?  

3 Conservation Reserve Program 

(CRP)?  
4 Any other Federal, State, Local  

 or non-government source?  

    YES = 1  YEAR  CODE  

a.  

  

Conservation plan specifying practices to 

reduce soil erosion?. . . . . . . . . . . . . . . .   

1408  1409  

__ __ __ __  

1461  

 

1404  

1405  

1406  

1407  

1 Environmental Quality Incentives Program (EQIP)  

2 Conservation Security or Conservation  
      Stewardship Programs (CSP)  
3 Conservation Reserve Program (CRP)  

4 Other Federal, State, Local or non-government source  

1418  

1 Environmental Quality Incentives Program (EQIP)  
2 Conservation Security or Conservation  
      Stewardship Programs (CSP)  

3 Conservation Reserve Program (CRP)  

4 Other Federal, State, Local or non-government source  

1419  
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b.  

  

  

Comprehensive nutrient management 

plan specifying practices for applying both 

fertilizer and manure?. . . . . . . . . . . . .   

1410  1411  

  

__ __ __ __  

1462  

c.  

  

  

Nutrient management plan specifying 

practices for land application of manure 

only?. . . . . . . . . . . . . . . . . . . . . .  

1412  

  

1413  

  

__ __ __ __  

1463  

d.  

  

  

  

Pest management plan to implement 

Integrated Pest Management (IPM) 

practices to control weeds, insects, and/or 

plant diseases?. . . . . . . . . . . . . . . .   

1414  1415  

  

  

__ __ __ __  

1464  

e.  

  

  

Irrigation water management plan 

specifying practices for applying or 

conserving irrigation water?. . . . . . . . . .   

1416  1417  

  

__ __ __ __  

1465  

  

32.  [If item 32a, b, c, d, or e is YES, ask ---]  

  Have you ever paid any technical service provider or consultant  CODE   to develop or 

write any of these plans for which you or the landowner  
  were reimbursed by the Natural Resource Conservation Service? . . . . . . . . . . . . . . . . . . . . YES = 1  

a. [If YES, ask ---]  DOLLARS & CENTS  

  What was the reimbursement amount for developing these    

 PER ACRE      OR  TOTAL DOLLARS   plans for this field?  (Include 

landlord’s/contractor’s share.  Exclude   cost of construction or materials.). . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . .   

   

CODE  

33.  Was the corn in this field covered by Federal Crop Insurance in 2010?    

   YES – [Enter code 1 and continue]     NO – [Go to item 35]. . . . . . . . . . . . . . . . . . . . . . . . . .   

  
CODE  

a. Which coverage did you obtain?. . . . . .  . . . . . . . . .   

PERCENT  

   (i) [If item a = 3, ask ---]  

     What was the level of revenue coverage you obtained for this field?. . . . . . . . . . . . . . . . . . . . .   

   YEAR  

b. In what year did you (the operator listed on the label) first enroll this field   in the Federal crop 

insurance program?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

     BUSHELS PER ACRE  

c. What is the 2010 Approved APH (actual production history) yield for this field?. . . . . . . . . . . . . . . . . .   

DOLLARS & CENTS  

    PER ACRE      OR  TOTAL DOLLARS d. What was the premium 

paid for Federal crop insurance for this field in 2010?  (Exclude any sign-up fee.). . . 

. . . . . . . . . . . . . . . . . . . . .   

1352  

1353  

  

.___ ___  

  1384  

1385  

1 Basic catastrophic insurance (Federal CAT)  
2 Buy-up above basic federal CAT level  
3 Revenue insurance  
4 Organic plan insurance  
5 Other Federal Crop insurance  

1386  

1389  

1387  
  ___ ___ ___ ___  

1388  

1390    

.___ ___    

1391  
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    CODE e. Did you (or will you) collect an indemnity payment for this field  

   from federal crop insurance during 2010?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

35. Was the corn in this field covered by private crop insurance  CODE   in 2010 (hail, wind, freeze, etc.)?  

   YES – [Enter code 1 and continue]     NO – [Go to Section C]. . . . . . . . . . . . . . . . . . . . . . . .   

DOLLARS & CENTS  

    PER ACRE      OR  TOTAL DOLLARS a. What was the premium 

paid for private crop insurance for this field in 2010?  (Exclude any sign-up fee.). . . 

. . . . . . . . . . . . . . . . . . . . .   

