
University of South Carolina
Scholar Commons

Theses and Dissertations

1-1-2013

Development of Proteomic Characterization and
Speciation Techniques Utilizing Tryptic Peptides
with MALDI-TOF MS and LC-ESI MS-MS
Jennifer Marie Kooken
University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Kooken, J. M.(2013). Development of Proteomic Characterization and Speciation Techniques Utilizing Tryptic Peptides with MALDI-TOF
MS and LC-ESI MS-MS. (Doctoral dissertation). Retrieved from http://scholarcommons.sc.edu/etd/2280

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F2280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/2280?utm_source=scholarcommons.sc.edu%2Fetd%2F2280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu


DEVELOPMENT OF PROTEOMIC CHARACTERIZATION AND SPECIATION TECHNIQUES 
UTILIZING TRYPTIC PEPTIDES WITH MALDI-TOF MS AND LC-ESI MS-MS 

 
by 
 

Jennifer Marie Kooken 
 

Bachelors of Science 
Syracuse University, 2006 

 
 

 
 

Submitted in Partial Fulfillment of the Requirements 
 

For the Degree of Doctor of Philosophy in 
 

Biomedical Sciences 
 

School of Medicine 
 

University of South Carolina 
 

2013 
 

Accepted by: 
 

Alvin Fox, Major Professor 
Chairman, Examining Committee 

 
Karen Fox, Committee Member 

 
Kim Creek, Committee Member 

 
Lucia Creek, Committee Member 

 
Cory Robinson, Committee Member 

 
Lacy Ford, Vice Provost and Dean of Graduate Studies



ii 

© Copyright by Jennifer Marie Kooken, 2013 
All Rights Reserved.



iii 

DEDICATION 

 

 

This dissertation is dedicated with all my love to 

Ariel Sally 

 

 

It is hard to find someone who loves, supports, trusts, and cares for you. 

It is even more difficult to realize that you feel the same way towards them. 

 

 

Then add in a PhD, distance, and war to make life seem impossible. 

You have made the seemingly impossible possible 

 

Thank you 



iv 

 

ABSTRACT 

 

The characterization of microbes which can be opportunists and pathogens (e.g., 

methicillin resistant Staphylococcus aureus (MRSA)) is important in understanding and 

potentially treating diseases caused by various bacterial species.  Common genera 

found in the human skin micro-biome include Micrococcus and Staphylococcus, but 

there only a limited number of tests to differentiate these genera and/or species.  My 

research reflects methods development from distinguishing one closely related genera 

from another and then expanded to species identification.  Tryptic peptides were 

analyzed by MALDI TOF MS and the mass profiles compared with those of a reference 

strain in both genus and species identification.  Aconitate hydratase and oxoglutarate 

dehydrogenase served as marker proteins on focused analysis after gel separation.  

Alternatively on full proteomics analysis elongation factor tu provided the highest 

confidence in staphylococcal speciation.   Ultimately, refinement in speed and accuracy 

of analysis was accomplished with LC ESI MS-MS for peptide analysis on whole 

proteomes and data analysis also employing a customized X!tandem database allowing 

for successful identification and differentiation of the 11 Staphylococcus species 

commonly found on humans (genomes gathered from UNIPROT).  The methodological 

approach described can be utilized for bacterial identification across multiple species, 
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creating more accurate methods for identification of species that may be pathogenic to 

humans. 
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CHAPTER 1 

INTRODUCTION 

 

1.0 Development of Dissertation 

 

In the field of bacteriology, proteomics is largely applied to cataloging protein 

expression, with little emphasis on taxonomic identification.  In Proteomics the main 

concern of analyzing proteins in a given cell or organism (referred to as its proteome) is 

quantifying the abundance and changes that occur over time with these proteins 

(Phillips and Bogyo, 2005).  This work focuses on identifying coagulase negative 

Staphylococcus (CoNS) species and to introduce methods in which mass spectrometry 

(MS) may be used for bacterial species identification.  The need for improved taxonomic 

identification stems from current methodology failing in proper speciation of strains.  

Most CoNS species were believed to hold no clinical significance, but it is now being 

found CoNS can be found in clinical settings.  Furthermore, even clinically significant 

Staphylococcus species are often misidentified creating a need for consistently accurate 

taxonomic classification method.  Current physiological and molecular tests often fail in 

proper identification of CoNS.  Better, although not complete accuracy in species 

identification has been found with utilization of mass spectrometry, such as matrix 

assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) (Fox et al., 

2011). 
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What will be addressed herein are the current problems with taxonomic 

identification of CoNS, and the need to establish a methodology for accurate 

identification of both genus and species from samples across multiple origins.  Along 

with using Staphylococcus as a model system for bacterial speciation, microbial 

characterization is important in understanding transmission (Fox et al., 2008).  Bacterial 

transmission may occur person-to-person, or there is potential for its presence from 

environmental sources (Fox et al., 2008).  Methodology for species identification of 

common organisms causing human disease is widely available in clinical microbiology 

laboratories (Fox et al., 2008).  Even with this ability new and closely related disease 

causing species often fail to be characterized, or are miscatagorized, in current clinical 

settings (Fox et al., 2011).  This research was performed focusing on 11 species of 

Staphylococcus commonly identified in clinical settings, with many of these species 

often misidentified (Goyal R, 2006; Surekha.Y.Asangi 2011).  The progression of this 

dissertation establishes a methodology to identify the bacterial Genus of 

Staphylococcus, and further explore accurate identification utilizing bacterial proteins for 

species identification. 

 

1.1 General approaches to taxonomy 

 

 Microbiological testing is often used in clinical settings for bacterial species 

identification.  The ability to culture and stain bacterial samples allows basic information 

to be attained.  Gram staining is a technique performed to ascertain if the sample 

contains a thick layer of peptidoglycan.  Peptidoglycan will stain purple if it is gram 
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positive.  Conversely, if this layer is lacking and the sample instead stains red (gram 

negative).  Physiological tests such as evaluation of hemolytic activity, ability to ferment 

various sugars, along with antibiotic resistance can be utilized to eliminate possibilities 

based upon known properties of bacteria.  Many of these tests have assisted in species 

identification.  Although often the results may be inconclusive when problems such as 

partial gram staining, or incomplete fermentation of sugars lead to unreliable tests.  This 

creates difficulties that are both time consuming and lead to the inaccuracies in species 

identification.  

With physiological tests leaving many inconclusive results microbiological 

methods has become the standard for species identification.  Tests such as PCR and 

16s rRNA allow for a more rapid identification then previous physiological methods, but 

still have many drawbacks.  With Polymerase Chain Reactions (PCR) a specific region 

of DNA is amplified.  This region should be specific to the bacteria targeted and when 

performed identification is quite often successful especially when there is greater 

divergence among species in the variable regions of these genes; the problem that 

often arises with using this method is species identification (Goebel and Stackebrandt, 

1994; Goebel, 1994).  The genetic region selected for PCR analysis must contain two 

conserved regions for primers to recognize and allow amplification to begin.  It is 

believed that the variable sequence between these conserved regions allow for 

taxonomic discrimination, but this also can become the problem with accurate 

identification.  Similar to most PCR based techniques the requirement for two conserved 

regions limits the number of genetic regions available to study.  Sequence variation of 

genes, such as sodA may be so subtle that differentiation of closely related species 
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cannot be obtained.  Also, in most cases this would require some knowledge of the 

sample in order to create the appropriate primer for the PCR process to occur.  The 

dependence on this prior information to properly create primers that identify species this 

may not be a suitable technique in identification of unknown bacterial isolates.  Accurate 

results of species identification does not occur when species are closely related but 

unsequenced.  Microarrays also utilize genetic information similar to PCR, with the 

same drawbacks from closely related species ability to cross hybridize on arrays giving 

inaccurate results (Jukes et al., 2010). 

Another popular molecular technique is 16S ribosomal DNA (rDNA) sequencing, 

which is also used as the gold standard in microbial ecology and serves as a cataloging 

technique (Fox et al., 2011).  Overall it was discovered that 16S rDNA sequencing 

discriminates well at the genus level, with most clinically significant species cataloged, 

but species-level identification capabilities often fall short (Morgan et al., 2009).  

Problems arise due to 16S ribosomal DNA sequences having closely related species 

that contain identical 16S rDNA sequences or, alternatively, that divergent 16S rDNA 

sequences may exist within a single organism (Goebel, 1994).  This situation was 

observed in a study of airborne urban dust where 16S rRNA arrays indicated the 

presence of over 8,000 taxa, and none were identifiable to the species level (Brodie et 

al., 2007).  With physiological and molecular techniques able to narrow down unknown 

samples to their respective genus, there is still a failure in obtaining consistently correct 

and accurate species level identification.  This problem, being well recognized the field 

of proteomics, is being explored to fill in the gaps from genomic techniques.  
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1.2 Approaches to Staphylococcal Taxonomy 

 

 Taxonomically, the genus Staphylococcus is in the bacterial family 

Staphylococcaceae, which is also comprised of Gamella, Macrococcus and 

Salinicoccus(Baird-Parker, 1965).  The genus Bacillus in the family Bacillaceae is the 

most well-known phylogenetic relative (Baird-Parker, 1965).  Staphylococci are gram-

positive bacteria, spherical in shape and under a microscope closely resemble grape 

clusters (Baird-Parker, 1965). 

 Identification of Staphylococcus species have several complications, along 

with ambiguous gram staining results, glucose and glycerol tests are often inconclusive 

leaving a potentially pathogenic Staphylococcus sample to be misidentified for the 

morphologically similar, yet harmless species of Micrococcus (Baker, 1984).  It has 

been found that in human cultures of the nose and skin results will often produce 

staphylococci (Roth and James, 1988).  From these cultures clinical identification 

systems such as the STAPH-IDENT system utilize multiple tests to identify 

Staphylococcus samples and further specieate these samples.  In a four year study it 

was found these test strips did not perform adequately when dealing with commonly 

encountered members of the family Micrococcaceae; and was unsuitable for the 

identification of uncommon Staphylococcus isolates (Rhoden and Miller, 1995).  

Currently there are more than 20 species of Staphylococcus described in Bergey's 

Manual (2001), but only Staphylococcus aureus and Staphylococcus epidermidis are 

considered significant in their interactions with humans.  This outlook is slowly changing 

as many other species of Staphylococcus are now appearing in human infections 
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(Dubois et al., 2010).  The frequency in which other CoNS species associated with 

human disease is reported varies from study to study.  With the vast range of reporting 

it is expected that clinical labs are often misidentifying species creating the problem of 

unknown prevalence in CoNS infections.  It is reported that S. hominis, S. warneri, S. 

capitis, S. haemolyticus and S. lugdenensis are the next most common species in 

staphylococcal infections, with S. simulans rarely reported from clinical microbiology 

laboratories (Sivadon et al., 2005).  In contrast, studies of prosthetic joint infections 

found S. lugdenensis and S. simulans (along with S. capitis) as being the major 

organisms isolated (Frank et al., 2004).  The variation in species reported, and lack of a 

standard method in which to identify a species, creates a situation where 

misidentification of disease causing organisms may lead to improper treatments.  Since 

realization that there are many species of coagulase negative Staphylococcus that also 

inhabit the human skin, and physiological tests are unable to conclusively identify 

species PCR was then used to find proper identification (Sivadon et al., 2005; Skow et 

al., 2005).  The highly conserved hsp60 and tuf genes have been found to be useful for 

identification and taxonomic classification along with sodA genes in Staphylococcus 

species identification (Goebel, 1994).   

 Staphylococci remain an important component of the human flora and 

laboratories normally equated coagulase-positive, gram-positive cocci with 

Staphylococcus aureus and coagulase-negative cocci with Staphylococcus epidermidis, 

but there are at least 13 human strains of coagulase-negative staphylococci that are 

also pathogenic and often misidentified (Rhoden and Miller, 1995).  From the 13 

species commonly found on humans eleven are readily available from the ATCC and 
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have complete or close to complete genomic sequence annotated within the NCBI or 

UNIPROT system (Kooken, 2013)  In development of this dissertation the ability to 

identify isolates from environmental, human, and veterinary origins were accessed, with 

the goal of proper and consistent identification of coagulase negative staphylococci.  

Tandem mass spectrometry was utilized to explore the possibility of applying current 

proteomic technology to protein identification for speciation of unknown Staphylococcus 

sample. 

 

1.3 Use of Mass Spectrometry in Proteomics 

 

Proteomics is one of the fastest growing areas in biological research, the current 

focus in this field has been protein identification, with little focus on how this information 

may be utilized in species determination (Aebersold and Mann, 2003).  The ability to 

discriminate bacterial isolates is important for many areas of research in medical 

microbiology, especially in defining bacterial taxonomy and monitoring transmission of 

infection (Cash, 2009).  Proteins analysis allows us an understanding of the functions 

and regulation occurring in an organism, giving a picture of current activity occurring in 

the cell, and what proteins are being produced (Intelicato-Young and Fox, 2013).  In the 

past genomic studies provided a vast amount of overall information but failed in 

identifying what is occurring at any given time point; which illustrates an incomplete 

picture of the organism (Intelicato-Young and Fox, 2013).  In comparison, the proteome, 

which is complementary to the genome, is able to display a broader picture of biological 

occurrences within a cell (Intelicato-Young and Fox, 2013).  The genome is a depiction 
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of everything that could possibly occur within an organism, but the proteome shows 

what is currently active within the cell (Intelicato-Young and Fox, 2013).  Proteomic 

analysis allows for comprehensive identification of proteins, along with valuable 

information such as prevalence of a protein in a given sample, isoforms, and helps to 

identify functions of each protein (Angel et al., 2012). 

One of the most valuable technological advances in proteomic study is mass 

spectrometric analysis.  Mass spectrometry (MS) is a widely utilized analytical technique 

that has been refined over the years to its current state.  Sensitivity and selectivity of 

this technique allow us to gather information on a compounds molecular weight (MW) 

and even structural information in a short time.  The potential of these advances outside 

of chemistry was not fully realized until the early 1990’s when MS became widely 

applied to study peptides and proteins (Canas et al., 2006).  The ability to contribute to 

protein identification did not occur until Electrospray ionization (ESI) and Matrix-Assisted 

Laser Desorption/Ionization (MALDI) was developed and large quantities of peptides 

and proteins could be identified from small quantities of material (Fenn et al., 1989; 

Whitehouse et al., 1985).  Karas and Hillenkamp published spectra of large proteins 

obtained by coupling their MALDI source to a time-of-flight mass spectrometer (MALDI-

TOF MS) (Karas and Hillenkamp, 1988).  This development assisted in ushering in the 

age of proteomics.  The information gathered from mass spectrometry, coupled with 

computer software that compares experimental versus theoretical spectra allowed 

fingerprints to be established with spectral patterns.  These fingerprints were observed 

to be unique enough to identify a protein.   
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Utilizing these approaches it is possible for characterization, quantitation, and 

even identification of unknown protein samples (Aebersold and Mann, 2003).  With 

standard MS techniques further coupled for tandem MS the available genomic research 

can be utilized in identifying unique peptides within the protein for species identification.  

Tandem mass spectrometry allows direct protein analysis providing accurate amino acid 

sequence without the need for any prior information.   
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1.4.0 Mass Spectrometer overview 

 

 

 

Slide courtesy of K. Murray, altered for dissertation purposes 

Figure 1.1 General overview of MS and MS-MS separation 

 

 

Mass spectrometry is a tool that accurately measures the mass of different 

molecules within a sample.  With MS it is possible to identify molecules in a mixture, 

detect impurities in a sample, analyze a purified protein, and as with this research to 

study the protein content in cells (Baker, 2010).  There are 3 main aspects to a mass 

spectrometer; ionization, sorting, and detection.  Ionization is where the molecules in a 

sample are converted to the gas phase.  This takes place by heating allowing the 

subsequent vapors to be ionized by bombardment with an electron rich beam.  Which in 

turn creates ions of both positive and negative charges.  Next these ions are sorted 



 11 

according to mass, this sorting may occur through acceleration, deflection, or a 

combination of the two dependent upon the MS system used.  The last part of MS 

would be detection; upon analysis of the ions that reach the detector the computer will 

generate a spectrum representative of the ions found.  This spectrum can serve as the 

fingerprint for the sample and applied towards identification.  The electrical or magnetic 

fields that are generated from the mass spectrometer is inversely proportional to the 

mass, and directly proportional to its electrical charge; so it is indicated as a mass to 

charge ratio (m/z) (Hillenkamp et al., 1991; Karas and Hillenkamp, 1988).  The 

spectrum readout is displayed in this fashion so dependent upon molecule charge it is 

possible to ascertain the exact mass.  Tandem MS adds a secondary layer of 

information.  Parent ions from the MS spectra may be selected and subjected to a 

second fragmentation which breaks the peptide into its amino acid components. 

 

1.4.1 Mass Spectrometer Ion sources 

 

Conditional for the type of sample analyzed there are various ionization 

techniques utilized in mass spec.  With proteomics these biological samples are 

normally looked at with soft ionization.  Opposed to hard ionization where chemical 

bonds are broken, soft ionization results in the formation of ions without breaking any 

chemical bonds.  Soft ionization techniques allow for all covalent bonds to be kept 

intact.  This method of ionization is also preferred with large biomolecules.  In 

comparison hard techniques require the analyte to be vaporized first then generate ions 

from neutral molecules that are now in the gaseous phase, causing breaking of the 
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molecule (Tanaka et al., 1988).  Hard ionization is not utilized because proteomic 

samples normally are polar and non-polar and are more readily dissolved into an 

aqueous solution.  Heating theses samples to place them in a gaseous phase would 

only succeed to cook the sample instead of vaporizing.  Soft ionization allows these 

fragile molecules to enter the gas phase without using so much energy that they fall 

apart, allowing the ability to measure mass.   

The most common soft ionization sources, in proteomic work are electrospray 

(ESI) and MALDI (Angel et al., 2012).  Mass analyzers utilized in proteomics have a 

larger variety; ion traps, triple quadropole; Fourier transform cyclotrons; and time-of-

flight (TOF) are ones frequently used (Angel et al., 2012).  All of these analysis methods 

are based upon achieving the mass to charge separation in an electromagnetic field.  If 

a molecule is neutral it needs to first be converted into a charged ion.  In proteomics the 

size of proteins and protein peptides have to be taken into consideration when deciding 

upon ion source, ESI and MALDI have both proven to generate peptide and protein ions 

efficiently even for molecules over 10,000 Da (Van Riper et al., 2013).  

