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SUMMARY 

 Our long-term goal is to better understand how the nervous system controls 

muscles to generate movement.  Our overall hypothesis is that the nervous system 

coordinates muscles by flexibly recruiting muscle synergies, defined here as groups of 

muscles simultaneously activated in fixed ratios, in order to map high-level task goals 

into motor actions.  Here we studied muscle coordination in the context of balance 

control – a task that requires multisensory integration and coordination of multiple 

muscles, yet has a clear goal of controlling the center of mass (CoM), which can be 

achieved by using different strategies.  If muscle synergies are a common mechanism 

used by the nervous system for balance control, we would expect to see the same muscle 

synergies used in a variety of strategies.  Therefore we investigated the robustness of the 

muscle synergies in a variety of human postural strategies, such as standing, stepping and 

walking, to determine whether muscle synergies are a consistent underlying mechanism 

used by the nervous system.  We hypothesized that muscle synergies are recruited to 

control a task-level variable (e.g. CoM direction) that is not specific to a particular 

postural strategy.   

 We demonstrated that similar muscle synergies are used in reactive responses to 

standing balance perturbations, in reactive stepping responses, in walking, and in reactive 

postural responses during walking, suggesting a common neural mechanism not only for 

balance control in various contexts, but for movement in general.  The differences in the 

timing and spatial organization of muscle activity in standing, stepping, and walking 

postural responses were largely explained by altering the recruitment of a common set of 

muscle synergies, with the addition of only a single muscle synergy specific to each 
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behavior.  We demonstrated the functionality of muscle synergies by showing that each 

muscle synergy was correlated with a particular force produced at the ground and 

component of CoM acceleration both in stepping and in non-stepping postural responses. 

These results suggest that muscle synergies reflect the neural organization of the motor 

system, representing motor modules recruited to achieve a common biomechanical 

function across different postural behaviors.  Additionally, muscle synergies used during 

walking were recruited during atypical phases of the gait cycle in response to an 

unexpected perturbation, in order to maintain balance and continue walking, suggesting a 

common neural mechanism for different balance requirements during walking.  The 

compositions of muscle synergies used during walking were similar to those used during 

walking perturbations as well as standing balance perturbations, suggesting that muscle 

synergies represent common neural mechanisms for CoM movement control under 

different dynamic conditions.  These results are of interest to a variety of fields such as 

rehabilitation science, prosthetics, and robotics. 
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CHAPTER 1 

INTRODUCTION 

  

 Our long-term goal is to better understand how the nervous system controls 

muscles to generate movement.  There are many more muscles in the body than 

kinematic degrees of freedom, so how does the central nervous system decide which 

muscles to activate to perform any given movement?  This is Bernstein’s degrees of 

freedom problem (Bernstein 1967).  Bernstein proposed that the nervous system reduces 

the number of elements requiring control by simultaneously activating multiple muscles 

as a unit.  There has been a wealth of work performed since then investigating whether 

the nervous system activates each muscle independently or instead coordinates movement 

by simultaneously activating multiple muscles.  Here we investigated muscle 

coordination underlying several motor tasks – standing, stepping, and walking – to gain 

insight into how the nervous system controls muscles to generate movement. 

  

1.1 Muscle synergies: a simplification strategy for motor control 

 Muscle synergies have been proposed to be a modular organization for muscle 

coordination that map high-level task goals, or motor intentions, into motor actions (Chiel 

et al. 2009; Drew et al. 2008; Giszter et al. 2007; Ting and McKay 2007; Yakovenko et 

al. 2010).  Muscle synergies and other types of modular organization have been used to 

explain muscle coordination during a variety of motor behaviors in many different 

species (Cappellini et al. 2006; d'Avella et al. 2006; d'Avella et al. 2003; Drew et al. 

2008; Flash and Hochner 2005; Hart and Giszter 2004a; Hart and Giszter 2004b; Kargo 
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and Giszter 2000; Krishnamoorthy et al. 2004; Latash et al. 2005; Ting and Macpherson 

2005; Torres-Oviedo et al. 2006; Yakovenko et al. 2010).  The generality of muscle 

synergies across different motor tasks has been shown in frog kicking, jumping, and 

swimming (Cheung et al. 2005; d'Avella and Bizzi 2005); as well as in human walking 

and running (Cappellini et al. 2006), and forward and backward pedaling (Raasch and 

Zajac 1999b; Ting et al. 1999).  Although some muscle synergies are used across 

multiple tasks, in some instances new synergies may emerge when a new motor task is 

presented (Cheung et al. 2005; Ivanenko et al. 2005; Robert et al. 2008; Torres-Oviedo 

and Ting 2010) and the recruitment of existing synergies may be altered (Cappellini et al. 

2006; Clark et al. 2010).  

 Here we define muscle synergies as groups of muscles activated simultaneously 

with fixed relative gains (Figure 1.1).  Each muscle synergy is composed of contributions 

from multiple muscles; the height of the each bar specifies each muscle’s contribution to 

that synergy.  Notice an individual muscle may contribute to multiple synergies.  The 

muscle synergies do not change composition; they are simply activated by a scalar 

recruitment coefficient, C, which may vary over the time-course of the perturbation 

response.  The recruitment coefficient represents the purported neural command that 

specifies how that synergy is modulated over time, and how much each synergy will 

contribute to a muscle’s total activity pattern.  Therefore we consider muscle synergies to 

be spatially fixed with temporally varying recruitment patterns.  An individual muscle 

activation pattern can be represented by a linear summation of the activations due to each 

muscle synergy.   
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Figure 1.1 Muscle synergy concept. Each muscle activation results from the combination 
of the activations due to each muscle synergy that contains that muscle.  
 

 

1.1.1 Different ideas about modularity 

 In the literature, there are differing ideas about how exactly modularity is 

implemented in the central nervous system (CNS).  Previous work has shown spinal 

motor primitives are activated to generate a variety of reflex and pattern-generator 

behaviors in frogs. (Kargo et al. 2010).  The primitives are premotor drive impulses that 

comprise fixed muscle synergies, and these synergies appear to be stereotyped in frogs.  

These muscle synergies cannot change, but their recruitment may be temporally adjusted 

and used to compose voluntary movements.  Common primitives were identified using 

ICA on EMG recordings in brainstem and spinal frogs (Hart and Giszter 2004), 
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suggesting these modules may be implemented purely in the spinal cord.  Also, modules 

used for the wiping reflex in frogs were unchanged after deafferentation (Kargo and 

Giszter 2000), suggesting their composition is not dependent on somatosensory feedback. 

 Previous studies of modularity during locomotion have suggested temporally 

fixed patterns of muscle recruitment occurring at specific times in the gait cycle that are 

coupled to spatially varying muscle weightings (Cappellini et al. 2006; Ivanenko et al. 

2005; Ivanenko et al. 2004).  In this organization, the CNS chooses from a set of 

predefined temporal recruitment patterns to produce a rhythmic behavior in a 

feedforward manner.  The temporally fixed neural commands have access to all of the 

musculature, and the specific muscles activated vary across trials and contexts.  

Underlying factors were identified from EMG patterns using PCA with varimax rotation, 

and five temporal components could reproduce muscle activity during walking (Ivanenko 

et al. 2004).  It is unlikely that a temporally fixed modular organization such as this 

would be able to explain EMG activity of involuntary or reactive tasks that may rely 

more heavily on feedback control.   

 A third view of modularity suggests that synergies are co-varying changes in 

individual elements of a system that stabilize a value or a time profile of an important 

performance variable produced by the system (Latash 2008).  Thus synergies are only 

synergies with respect to a particular performance variable.  Groups of muscles called m-

modes are proposed elemental variables that co-vary to stabilize a performance variable 

(Krishnamoorthy et al. 2003a; Krishnamoorthy et al. 2004).  The m-modes are identified 

using principal components analysis (PCA) and synergies (the co-variation of these m-

modes to stabilize a task variable) are identified using the uncontrolled manifold (UCM 
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analysis).  The composition of m-modes is changed or reshaped under new conditions, 

such as task, time window, etc. (Danna-Dos-Santos 2007; Robert et al. 2008).  This 

scheme allows for the emergence and modification of an infinite number of synergies 

with practice, experience, context, etc. 

Our hypothesis about the structure of muscle synergies is both similar to and 

different from the various organizations discussed here.  We hypothesize muscle 

synergies are generally fixed, and only the recruitment of muscle synergies varies across 

time and condition, consistent with the ideas of Giszter and colleagues.  The CNS circuits 

that branch with varying synaptic weights to motoneurons of muscles in the muscle 

synergy may indeed be implemented in the spinal cord, but it is possible that they may 

also exist in other levels of the nervous system, such as brainstem or cortex depending on 

which motor behavior is being executed.  Furthermore, muscle synergy composition may 

be modified and shaped over the long-term (years) as a result of individual experience, 

training, and adaptation.  An organization consisting of fixed temporal components such 

as that proposed by Ivanenko and colleagues is unlikely to be used for non-rhythmic or 

reactive motor behaviors due to the feedback nature of reactive tasks.  We do not believe 

that muscle groups change according to the specific condition or trial, as Latash and 

colleagues have suggested.  However, we do believe that muscle synergies are recruited 

in order to control a task-level function, consistent with Latash's definition of "synergy". 

 

1.1.2 Muscle synergies related to task-level functions 

 The recruitment of these muscle synergies, or motor modules, may be related to 

specific biomechanical functions necessary to accomplish a behavioral goal (Berniker et 
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al. 2009; Chiel et al. 2009; Giszter et al. 2007; Raasch and Zajac 1999; b; Ting and 

McKay 2007).  The biomechanical outputs related to muscle synergies depend upon the 

motor task being performed. In human finger spelling, muscle synergies are correlated 

with common hand postures (Weiss and Flanders 2004), whereas in frog kicking, 

jumping, and swimming, shared muscle synergies may be activated to implement whole 

limb movements common to these locomotor behaviors (Cheung et al. 2005; d'Avella and 

Bizzi 2005).  Another study showed that in human walking, muscle synergies were 

activated to achieve various functions such as weight support, forward propulsion of the 

body, and deceleration of the leg (Neptune et al. 2009a).   

 

1.2 Balance control 

 Here we studied muscle coordination in the context of human balance control.  

Although it may seem “simple”, balance control is actually a complex task which 

requires the integration of multiple sensory modalities (visual, vestibular, and 

proprioceptive), and which requires coordination of multiple muscles across several 

joints.   Additionally, accurately maintaining balance is required as the foundation of a 

variety of other voluntary motor tasks, such as standing, walking, running, and jumping.  

 The overall goal in balance control is to maintain the center of mass (CoM) over 

the base of support (BoS).  CoM position, velocity, and acceleration are variables that we 

can experimentally measure relatively easily, making balance control an ideal task for 

investigating relationships between muscle activation and functional goals.  Furthermore, 

there is a wide range of strategies people use in order to maintain balance, such as 
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standing, stepping, reaching out to grasp a handrail, etc., providing a means for us to 

understand common principles that underlie muscle coordination in a variety of contexts. 

 Current methods for studying balance control include measuring human responses 

to unexpected perturbations of the support surface.  These responses include kinematics, 

kinetics, and electromyographic (EMG) activity.  Individual muscle postural responses to 

support surface translations are characterized by a small burst that is attributed to reflex 

pathways, followed by a larger burst (around 100 ms after perturbation onset).  This later 

activation, the automatic postural response (APR), is an involuntary response that 

changes with the direction of perturbation, as represented by muscle tuning curves.  Here 

we studied muscle coordination during the APR in various postural tasks. 

 Humans use various strategies to maintain balance response to perturbations.  To 

maintain balance without moving the feet, muscles in the legs are activated, resulting in 

forces generated at the ground to restore the CoM to its initial position above the base of 

support (BoS) (Horak and Macpherson 1996; Horak and Nashner 1986).  These 

responses in which balance is maintained without moving the feet have previously been 

called “fixed support” responses, and are referred to here as “non-stepping”.  Other 

strategies for maintaining balance are called “change-in-support” strategies, which 

include reaching out to catch hold of a support and taking a step to recover balance (Grin 

et al. 2007; Maki and McIlroy 1997).  In these responses, the BoS is expanded, and the 

CoM is pushed out further away from the starting position.  The muscle coordination 

underlying change-in-support strategies is much less understood.  
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1.3 Muscle synergies and balance control as a framework for understanding neural 

control of movement 

 

1.3.1 Muscle synergies are used in standing balance control 

A few muscle synergies can account for spatial, temporal, and inter-trial 

variations in muscle activation patterns in human standing responses to perturbations 

(Torres-Oviedo and Ting 2007).  However, muscle synergies underlying more dynamic 

balance tasks (such as stepping and walking) in humans have largely been unstudied. 

Previous work has shown that subjects use the same muscle synergies when they are 

perturbed while standing at a variety of initial stance configurations, such as wide or 

narrow stance (Torres-Oviedo 2007).  Thus the synergies are robust even when the 

biomechanics of the task are different, which demonstrates that muscle synergies may 

indeed be a general neural control mechanism for standing balance control.  This idea of 

generality of muscle synergies across motor tasks has not been thoroughly explored.  In 

this work, I have applied the muscle synergy analysis to postural tasks that are less 

understood than standing, but that may be more relevant to daily activities, such as 

stepping and walking.  This is a novel approach to understand the neural control in these 

tasks.  

Many studies have suggested controlled variables in balance control.  For 

instance, some propose that center of pressure (CoP) shifts, segmental kinematics, or 

dynamic torques across multiple joints are being controlled in postural tasks (Alexandrov 

et al. 2001; Danna-Dos-Santos et al. 2007; Grasso et al. 1998; Grasso et al. 2000; 
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Shemmell et al. 2007).  However, these studies do not demonstrate relationships between 

EMG changes and the controlled variable.  Others have correlated the controlled variable 

to EMG changes by associating them with a selected strategy for maintaining balance.  

For instance, the non-stepping ankle strategy is concerned with maintaining upright 

stance, whereas the non-stepping hip strategy may be used to control CoM position.  In 

either case, characteristic muscle patterns can be identified (Horak and Macpherson 

1996).  Another prior study correlates muscle activity in postural responses with forces 

generated at the ground (Jacobs and Macpherson 1996), and it has even been shown in 

cats that muscle synergies are recruited to control forces at the ground (Ting and 

Macpherson 2005; Torres-Oviedo et al. 2006).   

A limitation of these previous studies linking EMG and controlled variables is 

that they have only considered a single condition.  If the muscle synergies truly are a 

general mechanism for posture control, and they have a specific task-level goal they are 

recruited to control, we expect to see this variable correlated with muscle synergy 

recruitment across multiple conditions.  In cats, the muscle synergies correlated with 

forces were used in multiple stance distances and across rotations and translations, 

validating that ground reaction force (GRF) is the controlled variable (Torres-Oviedo et 

al. 2006).  In chapter 2, we identify correlations between muscle synergy recruitment, 

forces under the foot, and CoM acceleration in non-stepping and stepping postural 

responses. 
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1.3.2 The stepping strategy 

 Although people with balance impairments more often use a stepping strategy to 

regain balance than a non-stepping one (Schulz et al. 2005), stepping balance responses 

are less studied than standing balance responses.  In clinical studies, the kinematics of 

stepping are characterized, but the underlying neural mechanisms have not been 

addressed, and limited work has addressed muscle activation patterns underlying the 

stepping response.  Stepping and non-stepping responses are initiated at the same 

latencies following perturbation, yet the magnitude of muscle activation is increased in 

stepping responses (Horak and Macpherson 1996; McIlroy and Maki 1993a).  Also, the 

kinetics of a stepping response are very different from a standing task, largely due to the 

swinging leg.  However, the goal in both of these tasks is still to maintain the CoM over 

the BoS, suggesting that common neural mechanisms underlie these two strategies 

despite the differences in muscle activation and force generation. 

 

1.3.3 Balance control during walking 

Although walking is a relevant motor task that most people perform every day, 

the strategies used for balance control during walking are not understood.  During 

locomotion, balance is always controlled, but may require separate control circuits from 

the ongoing walking pattern.  Walking is a dynamic condition in which the CoM is not 

usually located over the base of support of either stance foot (MacKinnon and Winter 

1993).  When a perturbation is encountered while walking, the CoM is moving when the 

perturbation response needs to be activated, as opposed to standing balance, when the 

CoM is initially stationary, or moving only very slightly due to postural sway. Perhaps 
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the walking circuit can account for upright posture, yet a posture circuit must be activated 

for unexpected movements.  There is a need to understand the muscle coordination 

involved in a task that combines posture and locomotion components that can be 

distinguished from one another.  Studies have administered perturbations while a person 

walks across the force plate (Tang et al. 1998), however, only forward perturbations are 

administered, similar to slipping on a wet surface or banana peel.  In reality, people may 

encounter a variety of perturbations while walking.  Postural responses to 

multidirectional perturbations during walking have not yet been characterized, nor have 

the muscle coordination patterns underlying these responses. 

Prior work has demonstrated muscle synergies underlie cycle-by-cycle variability 

in cyclic behaviors such as pedaling and walking (Clark et al. 2010; Ting et al. 1999).  

The sequence of muscle activation patterns during locomotion has been characterized in 

humans (Prilutsky et al. 1998; Rose and Gamble 1994), and muscle coordination during 

locomotion has been identified in cats (Krouchev et al. 2006), and humans (Ivanenko et 

al. 2004).  Yet the strategies used for balance control during walking are not understood.  

