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SUMMARY 

 

 

 

Craniosynostosis is the premature fusion of the cranial sutures early in 

development that occurs in approximately 1 in 2000 children. If left untreated, 

craniosynostosis can result in numerous complications related to an increase in 

the intracranial pressure and/or directly from cranial deformities. This condition 

can be caused by over 100 known mutations, but most commonly occurs 

spontaneously. Most cases of craniosynostosis require complex cranial vault 

reconstruction that is associated with tremendous morbidity. While the 

complications related to the first surgery are relatively low, the bone rapidly re-

grows in up to 40% of children who undergo surgery. This rapid bone growth is 

called re-synostosis and typically requires additional surgical intervention which 

is associated with an extremely high incidence of life threatening complications. 

The overall goal of this research was to develop a therapy to prevent re-

synostosis in a pediatric murine model. Our central hypothesis was that the 

delivery of BMP inhibitors using a click hydrogel would delay rapid post-operative 

bone growth in our model system. 

The development of this surgical model and therapy was based on the 

analysis of normal and pathologic mouse suture fusion. Mice are a common 

model of cranial development, but the timing of the normal cranial suture fusion 
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was poorly understood. To address this we used micro-computed tomography 

(µCT) to image the posterior frontal and coronal sutures in mice ranging in age 

from days 6 to 105. The suture fusion was quantified in these images with novel 

image processing algorithms that were designed to segment complex, 

discontinuous, and varying structures seen with the cranial sutures. Using these 

algorithms, we demonstrated that the posterior frontal suture fuses in a bi-phasic 

process. Between days 12 and 21 the bones of the suture comes together, but 

there is relatively little increase in the bone volume or mineral. After day 21 the 

suture undergoes significant mineralization until completing development by day 

45.  

We developed an algorithm to reconstruct images that are perpendicular 

to the coronal suture, which undergoes significant curvature about all three axes. 

Using this algorithm, we compared the normal development of the suture to a 

mouse engineered to display fusion of the coronal suture. We showed that the 

bones of the normal coronal suture grew closer together, mineralized, but did not 

completely fuse. In mice displaying craniosynostosis, the coronal suture 

developed abnormally and was fused prior to day 6.  

Based on the µCT results, we identified genes associated with the key 

developmental milestones in the normal posterior frontal suture development. We 

found that there was an increase in cartilage associated genes when the suture 

began to fuse. The mineralization phase was associated with an increase in 

BMP2 and markers of osteoblast differentiation. Of particular interest were the 
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BMP inhibitors that had unique expression patterns associated with the different 

phases of suture development.  

The next aim was to develop and characterize a pediatric murine model of 

re-synostosis. This has great potential to serve as a model to better understand 

the mechanisms responsible for re-synostosis and to test potential therapies. Our 

hypothesis was that creating a defect over the posterior frontal suture in a 21 day 

old mouse would result in rapid and robust bone growth. This age corresponded 

to the point when the posterior frontal suture has fused but has not yet 

mineralized. Mice with the cranial defect were imaged with µCT between 1 to 21 

days following surgery and the extent of bone regeneration was quantified using 

our algorithm developed to examine suture fusion. The results showed that the 

defect healed in a biphasic process that resulted in a thin bridge of bone on the 

endocranial surface of the skull beginning on post-op day 3. This was later 

followed by a substantial increase in the volume of bone on post-op days 14 and 

21. To better understand this rapid defect healing, we examined the expression 

profile of genes that were associated with the fusion of the normal cranial 

sutures. Immediately after the onset of the defect healing, there was an increase 

in all of the cartilage associated genes. This was then followed by an increase in 

the Bmp4, then Bmp2, and finally an increase in late markers of osteoblast 

differentiation.  

To verify that the rapid healing seen with this defect is age and location 

specific, we created identically sized defects over the posterior frontal suture in 

an adolescent mouse, lateral to the suture in an infant mouse, and lateral to the 
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suture in an adolescent mouse. The results from µCT showed that only defects 

created over the posterior frontal sutures resulted in bridging. Even though the 

adolescent posterior frontal defect was eventually bridged with bone, this did not 

occur until much later on post-op day 14. There was an increase in bone volume 

and mass only in the infant defects, while there was no change in either the bone 

volume or mineral in the adolescent animals. 

Building upon the developmental and regenerative changes in the normal 

mouse, we examined the regenerative differences in a strain of mice displaying 

craniosynostosis. The mice were engineered with the same point mutation in the 

Twist1 gene that is seen in Saethre-Chotzen syndrome. The results from our 

imaging algorithm and 3D reconstruction showed that the coronal suture in these 

mice developed fused and also had a greater mineral content than their wild-type 

littermates. Surprisingly, the posterior frontal suture, remained more open in the 

Twist mice despite a greater volume of bone. The regenerative capacity of these 

mice was investigated by creating the posterior frontal defect in 21 day old mice. 

The Twist mice were also unable to bridge this defect, despite having the same 

volume of bone as their wild-type littermates. These results demonstrate that 

mice with the Twist mutation displayed premature fusion of the coronal sutures, 

but had an inability to fuse the midline sutures and defects.  

To address the clinical problem of post-operative re-synostosis, we 

developed a click hydrogel therapy to deliver BMP inhibitors to delay the bone 

regeneration in our pediatric mouse model. We demonstrated that we can tailor 

both the release kinetics and the mechanical properties of the hydrogel by 
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varying the concentration of our novel cross-linker molecule. We also used 

unconstrained compression testing to assess the in vitro degradation of the 

hydrogel and showed that there was a 50% loss in the compressive modulus 

after 5 days. An in vitro pre-osteoblast MG63 cell culture line was used to verify 

the biological activity of incorporated proteins following an in situ polymerization. 

The hydrogel was able to deliver the inhibitor Gremlin to block the BMP2 

mediated cellular differentiation in vitro.  

The in vivo performance of the hydrogel was first verified by the release of 

a fluorescently labeled protein in our cranial defect. The proteins incorporated in 

the hydrogel had a controlled release out to 2 weeks in vivo while proteins 

delivered with the un-polymerized PEG back bone rapidly diffused out of the 

defect. We also assessed the effect of the empty hydrogel would have on bone 

regeneration in our cranial defect model by µCT. The results from our algorithm 

showed that there was a temporary decrease in the amount of bone early, but by 

two weeks post-op the bone was able to fully regenerate in the defect in the 

presence of the hydrogel.  

We used our hydrogel to deliver the BMP antagonist Gremlin to delay the 

bone regeneration in the defect. The combination of Gremlin in the hydrogel 

resulted in a dose dependent decrease in the defect healing. By 14 days post-op 

both the empty and hydrogel only defects had nearly complete healing. The low 

dose of Gremlin had a decrease in the volume of bone and the defect width 

compared to the other groups. In the mice with the high dose of Gremlin there 

was no bone growth seen at any of the time points. Furthermore and equivalent 
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high dose of Gremlin in the un-polymerized backbone of the hydrogel did not 

delay the bone growth, as there were no differences compared to the empty 

defect. 

In summary, this work has developed new tools, materials, and model 

systems to better understand and treat craniosynostosis. The imaging algorithms 

provide an accurate and efficient method to segment heterogeneous bones of 

the cranial sutures. The pediatric specific re-synostosis model developed has the 

potential to provide a better understanding of the mechanisms responsible for 

clinical complications. Most significantly, the click hydrogel therapy developed 

was able to delay the post-operative re-synostosis following and in situ 

polymerization with the BMP antagonist Gremlin. This hydrogel therapy has 

tremendous potential to delay the risks of re-synostosis and reduce the morbidity 

and complications associated with the treatment of craniosynostosis.  

 

 

 



1 

 

CHAPTER 1        SPECIFIC AIMS 

 

 

 

 

 

Craniosynostosis is the premature fusion of one or more cranial sutures in 

the developing skull. If left untreated, craniosynostosis can result in 

developmental delays, blindness, deafness, and other impairments resulting from 

an increase in the intracranial pressure. In many cases, the treatment consists of 

complex calvarial vault reconstruction with the hope of restoring a normal skull 

appearance and volume. Re-synostosis, the premature re-closure following 

surgery, occurs in up to 40% children who undergo surgery. If this occurs, a 

second surgery is needed to remove portions of the fused skull in an attempt to 

correct the deformities and/or relieve an increase in intracranial pressure. These 

subsequent surgeries are associated with an incredibly high incidence of life 

threatening complications. Mice are a common animal model for studying suture 

fusion because the posterior frontal suture fuses early in the developmental 

process and a variety of transgenic strains exist that have been engineered to 

display craniosynostosis. The overall objective of this research was to develop 

a hydrogel based therapy to delay rapid bone regeneration in a murine model of 

re-synostosis. The overall hypothesis was that delivery of key BMP inhibitors 

involved in regulating normal suture development and regeneration will delay the 
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rapid bone growth that in seen in a pediatric murine model of re-synostosis. The 

overall approach is to use micro-computed tomography (µCT) to determine the 

time course of suture fusion and to identify genes associated with key 

developmental time points, to develop a pediatric specific mouse model that 

displays rapid re-synostosis, and lastly to develop a hydrogel based therapy to 

delay the re-synostosis of a cranial defect.  

 

Specific Aim 1:  Characterize normal and pathological suture fusion in 

mice. 

In order to assess the changes that occur during murine suture 

development it is important to have a thorough understanding of when and how 

the cranial sutures fuse. The morphological and density changes that occur 

during the development of the skull make traditional segmentation techniques 

inaccurate or impractical for characterization of the time course of suture fusion. 

The primary objective was to develop a segmentation algorithm to characterize 

the temporal changes in the fusion of the posterior frontal and coronal sutures. 

The secondary objectives were to identify genes associated with key 

developmental milestones and differences in a mouse model of Saethre-Chotzen 

syndrome. This was assessed by using the image segmentation algorithms to 

analyze µCT scans of both normal mice and mice displaying Saethre-Chotzen 

syndrome. The expression profile of genes associated with the normal murine 

suture fusion was assessed by real-time PCR. The hypotheses were that the 

snake based algorithm will provide an accurate method for segmentation and 
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that mice engineered to exhibit craniosynostosis will have prematurely fused 

coronal sutures.  

 

Specific Aim 2: Develop and characterize a pediatric murine model of re-

synostosis. 

While rodents have been widely used for calvarial defects, none of these 

defects recreate the rapid bone growth that is seen clinically with 

craniosynostosis. The objective was to develop and characterize a pediatric 

specific mouse model that undergoes rapid re-synostosis. This was assessed by 

creating an identical defect over the posterior frontal suture or just lateral to the 

suture in both infant and adolescent mice. The extent of bone regeneration 

following surgery was assessed by µCT and genes associated with this fusion 

were assessed by real-time PCR. The hypothesis was that a defect over the 

posterior frontal suture in a 21 day old mouse would undergo rapid regeneration 

that is both age and location specific. Additionally, we expected to see an 

increase in expression of genes related to chondrocyte and osteoblast 

differentiation.  

 

Specific Aim 3: To develop and characterize hydrogel based therapy to 

delay re-synostosis.  

Despite the high prevalence of craniosynostosis, there is no clinically 

available therapy for the treatment of re-synostosis. Delivering growth factors 

through an injectable hydrogel has the potential to delay bone growth in a cranial 
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defect to delay re-synostosis. The objective of this aim was to develop and 

characterize an injectable clicked-based hydrogel to delay bone regeneration in a 

pediatric murine model of re-synostosis. The controlled release of a fluorescently 

labeled protein from the  hydrogel  was assessed both in vitro and in the cranial 

defect model. The effectiveness of the therapy to delay post-operative bone 

growth was assessed with µCT and histology. The hypothesis was that the 

hydrogel will provide an in situ polymerizable delivery vehicle for controlled 

release of the BMP inhibitor Gremlin to delay bone growth in a pediatric re-

synostosis model.  
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CHAPTER 2        BACKGROUND AND LITERATURE REVIEW 

2.1 Bone Structure and Development 

Bone is a dense connective tissue and is the most abundant tissue in the 

body by mass. It serves many roles related to structural support, endocrine 

signaling, maintenance of body chemistry, and as a reservoir of many minerals. 

The two major components of bone are the inorganic calcium phosphate 

component and an organic collagen, primarily type I collagen [1, 2]. The two 

components interact to form a composite tissue that is able to withstand a wide 

range of compressive, torsional, and tensile stresses [3]. While the gross 

morphology of bones remains relatively consistent, they are very dynamic 

structures. Bones are constantly being turned over to repair structural damage 

and accommodate changing mechanical loads. The primary cells responsible for 

this turn over are osteoblasts and osteoclasts [4]. Osteoclasts are multinucleated 

cells derived from hematopoietic precursors that function to resorb existing bone. 

The osteoclasts move along the surface of the bone and dissolve the bone 

matrix. They are often followed by osteoblasts that are of mesenchymal origin 

and primarily produce new bone [5]. Osteoblasts secrete a collagen rich 

immature bone matrix that is called osteoid. This osteoid then becomes 

mineralized by hydroxyapatite to form fully mineralized bone. 

Bones form and heal by two primary mechanisms: endochondral and 

intramembranous ossification [6]. The main difference between the two types of 

bone formation is related to the precursor tissues that eventually become 
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mineralized. In intramembranous ossification, a dense fibrous membranous 

sheath forms [7]. As the tissue develops, the mesenchymal tissue begins to 

condense, there is a vascular invasion, and some of the progenitor cells 

differentiate along the osteoblast lineage. This type of bone formation is seen in 

the skull and other flat bones in the body. The osteoblasts then secrete osteoid 

that is eventually mineralized. In endochondral ossification, the developing bones 

replace a cartilaginous precursor [8]. This method of bone formation is seen in 

the development and the majority of fracture healing in long bones [6, 9]. In 

endochondral ossification, chondrocytes undergo proliferation, then hypertrophy, 

and eventually die. The extracellular matrix then becomes calcified with 

hydroxyapatite forming mature bone [10, 11]. This progression of chondrocyte 

proliferation and hypertrophy is similar to what is seen in the development of long 

bone growth plates [12, 13]. 

2.2 Normal Cranial Development 

The bones of the skull form by intramembranous ossification in paired 

structures that grow superiorly and medially as the fetus ages [14]. Normal 

cranial development occurs from the complex proliferation and interaction among 

tissues of varying embryological origin [15]. Prior to birth, several different 

cartilages condense to form the cartilaginous base of the developing skull. This 

structure undergoes endochondral ossification to form the base of the developing 

cranium in the first two weeks of human development [14]. Shortly after, the 

calvarial begins to develop from a dense fibrous connective tissue layer that 
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serves as the foundation for the development of the remainder of the calvaria. 

These bones, which are also present in the adult skull, are the frontal bone, the 

parietal bone, the temporal bone, and the occipital bone [16].  

As the skull develops, these bones continue to expand and intersect in 

fibrous joints called cranial sutures [17]. Cranial sutures are composed of the two 

developing bones and contain dense but disorganized connective tissue between 

the bones [18]. By birth these cranial sutures intersect to form six fontanels, 

which in combination with the cranial sutures allow for normal deformation of the 

skull during birth [16].  The sutures are vital to a child’s development because 

they are the major growth areas of the skull that allow for cranial vault expansion 

[19]. In the medial most regions of the cranial sutures progenitor cells undergo 

rapid proliferation [20]. This rapid proliferation allows for continued expansion of 

the cranial vault to accommodate the expanding brain. Just lateral to this region 

of rapid proliferation, the cranial progenitor cells begin to differentiate forming the 

bone of the skull in a region that is called the osteogenic front [21]. The 

osteoprogenitor cells differentiate into osteoblasts that lay down immature 

osteoid. The osteoid then becomes mineralized with hydroxyapatite as the skull 

develops.  

Immediately after birth the skull becomes more spherical and the brain 

continues to grow rapidly. At three 3 months of age the sutures begin to fuse, 

beginning with the metopic suture, in a highly conserved process [22]. The 

remaining cranial sutures fuse later in adolescence and early adult hood after the 

brain has completed development. The timing of the fusion of the cranial suture 
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is controlled primarily by a complex interaction between the osteogenic front and 

the dura immediately underlying the suture [23, 24]. The dura is a thick 

connective tissue layer derived from mesoderm. The dura is the outermost layer 

of the meninges that surrounds and protects the spinal cord and the brain. The 

primary role of the dura is to separate the cerebrospinal fluid (CSF) from the 

circulating blood. In addition to its role as a physical barrier, the dura is believed 

to drive suture fusion by one or two interrelated mechanisms. Traditionally, the 

dura is believed to be a source of paracrine signaling which in turn promotes the 

differentiation of osteoblasts and subsequent fusion of the sutures [25, 26]. There 

is also limited evidence that suggests the dura may also be a source of the 

progenitor cells that become incorporated into the fusing cranial sutures [27].  

In recent years there has been a growing debate whether the fusion of the 

cranial sutures occurs through an endochondral or intramembranous 

mechanism. Historically, researchers have reported that the sutures fuse without 

the cartilaginous precursor that is seen in endochondral ossification [17]. There is 

a small but growing body of evidence showing that cartilage may be involved in 

both normal and pathologic suture fusion [28, 29]. In rodents, the cartilage seen 

in these studies was present in specific sutures for a short period of time. 

Additionally, there was a very discontinuous distribution of cartilage along the 

length of the fusing suture. This has been observed with the increase in cartilage 

associated genes and the presence of negatively charged tissue on histology. It 

should be noted that this cartilage does not have the characteristic appearance 

seen in the development and healing of long bone fractures. As a result, the 
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majority of papers published on the fusion of the cranial sutures still say that the 

cranial sutures fuse through intramembranous ossification. 

2.3 Craniosynostosis 

Approximately 1 in every 1800-2500 children there is a disruption of the 

normal suture development and the cranial sutures fuse prematurely [30-33]. 

This results in a condition that is called craniosynostosis. Craniosynostosis can 

result from a variety causes and has a broad spectrum of severity ranging from 

mild suture synostosis to pan-synostosis prior to birth [34, 35]. Approximately 

60% of the cases of craniosynostosis result from non-syndromic or spontaneous 

causes [33]. These cases occur from either an unknown genetic mutation or an 

environmental cause that results in the fusion of the cranial sutures. The 

remainder of the cases of craniosynostosis are caused by one of over 100 

different inherited mutations [19, 36]. In addition to the fusion of the cranial 

sutures, syndromic cases are associated with other characteristic abnormalities.  

If left untreated, craniosynostosis can result in a wide variety of 

craniofacial and neurological complications. These complications are caused by 

an increase in intracranial pressure or from the craniofacial deformities 

themselves [37]. In addition to the obvious cosmetic deformities seen with 

craniosynostosis, abnormalities in the craniofacial structures can impair normal 

mastication and airway function [38]. These craniofacial abnormalities can also 

lead to blindness, deafness, and other sequelae resulting from the compression 

9:  PAGEREF _Toc325089[35, 39]. Craniosynostosis can also lead to 
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complications resulting from an increase in intracranial pressure (ICP) [40]. This 

increase in ICP is caused by the continual growth of the brain inside a fused 

skull. If left untreated, the increase in ICP can lead to developmental delays, 

seizures, and in severe cases death [41]. 

2.4 Genetic Causes of Craniosynostosis 

The first genetic mutation identified to cause craniosynostosis was the 

MSX2 mutation seen in Boston type craniosynostosis [42]. The MSX2 gene is a 

transcription factor associated with the BMP signaling and osteoblast 

differentiation. The most common syndromic form of craniosynostosis involves a 

mutation in the FGFR3 receptor and results in Muenke syndrome [43]. 

Interestingly this is the only syndromic form of craniosynostosis known to result in 

uni-coronal synostosis and same mutations in this receptor results in long bone 

abnormalities and a normal cranial vault. The majority of cases of 

craniosynostosis are caused by a gain of function mutation in one of the FGF 

receptors [44, 45]. The FGF receptors are tyrosine kinase like receptors that 

cross phosphorylate each other in the presence of the target FGF ligand [46]. In 

the presence of the one of the mutations, the receptors are constitutively active 

and can phosphorylate in the absence of the target ligand [47, 48]. These 

mutations give rise to the Crouzon, Pfeiffer, and Aperts syndromes [36]. The 

majority of mutations in this receptor are located within two exons in the IgIIIa/c 

domain [45, 49]. Typically these syndromes result in bi-coronal synostosis, mid-

face hypoplasia, and limb abnormalities [44, 50]. The syndromes resulting from 
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mutations in the FGFR2 receptors are among the most severe cases of 

craniosynostosis due to the bi-coronal suture fusion and the mid-face deformities 

[50, 51]. These syndromes frequently require complex calvarial reconstruction 

and frontal-orbital advancement at an early age. 

The most common autosomal dominant form of craniosynostosis is 

Saethre-Chotzen syndrome [52, 53]. Children with this syndrome 

characteristically display bi-coronal synostosis, microcephaly, facial 

dysmorphism, short stature, and syndactyly [29, 54, 55]. Saethre-Chotzen 

syndrome is caused by a heterozygous missense, duplication, or deletion 

mutation in the Twist1 gene [52, 56]. Twist1 is a basic-helix-loop-helix 

transcription (bHLH) factor expressed early in suture development and is 

involved in regulating osteoblast differentiation [57, 58]. Mutations in the Twist1 

gene are believed to cause a decrease in the binding capacity to E protein and 

an increase in homodimer formation [59]. This alteration in normal activity results 

in an change in expression of genes that in turn promote osteoblast 

differentiation. Twist1 has been shown to be involved in signaling pathways 

related to MSX2, RUNX2, FGFR2, and coronal suture development. Mice 

engineered with a point mutation in the Twist1 gene display fusion of the coronal 

suture [29, 55].  

2.5 Management of Craniosynostosis 

The extent and timing of the pathological suture fusion has a significant 

effect on the management of craniosynostosis. The less severe late onset cases 
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of single suture fusion can occasionally be treated with helmet molding therapy 

[60, 61]. As the child’s skull grows a series of helmets are custom molded to 

mechanically reshape the cranial vault. However the majority of cases of 

craniosynostosis require surgical intervention to correct the fused suture [35]. In 

the past, surgeons performed strip craniotomies that just removed a strip of bone 

over the fused suture. This approach has been abandoned for the majority of 

cases of craniosynostosis because the results were temporary. The bone 

removed from the defect rapidly re-fused providing little benefit to the child.  

The most common procedure currently performed for the correction of 

craniosynostosis is complex calvarial reconstruction. In this procedure the 

majority of the calvaria is removed and then reshaped in an attempt to restore 

normal cranial shape and volume [24, 35]. Surprisingly complex cranial vault 

reconstruction has a 1% incidence of post-operative complications, which is 

comparable to other major pediatric surgeries [62]. Despite this low incidence of 

complications, there is significant morbidity associated with surgical intervention 

for craniosynostosis [41]. The surgeries are typically 4 to 5 hours in duration and 

require the implantation of fixation hardware to reconstruct the bones of the skull. 

Children who have the surgery require multiple blood transfusions and stays in 

the intensive care unit.  

While there are relatively few complications immediately following surgical 

correction of craniosynostosis, there is a substantial risk for delayed 

complications. In up to 40% of cases of cranial vault reconstruction, the bones 

rapidly refuse resulting in a condition referred to as re-synostosis [63, 64]. Re-
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synostosis frequently leads to additional craniofacial deformities and 

complications related to an increase in ICP. To correct these complications 

additional surgical intervention is required. In many cases, surgeons are forced to 

perform additional cranial vault reconstructions that are associated with a 13% 

incidence of life threatening complications [50, 51]. These complications 

frequently include dural tears, subdural hemorrhages, tearing of the cranial 

sinuses, stroke, encephalitis, meningitis, and seizures [62, 65]. Some children, 

especially those who are very young at the time of the first surgical intervention 

require multiple reconstructions in their first two years of life [63]. After children 

are about 2-3 years old the rate of brain growth slows dramatically and the risk of 

needing multiple operations to correct neurological sequelae is drastically 

reduced. Typically any surgical intervention after age 3 is focused on correcting 

cosmetic deformities, and not reshaping the cranial vault from complications 

resulting from re-synostosis.  

The incidence and morbidity of complications related to re-synostosis are 

so severe that it is a major factor in deciding the timing of surgical intervention. 

Children who are less than 6 months of age at the time of surgery have more 

than three times the risk of developing re-synostosis, compared to children who 

are between 6 months to 2 years old [35]. In addition to the age dependent risk, 

certain syndromic forms of craniosynostosis also have an elevated risk of re-

synostosis. It has been reported that children who have Saethre-Chotzen, 

Apert’s, and Crouzon syndrome have up to a 40% incidence of re-synostosis [50, 

63]. It is not clear whether this elevated risk is the result of the syndrome itself or 
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is attributed to the younger age at which these children require surgery. Nearly all 

syndromic forms of craniosynostosis display bi-coronal suture fusion, which 

typically necessitates surgical intervention at an earlier age than cases of single 

suture synostosis.  As a result of this age dependent risk of re-synostosis, 

surgeons would like to delay surgical intervention as long as possible. However 

the longer intervention is delayed the greater the risk of permanent neurological 

complications related to the original deformities. There is little empirical evidence 

to guide the timing of surgical intervention and surgeons typically choose to delay 

surgeries until neurological signs become evident.  

2.6 Animal Models of Craniofacial Development 

In the last 30 years, animal models of cranial development have been 

utilized to examine the molecular mechanisms involved with both normal and 

pathological suture fusion. The majority of this work has been conducted in 

rodents due to their ease of use and conservation of the molecular signaling 

related to bone development. Additionally, there have been a rapidly growing 

number of commercially available strains of mice engineered with a mutation that 

is associated with a human syndromic form of craniosynostosis [66, 67]. Despite 

the conservation of molecular signals, there are significant differences in the 

craniofacial development between humans and rodents [68]. Unlike humans who 

stop growing in early adulthood, all rodents continue to grow as they age. This 

continued growth also occurs in the cranial vault and the brain. The majority of 

the cranial sutures in rodent remain open to allow for continual expansion of the 
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calvaria [69]. To accommodate this growth, the open sutures in rodents have a 

different morphology that typically consists of two overlapping plates [55, 69]. In 

humans this overlapping structure is not present as all of the cranial sutures in an 

adult skull are fused.  

Despite these differences, researchers have used these model systems to 

compare the processes that are responsible for normal suture fusion. In rodents, 

the posterior frontal suture is the only suture in the cranial vault that fuses [69, 

70]. This suture is analogous to the human metopic suture which is also the first 

suture to fuse in the human skull. Traditionally, the patency of fusion of the 

sutures has been examined using standard decalcified histology. There have 

been significant discrepancies reported regarding the exact timing of the suture 

fusion, but all research supports the conclusion that this suture fuses sometime 

during the first month of life in mice [28, 70, 71].. Researchers frequently 

compare the fusing posterior frontal to the normally patent sagittal suture [23, 72, 

73]. While both sutures are located along the midline of the skull, they are from 

different embryologic origins and are subjected to different mechanical loading.  

This comparison has provided a great deal of information related to the 

mechanisms responsible for the fusion of the murine cranial sutures. Early work 

performed by Longaker highlighted the role of the underlying dura in regulating 

the  patency or fusion of the cranial sutures [23]. Using an organ culture model, 

he removed a portion of bone containing both midline sutures and then changed 

the position of the suture relative to the underlying dura. Rotation and 

transposition of the posterior frontal bone over the dura of the sagittal suture 
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resulted in this normally fusing suture remaining open while the normally open 

sagittal suture fused over the dura of the posterior frontal dura.  Further research 

examining the role of the dura has found numerous age and location related 

differences in factors related to osteoblast proliferation and differentiation [25-27, 

73-76]. The age and location specific differences in the dura have also been 

shown to alter the regenerative capacity of overlying cranial defects and the 

osteoinductive ability of the dura itself [77-79]. 

The two most widely studied growth factor families in craniofacial 

development literature are the FGF and TGF-β molecules [21, 68, 72, 80, 81]. 

The TGF-β members and receptors are involved with osteoblast proliferation and 

production of extracellular matrix proteins [82, 83]. Several reports have shown 

that members of the TGF-β family are localized to the osteogenic fronts of the 

developing sutures in rodents [21, 84, 85]. More specifically, TGFβ2 has been 

shown to be a major factor responsible for the fusion of the posterior frontal 

suture [21, 72]. While there are several different molecules in the FGF family 

studied in relation to craniosynostosis, FGF-2 has been shown to be involved in 

several aspects of suture fusion including osteoblast proliferation, angiogenesis, 

and bone formation in rodent calvaria [86-88]. Additionally, the most common 

forms of syndromic craniosynostosis result from gain of function mutations in 

FGF receptors.  Recently there is a growing body of evidence that supports the 

interaction between member of the FGF, TGF-β, and downstream transcription 

factors such as Twist1 [87, 89, 90]. This also seen clinically as nearly all 

syndromic mutations result in bi-coronal synostosis. Despite the widespread 
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research in the orthopedic literature, very little work has been performed to 

examine the role of bone morphogenic proteins (BMPs) in regulating the fusion of 

the cranial sutures [91]. Additionally, there have been no reports of mutations in 

the BMP family causing craniosynostosis.  

2.7 Animal Models and Therapies for Re-Synostosis 

While it would be ideal to have a therapy to prevent the premature fusion 

of the sutures, this is not feasible with traditional presentations of 

craniosynostosis [35]. With non-syndromic cases of craniosynostosis, the 

condition is detected after the sutures have already fused. While it is possible to 

detect and screen children at risk for a syndromic form of craniosynostosis, the 

majority of these syndromes present with the suture fusion at birth. As a result 

there is little opportunity to prevent the suture fusion, but there is an opportunity 

to reduce the morbidity and complications related to the surgical intervention [62]. 

To address this there have been a number of recent studies that have developed 

surgical models of re-synostosis.  

The most thoroughly studied model of re-synostosis has been the rabbit 

[92-95]. Nearly all work focused on re-synostosis of the rabbit has been 

performed by the Mooney group. This group fortuitously identified a rabbit that 

spontaneously displayed bi-coronal synostosis [96, 97]. They were able to 

successfully breed rabbits with this mutation and have developed a colony of 

rabbits that display craniosynostosis. The underlying mutation that is responsible 

for causing this synostosis is currently unknown, but it is not a mutation in the 
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genes known to cause human forms of craniosynostosis. While the mutation is 

inherited in an autosomal dominant pattern, there is variable penetrance seen 

among the rabbits [97]. This results in a spectrum of severity where some rabbits 

display early onset fusion before birth to some born with patent sutures that fuse 

later in development.  

The surgical procedure that is most commonly used with these rabbits is a 

strip craniotomy made by removing the fused coronal suture [95]. Typically a 3 

mm wide defect is created over the coronal suture near the midline of the skull. 

Depending on the severity of the rabbits’ synostosis the surgeries are preformed 

between 10 days to 3 months of age. Using this model investigators have been 

able to test the effect of delivering therapies to target the mechanisms believed to 

be responsible for normal suture fusion. The first of these studies used 

antibodies against TGFB2 delivered with a collagen gel [95]. This molecule was 

targeted because it has been shown to be associated with normal suture fusion 

and mutations in the TGFB receptors are known to cause craniosynostosis. 

While the researchers were able to achieve statistical significance in their results, 

there was not a major reduction in the bone regenerating in the defect. 

Furthermore their control group containing just the collagen with an IgG 

displayed a decrease in regenerated bone in the defect. This was followed up 

with an additional study involving the administration of the BMP inhibitor noggin. 

The researchers were able to find stronger evidence for the effect of Noggin, 

however they groups with no intervention and the control collagen gel did not 

display complete fusion of the defect [93]. Interestingly while noggin was able to 
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delay the re-synostosis in the rabbits, it was not able to prevent the fusion of the 

coronal sutures in the rabbits with delayed onset coronal synostosis [98]. 