Even with success in proteomic analysis both ion sources have benefits and 

drawbacks.  With ESI, ion formation occurs at atmospheric pressure (Laiko et al., 

2000a; Laiko et al., 2000b).  A high voltage is applied as the liquid is passed through a 

heated capillary or nitrogen depending on the type of ESI source (Whitehouse et al., 

1985).  These droplets are so small that they can evaporate rapidly concentrating the 

charged molecules and acquire multiple charges in this process.  This allows the 

peptides or proteins to be multiply-protonated, causing various mass to charge ratios 

that can enhance ion transmission in the subsequent analyzer.  ESI sources can be 
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coupled with an HPLC to reduce volumes used even further (up to nanoliter volumes) 

and HPLC also provides a further means of separation to achieve greater sensitivity 

during analysis (Davis et al., 1995).  Drawbacks to ESI are primarily due to it being a 

'soft ionization' technique, there is little fragmentation, which is beneficial because the 

molecular ions are often repeatedly observed across multiple sample runs, but it gives 

very little structural information unless further tandem MS is performed. 

An often used alternative to ESI ion generation is MALDI.  In MALDI ions may be 

generated either at atmospheric pressure, but more commonly under vacuum 

conditions (Laiko et al., 2000b).  Unlike ESI, MALDI is based on a matrix, frequently α-

cyano-4-hydroxycinnamic acids are used with protein and peptide analysis, due to their 

ability to absorb UV light (Billeci and Stults, 1993; Henzel et al., 1993).  The peptide or 

proteins are pipetted onto the MALDI plate allowing the sample to evaporate and co-

crystallize with the matrix.  The plate’s samples are then placed into a vacuum chamber 

and hit by a pulsed UV laser beam (Knochenmuss, 2006).  The lasers energy is 

absorbed by the matrix and vaporizes small charged molecules allowing them to enter 

gaseous phase that can later be detected by the analyzer (Knochenmuss, 2006).  

MALDI is frequently paired with a TOF analyzer, but other methods have been used to 

analyze ions produced from MALDI sources.  This is another soft ionization method that 

is successful in fragmenting large and small biomolecules such as peptides and 

proteins, but sample preparation is important for sensitivity, reproducibility, and 

quantification of mass analysis (Carbonnelle et al., 2012; Carbonnelle et al., 2011).  

MALDI was the first MS technique that had successful protein and polymer analysis up 

to m/z 100,000 (Tanaka et al., 1988).  But due to the sample preparation methods the 



 14 

protein/peptide-matrix mixture is not homogeneous.  It is necessary to take multiple 

laser shots at different places on the sample and results shown are the statistical 

average of the substance concentration in that MALDI sample and can subsequently 

loose information on smaller peptides (Angel et al., 2012).  After either ESI or MALDI 

generate ions an analyzer and detector are needed to separate the ions and interpret 

the data into a mass spectrum. 

 

1.4.2 Mass Spectrometry Analyzers/Detectors 

 

 The analyzer separates ions obtained at the ion source and applies either 

an electric or magnetic field to induce separation.  Similar to ion sources there are many 

analyzers and detectors that may be used in proteomic work, but due to low price and 

ease of use quadrupoles, TOF, and ion traps, are the most frequently utilized (Yates, 

1998).  Within my research the detector aspect although important for mass 

spectrometry is not focused on, this is because all modifications for MS and MS-MS 

output occur within the source and analyzer.  This allows the detector to interpret the 

signals received and displays these signals as a mass spectrum.  Selection of an 

analyzer should depend upon the resolution needed and its capability to differentiate 

two close signals from each other; the desired standard for proteomic work is an 

analyzer capable of isotopic peak differentiation.  The ability of a mass spectrometer to 

distinguish different isotopes is one of the reasons why mass spectrometry is such a 

powerful technique; isotopes gives each fragment a characteristic series of peaks with 

different intensities (Skoog, 2007).  Mass spectrometry distinguishes molecules based 
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on their mass to charge ratio, because of this isotopes play an important role in mass 

spectra and each isotope will show up as a separate line in a mass spectrum with high 

enough resolution.  If resolution is not sensitive enough then peptides with similar m/z 

ratios may not be distinguished and improper identification may occur.  The 

Quadrupoles is an analyzer often used in proteomics that consist of four cylindrical rods 

that lay parallel to each other and exert alternating current (Edmond deHoffmann, 

2003).  These electrical fields oscillate and only ions with a stable trajectory will travel 

along the quadrupoles to reach the detector (Edmond deHoffmann, 2003).  Dependent 

on the setting of these rods it is possible to select for ions with higher m/z ratio, all ions, 

or for it to allow ions with different m/z ratio to pass sequentially (Leary and Schmidt, 

1996).  It is also able to set fixed voltages to permit stable trajectories for specifically 

selected ions, this works best when the user knows the m/z ratio desired and 

corresponding voltages (Leary and Schmidt, 1996).  The main drawback for quadropole 

analyzers are the mass range they are effective for, usually restricted to a limit of m/z 

4000 (Chowdhury et al., 1990b).  Since quadrupoles are frequently coupled with an ESI 

source for proteomics they are still effective in determining the molecular weight (MW) 

of lager proteins due to ESI ability for multiply charged ions (Chowdhury et al., 1990a). 

 ESI is most often paired with a quadropole mass analyzer while proteomic 

runs with MALDI ion sources tend to use the Time of Flight mass analyzer (TOF or TOF 

MS).  TOF is considered one of the simplest methods for ion analysis; it consists of a 

flight tube in high vacuum atmosphere where ions are accelerated with equal an equal 

amount of energy then in a manner inversely proportional to their mass (smaller ions 

travel faster to the detector) they accelerate down the flight tube (Wollnik, 1993). 
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The spectrum produced at the end is indicative of the signal produced by ions 

reaching the detector at the end of the flight tube.  MALDI-TOF spectrum is based on 

singly charged artifacts, but the peaks can be too broad to accurately identify a mass 

value, this happens due to the occurrence of uneven energy distributions that can 

degrade resolution (Jensen et al., 1996; Shevchenko et al., 1996).  This problem is 

averted by a 100-200 nanosecond (ns) delay in applying the gradient extraction voltage, 

this procedure is more commonly known as delayed extraction (DE), the results may be 

further enhanced by utilizing an electrostatic mirror (reflectron) (Jensen et al., 1996).  

Often referred to as ‘reflectron mode’ the ions pathway is reversed and travel time 

lengthened with this electrostatic mirror located at the end of the primary flight path 

(Cornish and Cotter, 1993).  Due to the affordability, sensitivity, and ease of use the 

MALDI-TOF is a very common and highly utilized instrument in proteomics. 

 Thermo fisher’s Orbitrap, a replacement for the complex but high 

resolution Fourier transform ion cyclotron resonance (FITCR), and ion traps are the two 

most commonly used in proteomics.  Ion traps hold ions in a fixed area allowing the 

analyst time to perform scans, selection of ions, fragmentation, and even product ion 

analysis.  By retaining the ion successive analysis may be performed and repeated over 

the course or seconds or even hours (Blaum, 2006).  There is a small space in the 

center of the device where ion trapping occurs, once inside the trap, increasing voltage 

causes ions to destabilize successively ejecting them from the trap (Stafford Jr et al., 

1984).  The ejected ions reach the detector in order of ejection and their m/z ratios are 

measured (March, 1997).  Ion trap resolution is dependent upon the scanning speed, in 

proteomics full scans along with product scans are optimal at medium resolutions which 
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are needed for ion charge assignment (Hu et al., 2005).  Lower scan speeds may be 

needed for more accurate measurements on selected smaller mass ranges, short slow 

scans are only compatible with high resolution instruments, such as the Orbitrap (Hu et 

al., 2005; Marina et al., 1999).  All of these MS techniques are limited in the information 

they are capable of providing, but when placed in tandem (MS-MS) identification down 

to amino acid composition can be achieved.   

 

1.5 Tandem Mass Spectrometry 

 

Tandem MS can consist of several sequential processes; ionization of sample 

molecules, mass selection of parent ions, Collision induced dissociation (CID) of the 

parent ions with neutral gas molecules to produce daughter ions, and mass analysis 

and detection of daughter ions (Johnson et al., 1990).  There are some alternatives to 

this process, such as Brucker’s MADLI-TOF MS-MS which uses a “LIFT” instead of 

CID.  The LIFT portion is laser induced dissociation, which is supposed to react very 

similarly to CID (Suckau et al., 2003).  These separation techniques usually occur in a 

‘tandem in space’, or ‘tandem in time’ configuration.  With tandem in space MS-MS the 

separation of elements are physically distinct, where one MS apparatus, although 

physically connected to maintain a high vacuum atmosphere is distinct from another MS 

system, TOF-TOF MS-MS would be an example of separation over a time span 

(Johnson et al., 1990).  Tandem in time MS-MS utilizes a system where the ions are 

trapped in one location and separation occurs in multiple steps over time, ion traps are 

examples of MS machines capable of performing separation over time MS (Johnson et 
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al., 1990).  Mass spectrometry has become the foremost method for the 

characterization and sequencing of proteins and peptides within the field of proteomics 

(Shevchenko et al., 2000).  Proteomic research performed for this dissertation serves as 

an exercise in application of modern time mass spectrometry.  Utilization of MS and 

MS-MS coupled instruments allowed taxonomic identification down to species level 

across a wide range of Staphylococcus samples by identifying the amino acid 

sequences found in abundant proteins.  This serves as an example why tandem mass 

spectrometry has become the method of choice for high resolution protein detection and 

identification (Cravatt et al., 2007).   

 

1.6 General Proteomic Sample Preparations for Mass Spectrometry 

 

 The strategies used for preparation of proteins or more complex proteomic 

samples in MS analysis involve multiple steps.  The onset of this research required 

bacterial culture followed by cell lysis and whole supernatant to be run on an SDS-

PAGE gel.  This allowed for all of the proteins to be visualized, and the 100 kD band, 

identified in previous research, to be excised for digestion and MALDI-TOF analysis 

(Fox et al., 2011).  In utilizing higher resolution technology SDS-PAGE gels were 

eliminated and whole cell protein digests were suitable for LC-ESI-MS-MS analysis.  In 

both circumstances the proteins are broken up into peptides, via enzymatic digestion 

with Trypsin.  Trypsin digestion cleaves proteins at the carboxyl side of the amino acids 

lysine (K) and arginine (R), creating smaller, more manageable fragments for MS 

analysis.  After Trypsin digestion particular attention is paid to the preparation of the 
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peptides for compatibility with the mass spectrometer.  A step to clean up the sample 

and desalt the final peptide mixture prior to MS analysis is required, the use of spin 

columns, zip tips, or Solid Phase Extraction (SPE) columns all assist in this cleanup 

process and are based upon utilization of C18 to remove interfering salts and debris 

and release peptides in MS-compatible solution.  These individual peptides and the 

information gathered from them are subsequently complied and allow analysis of the 

spectrum to indicate the protein identity.   

 

1.7 Dissertation applications 

 

Proteomic research performed for this dissertation served as an exercise in 

application of modern time mass spectrometry for identification of unknown 

Staphylococcus isolates.  Utilization of MS and MS-MS coupled instruments allowed 

identification down to species level across a wide range of Staphylococcal samples.  

This serves as an example why MS has become the method of choice for high 

resolution protein detection and identification (Cravatt et al., 2007).  MS and MS-MS 

techniques also prove to have an advantage to techniques such as cloning, PCR 

(polymerase chain amplification), DNA-DNA hybridization, and microarrays which are 

used to isolate, amplify, and identify genes in search of species identification.  The 

following chapters will progressively establish means of differentiating Micrococcus from 

Staphylococcus, both of which are found on human skin and difficult to differentiate with 

phenotypic techniques, thus establishing genus differentiation with MALDI-TOF MS.  

Then expanding focus onto Staphylococcus speciation with specific proteins analyzed 
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to determine species, then overall whole cell supernatant as a faster way to establish 

species identity.  This dissertation utilized Staphylococcus as the bacterial species of 

interest, but methods developed can be applied to a broad range of bacteria utilizing the 

same methods and techniques. 
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2.0 Abstract 
 

The characterization of microbes, such as of opportunists and pathogens (e.g. 

methicillin resistant Staphylococcus aureus [MRSA]), in indoor air is important for 

understanding disease transmission from person-to-person.  Common genera found in 

the human skin microbiome include Micrococcus and Staphylococcus, but there only a 

limited number of tests to differentiate these genera and/or species.  Both genera are 

believed to be released into indoor air from the shedding of human skin and are 

morphologically difficult to distinguish.  In the current work, after the extraction of 

proteins from micrococci and the separation of these proteins on one dimensional 

electrophoretic gels, tryptic peptides were analyzed by MALDI TOF MS and the mass 

profiles compared with those of a reference strain (ATCC 4698).   The results confirmed 

that all strains were consistent in identity with Micrococcus luteus. 
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2.1 Introduction 
 

In indoor air, bacteria are derived from building occupants and the environment.  

The characterization of airborne bacteria is important for understanding disease 

transmission from person-to-person.  Unfortunately, building monitoring is generally 

limited to total colony forming units (CFUs).  It is extremely time-consuming for all of the 

diverse colony types in indoor air to be characterized by conventional means and is 

rarely undertaken.  Common genera found in the human skin microbiome include 

Staphylococcus and Micrococcus (Fox et al., 2010; Fox et al., 2011); these organisms 

are believed to be released into indoor air (Tang, 2003).  Staphylococcus and 

Micrococcus are difficult to distinguish morphologically (both being observed as tetrads).  

Clinical samples have been reported to rarely contain micrococci (~ 4% of isolates are 

micrococci and 96% staphylococci) (Baker, 1984).  However, two thirds of the 

environmental isolates in studies by us and others were micrococci (Satta et al., 1993; 

Scherer and Brown, 1974).  Thus, for environmental samples there is a greater need for 

the characterization of micrococci. Of the five known Micrococcus species, M. luteus is 

the only one whose primary habitat is human skin (Evans and Kloos, 1972; Falk and 

Guering, 1983; Hebert et al., 1988); M. lylae is only occasionally isolated from this organ 

(Hebert et al., 1988).  

Previously, we developed an approach for discriminating Micrococcus from 

Staphylococcus using MALDI TOF MS (matrix assisted laser desorption time-of-flight 

mass spectrometry), applying the Bruker Biotyper software and reference library (Bruker 

Daltonics, Bremen, Germany) and standard physiological tests.  MALDI TOF MS for the 
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analysis of bacterial proteins from bacteria isolated from clinical samples has shown 

65.7% to 98.8% accuracy for the identification to the genus level, and 31.8% to 94.2% 

to species (Baldellon and Megraud, 1985).  In MALDI TOF MS, mass profiles are 

produced from isolated bacterial colonies.  Colonies are sampled from bacterial culture 

plates, dried directly on a MALDI plate with the ionization matrix and then subjected to 

MALDI TOF MS analysis.  The resultant protein profiles are not attributed to known 

proteins which complicate extrapolation of information from one laboratory to another.   

Users alerted the ATCC that ATCC 9341 displayed characteristics that were 

quite distinct from another M. luteus reference strain (ATCC 4698) (Schumann et al., 

2009).  This encouraged the ATCC and collaborators to perform a study to characterize 

these two strains involving 16S rDNA sequencing.  Indeed, ATCC 4698 was shown to 

be Micrococcus luteus, whereas ATCC 9341 had been designated to be a different 

genus (Kokuria) within the Micrococcaceae family (Schumann et al., 2009).  This 

encouraged us to further characterize our environmental isolates and use ATCC 4698 

as the reference strain.  Since members of the Micrococcaceae are not considered to 

be significant human pathogens, only a limited number of strains are found in current 

databases. 

 
Isolation of proteins by gel electrophoresis allows one to focus on specific protein 

bands and compare the relatedness of proteins from different strains by MALDI TOF 

MS.  Additionally, MALDI TOF-TOF MS-MS allows for peptide sequencing and 

identification of the protein (Kocur and Martinec, 1967; Rhoden and Miller, 1995).  This 
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is not the case for the more widely used “direct” MALDI TOF MS profiling (e.g., the 

Bruker system).  Homologous proteins in closely related bacteria can provide 

information on species identification (e.g., heat shock proteins (Stackebrant, 1995), 

ribosomal proteins (Noble, 1984), and outer membrane proteins (Wieser et al., 2002).   

With the continuing expansion in genomic datasets of bacteria it has been 

possible to identify an increasingly larger number of microorganisms.  Utilization of 

MALDI TOF-TOF MS-MS sequencing of ions generated from tryptic digests of proteins 

provides the peptide sequence for comparison.  This approach does not require any 

previous knowledge of the bacterial species.  In this paper, tryptic peptides analyzed by 

MALDI TOF MS profiles allowed the characterization of the species identity of 

environmental isolates.  MALDI TOF-TOF MS-MS was used to identify proteins from 

these peptides.  Protein identification definitively categorized Micrococcus from 

environmental isolates and also distinguished them from staphylococcal species 

isolated from the same environment. 

2.2 Methods 

 

2.2.1. Air sampling 

 

Air samples were collected in occupied and unoccupied rooms in a suburban 

elementary school in Columbia, SC, using an N6 Single Stage, Viable Impactor 

(Thermo Fisher Scientific, Inc., Waltham, MA), which has a nominal flow rate of 28.3 

l/min. Sheep blood agar [SBA] plates were used with the viable impactor and 
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subsequently incubated at 37 ˚C for 24-48 h. Individual β-hemolytic colonies were re-

streaked several times until pure cultures were obtained. Gram-positive cocci occurring 

in tetrads or clusters are predominantly staphylococci and micrococci, and were 

selected for further characterization (Tang, 2003).  