Although muscle synergies can explain cyclic behaviors and postural responses, they 

have not been examined during postural perturbations encountered while walking.  In 

chapter 3, we indentify muscle synergies used during walking and demonstrate these are 

modulated in response to a perturbation to account for the postural response.  In chapter 

4, we demonstrate similar muscle synergies are used for walking and balance control. 
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1.4 Thesis overview 

 Here I investigated the robustness of muscle synergies as a simplification strategy 

for postural control in a variety of postural tasks.  Additionally, I identified 

biomechanical functions associated with the recruitment of muscle synergies in various 

postural tasks.  The three postural tasks studied here have different initial conditions for 

the CoM movement as well as different desired motions of the CoM.  Nevertheless, we 

hypothesize that the same muscle synergies are robustly used during multiple tasks that 

require neural control of the CoM.  In a non-stepping postural response to a backward 

perturbation, the CoM is initially thrust forward due to the perturbation, and the desired 

CoM motion is backward to recover balance without stepping (Figure 1.2).  In a stepping 

postural response to a forward perturbation, the CoM is initially thrust backward due to 

the perturbation, and the desired CoM motion is also backward as the subject steps back 

to catch their balance.  Can the same muscle synergies be recruited to produce this 

backward CoM acceleration in both of these cases?  Likewise can the same muscle 

synergies be recruited to produce a forward CoM movement during non-stepping 

responses to forward perturbations, stepping responses to backward perturbations, as well 

as walking and perturbation responses during walking?  Here we investigated whether the 

same muscle synergies are recruited to produce a common biomechanical function of 

directing the CoM in a variety of postural behaviors, such as standing, stepping, and 

walking.  Alternatively, muscle synergy recruitment may instead be related to the 

perturbation direction, as similar perturbations will produce similar initial sensory input 

in each of these conditions.   
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 In Chapter 2, I identified a set of common muscle synergies used in both non-

stepping and stepping postural responses.  Furthermore, each muscle synergy was 

associated with a force produced at the ground and an acceleration of the CoM, 

suggesting that muscle synergies in postural tasks are recruited to produce forces at the 

ground in order to direct CoM motion.  In Chapter 3, I identified muscle synergies used 

during walking that can be modulated to account for perturbation responses in 4 

directions.  Finally, in Chapter 4, I expanded our investigation of perturbations during 

walking to include multiple perturbation directions and explicitly compared the muscle 

synergies used to respond to perturbations during walking to those used during standing 

postural responses. 

 

Figure 1.2 Overall study design.  We studied three postural tasks which have similarities 
and differences in both initial CoM movement resulting from a perturbation and desired 
CoM motion required to maintain balance depending on the response strategy selected 
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and task goals.  This figure illustrates the initial and desired CoM movement directions in 
all three postural tasks for two perturbation directions (forward and backward). 
 

 

1.5 Significance 

 Motor control deficits resulting from an impaired nervous system have been 

identified in various pathologies such as cerebral palsy and Parkinson’s disease.  The 

coordination of muscles that is the intermediate step between a neural command and a 

visible motor output is still largely not understood.  Here we examined the muscle 

coordination underlying several postural tasks in order to better understand motor control 

in general.  Furthermore, we identified functional outputs related to the recruitment of 

muscle synergies; it is important to know the purpose, or function, of the muscle 

synergies to be useful clinically because diagnoses are made based upon functional 

deficits.     

 In an attempt to eventually apply our knowledge to adults with deficits, here we 

chose to look at the nervous system outputs under optimal conditions.  We did this by 

examining muscle coordination in young, healthy adults from the GA Tech and Emory 

communities.  This is a necessary precursor that permits a better understanding of the 

underlying causes of impairments.  Once we have identified the neurophysiological 

mechanisms that underlie muscle coordination and postural control in young, healthy 

subjects, we will have a meaningful metric that may help us better understand and 

identify impairments.  This will allow for the development of targeted therapies to 

address these impairments, such as training programs to develop a desired muscle 

synergy structure. Finding that the same muscle synergies are used for posture control in 
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a variety of tasks, such as standing, stepping, and walking, will be useful for clinical tests 

of synergy structure, diagnosing impairments, and proposing better treatment strategies. 
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CHAPTER 2 

MUSCLE SYNERGIES IN NON-STEPPING AND STEPPING 

POSTURAL BEHAVIORS 

________________________________________________________________________ 

This chapter was submitted to the Journal of Neurophysiology and is currently in review. 

 

Chvatal SA, Torres-Oviedo G, Safavynia SA, and Ting LH.  Common muscle synergies 

for control of center of mass and force in non-stepping and stepping postural behaviors.  J 

Neurophysiol (in review). 

________________________________________________________________________ 

 

 We investigated muscle activity, ground-reaction forces, and center-of-mass 

(CoM) acceleration in two different postural behaviors used for standing balance control 

in humans to determine whether common neural mechanisms are used in different 

postural tasks.  We compared non-stepping responses, where the base of support (BoS) is 

stationary and balance is recovered by returning CoM back to its initial position, to 

stepping responses, where the BoS is enlarged and balance is recovered by pushing the 

CoM away from the initial position. In response to perturbations of the same direction, 

these two postural behaviors resulted in different muscle activity and ground-reaction 

forces. We hypothesize that a common pool of muscle synergies producing consistent 

task-level biomechanical functions is used to generate these different postural behaviors. 

Two sets of support-surface translations in 12 horizontal-plane directions were presented, 
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first to evoke stepping responses and then to evoke non-stepping responses. EMGs in 16 

lower-back and leg muscles of the stance leg were measured. Initially (~100 ms latency), 

EMG, CoM acceleration, and forces were similar in non-stepping and stepping responses, 

but diverged in later time periods (~200 ms), when stepping occurred. We identified 

functional muscle synergies using non-negative matrix factorization that quantified 

correlations between muscle synergy recruitment levels and biomechanical outputs. 

Functional muscle synergies that produce forces to restore CoM position in non-stepping 

responses were also used to displace the CoM during stepping responses. These results 

suggest that muscle synergies represent common neural mechanisms for CoM movement 

control under different dynamic conditions: stepping and non-stepping postural 

responses.  

 

2.1 Introduction 

Muscle synergies have been proposed to be a modular organization for muscle 

coordination that map high-level task goals, or motor intentions, into motor actions (Chiel 

et al. 2009; Drew et al. 2008; Giszter et al. 2007; Ting and McKay 2007; Yakovenko et 

al. 2010).  Here we explicitly tested this hypothesis by investigating the relationship 

between muscle synergy recruitment and functional motor outputs in two postural tasks–

stepping and non-stepping responses to perturbations–that achieve the same motor 

intention of maintaining upright balance using different motor actions.  Muscle synergies 

and other types of modular organization have been used to explain muscle coordination 

during a variety of motor behaviors in many different species (Cappellini et al. 2006; 

d'Avella et al. 2006; d'Avella et al. 2003; Drew et al. 2008; Flash and Hochner 2005; Hart 
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and Giszter 2004a; Hart and Giszter 2004b; Kargo and Giszter 2000; Krishnamoorthy et 

al. 2004; Latash et al. 2005; Ting and Macpherson 2005; Torres-Oviedo et al. 2006; 

Yakovenko et al. 2010).  The generality of muscle synergies across different motor tasks 

has been shown in frog kicking, jumping, and swimming (Cheung et al. 2005; d'Avella 

and Bizzi 2005); or in human walking and running (Cappellini et al. 2006); or in forward 

and backward pedaling (Raasch and Zajac 1999; Ting et al. 1999).  Although some 

muscle synergies are used across multiple tasks, in some instances new synergies may 

emerge when a new motor task is presented (Cheung et al. 2005; Ivanenko et al. 2005; 

Robert et al. 2008; Torres-Oviedo and Ting 2010) and the recruitment of the synergies 

may be altered (Cappellini et al. 2006; Clark et al. 2010).  

The recruitment of these muscle synergies, or motor modules, may be related to 

specific biomechanical functions necessary to accomplish a behavioral goal (Berniker et 

al. 2009; Chiel et al. 2009; Giszter et al. 2007; Raasch and Zajac 1999; Ting and McKay 

2007).  Muscle synergies in humans have been correlated with foot kinematics in 

locomotion (Ivanenko et al. 2003; Ivanenko et al. 2006) and foot acceleration in pedaling 

(Ting et al. 1999).  The biomechanical outputs related to muscle synergies depend upon 

the motor task being performed. In human finger spelling, muscle synergies are 

correlated with common hand postures (Weiss and Flanders 2004), whereas in frog 

kicking, jumping, and swimming, shared muscle synergies may be activated to 

implement whole limb movements common to these locomotor behaviors (Cheung et al. 

2005; d'Avella and Bizzi 2005).  In balance control, we found that muscle synergies in 

the cat are recruited to produce specific force vectors at the ground that are robust across 

changes in postural configuration (Ting and Macpherson 2005; Torres-Oviedo et al. 
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2006).  Although these correlations indicate possible muscle synergy functions, the 

stimuli triggering the studied movements and the behavioral outputs were also directly 

related. Therefore, one purpose of this study was to determine whether muscle synergies 

map high-level task goals into actions independently from sensory inputs triggering the 

postural response.  

In feline standing balance control, it has been hypothesized that several muscle 

synergies are recruited in order to control center of mass (CoM) kinematics by 

modulating end-point forces (McKay and Ting 2008; Torres-Oviedo et al. 2006), but 

similar studies have not been conducted in human balance control. Our previous work in 

human balance control has shown that the same muscle synergies can account for balance 

responses across a variety of standing conditions (Torres-Oviedo and Ting 2010), 

suggesting these motor modules may produce biomechanical functions generally needed 

for balance control. It is likely that these biomechanical functions are related to the 

control of CoM motion. Human balance control is complex as a broad range of postural 

behaviors is available in response to perturbations, such as the so-called hip- and ankle-

strategies (Horak and Macpherson 1996; Runge et al. 1998), stepping (McIlroy and Maki 

1993b), or using the upper extremities for stabilization (Maki and McIlroy 1997). In any 

variation of the standing balance task, maintaining balance requires keeping the CoM 

above the base of support (BoS) (Massion 1992; Scholz et al. 2007; Ting et al. 2009). 

During feet-in-place postural response behaviors, however, the muscles recruited for 

postural stabilization depend upon the direction of CoM motion, rather than the local 

changes in joint angle displacements (Carpenter et al. 1999; Gollhofer et al. 1989; Ting 

and Macpherson 2004).  Similarly, CoM kinematics can predict the activation time 



 

 20 

course of distal and proximal muscles (Welch and Ting 2008), suggesting a neural 

command reflecting CoM kinematics could activate multiple muscles across the body.   

Here we used support-surface perturbations to elicit both stepping and non-

stepping postural responses, allowing us to test the hypothesis that muscle synergies are 

recruited to achieve the biomechanical output of controlling CoM, independent of the 

sensory input triggering the response. In non-stepping postural responses to perturbations, 

the feet stay in place and the CoM is returned back to its initial position above the feet.  

Conversely in stepping responses, the COM is expanded by taking a step, which results in 

the CoM being displaced even further from the initial position.  Therefore in these two 

behaviors, the motor output, or desired direction of CoM movement, is opposite in 

response to the same direction of perturbation which evokes similar sensory inputs in the 

two cases.  Comparing these two postural behaviors allows dissociation between patterns 

of somatosensory input (due to perturbation direction), the associated patterns of 

muscular output, and the resultant CoM motion. 

In order to use muscle synergy analysis to examine stepping responses, it was first 

necessary to characterize muscle activity in multidirectional stepping responses more 

thoroughly. Very few studies have examined the patterns of EMG during stepping 

responses and compared these patterns to those observed in non-stepping responses 

(Horak and Macpherson 1996; McIlroy and Maki 1993a).  The magnitude of initial EMG 

is increased in stepping responses compared to non-stepping responses (McIlroy and 

Maki 1993a), but the time course of muscle activity during stepping and non-stepping 

responses has not been compared.  Furthermore, stepping responses in directions other 

than anterior/posterior and medial/lateral directions have not been examined.  
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Multidirectional tuning curves are necessary in order to fully evaluate patterns of 

underlying muscle synergies.  Therefore, in this study we compared the initial time 

course of muscle activity in stepping and non-stepping responses, and characterized 

muscle activity tuning during stepping responses to multidirectional perturbations other 

than anterior/posterior and medial/lateral previously investigated (Perry et al. 2000; Zettel 

et al. 2002). 

  We hypothesize that by differentially recruiting a common pool of muscle 

synergies with specific biomechanical functions, the CNS can direct the movement of the 

CoM in both non-stepping and stepping postural responses. We first determined whether 

the same muscle synergies were recruited in both stepping and non-stepping postural 

response to perturbation or whether different sets of muscle synergies were recruited 

during these two postural strategies.  Furthermore, we examined whether the recruitment 

of muscle synergies in both types of response were related to a consistent biomechanical 

function such as to displace the CoM or to produce particular forces in a particular 

direction, or whether the recruitment was related to perturbation direction. We predicted 

the same muscle synergies would be used in the stance leg during both stepping and non-

stepping postural behaviors to produce similar forces at the ground and CoM acceleration 

in the two behaviors, but that the recruitment of these functional muscle synergies would 

differ across stepping and non-stepping responses depending on the desired direction of 

CoM motion.  Alternatively, if muscle synergies were instead patterned in direct response 

to somatosensory feedback, we would expect to see the same muscle synergies activated 

for the same perturbation directions in both non-stepping and stepping responses – even 

when the resulting CoM acceleration was in opposite directions. 
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2.2 Methods 

 In order to determine whether the same muscle synergies are recruited during 

non-stepping and stepping postural behaviors, and whether they are related to a 

behavioral goal, we recorded human postural responses to support surface translations. 

Twelve ramp-and-hold perturbation directions were applied in the horizontal plane, and 

the presentation order was randomized. Subjects were instructed to maintain their 

balance, and to step with their left foot if a step was necessary to recover their balance. 

Subjects participated in two sets of perturbations: the first was a larger, faster set that 

caused a stepping response, the second was a smaller, slower set, during which they 

maintained balance without moving their feet.  Muscle synergies were extracted from the 

non-stepping condition and the stepping condition individually and compared; muscle 

synergies extracted from non-stepping were subsequently used to reconstruct the stepping 

trials.  If the stepping data were not sufficiently explained by the non-stepping muscle 

synergies, additional stepping-specific muscle synergies were then extracted.  Finally, we 

identified functional muscle synergies by incorporating kinematic and kinetic data into 

our dataset for analysis in order to determine whether the recruitment of muscle synergies 

was correlated to the production of a consistent biomechanical function.  

 

2.2.1 Data Collection 

Eight healthy subjects (5 male, 3 female) between the ages of 21 and 27 were 

exposed to two sets of support-surface translations according to an experimental protocol 

that was approved by the Institutional Review Boards of Georgia Tech and Emory.  

Subjects stood on a platform that translated in 12 equally spaced directions in the 
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horizontal plane (see Figure 2.1).  They were instructed to maintain balance without 

stepping if possible, but if a step was necessary, to step with their left foot.  This was 

done to ensure steps would be reactive and not voluntary, intentional steps.  Two blocks 

of ramp-and-hold perturbations in each of these 12 directions were presented.  In the 

stepping block, the platform's displacement was 23 cm, velocity was 45 cm/s and 

acceleration was 0.75g.  In the non-stepping block, the platform’s displacement was 12.4 

cm, velocity was 35 cm/s, and acceleration was 0.5g.  The perturbation directions were 

randomized during each block of perturbations to minimize anticipatory adjustments and 

increase response variability.  Due to the influence of prior trials on a subject’s response 

(Horak and Nashner 1986), we first collected the stepping block of trials and then the 

non-stepping block of trials. Five trials of each condition (stepping and non-stepping) in 

each of the 12 directions of perturbation were collected.  In the stepping condition, all 

subjects took a step in response to perturbations in all directions.  Occasionally subjects 

stepped with their right foot and these trials were excluded from the analysis.  In the non-

stepping condition, all subjects maintained balance without taking a step.   

Since many muscles are required for the muscle synergy analysis, surface EMG 

activity was recorded at 1080 Hz from sixteen lower back and leg muscles on the 

subject’s right side, which was the stance leg in stepping responses.  The muscles 

recorded include:  vastus lateralis (VLAT), rectus femoris (RFEM), rectus abdominis 

(REAB), biceps femoris, long head (BFLH), semitendinosus (SEMT), adductor magnus 

(ADMG), erector spinae (ERSP), abdominal external oblique (EXOB), vastus medialis 

(VMED), tibialis anterior (TA), medial gastrocnemius (MGAS), lateral gastrocnemius 

(LGAS), soleus (SOL), peroneus (PERO), tensor fasciae latae (TFL), and gluteus medius 
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(GMED).  EMG data were high pass filtered at 35 Hz, de-meaned, rectified, and low-pass 

filtered at 40 Hz, using custom MATLAB routines.  Additionally, kinetic data were 

collected at 1080 Hz from force plates under the feet (AMTI, Watertown, MA) and 

kinematic data were collected at 120 Hz using a motion capture system (Vicon, 

Centennial, CO) and a custom 25-marker set that included head-arms-trunk (HAT), and 

bilateral thigh, shank, and foot segments (Winter 1990).  CoM acceleration was 

calculated from ground reaction forces (F=ma), and CoM position was calculated using 

kinematic data and the Vicon Plug-in-Gait model.  CoM velocity computed from 

differentiated marker data matched well with the CoM velocity computed from integrated 

force data.  The CoM displacement and velocity were not used in the functional muscle 

synergy analysis.    

 

2.2.2 Data Processing 

To account for temporal variations in muscle activity, four time bins were 

analyzed: one before the perturbation and three during the automatic postural response. 

The platform moved at 500 ms after the beginning of the trial.  A background period 

beginning 50 ms after we began collecting data and ending 170 ms before the 

perturbation onset was analyzed in order to determine the resting activity of each muscle. 

