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ABSTRACT 

The integration of evolutionary biology with traditional medicine can elucidate 

novel mechanisms of contemporary disease. Whereas the goal of traditional medicine is 

to treat and cure the proximate causes, evolutionary biology aims to understand the 

driving forces behind why humans are susceptible to disease. To form the basis of this 

hypothesis we postulate that modern man’s current genetic information was programmed 

at a time, and in an environment, that is not relevant to today’s human populations. The 

discordance between these genes of our ancestors and the environment of contemporary 

humans is thought to be a major reason for the increase in chronic diseases. Accordingly, 

the “Old Friends” Hypothesis is presented here to help understand the environment in 

which our ancestors evolved, emphasizing the relationship between humans and 

microorganisms that have an adaptive role in the human immune system. Furthermore, as 

societies and civilizations progressed throughout history, the human disease-scape began 

to change. The rise in epidemic infectious disease is tied to the advent of agriculture, and 

continues to be a major cause of mortality in developing nations. In Westernized nations 

mortality from infectious disease has decreased and life expectancy has nearly doubled in 

the last century. However, quality of life for many has diminished by the emergence of 

complex, chronic diseases such as cardiovascular disease, obesity, and type II diabetes. 

Current research supports the idea that an understanding of the evolutionary history of 

humans and their pathogens can be used as a complement to traditional approaches in 

disease treatment and prevention.
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CHAPTER 1 

INTRODUCTION 

Medicine and evolutionary biology are two profoundly distinct fields within the 

realm of basic science. Medicine stresses basic principles of chemistry, physics, and 

human biology, while also unifying these principles to understand physiology, 

embryology, and proximate causes of disease pathology. The primary goal of medicine is 

to cure the individual, to heal by taking solely what is applicable from these basic 

theories. Medicine aims to cure by solving the proximal causes of disease because these 

proximal causes are typically the most obvious and allows for the opportunity to “act and 

react” in attempts to quell disease manifestation or progression.1 On the other hand, 

evolutionary biology is a collection of theories used to understand the variation in living 

beings.1 Those in the field of evolutionary biology seek to understand the ultimate 

processes that shaped the diversity of life on Earth. In the simplest terms, medicine shows 

us how, and evolutionary biology shows us why. Thus, integrating these interdisciplinary 

pursuits seems logical because such a union may shed light on the “missing piece” of 

countless medical phenomena. However, despite contemporary advances in each 

respective field, full integration has been difficult to accomplish.

Charles Darwin’s contribution to evolutionary theory has helped explain the 

diversity of living organisms and has influenced how we observe life and its origins. His 
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writings have been applied to medicine since their emergence; however, it is important to 

note that two products of his theories, medical Darwinism and Darwinian medicine, are 

fundamentally different and are far from interchangeable.1 Medical Darwinism 

materialized soon after the 1859 publication of Origin of Species. Darwin’s own writings 

stressed the principle of pathological heredity, that inheritance of disease proved 

inheritance of variation, which became a backbone of his theory of natural selection.2 

Classical Darwinism (1880-1920) was centralized around a typological approach: 

through the selection of traits, “types” are shaped. These “types” each have certain 

commonalities that may be structural, functional, or behavioral and are akin to what we 

know as phylogenetic families, groups, or species.1 The formation by natural selection of 

these certain types is a result of the elimination of unfavorable traits and the accrual of 

favorable ones that improve survival or reproduction of individuals. Those who applied 

Darwinism to medicine thought that natural selection was an all-or-nothing process and 

that traits were either strictly good or entirely harmful.1 It was thought that natural 

selection allowed for the “better” traits to be conserved, the “lesser” traits to be 

eliminated and that pathology was a result of traits that escaped natural selection.1 This 

“black and white” approach lead to the idea that natural selection was not applicable to 

modern man.1 English surgeon Lawson Tait was one of the first physicians to accept 

Darwinian theory and posed the notion that “the deteriorating constitutions of modern 

man [is] proof that medicine was keeping alive many who would have otherwise 

perished.”3 However, the erroneous belief that natural selection worked to eliminate 

through mortality rather than modify through differential reproductive success lead to the 

foundations of the eugenic paradigm.4 Aiming to improve the human race and counter the 
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perceived failures of natural selection, the founding of the eugenic paradigm and its grim 

consequences rendered medical Darwinism unpopular in the United States.1,4 The decline 

of medical Darwinism can also be attributed to the Flexner reform, which stressed 

medical research and experimentation rather than abstract application of ideas, as well as 

religious issues, as the teachings of Darwin were prohibited in many schools in the 

United States in the first half of the 20th century.5  

 In 1991, George Williams and Randolph Nesse published the first comprehensive 

paper on evolutionary principles as a foundation for modern biomedical science titled The 

Dawn of Darwinian Medicine.6 This publication is considered to be the birth of 

“Darwinian medicine,” both the term and as a discipline. The phrase “medical 

Darwinism” was only used by medical historians to describe the previously discussed 

school of thought and was never actually used by Darwinian clinicians of the late 1800s 

and early 1900s.1 In contrast, Nesse and Williams intended to create a new discipline, 

coining the phrase “Darwinian medicine.”1  

Several advances have occurred within evolutionary biology over the last sixty 

years and preceded development of a new discipline.1 Firstly, contrasting with previous 

ideas of medical Darwinism, it is now known that natural selection operates at the level 

of genes and not at the level of individuals or species.6 Natural selection is the result of 

differential representation of genes across generations, and genes become more frequent 

in populations if they increase reproduction.6 It is worth noting that natural selection and 

an increase in gene frequency in order to increase reproductive success do not always 

lead to beneficial outcomes for the individuals of a species, as selection tends to flow 

towards an increase in genetic representation in the next generation regardless of an 
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expense to health after reproductive age.7 Essentially, one can personify genes as being 

“selfish,” as if the ultimate goal of genes is to use a body as a vector in order to be passed 

on to the next generation at any cost, so long as there are no negative effects on 

reproduction and fecundity of an individual.8 Traits that extend life or make life easier to 

live are evolutionarily irrelevant unless they also increase reproduction.9 In contrast with 

medical Darwinism, natural selection does not favor “good” traits over “bad” traits; the 

outcomes of selection may be positive or negative, working to potentiate genes that 

positively affect reproduction. Examples of this could be pathogen resistance or ability to 

choose a healthy, fertile mate. A second advancement that contributed to the development 

of Darwinian medicine was the discovery of genetic polymorphisms (or polymorphic 

alleles), which are natural variations in genetic material and are fairly common within 

populations.10 The study of genetic polymorphisms is a way to quantify what makes 

individuals unique within a species, for example, eye color, hair color, and blood type in 

humans. A third important finding in the field is the concept of genetic pleiotropy, or the 

idea that a certain gene can control many phenotypic traits, potentially having both 

positive effects on one trait and negative effects on another.11 This gives rise to a tradeoff 

among two or more traits, which is described by Fabio Zampieri as an “evolutionary 

enhancement in the contribution to fitness of one trait that is linked through development 

and physiology to an erosion in the contribution to fitness of another trait.”1 For instance, 

genes that apparently cause detrimental effects later in life may actually be preserved by 

natural selection if those genes have beneficial effects at a younger age. The converse is 

also true: a gene that repairs or prevents the abnormalities associated with aging will not 

be favored by natural selection if it imposes even the smallest cost early in life.6 Built 
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upon Darwin’s theories, these three ideas suggest that the adaptations produced via 

natural selection are compromises that are far from perfect and may also have concurrent 

maladaptations.6,7,12 To put this into the scope of medicine, one must be aware of some of 

the accumulated compromises shaped by natural selection in order to thoroughly 

understand the human body and the causes of disease. A concept described by Nesse and 