 

2.2.2. Strains 

 

ASO3 C5, ASO3 C6, ASO3 C10, ASO3 C15, ASO3 C17, ASO3 C24, ASO3 C45, 

ASO3 C46, ASO3 C55, ASO3 C68, ASUNO5 2W, ASUNO5 3W, ASUNO15 C10, 

ASO15 C31, ASUNO2-15, C1White, ASUNO2-15 C3Y, ASUNO2-15 C4Y, ASUNO2-15 

C5Y, ASUNO2-15 C7Y, ASUNO2-15 C9Y, ASUNO2-15 C10Y, ASUNO2-15 C12Y 

Reference strains: M. luteus ATCC 4698, M. luteus ATCC 49732, S. aureus ATCC 

31240, S. hominis ATCC 27844. S. warneri (ATCC 49454). 

 

2.2.3. Bacterial culturing and protein extraction 

 

Bacteria were grown on nutrient agar and incubated at 37 °C for 24 h.  Colonies 

were removed from plates and placed in 2 ml sterile, screw-top microcentrifuge tubes 

with 1 ml of protein extraction buffer (0.1 M NaCl, 50 mM Tris HCl, 0.5 mM 

phenylmethylsulfonyl fluoride [PMSF]).  The microcentrifuge tubes were weighed before 

and after bacteria were added to determine total wet weight of the bacteria processed.  
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Samples were placed in a FastPrep®-24 (MP Biomedicals, Solon, OH) for 6 ms X 30 

sec with 5 min on ice between each cycle for a total of 6 cycles. The samples were then 

centrifuged at 4 °C for 1 h at 10,000 xg. The supernatant was removed and placed at -

70 °C for two freeze-thaw cycles to eliminate DNA.  The supernatant containing the total 

protein extract was normalized to 100 mg/ml wet weight of bacteria and stored at -70 °C 

until used.    

 

2.2.4. Fermentation of glucose and glycerol 

 

Purple Agar base (Difco Manual) was prepared and 0.5% glucose or glycerol 

was added.  The media was autoclaved for 15 min.  Glycerol media was poured into 

petri dishes and glucose media was placed in 5 ml tubes.  For testing, bacteria were 

streaked from Nutrient agar after 24 h of growth on to glycerol plates and incubated at 

37 °C for up to 72 h.  Plates were examined every 24 h for acid production.  Glucose 

tubes were inoculated from Nutrient agar after 24 h of growth and the media covered 

with sterile mineral oil.  The tubes were incubated at 37 °C for up to 72 h.  Tubes were 

examined for acid production every 24 h. Previous testing revealed three Micrococcus 

strains to have weak positive fermentation patterns (glycerol one; glucose 2 others).  

This finding was confirmed for two of the strains (ASO3-C10 and ASO3-C17; both were 

weakly positive for glucose metabolism, which is inconsistent with their being M. luteus.  
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However, this was not confirmed for the other strain (AS03-C6) and does illustrate the 

subjectivity of reading color reactions.  

 

2.2.5. Protein separation 

 

Prior to electrophoresis samples were vortexed, and 20 μl of supernatant were 

added to 20 μl of 2x loading buffer (4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 

0.004% bromophenol blue, 0.125 M tris-HCl), and the sample was boiled at 100 °C for 5 

min and centrifuged for 5 s. Samples were subjected to electrophoresis in 5% Criterion 

Tris-HCl gels (Bio-Rad) until the bromophenol blue was at the very bottom of the gel. 

The running buffer consisted of 192 mM glycine, 25 mM Tris and 0.1% SDS. The gels 

were washed 3 times in double de-ionized water for 5 min each and stained with Gel-

Code Blue Stain reagent (Pierce, Rockford, IL) for 1 h. Gels were stored covered in 

double de-ionized water at 4 °C until the bands were excised.  

 

2.2.6. Peptide preparation 

 

Bands of interest were excised from Coomassie blue-stained gels and de-stained 

with 25 mM ammonium bicarbonate in 50% acetonitrile/50% water.  The gel was 

dehydrated by addition of absolute acetonitrile (covering each gel piece) for 5 min. The 

acetonitrile was removed and the gel rehydrated with 100 mM ammonium bicarbonate 
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(10 min). Then, the gel was dehydrated with acetonitrile (5 min), the acetonitrile 

removed and the sample dried in a Speed-Vac for 2-3 min. The sample was rehydrated 

with 10 mM dithiothreitol (DTT) and incubated for 30 min at room temperature (22-24 

°C), then alkylated with 50 mM iodoacetamide for 30 min at room temperature, and then 

washed in 100 mM ammonium bicarbonate. Once the iodoacetamide had been 

removed, the sample went through 3 further rounds of dehydration-rehydration (100% 

acetonitrile- 100 mM ammonium bicarbonate). After the final dehydration, the sample 

was dried in a Speed-Vac. The gel spot was rehydrated (with a 12.5 ng/ml solution of 

trypsin) in ice-cold 50 mM ammonium bicarbonate.  The sample was kept on ice for 45 

min. The excess trypsin solution was removed and replaced with 50 mM ammonium 

bicarbonate, and then placed at 37 °C for 15 h. The trypsin digestion was stopped by the 

addition of 5% formic acid. Distilled de-ionized water (100 µl) was then added, and the 

tube vortexed gently. The sample was incubated at room temperature for 10 min and 

then centrifuged for 5 min at 3,000 xg. The supernatant was removed and placed in 

another tube with 5 μl of extraction solution (50% acetonitrile and 5% formic acid). The 

gel spot was extracted 3 more times with 50 μl of extraction solution and allowed to 

incubate for 15 min after each extraction. The extracts were combined and placed in a 

Speed-Vac and evaporated down to 20 μl. The peptide solution was passed through a 

C18 Spin column; the directions for the Protea C18 kit were followed, allowing for the 

removal of metal ions from samples (Protea Biosciences, Morgantown,WV). 
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2.2.7. MS and MS-MS analysis 

 

Peptide extracts were sandwiched between 2 layers of matrix. A layer of matrix was 

dried on the plate (1 μl). Then the sample (1 μl of the above peptide digest) was placed 

on the matrix and dried. Finally 0.5 μl of matrix was added and dried. The matrix was α-

cyano-4- hydroxy-cinnamic acid (α-CHCA, 10 mg/ml in 70% acetonitrile/30% 0.1% TFA) 

(Fluka).  For external calibration in the protein mass range, angiotensin I and 

angiotensin II standards were used.  MALDI TOF MS was performed using a Bruker 

Ultraflex II instrument.  MALDI TOF mass spectra were obtained in reflector mode with 

an acceleration voltage of 25 kV and a pulse ion extraction time of 20 nsec. The mass 

range for MS was generally between 800- 2700 m/z.  The program, Mascot 

(http://www.matrixscience.com), was utilized in these identifications.  MALDI TOF-TOF 

MS-MS analysis was performed (in the positive ion mode) at the MUSC Proteomics 

Center using an Applied Biosystems 4700 MALDI MS-MS. MALDI TOF TOF MS-MS 

was performed on abundant ions observed in MALDI TOF spectra.  Peptide sequences 

were obtained from product ion spectra which are generated for peptide sequences 

(predicted from the DNA code of sequenced genomes). The experimental peptide 

spectra are compared to these virtual peptide spectra in the NCBI database and the 

best matches provided with computer-assistance. 
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2.3 Results and discussion 

 

The strains selected here for study were identified previously as members of the 

genus Micrococcus (using fermentation tests and direct MALDI TOF profiles),but their 

species identification was less certain.  MALDI TOF MS profiling identified all 22 isolates 

as Micrococcus luteus.  However, two of the strains (ASO3-C10 and ASO3-C17 were 

weakly positive for metabolism of glucose, which is inconsistent with the known 

characteristics of M. luteus. The identification scores of these strains were in the range 

of “secure genus identification and probable species identification” according to the 

Bruker Biotyper software and reference library (Bruker Daltonics, Bremen, Germany), 

which contains more than 3,200 entries. The assigned scores ranged from 2.00 to 

2.299.  All of the strains fell within this scoring category.  The MALDI TOF MS profiles 

were compared with data available in a database of reference strains, in order to 

determine the identification of unknown samples. When the work was performed (2009-

2010), the Bruker database contained only one reference of Micrococcus luteus ATCC 

4698 (Satta et al., 1993). 

Physiological tests were performed on gram-positive cocci occurring as quads.  

Aerobic acid production from glycerol and anaerobic acid production from glucose are 

two simple tests to distinguish Micrococcus from Staphylococcus (Kloos, 1974).  In the 

present study, acid production from glycerol and glucose was also assessed.  M. luteus 

species are negative for both glycerol and glucose utilization.  Two of the 22 
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environmental isolates produced acid from glucose, and none produced acid from 

glycerol.  As noted above, strains ASO3-C10 and ASO3-C17 were weakly positive for 

glucose metabolism.  These results are consistent with ASO3-C10 and ASO3-C17 

being M. lylae.  However, Kocuriavarians also produces acid from glucose but not 

glycerol (Scherer and Brown, 1974). 

In order to confirm and extend the genus and species characterization of the 

environmental isolates, protein extracts were separated on one dimensional SDS PAGE 

gels. M. luteus ATCC 4698 (and M. luteus ATCC 49732) were used as reference 

strains.   Selected gel bands were excised from electrophoretic bands and digested with 

trypsin.  The MALDI TOF spectra were very similar among all environmental isolates 

(including the 2 strains [ASO3-C10 and ASO3-C17] that displayed aberrant 

fermentation) and the ATCC reference strains (ATCC 4698), suggesting their identity as 

M. luteus (see Table 1 for list of experimental ions).  However, the mass spectrum of 

ATCC 4698 was the only strain to additionally display the prominent m/z 1623.9 peak. 

The mass 1623.9 in the other reference was not present in M. luteus ATCC 49732. 

Mass 1623.9 was presumably generated by mutation (K)GVLDVQGVEYEIFR(L) (ATCC 

4698) to (K)GVLDVKGAEYEIFR(L) (SK 58). The presence of the additional lysine 

(SK58) generates an additional Trypsin cleavage site, producing two peptides. These 

results are consistent with M. luteus not being a homogenous species.  It has been 

proposed that M. luteus has 3 biovars(Falk and Guering, 1983) based on 16S rRNA 

sequence comparisons.   
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An abundant 100 kDa-band was selected for use in MADLI TOF MS 

identification.  Previous work (Rhoden and Miller, 1995) identified a similar sized band in 

staphylococcal species isolated from indoor air as aconitate hydratase.  The 

identification of a unique aconitate hydratase sequence in Micrococcus could provide an 

additional means for the unequivocal identification of the two genera without the need 

for physiological tests.  Batches of protein extracts from environmental strains were 

analyzed, together with two ATCC M. luteus reference strains (ATCC 4698 [the most 

frequently used reference standard] and ATCC 49732). S. warneri (ATCC 49454), S. 

aureus (ATCC 31240) and S. hominis (ATCC 27844) were used as additional control 

strains. 

MALDI TOF MS (for species identification), coupled to MALDI TOF-TOF MS-MS 

analysis (for protein identification), is a powerful tool for the analysis of tryptic peptides 

derived from an unknown protein.  Signature sequences in proteins can be detected, 

either through the presence of an amino acid substitution(s) or specific deletions or 

insertions(Rhoden and Miller, 1995).  The ~100 kDa bands detected in all individual 

environmental isolates and reference strains were digested with trypsin and the mass 

spectra of tryptic peptides were compared to evaluate similarities and differences. 

MALDI TOF MS peptide profiles verified that all of the environmental strains had similar 

mass spectra for this protein, with an abundant and unique peptide being located at 

1840.9 m/z (see Fig. .2.1).  Using the NCBI database within the MASCOT search 

engine, commonly used for identifying proteins based on mass spectral data, the ~100 
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kDa protein was identified as aconitate hydratase.  Each environmental isolate was 

analyzed a minimum of twice, followed by processing the data using MASCOT. In total, 

75 MALDI TOF MS analyses were subjected to MASCOT searches on the 22 

environmental isolates.  Although the spectra were remarkably similar, only 3 of the 75 

mass spectra were identified as aconitate hydratase with a MOWSE score, but the 

value was less than the identification confidence level.  Previously, it was noted that 

MASCOT only identified aconitate hydratase in some of the environmentally isolated 

staphylococcal strains (Satta et al., 1993), consistent with the results presented here for 

Micrococcus.  

Examination of mass spectra of the environmental isolates showed a similar 

pattern to Micrococcus luteus ATCC 49732.  All environmental isolates and both 

Micrococcus luteus ATCC reference strains had an abundant ion at 1840.9 m/z (Table 

1).  They also shared masses 1313.6, 1647.1, 1840.9, 2312.1 but not mass 2013.1 

(Table 1). Experimentally, mass 1647.1 was noted to be present in all M. luteus strains 

(including ATCC 4698 and 49732), but only appeared in virtual digests from the 

sequences derived from the genomes for SK 58 but not from ATCC 4698. None of the 

Staphylococcus strains displayed the mass 1840.9, and all Staphylococcus had an 

abundant m/z of at 2013.1 (Table 2.1) as recorded previously (Fox et al., 2011).   

In order to determine whether the tryptic peptides isolated from environmental 

samples matched those of Micrococcus luteus, the aconitate hydratase protein 

sequence was downloaded from the genomic sequence of Micrococcus luteus ATCC 
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4698 and SK58 (www.ncbi.nlm.nih.gov/bioproject), and a virtual digest of the sequence 

was performed with Protein Prospector software (prospector.ucsf.edu/prospector).  This 

software takes a known protein sequence and virtually cuts the protein with trypsin.  

Selecting the type of instrument used in the software, in this case MALDI TOF MS, 

generates a list of all possible m/z values, which could be present in the mass spectra.  

Mass spectral peak lists (virtual spectra) obtained with the aid of Protein Prospector 

were empirically compared with experimental spectra of two M. luteus ATCC strains, 

S.hominis ATCC 27844, and 9 environmental samples.  The genomic sequences of two 

strains of Micrococcus, M. luteus ATCC 4698 (also referred to as NCTC 2665) and M. 

luteus SK58 (2011), are currently present in the GenBank database.  These two strains 

can be separated based on the BLAST distance tree results for both 16S rDNA and 

aconitate hydratase sequence.  In order to verify that the aconitate hydratase 

sequences generate unique mass spectra from closely related genera, the aconitate 

hydratase sequences from the most closely related strains, based on the BLAST 

genomic search, were virtually digested in Protein Prospector and the ions compared.  

The virtual digest demonstrated that M. luteus ATCC 4698 is the only strain that would 

generate a mass of 1623.8 (see Table 2.2).   

 Abundant and characteristic masses recorded in MALD TOF MS were selected 

for further analysis utilizing MALDI TOF-TOF MS-MS.  MALDI TOF TOF MS-MS 

spectra provide an amino acid sequence that allows the identification of the peptide.  

The MS-MS spectrum provides a breakdown of the peptide with individual masses that 
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correspond to the most probable amino acid sequence.  Based on this amino acid 

sequence, it is possible to verify the peptide producing the ion for a protein of interest.  

MS-MS spectra, when processed through databases, such as MASCOT, cannot always 

identify these proteins.  Databases, such as NCBI, may not contain enough examples of 

species variation, particularly for organisms that are not associated with pathogenesis.  

 The utilization of tryptic peptides for the identification of uncharacterized 

environmental bacteria requires caution and empirical interpretation of mass spectral 

data.  Programs, such as Protein Prospector, provide virtual digests linked to given MS-

MS parent ions.  Comparisons of amino acid sequence ions in virtual fragmentation with 

experimental MS-MS spectra are invaluable for the comprehensive analysis of the data.  

As an example, ATCC 4698 on virtual analysis of a 16-mer (mass 1313.6) produced 

predominantly y ions.  Of these 16 possible ions, 10 of 16 were observed.  For the b 

ions, three were observed in the experimental spectra.  The predicted sequence from 

the experimental MS-MS analysis was IDTPGEAEYYR, which was identical to the 

sequence generated for virtual MS-MS.  Thus, almost complete coverage was observed 

for this peptide as a component of aconitate hydratase (ATCC 4698 and an 

environmental isolate).  

 

2.4. Conclusions 

 
 Characterizing the microbial composition of indoor air is important for a better 

understanding of disease transmission in a human population.  The natural flora found 
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on human skin contains abundant levels of Micrococcus and Staphylococcus, which are 

shed into the air supply of indoor environments.  These environmentally-derived 

organisms have been consistently difficult to classify.  Within the micrococci, there is at 

least one well known example of a reference strain being mis-categorized (Baldellon 

and Megraud, 1985), which led to an inaccurate reference standard for Food and Drug 

Administration (FDA)-mandated testing.  In environmental indoor air samples, it was 

found previously that over two thirds of the environmental isolates were micrococci 

(BrukerBiotyping), creating a need for greater accuracy in characterization (Satta et al., 

1993).  Characterization of fermentation characteristics and MALDI TOF profiles allows 

that categorization of environmental Micrococcus isolates to the genus level. Tryptic 

peptide analysis (e.g., aconitate hydratase) by MALDI TOF MS profiles provides other 

criteria for a confirmation of the species identity for environmental isolates.  MALDI 

TOF-TOF MS-MS can be used to identify proteins from these peptides.  It has been 

reported that M. luteus may include more than one biovar, based on 16S rDNA 

sequence data (Falk and Guering, 1983).  Comparisons of mass spectral data of tryptic 

peptides also show a clear difference between the profiles of the two deposited M. 

luteus (ATCC4698 and 49732), although the environmental strains were remarkably 

similar.  Further investigations are warranted to determine whether these two ATCC 

strains and possibly others (displaying an amino acid substitution in aconitate 

hydratase) are distinct biovars or species within the genus Micrococcus. 
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Figure 2.1 Mass spectra of an ATCC strain (M. luteus 4698) and two 
representative environmental isolates.  The major peaks were found in all 
strains.  The prominent 1623.9 m/z peak was found only in the ATCC 4698 
strain of M. luteus. 
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Table 2.1 MS ions present in strains 
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3.0 Abstract 

 

This report is among the first and most definitive studies using sequence 

variation in newly discovered protein markers for bacterial speciation.  Variation, at the 

DNA level, in the sodA gene was used for comparison; this is an established technique 

used for staphylococcal speciation. A total of 64 strains were analyzed including 12 

reference strains (representing 10 CoNS species and S. aureus, see Table 1).  MALDI 

TOF MS or LC ESI MS-MS were used for peptide analysis of proteins isolated from gel 

bands. Visual comparison of experimental spectra of unknowns versus spectra of 

peptides derived from reference strains allowed bacterial identification after MALDI TOF 

MS analysis.  After LC-MS-MS analysis of gel bands bacterial speciation was performed 

in an automated fashion comparing experimental spectra versus virtual spectra using 

the software X!Tandem. In the final series of experiments LC-MS-MS was performed on 

whole proteomes and data analysis also employing X!tandem.   Aconitate hydratase 

and oxoglutarate dehydrogenase served as marker proteins on focused analysis after 

gel separation. Alternatively on full proteomics analysis elongation factor tu provided the 

highest confidence in staphylococcal speciation.  
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3.1 Introduction 

 

Staphylococcal infections, including life threatening bacteremia and endocarditis 

are among the most common hospital acquired infectious diseases.  The current work is 

concerned with the demanding task of providing correct species identification of 

coagulase negative staphylococci species of human origin.  Staphylococcus aureus 

(coagulase positive) and Staphylococcus epidermidis (coagulase negative, CoNS) are 

the two staphylococcal species most frequently isolated in human infections. Unlike 

other CoNS, it has been observed that S. lugdunensis infections resemble those 

mediated by S. aureus in terms of aggressiveness and severity of the infection, 

increasing the significance of accurately identifying S. lugdunensis (Herchline and 

Ayers, 1991; Mateo et al., 2005; Noguchi et al., 2010; Pereira et al., 2010; Shah et al., 

2010). S. saprophyticus is generally only associated with urinary tract infections. S. 

hominis, S. warneri, S. capitis, S. haemolyticus, S. lugdenensis, S. simulans and S. 

cohniiconstitutemost of the remaining CoNS species isolated from man (Center et al., 

2003; Frank et al., 2004; Jukes et al., 2010; Ohara-Nemoto et al., 2008; Sivadon et al., 

2005).  Batteries of biochemical tests are still the primary means of staphylococcal 

species identification (Marrie et al., 1982).  However, it is also well known that 

physiological tests do not provide accurate speciation of CoNS. 