The automatic postural response (APR) has been well-characterized and occurs ~100 ms 

following the perturbation (Horak and Macpherson 1996); due to temporal variations in 

muscle activity during this APR, we further divided it into 3 time bins.  Each one lasted 

75 ms and began 100 ms (PR1), 175 ms (PR2) and 250 ms (PR3) after the perturbation 

(see Figure 2.1 gray shaded areas).  Mean muscle activity for each muscle during each 
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time bin was calculated for each trial.  These numbers were assembled to form a data 

matrix, which consisted of 4 time bins x 12 directions x 5 trials x 2 conditions = 480 

points for each of the 16 each muscles. For display purposes, each muscle’s EMG values 

were initially normalized to the maximum value across all time periods, perturbation 

directions, and conditions so that each value was between 0 and 1.  Prior to extracting 

muscle synergies, each muscle vector was normalized to have unit variance to ensure 

equal weighting in the muscle synergy extraction. 

Kinetic and kinematic variables were also analyzed to determine whether muscle 

synergy activations were consistently correlated with a particular behavioral goal.  

Ground reaction forces (GRF) were rotated such that the vertical forces were aligned with 

the limb axis (defined by the vector between the hip and ankle markers), as in Torres-

Oviedo et al. (2006).  The time bins used to consider ground reaction forces were 60 ms 

after the PR time bins used for EMG data, due to electromechanical delays (Jacobs and 

Macpherson 1996).  Therefore, the time windows for the 3 PR periods were 160-235, 

235-310, and 310-385 ms following perturbation onset for forces.  Background forces 

were subtracted from the forces in each time period, so the force data represents a change 

from background.  In order to use non-negative matrix factorization (described later), the 

positive and negative components of the forces were separated, resulting in 6 additional 

data rows to be included in the matrix (Fx+, Fx-, Fy+, Fy-, Fz+, and Fz-).  For display 

purposes, each row was normalized to the maximum value across all time periods, 

perturbation directions, and conditions, so that each value was between 0 and 1.  

Similarly, CoM acceleration data were analyzed the same way as GRF.  CoM 

acceleration was averaged over 3 time periods: 160-235, 235-310, and 310-385 ms 
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following perturbation onset, and background CoM acceleration was subtracted out.  The 

positive and negative components were separated, each row normalized to the maximum 

value, and then averaged over the same time periods as were used for GRFs.  Each 

functional variable was added into the data matrix of EMG data for extraction of 

functional muscle synergies, which is described below.  The large passive forces that 

occur in the vertical force component due to perturbation dynamics and changes in 

weight bearing were a confounding factor.  In some perturbation directions (leftward), the 

vertical forces were mostly passive in the stepping condition, due to the movement of the 

platform rather than active muscle activation.  Because we were primarily interested in 

the directional control of forces in the horizontal plane due to muscle synergy 

recruitment, we included only the 4 components of horizontal-plane force (Fx+, Fx-, Fy+, 

Fy-) in the muscle synergy analysis.  As with the EMG data, each row was normalized to 

have unit variance before extracting functional muscle synergies to ensure a uniform 

representation of variance across the data pool.  

 

2.2.3 Extraction of Muscle Synergies 

We extracted muscle synergies from the data matrix of EMG recordings using 

nonnegative matrix factorization (NNMF) described by Lee and Seung (Lee and Seung 

1999; Tresch et al. 1999), which has previously been used for muscle synergy analysis 

(Ting and Macpherson 2005; Torres-Oviedo and Ting 2007).  This is a linear 

decomposition technique that assumes that a muscle activation pattern, M, in a given time 

period which was evoked by a perturbation in a particular direction is comprised of a 

linear combination of a few muscle synergies, Wi, that are each recruited by a synergy 
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recruitment coefficient, ci.  Therefore, a particular muscle activation pattern at a 

particular time in response to a particular perturbation would be represented by: 

M = c1W1 + c2W2 + c3W3 + … 

Wi specifies the muscles involved in synergy i and their relative contributions.  Each 

component of Wi represents the contribution of one particular muscle to that synergy, and 

an individual muscle may contribute to multiple synergies.  The muscle synergies do not 

change composition across conditions, and each one is multiplied by a scalar recruitment 

coefficient, ci, which changes over time and across conditions.  The recruitment 

coefficient, ci, is hypothesized to represent the neural command that specifies how that 

synergy is modulated over time, and how much each synergy will contribute to a 

muscle’s total activity pattern (Ting 2007).  After extracting functional muscle synergies, 

the unit variance scaling was removed from data so that each muscle, kinetic, and 

kinematic variable ranged from 0-1 to permit data inspection and interpretation. 

To select the number of muscle synergies that could best reproduce our data we 

extracted 1-16 synergies from 60% of the non-stepping trials for each subject, and used 

these to reconstruct the EMG data from the remaining non-stepping trials (for cross 

validation) and from the stepping trials.  These were termed “shared” muscle synergies.  

We selected the fewest number of “shared” muscle synergies (Nsyn) that could 

adequately reconstruct the muscle responses in the non-stepping condition.  The goodness 

of fit of the data reconstruction using the muscle synergies was quantified by the data 

variability accounted for (VAF), defined as 100 x uncentered Pearson's correlation 

coefficient (Torres-Oviedo et al. 2006; Zar 1999). We selected Nsyn that accounted for at 

least 90% of the overall non-stepping data variability (i.e., VAF >90%). Note that overall 
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VAF was found by calculating VAF for the entire non-stepping dataset.  Moreover, we 

also had a local criterion in which Nsyn accounted for at least 75% of the data variability 

in each muscle and each condition.  Muscle VAF and condition VAF were calculated by 

considering only a portion of the non-stepping dataset. Muscle VAF for each muscle 

quantified the extent to which the muscle synergies accounted for variability in the 

activity of individual muscles across all time bins, perturbation directions, and trials. 

Condition VAF for each perturbation direction quantified the extent to which the muscle 

synergies accounted for the variability in muscle activation patterns formed by the 

response of all 16 muscles to a single perturbation direction during one time bin across all 

5 trials.  This local fit criterion was more stringent and ensured that relevant features of 

the data set were reproduced. The number of muscle synergies was increased until they 

could account for > 75% muscle VAF in each muscle and for > 75% condition VAF in 

each perturbation direction, and further increased if local fits were improved. However, if 

an additional muscle synergy contributed evenly to the VAF across muscles and 

perturbation directions, it was not included because it likely represented noise in the data 

rather than variations due to trial or perturbation direction.  Nsyn was also validated using 

factor analysis (FA): 1-16 factors were extracted and the log likelihood of each was 

plotted vs. number of factors.  Nsyn was chosen by finding the point on the log-likelihood 

curve where curvature is greatest (Tresch et al. 2006). 

To validate Nsyn we compared the overall VAF using the identified muscle 

synergies to the overall VAF using muscle synergies extracted from shuffled data. We 

estimated 95% bootstrap confidence intervals (CI) for the overall VAF when using 1 to 

16 muscle synergies extracted from the original data and 1 to 16 muscle synergies 
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extracted from a shuffled data set. We used bootstrapping with replacement (Cheung et 

al. 2009; Efron 1993) to resample each data matrix. The overall VAF due to 

reconstruction by either the 1 to 16 muscle synergies extracted from the original data or 

the 1 to 16 muscle synergies selected from shuffled data was calculated for 500 

resampled datasets to generate confidence intervals. VAF values were sorted, and 95% 

confidence interval bounds were estimated by selecting the 2.5 and 97.5 percentiles of the 

VAF distribution. In the shuffled version of the original data matrix, each muscle's data 

were shuffled independently, therefore, this shuffled data matrix contained the same 

values, range, and variance for each muscle, but the relationships between muscle 

activations were removed. The VAF CI found using the muscle synergies extracted from 

the original dataset was compared to the VAF CI found using muscle synergies from 

shuffled data. 

“Stepping-specific” muscle synergies were extracted from stepping data that was 

not accounted for by the “shared” muscle synergies described above.  To this end, we 

used an iterative algorithm that held fixed the shared muscle synergies extracted from 

non-stepping data while optimizing a new set of muscle synergies, termed “stepping-

specific”, extracted from the remainder of the variability in the stepping data not 

accounted for by the shared muscle synergies (Cheung et al. 2009; Torres-Oviedo and 

Ting 2010). In this iterative process the recruitment coefficients of shared and stepping-

specific muscle synergies were also optimized. We extracted 1-5 stepping-specific 

muscle synergies and selected the fewest number of muscle synergies (shared and 

specific) that could adequately reconstruct the stepping responses, as measured by VAF > 

90% of the overall data, and > 75% of the muscle and condition VAF (described above). 
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Moreover, to validate the shared and stepping-specific muscle synergies we compared 

them to muscle synergies extracted from data in both conditions (i.e., non-stepping and 

stepping) and from data in each condition alone.  The quantification of similarity between 

muscle synergy sets is described in the Data Analysis section.  

To determine if the muscle synergy activations were related to a particular 

biomechanical function or behavioral goal, we extracted 1-16 functional muscle 

synergies from a data matrix of non-stepping trials that contained muscle activity as well 

as forces under the feet and CoM acceleration (forces and CoM acceleration were lagged 

60ms behind EMG, as discussed above).  Because we used NNMF to extract muscle 

synergies, all of the input data needed to be positive; therefore positive and negative 

components of force and CoM acceleration were separated as previously described.  

Functional muscle synergies were extracted from non-stepping data first, and then used to 

reconstruct the stepping data.  If necessary, stepping-specific functional muscle synergies 

were also extracted.  As a validation, functional muscle synergies were also extracted 

from EMG and force data without CoM acceleration data, and from EMG and CoM 

acceleration data without force data included. 

 

2.2.4 Data Analysis 

Once Nsyn and an appropriate number of stepping-specific functional muscle 

synergies (if needed) were selected, the functional muscle synergies were used to 

reconstruct the EMG, force, and CoM acceleration patterns for the stepping and non-

stepping trials.  Measured data and reconstructed data were compared for a particular 

muscle, force, CoM acceleration component, or perturbation direction for each of the five 
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trials to examine the ability of the synergies to account for inter-trial variations.  

Similarity between measured and reconstructed data was quantified using r2 and VAF 

(Torres-Oviedo et al. 2006; Zar 1999).  We also examined whether the functional muscle 

synergies could account for temporal and spatial variations in muscle activation, force, 

and CoM acceleration patterns.   

Similarity between two different sets of muscle synergies was determined by 

calculating correlation coefficients (r) between each muscle synergy vector in the first set 

and each in the second set.  A pair of muscle synergies was considered "similar" if they 

had r > 0.623, which corresponds to the critical value of r2 for 16 muscles at p=0.01 

(r2=0.388).  An additional analysis was performed to ensure the muscle synergy 

"matches" we selected were more similar than would be expected by chance.  We 

calculated the expected mean r (µ) and standard deviation (σ) based on comparing the 

first set of muscle synergies with 22,000 random permutations of the elements of the 

second set of muscle synergies.  Then we transformed the r-values between our actual 

synergy comparison to the standard normal variable, Z, using Z = X – µ / σ, where X is 

the r-value between one synergy in the first set and one in the second set.  An r greater 

than 0.623 corresponds to a Z-score > 2.409, indicating the pair of muscle synergies is 

statistically more similar than would be expected by chance (p < 0.008).  All of the 

muscle synergy pairs that we call "similar" met this criterion.  

 

2.3 Results 

For all subjects, a few muscle synergies reproduced both stepping and non-

stepping responses to multidirectional balance perturbations, accounting for temporal, 
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spatial, and inter-trial variability in muscle activation patterns as well as task-level 

variables such as GRF and CoM acceleration.  Different patterns of muscle activity were 

observed in these two very different tasks, resulting in variations in muscle tuning.  

Common muscle synergies in the stance leg were used in both non-stepping and stepping 

responses.  In stepping responses, one additional stepping-specific muscle synergy was 

required in all subjects, perhaps providing stabilization to the stance limb to swing the 

stepping limb forward.   Furthermore, functional muscle synergies (which included forces 

and CoM accelerations) were able to account for force direction and CoM acceleration 

direction in both non-stepping and stepping responses.  

 

2.3.1 Non-stepping vs. stepping responses 

In all subjects, following perturbations, CoM movement and forces under the 

stance foot were initially similar in both behaviors (PR1), but diverged in PR2 or PR3 in 

stepping versus non-stepping behaviors.  For example, forces during a 300° perturbation 

were initially similar in stepping and non-stepping (Figure 2.1, PR1). In both conditions 

the right leg was initially unloaded in PR1 as a result of the perturbation.  In non-stepping 

behaviors the right limb was slowly loaded again after PR3 as the subject regained 

balance (Figure 2.1).  However in stepping responses, the right limb was rapidly loaded 

during PR2 so that the subject could take a step with the left leg, and then the right leg 

was slowly unloaded as body weight was redistributed onto both legs after PR3. (Figure 

2.1, compare PR1 to PR3).  Similarly, for all subjects the CoM was initially accelerated 

and displaced away from the feet in both stepping and non-stepping responses to balance 

perturbations (e.g. Figure 2.2).  However, in stepping responses, the CoM continued 
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moving in the same direction away from the feet in the later time periods (PR2 and PR3), 

whereas in non-stepping responses, the CoM was accelerated in the opposite direction 

returning the CoM back above the feet during PR2 and PR3 (Figure 2.1).  

 

 

Figure 2.1 Example of postural responses to a backward and rightward perturbation of 
the support surface (A), and to a frontward and leftward perturbation of the support 
surface (B).  Balance perturbations were induced by ramp-and-hold perturbations in 12 
evenly spaced directions in the horizontal plane.  Platform displacement and acceleration 
profiles used to induce non-stepping (gray) or stepping (black) responses are shown.  
EMG responses occur ~100 ms after the onset of platform motion (vertical dashed line).  
Shown here are tibialis anterior (TA), rectus femoris (RFEM), peroneus (PERO), and 
biceps femoris long head (BFLH) EMG responses.  Mean EMG activity was calculated 
for 3 time bins during the automatic postural response (PR), indicated by the shaded 
region, beginning 100ms (PR1), 175ms (PR2), and 250ms (PR3) following perturbation, 
as well as one background time period.  Ground reaction forces under the right foot as 
well as center of mass (CoM) position and acceleration are also shown. 
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Figure 2.2 Center of mass (CoM) displacement during non-stepping (gray) and stepping 
(black) responses to perturbations, from 500ms before the perturbation until 150ms after 
the platform stopped moving.   Shown are the mean and standard deviation for the 5 trials 
in each direction for one subject.  The circle at the hook of each trace marks the point at 
which the platform stopped moving.  In both conditions, the CoM was initially displaced 
10-12 cm in the direction opposite the platform movement.  In non-stepping responses, 
the CoM then moves back towards the starting position, whereas in stepping responses, 
the CoM continues moving away from the starting position as the subject took a step. 
 

 

 Likewise, following perturbations, EMG activity was initially similar in the two 

behaviors (PR1), but diverged at later time points depending upon which behavior was 

used (Figure 2.1).  The latencies to muscle onset and initial muscle activation patterns 

(PR1) were similar in both non-stepping and stepping responses.  The latency to step 

initiation ranged from 130-280ms after perturbation onset.  Across all perturbation 

directions, muscles had the same tuning in both behaviors during PR1 (Figure 2.3).  The 

tuning directions in non-stepping responses stayed the same throughout the postural 

response.  However, in stepping responses, the muscle tunings were dramatically 
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lateral perturbations during non-stepping responses (Fig 3, PR3).  Likewise, SOL was 

most active in stepping responses for leftward, forward perturbations, but in non-stepping 

responses it was most active for leftward, backward perturbations in PR3. 

 

    

Figure 2.3 Muscle tuning curves for all 16 muscles during non-stepping (gray) and 
stepping (black) responses during time windows PR1 and PR3 for a representative 
subject.  Muscle tuning curves vary in magnitude over all perturbation directions, and 
their shapes vary from muscle to muscle, over time, and between non-stepping and 
stepping responses.  Shown are the mean tuning curves ± standard deviations for 5 trials 
in each perturbation direction, presented randomly.  
 

2.3.2 Muscle synergies were shared between non-stepping and stepping responses 

In non-stepping postural responses, four to six muscle synergies per subject were 

sufficient to account for >90% total variability and >75% variability in each muscle and 
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condition (all 4 time bins, 12 perturbation directions, and 5 trials of each) in the EMG 

data.  These values are several confidence intervals higher than would be expected by 

chance.  Confidence intervals for VAF of extracted muscle synergies did not overlap with 

VAF confidence intervals of muscle synergies extracted from shuffled data except for the 

case where only one muscle synergy was extracted (Figure 2.4A, Subject 1).  Five muscle 

synergies were selected for subject 1, and the VAF CI confirmed this selection since this 

was the lowest number of muscle synergies required for the upper bound of the CI to 

exceed 90% VAF (Cheung et al. 2009)  The lower bound of the VAF CI for 5 muscle 

synergies was 2.45 CIs above the VAF CI for 5 muscle synergies extracted from shuffled 

data (Figure 2.4A).  Across subjects, the lower bound of the VAF CI for the selected 

number of muscle synergies (4-6 muscle synergies per subject) was 2.51 ± 0.79 CIs 

above the same number of muscle synergies extracted from shuffled source data. 