Williams in their book, Why We Get Sick: The New Science of Darwinian Medicine, the 

adaptationist program refers to conceptualizing known aspects of human biology as 

functionally significant adaptations. This “functional adaptation approach” may 

subsequently lead to the prediction of unknown facets of human biology, and, through 

investigation, one may determine if the functional adaptations are clinically relevant.13 

 So, why do we get sick? Nesse and Williams attempt to answer this question 

based not on disease itself but vulnerability to disease. Because natural selection results 

in imperfect compromises, the structures and functions that are shaped by selection are 

vulnerable to disease.7,13 In the discussion of disease vulnerability, it is important to 

remember not only the accumulated adaptations as well as maladaptations that selection 

has not overcome, but also the evolutionary history of humans and our pathogens. There 

are six causes of disease vulnerability:  

1) A mismatch between our evolutionary design and our environment, for 

example, premature death by heart disease caused by diet and exercise choices 

due to a metabolism shaped in an environment where over-abundance of 

scarce nutrients were rare. Selection in favor of our current food environment 

has not yet occurred.7,14  
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2) Competition with pathogens and other organisms due to selection occurring at 

a higher rate in pathogen populations than in host populations. This is seen in 

the case of antibiotic resistance.7,15,16  

3) Tradeoffs between traits occur because any potential improvements to one 

trait will inevitably result in the dysfunction of another trait.7,17 Our bones 

could be much thicker and less prone to breakage, however, doing so would 

require much more strength to move them as well as put unnecessary stress on 

delicate or complex joints, such as the pectoral girdle.  

4) Natural selection can only work with what is already present, which may 

provide limits in future generations. For example, bipedalism allows us to run 

and move quickly, hold our offspring, use tools, and see greater distances; 

however, the price paid for these benefits is pain in the neck and lower back.7  

5) Selection is often misunderstood as something that will lead to improvements 

of all traits, however, selection acts to improve reproductive success.7 If a 

gene increases reproductive success it will continue to be selected for, even at 

the expense of health, happiness, or longevity later in life.9 

6) Many defenses, such as cough, fever, pain, nausea, vomiting, fatigue, and 

anxiety are misinterpreted as disease rather than defense.7 Much of the time 

these defenses are seen as the problem. The expression of these defenses in 

the presence of disease often leads clinicians to treat by blocking these 

mechanisms, which may not be problems at all, but the body’s solution to an 

underlying dysfunction. Blocking a defense may have harmful 

repercussions.15  
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Using research from evolutionary biology and biological anthropology, we can 

apply an evolutionary perspective to diagnosing and treating disease in the modern world. 

For instance, when treating an infectious disease, as described above, it is crucial to be 

able to distinguish what is a cause of the disease and what is a consequence of the 

disease.15 It is also important to determine if the symptoms presented are a host defense 

or a parasite manipulation of the host, which would determine the course of action for 

treatment. For example, treating a cold with an anti-inflammatory drug has shown to 

lengthen the course of some infections due to suppression of pain as well as inflammatory 

responses that would otherwise aid in fighting the infection.15 Also, the coevolution 

between pathogens and their hosts has caused host traits to evolve in response to the 

evolution of pathogen traits that determine virulence, and vice versa.15,16,18 A pathogen’s 

virulence can further evolve in response to changes in population density, transmission, 

interaction with other pathogens or noninfectious conditions, antibiotic use, and countless 

other ways, which may render current or previous treatment plans ineffective.6,16,18  

The mechanisms by which the body handles mechanical damage or toxins can 

also be considered in an evolutionary context. For example, the swelling around a joint 

after an injury is not simply a bothersome side effect: it restricts movement and inflicts 

pain when used, facilitating the healing process.13 Emotions that are part of the stress 

response, such as fear or panic, may seem to be a weakness in the development of our 

psyche. From an evolutionary standpoint, these responses are extremely useful tools in 

the perception of potential impeding danger, yet are calorically expensive and can 

produce harmful effects if they persist chronically.6,19 As for toxins, humans are able to 

detoxify a considerable array of toxins and instinctively prefer a varied diet in order to 
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avoid toxin overload.6 Virtually all plant matter produces some kind of toxin to protect 

itself from predation, even if present in trace amounts.20 The most widely consumed drug 

in the world, caffeine, makes us feel great but is produced by coffee seeds to deter or kill 

any small animal or insect that preys on them. Pregnancy sickness is another way 

selection has shaped traits that influence the production of offspring. The protective 

mechanism of aversion to bitter taste experienced by most women during their first 

trimester of pregnancy indicates the presence of toxins.21 Consuming toxins within this 

stage of gestation can lead to problems with tissue differentiation, and it has been found 

that miscarriages are more common in women who are not afflicted with pregnancy 

sickness.21 

Another key concept in the field of evolutionary medicine is the hygiene 

hypothesis and its derivative the “old friends hypothesis.”22 This hypothesis is based on 

the idea that in developed, modern nations, lack of exposure to certain infectious 

pathogens, parasites, or symbiotic microorganisms leads to immune dysregulation.23 Our 

immune system has been selected to defend against the continuous bombardment by 

microorganisms while also developing a somewhat symbiotic relationship with particular 

bacteria, helminthes, and other parasites along our evolutionary journey via diet or 

lifestyle.24 However, in the present, many humans no longer live in an environment that 

facilitates regular contact with these microorganisms, including ones that may have been 

beneficial to our health.24 These organisms are virtually absent from individuals in 

developed nations, such as the United States, but are still present in some developing 

nations.24 There is evidence that exposure to these microorganisms mediate the 

development of immune responses and are thought to keep the immune system 
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functioning at a particular baseline.25 Lack of exposure and thus disruption of the immune 

system’s basal function can lead to the development of allergic disorders and 

autoimmune diseases, both of which are widespread among developed countries and 

occur with little to no prevalence in developing nations.22 Described by S. Boyd Eaton, it 

is as if “the human immune system is now underemployed.”26 

One of the greatest challenges in modern medicine today is how to deal with the 

emergence of chronic diseases such as diabetes, cardiovascular diseases, asthma, and 