Indeed S. lugdunensis and S. haemolyticus are often lumped together as are S. 

hominis/S. simulans and S. capitis/S. epidermidis (Skow et al., 2005). Furthermore, it is 

repeatedly stated that S. hominis is misidentified using commercial phenotypic tests 
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being commonly confused with S. warneri or S. epidermidis (Fujita et al., 2005; Gilad 

and Schwartz, 2007; Spanu et al., 2003; Yugueros et al., 2000). 

In an attempt to address the issue of misidentification of staphylococcal species, 

variation in the sequence of 16S rRNA has been widely employed.  Unfortunately, it is 

now recognized that 16S rRNA is highly conserved among staphylococcal species 

(above 98% similarity) and is not usually helpful in their discrimination.  As a 

consequence sequencing of a variety of other more variable genes has been employed 

as an alternative to 16S rRNA including rpoB, hsp60, sodA, and dnaJ genes 

respectively displaying 86%, 82%, 81%, and 77% similarity (Goh et al., 1997; Hirotaki et 

al., 2011; Kwok et al., 1999). 16S-23S rDNA intergenic spacer (ISR) PCR has also been 

utilized. However among staphylococci, multiple ISR copies are expressed and ISR 

patterns require expert evaluation (Fujita et al., 2005; Mendoza et al., 1998). 

Variation in the sequence of the sodA gene has been the most widely considered 

for use in the clinical microbiology laboratory and both real time PCR and microarray 

techniques have been employed (Giammarinaro et al., 2005; Iwase et al., 2007; Poyart 

et al., 2001; Sivadon et al., 2005).  However, to this point validation of the utility of sodA 

variation with another independent approach has remained elusive. For example, in a 

recent report it was stated that MALDI TOF (matrix assisted laser desorption/ionization 

time-of -flight) mass spectrometry (MS) mass profiling correlated best with 16S rRNA 

but not sodA sequence (Dubois et al., 2010).  Indeed other reports have suggested that 

direct MALDI TOF MS does indeed discriminate many organisms isolated in clinical 

microbiology laboratories.  Unfortunately staphylococci are particularly difficult to identify 

at the species level (Carbonnelle et al., 2012); these workers suggested a more specific 
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method identifying variations in protein sequence (distinct from direct MALDI-TOF MS) 

has the potential for greater accuracy (Fox et al., 2010, 2011).  

In our previous report, a limited battery of strains representing 6 species (S. 

capitis, S. chromogenesS. cohnii. S. hominis S. saprophyticus and S. warneri) derived 

from human skin and nares where characterized using variation in protein sequence of 

the enzyme aconitate hydratase).  Accordingly in the current report, a much larger 

group of staphylococcal strains representing 11 staphylococcal species strains; S. 

aureus S. capitis, S. cohnii, S. epidermidis, S. haemolyticus, S. hominis, S. 

lugdunensis,S. saprophyticus, S. simulans, and S. warneriwere studied . Determination 

of variation in peptide sequence of specific marker proteins included the use of liquid 

chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS).  

Previously we employed sequence variation in an enzyme (aconitate hydratase) for 

staphylococcal speciation (Fox et al., 2011). However here the utility of other proteins 

(including oxoglutarate dehydrogenase and elongation factor Tu) were additionally used 

as species markers. Sequence variation of the soda gene (assessed using microarrays) 

was compared for mutual validation.  
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3.2 Materials and Methods 

 

3.2.1 Strains characterized 

 

A total of 64 strains were characterized which included 12 reference strains (11 

different staphylococcal species): S. aureus (ATCC 12598, Cowan 1), S. capitis (ATCC 

27841 and ATCC 35661), S. cohnii(ATCC 29972), S. epidermidis (ATCC 12228), S. 

haemolyticus(ATCC 29970), S. hominis (ATCC 27844), S. lugdunensis ATCC 49576, S. 

saprophyticus ATCC 15305), S. simulans (ATCC 27851)and S. warneri(ATCC 49454).  

Other strains included 25 clinical samples of human origin, 19 strains isolated by air 

sampling from occupied school rooms (associated with shed human skin, Fox et al., 

2010) and eight strains of veterinary origin (see Table 3.1).    

 

3.2.2  Culture conditions and confirmation as staphylococci 

 

Bacteria were grown on nutrient agar plates at 37 °C for 24-48 h.  Staphylococci 

were differentiated from micrococci by glucose fermentation and genus identity 

confirmed by mass spectrometry (Fox et al., 2011, Kooken et al. 2012).   

 

3.2.3 Protein separation, tryptic digestion and MS analysis 

 

Bacteria were harvested (after growing as confluent lawns) from plates using 0.1 

M NaCl, 50 mM Tris HCl, 0.5 mM phenylmethylsulfonyl fluoride [PMSF] and placed in a 
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FastPrep®-24 bead beater (MP Biomedicals, Solon, OH) for 6 ms X 30 sec with 5 min 

on ice between each cycle for a total of 6 cycles to release proteins. The samples were 

then centrifuged at 4 °C for 1 h at 10,000 g. The supernatants were removed and 

placed at -70 °C for two freeze-thaw cycles to eliminate DNA.   

Prior to electrophoresis samples were vortexed, and 20 μl of each supernatant 

was added to 20 μl of 2x loading buffer (4% SDS, 10% 2-mercaptoethanol, 20% 

glycerol, 0.004% bromophenol blue, 0.125 M tris-HCl), and boiled at 100 °C for 5 min 

then centrifuged for 5 s. Samples were subjected to electrophoresis in 5% Criterion Tris-

HCl gels (Bio-Rad) until the bromophenol blue was at the gel bottom. The running buffer 

consisted of 192 mM glycine, 25 mM Tris and 0.1% SDS. Gels were washed 3 times in 

water for 5 min each and stained with Gel-Code Blue Stain reagent (Pierce, Rockford, 

IL) for 1 h. 

Bands of interest were excised from Coomassie blue-stained gels and de-stained 

with 25 mM ammonium bicarbonate in 50% acetonitrile/50% water.  Each gel was 

dehydrated by addition of acetonitrile for 5 min. The acetonitrile was removed and the 

gel rehydrated with 100 mM ammonium bicarbonate (10 min). Then, the gel was 

dehydrated with acetonitrile (5 min), the acetonitrile removed and the sample dried for 

2-3 min. The sample was rehydrated with 10 mM dithiothreitol (DTT) and incubated for 

30 min at room temp (22-24 °C), then alkylated with 50 mM iodoacetamide for 30 min at 

room temp, and then washed in 100 mM ammonium bicarbonate. Once the 

iodoacetamide had been removed, the sample went through 3 further rounds of 
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dehydration-rehydration (100% acetonitrile then 100 mM ammonium bicarbonate in 

water). After the final dehydration, the sample was dried. The gel band was rehydrated 

(with a 12.5 ng/ml solution of trypsin) in ice-cold 50 mM ammonium bicarbonate.  The 

sample was kept on ice for 45 min. The excess trypsin solution was removed and 

replaced with 50 mM ammonium bicarbonate, and then placed at 37 °C for 15 h. The 

trypsin digestion was stopped by the addition of 5% formic acid. Water (100 µl) was 

then added, and the tube vortexed gently. The sample was incubated at room temp for 

10 min and then centrifuged for 5 min at 3,000 g. The supernatant was removed and 

placed in another tube with 5 μl of extraction solution (50% acetonitrile and 5% formic 

acid). The gel spot was extracted 3 more times with 50 μl of extraction solution and 

allowed to incubate for 15 min after each extraction. The extracts were combined and 

and evaporated down to 20 μl.  

For MALDI TOF MS analysis, the peptide solution was passed through a C18 

Spin column using a Protea C18 kit for removal of metal ions from samples (Protea 

Biosciences, Morgantown, WV).  Peptide extracts were sandwiched between 2 layers of 

matrix. A layer of matrix (α-cyano-4- hydroxy-cinnamic acid (α-CHCA, 10 mg/ml in 70% 

acetonitrile/30% 0.1% TFA) was dried on the plate (1 μl).  Then the sample (1 μl of the 

above peptide digest) was placed on the matrix and dried. Finally 0.5 μl of matrix was 

added and dried.  MALDI TOF MS was performed using a Bruker Ultraflex II instrument.  

MALDI TOF mass spectra were obtained in reflector mode with an acceleration voltage 

of 25 kV and a pulse ion extraction time of 20 nsec. The mass range for MS was 
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generally between 800- 2700 m/z.  Species were identified by visual comparison of 

unknowns to spectra of ATCC reference strains.  

For LC-ESI MS/MS trypsin-digested peptides from gel bands (as described 

above) were also processed using solid phase extraction (SPE).  SPE was performed 

with a vacuum manifold using Strata C-18 T solid phase extraction columns 

(Phenomenex, Torrence, CA ). Briefly, 1 ml of 100% methanol was added to activate 

the resin, followed by a conditioning step of 1ml 0.1% TFA water, then addition of the 

samples. The samples were washed with 5% acetonitrile in 0.1% TFA water, and finally 

elution of the samples with 80% acetonitrile in 0.1% TFA in water.  Samples were dried 

down to near completeness (5-10 µl remaining) with a Thermo speed vac. 25µl of 0.5% 

formic acid was added to each sample.  

In the last set of experiments, bacterial supernatants prepared as described 

above were subjected directly to tryptic digestion and C18 column clean-up prior to LC-

MS-MS analysis. 50 µl of supernatant (prepared as above), 50 µl 8M urea, 1 µl of β-

mercaptoethanol, 24 µl of water, and 25ul of 200 mM Tris-HCl pH 8.0 were added tubes 

mixed and incubated at 60°C for one hour in a Thermomixer (ThermoFisher Scientific, 

Billerica, MA) shaking at 300RPM.  800 µl of 50mM ammonium bicarbonate was added 

to each tube to reduce the urea concentration to below 1M.  2 µl of trypsin gold at a 

concentration of 2 µg/µl was added to each tube and briefly vortexed to mix. The 

samples were then incubated at 37°C for 15 hours in a Thermomixer shaking at 300 
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RPM.  The samples were then subjected to clean-up with the Strata C-18 T solid phase 

extraction columns as described above.  
For LC-MS-MS analysis, samples were processed using an auto sampler and an 

LC- ESI LTQ Orbitrap LX (Thermofisher) equipped with a fused silica capillary column 

(40 cm length, I.D. 0.15 mm) packed with Jupiter 5 μm C-18 resin with a flow rate of 2 

μl/min using a 2 solvent flow system (solvent A: 5% acetonitrile, 0.1% formic acid in 

water; solvent B 90% acetonitrile; 0.1% formic acid in water).  Electrospray conditions 

were 3.5 kV spray voltage, 200 0 C source temperature and 200 V ion tube transfer 

voltage.   

Database searches using ESI-MS-MS data were performed using the freeware 

program X!Tandem (www.thegpm.org/tandem). The data base was modified by 

downloading the genomes from all eleven species representing the 64 strains in this 

study.  The software analysis is described in greater detail in the next chapter.  

 
3.2.4Microarray probes for the sodA gene 

 

 The sodA gene was amplified and labeled with Cy3 by PCR from DNA isolated 

from staphylococcal reference strains, human skin and veterinary samples. Reactions 

contained in a total volume of 40 µl; DNA (160 ng), ThermoPol Buffer (1X), Taq DNA 

Polymerase (1 U , New England BioLabs) dATP (1.0 mM), dTTP (1.0 mM), dGTP (1.0 

mM), and dCTP (0.1 mM, Invitrogen), Cy3-dCTP (0.9 mM GE Healthcare), D1 and D2 

primer mixes (10 µM) and 5% DMSO  The PCR protocol was 3 min at 95⁰C, 50 cycles 
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of 30 sec at 95⁰C, 1 min at 37⁰C and 45 sec at 72⁰C, and 6 min at 72⁰C.  PCR products 

were purified using the GeneElute PCR Clean Up Kit (Sigma-Aldrich) according to the 

manufacturer’s recommendations). The protocol was derived from Poyart et al. 2001.  

Spotting of microarrays, hybridization, and scanning: DNA probes for S. aureus 

and CoNS species were described in Giammarinaro et al., 2005. Probes were diluted to 

a final DNA concentration of 30 µM in 3X SSC buffer and printed onto UltraGAPS 

coated slides (Corning  Inc., Cat. No. 40015) using the non-contact piezoelectric Biochip 

Arrayer (PerkinElmer Inc.). Eight arrays were printed per slide with each array having all 

13 DNA probes printed in quintuplicate. After printing the slides were pre-hybridized 

using the Pronto Universal Microarray Hybridization Kit (Corning Inc) according to the 

manufacturer’s recommendations.  Amplified and Cy3 labeled PCR product of the sodA 

gene were hybridized to the DNA probes on the slides using the Agilent Gene 

Expression Hybridization kit. Briefly, 20 ng of Cy3 labeled DNA were mixed with 10X 

blocking buffer and denatured for 2 min at 95⁰C. Hybridization buffer was then added 
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and the hybridization mixes were incubated with the arrays for 17 h at 58⁰C with mixing. 

Slides were washed using the “Gene expression wash buffer kit” (Agilent Technologies) 

and dried by immersing and slowly removing slides from 100% acetonitrile. Slides were 

scanned using a high resolution DNA microarray scanner (Agilent Technologies, Inc.) at 

5µm resolution 
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3.3 Results 

 

This represents one of the first studies using sequence variation in newly 

discovered protein markers for bacterial speciation.  Variation, at the DNA level, in the 

sodA gene was used for comparison; this is an established technique used for 

staphylococcal speciation. As noted above a total of 64 strains were analyzed including 

12 reference strains (representing 10 CoNS species and S. aureus, see Table 3.1).  

MALDI TOF MS or LC ESI MS-MS were used for peptide analysis of proteins isolated 

from gel bands. Visual comparison of experimental spectra of unknowns versus spectra 

of peptides derived from reference strains allowed bacterial identification after MALDI 

TOF MS analysis.  After LC-MS-MS analysis of gel bands bacterial speciation was 

performed in an automated fashion comparing experimental spectra versus virtual 

spectra using the software X!Tandem. In the final series of experiments LC-MS-MS was 

performed on whole proteomes and data analysis also employing X!tandem.  S. 

simulans was found to be the dominant species of staphylococcus isolated from clinical 

isolates; indeed 16 of the 25 human isolates were found to be S. simulans.  Another 

species S. lugdenensis (5 strains) constituted most of the remaining strains.  These two 

species were not commonly found among human skin isolates or veterinary strains.  

Another commonly isolated species that was still difficult to identify before this study 

was initiated is S. lugdenensis.  In comparison to S. simulans the banding pattern on 

SDS-PAGE for S. lugdenensis exhibited a triplet of bands above the 100 kD marker 

whereas for S. simulans a doublet was observed.  As noted above, the band migrating 
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above the 100 kD marker in other Staphylococcus species was previously identified as 

aconitate hydratase and therefore the corresponding band for S. lugdenensis was 

selected for analysis.  The S. lugdenensis band did not display the characteristic 

peptide (mass 2013) universally observed in staphylococci.  Strains CNS 5, 6, 8, 12, 

and 17 were identified  as S. lugdenensis utilizing the oxoglutarate dehydrogenase 

marker protein, Among the dominant masses observed in MALDI TOF MS is spectra is 

mass 2340.; this mass was also observed in virtual spectra for oxoglutarate 

dehydrogenase generated with the program Protein Prospector 

(http:prospector.ucsf.edu/prospector). LC-MS-MS observations confirmed the dominant 

protein for S. lugdenensis as oxoglutarate dehydrogenase (see Table 3.2). 

In summary on analysis of 100 kDa gel bands, the aconitate hydratase marker 

for staphylococci previously described (Fox et al., 2011; Kooken et al 2012) was 

prominent for most CoNS species including S. simulans characterized for the first time 

in the present study.  However oxoglutarate dehydrogenase was the dominant band for 

S. lugdenensis .  In contrast for whole proteomes, peptides derived from aconitate 

hydratase and oxoglutarate dehydrogenase were buried in the complex mixture of 

peptides derived from other proteins. For most strains, alternatively, the protein found to 

provide the top hit for bacterial speciation was elongation factor tu. Less commonly two 

other proteins, enolase and  ATP-dependent Clp protease, provided bacterial 

identification  with the highest confidence (see Table 3.3).  