Several analyses demonstrated that muscle synergies used in the stance leg were 

shared between stepping and non-stepping responses. Figure 2.4B shows the results for 

one of the multiple comparisons performed between muscle synergy sets in a sample 

subject.  Muscle synergies extracted from non-stepping data were shuffled 22,000 times 

and compared to muscle synergies extracted from stepping to generate a distribution of r-

values expected by chance (Figure 2.4B).  Note that the r-values that result when 

comparing muscle synergies extracted from the non-stepping data to those extracted from 

the stepping data fall beyond the threshold of r-values expected by chance (r > 0.623 

corresponding to a Z-score > 2.409) (Figure 2.4B).  Four of the five muscle synergies 

extracted from non-stepping in subject 1 were similar to four of the five muscle synergies 

extracted from stepping in the same subject (r >0.74) (Figure 2.4B).  The distribution of 
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Z-scores for the r-values between all muscle synergies extracted from stepping and non-

stepping was bimodal, with the muscle synergies considered to be similar clustered 

toward the upper end of the distribution.  Across subjects, in stepping responses, five to 

seven muscle synergies were required; 4-6 of the stepping muscle synergies were similar 

to those from non-stepping, and there was one additional muscle synergy used only 

during stepping responses.  Furthermore, when muscle synergies were extracted from a 

data matrix containing both non-stepping and stepping trials, similar muscle synergies 

were identified (Figure 2.4C).  Four muscle synergies were found to be similar across all 

four different extractions using different data pools (Figure 2.4C). To illustrate the range 

of fits, Figure 2.4C displays examples of a muscle synergy that was very similar across 

extractions (W5) and another muscle synergy which had relatively low r values, but was 

still considered similar (W1).   
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Figure 2.4 Confidence intervals of reconstruction VAF and muscle synergy comparison.  
A) 95% confidence intervals (CI) of the reconstruction VAF estimated using 
bootstrapping (black lines) and 95% CIs of the reconstruction VAF when muscle 
synergies were extracted from a shuffled matrix of the same data (gray lines).  For subject 
1 (shown here), five muscle synergies were selected, and the lower bound of the VAF CI 
for 5 muscle synergies was 2.45 CIs above the VAF CI for 5 muscle synergies extracted 
from shuffled data.  B) Demonstration of the criteria used to quantify muscle synergy 
similarity.  Muscle synergies extracted from shuffled non-stepping data were compared to 
muscle synergies extracted from stepping to generate a distribution of Z-scores for how 
similar two muscle synergies are predicted to be based on chance (gray histogram).  The 
Z-scores for the comparisons between the actual muscle synergies from non-stepping and 
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the muscle synergies from stepping are shown as black vertical lines.  A pair of muscle 
synergies was considered "similar" if r > 0.623, corresponding to a Z-score > 2.409 
(dotted vertical line). For subject 1, four of the five muscle synergies extracted from non-
stepping were similar to four of the five muscle synergies extracted from stepping.  C) 
Comparison of muscle synergies extracted from various combinations of data.  Shown 
are two muscle synergies, W5 and W1, from a representative subject.  Shared and 
specific: muscle synergies extracted from 60% of non-stepping trials and used to 
reconstruct the remaining non-stepping data as well as stepping responses.  This was the 
final processing method selected and these are the muscle synergies shown in Figure 2.5.  
All other extracted muscle synergies are compared to these.  Stepping and non-stepping: 
muscle synergies identified from all of the non-stepping and stepping data combined into 
one large data matrix.  Shown are r values from comparing these vectors to these 
identified using the shared/specific algorithm.  Non-stepping: muscle synergies extracted 
from all of the non-stepping data only.  Stepping: muscle synergies extracted from all of 
the stepping data only.  Extracted muscle synergies were similar regardless of the datasets 
used for analysis, suggesting that they are conserved across conditions. 
 

Therefore, for the rest of our analyses, muscle synergies were extracted from 60% 

of non-stepping trials (“shared synergies”) and used to reconstruct the remaining non-

stepping trials (cross-validation) as well as the stepping data.  The shared muscle 

synergies could account for 93±1% of the overall variability (VAF between EMG and 

reconstruction for the entire dataset) and 79±7% variability across muscles and 

conditions in the non-stepping behavior (average VAF for individual muscles and 

conditions, across all subjects).  These shared muscle synergies also could account for 

85±3% of the overall variability and 72±7% variability across muscles and conditions in 

the stepping behavior.  With the addition of one extra “stepping-specific” muscle 

synergy, the overall variability accounted for was increased to 91± 2% in stepping, and 

81±4% variability across muscles and conditions.  For all subjects, these muscle 

synergies were similar to those extracted from each behavior individually and together (r 

= 0.83 ± 0.10; Figure 2.4C).  The compositions of the shared muscle synergies were 

similar to those found previously during non-stepping postural responses (Torres-Oviedo 



 

 40 

and Ting 2007) and were comprised of muscles spanning multiple joints (Figure 2.5).  In 

each subject, there was an additional muscle synergy used in stepping that was not found 

in non-stepping responses which was typically composed of the vasti and RFEM, as well 

as GMED, a muscle important in walking.  It was strongly activated for forward 

perturbations (in which the subject takes a step backwards), perhaps providing forces to 

stabilize the stance limb or push the swing leg backward.   

 

   

Figure 2.5 Muscle synergy vectors and recruitment coefficients for a representative 
subject.  Muscle synergy vectors W1-W5 were extracted from EMG data during non-
stepping responses and used to reconstruct stepping responses.  W6 is an additional 
stepping-specific muscle synergy required to achieve a good reconstruction of stepping 
responses.  Shown are the average muscle synergy recruitment coefficients for 5 trials in 
each perturbation direction for both non-stepping responses (gray) and stepping responses 
(color).  Directional tuning of muscle synergies can be observed over the 3 response time 
bins, as well as differences in muscle synergy recruitment between non-stepping and 
stepping responses. 
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2.3.3 Muscle synergy recruitment tuning curves explain individual muscle 

differences in non-stepping and stepping responses 

 In all subjects, the muscle synergy tuning curves initially had similar tuning 

directions (PR1 and PR2), but later (PR3) changed tuning direction if a stepping behavior 

was selected.  Similar to individual muscle tuning, muscle synergy tuning with respect to 

perturbation direction was maintained across all three time bins during non-stepping 

responses (Figure 2.5, gray curves), but changed by PR3 in stepping responses (Figure 

2.5, colored curves).  In this subject as well as the others, each muscle synergy had the 

same tuning in PR1 and PR2 in both non-stepping and stepping responses.  In non-

stepping responses, this same tuning was maintained in PR3, whereas for stepping 

responses, the tuning of some of the muscle synergies changed.  For example, W3 (Figure 

2.5, red), comprised mainly of TA and quadriceps muscles, was recruited in forward 

perturbations in PR1 and PR2 in both stepping and non-stepping responses, as well as 

PR3 in non-stepping, as the subject had fallen backward and was trying to pull their body 

forward to restore balance.  In PR3 in stepping responses, however, W3 was recruited 

much less, as the subject had switched behaviors and had begun to take a step backward.  

Instead, the subject used the stepping-specific muscle synergy, W6 (Figure 2.5, dark 

green), in forward perturbations during PR2 and PR3, when the switch had been made to 

a stepping behavior.  During stepping responses, W4 (Figure 2.5, blue) changed from 

being recruited in forward, leftward perturbations in PR1 to being recruited for backward, 

leftward perturbations by PR3. These trends were seen in multiple subjects.   
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The shifts in muscle synergy tuning direction could explain the patterns of muscle 

activity (and individual muscle tuning curves) observed in both non-stepping and 

stepping behaviors (comparison between real and reconstructed tuning curves in both 

non-stepping and stepping: r2=0.77±0.24, VAF=94±6%; Figure 2.6).  For example, 

BFLH changed tuning in PR3 in stepping responses, and it was activated by W4 (Figure 

2.6, blue).  TA turned off during PR3 in stepping responses, and it was activated by W3 

(Figure 2.6, red).  VLAT had similar tuning during PR3 in non-stepping and stepping, but 

was activated by different synergies.  In non-stepping, W3 (Figure 2.6, red) was 

responsible for activating VLAT, whereas in stepping, the stepping-specific muscle 

synergy W6 (Figure 2.6, green) activated VLAT.  Thus the muscle synergies were able to 

reproduce changes in muscle activation patterns with both perturbation direction and 

time.   
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Figure 2.6 Reconstructions of the muscle tuning curves using the muscle synergies 
shown in Figure 2.5.  Original data are shown by a dashed line and reconstructed data are 
shown by a solid line (non-stepping in gray and stepping in black).  The contribution of 
each muscle synergy to the reconstruction is shown by the corresponding colored line, all 
of which are added to generate the total reconstruction.  Average r2 between each muscle 
tuning curve and the muscle synergy reconstruction is 0.77±0.24, and average variability 
accounted for (VAF) between each muscle tuning curve and the muscle synergy 
reconstruction is 94±6%.  
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2.3.4 Functional muscle synergies reveal correlations between muscle synergies and 

task-level goals 

The composition and tuning of the muscle synergies within each subject were not 

changed by including force and CoM acceleration in the analysis, illustrating that force 

and CoM acceleration tuning curves were well correlated with muscle synergy tuning 

curves (Figure 2.7).  For all subjects, the muscle synergy composition was preserved 

when muscle synergies were extracted from EMG and forces only, EMG and CoM 

acceleration only, as well as EMG, forces, and CoM acceleration together (r=0.83±0.12).  

Similarly, the muscle synergy tuning curves were conserved when the functional 

variables were included in the analysis.  Because of the similarities in functional muscle 

synergies observed when extracting functional muscle synergies from non-stepping or 

stepping responses individually, we used the same approach here as we had used to 

identify muscle synergies: functional muscle synergies were extracted from the non-

stepping data and used to reconstruct the stepping data. 
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Figure 2.7 Comparison of functional muscle synergies extracted from various 
combinations of data for a representative subject.  Functional variables such as applied 
forces at the ground and center of mass (CoM) acceleration taken from time windows 
60ms after the EMG time windows were included in the analysis and functional muscle 
synergies were identified.  Including the functional variables did not change the 
composition or recruitment of the identified EMG muscle synergies (r values comparing 
the muscle synergy vectors are shown).  A) Comparison of the muscle synergy vector W5 
extracted from 1: EMG data only, 2: EMG and force data, 3: EMG and CoM acceleration 
data, and 4: EMG, force, and CoM data.  Shown are the EMG portions of each of the 
functional muscle synergies, which were not changed by including the functional 
variables, as well as the force and CoM acceleration vectors identified from each 
extraction. B) Muscle synergy recruitment tuning curves from each of the aforementioned 
combinations of data.  Including the functional variables did not affect the muscle 
synergy tuning, validating that those forces and CoM accelerations are consistently 
produced 60ms after that muscle synergy is recruited. 
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the body initially fell backward, and then in non-stepping responses, appropriate muscles 

were activated to produce a force forward (W3, Figure 2.8, red) and accelerate the CoM 

forward (W2, Figure 2.8, purple) to return the CoM above the feet.  However, in stepping 

responses, in PR3, W3 (Figure 2.8, red) was turned off and W6 (Figure 2.8, dark green) 

was instead recruited, consistent with producing a force forward and accelerating the 

CoM backward as the subject stepped backward. One extra functional muscle synergy 

was required when CoM acceleration is included, comprised only of rightward CoM 

acceleration, tuned for rightward perturbations, presumably correlated to activity in the 

other leg, since no muscle synergies in the stance leg were activated for that perturbation 

direction.   

   

Figure 2.8 Functional muscle synergies for a representative subject.  Functional variables 
such as applied forces at the ground and center of mass (CoM) acceleration taken from 
time windows 60ms after the EMG time windows were included in the analysis and 
functional muscle synergies were identified.  Shown are the muscle synergies along with 
the force and CoM acceleration vector associated with each muscle synergy.  The pink 
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CoM acceleration trace is a component identified by the functional muscle synergy 
analysis that is not attributable to muscle activity in the stance leg. 
 

The functional muscle synergies containing EMGs and biomechanical variables 

explained variations in EMG, force direction, and CoM acceleration data in both 

behaviors. EMG and CoM accelerations were well reconstructed for both non-stepping 

and stepping responses in terms of both direction and magnitude using the functional 

muscle synergies (r2=0.77±0.24, VAF=91±11%; Figure 2.9).  The forces during stepping 

responses that were predicted by the functional muscle synergies from non-stepping were 

in the appropriate directions, but some of the magnitudes were underpredicted 

(r2=0.70±0.12, VAF=68±2%), perhaps due to the much larger forces involved when the 

other leg was lifted off the ground.  The r2 for force reconstructions is comparable to that 

of EMG and COM reconstructions, but the VAF for force reconstructions is much lower, 

indicating the force tuning curve shapes were well reconstructed by the muscle synergies, 

but the magnitudes were not predicted as well.  Functional muscle synergies extracted 

from stepping alone contained larger forces in the same direction as in non-stepping, 

which may have been due to the different loading conditions in stepping.  
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Figure 2.9 Reconstructions of the force and CoM tuning curves using the functional 
muscle synergies shown in Figure 2.8.  Original data are shown by a dashed line and 
reconstructed data are shown by a solid line (non-stepping in gray and stepping in black).  
The contribution of each muscle synergy to the reconstruction is shown by the 
corresponding colored line, all of which are added to generate the total reconstruction.  
Goodness-of-fit is indicated by r2 and VAF between each force or CoM acceleration 
tuning curve and the muscle synergy reconstruction.  
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and tuning of muscle synergies across subjects. W5 was similar across all 8 subjects 

(r=0.74±0.07) and W4 was similar across 7 of 8 subjects (r=0.82±0.06). The muscle 

synergies also performed similar functions, as evidenced by the muscle synergy 

recruitment tuning curves (Figure 2.10).  The subject without W4 used a different muscle 

synergy to respond to perturbations in the same direction as W4, as illustrated by the 

similarity in the tuning curves of the subject’s muscle synergy and that of W4 in the other 

subjects. W3 was another shared synergy similar across 6 subjects (r=0.75±0.05) and W1 

was similar across 4 subjects (r=0.75±0.10); the remaining subject had different muscle 

synergies with similar directional tuning.  A few other muscle synergies were unique to 

individual subjects. Additionally, the stepping-specific muscle synergy, W6, found in 5 of 

the 8 subjects was similar across subjects (r=0.67±0.05) and was recruited for the same 

perturbation directions.  
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Figure 2.10 Comparison of muscle synergy W5 and its corresponding force vector and 
CoM acceleration vector (A), as well as the corresponding recruitment tuning curve (B) 
across all subjects.  One muscle synergy (W5) was very similar across all subjects, 
another was similar across 7 of the 8 subjects (W4), one was similar across 6 subjects 
(W3), one muscle synergy was similar across 4 subjects (W1) and the remaining muscle 
synergies were subject-specific.  In some cases, subjects would use a different muscle 
synergy to produce a similar force or CoM acceleration, indicating the different strategies 
people have learned in order to maintain balance. 
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and non-stepping), but most importantly, their recruitment was determined by the desired 

direction of CoM motion and not by the perturbation direction. These results demonstrate 

that the identified muscle synergies do not simply reflect somatosensory patterns 

triggering the responses, but rather motor modules flexibly recruited to produce 

biomechanical functions required to stabilize the CoM.  Therefore, our results suggest 

there are separate sensory and motor transformations used by the nervous system to 

interpret sensory inflow and to construct motor outputs. Consistent neural structures may 

thus be flexibly accessed and differentially recruited during different motor behaviors by 

breaking motor activities into their component tasks.  

 We observed diverse postural responses that became increasingly more complex 

over time, suggesting the involvement of higher neural centers. While the initial long-

latency muscular activity (~100 ms) associated with the automatic postural response was 

similar in stepping and non-stepping responses, patterns of muscle activity diverged after 

about 200 ms when a stepping strategy was selected.  This observation was consistent 

across multidirectional postural responses, despite the fact that step latencies varied by 

direction and step type (i.e., lateral versus crossover steps). We observed lateral and 

crossover steps in our study due to the constraint that subjects were required to step with 

the left leg, however, subjects may naturally choose to use crossover steps even when 

they are not prompted to do so (King and Horak 2008; Perry et al. 2000).  Prior studies 

have also demonstrated similar muscle onset latencies in the same muscles for non-

stepping and stepping responses (Burleigh et al. 1994; McIlroy and Maki 1993a), but the 

changes in the patterns of muscular activity over time were not investigated. Similarly, it 

has been suggested that stepping responses are triggered only after the failure of a non-
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stepping postural response (Horak and Nashner 1986), but our data suggest that stepping 

muscle activity is initiated before significant destabilization of the body occurs (McIlroy 

and Maki 1993a).  Moreover, the initial muscular response latency during stumbling has 

been shown to be the same (~50ms), even when later muscle activity (~120ms) 

corresponding to distinct corrective strategies differ (van der Linden et al. 2007).  Long-

latency postural response activity at about 100 ms has been demonstrated to be 

unaffected by cortical pathways (Woollacott and Shumway-Cook 2002) and the 

concurrent performance of voluntary motor tasks (Trivedi et al. 2010). Only later muscle 

activity (~150-350 ms) is modified by attentional factors (Woollacott and Shumway-

Cook 2002) or secondary motor goals (Trivedi et al. 2010).  Thus, the sequence of 

postural response events following a perturbation may reflect the sequential and 

increasingly complex influences of nested hierarchy of neural mechanisms (Ting et al. 

2009).  

 Our results suggest muscle synergies represent a common underlying motor 

structure for postural responses that is independent of specific sensory patterns.  We 

observed the same set of muscle synergies were recruited when the desired CoM 

acceleration to recover balance was the same in the stepping and non-stepping responses, 

but the perturbation directions triggering the responses were different. The differences in 

the timing and spatial organization of individual muscle activity in the stepping and non-

stepping responses were largely explained by altering the recruitment of a common set of 

muscle synergies, with the addition of only a single muscle synergy specific to the 

stepping behavior. Shared and specific muscle synergies have also been demonstrated 

across different motor behaviors such as frog swimming, kicking, and jumping (Cheung 
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et al. 2009; Cheung et al. 2005; d'Avella and Bizzi 2005; Hart and Giszter 2004a; Kargo 

and Giszter 2000), human balance control (Torres-Oviedo and Ting 2010), and primate 

hand movements such as grasping (Acharya et al. 2008; Hamed et al. 2007; Overduin et 

al. 2008). In contrast, a few studies using principal components analysis (PCA) rather 

than NMF have shown that muscle synergies or m-modes are all reshaped under new 

conditions (task, time window, etc.) (Danna-Dos-Santos et al. 2007; Robert et al. 2008). 

