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ABSTRACT 

 

The Average Crop Revenue Election (ACRE) program was created in the Food, 

Conservation and Energy Act of 2008.  The program is intended to help offset years of 

low market revenues for agricultural producers.  However, those who enroll in ACRE 

must forego portions of traditional payments.  This study was conducted to determine 

what types of farms are good candidates for the ACRE program and the sensitivity of 

those results to input parameters and program provisions. 

These objectives were accomplished by creating four model farms representing 

typical, full-time operations.  This resulted in representative farms in the following 

counties: McLean, Illinois; Sumner, Kansas; Hale, Texas; and Boliver, Mississippi.  One 

thousand stochastic prices and yields were generated for each crop on each representative 

farm.  Correlations were imposed on the variables to create the appropriate interactions 

between prices and yields. 

The results of the Monte Carlo simulations show that cotton producers are 

unlikely to benefit from the ACRE program, as the payments foregone to enroll in this 

new program are very high.  Additionally, states with lower price/yield correlation tend 

to receive ACRE payments more often.  Furthermore, 2009 is shown to be the best year 

to enroll under the assumed price path.  Altering the price path can change the ACRE 

enrollment decision as demonstrated in the analysis.  Likewise, the optimal producer 

decision is shown to be sensitive to the base acres on each representative farm.  Finally, 

the analysis reveals that ACRE benefits are dependent on the program’s payment rate 

restrictions. 
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 CHAPTER 1: INTRODUCTION 

 

The Food, Conservation and Energy Act of 2008 (2008 Farm Bill) became public 

law on June 18, 2008 after Congress overrode President Bush’s veto ("Food, 

Conservation, and Energy Act of 2008," 2008).  Included in the 2008 Farm Bill was a 

new program titled the Average Crop Revenue Election (ACRE) program designed to 

combat revenue risk for agricultural producers.  Supporters of some type of counter-

cyclical revenue program included the National Corn Growers; American Farm Bureau 

Federation; American Farmland Trust; Senate Committee on Agriculture, Nutrition and 

Forestry; USDA; and House Committee on Agriculture (Coble & Barnett).  However, the 

resulting ACRE program contained significant differences from many of the proposals. 

The idea for a revenue based program is not new.  Proposals can be traced back to 

at least 1983 and have routinely arisen since (Coble & Barnett).  With the current set of 

high crop prices and forecasts predicting more of the same (FAPRI, 2009), traditional 

Loan Deficiency Payments (LDPs) and Counter-Cyclical Payments (CCPs) may never 

trigger payments to grain and oilseed producers during the life of the 2008 Farm Bill.  

ACRE spans the problem of potentially low federal payments due to high prices to create 

a way for farmers to continue to receive counter-cyclical subsidies.  By having moving 

benchmarks and tying payments to recent prices and yields, ACRE can pay when current 

programs would not. 

Additionally, traditional commodity programs have focused on price risk.  Yield 

and revenue risk have been addressed by federally subsidized crop insurance.  ACRE is a 
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new direction for farm programs as producers can now receive subsidies based on 

revenue risk. 

Even though ACRE is potentially beneficial, it is not free to farmers.  Producers 

on each Farm Service Agency (FSA) farm must decide whether to enroll or remain in the 

traditional Direct and Counter-cyclical Program (DCP).  Portions of traditional payments 

must be foregone to enroll in ACRE.  As a result, timely analysis of the program is 

crucial for agricultural producers. 

 

1.1 Objectives 

This study focuses on determining the types of farms most likely to gain from 

ACRE.  Payments will likely vary by state and crop.  Some states will have yields that 

are more variable and less correlated to national price thereby inducing more payments.  

However, states with higher yields could receive larger payments.  Furthermore, foregone 

payments under ACRE will vary depending on the amount and composition of base acres 

on the farm.  This study will attempt to analyze these effects to see how they influence 

the optimal ACRE enrollment decision. 

Additionally, this study will consider the importance of various provisions of the 

ACRE program.  After the baseline results are achieved, input parameters and program 

components will be altered to determine if the optimal decision changes for different 

types of farms in different states.  This should shed light on the significance of various 

components of the program and sensitivity of results to input parameters. 
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CHAPTER 2: AN OVERVIEW OF THE ACRE PROGRAM 

 

ACRE is an optional program available to producers of the major field crops.  To 

enroll, producers on a farm must first elect the ACRE option.  This irrevocable step puts 

the farm in the program for the life of the farm bill (through 2012).  If no decision is 

made, the farm stays in the traditional DCP.  However, producers can elect into the 

program in any year of the farm bill.  Following election, producers will have to make a 

decision annually whether to enroll in the current year’s contract. If a farm is enrolled in 

ACRE, it must forego all CCPs, 20% of Direct Payments (DPs), and accept a 30% 

reduction in loan rates1. 

 The decision to enroll is made on an FSA farm unit basis.  The entire farm unit is 

either in or out.  In other words, producers cannot selectively enroll crops.  However, the 

decision is independent for each farm unit.  A producer can selectively choose which of 

his or her farms he or she wants (or does not want) to enroll. 

 

Two criteria must be met to trigger ACRE payments for a crop. 

1) State revenue must be below the ACRE state revenue guarantee and 

2) Farm revenue must be below the ACRE farm benchmark revenue. 

 

                                                 
1 If a farm elects into ACRE and does not enroll in the current year’s contract, it will not receive ACRE 
payments, CCPs, or DPs.  The farm is eligible for LDPs, but it is not clear at this point if the loan rate will 
be reduced by 30%. 
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The ACRE state guarantee is calculated as the: 

(1) (average of the national marketing year average price for the past two years) 
× (five year Olympic average2 yield per planted acre3) 
× .9 

 

The ACRE farm benchmark revenue is calculated as the: 

(2) (average of the national marketing year average price for the past two years) 
× (five year Olympic average yield per planted acre on the farm) 
+ (the crop insurance premium paid) 

 

The state revenue is calculated as the: 

(3) higher of: 
(average of the national marketing year average price during the year) or 
(70% of the loan rate) 

× (average state yield per planted acre) 
 

The farm revenue is calculated as the: 

(4) higher of: 
(average of the national marketing year average price during the year) and 
(70% of the loan rate) 

× (average farm yield per planted acre) 
 

If both criteria are met, payments are triggered for the farm.  Payments are calculated as: 

(5) The lesser of: 
(25% of the ACRE state revenue guarantee) or 
((the ACRE state revenue guarantee) – (the state revenue)) 

× (five year Olympic average yield per planted acre on the farm) 
÷ (five year Olympic average yield per planted acre in the state) 
× (payment acres) 
 

                                                 
2 An Olympic average is an average excluding the minimum and maximum values.  In this case, the high 
and low yields are dropped and the other three are averaged. 
3 Yield per planted acre is defined as total production divided by the sum of harvested and failed acres.  It 
does not account for silage production.  Thus acres devoted to silage production are not defined as planted 
acres for purposes of ACRE. 
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Payments for each crop are calculated separately.  As a result, some crops may 

trigger payments while others do not.  Payment acres are 83.3% of planted acres for 

2009-2011, 85% in 2012.  Total payment acres cannot exceed total base acres for the 

farm.  If this should occur, producers will have to specify which crops should have 

payment acres reduced so that payment acres do not exceed base acres.  Total ACRE and 

CCP payments per person or legal entity cannot exceed $65,000 plus the amount that DPs 

are reduced.  Last of all, the state ACRE revenue guarantee is not allowed to change by 

more than 10% per year in 2010, 2011, and 2012. 

 

Counter-cyclical payments for a crop i are calculated as: 

(6) Max(0, Target pricei – Direct payment ratei – Max(Loan ratei, National marketing 
year average pricei)) 

 × Base acresi 
 × CCP yieldi 
 × (83.3% in 2009 through 2011, 85% in 2012) 
 

Direct payments for a crop i are calculated as: 

(7) DP yieldi 
 × DP ratei 
 × Base acresi 
 × (83.3% in 2009 through 2011, 85% in 2012) 
 

Loan deficiency payments for a crop i are calculated as: 

(8) Max(0, Loan ratei – (Posted county pricei for wheat, feedgrains, and soybeans, 
Average world price for cotton and rice)) 

 × Productioni 
 

Base acres, DP yields, and CCP yields are determined by historical production on 

an FSA farm unit.  They are unique to each farm and remain constant between years 



 

6 
 

unless Congress legislates updates.  Loan rates, DP rates, and CCP rates are set by the 

farm bill and are common to all farms.  The Posted County Price (PCP) is posted daily by 

the FSA to reflect the county market price.  The PCPs tend to average less than the 

marketing year average price.  Cotton and rice use an Average World Price (AWP) to 

calculate loan benefits.  Like the PCPs, the AWPs tend to average less than the marketing 

year average price. 

 

Table 1: Commodity program parameters for 2009 through 2012 
Crop Loan rate Target price DP rate 

Corn (per bushel) $1.95 $2.63 $0.28 

Soybeans (per bushel) $5.00 $5.80 in 2009 
$6.00 in 2010-2012 

$0.44 

Cotton (per pound) $0.52 $0.7125 $0.0667 

Rice (per pound) $0.065 $0.1050 $0.0235 

Wheat (per bushel) $2.75 $3.92 in 2009 
$4.17 in 2010-2012 

$0.52 

Sorghum (per bushel) $1.95 $2.57 in 2009 
$2.63 in 2010-2012 

$0.35 

Source: USDA FSA 

 Given the ACRE costs and benefits, several hypotheses can be conjectured.  First, 

crops with expected prices above target prices minus direct payment rates may want to 

participate in ACRE.  The reduction in loan rates and surrender of CCPs has no effect if 

neither payment is triggered.  Conversely, crops with prices below loan rates may not 

want to participate.  Enrollment in ACRE would come at a steep cost that may outweigh 

the benefits. 

 Second, land that is not actively involved in production agriculture should not be 

enrolled in ACRE.  Idle land with base acres can still collect CCP and DPs.  However, 
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since ACRE is tied to production, there would be no benefits to offset the cost of 

enrollment. 

 Third, small production states with high yield variability should trigger ACRE 

payments more often than states with large production and small yield variability.  Yields 

in large production states should be highly correlated with national prices.  The result is a 

natural hedge that decreases the chances of those states receiving a payment.  

Furthermore, yield stability would result in relatively stable revenues which would also 

reduce ACRE payment frequency. 

 While these conjectures should follow from the ACRE structure, empirical 

analysis would be able to provide stronger statements about the first and third statement.  

The second is trivial.  The rest of this study will focus on testing these assumptions. 
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CHAPTER 3: LITERATURE REVIEW 

 

This literature review contains two parts.  The first examines current literature 

regarding revenue programs.  The relative infancy of the Average Crop Revenue Election 

program limits the quantity of analysis in the literature.  The second is literature 

regarding yield distributions.  Crop yield distribution modeling, which is of paramount 

importance in ACRE analysis, has received much attention in the crop insurance 

literature.  This study will benefit from the parallel work. 

 

2.1 Review of commodity revenue program analysis 

Zulauf, Dicks, and Vitale (2008) reported analysis of ACRE based on Zulauf’s 

work (2008).  26 states were considered over a period of 30 historical years for corn, 

soybeans, and wheat. 

The analysis uses (1) historic variability in county level yields adjusted to 
current levels of yield as a proxy for future yield variability and (2) the 
historic relationship between state yield and national price to predict the 
variability of future price at the U.S. Department of Agriculture average 
annual forecasted price for 2009-12 (Zulauf et al., 2008, p. 31). 

 

The authors found that the state trigger would have been met in 5 to 15 of the 

historical years for each commodity/state combination.  On average, payments occurred 

in slightly over one-third of the years for corn, soybeans, and wheat.  The farm loss 

criterion is not very restrictive in the analysis as it prevents payments only 10 to 20% of 

the time when the state triggers payments.  Zulauf notes that 75 to 80% of ACRE 

payments occurred in consecutive years (2008).  This is partially due to the 10% limit on 

benchmark state revenue adjustments applying nearly 50% of the time in the analysis. 
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The authors’ review of the analysis led them to conclude that ACRE becomes the 

better option as state yields and national prices become less correlated and as actual 

yields increase relative to program yields.  Furthermore, the addition of the crop 

insurance premium to the farm benchmark revenue has minimal impact.  They conclude 

that “ACRE addresses a risk associated with a market at or near equilibrium while 

traditional price programs address a risk associated with a market out of equilibrium” 

(Zulauf et al., 2008, p. 33). 

