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ABSTRACT 

 Obesity is widely correlated with the incidence of colorectal cancer (CRC).  The 

exact mechanisms that link obesity to CRC risk have not yet been fully established, and 

only a limited number of animal models are available to study pathways involved in 

obesity-related colon carcinogenesis.  The objective of this study was to determine the 

influence of HFD-induced obesity on AOM/DSS-mediated colorectal tumorigenesis, 

tumor proliferation, and symptom severity.  Male C57BL/6 mice were fed a novel high 

fat diet, designed to mimic the standard American diet (12 % saturated fat & 28 % 

unsaturated fat), at 4 weeks of age until 16 weeks of age to induce obesity.   At 16 weeks 

of age HFD-fed mice had significantly increased mean body mass compared to LFD-fed 

mice. Thus, mice were obese prior to initiation of CRC.  Following treatment with 

AOM/DSS, study results indicated no significant changes in tumor number or size with 

obesity.  Similarly, obesity did not increase the severity of symptoms in this model. 

These findings challenge previously published data, with the caveat that the low number 

of tumors detected in the present model limits translational implications for tumor 

characteristics and symptom severity in obesity. 
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CHAPTER 1 

INTRODUCTION 

As the second leading cause of cancer-related deaths for both men and women in 

the United States, colorectal cancer (CRC) is a national burden.  It is the third most 

commonly diagnosed cancer and is of increasing health concern to a growing aging 

population 1,2.   It has been shown in epidemiological studies that obesity and metabolic 

syndromes, like hyperglycemia, hypertension, and hyperlipidemia, increase the risk of 

developing CRC 3.  As such, lifestyle factors such as limited physical activity, 

consumption of food with high fat/limited fiber content, high caloric intake, and obesity 

are controllable factors that can influence the development of CRC 4.  Conversely, it has 

been demonstrated that behavioral factors like exercise and consumption of fruits and 

vegetables, even among obese individuals, can reduce the incidence of CRC 4.  While 

family history is a large component in determining CRC risk, environmental factors are 

responsible for the majority of cases.  In fact, sporadic CRC, the most prominent form of 

CRC that occurs due to an accumulation of mutations in genes regulating the growth and 

proliferation of colonic epithelial cells is influenced largely by environmental factors 

independent of genetic background 5. 

Obesity is widely correlated with the incidence of CRC 6.  The exact mechanisms 

that link obesity to CRC risk have not yet been fully elucidated; however, a number of 

biochemical changes associated with obesity have been implicated and include 

inflammatory mediators, adipokines and metabolic markers among others.  For example 
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leptin that is upregulated in obese individuals is a hormone and cytokine produced 

primarily by adipocytes has been shown to induce CRC by a variety of different 

pathways 4.  Similarly, increased plasma levels of insulin observed during obesity disrupt 

normal metabolic processes and thought to activate pathways involved in oncogenesis 4.  

In addition, inflammatory mediators that are increased in adipose tissue have been linked 

to every step involved in the development and promotion of CRC. While there is an 

abundance of obesity-mouse models, the number of models available to study pathways 

involved in colon carcinogenesis is limited 3. 

Among the chemically induced CRC models, the azoxymethane (AOM) and 

dextran sodium sulfate (DSS) model has been proven to induce CRC in a shortened 

amount of time with a high level of reproducibility 7.  This outstanding model has been 

utilized in a variety of studies investigating the histopathologic and molecular features 

involved in carcinogenesis as well as determining chemopreventive and therapeutic 

approaches in combating CRC 7.  The purpose of this current investigation was to 

examine the effects of high fat diet induced obesity on CRC.  In this study, male 

C57BL/6 mice were fed a novel high fat diet, designed to mimic the standard American 

diet (12 % saturated fat & 28 % unsaturated fat), at 4 weeks of age until 16 weeks of age 

to induce obesity.   At 16 weeks of age mice were exposed to the CRC protocol.  Thus, 

mice were obese prior to initiation of CRC.  This clinically relevant model aims to mimic 

the conditions of tumor initiation and progression that occurs in obese humans.  Previous 

studies have co-induced obesity and CRC with the AOM/DSS protocol; however, this 

approach fails to account for the conditions observed in the at risk obese population prior 

to the onset of colon cancer.  We hypothesized that obesity induced prior to initiation of 
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CRC would lead to increased severity of sickness symptoms in association with enhanced 

tumorigenesis.  A better understanding of the impact of obesity on CRC is necessary in 

determining possible therapeutic targets and/or preventative screening and diagnostic 

techniques. 