cancer. Since our beginning, we have undergone shifts in the diseases that have afflicted 

human populations over time, also known as epidemiological transitions.27 As 

civilizations emerged, famine or infectious diseases were the primary causes of 

mortality.27 However, in societies that have become more developed, mortality from 

infectious agents has dropped yet populations are afflicted with chronic, degenerative 

diseases.28 While overall life expectancies have increased, quality of life has decreased 

for many individuals who suffer from chronic illness.29 Some may argue that these 

diseases emerge simply because we are living longer. However, although these diseases 

emerge late in life, their biochemical origins occur decades earlier. Studies of younger 

age-matched subsistence horticulturalists compared with those living a more Westernized 

lifestyle show that the biomarkers for the development of chronic disease such as insulin 

resistance and high blood pressure are very common in the Westernized individuals and 

rare in the horticulturalists.30-32 It is hypothesized that there is a discordance, or 

mismatch, between the lifestyle our genes have been selected for and the lifestyle in 

which many of us currently live, which is relatively new on the evolutionary timescale.  
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It may seem as if we have fallen on our own sword, with the modern advances of 

antibiotics, sanitation, and industrialized food production come the consequences of 

antibiotic resistance and immune system and metabolic dysregulation. Evolutionary 

applications to medicine are new and unconventional, and in many ways, seem to go 

against traditional medical education. Further, teaching medical students about natural 

selection and lifestyle differences between the past and today may seem irrelevant to the 

causes of disease in the present. However, understanding that many diseases that afflict 

modern society are a result of genes inherited from our distant ancestors may offer a fresh 

perspective, allowing students to recognize the cause-and-effect relationship between our 

modern lives and disease manifestation. Connecting the evolutionary basis with the 

physical outcome may allow scientists and clinicians to produce a more efficient way to 

treat certain complex, multi-faceted diseases. The purpose of this paper is not to criticize 

or to discuss the shortcomings of modern medicine, but to illuminate certain aspects of 

infectious and chronic conditions that may have been overlooked yet have potentially 

valuable clinical implications and may aid in the treatment or prevention of disease. 
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CHAPTER 2 

THE PALEOLITHIC DISEASE BASELINE AND THE “OLD FRIENDS” HYPOTHESIS 

An updated variant of the hygiene hypothesis, called the “old friends” hypothesis, 

is based upon the lack of exposure to microorganisms that evolved to have an established 

role in our immune system and therefore contributing to the rise in chronic inflammatory 

disorders.33 The predominant diseases that afflicted human populations several millennia 

ago are different from the ones that primarily affect humans today for several reasons. 

However, comprehensive knowledge of contemporary human disease can be facilitated 

by an appreciation for the disease profile of pre-agricultural populations. It is speculated 

that the transition from foraging to agriculture that occurred roughly 10,000 years ago in 

several civilizations marked the first epidemiological transition for humans.23 

Researchers have used a variety of data in order to reanimate the disease patterns of the 

pre-agricultural era, including knowledge of habitat, genomic analysis of humans and 

their pathogens, as well as studying diseases in current hunter-gatherer societies. Prior to 

the development of agriculture, populations were small, dispersed, and had little contact 

with each other and therefore could not support epidemic diseases, and thus the presence 

of diseases such as measles, smallpox, and influenza were not likely.34 The types of 

pathogens that afflicted early humans fall into two categories: heirloom species and 

souvenir species.35 Heirloom species are those that have had a long lasting relationship 

with our ancestors and continued to infect them as they evolved into hominids; head and 
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body lice, pinworms, and bacteria such as Staphylococci and Salmonella typhii are some 

examples.35,36 Souvenir species are pathogens that hominids have “picked up” along the 

evolutionary timeline as they maneuvered through daily activities, such as zoonoses 

acquired from insect bites or the hunting and slaughtering of animals and preparing them 

as food.35,36 

Foraging populations of the Paleolithic period were also in greater contact with 

commensal microorganisms.37 From what we currently understand of their diet, our 

ancestors ate a wide variety of unprocessed foods that was stored in the soil, where it 

became enriched with fiber-fermenting Lactobacilli bacteria.38 Several strains of this and 

other health-promoting genera were likely to be found within the intestines our ancestors, 

and as a result, our ancestors probably had a much greater amount of commensal gut flora 

that we do in the present. For example, it has been found that most humans living in 

modern, Westernized societies have less than 1.3kg of commensal flora, while those 

living in developing, rural nations and eat a diet rich in plant matter have commensal 

flora weighing 2kg or more.38  

The significance of our millennia-long relationship with microorganisms can be 

explained through the concept of evolved dependence. Evolved dependence is when an 

organism becomes adapted to sharing an environment with another organism as if they 

have formed a partnership, and, over time, both organisms depend on one another and 

survive poorly without each other.24 Studies suggest that certain aspects of biology, 

including immunologic function, become “entrusted” to the symbiont species.24,39,40 For 

example, a study involving human symbiont Bacteriodes fragilis demonstrates that the 

bacteria can regulate immune pathways, reducing inflammation.40 Using germ-free mice, 
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which are known to have dysregulated immune function compared to mice raised with a 

whole bacterial composition, Mazmanian and colleagues used an experimental colitis 

protocol and found that defects in immune cell development are corrected by the 

commensal B. fragilis via a surface molecule called polysaccharide A (PSA).40 Germ-free 

mice have higher levels of pro-inflammatory cells, yet when inoculated with B. fragilis, 

the immune balance is restored to that of mice that were not raised in a germ-free 

environment.40 Further, in immune-compromised mice, PSA from B. fragilis protects 

from Helicobacter hepaticus-induced ulcerative colitis.40 This protective effect was found 

to occur via suppression of pro-inflammatory cytokines tumor necrosis factor-alpha 

(TNFα) and interleukin-23 (IL-23), and expression of the potent anti-inflammatory 

cytokine, IL-10.40 B. fragilis PSA is the first single bacterial molecule found to reduce 

and even reverse mammalian intestinal inflammation by regulating immune pathways 

and has been classified amongst a new set of molecules called “symbiosis factors.”39 

While the specific interactions between PSA and immune pathways have yet to be 

determined, isolation of this molecule for clinical purposes may have promising results.  