Similarly, FAPRI (2009) analyzed ACRE by state for most of the U.S.  The 

authors’ analysis agrees with Zulauf that ACRE payments for each crop and year will 

likely be zero.  The analysis, which uses the stochastic FAPRI baseline, projects that over 

the next ten years ACRE payments should exceed foregone payments for corn, soybeans, 

and wheat but not for upland cotton, rice, and peanuts.  For Northern states, average 

expected ACRE payments exceed the payments producers must forego to participate in 

the program.  For cotton and peanut producing Southern states, the reverse is true.  This 

suggests ACRE is much more likely to be attractive to producers in the North than the 

South (Figure 1). 
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Figure 1: FAPRI estimates of net ACRE impacts on payments 

Source:  (FAPRI, 2009, p. 65) 

 Coble and Dismukes4 (2008) studied several theoretical revenue programs.  Their 

work encompasses multiple crops and regions.  County, state, and national yield data 

were obtained from the National Agricultural Statistics Service (NASS) of the USDA for 

the years 1975 through 2004 and detrended.  Each county in the study was assumed to be 

a representative farm.  In order to overcome the problem of county yields having less 

variation than farm yields, the authors used crop insurance data to estimate the standard 

deviation of farm yields.  Price paths were created by drawing from the distribution of 

historical annual percent changes in prices.  Prices were based on the Marketing Year 

Average (MYA) prices for the years 1974-2005 and were adjusted for local basis.  Five-

hundred random draws for five years were made “simultaneously to maintain empirical 

correlations between prices and yields and between yields at different levels of 

aggregation” (Coble & Dismukes, 2008, p. 545). 

                                                 
4 (Coble & Barnett) conduct a very similar analysis.  As a result, only this study will be discussed. 



 

11 
 

 Four revenue scenarios were created from the data.  The first was a baseline with 

2002 Farm Bill programs.  The other three replaced the CCP program with a revenue 

program with targets at the national, state, and county levels.  Revenue targets were set at 

preplanting time using futures prices.  Revenue insurance was included in each scenario 

and was wrapped around the revenue programs.  To accomplish this, crop insurance 

indemnities were reduced by revenue program payments and premiums were reduced to 

reflect the change5. 

 The results of Coble and Dismuke’s analysis indicate that corn, soybeans, and 

wheat producers would benefit from the revenue program while cotton producers lose 

considerable payments.  The revenue program reduced risk and insurance rates for all 

crops.  Results for every crop were more favorable the smaller the level of aggregation.  

With the revenue trigger at the state level, the Southern U.S. would lose government 

payments relative to 2002 Farm Bill programs, the Plains states would gain, and the Corn 

Belt states would remain approximately unchanged (Figure 2). 

                                                 
5 Crop insurance is not wrapped around the ACRE program. 
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Figure 2: Payments under alternative set of programs including state-level revenue 
counter-cyclical programs relative to current programs, corn, soybeans, wheat, and 

cotton 

Source: (Coble & Dismukes, 2008, p. 550) 

Vedenov and Power study the choice of yield versus revenue insurance under 

versions of the House and Senate’s 2008 Farm Bill.  The House proposed Revenue 

Counter-Cyclical Payments (RCCPs) were an optional, irrevocable choice that replaces 

CCPs and were supposed to be triggered by national revenue.  The Senate Average Crop 

Revenue (ACR) proposal was essentially the same except that payments were triggered at 

the state level.  Additionally, DPs were to be replaced with a slightly altered fixed 

payment. 

The analysis was performed using copulas, a relatively new concept in the 

Agricultural economics literature.  Copulas are functions that create a multivariate 

distribution from independent marginals.  The authors argue that copulas impose less 
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restrictive assumptions than other methods such as a multivariate normal distribution.  

Vedenov and Power elect to use a Gaussian copula and a nonparametric empirical kernel 

copula. 

For the simulation, 20,000 random draws were made for prices and yields.  Two 

representative farms were used for the analysis, one in Kossuth County, Iowa and the 

other in Jackson County, Texas.  Crop Revenue Coverage (CRC) insurance was used as 

the revenue insurance and Multiple-Peril Crop Insurance (MPCI) was used as yield 

insurance.  A Constant Relative Risk Aversion (CRRA) power utility function was used 

to calculate Certainty Equivalents (CE). 

The results of the simulation indicate that RCCP “improve[s] the risk-reducing 

effectiveness of both APH and CRC contracts [on revenue]” (Vedenov & Power, 2008, p. 

458).  ACR, on the other hand, improves both insurance types in areas with low 

price/yield correlation (Texas), but decreases their effectiveness in areas of strong 

negative correlation (Iowa).  The authors attribute this to the overlap of the government 

program with insurance policies in the presence of strong negative price/yield correlation. 

 

2.2 Yield distributions 

 Yield distributions have received much attention in the Agricultural economics 

literature.  The stochastic assumptions surrounding yields determine the rating of crop 

insurance policies.  Even so, there is not a clear consensus on the correct distribution of 

yields.  The following is a chronological discussion of the recent, relevant literature. 

 Nelson and Preckel (1989) propose a conditional beta distribution.  They argue 

that a parametric distribution, if correct, is more efficient than a nonparametric 
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distribution.  Three properties of the beta distribution make it superior to others.  First, 

crop yields are bounded between zero and some upper potential yield.  Second, the beta 

allows for negative and positive skewness.  Last of all, the beta is well known and its 

moments easily calculated. 

 The authors test their proposal with corn yields in five Iowa counties.  The data 

was collected over ten years on Iowa Agricultural Experiment stations.  The specification 

is tested with an information matrix test.  The results fail “to reject the null hypothesis of 

correct specification of the likelihood function at a significance level of 0.05” for all five 

counties (Nelson & Preckel, 1989, p. 377).  However, it is worth noting that four of the 

five counties would reject the null at the 0.10 level. 

 Goodwin and Ker (1998) take a nonparametric approach.  They contend that 

parametric stochastic yield models rely on assumptions that, if wrong, result in 

“inaccurate predictions and misleading inferences” (Goodwin & Ker, 1998, p. 140).  On 

the other hand, nonparametric procedures are more flexible and “essentially ‘nest’ 

parametric specifications” (Goodwin & Ker, 1998, p. 140).  Additionally, nonparametric 

procedures capture idiosyncrasies that could be lost in a parametric specification.  

However, the Kernel Density Estimators (KDEs), which are commonly used to build 

nonparametric distributions, have a slow rate of convergence and are less efficient if the 

true parametric distribution is known. 

 The authors note that the normal distribution is sometimes used to model average 

yields with the support of the Central Limit Theorem (CLT).  However, the underlying 

yields are likely to be spatially correlated, which violates the classical CLT. 
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 Additionally, Goodwin and Ker examine the heteroskedasticity of crop yields.  

The authors use the Goldfeld-Quandt test to conclude that the absolute errors are 

heteroskedastic, but the proportional errors are not.  This seems to be a common view in 

the Agricultural economics field (Goodwin & Ker, 1998; Paulson & Babcock, 2008; 

Richardson, Klose, & Gray, 2000). 

 Just and Weninger (1999) reopen the debate on normality of crop yields.  

Skewness of yield data is often cited to reject the normal distribution.  However, studies 

differ on the direction of the skewness.  Furthermore, alternative parametric distributions 

have not been thoroughly tested.  The authors attempt to show that studies rejecting 

normality have fallen victim to at least one of three errors. 

 The first error is “misspecification of the nonrandom components of yield 

distributions” (Just & Weninger, 1999, p. 287).  Many studies assume the mean yield can 

be modeled by a polynomial time trend.  If this assumption does not hold, the true model 

error will be misrepresented with incorrect error estimates.  Additionally, failing to 

account for heteroskedasticity can cause similar problems. 

 The second error is “misreporting of statistical significance” (Just & Weninger, 

1999, p. 287).  One cause of this is performing multiple tests on the same time series 

without considering the impact of double jeopardy.  Another source of the error is 

performing tests at an α level of significance on k time series.  “Bonferroni’s theorem 

implies that, in the absence of multivariate analysis, each marginal distribution must be 

tested at significance level α/k to assure an overall significance level of α” (Just & 

Weninger, 1999, p. 295).  Furthermore, the k time series are potentially correlated which 

inflates the results. 
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 The last problem is the “use of aggregate time-series (ATS) data to represent 

farm-level yield distributions” (Just & Weninger, 1999, p. 287).  The pooling of regional 

data captures systemic variability but fails to capture idiosyncratic deviations.  Tests that 

use ATS data are not actually testing the normality of farm yield distributions. 

 Just and Weninger note that crop yields at all levels are averages.  The CLT states 

that averages are asymptotically normally distributed for observations from an 

independent, identically distributed random sample.  Using the Liapounov CLT, the 

identical distribution assumption can be relaxed if the deterministic and heteroskedastic 

components of yields are accurately modeled.  Furthermore, other versions developed by 

Serfling and by White and Domowitz show that the independence assumption need not 

hold if “observations [are] sufficiently far apart in time or space are either independent or 

approach independence asymptotically…, then the basic assertion of CLT hold” (Just & 

Weninger, 1999, p. 302).  As a result, distributions of yields for large regions should be 

normally distributed.  The authors believe the lack of empirical evidence for this 

theoretical conclusion is due to the misspecification of the “deterministic and 

heteroskedastic components of yield distributions” (Just & Weninger, 1999, p. 302). 

 Ker and Coble (2003) introduce a new distribution to the Agricultural economics 

literature.  They argue that yield data is not sufficient to reject many candidate parametric 

models.  Using corn yield data for 87 Illinois counties from 1956-2000, Ker and Coble 

tested the Beta and Normal specifications and rejected both.  They propose filling the 

void left by rejecting the two common parametric specifications with a semi-parametric 

model. 
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 The semiparametric estimator is a Kernel Density Estimator with a correction 

factor based on a parametric distribution.  If the parametric distribution is the correct 

underlying distribution, the estimator will tend to it.  However, even if the parametric 

estimator is incorrect, efficiency can still be gained.  The correction factor provides 

guidance to the curvature of the data.  “The standard kernel estimator is equivalent to the 

semiparametric estimator using the Uniform distribution for the parametric component” 

(Ker & Coble, 2003, p. 297).  In reality, crop yield distributions are likely closer to the 

Normal or Beta.  As a result, using the distributions in the correction factor should 

increase the efficiency of the estimator over the standard KDE. 

 Ker and Coble tested this on the 87 Illinois counties.  The semiparametric Normal 

performed the best, followed by the semiparametric Beta and nonparametric kernel.  The 

Beta and Normal performed the worst. 

Table 2 summarizes different yield distributions either used in studies or 

advocated in literature.  Based on quantity, the KDE has been quite popular.  However, 

yield distribution specification varies widely. 

Table 2: Crop yield distributions used in empirical studies 
Distribution Study Notes 
Beta (Mason, Hayes, & 

Lence, 2003) 
 

Beta* (Nelson & Preckel, 
1989) 

 

Beta* (Tirupattur, Hauser, & 
Chaherli, 1996) 

 

Empirical (Gray & et al., 2004)  

Empirical (Paulson & Babcock, 
2008) 

 

KDE (Ker & Goodwin, 
2000) 

Variable smoothing approach with 
KDE variance equal to sample 
variance 

KDE (Deng, Barnett, &  



 

18 
 

Vedenov, 2007) 
KDE (Nadolnyak, Vedenov, 

& Novak, 2008) 
 

KDE (Racine & Ker, 2006)  

KDE (Vedenov & Power, 
2008) 

 

KDE (Goodwin & Ker, 
1998) 

 

Multivariate 
parametric model 

(Field, Misra, & 
Ramirez, 2003) 

 

No assumption (Coble, Heifner, & 
Zuniga, 2000) 

Uses hyperbolic tangent 
transformation to normalize yields 

Normal (Coble & Dismukes, 
2008) 

Distribution of farm idiosyncratic risk 
only 

Normal (Coble & Barnett) Distribution of farm idiosyncratic risk 
only 

Semiparametric* (Ker & Coble, 2003)  

Weibull (Schnitkey, Sherrick, 
& Irwin, 2003) 

 

*Indicates the study tested the fit of the distribution 
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CHAPTER 4: METHODS 

 

Analyzing the ACRE program is a non-trivial problem.  Given its structure, which 

is based on national, state, and farm level results, analysis using high levels of 

aggregation can provide useful but limited insight.  Alternatively, a representative farm 

approach can provide insight into nuances of the program. 