.
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CHAPTER 2 

MATERIALS & METHODS  

2.1 ANIMALS 

Male C57BL/6 mice, 4 weeks of age, were purchased from Jackson Laboratories 

(Bar Harbor, ME) and cared for in the animal facility at the University of South Carolina.  

They were housed four-five per cage and maintained on a 12:12-hr light-dark cycle in a 

low stress environment (22°C, 50% humidity, low noise) and given food and water ad 

libitum.  All animal experimentation was approved by the University of South Carolina's 

Institutional Animal Care and Use Committee.   

2.2 DIETS 

Mice were randomly assigned to one of five treatment groups as follows: 1) Low 

Fat Diet-Control (LFD-Con), 2) High Fat Diet-Control (HFD-Con), 3) Low Fat Diet-

Colorectal Cancer (LFD-CRC), 4) High Fat Diet-Colorectal Cancer Group 1(HFD-CRC-

1) or 5) High Fat Diet-Colorectal Cancer Group 2 (HFD-CRC-2).  HFD-CRC-1 and 

HFD-CRC-2 differed in the dose of azoxymethane (AOM) that was administered to 

initiate the cancer; group 1 received a dose of AOM based on body weight (10mg/Kg) 

whereas group 2 received a dose of AOM that was equivalent to the LFD-CRC group.   

This was done in order to eliminate any potential differences among the groups due to the 

dose of AOM.  The HFD (12% saturated fat & 28% unsaturated fat) was designed to 

mimic the standard American Diet (Bio-Serv, Frenchtown, NJ) (Table 2.1).  The AIN-

76A diet was used as the LFD (Bio-Serv).  Diets were administered beginning at 4 weeks
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of age through sacrifice at 26 weeks of age. The HFD retained the same vitamin and 

mineral content as the control diet.  Food and water was available ad libitum and 

measured on a weekly basis. 

2.3 BODY WEIGHT & BODY COMPOSITION 

Body weight was examined weekly beginning at 4 weeks of age and for the 

duration of the 22 week study.  In addition, body composition was assessed at 16 weeks 

of age (prior to initiation of the CRC protocol) and at 26 weeks of age (prior to sacrifice).  

For this procedure, mice were placed under brief anesthesia (isoflurane inhalation) and 

were assessed for lean mass, fat mass, and body fat percentage via dual-energy x-ray 

absorptiometry (DEXA) (Lunar PIXImus, Madison, WI).   

2.4 COLORECTAL CANCER PROTOCOL 

To induce colorectal cancer, mice in the CRC groups underwent a standard 

protocol consisting of a single subcutaneous injection of azoxymethane (AOM) at 16 

weeks of age, followed by 3 cycles of DSS (2% DSS in water for one week followed by 

two weeks of regular water for the first cycle and 1% DSS in water for the second and 

third cycles) beginning at week 17.  Both the LFD-CRC and the HFD-CRC-1 groups 

received a dose of AOM based on their body weight (10mg/Kg body weight) whereas 

HFD-CRC-2 received a dose of AOM that was equivalent to the LFD-CRC group.   As 

mentioned above, this was done in order to eliminate any potential differences among the 

groups due to the dose of AOM (i.e. an increase in tumor number with HFD that may be 

due to the increased concentration of AOM that was administered to these mice given 

their increased weight). 