While there are substantial benefits to performing cranial defect in a larger 

rabbit model, the strain of rabbits displaying the fused coronal sutures are not 

commercially available and the mutation resulting in the synostosis is not known. 

As a result, there are tremendous benefits for having a rodent, especially a 

mouse, model that undergoes rapid defect healing. This would provide a model 

system to understand the mechanisms responsible for and to test therapies 

designed to delay the bone re-closure. Rodents have been widely used to 

investigate the effect of therapeutic interventions in non-suture associated cranial 

defects [78, 99]. These defects usually are created in adult animals and located 

over the parietal bones of the skull. Traditionally, these are critically sized defects 

are designed to test therapies designed to enhance the production of bone [100]. 

In the absence of a therapeutic intervention the defects do not undergo complete 

healing. While they are suitable to test applications designed to enhance 

osteogensis, they do not recreate the rapid healing seen in cases of re-

synostosis.  

To address this limitation, a adult murine cranial defect model has 

previously been developed [93]. In this model, the posterior frontal suture is 

removed to create a 1.0 mm wide defect along the length of the suture. The 

investigators delivered cells transfected to overexpress the BMP inhibitor Noggin. 

Analysis of the defect with µCT showed moderate success of the inhibitor, but 

the major limitation of this model was that the empty defect did not heal even 
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after 4 months. The most likely cause for the lack of healing was that the defects 

were created in 10 week old adult mice. Numerous studies have demonstrated 

that there are substantial regenerative differences between juvenile and adult 

animals [74, 75, 78, 93, 101]. Furthermore this difference is seen clinically in the 

age dependent risk of re-synostosis [63].  

2.8 Overview of Long Bone Fracture Healing 

While there is benefit in understanding the mechanisms responsible for 

both the normal and pathological suture fusion, this research does not address 

the major challenge with craniosynostosis. Clinically the major challenge is 

controlling the post-operative bone growth seen in a pediatric skull, but there is 

little research examining the mechanisms responsible for regenerating the cranial 

bone in pediatric applications. Despite the lack of evidence in the craniofacial 

literature, there has been a tremendous amount of research in the orthopedic 

literature examining the mechanisms responsible for the healing of long bone 

fractures. Long bone fractures heal through two main mechanisms, direct 

(primary) or indirect (secondary) fracture healing [3, 6, 9]. In direct fracture 

healing there is the formation of a new haverisan system by the remodeling units 

composed of osteoclasts and osteoblasts. This type of fracture healing only 

occurs when there is anatomic reduction of the fracture and very rigid fixation [9].  

The majority of long bone fractures heal through indirect fracture healing. 

This healing involves a combination of intramembranous and endochondral 

ossification that results in the formation of a fracture callus [102]. The first events 
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in the healing of a fracture involve the formation of a hematoma and an 

inflammatory response. This stage is associated with the production of pro-

inflammatory cytokines (IL-1, IL-6, and TNFα) and TGF-β [103-105]. The 

production of these factors results in the recruitment and later proliferation of 

mesenchyme cells. This is associated with an increase of TGF-β2, TGF-β3, 

BMP5, and BMP6 [106]. Following proliferation, these cells begin to differentiate 

into osteo-chondral progenitor cells and angiogenesis begins [107-109]. The 

early proliferation and differentiation are largely mediated by an increase in the 

production of BMP-2 [110]. Vascular invasion is needed for mineralization and 

this vascularization is associated with an increase in angiopoetin-1 [109]. 

Approximately one week after the fracture occurs, the mesenchymal cells 

undergo chondrogenesis and form what is referred to as a soft callus [111, 112]. 

By two weeks this soft callus begins to mineralize forming in response to 

members of the BMP family. The bone that is produced during this stage of 

healing is a more disorganized and is called immature woven bone [106]. It is 

during this phase of fracture healing that the callus becomes visible 

radiographically. This phase is also associated with a concomitant increase in 

neo-angiogenesis in response to members of the VEGF family [113, 114]. The 

final stage of fracture healing is the remodeling of the fracture callus that 

primarily replaces the woven bone with the stronger lamellar bone. This fracture 

remodeling may not occur in older adults, but occurs rapidly in children. 
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2.9 BMPs and BMP Inhibitors 

Since their discovery in the mid-1960s by Marshal Urist, bone 

morphogenic proteins (BMPs) have been shown to be one of the major factors 

involved in the development and regeneration of mineralized tissues [115]. To 

date there have been over 20 BMPs identified that are classified into 4 main sub-

groups. The two most widely studied sub-groups are group 1 (BMP-2 and BMP-

4) and group 2 (BMP-5, BMP-6, and BMP-7) [116]. Nearly all BMPs belong to the 

TGF-β superfamily. Members of the BMP family form dimeric structures before 

binding to their respective receptors. There are two major types of BMP 

receptors (Type I and II) that act as serine/threonine kinase receptors [117]. 

Traditionally, the BMP dimer binding to the Type I receptor pair then recruits the 

Type II receptor pair, resulting in the initiation of the signal cascade. The 

signaling pathway results in the auto-phosphorylation of the receptors that in turn 

phosphorylates members of the SMAD family (SMAD 1, 5, and 8). This activated 

SMAD complex then translocate to the nucleus to activate downstream gene 

transcription.  

Nearly all regulation of the BMP pathway occurs extracellularly by the 

production of numerous BMP inhibitors [118]. Traditionally, when there is an 

increase in the production of BMPs, inhibitors are also produced as part of a 

negative feedback loop to control the signal [119]. The majority of BMP inhibitors 

bind to the BMP complex and prevent binding to the target receptor by steric 

hindrance. There are a few exceptions to this rule as some inhibitors bind the 

receptor directly to block signal transduction [116]. Modulation of the BMP 
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pathway by controlling the action of the inhibitors is an attractive target as all the 

regulation occurs extracellularly and therapeutic agents do not have to cross the 

cell membrane.  

Of the BMP inhibitors, Noggin has been the most thoroughly studied 

inhibitor in the craniofacial literature [92, 93, 120]. Noggin binds and blocks the 

activity of BMP-2, BMP-4, BMP-5, BMP-6, and BMP-7 [121, 122]. It has a major 

role embryologicaly in the development of bone and the regulation of the 

associated apoptosis during limb formation. Prior work examining the role of 

Noggin has demonstrated that this inhibitor is produced in the normally open 

murine cranial sutures, but is not produced in the fusing posterior frontal suture 

[120]. Additionally, the delivery of the Noggin over the posterior frontal suture 

resulted in a widening of the suture. These findings lead to the use of Noggin as 

a therapy in both rabbit and murine re-synostosis, but this inhibitor only 

moderately delayed suture fusion [92, 93]. However, the delivery of Noggin did 

not rescue the fusion of the coronal suture in a rabbit model of delay onset 

craniosynostosis [98].  

Although the BMP inhibitor Gremlin1 (Gremlin) has not been well studied 

in the craniofacial literature it is a very attractive alternative to Noggin. Gremlin is 

a member of the Cerebrus and Dan family and acts through the traditional BMP 

inhibitor mechanism where it binds the BMP dimer extracellularly [123]. Gremlin 

has been shown to have greater specificity than Noggin as it only blocks the 

activity of BMP-2, BMP-4, and BMP-7, although it also has some inhibitory 

activity on the Wnt pathways [124]. Gremlin has been shown to be heavily 
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involved the regulation of limb and kidney development [125]. A homozygous 

knock out of Gremlin is lethal in mice and heterozygous knockout results in short 

stature and osteopenia due to a decrease in trabecular formation in long bones 

[126]. To our knowledge no one has used Gremlin as a therapy to delay the 

formation of bone in vivo. 

2.10 Imaging and Segmentation of Mineralized Tissues 

The presence of the hydroxyapatite mineral in the matrix makes X-ray 

based imaging modalities an ideal choice for imaging bone. When an X-ray beam 

encounters the mineralized tissue a substantial amount of the energy is absorbed 

or attenuated which in turn generates the image. Plain 2D X-rays are widely used 

for craniofacial and orthopedic applications, but they only provide limited 

information because the images are a projection of the tissue of interest [35]. The 

use of computed tomography (CT) uses X-ray radiation to generate numerous 

projections of the target tissue. These projections are then processed to generate 

detailed 3D images of the target tissue. CT scans expose the patient to much 

higher radiation dose, which is a major concern for craniofacial imagining of 

pediatric patients [127]. In recent years advances in the hardware of micro-focal 

CT (µCT) have made this modality an attractive choice for imaging mineralized 

tissue in animal models. The use of µCT allows for the creation of images that 

are up to 1000 times greater resolution than what is possible with traditional CT 

imaging.  
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Traditionally, histology has been used to study developmental and 

regenerative processes of craniofacial structures. While this modality provides 

excellent morphologic information, the discontinuity of the cranial structure 

severely limits the usefulness histology [28]. Cranial sutures fuse a very 

discontinuous process whereby the structures form discrete bridges of bone [71]. 

These bridges form randomly along the length of the suture, further complicating 

analysis. As a result it is problematic to make generalizations regarding the 

fusion of an entire suture or defect based on a few histological sections. This 

problem has resulted in widely differing reports with regard to the timing of the 

fusion of the mouse posterior frontal suture [28, 70].  While it is possible to 

perform serial sectioning of the sample, this is prohibitively time consuming for 

high throughput applications. In addition to much faster imaging times, µCT 

allows for assessment of mineral content in a non-destructive manner. 

The use of µCT has been widely used to examine orthopedic small animal 

models, but there is limited use of this modality in the craniofacial basic science 

literature. A few small studies have used µCT imaging to examine the 

development of the cranial sutures. Previous work has verified that µCT can 

accurately image the morphologic changes related to fusion of the mouse 

posterior frontal suture [71, 128]. The 3D renderings with µCT have further 

demonstrated the discontinuity that makes non-serial sectioning inaccurate [71]. 

The use of µCT has also been used to assess the regeneration of bone in a 

murine posterior frontal defect [93]. One of the major reasons µCT is not widely 
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used for imaging craniofacial structures is difficulty in segmenting the bones of 

the images.  

Segmentation is the process of identifying boundaries of structures on 

medical images. The complexity seen with cranial suture development and 

regeneration makes segmentation difficult with traditional algorithms [128]. The 

most widely used segmentation in the craniofacial literature is manual tracing [93, 

128]. Not only does this introduce tremendous bias in the assessment, but this is 

also prohibitively time consuming. For most CT based applications the use of 

global threshold segmentation provides accurate results as most bone structures 

display relatively uniform attenuation [129, 130]. With this algorithm, any pixel 

having a value over the specified threshold is considered bone while all 

remaining pixels are considered background. The utility of this algorithm is limited 

when imaging the complex cranial structures. The cranial sutures form and 

mineralize in a very discontinuous process that produces several gaps in the 

bone boundaries. Furthermore, the center of the sutures is composed of a dense 

fibrous connective tissue. While this tissue is not mineralized, it does have a 

significant attenuation that leads to inaccuracies in the global threshold 

segmentation boundary. The use of a global threshold is further complicated 

when examining the development of the cranial sutures because the sutures 

undergo more than a 10 fold change in density as the animal ages. This requires 

subjectively selected different threshold based on the age of the animal. As a 

result of these two differences, even minor variations to the threshold result in 

widely different segmentation boundaries. 
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To address many of the issues associated with global threshold 

segmentation, more advanced imaging algorithms have been developed to 

provide a more accurate segmentation. One of the most widely used 

segmentation algorithms is a level set algorithm [129, 131]. Both 2D and 3D level 

set algorithms grow an initially defined region to optimize a final segmentation 

boundary. The algorithm modifies the boundary until an optimal solution to the 

differential equation is obtained that corresponds to the ideal segmentation 

boundary [132]. This algorithm was initially developed for tracking the geometries 

of one structure over time and is limited to the segmentation of one object. The 

multiple bones seen with the cranial suture makes using this image algorithm 

impractical and inaccurate. The Chen-Vese algorithm was developed to improve 

upon these limitations by allowing for more advanced performance that allows for 

branching or fusion of multiple segmentation objects [133]. While this overcomes 

the challenges with the traditional level set algorithm, the fibrous tissue between 

the developing sutures results in substantial inaccuracies with this algorithm. 

More specifically, the algorithm typically incorrectly considers this tissue as bone 

and “fuses” the suture when in fact the suture was open.  

To address these issues associated with parameter selection, required for 

both the level set and Chen-Vese algorithms, the snake algorithm was developed 

[134]. This active contour algorithm adjusts the segmentation boundary in order 

to optimize an energy function. Numerous variations of this energy function have 

been reported, but the driving force behind the functionality of snake algorithms 

is optimizing the boundary on a gradient image [133-136]. The gradient image is 
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a two dimensional derivative of the original image and regions where there is 

great change, corresponding to an edge, have a high value. The snake algorithm 

optimizes the boundary to where this gradient is greatest and as a result detects 

the edges of the structure of interest. This produces a segmentation boundary 

that is independent of the actual pixel intensity and is dependent only on the rate 

of change of the structure. This segmentation algorithm is limited for segmenting 

the cranial applications because the algorithm requires an initial approximation of 

the object boundary and cannot distinguish between open or closed structures.  

2.11 Delivery Systems for Biological Therapeutics  

One of the major challenges when using biologically active molecules or 

proteins is providing controlled delivery to the target tissue. In order to achieve 

the intended response, it is necessary to have an effective dose for an extended 

period, while minimizing the negative side effects of the therapeutic agent. 

Biologically derived delivery vehicles are beneficial in that they generally do not 

elicit a strong inflammatory response and are easily degraded by the host [137]. 

The most widely used carrier used in the craniofacial literature is a collagen 

based sponge or gel [138]. Clinically, this is used to deliver rhBMP2 to enhance 

bone regeneration [139]. In animal models, this scaffold has been used to deliver 

BMP inhibitors and antibodies to delay post-operative re-synostosis [92, 93, 98]. 

While this is an FDA approved carrier, there are significant challenges when 

trying to provide controlled release of incorporated proteins [140]. As this is a 

biological tissue, there is little ability to control or delay the release of proteins 
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from this material. As a result, there have been numerous complications reported 

in the orthopedic literature that can be attributed to this rapid release profile and 

associated inflammatory response [141-143]. 

The use of synthetic materials allow for much greater flexibility in tailoring 

the material behavior and properties to the intended application [144, 145]. Poly 

(ethylene glycol)  (PEG) hydrogels have been used in a variety of craniofacial 

and orthopedic applications due to their biocompatibility and the ability to 

incorporate biologically active molecules [137, 146-148]. Traditionally, synthetic 

materials are limited by their immune responses and prolonged degradation, 

although recent advances in material chemistry have made these more attractive 

[149]. With synthetic materials it is possible to control the release of active agents 

by altering the material properties, affinity to the therapeutic proteins, and 

covalently linking the therapeutic molecule to the material [150-152].  

There is tremendous benefit for developing an injectable synthetic 

hydrogel for use in craniofacial applications. The complexity and irregularity seen 

with cranial vault reconstruction makes pre-formed materials impractical. 

Numerous polymerization strategies have been reported using PEG to form 

cross linked gels both in vitro and in vivo. Many of these hydrogels potentially 

toxic components or UV radiation to form a cross linked hydrogel, which is of 

great concern as these materials will be introduced directly on to the brain of an 

infant [153, 154]. While UV light is a safe method for polymerization in other 

applications, it has the potential to be toxic in neurological applications as UV 

light is used as a method to induce neuron apoptosis in vitro [155-157]. 
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Furthermore, these materials could not be polymerized in structures that are too 

deep to be penetrated by UV light. 

The introduction of a new spontaneous polymerization strategy has been 

developed to provide spontaneously polymerizing gels and has been termed 

“click chemistry”. This method uses a step-growth polymerization strategy 

whereby macromeres with alkyne and azide functional groups are “clicked” 

together to form a cross linked hydrogel [158, 159]. These materials offer 

tremendous potential for creating materials with excellent mechanical properties 

while still being able to conjugate a variety of biomolecules to the gel. 

Traditionally, this polymerization occurs via a copper catalyzed cycloaddition 

reaction [159]. The cytotoxicity associated with this copper catalyst severely 

limits the utility of encapsulating cells and delivering the gel into living organisms. 

To overcome this toxicity, researchers have developed a copper free click 

polymerization strategy, but this polymerization takes over an hour to complete 

[160-162]. While this has tremendous potential for certain applications, the slow 

polymerization time associated with these hydrogels limits their utility as 

injectable materials.  
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CHAPTER 3        ALGORITHM TO ASSESS CRANIAL SUTURE 

FUSION WITH VARYING AND DISCONTINUOUS MINERAL 

DENSITY  

 

 

 

3.1 Introduction 

The cranial sutures are joints between the bones of the developing skull 

and are regulated by a complex interaction among the bones, the mesenchymal 

tissue between the bones, and the underlying dura. [23, 27] Early in normal 

development the cranial sutures have very active osteogenic fronts and they play 

a major role in cranial expansion. [18, 163] Craniosynostosis is the premature 

fusion of one or more of the cranial sutures early in development, occurring in 

approximately one out of 2,000 births. [19, 30, 164] Craniosynostosis is a very 

heterogeneous condition that most often results from spontaneous mutations, but 

can be caused by over 100 known syndromic mutations. [36] The variability 

associated with different types of craniosynostosis has made diagnosis and 

prediction of outcomes particularly challenging. The diagnosis of suspected 

cases of craniosynostosis is currently made based on the appearance of the 

cranial vault on x-rays and/or computed tomography (CT) scans. [35] These 

imaging studies are then used to provide a qualitative description of whether 

each of the cranial sutures is open or fused. Even with three dimensional (3D) 
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CT reconstructions, the complexity and irregularity of the cranial sutures in cases 

of craniosynostosis make diagnosis challenging. [165] To our knowledge there is 

no reliable way to correlate complications, outcomes, or risk of post-operative re-

synostosis based on the current imaging techniques. To address this unmet 

clinical need we developed and validated an image processing algorithm to 

accurately quantify normal suture fusion. 

A murine model of cranial development was selected to develop and 

validate the algorithm because of their ease of study, the conservation of 

molecular signals, and the increasing number of genetically engineered strains 

that display craniosynostosis. [53, 55, 57, 166] In mice the posterior frontal 

suture, analogous to the human metopic suture, fuses early in development 

(Figure3-1a). [28, 70] In contrast, the coronal, sagittal, and lambdoid sutures 

remain largely open to allow for continued expansion of the developing rodent 

calvaria. [66, 70, 167] Additionally, many mouse strains engineered with the 

mutations seen in the syndromic forms of craniosynostosis display pathologic 

fusion of the normally open coronal suture. [55, 166, 168, 169] 

Histology has been the gold standard method to analyze suture fusion and 

morphology in numerous animal models; however, there are significant 

limitations with using histology to quantify suture fusion. [17, 28, 70, 87] The 

discontinuity during suture fusion and the irregular mineralization patterns seen 

with the developing sutures limit the validity of making generalizations from a few 

histology sections to the entire suture. [28] In contrast to the relatively straight 
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posterior frontal and sagittal sutures, the normally open coronal and lambdoid 

sutures undergo significant curvature along their length (Figure 3-1a). [70, 80]  

Traditional techniques used for examining cranial sutures do not take this 

curvature into account when examining the suture morphology. Instead, the 

coronal suture has been examined in straight coronal sections or images moving 

along the length of the coronal suture. [70, 168] This results in relatively 

perpendicular sections for the medial regions of the skull, but very oblique 

sections relative to the suture in the lateral regions of the skull. By not correcting 

for these rotations, it is very likely that the variations in morphology previously 

reported along the length of the coronal suture are largely caused by performing 

sections at different angles relative to the direction of the suture. 

There have been several studies that have used computerized 

tomography (CT) based imaging to examine cranial sutures, changes in cranial 

phenotype, and calvarial defect healing in both humans and rodent models. [71, 

128, 168] Despite the growing use of CT, there are substantial limitations with 

traditional image processing algorithms when examining cranial development. 

The majority of the CT based analyses of cranial sutures in animal models has 

been performed using a global threshold or manual tracing for segmentation, 

which is the process of identifying a tissue of interest in an image. [71, 93, 128, 

130, 169] Not only is manual tracing time consuming, but it also introduces the 

potential for user bias in the analysis. [93] Global threshold segmentation is 

limited when analyzing images that are heterogeneous or have varying intensity. 

Furthermore, connective tissue between the bones of the suture can lead to 
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dramatic changes in the suture boundaries from relatively minor changes in the 

threshold (Figures 3-1b-d). [129, 170] This can lead to gaps in the segmentation 

boundary of the sutures when using a global threshold, because this method 

does not take into account any neighboring pixels when performing 

segmentation. [171]  

To address the limitations of both histology and traditional CT image 

processing algorithms, we have developed a semi-automated algorithm to 

accurately segment the complex and discontinuous bones of cranial sutures. The 

algorithm approximates and then optimizes the segmentation boundary using an 

implementation of the snake algorithm. The snake algorithm is an adaptive 

contour segmentation algorithm that is used to detect object boundaries in an 

image. [134, 171] To correct for the rotation of the coronal suture, we have 

developed an algorithm to digitally reconstruct images that are perpendicular to 

the cranial suture about all three axes. Clinically, the algorithm has the potential 

to make diagnosis of craniosynostosis easier and more accurate, but more 

importantly will hopefully improve the management of craniosynostosis by 

providing physicians with a better understanding of the suture fusion.  

  



35 

 

Figure 3-1: Sample images of normal mouse sutures. (a) The 3D rendering of a 
25 day old mouse shows the posterior frontal (PF), coronal (COR), sagittal 
(SAG), and lambdoid (LAM) sutures. (b) A 2D representative image of a 20 day 
old mouse posterior frontal suture showing fibrous connective tissue located 
between the developing sutures.  (c) Decreasing the global threshold applied to 
the same image less than 5% changes an image that would be considered 
fused (d) to one that was open and also introduces gaps in the bone boundary 
(red oval). 
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3.2 Methods 

3.2.1 Animal Care and Imaging 

Under approval of the Georgia Tech Institutional Animal Care and Use 

Committee, C57Bl/6J male mice (Jackson Labs, Bar Harbor, ME) were housed in 

a light and temperature controlled environment. Pups were kept with natural birth 

mothers until weaning at 21 days post-natal or euthanasia. All mice were 

provided food and water ad libitum. Mice 20 days old or older were euthanized by 

CO2 asphyxiation and pups under 20 days were euthanized by intraperitoneal 

injection of pentobarbital. Six male mice were euthanized at each of the following 

time points: post-natal days 6, 12, 20, and 25. The calvaria were removed from 

soft tissues and fixed in 10% neutral buffered formalin (Sigma, St. Louis, MO). 

The approximate region of the posterior frontal and coronal sutures was identified 

from the most posterior molars in the maxilla and moved posteriorly 6.6 mm. The 

samples were imaged with micro-CT (µCT) with isotropic voxels 10.5 µm in size, 

an energy of 55 kVp, and contained within a 21 mm sample holder (Viva CT 40, 

Scanco Medical, Bruttisellen, Switzerland).  The exact location of the sutures was 

identified on 3D reconstructions made using a global threshold and was used to 

create 1.5 mm tall by 2.5 mm wide DICOM images. The posterior frontal suture 

was defined as the midline suture running between the posterior most aspect of 

the inter-frontal ridge to the bregma. The coronal suture region was defined as 



37 

 

the anterior most aspect of the coronal suture moving posteriorly until the 

bregma. 

3.2.2 Imaging Algorithm 

The algorithm developed consists of three main stages: an initialization 

phase, a snake algorithm phase, and a suture morphometry phase. The 

initialization phase of the snake algorithm rotated all of the images using bi-cubic 

interpolation so the suture was horizontal and applied a global threshold to create 

a binary image. The global threshold was selected by two independent reviewers 

examining representative µCT images from all the ages of mice imaged and this 

same threshold was used for all images analyzed. The outer boundary of the 

bones was identified for the one or two medial most bones (Figure A-1a-b). If the 

suture was open, the medial boundaries of both bones were identified and the 

horizontal distance between the bones was measured at all the locations where 

the bones overlapped (Figure A-1c). This region was identified from the superior 

most overlap of the two bones and moved inferiorly until the distance 

measurements exceeded the mean of the distances plus two standard 

deviations. The distances between the bones of the osteogenic front were then 

used to perform a least squares fit of a cubic polynomial which was used to 

separate the bones into left and right images (Figure A-1c).  

This separation was necessary to prevent the snake algorithm from 

“jumping” to the other bone when the bones were in close proximity and/or the 

medial boundary was poorly defined (Figure A-2a). The separation was 
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performed by replicating the pixel value of the border pixel horizontally for the 

reminder of the image (Figure A-2b). Without this replication, a large artifact is 

created on the gradient image that is used by the snake algorithm phase 

resulting in errors of the segmentation boundary (Figure A-2c-f). After processing 

the images through the initialization phase, the images were inspected for any 

errors by a blinded reviewer. If an error was found, it was corrected by manually 

separating the bones, adjusting the global threshold, and/or applying a Gaussian 

filter to the image. These infrequent corrections are the only steps in the 

algorithm that require user interaction, while the remaining steps of the algorithm 

are fully automated.  

An implementation of the snake algorithm phase then used the 

approximate boundary from the initialization phase to optimize a final 

segmentation boundary. A Fourier descriptors model was fit through these points 

with the following form:  

 

 

where a0 and c0 are constants corresponding to the centroid of the curve, 

K is the number of harmonics, and ak, bk, ck, and dk are coefficients that control 

the shape of the kth harmonic, and t is the parametric variable that ranges from 0 

to 2π. The Fourier series description of the boundaries was selected because it 

allows for an analytic solution of a closed curve that can be modified based on 
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the complexity of the object to be segmented. The segmentation boundary is 

composed of a summation of sine and cosine functions of increasing frequency 

that create a closed continuous boundary. This allows the segmentation 

boundary to bridge regions in the image that are poorly or heterogeneously 

mineralized. Additionally, controlling the number of harmonics (K) allows the 

complexity of the curve to be tailored to the specific application. For the purposes 

of segmentation of the cranial sutures 25 harmonics were used for all 

segmentation boundaries due to the complexity and concavity of the sutures. 

The curve was optimized by varying the coefficients a0, c0, ak, bk, ck, and dk 

from Equations 1 and 2 to minimize the following snake energy functional:  

 

where E is the snake energy,  is the Fourier descriptors equation,  is 

the coefficient controlling the relative weight of the curvature term, is the 

coefficient controlling the relative weight of the stretching term, and  is the 

magnitude of the gradient image evaluated at each of the points along the curve 

 This gradient term is calculated by taking the magnitude of the horizontal 

and vertical central difference derivative over the entire image. The curvature and 

stretching terms were implemented by taking the first and second derivatives of 

the Equations 1 and 2. The multiplication of the sine and cosine terms that occur 

while taking the derivatives reduces all of the terms to a value of either zero or 

one.  As a result the equations simplify to being a summation of the coefficients 
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ak, bk, ck, and dk raised to the power of 2 or 4 for the curvature or stretching 

terms, respectively. 

As the curve optimization proceeds to minimize the energy term, the curve 

will be fit to regions where the magnitude of the gradient is greatest. This allows 

the algorithm to fit a curve along a path where the edges are sharpest. By 

controlling the values of  and it is possible to control how tightly the optimized 

curve bends and how rapidly the curve changes in length relative to the 

magnitude of the gradient term, respectively. This algorithm allows for final 

segmentation that is dependent on the change in intensity rather than the 

absolute pixel intensity. Additionally, the continuous boundary of the optimized 

curve allows for bridging of gaps in the images where the edges are poorly 

defined.  

The result from one optimization of the snake algorithm is used as the 

initialization points for the subsequent iterations of the algorithm. This process is 

iterated until the snake energy converges resulting in the optimal segmentation 

boundary. In some instances during the analysis there were two or more 

substantially equivalent segmentation boundaries that the algorithm would 

indefinitely alternate between during optimization. These indeterminate solutions 

were prevented by the introduction of an iteration limit in the algorithm.  

The suture morphometric phase of the algorithm used the segmented 

boundaries of the bone(s) to make morphometric measurements related to 

suture fusion. For both images where the suture is open and closed, the bone 

volume and mineralization are found in a 1 mm by 1 mm region within the 
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segmented bone boundaries (Figure 3-2a). The bone volume was calculated by 

applying a global threshold to the region inside of the segmented contour then 

summing the pixels that are above this threshold. Mineralization was used as an 

indicator of bone mineral content and was calculated by converting the pixel 

intensities to a known hydroxyapatite standard to give the density of each pixel 

relative to hydroxyapatite. The hydroxyapatite standard used was composed of 5 

different rods 6 mm in diameter that range in concentration between 0-800 

mgHA/cm3. The density values inside the segmented contour were then 

integrated to give the equivalent mineralization in mg of hydroxyapatite. For 

images where the suture was open, the region of the segmentation boundary 

corresponding to the osteogenic front was identified (Figure 3-2b). The 

segmentation boundary was then followed medially and inferiorly from the 

superior most boundary pixel until a vertical point of inflection was encountered 

for an average of four consecutive points. The four-point averaging was used to 

prevent minor fluctuations in the boundary from causing errors in this boundary. 

This point was then used as inferior medial border of the osteogenic front. The 

horizontal distances between the left and right osteogenic fronts on the suture 

were measured at every vertical pixel for the regions that overlapped. These 

measurements were then used to find the minimum distance, maximum distance, 

mean distance, and area between the bones. The percentage of the images that 

were open along the length of the suture was calculated. This final value is not 

dependent on the snake algorithm, but is calculated during the global threshold 
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initialization phase. The functionality of all steps of the algorithm is illustrated 

using a flow chart (Figure 3-3). 

3.2.3 Coronal Suture Reconstruction 

To reduce the introduction of distortions when analyzing the curved 

coronal suture, it was necessary to reconstruct images so that they were 

perpendicular to the suture about all three axes. This is especially important for 

the more lateral regions of the coronal suture where straight coronal sections are 

at the most oblique angle relative to the suture. The first step in the process was 

to identify the center of the coronal suture once for every 20 unreconstructed 

coronal images. A third order polynomial was fit through these points and the 

derivative was taken to find a vector tangential to the suture shown (Figure 3-4a). 

A global threshold was then applied to the entire image stack and the 

ectocranial-most points of the skull were found (Figure 3-4b). A bi-cubic 

polynomial was then fit through these points and used to find a vector normal to 

the surface of the skull at the specified (Figure 3-4c). The cross product between 

this normal vector and the tangent vector was taken, resulting in a vector that is 

orthogonal to the first two. The normal and the cross product vectors were then 

used to reconstruct a new image that is perpendicular to the image about all 

three axes using bicubic interpolation (Figure 3-4d). This reconstruction process 

was repeated at 200 evenly spaced locations along the coronal suture. The 

reconstructed images were then processed with the snake algorithm described 
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above. All programming was performed using Matlab 7.9 (MathWorks, Natick, 

MA) using some components of the image processing toolbox.  

3.2.4 Algorithm Comparison 

The segmentation boundary from the algorithm described above was 

compared to both a global threshold and another advanced active contour 

algorithm based on a level set algorithm. As the many images in developing 

suture contain more than one bone, the Chen-Vese algorithm was selected as 

this algorithm allows for automatic segmentation of multiple objects within the 

image, as described previously. [133] A representative scan from a 20 day old 

mouse was used as a comparison between the different segmentation 

algorithms. All segmentation was performed on the same image and the image 

created using a global threshold with the same value as all images analyzed. The 

initialization boundary for the snake algorithm image was boundary from this 

threshold. 