As noted above, for the clinical samples, most strains were found to be S. 

simulans (16/25 CoNS) or S. lugdenensis (5/25). Using sodA microarray, for 6 strains 

(including the reference strain, ATCC49576 ) the strongest signal on probe binding 
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corresponded to S. lugdenensis.  For CNS 17 only binding to the S. lugdenensis probe 

was observed. In 4 cases (CNS 5, 6, 8, 12) binding to the S. hominis 

probewasobserved asa secondary signal.  In only one case (CNS10) was a secondary 

signal observed corresponding to S. simulans.  CNS10 was found to be S. simulans on 

mass spectrometry analysis.  

Five strains were not identified on microarray analysis: CNS11, ASO15-C40Y, 

AS015-C28, AS015-C106, MUS 5951. CNS-11, ASOC15-C28, ASO15 C106 were 

identified by proteomics as S. haemolyticus. In an earlier study we identified ASOC15-

C28, ASO-C15 ASO-C106 as S. chromogenes based on similar aconitate hydratase 

mass spectra.  However, a more limited species data base was used employing only 6 

species.  S. haemolyticus was not among the reference strains studied.  S. 

haemolyticus is commonly isolated from human samples but S. chromogenes is 

generally only found in veterinary samples. The S. haemolyticus reference strain gave a 

weak signal compared to the other 11 species analyzed on microarray analysis which 

may explain the negative results for the more divergent unknowns.  The probe for S. 

haemolyticus is among the short ones designed for staphylococcal identification using 

the sodA gene which may explain the weak signal.  Varying hybridization conditions, 

including lowering the binding temperature still did not positive result on array analysis.  

Three other strains of S. chromogenes including the reference strain and 2 veterinary 

isolates were correctly identified on microarray analysis.   ASO15-C40Y C40Y was 

identified with the lowest score by MS-MS as S. simulans. Thus it may represent an 

uncommon species not included in our study. MUS591 was identified using proteomics 

as S. warneri.  There were only 3 strains where there are disagreements between MS 
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and arrays - CNS 10 (S. simulans [MS] and S. lugdenensis [array]), AS03 59W (S. 

lugdenensis [MS] and S. warneri [array] ) and Cow924RR (S. capitis [MS] and S. 

saprophyticus [array]).  According the sodA gene for the eight strains (CNS-11, 

ASOC15-C28, ASO15-C106, C40Y, MUS5951, CNS10 and AS03 59W) is currently 

being sequenced to provide further information on their identity.    

 

3.4Discussion 

 

This study established that variation in protein sequence assessed by 

sequencing trypsin-released peptides using and tandem mass spectrometry correlated 

for species identification of staphylococcal isolates of human origin.  It is stressed that 

the well-known “direct” MALDI TOF MS approach provides a whole cell protein pattern, 

without identification of any individual protein or their sequence variation. Direct MALDI 

TOF MS was not employed in the current study, since it has proven difficult to 

discriminate staphylococcal species with this technique.  The MS-MS results correlated 

well with 66 sodA sequence determined using microarrays).   

MALDI TOF MS, for bacterial speciation, was originally described by several 

groups almost 20 years ago and has only come to fruition as a clinical microbiology tool 

in the past few years.  Unfortunately MALDI TOF MS does not always have the desired 

specificity for the complex issue of staphylococcal speciation although MALDI TOF MS 

profiling is useful in identifying many other bacteria.  The developmental work described 

here was not designed to provide tests suitable for use in the clinical microbiology 

laboratory at the current time.   
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However the current study is a significant step forward in the process of fulfilling 

the hitherto elusive goal of reliable speciation of CoNS derived from clinical specimens.  

At this time, we do not recommend microarrays nor mass spectrometry for routine use 

in the clinical laboratory; both techniques remain too complicated to satisfy the need for 

simple and high through-put analysis.  Microarrays allow all staphylococcal species to 

be differentiated simultaneously with their own sequence specific probe (based on 

previously discovered sequence variation). Tandem mass spectrometry, as 

demonstrated here, is flexible and allows new protein marker sequences to be identified 

as the need arises. Technology development (including simplification of sample 

preparation and improvements in bioinformatics for data handling for both microarrays 

and proteomics are both active areas of research and it may be expected to see 

applications in staphylococcal speciation (and also for other genera) designed for the 

clinical microbiology laboratory in the not too distant future.   

The current study was also not focused on the role of particular CoNS species 

associated with specific human infections or distinctions from the normal flora which can 

often contaminate clinical samples.  There have been numerous studies carried out by 

others addressing these important issues.  However the only commercial tests widely 

available have been batteries of biochemical profiles.  Indeed there may be a need for 

additional future studies using more specific-methods, as described here, to allow focus 

on specific CoNS species (e.g. S. lugdenensis ) now that they can be differentiated from 

other common human isolates (e.g. S. simulans) where there is less evidence for 

importance in human infection.    
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Figure 3.1 ID gel separation of protein mixtures extracted from S. simulans and S. lugdenensis strains. 
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Table 3.1 Identification of staphylococcal species using mass spectrometry (protein sequence 

variation) and microarray (69 sodA DNA sequence variation) 

 

  Strain Origin Identification: mass spectrometry Identification:  microarray 
 

  CNS1 Clinical S. simulans S. simulans 
  CNS2 Clinical  S. simulans S. simulans 
  CNS3 Clinical  S. simulans S. simulans 
  CNS4 Clinical  S. simulans S. simulans 
  CNS5 Clinical  S. lugdenensis S. lugdenensis 
  CNS6 Clinical  S. lugdenensis S. lugdenensis 
  CNS7 Clinical  S. simulans S. simulans 
  CNS8  Clinical  S. lugdenensis S. lugdenensis 
  CNS9 Clinical  S. warneri S. warneri 
  CNS10 Clinical  S. simulans S. lugdenensis 
  CNS11 Clinical  S. haemolyticus  
  CNS12 Clinical  S. lugdenensis S. lugdenensis 
  CNS13 Clinical  S. simulans S. simulans 
  CNS14 Clinical  S. simulans S. simulans 
  CNS15 Clinical  S. simulans S. simulans 
  CNS16 Clinical  S. simulans S. simulans 
  CNS17 Clinical  S. lugdenensis S. lugdenensis 
  CNS18 Clinical  S. aureus S. aureus 
  CNS19 Clinical  S. simulans S. simulans 
  CNS20 Clinical S. aureus S. aureus 
  CNS21 Clinical  S. simulans S. simulans 
  CNS22 Clinical  S. simulans S. simulans 
  CNS23 Clinical  S. simulans S. simulans 
  CNS24 Clinical  S. simulans S. simulans 
  CNS25 Clinical  S. simulans S. simulans 
ASO3-C19 Human skin S. hominis S. hominis 
 ASO3-C22 Human skin S. saprophyticus S. saprophyticus 
 ASO3-C73  Human skin S. hominis S. hominis 
 ASO3-C77 Human skin S. warneri S. warneri 
 ASO15-C40Y Human skin S. simulans  
 ASUNO15-C6y Human skin S. aureus S. aureus 
 ASO1-C8 Human skin S. aureus S. aureus 
 ASUNO2/15-C6y Human skin S. aureus S. aureus 
 ASUNO2/15-C11y Human skin S. warneri S. warneri 
 AS015-C28 Human skin S. haemolyticus  
 AS015-C106 Human skin S. haemolyticus  
 ASO2 C44 Human skin S. simulans S. simulans 
 ASC02 C53 Human skin S. epidermidis S. epidermidis 
 ASO-15 C64 Human skin S. aureus S. aureus 
 ASO15-C84 Human skin S. aureus S. aureus 
 AS02 C58W Human skin S. epidermidis S. epidermidis 
 AS02 C63Y  Human skin S. epidermidis S. epidermidis 
 AS03 C6 Human skin S. aureus S. aureus 
 ASO2-C21 Human skin S. warneri S. warneri 
 AS03 59W Human skin S. lugdenensis S. warneri 
 Cow990RR Veterinary S. simulans S. simulans 
 09-200-150 Veterinary S. warneri S. warneri 
 MUS 5949 Veterinary S. chromogenes S. chromogenes 
 09-304-034 Veterinary S. saprophyticus S. saprophyticus 
 Cow 924RR Veterinary S. capitis S. saprophyticus 
 Cow970RR Veterinary S. saprophyticus S. saprophyticus 
MUS 5951 Veterinary S. warneri  
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Table 3.2 Identification of the most protein the highest confidence score isolated from  

100 kDa gel bands using liquid chromatography-tandem mass spectrometry 

 

Strain Score Protein 
S. capitis ATCC 27841 -440.7 Aconitate hydratase 
S. haemolyticusATCC  29970 -380.2 Aconitate hydratase 
S. lugdenensis ATCC 49576 -428.3 Oxoglutarate dehydrogenase 
S. saprophyticus ATCC  15305 -288.9 Aconitate hydratase 
S. simulans  ATCC 27851 -423.1 Oxoglutarate dehydrogenase 
CNS 9  -277.9 Aconitate hydratase 
CNS 10  -476.1 Aconitate hydratase 
CNS 13  -327.1 DNA polymerase 
CNS 17  -248.1 Oxoglutarate dehydrogenase 
AS02 c58W -101.0 Aconitate hydratase 
CNS11 100K -222.3 Aconitate hydratase 
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Table 3.3 Identification of the protein with the highest confidence score in whole 
staphylococcal proteomes using liquid chromatography-tandem mass spectrometry  

Strain  Score Protein 
S. aureus ATCC 12598 -276.2 Elongation factor Tu 
S. capitis ATCC 27841 -357.9 Elongation factor Tu 
S. cohnii ATCC 29972 -255.7 Elongation factor tu 
S. chromogenes ATCC 43764 -208.8 Elongation factor tu 
S. epidermidis ATCC 12228 -441.7 Elongation factor Tu 
S. lugdenensis ATCC49576 -372.3 Elongation factor Tu 
S. simulans ATCC 27851 -372.3 Elongation factor Tu 
CNS 1 -219.6 Elongation factor Tu 
CNS5 -371.4 Elongation factor Tu 
CNS6 -468.1 Elongation factor Tu 
CNS7 -489.8 ATP-dependent Clp protease 
CNS8 -450.4 Elongation factor Tu 
CNS10 -525.8 Elongation factor Tu 
CNS18 -227.3 Elongation factor Tu 
CNS20 -299.4 Elongation factor Tu 
aso2c21 -459.5 Elongation factor Tu 
aso15c28 -338.2 Elongation factor Tu 
aso15c40y -102.5 Elongation factor Tu 
aso15c106 -366 Elongation factor Tu 
aso1c8 -243.1 Elongation factor Tu 
aso2c53 -353.5 Elongation factor Tu 
aso2c63 -347.2 Elongation factor Tu 
aso3c6 -230.2 Enolase  
aso3c59w -277.9 Elongation factor Tu 
ASO3 C22 -411.5 Elongation factor Tu 
ASO2 C44 463.8 ATP-dependent Clp protease 
aso15c64 -226.8 Enolase  
aso15c84 -217.6 Enolase  
asuno2-15c6y -185.9 Elongation factor Tu 
asuno15c6y -270.2 Enolase  
cow924RR -169.2 Elongation factor Tu 
cow970RR -400.8 Elongation factor Tu 
mus5949 -296.1 Elongation factor tu 
mus5951 -150.4 Elongation factor Tu 
09-304-034 -315.7 Elongation factor Tu 
900-200-150 -344.9 Elongation factor Tu 
990RR -245.6 Elongation factor Tu 
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4.0 Abstract 

 

A collection of coagulase negative staphylococcal strains (CoNS) originating from 

normal human skin or clinical samples (human and veterinary origin) were specieated in 

this study.  Digests of proteins released from whole cells were converted to tryptic 

peptides for the determination of species.  This technique eliminated time-consuming 

steps involving 1D gel separation and protein extraction from gel slices previously 

employed.   Liquid chromatography electrospray ionization tandem mass spectrometry 

(LC-ESI-MS/MS, Thermo Fisher Orbitrap) was employed for peptide analysis.  Multiple 

proteins were identified based on peptide sequences and used to identify species of 

Staphylococcus.  However the top hit (elongation factor tu or enolase) alone were found 

to provide accurate speciation.  Markers previously identified from gel slices (aconitate 

hydratase and oxoglutarate dehydrogenase) were poor markers in whole cell digests.  

Bioinformatics was performed employing the software X!Tandem which uses 

sequenced genomes to generate a virtual peptide database for comparison to  

experimental data. The search database was modified to utilize the genomes of the 11 

Staphylococcus species most commonly isolated from man.  The methodological 

approach described here provided a simple yet elegant way of identification of 

staphylococci.  However, perhaps more importantly the methodology is applicable 

universally for identification of any bacterial species.
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4.1 Introduction 

 

Proteomics is primarily utilized in identifying proteins expressed by an organism 

under particular growth conditions, not for chemotaxonomic characterization.  MALDI-

TOF MS profiling has become a routine technique for identification of bacteria 

particularly with relevance to clinical microbiology MALDI-TOF MS is used for rapid 

determination of a mass pattern of proteins for bacterial characterization; these proteins 

are generally not identified (Intellicato and Fox, 2013).  Alternatively, there have been a 

handful of reports identifying bacteria more accurately by comparing experimental 

spectra of tryptic peptides using either LC-MS-MS and custom bioinformatics software 

(Jabbour et al., 2010) or MALDI TOF MS and MS-MS of isolated gel bands (Fox et al., 

2011).   

Microbiological testing in clinical settings is still usually based on culture followed 

by Gram stain morphology and biochemical characteristics (Baker, 1984; Gupta, 1998).  

Physiological traits additionally evaluate various properties including the ability to 

ferment different substrates (including sugars) and enzymatic activity, e.g. hemolysis or 

coagulase activity (Noble, 1984).  Many of these tests are routinely used for accurate 

identification of many pathogenic or opportunistic species but for less studied species 

(e.g. coagulase negative staphylococci, CoNS) the results are often inconclusive. 

Additionally technical problems such as incomplete Gram staining, or partial 

fermentation of sugars can lead to erroneous species identification (De Paulis et al., 

2003). 
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Numerous variants of the polymerase chain reaction (PCR) and/or restriction 

enzymes are commonly used in more advanced reference laboratories in species 

identification.  However in developing new genetic markers two conserved genetic 

regions (surrounding a variable region) are required for primers to provide initiation for 

amplification and for the variable regions to provide the information for discriminating 

closely related species.  When limited information is available, selection of a single gene 

for assessing sequence variation can be somewhat arbitrary.  Whole genome 

sequencing is still a technically demanding and expensive alternative.  Accordingly 

many workers use genes that are present universally in bacteria, most commonly16S 

rDNA.  However, it has become clear over the past few years that 16S rDNA sequences 

are too conserved amongst many closely related species and only genus-level 

identification is provided (Brodie et al., 2007).   

Alternatively our group has employed members of the genus Staphylococcus as 

a model system to improve accuracy for speciation of difficult-to-identify species using 

protein markers (Fox et al., 2010; Fox et al., 2011, Kooken, Fox and Fox 2012 (Chapter 

1); Kooken et al [manuscript in preparation, Chapter 2).  Currently biochemical tests, 

(e.g. Staph-Ident strips) are the primary methods used for Staphylococcus species 

identification.  However it is widely accepted that biochemical tests do not accurately 

speciate CoNS (Rhoden and Miller, 1995).  As documented in the previous chapter, 

species identification using variation in sequence of protein markers correlates well with 

variation in DNA sequence of the sodA gene. The sodA gene has been most widely 

used in genetic speciation of CoNS but it has only been validated recently by an 

independent approach (Chapter 2).    
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Bands migrating at approximately 100 kD were separated using 1D gel 

electrophoresis. Profiling of peptides, after tryptic digestion, of isolated 100kDa proteins 

allowed staphylococcal speciation. These bands were selected because there are 

relatively few proteins present at this high MW simplifying separation from other proteins 

and larger proteins potentially contain more sequence information (Fox et al., 2011).  

Matrix assisted time of ionization/desorption mass spectrometry and tandem mass 

spectrometry (MALDI TOF MS and MALDI TOF MS and MS/MS) or LC-MS-MS analysis 

of gel bands identified aconitate hydratase and/or oxoglutarate dehydrogenase as the 

dominant proteins present in these gel bands.  

Alternatively, digests of proteins released from whole cells can be converted to 

tryptic peptides for the determination of species (Chapter 2).  In this chapter (3), the 

proteomic and bioinformatics technology is described in greater detail and the validity of 

various biomarkers evaluated.  LC-MS-MS of whole cell proteins eliminated time-

consuming steps involving 1D gel separation and protein extraction from the gel slices. 

Numerous proteins were identified based on peptide sequences and evaluated in 

identification of species of Staphylococcus.  In top down proteomics, tandem mass 

spectrometry of whole proteins is employed to provide large scale characterization of an 

organism with sequenced genomes (Kelleher, 2004). In an attempt to increase accuracy 

in species identification and simplify sample preparation a bottom-up proteomics 

approach was taken here employing tryptic peptides.  

The current research describes a method in of peptide analysis for the whole cell 

supernatant using LC-ESI MS/MS.  The bottom-up proteomics approach usually utilizes 

instruments such as the LTQ ion trap or with greater confidence, the LTQ-Orbitrap, due 
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to its ability to obtain high resolution in molecular weight analysis of parent ions followed 

my MS-MS performed with an ion trap for fast scanning of product ions (Hu et al., 2005; 

Macek et al., 2006); this approach was used here for identification of Staphylococcus 

species.  The current report is among the first and most definitive studies using 

sequence variation in newly discovered protein markers for bacterial speciation.  This 

method was applied to a total of 29 strains including 10 CoNS species and S. aureus.   

After LC-MS-MS analysis, bacterial speciation was performed in an automated 

fashion comparing experimental spectra versus virtual spectra using the software 

X!Tandem. The top hit or greatest confidence in protein identification (usually elongation 

factor tu or enolase) were found to provide accurate speciation.  Bioinformatics was 

performed employing the widely used software X!Tandem which uses sequenced 

genomes to generate a virtual peptide database for comparison to  experimental data. 