2.5 SYMPTOM SCORING 
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Symptoms were scored twice weekly throughout the 10 week protocol using a 

standard scoring system that has previously been used in this model.  Briefly, scores were 

based on diarrhea, blood in stools and weight loss.  Diarrhea symptoms were evaluated 

based on visualization of the fecal matter.  Blood in the stools was determined using a 

Hemoccult Fecal occult blood test.  Weight loss was based on the percent change in 

weight compared to baseline levels.   Mice were given scores of 0, 2 or 4 depending on 

the severity of the symptoms. 

2.6 SACRIFICE & TISSUE COLLECTION 

At 26 weeks of age, mice were sacrificed for tissue collection via isofluorane 

overdose.  The kidney fat, mesenteric fat and epididymal fat were removed, weighed, and 

immediately snap-frozen in liquid nitrogen and stored at -80°C.  The large intestine was 

dissected from the cecum to the anus and placed on filter paper.  A large needle and 

syringe was used to flush the large intestine with PBS.  The large intestine was then cut 

longitudinally, flattened with a cotton swab saturated with PBS, and another filter paper 

was placed on top of the sections. The filter paper was then sandwiched between two 

pieces of blotting paper, clipped together on all four sides, and subsequently fixed in 10% 

formalin for at least 24 hours. After that time, the sections were transferred and stored in 

70% ethanol at room temperature to be further analyzed for tumor number and size. 

2.7 TUMOR COUNTS 

To count tumors, the large intestines were rinsed in deionized water, and briefly 

stained in 0.1% methylene blue.  Tumors were counted by the same blinded technician 

for all samples under a dissecting microscope, using tweezers to pick through the villi to 

identify tumors.  Tumors were classified as being greater than 2mm, less than 2mm but 
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greater than 1mm, or less than 1mm in diameter using an ocular micrometer.  Colon 

lengths were measured as an indicator of inflammation; a shorter colon length is 

indicative of greater inflammation.   Similarly, colon weight was determined as an 

increase in colon weight has been associated with elevated inflammation. 

 

 



 

Table 2.1 Diet composition of treatment diets
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of treatment diets 
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CHAPTER 3 

RESULTS 

3.1 BODY WEIGHT & BODY COMPOSITION 

Body composition was calculated by DEXA and lean mass, percent lean mass, 

total body fat, and body fat percent were determined (Figure 3.1).  The mice consuming 

the HFD had significantly elevated body fat and percent body fat relative to LFD-fed 

mice by 16 weeks of age (following 12 weeks of HFD feedings and prior to initiation of 

CRC), thus HFD-fed mice were obese prior to induction of CRC at 16 weeks of age 

(P≤.05).  While we observed a general increase in lean mass at sacrifice compared to 

baseline for all groups, the percent lean mass for HFD-fed mice was significantly reduced 

relative to the LFD-fed mice (P≤.05).  Conversely, body fat and percent body fat at 

sacrifice were significantly increased versus baseline in all the HFD groups.   

Interestingly, at sacrifice the LFD-CRC mice had significantly lower body fat and body 

fat percent than the LFD-Con, but the HFD-CRC-1 & 2 mice had significantly increased 

body fat and body fat percent compared to HFD-Con mice.  

Body weight was monitored twice weekly throughout the 10 week AOM/DSS 

protocol and was expressed as a percent of baseline (i.e. normalized to measured body 

weight prior to the initiation of the AOM/DSS protocol) (Figure 3.2A).  The LFD-Con 

and HFD-Con groups maintained a greater rate of body weight gain during the course of 

treatment and these groups were different from each other at most time-points.  However, 

as expected, an overall decrease in body weight in the LFD-CRC group was observed
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from weeks 17.5 to 22 and was significantly different from all other groups (P≤.05).  The 

HFD-CRC-1 & 2 groups had a significantly greater increase in percent change in body 

weight than the LFD-CRC group from 17.5 weeks to 22 weeks (P≤.05).   

3.2 SYMPTOM SEVERITY 

Symptom scores were calculated twice weekly throughout the 10-week protocol 

and were based on diarrhea, blood in stools and body weight loss (Figure 3.2B).  