Four states were chosen to represent different regions of U.S. agriculture.  Illinois 

represents the Corn Belt, Kansas the Great Plains, Texas the large cotton producers, and 

Mississippi the small production states.  Within each state, a county with significant 

agricultural production was selected to represent the farm.  Two to three of the largest 

crops by acres for each county were selected to be grown on the representative farm.  The 

following representative farms resulted: corn and soybeans in McLean County, Illinois; 

wheat and grain sorghum in Sumner County, Kansas; cotton and grain sorghum Hale 

County, Texas; and cotton, rice, and soybeans in Boliver County, Mississippi.  Each 

constructed farm was assumed to be one FSA farm unit. 

The ACRE analysis compared enrollment versus non-enrollment (DCP) for each 

of these farms over the years 2009 through 2012.  To do this, 1,000 prices, farm yields, 

and state yields for each crop and year on each representative farm were used to obtain a 

distribution of results.  The stochastic approach provides stronger results than a 

deterministic approach.  If average prices are not expected to decline, deterministic 

analysis would likely show that ACRE never makes payments.  In reality, there is a 

distribution around the expected prices and yields.  Therefore, the expected value of 

ACRE payments is not truly zero. 
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4.1 Yield modeling 

 County yield data were obtained from the National Agricultural Statistics Service 

(NASS) of the USDA.  Thirty years were used for each crop on each representative farm.  

For corn, soybeans, and sorghum this was the years 1979 through 2008.  For wheat, rice, 

and cotton this was the years 1978 through 2007.  Corn, soybean, wheat, and sorghum 

yields are reported on a per bushel basis.  Cotton yields are reported on a per pound basis, 

and rice yields are per hundredweight. 

NASS yields are reported per harvested acre.  The following adjustment was used 

to convert the yields to a per planted acre basis: 

(9) 
acresSilageacresPlanted

productionTotalacreplantedperYield
−

=  

Only corn and sorghum have silage acres.  Each series was regressed on a linear time 

trend (Table 3).  A second-order polynomial trend was tested for several crops and was 

not found to have any additional explanatory power.  As a result, the extra term was 

dropped. 

Table 3: Trend results for county yield per planted acre 
County/crop Intercept Trend p-value
McLean, IL corn 105.22 2.46 0.000
McLean, IL soybeans 38.38 0.46 0.000
Sumner, KS wheat 29.04 0.11 0.561
Sumner, KS sorghum 32.58 0.89 0.008
Hale, TX cotton 284.07 17.91 0.000
Hale, TX sorghum 84.32 -0.40 0.139
Boliver, MS cotton 507.47 10.68 0.001
Boliver, MS rice 3963.84 104.27 0.000
Boliver, MS soybeans 19.70 0.67 0.000  
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 All of the yields have a positive trend with the exception of Hale, Texas sorghum.  

The latter’s trend term was set to 0 and the average used for the expected value.  

Sorghum farmers in Hale, Texas are likely not becoming less productive but are probably 

facing other issues such as drought or adding less fertile acres to sorghum production.  

Setting the slope equal to zero assumes that this trend will not continue. 

A Breusch-Pagan-Godfrey (BPG) test was conducted to check the yields for 

heteroskedasticity6.  None of the tests were significant at the 0.05 level.  As a result, the 

deviations from trend were used to estimate the county yield variance. 

 However, the county yield variance may not accurately represent the farm yield 

variance.  If the inter-farm correlation is less than one, then the farm yield variance must 

be greater than the county yield variance.  Consider a county, c, with farms {x1,…,xn} 

each with a wi fraction of acres in the crop for the county. 
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 While it is not true that every farm within a county has the same variance and is 

the same size, farms within close spatial proximity should be highly homogenous.  The 

soil type and weather conditions should be very similar which produces approximately 

identical yield distributions.  Therefore, assume that farm yields are homoskedastic such 

that jifji ,222 ∀== σσσ .  Then: 
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6The BPG test for Hale, Texas sorghum was based on deviations from the mean instead of the trend. 
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Now, consider the average intra-county farm correlation cρ .  This would be calculated 

as: 

(12a) 
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 Each element of the correlation matrix is weighted by the product of the weights 

for each farm.  Since all the diagonal elements of the correlation matrix are 1, they are 

not included in the sum.  The products of the weights in the numerator do not sum to one, 

so the numerator is divided by the sum of the weights.  Rearranging this: 
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 Substituting Equation 12f into Equation Error! Reference source not found.: 

(13) 
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By definition, ( ]1,0∈iw  and ⎥⎦
⎤

⎢⎣
⎡∈∑

=

1,1
1

2

n
w

n

i
i .  If one farm accounted for all the 

production in the county, then the county variance would equal the average farm 

variance.  Most likely, the true wi’s are closer to 1/n as the farms in the county face 

similar economic conditions.  Therefore, while most farms are certainly not equal in size, 

such an assumption is likely more realistic than the converse.  This analysis will assume 

that all farms are of equal size such that 
n

wi
1

=  while acknowledging that this 

maximizes the estimated average farm variance.  With the assumption: 

 (14) ( ) 222 11 fcfcc n
σρσρσ −+=  

If the cross farm correlation equals one, then county 22
fc σσ =  which is a logical 

result.  On the other hand, if the cross farm correlation equals zero, then 22 1
fc n

σσ = .  

This result is consistent with the central limit theorem.  If there is only one farm in the 

county, 22
fc σσ = .  As the number of farms in the county tends to infinity: 

(15) 22
fc

a
c σρσ ⎯→⎯  
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The implications of equation 13 are very powerful.  Only the county variance and 

the average county inter-farm correlation are needed to calculate the farm variance.  

However, the correlation is still an unknown.  It is quite safe to assume that the 

correlation is non-negative.  Additionally, it is very unlikely that it is close to zero as the 

county variance would approach zero.  It would not be unreasonable to expect the 

correlation to be between 0.5 and 0.9.  As a result, this study will consider scenarios with 

the correlation at 0.5, 0.7, and 0.9. 

 The county yields errors are adjusted by the following formulation to produce the 

inflated variance: 

(16) 
c

i
i ρ

ε
ε ~
~ =  

where iε  is the deviation from trend for the ith observation, cρ
~  is the assumed inter-farm 

correlation within the county, and iε
~  is the new residual with the inflated variance. 

The correlations along with the number of farms in each county for each crop 

(Table 4) support the use of asymptotics.  The smallest number of farms is for Boliver, 

Mississippi cotton.  Using equation 14, the county error is inflated by a factor of 1.40.  

With equation 15, the inflation factor is 1.41.  Since 0.5 is the correlation used that would 

most affect the difference and even it hardly shows any difference, assuming asymptotics 

has hardly any discernible effect on the error adjustments. 
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Table 4: Number of farms harvesting crop in county during 2007 
County/crop Farms
McLean, IL corn 960
McLean, IL soybeans 813
Sumner, KS wheat 490
Sumner, KS sorghum 212
Hale, TX cotton 331
Hale, TX sorghum 188
Boliver, MS cotton 54
Boliver, MS rice 86
Boliver, MS soybeans 274  

Source: USDA Census of Agriculture 

 State yields were also obtained from NASS.  Each was regressed on a trend 

variable and checked for heteroskedasticity.  The results of the regressions are in Table 5.  

Like Hale, Texas sorghum, Texas sorghum had a negative but not significant trend.  

Therefore, the trend was set to zero for the reasons mentioned for Hale, Texas sorghum. 

 

Table 5: Trend results for state yields per planted acre 
State/crop Intercept Trend p-value
Illinois corn 101.49 2.09 0.000
Illinois soybeans 33.78 0.42 0.000
Kansas wheat 27.22 0.28 0.074
Kansas sorghum 53.09 0.44 0.110
Texas cotton 299.22 16.18 0.000*
Texas sorghum 51.97 -0.16 0.361
Mississippi cotton 580.12 6.65 0.007
Mississippi rice 3859.22 104.06 0.000
Mississippi soybeans 17.48 0.56 0.000
*Estimated using White's estimator  

 
 A BPG test of state yields for heteroskedasticity failed to reject the null 

hypothesis of homoskedasticity for all crops at the 0.05 significance level except Texas 

cotton which had a p-value of 0.028.  A common approach in the Agricultural economics 

literature to deal with the heteroskedasticity of yields is to assume the error variance 
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divided by the expected yield is constant (Goodwin & Ker, 1998; Gray & et al., 2004; 

Paulson & Babcock, 2008).  This approach assumes the standard deviation of the 

adjusted residuals is the coefficient of variation which remains temporally constant. 

(17) 
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After adjusting the errors accordingly, the BPG test for Texas cotton yields had a p-value 

of 0.740.  The transformation appears to correct the heteroskedasticity. 

 Thus far, no parametric distribution has been imposed for yields.  As discussed in 

Chapter 3, there is no consensus for the correct specification.  As a result, this study will 

avoid using a potentially wrong parametric distribution.  Instead, a nonparametric Kernel 

Density Estimator (KDE) as described by Silverman (1986) will be used.  This approach 

creates a marginal distribution while avoiding distributional assumptions by forming a 

distribution based on the observed data.  The KDE is formally defined as: 
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where h is smoothing parameter or bandwidth and K is a kernel function such that: 

(19) ( ) 1=∫
∞

∞−

dxxK  

 KDEs are essentially a smoothed, continuous histogram.  Kernels are created at 

each data point and each kernel is summed at x.  h determines the width of the effect of 

each data point.  A small h creates a local effect for each data point whereas a large h 

stretches the effect of each data point across much of the distribution.  A small h creates a 

lumpy distribution while a large h creates a smooth distribution. 



 

27 
 

 The selection of the bandwidth is a nontrivial problem.  Choose one too large and 

the details of the distribution are lost.  Conversely, choose one too small and the 

individual data points are overemphasized.  Rather advanced methods such as least-

squares cross-validation and likelihood cross-validation can estimate an appropriate 

bandwidth.  Silverman (1986) shows that for normally distributed data the ideal 

bandwidth is: 

(20) 5/1
5/1

3
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⎛= nh σ  

Silverman creates a more general rule of thumb that works well for any distribution: 

(21) A = min(standard deviation, interquartile range/1.34) 

(22) 5/19. −= Anh  

 In addition to bandwidth, a kernel function must be selected to use a KDE.  A 

Gaussian function is commonly used in the Agricultural economics literature.  While the 

Gaussian function is highly efficient, the Epanechnikov kernel is the most efficient.  The 

Epanechnikov kernel is defined as: 
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 In addition to efficiency, the Epanechnikov kernel has several other useful 

properties.  It is not continuous over all reals.  Yields must be greater than 0 and ideally 

less than some theoretical upper limit.  The Gaussian kernel is continuous over all reals.  

This creates the potential for both negative yields and unrealistically high yields.  

Additionally, the Epanechnikov kernel is easily tractable.  The moments can easily be 

derived. 
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Yields were forecasted for the period 2009 through 2012 for the state and county 

with the trend equations.  Deviations from trend were generated from the KDE with the 

residuals by the following algorithm from Silverman (1986): 

Step 1) Choose t uniformly with replacement from { 1
~x ,…, Tx~  } 

Step 2) Generate e to have probability density function K 

Step3) Set ( ) 2
ˆ

221ˆ xKt hhexY σσμμ ++−+=  

where 2
Kσ  is the variance of the kernel and 2

x̂σ  is the variance of the data.  The Y’s will 

be distributed with mean μ  and variance 2
x̂σ . 

 Additionally, Silverman (1986) describes a very fast algorithm for generating e 

from the rescaled Epanechnikov kernel: 

(24) ( ) ( ) 11
4
3 2 ≤−= xforxxK . 

Step 2a) Generate three uniform [-1, 1] random variates V1, V2, V3. 

Step 2b) 
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 The variance of the rescaled Epanechnikov kernel is: 

(25) ( )
5
11

1

22 == ∫
−

dxxKxKσ  

 Each crop and yield deviation was iterated 1,000 times at the county/farm and 

state level.  The deviation was added to the trend7.  The result was 1,000 uncorrelated 

random draws for the yields. 

 

                                                 
7 Texas cotton instead is multiplied the trend yield by (1+random draw). 
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4.2 Price and yield correlation 

 One of the keys to analyzing the ACRE program is maintaining the interactions 

between prices and yields.  This has often been done in the Agricultural economics 

literature by imposing correlation among simulated variables.  The following provides the 

theoretical foundation for the methodology. 