3.2.5 Histology Validation 

One random sample from each of the 6, 12, 20, and 25 day old mice was 

decalcified in Calex® (Fisher Scientific, Pittsburgh, PA) for 6 days, changing the 

solution every 48 hrs. Complete decalcification was verified by plain x-ray 

(Faxitron X-ray, Lincolnshire, IL) before and after decalcification. The samples 

were trimmed, dehydrated in a graded series of ethanol washes, and embedded 

in paraffin. For analysis of the posterior frontal suture, serial sectioning of the 

entire posterior frontal suture was made with 7 µm thick sections (Microm HM 
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325, Microm International, Waldorf, Germany). The sections were stained with 

haematoxylin and eosin and then imaged at 10x magnification with a Leica 

DMLB microscope (Leica Microsystems, Bannockburn, IL). To provide direct 

comparisons of the distance measurements between the µCT and histology, the 

boundaries of the bone(s) were outlined manually for all of the sections. The 

programming for the manual tracing and morphometric analysis was 

implemented in Matlab 7.9 (MathWorks). 

3.2.6 Human Imaging 

To demonstrate the utility of the algorithm on lower resolution clinical CT 

scans, both the reconstruction and segmentation algorithms described above 

were applied to a normally open and pathologically fused suture. Under approval 

of the Georgia Tech and Children’s Healthcare of Atlanta institutional review 

boards, a pre-operative CT scan of a 6 month old boy with non-syndromic 

metopic craniosynostosis was obtained. The child was imaged with a low dose 

cranial imaging protocol with isotropic 1 mm3 voxels. This protocol has an 

average dosage of 10 mGy, which is roughly a third of the radiation exposure of 

high resolution CT scans. [127] Human skulls are even more spherical than the 

murine skull and as a result are subject to even greater distortions from taking 

images that are oblique to the suture. The 3D reconstruction and segmentation 

algorithms described above were applied to both the pathologically fused 

metopic and open coronal sutures. Images were reconstructed perpendicular to 
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both sutures and analyzed with the algorithm for both the pathologically fused 

metopic and open coronal sutures.  

3.2.7 Statistics 

For analysis of the histology validation, the Pearson correlation coefficient 

was first compared for the number of measurements needed to be statistically 

significant, with a p value of less than 0.05 being considered significant. A least 

squares fit linear regression was performed for all measures and an R2 value was 

calculated. The normality of the coronal suture data was determined using a 

Komogorov-Smirnov normality test. This was followed with a one way ANOVA 

using a Bartlett’s test for equal variances. Statistical significance was determined 

using a Dunnett’s Multiple Comparison post-hoc test, with a p value less than 

0.05 considered significant. All analysis was performed using Graphpad Prism 5 

software (GraphPad Software, La Jolla, CA). 
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Figure 3-2: Representative segmentation boundary and morphometric 
measurements. (a) Representative segmentation boundary for an image with one 
bone. (b) The bone boundaries determined by the algorithm (green line) were 
used to find the osteogenic front (yellow line). The osteogenic front was defined 
as the global maximum of the segmented boundaries (red arrows) moving 
medially until a vertical point of inflection (yellow arrows). This was in turn used to 
find the minimum distance (blue line), mean distance, maximum distance (red 
line), and the suture center (white plus). 
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Figure 3-3: Flow chart detailing the functionality of the segmentation algorithm. 
The algorithm consists of three main phases: initialization phase, snake algorithm 
phase, and morphometric phase. All steps are fully automated with the exception 
of one manual interaction point after the end of the initialization phase to inspect 
the images. The output measurements from the morphometric and initialization 
phases are bold.   



48 

 

Figure 3-4: Reconstruction of images perpendicular to the coronal suture. (a) A 3
rd

 order 

polynomial (a, blue line) is fit through the user defined center of the coronal suture (red 

+); resulting in the vector tangent to the surface (green arrows). (b) A global threshold is 

applied to find the ectocranial border of the skull (green line). (c) These points are 

reconstructed to create a bicubic polynomial surface of the skull (blue green mesh) that is 

used to find the vectors normal to the coronal suture (blue arrows). (d) The cross product 

of these vectors (black arrows) is then used to define a plane (green grid) that is used to 

reconstruct the image perpendicular to the suture. 
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3.3 Results 

3.3.1 Posterior Frontal Suture Results 

The initialization phase of the algorithm correctly approximated the bone 

boundaries and separated the images 95-99% of the time along the posterior 

frontal suture, being more accurate for the older samples. The interactive tool 

was able to correct all of the initialization errors by manually separating the 

images and modifying the global threshold. 

The percentage of images that were open along the posterior frontal 

suture showed that at 6 days the entire posterior frontal suture was 84% open 

and decreased until reaching a plateau by day 20 (Figure 3-5a). The mean 

horizontal distance did not decrease until day 20 and appeared to reach a 

plateau (Fig. 5b). The minimum, maximum, and suture area all showed the same 

trends seen with the mean distance (data not shown). The bone volume of the 

entire posterior frontal suture remained relatively constant until increasing after 

day 12. The mineral mass showed identical trends to the bone volume 

measurements (data not shown). Unlike the two prior measures, the bone 

volume never reached a plateau for the time points studied (Figure 3-5c). This 

was identical to what was seen qualitatively with 2D µCT images for mice from 

day 6, 12, 20, and 25 (Figure 3-6a-d). The final segmentation boundary of the 20 

and 25 day old mice shows regions where the segmentation boundary was able 

to bridge discontinuously mineralized regions (Figure 3-6c-d). 
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Representative histological images illustrate that the 6 and 12 day old 

sutures were largely open, but then fused and increased in bone volume for the 

later time points on days 20 and 25 (Figure 3-7a-d). Comparison between the 

serial histology and algorithm results showed excellent correlation for the three 

measures compared between the snake algorithm and the manual tracings of 

histologic images (Figure 3-7e-g). All three measurements had a statistically 

significant Pearson correlation coefficient (p<0.01) and had a R2 value of greater 

than 0.96. The linear regression fit showed that all three measurements were 

within 1% of the line y=x and the y-intercept was essentially zero (Figure 3-7e-g).   

Comparison between the different segmentation algorithms showed 

varying segmentation boundaries from a representative open 2D µCT image of a 

20 day old mouse (Figure 3-8). Using a standard global threshold it is readily 

apparent that there are two bones in the image, but there gaps in the 

segmentation boundary from the discontinuous regions along the medial border 

of the left bone (Figure 3-8b). The segmentation using the Chen-Vese algorithm 

was able to bridge these discontinuous regions, but the algorithm incorrectly 

identified the fibrous connective tissue in the suture to be bone (Figure 3-8c). The 

segmentation boundary from the algorithm described above was able to both 

bridge the discontinuous regions and correctly separate the left and right bones 

of the image (Figure 3-8d). 
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3.3.2 Coronal Suture Results 

The algorithm for the 3D reconstructions was able to correct the variations 

in the coronal suture when moving from medial to lateral. As expected, the 

algorithm produced a series of images where the bones were horizontal and 

reduced stretching of the coronal suture in the more lateral regions (Figure 3-9a-

b). The initialization phase of the algorithm was able to correctly separate and 

estimate the bone boundaries 60-80% of the time. The decrease in accuracy of 

the initialization phase was due to the substantial overlap of the coronal sutures 

in the mice. Comparing the same image from the lateral coronal suture before 

and after reconstruction illustrates the effect of the algorithm highlighting a 1.7 

fold increase in the distances between the bones when the images are not 

reconstructed (Figure 3-9a-b). 

The coronal suture minimum distance remained relatively constant until 

day 12 at 0.3 mm, then decreased to a plateau, of 0.1 mm by day 20 (Figure 3-

9c). The mean, maximum, and suture area all showed the same trends seen with 

the minimum distance (data not shown). The coronal suture bone volume 

remained relatively constant until day 12, then increased at a decreasing rate 

until day 25 (Figure 3-9d). Mineralization equivalent to hydroxyapatite mass 

showed identical trends and timing to bone volume (data not shown). In contrast 

to what was seen with the posterior frontal suture, the percentage of the coronal 

suture that was open decreased from 80% open on day 6 to approximately 40% 

by days 20 and 25 (Figure 3-9e).  
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The decrease in resolution seen with clinical imaging systems can pose a 

problem to some image processing algorithms when translating the technology to 

clinical use. The algorithms developed here were able to generate images that 

were perpendicular to the suture about all three axes for both the pathologically 

fused metopic and normally open coronal sutures even with the lower resolution 

clinical scans (Figure 3-10a-c). Furthermore the algorithm was able to correctly 

initialize 100% of the images for both sutures. The relatively larger size and more 

homogenous bones of the human skulls allowed for more accurate 

approximation despite the lower resolution. Representative images with final 

segmentation boundaries clearly delineate the fused or open sutures (Figure 3-

10d-e). 
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Figure 3-5: Posterior Frontal Fusion Results. (a) The suture was over 80% open 
on day 6, decreased on day 20, and then reached a plateau by day 25. (b) The 
mean distance decreased from over 0.3 mm beginning on day 20 and remained 
relatively constant after that. (c) The volume of bone in the suture began to 
increase on days 20 and 25. (*= p< 0.01 vs. 6 days) 
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Figure 3-6: Representative µCT images with segmentation boundary. The 
algorithm was able to accurately segment the bones with low mineralization of 
the 6 (a) and 12 (b) day old sutures. The same algorithm parameters were able 
to also segment the images from the 20 (c) and 25 (d) day old sutures. The 
algorithm was also able to bridge discontinuous regions in images from all ages 
examined (yellow ovals).     
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Figure 3-7: Histology validation for posterior frontal suture. (a) At 6 days old 
the suture is completely open and there is an abundance of fibrous connective 
tissue in the suture. (b) By day 12 the suture is beginning to close on the 
endocranial surface and by (c) day 20 the suture appears to be fused along 
the midline. (d) The most significant change seen between day 20 and day 25 
is the increase in the volume of bone in the suture. The algorithm was 
validated with histology by comparing the (e) minimum distances, (f) mean 
distances, and (g) area. All three measures had correlation coefficients greater 
and 0.96 and were within 1% of the values obtained from histology. Scale bar 
represents 250 µm. 
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Figure 3-8: Representative µCT images comparing different segmentation 
algorithms. The original image from a 20 day mouse showing open suture (a). 
Using a global threshold (b) the algorithm was able to accurately separate the 
bones, but was not able to bridge discontinuous regions (yellow arrow). The 
Chen-Vese algorithm (c) was able to bridge discontinuous regions, but did not 
correctly separate the bones of the suture (yellow arrow). The algorithm 
presented here was able to correctly separate the bones of the image and also 
bridge discontinuous regions (d). 
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Figure 3-9: Coronal suture reconstruction. (a) The minimum distance of the coronal 

suture remained constant until day 12 then decreased dramatically until reaching a 

plateau by day 20. (b) The coronal suture bone volume remained constant then began to 

increase at a decreasing rate on day 20. (c) The percentage of the suture open decreased 

from 80% open on day 6 and decreased approximately 20% by days 20 and 25. (*= p< 

0.01 vs. 6 days) (d) Before reconstruction the images of the lateral coronal suture, the 

bones sloped anteriorly to posteriorly and were elongated. (e) After reconstruction, the 

bones were horizontal and the elongation was not present.   
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 Figure 3-10: 3D Reconstructions of Human Craniosynostosis CT Scans. 3D rendering of 

6 month of male with non-syndromic metopic synostosis. The algorithm was used to 

reconstruct images (green planes) of the pathologically fused metopic sutures (b) and 

open coronal suture (c). Segmentation boundaries (red line) following reconstruction and 

segmentation of representative images from fused metopic (d) and open coronal (e) 

sutures. 
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3.4 Discussion 

The algorithm developed in this manuscript provides an accurate method 

to segment the bones in the suture. For the mouse posterior frontal suture, the 

initialization phase of the algorithm correctly initialized the bones of the suture 

over 95% of the time. The errors that were encountered with this phase in the 

posterior frontal suture of the mouse were most commonly caused by gaps in the 

lateral regions of the skull nor related to the suture. Especially in younger mice 

the suture mineralized discontinuously resulting in small islands of un-

mineralized tissue that in many cases was incorrectly identified as the open 

suture. This was easily corrected manually but this interaction increases the time 

required to analyze the scans. The algorithms were able to correctly approximate 

100% of the images from the human skull, despite the lower resolution. 

Additional improvements to the initialization phase of the algorithm could be 

made to make the analysis of the sutures fully automated. 

One of the biggest advantages of the algorithm is its ability to segment the 

bones without relying on the absolute pixel intensities. By optimizing the curve 

along the border where the gradient was greatest, the algorithm was able to 

segment bones of very different densities without the need for subjectively 

altering any parameters. This is of a particular concern when studying processes 

where the tissues change in density over time, such as bone development or 

mineralization. Due to the heterogeneity of the posterior frontal suture, small 

gaps in the segmentation boundary can dramatically alter the measurements 



60 

 

between the bones. These errors are very common with traditional segmentation 

techniques, such as a global threshold, because they do not take into account 

any neighboring pixels when defining the tissue of interest. [71, 93, 128] The 

algorithm developed overcomes these limitations by using a continuous Fourier 

series representation of the segmented boundary. This allows the algorithm to 

bridge these gaps in the suture border where there may be regions that are not 

completely mineralized. The segmentation of cranial sutures is further 

complicated by the presence of fibrous tissue that is contained within the suture. 

As a result, minor changes in the global threshold lead to very substantial 

changes in the segmentation boundary of the sutures. The use of the snake 

algorithm overcomes this challenge because the final segmentation boundary is 

not dependent on the pixel intensities; rather it is driven by the relative change 

between them. This is of additional benefit when examining developmental or 

regenerative processes where the density of the tissue of interest changes 

between different groups. The algorithm was able to accurately segment the 

bones of both the 6 day and 25 day old groups without changing any parameters 

by using the snake algorithm phase to refine the boundaries. 

The results from the algorithm clearly show that the posterior frontal 

suture, which is analogous to the human metopic suture, fuses early in 

development. The percentage of the suture open, suture area, and all of the 

distance measurements began to decrease on day 12 and reach a plateau by 

day 20. This strongly suggests that the suture has completed fusion before three 

weeks of age which is similar to what other investigators have shown in a 
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different strain of mice. [28] While previous studies have examined the process of 

suture fusion, to our knowledge this is the first method that allows for 

simultaneous assessment of fusion and mineralization of the entire suture. Bone 

volume and mineralization remained relatively constant until day 12 and then 

increased further on days 20 and 25. The increase in both of these parameters 

can be primarily attributed to an increase in thickness as well as an increase in 

density of the suture bones. The distance and bone volume measurements 

indicate that the posterior frontal suture completes fusion by 3 weeks of age and 

then increases in bone volume. This increase in bone volume never reached a 

plateau that was seen with the distance measures, which highlights the 

importance of further work is needed to fully characterize the complete 

development of the murine cranial sutures. 

The serial sections from the histology correlated extremely well with the 

results from the algorithm. For all of the measures there was excellent linear 

correlation and as expected the mean distance measure had the highest 

correlation coefficient. Additionally, there was nearly a prefect one-to-one 

relationship between the serial histology and snake algorithm measures. The 

algorithm provides equivalent results to serial histology while being much faster 

and less expensive. As a comparison most of the serial sectioning took over 20 

hours to perform and analyze per sample, while analyzing the same scans with 

the algorithm developed took on average 10 minutes per sample.  

The 3D reconstruction and segmentation algorithms developed here 

provide a more accurate method to assess coronal suture development and 
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fusion. This reconstruction corrects for potential distortions along the length of 

coronal suture. The initialization phase of the algorithm resulted in slightly more 

errors with the coronal suture as compared to the posterior frontal suture. This is 

most likely caused by the substantial overlap seen with the bones of the coronal 

suture. Although these errors were easily identified and corrected by the 

interactive tool, this did increase in the amount of time the user had to spend 

processing each scan. The results from the coronal suture data showed that, 

similar to the posterior frontal suture, the distance between the bones decreased 

beginning at day 12 and then reached a plateau by day 20. The bone volume of 

the coronal suture increased at the same time as the posterior frontal suture. The 

biggest difference between the two sutures was seen with the percentage of 

suture open. Unlike the 80% decrease seen in the percentage of posterior frontal 

suture open, the coronal suture only had a 40% decrease. These results suggest 

that the bones of the coronal suture grow closer together, increase in bone 

volume, but do not fuse to the same extent compared to those of the posterior 

frontal suture. 

Compared to traditional analysis techniques, the algorithm developed is 

an extremely rapid and accurate method for the analysis of both the posterior 

frontal and coronal sutures. Additionally, the 3D reconstruction of the coronal 

sutures is something that is not possible with the current analysis methods or 

image processing algorithms.  

The biggest advantage of the algorithm is its ability to segment irregular 

and discontinuous objects of varying density. This is of critical importance when 



63 

 

studying developmental or regenerative changes in tissue that often are very 

irregular in their composition. Other implementations of the algorithm are 

currently in use to examine long bone growth plates, long bone segmental defect 

healing, cranial growth plates, and cranial defect healing in animal models.  

There are numerous uses for this algorithm in basic science research, but 

arguably the clinical applications of the algorithm may be the most valuable. 

There are direct clinical applications for the algorithm in the field of craniofacial 

imaging. The preliminary results of the algorithm on clinical CT scans 

demonstrate the ability of the algorithm to quantify the cranial suture fusion on 

scans with a low radiation dose. While it is possible to obtain more accurate 

results from the algorithm with high resolution CT images, this benefit is often 

outweighed by the risks associated with the increase in radiation exposure to 

children with craniosynostosis who frequently need multiple CT scans. As a 

result there is a growing trend in pediatric radiology to use low dose CT protocols 

for imaging pediatric patients. The lower dose scans result in a decrease in 

image resolution that in turn has an effect on the precision of the measurements 

from some traditional imaging algorithms. Even with this lower resolution the 

algorithm was able to accurately segment both the open and pathologically fused 

sutures in children with craniosynostosis. The ability to precisely quantify the 

possibility of pathologic suture fusion has numerous advantages over the largely 

qualitative diagnoses currently made. This algorithm not only has the potential to 

dramatically improve the diagnosis of craniosynostosis, but hopefully provide 

surgeons more insight for the management of craniosynostosis.  
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The algorithm developed provides a new method to accurately segment 

bones of varying and heterogeneous mineralized tissues on CT images. The 

algorithm produces results within 1% of serial histology despite while being able 

to rapidly analyze the suture fusion and mineralization non-destructively. The 

results indicate that the posterior frontal suture completes fusion by day 20 and 

then begins to mineralize. While the bones of the coronal suture come together, 

increase in bone volume, but do not fuse together. The algorithm can also be 

used to examine clinical CT scans for the diagnosis of human craniosynostosis 

and re-synostosis without any additional modification.  
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CHAPTER 4        COMPLETE TIME COURSE OF THE MURINE 

POSTERIOR FRONTAL SUTURE FUSION 

 

 

 

4.1 INTRODUCTION 

Cranial sutures are the fibrous joints that arise from the interaction of the 

developing skull, fibrous connective tissue, and the underlying dura.[17] During early 

development, the bones of the skull that contain the suture are composed of active 

osteogenic fronts. As the skull expands, the cells in these fronts undergo rapid 

proliferation and differentiation to produce new bone to allow for continued cranial 

expansion. After the first year of life, the cranial sutures begin to fuse and this process 

continues in some individuals well into their twenties.[22] The mechanism that regulates 

the timing and order of the fusion of the cranial sutures remains largely unknown, but is 

thought to occur from the interplay between these osteogenic fronts and the underlying 

dura. 

Premature fusion of the sutures occurs in 1 in 1,700-2,500 births and results in a 

condition referred to as craniosynostosis.[34, 164] The majority of craniosynostosis 

cases are non-syndromic, but approximately 40% of cases result from one of 

approximately 100 known syndromic mutations.[36, 164] If left untreated, 

craniosynostosis can cause severe craniofacial deformities and complications resulting 

from increased cranial pressure.[51, 172] These include blindness, deafness, 

developmental delays, seizures, upper airway obstructions, and even death.[49]  
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Mice are a commonly used model to examine normal cranial development due to 

their ease of study, conservation of molecular signals, and the growing number of 

transgenic strains of mice that display craniosynostosis. Unlike humans, rodents 

continue to grow throughout their life. As a result, the majority of the sutures in the 

rodent skull remain patent to allow for continued cranial expansion.[69] The exception to 

this is the mouse posterior frontal suture, which is analogous to the human metopic 

suture and fuses during early development.[70]  

Histology has been the gold standard modality to assess suture fusion, but it 

provides only a limited view of the complex and discontinuous three-dimensional (3D) 

features of the tissue at each point in time. Recent advances in micro-computed 

tomography (µCT) hardware have enabled rapid, complete, and non-destructive 3D 

analysis, making µCT a powerful tool for studying the development of cranial 

sutures.[71, 128] Despite the potential of this imaging modality for the analysis of the 

developing murine cranial sutures, traditional image processing algorithms are either not 

accurate enough, require subjective assessment, or are prohibitively time 

consuming.[71, 173] These problems are primarily caused by the heterogeneous 

mineralization and large increase in calvarial density that is seen during suture fusion. 

To address this challenge, we previously developed a novel image processing algorithm 

to analyze the fusion of the murine cranial sutures.[174]  

Despite the frequent use of mice to study cranial suture development, there have 

been significant discrepancies reported in the timing of murine posterior frontal suture 

fusion.[28, 70] These discrepancies have been seen with both traditional histological 

evaluation as well as µCT, but there is an overall agreement that this suture fuses early 

in development.[28, 70, 173] The overall goal for this study was to completely 

characterize the development and fusion of the murine posterior frontal suture. To do 
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this we used our novel image processing algorithm to quantify the complete time course 

of both fusion and mineralization of the posterior frontal suture in C57Bl/6J mice.  
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4.2 METHODS 

Under approval of the Georgia Tech Institutional Animal Care and Use 

Committee, C57Bl/6J male mice (Jackson Labs, Bar Harbor, ME) were housed in a light 

and temperature controlled environment. Pups were kept with natural birth mothers until 

weaning or euthanasia. All mice were provided food and water ad libitum. Mice that were 

21 days old or older were euthanized by CO2 asphyxiation and pups under 21 days were 

euthanized by intraperitoneal injection of pentobarbital. Six mice were euthanized at 

each of the following time points: post-natal days 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 

23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 56, 70, and 84. After verifying death by 

absence of a palpable heart beat and blink reflex, the calvaria were removed from soft 

tissues and fixed in 10% neutral buffered formalin (Sigma, St. Louis, MO).  

The approximate region of the posterior frontal suture was identified from the 

most posterior molars in the maxilla and moved posteriorly 6.6 mm. The samples were 

contained within a 21 mm sample holder and were imaged with µCT with isotropic voxels 

10.5 µm in size and an energy of 55 kVp (Viva CT 40, Scanco Medical, Bruttisellen, 

Switzerland).  The exact location of the sutures was identified on 3D renderings made 

using a global threshold to create 1.5 mm tall by 2.5 mm wide DICOM images. The 

region of the posterior frontal suture was defined as the midline suture running between 

the posterior most aspect of the inter-frontal ridge to the bregma.  

The images were analyzed with a novel algorithm that we previously developed 

and validated with serial histology to examine suture fusion.[174] Briefly, the algorithm 

uses a combination of a global threshold and snake algorithm to segment the bones of 

the developing sutures. This allows for accurate identification of the varying and irregular 
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mineralization of the developing suture. These segmentation boundaries are then used 

to determine the percentage of suture that is open; the minimum, mean, and maximum 

distances between the bones; the area between the sutures; the bone volume and 

equivalent mineralization in µg hydroxyapatite (HA) in a 1 mm by 1 mm region centered 

over the suture. Additionally, the spatial variation in suture fusion was examined by 

dividing the suture into four evenly spaced regions moving from the anterior first (1st) 

quarter to the posterior most fourth (4th) quarter.  To ensure that the algorithm would 

identify fully closed sutures, we also analyzed the parietal bone in a 50 day old mouse 

using the algorithm and showed that these bones were 100% closed and had a distance 

measurement of zero. 
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4.3 RESULTS  

At post-natal day 6, the entire posterior frontal suture was 84% open and then 

decreased until reaching a plateau at approximately day 20 (Figure 4-1A). The suture 

never completely fused and was approximately 20% open even on day 84. The analysis 

of the spatial variation showed that the anterior most 1st quarter was nearly 100% open 

at day 6, 10% open by day 20, and remained approximately 10% open through the 

remainder of time points examined (Figure 4-1B). The 2nd and 3rd quarters also began 

nearly 100% open, but the decrease was later and more gradual in the more posterior 

regions (Figure 4-1C-D). The posterior most 4th quarter, showed no substantial changes 

over the age range of the animals and was approximately 45% open throughout all ages 

(Figure 4-1E).  

The mean horizontal distance of the posterior frontal suture remained relatively 

constant at 0.30 mm until day 10, decreased until day 20, and reached a plateau of 

approximately 0.05 mm (Figure 4-2A). This distance in the 1st quarter was initially 0.40 

mm and decreased dramatically until reaching a plateau of less than 0.05 mm by day 20 

(Figure 4-2B). The 2nd and 3rd quarters also had a later and more gradual decrease in 

horizontal distance in comparison to the most anterior region (Figure 4-2C-D).  The 

posterior most 4th quarter showed no changes in horizontal distance over time, with a 

mean distance of approximately 0.10 mm (Figure 4-2E). The minimum distance, 

maximum distance, and suture area all showed identical trends and timing to what was 

seen with the mean distance (Figures A2-4). 

Total bone mineral of the entire posterior frontal suture remained relatively 

constant at 0.04 mg HA until day 20, then increased until reaching a plateau beginning 
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on day 40 to 0.15 mg HA (Figure 4-3A). Spatial analysis of the anterior three quarters 

showed that the total mineral increased later and more gradually from anterior to 

posterior (Figure 4-3B-D). The posterior most 4th quarter showed no change in mineral 

with time (Figure 4-3E). Bone volume measurements showed identical trends and timing 

for the overall suture and for each of the 4 quarters (Figure A-5). 

Three-dimensional reconstructions of the posterior frontal suture support the 

snake algorithm results. At 6 days of age, the posterior frontal suture was mostly open 

and by 12 days of age, the anterior region had begun to close in discontinuous 

segments (Figure 4A-B). By day 20, the anterior most three quarters were mostly fused, 

but there were small segments that still remained open (Figure 4-4C). Between days 20 

and 55, the most significant change was an increase in the thickness of the bone 

surrounding the sutures, corresponding to the increase in mass and volume seen with 

the snake algorithm (Figure 4-4D). It is important to note that even on day 50 there were 

regions of the posterior frontal suture that remained open. These were largely found in 

the posterior region of this suture, but regions of open suture were also found in multiple 

mice in the anterior most quarter even on day 50. This was seen with both µCT and 

histology (Figure 4-5).  
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Figure 4-1: Percentage of the suture open. The entire suture (A) was 
approximately 85% open on day 6, began decreasing on day 12, and then 
reached a plateau of approximately 20% open beginning on day 20. The anterior 
most quarter (B) of the suture showed first and fastest decrease in percentage of 
suture that was open, followed by the second (C) and third quarter (D). There 
were no changes seen the posterior most fourth quarter (E). 
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Figure 4-2: Mean distance between the bones of the posterior frontal suture. The 
entire suture (A) had a mean distance of 0.35 mm on day 6, began fusing on day 
12, and then reached a plateau of 0.05 mm beginning on day 20. The anterior 
most quarter (B) of the suture had the first and fastest decrease in distance, 
followed by the second (C) and third quarter (D). There were no changes seen in 
the distances for the posterior most fourth quarter (E). 
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Figure 4-3: Total mineral in a 1 mm by 1 mm region of the posterior frontal 
suture. The mass of bone in the entire suture (A) remained relatively constant at 
0.04 mg HA until day 20 and then reached a plateau beginning on day 40 at 0.15 
mg HA. The anterior most quarter (B) of the suture had the first and fastest 
increase in mass, followed by the second (C) and third quarter (D). There were 
no changes seen in the bone mass for the posterior most fourth quarter (E). 
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Figure 4-4: 3D reconstruction of the key developmental time points in posterior 
frontal suture fusion. The reconstructions are made using a global threshold and 
the same threshold was applied to all the ages examined. The image of the 6-
days old PF suture shows the suture completely open (A) and by 12 days the 
suture has begun to fuse (B). The suture fusion is greatest anteriorly, but the 
suture fusion is very discontinuous. By day 20 the suture nears complete fusion 
(C) and day 50 there is a thickening of the bones in the suture (D). Even at day 
50 there are still some regions of the suture posteriorly that are not fused (D). 
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Figure 4-5: Histology of the anterior most quarter of the posterior frontal suture in 
a 50 day old mouse. The image shows that endocranial region of the suture is 
completely open. The ectocranial boundaries of the bone appear in close 
proximity, but there is no bone bridging the suture.  Stained with haematoxylin 
and eosin. 
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4.4 DISCUSSION 

The results from the algorithm clearly show that the posterior frontal suture fuses 

early in development. The percentage of the suture open, suture area, and all of the 

distance measurements remained constant until day 10, began to decrease after day 12, 

and reached a plateau by day 20. After this point there was essentially no change in any 

of these measurements. This demonstrates that the posterior frontal suture fuses 

between days 10 and 20, but the fused sutures were not completely mineralized. 

Others have shown that the posterior frontal suture fuses early in development, 

but there is not agreement on when the tissues actually fuse. The most commonly cited 

study suggests that the suture fuses between days 25 to 45, in an anterior to posterior 

direction.[70] In contrast, our results show that the suture was already fused by day 25 

and that this time frame corresponds to the increase in bone volume and mineral. One 

explanation for the difference is that the algorithm allows for complete analysis of the 

entire suture, whereas non-serial histology only examines a very limited region of the 

suture. The discontinuous nature of suture seen both by us and other investigators 

makes generalization from a few histology sections unreliable.[71]  

Our results are similar to those reported by Sahar et al. using serial histology to 

examine suture fusion in CD1 mice.[28] Both data sets suggest that the posterior frontal 

suture has fused before the first 3 weeks of life, but there are some differences noted 

between the two studies, most likely due to inherent differences in the strain of mice that 

were used. We examined C57Bl/6J mice, which are known to have different craniofacial 

bone density than other mouse strains.[175] 

The spatial analysis of suture fusion from the snake algorithm showed that the 

anterior regions of the posterior frontal suture fused first and more rapidly than the 
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posterior regions of the suture. Others have also reported similar findings using 

histological assessment.[70] Taken together, the posterior frontal suture fuses from 

anterior to posterior.  Even in the anterior regions of the oldest mice, there was never 

100% suture closure nor did the distance measurements ever reach zero. This indicates 

that the suture never completely fuses and that there are always at least small regions 

where the suture is open. These gaps were seen with histology, the grayscale µCT 

images, and the 3D rendering of the skulls. Analysis of the parietal bone in a 50 day old 

mouse using the algorithm showed that these bones were 100% closed and had a 

distance measurement of zero, indicating that these gaps are not an artifact from µCT or 

errors from the algorithm. Additionally, the spatial variation of the posterior most quarter 

showed that this region did not fuse or increase in bone mass like the remainder of the 

suture. This is most likely caused by the close proximity of this region to the bregma.  

Our results demonstrate that suture fusion is a biphasic process. The bone 

mineral and volume remained relatively constant during the first 20 days and did not 

increase until after the suture fusion was essentially completed. Beginning on day 21, 

the bone volume and mineral content increased and reached a plateau by day 45. The 

increase in mineral and volume can be attributed to an increase in thickness as well as 

an increase in density of the suture bones. These observations indicate there are 

significant developmental changes after the suture fusion has occurred. 