Symptom scores in all groups followed the same general trend; there was an increase in 

symptom score during each week of DSS treatment, which dropped in the subsequent 2 

weeks during the water cycle.  The only significant increase in symptom severity score 

was observed in LFD-CRC mice compared to HFD-CRC-2 mice at week 18.5 (P≤.05). 

3.3 FOOD & FLUID INTAKE 

It was not possible to calculate individual food intake, as mice were housed 4-

5/cage.  However, in general, we did not observe any differences among the HFD-fed 

mice in weekly food intake (i.e food consumed by mice in each cage/number of mice in 

cage) over the course of the study.   

3.4 TISSUE WEIGHTS 

Fat pads were collected at sacrifice and for all fat pad depots, the HFD-fed mice 

had enhanced fad pad mass compared to the LFD-fed mice (Figure 3.3) (P≤.05).  Both 

HFD-CRC-1 & 2 groups had a significantly greater epididymal fat pad mass than HFD-

Con mice; however, the HFD-CRC-1 & 2 groups had reduced mesentery fat pads relative 

to HFD-Con. 

Spleens were collected and weighed at sacrifice (Figure 3.4).  In general, spleen 

weight, expressed as a percent of body weight, increased in all CRC groups as compared 
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to the control HFD and LFD mice and this reached significance when LFD-CRC mice 

were compared to HFD-Con mice (P≤.05).  

3.5 TUMOR COUNTS 

 At sacrifice, colons were harvested and tumors were counted on formalin-fixed, 

methylene blue-stained sections.  No significant differences between groups were 

determined; however, the number of polyps in the LFD-CRC and HFD-CRC-2 groups 

was elevated compared to HFD-CRC-1 (Figure 3.6).  Colon length and weight were 

measured following fixation.   No significant differences were observed between groups 

for colon length and colon weight, (Figure 3.5). 



 

 

 

 

 

Figure 3.1 DEXA body composition collected at baseline (16 weeks of age) and at 
sacrifice (26 weeks of age) on (A) lean mass and BMC, (B) body fat, (C) % lean mass 
and BMC, (D) % body fat.  *Significantly different from LFD
#Significantly different from 
CRC (P≤.05) 
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DEXA body composition collected at baseline (16 weeks of age) and at 
sacrifice (26 weeks of age) on (A) lean mass and BMC, (B) body fat, (C) % lean mass 
and BMC, (D) % body fat.  *Significantly different from LFD-Con (P≤.05). 
#Significantly different from HFD-Con (P≤.05).  $Significantly different from LFD

DEXA body composition collected at baseline (16 weeks of age) and at 
sacrifice (26 weeks of age) on (A) lean mass and BMC, (B) body fat, (C) % lean mass 

.05). 
.05).  $Significantly different from LFD-
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Figure 3.2 The impact of HFD and CRC on (A) percent change in body weight.  
*Significantly different from LFD-Con (week 17.5-18: HFD-Con & LFD-CRC; week 
18.5-19: HFD-Con, LFD-CRC, & HFD-CRC-1 & 2; week 19.5-21.5: HFD-Con, LFD-
CRC, & HFD-CRC-1; week 22-24.5: HFD-Con & LFD-CRC; week 25-26: HFD-Con, 
LFD-CRC, & HFD-CRC1&2; P≤.05)  #Significantly different from HFD-Con (week 
16.5-17: LFD-CRC; week 17.5-26: LFD-CRC & HFD-CRC-1&2; P≤.05).  
$Significantly different from LFD-CRC (week 17.5-26: HFD-CRC-1&2; P≤.05). (B) 
The effect of DSS induced inflammation on symptom scores.  $Significantly different 
from LFD-CRC (week 18.5: HFD-CRC-2 only; P≤.05) 
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Figure 3.3 The effect of HFD and CRC on (A) epididymal, (B) mesentery, 
(C) kidney, and (D) total visceral (Total) fat pad weights at sacrifice. 
*Significantly different from LFD-Con (P≤.05). #Significantly different from 
HFD-Con (P≤.05).  $Significantly different from LFD-CRC (P≤.05) 
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 Figure 3.4 Spleen weight at sacrifice as a measure of inflammation and CRC 
immune response. #Significantly different from HFD-Con (P≤.05) 
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 Figure 3.5 The effect of CRC and DSS induced inflammation on (A) colon length 
and (B) colon weight.  *Significantly different from LFD-Con (P≤.05). 
#Significantly different from HFD-Con (P≤.05).  $Significantly different from 
LFD-CRC (P≤.05) 
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Figure 3.6 The impact of CRC induction at sacrifice for (A) total polyp number & (B) 
total polyp number by size.  No significant differences between any groups 
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 Figure 3.7 Mean (A) food consumption & (B) water consumption per group. 
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CHAPTER 4 