The differences in the identified motor modules may reflect a limitation of the chosen 

decomposition method (Ting and Chvatal 2010; Tresch et al. 2006), or perhaps 

differences in the type of motor task.  Deafferentation studies further support the idea that 

muscle synergy composition is largely conserved in the absence of somatosensory 

feedback (Cheung et al. 2005; Giszter et al. 2007; Kargo and Giszter 2000).  Moreover, 

our results suggest muscle synergy recruitment for balance control is determined by task 

variables such as CoM motion rather than local sensory inputs.  This idea is supported by 

previous studies showing that opposite somatosensory patterns during rotations and 

translations of the support-surface can elicit the same functional muscle synergies to 

restore balance (Torres-Oviedo et al. 2006). Although somatosensory feedback is 

essential for the timing of postural responses (Inglis et al. 1994; Stapley et al. 2002), the 

muscle activity in the initial postural response reflects task variables such as CoM motion 

(Gollhofer et al. 1989; Nashner and Mccollum 1985) rather than simple joint angle 

changes (Nashner 1977; Ting and Macpherson 2004).  Task-level information can be 

derived from aggregate afferent information in the dorsal root ganglia (Weber et al. 

2007), as well as in the dorso-spinal cerebellar tract (DSCT) (Bosco et al. 1996).  

Patterning of the initial postural response is also thought to involve brainstem pathways 
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(Deliagina et al. 2008; Macpherson et al. 1997). We demonstrated that similar initial 

patterns of sensory information could differentially recruit the same set of muscle 

synergies over time.  These results are consistent with the fact that the same muscle 

synergies are also conserved across a wide range of different postural configurations in 

both humans (Torres-Oviedo and Ting 2010) and cats (Torres-Oviedo et al. 2006).  

Taken together, muscle synergies appear to be a feature of motor output organization, and 

are not simply emergent from patterns of sensory inputs alone.  

 Our results support the idea that muscle synergies are used to organize the 

musculoskeletal system to produce a predictable biomechanical function (Chiel et al. 

2009; Ting and McKay 2007), even in different postural behaviors.  We previously 

demonstrated a consistent relationship between muscle synergy recruitment and endpoint 

force production in cats across multiple postural configurations (Ting and Macpherson 

2005; Torres-Oviedo et al. 2006). The stepping and non-stepping responses to the same 

support-surface perturbation direction elicited different muscle activity and accelerated 

the body in different directions.  However, our functional muscle synergy analysis 

revealed common relationships between patterns of muscle activity and the desired 

biomechanical function across both behaviors. The different individual outputs observed 

in non-stepping and stepping responses – such as kinematics, forces, and EMGs – arise 

from recruiting the same muscle synergies in order to accelerate the CoM in an 

appropriate direction to maintain balance.  We observed that during human balance 

control the functional muscle synergies in humans were aligned with anterior-posterior 

and medial-lateral directions, whereas in cats, more diagonal forces were observed, 

possibly due to differences in the upright stance adopted by humans as opposed to the 
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quadrupedal stance of cats (Dunbar et al. 1986). Muscle synergy recruitment in other 

motor behaviors has also been related to functional outputs (Ajiboye and Weir 2009; 

Clark et al. 2010; Krishnamoorthy et al. 2004; Weiss and Flanders 2004), suggesting that 

muscle synergies are organized according to function in a variety of contexts. 

Because of the different mechanical dynamics of non-stepping and stepping 

responses, we only characterized the gross relationships between muscle activity and 

horizontal plane acceleration/force direction; however dynamic musculoskeletal 

simulations would be necessary to make a more quantitative assessment of the 

biomechanical functions of muscle synergies. Based on prior postural response studies 

(Jacobs and Macpherson 1996), we assumed that changes in force resulting from muscle 

activity could be measured at a fixed electromechanical delay of 60 ms following muscle 

activity. Typically this is a reasonable assumption in the early phases of the postural 

response because the subject begins by standing quietly, and forces change relatively 

little prior to the muscle onset latency. In certain perturbation directions evoking stepping 

responses, the perturbation caused passive loading and unloading that occurred prior to 

muscle activation changes. Therefore we chose to exclude vertical forces from our 

analysis and concentrate on the relationship between muscle synergy recruitment and 

horizontal force generation. Further, we concentrated on the force directions rather than 

magnitudes of the forces in stepping responses because changes in magnitude might be 

largely due to nonmuscular, passive dynamics of the body when falling before the step is 

taken. In some cases the dynamic forces may still have masked the direction of force 

produced by the muscle synergy. For example, in backward perturbations, the muscle 

synergies did not correctly predict the CoM acceleration direction during stepping 
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(Figure 2.9, CoMy–), presumably because the subject fell forward despite recruitment of 

a muscle synergy that would tend to accelerate the CoM backward.  Although a dynamic 

model of stepping responses would be necessary to accurately differentiate active versus 

passive changes in force (Berniker et al. 2009; Kargo et al. 2010; Kautz and Hull 1993; 

McGowan et al. 2010; Neptune and Herzog 2000; Neptune et al. 2009b), a detailed and 

validated human model of muscle to force interactions during standing balance control is 

not currently available. Therefore, while not ideal, this analysis provides evidence of 

directional control of the CoM that results from the recruitment of muscle synergies, and 

is predictive if not mechanistic.  

 The decomposition of forces into positive and negative components was based on 

physiological and methodological reasons and allowed us to reveal possible physiological 

functions for muscle synergies. First, this separation of forces was made based on 

previous studies in postural control demonstrating that positive and negative changes in 

force generation are attributed to different groups of muscles (Jacobs and Macpherson 

1996). This is further validated by the relationships previously found between muscle 

synergy activation and limb force outputs during the initial period of the postural 

responses in the cat (Ting and Macpherson 2005; Torres-Oviedo et al. 2006).   Second, 

we explicitly separated the components into positive and negative vectors to allow the 

NNMF synergy extraction algorithm to separately identify correlations between positive 

and negative changes in forces and EMGs. This is particularly acceptable in postural 

responses since background levels of muscle activity and forces are low and opposite 

perturbation directions recruit antagonistic sets of muscles. Thus, we did not use 

alternative analyses that allow both negative and positive synergy recruitment – such as 
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PCA – because we believe they are not adequate to reveal physiological relationships 

between force and muscle activity in this behavior. For example, PCA would allow a 

muscle to have a negative activation to produce a force in a negative direction (Ting and 

Chvatal 2010). On the other hand, our analyses attributed positive and negative changes 

in forces to the recruitment of different muscle synergies – which describes better the 

antagonistic actions of muscle groups in balance control (Jacobs and Macpherson 1996). 

Despite limitations of the analysis techniques, our data indicate that the addition 

of stance-limb forces or CoM acceleration did not alter the composition of the extracted 

muscle synergies, suggesting that there was a causal, linear relationship between muscle 

activity patterns and biomechanical outputs. Our analysis was also competent to reveal a 

component of CoM acceleration that was not attributable to muscle activity in the stance 

leg. For example, all subjects had one functional muscle synergy comprised only of CoM 

acceleration in the rightward and upward directions and no muscle activity tuned for 

rightward perturbations in non-stepping responses and the early portion of stepping 

responses (see Figure 2.8). This is consistent with our previous study showing a muscle 

synergy tuned to rightward perturbations is only revealed during one-legged balance 

control but not during two-legged balance control (Torres-Oviedo and Ting 2010). 

Presumably, during two-legged balance control, muscle activity in the left leg (not 

recorded here) is responsible for producing rightward CoM acceleration in response to 

rightward perturbations. Furthermore, our functional muscle synergy analysis was 

competent to decompose the stance-limb forces into components that were attributable to 

muscle activity in the stance limb versus other sources. 
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  Muscle synergies may reflect spinal and brainstem structures mediating motor 

control across a variety of behaviors and contexts.  Neurophysiological evidence suggests 

that initial postural responses in the limbs are not simply local reflexes, but rather an 

activation of a motor pattern to achieve a biomechanical goal (Carpenter et al. 1999; 

Dufosse et al. 1985).  Neurons in the pontomedullary reticular formation (PMRF) are 

recruited during both reactive and anticipatory postural adjustments (Schepens et al. 

2008); these firings are not correlated to individual muscle activity, but discharge in a 

manner consistent with the goal of restoring equilibrium (Stapley and Drew 2009).  It is 

possible that there exist neural networks that specify the recruitment commands to a 

muscle synergy (C) which branch with different synaptic weights to the motoneurons of 

the muscles in the synergy (W) (Hart and Giszter 2010).  Motoneuron synchronization 

has been observed in learning balance tasks (Boonstra et al. 2009), which is consistent 

with the fact that the recruitment, but not the structure of muscle synergies can be 

modulated to explain the variation in muscle activity across postural configurations 

(Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2010), walking speeds (Clark et al. 

2010), as well as in hemi-paretic stroke subjects (Clark et al. 2010).  While such modules 

have been hypothesized to be encoded in the spinal cord for some tasks (Hart and Giszter 

2010; Saltiel et al. 2001), postural responses likely require brainstem involvement 

(Deliagina et al. 2008; Macpherson et al. 1997), possibly in addition to spinal centers 

(Drew 2008). It remains to be seen whether the same muscle synergies are used in both 

reactive and voluntary postural tasks, however, similar muscle tuning curves are 

generated during human whole body reaching tasks as in postural responses to 
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perturbation (Leonard et al. 2009), suggesting that motor modules may be accessible by 

voluntary and reactive postural tasks in humans.   
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CHAPTER 3 

SELECTION AND MODULATION OF MUSCLE SYNERGIES 

DURING PERTURBATIONS TO WALKING 

________________________________________________________________________ 

This chapter is in preparation for submission to the Journal of Neurophysiology. 

 

Chvatal SA and Ting LH.  Selection and modulation of muscle synergies during 

perturbations to walking.  J Neurophysiol (in prep). 

________________________________________________________________________ 

 

Our prior work has demonstrated that fixed sets of motor modules called muscle 

synergies underlie cycle-by-cycle variability in walking and trial-by-trial variability in 

multidirectional postural responses.  Here, we examined whether muscle synergies 

extracted from walking can account for perturbation responses during walking.  We also 

examined the effect of walking speed on muscle synergy composition and perturbation 

responses.  In unperturbed walking trials, subjects walked along a straight 7.5m path, 

either at self-selected speed (~1.2 m/s) or slow speed (~0.7 m/s).  Subjects stepped on a 

perturbation platform set flush with the floor at the midpoint of the path.  In walking 

perturbation trials, the platform translated in one of 4 directions (anterior, posterior, 

medial, and lateral) in the horizontal plane when the subjects stepped on it with their right 

foot.  EMGs of 16 lower-back and right leg muscles were measured.  The number and 

composition of muscle synergies was similar across the two walking speeds.  During 
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walking, perturbations in all four directions caused transient modulation in the activity of 

walking muscle synergies in the stance limb in most trials.  Our results demonstrate that 

motor patterns used during walking can be recruited in a feedback manner to explain the 

additional variability caused by an unexpected perturbation during walking in most 

conditions.   

 

3.1 Introduction 

 Prior work has demonstrated muscle synergies underlie cycle-by-cycle variability 

in cyclic behaviors such as pedaling and walking (Clark et al. 2010; Drew et al. 2008; 

Krouchev et al. 2006; Ting et al. 1999).  This suggests the central pattern generator 

(CPG) for walking recruits muscle synergies in order to account for typical variations in 

walking, such as slight differences in foot placement, step timing, etc., from one cycle to 

the next.  Here we challenge this hypothesis further by increasing the variability during 

walking using induced perturbations, to determine the effect of increased variability on 

muscle synergy recruitment.  Afferent information from the periphery influences the 

central pattern (Dietz 2003), but it is not known if the sensory feedback from a 

perturbation will disrupt muscle coordination patterns for walking.  Can an imposed 

perturbation during walking elicit differential recruitment of the same muscle synergies 

used during regular walking, or is a different neural strategy required for the greater 

variability imposed by a perturbation?  Here we examine the muscle synergies underlying 

walking and the extent to which they are modified when a perturbation is encountered 

during walking.  
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 Previous work suggests muscle synergy recruitment during locomotion is related 

to a particular phase of the gait cycle (Ivanenko et al. 2004), but we hypothesize that 

instead muscle synergy recruitment is related to a global biomechanical function, and that 

muscle synergies may be recruited at atypical times in the gait cycle depending on the 

task demands.  Prior work suggests muscle synergies may be a mechanism the NS uses to 

coordinate muscles to produce specific biomechanical functions in order to achieve a 

behavioral goal (Chiel et al. 2009; Giszter et al. 2007; Ting and McKay 2007).  In 

balance control, muscle synergies in the cat are recruited to produce specific force vectors 

at the ground that are robust across changes in postural configuration (Ting and 

Macpherson 2005; Torres-Oviedo et al. 2006).  It has been hypothesized that in human 

standing balance control muscle synergies are recruited in order to control center of mass 

(CoM) kinematics by modulating end-point forces (McKay and Ting 2008; Torres-

Oviedo et al. 2006).   

 Perhaps muscle synergies used during walking are also recruited to control the 

CoM.  Even though walking is a dynamic condition in which the CoM is not usually 

located over the base of support of either stance foot (MacKinnon and Winter 1993), the 

CoM still needs to be controlled during walking to maintain forward momentum and 

lateral stability.  Studying perturbations during walking allows us to investigate the 

neural control required when an unexpected center of mass (CoM) shift comes during a 

previously predictable CoM motion.   

Here we investigated the neural mechanisms underlying responses to 

multidirectional perturbations encountered during walking by examining muscle 

synergies.  Although phase and function are coupled in regular walking, here we use 
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perturbations to decouple them so that we can test whether muscle synergies are phase-

dependent or related to function.  If muscle synergies are related to a global 

biomechanical function such as controlling the CoM, we expect to see the same muscle 

synergies used for walking and for perturbation responses during walking.  If instead 

muscle synergies are phase-dependent, we would expect to see additional muscle 

synergies used for perturbation responses during walking.  We studied perturbations to 

the stance leg during walking at two different speeds – self-selected and slow – to 

determine if walking speed affects perturbation responses or muscle synergy structure 

and recruitment.  We studied multidirectional perturbations because the neural 

mechanisms underlying these responses are unknown.  We hypothesized that the same 

muscle synergies used to control the CoM during walking would be recruited to recover 

from perturbations during walking.  We demonstrate muscle synergies used during 

walking were recruited in a feedback manner in order to account for the perturbation 

response during walking for most muscles and perturbation directions.  

 

3.2 Methods 

 In order to determine whether the same muscle synergies are recruited during 

postural responses to perturbations in different dynamical contexts, we recorded postural 

responses to ramp and hold translations of the support surface during regular walking as 

well as translations during walking.  Four perturbation directions were applied in the 

horizontal plane, and the presentation order was randomized.  Muscle synergies were 

extracted from the unperturbed walking condition and used to reconstruct the perturbed 

walking trials.   
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3.2.1 Data Collection 

Nine healthy subjects (4 male, 5 female) between the ages of 18 and 26 were exposed 

to support surface translations according to an experimental protocol that was approved 

by the Institutional Review Boards of GA Tech and Emory.   In the walking only 

conditions, subjects walked overground slowly (0.6-0.7m/s) or at a self-selected pace 

(1.2-1.5 m/s) for approximately 7.5 m, or 7 gait cycles.  Subjects listened to a metronome 

beat 4 times before they began walking each trial and were instructed to try to maintain 

that pace as closely as possible without hearing a metronome while they were walking.  

Data collection began on the third step, to eliminate any variability associated with gait 

initiation.  Eight trials of unperturbed walking at each speed were collected at the 

beginning of the experiment condition, in which the subject knew there would be no 

perturbation.   In the perturbed walking conditions, subjects were told there may or may 

not be a perturbation while they were walking.  As subjects crossed a force plate halfway 

through the path, the platform translated in one of 4 equally spaced directions in the 

horizontal plane – anterior, posterior, medial, and lateral (displacement 12.4cm, velocity 

40 cm/sec, acceleration 0.7g).  The perturbation was applied when the force under the 

right foot had reached 40% of body weight, occurring when the right leg was in early 

stance.  Perturbation directions were randomized, and three trials of each direction for 

each speed were collected.  For each speed, twelve trials of unperturbed walking were 

collected randomly in between perturbation trials in order to capture any anticipatory 

responses ("catch" trials).   The walking trials collected for each speed were blocked: a 
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block of self-selected walking trials was collected and a block of slow walking trials was 

collected separately.  The order of the conditions was randomized for each subject. 

Since many muscles are required for the component analysis, surface EMG 

activity was recorded from sixteen lower-back and leg muscles on the subject’s right side, 

which was the stance leg in perturbed walking.  The muscles recorded include:  vastus 

lateralis (VLAT), rectus femoris (RFEM), rectus abdominis (REAB), biceps femoris long 

head (BFLH), semitendinosus (SEMT), adductor magnus (ADMG), erector spinae 

(ERSP), abdominal external oblique (EXOB), vastus medialis (VMED), tibialis anterior 

(TA), medial gastrocnemius (MGAS), lateral gastrocnemius (LGAS), soleus (SOL), 

peroneus (PERO), tensor fasciae latae (TFL), and gluteus medius (GMED).  EMG data 

were sampled at 1080 Hz, and then high pass filtered at 35 Hz, de-meaned, rectified, and 

low-pass filtered at 40 Hz, using custom MATLAB routines.  Additionally, kinetic data 

was collected from force plates under the feet (AMTI, Watertown, MA) and kinematic 

data was collected using a motion capture system (Vicon, Centennial, CO) and a custom 

25-marker set that included head-arms-trunk (HAT), thigh, shank, and foot segments. 