 Let C be an nxn correlation matrix, P be an nxn matrix such that CPPT = , and ε  

be an nx1 vector of standard normal random variables.  Richardson and Condra (1978) 

and RiskMetrics™ (RiskMetrics(TM) Technical Document, 1996) show that: 

(26) ( )CNP n ,0~ 1xε  

This follows from the fact that: 

(27) 1x0][E]E[ nPP == εε  

and: 
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 Since a correlation matrix is just a covariance matrix with all standard deviations 

equal to one, the method provides a way of generating correlated standard normal 

deviates (CSND) with correlation preserved.  Richardson and Condra propose inserting 

the CSNDs into the normal distribution to obtain correlated uniform standard deviates 
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(CUSD).  The inverse probability integral transform can then be used to create correlated 

observations from non-normal distributions. 

 Iman and Conover (1982) use a similar method.  However, they argue that 

Pearson’s correlation coefficient is dependent upon linear correlation and is tied to 

normal distributions.  Instead, they propose a method using Spearman’s rank correlation 

coefficient.  Suppose R is an ixk matrix of standard normal random variables where i is 

the number of iterations and k is the number of variables.  TRP  creates a matrix where 

the variables have a correlation matrix with expected value equal to C.  Let M be an ixk 

matrix where each column is a variable with i observations generated from a distribution.  

Reorder the entries in each column of M to create M* so that the rank of each entry 

within the column is the same as the rank of the entry in the corresponding row and 

column in TRP .  M* now has rank correlation matrix approximately equal to C. 

 Iman and Conover proceed to show that M* can be constructed to ensure a 

correlation matrix nearly equal to C, even with just a few iterations.  Let T be the 

correlation matrix of R and S be a correction matrix such that: 

(30) CSTS T =  

Let Q be a matrix such that TQQT = .  Then: 

(31) CSSQQ TT =  

Since TPPC = : 

(32) 
1−=

=
=

PQS
PSQ
PPSSQQ TTT

 

In this case, TRSR =*  and should have a correlation matrix nearly identical to C. 
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 For the ACRE analysis, Iman and Conover’s method with correlation correction 

was employed for two reasons.  First, Silverman’s simple algorithm for generating 

observations could easily be employed.  Additionally, the method is robust.  Nonlinear 

interactions among prices and yields can be captured. 

 In order to employ the procedure, the matrix C must be factored such that 

CPPT = .  This is typically done with the Cholesky decomposition.  The Cholesky 

decomposition produces a lower triangular matrix that satisfies the aforementioned 

requirement.  In order to find a solution, C must be positive definite (PD) 

(RiskMetrics(TM) Technical Document, 1996).  For a true correlation matrix, this is not 

often a restrictive assumption as “all variance-covariance matrices are positive semi-

definite”(Hogg, McKean, & Craig, 2005, p. 122). 

 However, the PD requirement can fail, particularly for synthesized correlation 

matrices.  Additionally, correlations from different time periods can also cause problems 

("Monte Carlo Simulation by Cholesky or PCA?," 2006).  This issue has rarely been 

discussed in the Agricultural economics literature.  For matrices that fail the PD 

requirement, eigenvalue decomposition can provide a feasible alternative to the Cholesky 

decomposition.  The correlation matrix C can be written as: 

(33) TEEC Ω=  

where E is the matrix of eigenvectors and Ω  is a diagonal matrix of eigenvalues.  By 

definition, a symmetric PD matrix will have eigenvalues greater than zero, and a positive 

semi-definite (PSD) matrix will have eigenvalues greater than or equal to zero.  The 

decomposition can be further decomposed to: 

(34) TEEC 2
1

2
1
ΩΩ=  
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where 2
1

Ω  is a diagonal matrix of the square root of the eigenvalues.  Under eigenvalue 

decomposition, 2
1

Ω= EP .  The relative advantage is that PSD matrices can be 

decomposed.  Even if a matrix is not PSD, the negative eigenvalue(s) can often be set to 

zero and the matrix decomposed with little effect on the correlation matrix ("Monte Carlo 

Simulation by Cholesky or PCA?," 2006). 

 The correlation matrix for each representative farm contains the rank correlations 

of farm yield deviations, state yield deviations, and national price deviations for each 

crop grown on the representative farm.  The farm and state yield rank correlations were 

calculated from the deviations from trend yields.  State yield and national price rank 

correlations were obtained from the FAPRI ACRE model.  These correlations are based 

on future expectations.  Therefore, they can differ from historical correlations since they 

account for structural changes in the industry.  The county yield and national price 

correlations were obtained by multiplying correlation between the farm and the state for 

the crop by the correlation between the state for the crop and the national price. 
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Table 6: McLean, Illinois rank correlation matrix 

Corn Soybeans Corn Soybeans Corn Soybeans

Corn 1.00 0.54 0.93 0.67 -0.41 -0.26

Soybeans 0.54 1.00 0.44 0.68 -0.23 -0.27

Corn 0.93 0.44 1.00 0.71 -0.45 -0.33

Soybeans 0.67 0.68 0.71 1.00 -0.34 -0.40

Corn -0.41 -0.23 -0.45 -0.34 1.00 0.63

Soybeans -0.26 -0.27 -0.33 -0.40 0.63 1.00
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Table 7: Sumner, Kansas rank correlation matrix 

Wheat Sorghum Wheat Sorghum Wheat Sorghum

Wheat 1.00 0.13 0.79 0.09 -0.16 -0.12

Sorghum 0.13 1.00 0.02 0.09 -0.01 -0.03

Wheat 0.79 0.02 1.00 0.08 -0.21 -0.15

Sorghum 0.09 0.09 0.08 1.00 -0.16 -0.36

Wheat -0.16 -0.01 -0.21 -0.16 1.00 0.83

Sorghum -0.12 -0.03 -0.15 -0.36 0.83 1.00
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Table 8: Hale, Texas rank correlation matrix 

Cotton Sorghum Cotton Sorghum Cotton Sorghum

Cotton 1.00 0.64 0.83 0.00 -0.15 -0.12

Sorghum 0.64 1.00 0.73 0.45 -0.02 -0.08

Cotton 0.83 0.73 1.00 0.22 -0.18 -0.14

Sorghum 0.00 0.45 0.22 1.00 -0.04 -0.18

Cotton -0.15 -0.02 -0.18 -0.04 1.00 0.49

Sorghum -0.12 -0.08 -0.14 -0.18 0.49 1.00

C
ou

nt
y

yi
el

ds
St

at
e 

yi
el

ds
Pr

ic
es

PricesCounty yields State yields

 



 

 
 

35 

Table 9: Boliver, Mississippi rank correlation matrix 

Cotton Rice Soybeans Cotton Rice Soybeans Cotton Rice Soybeans

Cotton 1.00 0.00 0.73 0.85 0.09 0.73 -0.16 -0.03 -0.14

Rice 0.00 1.00 0.17 0.20 0.95 0.17 -0.06 -0.10 -0.08

Soybeans 0.73 0.17 1.00 0.75 0.28 0.91 0.00 -0.02 -0.10

Cotton 0.85 0.20 0.75 1.00 0.29 0.76 -0.18 -0.03 -0.16

Rice 0.09 0.95 0.28 0.29 1.00 0.27 -0.07 -0.10 -0.08

Soybeans 0.73 0.17 0.91 0.76 0.27 1.00 0.00 -0.03 -0.11

Cotton -0.16 -0.06 0.00 -0.18 -0.07 0.00 1.00 0.56 0.17

Rice -0.03 -0.10 -0.02 -0.03 -0.10 -0.03 0.56 1.00 0.25

Soybeans -0.14 -0.08 -0.10 -0.16 -0.08 -0.11 0.17 0.25 1.00
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 Prices for the analysis were obtained from the January 2009 FAPRI Stochastic 

Baseline.  However, the baseline only generates 500 outcomes while this analysis uses 

1,000.  To increase the price outcomes, the 500 prices for each crop from the FAPRI 

baseline were sorted into an empirical distribution.  One thousand draws were then made 

from that distribution using Latin Hypercube.  The result is 1,000 price outcomes nearly 

identical in distribution to the FAPRI baseline. 

Table 10: Mean values of forecasts 
2009 2010 2011 2012

McLean, IL corn yield, bu 181.6 184.1 186.5 189.0
McLean, IL soybean yield, bu 52.6 53.0 53.5 54.0
Sumner, KS wheat yield, bu 32.5 32.6 32.7 32.8
Sumner, KS sorghum yield, bu 60.3 61.2 62.1 63.0
Hale, TX cotton yield, lbs 857.3 875.3 893.2 911.1
Hale, TX sorghum yield, bu 78.1 78.1 78.1 78.1
Boliver, MS soybean yield, bu 40.5 41.2 41.8 42.5
Boliver, MS cotton yield, lbs 849.3 860.0 870.7 881.4
Boliver, MS rice yield, lbs 7,300.4 7,404.6 7,508.9 7,613.2
Illinois corn yield, bu 166.4 168.5 170.5 172.6
Illinois soybean yield, bu 46.8 47.2 47.6 48.0
Kansas wheat yield, bu 36.3 36.6 36.9 37.2
Kansas sorghum yield, bu 66.9 67.3 67.7 68.2
Texas cotton yield, lb 817.0 833.2 849.4 865.6
Texas sorghum yield, bu 49.4 49.4 49.4 49.4
Mississippi soybean yield, bu 34.9 35.5 36.0 36.6
Mississippi cotton yield, lbs 792.8 799.5 806.1 812.8
Mississippi rice yield, lbs 7,189.1 7,293.2 7,397.2 7,501.3
Corn price, $ per bu 3.74 3.78 3.80 3.91
Soybean price, $ per bu 8.76 8.81 9.17 9.22
Wheat price, $ per bu 5.30 5.33 5.42 5.50
Sorghum price, $ per bu 3.25 3.29 3.37 3.50
Cotton price, $ per lb 0.52 0.55 0.56 0.56
Rice price, $ per cwt 12.87 11.90 12.03 12.48  

 Each year for each farm has a matrix M with 1,000 rows and (crops x 3) columns.  

The first third of the columns are farm yield deviates plus trend yield for each crop 
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generated from the KDEs.  The second third are state yield deviates plus the trend yield8 

for each crop generated from the KDEs.  The last third are the 1,000 price outcomes 

based on the FAPRI baseline.  Correlation among the variables is obtained by using Iman 

and Conover’s algorithm.  C is a synthetic correlation matrix so P is derived by 

eigenvalue decomposition.  Negative eigenvalues are set to zero.  On the other hand, T is 

a “true” correlation matrix so Q is derived by the Cholesky decomposition which is 

computationally less taxing.  The result is a matrix for every representative farm for 

every year of 1,000 iterations of all yields and prices. 

 

4.3 Estimating representative farm parameters 

 The ACRE program is dependent upon several farm parameters.  One of the most 

important is planted acres for each crop.  The total farm size was determined by the 2007 

Ag Census.  The representative farm was assumed to have planted acres equal to the 

average harvested acres for farms of at least 2,000 acres in the county to preclude part-

time operations.  The five year average of planted acres in the county was calculated for 

each crop on the farm.  The average of each crop divided by the sum of the averages for 

each crop on the representative farm was multiplied by the total planted acres to allocate 

acres to each crop on the farm.  These were assumed to remain constant in all years of the 

analysis (Table 11).  Base acres were assumed to equal planted acres for purposes of the 

baseline, but this was allowed to vary in the scenarios. 

                                                 
8 Except Texas cotton which is trend yield x (1 + percent deviate). 
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Table 11: Acres of each crop 
County/crop Acres
McLean, IL corn 986
McLean, IL soybeans 697
Sumner, KS wheat 1,275
Sumner, KS sorghum 255
Hale, TX cotton 1,926
Hale, TX sorghum 216
Boliver, MS soybeans 2,571
Boliver, MS cotton 323
Boliver, MS rice 827  

 As previously mentioned, NASS county yields are not yet available for cotton, 

rice, and wheat for 2008.  A linear model was used to estimate the 2008 county yield 

based on the state yield for those crops.  Mississippi cotton is split into irrigated and non-

irrigated for the ACRE program.  Only the combined state yield has been reported for 

2008.  Therefore, 100 pounds was subtracted off the combined yield to estimate the non-

irrigated yield.  This correction was consistent with the differences in the yields in the 

previous years.  Additionally, NASS has not yet reported 2008 rice yields in Mississippi 

so the data was taken from the reported FSA ACRE yields. 