The search database was modified to include the genomes of the 11staphylococcal  

species most commonly isolated from man.  Previous species markers of aconitate 

hydratase and oxoglutarate dehydrogenase (identified from gel bands) were also 

compared for significance versus the newly described markers identified derived from 

whole cell supernatants.  The methodological approach described can have applications 

for bacterial identification across multiple species
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4.2 Materials and Methods 

 

4.2.1 Strains analyzed 

 

aso2c21, aso15c28, aso15c40y, aso15c106, S. aureus ATCC 12598, S. chonii ATCC 

29972, S. chromogenes ATCC 43764, CNS20, cow924RR, cow970RR, mus5949, 

mus5951, 09-304-034, S. capitis ATCC 27841, CNS5, S. epidermidis ATCC12228, 900-

200-150, 990rr, aso1c8, aso2c53, aso2c63, aso3c6, aso3c59w, aso15c64, aso15c84, 

asuno2-15c6y, asuno15c6y, CNS 1, CNS18 

 

4.2.2 Culture conditions and sample preparation 

 

Bacteria were grown on nutrient agar plates at 37 °C for 24-48 h.  The isolates were 

tentatively identified as staphylococci by Gram stain morphology and glucose 

fermentation.  Colonies were harvested from plates using 0.1 M NaCl, 50 mM Tris HCl, 

0.5 mM phenylmethylsulfonyl fluoride [PMSF] and placed in a FastPrep®-24 (MP 

Biomedicals, Solon, OH) for 6 ms X 30 sec with 5 min on ice between each cycle for a 

total of 6 cycles. The samples were then centrifuged at 4 °C for 1 h at 10,000 g. The 

supernatants were removed and placed at -70 °C for two freeze-thaw cycles to 

eliminate DNA.   
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4.2.3 Protein separation, tryptic digestion and MS analysis 

 

Bacteria were harvested (after growing as confluent lawns) from plates using 0.1 M 

NaCl, 50 mM Tris HCl, 0.5 mM phenylmethylsulfonyl fluoride [PMSF] and placed in a 

FastPrep®-24 bead beater (MP Biomedicals, Solon, OH) for 6 ms X 30 sec with 5 min 

on ice between each cycle for a total of 6 cycles to release proteins. The samples were 

then centrifuged at 4 °C for 1 h at 10,000 g. The supernatants were removed and 

placed at -70 °C for two freeze-thaw cycles to eliminate DNA.   

 

4.2.4 Peptide Preparation 

 

Bacteria samples were thawed, vortexed briefly to re-suspend.  Fifty µl of supernatant 

was transferred to labeled low protein binding 1.5ml microfuge tubes.  50 µl of freshly 

made 8M urea, 1µl of β-mercapto ethanol, 24 ul of water, and 25 µl of 200 mM Tris-HCl 

pH 8.0 were added tubes were vortexed briefly and incubated at 60°C for one hour in a 

Thermomixer (ThermoFisher Scientific  ) shaking at 300RPM.  The tubes were 

centrifuged briefly after the incubation to collect the evaporate on top of the lids. 800ul 

of 50mM ammonium bicarbonate was added to each tube to reduce the urea 

concentration to below 1M.  2 µl of trypsin gold at a concentration of 2 µg/µl was added 

to each tube and briefly vortexed to mix. The samples were then incubated at 37°C for 

15 hours in a Thermomixer shaking at 300RPM. 
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4.2.5 Purification of peptides 

 

Solid phase extraction (SPE) was performed with a vacuum manifold using Strata C-18 

T solid phase extraction columns (Phenomenex, Torrence, CA ) and following the 

manufacturer’s protocol. Briefly, 1 ml of 100% methanol was added to activate the resin, 

followed by a conditioning step of 1ml 0.1% TFA water, then addition of the samples. 

The samples are washed with 5% acetonitrile in 0.1% TFA water, and finally elution of 

the samples with 80% acetonitrile in 0.1% TFA water into labeled clean low protein 

binding 1.5ml microfuge tubes.  The desired flow rate for vacuuming steps is 0.5ml/min 

with the vacuum seal released after each solution. Samples were dried down to near 

completeness (5-10 µl remaining) with a Thermo speed vac. 25ul of 0.5% formic acid 

was added to each sample, using the pipettor gently wash the sides of the tube to 

recover as much of the sample as possible. The samples were then transferred to 

labeled HPLC vials with 200 µl inert glass inserts and capped with screw caps.  

 

4.2.6 MS-MS analysis of the peptides 

 

Peptides were separated using an Agilent 1200 HPLC with a 40cm long 0.15 mm ID 

fused silica column packed with Jupiter 5µm C-18 resin. Column was made in house.  A 

50 min  gradient was established by changing the relative concentrations of a two 

solvent systems where “A” is 5% acetonitrile, 0.1% formic acid in H2O and “B” is 95% 
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acetonitrile, 0.1% formic acid in H2O at a flow rate of 2 µl per minute. The separation 

had a 10 min isocratic step at 5% B and a gradient from 5% to 60% B over 50 minutes. 

Eluate from the HPLC was directly transferred into an LTQFT Orbitrap system (Thermo 

electron, Billercia MA).  The electrospray conditions used were: 3.5kV spray voltage, 

200°C and 200V ion transfer tube voltage. The ion injection time was set for automatic 

gain control with a maximum injection time of 200ms for 5X10e7 charges in the trap. 

The MS parent scan was performed using the Orbitrap mass analyzer using a resolution 

setting of 30,000. Dynamic parent ion selection was performed where the top five most 

abundant ions were selected for MS-MS in the linear quadrupole ion trap using a 3 m/z 

mass window.  

 

4.2.7 Database searches 

 

Searches employing MS/MS data were performed using the open source software 

X!Tandem (www.thegpm.org/tandem)(Craig et al., 2004).  Raw files from the Orbitrap 

(MS-MS data) were converted into the mascot general format (msg) files) using the 

program Proteo-wizard (proteowizard.sourceforge.net).  The data base was modified by 

downloading the genomes from all eleven species representing the 29 strains in this 

study.  Fasta files were downloaded from (Uniprot, www.uniprot.org). and then 

converted to FastaPro files for use with X!Tandem. The Fasta-pro files were placed in 

the fasta section of the software the pro_species.jl  (controls program-interface for 

bacterial species) and taxonomy.xml files (lists each file pathway for each fastaPro file) 

http://www.thegpm.org/tandem
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of the X!Tandem software.  Trypsin-specific enzymatic digestion rules were selected 

and two missed cleavages. The parent mass accuracy was specified at +/- 10 ppm 

(data acquired with Orbitrap mass spectrometer) and fragment mass accuracy of +/- 

300 ppm for MS-MS scans acquired with the LTQ system.  Parent mass error was set to 

10 parts per million (PPM), maximum parent charge set to 5, and no modifications 

selected for these samples.  The X!Tandem output was also processed into a file format 

compatible with the mass spectrometry generating function (MSGF) for secondary 

validation (Kim et al., 2008). Peptide spectrum matches with e-values less than -100 

were determined using the MSGF were excluded from consideration unless noted 

otherwise. All peptides matches were captured into a SQLite database for sorting of 

matches. 

 Species and strains in custom database: Staphylococcus aureus O46, 

Staphylococcus aureus strain Newman, Staphylococcus aureus subsp aureus 

CIG1242, Staphylococcus capitis, Staphylococcus capitis SK14, Staphylococcus capitis 

subsp capitis, Staphylococcus capitis subsp urealyticus, Staphylococcus capitis 

VCU116, Staphylococcuscarnosus, Staphylococcus carnosus strain TM300, 

Staphylococcus carnosus subsp carnosus, Staphylococcus carnosus subsp utilis, 

Staphylococcus chromogenes, Staphylococcus cohnii, Staphylococcus cohnii subsp 

cohnii, Staphylococcus cohnii subsp urealyticus, Staphylococcus epidermidis strain 

ATCC 12228, Staphylococcus epidermidis strain ATCC 35984 RP62A, Staphylococcus 

epidermidis VCU127, Staphylococcus haemolyticus, Staphylococcus haemolyticus 

strain JCSC1435, Staphylococcus hominis, Staphylococcus hominis SK119, 

Staphylococcus hominis subsp hominis, Staphylococcus hominis subsp hominis C80, 
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Staphylococcus hominis subsp novobiosepticus, Staphylococcus hominis VCU122, 

Staphylococcus lugdunensis, Staphylococcus lugdunensis ACS-027 V Sch2, 

Staphylococcus lugdunensis M23590, Staphylococcus lugdunensis strain HKU09-01, 

Staphylococcus lugdunensis strain N920143, Staphylococcus lugdunensis VCU139, 

Staphylococcus saprophyticus, Staphylococcus saprophyticus subsp bovis, 

Staphylococcus saprophyticus subsp saprophyticus, Staphylococcus saprophyticus 

subsp saprophyticus KACC 16562, Staphylococcus saprophyticus subsp saprophyticus 

MS1146, Staphylococcus saprophyticus subsp saprophyticus strain ATCC 15305 DSM 

20229, Staphylococcus simulans ACS-120-V-Sch1, Staphylococcus warneri, 

Staphylococcus warneri L37603, Staphylococcus warneri VCU121 

 

4.3 Results and Discussion 

 

Our previous method of MS and MS/MS bacterial identification employed SDS-

PAGE gels for protein separation along with the additional process of excising the band 

of interest and extracting the protein from the gel slice (Fox et al., 2011, Kooken, Fox 

and Fox 2012 and Chapter 2).  Overall analysis from start to finish takes approximately 

5 days. By utilizing whole cell trypsin digests the sample preparation time was 

decreased to one day.  Furthermore when using whole cell digests multiple proteins 

may be identified leading to greater discrimination in species identification.   

MS scans were performed on the Orbitrap, where the 50 most abundant peaks 

per scan were then sent on for MS-MS analysis in the ion trap.  This setup allows for 
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high resolution and fast initial MS scans, followed by a MS-MS scan that have a more 

focused MW range and fast scan times. However resolution is limited by the use of ion 

trap.  Since there are many peptides that correspond to multiple proteins analyzed with 

a whole cell preparation the ability to identify proteins that have been extensively 

studied and annotated within a database increases.   

 MS/MS results were analyzed using X!Tandem search engine in which genomic 

sequence information gathered from the UNIPROT data base for the 11 most common 

Staphylococcus species associated with humans was uploaded.  The X!Tandem 

program allows for additions of genomic sequences to what is already provided in the 

standard database so a more complete evaluation of spectra is possible.  This 

customized library was instigated using genomic sequences stored in the UNIPROT 

database.  These species and strains were aided by previous work from our group 

studying staphylococci released from human skin and collected from indoor air in 

crowded school rooms (Fox et al 2005, Fox et al., 2008, Fox et al., 2010; Fox et al., 

2011).  To prevent over sampling of one species, such as S. aureus the genomic 

sequences for the highest reported, and fully annotated strains were downloaded into 

X!Tandem.  With all Staphylococcus species selected the advance settings on the 

program allowed for several adjustments to be made.  The results from X!Tandem give 

an individual score for probability of each protein identification, this is noted a as the E-

Score in both Tables 4.1 and 4.2.  The smaller the score the more peptides matched up 

to the protein sequence.  Values above 100 are considered highly significant.  

 In utilizing whole cell supernatants only the most abundant peptides are readily 

detected, showing up in multiple scans and corresponding to peptides expected in the 
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customized X!Tandem database.  In all instances the most frequently identified peptide 

for whole supernatant with the best coverage was elongation factor tu, and enolase (see 

Table 4.1).  These proteins are also useful because they have been studied extensively 

in Staphylococcus species and information on the amino acid sequences has been 

annotated for even lesser studied species.  Selected ATCC type strains were run as 

controls to verify proper identification, top results for S. aureus, S. chonii, S. 

chromogenes, S. capitis, and S. epidermidis being elongation factor tu, and it’s e-score 

markedly higher than the next given species further supported the hypothesis that not 

only can whole supernatant be used to identify important proteins, but there is good 

enough coverage of both unique and conserved regions for proper species 

identification.  These controls also assisted in evaluating the use of aconitate hydratase 

and oxoglutarate dehydrogenase for speciation in a whole protein supernatant (Table 

4.2). 

It was found that both aconitate hydratase and oxoglutarate dehydrogenase 

could only be identified in 2 of the 5 ATCC strains analyzed (S. epidermidis, and S. 

capitis).  This pattern of inability to successfully identify these proteins with coverage of 

both unique and conserved regions was also displayed with the unknown samples.  Fig. 

4.1 displays the results for stain aso2c21, as a demonstration of peptide coverage the 

majority of the sequence for elongation factor tu in S. aureus has been positively 

identified from daughter ions in the sample and is displayed as red letters indicating the 

amino acid sequence has been successfully matched.  In this figure the coverage 

allows positive identification for not only the protein, but the species to which it belongs.  

Coverage with peptides detected derived from whole cell supernatant covers the 
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majority of the protein’s sequence.  In contrast on evaluating aconitate hydratase and 

oxoglutarate dehydrogenase as markers the results indicated scarcely any coverage, 

and often times the peptides that did match were conserved across multiple species 

(Fig. 4.2).   

It was found that aconitate hydratase and oxoglutarate dehydrogenase, when 

isolated and analyzed as an individual protein in previous work resulted in exceptional 

coverage of all regions and allowed for species identification, but in whole cell 

supernatant these proteins are not abundant enough for detection.  In the whole cell 

supernatant aconitate hydratase was detected in 19 of the 29 samples, and with a 

minimum acceptable e-value of -20 (value at which at least 4 peptides are positively 

matched to the genomic sequence) only 15 of these scored high enough for a 

significant match (Table 4.2).  Oxoglutarate dehydrogenase showed up 16 times but 

only in S. capitis ATCC 27841, S. epidermidis ATCC 12228, and 09-304-034 were the 

scores above -20 and had multiple peptides match.   

In comparison for all of the samples elongation factor tu, enolase, or both were 

found to be top hits, with close to full coverage even on unique regions which are 

valuable in differentiating amongst the species (Table 4.1).  Since we are not limiting 

ourselves to one particular protein the top score is whatever protein has the most 

number of correct matches; the better the coverage the more accurate a match.  This 

technique has been able to identify species with greater accuracy then gel slices due to 

the broader view of the organism.  The matches from whole cell protein analysis agreed 

with sodA gene sequence variation (see Chapter 2).  
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4.0 Conclusions 

 

Looking at all proteins expressed, instead of a pre-determined one (e.g. found in 

a gel slice)allows more options for positive identification of an organism.  Previous work 

focused on a top down approach, starting with 1D SDS PAGE gel slices of the proteins 

aconitate hydratase and oxoglutarate dehydrogenase for use as marker proteins.  The 

main drawback with utilizing these proteins successfully in whole cell supernatant 

samples is that if the protein(s) selected is not abundant then accurate identification with 

multiple peptides is close to impossible.  Therefore, by looking at whichever protein 

provides the best match, the largest numbers of matching peptides are also selected; 

this allows for consistent and accurate speciation.   

This methodology, although successful, is still in its infancy and with further 

refinement it may have implications for clinical speciation in the future at the current 

time development of a custom-data base, along with expensive equipment, such at the 

Orbitrap, requires expert knowledge which may prove to be prohibitive in clinical 

microbiology settings.  With future development and implementation of user-friendly 

software and instrumentation the knowledge gained from this research may be applied 

for successful biologic sample identification.  MALDI profiling itself took almost 20 years 

to develop in clinical microbiology settings, and with future advances and simplification 

whole cell protein analysis has the same potential (Intellicato and Fox, 2013). In 

research settings, LC-MS-MS may help expand the knowledge-base of abundant 
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proteins (with unique regions) derived from bacterial species allowing their identification 

or detection in simple or complex matrices. 
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Table 4.1 Protiens and species identified with the highest confidence 
 
 
 
 
 
 
 
 

Rank Protein Score Species 

aso2c21 1 Elongation factor tu 
-
459.5
0 

Staphylococcus warneri L37603 

 2 Elongation factor G 
-
209.5
0 

Staphylococcus warneri VCU121 

 3 Enolase  
-
175.3
0 

Staphylococcus warneri L37603 

     

aso15c28 1 Elongation factor tu 
-
338.2
0 

Staphylococcus haemolyticus (strain JCSC1435) 

 2 Elongation factor tu 
-
239.9
0 

Staphylococcus epidermidis (strain ATCC 12228) 

 3 Formate--tetrahydrofolate 
ligase 

-
126.0
0 

Staphylococcus haemolyticus (strain JCSC1435) 

     
aso15c40y 1 Elongation factor tu -102.5 Staphylococcus carnosus (strain TM300) 

 2 Translation elongation 
factor tu -59.5 Staphylococcus haemolyticus 

 3 Enolase -49.3 Staphylococcus epidermidis (strain ATCC 12228) 
     
aso15c106 1 Elongation factor tu -366 Staphylococcus haemolyticus (strain JCSC1435) 
 2 Elongation factor tu -315.2 Staphylococcus warneri L37603 

 3 Formate--tetrahydrofolate 
ligase -123.2 Staphylococcus haemolyticus (strain JCSC1435) 

     
S. aureus 
ATCC12598 1 Elongation factor tu -276.2 Staphylococcus aureus O46 

 2 Enolase  -237.2 Staphylococcus aureus O46 
 3 Elongation factor G -161 Staphylococcus aureus O46 
     
S. chonii 
ATCC29972 1 Elongation factor tu -255.7 Staphylococcus cohnii subsp. cohnii 

 2 Elongation factor tu -199.5 Staphylococcus saprophyticus (KACC 16562) 
 3 Elongation factor tu -160.6 Staphylococcus hominis SK119 
     
S. 
chromogenes 
ATCC43764 

1 Elongation factor tu -208.8 Staphylococcus chromogenes 

 2 Elongation factor tu -156.8 Staphylococcus capitis SK14 

 3 Translation elongation 
factor tu -116.3 Staphylococcus haemolyticus 

     
CNS20 1 Elongation factor tu -299.4 Staphylococcus aureus O46 
 2 Enolase -251.6 Staphylococcus aureus O46 
 3 Elongation factor G -209.6 Staphylococcus aureus O46 
     
cow924RR 1 Elongation factor tu -169.2 Staphylococcus capitis SK14 
 2 Elongation factor tu -118.4 Staphylococcus simulans ACS-120-V-Sch1 