 

3.2.2. Data Processing 

In the walking conditions, in order to reduce computation time, EMG data were 

downsampled by averaging the data in 10-ms bins.  At least three complete gait cycles for 

each trial were included in the analysis.  Although 8 seconds of data were collected, only 

the first 4-5 seconds of each trial were included in the analysis, because often the subjects 

reached the end of the pathway before 8 seconds had passed.  The precise endpoint used 

for each subject and walking speed was determined by including the same number of 
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steps after the perturbation that were collected before the perturbation, and was roughly 

twice the average perturbation onset time.  Trials were concatenated to form the Data 

matrix; no time normalization was performed.  In the walking only conditions, a Data 

matrix was formed consisting of 6-8 walking trials with no perturbation.  For 

visualization, each row of each data matrix (each muscle) was normalized to the 

maximum activation of the unperturbed self-selected speed walking trials.  Therefore, the 

self-selected speed unperturbed walking trials' muscle activations ranged from 0-1, and 

the slow walking trials as well as the perturbed walking trials were all normalized by the 

same scaling factors.  Before extracting muscle synergies, each muscle is normalized to 

have unit variance (described later), so this 0-1 normalization was purely for visualization 

and comparison purposes. 

 

3.2.3 Extraction of Muscle Synergies 

We extracted muscle synergies from the data matrix of EMG recordings using 

nonnegative matrix factorization (NNMF) described by Lee and Seung, 1999 (Lee and 

Seung 1999; Tresch et al. 1999), which has previously been used for muscle synergy 

analysis (Ting and Macpherson 2005; Torres-Oviedo and Ting 2007).  This is a linear 

decomposition technique that assumes that a muscle activation pattern, M, in a given time 

period which was evoked by a perturbation in a particular direction is comprised of a 

linear combination of a few muscle synergies, Wi, that are each recruited by a synergy 

recruitment coefficient, ci.  Therefore, a particular muscle activation pattern at a 

particular time in response to a particular perturbation would be represented by: 

M = c1W1 + c2W2 + c3W3 + … 
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Wi specifies the muscles involved in synergy i and their relative contributions.  Each 

component of Wi represents the contribution of one particular muscle to that synergy, and 

an individual muscle may contribute to multiple synergies.  The muscle synergies do not 

change composition across conditions, and each one is multiplied by a scalar recruitment 

coefficient, ci, which changes over time and across conditions.  The recruitment 

coefficient, ci, is hypothesized to represent the neural command that specifies how that 

synergy is modulated over time, and how much each synergy will contribute to a 

muscle’s total activity pattern (Ting 2007). 

To determine whether postural muscle synergies are recruited during 

perturbations to walking, first muscle synergies from unperturbed walking patterns were 

identified.  Each row of the Data matrix (each muscle) was normalized to have unit 

variance before extracting muscle synergies, and then this normalization is un-done after 

extracting, to return the data and muscle synergies back to the previous scaling.  To 

determine if bin size affects the muscle synergy structure, and to validate the identified 

muscle synergies underlying walking are robust, we extracted muscle synergies from data 

binned in 20ms bins, 50 ms bins, 100 ms bins, and 200ms bins.  To determine if 

anticipation of a perturbation affected the walking pattern and which muscle synergies 

were recruited during this anticipation, muscle synergies were extracted separately from 

unperturbed walking trials in which the subjects knew there would be no perturbation, 

and from unperturbed walking "catch" trials.  Furthermore, to determine if walking speed 

affects muscle synergy recruitment, muscle synergies were extracted separately from 

self-selected walking catch trials and slow walking catch trials.  Similarity between 

muscle synergies extracted from each speed individually was quantified by calculating 
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the correlation coefficient (r) between the muscle synergy vectors.  A pair of muscle 

synergies having r>0.623 were considered similar, which corresponds to the critical value 

of r2 for 16 muscles (r2=0.388; p=0.01; see Chapter 2 for muscle synergy comparison 

details).  When we were satisfied that similar muscle synergies are recruited during 

walking at different speeds, one set of muscle synergies was extracted from a Data matrix 

consisting of both self-selected walking catch trials and slow walking catch trials, and 

these muscle synergies were termed "walking" muscle synergies.  

The number of muscle synergies required to explain any of these data sets was 

determined by selecting the least number of synergies that could adequately reconstruct 

the muscle responses during the unperturbed walking condition (Nsyn).  The goodness of 

fit of the data reconstruction using the muscle synergies was quantified by variability 

accounted for (VAF), defined as 100 x uncentered Pearson's correlation coefficient 

(Torres-Oviedo et al. 2006; Zar 1999).  Nsyn accounted for greater than 85% VAF 

overall.  We added the further local criterion that muscle synergies also account for 

greater than 75% VAF in each muscle.  This local fit criterion is more stringent and 

ensures that relevant features of the data set are reproduced. The number of muscle 

synergies is increased if local fits were improved. However, if an additional muscle 

synergy contributed evenly to the VAF across muscles and perturbation directions, it was 

not included because it likely represented noise in the data rather than variations due to 

trial or perturbation direction.  Nsyn was also validated using factor analysis (FA): 1-12 

factors were extracted and the log likelihood of each was plotted vs. number of factors.  

Nsyn was chosen by finding the point on the log-likelihood curve where curvature is 

greatest (Tresch et al. 2006).  
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3.2.4 Data Analysis 

To investigate whether the ongoing walking muscle synergies were differentially 

recruited during perturbations to walking, the walking muscle synergies were used to 

reconstruct the perturbed walking trials.  VAF and r2 correlations between measured 

EMG and reconstructed EMG were computed for a time window 100ms to 400ms after 

perturbation onset to determine how well the walking muscle synergies can explain the 

perturbation response.   

To visualize which muscle synergies were recruited during postural responses in 

walking, we quantified the additional walking muscle synergy recruitment required 

during perturbation responses when compared with unperturbed walking.  To this end, we 

found the area under the recruitment coefficient curve (Cmag) for each muscle synergy 

during the time window 100ms to 400ms following perturbation onset for each 

perturbation trial.  Likewise, we found the area under the recruitment coefficient curves 

(Cmag) for the same time window in unperturbed walking catch trials, although instead 

of based on perturbation onset, this window was based on the vertical force under the 

right foot corresponding to the force under the foot when a perturbation was triggered in 

perturbation trials.  We averaged Cmag for each muscle synergy across perturbation trials 

with perturbations in the same direction, and expressed these as percentages of the 

unperturbed walking Cmag, for each walking speed. 

To quantify kinematic modifications in the perturbed gait cycle, we calculated left 

leg step length and step width, as well as right leg stance time.  Left leg step length and 

width were found by subtracting the heel marker position of the right foot from the heel 
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marker position of the left foot at the beginning of left stance immediately following the 

perturbation.  The anterior/posterior distance between the left heel and right heel was step 

length and the medial/lateral distance between the left heel and right heel was step width.  

These were averaged across trials of the same perturbation direction for each speed and 

compared to the left step length and width on unperturbed walking catch trials for the 

step in which the subject crossed the force plate.  Additionally, right foot stance times 

were averaged across perturbed walking trials of the same direction for each speed and 

compared to unperturbed walking stance times.  Stance phase for each foot was 

determined using heel marker positions. 

To determine if the same functional walking muscle synergies are consistently 

used across subjects, we grouped muscle synergies and calculated the correlation 

coefficients (r) between all synergy vectors across all subjects.  Similar muscle synergies 

were defined as those having r>0.623, which corresponds to the critical value of r2 for 16 

muscles (r2=0.388; p=0.01; see Chapter 2 for muscle synergy comparison details).  To 

allow for individual differences when comparing across subjects, we also noted those 

muscle synergy pairs having r>0.497, which corresponds to the critical value of r2 for 16 

muscles using p=0.05.  This less stringent criterion was also imposed to determine if 

there were any additional similar muscle synergies across subjects while allowing for 

individual differences across subjects.  

 

3.3 Results 

For all subjects, a few muscle synergies could reproduce walking patterns 

regardless of walking speed and subjects' anticipatory state.  Furthermore, the same 



 

 71 

muscle synergies were differentially recruited in response to an unexpected perturbation 

encountered while walking, and could explain the majority of responses to anterior, 

posterior, medial, and lateral perturbations during walking.   

 

3.3.1 EMG activity during walking 

EMG activity during walking was similar in all unperturbed walking trials, 

regardless of the subjects' anticipatory state.  As has been described before, TA and 

PERO were active during swing and in early stance, quadriceps (VLAT, VMED, and 

RFEM) were active at the end of swing and in early stance, hamstrings (SEMT, BFLH) 

were active during early stance and again in late stance during slow walking, and 

gastrocnemius muscles were active during midstance and during swing in slow walking.  

These patterns were also observed during perturbation trials for the step cycles before and 

after the cycle which included the perturbation. 

The magnitude of ongoing muscle activity and perturbation responses depended 

on walking speed.  The magnitude of the ongoing walking EMG was greater in self-

selected speed walking than was observed in slow walking (Figure 3.1A).  However, the 

magnitude of the perturbation response relative to the ongoing walking muscle activity 

was greater in slow walking, as evidenced just after perturbation onset for perturbed 

walking trials.  The muscles that responded to a perturbation during walking were 

different depending on the perturbation direction.  For instance, anterior perturbations 

elicit posture responses in TA, PERO, and quadriceps, whereas lateral perturbations elicit 

posture responses in TFL, GMED, and PERO (Figure 3.1B).  Although GMED activity 
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appears low, the posture response is quite high relative to the ongoing muscle activity, 

indicating it does play a role in medial/lateral stability as has been shown previously. 
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Figure 3.1 Comparison of EMG across walking speeds and perturbation directions.  A) 
EMG during perturbed self-selected speed and slow walking.  Red vertical line indicates 
perturbation onset of an anterior perturbation.  Gray shaded boxes indicate stance phase.  
The magnitude of the ongoing walking EMG was greater in self-selected speed walking 
than slow walking, but the magnitude of the perturbation response relative to the ongoing 
walking muscle activity was greater in slow walking.  B) EMG during perturbed self-
selected speed walking.  Shown are one trial that contained an anterior perturbation and 
one with a lateral perturbation.  Different muscles were activated during the perturbation 
response (time window 100-400ms following perturbation onset) depending on the 
perturbation direction. 
 

3.3.2 Muscle synergies extracted from various conditions 

 The composition of muscle synergies underlying walking is not affected by the 

size of the time window used to smooth the data, validating the robustness of the walking 

muscle synergies (Figure 3.2).  Muscle synergies extracted from walking data binned into 

200ms bins, 100ms bins, 50ms bins, 25 ms bins, 10 ms bins, and no bins were similar (r = 

0.93±0.08).  For bin sizes of 10ms, 25ms, and 50ms, all muscle synergies were similar to 

those extracted from data which had not been binned at all.  For bin sizes of 100ms or 

200ms, one muscle synergy was no longer similar to the one extracted from the other bin 

sizes (r=0.40), but all other muscle synergies were similar to those extracted from data 

which had not been binned at all.  Therefore, we selected a 10ms bin in order to reduce 

computation time and improve visualization while retaining small (and possibly 

important) variations in muscle activity.  The muscle synergies extracted from data 

binned into 10ms bins were nearly identical to those extracted from data which had not 

been binned at all (r=0.98±0.02). 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Figure 3.2 Comparison of muscle synergies extracted from walking data binned into 
different time bins.  Shown are the muscle synergies extracted from slow walking catch 
trials which have either been A) not binned, B) binned into 10ms bins, C) binned into 
25ms bins, D) binned into 50ms bins, E) binned into 100ms bins, or F) binned into 200ms 
bins.  Bin size did not affect muscle synergy composition until the bin is 100ms or larger, 
when only one muscle synergy composition was changed.  Correlations between each 
muscle synergy vector and the corresponding muscle synergy from data that had not been 
binned at all are shown by r-values. 
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together (r=0.90±0.07, Figure 3.3).   Six subjects had one muscle synergy that was used 

in one walking speed but not used in the other walking speed, usually composed of 

hamstring or trunk muscles.  In four of these subjects, this muscle synergy was identified 

in the muscle synergies extracted from the combined data consisting of both walking 

speeds, so the combined set of muscle synergies contain all muscle synergies used in both 

walking speeds.  However, in two subjects, the muscle synergy used only in one walking 

speed was not identified in the set of muscle synergies extracted from combined data 

(Figure 3.3). 

Muscle synergy composition was generally unaffected by anticipation of a 

perturbation.  For six subjects, the same number of muscle synergies were identified from 

walking trials in which subjects knew there would be no perturbation as were identified 

from walking catch trials in which no perturbation was given but one was expected.  The 

composition of the muscle synergies extracted from these two conditions was similar 

(r=0.93±0.07, Figure 3.4).  For two other subjects, one additional muscle synergy was 

used in walking catch trials but not in regular walking trials.  This additional muscle 

synergy involved hamstring and/or trunk muscles, depending on the subject.  For the 

remaining subject, one additional muscle synergy with strong contribution from TFL was 

identified in regular walking trials that was not used in walking catch trials. 
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Figure 3.3 Comparison of muscle synergies extracted from different walking speeds.  A) 
Muscle synergies extracted from slow walking trials and self-selected speed walking 
trials combined; B) muscle synergies extracted from slow walking catch trials; and C) 
muscle synergies extracted from self-selected speed walking catch trials.  Generally 
walking speed did not affect indentified muscle synergies.  Correlations between each 
muscle synergy vector and the corresponding muscle synergy from self-selected and slow 
walking data combined are shown by r-values. 
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Figure 3.4 Muscle synergies extracted from unperturbed self-selected speed walking 
with and without anticipation.  A) Muscle synergies extracted from (A) walking catch 
trials (with anticipation) and (B) walking control trials (no anticipation) have similar 
composition and recruitment.  Correlations between muscle synergy vectors are shown by 
r-values. 
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3.3.3 Muscle synergies from unperturbed walking can explain posture responses 

 6-8 muscle synergies extracted from unperturbed self-selected and slow walking 

data combined for each subject were sufficient to explain 89±3% of the overall 

variability in the data, and 89±6% of the variability in each muscle across both walking 

speeds.  Each muscle synergy was generally composed of muscles spanning one 

particular joint or muscles that have a similar function (Figure 3.5, W).  For example, W1 

had strong contributions from LGAS, MGAS, and SOL, all plantar flexors, and W2 had 

strong contributions from VLAT, VMED, and RFEM, all knee extensors.  These trends 

in muscle synergy composition were observed in all subjects.  Muscle synergies were 

generally recruited during particular phases of the gait cycle, such as W1 recruited during 

late stance, and W2 recruited during early stance.   However, a few muscle synergies 

were recruited throughout the gait cycle, composed usually of trunk muscles, such as W4 

(Figure 3.5). 

 Examining the recruitment coefficients of muscle synergies across time, trial, and 

perturbation direction reveals that the variability in the data is explained by recruiting the 

same muscle synergies for feed-forward walking, anticipation, and the feedback postural 

response.  When subjects encountered a perturbation during walking, the muscle 

synergies from unperturbed walking were recruited to account for the perturbation 

response.  In response to a forward perturbation during slow walking, W2, W5, and W6 

were recruited strongly 100-400ms after the perturbation (Figure 3.5).  Additionally, W2 

was recruited even before the perturbation was presented, likely due to anticipation of the 

perturbation.   
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Figure 3.5 Walking muscle synergies and recruitment coefficients for an anterior 
perturbation trial.  Muscle synergies were extracted from self-selected and slow walking 
catch trials and used to reconstruct perturbed walking trials.  Shown are the recruitment 
coefficients for an anterior perturbation trial at each walking speed. 
 

 Walking muscle synergies can explain most of the variability in perturbed 

walking data at both self-selected and slow speeds (Figure 3.6).  For perturbations in the 

four cardinal directions (anterior, posterior, medial, and lateral), the ongoing walking 

muscle synergies were differentially recruited to account for the perturbation response.  

Most of the EMG activity resulting from the perturbation is observed 100-400ms 

following the perturbation.  The muscle activity during this window predicted by 

recruiting ongoing walking muscle synergies is similar to the recorded EMG during this 

time window for the majority of all muscle responses, no matter the walking speed or 

perturbation direction (VAF=91±8.7%, individual muscle reconstructions, Figure 3.6). 
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Figure 3.6 Reconstructions of EMG in several perturbed walking trials using the muscle 
synergies shown in Figure 5.  Original data are shown by a dashed black line and 
reconstructed data are shown by a solid black line.  The contribution of each muscle 
synergy to the reconstruction is shown by the corresponding colored line, all of which are 
added to generate the total reconstruction.  Average VAF between each muscle activation 
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pattern and the muscle synergy reconstruction is 91±8.7%.  A) posterior perturbation 
during slow walking, B) lateral perturbation during slow walking, C) medial perturbation 
during self-selected walking, and D) anterior perturbation during self-selected walking.  
Shown are VAF and r2 between each EMG and the reconstruction using the walking 
muscle synergies. 
 

  

 Occasionally a muscle responded to a perturbation and this additional muscle 

activity was not well reconstructed using the muscle synergies from walking.  Of the 8 

subjects, 2 walking speeds, 16 muscles, 4 perturbation directions, and 3 trials in each 

direction (3456 total reconstructions), this was the case for 134 reconstructions (3.8% of 

all reconstructions).  For example, in one lateral perturbation trial, the posture response in 

TA was overpredicted using the muscle synergies from unperturbed walking, although 

the responses in the other muscles are well reconstructed (Figure 3.7A).  In another 

subject, the posture responses to an anterior perturbation during walking in VMED and 

TA were overpredicted using their walking muscle synergies, whereas the posture 

response in TFL in the same trial was underpredicted using their walking muscle 

synergies (Figure 3.7B).  