County CCP and DP yields could not be obtained so they were estimated.  CCP 

yields were created in 2002 based on 1998 through 2001 farm yields.  Therefore, state 

CCP and DP yields were multiplied by the ratio of the average 1998 to 2001 county yield 

to the average 1998 to 2001 state yield to obtain an estimate of the county CCP and DP 

yields. 
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Table 12: Program yields 
County/crop CCP yield DP yield
McLean, IL corn 136 123
McLean, IL soybeans 44 39
Sumner, KS wheat 34 33
Sumner, KS sorghum 43 41
Hale, TX cotton 562 525
Hale, TX sorghum 53 53
Boliver, MS soybeans 26 25
Boliver, MS cotton 714 701
Boliver, MS rice 4,474 4,223  

Yields in bushels except cotton and rice which are in pounds 

 2009 crop insurance premiums were obtained from the Risk Management Agency 

(RMA) of the USDA.  Actual Production History (APH) yields are calculated as the 

minimum of four and maximum of ten years average yield.  Once established, the APH 

yield cannot decrease by more than 10% nor increase by more than 20% per year 

(Edwards, 2009).  2009 APH yields for each farm were calculated as the average of the 

last 10 years of yield per planted acre for the county.  Each crop was assumed to be 

insured with a 75% Crop Revenue Coverage (CRC) policy on the basic unit.  Premiums 

were projected through 2012 by the following formula: 

(35) 
[ ]

1-t

t
1-tt Revenue

RevenueE
PremiumPremium =  

where: 

(36) [ ] [ ]ttt priceEyieldTrendRevenueE ∗=  

(37) [ ] 1t pricepriceE −= t  

 The insurance premium calculations simply inflate the lag premium by the ratio of 

expected revenues to lag revenues.  This model assumes that the farm will keep the same 
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type of insurance over the next four years.  Additionally, price expectations are assumed 

to be naïve. 

 Historical state yields per planted acre for the ACRE program for the past five 

years are reported by the FSA.  Those were used instead of the historical state yields 

calculated from the NASS data if there was a conflict9.  The 1,000 price and yield 

outcomes along with the representative farm parameters were run through the 

government program equations described in Chapter 3 with the exception of LDPs.  

Cotton and rice LDPs are determined by Average World Prices (AWP) which is usually 

below the MYA farm price.  The AWP rice price is determined by adjusting the MYA 

price down by $2.00 per cwt, and the AWP cotton price is determined by adjusting the 

MYA price down by $0.03 per pound.  For the other crops, the PCP is a reflection of the 

daily local county price.  The MYA price does not capture the intra-year price variation.  

The MYA price could be above the loan rate while PCPs dip below during the year.  As a 

result, the LDPs for corn, soybeans, wheat, and sorghum were calculated based upon the 

following FAPRI U.S. Crops Model equation: 

(38) 
( )
( )
( ) ⎟
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0

α
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where: 

                                                 
9 The only crop/state where the conflict was consistently significantly different was Texas sorghum due to 
the high number of failed acres for the crop.  This potentially explains why the trend was negative for the 
crop/state.  Using the errors from the NASS data will likely inflate the true variance for the crop/state. 
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Table 13: LDP equation parameters 
Crop α 0 α 1
Corn 0.40 0.20
Soy 0.44 0.22
Wheat 0.60 0.30
Sorghum 0.28 0.14  

 The specification allows LDPs to be triggered even if the MYA price is above the 

loan rate.  Furthermore, as the MYA price approaches the loan rate, LDPs will increase 

disproportionally faster.  This reflects the fact that PCPs are often below the MYA price.  

This equation captures the price differential and the price intra-year price variation of 

PCPs.  
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CHAPTER 5: BASELINE RESULTS 

 

The following chapter describes the results of the 1,000 iterations of the 

representative farm ACRE model.  One of the challenges of analyzing the program is 

reducing output to a few key variables that convey the intricacies and possibilities of the 

program.  This study attempts to use the smallest combination of metrics that provides 

complete analysis.  Additional output is available upon request. 

The initial comparison to be made is the sensitivity of results to the assumed 

average county inter-farm correlation.  Table 14 shows the average ACRE participation 

payments minus the average ACRE non-participation payments for each correlation and 

farm.  The table indicates that the analysis is fairly insensitive to the correlation (within 

the assumed range).  As a result, an average county inter-farm correlation of 0.7 will 

henceforth be assumed for the sake of brevity. 

Table 14: Average ACRE participation payments minus average ACRE non-participation 
payments, dollars 

Farm 2009 2010 2011 2012
0.5 48,524 25,092 16,035 12,566
0.7 48,524 25,087 16,035 12,567
0.9 48,525 25,088 16,026 12,561
0.5 25,805 13,908 6,838 4,209
0.7 25,805 13,908 6,838 4,209
0.9 26,081 14,184 6,964 4,288
0.5 -119,169 -107,612 -102,268 -98,188
0.7 -117,215 -106,201 -101,857 -97,463
0.9 -115,837 -105,847 -101,821 -97,370
0.5 53,188 45,263 15,510 9,905
0.7 53,184 45,247 15,498 9,907
0.9 53,371 46,031 15,881 9,950

Hale,
Texas

Boliver,
Mississippi

Average county
interfarm correlation

Year

McLean,
Illinois

Sumner,
Kansas
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 The following four tables (Table 15, Table 16, Table 17, and Table 18) display 

the per acre results of the ACRE participation decision.  Corn, soybeans, sorghum, rice, 

and wheat rarely trigger CCPs or LDPs under the DCP option during the next four years.  

The main cost for enrolling these crops in ACRE is the 20% reduction in DPs.  The 

ACRE enrollment decision for producers with only these crops essentially reduces to 

whether ACRE benefits exceed 20% of DPs. 

 On the other hand, farms with cotton face a more complex decision.  Cotton 

frequently triggers CCPs and LDPs under the DCP option.  Under the ACRE option, the 

crop rarely triggers LDPs and ACRE precludes CCPs.  Producers of this crop face a very 

steep opportunity cost of enrolling in ACRE.  However, ACRE may still make sense for 

cotton producers if they have sufficient acreage of other crops on the FSA farm. 
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Table 15: Average payments per planted acre for McLean, Illinois 

2009 2010 2011 2012 2009 2010 2011 2012
ACRE Payments Counter-cyclical payments

Corn 38.67 22.50 17.16 13.52 Corn 0.00 0.01 0.00 0.00
Soybeans 25.87 15.59 10.14 10.73 Soybeans 0.00 0.21 0.22 0.24

Loan deficiency payments Loan deficiency payments
Corn 0.00 0.00 0.00 0.00 Corn 0.00 0.00 0.00 0.00
Soybeans 0.00 0.00 0.00 0.01 Soybeans 0.00 0.24 0.23 0.42

Direct payments Direct payments
Corn 22.91 22.91 22.91 23.38 Corn 28.64 28.64 28.64 29.23
Soybeans 11.41 11.41 11.41 11.64 Soybeans 14.26 14.26 14.26 14.55

ACRE participation ACRE non-participation

 

 
Table 16: Average payments per planted acre for Sumner, Kansas 

2009 2010 2011 2012 2009 2010 2011 2012
ACRE Payments Counter-cyclical payments

Wheat 20.30 12.62 7.81 5.53 Wheat 0.02 0.10 0.14 0.11
Sorghum 16.61 9.20 5.60 6.81 Sorghum 0.05 0.24 0.11 0.14

Loan deficiency payments Loan deficiency payments
Wheat 0.00 0.00 0.00 0.00 Wheat 0.00 0.02 0.05 0.01
Sorghum 0.00 0.00 0.00 0.00 Sorghum 0.03 0.18 0.04 0.13

Direct payments Direct payments
Wheat 11.45 11.45 11.45 11.68 Wheat 14.31 14.31 14.31 14.60
Sorghum 9.58 9.58 9.58 9.77 Sorghum 11.97 11.97 11.97 12.22

ACRE participation ACRE non-participation
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Table 17: Average payments per planted acre for Hale, Texas 

2009 2010 2011 2012 2009 2010 2011 2012
ACRE Payments Counter-cyclical payments

Cotton 26.38 14.06 13.10 13.06 Cotton 45.70 36.06 34.19 32.25
Sorghum 29.01 17.71 10.84 9.26 Sorghum 0.05 0.30 0.13 0.17

Loan deficiency payments Loan deficiency payments
Cotton 2.90 2.15 2.90 3.73 Cotton 41.51 31.03 29.70 29.84
Sorghum 0.00 0.00 0.00 0.00 Sorghum 0.04 0.24 0.05 0.14

Direct payments Direct payments
Cotton 23.35 23.35 23.35 23.82 Cotton 29.18 29.18 29.18 29.78
Sorghum 12.29 12.29 12.29 12.54 Sorghum 15.36 15.36 15.36 15.68

ACRE non-participationACRE participation

 

Table 18: Average payments per planted acre for Boliver, Mississippi 

2009 2010 2011 2012 2009 2010 2011 2012
ACRE Payments Counter-cyclical payments

Soybeans 31.12 19.70 13.70 14.13 Soybeans 0.00 0.13 0.13 0.14
Cotton 16.41 6.61 7.56 11.41 Cotton 57.99 45.76 43.39 40.93
Rice 24.55 50.29 29.69 18.64 Rice 0.03 0.77 0.53 0.41

Loan deficiency payments Loan deficiency payments
Soybeans 0.00 0.00 0.00 0.00 Soybeans 0.00 0.19 0.19 0.28
Cotton 2.99 2.16 2.93 3.85 Cotton 41.85 31.91 30.35 30.14
Rice 0.00 0.00 0.02 0.00 Rice 0.29 2.89 2.06 1.64

Direct payments Direct payments
Soybeans 7.30 7.30 7.30 7.45 Soybeans 9.13 9.13 9.13 9.32
Cotton 31.15 31.15 31.15 31.79 Cotton 38.94 38.94 38.94 39.74
Rice 66.14 66.14 66.14 66.14 Rice 82.67 82.67 82.67 82.67

ACRE non-participationACRE participation
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The next four tables (Table 19, Table 20, Table 21, and Table 22) of total 

payments for the farm help to determine whether the benefits exceed the cost of ACRE.  

McLean, Illinois; Sumner, Kansas; and Boliver, Mississippi tend to benefit on average 

with ACRE.  In a typical year, DCP clearly provides more payments than ACRE for 

Hale, Texas.  The opportunity cost of enrolling cotton base acres is very high and the few 

sorghum acres can’t make up the difference.  As a result, the farm earns about $100,000 

less per year in average payments if it is enrolled in ACRE.  This does not take payment 

limits into account though. 

Perhaps the most interesting farm is Boliver, Mississippi.  While it does have 

cotton and rice, the farm has about twice as many soybean acres as the two other crops 

combined.  The result is that on average the farm receives higher payments by enrolling 

in ACRE.