 The algorithm used for this study is the first method that allows for simultaneous 

non-destructive quantification of both fusion and mineralization of the entire suture. 

While it is possible to obtain a complete understanding of suture fusion with serial 

histology, it is prohibitively time consuming and expensive for large numbers of samples. 

Using the combination of µCT and the algorithm we were able to analyze each sample in 

less than one thirtieth the time and one tenth the cost of serial histology. Additionally the 
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algorithm not only provides a qualitative “open” vs. “closed” assessment, but it also 

provides a more precise quantification of the distances and area between the bones of 

the suture. These measurements more accurately reflect the process of suture fusion 

and show that the percentage of the suture open had the largest variation of all the 

measures examined. The results from this study clearly demonstrate that the murine 

posterior frontal suture fuses discontinuously from anterior to posterior. This fusion 

occurs through a biphasic mechanism consisting of an early fusion phase between day 

10 to 20 and a later mineralization phase between days 20 to 45.  
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CHAPTER 5        GENES ASSOCIATED WITH EARLY CARTILAGE 

INDUCTION OF SUTURE FUSION 

 

 

 

5.1 INTRODUCTION 

Fusion of the cranial sutures results from a complex process requiring tightly 

controlled interactions among the bones of the skull, the fibrous connective tissue 

between these bones, and the underlying dura.[17, 73, 87] During early development the 

cranial sutures have very active osteogenic fronts where cells undergo rapid proliferation 

and differentiation to produce new bone to allow for continued cranial expansion. 

Craniosynostosis is the premature fusion of the cranial sutures and occurs in 

approximately 1 in 1700-2500 births.[34, 164] Most cases of craniosynostosis require 

calvarial remodeling to treat the complications that can result either directly from the 

craniofacial deformities or increased cranial pressure.[35] Despite the frequency and 

severity of complications associated with the treatment of craniosynostosis there still are 

no clinically available therapies to biologically target this premature fusion or 

complications relating for re-synostosis of the skull.  

Mice are commonly used to study the mechanisms responsible for cranial suture 

development due to their relative conservation of molecular signals and rapid 

development.[55, 87] The major difference between murine and human cranial 
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development is that only the posterior frontal (PF) suture, analogous to the human 

metopic suture, fuses in the mouse.[70] The remaining sutures remain patent to allow for 

continued expansion of the brain and skull.  

The dura underlying the sutures has been implicated as a major regulator of 

suture fusion or patency.[23, 176] Studies using organ cultures have shown that the 

underlying dura can alter the fate of these normally open or fused sutures.[23] Moreover 

there are regional and age differences in the dura with differences in osteogenic gene 

expression and a varying ability to re-heal calvarial defects.[25, 75] Despite the growing 

body of evidence examining the differences between the open and fused sutures, there 

has been relatively little work focused on the developmental changes that occur over 

time in both the bone and dura that are responsible for normal suture fusion. [28, 70] 

Using a novel image processing algorithm to analyze micro-computed 

tomography (micro-CT) images, we previously determined that the murine posterior 

frontal suture fuses through a biphasic process.[177] Between post-natal days 10-20, the 

PF suture fused through a discontinuous process moving from anterior to posterior. This 

was followed by a mineralization phase during which bone volume and mineral content 

increased, occurring between days 20-45.  

Our overall goal for the present study was to identify genes that are associated 

with the developmental changes seen during normal cranial suture fusion. Based on the 

changes observed with using micro-CT, we chose the following time points to examine 

the changes in gene expression associated with the bi-phasic suture fusion process: 

post-natal day 6, which is prior to fusion; day 9, which immediately precedes the onset of 

suture fusion; day 12, which is immediately after onset of suture fusion; day 16, which is 

the midpoint of suture fusion; day 20, which is the end of fusion and the beginning of 

mineralization; day 25, which is the midpoint of mineralization phase; and day 55, at 
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which time the suture is fully developed. Analysis was performed using both PCR arrays 

to screen and real-time PCR to confirm changes in gene expression in both the bone 

and dura that are associated with both phases of suture development.  

 



83 

 

 

5.2 METHODS 

Under approval of the Georgia Tech Institutional Animal Care and Use 

Committee, C57Bl/6J male mice (Jackson Labs, Bar Harbor, ME) were housed in a light 

and temperature controlled environment. Pups were kept with natural birth mothers until 

weaning or euthanasia. All mice were provided food and water ad libitum. Mice 21 days 

old or older were euthanized by CO2 asphyxiation and pups under 21 days were 

euthanized by intraperitoneal injection of pentobarbital. Nine mice were euthanized at 

each of the following post-natal time points: days 6, 9, 12, 16, 20, 25, and 55. The skulls 

were isolated from surrounding soft tissues and the jaw, skull, base, and brain were 

removed. Skulls were washed with chilled phosphate buffered saline and the sutures 

were visualized under 4x magnification. The anterior most 75% of the PF suture region 

was isolated to form an approximately 1.5 mm wide by 2.0 mm long tissue sample.  The 

posterior most 25% of the PF suture was not used for this study because this region of 

the calvaria does not undergo fusion.[177] The dura was meticulously dissected from the 

bone using a 30 gauge needle taking care not to include any of the fibrous mesenchymal 

tissue in the suture or the periosteum. The periosteum was also dissected away from the 

bone and discarded. Tissue samples were snap frozen in liquid nitrogen and stored at -

80°C until RNA extraction was performed.  

The bones and the dura from three mice were pooled for each sample to ensure 

that there was at least 1 µg of RNA available for analysis. Bone samples were placed in 

liquid nitrogen and ground using a molar and pestle. Dura samples were ground in glass 

homogenizer tubes at room temperature. Samples were allowed to thaw to room 

temperature and then incubated in 4.5 mL of Trizol supplemented with 10 µl/mL of 



84 

 

Proteinase K warmed to 55 °C for 5 minutes (Qiagen, Valencia, CA). After incubation, 

0.9 mL of chloroform was added to each tube, vigorously shaken for 15 seconds, and 

then centrifuged at 10,000 RPM for 30 minutes. The supernatant was combined with an 

equal volume of 70% ethanol then passed through an RNeasy (Qiagen) column for 

purification and elimination of genomic DNA. The RNA was extracted from the column 

and quantified using the Nanodrop 1000 spectrophotometer (NanoDrop Products, 

Wilmington, DE). 

A Mouse Osteogenesis RT² Profiler™ PCR Array (SA Biosciences, Fredrick, MD) 

was used to profile 84 genes associated with osteogensis, chondrogenesis, and 

angiogenesis (Supplemental Table 1). The cDNA library was made using the RT2 First 

Strand Kit (SA Biosciences) beginning with a total mass of 1.0 µg of RNA for both the 

bone and dura. The plates were prepared according to the manufacturer’s specifications 

for mice that were 6, 12, 20, and 55 days old. Gene expression on the arrays was 

quantified by calculating the delta-delta-CT method and genes that showed statistically 

significant threefold or greater changes were included for confirmation with real-time 

PCR. The expression of each of the genes was normalized by an average of 4 

housekeeping genes contained on the PCR array.  

Primers for real-time PCR confirmation of the microarray results were designed 

using the Beacon designer version 7 and optimized with RNA from the bone (Premier 

Biosoft, Palo Alto, CA). Samples from the 6, 9, 12, 16, 20, and 25 day old groups were 

used. Sequences of all primers are shown in Supplemental Table 2. Although we did not 

perform an array for the 9 and 16 day time points, we included them in the real-time 

PCR analysis, as they represented onset and midpoint of suture fusion, respectively. We 

did not analyze RNA from the 55 day time point, as the array indicated that the gene 

expression profile was nearly identical to what was seen with the 25 day samples in the 
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PCR Arrays. The cDNA library was made with the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) with 1.0 µg RNA for the bone and 0.3 µg of RNA 

for the dura. Prior to performing real-time PCR, the cDNA samples were diluted 1:20 for 

bone and 1:15 dilution for dura in sterile nuclease free water. The starting quantity of the 

samples was calculated based on a 1:3 serially diluted standard pooled from samples of 

varying ages. The starting quantity of all genes was normalized by the housekeeping 

gene glyceraldehyde phosphate dehydrogenase (GAPDH), as this gene showed the 

least change in expression among the housekeeping genes. 

In order to better visualize the temporal expression profile of cartilage associated 

genes, the data from both real-time PCR and from the fusion of the posterior frontal 

suture were directly compared. The relative expression from the real-time PCR, the 

distance between the bones of the developing suture, and the total mineral content of 

the sutures were normalized so that all values ranges from 0 to 1. All data sets were 

then plotted on the same set of axes for direct comparison. 

To verify the presence of cartilage in the posterior frontal suture with this strain of 

mice, serial histology was performed on a representative skull from a 12 day old mouse. 

The skull was fixed in formalin, dehydrated with graded washes of ethanol, and 

embedded in paraffin. After verifying the start of the posterior frontal suture, 7 µm thick 

serial sections were made and stained with Safranin-O with fast green counter stain 

using standard protocols. 

Statistical Analysis 

The delta-delta-CT values from the PCR arrays were analyzed by performing a 2 

sided t-test with Student’s modification and determining the relative change of the gene 

expression relative to the 6 day old group (Matlab R2010a, Mathworks, Natick, MA). The 

Gaussian distribution of the real-time PCR confirmation results was first verified using 
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the Kolmogorov-Smirnov normality test. Statistical significance was determined using a 1 

way ANOVA and the difference between groups was analyzed using Bonferroni’s 

modification to the t-test where appropriate (GraphPad Prism, GraphPad Software, La 

Jolla, CA).  A p<0.05 was considered to be significant. All results are represented as the 

mean ± the standard error of the mean. All samples contain tissue pooled from 3 mice 

with a N=3 for all measurements (9 total mice per time point).  
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5.3 RESULTS 

The PCR arrays showed 28 genes for bone and 14 genes for dura that met our 

inclusion criteria detailed above (Tables 1-2). The genes included many of the collagen 

proteins, receptors commonly associated with syndromic forms of craniosynostosis, 

extracellular BMP inhibitors, transcription factors associated with osteoblast and 

chondrocyte differentiation, members of the TGFβ superfamily, and other growth factors 

commonly associated with osteoblast differentiation.[164] All of these genes were 

included for analysis by real-time PCR. 

The extracellular matrix protein, dentin matrix protein 1 (Dmp1) was highly 

expressed prior to the initiation of suture fusion on day 9, and then decreased for the 

remaining time points (Figure 5-1A). The expression of bone sialoprotein (Ibsp) had a 

nearly identical expression profile and was highly expressed on days 6 and 9 (Figure A-

7). The transforming growth factor beta (Tgfb) family genes showed a biphasic 

expression profile that closely matched both phases of suture fusion, seen previously 

with micro-CT.[177] Both Tgfb2 and Tgfb3 peaked in expression immediately prior to the 

onset of suture fusion on day 9 and again during the mineralization phase on day 25 

(Figure 5-1C-D). Tgfb1 (Figure 1B) and the downstream signaling molecules SMAD 

family member (SMAD) genes (data not shown) showed no significant changes in 

expression. 

All of the genes associated with chondrocyte differentiation and hypertrophy 

increased expression near the onset of suture fusion on day 12. mRNAs for aggrecan 

(Acan), a protein typically associated with the cartilage extracellular matrix, increased 

early during days 6 and 9 before decreasing for the remaining time points (Figure 5-2B). 
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The transcription factor SRY-box containing gene 9 (Sox 9) that is an early marker of 

chondrocyte differentiation had peak expression immediately following suture fusion on 

day 12. Similarly, the cartilage associated extracellular matrix proteins collagen 2 (Col II) 

and collagen oligomeric matrix protein (Comp) had a peak in expression on day 12 

(Figure 5-2D-E). Like the other extracellular matrix proteins, mRNAs for the marker of 

chondrocyte hypertrophy, collagen X (Col X) had the largest increase in expression on 

day 12, which was followed by a later peak during the mineralization phase on day 25 

(Figure 5-2E). Collagen I (Col I) is a major component of the bone extracellular matrix 

but showed exhibited no changes in expression (Figure 5-2F). 

The expression profiles of genes from the dura under the PF suture differed 

slightly from what was observed with the bone. Dmp1 had greater expression on day 6, 

then decreased for the remaining time points (Figure 5-3A). Expression of Dmp1 peaked 

early in bone and remained high for a longer period.  The peak in expression of Sox9 

occurred on day 9, which was similar to what was seen in the bone (Figure 5-3B). 

mRNAs for both of the extracellular matrix proteins Col II and Col X peaked in 

expression on day 9, whereas peak expression in bone was on day 12 in the bone 

(Figures 5-3C-D). In contrast to what was seen in the bone, Comp and Col X peaked on 

day 16 followed by a second and smaller peak on day 25 during the mineralization 

phase (Figures 5-3E-F).  

Normalization of cartilage genes associated with the fusion of the PF suture 

showed that mRNAs for these proteins correspond closely with the onset of suture 

fusion (Figure 5-4). The distances between the bones of the suture remained constant 

until day 12 before decreasing to a plateau on day 20. All cartilage associated genes 

had low expression early, then peaked in expression on day 12, before decreasing as 

the bone volume began to increase. The presence of cartilage in the suture was verified 
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at this time point by the positive staining for glycosaminoglycans in the suture (Figure 5-

5). The glycosaminoglycans were localized along the endocranial aspect and between 

the osteogenic front of the suture. 
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Figure 5-1: Genes showing early expression in bone from the PF suture, 

measured by real-time PCR: Dmp1 (A), Tgfb1 (B), Tgfb2 (C), Tgfb3 (D). p<0.05 

vs *=6d, #=9d, %=12d, @=16d, ^=20d. 
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Figure 5-2: Cartilage associated genes expressed in PF bone, measured by real-time 

PCR: Acan (A), Sox9 (B), Comp (C), Col II (D), Col X (E), and Col I (F). p<0.05 vs *=6d, 

#=9d, %=12d, @=16d, ^=20d. 
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Figure 5-3: Expression profiles for cartilage associated genes in the dura underlying the 

PF suture. Sox9 (A), Comp (B), Col II (C), Col X (D), Col XII (E), and Dmp1 (F). p<0.05 

vs *=6d, #=9d, %=12d, @=16d, ^=20d. 
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Figure 5-4: Normalized comparison between gene expression, suture distance (red), and 

suture bone volume (blue) for Col X (green), Comp (black), Col II (orange), Sox 9 

(yellow). 
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Figure 5-5: Histology confirming cartilage in the posterior frontal suture. Section from 12 

day old mouse stained with Safranin-O shows the presence of cartilage in the center of 

the suture on the endocranial aspect of the suture.  
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Table 5-1 Genes meeting inclusion criteria from PCR array of posterior frontal bone. Fold 

change shown is maximal fold change relative to day 6 group and grouped by family. 

Cartilage associated genes are shown in bold. 

 

Gene Fold Change Gene Fold Change

DMP1 286.1 Runx2 5.7

Collagen II 90.2 Sox9 3.8

Collagen X 33.2 TWIST1 3.1

COMP 7.5

Collagen I 5.4 Smad3 23.6

BMP2 14.3

IGFR1 13.2 Smad2 9.0

FGFR2 8.3 TGFB2 5.9

TGFBR2 8.3 TGFB3 4.7

BMPr1a 4.8 SAMD1 3.6

TGFBR1 3.8 BMP4 3.2

VDR 3.8

TGFBR3 3.7 VEGFa 9.8

FGF1 8.4

BMP3 91.4 IGF1 6.8

Sclerostin 3.1 FGF2 3.2

Inhibitors

ECM Proteins

Receptors

Transcripton Factors

TGFB Superfamily Members 

Growth Factors
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Table 5-2: Genes meeting inclusion criteria from PCR array of posterior frontal 
dura. Fold change shown is maximal fold change relative to day 6 group and 
grouped by family. Cartilage associated genes are shown in bold. 

Gene Fold Change

COMP 63.8

DMP1 7.8

Collagen X 4.75

Collagen XII 4.4

BMPR1b 17.7

nVDR 4.3

TGFBR2 8.26

FGFR2 3.38

Cadherin 11 7.7

VCAM1 7.2

ICAM1 5.77

TGFB3 5.4

EGF 5

FGF2 3.2

ECM Proteins

Receptors

TGFB Superfamily Members 

Growth Factors

Cell Adhesion
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5.4 DISCUSSION  

Of the genes that met the inclusion criteria for this study, the extracellular matrix 

proteins such as Dmp1 and members of the collagen family exhibited the greatest 

changes in expression. mRNAs for these genes were greatest prior to and immediately 

following the onset of suture fusion and then decreased rapidly. Additionally mRNAs for 

many of the members of the TGFβ super family varied over the time course of the study, 

suggesting that this family may play an important role in regulating normal suture fusion.  

 Based on the results of the PCR array we focused on mRNAs for proteins 

associated with cartilage and extracellular matrix. The results suggest that there is high 

expression of the members of the non-collagenous SIBLING family, Dmp1 and Ibsp, 

prior to the onset of suture fusion on day 10. These extracellular matrix proteins are 

found in all mineralized tissues during development, including the growth plate, and 

serve as nucleation sites for hydroxyapatite. [178, 179] Additionally, dura also had 

extremely high expression of Dmp1 during this early time point. These proteins may be 

major components of the extracellular matrix that later becomes mineralized to form the 

cranial sutures.  

During the time immediately preceding the onset of suture fusion on day 9,  there 

was a strong increase in expression of Tbgfb2 and Tgfb3, but there were no changes in 

Tgfb1. The expression of Tbgfb2 and Tgfb3 then decreased during the process of suture 

fusion before increasing again during the latter mineralization phase on day 25. This 

suggests that these proteins may play a central role in both the initiation and later 

mineralization of the PF suture. This is supported by prior work done in rats that has 

shown that TGFβ2 and TGFβ3, but not TGFβ1 are required for the development of 

normal cranial sutures by controlling the rate of proliferation and apoptosis. [72, 180]  
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 Immediately following the onset of suture fusion on day 12 there was a peak in 

expression in nearly all genes associated with the development of cartilage. The 

transcription factor Sox9 has been identified as an early regulator of chondrocyte 

differentiation in skeletal development and the fusion of the posterior frontal suture 

showed a slight increase on day 9 followed by a large peak on day 12.[28, 181] The 

extracellular matrix proteins associated with chondrogenesis Comp, Col II and Col X all 

had a large increase in expression on day 12. Additionally, Col X, which is associated 

with chondrocyte hypertrophy, showed a second peak in expression during the 

mineralization phase on day 25.[182] The presence of cartilage was also verified by 

Safranin-O staining, which stains negatively changed sulfated glycosaminoglycans. The 

timing of the expression of chondrocyte associated genes and production of cartilage 

was slightly different than previously reported[28], but indicates that the fusion of the PF 

suture is initiated through an endochondral mechanism. The most likely difference in the 

timing is due to differences in the strains of mice used; the previous work was performed 

using CD1 mice while the mice examined here were C57Bl/6J mice. 

Based on literature examining the development of long bones, the traditional 

progression of endochondral ossification is an increase in the transcription factor Sox9, 

followed by an increase in Col II and Comp, and finally an increase in the marker of 

chondrocyte hypertrophy, Col X.[181, 182] In the posterior frontal suture we saw a nearly 

simultaneous increase in all genes associated with chondrogenesis. This is most likely 

the result of the discontinuous process by which the suture fuses. While there may be 

local regions that are in different stages of endochondral ossification, in the entire suture 

all stages of endochondral ossification are occurring simultaneously.  
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CHAPTER 6        BONE MORPHOGENETIC PROTEINS (BMPS) 

AND THE LATER MINERALIZATION PHASE 

 

 

 

6.1 INTRODUCTION 

Craniosynostosis is the pathologic premature fusion of one of more sutures early 

in development.[34] This occurs in approximately 1 in 1700-2500 live births and most 

commonly results from non-syndromic causes, but there have been over 100 known 

syndromic forms identified.[34, 164] Craniosynostosis can lead to complications 

stemming from the craniofacial deformities or from increased cranial pressure. [50, 172] 

Many cases of craniosynostosis require cranial vault remolding to correct the 

deformities.[35] Despite the relatively high incidence of craniosynostosis and the 

morbidities associated with surgical intervention, there are no clinically available 

therapies available to address the molecular mechanisms responsible for 

craniosynostosis.[62]   

The exact timing and changes in molecular signals responsible for normal suture 

fusion need to be well understood in order to understand the pathologies responsible for 

craniosynostosis. Mice are a common model system to examine the mechanisms 

involved in both normal and pathologic suture fusion due to their ease of use and 

growing number of strains that have been engineered to display craniosynostosis.[55, 

87] Unlike humans, however, rodents continue to grow throughout their entire life. As a 

result, the majority of rodent cranial sutures remain patent to allow for continued brain 
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growth.[69] Although it is well established that the mouse posterior frontal (PF) suture, 

analogous to the human metopic suture, fuses early in development, there is not 

agreement on the exact timing of the suture fusion.[28, 70]  

To address this we previously used a novel image segmentation algorithm to 

examine the complete time course of the murine posterior frontal suture fusion by 

microcomputed tomography (µCT).[174, 177] The results indicate that the murine PF 

suture fuses via a biphasic process. In the first phase, the PF suture remains largely 

open prior to day 10 and then fuses rapidly before day 20. This is followed by a second 

phase of mineralization that results in an increase in bone mass and mineral content 

between days 20-45. Because traditional analysis of the cranial sutures has been 

performed using de-calcified histology, a second phase characterized by increased 

mineral content and bone volume was not appreciated. As a result, little work has been 

devoted to understanding the mechanisms responsible for this later phase of suture 

development.  

We performed a PCR array analysis of genes expressed at key time points 

during the process of PF suture fusion and observed that the first phase was 

characterized by mRNAs for proteins associated with endochondral ossification, which 

was commensurate with the presence of cartilage and new bone formation within the 

fusing suture.[183]  The PCR array also indicated that mRNAs for several bone 

morphogenic proteins (BMP), their receptors, and their inhibitors were upregulated 

during the later mineralization phase. This suggests that they might be involved in the 

onset and progression of bone formation within the suture and raising the possibility that 

they might be differentially regulated over the time course of PF suture fusion.   

Since their discovery in the 1960’s, BMPs have been shown to play a critical role 

in several aspects of bone development and regeneration.[115, 184], [91] It is now 
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understood that their function is controlled not only by their own availability, but also by 

the ability of cells to respond to them via receptor/ligand binding and downstream 

signaling, as well as by the presence of specific inhibitors.  Commonly these inhibitors 

are produced as part of a negative feedback loop to regulate the development of bones. 

Of the BMP antagonists, noggin has been the most extensively studied inhibitor reported 

in the craniofacial literature, and it has been shown that the production of noggin differs 

among the cranial sutures. [92, 120] Early work suggested that other inhibitors such as 

sclerostin and gremlin did not show a difference among the cranial sutures; however, 

more recent work has shown that the production of sclerostin is decreased in the adult 

calvaria. [101, 120] 

The overall goal of this study was to determine how BMPs, their receptors, and 

their inhibitors are associated with fusion of the murine PF suture. To do this we 

analyzed gene expression in the bone and underlying dura from the posterior frontal 

suture at key developmental time points previously identified using µCT: post-natal day 

6, which is prior to fusion; day 9, which immediately precedes the onset of suture fusion; 

day 12, which is immediately after onset of suture fusion; day 16, which is the midpoint 

of suture fusion; day 20, which is the end of fusion and the beginning of mineralization; 

day 25, which is the midpoint of mineralization phase; and day 55, at which time the 

suture is fully developed.[177] Analysis was performed using real-time PCR. To better 

understand how changes in BMPs might relate to bone formation and mineralization, we 

also examined mRNAs for proteins associated with osteoblast differentiation, 

extracellular matrix production, and calcification.  The temporal expression patterns 

of each of these key genes were then normalized for comparison to the timing of 

the posterior frontal suture. 
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6.2 METHODS 

Under approval of the Georgia Tech Institutional Animal Care and Use 

Committee, C57Bl/6J male mice (Jackson Labs, Bar Harbor, ME) were housed in a light 

and temperature controlled environment. Pups were kept with natural birth mothers until 

weaning or euthanasia. All mice were provided food and water ad libitum. Mice 21 days 

old or older were euthanized by CO2 asphyxiation and pups under 21 days were 

euthanized by intraperitoneal injection of pentobarbital. Nine mice were euthanized at 

each of the following time points: 6, 9, 12, 16, 20, and 25. The skulls were isolated from 

surrounding soft tissues and the jaw, skull, base, and brain were removed. Skulls were 

washed with chilled PBS and the sutures were visualized under 4x magnification. The 

anterior most 75% of the posterior frontal suture was isolated to form an approximately 

1.5 mm wide by 2.0 mm long tissue sample.  The posterior most 25% of the PF suture 

was not used because this region of the calvaria does not undergo fusion.[177] The dura 

was meticulously dissected from the bone using a 30 gauge needle taking care not to 

include any of the fibrous mesenchymal tissue in the suture or the periosteum. The 

periosteum was also dissected away from the bone and discarded. Tissue samples were 

snap frozen in liquid nitrogen and stored at -80°C until RNA extraction was performed.  

The bones or the dura from three mice were pooled for each sample. Bone 

samples were placed in liquid nitrogen and ground using a molar and pestle. Dura 

samples were ground in glass homogenizer tubes at room temperature. Samples were 

allowed to thaw to room temperature and then incubated in 4.5 mL of Trizol 

supplemented with 10 µl/mL of Proteinase K warmed to 55 °C for 5 minutes (Qiagen, 

Valencia, CA). After incubation, 0.9mL of chloroform was added to each tube, vigorously 

shaken for 15 seconds, and then centrifuged at 10,000 RPM for 30 minutes. The 
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supernatant was combined with an equal volume of 70% ethanol and ran through an 

RNeasy (Qiagen) column for purification and elimination of genomic DNA. The RNA was 

extracted from the column and quantified using the Nanodrop 1000 spectrophotometer 

(NanoDrop Products, Wilmington, DE). 

Our prior PCR array indicated a subset of genes that were increased more than 3 

times  during suture fusion.[183]  For the present study, we focused on mRNAs for 

proteins associated with osteoblast differentiation (Runt-related transcription factor 2 

[Runx2] and extracellular matrix (osteocalcin [Ocn]), in addition to mRNAs for BMP2 

[Bmp2], BMP4 [Bmp4], and BMP7 [Bmp7], their type I receptor, BMPR1 [Bmpr1], and 

their inhibitors (gremlin [Grem1], noggin [Nog], sclerostin [Sost], chordin [Chrd] and 

BMP3 [Bmp3]).  Primers for real-time PCR were designed using the Beacon designer 

version 7 and optimized with RNA from the bone (Premier Biosoft, Palo Alto, CA) 

(Supplemental Table 1). The cDNA library was made with the High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems) with 1.0 µg RNA for the bone and 0.3 µg 

of RNA for the dura. Prior to performing real-time PCR, the cDNA samples were diluted 

1:20 for bone and 1:15 dilution for dura. The starting quantity of the samples was 

calculated based on a 1:3 serially diluted standard pooled from several samples of 

varying ages. The starting quantity of all genes was normalized by the housekeeping 

gene GAPDH, which was previously found to remain constant over the different ages 

examined. 

In order to better understand the temporal expression profile of the genes of 

interest, the data from the real-time PCR were compared to the time course of PF fusion 

presented in Part 1.[177] The relative expression from the real-time PCR, the distance 

between the bones of the developing suture, and the total mineral content of the sutures 
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were normalized so that all values ranged from 0 to 1. All three data sets were then 

plotted on the same set of axes for direct comparison. 

The Gaussian distribution of the real-time PCR results was first verified using the 

Kolmogorov-Smirnov normality test. Statistical significance was determined using a 1 

way ANOVA and when appropriate the difference among groups was analyzed using 

Bonferroni’s modification to the t-test (GraphPad Prism, GraphPad Software, La Jolla, 

CA).  A p<0.05 was considered to be significant. All results are represented as the mean 

± the standard error of the mean. All samples contain tissue pooled from 3 mice with a 

N=3 for all measurements (9 total mice per time point).  
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6.3 RESULTS 

Levels of mRNAs for the transcription factor associated with osteoblast 

differentiation, Runx2 was increased in bone on days 20 and 25 (Figure 6-1A). Ocn 

mRNAs were initially low, and increased gradually before undergoing a large increase in 

expression on day 25 (Figure 6-1B). Similarly Bmp2 mRNAs were low until day 25 

(Figure 6-1C).  Unlike the other genes associated with bone differentiation, Bmp4 

mRNAs were high on day 6 (Figure 6-1D).  Bmp6 and Bmp7 mRNAs were constant over 

the time points studied (Figures 6-1E-F). Similarly expression of the Bmp receptor 

Bmpr1 was high on days 6 and 12, before decreasing over the remaining time points 

studied (Figure A-8A).  

The BMP inhibitors examined in the posterior frontal bone showed very distinct 

expression profiles that correlated with the expression of other genes examined. Nog 

mRNAs were high on day 12 and then decreased (Figure 6-2A), most closely resembling 

the profile of Bmp4. mRNAs for the extracellular inhibitor BMP3 were initially high and 

peaked on day 9 (Figure 6-2B). Sclerostin mRNAs were highest on day 12 and then 

returned to baseline (Figure 6-2C). In contrast, Grem1 was initially low, but then 

increased to a peak on day 25 (Figure 6-2D), similar to Ocn and Runx2. Chrd remained 

constant throughout the time course (Figure A-8B). 

Expression of many of these proteins in the PF suture was different in the dura 

than in bone. The increase in expression for Bmp2 occurred earlier in the dura, 

increasing on day 16 and then remaining elevated for the remainder of the time points 

examined (Figure 6-3A). In contrast to the early high expression in the bone, Bmp4 

expression remained constant in the dura (Figure A-9A). Bmpr1 exhibited bimodal 
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expression, being high on day 6, decreased on day 9, and then high again on days 12 

and 16 (Figure A-9B). Noggin mRNAs were increased on day 16 and again to a lesser 

extent on day 25 (Figure 6-3B). Sclerostin mRNAs were highest on day 9, corresponding 

to the onset of suture fusion (Figure 6-3C). Grem1, Bmp3, and Chrd did not exhibit any 

significant changes in expression (Figure A-9C-E). 

Normalizing these data with the results from the µCT time course illustrates the 

biphasic fusion nature of the posterior frontal suture.  The distance between the bones 

decreased and then plateaued, followed by an increase in the bone mineral content after 

day 20 (Figure 6-4). The expression profile of the genes associated with osteoblast 

differentiation is nearly identical to the increase in bone mineral content (Figure 6-4A). 

Similarly the increase in expression of Bmp2 correlated well with the later increase in 

bone mineral content (Figure 6-4B). The sharp decrease in Bmp4 expression on day 9 

was largely completed prior to the decrease in the distance between the bones of the 

suture (Figure 6-4C).  