DISCUSSION 

CRC is the second leading cause of cancer related deaths worldwide and is a 

serious public health concern.  Lifestyle factors, such as obesity, smoking, high caloric 

intake and physical inactivity, have been linked to increased mortality in CRC cases and 

are controllable factors in the prevention of CRC development and progression 7.  

Clinical studies suggest that up to 20% of all cancers are attributed to obesity.  Further, it 

has been well characterized that obesity is widely correlated with the incidence of CRC 7.  

In addition, obesity is largely responsible for poorer oncologic outcomes in CRC 

treatment and management 7.  Our novel study examined the impact of HFD-induced 

obesity in a mouse model of CRC by initiating obesity prior to colon carcinogenesis and 

is thus, clinically relevant to the human obese population at risk for developing CRC. 

However, we did not find any significant changes in tumor number or size with obesity.  

Similarly, obesity did not increase the severity of symptoms in this model.   

Currently, AOM/DSS-induced carcinogenesis in animal models is widely 

accepted and offers a reliable, reproducible, and time-effective approach for the study of 

colonic tumorigenesis 7.   Previous studies have utilized this model to investigate the link 

between obesity and colonic/colitis-related carcinogenesis.  It is well established that 

adipocytes regulate inflammatory processes and secrete proinflammatory cytokines, 

which have been linked to increased proliferation of colonic epithelial cells and 

facilitation of a microenvironment prone to tumor development 8.  For example, Park et
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al. showed that HFD induced obesity in a colitis-related tumorigenesis model increased 

tumor formation and revealed that adiposity-associated inflammation contributes to 

colonic epithelial cell carcinogenesis 9.  In addition, the AOM/DSS model has been 

widely used to explore potential chemopreventive and therapeutic agents in the treatment 

of obesity and colitis-related colonic carcinogenesis 8. 

In our study, male C57BL/6 mice were fed either a LFD (AIN-76A) or HFD 

(12% saturated fat and 28% unsaturated fat) at 4 weeks of age and placed in one of five 

groups (LFD-Control, HFD-Control, LFD-CRC, HFD-CRC-1, and HFD-CRC-2). The 

HFD was designed to be similar to the American standard diet; we previously 

demonstrated that this diet led to increased adiposity, macrophage infiltration, and insulin 

resistance in obese mice 10.  As such, in our study, we observed that at 16 weeks of age 

the HFD-fed mice had significantly increased mean body mass compared to LFD-fed 

mice, thus were obese prior to administration of AOM/DSS treatment (P≤.05).  Enos et 

al. and others have shown that varying saturated fatty acid composition leads to an 

increased risk of obesity and can differentially regulate inflammatory processes, thus it is 

now widely accepted that high-fat-diet-induced obesity can lead to a chronic state of low-

grade inflammation 10.  Although inflammatory processes were not measured in the 

current investigation, we expected that obesity-induced inflammation following 

administration of this diet, would contribute to the hypothesized effects of increased 

tumorigenesis with obesity.   