Helminths are another class of organisms that have had a long-standing 

relationship with our ancestors. Traditionally, helminth infection has been associated with 

the domestication of animals to be used for livestock during the development of 

agriculture around 10,000 years ago.41 However, evidence discovered by Hoberg, et al. 

suggests that the ancestors of the modern tapeworm in the Taenia genus began to 

parasitize humans much earlier than previously believed.42 It is thought that our Homo 

ancestors underwent a habitat shift around two million years ago from forests to open 

savannahs, forcing our ancestors to forgo an herbivorous diet and adapt an omnivorous 
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diet due to the change in available food resources.43,44 Savannah-dwelling animals such 

as antelopes and other bovids became a new food source for these early humans.45-47 For 

the Taeniidae, the typical definitive hosts are carnivores, such as large felids or hyaenids, 

and the intermediate hosts are herbivores, such as bovids; in this case, our early ancestors 

became the definitive hosts, which resulted in the parasitizing of Homo by the Taenia 

worm.42 The modern lineages Taenia saginata, Taenia asiacata, and Taenia solium all 

use humans as a obligate definitive hosts and, through phylogenetic and molecular clock 

analysis, were found to have diverged anywhere between 160,000 to one million years 

ago, suggesting that the T. saginata/T. asiacata lineage, and likely other helminth 

lineages, has been associated with humans and our ancestors since well before the 

domestication of animals.42  

Today, like many of the saprophytic bacteria that were constantly present in our 

ancestors, helminthes are largely absent from our daily lives; yet, like certain bacteria, 

helminthes are also relevant to immune regulation.41 According to the “old friends” 

hypothesis, early in our evolution certain harmless organisms needed to be tolerated by 

the body because they have always been present in food and water sources, and although 

some helminthes are not necessarily harmless, complete elimination may have caused 

tissue damage.41 Essentially, our bodies outweighed the negative effects of the pathogen 

for the benefits of nourishment, and our early immune systems learned to deal with the 

infection rather than initiating unnecessary and potentially destructive immune 

responses.41 Currently in developed societies, there has been an increase in allergies and 

autoimmune diseases, and these societies are void of intestinal helminth exposure48. In 

contrast, individuals in developing nations with a heavy helminth burden are less likely to 
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be allergic or have an inflammatory or autoimmune disorder49. Research has shown that 

helminth infections are associated with the release of anti-inflammatory molecules and 

serve somewhat of a protective function in our immune system.50-53 

Traditionally, the hygiene hypothesis was based on the balance of two types of 

cells in our immune system: type 1 helper cells (Th1) and type 2 helper cells (Th2). Th1 

cells are associated with bacterial and viral infections as well as autoimmune disease. Th2 

are associated with allergies and helminth infections; they also produce the allergic atopic 

response, characterized by elevated pro-inflammatory cytokines such as IL-4, IL-5, and 

IL-13, which stimulate immunoglobulin (Ig) E, eosinophil, and mast cell production.50 

Some have argued that Th1 cells and Th2 cells act antagonistically, and that low 

exposure to bacterial and viral infections in childhood fails to stimulate Th1 cells, which 

in turn results in over-activation of Th2 cells leading to allergy.54 In developed nations, 

Th1-mediated disorders such as type 1 diabetes, multiple sclerosis, and inflammatory 

bowel diseases as well as Th2-mediated allergic diseases are on the rise.55 On the other 

hand, in less developed nations, people infected with helminthes, which enhance Th2 

responses, are less likely to be afflicted with allergies or have inflammatory disorders, yet 

treating the helminth infection leads to an increased sensitivity to allergens.41 However, it 

is this paradoxical relationship that suggests a more complex mechanism at play than 

simply an imbalance between Th1 and Th2 responses.55 In individuals who are free of 

helminth infections and suffer from allergies or chronic inflammation, there is 

speculation that the true problem behind immune dysfunction is the failure of the immune 

system to cease unnecessary responses while allowing intended responses to continue.41 

The unwanted responses are no longer thought to be a result of the Th1/Th2 relationship 
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but are attributed to a reduction of regulatory T cell activity. Regulatory T-cells are 

thought to guide the complex network of immuno-modulatory molecules toward an 

appropriate response.50 According to Graham A.W. Rook, rather than the immune system 

deciding when to respond with an immune attack, which can be caused by failure to 

recognize harmless antigens, the most likely mechanism behind a correctly-functioning 

immune system is the decision of when not to respond because an allergen is harmless or 

could be part of the gut itself.54  

Several experiments involving children of developed and developing countries 

display an inverse relationship between helminth infection and sensitivity to allergens or 

manifestations of asthma.56-58 In both the highly developed and less developed countries, 

around one-third of the children exposed to allergens via skin prick test produced an 

atopic immune response characterized by elevated levels of IgE antibody for a particular 

allergen.56-58 Despite raised IgE levels in children from the less developed countries, 

respiratory symptoms of asthma were less prevalent and overall less severe than children 

tested in more developed nations.56-58 Interestingly, the degree of helminth exposure 

shows varied immune responses. Light helminth infections produce an increase in 

allergen-specific IgE responses and high skin reactivity, while heavy helminth infections 

were less likely to show skin reactivity.59-61 Removing the worms from the lightly 

parasitized individuals alleviated allergic symptoms, yet resulted in a worsening of 

symptoms in the heavily parasitized individuals.59-61 The complex relationship between 

helminth exposure and a reduction in allergic symptoms despite high levels of IgE and 

Th2 cytokines is not well understood but is currently thought to be mediated by 

regulatory T cells.50  
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In animal models, helminth therapy has been shown to attenuate inflammatory 

bowel disease as well as airway inflammation and allergic responses.62-64 Due to this 

success, human clinical trials have commenced and with promising results.65-67 Trichuris 

suis, the porcine whipworm, does not complete its lifecycle in the human host but is a 

close relative to the human whipworm, T. trichuria.68 T. suis is not a natural human 

parasite and brief colonization following hatching does not have any known associations 

with disease, thus making T. suis a good candidate for therapeutic use.66 In patients with 

active Crohn’s disease, treatment with T. suis ova for 24 weeks produced an 80% 

response rate and 73% remission rate.66 Additionally, the same research group studied the 

effects of T. suis therapy on patients with active ulcerative colitis which did show 

improvement, however, few remissions occurred.65 This may be related to the fact that 

many patients participating in the trial had longstanding and severe forms of active 

disease, suggesting that early intervention with T. suis therapy may provide the greatest 

benefit to ulcerative colitis patients.65 The hookworm Necator americanus has also 

shown to be well-tolerated in humans in low doses for use in the treatment of asthma, as 

indicated in a dose-ranging pilot study.67 
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CHAPTER 3 
 

THE FIRST EPIDEMIOLOGICAL TRANSITION: A RISE IN EPIDEMIC INFECTIOUS 
DISEASE 

 
 The idea that the Agricultural Revolution marked the first major epidemiological 

transition is well-documented.23,27,69 Changes in human behavior, habitat, and food niche 

exposed populations to novel pathogens or infectious agents that were previously 

encountered sporadically in isolated incidents.37 Although the advent of agriculture is 

associated with a spike in population growth, some argue that this period represents the 

beginning of an overall decrease in health among human populations due to the rise in 

infectious disease.69,70  

 There are many reasons for the increase in infectious disease following the 

development of agriculture. Firstly, agriculture allowed our ancestors to modify the 

surrounding environment, making it possible to settle and produce food virtually 

anywhere.71 This was the first time humans could not only choose where they wanted to 

live but support themselves while doing so. However, settling in novel locales exposed 

populations to new pathogens, for example via insect bites during crop cultivation.70,71 