Each of the BMP inhibitors showed distinct expression patterns that correlated 

with different developmental milestones in the fusion of the posterior frontal bone. The 

extracellular BMP inhibitor Bmp3 had a peak in expression on day 9, which 

corresponded to the period immediately preceding the decrease in the suture distance 

(Figure 6-4D). The high expression of the Nog early closely matched the timing of the 

decrease in the distance between the bones of the suture (Figure 6-4E). The peak in 

expression in Sost occurred during the decrease in the distance between the bones on 

day 12 (Figure 6-4F). In contrast to the other inhibitors that showed discrete peaks in 

expression, Grem had a more gradual increase in expression that closely correlated with 

the increase seen in bone mineral content (Figure 6-4G). 
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Figure 6-1: Expression of osteoblast differentiation markers and Bmps over time 

assessed by Real-time PCR. Runx2 (A), Ocn (B), Bmp2 (C), Bmp4 (D), Bmp6 (E), Bmp7 

p<0.05 vs *=6d, #=9d, %=12d, @=16d, ^=20d. n.s. = no statistical significance. 
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Figure 6-2: Expression of mRNAs for BMP inhibitors in bone of the posterior frontal suture 

assessed by real-time PCR. Nog (A), Bmp3 (B), Sost (C), Grem1 (D). p<0.05 vs *=6d, 

#=9d, %=12d, @=16d, ^=20d. 
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Figure 6-3: Expression of mRNAs for BMP inhibitors in dura of the posterior frontal suture 

assessed by real-time PCR. (A), Nog (B), Sost (C). p<0.05 vs *=6d, #=9d, %=12d, 

@=16d, ^=20d. 
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Figure 6-4: Normalized comparison between gene expression (black line), distance 

between suture bones (red dashed line), and suture bone mineral content (blue dashed 

line) overtime for: Runx2 and Ocn (A), Bmp2 (B), Bmp4 (C), Bmp3 (D), Nog (E), Sost 

(F), Grem1 (G).  

 



111 

 

 

6.4 DISCUSSION 

The BMPs and their inhibitors all had distinct patterns in expression that closely 

corresponded to the changes seen in the biphasic process of suture fusion. Bmp4 had 

high expression early, prior to the onset of suture fusion. Bmp4 has been previously 

shown to be a major factor in the development of both the calvaria and long bones.[184] 

This indicates that BMP4 plays a more significant role in the early development of the 

calvaria, but is not associated with the fusion of the posterior frontal suture. In contrast, 

Bmp2 increased expression only during the latter mineralization phase, after day 20. The 

dura also had an increase in Bmp2 during the later time points, which further supports 

the role of BMP2 being responsible for the later mineralization phase, but not the early 

phase of suture fusion. Also during this later phase, there was an increase in the 

osteoblast transcription factor Runx2 and the late marker of osteoblast differentiation 

Ocn. The expression of these genes supports the mineralization of the suture previously 

reported from our analysis of the development of the posterior frontal suture.[177] During 

this latter mineralization phase Gremlin 1 had an expression profile that was nearly 

identical to that of Runx2, Ocn, Bmp2, and the bone mineral, which suggests that this 

inhibitor of BMP2 may be responsible for regulating this later phase of mineralization. 

The increase in expression of these genes after the sutures have fused suggests that 

suture development does not finish when the suture fuses, but continues for nearly four 

weeks longer.  

Each of the BMP inhibitors had distinct patterns of expression that corresponded 

to the different phases of suture fusion. During the initiation of suture fusion, both Nog 

and Bmp3 had high expression prior to the onset of the suture fusion on day 12. The 
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expression profiles of these genes were similar to that of BMP4, a known target of Nog, 

suggesting that these inhibitors may play a role in regulating the development of the 

calvaria prior to the onset of suture fusion.[122] The inhibitor Sost showed a strong peak 

in expression that occurred immediately following the onset of suture fusion on day 12. 

This pattern of expression was identical to that of the genes associated with 

chondrogenesis in the cranial suture seen previously.[183] Prior work has shown that 

sclerostin specifically inhibits BMP6 and BMP7, both of which have been shown to be 

involved in regulating chondrogenesis. [185-187] Despite the increase in expression of 

Sost, there were no changes in expression seen with either Bmp6 or Bmp7. This 

suggests that sclerostin may have actions that are independent of the traditional role of 

blocking the actions of BMPs.  

In conclusion, the results from our study show that expression of different 

members of the Bmp family is associated with the different phases of suture 

development. Bmp4 appears to be involved with calvarial development prior to the onset 

of suture fusion while Bmp2 appears to be involved with the latter mineralization phase 

of development. Interestingly, none of the Bmps were highly expressed during the early 

fusion phase, which indicates that this process may be regulated by another pathway.  
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CHAPTER 7        RAPID RE-SYNOSTOSIS FOLLOWING 

SUTURECTOMY IN PEDIATRIC MICE IS AGE AND LOCATION 

DEPENDENT  

 

 

 

7.1 INTRODUCTION 

 

Craniosynostosis is the pathologic premature fusion of the cranial sutures 

early in development, occurring in approximately one in 1500-2500 births [17, 34, 

164]. There are over 100 syndromic mutations known to cause craniosynostosis, 

but most commonly this premature fusion results from a non-syndromic cause 

[164]. If left untreated, craniosynostosis can result in complications resulting from 

cranial deformities and/or increased intracranial pressure [35]. These 

complications include blindness, deafness, developmental delays, seizures, and 

in extreme cases, death [50, 51]. 

Both non-syndromic and syndromic forms of craniosynostosis frequently 

require complex calvarial remodeling to prevent neurologic complications and 

restore normal cranial vault geometry [35, 65]. Patients undergoing this operation 

are usually under 12 months of age [65, 188]. The procedure often lasts between 
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four and five hours, requires blood transfusions, and several days in the hospital, 

including time in the intensive care unit. Historically, surgical intervention for the 

treatment of craniosynostosis involved the removal of only the fused suture; 

however, this approach has been abandoned because the results were 

temporary. In cases where one adjacent to the suture was also removed, the 

bone reformed, but synostosis of the region of the pathologically fused suture 

also occurred.  

This rapid re-growth is called re-synostosis and occurs in up to 40% of 

patients who undergo cranial vault reconstruction [189, 190]. Re-synostosis 

typically requires additional surgical intervention to reconstruct the skull in an 

attempt to restore a normal cranial vault and/or relieve the increase in intracranial 

pressure. While the complications from primary cranial vault surgery are 

relatively low, subsequent procedures to treat re-synostosis are associated with a 

high (~13%) incidence of life-threatening complications, which include 

encephalitis, meningitis, dural tears, intracranial hemorrhages, and cerebrospinal 

fluid leaks [50, 51, 63, 64]. Patients under six months of age and who have 

certain syndromic forms of craniosynostosis are at elevated risk for re-synostosis 

[50, 51]. 

In order to better understand the mechanisms responsible for re-

synostosis, it is necessary to have clinically relevant animal models that exhibit 

this rapid bone growth. Rabbits displaying craniosynostosis have been used to 

study suture re-fusion because of their size advantage, but unfortunately they are 

not commercially available and often display varying severity of craniosynostosis 
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[66, 94, 168, 169].  Calvarial defect healing has been extensively studied in 

rodents and other small animals. The majority of this work has focused on 

critically sized defects in adult rodents, but typically these defects don’t heal in 

the absence of any therapeutic intervention. In contrast, re-synostosis occurs in 

young children in the absence of any intervention.  

Mice are a commonly used model to study cranial development because 

of the ease of use, conservation of molecular signals, and growing number of 

genetically engineered strains that display craniosynostosis [55, 87, 93]. While 

there is extensive literature devoted to the understanding of normal and 

pathologic suture fusion, there has been relatively little research devoted to 

understanding the processes responsible for re-synostosis. Previously, adult 

mice were used as a model for re-synostosis, with a defect placed over the 

posterior frontal suture, but it was shown that these defects did not completely 

heal [93]. This suggests that age is an important variable. Unlike the critical sized 

defects placed in bone lateral to the suture, some healing was evident in defect 

when the defects were placed over the suture, suggesting that age dependent 

differences in the dura alter both suture development and re-healing of calvarial 

defects [23, 26, 27, 75, 76, 94, 180]. 

The overall goal of this study was to develop a murine model of rapid re-

synostosis. Our hypothesis was that a defect over the posterior frontal suture in 

an infant mouse will undergo rapid re-synostosis, whereas it will fail to do so in 

older sexually immature mice. Moreover, defects not associated with the cranial 

suture will fail to heal with bone in infant mice. Two time points were selected 



116 

 

based on our previous work showing that at weaning (21 days post-natal), the 

posterior frontal suture in C57Bl/6J mice had fused but not mineralized whereas 

in adolescent mice (50 days post-natal) the posterior frontal suture has 

completed fusion and mineralization [177]. Defect healing was assessed using 

image processing algorithms developed and validated previously [174]. Gene 

expression associated with defect healing was examined using real-time PCR.  
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7.2 METHODS 

 

This study was conducted under the approval of the Georgia Tech 

Institutional Animal Care and Use Committee. Male C57Bl/6J mice were used for 

all surgeries (Jackson Labs, Bar Harbor, ME). All mice were housed in a light and 

temperature controlled environment with ad libitum access to food and water. At 

the time of surgery all mice were either 21 days old (infant) or 50 days old 

(adolescent). Infant mice were shipped with natural birth mothers and were 

weaned at the time of surgery. The 50 day old mice had not reached sexual 

maturity at the time of surgery. Mice were anesthetized to a surgical plane with 

isoflurane for all surgical procedures and preparation. Hair was removed from the 

top of the skull starting between the eyes and moving posterior 2 cm with 

depilatory cream (Nair, Churchill & Dwight, Princeton, NJ). The skin was washed 

with water taking care to ensure no cream or water came in contact with the 

animals’ eyes. The skin was disinfected with three alternating washes of 

chlorehexidine and isopropanol.  

A 1 cm midline incision was made beginning 5 mm posterior to the eyes. 

The skin and periosteum were elevated from the skull using blunt dissection. 

Under 28x magnification, the interfrontal ridge, the posterior frontal suture, and 

the bregma were identified (Figure 7-1A). Using these landmarks as a reference, 

a custom made template was placed above the posterior frontal suture and 
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served as a size reference during the creation of the defect. The template 

contained a central 1.5 by 2.5 mm region, and centering notches that served as a 

reference for the appropriate defect size throughout surgery. All defects were 

created using a piezoelectric bone cutting instrument, ensuring that the 

underlying dura was not damaged (Piezotome, Saltec Acteon, Merignac, 

France). Piezoelectric instruments cut only through hard tissue by using very 

high frequency, low amplitude displacement vibrations [191]. This allows for a 

very controlled cut through bone, while minimizing the damage to the underlying 

dura. This is of particular concern as damaging the dura can impair the healing of 

the overlying bone. 

For mice in the posterior frontal defect group, the suture was completely 

removed and the template was referenced to ensure the correct defect size 

during the procedure (Figures 7-1A-B). The defect was centered over the 

posterior frontal suture, posterior to the interfrontal ridge, and anterior to the 

bregma (Figure 7-1B). Care was taken to not damage the highly vascularized 

interfrontal ridge as damage to this structure leads to exsanguination. 

Intraoperative and µCT images illustrate the ability to accurately create a defect 

with the appropriate dimensions and location of the defect, while maintaining the 

integrity of the underlying dura (Figures 7-1C-D). Any mice with a dural tear were 

withdrawn from the study and euthanized prior to recovering from anesthesia. 

The skin was closed with 5-0 silk sutures and the mice were allowed to recover 

from anesthesia. Post-operative (post-op) analgesia was provided via sub-

cutaneous injection of buprenorphine (0.03-0.06 mg/kg) every 8-12 hours for the 
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first 72 hours post-op. Mice were given access to ground, moistened food for the 

first 24 hours after surgery to encourage food consumption and weight gain. Any 

mice displaying age adjusted weight loss greater than 10% or signs of distress 

were withdrawn from the study and euthanized.  

Post-natal day 21 male mice were used to establish the time-course of 

posterior frontal defect healing in infant animals. Following surgery, five mice per 

day were randomized for euthanasia on the following post-operative days: 1, 2, 

3, 4, 5, 7, 14, and 21 days. Immediately following euthanasia the skull was 

dissected from soft tissues, imaged using µCT, and snap-frozen in liquid nitrogen 

for further analysis by real-time PCR or histology. The approximate region of the 

posterior frontal defect was identified by moving 4.5 mm posterior from the 

posterior most molars. The samples were imaged within a 21 mm sample holder 

using µCT (isotropic voxels 21 µm in size, an energy of 55 kVp [Viva CT 40, 

Scanco Medical, Bruttisellen, Switzerland]). The exact location of the defect was 

identified with the aid of 3D reconstructions created using a global threshold. 

These images were then converted to 2.5 mm by 3.5 mm DICOM images for 

analysis. 

The extent of bone regeneration in the defect was quantified using our 

novel image processing algorithms previously validated with serial histology 

[174]. Briefly, the algorithm uses a combination of global threshold and the active 

contour snake algorithm to segment the heterogeneous bone from the µCT 

images.  Slight modifications to the algorithm allowed for segmentation of 

multiple bones in an image, as compared to the original algorithm that was 
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limited to two bones.  Segmentation boundaries identified by the algorithm were 

then used to quantify the average defect width, the average thickness of the 

bones of the defect, the volume of bone in the defect, and the defect mineral 

content. The defect mineral content was used as an indicator of bone 

mineralization and was calculated by converting pixel intensities to that of a 

known hydroxyapatite standard, giving a density value of each pixel relative to 

hydroxyapatite. The bone volume and mineral content contained within the defect 

were normalized to the amount of bone found in an intact suture at the time of 

surgery (21 days post-natal) and a fully mineralized suture (50 days post-natal). 

All evaluations were performed by a blinded reviewer.  

To investigate whether rapid healing of the craniotomy defect was age and 

location specific, we created identically sized defects over the posterior frontal 

suture in infant mice, a posterior frontal suture defect in adolescent mice, a 

defect lateral to the posterior frontal suture in infant mice, and a defect lateral to 

the posterior frontal suture in adolescent mice. The lateral defects were identical 

in size to the posterior frontal defects and were placed 1 mm lateral to the 

posterior frontal suture. They were centered between the interfrontal ridge and 

the coronal sutures, taking care not to damage either structure. The side of the 

defect (left or right side) was randomized between mice. All mice were given the 

same post-operative care as described above and five mice in each group were 

randomized for euthanasia on post-operative days 2, 5, and 14. The skulls were 

immediately imaged with µCT and snap frozen. The extent of defect healing was 

quantified using the same image processing algorithms described above. 
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Real-time PCR was performed to assess expression of genes associated 

with rapid defect healing in the posterior frontal defect in infant mice. At each 

time point, a 1.5 mm by 2.5 mm region of tissue at the defect site was removed 

under a 4X magnification. The exact location of the defect was verified by 

comparing the appearance of the skull under magnification to 3D renderings of 

the µCT scans. The dura was meticulously dissected from the defect bone and 

the tissues were ground using a mortar and pestle. RNA was extracted from the 

defect tissue, purified, and quantified from the defect tissue as described 

previously [183].  A cDNA library was made using a High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems) with 500 ng starting mRNA. The 

samples were diluted 1:20 in sterile nuclease free water. The starting quantity of 

the samples was calculated based on a 1:3 serially diluted standard pooled from 

samples of each time point. The mRNAs for the genes listed in Table 1 were 

normalized by the housekeeping gene glyceraldehyde phosphate 

dehydrogenase (GAPDH). 

Representative calvaria from the infant posterior frontal suture defect 

group on post-op days 5 and 14 were fixed in 10% neutral buffered formalin and 

decalcified using 12% EDTA, changing the solution every 2-3 days. Complete 

decalcification was verified using plain x-ray (Faxitron X-ray, Lincolnshire, IL) 

before and after decalcification. The samples were trimmed, dehydrated using 

ethanol, and then embedded in paraffin. After establishing the location of the 

defect with histology, 7 µm thick sections were made and stained with 

haematoxylin and eosin (H&E), or with Safranin-O and a fast green counter stain. 
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The specimens were imaged at 10X and 60X magnifications with a Leica DMLB 

microscope (Leica Microsystems, Bannockburn, IL). 

Statistical Analysis 

 The Gaussian distributions of the real-time PCR and µCT results 

were first verified using the Kolmogorov-Smirnov normality test. Statistical 

significance was determined using a 1 way ANOVA and the significance among 

groups was determined by a multiple comparison test with Bonferroni’s 

modification where appropriate (GraphPad Prism, GraphPad Software, La Jolla, 

CA).  Statistical significance for the normalized comparison to the intact suture 

was using the Mann Whitney U-test test. A p<0.05 was considered to be 

significant. All results are represented as the mean ± the standard error of the 

mean. The sample size (n=5) for all experiments was determined by a 

prospective power analysis based on the variance of pilot surgeries. 
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Figure 7-1: Intra-operative images for the infant posterior frontal defect under 
30X magnification prior to surgery showing the interfrontal ridge (white arrow), 
coronal suture (green arrow), and posterior frontal suture (yellow bracket). The 
template with centering notches was used as a reference throughout the 
procedure (B). The defect created after removing the posterior frontal suture, 
showing intact dura in the defect (C). 3D µCT rendering of defect immediately 
after surgery (D). 
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7.3 RESULTS 

 

Provided there were no intraoperative complications during the creation of 

the defect, all mice tolerated the surgical procedure well. A 5% intraoperative 

mortality rate occurred from complications with anesthesia or from aspiration of 

the irrigation solution.  One mouse, out of the over 100 included in this study, 

was euthanized due to dural tear, and one was withdrawn because to failure to 

gain weight.  

The analysis of the µCT images using our image processing algorithms 

showed that the infant posterior frontal defects healed rapidly in a biphasic 

manner. The width of the defect remained constant for the first two days post-op 

at approximately 1.2 mm and, then decreased to approximately 0.4 mm for the 

remainder of the time points (Figure 7-2A).  The defect mineral content and bone 

volume remained constant through post-op day 7 and then increased to levels 

seen in an intact suture (Figures 7-2B-C). Both parameters more than doubled 

between days 7 to 14. Similarly, the average thickness of the defect remained 

constant at approximately 0.1 mm until post-op day 7, where it increased to over 

0.3 mm on post-op days 14 and 21. 

Normalizing the bone volume in the defect to the starting bone volume in 

an intact suture of a 21 day old mouse, showed that from days 1 to 5 post-op 

there was significantly less bone in the defect, no difference on post-op day 7, 

and significantly more bone in the defect on post-op days 14 and 21 (Figure 7-
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3A). Furthermore, the increase on days 14 and 21 was more than double the 

volume of bone in an intact suture at the time of surgery. Normalizing the mineral 

content in the defect to the intact post-natal day 21 suture showed identical 

trends and significance (Figure 7-3B). Comparing the volume of bone in the 

defect to a fully developed suture (50 days post-natal) showed statistically less 

bone on days 1 through 7 post-op, but there was no difference on days 14 and 

21 post-op (Figure 7-3C).  Mineral content in the defect was normalized in the 

same manner to the day 50 intact suture and showed the same significance that 

was seen with bone volume (Figure 7-3D). 

After establishing the timing of bone healing in the infant posterior frontal 

suture defect, the effects of age and location on defect healing were assessed on 

days 2, 5, and 14 post-op. Analysis of the distance between the bones in the 

defect showed a decrease in the distances between the bones of the suture only 

for the defects created over the posterior frontal suture. In infant mice, the defect 

width of the posterior frontal defect was 1.3 mm on day 2 post-op and then 

decreased sharply to approximately 0.4 mm on days 5 and 14 post-op (Figure 7-

4A). Bone volume increased on post-op day 14 to over 0.6 mm3 (Figure 7-4B). In 

adolescent mice, the average defect width was approximately 1.3 mm on days 2 

and 5 post-op, then decreased to less than 0.3 mm by 14 days post-op (Figure 7-

4C). Despite the decrease in width, there were no changes in bone volume. Less 

than 0.1 mm3 of bone was present in the defect at all time points examined 

(Figure 7-4D). The distance between bones in the lateral defects remained over 

1.3 mm in the infant mice through day 7. By day 14, this had decreased to 0.7 
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(Figure 7-4E). Bone increased on day 14 post-op (Figure 7-4F). In the adolescent 

lateral defects, there were no changes in the defect distance and all distances 

were approximately 1.3 mm (Figures 7-4G), and there were no changes in bone 

volume (Figure 7-4H). 

Both the 2D and 3D images from the infant posterior frontal defect show 

that by 14 days post-op the defect was nearly completely bridged with 

mineralized tissue (Figure 7-5A-B).  The bone in the defect displayed a very thick 

trabecular pattern that was not seen with the normally intact suture (Figure 7-5A). 

No bone bridging was observed in the lateral defect, but the edges of the bone 

thickened substantially by 14 days post-op, as seen in the 2D µCT image 

(Figures 7-5C-D). The adolescent posterior frontal defect showed a 

discontinuous thin shell of bone bridging the defect on post-op day 14 (Figure 7-

5F). Examination of the 2D µCT images revealed that this bridge of bone formed 

along the endocranial surface of the defect, but lacked the thick trabecular 

structure that was seen with the infant defect (Figure 7-5E). The adolescent 

lateral defect did not show any bridging or an increase in bone volume (Figures 

7-5G-H). 

Analysis using real-time PCR showed distinct expression profiles for 

genes related to both osteoblastic and chondrogenic differentiation. Expression 

of Tgfb2 was biphasic with peaks on days 2 and 14 post-op (Figure 7-6A). 

mRNAs for the extracellular matrix protein Dmp1 were increased on post-op days 

3 and 4, corresponding to the time of the early bridging of the infant defect 

(Figure 7-6B). There was a peak in expression for the early marker of 
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chondrogenic expression, Sox9 on post-op day 3 (Figure 7-6C). This was 

followed by an increase in expression of mRNAs for chondrocyte extracellular 

matrix proteins: Col2, ColX, and Comp. These mRNAs displayed peaks in 

expression at post-op days 4 and 5 (Figure 7-6D-F).  

While mutations in genes encoding proteins related to BMPs have not 

been associated with craniosynostosis, mRNAs for these proteins were elevated 

during with the rapid re-synostosis seen in the infant posterior frontal defect. 

Bmp2 mRNAs remained constant until sharply increasing in expression on post-

op day 7 and then gradually decreased for the remaining time points (Figure 7-

6G). Bmp4 mRNAs were not expressed until day 3 and peaked on post-op days 

5 and 7 (Figure 7-6H). Similar to what was seen with Tgfb2, Bmp6 expression 

was maximal on post-op day 2 and with a second peak on day 14 (Figure 7-6I). 

Bmp7 expression was maximal on post-op day 2 with a second peak on day 4 

(Figure 7-6J). Ocn mRNAs Ocn, were present as early as day 2, but were at low 

levels until day 14 (Figure 7-6K). There was a 10 fold increase on post-day 14 

that was maintained on day 21. Vdr mRNAs were also present in the tissue at 

low levels through day 7 (Figure 7-6L). On day 14, expression increased 4 fold 

and on day 21, mRNAs doubled over the day 14 levels. 

mRNAs for BMP inhibitors were differentially expressed. Sost mRNAs 

were present in the tissue at very levels through day 14, doubling on post-op day 

21 (Figure 7-6M). Grem1 was expressed on days 4, 5, and 7 only, with peak 

levels on day 5 (Figure 7-6N). In contrast, mRNAs for Bmp3 were decreased on 
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post-op days 5 and 7 (Figure 7-6O). Nog mRNAs were increased 4 fold on days 

14 and 21 compared to day 7 (Figure 7-6P). 

Staining with haematoxylin and eosin revealed a poorly organized but 

highly cellular tissue within the defect at 5 days post-op (Figure 7-7A). Cartilage 

was present in the healing defects based on diffuse Safranin-O positive staining 

of the extracellular matrix (Figure 7-7B-D). By 14 days post-op, well-organized 

bone completely bridging the defect was observed (Figure 7-7E). The bone in 

and adjacent to the defect was thicker and more trabeculated than what is 

typically seen with an intact suture, supporting the 2D µCT images (Figure 7-5A). 

No red staining was observed, indicating fully mature bone throughout the 

section (Figure 7-7F).  
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Figure 7-2: Quantification of infant posterior frontal defect healing from µCT 
images. Results from algorithm analysis of µCT scans of defect. There was a 
decrease in the distance between the bones of the posterior frontal defect after 
post-op day 3 (A). The total mineral content and bone volume in the defect 
remained constant for post-op days 1-7 before increasing on days 14 and 21 (B, 
C). The average thickness of the bone in the defect showed no changes until an 
increase on post-op days 14 and 21 (D). P<0.01 vs # = 1 day, % = 2 day, $ = 14 
day, & = 21 
day.
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Figure 7-3: Normalized bone volume and mineral content of infant posterior 
frontal defect to an intact posterior frontal suture. Results are from algorithm 
analysis of µCT scans of defect and intact suture. The bone volume and mineral 
content of the defects was less than an intact 21 day old suture for post-op days 
1-5 doubled by days 14 and 21 (A-B). Normalizing the bone volume and mass to 
the fully developed 50 day old posterior frontal suture showed no significant 
differences in either measure by days 14 or 21 post-op (C-D). * = P<0.05 vs 
intact suture. 
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Figure 7-4: The age and location dependence on defect healing. Results are 
from algorithm analysis of µCT scans. The infant posterior frontal defect was 1.3 
mm wide on post-op day 2 then decreased on post-op days 5 and 14 (A). The 
increase in the volume of bone in the infant posterior frontal defect occurred on 
14 days post-op (B). The adolescent posterior frontal defect width showed no 
changes until decreasing on post-op day 14 (C). There was no change in volume 
of bone in the adolescent posterior frontal defect (D). There was a decrease in 
the width of the infant lateral defect from post-op days 2 and 5 to 14 (E). There 
was a small increase in the volume of bone in the adolescent lateral defect on 
post-op day 14 (F). There were no changes in the bone volume of the adolescent 
lateral defect for any of the time points studied (G). There were no changes in the 
defect distance for the adolescent lateral defect (H). P<0.05 vs * = day 2, $ = day 
5.5. 
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Figure 7-5: Representative 2D and 3D µCT images for the age and location 
defects on day 14 post-op. The infant posterior frontal defect shows complete 
bridging and an increase in the thickness of the bones (A-B). The infant lateral 
defect shows an increase in the thickness of the edges of the bones in the 
defect but no bridging (C-D). Adolescent posterior frontal defect shows thin 
discontinuous bridging along the endocranial surface of the defect, but no 
increase in the thickness of the bone in the defect (E-F). The adolescent lateral 
defect shows no increase in the thickness or bridging of bone in the defects (G-
H). 
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Figure 7-6: Real-time PCR analysis of genes associated with defect healing for 
Tgfb2 (A), Dmp1 (B), Sox9 (C), Col II (D), Co lX (E), Comp (F), Bmp2 (G), Bmp4 
(H), Bmp6 (I), Bmp7 (J), Ocn (K), Vdr (L), Sost (M), Grem1 (N), Bmp3 (O), Nog 
(P). p<0.05 vs  # = day 2, $ = day 3, % = day 4, ^ = day 5, & = day 7, * = day 14. 
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Figure 7-7: Representative histology for infant posterior frontal defect. 
H&E staining for post-op day 5 (A) and 14 (E) at 10X magnification. 
Safranin-O staining for post-op day 5 (B) and 14 (F) at 10X magnification. 
H&E (C) and Safranin-O (D) staining of 5 days post-op showing more 
organized tissue along the endocranial surface of the defects at 60X 
magnification. 
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Table 7-1: Gene name, gene abbreviation, sequence for forward real-time 

primer, and sequence for reverse real-time primer. Primers for collagen 2 and 

dentin matrix protein 1 were purchased as pre-designed primers. 

Gene Name Gene Abbreviation Forward Reverse

Bone morphogenic protein 2 Bmp2 TGGGTTTGTGGTGGAAGTG TCGTTTGTGGAGCGGATG

Bone morphogenic protein 3 Bmp3 TATACGCCAACGATGCTG CTTCTTCCTCCTCTCAACC

Bone morphogenic protein 4 Bmp4 TGGTCTCCGTCCCTGATG CGCTCCGAATGGCACTAC

Bone morphogenic protein 6 Bmp6 ACGAACAACAGCACAGCGAAG AAGGCACCAGCGGGAGATG

Bone morphogenic protein 7 Bmp7 CCACAGCAAACGCCTAAG CGATTACTCCTCAAAGACTCAG

Cartilage oligomeric matrix protein Comp GCGACGACGACATAGATG GTCTTGGTCACTATCACAGG

Collagen X ColX TTCTGCTGCTAATGTTCTTGAC CCTTTACTCTTTATGGCGTATGG

Gremlin1 Grem1 AGAGAGCCACACCCAAAC TGAAGCAGAGTAACAGGAAG

Noggin Nog GCCAGCACTATCTACACATCC CAGCAGCGTCTCGTTCAG

Osteocalcin Ocn GTCTGTTCACTACCTTATTGC TCTCTCTGCTCACTCTGA

Sclerostin Sost GTCGTCGTGCTGTCCTCTG ATTGTGGGTGGTGCTGTGG

SRY-box containing gene 9 Sox9 CCACCAGTATCAGCGAGGAG CCAAACAGGCAGGGAGATTC

Transforming growth factor beta 2 Tgfb2 GAGCGGAGCGACGAGGAG TGTAGAAAGTGGGCGGGATGG

Vitamin D receptor Vdr AATAAGCAGAGGAGGTGGTTC GGGTGGGTGTGAGTAATGG

Dentin matrix protein 1 Dmp1

Collagen 2 Col2
Pre Designed
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7.4 DISCUSSION 

 

This study demonstrates that rapid regeneration of bone in the mouse 

cranium is both age and location specific. Complete healing was observed only in 

infant mice and only when the defect was located over the posterior frontal 

suture. These defects healed via a biphasic process in which they were first 

bridged with a discontinuous shell of bone on the endocranial surface of the skull, 

followed by a robust mineralization of the defect by two weeks following surgery. 

This is similar to fusion of the normal posterior frontal suture, which also first 

closes along the endocranial surface of the suture and is followed later by a 

mineralization phase [177]. 

On post-op day 14 there was a complex, trabeculated network of 

mineralized tissue in the defect in the infant mice, evident in µCT and histology 

images. This very complex trabecular network is not typically seen in the normal 

mineralization of the murine posterior frontal suture [128]. Normal sutures 

typically have fewer large bridges of bone spanning the endocranial to 

ectocranial surfaces of the suture which, increase in thickness as the animal 

ages.  

 Real-time PCR and histology also support the biphasic changes in 

defect healing and indicate that a process involving endochondral ossification is 

involved. Immediately following the endocranial defect bridging on post-op day 3, 

there was an increase in the cartilage associated transcription factor, Sox9. This 
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was then followed by an increase in mRNAs for proteins that are associated with 

cartilage extracellular matrix. The presence of this extracellular matrix was visible 

on histologic sections of the defect at 5 days post-op that were stained with 

Safranin-O. The matrix was not as well organized as what is typically seen with 

cartilage in the growth plate or articular cartilage, but there were localized regions 

that stained positive for sulfated glycosaminoglycans. The presence of cartilage 

in healing of non-suture associated calvarial defects has been previously 

reported, suggesting that this is one mechanism by which bone repair occurs in 

the cranium [99, 192].  

The production of cartilage associated genes was followed first by an 

increase in Bmp4 and then by Bmp2 expression, suggesting that up regulation of 

these factors was required for the transition from chondrogenesis to osteogensis, 

as has been noted for endochondral ossification. The peak in expression of 

Bmps on post-op days 4 to 7 was followed by an increase in expression of the 

late marker of osteoblast differentiation, Ocn, on post-op days 14 and 21. This 

expression profile of Ocn was nearly identical to the changes in total defect 

mineral content and bone volume seen with µCT, and correlated with histologic 

evidence of organized bone by 14 days post-op. 