 3 60 kDa chaperonin 
(GroEL) -88.7 Staphylococcus saprophyticus (KACC 16562) 

     
cow970RR 1 Elongation factor tu -400.8 Staphylococcus saprophyticus (KACC 16562) 
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 2 Enolase -159.7 Staphylococcus saprophyticus (KACC 16562) 

 3 1-pyrroline-5-carboxylate 
dehydrogenase  -106.9 Staphylococcus saprophyticus (KACC 16562) 

     
mus5949 1 Elongation factor tu -296.1 Staphylococcus chromogenes 
 2 Elongation factor tu -113.9 Staphylococcus capitis SK14 

 3 
Glyceraldehyde-3-
phosphate 
dehydrogenase  

-110.6 Staphylococcus chromogenes 

     
mus5951 1 Elongation factor tu -150.4 Staphylococcus warneri L37603 

 2 Nucleoid DNA-binding 
protein HU  -113.5 Staphylococcus saprophyticus (KACC 16562) 

 3 60 kDa chaperonin 
(GroEL) -102.3 Staphylococcus saprophyticus (KACC 16562) 

     
09-304-034 1 Elongation factor tu -315.7 Staphylococcus saprophyticus (KACC 16562) 
 2 Enolase -212.1 Staphylococcus saprophyticus (KACC 16562) 
 3 Elongation factor tu -179.6 Staphylococcus hominis SK119 
     
S. capitis 
ATCC27841 1 Elongation factor tu -357.9 Staphylococcus capitis SK14 

 2 Elongation factor tu -261.9 Staphylococcus epidermidis (strain ATCC 12228) 
 3 Elongation factor G -218 Staphylococcus capitis SK14 
     
CNS5 1 Elongation factor tu -371.4 Staphylococcus simulans ACS-120-V-Sch1 
 2 Elongation factor tu -313.8 Staphylococcus lugdunensis ACS-027-V-Sch2 
 3 Elongation factor tu -238 Staphylococcus capitis SK14 
     
S. epidermidis 
ATCC12228 1 Elongation factor tu -441.7 Staphylococcus epidermidis (strain ATCC 12228) 

 2 Elongation factor tu -254.2 Staphylococcus hominis SK119 
 3 Elongation factor G -231.1 Staphylococcus epidermidis (strain ATCC 12228) 
     
900-200-150 1 Elongation factor tu -344.9 Staphylococcus warneri L37603 

 2 Isocitrate dehydrogenase 
[NADP] -136.8 Staphylococcus warneri L37603 

 3 Elongation factor G -127.2 Staphylococcus warneri VCU121 
     
990rr 1 Elongation factor tu -245.6 Staphylococcus simulans ACS-120-V-Sch1 
 2 Elongation factor G -173.7 Staphylococcus simulans ACS-120-V-Sch1 
 3 Citrate synthase  -137.2 Staphylococcus simulans ACS-120-V-Sch1 
     
aso1c8 1 Elongation factor tu -243.1 Staphylococcus aureus O46 
 2 Enolase  -206.1 Staphylococcus aureus O46 
 3 Enolase  -137 Staphylococcus hominis SK119 
     
aso2c53 1 Elongation factor tu -353.5 Staphylococcus epidermidis (strain ATCC 12228) 
 2 Elongation factor G -159.8 Staphylococcus epidermidis (strain ATCC 12228) 
 3 Elongation factor tu -138.8 Staphylococcus haemolyticus 
     
aso2c63 1 Elongation factor tu -347.2 Staphylococcus epidermidis (strain ATCC 12228) 
 2 Elongation factor tu -170.9 Staphylococcus haemolyticus 
 3 Enolase -152.1 Staphylococcus epidermidis (strain ATCC 12228) 
     
aso3c6 1 Enolase  -230.2 Staphylococcus aureus O46 
 2 Elongation factor tu -215.1 Staphylococcus aureus O46 
 3 Elongation factor tu -147.2 Staphylococcus haemolyticus (strain JCSC1435) 
     
aso3c59w 1 Elongation factor tu -277.9 Staphylococcus lugdunensis ACS-027-V-Sch2 
 2 Elongation factor tu -251.3 Staphylococcus warneri L37603 
 3 DNA-binding protein II  -129.9 Staphylococcus aureus O46 
     
aso15c64 1 Enolase  -226.8 Staphylococcus aureus O46 
 2 Elongation factor tu -205.1 Staphylococcus aureus O46 
 3 Elongation factor G -173.9 Staphylococcus aureus O46 
     
aso15c84 1 Enolase  -217.6 Staphylococcus aureus O46 
 2 Elongation factor tu -213 Staphylococcus aureus O46 
 3 Alkaline shock protein 23  -140.3 Staphylococcus aureus O46 
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log(e): the base-10 log of the expectation that any particular protein assignment was made at 
random (E-value) 

 

     
asuno2-15c6y 1 Elongation factor tu -185.9 Staphylococcus aureus O46 
 2 Enolase  -167.6 Staphylococcus aureus O46 
 3 Elongation factor G -123 Staphylococcus aureus O46 
     
asuno15c6y 1 Enolase  -270.2 Staphylococcus aureus O46 
 2 Elongation factor tu -227.9 Staphylococcus aureus O46 
 3 Elongation factor G -125.9 Staphylococcus aureus O46 
     
CNS 1 1 Elongation factor tu -219.6 Staphylococcus simulans ACS-120-V-Sch1 
 2 Uncharacterized protein  -88.2 Staphylococcus simulans ACS-120-V-Sch1 
 3 Uncharacterized protein  -69.8 Staphylococcus simulans ACS-120-V-Sch1 
     
CNS18 1 Elongation factor tu -227.3 Staphylococcus aureus O46 
 2 Enolase  -145.4 Staphylococcus aureus O46 

 3 Ornithine--oxo-acid 
transaminase  -123.1 Staphylococcus aureus O46 
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Table 4.2 Confidence levels aconitate hydratase and oxoglutarate dehydrogenase 

 

Sample Rank Protein Score Species 
900-200-150 44 Aconitate hydratase -28 Staphylococcus warneri L37603 
 37 oxoglutarate 

dehydrogenase 
-32.1 Staphylococcus warneri L37603 

     
09-304-034 7 Aconitate hydratase -93.8 Staphylococcus saprophyticus (KACC 

16562) 
     
mus5951 16 Aconitate hydratase -44.9 Staphylococcus saprophyticus (KACC 

16562) 
 133 oxoglutarate 

dehydrogenase 
-1.8 Staphylococcus saprophyticus (KACC 

16562) 
     
990rr 34 oxoglutarate 

dehydrogenase 
-19.6 Staphylococcus simulans ACS-120-V-

Sch1 
     
cow924RR 12 Aconitate hydratase -50.8 Staphylococcus saprophyticus (KACC 

16562) 
     
cow970RR 9 Aconitate hydratase -85.5 Staphylococcus saprophyticus (KACC 

16562) 
 66 oxoglutarate 

dehydrogenase 
-9.6 Staphylococcus saprophyticus (KACC 

16562) 
     
CNS5 14 Aconitate hydratase -75.2 Staphylococcus simulans ACS-120-V-

Sch1 
 175 oxoglutarate 

dehydrogenase 
-1.3 Staphylococcus simulans ACS-120-V-

Sch1 
     
CNS18 20 Aconitate hydratase -37.1 Staphylococcus aureus O46 
     
S. capitis 
ATCC27841 

22 Aconitate hydratase -56.3 Staphylococcus capitis SK14 

 34 oxoglutarate 
dehydrogenase 

-44.6 Staphylococcus capitis SK14 

     
S. epidermidis 
ATCC12228 

63 Aconitate hydratase -25.6 Staphylococcus epidermidis (strain 
ATCC 12228) 

 70 oxoglutarate 
dehydrogenase 

-23.5 Staphylococcus epidermidis (strain 
ATCC 12228) 

     
aso2c21 22 Aconitate hydratase -56.00 Staphylococcus warneri L37603 
 96 oxoglutarate 

dehydrogenase  
-14.40 Staphylococcus warneri L37603 

     
aso1c8 48 Aconitate hydratase -21.8 Staphylococcus aureus O46 
 53 oxoglutarate 

dehydrogenase 
-19.6 Staphylococcus aureus O46 

     
aso2c21 22 Aconitate hydratase -56.00 Staphylococcus warneri L37603 
     
aso2c53 79 Aconitate hydratase -5.5 Staphylococcus epidermidis (strain 
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ATCC 12228) 
     
aso2c63 34 Aconitate hydratase -21.7 Staphylococcus epidermidis (strain 

ATCC 12228) 
 98 oxoglutarate 

dehydrogenase 
-2.7 Staphylococcus epidermidis (strain 

ATCC 12228) 
     
aso3c6 37 Aconitate hydratase -27.5 Staphylococcus aureus O46 
 104 oxoglutarate 

dehydrogenase 
-2.5 Staphylococcus aureus O46 

     
aso15c64 46 Aconitate hydratase -17.2 Staphylococcus aureus O46 
 99 oxoglutarate 

dehydrogenase 
-3.6 Staphylococcus aureus O46 

     
aso15c84 51 Aconitate hydratase -20.9 Staphylococcus aureus O46 
 112 oxoglutarate 

dehydrogenase 
-4.8 Staphylococcus aureus O46 

     
asuno2-15c6y 48 Aconitate hydratase -16.9 Staphylococcus aureus O46 
 117 oxoglutarate 

dehydrogenase 
-2 Staphylococcus aureus O46 

     
asuno15c6y 20 Aconitate hydratase -40.7 Staphylococcus aureus O46 
 95 oxoglutarate 

dehydrogenase 
-4.5 Staphylococcus aureus O46 

log(e): the base-10 log of the expectation that any particular protein assignment was made at 
random (E-value) 
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Figure 4.1 aso2c21: elongation factor tu sequence, and matching peptides from sample in red letters. 
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Figure 4.2 Aso2c21 amino acids in red letters match up with sequence for oxoglutarate dehydrogenase  

protein 
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CHAPTER 5 

 

CONCLUSIONS 

 

5.0 Taxonomic markers to identify Staphylococcus genus from co-contaminants 

 

Beginning with the characterization of natural flora found on human skin it was 

found that there were abundant levels of Micrococcus and Staphylococcus present in 

collections from environmental settings (chapter 2).  Work performed by others previous 

to this dissertation found classification of these two generas difficult with available tests 

methods (chapter 2).  It was even shown that strains the FDA used in testing were not 

properly identified, and in fact one of the standards used was not the Micrococcus 

species it was labeled as but instead a closely related genus(Tang, 2003).  When 

researched was found previously that over two thirds of the environmental isolates were 

believed to be Micrococci (Bruker Biotyping), it created a need for greater accuracy in 

characterization (Satta et al., 1993).  Tryptic peptide analysis of the aconitate hydratase 

protein with MALDI TOF MS established criteria to confirm species identity for the 

environmental isolates.  The more in depth technique of MALDI TOF-TOF MS-MS then 

was used to confirm protein identity, and also show a clear difference between the 

profiles of the two deposited M. luteus, and how it differs from Staphylococcus (chapter 

2).  This work created the framework to allow Micrococcus, a harmless co-contaminant 

in environmental and biologically derived samples to be differentiated from 
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Staphylococcus, which can now be further studied for information on species 

identification. 

After establishing a means to accurately identify the Staphylococcus genus 

speciation amongst Staphylococcal species proved to be a complex issue,  with many 

species observed suspected to be not identified or inaccurately specieated. 

 

5.1 Development of ‘bottom-up’ approach for Staphylococcus speciation 

 

The 3rd chapter focused on a means to properly speciate Staphylococcus 

isolates by analyzing protein sequence variations.  Tandem mass spectrometry 

performed on trypsin-released peptides gave amino acid sequences of both conserves 

and unique regions within the aconitate hydratase and oxoglutarate dehydrogenase 

proteins.  By looking at individual proteins and peptide matches it was possible to 

establish unique sequences within the protein that can be used to identify one species 

from another.  The MS-MS results that provided the information of protein and species 

identity correlated well with sodA sequencing from microarrays.  The microarrays 

allowed all staphylococcal species to be differentiated simultaneously with their own 

sequence specific probe (based on previously discovered sequence variation) and were 

used as a means to further verify the MS-MS method could correctly identify species 

without knowledge of sample identity. From this it was shown that tandem mass 

spectrometry is able to discover and use new protein marker sequences that can be 

identified as the need arises.  
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5.2 LC-ESI MS-MS use for whole cell protein analysis allows the fastest and 

most accurate means for CoNS species identification 

 

 The developmental work described in the 4th chapter is a significant step forward 

in the process of reliable speciation of CoNS specimens.  Tandem mass spectrometry, 

demonstrated the ability to look at new protein marker sequences to be used for species 

identification as the need arises.  By looking at all proteins expressed, instead of a pre-

determined ones with gel separation a better picture of the identity of an organism is 

provided, along with more options for positive species identification.  This whole cell 

method is a refinement from previous work which focused on a top down approach by 

protein selection of hydratase and oxoglutarate dehydrogenase as marker proteins.  A 

reduction in time due to the simplified materials processing procedure was also 

established.  It was found that the use of these proteins is only successful as whole cell 

supernatant samples if the protein(s) selected is/are abundant.  Previously studied 

aconitate hydrates, and oxoglutarate dehydrogenase were often not abundant enough  

study without purification (table 4.2) so in order to remedy this in whole supernatant 

evaluation occurs of whichever protein provides the best match and the largest numbers 

of matching peptides.  This delivered consistent and accurate speciation across all 

samples.
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5.3 Evaluation and future directions for proteomic species identification 

 

Proteomics is largely applied to cataloging protein expression with little emphasis 

on taxonomic identification.  This dissertation focused on identifying CoNS species in 

order to introduce methodology in which mass spectrometry may be used for bacterial 

species identification.  The need for improved taxonomic identification stems from 

current techniques failing in speciation of closely related isolates.  This often arises 

when some species are thought to be clinically significant and other are ignored, such 

as most CoNS species were believed to be incapable of human disease.  The discovery 

of multiple CoNS species causing infections in clinical settings, coupled with the fact 

that even previously found clinically significant Staphylococcus species are often 

misidentified created a need for consistent and accurate taxonomic classification.  With 

the failure of physiological and molecular tests to speciate CoNS, it was found that 

better but sometimes inaccurate species identification was possible with basic MALDI-

TOF MS (Fox et al., 2011).  Even though MALDI TOF MS for bacterial speciation, was 

described by several groups close to 20 years ago utilization of this technique has only 

come into clinical microbiology labs in the past few years (Intelicato-Young and Fox, 

2013).  Even with this advance from physiological tests MALDI TOF MS is not always 

capable of the desired specificity for the complex issue of staphylococcal speciation.  In 

which case a more in depth approach, such as MS-MS proves to provide the consistent 

and accurate results for species specific identification/information.  At this time 

utilization of tandem mass spectrometry can provide the greatest amount of information 

with little known about a sample and has promise for success across multiple species. 
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This methodology is still in its infancy and although it may have implications for 

clinical speciation in the future at the current time generation of a custom-data base 

along with expensive equipment that requires expert knowledge to run (e.g. the 

Orbitrap) make it prohibitive for use in clinical microbiology settings.  However, it is 

optimistic that this situation could change in the future with implementation of user-

friendly software and instrumentation. Indeed it has taken almost 20 years for the much 

simpler MALDI profiling to be fully developed and accepted by the clinical microbiology 

community (Intellicato and Fox, 2013). In research settings, LC-MS-MS may help 

expand the knowledge-base of abundant proteins (with unique regions) derived from 

bacterial species allowing their identification or detection in simple or complex matrices.  

Further studies could evaluate its use in species identification across samples from 

different origins and genus, testing the established methods to differentiate samples 

across many taxonomic levels. 



 

101 
 

WORKS CITED: 

Aebersold, R. and Mann, M., 2003. Mass spectrometry-based proteomics. Nature, 422: 198-
207. 

 
Angel, T.E. et al., 2012. Mass spectrometry-based proteomics: existing capabilities and future 

directions. Chem Soc Rev, 41(10): 3912-28. 
 
Baird-Parker, A.C., 1965. Staphylococci and their classification. Ann N Y Acad Sci, 128: 4-25. 
 
Baker, J.S., 1984. Comparison of Various Methods for Differentiation of Staphylococci and 

Micrococci. Journal of Clinical Microbiology, 19: 875-879. 
 
Baker, M., 2010. Mass spectrometry for biologists. Nat Meth, 7: 157-161. 
 
Baldellon, C. and Megraud, F., 1985. Characterization of Micrococcaceae strains isolated from 

the human urogenital tract by the conventional scheme and a micromethod. J Clin 
Microbiol, 21: 474-7. 

 
Billeci, T.M. and Stults, J.T., 1993. Tryptic mapping of recombinant proteins by matrix-assisted 

laser desorption/ionization mass spectrometry. Anal Chem, 65: 1709-16. 
 
Blaum, K., 2006. High-accuracy mass spectrometry with stored ions. Physics Reports, 425: 1-

78. 
 
Brodie, E.L. et al., 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc 

Natl Acad Sci U S A, 104: 299-304. 
 
Canas, B., Lopez-Ferrer, D., Ramos-Fernandez, A., Camafeita, E. and Calvo, E., 2006. Mass 

spectrometry technologies for proteomics. Brief Funct Genomic Proteomic, 4: 295-320. 
 
Carbonnelle, E. et al., 2012. Robustness of two MALDI-TOF mass spectrometry systems for 

bacterial identification. J Microbiol Methods, 89: 133-6. 
 
Carbonnelle, E. et al., 2011. MALDI-TOF mass spectrometry tools for bacterial identification in 

clinical microbiology laboratory. Clin Biochem, 44: 104-9. 
 
Cash, P., 2009. Proteomics in the study of the molecular taxonomy and epidemiology of 

bacterial pathogens. ELECTROPHORESIS, 30: S133-S141. 
 
Center, K.J., Reboli, A.C., Hubler, R., Rodgers, G.L. and Long, S.S., 2003. Decreased 

vancomycin susceptibility of coagulase-negative staphylococci in a neonatal intensive 
care unit: evidence of spread of Staphylococcus warneri. J Clin Microbiol, 41: 4660-5. 