Secondly, stationary settlements allowed the people in these growing populations to be in 

close contact with one another, thus increasing the transmission of droplet-spread 

respiratory diseases as well as making human waste disposal a potential problem 

increasing the occurrence of fecal-borne disease.69,70 The static nature of these 

settlements also provided a contiguous living area with domesticated animals and 
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“peridomestics” such as rodents allowing the transmission of bacterial diseases including 

anthrax, brucellosis, and tuberculosis, or Q fever.70 While stationary settlements allowed 

people to accumulate and store food for times when food would be scarce, this storage 

also increased the possibility of food poisoning.72 Thirdly, due to the dependence on 

domesticated crops, people in agricultural settlements had less dietary variation than their 

foraging predecessors, which may have negatively impacted health.70,71 Traditional 

agricultural communities eat only around ten to fifteen different types of plant species, 

while hunter-gatherer societies today, such as the Kalahari San Bushmen or Congo 

Pygmies, eat more than 100 different plant species.26,73 The lack of variation in diet may 

have had nutritional and health consequences increasing the impact of infectious disease 

in malnourished individuals.37 Finally, the increase in population size and human contact 

following agriculture allowed for acute infections to be supported by a population 

facilitating the maintenance of epidemics.69 Small population sizes prior to the 

agricultural revolution were typically not large enough to support epidemic disease.69 

These fundamental reasons underlie the causes of morbidity and mortality in nearly every 

society undergoing urbanization since the dawn of agriculture. The ever-present threat of 

infectious disease becomes so commonplace that it is entwined within culture, with every 

culture having a cluster of infectious diseases that represents it. Cross-continental trade 

from Asia during the early Renaissance delivered the Black Death to Europe, with its 

epidemics of the 1300s killing an estimated third of the European population.74,75 

Seemingly innocuous diseases in one population were sometimes devastating epidemics 

in another.76 Thus, during the age of global exploration, introduction of diseases to novel 

populations and environments often resulted in changed transmission dynamics and 
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increased virulence, as seen with the introduction of smallpox to Native American 

populations.75 The Industrial Revolution facilitated the spread of disease, bringing 

people, as well as their diseases, from far-reaching rural areas to urban environments for 

work and opportunity for a better life. These densely populated urban centers became foci 

for poverty enhancing the transmission of diseases such as tuberculosis, typhus, 

diphtheria, measles, and yellow fever.75 Throughout history, infectious disease has 

influenced societies by evoking fear, dividing classes, decimating populations, and 

shaping human behavior.  

3.1 INFECTIOUS ORGANISMS: SYMPTOMS AND VIRULENCE 

Infectious organisms include bacteria, viruses, types of fungi, parasitic protozoa 

and helminthes, which live all or part of their life cycle inside the host. Exploitation of 

host resources is the primary way in which these infectious organisms survive and 

proliferate.15 Colonization of an infectious agent usually disrupts host homeostasis in 

some way, manifesting as symptoms. When we experience uncomfortable symptoms 

such as fever, headache, coughing, sneezing, and G.I. upset, we know something is 

wrong, and we usually seek some way to suppress the symptom in order to go about our 

day. However, it is important to recognize that the symptoms are occurring for two 

reasons: 1) the infectious organism has established residence in one’s body and is 

manipulating host physiological processes for its benefit, and 2) the host is responding to 

the invader and attempting to protect itself from damage by the pathogen.15 Some 

examples of defense symptoms include fever, iron sequestration, nausea, pain, and 

behavioral defense such as vomiting, malaise, or skin scratching.13 Fever, pain, and 

malaise work to keep the host less active, making it easier to allocate metabolic energy to 
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fight an infection.13 Many pathogens require high bioavailability of iron for proliferation 

and have evolved strategies to obtain iron from hosts.78 However, hosts have evolved a 

response to this by the development of iron sequestration mechanisms through a variety 

of iron-binding proteins.77 Nausea and vomiting have evolved a psychological 

component: both provide a strong, one-time learning experience to avoid subsequent 

infection from ingesting contaminated food.13 Manipulative symptoms that can benefit 

the pathogen include excessive sneezing or diarrhea to facilitate transmission, or 

secretion of compounds that misguide host immune responses.13 The bacterium Vibrio 

cholerae releases a toxin that increases the activity of the cystic fibrosis transmembrane 

conductance regulator (CFTR).78 Activation via Vibrio cholerae toxin leads to 

irreversible activation of this channel, resulting in dehydration and electrolyte loss in the 

form of diarrhea.78 This mechanism facilitates dispersal of the parasite via manipulation 

of host resources. In some cases, symptoms can benefit both the host and the pathogen at 

the same time.15 The bacterium that causes dysentery, Shigella, produces bloody diarrhea 

resulting from invasion of intestinal epithelial cells. The diarrheal symptom can be 

interpreted as manipulative because it facilitates transmission of the bacteria.15 However, 

this symptom can also be interpreted as a defense because ridding the body of the 

bacteria in this way minimizes the time that the bacteria stays inside the body, therefore 

reducing destruction of intestinal tissue.79 Experimental infections with Shigella showed 

that treating the patient with an anti-diarrheal prolonged the infection until treatment was 

terminated, while untreated patients eliminated the bacteria and overcame the infection.79 

From this example, one can see that symptomatic treatment may not always be the most 

effective in curing the patient of the disease. Described in Paul Ewald’s book Evolution 
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of Infectious Disease, in a case where a symptom benefits both the host and the parasite, 

treatment providers must be cautious because although prevention of a symptom may 

decrease transmission of an infection, symptomatic treatment may actually harm the 

patient.15 Thus, he asserts that treatment providers should make decisions with the 

knowledge of the compromises that will result from the selected method of treatment and 

that they will have to consider the expected harm to the patient versus the benefits to 

others who may otherwise contract the infection if it is allowed to spread.15 By 

understanding the symptoms of an infection and categorizing them as a manipulation or 

defense, and then further into host-benefit, pathogen-benefit, or beneficial to both, 

clinicians may be able to select the most optimal method of treatment.15  

Some symptoms of an infection are often correlated with a pathogen’s virulence. 