Comparing the healing of the infant posterior frontal defect to the 

adolescent and lateral defects demonstrates that the rapid regeneration of bone 

within the defect is both age and location specific. The adolescent posterior 

frontal suture defect was the only other defect to bridge with a thin discontinuous 

shell of bone, as seen using 2D µCT images at 14 post-op days. This bridged in 
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an endocranial to exocranial manner, which is consistent with what is seen in 

normal suture development and fusion, suggesting an important role for the dura 

in the regeneration of cranial defects. Unlike the posterior frontal infant defect, 

the defects in the older adolescent mice displayed no significant increase in bone 

volume or mineralization by 14 days post-op. Furthermore, by 7 day post-op, the 

infant posterior frontal defect contained as much bone as an intact suture at the 

time of surgery. By 14 days post-op, the amount of bone in the defect doubled 

compared to pre-operative levels. Additionally the defects contained as much 

bone as a fully developed 50 day old posterior frontal suture, even though the 

mice were two weeks younger. These data suggest that performing traditional 

craniotomies in mice actually accelerates the formation of bone in the region of 

the suture. The increase in bone volume seen was specific to both infant groups 

and reflects what is seen clinically; children who are less than six months of age 

are at greater risk of post-operative re-synostosis [11, 12].  

 The defects lateral to the posterior frontal suture did not display any 

bone bridging by 14 days post-op. There were no changes in the percentage of 

the bone in the suture or defect distance until 14 days post-op in the infant lateral 

defect. Even though there was a small decrease in these measurements, the 2D 

and 3D µCT images clearly demonstrate that there was no bone bridging in these 

defects, although there was an increase in both bone volume and mineral 

content at the edges of the defect. In contrast, no changes in any of the algorithm 

measurements were observed for the adolescent lateral defects, indicating that 

no bridging or mineralization occurred.  
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  As with all animal models, the differences in size between an 

animal and human can pose significant challenges, especially in the case of 

pediatric mice. While our model accurately replicates what is seen clinically with 

re-synostosis, the size of the animals at the time of surgery and the location of 

the defect make this a technically challenging model. While our surgical 

procedure can reliably and safely create the cranial defects, small variations in 

defect size necessitate using randomized groups and blinded reviewers. The 

discontinuity and heterogeneity seen with the both the infant and adolescent 

defects further complicates analysis of the regenerating bone. While non-serial 

histology provides extremely detailed morphology of the bone, the discontinuity 

of the bone in the defect healing limits the validity of making generalizations from 

a limited number of sections. This same limitation has been reported in literature 

examining normal cranial suture fusion [28]. While it is possible to achieve 

complete analysis of the cranial defect using serial histology, this is prohibitively 

time and resource intensive for use in high throughput applications. The 

combination of µCT and our imaging algorithms are well suited for examining the 

discontinuous bone regeneration as they allow for rapid nondestructive 

quantification of the bone regeneration and concomitant mineralization. 

CONCLUSION 

 The results clearly demonstrate that rapid regeneration of bone 

occurs when a defect is placed over the posterior frontal suture of an infant, 21 

day old animal.  To our knowledge this is the first animal model that replicates 

the rapid re-synostosis seen in very young children who undergo cranial vault 
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reconstruction. Bridging of defects did not occur in non-suture associated 

regions, despite their being identical in size, of the embryonic origin, and subject 

to equivalent mechanical loading. This difference in regeneration that was 

specific to the posterior frontal suture accurately models the rapid re-synostosis 

that is seen with cranial vault reconstruction to treat children with 

craniosynostosis. This model has tremendous potential to improve the 

understanding of the mechanisms responsible for re-synostosis in children. 
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CHAPTER 8        INTERRELATIONSHIP OF CRANIAL SUTURE 

FUSION, BASICRANIAL DEVELOPMENT, AND RE-

SYNOSTOSIS  

 

 

8.1 INTRODUCTION 

 

Craniosynostosis is a pathological condition in which one or more of the 

cranial sutures close early in development. The incidence of premature fusion is 

approximately 1 per 1,800 to 2,500 live births [164] and results in both 

craniofacial abnormalities and delays in cognitive developmental due to 

compression of the growing brain [49]. This is of particular concern during the 

early years of life because the brain roughly doubles in size by age 2 [19]. If not 

corrected, craniosynostosis can result in blindness, deafness, developmental 

delays, and in severe cases death [172]. Surgical procedures such as 

suturectomy or frontal-supraorbital advancement have been successful in 

preventing these abnormalities and symptoms, but rapid resynostosis can 

increase cranial pressure and further restrict the growing brain and cranial base 

[95, 193]. Reoperations for correcting resynostosis range from 6 to 27 percent, 

and have increased morbidity and mortality [63, 95]. Therefore, understanding 
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the biological mechanisms that cause craniosynostosis and resynostosis would 

address a significant unmet need.   

Craniosynostosis most commonly arises from spontaneous, non-

syndromic, causes, but recent advances in genetic sequencing have identified 

syndromic mutations in genes encoding fibroblast growth factor receptors 

(FRGR1, FRGR2, FRGR3) and the transcription factors Twist1 and MSX [24, 36, 

81, 194]. Mutation in the Twist1 gene, a basic-helix-loop-helix transcription 

(bHLH) factor expressed early in suture development and in osteoblast 

differentiation, results in Saethre-Chotzen Syndrome. This syndrome is the most 

common autosomal dominant form of syndromic craniosynostosis and is typically 

associated with bicoronal suture synostosis, microtinea, syndactyly, and short 

stature [53, 195]. Mice engineered with a heterozygous point mutation in the 

Twist1 gene display coronal suture synostosis before 10 weeks of age [53, 55], 

with characterized suture fusion timing and morphology based heavily on 

histological analysis [70, 76, 172]. While these techniques can provide qualitative 

morphological information of a specific section, this method is not practical for 

examining the entire suture or for providing precise, quantitative data on suture 

fusion timing. These data are not only relevant for elucidating the exact 

mechanisms that cause both syndromic and non-syndromic craniosynostosis, but 

are also needed to develop more effective procedures and therapeutics to 

correct craniosynostosis and resynostosis. 

Cranial suture fusion is traditionally believed to be controlled by a complex 

interaction between osteoprogenitor cells and the dura immediately underlying 
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the suture, but there is a growing body of evidence that deformities in the cranial 

base can disrupt normal mechanical forces in the suture and result in premature 

fusion [196, 197]. Surgical intervention to correct non-syndromic craniosynostosis 

also results in a reduction in the cranial base deformity [198, 199], further 

supporting this theory. The cranial base has long been considered a guide for 

maxillary-mandibular complex, midface, and lower face development [200-202]. 

Unlike the cranial vault, the growth in the skull base is regulated by tissue joints 

known as synchondroses [200]. Endochondral ossification of the sphenooccipital 

synchondrosis (SOS), the largest of these bone junctions, has a direct 

contribution to cranial base growth and subsequent craniofacial development 

[203, 204]. Therefore, it is important to investigate the potential role this tissue 

may have in craniosynostosis. 

As the SOS begins to be replaced by bone, with total fusion shortly after 

puberty [200], mineralized struts called tethers form perpendicular to the plane of 

the SOS and connect the sphenoid and occipital bones at the midline of the 

cranial base [205].  Although the role of tethers in the SOS is not fully 

understood, it is regulated by 1α,25-dihydroxy vitamin D3 via the vitamin D 

receptor and may play a role in cranial base growth and mechanical stability 

[205]. Therefore, investigating tether formation in the SOS during 

craniosynostosis may better elucidate the cranial base’s role in premature suture 

fusion. 

To address these unresolved challenges, the overall goals of this study 

were to determine the interrelationship between suture fusion and cranial base 
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development during syndromic craniosynostosis and to assess the effect of the 

syndrome on re-synostosis following suturectomy, using the Twist1+/- mouse 

model of Saethre-Chotzen Syndrome. A murine model was selected because 

fusion of the posterior frontal (PF) (analogous to the metopic suture in humans) 

occurs during the first 3 weeks of age, whereas the remaining sutures stay open 

throughout the life of the animal [28, 70, 206], providing the opportunity to 

compare the mechanisms that mediate suture fusion to those that remain open 

sutures in the same animal. To define the developmental and regenerative 

changes seen in Twist1+/- mice, we used an advanced active contour algorithm, 

developed and validated with serial histomorphometric analysis for segmenting 

micro-computed tomography (µCT) scans of cranial sutures by using the 

combination of a global threshold and the snake algorithm to segment the cranial 

sutures [174]. To correct distortions that were artifacts of evaluating in two 

dimensions the three dimensionally curved coronal suture [196], we previously 

developed an addition to the algorithm, which allows for reconstruction of images 

that are perpendicular to the suture about all three axes.  

 



145 

 

 

8.2 METHODS 

 

Animal Model 

All procedures and animal husbandry were performed under approval of 

the Georgia Institute of Technology Institutional Animal Care and Use Committee 

and were consistent with NIH guidelines. Male heterozygous B6.129S7-

Twist1tm1Bhr/J mice were purchased from Jackson Labs (Bar Harbor, ME) and first 

or second generation males were used for all breeding. Male mice were bred 

with first generation female C57Bl/6J (Jackson Labs). All mice were housed in a 

light and temperature controlled environment and given ad libidum access to 

food and water. Mice were kept with their natural birth mothers until post-natal 

day 21 or euthanasia. Mice under 21 days of age were euthanized by 

intraperitoneal injection of pentobarbital and mice over 21 days of age were 

euthanized by CO2 asphyxiation. Mice were genotyped from ear punches or tail 

clips under general anesthesia with isoflurane. DNA was extracted using 

NaOH/Tris HCl extraction as previously described and PCR was performed for 

the neomycin resistance gene (Fwd Primer-CTT GGG TGG AGA GGC TAT TC; 

Rev Primer- AGG TGA GAT GAC AGG AGA TC) [207]. 

Micro-CT Analysis of Cranial Sutures 

The advanced active contour algorithm was applied to assess temporal 

changes in fusion of both the posterior frontal and coronal sutures.  Six male litter 
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matched Twist1+/- (Twist) and Twist1+/+ (WT) mice were euthanized at each of the 

following time points: post-natal days 6, 12, 20, 25, and 30. After verifying death 

by absence of a palpable heart beat and blink reflex, the calvaria and cranial 

base were removed from soft tissues and fixed in 10% neutral buffered formalin 

(Sigma, St. Louis, MO). The scan region for the calvaria was identified from the 

most posterior molars in the maxilla and moved posteriorly 6.6 mm. This region 

contained both the posterior frontal and coronal sutures. The samples were 

imaged by µCT with isotropic voxels 10.5 µm in size and an energy of 55 kVp 

(Viva CT 40, Scanco Medical, Bruttisellen, Switzerland). The exact locations of 

both sutures were identified on 3D renderings made using a global threshold to 

create DICOM images for later image processing. 

The images were analyzed with an image segmentation algorithm 

developed and validated with serial histology to quantify both the posterior frontal 

and coronal sutures [174]. Briefly, the algorithm uses a combination of a global 

threshold and snake algorithm to segment the bones of the developing sutures, 

eliminating the distortions seen in the lateral regions of the coronal suture when 

analyzing straight coronal images. The algorithm thus allows for accurate 

identification of the varying and irregular mineralization of the developing suture. 

For the coronal suture, images were reconstructed perpendicular to the suture 

about all three axes, using a modification of our algorithm described previously 

[174]. These segmentation boundaries were then used to determine the 

percentage of suture open; the minimum, mean, and maximum distances 
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between the bones; the area of the suture; the bone volume, and suture 

mineralization. Suture mineralization was used as an indicator of bone mineral 

content and was calculated by converting the pixel intensities to a known 

hydroxyapatite standard to give the density of each pixel relative to 

hydroxyapatite. All images were evaluated by a reviewer blinded to the age and 

genotype of the mice. 

MicroCT Analysis of the Cranial Base 

To determine the potential role the cranial base may have in 

craniosynostosis, SOS morphology and tether formation after syndromic 

premature suture fusion was quantified. The cranial base was scanned with 

isotropic voxels 8 µm in size at an energy of 45 kVp as previously described in 

mice that were 25 and 30 days old [205].  These time points were selected 

because accelerated synchondrosis closure and initial tether formation were 

previously observed during this stage of postnatal development [205].  

Additionally, these time points occur well after previously reported suture fusion 

in Twist mice [29].  Briefly, the anterior region of the spheno-occipital 

synchondrosis (SOS) was outlined with user-guided contours and evaluated at a 

threshold corresponding to 250 mg hydroxyapatite/cm3, which was previously 

confirmed to be accurate for evaluating tethers by comparing histomorphometric 

and µCT results [208].  Scanco software using a direct distance transformation 

method was used to determine average SOS thickness, SOS volume, tether 

volume/SOS volume, and tether spacing as described in detail previously [205, 
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209, 210].  This method resulted in global volumetric measurements that 

represent averages along all relevant axes.    

Re-synostosis Model 

The ability to heal cranial defects was assessed in an infant model of re-

synostosis. Post-natal day 21 male litter matched Twist and WT mice were used 

for all cranial defects. A 1.5 by 2.5 mm defect removing the posterior frontal 

suture was created in all mice, as described previously [211]. When this defect is 

created in a 21 day old C57Bl/6 mouse, it undergoes rapid re-synostosis. The 

defect heals in a biphasic process where bridging of the defect is seen as soon 

as 3 days post-op and the defect becomes fully mineralized by 14 days post-op. 

On post-op days 4 and 14 five Twist and five WT mice were euthanized and 

immediately imaged with µCT using the scan settings detailed above. The defect 

distance, defect bone volume, percentage of defect open, and the defect mineral 

content were calculated using the algorithm described above.  

Following imaging the skulls were fixed in 10% neutral buffered formalin 

and decalcified in 10% EDTA. The EDTA was changed every two days until the 

skulls were completely de-calcified as verified with plain x-ray. The samples were 

dehydrated and embedded in paraffin. After verifying the location of the defect, 7 

µm thick sections were made and de-parafinized. Sections were stained with 

haematoxylin and eosin (H&E) and images were made on a Leica DMLB at 10X 

and 40 X magnification. 

Statistical Analysis 
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 The sample sizes for the sutures (n=6), synchondroses (n=6), and the 

cranial defects (n=5) were determined on a prospective power analysis using the 

results of previous scans or surgeries, respectively. The normality of the data 

was verified using a Komogorov-Smirnov normality test. This was followed with a 

two-way ANOVA to check for differences between the time points, the genotype, 

and the interaction between the two terms. In all cases there was significant 

interaction and the data were analyzed with a one-way ANOVA or Student’s t-

test. Where appropriate, statistical significance was determined using a Dunnett’s 

Multiple Comparison post-hoc test. A p value less than 0.05 considered 

significant for all analyses. All analysis was performed using Graphpad Prism 5 

software (GraphPad Software, La Jolla, CA). 
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8.3 RESULTS 

 

Closure of Coronal and Posterior Frontal Sutures 

 The 3D reconstruction and segmentation algorithm developed to quantify 

the development of cranial sutures in C57Bl/6 mice was able to successfully 

analyze the PF and coronal sutures of the Twist and WT mice. The minimum 

distance between the bones of the coronal suture began at 0.23 mm on post-

natal day 6 for the WT mice before reaching a plateau of 0.10 mm by post-natal 

day 20. The distance between bones remained constant at approximately 0.10 

mm in the Twist mice for all ages and was less than the WT mice on post-natal 

days 6 and 12 (Figure 8-1a). Both the bone volume and total mineral in the 

coronal suture remained constant for post-natal days 6 to 12, and then increased 

until reaching a plateau by day 20 in both the Twist and WT mice (Figures 8-1b-

c). In the WT mice, total mineral reached a plateau after post-natal day 25, while 

the mineral content in Twist mice continued to increase for all time points 

examined. Additionally, there was more bone mineral and volume in the Twist 

mice on post-natal days 6, 12, and 30 (Figures 8-1b-c). 

 In contrast to what was seen in the coronal suture, the posterior frontal 

suture in the Twist mice was more open than in WT mice and mineralized at a 

faster rate. The WT mice displayed a decrease in the distance between the 

bones after post-natal day 12 while there was no change in the distance between 
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the bones of the suture in the Twist mice (Figure 8-1d). Despite this apparent 

lack of fusion in the Twist mice, the bone volume and mineral content increased 

earlier and at a faster rate. Both groups of mice started out with no differences in 

either measure on post-natal day 6, but the Twist mice had an increase in bone 

immediately while there were no changes in the WT mice until post-natal day 25 

(Figures 8-1e-f). By post-natal days 25 and 30 there was no difference in the 

volume or mineral content of between the two groups (Figures 8-1e-f). 

Analysis of representative 3D µCT reconstructions from litter matched WT 

and Twist mice illustrate the changes seen using our image processing 

algorithms. At post-natal day 6, the posterior frontal suture was open in the WT 

mice and the coronal suture was clearly present (Figure 8-2a). As the coronal 

suture developed from adjacent bones that overlap, it was difficult to visualize the 

open coronal suture on 3D renderings. In the 6 day old Twist mice, the posterior 

frontal suture was also open, but the coronal suture appeared nearly completely 

fused (Figure 8-2b). There were regions in the lateral areas of the suture that had 

small gaps on the ectocranial surface of the skull but were fused along the 

endocranial surface of the suture. By 12 days post-natal, the posterior frontal 

suture began to fuse in the WT mice, but the majority of the suture in the Twist 

mice remained open (Figures 8-2c-d). Similarly to what was seen with the 

younger mice, on post-natal day 12 the coronal sutures of the WT mice displayed 

the characteristic overlap that was not present in the Twist mice (Figures 8-2c-d). 

On post-natal day 25 the posterior frontal suture appeared mostly fused in the 
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WT mice, but there were large regions in the Twist mice that remained open 

(Figures 8-2e-f). The coronal suture in the post-natal day 25 Twist mice was 

completely fused although remnants of the suture were still present (Figure 8-2f). 

The post-natal day 25 mice displayed the characteristic overlap seen with the 

younger mice and the edges of the bones appeared closer together than what 

was seen in the younger mice (Figure 8-2e). While study was not designed to 

quantify the sagittal sutures in the Twist mice, they also appeared completely 

open for all time points (Figures 8-2b,d,f). The 3D images of the 20 and 30 day 

old mice appeared identical to the 25 day old images (data not shown). 

Examination of both the sutures on the 2D µCT scans demonstrates the 

changes seen with the algorithm over time. The coronal sutures of all the WT 

mice had the characteristic overlap between the bones of the suture (Figures 8-

3a-c), but between post-op days 12 to 25 the bones of the suture increased in 

volume and the osteogenic fronts came closer together. In contrast, the bones of 

the coronal suture developed as fused structures, but they never displayed the 

characteristic overlap that was seen with the WT mice (Figures 8-3d-f). The 

images from post-natal day 12 and 25 show the coronal suture was fused along 

the endocranial surface of the suture. It formed an oval structure that was 

partially open on post-natal day 12 and was completely closed on post-natal day 

25 (Figures 8-3e-f). The posterior frontal suture in the WT mice was largely open 

by post-natal day 6, began to fuse on post-natal day 12, and fused and began to 

increase in bone volume on post-op day 25 (Figures 8-3g-i). While there was a 
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substantial increase in the volume of bone present in the posterior frontal suture 

in the Twist mice, the suture did not appear to fuse after the time points 

examined (Figures 8-3j-l). 

SOS Tethers in WT and Twist Mice 

The SOS in WT and Twist mice was similar in size at both post-natal days 

25 and 30 as both average thickness and volume were not statistically different 

among all groups (Figures 8-4a-b).  The SOS of Twist mice had a significant 

increase in tether volume/SOS volume between 25 and 30 days, but this 

parameter did not change in WT mice during the same time period (Figure 8-4c).  

Despite the increase in tether volume/SOS volume in Twist mice between 25 and 

30 days, a corresponding change in tether number in Twist mice was not 

significant (Figures 8-4d).  Tether width increased in Twist mice between day 25 

and day 30 days post-natal, but no change in tether width in WT mice was 

observed (Figurs 8-4e).  Neither WT nor Twist mice exhibited a significant 

change in tether spacing in the SOS between 25 and 30 days (Figure 8-4f).  3D 

reconstructions of the SOS in WT mice revealed that tether mineralization was 

not noticeably different between day 25 and 30 (Figures 8-5a-b) but were 

different between day 25 and day 30 day in the Twist SOSs (Figures 8- 

Resynostosis Model 

The cranial defect procedure was well tolerated in both the Twist and WT 

mice. Survival rates were greater than 90% for the surgeries and mice who 
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survived the acute post-operative period did not have any complications. 

Complications from anesthesia and aspiration of the irrigation solution were the 

most common causes of intraoperative mortality. The distance between the 

bones of the defect in the Twist mice decreased from 0.60 mm on post-op day 4 

to 0.35 mm on post-op day 14 (Figure 8-6a). At both time points, there was no 

change in this distance for the WT mice, which was less than 0.17 mm (Figure 8-

6a). Despite these differences in defect width, there were no differences in the 

average thickness of the bone in the defect (Figure 8-6b). In both groups the 

bone increased in thickness from 0.11 mm on post-op day 4 to over 0.32 mm on 

post-op day 14. For both WT and Twist mice, the mineral content in the defect 

more than doubled from 4 to 14 days post-op (Figure 8-6c). Additionally, there 

were no differences between the two groups of mice at either 4 or 14 days post-

op (Figure 8-6c). Identical changes and significance were also seen with the 

volume of bone in the defect (Figure 8-6d). 

 Representative 2D and 3D images from the posterior frontal defect 

illustrates the differences in healing between the Twist and WT mice. By 4 days 

post-op, the defect was bridged by bone in the WT mice, although the 3D 

renderings show that the mineral was distributed in a heterogeneous manner 

(Figures 8-7a-c). In contrast, no bridging of the defect was seen in the Twist mice 

at this same time point (Figures 8-7b-d). By 14 days post-op there was an 

increase in both the total bone volume and mineral present in both mice (Figures 

8-7e-h). As was seen with the algorithm results, there were small regions in the 
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WT mice and much larger regions in the Twist mice that remained open even out 

to 14 days post-op (Figures 8-7e-h). 

 Histological analysis of the regenerating bone in the defect confirmed the 

µCT results. On post-op day 4 there was a thin endocranial bridge of bone in the 

defect in the WT mice, but there was little organized bone present in the Twist 

mice (Figures 8-8a-b). By 14 days post-op there was thick trabeculated bone in 

the defect in both groups of mice; however, the Twist mice did not have bone that 

fully bridged the defect (Figures 8-8a-d).  
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Figure 8-1: Fusion of Coronal and Posterior Frontal Sutures. Comparison of 
coronal suture development by µCT between the WT and Twist mice for the 
minimum distance (a), total mineral content (b), and total bone volume (c). 
Comparison of posterior frontal development by µCT between WT and Twist 
mice for the minimum distance (d), total mineral content (e), and total bone 
volume (f). P<0.05 # = same age Twist, % = WT 6 days, $ = Twist 6 days.
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Figure 8-2: 3D µCT renderings showing representative images of WT and Twist 
mice. Images represent 6 day old WT (a), 6 day old Twist (b), 12 day old WT (c), 
12 day old Twist (d), 25 day old WT (e), 25 day old Twist (f). 
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Figure 8-3: Representative 2D µCT images showing changes in morphology of 
the WT and Twist mice for: 6 day coronal WT (1),6 day coronal Twist (b), 6 day 
PF WT (c), 6 day PF Twist (d),12 day coronal WT (e),12 day coronal Twist (f), 12 
day PF WT (g), 12 day PF Twist (h), 25 day coronal WT (i), 25 day coronal Twist 
(j), 25 day PF WT (k), 25 day PF Twist (l). 
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Figure 8-4: Quantification of tissue morphology and tether formation in the 
sphenooccipital synchondrosis (SOS).  Parameters include average SOS 
thickness (A), SOS volume (B), tether volume/SOS volume (C), tether number 
(D), tether width (E), and tether spacing (F).   
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Figure 8-5: Tether accumulation in the sphenooccipital synchondrosis (SOS).  
Representative 3D images of SOS in 25 day post-natal wild type (WT) mice (A), 
30 day post-natal WT mice (B), 25 day post-natal Twist+/- mice (C), and 30 day 
post-natal Twist+/- mice. 
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Figure 8-6: Quantification of defect healing in WT and Twist mice at days 4 and 
14 post-op for percentage of defect open (A), the average defect distance (B), 
the total defect mineral (C), and the total bone volume (D). 
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Figure 8-7: Representative 2D and 3D µCT images of WT and Twist mice at 4 
and 14 days post-op for: 4 days post-op WT (A,C), 4 days post-op Twist (B,D), 
14 days post-op WT (E,G), 14 days post-op Twist (F,H). 
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Figure 8-8: Histology stained with H&E from posterior frontal defect in 4 day post-
op WT (A), 4 day post-op Twist (B), 14 day post-op WT (C), and 14 day post-op 
Twist (D) at 10X magnification. 
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8.4 DISCUSSION 

 

In addressing our objectives, our results show that fusion of the coronal 

suture in Twist mice occurs by a process different from normal suture fusion, that 

coronal suture fusion does not appear to be influenced by deformities in the 

cranial base, and that mutations to the Twist gene impairs healing of a posterior 

frontal defect. The coronal sutures in WT mice decreased in width and then 

mineralized after post-natal day 12 while coronal sutures in Twist mice had 

suture widths that were similar to that of fused sutures at all measured time 

points.  Although this suggests that sutures develop fused in the Twist mice, it is 

also likely that the coronal sutures fuse prior to post-natal day 6.  However, the 

skull does not contain enough mineral content to identify the bones in either the 

WT or Twist mice prior to this age.  

This timing of coronal suture fusion in Twist mice is slightly different than 

what has been previously reported [29]. Behr et al. used histology to qualitatively 

describe the fusion of sutures and suggested that these sutures fused sometime 

before post-natal day 13. While histology can provide detailed morphologic 

information, the ability to make generalizations is limited to the irregularities seen 

with suture fusion [28, 183]. This is further complicated in analyzing pathologic 

suture fusion in Twist mice due to the variable penetrance and variations in 

morphology seen along the length of the suture. The 3D reconstructions in the 
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present study clearly illustrate this variation along the length of the pathologically 

fused coronal suture with the medial regions of the suture being more fused. 

After coronal suture fusion, the SOSs of WT and Twist mice at post-natal 

day 25 were still open and had limited tether formation compared to fused SOSs 

in mature mice studied by Lee at al. [205]. In this prior study, Lee et al. showed 

that post-natal tether development occurred in two stages: an initial stage of 

tether thickening from 2 to 8 weeks post-natal followed by an accumulation in 

number starting at post-natal week 6.  The WT mice in this study demonstrate a 

similar pattern in temporal mineralization, but Twist mice exhibit accelerated 

tether formation – specifically tether thickening – between 25 and 30 days 

compared to WT mice.  This accelerated SOS tether formation in syndromic mice 

occurred well after normal coronal suture fusion, suggesting that abnormalities in 

the skull base did not have a role in coronal suture fusion in this model of 

craniosynostosis.      

 In comparing the defect healing between the Twist mice to the WT 

mice, it was apparent that the ability to heal the posterior frontal defect was 

impaired in the Twist mice. At both post-op time points, the defect distance was 

greater in the Twist mice. This lack of bridging was also seen in the 2D and 3D 

µCT images as well as with histology. However, there were no differences in the 

bone mineral content or volume in the Twist mice. This equivalent mineral 

content but wider distance was similar to what was seen with the normal 

development of the posterior frontal suture. It is possible that the fused coronal 
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suture not only stress shields the posterior frontal suture, but also the 

regenerating tissue that is contained within the defect.  

Surprisingly the posterior frontal suture in the Twist mice did not display 

the fusion that was seen in the WT mice. Similar to the timing seen previously, 

the posterior frontal suture fused between post-op days 12 and 20 in the WT 

mice [177]. This lack of fusion was seen in both the 2D and 3D µCT images. To 

our knowledge this is the first report demonstrating the lack of fusion in the 

posterior frontal suture in the Twist mice. This lack of fusion may be caused by 

stress shielding of the posterior frontal suture by the fused coronal sutures. 

Others have previously shown that cyclic mechanical stress is required for the 

fusion of the posterior frontal suture in rodents [74, 212].  

In addition to the differences in decreasing widths of coronal and posterior 

frontal sutures during fusion, there were also differences in how the sutures 

mineralized. In the coronal suture, Twist mice contained greater mineral and 

bone volume at both the early and later time points. Additionally, there was no 

plateau seen in either measurement in the Twist mice, which suggests that the 

skull may continue to mineralize beyond the developmental period of the WT 

mice. There were also significant differences in suture morphology seen in both 

sutures in the Twist mice. The coronal suture in Twist mice never displayed the 

characteristic overlap that is seen with normal coronal sutures. These sutures 

appeared to form a small oval structure that was open on the top of the suture 

and fused first on the endocranial surface. At later time points, this structure 

fused on the ectocranial surface, but none of the images displayed the 
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overlapping bones. These differences, when combined with the lack of change in 

distance measurements, suggest that the pathologic fusion seen with these 

sutures is a result of abnormal suture development, as opposed to just premature 

fusion of a relatively normal suture.  

Although craniosynostosis has previously been linked to deformities in the 

cranial base because of alterations in the SOS during suture fusion and restored 

morphology after surgical intervention [196-199], other theories describing the 

mechanism of syndromic and non-syndromic suture fusion exist. One hypothesis 

is that genetic mutations in the dura underlying the suture, lead to altered 

signaling that results in premature fusion [23, 26, 75].  More recently, several 

investigators proposed a hybrid theory where there is an abnormality in the skull 

base, which changes the tension of the dura underlying the suture. This then 

leads to an alteration in the signaling between the dura and overlying suture, 

resulting in premature suture fusion [74]. It is also possible that all of these 

molecular and mechanical alterations, along with others still not characterized, 

result in the multiple forms of craniosynostosis.  

There have been over 50 different mutations in the Twist1 gene 

associated with Saethre-Chotzen Syndrome [53, 213]. Universally, mutations in 

Twist1 cause a decrease in the binding capacity to E-protein and an increase in 

homodimer formation [59], however, it is unclear how these mutations mediate 

their direct effects on suture fusion. Our results confirm that mutation of the 

Twist1 gene has effects on developmental processes in sutures involving 

endochondral ossification [29] and show that these effects occur at multiple 
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anatomic sites during craniofacial development. Moreover, mutations in the 

Twist1 gene affect the rate and extent of re-synostosis following suturectomy.  

When this is due to recruitment and differentiation of chondroprogenitor cells 

[214], to modulation of chondrocyte hypertrophy [215], or to later effects in 

endochondral bone formation as is suggested by our study, was not addressed.  

Our findings indicate that the mutation in the Twist1 gene addressed in this 

study, impacts mineralization of the extracellular matrix, possibly by modifying 

regulation of matrix metalloproteinase activity [216] and consequent matrix 

remodeling and calcification required for osteogenesis.   

In conclusion, the results from our µCT analysis demonstrate substantial 

differences in development and regenerative ability between WT and Twist mice. 

The Twist mice displayed pathologic development of the fused coronal sutures, 

which was not dependent on an abnormal cranial base. Additionally, the Twist 

mice were unable to bridge both the midline posterior frontal sutures and defects, 

despite having equivalent mineralization.  
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CHAPTER 9        RAPIDLY POLYMERIZING INJECTABLE CLICK 

HYDROGEL THERAPY TO DELAY BONE GROWTH IN A 

MURINE RE-SYNOSTOSIS MODEL 

 

 

 

9.1 INTRODUCTION 

Given their biocompatibility, ease of delivery, and tunable properties, 

injectable hydrogels are attractive matrices for drug delivery and tissue 

engineering. Current hydrogel systems that undergo in situ polymerization are 

limited due to their toxicity and/or long polymerization times. Here, we present a 

bio-orthogonal rapidly crosslinking click-based injectable hydrogel for the 

controlled delivery of co-administered proteins.  Our hydrogel is composed of a 

difunctionalized 4-dibenzocyclooctynol poly(ethylene glycol) conjugate (PEG-

DBCO) and a multivalent PEG-based azide (PEG-N3) functionalized polymer, 

which upon mixing form a crosslinked network in less than 90 seconds. The 

hydrogel was used to deliver the bone morphogenic protein (BMP) inhibitor 

rmGremlin1 (Gremlin) to delay rapid post-operative bone growth in a pediatric 

murine model of re-synostosis. Hydrogels containing Gremlin caused a dose 

dependent inhibition of re-synostosis. In addition to craniofacial applications, our 
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injectable click hydrogel has the potential to provide customizable protein, small 

molecule, and cell delivery to any site assessable via needle or catheter. 