DSS, a proinflammatory agent, accelerates tumor growth and proliferation when 

instituted following an intraperitoneal injection of AOM by promoting cell growth in the 

epithelial lining of the colon while also halting apoptosis 7.  Similarly, inflammation, as 
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seen in inflammatory bowel disease and Crohn’s disease, also contribute to the 

development of CRC through various mechanisms that disrupt cellular function and 

regulation 11.  We observed in the weeks following treatment with DSS that the sickness 

symptoms in all the AOM/DSS groups was lower than expected and remained diminished 

over the remainder of the study.  This decrease in sickness symptoms over time is 

consistent with previous reports; in a comprehensive review by De Robertis et al., it was 

reported that severe colitis is observed in the week following initial administration of 

DSS but its severity is diminished in subsequent weeks 7.  Contrary to expectations 

though, we did not find an increase in symptom severity in the HFD groups.  Similarly, at 

sacrifice, the colon length in the AOM/DSS treated groups did not decrease, suggesting 

little to no inflammation.  A decrease in colon length is a characteristic feature observed 

in an inflamed colon, therefore these findings were unexpected.  Further, tumor number 

was quite low and there were no differences in tumor size or tumor numbers with HFD.  

In a recent series of studies we conducted on colitis-related colon carcinogenesis, 2% 

DSS was administered in all three treatment cycles; however, a high number of fatalities 

prior to sacrifice limited the scope of the study. In this study, we subsequently reduced 

the dosage of DSS to 2%, 1%, and 1% at weeks 17, 20, and 23, respectively; however, 

contrary to what was expected, we found tumor numbers to be lower than those reported 

in the literature.  These findings of a failure to find a detrimental effect of obesity on 

tumorigenesis in this model should be interpreted with caution; it is certainly possible 

that low tumor numbers precluded our ability to find changes in tumor characteristics 

across the groups.    
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A possible explanation for the discrepancy in inflammation and CRC tumor 

development may be the difference in the dosage of DSS.  It has been established that the 

risk of developing CRC is positively correlated with the degree of inflammation within 

the colon and the duration of the inflammatory disease state. A DSS dosage study 

conducted with AOM-induced CRC carcinogenesis reported that 2% DSS treatment 

resulted in the highest number of colorectal adenocarcinomas 12.  Similarly, it was also 

reported that inflammation scores were higher in mice receiving 2% DSS, suggesting 

there is a tumor-promoting activity in DSS 12. As inflammation is necessary in the 

induction of tumor formation, this may help to explain the minimal number of tumors 

observed in our model. In addition, it is worthwhile mentioning that the body weight and 

age of mice at time of AOM/DSS treatment were greater than those reported in previous 

models, which may have also contributed to the observed findings. Another possible 

rationale for the inconsistent tumor number and inflammatory symptom severity may be 

due to the extent of excess fat accumulation at the time of AOM/DSS treatment.  While 

obesity is generally understood to have a proinflammatory effect in the colon, our results 

suggest that obesity may have some protective role in the initiation of CRC.  This affirms 

the need for future research utilizing HFD-induced obesity models to better understand 

the relationship between obesity and colorectal tumorigenesis.  

In summary, we examined the influence of HFD-induced obesity on 

inflammatory-mediated colorectal tumorigenesis, tumor proliferation, and symptom 

severity.  In general, there was no increase in symptom severity with HFD-induced 

obesity.  Similarly, in regard to tumor number, our findings are contradictory to 

previously published data that ad libitum, high-fat diet induced obesity leads to an 
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increased risk of CRC development. However, our findings should be interpreted with 

caution; it is certainly possible that low tumor numbers precluded our ability to find 

changes in tumor characteristics and symptom severity with obesity.   Although obesity 

has implications of having proinflammatory and carcinogenic outcomes in the colon, 

future research should examine the degree to which HFD induced obesity impacts 

metabolic disruption, pro-inflammatory signaling, and subsequent initiation and 

proliferation of CRC as well as determine the pro-oncogenic factors involved in this 

process.  
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