Virulence is defined by the degree of harm inflicted upon the host.80 A highly virulent 

pathogen exhibits higher levels of host exploitation, morbidity, and mortality.81 In 

evolutionary terms, virulence is the degree of parasite-induced decline in host fitness.82 

Traditionally, evolutionary theory suggested that pathogens and hosts would coevolve 

towards a benign relationship with one another and result in less virulent infections.83 

Currently, the updated theory is that natural selection will increase fitness for both the 

host and the pathogen, yet not necessarily moving towards a benign, symbiotic 

relationship.81 Virulence differs among pathogens for many reasons; however, 

differences in transmission play a large role. Ewald has formulated general predictions 

about virulence:15  

1) Pathogens requiring insect or animal vectors in their transmission are 

highly virulent in the human host.84 This is because the pathogen does 
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not require the host to be mobile in order to disperse and infect others, 

malaria is a common example: an ill, powerless, stationary host 

facilitates transmission because it allows many potential vectors access 

to the plasmodium.15 Also, any damage to the vector would reduce 

pathogen dispersal and thus virulence in the vector will be low.15  

2) Pathogens spread by water and other inanimate objects are more 

virulent that those that are not. For example, if a person is immobilized 

and suffering from severe diarrhea, the pathogen will be released into 

bed linens and clothing.85 Washing this clothing will release the 

contaminated water. If this water mixes with drinking water, many 

people will become infected from the bacteria released from only one 

host.85 Immobilization of the host does not affect pathogen dispersal, so 

virulence will continue to increase.85 

3) Pathogens spread by “cultural vectors” are highly virulent.84 A common 

example is attendant-borne transmission in hospital settings because 

hosts are usually immobilized patients with compromised immune 

systems, such as infants or the elderly. In this case, the hands of 

healthcare providers serve as the vectors, and the vectors rarely become 

infected due to hand-washing and stronger immune systems than the 

hospitalized patients.15,80 Interestingly, infections have been found to 

increase in lethality as they cycled for longer periods of time within 

hospitals.86  
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4) A change in transmission will result in a change in virulence. For 

example, changing transmission from vector-borne to direct 

transmission from host-to-host should result in a decrease in virulence 

because host mobility is required for transmission.15  

5) Parasites with a high frequency of vertical transmission, or from mother 

to offspring, are less virulent than those transmitted by horizontal 

transmission and may even lead to benign, mutualistic relationship with 

the host.15 A decrease in host fecundity or survival would be a massive 

cost to the pathogen.15  

The predictions regarding virulence provide a set of guidelines when studying and 

interpreting the effects of infectious disease. Many diseases fall under more than one of 

these predictions, making the pathogen unique in terms of transmission and virulence 

potential. For example, Yersinia pestis, the etiologic agent of the Black Death, is what 

Ewald describes as a “sit-and-wait” pathogen.80 A “sit-and-wait” pathogen is the ultimate 

opportunist and can be transmitted from an immobilized host in two ways: the pathogen 

can be transported by a vector, or the pathogen can sit and wait for a potential new host to 

come in contact with the infected host via respiratory droplets.15,80 These types of 

pathogens reap the benefits of being able to multiply inside the host while also paying 

little to no cost of a languid host.80 Due to the high rate of spreading, it is thought that the 

Black Death was primarily transported through respiratory droplets, but it could also be 

transported through an arthropod vector if the opportunity presented itself. The crowded, 

unsanitary living conditions of Europe during the Middle Ages facilitated the rapid 
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proliferation of the disease through person-to-person contact, making the Black Death 

one of the most destructive diseases in human history.80  

Despite major scientific advancements such as the development of antibiotics, 

vaccines, and improved sanitation, infectious diseases are still the major source of 

mortality worldwide.87 These diseases fall into one of three categories: 1) new infectious 

diseases that have emerged and are previously unknown to have affected humans, 2) re-

emergence of infectious diseases that were thought to be under control, and 3) persistence 

of unmanageable infectious diseases.88 Examples include West Nile virus, dengue 

hemorrhagic fever, prion diseases, and some influenza strains.88  

Human activity such as mass transportation of products, livestock, and people 

increase the contact between humans and pathogens.81 Decreased compliance with 

vaccination protocols has led to the re-emergence of previously controlled diseases such 

as measles and pertussis, while misuse of antibiotic or antimicrobial agents have 

contributed to treatment-resistant strains of bacterial pathogens.87,88 Although increased 

surveillance, rapid diagnosis and early containment are critical to disease control, these 

public health measures alone are insufficient in the fight against infectious diseases.87 

Pathogens adapt and evolve rapidly in response to human behavioral and environmental 

alterations, making it easy to assimilate into new ecological niches.15,87 According to Paul 

Ewald, it may be possible to decrease a pathogen’s virulence by altering the environment. 

For example, when water sanitation improved in North America, South America, Europe, 

and Asia, diarrheal pathogens V. cholerae and Shigella evolved toward lower virulence 

because in the absence of water as a vector, these pathogens rely on host mobility.15,85 An 

understanding of the perpetual evolutionary “arms race” between humans and their 
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pathogens may provide insight into the development of treatment plans, and if employed 

correctly, lead to decreased virulence and ultimately reduce the harm inflicted by many 

infectious diseases.15 
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CHAPTER 4 

COMPLEX, CHRONIC DISEASE 

 Currently, in industrialized countries, we live in an era where mortality rates from 

infectious disease pandemics have declined while life expectancy has increased to 70 

years or beyond and population growth has increased exponentially.26,89 This is due to 

many advancements including the development of medical practices such as 

implementation of germ theory, improved nutrition, and public health measures.34 

However, although life expectancy has increased over the past two centuries, quality of 

life for many has been reduced due to the emergence of complex diseases that are chronic 

and degenerative.34,90 This transition of disease prevalence and mortality from infectious 

pandemics to chronic degenerative disease is known as the second epidemiological 

transition.27,34  

 Complex chronic degenerative diseases are distinguished by vague etiology, long 

latency period, prolonged course of illness, functional impairment, and in many cases are 

not curable.26 Examples of these diseases include cardiovascular diseases such as stroke 

and heart attack, some cancers, asthma, and diabetes. In the United States and other 

developed countries, these chronic diseases are responsible for approximately 70% of 

deaths and are thus known as “diseases of civilization.”6,26,91 One common attribute to 

chronic diseases is the necessary interaction of multiple contributing agents, known as 

risk factors, which implies that many genes are involved in the regulation of these 

diseases.26 The risk factors involved seem to be related to diet and lifestyle choices and 
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their interactions with our genes.92 Our genes have been selected through adaptations that 

occurred over millions of years, and despite migrations and developments such as 

agriculture, industry, and technology, there is evidence that our gene pool has differed 

little since anatomically modern humans diverged around 200,000 years ago.92-94 Some 

speculate that the rise in the “diseases of civilization” are due to the mismatch between 

our genes and the cultural changes that have occurred relatively recently on the 

evolutionary timescale.6,90,92  

 There are many types of discordance between our genes and our environment. 

Most discordance is related to nutrition, physical exertion, reproduction, infection, 

growth and development, and psychosocial elements.26 However, for this section of the 

paper, only discordances of nutrition and physical activity will be discussed. 