Injectable hydrogels are composed of mutually reactive precursors that 

react in situ to form insoluble networks with a high water content that mimic the 

material properties of surrounding tissues[217]. Although various polymers have 

been used to form synthetic injectable hydrogels, by far the most widely studied 

gels are those formed from macromolecular poly(ethylene glycol) (PEG) 

precursors. A major advantage of using synthetic materials is that they allow for 

controllable mesh size, degradation times, mechanical properties, and release 

rates by varying the concentrations and chemical properties of the soluble 

precursors[218, 219]. Numerous free radical polymerization mechanisms have 

been employed to generate hydrogel networks from soluble PEG-based 

precursors, but the initiators and free radicals produced during polymerization 

have the potential to damage encapsulated therapeutic molecules and 

surrounding tissues[153].  

The bio-orthogonality and spontaneous reactions seen with “click 

chemistry” make click reactions ideal gelation mechanisms for in situ network 

formation.  Although, the classical Cu-catalyzed Huiseng cycloaddition has been 

used to crosslink azide and alkyne functionalized PEG precursors, the toxicity 

associated with the copper catalyst diminishes the clinical viability of such 

systems[220]. Anseth introduced a copper-free click hydrogel composed of an 

azide terminated 4-arm PEG and a polypeptide functionalized with difluorinated 

cyclooctyne (DIFO) that took approximately one hour to achieve complete 
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polymerization [162].  While this copper-free click hydrogel represents a major 

advancement towards true bio-orthogonality, gels that crosslink on a much 

shorter time scale can improve the effectiveness of hydrogel-based delivery 

systems by rapidly encapsulating co-administered therapeutics before they 

diffuse away from the site of injection.  In addition, by significantly reducing 

procedure time, and thus decreasing patient exposure to anesthetic and the 

potential for infection, hydrogels that crosslink in minutes would dramatically 

increase patient safety.   

Here, we present a bio-orthogonal injectable hydrogel that crosslinks to 

completion in less than two minutes, and thus has the gelation kinetics required 

for in situ encapsulation of co-administered biological therapeutics.  In order to 

achieve such rapid network formation, we synthesized multivalent PEG 

precursors (Figure 9-1a, 1 & 2), which form an insoluble network upon mixing 

(Figure 9-1a, 3) via the ring-strain promoted Cu-free click reaction between 

DBCO and azides.  In addition to being two orders of magnitude faster than 

previously reported click-based mechanisms, the DBCO-azide reaction proceeds 

rapidly under physiological conditions and is non-toxic to cells[221].   

One important use of these rapidly polymerizing, non-toxic injectable 

hydrogels is the delivery of therapeutic agents to sites of injury where the 

retention of the agent at the site is desired over days and weeks. In order to 

determine if our hydrogel meets this specification we took advantage of a murine 

model of re-synostosis following suturectomy, which we developed in our 

lab[211]. In very young children, treatment for craniosynostosis, or premature 



172 

 

fusion of the cranial sutures, involves surgical reconstruction of the cranial vault 

with the goal of correcting the craniofacial deformities and restoring a more 

normal intracranial volume. Unfortunately, in a large number of these children, 

bone rapidly reforms (re-synostosis) resulting in additional neurologic 

complications and necessitates additional surgical intervention[63],10,11. Our 

murine model involves the creation of a standardized defect over the posterior 

frontal suture in 21-day-old mice. This defect results in rapid bone regeneration 

comparable to the re-synostosis seen in children. Our previous studies 

suggested that an inhibitor of bone morphogenic protein (BMP) called Gremlin-1 

might be a suitable therapeutic protein to test the effectiveness of the hydrogel as 

a delivery method capable of localizing, retaining, and releasing the biologically 

active protein at the treatment site (Figure 9-1c)[211]. 

To generate a water-soluble non-fouling multivalent azide functionalized 

polymer, we synthesized PEG-N3 (Figure 9-1a, 1) from azide functionalized and 

non-functionalized PEG methacrylate monomers via reversible addition-

fragmentation chain transfer (RAFT) polymerization, which affords tight control of 

azide functionality.  The synthetic strategy presented here generates polymers 

with molecular weights (MN) of approximately 25,000 Da and an average azide 

functionality per polymer of 13 (Figure A-10). The difunctionalized PEG-DBO 

crosslinker (Figure 9-1a, 2) was synthesized by reacting bis-amino-PEG with 

excess benzyle-2-nitro-carbonate functionalized DBCO.  Dynamic time sweep 

rheological experiments were conducted on gels formed in the presence of 

serum to monitor network formation kinetics.  Upon mixing, hydrogels containing 
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12.5% PEG-N3 and 4% DBCO-PEG underwent gelation in less than 30 seconds 

(i.e. G’= G”) and were completely crosslinked in under 90 seconds (Figure 9-1b).  

This rapid polymerization seen with our hydrogel allows for rapid encapsulation 

and sequestration of co-delivered proteins before they can diffuse away from the 

site of administration. 

 



174 

 

 

 

Figure 9-1: Hydrogels formulated from azide functionalized PEG polymers and 
DBCO functionalized PEG crosslinker gel in less than two minutes: a. Azide-
functionalized RAFT-copolymer (PEG N3) 1 rapidly crosslinks with PEG-DBCO 
crosslinker 2 via the [3 + 2] Huisgen cycloaddition to form a hydrogel. 1 and 2 
react fast enough to allow for injection into tissue, hydrogel formation and 
biomolecule encapsulation. b. Spinning disk rheometry was used to determine 
the crosslinking dynamics of the hydrogel, and demonstrate that when mixed 
together, the two components begin to gel in less than 25 s with complete 
gelation occurring in less than 90 s. c. Cartoon illustrating the co-administration 
of rmGremlin1, 1, and 2, to a non-critical cranial defect and the subsequent 
entrapment of rmGremlin1 upon in situ crosslinking.  
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9.2 METHODS 

 

Synthesis of Poly[tetraethylene glycol methacrylate)-co-

(azidotetraethylene glycol methacrylate)] (PEG-N3) (1) 

 Tetraethylene glycol methacrylate (0.9 g, 3.43 mmol) and azido 

tetraethylene glycol methacrylate (0.28g, 1.0 mmol), benzothioylsulfanyl)acetic 

acid (6.27 mg, 0.03 mmol), and AIBN (0.5 mg, 0.003 mmol) were combined in 

dimethylformamide (1.5 ml). The reaction flask was degassed by five freeze-

pump-thaw cycles, and then immersed in an oil bath and stirred at 70°C.  After 

20 h, the reaction was terminated by flash freezing in liquid nitrogen. The 

reaction product was added to dichloromethane (DCM) (5 ml) and then 

precipitated via the addition of methanol (25ml). The supernatant was decanted 

and the precipitated polymer was subjected to three more rounds of 

resuspension and precipitation before being concentrated under reduced 

pressure. The purified polymer was analyzed for weight by gel permutation 

chromatography (tetrahydrofuran)  and the structure and purity were verified by 

1H NMR (deuterated chloroform) 1H NMR (Figure A-10). Molecular weight:  Mw ~ 

24 kDa,  Mn ~ 18 kDa. 

 

Synthesis of 4-Dibenzocyclooctynol PEG Conjugate (PEG-DBCO)(2) 

 To a stirred solution of poly(ethylene glycol) bis(amine)3400 (340 mg, 

0.1 mmol) and NEt3 (40 mg, 0.4 mmol) in DCM (15 mL) was added DBCO (90 
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mg, 0.23 mmol) under an atmosphere of argon.  The reaction mixture was kept 

stirring overnight at ambient temperature, and the solvent was removed under 

reduced pressure.  The residue was dissolved in DCM (30 mL), and washed with 

water (5 mL) and brine (5 mL).  The organic phase was dried over Na2SO4, 

filtered and evaporated to dryness under reduced pressure.  The residue was 

purified by flash column chromatography on silica gel (DCM/CH3OH, 15/1) to 

afford (2) (0.31g, 81.3%) and analyzed by H-NMR.  1H NMR (400 MHz, CDCl3) δ 

(ppm) 3.13-3.03 (m, 4H, CH2CHO), 3.50-3.75 (m, 300H, 150 PEG CH2), 5.42-

5.61 (m, 2H, OCHCH2), 7.21-7.46 (m, 16H, aromatic); and 13C NMR (100 MHz, 

CDCl3) δ (ppm) 40.83(CH2CH), 46.08 (CH-O), 69.88 (CH2), 70.19 (CH2), 70.46 

(CH2), 76.58 (CH2), 77.50 (CH2), 109.91 (alkyne), 112.78 (alkyne), 121.12 

(aromatic), 123.68 (aromatic), 123.73 (aromatic), 125.78 (aromatic), 126.07 

(aromatic), 126.94 (aromatic), 127.85 (aromatic), 127.96 (aromatic), 129.85 

(aromatic), 150.92 (aromatic), 152.12 (C=O), 155.41(C=O).  

In Vitro Hydrogel Testing 

All in vitro experiments were performed under aseptic conditions.  

Aqueous stock solutions of DBCO-PEG (12.5%, 6.25%, 4.85%, 3.13%, 1.56%; 

w:v) and PEG-N3 (50%; w:v) were prepared by sonicating the polymers in PBS 

at room temperature. Two parts DBCO-PEG and 1 part PEG-N3 were incubated 

on ice until mixing by pipetting and injected in to a modified syringe mold. The 

gels were then incubated at 37 °C in 1 mL of PBS with 10% FBS until testing. 

Unconstrained compression testing was performed with the samples immersed in 

PBS, a 0.1 ± 0.01 N preload, a displacement of 3 mm, and a 2 mm/s 
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compression velocity (Bose EnduraTEC 3100, Bose Corporation, Eden Prairie, 

Minnesota). GST was fluorescently labeled with Alexa Fluor 647 carboxylic acid, 

succinimidyl ester using the manufactures protocol, purified with a PD 10 column, 

lyophilized overnight, and re-suspended in sterile PBS. Aliquots were diluted 1:5 

v/v in sterile PBS and quantified by fluorometry. The biological activity of 

rmGremlin1 delivered from the 12.5% w:v hydrogel was performed by incubating 

gels containing 100 ng rmGremlin1 or 4 nM HCl vehicle were incubated at 37 °C 

for 7 days in DMEM. Serum and 100 ng/mL rhBMP2 or vehicle were added to 

incubated medium and added to MG63 cells at 80% confluence. After 24 hours, 

cells were harvested and alkaline phosphatase activity was measured in cell 

layer lysates as previously described[222]. 

In Vivo Testing 

 All calvarial defects were created in post-natal day 21 male 

C57Bl/6J mice. Under 28X magnification a 1.5 mm by 2.5 mm defect was made 

by removing the posterior frontal suture using a piezoelectric instrument under 

constant irrigation with sterile PBS as previously described[211]. The defects 

were left empty or injected with 2 µL of the 12.5% hydrogel with the appropriate 

concentration of rmGremlin1 or GST-647. The ratios and mixing were performed 

as described above and the polymerization was verified after 20 seconds with a 

blunt 25G needle. All mice were randomized to both treatment group and post-

operative time point with all analysis conducted by a blinded reviewer. 

Fluorescence release from mice containing either the hydrogel + GST-647 or 

PEG-N3 + GST-647 was assessed in anesthetized animals on post-operative 
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days 0, 2, 5, and 14 (IVIS Lumina II) (2 groups, n=5). Total fluorescent counts 

over the entire head and in a 1.5 mm by 2.5 mm were determined using the 

same display scales.  

 The effect of rmGremlin1 delivered from the hydrogel was 

assessed by creating the cranial defects described above.  Defects were 

randomized to contain 2 uL of: empty defect, hydrogel only, hydrogel + 300 ng 

rmGremlin1, hydrogel + 500 ng rmGremlin1, and the un-polymerized PEG-N3 + 

500 ng rmGremlin1 (5 groups, n=10). On post-op days 5 and 14, mice were 

euthanized and imaged with µCT with a voxel size of 31 um (VivaCT 40, Scanco 

Medical, Basel, Switzerland). The extent of bone regeneration in the defect was 

assessed using our advanced segmentation algorithm described and validated 

previously[174, 211]. Histological assessment was performed by haematoxylin 

and eosin staining of decalcified 7 um axial sections in the middle of the defect 

and analyzed by light microscopy.  

 All procedures were approved by the Georgia Tech Institutional 

Animal Care and Use Committee in accordance with the guide for the Care and 

Use of Laboratory Animals. 
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9.3 RESULTS 

 

To generate a water-soluble non-fouling multivalent azide functionalized 

polymer, we synthesized PEG-N3 (Figure 9-1a, 1) from azide functionalized and 

non-functionalized PEG methacrylate monomers via reversible addition-

fragmentation chain transfer (RAFT) polymerization, which affords tight control of 

azide functionality.  The synthetic strategy presented here generates polymers 

with molecular weights (MN) of approximately 25,000 Da and an average azide 

functionality per polymer of 13 (Figure A-10).  The difunctionalized PEG-DBO 

(Figure 9-1a, 2) crosslinker was synthesized by reacting bis-amino-PEG with 

excess benzyle-2-nitro-carbonate functionalized DBCO.  Dynamic time sweep 

rheological experiments were conducted on gels formed in the presence of 

serum to monitor network formation kinetics.  Upon mixing, hydrogels containing 

12.5% PEG-N3 and 4% DBCO-PEG underwent gelation in less than 30 seconds 

(i.e. G’= G”) and were completely crosslinked in under 90 seconds (Figure 9-1d).  

This rapid polymerization seen with our hydrogel allows for rapid encapsulation 

and sequestration of co-delivered proteins before they can diffuse away from the 

site of administration.               

One of the advantages of synthetic hydrogel is that the mechanical 

properties can be tailored to match varying tissue types. Varying the relative 

concentration of DBCO-PEG prior to polymerization allowed for the formation of 
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gels with highly customizable mechanical properties.  To generate gels for in vitro 

evaluation, 0°C PBS solutions containing either PEG-DBO (50%; w:v) or PEG-N3 

(12.5%, 6.25%, 4.85%, 3.13%, 1.56%; w:v) were mixed via pipette in a cylindrical 

form. As with most hydrogels, our gel displayed a highly non-linear behavior in 

response to compression[223]. A neo-Hookean hyperelastic model, assuming 

incompressibility and isotropy, was used to fit the non-linear stress-strain 

response of our gels (Figure A-11). he neo-Hookean coefficient (C1) was 

calculated in terms of the stretch ratio ( and the engineering stress in the axial 

direction ( ) : . Unconstrained compression testing showed 

that increasing the concentration of DBCO-PEG resulted in an increase in the 

mechanical properties of the hydrogel (Figure 9-2a). At the lowest concentration, 

the neo-Hookean coefficient was less than 0.3. It increased to approximately 2 

for the mid concentrations, and then finally peaked at over 5 for the 12.5% 

DBCO-PEG. For 12.5% gels, this corresponded to a Young’s modulus of 

approximately 32 kPA. Hydrogels with concentrations less than 1.5% or greater 

than 12.5% did not polymerize (data not shown). 

One of the most important aspects of delivery matrices is the ability to 

tailor the release kinetics of therapeutic factors based on the intended 

application. Varying the PEG-DBO concentration from 3.13-12.5% in the gel 

allows for substantial variation of protein release rate. To assess protein release 

kinetics, Alexa Flour tagged glutathione s-transferase (GST-647) was added to 

the DBCO-PEG solution, prior to polymerization. This protein has a molecular 
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weight similar to the Gremlin1 dimer and, for our purposes, did not have 

biological activity. To mimic the conditions at the treatment site, in vitro release 

kinetics were assessed by incubating hydrogels containing GST-647 for up to 

two weeks in sterile PBS containing 10% FBS at 37 °C.  Our results demonstrate 

that GST-647 release rate from the hydrogel is inversely proportional to the 

crosslink density of the gel (Figure 9-2b).  For example, hydrogels formulated 

with less crosslinker had a more rapid and non-linear release of incorporated 

proteins with the 3.1% gel releasing nearly 75% of the protein after only 1 day. In 

contrast 12.5% gels had a nearly linear release profile out to 14 days. The 

compressive moduli of the hydrogels were retained for 3 days of incubation, 

before gradually decreasing for the remaining time points (Figure 9-2c), 

indicating degradation was occurring.  

Gremlin1 is upregulated during cranial defect healing coincident with 

increased expression of Bmp2 and Bmp4, suggesting it plays a specific role in 

regulating bone formation at this time[211].  Gremlin is a traditional BMP inhibitor 

that has a high affinity for BMP2 and BMP4 and blocks their action by preventing 

these proteins from binding their receptors[124].  Thus we hypothesized that the 

controlled release of Gremlin1 at the defect site would prevent re-synostosis. To 

verify that Gremlin1 retains its biological activity following in situ polymerization 

and subsequent release, we assessed the ability of recombinant murine Gremlin-

1 (rmGremlin1) released from the hydrogel to block the action of rhBMP2 in vitro. 

Delivery of rmGremlin1 in the hydrogel blocked the stimulatory effects of 

recombinant human BMP2 (rhBMP2) on osteoblastic differentiation of pre-
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osteoblast MG63 cells, using alkaline phosphatase specific activity of the cultures 

as an outcome measure[224, 225]. Preliminary dose response experiments 

showed that 100 ng/mL rmGremlin1 was able to block the stimulatory effect of a 

24h treatment with 100 ng/mL rhBMP2 on alkaline phosphatase activity (Figure 

A-12). Moreover, rmGremlin1 retained biological activity when delivered over 

time in the hydrogels. Hydrogels containing 100 ng/mL rmGremlin1 or the 

rmGremlin1 carrier (4mM HCl) were incubated in medium for 7 days to achieve 

release of incorporated proteins. MG63 cells treated with rhBMP2 alone or with 

rhBMP2 plus the hydrogel with carrier caused the expected increase in alkaline 

phosphatase compared to control cultures and cultures grown with the hydrogel 

alone. Addition of rmGremlin1 directly to the rhBMP-2 treated cultures or 

delivered in the polymerized hydrogel blocked the stimulatory effect of rhBMP2.  

Given the ability of our hydrogel to encapsulate and release biologically 

active proteins, we assessed the ability of our hydrogel to localize the continuous 

release of proteins within cranial defects.  Our cranial defect model involves 

removing the posterior frontal suture in a 21-day-old juvenile C57Bl/6 

mouse[211].  Following creation of the defect, mice were randomized into two 

treatment groups.  Mice received either an injection of a solution containing PEG-

N3, GST-647, and PEG-DBCO (i.e, polymerized gel) or a solution containing 

PEG-N3 and GST-647 (i.e, unpolymerized gel).  As the gels have a low viscosity 

prior to polymerization, visual inspection revealed that the solution was able to fill 

the entire defect before crosslinking into a stable gel.  Our results demonstrate 

that the crosslinked hydrogel was able to retain the fluorescent signal in the 
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defect site and provide controlled release for up to 14 days (Figure 9-3a-d). In 

contrast, the fluorescent signal in animals containing the un-polymerized PEG-N3 

showed that the protein diffused out of the defect by 2 days post-op and there 

was essentially no signal seen on days 5 and 14 post-op (Figure 9-3e-h). 

Quantification of the total fluorescent signal over the head of the animals showed 

no differences at 0 and 2 days, but there was less signal in the PEG-N3 mice for 

the later time points on post-op days 5 and 14 (Figure 9-3i). Additionally, the ratio 

between the signal contained within the defect to the total signal detected was 

approximately 1 for the mice treated with the hydrogel, indicating that essentially 

all of the fluorescent proteins were localized to the defect (Figure 9-3j). Defects 

containing just the un-polymerized PEG-N3 started out having a ratio of 

approximately 1, but this more than doubled at later time points as the proteins 

continued to diffuse away from the defect site.  

To verify that the in situ polymerization of the hydrogel was not toxic to the 

surrounding tissues, mice were randomized to have an empty cranial defect or 

injected with the hydrogel containing PBS only. The extent of bone regeneration 

was imaged by micro-computed tomography (µCT) on post-operative days 2, 5, 

and 14 and then quantified using advanced image processing algorithms[174]. 

We previously developed and validated these algorithms in order to segment 

bones of varying and heterogeneous mineral content, which are seen in the 

healing of this pediatric specific model of re-synostosis. There was only a minor 

and transient reduction of bone within the defect in mice treated with the hydrogel 

(Figure A-13). By 14 days post-op, there were no differences in either the 
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average defect width or the volume of bone in the defect compared to empty 

defects. This indicates that our hydrogel has a space occupying effect early, but 

in vivo the gel is degraded or replaced by the regenerating bone. These results 

demonstrate that the hydrogel is able to provide a highly localized, controlled 

delivery of incorporated proteins to the defect site and that in the absence of any 

therapeutic protein the gel by itself does not have any long term impact on bone 

regeneration.  

To address the clinical need seen in children who undergo surgical 

intervention for craniosynostosis, we used our click hydrogel to deliver the BMP 

inhibitor rmGremlin1 to delay the post-operative bone growth. Cranial defects 

were created over the posterior frontal suture in 21-day-old male mice and 

randomized to both the post-operative time point and treatment groups: empty 

defect, hydrogel + carrier (4 mM HCl), hydrogel + 300 ng rmGremlin1, hydrogel + 

500 ng rmGremlin1, and un-polymerized PEG-N3 + 500 ng rmGremlin1. Mice 

were euthanized and imaged with µCT on post-op days 5 and 14.  Empty defects 

contained a thick trabeculated structure by 14 days post-op, which was visible on 

both the µCT and histological images. This defect was nearly completely bridged 

as seen with the 3D rendering, similar to what has been observed previously 

(Figure 9-4a-c)[211]. The defects containing the hydrogel exhibited the same 

thick trabeculated structure, but complete bridging was not evident along the 

midline (Figure 9-4d-f). The 3D rendering showed that this small gap occurred in 

only a very small region and the majority of the defect was healed (Figure 9-4d). 

Histology of the site showed disorganized fibrous connective tissue between the 
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bones of the defect (Figure 9-4f). Inclusion of rmGremlin1 in the hydrogel 

resulted in a dose dependent decrease in the amount of bone present in the 

defect (Figure 9-4g-l). None of the animals in these groups displayed bridging of 

the defect and histology showed more fibrous connective tissue was present 

(Figure 9-4i,l). Additionally, the 2D µCT images showed a lack of the thick 

trabecular structure noted above (Figure 9-4h,k). Defects containing the un-

polymerized PEG-N3 also had nearly completed bridging of the defect and 

contained the thick trabecular structure observed in the empty defects (Figure 9-

4m-o), indicating that the highest dose of rmGremlin1 did not have an effect on 

defect healing in the absence of a cross-linked gel.  

These observations were supported by quantitative analysis of the �CT 

images using our advanced segmentation algorithms described above. On post-

op day 5, there was a decrease in the width of untreated defects and a slight 

decrease in the distance between bones for the hydrogel + carrier group.  

However for both of the groups containing rmGremlin1, there was no decrease 

from the initial 1.5 mm wide defect (Figure 9-5a). At 14 days post-op, the 

distance between bones in the hydrogel + carrier and hydrogel + 300 ng 

rhGremlin1 treatment groups decreased, but there was no change in defect width 

in sites treated with the hydrogel + 500 ng rmGremlin1, indicating that the effects 

of rmGremlin1 were dose dependent. As seen previously, the empty defects 

were bridged early as no changes in distance between bones were observed 

between 5 and 14 days post-op[211]. Histomorphometric analysis of coronal 

sections cut through the center of the defect showed significantly wider defects at 
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14 days post-op in the hydrogel + 500 ng rhGremlin1, but other differences were 

not present as the variability associated with the non-serial histomorphometry 

was greater as this only examined one section of the middle of the defect (Figure 

A-14). 

Cross-linking of the gel was necessary to retain rmGremlin1 at the site. 

PEG-N3 + 500ng rmGremlin1 had no impact on bone formation, as there were 

no differences at either time point between this group and the empty defect 

(Figure 9-5a). There were no differences among any of the groups on post-

operative day 5 in the defect thickness, defect mineral content, and defect bone 

volume, as this time point is before the defect undergoes the mineralization that 

is part of normal defect healing (Figure 9-5b-d). However, defect mineral content 

and bone volume were decreased in a dose-dependent manner on day 14 when 

rmGremlin1 was delivered in the crosslinked hydrogel.  Both parameters 

increased on day 14 in the empty defects, in defects treated with hydrogel + 

carrier, and in defects treated with PEG-N3 + 500 ng rmGremlin1 (Figure 9-5c-d). 

Additionally, there were no changes in any of the parameters between days 5 

and 14 in sites treated with hydrogel + 500 ng rmGremlin1 indicating that no 

significant bone growth had occurred.  
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Figure 9-2: In vitro testing of hydrogel. Unconstrained compression 
testing of hydrogel using a Neo-Hookean hyperelastic model showed that 
increasing the concentration of the DBCO-PEG resulted in an increase in 
the Neo-Hookean coefficient (C1) (a) *=p<0.05 vs 12.5%. In vitro release 
of GST-647 from hydrogels with increasing concentrations of DBCO-PEG 
resulted in a more prolonged and linear release profile with the 12.5% gel 
having controlled release out to 14 days (b). Degradation of the 12.5% gel
assessed by unconstrained compression had a decrease in the Neo-
Hookean Coefficient after day 7 (c) *=p<0.05 vs day 0. The biological 
activity of rmGremlin1 was retained after release following polymerization 
in the hydrogel as assessed by blocking the BMP-2 mediated increase in 
alkaline phosphatase specific activity (d) *=p<0.05 vs carrier, #= p<0.05 
vs BMP2. 
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Figure 9-3: In vivo fluorescence release of GST-647 kinetics following in situ 
polymerization of hydrogel. Fluorescent images of mice with GST-647 in 
crosslinked hydrogel showed a controlled and localized signal over the defect up 
to 14 days after administration (a-d). In contrast, the signal of the group 
containing the un-polymerized PEG-N3 (e-h) showed relatively low levels of 
fluorescence after 5 and 14 days, demonstrating that, in the absence of 
crosslinking, the protein rapidly diffused out of the defect. Quantification of the 
total fluorescent signal over the entire head shows that 2 days after surgery there 
is more signal in the hydrogel gel group as compared to the PEG-N3 group and 
there is only a slight decrease in the total fluorescent signal (i) *=p<0.05 vs day 2, 
#=p<0.01 vs hydrogel. Comparing the ratio between the fluorescent signal in the 
defect to the total signal showed that the hydrogel groups had a higher 
fluorescence intensity 2 to 14 days after surgery, indicating that the hydrogel 
orchestrated a controlled release of incorporated protein (j) *=p<0.05 vs day 0, 
#=p<0.05 vs hydrogel.  
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Figure 9-4: Representative µCT and histology from 14 day post-op samples. Empty 
defects were nearly completely healed and bone bridging the defect (a-c). Defects 
with the hydrogel had very small regions that remained open, but there was thick 
trabecular bone present (d-f). Defects containing the hydrogel with rmGremlin1 
showed a dose dependent decrease in the amount of bone present (g-l). The defects 
containing the low 300 ng dose showed no bone bridging of the defect (g-i), but the 
ends of the bone were thicker than the 500 ng group (j-l). The defects containing 500 
ng rmGremlin1 in the un-polymerized PEG-N3 showed complete bridging and the 
same thick trabecular structure that was seen in the empty defect (m-o). 
 



190 

 

Average Defect Width

5 14
0.0

0.5

1.0

1.5

Post-Op Time (days)

D
is

ta
n

c
e
 (

m
m

)

#$

#

#

%&

%&

*
#$

#$%

*

Average Defect Thickness

5 14
0.0

0.1

0.2

0.3

Post-Op Time (days)

D
is

ta
n

c
e
 (

m
m

)

*

#$ #$

*
%&

*

Defect Mineral Content

5 14
0.0

0.2

0.4

0.6

Post-OpTime (days)

E
q

u
iv

a
le

n
t 

M
in

e
ra

l
(m

g
H

A
)

*
#

#$

*

*

*
$&

Defect Bone Volume

5 14
0.0

0.2

0.4

0.6

 Post-Op Time (days)

V
o

lu
m

e
 (

m
m

3
)

*

*

*
#

#$

*
$&

a b

c d

Empty Hgel + Carrier Hgel + 300 ng Hgel + 500 ng PEG-N3 + 500ng
 

Figure 9-5: Quantification of bone regeneration in defect by µCT imaging 
algorithm. Defects were left empty (Empty) on injected with hydrogel with 4 nM 
HCl carrier (Hgel + Carrier), hydrogel with 300 ng rmGremlin1 (Hgel + 300 ng), 
hydrogel with 500 ng rmGremlin1 (Hgel + 500 ng), or un-polymerized PEG-N3 
with 500 ng rmGremlin1 (PEG-N3 + 500 ng). The average defect width had a 
dose dependent decrease on post-op day 14 and there was no change from the 
initial 1.5 mm defect (dashed line) for the Hgel + 500 ng group (a). The average 
defect thickness increased for all groups except the Hgel+300 ng and Hgel + 500 
ng groups (b). Both the defect mineral content and bone volume showed a dose 
dependent decrease for the groups containing rmGremlin1 and there was no 
change in the Hgel + 500 ng groups (d). There were no differences between the 
Empty and PEG-N3 + 500 ng groups in any of the measures at either time point. 
P<0.05 vs. # = empty, $ = Hgel + Carrier, % = Hgel + 300 ng, & = Hgel + 500 ng, 
* = 5 days. 
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9.4 DISCUSSION 

 

Our results clearly demonstrate that our click-hydrogel permits rapid in situ 

polymerization for controlled delivery of therapeutic proteins. Polymerization of 

PEG-N3 and the DBCO-PEG to form hydrogels resulted in very rapid 

crosslinking that occurred spontaneously without the need for any additional 

initiators. The polymerization for all applications resulted in a fully cross-linked 

hydrogel in less than 90 seconds. To our knowledge this is the most rapidly 

crosslinking hydrogel using Cu-free click chemistry reported, occurring almost 

two orders of magnitude faster than previously described hydrogels[162]. This 

rapid spontaneous polymerization has the potential to deliver incorporated 

factors to any site that can be reachable with a needle. Furthermore, the 

incorporated proteins retained their biological activity following in situ 

polymerization both in vitro and in vivo. 

To our knowledge this is the first time rmGremlin1 has been delivered to 

delay the rapid bone growth seen in pediatric patients following suturectomy. Not 

only does this have tremendous potential to delay the post-operative re-

synostosis frequently seen in cases of craniosynostosis, but it also has the 

potential to dramatically change the surgical management of this disease. This 

therapy could allow for the endoscopic removal of the fused suture and in effect 

re-create the function of a normal suture. This minimally invasive procedure has 
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been largely abandoned clinically as the results from the surgery were 

temporary. Outside of craniofacial reconstruction, delaying the rate of bone 

growth has direct applications in treating fractures of the growth plate and 

heterotopic ossification. In addition to delivering BMP inhibitors, the plug and play 

architecture of the PEG-N3 RAFT polymerization also allows the hydrogel to be 

used for other regenerative applications that may necessitate cell adhesion 

peptides, cleavable linkages, or covalent attachment of therapeutic small 

molecules. 
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CHAPTER 10        CONCLUSION AND FUTURE PERSPECTIVES 

 

 

 

 

This work has established a novel therapy to delay the post-operative re-

synostosis in a pediatric cranial defect model. We have developed advanced 

image processing algorithms to segment the bones of the cranial sutures and 

regenerating bone in the defect. Using this algorithm we have determined the 

most comprehensive analysis of the temporal changes in murine suture fusion. 