 

 
 

47 

Table 19: Average payments for McLean, Illinois 

2009 2010 2011 2012 2009 2010 2011 2012
ACRE Payments Counter-cyclical payments

Corn 38,125 22,187 16,918 13,329 Corn 0 9 0 0
Soybeans 18,034 10,864 7,066 7,481 Soybeans 0 148 150 166

Total 56,159 33,050 23,984 20,810 Total 0 158 150 166

Loan deficiency payments Loan deficiency payments
Corn 0 0 0 0 Corn 0 4 0 0
Soybeans 0 0 0 4 Soybeans 0 166 164 289

Total 0 0 0 4 Total 0 170 164 289

Direct payments Direct payments
Corn 22,593 22,593 22,593 23,054 Corn 28,241 28,241 28,241 28,817
Soybeans 7,950 7,950 7,950 8,112 Soybeans 9,938 9,938 9,938 10,140

Total 30,543 30,543 30,543 31,166 Total 38,178 38,178 38,178 38,958

Total payments (ACRE) 86,702 63,593 54,527 51,980 Total payments (DCP) 38,178 38,506 38,492 39,413

Net change (ACRE-DCP) 48,524 25,087 16,035 12,567

ACRE participation ACRE non-participation (DCP)
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Table 20: Average payments for Sumner, Kansas 

2009 2010 2011 2012 2009 2010 2011 2012
ACRE Payments Counter-cyclical payments

Wheat 25,882 16,088 9,954 7,047 Wheat 28 132 178 139
Sorghum 4,235 2,345 1,427 1,736 Sorghum 12 62 27 36

Total 30,117 18,433 11,381 8,783 Total 40 193 205 175

Loan deficiency payments Loan deficiency payments
Wheat 0 0 0 0 Wheat 6 27 69 19
Sorghum 0 0 0 0 Sorghum 7 45 10 33

Total 0 0 0 0 Total 13 73 79 52

Direct payments Direct payments
Wheat 14,595 14,595 14,595 14,893 Wheat 18,244 18,244 18,244 18,617
Sorghum 2,442 2,442 2,442 2,492 Sorghum 3,053 3,053 3,053 3,115

Total 17,038 17,038 17,038 17,385 Total 21,297 21,297 21,297 21,732

Total payments (ACRE) 47,155 35,471 28,419 26,168 Total payments (DCP) 21,350 21,563 21,581 21,959

Net change (ACRE-DCP) 25,805 13,908 6,838 4,209

ACRE participation ACRE non-participation (DCP)



 

 
 

49 

Table 21: Average payments for Hale, Texas 

2009 2010 2011 2012 2009 2010 2011 2012
ACRE Payments Counter-cyclical payments

Cotton 50,817 27,081 25,225 25,155 Cotton 88,021 69,459 65,858 62,120
Sorghum 6,266 3,826 2,342 2,000 Sorghum 11 64 29 38

Total 57,083 30,907 27,567 27,155 Total 88,033 69,523 65,887 62,158

Loan deficiency payments Loan deficiency payments
Cotton 5,593 4,132 5,577 7,188 Cotton 79,945 59,760 57,198 57,470
Sorghum 0 0 0 0 Sorghum 8 52 11 30

Total 5,593 4,132 5,577 7,188 Total 79,953 59,812 57,209 57,500

Direct payments Direct payments
Cotton 44,967 44,967 44,967 45,885 Cotton 56,209 56,209 56,209 57,356
Sorghum 2,655 2,655 2,655 2,709 Sorghum 3,319 3,319 3,319 3,386

Total 47,622 47,622 47,622 48,594 Total 59,528 59,528 59,528 60,743

Total payments (ACRE) 110,299 82,662 80,767 82,938 Total payments (DCP) 227,514 188,863 182,624 180,401

Net change (ACRE-DCP) -117,215 -106,201 -101,857 -97,463

ACRE participation ACRE non-participation (DCP)
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Table 22: Average payments for Boliver, Mississippi 

2009 2010 2011 2012 2009 2010 2011 2012
ACRE Payments Counter-cyclical payments

Soybeans 80,014 50,643 35,213 36,333 Soybeans 0 331 334 370
Cotton 5,302 2,136 2,442 3,685 Cotton 18,732 14,782 14,015 13,220
Rice 20,301 41,591 24,556 15,412 Rice 28 637 440 339

Total 105,617 94,371 62,211 55,430 Total 18,760 15,749 14,790 13,928

Loan deficiency payments Loan deficiency payments
Soybeans 0 0 0 9 Soybeans 0 487 497 720
Cotton 967 699 948 1,243 Cotton 13,516 10,309 9,803 9,734
Rice 0 0 19 0 Rice 240 2,394 1,706 1,360

Total 967 699 966 1,252 Total 13,756 13,189 12,005 11,815

Direct payments Direct payments
Soybeans 18,779 18,779 18,779 19,162 Soybeans 23,474 23,474 23,474 23,953
Cotton 10,062 10,062 10,062 10,268 Cotton 12,578 12,578 12,578 12,835
Rice 54,697 54,697 54,697 54,697 Rice 68,372 68,372 68,372 68,372

Total 83,539 83,539 83,539 84,127 Total 104,423 104,423 104,423 105,159

Total payments (ACRE) 190,123 178,608 146,716 140,809 Total payments (DCP) 136,939 133,361 131,218 130,902

Net change (ACRE-DCP) 53,184 45,247 15,498 9,907

ACRE non-participation (DCP)ACRE participation
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 Although average payments are useful, they hide important information.  A 

producer may also be concerned about the frequency of payments.  The following four 

tables (Table 23, Table 24, Table 25, and Table 26) summarize the frequency of 

payments for the simulation.  About 90% of the outcomes received an ACRE payment in 

at least one of the four years.  Cotton was the crop that triggered the least with less than 

80% for both farms that had the crop. 

 Additionally, the Boliver, Mississippi farm provides some interesting results.  

County soybean yields are highly correlated with state soybean yields while both are 

weakly correlated to national soy prices.  The result is a higher percent of outcomes 

triggering ACRE payments for soybeans than for the McLean, Illinois farm, where prices 

and yields have a much stronger negative correlation.  This creates a natural hedge 

reducing the probability of triggering ACRE payments.  Boliver, Mississippi cotton had 

high yields in four of the five years between 2004 and 2008 which helps explain the low 

percent of outcomes where cotton triggers ACRE payments. 

 Furthermore, one other observation is quickly apparent.  The percent of outcomes 

triggering ACRE payments tends to decrease through time.  The primary reason for this 

is that FAPRI baseline prices generally fall in 2009 from the high levels of 2007 and 

2008.  Therefore, the 2009 benchmark is quite high.  Since the state benchmark cannot 

move by more than 10% per year, the state benchmark is slowly expected to decline 

through time.  The effect is that payments become less frequent. 

Table 23: Percent of outcomes where an ACRE payment is triggered for each crop/year 
in McLean, Illinois 

Crop 2009 2010 2011 2012 Total
Corn 61.7% 38.2% 29.1% 24.3% 92.8%
Soybeans 57.3% 35.9% 23.0% 22.3% 91.6%

Total 70.4% 50.8% 40.0% 33.6%  
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Table 24: Percent of outcomes where an ACRE payment is triggered for each crop/year 
in Sumner, Kansas 

Crop 2009 2010 2011 2012
Wheat 70.8% 52.5% 34.7% 26.8% 98.0%
Sorghum 54.6% 37.4% 24.7% 27.4% 91.4%

Total 81.2% 64.2% 46.2% 40.8%

Total

 

Table 25: Percent of outcomes where an ACRE payment is triggered for each crop/year 
in Hale, Texas 

Crop 2009 2010 2011 2012 Total
Cotton 40.8% 24.4% 21.2% 19.9% 77.6%
Sorghum 70.9% 48.7% 33.6% 28.5% 97.4%

Total 80.2% 65.2% 47.8% 41.0%  

Table 26: Percent of outcomes where an ACRE payment is triggered for each crop/year 
in Boliver, Mississippi 

Crop 2009 2010 2011 2012 Total
Soybeans 65.2% 44.6% 33.4% 33.8% 97.8%
Cotton 37.2% 19.2% 19.1% 24.1% 77.8%
Rice 28.9% 49.5% 31.6% 20.9% 87.8%

Total 76.6% 70.4% 56.6% 52.6%  

 

Similarly, the percent of outcomes where total payments under ACRE 

participation exceeds those under DCP participation are presented in the following next 

four tables (Table 27, Table 28, Table 29, and Table 30).  The total column compares the 

sum of the payments over the four years for both participation options.  The McLean, 

Illinois and Sumner, Kansas farms both receive larger payments under ACRE 

participation in over 90% of the outcomes.  Unsurprisingly, the Hale, Texas farm has 

very few outcomes that favor ACRE participation.  Most outcomes for Boliver, 

Mississippi favor ACRE participation, but not as strongly as for the McLean, Illinois and 

Sumner, Kansas farms. 

The cumulative proportions in the total column for the Hale, Texas farm is much 

smaller than the proportion for any individual year.  Conversely, the cumulative 
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proportions in the total columns for the other farms are much larger than any individual 

year.  The benchmark state revenue cannot move by more than 10% per year, so a low or 

high benchmark is temporally persistent.  These results indicate that there is serial 

correlation, although not perfect, as the cumulative effect is often more extreme than any 

individual year. 

 

Table 27: Percent of outcomes where ACRE participation payments exceeds DCP 
participation payments for McLean, Illinois 

2009 2010 2011 2012
68.5% 45.5% 34.9% 30.5% 91.0%

Total

 

Table 28: Percent of outcomes where ACRE participation payments exceeds DCP 
participation payments for Sumner, Kansas 

2009 2010 2011 2012
79.2% 58.5% 38.2% 34.3% 93.8%

Total

 

Table 29: Percent of outcomes where ACRE participation payments exceeds DCP 
participation payments for Hale, Texas 
2009 2010 2011 2012
6.9% 5.1% 5.0% 4.2% 1.4%

Total

 

Table 30: Percent of outcomes where ACRE participation payments exceeds DCP 
participation payments for Boliver, Mississippi 

2009 2010 2011 2012
62.0% 55.7% 39.0% 33.2% 82.0%

Total

 

 

Thus far the analysis has only considered the total probability of receiving an 

ACRE payment.  However, both the farm and state must show a loss to receive the 

payment.  Table 31, Table 32, Table 33, and Table 34 display the percent of outcomes 

where the farm received a payment if the state triggered a payment, i.e. 

( )guaranteestaterevenuestatebenchmarkfarmrevenuefarm << |P .  For every crop 

and year, the result is about 90% or more with the exception of Sumner, Kansas sorghum.  
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This is likely due to the weak correlation between farm and state sorghum yields and the 

low yields for the farm during 2004 to 2008. 

Likewise, Table 35, Table 36, Table 37, and Table 38 show the percent of 

outcomes where the farm received a payment if farm revenue was less than the farm 

benchmark, i.e. ( )benchmarkfarmrevenuefarmguaranteestaterevenuestateP << | .  

Excepting Sumner, Kansas sorghum, these tables had lower values than the previous 

four.  This is in response to two underlying effects.  The first is that it is easier for the 

farm to meet its trigger criteria than the state.  The farm benchmark adds the crop 

insurance premium while the state guarantee is docked 10%.  In an average year, the farm 

will trigger while the state will not.  The other effect is that farm yields should be more 

variable than state yields since state yields are an aggregation of many farms over a large 

geographical area.  Therefore, local effects that could wipe out a farm’s crop may only 

move state yields slightly. 
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Table 31: Percent of outcomes where the farm received an 
ACRE payment if state revenue was less than the state 
guarantee for McLean, Illinois 
Crop 2009 2010 2011 2012
Corn 100.0% 98.7% 100.0% 99.2%
Soybeans 99.1% 97.3% 97.9% 98.2%  
 
Table 32: Percent of outcomes where the farm received an 
ACRE payment if state revenue was less than the state 
guarantee for Sumner, Kansas 
Crop 2009 2010 2011 2012
Wheat 99.7% 96.0% 88.3% 90.2%
Sorghum 60.6% 51.0% 48.0% 59.2%  
 
Table 33: Percent of outcomes where the farm received an 
ACRE payment if state revenue was less than the state 
guarantee for Hale, Texas 
Crop 2009 2010 2011 2012
Cotton 79.2% 68.0% 69.1% 67.7%
Sorghum 94.0% 80.8% 75.5% 80.7%  
 
Table 34: Percent of outcomes where the farm received an 
ACRE payment if state revenue was less than the state 
guarantee for Boliver, Mississippi 
Crop 2009 2010 2011 2012
Soybeans 99.2% 94.9% 96.8% 98.5%
Cotton 93.9% 89.7% 92.7% 95.6%
Rice 100.0% 100.0% 96.9% 98.1%  

Table 35: Percent of outcomes where the farm received an 
ACRE payment if farm revenue was less than the farm 
benchmark for McLean, Illinois 
Crop 2009 2010 2011 2012
Corn 75.6% 61.7% 52.5% 48.3%
Soybeans 69.5% 58.6% 49.0% 45.7%  

Table 36: Percent of outcomes where the farm received an 
ACRE payment if farm revenue was less than the farm 
benchmark for Sumner, Kansas 
Crop 2009 2010 2011 2012
Wheat 74.6% 66.7% 65.6% 56.3%
Sorghum 93.7% 84.8% 64.2% 58.4%  

Table 37: Percent of outcomes where the farm received an 
ACRE payment if farm revenue was less than the farm 
benchmark for Hale, Texas 
Crop 2009 2010 2011 2012
Cotton 55.7% 49.6% 42.2% 42.3%
Sorghum 79.7% 73.0% 57.2% 48.1%  

Table 38: Percent of outcomes where the farm received an 
ACRE payment if farm revenue was less than the farm 
benchmark for Boliver, Mississippi  
Crop 2009 2010 2011 2012
Soybeans 81.2% 72.4% 64.0% 59.1%
Cotton 62.4% 51.6% 46.5% 50.1%
Rice 51.4% 65.6% 60.1% 54.7%  
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Although average total payments under ACRE and DCP are an important part of 

the analysis, the insurance effect of farm bill programs is also important.  Economic 

actors are often willing to invest in an asset with a negative expected value if the asset 

has an income smoothing effect on the actor’s bundle of assets.  For example, many 

people purchase insurance policies with a loss ratio less than one to decrease their 

liability.  While some of the farms clearly had higher average payments under either 

ACRE or DCP, the consideration of income risk could change the optimal program for 

the farm. 