4.1 NUTRITION 

 Nutrition is perhaps the greatest difference between our ancestors and 

contemporary humans. Much of what we currently eat is derived from domesticated or 

commercially produced and processed sources, whereas our pre-agricultural ancestors 

had to forage plant matter and hunt wild game for survival.95 Most foods that make up a 

large portion of the contemporary diet today such as dairy, refined sugars, cereal grains, 

refined vegetable oils, and alcohol were largely absent from pre-agricultural diets.95 

Ancient wild cereal grains are small in size and difficult to harvest and digest without 

processing, making it difficult for our ancestors to utilize grains as food until the 

emergence of stone mortars and other grinding instruments anywhere from 40,000 to 

10,000 years ago.95 
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Using current hunter-gatherer societies as a model, it is estimated that our 

ancestors’ carbohydrate intake was around 20-40%, consisting of mostly fruits and 

vegetables as opposed to refined grains and sugars.95,96 Today, American caloric intake 

typically consists of over 50% carbohydrates from cereal grains and refined sugars, 

which have a higher glycemic index, are more insulinogenic, and have a lower 

antioxidant capacity than the fruit and vegetable caloric equivalent.26,96 The total fat 

proportion consumed by pre-agricultural and modern-day humans remains the same at 

approximately 35%, however, the composition was different.26 The fatty acid profiles of 

wild game consist of more long-chain mono- and polyunsaturated fatty acids than their 

domesticated grain-fed counterparts, meaning that our ancestors consumed less saturated 

fats and more long chain unsaturated fatty acids.97 The pre-agricultural essential fatty 

acid ratio of omega-6 to omega-3 was estimated to be 3:1, while current Americans have 

closer to 10:1, which has inflammatory effects and is thought to promote atherogenesis.26 

Despite dietary cholesterol being high due to the consumption of wild game, serum 

cholesterol-raising fat was lower compared to present Western diets.26,92 According to an 

analysis conducted by Sebastian et al., pre-agricultural humans most likely ate a diet rich 

in protein and non-grain plant food groups such as nuts, legumes, fruits, and 

vegetables.98,99 This type of diet is found to have a net alkalotic effect on the body via 

increased bicarbonate production, promoting an anabolic effect on bone and increasing 

bone mass.99 Contemporary diets, however, have replaced non-grain plant foods with 

cereal grains, refined sugars, and separated fats, resulting in reduced bicarbonate 

production and an acidotic effect.98 This net acidosis has catabolic effects and eventually 

results in bone loss, osteoporosis, and muscle degradation.99,100 
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4.2 PHYSICAL ACTIVITY 

 Over most of the human evolutionary journey, food production and physical 

exertion were intimately coupled and if one needed to eat, one was obligated to 

physically work. Today, social structure and industrialization has uncoupled the food-

work relationship.26 We no longer need to hunt wild game, forage for plant foods, or even 

make our own tools to do it all. 

The levels and types of activities varied among different groups living during the 

Stone Age and were dependent on geographical location and seasonal patterns, yet there 

is a consensus that overall energy expenditure exceeded that of an average contemporary 

American.101 These groups had a wide range of daily physical activities, which included: 

walking while gathering and hunting; running after prey; carrying their kill, plant foods, 

or firewood; building shelters; making tools and digging for roots and tubers; butchering 

and cleaning game meat; ceremonial and recreational dancing; and carrying their 

children.101 Although these daily activities required muscular effort and stamina, it is 

likely that these individuals spaced out their activities rather than working for many hours 

at a time.92,101 For example, men usually hunted on 2-4 nonconsecutive days per week, 

while women usually foraged every 2-3 days.101 During these days, individuals would 

walk or run in fast bursts, jump, leap, climb, carry, stretch and more in order to obtain 

food or water.102 These patterns of physical activity are analogous to modern cross-

training with aerobic, resistance, and flexibility exercises.101 Current data on physical 

activity suggests that exercise programs containing various types of exercises and 

intensities are beneficial in terms of lowering the risk for cardiovascular disease.103 

Considering the activity level of our ancestors, one would assume that they must have 
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been extremely muscular and strong. Using skeletal remains in conjunction with studying 

current hunter-gatherers, evidence confirms that our ancestors had greater strength and 

muscularity than most people living today.92 This finding is true whether the groups 

being studied lived 10,000 or 1,000 years ago, suggesting that the increased robustness is 

a result of habitual activity and not an evolutionary shift.101,104,105 The obligatory activity 

level of our ancestors resulted in an increased lean body mass and a decrease in adipose 

tissue, which would have reduced their risk of type II diabetes.106  

In the present day, discordances resulting from abnormal body composition as 

well as consumption of a typical American or Western diet have lead to a host of diseases 

that have now become public health concerns: atherosclerosis, type II diabetes, obesity, 

and hypertension. While all are part of a cluster of diseases known as “metabolic 

syndrome,” type II diabetes is becoming one of the fastest-growing diseases 

worldwide.107,108 

4.3 TYPE II DIABETES AND INSULIN RESISTANCE 

 Insulin resistance is the center of the metabolic syndrome and is linked to reduced 

activity levels and a surplus of metabolic energy.109 Individuals who are insulin resistant 

are at high risk for not only type II diabetes, but also hypertension, coronary artery 

disease, peripheral vascular disease, and polycystic ovarian syndrome.26 Insulin 

resistance and type II diabetes mellitus are strongly associated with obesity among all 

ethnic groups, causing more than 80% of cases.110 While obesity is a strong contributor, 

BMI and weight are not as critical for the development of type II diabetes as body 

composition.106 There appears to be an inverse relationship between the proportion of 

lean muscle tissue and the likelihood that an individual will develop insulin resistance.26 
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According to a model described by James Neel, some of our ancestors possessed what he 

terms the “thrifty genotype,” meaning that during times of fluctuating food availability, 

selection favored those who could release insulin most effectively during plentiful times 

while also being able to easily store energy during times of scarcity.111 Our taste 

preferences have also evolved to aid in this process: we instinctually prefer fats, sugars, 

and salt due to their rarity in the past and their high energy value.6 Now, reaping the 

benefits of a sedentary lifestyle in times of plenty, this once adaptive genotype results in 

hyperadiposity, sarcopenia, and insulin resistance.  

 The chemistry of adipose cells (adipocytes) and muscle cells (myocytes) differ in 

terms of insulin sensitivity. Insulin receptors on adipocytes and myocytes compete for 

insulin released from the pancreas. Although muscle fitness determines exactly how 

much glucose is cleared from the blood upon insulin receptor binding, insulin binding to 

muscle receptors clears approximately 7-10 times more glucose from the blood than 

when binding to adipose receptors.112,113 Thus, people who have more muscle tissue 

relative to adipose tissue are more insulin-sensitive as opposed to those who have a 

higher adipose to muscle tissue ratio.106 The imbalance of insulin receptors in those with 

more fat than muscle tissue means that the pancreas must secrete more insulin per amount 

of carbohydrate ingested. 