 

3.3.4 Quantification of additional muscle synergy recruitment accounting for 

perturbation response 

 Specific muscle synergies were recruited to account for the perturbation response 

in specific perturbation directions (Figure 3.8).  In self-selected speed walking, generally 

2-3 muscle synergies were recruited additionally during the perturbation response for 

each perturbation direction.  For example, in self-selected speed walking lateral 

perturbations, W5 was strongly recruited during the time window 100-400ms after 
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perturbation onset, whereas W6 was recruited only slightly more than in unperturbed 

walking (Figure 3.8A).  In anterior perturbations, W2 and W5 were strongly recruited 

during the time window 100-400ms after perturbation onset, relative to unperturbed 

walking (Figure 3.8B).  In medial perturbation directions, W3 is recruited much more 

than in unperturbed walking, along with W2 and W5.  The large additional recruitment of 

muscle synergies observed in anterior and medial perturbations may indicate greater 

instability in those directions.  In slow walking, generally 1-2 muscle synergies were 

additionally recruited during perturbation responses.  In slow walking, muscle synergy 

recruitment immediately following the perturbation was not much greater than in 

unperturbed walking, except W2 was very strongly recruited in anterior perturbations 

(Figure 3.8B).   

 

3.3.5 Some compensations were made by the swing leg 

 Different perturbation directions resulted in differential placement of the swing 

leg following the perturbation (Figure 3.9).  A longer step taken by the left leg was 

observed following posterior perturbations, and shorter steps followed anterior 

perturbations (Figure 3.9A).  Lateral perturbations resulted in a wider step taken by the 

left leg just after the perturbation, whereas medial perturbations generally resulted in a 

cross-over step to maintain balance (Figure 3.9B).  The right leg stance duration was 

increased in anterior perturbations, likely due to the additional time required to restore the 

CoM motion to a forward direction after the perturbation caused it to temporarily 

accelerate backward (Figure 3.9C).  Right leg stance duration was decreased in posterior 

perturbations as subjects quickly stepped the left foot down to continue walking forward. 



 

 83 

 

Figure 3.7 Reconstructions of EMG using the walking muscle synergies for a few trials 
and muscles that were not well reconstructed.  A) A lateral perturbation during walking 
in which the postural response in TA was overpredicted by the walking muscle synergies 
shown in Figure 5.  Original data are shown by a dashed black line and reconstructed data 
are shown by a solid black line.  The contribution of each muscle synergy to the 
reconstruction is shown by the corresponding colored line, all of which are added to 
generate the total reconstruction.  B) Another subject; anterior perturbation during 
walking in which the postural response in TFL was underpredicated by their walking 
muscle synergies (not shown), and the postural responses in VMED and TA were 
overpredicted by the walking muscle synergies. Shown are VAF and r2 between each 
EMG and the reconstruction using the walking muscle synergies. 
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Figure 3.8 Quantification of the additional muscle synergy recruitment that accounts for 
perturbation responses during walking.  A) Two muscle synergies (W5 and W6) and their 
recruitment coefficients for one trial of unperturbed walking and one trial of walking with 
a lateral perturbation.  In perturbation trials, the magnitude of the recruitment coefficient 
for each muscle synergy was averaged during the time window 100-400ms after 
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perturbation and expressed as a percentage of the magnitude of the coefficient during the 
same window in unperturbed walking.  B) Average and standard deviation of the 
magnitudes of muscle synergy recruitment in perturbation responses during walking 
expressed as a percentage of unperturbed walking recruitment magnitudes across trials of 
the same perturbation direction.  In self-selected speed walking, generally 2-3 muscle 
synergies were recruited extra during the perturbation response for each perturbation 
direction.  In slow walking, generally 1-2 muscle synergies were additionally recruited 
during perturbation responses.  Different muscle synergies were recruited during 
perturbation responses in different directions. 
 

 

Figure 3.9 Swing leg (left leg) step length (A) and width (B) for self-selected speed 
walking without perturbations and for each direction of perturbation, illustrating the 
differential placement of the swing leg used to recover from perturbations.  Step lengths 
and widths are relative to the right foot.  Shown are the mean and standard deviation for 
the left leg step length and width across trials for the one step immediately following the 
perturbation.  C) Right leg stance times for the stance phase which includes the 
perturbation.  Shown are the mean and standard deviation across trials of the same 
perturbation direction.  Anterior perturbations cause a longer stance phase, whereas 
posterior perturbations shortened stance. 
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3.3.6 Similar muscle synergies were found across subjects 

 Different subjects used different numbers of muscle synergies during walking, but 

there were some commonalities in composition of muscle synergies across subjects 

(Figure 3.10).  W1 and W2 were similar across all subjects (r=0.73±0.14, and 

r=0.78±0.12, respectively).  The muscle synergies were recruited during similar phases of 

the gait cycle across subjects: W1 recruited during mid- to late stance, and W2 recruited 

during early stance.  W3 was another shared muscle synergy similar across 8 subjects 

(r=0.86±0.15) and used during late swing and early stance.  Subject 2 used a different 

muscle synergy during late swing/early stance.  W5 was similar across 7 subjects 

(r=0.77±0.14), W6 was similar across 6 subjects (r=0.73±0.13), and W4 was similar 

across 5 subjects (r=0.82±0.12).  A few other muscle synergies were unique to individual 

subjects, perhaps reflecting prior experience or training. 
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Figure 3.10 Comparison of walking muscle synergies across subjects.  Two muscle 
synergies were similar across all subjects (W1 and W2), and another was similar across 8 
subjects (W3).  One muscle synergy was similar across 7 subjects (W5), one was similar 
across 6 subjects (W6), and one was similar across 5 subjects (W4).  Similar muscle 
synergies have r>0.623 (p=0.01) when compared with the corresponding muscle synergy 
found in Subject 1.  Synergies indicated with a gray background have r>0.497 (p=0.05), 
but less than 0.623 when compared with Subject 1. 
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3.4 Discussion 

 Our results demonstrate that muscles synergies used during walking can be 

recruited in a feedback manner to explain the additional variability caused by an 

unexpected perturbation during walking in most conditions.  We examined whether 

muscle synergies could help us identify or distinguish feed-forward balance control 

associated with walking from feedback balance control required in light of an unexpected 

disturbance.  In general, the same muscle synergies were used for both types of balance 

control, suggesting a common neural mechanism for different balance requirements 

during walking.  Occasionally the walking muscle synergies could not explain the 

postural muscle activity following a perturbation, so other mechanisms may have been 

contributing in those instances. 

 The walking muscle synergies identified here are similar to those that have been 

described previously (Clark et al. 2010; Neptune et al. 2009a), although we identified a 

greater number of muscle synergies because we recorded a larger number of muscles.  

We recorded from 16 muscles as opposed to their 8, including many trunk and 

medial/lateral muscles which were not included in their study, so we identified 2 muscle 

synergies in addition to the 4 they identified.   The two extra muscle synergies identified 

here, W4 and W6 (Figure 3.5), are composed predominantly of trunk muscles.  W4 is 

recruited in early stance and throughout the gait cycle and W6 is recruited in late stance, 

acting to propel the trunk forward and then stabilize the trunk at the end of stance, 

respectively.  The walking muscle synergy recruitment timings are also similar to those 

that have been previously identified (Ivanenko et al. 2004).  The additional component 
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identified here (W4) has strong contributions from muscles REAB and EXOB, which 

were not recorded in the referenced previous study.  It was recruited during early stance 

in some trials and minimally recruited throughout the entire gait cycle in other trials, 

possibly providing trunk stabilization during walking.  Several muscle synergies were 

conserved across subjects (Figure 3.10), which may indicate an evolutionary advantage to 

using these muscle synergies, or may reflect the biomechanics of walking.  Other muscle 

synergies were subject-specific, and may reflect individual differences in prior 

experiences, training, etc.   

Walking muscle synergies were recruited extra on the step in which a perturbation 

was expected, even before the perturbation was initiated, illustrating the differential 

recruitment of muscle synergies in anticipation of a perturbation (see Figure 5, W2 

recruitment increased before perturbation onset in slow walking).  The increased cycle-

by-cycle variability induced by feed-forward anticipation was explained by recruiting the 

same muscle synergies used during unperturbed walking.  Anticipation reflects cognitive 

influences, and this voluntary modification suggests the anticipatory recruitment of the 

same muscle synergies was possibly achieved via a different pathway from that which 

recruits muscle synergies in regular walking.   

The walking muscle synergies were differentially recruited in a feedback manner 

in reactive responses to perturbations during walking, suggesting that the recruitment of 

muscle synergies is not strictly phase dependent, but perhaps instead is related to a 

biomechanical function, such as controlling the CoM.  Walking muscle synergies were 

recruited in response to perturbations at phases in the gait cycle where they are not 

typically recruited.  Within a single gait cycle we observed modifications in muscle 
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activity due to the perturbation that are not simply deletions or enhancements of bursts 

that are already there in walking.  Rather than resetting or modifying the CPG pattern, the 

CPG was able to recruit muscles during a phase that is not typical (McCrea and Rybak 

2008).  Similarly, previous work in cycling has shown muscle activity during a non-

typical phase, demonstrating no phase-resetting (Ting et al. 2000; Ting et al. 1998).  This 

suggests two possibilities:  1) The CPG itself was modified to account for the 

perturbation, or 2) a postural loop was activated that recruited the same muscle synergies 

used for walking.  It is possible that there exists a CPG controller and a postural 

controller which both have access to the same set of muscle synergies.   

 Here we showed the same muscle synergies are used for feed-forward walking 

(with feedback contributions) and feedback posture responses, as well as anticipation, 

suggesting that they must be broadly accessible.  Walking patterns are thought to be 

generated spinally, but posture responses generally are considered initiated from higher 

centers such as brainstem (Honeycutt et al. 2009), due to the necessary integration of 

various sensory modalities.   Current evidence suggests spinal circuits alone cannot 

generate the coordinated muscle activity required following postural perturbations (Pratt 

1994).  Our results suggest the muscle synergies themselves are implemented in the 

spinal cord, but accessible via numerous descending pathways, and their recruitment may 

be modifiable via cortical control (Drew et al. 2008).  A previous study of perturbations 

to walking showed that responses to afferent input during walking are organized at the 

spinal level and modulated by supraspinal centers (Field-Fote and Dietz 2007).    

 As other studies have shown, here we observed that afferent input from the stance 

limb influenced control of the swing limb (Dietz and Duysens 2000; Dietz et al. 1989; 
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Reisman et al. 2005; Tang et al. 1998; Ting et al. 2000).  Although we did not record 

EMG from the swing limb (left leg), the differential placement of the foot following 

perturbations in different directions suggests compensatory mechanisms are used in the 

NS in response to the afferent input from the perturbed stance limb.  Another study 

supports this idea by finding that balance control during walking is achieved by 

preprogrammed muscle synergies that may be triggered by multiple sensory cues 

(Misiaszek 2003). 

 Here we have shown that postural responses during walking can be explained by 

walking muscle synergies in most instances, but there were a few muscles/perturbation 

directions in which the walking muscle synergies either under or over-predicted the 

perturbation response (Figure 3.7).  It is possible that postural muscle synergies were 

recruited in addition to walking ones to account for the perturbation responses in these 

instances.  Further study is required to expand our examination of perturbation responses 

during walking to see whether similar neural mechanisms are used for balance control in 

walking when compared with standing balance. 
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CHAPTER 4 

COMMON MUSCLE SYNERGIES FOR WALKING AND BALANCE 

CONTROL 

________________________________________________________________________ 

This chapter is in preparation for submission to the Journal of Neurophysiology. 

 

Chvatal SA and Ting LH.  Common muscle synergies for walking and balance control.  J 

Neurophysiol (in prep). 

________________________________________________________________________ 

 

Our previous work has demonstrated that fixed sets of motor modules called 

muscle synergies underlie cycle-by-cycle variability in walking and trial-by-trial 

variability in multidirectional postural responses.  Here, we compared muscle synergies 

extracted from trials in which subjects encountered a postural perturbation during 

overground walking to those extracted from trials of either the walking or postural task 

alone.  In walking control trials, subjects walked along a straight 7.5m path.  At the 

midpoint of the path, subjects stepped on a perturbation platform that was flush with the 

floor.  In walking perturbation trials, the platform translated in one of 12 directions in the 

horizontal plane when the subjects stepped on it with their right foot.  In perturbation 

control trials, subjects maintained balance in response to the same perturbations while 

standing quietly on the platform.  EMGs of 16 muscles in the lower-back and right leg 

were measured.  Although the number of muscle synergies extracted using nonnegative 
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matrix factorization was greater in walking (6-8 muscle synergies) than in postural 

perturbations (5-6 muscle synergies), their composition was similar.  Muscle synergies 

extracted from standing balance perturbations and perturbations during walking had 

similar composition and were recruited for similar perturbation directions.  Specific 

muscle synergies that were only used in one condition were robust across subjects.  We 

have shown similar muscle synergies are used for walking and balance control, 

suggesting a common neural mechanism for not only balance control in various contexts, 

but for movement in general.   The same muscle synergies appear to be accessible from 

multiple commands, such as feed-forward recruitment of muscle synergies during 

walking and feedback recruitment during a postural response. 

 

4.1 Introduction 

When two tasks are performed simultaneously, such as in a postural response 

during walking, it is unclear whether the necessary muscle activations for each task are 

simply superimposed.  Very few studies have considered muscle coordination underlying 

a situation in which two tasks are performed at the same time.  One study suggests that 

when a subject performs a voluntary task during walking, an additional activation 

component is simply superimposed on the walking activations to account for the 

additional voluntary task (Ivanenko et al. 2005).  A different study found that when a 

reaction task (e.g. an arm pull) is performed while walking, the arm movement is not 

affected by the walking pattern (Haridas et al. 2005).  These two studies suggest the two 

tasks are independent, and have independent control mechanisms that are both activated.  

However, other studies involving more than one task have shown that typically the 
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dynamics of the two tasks are not simply juxtaposed (Yiou and Schneider 2007).  Instead, 

it seems that one task will take precedence over another.  For example, when subjects 

perform a voluntary task during a postural perturbation, the posture response takes 

priority and is expressed (Muller et al. 2007), which suggests the two control mechanisms 

are not activated simultaneously.  

Walking and balance control are two distinct tasks that are hypothesized to be 

differentially organized, yet have a common goal of controlling the center of mass 

(CoM).  Generally, walking is thought to be achieved via the activation of a spinal CPG 

with modifications from higher neural centers.  However, evidence suggests spinal 

circuits alone cannot generate the coordinated muscle activity required following postural 

perturbations (Macpherson and Fung 1999; Pratt et al. 1994), so balance control likely 

requires involvement from brainstem structures (Deliagina et al. 2008; Macpherson et al. 

1997).  Are the same neural strategies used for walking used for reactive posture 

responses?  In chapter 2, we showed that muscle synergies are recruited in order to direct 

the movement of the center of mass (CoM) in standing balance tasks.  In a response to a 

perturbation during walking, the ongoing CoM movements as well as the desired CoM 

movement are different than in a standing balance perturbation.  Even so, EMG responses 

to perturbations during walking have been observed at a latency of 90-120ms following 

perturbation onset (Misiaszek 2003; Tang et al. 1998), consistent with the timing of 

standing postural responses.  Therefore, it is possible that similar muscle synergies are 

recruited to direct the CoM for both walking and reactive posture responses 

Although muscle synergies used during walking and standing balance control 

have been studied in isolation, limited work has been done examining the neural 
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mechanisms mediating balance control during walking.  Walking naturally requires 

balance control, but it is unknown whether the same neural mechanisms responsible for 

walking are also controlling balance during walking.  When an unexpected disturbance is 

encountered during walking, are the muscle synergies that underlie a postural response 

superimposed with the ongoing walking pattern?  Here we investigate muscle synergies 

used to respond to multidirectional perturbations during walking.  Previously we have 

demonstrated that muscle synergies can explain cycle-by-cycle variability in cyclic 

behaviors such as pedaling and walking (Clark et al. 2010; Ting et al. 1999), as well as 

trial-by-trial variability in multidirectional postural responses (Torres-Oviedo and Ting 

2007).  The generality of muscle synergies across cyclic motor tasks has been shown in 

human walking and running (Cappellini et al. 2006; Raasch and Zajac 1999; Ting et al. 

1999) and in forward and backward pedaling (Raasch and Zajac 1999; Ting et al. 1999).  

In chapter 3, we showed that in most cases, muscle synergies used during walking are 

recruited differently to account for perturbation responses during walking.  We studied 

four perturbation directions and examined the effect of perturbations on the ongoing 

walking patterns by using walking muscle synergies to reconstruct perturbation 

responses.   

 It is possible that the muscle synergies used during walking are actually the same 

ones recruited for balance tasks.  The generality of muscle synergies across balance tasks 

has been shown in human stepping and non-stepping responses to standing balance 

perturbations (Chapter 2).  In Chapter 3 we examined walking muscle synergies and 

whether they could explain perturbation responses during walking.  Here we explicitly 

compared the muscle synergies used for standing balance control with those used for 
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walking and for perturbation responses during walking.  We focused on the perturbation 

response during walking (rather than the entire walking trial as examined in study 3), and 

compared muscle synergies used for balance control during standing and walking to 

determine whether muscle synergies are robustly used across both walking and balance 

tasks.  We studied walking and postural responses to perturbations to the stance leg in 12 

directions during standing and during walking at two different speeds – self-selected and 

slow.  We hypothesized that the same muscle synergies are recruited to control the CoM 

during walking as are used to control the CoM in standing postural responses.  We 

demonstrate muscle synergies used during walking were also used during perturbations to 

walking and in standing balance perturbations.  

 

4.2 Methods 

 In order to determine whether common muscle synergies are recruited during 

postural responses to perturbations in different dynamical contexts, we recorded postural 

responses to ramp and hold translations of the support surface during standing balance as 

well as during walking at both self-selected and slow walking speeds.  Perturbations in 

twelve directions in the horizontal plane were delivered in random order in each 

condition. Muscle synergies were extracted from both the standing balance and walking 

conditions, as well as from additional trials of unperturbed walking.   Muscle synergies 

and recruitment coefficients from each condition were compared to give insight into 

neural mechanisms underlying each condition. 
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4.2.1 Data Collection 

Eight healthy subjects (4 male, 4 female) between the ages of 19 and 26 

responded to support surface translations according to an experimental protocol that was 

approved by the Institutional Review Boards of Georgia Institute of Technology and 

Emory University.  All subjects participated in each of the three experimental conditions 

(standing balance, self-selected speed walking, and slow walking).  The order in which 

the conditions were presented was randomized for each subject. 