  
   YEAR  

b. In what year did you (the operator listed on this label) first purchase   private crop insurance 

for this field?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

    CODE c. Did you (or will you) collect an indemnity payment for this field  

    from private crop insurance during 2010?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

    

C  NUTRIENT or FERTILIZER APPLICATIONS---SELECTED FIELD 

 C  

 

  CODE  EDIT TABLE  

1. Were commercial nutrients or fertilizers applied to this field for the  
2010 corn crop?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

2. [If COMMERCIAL nutrient or fertilizer applied, continue; else go to item 7. ]  NUMBER  

3. How many commercial nutrient or fertilizer applications were made to this field  for the 2010 

crop?  (Include applications made by airplanes and custom applicators). . . . . . . . . . . . . . . . . . . . . . . .   

  

4. Now I need to record information for each application.  

     INCLUDE  

CHECKLIST  

     EXCLUDE  

 Micronutrients   

 Unprocessed manure  

 Nutrients or fertilizers applied 
to previous crops in this field  

 Lime and gypsum/landplaster  

  

  

  
  

  

  

  

  

  Custom applied nutrients or 
fertilizers   

 Nutrients or fertilizers 
applied in the fall of 2009 and 
those applied earlier if this 
field was fallow in 2009  

 Commercially prepared manure 

or compost  

  

 

  

  

  
T-TYPE  

2  

TABLE  

001  

 LINE 99  OFFICE USE 

LINES IN TABLE  
0213  

  

  

1393  

1395    

.___ ___    

1396  

1397  
  ___ ___ ___ ___  

1394  

0202  0201  

0203  
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11. Was a soil test for nitrogen performed on this corn field  

  in 2009 or 2010 for the 2010 crop?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

 a. [If nitrogen test done, ask ---]  POUNDS PER ACRE  

    How many pounds of nitrogen (per acre) were recommended (by the nitrogen test)?. . . . . . . . . . .   

  

  CODE  

12. Was a plant tissue test or leaf analysis for nutrient deficiency performed  
  on this field for the 2010 crop?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

     

  

DOLLARS & CENTS  

  PER ACRE  OR  TOTAL DOLLARS  

13.  How much was spent for these soil and plant tissue tests   on this 

field?  (Include operator, landlord, and contractor costs .). . . . . . . . . . . . . . . . . . . .  

  

  

a. If tests were done at no cost, explain--- CODE  

 . . . . . . .   

  

14.  [ENUMERATOR ACTION: Refer to the Fertilizer Table, column 2.  
If nitrogen (N) was applied,                   complete items 15, 16 and 17.  If 

NO nitrogen applied, go to item 18.]  

  

15.  Was the amount of nitrogen you decided to apply to this field based on---  CODE  

a. Results of a soil or plant tissue test?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   YES = 1  

b. Crop consultant recommendation?. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

c. Fertilizer dealer recommendation?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

d. Extension Service recommendation?. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

e. Cost of nitrogen and/or expected commodity price?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

f. Contractor recommendation?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

g. Routine practice (operator’s own determination based on past  

   experience, yield goal, etc.)?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

CODE  

16.  Did you purchase any commercial nitrogen fertilizer applied to this field   under contract 

or otherwise pre-purchase the fertilizer at a pre-determined  
price prior to planting?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  YES = 1  

a. [If YES, ask ---]  CODE  

  What month prior to planting for the 2010 crop did you contract for the   fertilizer used on this 

field? [Enter code “1” for January, “2” for February, etc. ]. . . . . . . . . . . . . . . . .   

  

0228  

0229  

0230  

  .___ ___  
  0231  

1 Soil/plant tissue test provided free of charge       
by dealer, crop consultant, or extension service  

  

2 Soil/plant tissue test costs were included in 
the total      fertilizer costs reported in item 6  

  

3 Some other reason  

0232  

0233  

0234  

0235  

0236  

0237  

0238  

0239  

0223  

0224  
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13.  Which of the following products CODE  
 did you use to slow the breakdown  

 of nitrogen on this field?. . . . . . . . . . . .  . . . . . 

. .   
  

a. [If nitrogen inhibitors were used, continue; else go to item 18. ]  POUNDS  GALLONS  
   PER ACRE  OR  PER ACRE  

  How much nitrogen inhibitor did you mix   with the nitrogen 

applied to this field? . . . . . . . . . . . . . . . . . . . . . . . . .   

  

 DOLLARS AND CENTS  DOLLARS AND CENTS  

  PER POUND    OR  PER GALLON b. What was the cost of the 

nitrogen inhibitors used on this field?  

   (Include operator, landlord, and contractor costs.) . . . . . . . . . . . . . . . . . . . . . . . . . . . .   

1 Nitrification inhibitors (such as N-Serve)  
2 Urease inhibitors (such as Agrotain)  
3 Chemical-coated fertilizers (such as sulfur-coated  
  urea and polymer-coated urea)  
4 Other inhibitors  
5 None  

0241  

0295  
.___  

  0296  
.___  

0297  
.___ ___  

  0298  
.___ ___  
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