 Location of adipocyte cells in the body as well as body shape also seem to play a 

role in the way insulin is utilized.26,106 Fat cells in the liver are exposed to all of the 

insulin released into portal circulation from the pancreas, and the insulin receptors on the 

adipocytes in the liver “steal” some of the insulin molecules that would normally go to 

the rest of the body.106 Thus, there are fewer insulin molecules available for myocytes in 
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the body per pancreatic insulin release, and insulin sensitivity will decrease as liver 

adiposity increases.106 

By now, many have heard that a “pear” body shape, or those with more 

subcutaneous fat in the lower body, is more beneficial to health than an “apple” body 

shape, or those who have excess visceral fat in the abdomen.114 One reason for this may 

be that blood flow patterns differ between visceral fat and skin or subcutaneous fat.114 

Visceral blood flow requires 25% of cardiac output at rest, and rises to 35% during 

digestion, while cutaneous and subcutaneous flow requires only 5% of cardiac output at 

rest and even less during digestion.106 Visceral adipocyte insulin receptors can therefore 

outcompete subcutaneous receptors for circulating insulin because they are exposed to 5-

7 times more insulin molecules than subcutaneous fat cells.106 Again, this means there is 

less insulin available to bind to myocyte insulin receptors, and due to the reduced 

efficacy of fat cells to clear glucose from the bloodstream compared to muscle cells, 

blood glucose remains high and the pancreas continues to secrete more insulin to 

compensate leading to repetitive hyperinsulinemia.26  

 The development towards insulin resistance seems to have two phases.26 As 

described above, the first phase is characterized by the imbalance of insulin receptors due 

to body composition that differs from the ancestral norm: too much adipose tissue, not 

enough muscle tissue, and low muscular fitness.26 The recent dietary addition of high 

glycemic-load foods produces repetitive hyperinsulinemia. This first phase is an excellent 

example of the discordance that arises when our ancient physiology attempts to adapt to 

our modern environment and is likely the reason behind the increase in type II diabetes 

over the past thirty years.26 The second phase of insulin resistance is more complex. 
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Repetitive hyperinsulinemia resulting from the first phase activates genetically 

determined cellular mechanisms that ultimately leads to reduced sensitivity of the 

myocytes and adipocytes to insulin stimulation.26 The exact mechanisms responsible for 

this second phase of insulin resistance are not well understood but are currently being 

addressed in biomedical research.115,116 

 As previously discussed, foods that are relatively new to humans include refined 

grains, sugars, and dairy.95 These foods have a potent effect on raising serum insulin 

levels.117 This may be due to the fact that refined grains and sugars are rapidly absorbed 

by the intestines and are thus known as “high glycemic index” foods.95 These foods also 

have what is known as a “high glycemic load,” which means that they have a high 

proportion of carbohydrate per unit of weight.26,95 The digested carbohydrate delivers a 

rush of glucose into the bloodstream, which results in large amounts of insulin release 

from the pancreas.95 For mechanisms presently unidentified, dairy products seem to cause 

an acute rise in serum insulin levels despite having a low glycemic index.26,95  

Studies have shown that individuals placed on a Paleolithic-style diet (i.e. no grains, 

added refined sugars, separated oils, dairy, or alcohol) have better glycemic regulation, 

decreased blood pressure, and reduced blood markers for cardiovascular disease in 

diabetic individuals and even in as little as ten days for healthy, non-obese individuals.117-

119 Rather than one sole dietary component being responsible, there appears to be several 

elements at work that cause many chronic diseases today related to glycemic load, fatty 

acid composition, macronutrient profile, fiber content, acid-base balance, and sodium-

potassium ratio.95 Dietary elements and other lifestyle factors interact with our ancient 

genome to produce these complex, multifaceted “diseases of civilization.”120 The daily 
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lives of our ancestors provide insight towards understanding why diabetes and other 

chronic diseases have become increasingly widespread. Incorporating aspects of ancestral 

diet and activity patterns may be the key to chronic disease prevention.121 
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CHAPTER 5 

CONCLUSION 

Millions of years of selection has shaped the human body into a collection of 

compromises.13 We get sick because of these compromises formed by natural selection. 

Selection works to optimize reproduction, not steer us towards perfect health.7 Many 

genes that make us vulnerable to disease often have an advantage early in life, or 

conversely, do not present a significant disadvantage until late in life and thus selection 

cannot act to eliminate them.13 The slow nature of human evolution through selection 

also contributes to disease susceptibility.13 Pathogens can out-evolve humans, causing 

disease simply because human immune systems cannot keep pace.15 Further, humans 

have not yet adapted to many novel circumstances that were not present in the 

environment that humans evolved.90 Costs and benefits of selection have been 

continuously weighed against each other throughout evolution, with the balance point 

being vulnerability to disease.6  

To summarize, as described by Steven C. Stearns, et al., here are some of the key 

principles that guide evolutionary medicine:12  

1) Organisms are not perfectly engineered machines. Organisms are 

bundles of compromises accompanied by tradeoffs and limitations. 

2) Due to the fact that biological evolution occurs much more slowly than 

cultural change, many diseases are a result of the mismatch between our 

bodies and our environment. 
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3) Pathogens evolve much more quickly than humans therefore infection 

is inevitable. 

4) Common heritable diseases are usually caused by many genetic variants 

in a population that interact with environments and other genes during 

development to influence disease phenotypes. 

Tinbergen and Mayr stressed among the evolutionary biologists that every trait in 

every organism requires two types of explanations: proximate ways in which mechanisms 

work and evolutionary explanations of why the mechanisms developed.122,123 

Understanding both proximate and evolutionary explanations can provide a complete 

picture of a disease rather than simply knowing the proximate reasons alone. The 

practical implications of applying evolutionary principles to medicine are abound, 

however, it is not common practice to include evolution in the medical curriculum.124 

Many clinicians have never had any formal course in evolutionary biology or even 

questioned the evolutionary mechanisms behind proximate causes of disease. In 2009, the 

American Association of Medical Colleges and the Howard Hughes Medical Institute 

(AAMC-HHMI) proposed a set of scientific competencies for future physicians and 

undergraduate students who plan to attend medical school.125 Rather than requiring that 

universities teach specific courses, the committee recommends that certain competencies 

should be addressed in the separate areas of mathematics, scientific methods, physics, 

chemistry, biochemistry, cell biology, physiology, and homeostatic adaptations to 

external and internal changes.125 However, a new competency recommendation has 

emerged: evolutionary biology.126 The idea is that better education about evolutionary 

biology needs to begin before entry into medical school and continue to be integrated into 
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the medical curriculum, because evolutionary biology is a unifying principle that can be 

used to organize the basic sciences.126 Members of the committee also assert that this 

integration will allow students and physicians to think of our bodies as products of 

evolutionary processes, not as machines.126 For example, the proximate mechanisms 

behind obesity and type II diabetes make more sense when described in an evolutionary 

context, including the environment that shaped those mechanisms. Understanding that 

our bodies are the consequences of natural selection will allow students and physicians to 

have a more comprehensive view of the human body and why we are vulnerable to 

disease. 
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