Based on this time course we developed a murine model of re-synostosis that is 

both age and location specific. Real-time PCR analysis of genes associated with 

the healing of this defect showed an increase in expression of chondrocyte 

differentiation genes, followed by an increase in BMP2 and Bmp4, and then an 

increase in markers of osteoblast differentiation. The click hydrogel was able to 

provide a controlled delivery of incorporated proteins out to two weeks following 

an in situ polymerization. Using this hydrogel to deliver the BMP inhibitor 

Gremlin, we were able to achieve a dose dependent decrease in the bone 

healing. 

The image processing algorithms developed as a part the work in Aim 1 

provide an accurate method to segment the complex and discontinuous cranial 
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sutures. This algorithm overcomes the substantial limitations with traditional 

histology and segmentation algorithms. The biggest benefit of our algorithm is 

that it can analyze the entire suture and does not rely on generalizing based on a 

limited number of sections. This has the potential to significantly improve the 

analysis of both the developmental and regenerative studies involving the cranial 

sutures.  

The most direct application of the algorithm is in the diagnosis of 

craniosynostosis and re-synostosis in humans. Children have a more spherical 

skull than rodents, which makes the development of the 3D reconstructions even 

more beneficial. The segmentation and reconstruction algorithms have already 

been implemented for the analysis of the human cranial sutures and we are 

currently performing a clinical trial to improve the diagnosis of craniosynostosis. 

Additionally, we have developed a modification to the algorithm to segment the 

intracranial volume to better understand the asymmetry of the cranial vault in 

cases of craniosynostosis.  

In addition to craniofacial applications, the algorithm is well suited to 

analyze other challenging imaging problems. In particular the algorithm was 

designed to address the segmentation of complex, varying, and discontinuously 

mineralized structures. We have developed other implementations of the 

algorithm to asses bone healing in a segmental long bone defect, a metaphyseal 

long bone defect, long bone growth plates, and the sphenooccipital 

synchondrosis for basic science applications. In the orthopedic field the most 

direct applications of the algorithm would involve the analysis of non-union 
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fractures and heterotopic ossification. Both of these pathologies frequently result 

in the presence of poorly and heterogeneously mineralized bone. While there 

would have to be substantial work performed in the initialization phase of the 

algorithm, the snake algorithm is particularly well suited for this application.  

We are also currently developing the 3D reconstruction and snake 

algorithms for the analysis of pediatric cases of scoliosis. One of the challenges 

in performing many spine surgeries is the accurate placement of pedicle screws 

that are used for internal fixation. This is further complicated in patients with 

scoliosis who frequently have abnormal pedicles. The quantification and 

identification of these abnormalities is further complicated by the abnormal 

curvature of the spine that is present in children with scoliosis. Our reconstruction 

algorithm can be used to first obtain accurate images of the pedicles which can 

be followed by the snake algorithm to segment the pedicles. This not only has 

benefit for pre-operative planning, but also could be used with intraoperative 

navigation to assist with the placement of the pedicle screws. 

To our knowledge the time course we developed for the normal fusion of 

the posterior frontal suture is the most complete study to date. To our knowledge 

this is the first report of the biphasic process that is responsible for suture fusion. 

One of the biggest advantages of using µCT for examining the fusion of the 

cranial sutures is that it allows for the concomitant assessment of the mineral in 

the skull. All research examining the fusion of the sutures up to this point has 

relied on de-calcified histology, which as a result of the processing is unable to 

identify the mineralized tissue. The discontinuity that has recently been 
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associated with the fusion of the cranial sutures limits the accuracy of traditional 

analysis methods. As a result, there have been widely differing reports regarding 

the timing of the suture and the factors involved with driving cranial suture fusion. 

While histology can provide detailed morphological information, only serial 

histomorphometic analysis can account for the discontinuities seen with the 

fusion of the cranial sutures. This methodology is prohibitively expensive and 

time consuming for high through put studies that are frequently performed with 

examining the development of the cranial sutures. 

We identified the presence of cartilage associated genes and staining of 

glycosaminoglycans on histology. The presence of this cartilage tissue has been 

seen previously in the context of normal and pathologic suture fusion. While 

there is the presence of cartilage like tissue transiently, it is still not clear whether 

the posterior frontal suture fuses through endochondral or intramembranous 

ossification. In traditional long bone development, you seen an increase in 

expression of early chondrocyte transcription factors (Sox9), then the 

extracellular matrix proteins (Col II, Comp, Aggrecan), and then markers of 

chondrocyte hypertrophy (Col XII). All of the genes associated with cartilage 

development showed a large increase on the same day at the onset of suture 

fusion. The most likely explanation for these differences is that multiple stages of 

the suture fusion are occurring simultaneously. As a result, the fusion of the 

bones and differences in associated pathways are dependent on the location of 

the section that is analyzed. 
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 The focus of this research was to understand the genes associated with 

the early fusion of the suture, but there is benefit for future work focused on the 

later mineralization phase of the suture development. Interestingly, the onset of 

mineralization of the cranial sutures corresponded with the weaning of the mice 

in post-natal day 21. There are obvious hormonal changes associated with the 

cessation of maternal feeding that may impact the development of the sutures. 

Also, this is the first point that the pups are completely reliant on hard food for 

nutrition. While there is little research examining how mechanics influence the 

development of the cranial sutures, it is likely that a difference in the cyclical 

stress associated with eating can play a role in the fusion of the cranial sutures. 

The results from examining mice engineered with the mutation seen in 

Saethre-Chotzen syndrome show significant differences in both the regeneration 

and developmental of the sutures. It was clear that the coronal suture not only 

was more fused, but never had the characteristic overlap that is seen with normal 

coronal suture fusion. This work suggests that the abnormality seen was the 

result of the suture developing abnormally, as opposed to the current theory that 

the sutures fuse prematurely.  

Interestingly, the Twist mice were unable to bridge both the midline 

sutures and defects. The ability for one suture to induce an abnormality in other 

sutures has not been well reported in the craniofacial literature. Further work 

focused on examining the causes of these abnormalities has the promise to 

provide additional insights into the mechanisms responsible for the suture fusion. 

Traditionally it is believed that this premature fusion of the coronal suture results 
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from an abnormality in the underlying dura. Additionally, the fusion of the coronal 

suture could stress shield both the normal suture and the defect, which in turn 

results in the abnormalities seen here. In the murine skull, the masseter muscles 

originate on the edges of the skull just lateral to the posterior frontal suture. It is 

believed that as the animal chews there is considerable stress applied to this 

suture and that this is impart responsible for the differences seen in murine 

suture fusion. There has been limited work focused on understanding the 

mechanical regulation of the cranial sutures, but there is evidence that cyclical 

stress does impact the fusion of the cranial sutures. 

The development of a pediatric murine model of re-synostosis has the 

potential to provide valuable insights into the mechanisms responsible for re-

synostosis. To our knowledge the model system described previously in Chapter 

6 is the first mouse cranial defect to undergo rapid re-synostosis. Our results 

demonstrate that this healing is both age and location specific, which explains 

the why other murine cranial defects do not display rapid defect healing in the 

absence of any therapeutic intervention. While the craniosynostosis rabbits do 

display re-synostosis of defects created over the coronal suture, they are not 

suitable for high throughput studies and are not available to other researchers.  

Prior to the development of our animal model there has been little prior 

work on examining the mechanisms responsible for re-synostosis. Our results 

indicate that immediately following the onset of the defect bridging there is an 

increase in the expression of cartilage associated genes. This began with an 

increase in the early chondrocyte transcription factor Sox9, then an increase in 
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the cartilage extracellular matrix genes Col II and Comp, and finally an increase 

in the marker of chondrocyte hypertrophy Col XII. Between this increase in 

cartilage associated genes and the later mineralization on day 14, there was an 

increase in the expression of Bmp2 and Bmp4. Even though there has been 

relatively little research on the members of the BMP family in the craniofacial 

literature, this provides evidence that BMPs are responsible for the transition 

from a cartilage like precursor to mineralized tissue. The increase in bone 

mineral content seen with µCT was also associated with an increase in the late 

markers of osteoblast differentiation Ocn and Runx2. This was also seen with the 

normal suture development and further supports the use of µCT to examine both 

regenerative and developmental changes in the skull vault. Even through there a 

great deal of evidence suggesting that Noggin is involved with regulating the 

fusion of the normal cranial suture and has potentially delayed post-operative re-

synostosis, there was not an increase in expression until after the defect had fully 

mineralized. There was however an increase in Gremlin associated with the 

increase in Bmp2 and Bmp4 prior to defect mineralization. Gremlin was selected 

as the ideal target molecule based on its expression profile and its target 

molecules, Bmp2 and Bmp4. 

Our click hydrogel was able to provide tunable controlled delivery of 

incorporated proteins to successfully delay the post-operative bone growth seen 

in our murine re-synostosis model. By varying the concentration of the cross 

linker molecule we were able to tune both the mechanical properties and the 

release kinetics of the hydrogel. At the highest concentration we were able to 
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achieve a nearly linear release out to two weeks in vitro. This same controlled 

release was also seen in our cranial defect model after an in situ polymerization 

of the hydrogel.  

Using the hydrogel we were able to provide a controlled delivery of the 

BMP inhibitor Gremlin to delay the post-operative bone growth in our cranial 

defect model. Furthermore, there was a dose dependent decrease in the amount 

of bone in the defect and at the highest concentration there was no bone growth 

observed. This combination of inhibitor with the hydrogel has the potential to 

drastically improve the surgical management of children with craniosynostosis. 

The most direct clinical application for the hydrogel therapy would be to delay or 

prevent the rapid re-synostosis seen clinically. The fact that gel undergoes rapid 

self-polymerization makes is possible for surgeons to inject the gel as a liquid 

and then have it rapidly cross link in the cranial vault. The gel would then provide 

a controlled release of the incorporated inhibitor with the goal of delaying the 

post-operative re-synostosis.  

While there is essentially no opportunity to delay the initial pathologic 

suture fusion, in injectable therapy that controls the post-operative re-synostosis 

could dramatically reduce the morbidity associated with cranial vault 

reconstruction. Instead of having to remove the entire cranial vault, surgeons 

could potentially remove just the fused suture through a limited incision and inject 

the hydrogel to delay the bone growth. This would in effect re-create a functional 

suture to allow for a more normal cranial vault expansion. The hydrogel could 

eliminate the internal fixation that is currently used in the reconstruction and allow 
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for earlier intervention. Operating on the children at a young age could also 

reduce the risk of permanent neurological problems that currently result from a 

delay in treatment.  

Besides the obvious uses for the treatment of craniosynostosis, the 

hydrogel with BMP inhibitors also has other applications in treating orthopedic 

conditions. While the most of the challenges in the orthopedic community are 

focused on regenerating bone, there are several conditions where there is a 

need to delay bone growth. The most obvious of these conditions in heterotopic 

ossification that is seen commonly in individuals who sustain head or blast 

injuries. In this condition, bone forms in regions that bone is typically not found. 

The click hydrogel could be injected for in situ polymerization and provide a 

controlled delivery of therapeutic proteins. This could also be of tremendous 

benefit for children who sustain fractures that extend through an open physis that 

frequently result in premature fusion of the growth plates.  

In addition to delivering inhibitory factors, the hydrogel could also be used 

for the regeneration of bone defects. The currently used rhBMP2 has a molecular 

weight that is similar to both Gremlin1 and the fluorescent protein. With the 

current formulation the hydrogel could serve as an injectable delivery vehicle to 

provide controlled release of the hydrogel. Additionally, the chemistry of the 

hydrogel could be enhanced for regenerative therapies. Currently the hydrogel is 

not designed to degrade rapidly or to allow for cellular in growth. For our 

application of re-synostosis our primary concern was to provide controlled 

delivery of the inhibitors and not promote tissue in growth. The degradation rate 
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of the hydrogel could be accelerated by using gels with a lower cross linking 

density or incorporating cleavable sequences. Cellular ingrowth could be 

enhanced through the introduction of cleavable sequences and also through the 

covalent attachment of cell adhesion peptides. Additionally, the rapid and non-

toxic polymerization that occurs with the hydrogel makes it an ideal candidate for 

as delivery system for encapsulated cells. 

The hydrogel also has the potential to provide delivery for other 

therapeutic molecules besides whole proteins. There has been a growing interest 

to use antibodies to alter the rate of bone growth. The crosslinking concentration 

of the hydrogel could be easily decreased to provide a controlled release of the 

much larger molecules. One of the limitations to many hydrogel systems is the 

inability to provide a controlled delivery of small molecules. The highly 

customizable PEG macromere makes it possible to covalently attach proteins, 

peptides, and other small molecules to the gel. This would extend the release 

profile beyond what is possible with simple diffusion and if necessary cleavable 

linkages could be used to further refine the release kinetics.  

The research and new technologies presented in this thesis were able to 

develop clinically relevant model systems and therapies to prevent postoperative 

bone growth. The image reconstruction and segmentation algorithms developed 

provide an accurate tool for both the analysis of cranial structures and also other 

heterogeneous tissues. Our hydrogel therapy has tremendous potential for the 

treatment of craniosynostosis and other bone pathologies.  
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APPENDIX A 

Chapter 3 Supplemental Figures 

 

Figure A- 1: Initialization phase for an open suture. (a) A global threshold was 
applied to the original image to detect the (b) boundary of the bones (blue line). 
(c) The medial boundary of this boundary was found (blue line) and used to find 
the midpoint of the suture (red line). To minimize errors resulting from gaps in the 
medial boundaries, a polynomial was fit through these center points and used to 
separate the images (green line). 
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Figure A- 2: Image separation for images where the suture is open. (a) If the 
images are not separated prior to running the snake can “jump” to the adjacent 
bone resulting in an error in the final segmentation boundary, but is corrected by 
(b) separating the images with horizontal replication. (c) If the bones are just 
separated without any correction this introduces an artifact (red arrows) on the 
(e) gradient image used for the snake that can cause segmentation errors. (d) To 
correct for this, the algorithm replicated the midpoint pixel horizontally that 
eliminates this artifact on the (f) gradient image, resulting in a (b) correct 
segmentation border. All images shown originated from the identical image. 
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Chapter 4 Supplemental Figures 

Minimum Distance vs.  Age
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Figure A- 3: Minimum distance between the bones of the posterior frontal suture. 
The entire suture (A) had a minimum distance of 0.25 mm on day 6, began fusing 
on day 12, and then reached a plateau of 0.05 mm beginning on day 20. The 
anterior most quarter (B) of the suture had the first and fastest decrease in 
distance, followed by the second (C) and third quarter (D). There were no 
changes seen in the distances for the posterior most fourth quarter (E). 
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Maximum Distance vs.  Age
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Figure A- 4: Maximum distance between the bones of the posterior frontal suture. 
The entire suture (A) had a maximum distance of 0.43 mm on day 6, began 
fusing on day 12, and then reached a plateau of 0.25 mm beginning on day 20. 
The anterior most quarter (B) of the suture had the first and fastest decrease in 
distance, followed by the second (C) and third quarter (D). There were no 
changes seen in the distances for the posterior most fourth quarter (E). 
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Suture Area vs.  Age
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Figure A- 5: Area between the bones of the posterior frontal suture. The entire 
suture (A) had as area of 0.31*10-3 mm2 on day 6, began decreasing on day 12, 
and then reached a plateau of 0.13*10-3 mm2 beginning on day 20. The anterior 
most quarter (B) of the suture had the first and fastest decrease in area, followed 
by the second (C) and third quarter (D). There were no changes seen in the 
areas for the posterior most fourth quarter (E). 
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Bone Volume vs.  Age
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Figure A- 6: Bone Volume in a 1 mm by 1 mm region of the posterior frontal 
suture. The volume of bone in the entire suture (A) remained relatively constant 
until day 20 and then reached a plateau beginning on day 40. The anterior most 
quarter (B) of the suture had the first and fastest increase in volume, followed by 
the second (C) and third quarter (D). There were no changes seen in the bone 
volume for the posterior most fourth quarter (E). 
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Chapter 5 Supplemental Figures 
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Figure A- 7: Expression of Ibsp in bone from the posterior frontal suture. p<0.05 
vs *=6d, #=9d. 
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Table A- 1: Genes symbols for genes analyzed in PCR array 
 
 
Ahsg Akp2 Ambn Anxa5 Bgn Bmp1 Bmp2 Bmp3 Bmp4 Bmp5 Bmp6 Bmpr1a

Bmpr1b Cd36 Cdh11 Col10a1 Col11a1 Col12a1 Col14a1 Col1a1 Col1a2 Col2a1 Col3a1 Col4a1

Col4a2 Col5a1 Col6a1 Col6a2 Col7a1 Comp Csf2 Csf3 Ctsk Dmp1 Egf Enam

Fgf1 Fgf2 Fgf3 Fgfr1 Fgfr2 Flt1 Fn1 Gdf10 Icam1 Igf1 Igf1r Itga2

Itga2b Itga3 Itgam Itgav Itgb1 Mmp10 Mmp2 Mmp8 Mmp9 Msx1 Nfkb1 Pdgfa

Phex Runx2 Scarb1 Serpinh1 Smad1 Smad2 Smad3 Smad4 Sost Sox9 Tfip11 Tgfb1

Tgfb3 Tgfb4 Tgfbr1 Tgfbr2 Tgfbr3 Tnf Tuft1 Twist1 Vcam1 Vdr Vegfa Vegfb

Gusb Hprt1 Gapdh  
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Table A- 2: Primer sequences used for real-time PCR confirmation 
 

Gene Forward Reverse

Acan GCTCTGCCTCTGCCTCTG AATTCCACTGACATCATCTACTCC

ColIa1 GAGGTATGCTTGATCTGTATC CAGTCCAGTTCTTCATTGC

ColXa1 TTCTGCTGCTAATGTTCTTGAC CCTTTACTCTTTATGGCGTATGG

ColXII CTCTGTGAATATCGTGGCTCTC AGGCTGTTGGTCGTCTCC

Comp GCGACGACGACATAGATG GTCTTGGTCACTATCACAGG

Ibsp TTAGCGGCACTCCAACTG CTTCCTCTTCTTCTTCTTCTTCC

Sox9 CCACCAGTATCAGCGAGGAG CCAAACAGGCAGGGAGATTC

Tgfb1 ATTCCTGGCGTTACCTTGG CCTGTATTCCGTCTCCTTGG

Tgfb2 GAGCGGAGCGACGAGGAG TGTAGAAAGTGGGCGGGATGG

Tgfb3 AAAGTGTGGGTTGGTTAGG CTCGCTATCCGTTCTCTAC

Tgfbr1 AGGAGAAGCAGCAACTAATAGC CAGCAGCAGTGAGAAGACC

Tgfbr2 AATAAGCAGAGGAGGTGGTTC GGGTGGGTGTGAGTAATGG

Tgfbr3 GTGGTAAGCGAAGGGATTATTAGC CCGACTCTGGAAGCATAGGAC

Col2a1

Dmp1
Pre Designed
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Chapter 6 Supplemental Figures 
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Figure A- 8: Expression of mRNAs for the BMP type Ia receptor and chordin in 
bone of the posterior frontal suture assessed by real-time PCR. Bmpr1a (A), 
Chrd (B). p<0.05 vs *=6d, #=9d, %=12d, @=16d, ^=20d. 
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Bmp4 Expression

Age (days)

B
m

p
4
/G

A
P

D
H

 E
x
p

re
s
s

io
n

6 9 12 16 20 25
0

1

2

3

4

5

Bmpr1a Expression

Age (days)

B
m

p
r1

a
/G

A
P

D
H

 E
x
p

re
s
s

io
n

6 9 12 16 20 25
0.0

0.5

1.0

1.5

*

* #
* #

* %
 ^

# ^

Grem1 Expression

Age (days)

G
re

m
1
/G

A
P

D
H

 E
x
p

re
s

s
io

n

6 9 12 16 20 25
0.0

0.2

0.4

0.6

0.8

1.0

A B C

BMP3 Expression

Age (days)

B
m

p
3

/G
A

P
D

H
 E

x
p

re
s

s
io

n

6 9 12 16 20 25
0

1

2

3

D
Chrd Expression

Age (days)

C
h

rd
/G

A
P

D
H

 E
x

p
re

s
s

io
n

6 9 12 16 20 25
0

1

2

3

E

 
Figure A- 9: : Real-time PCR of posterior frontal dura versus age for Bmp4 (A), 
Bmpr1a (B), Grem1 (C), Bmp3 (D), and Chrd (E). p<0.05 vs *=6d, #=9d, %=12d, 
@=16d, ^=20d. 



214 

 

Table A- 3: Sequences for all primers used for qPCR confirmation. 
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Chapter 9 Supplemental Figures 

 

Figure A-10: 1H NMR spectrum of PEG-N3.  The azide functionality of the 
polymer was determined by the ratio of area of the peaks representing the 
hydrogens from azide and alcohol functionalized monomers.    
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Figure A- 11: Representative stress strain curve for unconstrained compression 
testing of hydrogel (black line). The Neo-Hooken hyperelastic model (red line) 
provided an excellent fit with an R2 value of greater than 0.97 for all samples 
tested. 
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Figure A- 10: Dose response to Gremlin blocking activity 
of rhBMP2 to induce the differentiation of MG63 cells 
grown to 80% confluence. There was an increase in 
alkaline phosphatase specific activity in response to 
rhBMP2 and this effect was blocked by the addition of 
Gremlin1 in a dose dependent fashion. #=p<0.05 vs  
Carrier, $ = p<0.05 vs BMP2. 
 



218 

 

 

Average Defect Width

Post-Op Time (Days)

D
is

ta
n

c
e
 (

m
m

)

2 5 14
0.0

0.5

1.0

1.5

Empty

Hydrogel

*

Total  Defect Mineral Content

Post-Op Time (Days)

E
q

u
iv

a
le

n
t 

M
in

e
ra

l
(m

g
H

A
)

2 5 14
0.0

0.2

0.4

0.6

0.8

Empty

Hydrogel

**

Total  Defect Volume

Post-Op Time (Days)

B
o

n
e
 V

o
lu

m
e

 (
m

m
3
)

2 5 14
0.0

0.2

0.4

0.6

0.8

1.0

Empty

Hydrogel

* *

a b c

 
Figure A- 13: Defect healing in response to hydrogel. At 5 days post-op there 
was a slight decrease in the defect width in the empty defect, but there were no 
difference on day 14 (a). In groups with the hydrogel there was slightly less total 
mineral content and bone volume on both post-op days 2 and 5 but no 
differences by post-op day 14 (b-c). *=p<0.05 vs empty. 
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Figure A- 14: Bone regeneration in defect by coronal histology. Defects were left 
empty (Empty) on injected with hydrogel with 4 nM HCl carrier (Hgel + Carrier), 
hydrogel with 300 ng rmGremlin1 (Hgel + 300 ng), hydrogel with 500 ng 
rmGremlin1 (Hgel + 500 ng), or un-polymerized PEG-N3 with 500 ng rmGremlin1 
(PEG-N3 + 500 ng). A coronal section was made in the middle of the defect and 
stained with H&E. The average defect width and bone thickness were analyzed 
by manual segmentation of the histology sections. On 14 days post-op the Hgel + 
500 ng group had a greater width than Empty, Hgel, and PEG-N3 groups. P<0.05 
vs. & = Hgel + 500 ng. 
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APPENDIX B 

Supplemental Methods from Chapter 9: 

Materials 

Alexa Fluor® 647 carboxylic acid succinimidyl ester were purchased from 

Invitrogen (Carlsbad, CA). Disposable PD-10 Desalting Columns were from GE 

Healthcare (Piscataway, NJ). 

Synthesis of Tetraethylene Glycol Methacrylate (TEGMA) 

Tetraethylene glycol (5.0g, 25.7 mmol), and pyridine (2.0 g, 25.3 mmol) 

were added to anhydrous dichloromethane (DCM) (100 ml) in a 250 ml flask and 

stirred for 30 min at 0°C.  Methacryloyl chloride (2.6 g, 25 mmol) was added 

drop-wise to the stirred solution.  The reaction was allowed to stir at 0°C for 2 h, 

and then at room temperature (rt) for an additional 2 h.  The reaction was then 

concentrated via rotary evaporation, re-suspended in ethyl acetate, and finally 

evaporated onto silica gel.  The mono methacrylate product x was separated 

from the di-methacrylate byproduct and starting material via flash silica gel 

chromatography on silica gel using a mixture of ethyl acetate and hexanes (7:3). 

1H NMR (300 MHz, CDCl3) δ 2.01  (t, J = 6.0 Hz, 3H,CH3), 2.82(t, J = 6.0 Hz, 

1H,OH), 3.49-3.65 (m, 16H, 8 × CH2), 6.48 (m, 2H, CH2=C); 13C NMR (75.5 

MHz, CDCl3) δ 167.32 (C=O), δ 136.0 (C=CH2), 125.87 (CH2=C), 61.51 

(CH2OH), 69.91 (CH2), 70.21 (CH2), 70.46 (CH2), 70.52 (CH2), 70.56 (CH2), 

72.43 (CH2), 39.23 (C), 17.83 (CH3). 
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Synthesis of Tetraethylene Glycol Mono 4-Methylbenzenesulfonate 

Tetraethylene glycol (5.0g, 25.7 mmol) and pyridine (2.0 g, 25.3 mmol) 

were added to anhydrous dichloromethane (100 ml) in a 250 ml flask and stirred 

for 30 min at 0°C.  A solution of 4-toluenesulfonylchloride (4.75, 20 mmol) in 30 

ml DCM was added drop-wise via syringe pump to the flask.  The reaction 

mixture was then stirred for 2 h at 0°C, then another 4 hours at rt.  The reaction 

mixture was then poured into ice water and the organic layer was separated then 

washed 2X with brine and dried over MgSO4 before being concentrated via rotary 

evaporation.  The crude product was then re-suspended in ethyl acetate and 

evaporated onto silica gel.  The mono tosylated product was separated from the 

di-tosylated byproduct and starting material via flash silica gel chromatography 

on using a mixture of ethyl acetate and hexanes (6:4).  1H NMR (300 MHz, 

CDCl3) δ 2.33 (s, 3H, CH3), 2.89 (t, J = 6.0 Hz, 1H, OH), 3.42-3.70 (m, 14H, 

7×CH2), 4.00-4.12 (m, 2H, CH2OTs), 7.24 (d, J = 8.0 Hz,2H, 2×Hm), 7.68 (d, J = 

8.0 Hz, 2H, 2×Ho); 13C NMR (75.5 MHz, CDCl3) δ 21.41 (CH3), 61.40 

(CH2OH), 68.44 (CH2OTs), 69.17 (CH2), 70.10 (CH2), 70.22 (CH2), 70.41 

(CH2), 70.46 (CH2),72.34 (CH2), 127.73 (2×CHo), 129.68 (2×CHm), 132.76 (C), 

144.68 (C). 

Synthesis of Tetraethylene Glycol Mono Azide  

Sodium azide (2.0 g, 30.76 mmol) was added to a solution of (2.0 g, 5.74 

mmol) in dimethylformamide(100 mL) at room temperature.  The reaction mixture 

was stirred overnight at 90 °C. The reaction was then filtered and concentrated 

via rotary evaporation.  The crude product was added to cold water and extracted 
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with ethyl acetate (4×100 mL). The combined organic layers were then dried over 

MgSO4 and concentrated under vacuum. The viscous liquid was then purified by 

flash column chromatography on silica gel using a mixture of ethyl acetate and 

hexanes (6:4) to yield x as a colorless oil (1.63 g, 81%): 1H NMR (300 MHz, 

CDCl3) δ 2.91 (t, J = 6.0 Hz, 1H,OH), 3.30 (t, J = 5.0 Hz, 2H, CH2N3), 3.49-3.65 

(m, 14H, 7×CH2); 13C NMR (75.5 MHz, CDCl3) δ 50.54 (CH2N3), 61.51 

(CH2OH), 69.91 (CH2), 70.21 (CH2), 70.46 (CH2), 70.52 (CH2), 70.56 (CH2), 

72.43 (CH2). 

Synthesis of Azido Tetraethylene Glycol Methacrylate (ATEGMA)  

Tetraethylene glycol mono azide  (2.0g, 9.13 mmol) and pyridine (2.0 g, 

25.3 mmol) were added to anhydrous dichloromethane (DCM) (100 ml) in a 250 

ml flask and stirred for 30 min at 0°C.  Methacryloyl chloride (2.6 g, 25 mmol) 

was added drop-wise to the stirred solution.  The reaction was allowed to stir at 

0°C for 2 h, and then at room temperature for an additional 2 h.  The reaction 

was then concentrated via rotary evaporation, re-suspended in ethyl acetate, and 

finally evaporated onto silica gel.  The mono methacrylate product x was 

separated from the di-methacrylate byproduct and starting material via flash silica 

gel chromatography on silica gel using a mixture of ethyl acetate and hexanes 

(4:6 v/v).  1H NMR (300 MHz, CDCl3) δ 2.01 (t, J = 6.0 Hz, 3H,CH3), 2.91 (t, J = 

6.0 Hz, 1H,OH), 3.30 (t, J = 5.0 Hz, 2H, CH2N3), 3.49-3.65 (m, 14H, 7 × CH2), 

6.48 (m, 2H, CH2=C); 13C NMR (75.5 MHz, CDCl3) δ 167.32 (C=O),136.0 

(C=CH2), 125.87 (CH2=C), 50.54 (CH2N3), 61.51 (CH2OH), 69.91 (CH2), 70.21 
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(CH2), 70.46 (CH2), 70.52 (CH2), 70.56 (CH2), 72.43 (CH2), 39.23 (C), 17.83 

(CH3). 

 

Histomorphometric Analysis 

After imaging with µCT the samples were thawed and the brain was 

removed taking care not to damage the defect. The samples were fixed in 10% 

neutral buffered formalin, changing the solution after 24 hours. The skulls were 

decalcified using 10% EDTA changing the solution every 48-72 hours for a 

period of approximately 3 weeks. Complete de-calcification was verified on a 

plain x-ray. Under 4x magnification the center of the defect was visualized and a 

coronal cut was made through the center of the defect. The samples were 

dehydrated with ethanol and embedded in paraffin. Sections 7 µm in thickness 

were made and stained with haematoxylin and eosin (H&E) using standard 

protocols. The samples were imaged at 10x magnification and the bone was 

manually segmented by a blinded reviewer. The average defect width and 

average thickness of the bones were calculated (Matlab). 

Statistical Analysis 

All data are represented as the mean ± standard error of the mean. The 

sample size for all in vivo and in vitro experiments was determined by a 

prospective power analysis based on previously reported data. All cell culture 

experiments were performed with six independent cultures (n=6) and repeated 

two times. All in vivo experiments were performed in 5 mice per group per time 

point (n=5). The normality of the data was verified by the D’Agistino-Pearson 
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omnibus normality test. For all in vitro experiments a one way ANOVA was 

performed and where appropriate significance among groups was determined by 

a multiple comparison test with Bonferroni adjustments. For all in vivo 

experiments a two way ANOVA was performed and as expected there a 

significant (P<0.001) effect of treatment group, time, and interaction for all 

analysis. Since interactions were found significant, main effect significance was 

tested by either a conditional one way ANOVA with Bonferroni multiple 

comparison post-test or an un-paired two-sided t-test not assuming equal 

variance. Statistical significance for all experiments was declared when the p-

value was less than 0.05. 
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