 
Chowdhury, S.K., Katta, V. and Chait, B.T., 1990a. An electrospray-ionization mass 

spectrometer with new features. Rapid Commun Mass Spectrom, 4: 81-7. 
 
Chowdhury, S.K., Katta, V. and Chait, B.T., 1990b. Electrospray ionization mass spectrometric 

peptide mapping: a rapid, sensitive technique for protein structure analysis. Biochem 
Biophys Res Commun, 167: 686-92. 

 



 

102 
 

Cornish, T.J. and Cotter, R.J., 1993. A curved-field reflectron for improved energy focusing of 
product ions in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 7: 
1037-40. 

 
Craig, R., Cortens, J.P. and Beavis, R.C., 2004. Open source system for analyzing, validating, 

and storing protein identification data. J Proteome Res, 3: 1234-42. 
 
Cravatt, B.F., Simon, G.M. and Yates, J.R., 3rd, 2007. The biological impact of mass-

spectrometry-based proteomics. Nature, 450: 991-1000. 
 
Davis, M.T., Stahl, D.C., Hefta, S.A. and Lee, T.D., 1995. A microscale electrospray interface for 

on-line, capillary liquid chromatography/tandem mass spectrometry of complex peptide 
mixtures. Anal Chem, 67: 4549-56. 

 
De Paulis, A.N., Predari, S.C., Chazarreta, C.D. and Santoianni, J.E., 2003. Five-Test Simple 

Scheme for Species-Level Identification of Clinically Significant Coagulase-Negative 
Staphylococci. J Clin Microbiol, 41: 1219-1224. 

 
Dubois, D. et al., 2010. Identification of a variety of Staphylococcus species by matrix-assisted 

laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol, 48: 941-5. 
 
Edmond deHoffmann, V.S., 2003. Mass Spectrometry: Principles and Applications Wiley, John 

& Sons, Incorporated, 502. 
 
Evans, J.B. and Kloos, W.E., 1972. Use of shake cultures in a semisolid thioglycolate medium 

for differentiating staphylococci from micrococci. Appl Microbiol, 23: 326-31. 
 
Falk, D. and Guering, S.J., 1983. Differentiation of Staphylococcus and Micrococcus spp. with 

the Taxo A bacitracin disk. J Clin Microbiol, 18: 719-21. 
 
Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. and Whitehouse, C.M., 1989. Electrospray 

ionization for mass spectrometry of large biomolecules. Science, 246: 64-71. 
 
Fox, K., Castanha, E., Fox, A., Feigley, C. and Salzberg, D., 2008. Human K10 epithelial keratin 

is the most abundant protein in airborne dust of both occupied and unoccupied school 
rooms. J Environ Monit, 10: 55-9. 

 
Fox, K., Fox, A., Elssner, T., Feigley, C. and Salzberg, D., 2010. MALDI-TOF mass 

spectrometry speciation of staphylococci and their discrimination from micrococci 
isolated from indoor air of schoolrooms. J Environ Monit, 12: 917-23. 

 
Fox, K., Fox, A., Rose, J. and Walla, M., 2011. Speciation of coagulase negative staphylococci, 

isolated from indoor air, using SDS PAGE gel bands of expressed proteins followed by 
MALDI TOF MS and MALDI TOF-TOF MS-MS analysis of tryptic peptides. J Microbiol 
Methods, 84: 243-50. 

 
Frank, K.L., Hanssen, A.D. and Patel, R., 2004. icaA is not a useful diagnostic marker for 

prosthetic joint infection. J Clin Microbiol, 42: 4846-9. 
 



 

103 
 

Fujita, S., Senda, Y., Iwagami, T. and Hashimoto, T., 2005. Rapid identification of 
staphylococcal strains from positive-testing blood culture bottles by internal transcribed 
spacer PCR followed by microchip gel electrophoresis. J Clin Microbiol, 43: 1149-57. 

 
Giammarinaro, P., Leroy, S., Chacornac, J.P., Delmas, J. and Talon, R., 2005. Development of 

a new oligonucleotide array to identify staphylococcal strains at species level. J Clin 
Microbiol, 43: 3673-80. 

 
Gilad, J. and Schwartz, D., 2007. Identification of Staphylococcus species with the VITEK 2 

system: the case of Staphylococcus hominis. J Clin Microbiol, 45: 685; author reply 685-
6. 

 
Goebel, B.M. and Stackebrandt, E., 1994. Cultural and phylogenetic analysis of mixed microbial 

populations found in natural and commercial bioleaching environments. Appl Environ 
Microbiol, 60: 1614-21. 

 
Goebel, E.S.a.B.M., 1994. Taxonomic Note: A Place for DNA-DNA Reassociation and 16s 

rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. 
Evol. Microbiol., 44: 846-849. 

 
Goh, S.H. et al., 1997. Identification of Staphylococcus species and subspecies by the 

chaperonin 60 gene identification method and reverse checkerboard hybridization. J Clin 
Microbiol, 35: 3116-21. 

 
Goyal R, S.N.P., Kumar A, Kaur I, Singh M, Sunita N, Mathur M 2006. Simple and economical 

method for speciation and resistotyping of clinically significant coagulase negative 
staphylococci. Indian J Med Microbiol., 24. 

 
Gupta, R.S., 1998. Protein Phylogenies and Signature Sequences: A Reappraisal 

of Evolutionary Relationships among Archaebacteria,Eubacteria, and Eukaryotes. 
Microbiology and Molceular Biology Reviews, 62: 1435-1491. 

 
Hebert, G.A., Crowder, C.G., Hancock, G.A., Jarvis, W.R. and Thornsberry, C., 1988. 

Characteristics of coagulase-negative staphylococci that help differentiate these species 
and other members of the family Micrococcaceae. J Clin Microbiol, 26: 1939-49. 

 
Henzel, W.J. et al., 1993. Identifying proteins from two-dimensional gels by molecular mass 

searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S 
A, 90: 5011-5. 

 
Herchline, T.E. and Ayers, L.W., 1991. Occurrence of Staphylococcus lugdunensis in 

consecutive clinical cultures and relationship of isolation to infection. J Clin Microbiol, 29: 
419-21. 

 
Hillenkamp, F., Karas, M., Beavis, R.C. and Chait, B.T., 1991. Matrix-assisted laser 

desorption/ionization mass spectrometry of biopolymers. Anal Chem, 63: 1193A-1203A. 
 
Hirotaki, S., Sasaki, T., Kuwahara-Arai, K. and Hiramatsu, K., 2011. Rapid and accurate 

identification of human-associated staphylococci by use of multiplex PCR. J Clin 
Microbiol, 49: 3627-31. 

 



 

104 
 

Hu, Q. et al., 2005. The Orbitrap: a new mass spectrometer. J Mass Spectrom, 40: 430-43. 
 
Intelicato-Young, J. and Fox, A., 2013. Mass spectrometry and tandem mass spectrometry 

characterization of protein patterns, protein markers and whole proteomes for 
pathogenic bacteria. J Microbiol Methods, 92: 381-6. 

 
Iwase, T., Seki, K., Shinji, H., Mizunoe, Y. and Masuda, S., 2007. Development of a real-time 

PCR assay for the detection and identification of Staphylococcus capitis, 
Staphylococcus haemolyticus and Staphylococcus warneri. J Med Microbiol, 56: 1346-9. 

 
Jabbour, R.E. et al., 2010. Double-blind characterization of non-genome-sequenced bacteria by 

mass spectrometry-based proteomics. Appl Environ Microbiol, 76: 3637-44. 
 
Jensen, O.N., Podtelejnikov, A. and Mann, M., 1996. Delayed extraction improves specificity in 

database searches by matrix-assisted laser desorption/ionization peptide maps. Rapid 
Commun Mass Spectrom, 10: 1371-8. 

 
Johnson, J.V., Yost, R.A., Kelley, P.E. and Bradford, D.C., 1990. Tandem-in-space and tandem-

in-time mass spectrometry: triple quadrupoles and quadrupole ion traps. Anal Chem, 62: 
2162-2172. 

 
Jukes, L. et al., 2010. Rapid differentiation of Staphylococcus aureus, Staphylococcus 

epidermidis and other coagulase-negative staphylococci and meticillin susceptibility 
testing directly from growth-positive blood cultures by multiplex real-time PCR. J Med 
Microbiol, 59: 1456-61. 

 
Karas, M. and Hillenkamp, F., 1988. Laser desorption ionization of proteins with molecular 

masses exceeding 10,000 daltons. Anal Chem, 60: 2299-301. 
 
Kelleher, N.L., 2004. Top-down proteomics. Anal Chem, 76: 197A-203A. 
 
Kim, S., Gupta, N. and Pevzner, P.A., 2008. Spectral probabilities and generating functions of 

tandem mass spectra: a strike against decoy databases. J Proteome Res, 7: 3354-63. 
 
Kloos, W.E., Thomas G. Tornabene, Karl H. Schliefer, 1974. Isolation and Characterization of 

Micrococci From Human Skin, Including Two New Species: Micrococcus lylae and 
Micrococcus kristinae. IJSEM 24: 79-101. 

 
Knochenmuss, R., 2006. Ion formation mechanisms in UV-MALDI. Analyst, 131: 966-86. 
 
Kocur, M. and Martinec, T., 1967. Contribution to the characteristics of Staphylococcus aureus. 

Vnitr Lek, 13: 866-71. 
 
Kooken, J., Karen Fox, Alvin Fox, Diego Altomare, Kim Creek, David Wunschel, 2013. 

Identification of Staphylococcal species based on variations in protien sequence 
(Tandem mass spectrometry) and DNA sequence (Microarray). Manuscript in Progress. 

 
Kwok, A.Y. et al., 1999. Species identification and phylogenetic relationships based on partial 

HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol, 49: 1181-
92. 

 



 

105 
 

Laiko, V.V., Baldwin, M.A. and Burlingame, A.L., 2000a. Atmospheric pressure matrix-assisted 
laser desorption/ionization mass spectrometry. Anal Chem, 72: 652-7. 

 
Laiko, V.V., Moyer, S.C. and Cotter, R.J., 2000b. Atmospheric pressure MALDI/ion trap mass 

spectrometry. Anal Chem, 72: 5239-43. 
 
Leary, J.J. and Schmidt, R.L., 1996. Quadrupole Mass Spectrometers: An Intuitive Look at the 

Math. Journal of Chemical Education, 73: 1142. 
 
Macek, B., Waanders, L.F., Olsen, J.V. and Mann, M., 2006. Top-down protein sequencing and 

MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol Cell 
Proteomics, 5: 949-58. 

 
March, R.E., 1997. An Introduction to Quadrupole Ion Trap Mass Spectrometry. Journal of Mass 

Spectrometry, 32: 351-369. 
 
Marina, A. et al., 1999. High-sensitivity analysis and sequencing of peptides and proteins by 

quadrupole ion trap mass spectrometry. J Mass Spectrom, 34: 17-27. 
 
Marrie, T.J., Kwan, C., Noble, M.A., West, A. and Duffield, L., 1982. Staphylococcus 

saprophyticus as a cause of urinary tract infections. J Clin Microbiol, 16: 427-31. 
 
Mateo, M. et al., 2005. Genotypic versus phenotypic characterization, with respect to 

susceptibility and identification, of 17 clinical isolates of Staphylococcus lugdunensis. J 
Antimicrob Chemother, 56: 287-91. 

 
Mendoza, M., Meugnier, H., Bes, M., Etienne, J. and Freney, J., 1998. Identification of 

Staphylococcus species by 16S-23S rDNA intergenic spacer PCR analysis. Int J Syst 
Bacteriol, 48 : 1049-55. 

 
Morgan, M.C., Boyette, M., Goforth, C., Sperry, K.V. and Greene, S.R., 2009. Comparison of 

the Biolog OmniLog Identification System and 16S ribosomal RNA gene sequencing for 
accuracy in identification of atypical bacteria of clinical origin. J Microbiol Methods, 79: 
336-43. 

 
Noble, W.C., 1984. Skin Microbiology: Coming of Age. Journal of Medical Micobiology, 17: 1-12. 
 
Noguchi, N. et al., 2010. Using the tannase gene to rapidly and simply identify Staphylococcus 

lugdunensis. Diagn Microbiol Infect Dis, 66: 120-3. 
 
Ohara-Nemoto, Y., Haraga, H., Kimura, S. and Nemoto, T.K., 2008. Occurrence of 

staphylococci in the oral cavities of healthy adults and nasal oral trafficking of the 
bacteria. J Med Microbiol, 57: 95-9. 

 
Pereira, E.M., Oliveira, F.L., Schuenck, R.P., Zoletti, G.O. and Dos Santos, K.R., 2010. 

Detection of Staphylococcus lugdunensis by a new species-specific PCR based on the 
fbl gene. FEMS Immunol Med Microbiol, 58: 295-8. 

 
Phillips, C.I. and Bogyo, M., 2005. Proteomics meets microbiology: technical advances in the 

global mapping of protein expression and function. Cell Microbiol, 7: 1061-1076. 



 

106 
 

Poyart, C., Quesne, G., Boumaila, C. and Trieu-Cuot, P., 2001. Rapid and accurate species-
level identification of coagulase-negative staphylococci by using the sodA gene as a 
target. J Clin Microbiol, 39: 4296-301. 

 
Rhoden, D.L. and Miller, J.M., 1995. Four-year prospective study of STAPH-IDENT system and 

conventional method for reference identification of Staphylococcus, Stomatococcus, and 
Micrococcus spp. J Clin Microbiol, 33: 96-8. 

 
Roth, R.R. and James, W.D., 1988. Microbial ecology of the skin. Annu Rev Microbiol, 42: 441-

64. 
 
Satta, G., D'Andrea, L., Grazi, G., Soro, O. and Varaldo, P.E., 1993. Micrococci demonstrate a 

phosphatase activity which is repressed by phosphates and which can be differentiated 
from that of staphylococci. Int J Syst Bacteriol, 43: 813-8. 

 
Scherer, R.K. and Brown, R.W., 1974. Differentiation of staphylococcal and micrococcal 

proteinases by electrophoresis. Appl Microbiol, 28: 768-73. 
 
Schumann, P., Kampfer, P., Busse, H.J., Evtushenko, L.I. and Subcommittee on the Taxonomy 

of the Suborder Micrococcineae of the International Committee on Systematics of, P., 
2009. Proposed minimal standards for describing new genera and species of the 
suborder Micrococcineae. Int J Syst Evol Microbiol, 59: 1823-49. 

 
Shah, N.B. et al., 2010. Laboratory and clinical characteristics of Staphylococcus lugdunensis 

prosthetic joint infections. J Clin Microbiol, 48: 1600-3. 
 
Shevchenko, A. et al., 1996. A strategy for identifying gel-separated proteins in sequence 

databases by MS alone. Biochem Soc Trans, 24: 893-6. 
 
Sivadon, V. et al., 2005. Use of genotypic identification by sodA sequencing in a prospective 

study to examine the distribution of coagulase-negative Staphylococcus species among 
strains recovered during septic orthopedic surgery and evaluate their significance. J Clin 
Microbiol, 43: 2952-4. 

 
Skoog, D.H., FJ. Crouch, SR, 2007. Principles of Instrumental Analysis. Thomson Learning. 
 
Skow, A. et al., 2005. Species-level identification of staphylococcal isolates by real-time PCR 

and melt curve analysis. J Clin Microbiol, 43: 2876-80. 
 
Spanu, T. et al., 2003. Use of the VITEK 2 system for rapid identification of clinical isolates of 

Staphylococci from bloodstream infections. J Clin Microbiol, 41: 4259-63. 
 
Stackebrant, E., Cathrin Kock, et. al., 1995. Taxonomic Dissection of the Genus Micrococcus: 

Kocuria gen. 
 
nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus 

Cohn 1872 gen. emend. International journal of Systemic Bacteriology, 45: 682-692. 
 
Stafford Jr, G.C., Kelley, P.E., Syka, J.E.P., Reynolds, W.E. and Todd, J.F.J., 1984. Recent 

improvements in and analytical applications of advanced ion trap technology. 
International Journal of Mass Spectrometry and Ion Processes, 60: 85-98. 



 

107 
 

 
Suckau, D. et al., 2003. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. 

Analytical and Bioanalytical Chemistry, 376: 952-965. 
 
Surekha.Y.Asangi , M.J., Sathyanarayan.M.S , Nagabhushan , Rashmi, 2011. Speciation of 

clinically significant Coagulase Negative Staphylococci and their antibiotic resistant 
patterns in a tertiary care hospital. Int J Biol Med Res., 2: 735-739. 

 
Tanaka, K. et al., 1988. Protein and polymer analyses up to m/z 100 000 by laser ionization 

time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2: 151-
153. 

 
Tang, J.S., 2003. Reclassification of ATCC 9341 from Micrococcus luteus to Kocuria rhizophila. 

International Journal of Systematic and Evolutionary Microbiology, 53: 995-997. 
 
Van Riper, S.K., de Jong, E.P., Carlis, J.V. and Griffin, T.J., 2013. Mass spectrometry-based 

proteomics: basic principles and emerging technologies and directions. Adv Exp Med 
Biol, 990: 1-35. 

 
Whitehouse, C.M., Dreyer, R.N., Yamashita, M. and Fenn, J.B., 1985. Electrospray interface for 

liquid chromatographs and mass spectrometers. Anal Chem, 57: 675-9. 
 
Wieser, M. et al., 2002. Emended descriptions of the genus Micrococcus, Micrococcus luteus 

(Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol, 52: 
629-37. 

 
Wollnik, H., 1993. Time-of-flight mass analyzers. Mass Spectrometry Reviews, 12(2): 89-114. 
 
Yates, J.R., 3rd, 1998. Mass spectrometry and the age of the proteome. J Mass Spectrom, 33: 

1-19. 
 
Yugueros, J. et al., 2000. Glyceraldehyde-3-phosphate dehydrogenase-encoding gene as a 

useful taxonomic tool for Staphylococcus spp. J Clin Microbiol, 38: 4351-5. 
 
 


	University of South Carolina
	Scholar Commons
	1-1-2013

	Development of Proteomic Characterization and Speciation Techniques Utilizing Tryptic Peptides with MALDI-TOF MS and LC-ESI MS-MS
	Jennifer Marie Kooken
	Recommended Citation