Figure 3, Figure 4, Figure 5, and Figure 6 display three points of the distribution 

of the sum of market payments and government receipts for each year.  McLean, Illinois 

and Sumner, Kansas have similar distributions.  In a good revenue year, ACRE and DCP 

perform about the same.  ACRE results in larger payments in an average revenue year.  In 

the lower tail of the distributions, ACRE participation results in much higher revenue.  

This result is not surprising since ACRE is meant to combat years of low revenue.  

Boliver, Mississippi is similar except that revenue has a slightly higher potential under 

DCP.  For this farm, ACRE narrows the revenue distribution.  Hale, Texas’ revenue 

distribution is drastically different than the other three farms.  DCP outperforms ACRE at 

every level.  LDPs and CCPs safeguard revenue more than ACRE for this farm. 
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Figure 3: Distribution of the sum of market revenues and government payments for McLean, Illinois 

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

2008 2009 2010 2011 2012

D
ol
la
rs

Year

ACRE participation

ACRE non-participation

10th 
percentile median

90th 
percentile

 



 

 

58 

Figure 4: Distribution of the sum of market revenues and government payments for Sumner, Kansas 
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Figure 5: Distribution of the sum of market revenues and government payments for Hale, Texas 
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Figure 6: Distribution of the sum of market revenues and government payments for Boliver, Mississippi 

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

2008 2009 2010 2011 2012

D
ol
la
rs

Year

ACRE participation

ACRE non-participation

10th 
percentile median

90th 
percentile

 
 



 

61 

Thus far, the expected value and distribution of ACRE participation and non-

participation has been considered.  For the McLean, Illinois; Sumner, Kansas; and 

Boliver, Mississippi farms ACRE participation has higher expected payments and a 

positive effect on the revenue distribution.  ACRE is the obvious choice for those three 

farms under the current assumptions.  On the other hand, Hale, Texas has higher expected 

payments and revenue distribution benefits under ACRE non-participation.  Staying with 

DCP is the obvious choice for this farm under the current assumptions.  Ideally, all this 

information would be combined into one metric to sort out ambiguities that could occur 

in scenarios.  A more advanced technique is necessary to determine the optimal decision 

under potentially ambiguous conditions. 

The tool employed for the task was Stochastic Efficiency with Respect to a 

Function (SERF) using Simulation and Econometrics To Analyze Risk (SIMETAR) 

software (2008).  SERF analysis uses a utility function to find the Certainty Equivalent 

(CE) of payoffs.  The Risk Aversion Coefficients (RACs) are allowed to vary within a 

range.  The result is the same as stochastic efficiency analysis, only no assumptions are 

made about risk aversion.  While such analysis is usually based on net income, revenues 

in this case should still provide reasonable analysis if we treat production costs in each 

year as sunk. 

Risk aversion can be grouped into two types: absolute and relative.  Absolute risk 

aversion is concerned with actual dollar amounts while relative risk aversion is concerned 

with the share of wealth.  With absolute risk aversion, $10 extra provides as much utility 

to actors whether they have $100 or $1,000 of wealth.  On the other hand, with relative 

risk aversion $10 extra provides as much utility to an actor with $100 of wealth as $100 
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extra would if the actor had $1,000 of wealth.  Richardson (2008) recommends using the 

following Relative RACs (RRACs) based on Anderson and Dillon’s work from 1992: 

Table 39: Relative risk aversion coefficients 
RRAC Corresponds to: 

0.0 Risk neutral 

0.5 Hardly risk adverse 

1.0 Normal or somewhat risk adverse

2.0 Rather risk adverse 

3.0 Very risk adverse 

4.0 Extremely risk adverse 

 

A power utility function with RRACs is used for the analysis.  According to 

SIMETAR, for wealth, w, the function is defined as: 

(39) 
RRAC

ww
RRAC

−
=

−

1
)(U

1

 

An initial wealth of zero was assumed.  While this should decrease the effect of risk on 

CEs, using revenues instead of net income has the opposite effect.  They should be at 

least partially offsetting. 

 The four years of farm revenues were converted to a present value using an 

estimated current ag interest rate of 4.75% (T. Gerlt, personal communication, April 7, 

2009).  After a CE was calculated for each RRAC under ACRE participation and ACRE 

non-participation, the latter was subtracted from the former.  This created a total risk 

premium that the producer would be willing to pay to enroll in ACRE over staying in 

DCP.  The total risk premium was divided by the sum of planted acres over the four 
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years.  This result represents the premium per acre for enrolling in ACRE.  The results 

are presented in Figure 7. 

Figure 7: Premium equivalent per acre for enrolling in ACRE 
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Consistent with the prior analysis, the McLean, Illinois; Sumner, Kansas; and 

Boliver, Mississippi farms gain from ACRE enrollment while Hale, Texas would lose.  

The first three show that ACRE reduces risk as the premium equivalent increases with the 

level of risk aversion.  On the other hand, ACRE enrollment increases risk for Hale, 

Texas as indicated by the curve that decreases with the level of risk aversion. 
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CHAPTER 6: ALTERNATIVE SCENARIOS 

 

Although the Chapter 5 results are inherently useful, they can also be used to 

provide a benchmark against which to compare scenarios.  The underlying assumptions 

about the farm can be altered to extract the sensitivity of the results.  Furthermore, the 

program parameters can be adjusted to test their significance.  This chapter reports results 

from undertaking such analysis to provide answers to some of the most relevant 

questions. 

 

6.1 Scenario 1: Alternate enrollment years 

 For the previous analysis, it was assumed the farm was enrolled in ACRE in 2009.  

However, the farm can be enrolled in any year during the life of the program (2009 

through 2012).  Naturally, this provision begs the question, “How does waiting to enroll 

affect the farm’s benefits?” 

 

 
Figure 8, Figure 9, Figure 10, and Figure 11 display the SERF analysis for the 

enrollment timing scenarios.  For each farm, the premium tends to zero as the enrollment 

delay is increased.  This is expected since not enrolling in ACRE would be equivalent to 

a $0.00 premium.  As a result, the influence of DCP increases with the delay of ACRE 

enrollment.  This also forces the insurance effect of ACRE to decrease with delay.  The 

SERF lines tend to flatten with the delay because of this effect. 

The analysis in the next charts is heavily dependent on the chosen price path for 

crops for 2009 through 2012.  Projected prices fall in 2009 from the 2007-2008 average 
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of MYA prices which are used to set the 2009 ACRE benchmark.  As a result, ACRE 

payments are expected to be highest in 2009 and decrease through 2012.  Additionally, 

for most crops, prices increase after 2010.  These price movements explain the decreasing 

marginal effect of enrollment delay.  However, for the farms that favored ACRE under 

the baseline, ACRE benefits decrease with the enrollment delay.  Given the price 

assumptions, the optimal behavior for the representative farms would be to enroll starting 

in 2009. 

 
Figure 8: Premium equivalent per acre for McLean, Illinois for enrolling in ACRE 
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Figure 9: Premium equivalent per acre for Sumner, Kansas for enrolling in ACRE 
starting in… 
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Figure 10: Premium equivalent per acre for Hale, Texas for enrolling in ACRE starting 
in… 
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Figure 11: Premium equivalent per acre for Boliver, Mississippi for enrolling in ACRE 
starting in… 
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6.2 Scenario 2: Mean MYA prices below loan rate 

A key assumption for all ACRE analysis is the MYA price path.  With the 

exception of cotton, every crop in the analysis has had a mean price path well above loan 

rates and target prices.  As a result, farms without much cotton base tend to earn more 

payments with ACRE enrollment.  However, how are results affected if prices drop low 

enough to trigger loan program benefits and CCPs for non-participants in ACRE?  The 

mean MYA price for each year was dropped to 95% of the loan rate.  This was done by 

multiplying each of the 1,000 prices by the ratio of 95% of the loan rate to the old price 

mean.  It is worth noting that this does decrease the variance of the price distributions.  

This price change will trigger LDPs and CCPs under DCP on average for the farm 

without triggering ACRE LDPs on average. 
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Inducing such a change to prices will trigger high ACRE payments initially.  

Since the state benchmark and farm guarantee are based on a moving two year average 

price, both will fall over time, but the 10% rule will ease the transition.  The end result 

will be revenues declining with time.  On the other hand, under DCP market revenues 

plus payments will fall to a level and stay there.  While the two year price continues to 

fall under ACRE, DCP prices will remain level.  As a result, in the beginning ACRE will 

probably yield larger payments, but after a couple of years DCP will become the higher 

paying program (Figure 12). 

 

Figure 12: Distribution of the sum of market revenues and government payments for 
McLean, Illinois with mean MYA prices set to 95% of loan rates 
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The adjustments were made to prices and the analysis rerun.  As expected, ACRE benefits 
decreased for each farm ( 

Figure 13, Figure 14, Figure 15, and Figure 16).  In fact, DCP is now the optimal 

program for the Sumner, Kansas and Boliver, Mississippi farms.  ACRE benefits dropped 

about 50% for Illinois but this is not enough to change the ACRE decision for the farm.  

Hale, Texas already favored DCP, so the optimal decision remains the same for it. 

 
Figure 13: Premium equivalent per acre for McLean, Illinois for enrolling in ACRE 

under alternate mean prices 
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Figure 14: Premium equivalent per acre for Sumner, Kansas for enrolling in ACRE 
under alternate mean prices 
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Figure 15: Premium equivalent per acre for Hale, Texas for enrolling in ACRE under 
alternate mean prices 
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Figure 16: Premium equivalent per acre for Boliver, Mississippi for enrolling in ACRE 
under alternate mean prices 
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An important factor not considered in this scenario is payment limits.  All 

payments have a limit per person involved on the farm except LDPs.  Considering 

payment limitations would tend to make ACRE participation less attractive to producers 

as DCP would generate large, uncapped LDPs while ACRE would generate limited 

payments.  This factor was omitted from the scenarios because the results are heavily 

dependent on assumptions about the number of people involved in the operation and the 

extent to which payment limits can be avoided through legal reorganization strategies. 

 

6.3 Scenario 3: Alternate state payment limits 

 An important component of the ACRE payment formula is that the state payment 

rate cannot exceed 25% of the state benchmark revenue.  This rule is in addition to the 



 

72 

payment limits per entity.  Those restrict total payments per individual whereas the 25% 

payment rate rule restricts the state ACRE payment rate.  ACRE payments are still 

subject to payment limits. 

Zulauf reports that the most commonly purchased crop insurance policies have a 

75% coverage level (2008).  The 25% payment rate rule is designed to prevent the 

overlap of the ACRE program and crop insurance.  Yet, without empirical analysis it is 

hard to determine the importance of 25% payment rate rule.  Furthermore, the rate could 

potentially be decreased to assist with World Trade Organization (WTO) compliance.  

Sensitivity of the results to the payment rate limit was observed by comparing the 

baseline against scenarios of a 10% payment rate limit and of no payment rate limit. 

 For every farm, removing the payment limit increases ACRE’s benefits and 

lowering it decreases ACRE’s net benefits to producers ( 

Figure 17, Figure 18, Figure 19, and Figure 20) which is consistent with expectations.  

Removing the limit seems to decrease the per acre premium equivalent by about $2.00.  

The exception is McLean, Illinois where there is hardly any change.  This indicates that 

the state was hardly ever reaching the 25% limit.  The natural revenue hedge for the 

Illinois likely creates this result.  The only scenario where altering the limit would change 

the optimal program is the 10% limit for the Boliver, Mississippi farm.  At that level DCP 

would be the optimal choice for the farm. 
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Figure 17: Premium equivalent per acre for McLean, Illinois for enrolling in ACRE 
under different state payment limits 
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Figure 18: Premium equivalent per acre for Sumner, Kansas for enrolling in ACRE 
under different state payment limits 
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Figure 19: Premium equivalent per acre for Hale, Texas for enrolling in ACRE under 
different state payment limits 
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Figure 20: Premium equivalent per acre for Boliver, Mississippi for enrolling in ACRE 
under different state payment limits 
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6.4 Scenario 4: Alternate base acre allocations 

 The last scenario examines the effects of different levels of base acres.  Planted 

acres are assumed to remain constant.  In reality, this is not the case but it provides results 

that can easily be compared to the baseline.  For example, if the Boliver, Mississippi farm 

substituted planted cotton acres into rice or soybeans, the results would favor ACRE 

participation more heavily. 

An increase in base acres tips the scales in favor of ACRE as long as total planted 

acres do not exceed 83.3% (85% in 2012) of base acres.  Beyond that point, only the 

reduced DPs are increasing under ACRE.  However, the full DPs and CCPs are 

increasing under DCP. 

 Table 40, Table 41, Table 42, and Table 43 display the effects on the Net Present 

Value (NPV) of ACRE minus foregone payments of varying base acres as a percent of 

planted acres.  McLean, Illinois and Sumner, Kansas have very similar results.  Both 

slightly favor DCP when there are with zero base acres.  This follows from the fact that 

LDPs are the only payment received with no base and LDPs must always be higher under 

DCP due to the higher loan rate under that program.  The effects of increasing sorghum 

base relative to planted acres on the Sumner, Kansas farm are modest since it has so few 

planted acres of the crop. 

For most crops on most farms, the NPV of ACRE minus foregone payments is 

maximized when base acres are 80% to 100% of planted acres.  This is consistent with 

the aforementioned expectations.  Beyond the 85% level, DCP payments are increasing 

faster than ACRE participation payments.  Below that level, ACRE outperforms DCP per 

base acre on these two farms.  Therefore, increasing base increases the total difference.  
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These two effects converge to form a maximum around 85%.  Besides cotton, the notable 

exception to this is the McLean, Illinois farm.  ACRE net benefits are maximized with 

soybean base equal to 200% of planted acres and no corn base.  This is because neither 

crop triggers LDPs nor CCPs and soybean DPs are much less for the farm.  200% of 

soybean planted acres 83% of total planted acres.  The net effect is still the proper 

amount of base but with lower foregone payments. 

Hale, Texas presents a very different story from the first two farms.  Sorghum 

base has a positive effect on ACRE up to the 85% level.  Conversely, cotton only has a 

negative effect.  Since this farm is predominately cotton, that crop dominates the 

outcomes.  Even with zero cotton base acres, the LDPs foregone on cotton outweigh the 

ACRE benefits of sorghum.  Within the range of base acres examined, DCP is always the 

optimal program for the Hale, Texas representative farm. 

Perhaps the most interesting farm in this scenario is Boliver, Mississippi.  Once 

again, cotton base only has a negative effect on ACRE participation while soybeans and 

rice have a positive effect.  Therefore, the maximum benefit of ACRE is achieved with 

no cotton base acres and soybean and rice base acres that are 80% to 100% of planted 

acres.  As cotton base increases and soybean and rice base move away from the 100% 

level, the ACRE benefits to producers over DCP diminish.  In some cases, DCP becomes 

the optimal program.  In reality, cotton base acres can be many times the amount of 

cotton planted acres further decreasing the ACRE advantages. 
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Table 40: Average NPV of ACRE minus foregone payments for McLean, Illinois, dollars 

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%
0% -538 12,450 25,438 38,426 51,413 64,401 77,389 90,377 88,531 84,481 80,431

20% 10,001 22,988 35,976 48,964 61,951 74,939 87,927 91,075 87,025 82,975 78,925
40% 20,539 33,526 46,514 59,502 72,490 85,477 93,619 89,569 85,519 81,470 77,420
60% 31,077 44,065 57,052 70,040 83,028 95,847 92,114 88,064 84,014 79,964 75,914
80% 41,615 54,603 67,590 80,578 93,566 94,658 90,608 86,558 82,508 78,458 74,408

100% 52,153 65,141 78,128 91,116 97,202 93,152 89,102 85,052 81,002 76,952 72,903
120% 62,691 75,679 88,667 99,715 95,696 91,646 87,596 83,547 79,497 75,447 71,397
140% 73,229 86,217 99,205 98,240 94,190 90,141 86,091 82,041 77,991 73,941 69,891
160% 83,767 96,755 100,784 96,735 92,685 88,635 84,585 80,535 76,485 72,435 68,385
180% 94,305 103,329 99,279 95,229 91,179 87,129 83,079 79,029 74,979 70,930 66,880
200% 104,844 101,823 97,773 93,723 89,673 85,623 81,574 77,524 73,474 69,424 65,374
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Table 41: Average NPV of ACRE minus foregone payments for Sumner, Kansas, dollars 

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%
0% -192 9,601 19,394 29,187 38,979 48,750 46,193 43,494 40,795 38,096 35,397

20% 1,844 11,637 21,430 31,223 41,016 48,430 45,731 43,032 40,333 37,635 34,936
40% 3,881 13,674 23,467 33,259 43,052 47,969 45,270 42,571 39,872 37,173 34,474
60% 5,917 15,710 25,503 35,296 45,089 47,507 44,808 42,109 39,410 36,711 34,012
80% 7,954 17,747 27,540 37,332 47,125 47,045 44,346 41,647 38,948 36,249 33,550

100% 9,990 19,783 29,576 39,369 49,140 46,583 43,884 41,185 38,486 35,787 33,088
120% 12,027 21,820 31,612 41,405 48,820 46,121 43,422 40,723 38,024 35,325 32,626
140% 14,063 23,856 33,649 43,442 48,358 45,659 42,960 40,261 37,562 34,863 32,164
160% 16,100 25,892 35,685 45,478 47,896 45,197 42,498 39,799 37,100 34,401 31,702
180% 18,136 27,929 37,722 47,515 47,434 44,735 42,036 39,337 36,638 33,939 31,240
200% 20,172 29,965 39,758 49,529 46,972 44,273 41,574 38,875 36,176 33,477 30,778

Wheat base acres as a percent of planted wheat acres
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Table 42: Average NPV of ACRE minus foregone payments for Hale, Texas, dollars 

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%
0% -208,032 -239,539 -271,045 -302,551 -334,058 -375,334 -434,621 -493,908 -553,195 -612,481 -671,768

20% -205,418 -236,924 -268,430 -299,937 -331,443 -375,835 -435,122 -494,409 -553,696 -612,982 -672,269
40% -202,803 -234,309 -265,816 -297,322 -328,828 -376,336 -435,623 -494,910 -554,197 -613,483 -672,770
60% -200,188 -231,695 -263,201 -294,707 -326,214 -376,837 -436,124 -495,411 -554,698 -613,984 -673,271
80% -197,574 -229,080 -260,587 -292,093 -323,599 -377,338 -436,625 -495,912 -555,199 -614,485 -673,772

100% -194,959 -226,466 -257,972 -289,478 -320,985 -377,839 -437,126 -496,413 -555,700 -614,986 -674,273
120% -192,345 -223,851 -255,357 -286,864 -319,309 -378,340 -437,627 -496,914 -556,201 -615,487 -674,774
140% -189,730 -221,236 -252,743 -284,249 -319,555 -378,841 -438,128 -497,415 -556,702 -615,988 -675,275
160% -187,116 -218,622 -250,128 -281,635 -320,056 -379,342 -438,629 -497,916 -557,203 -616,489 -675,776
180% -184,501 -216,007 -247,514 -279,020 -320,557 -379,843 -439,130 -498,417 -557,704 -616,990 -676,277
200% -181,886 -213,393 -244,899 -276,405 -321,058 -380,344 -439,631 -498,918 -558,204 -617,491 -676,778

Cotton base acres as a percent of planted cotton acres
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Table 43: Average NPV of ACRE minus foregone payments for Boliver, Mississippi, dollars 

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%
0% -42,030 7,148 56,326 105,504 154,682 177,236 163,680 150,124 136,569 123,013 109,457

20% -48,778 400 49,578 98,756 147,934 164,525 150,969 137,413 123,857 110,301 96,745
40% -55,526 -6,348 42,830 92,008 141,186 151,813 138,257 124,701 111,145 97,590 84,034
60% -62,275 -13,097 36,081 85,259 134,437 139,102 125,546 111,990 98,434 84,878 71,322
80% -69,023 -19,845 29,333 78,511 127,689 126,390 112,834 99,278 85,722 72,167 58,611

100% -75,771 -26,593 22,585 71,763 120,941 113,679 100,123 86,567 73,011 59,455 45,899
120% -82,520 -33,342 15,836 65,015 113,694 100,967 87,411 73,855 60,299 46,743 33,188
140% -89,268 -40,090 9,088 58,266 101,811 88,255 74,700 61,144 47,588 34,032 20,476
160% -96,016 -46,838 2,340 51,518 89,100 75,544 61,988 48,432 34,876 21,320 7,765
180% -102,764 -53,586 -4,408 44,770 76,388 62,832 49,277 35,721 22,165 8,609 -4,947
200% -109,513 -60,335 -11,157 38,021 63,677 50,121 36,565 23,009 9,453 -4,103 -17,659

Soybean and rice base acres as a percent of respective planted acres
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

 

This study used four representative farms to analyze the ACRE program created 

in the 2008 Farm Bill.  The farms were based on the counties of McLean, Illinois; 

Sumner, Kansas; Hale, Texas; and Boliver, Mississippi.  Each farm was chosen to 

represent a different region and crop production mixture. 

Each farm required state and farm yield forecasts for every crop grown.  These 

were projected using a trend yield based on 30 years of history.  Errors from the trend 

yield were used to create 1,000 potential yields for every crop at the state and farm level.  

These yields were then correlated with the FAPRI stochastic prices to create a matrix of 

stochastic input variables to analyze ACRE for each farm. 

The strongest conclusion drawn from the analysis is that cotton producers are 

unlikely to find ACRE participation attractive given the assumptions in this study.  The 

Hale, Texas representative farm would forego large LDPs and CCPs to enroll in ACRE.  

Even under alternative scenarios, the farm earned larger payments participating in ACRE.  

The Boliver, Mississippi representative farm also had cotton but favored ACRE.  The 

cotton acres were a small enough percentage of total acres that ACRE was the optimal 

program for the farm.  However, under alternative scenarios, the farm does under some 

conditions earn more payments with DCP.  All other crops considered (corn, soybeans, 

rice, wheat, and grain sorghum) favored ACRE.  Given the regions where these crops are 

grown, these results are consistent with prior FAPRI analysis and Coble and Dismuke’s 

analysis. 
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However, this conclusion assumes a price path that declines in 2009 but then 

increases for most crops.  The analysis indicates that prices falling below the loan rate 

could change the optimal program.  This was the case for the Sumner, Kansas and 

Boliver, Mississippi representative farms.  ACRE benefits declined for the McLean, 

Illinois representative farm but did not change the optimal program.  If prices should rise 

over time, ACRE may not be the optimal program for producers as it will not trigger 

payments except in the case of a sharp yield reduction larger than the increase in prices. 

If the assumed FAPRI baseline price path where mean prices fall in 2009 and then 

increase is correct, then the optimal year to enroll in ACRE is 2009.  2009 should have 

the highest payments and succeeding years will face ever declining ACRE payments on 

average as the state benchmark decreases and/or actual revenues increase.  Furthermore, 

the more years a farm is enrolled in ACRE the more likely it will trigger an ACRE 

payment during the life of the program. 

However, even though these general conclusions seem to hold, the gains from 

ACRE are unique to each farm.  Several of the farms had non-empty intersections of the 

sets of crops grown.  These common crops had differing returns for different farms.  This 

is largely due to non-identical correlations and farm program parameters.  For instance, 

soybeans were grown on the Illinois and Mississippi farms.  However, Mississippi 

received higher average ACRE payments than Illinois for soybeans.  This can largely be 

explained by two correlations.  The Boliver, Mississippi farm had a stronger yield 

correlation with its state yield than did the McLean, Illinois farm, and Mississippi had a 

weaker correlation between state yields and national prices.  The result is that Mississippi 

had a weaker price/yield hedge than Illinois.  This results in payments being triggered 
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more often.  Furthermore, since the Boliver farm and Mississippi state yields are more 

strongly correlated than McLean’s and Illinois, the two trigger criterion of ACRE is less 

likely to be binding.  This also results in higher payments. 

Similarly, farm program parameters are a nontrivial component of determining 

the optimal farm program.  The type and amount of base acres can change the results of 

the analysis.  For example, adjusting the state payment rate limit changed the optimal 

program for the Boliver, Mississippi farm.  Additionally, the amount of base acres was 

also shown to change the qualitative results in certain cases. 

All of the above factors are important components of the ACRE enrollment 

decision.  Farm specific analysis is appropriate to aide individual producers in making the 

choice, but this analysis does provide several generalities to help guide the decision.  

While ACRE is a complex program, this study does show that it can have large payoffs 

and deserves careful consideration. 
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