In the standing balance condition, subjects stood on an instrumented platform that 

translated in 12 equally spaced directions in the horizontal plane (see Figure 4.1).  

Subjects were instructed to maintain balance without stepping if possible. A block of 

ramp-and-hold perturbations in each of 12 directions evenly spaced in the horizontal 

plane was presented. The platform’s displacement was 12.4 cm, velocity was 35 cm/s, 

and acceleration was 0.5 g.  The perturbation directions were randomized within the 

block of perturbations to minimize subject anticipatory adjustments and increase 

variability.  Five trials of each of the 12 directions of perturbation were collected.  All 

subjects were able to maintain balance without taking a step. 

In the walking conditions, subjects walked overground slowly (0.6-0.7m/s) or at a 

self-selected pace (1.2-1.5 m/s) for approximately 7.5 m, or 7 gait cycles.  Subjects 

listened to a metronome beat 4 times before they began walking during each trial and 

were instructed to maintain that pace as closely as possible while walking after the 

metronome was silenced.  In slow trials the metronome was set at 60 bpm, and in self-

selected trials the metronome pace was determined by having the subject walk at their 

own pace when they first arrived.  Subjects began walking with their right foot, and data 
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collection began on the third step, to eliminate any variability associated with gait 

initiation.  A single block of walking trials was collected for each walking speed. Eight 

trials of unperturbed walking were collected at the beginning of each block, in which the 

subject knew there would be no perturbation.  In the remaining trials, subjects were told 

that there may or may not be a perturbation. Twelve trials of unperturbed walking were 

collected randomly in between the perturbation trials in order to capture any anticipatory 

responses. In perturbed trials, perturbations (displacement 12.4 cm, velocity 40 cm/sec, 

acceleration 0.7g) were applied as subjects crossed the instrumented platform halfway 

along the path, during early stance phase of the right leg.  The platform was instrumented 

with force plates (AMTI, Watertown, MA), and the perturbation was applied when the 

ground reaction force at the right foot had reached 40% of body weight.  The timing of 

the perturbation during gait was important – it is possible to have inhibition of sensory 

feedback at different times depending on the task conditions.  Preliminary work showed a 

perturbation had a lesser effect on the ongoing walking pattern if encountered during late 

stance.  Perturbation direction was randomized, and three trials of each direction for each 

walking speed were collected.  

Surface EMG activity was recorded from sixteen muscles of the lower-back and 

leg on the subject’s right side, the side of the stance leg in perturbed walking. Muscles 

recorded included:  vastus lateralis (VLAT), rectus femoris (RFEM), rectus abdominis 

(REAB), biceps femoris long head (BFLH), semitendinosus (SEMT), adductor magnus 

(ADMG), erector spinae (ERSP), abdominal external oblique (EXOB), vastus medialis 

(VMED), tibialis anterior (TA), medial gastrocnemius (MGAS), lateral gastrocnemius 

(LGAS), soleus (SOL), peroneus (PERO), tensor fasciae latae (TFL), and gluteus medius 



 

 99 

(GMED).  EMG data were sampled at 1080 Hz, high pass filtered at 35 Hz, de-meaned, 

rectified, and low-pass filtered at 40 Hz, using custom MATLAB routines.  Additionally, 

kinetic data was collected from force plates under the feet, and kinematic data was 

collected using a motion capture system (Vicon, Centennial, CO) and a custom 25-

marker set that included head-arms-trunk (HAT), thigh, shank, and foot segments. 

 

4.2.2 Data Processing 

In the unperturbed walking conditions, at least three complete gait cycles for each 

trial were included in the analysis. In order to reduce computation time, EMG data were 

downsampled by averaging the data in 10-ms bins.  Each trial consisted of 4-5 seconds of 

walking data that was analyzed.  The precise endpoint used for each subject and walking 

speed was determined by including the same number of steps after the perturbation as 

were collected before the perturbation. Time-courses of EMG from unperturbed walking 

trials of each subject were concatenated to form the data matrix used for subsequent 

muscle synergy analysis; no time normalization was performed.  The activation of each 

muscle in each subject was normalized to the maximum activation observed during the 

unperturbed walking trials at the self-selected walking speed. The elements of each row 

of the data matrix (each muscle) constructed from unperturbed walking trials at the self-

selected speed therefore ranged from 0-1. Identical normalization factors from the 

unperturbed self-selected walking conditions were used for all other conditions of each 

subject (see below).  Before extracting muscle synergies, each muscle was normalized to 

have unit variance. 
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In the standing balance condition, in order to account for temporal variations in 

muscle activity, three time bins during the automatic postural response were analyzed. 

The automatic postural response (APR) has been well-characterized and occurs ~100ms 

following the perturbation (Horak and Macpherson 1996).  Due to variations in muscle 

activity during this APR, we further divided it into three 75 ms time bins beginning 100 

ms (PR1), 175 ms (PR2) and 250 ms (PR3) after perturbation onset (Figure 4.1A gray 

shaded areas).  Mean muscle activity for each muscle during each time bin was calculated 

for each trial.  These numbers were assembled to form the data matrix used for 

subsequent muscle synergy analysis, which consisted of 3 time bins x 12 directions x 5 

trials = 180 points for each of the 16 each muscles.  For display purposes, each muscle’s 

EMG values were normalized to the same scaling factors as were using in self-selected 

speed unperturbed walking.   

In the perturbed walking conditions, a small time window following the 

perturbation containing postural response activity was analyzed similarly to the standing 

balance condition.  Mean muscle activity was calculated during three time bins beginning 

100 ms, 175 ms, and 250 ms after the perturbation, and assembled to form the Data 

matrix (Figure 4.1B gray shaded areas).  For perturbed walking, the Data matrix consists 

of 3 time bins x 12 directions x 3 trials = 108 points for each of the 16 each muscles.  

Each muscle’s EMG values were normalized to the same scaling factors as were used in 

self-selected speed unperturbed walking, to permit data inspection and comparison.   
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Figure 4.1 Examples of EMG during a standing balance posture response and a walking 
posture response.  A) Example of postural responses to a forward and leftward 
perturbation of the support surface.  Standing balance perturbations were induced by 
ramp-and-hold perturbations in 12 evenly spaced directions in the horizontal plane.  
Platform displacement and acceleration profiles used to induce responses are shown.  
EMG responses occur 100-ms after the onset of platform motion (vertical dashed line).  
Shown here are tibialis anterior (TA), rectus femoris (RFEM), peroneus (PERO), and 
biceps femoris (BFLH) EMG responses.  Mean EMG activity was calculated for 3 time 
bins during the automatic postural response (PR), indicated by the shaded region, 
beginning 100ms (PR1), 175ms (PR2), and 250ms (PR3) following perturbation.  B) 
Example of EMG during self-selected walking and the response to a forward perturbation 
administered during walking.  Ramp-and-hold perturbations in 12 evenly spaced 
directions were administered during early stance while subjects walked at either self-
selected or slow speeds.  Shown here are TA, RFEM, PERO, and BFLH EMG during 
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walking and the postural response.  Mean EMG activity was calculated for 3 time bins 
during the walking postural response (PR), indicated by the shaded region, beginning 
100ms (PR1), 175ms (PR2), and 250ms (PR3) following perturbation. 
 

 

4.2.3 Extraction of Muscle Synergies 

Prior to extracting muscle synergies, each muscle vector in the Data matrix was 

normalized to have unit variance to ensure equal weighting in the muscle synergy 

extraction.  We extracted muscle synergies from each data matrix of EMG recordings 

using nonnegative matrix factorization (NNMF) (Lee and Seung 1999; Tresch et al. 

1999), which has previously been used for muscle synergy analysis (Ting and 

Macpherson 2005; Torres-Oviedo and Ting 2007).  NNMF is a linear decomposition 

technique that assumes that a muscle activation pattern, M, in a given time period is 

comprised of a linear combination of a few muscle synergies, Wi, that are each recruited 

by a synergy recruitment coefficient, ci.  Therefore, a particular muscle activation pattern, 

M, at a particular time in response to a particular perturbation would be represented by: 

M = c1W1 + c2W2 + c3W3 + … 

where Wi specifies the relative contributions of the muscles involved in synergy i. Each 

component of Wi represents the contribution of one particular muscle to that synergy, and 

an individual muscle may contribute to multiple synergies. The muscle synergies do not 

change composition across conditions, and each one is multiplied by a scalar recruitment 

coefficient, ci, which changes over time and across conditions.  The recruitment 

coefficient, ci, is hypothesized to represent the neural command that specifies how that 

synergy is modulated over time, and how much each synergy will contribute to a 

muscle’s total activity pattern (Ting 2007).  After extracting muscle synergies, the unit 
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variance scaling was removed from data so that each muscle's data was returned to the 

scale where 1 is the maximum activation during self-selected speed unperturbed walking, 

in order to permit comparison of responses and muscle synergies across conditions. 

First muscle synergies were extracted from unperturbed walking patterns in order 

to later compare with muscle synergies used during postural responses.  Since we 

previously showed that the similar muscle synergies are identified when each walking 

speed is analyzed individually (see Chapter 3), one set of muscle synergies was extracted 

from a data matrix consisting of both self-selected speed unperturbed walking catch trials 

and slow unperturbed walking catch trials, and these muscle synergies were termed 

"walking" muscle synergies.  The goodness of fit of the data reconstruction using the 

muscle synergies was quantified by variability accounted for (VAF), defined as 100 x 

uncentered Pearson's correlation coefficient (Torres-Oviedo et al. 2006; Zar 1999).  The 

number of muscle synergies selected (Nsyn) was determined by choosing the least 

number of synergies that could account for greater than 90% of the overall VAF.  We 

added the further local criterion that muscle synergies also accounted for greater than 

75% VAF in each muscle.  This local fit criterion was more stringent and ensured that 

relevant features of the data set are reproduced.  Nsyn was also validated using factor 

analysis (FA): 1-12 factors were extracted and the log likelihood of each was plotted vs. 

number of factors.  Nsyn was chosen by finding the point on the log-likelihood curve 

where curvature is greatest (Tresch et al. 2006). 

Next, muscle synergies were extracted from the postural responses in each of the 

remaining three perturbed conditions: standing balance, slow walking, and self-selected 

walking.  For each dataset, we selected the least number of muscle synergies (Nsyn) that 
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satisfied both the global criterion of reconstructing at least 90% of the overall variance 

(VAF ≥ 90%) as well as the local criterion of reconstructing at least 75% of the 

variability in each muscle and each perturbation direction. VAF for each muscle 

quantified the extent to which the muscle synergies accounted for variability in the 

activity of individual muscles across all time bins, perturbation directions, and trials. 

VAF for each perturbation direction quantified the extent to which the muscle synergies 

accounted for the variability in muscle activation patterns formed by the response of all 

16 muscles to a single perturbation direction during one time bin across all trials.  

 

4.2.4 Data Analysis and Muscle Synergy Comparison 

 Once Nsyn was selected for each condition, the muscle synergies were used to 

reconstruct the EMG patterns, and measured and reconstructed data were compared for a 

particular muscle, time bin, and perturbation direction for each trial to examine the ability 

of the muscle synergies to account for inter-trial variations.  Similarities between 

measured and reconstructed data were quantified using r2 and VAF (Torres-Oviedo et al. 

2006; Zar 1999).  To determine similarity in muscle synergies used for walking and 

balance control, the muscle synergies were compared across conditions.  When 

comparing two sets of muscle synergies, we calculated correlation coefficients (r) 

between each muscle synergy vector in the first set and each in the second set.  A pair of 

muscle synergies were considered "similar" if they had r > 0.623, which corresponds to 

the critical value of r2 for 16 muscles (r2=0.388; p=0.01; see Chapter 2 for muscle 

synergy comparison details).  To determine if similar neural mechanisms are used for 

walking and balance control, we compared walking muscle synergies with muscle 
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synergies extracted from standing balance perturbations and walking perturbations.  

Across perturbation conditions, we compared the tuning curves of similar synergies to 

determine if they were recruited for similar perturbation directions in different contexts.  

We examined the composition and tuning of any condition-specific muscle synergies to 

determine their potential functions. 

 

4.3 Results 

For all subjects, a few muscle synergies reproduced both walking patterns and 

responses to multidirectional balance perturbations, accounting for temporal, spatial, and 

inter-trial variability in muscle activation patterns in walking, balance, and combined 

walking and balance tasks.  The majority of muscle synergies extracted from standing 

balance perturbations and perturbations during walking had similar composition and were 

recruited for similar perturbation directions.  Any identified muscle synergies that were 

only used in one condition were robust across subjects. 

 

4.3.1 Individual muscle activation differs across perturbation conditions 

Muscle tuning curves demonstrate that muscle activation was different during the 

postural response in standing balance perturbations than during postural responses while 

walking slowly or at a self-selected speed (Figure 4.2).  For example, ERSP was 

activated for the same perturbation directions in all conditions (forward and leftward), but 

was activated much more strongly in walking perturbation responses than in standing 

perturbation responses.  TFL was recruited during forward/leftward standing postural 

responses, but was recruited following rightward perturbations during walking.  Other 
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muscles were recruited for the same perturbation directions, and roughly the same 

magnitudes, in both standing and walking conditions.  For example, MGAS was recruited 

strongly for backward perturbations in both standing and walking conditions. 

 

Figure 4.2 Muscle tuning curves from standing balance perturbations and perturbations 
during slow and self-selected walking.  Shown are the tuning curves for seven muscles 
(ERSP, GMED, TFL, BFLH, MGAS, PERO, and TA) during time window PR1 for a 
representative subject.  Shown are the mean tuning curves ± standard deviations for 5 
trials in each perturbation direction, presented randomly.  Muscle tuning curves vary in 
magnitude across perturbation directions, and their shapes vary from muscle to muscle.  
Some muscles have consistent tuning across perturbation conditions (standing, slow 
walking, self-selected walking), while other muscles have different tuning across 
conditions. 
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4.3.2 Similar muscle synergies were used in standing balance and unperturbed 

walking 

  Although unperturbed walking generally required a greater number of muscle 

synergies than standing postural responses, the compositions of the muscle synergies 

used for walking and standing postural control were similar (Figure 4.3).  In unperturbed 

walking, six to eight muscle synergies from walking data from both walking speeds were 

sufficient to explain the variability in the EMG data (VAF overall=89±3%, muscle 

VAF=88±6%).  In postural responses to standing balance perturbations, five to six 

muscle synergies per subject were sufficient to account for >90% total variability and 

>75% variability in each muscle and condition (all 3 time bins, 12 perturbation 

directions, across 5 trials of each) in the EMG data.  For three of seven subjects, all of the 

muscle synergies used in standing postural responses were also used in walking.  For the 

remaining four subjects, all but one to two postural muscle synergies were also used in 

walking.  The postural muscle synergies used in standing balance but not in walking 

usually either had large contributions from TFL and were active for medial/lateral 

perturbations, or had large contributions from TA and PERO and were active for anterior 

perturbations.  Muscle synergies used in unperturbed walking that were not used in 

standing balance postural responses were only weakly recruited during slow walking 

(Ww6, Figure 4.4).  These muscle synergies were comprised of hip/trunk muscles and 

were recruited throughout various phases of the gait cycle in both slow and self-selected 

walking (unlike the other walking muscle synergies that are recruited at particular 

phases), suggesting they may play a role in trunk stabilization during walking. 
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Figure 4.3 Comparison of standing postural muscle synergies and unperturbed walking 
muscle synergies.  A pair of muscle synergies having r > 0.623 was considered similar.  
Muscle synergies extracted from standing balance perturbation responses were similar to 
those extracted from the entire timecourse of many trials of unperturbed walking.  In this 
subject, one additional muscle synergy was identified from walking that is not used in 
standing postural responses.  Correlations between muscle synergy vectors are shown by 
r-values. 
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Figure 4.4 Muscle synergy recruitment coefficients for muscle synergies that were 
specific to regular walking.  Ww6 was recruited during walking but not during postural 
responses in any condition.  Shown are the recruitment coefficients for the trials 
containing: a backward perturbation during self-selected walking, a lateral perturbation 
during self-selected walking, and a forward perturbation during slow walking.  Ww6 is 
weakly recruited in slow walking and recruited throughout the gait cycle in self-selected 
walking, suggesting it plays a trunk stabilization role during walking. 
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synergies extracted from self-selected walking perturbation responses were used in the 

other perturbation response conditions.  There were generally two muscle synergies 

extracted from self-selected speed walking perturbation responses that were not used in 

standing perturbation responses, one of which was similar to the muscle synergy specific 

to slow walking perturbation responses (Figure 4.5).  The other self-selected speed 

walking postural response muscle synergy that was not used in standing balance was 

similar to a walking muscle synergy for most subjects. 

 

4.3.4 Muscle synergy tuning reveals the function of muscle synergies across 

conditions 

 Many similar muscle synergies were identified across all perturbation conditions 

(standing, slow walking, and self-selected walking) and most were recruited for the same 

perturbation directions in all conditions (Figure 4.6).  W1, W2, and W3 were used in 

standing perturbation responses as well as postural responses during both slow and self-

selected walking.  W2 was recruited for backward perturbations in all conditions, and W3 

was recruited during postural responses to medial/lateral perturbations in all conditions.  

Some muscle synergies were recruited for different perturbation directions in the 

different conditions.  For example, W1, comprised of strong contributions from TA and 

PERO, was recruited for forward and backward perturbations in standing postural 

responses, but was instead recruited for lateral and forward perturbations in slow walking 

postural responses and self-selected postural responses.  Although differentially recruited, 

the same muscle synergies could account for perturbation responses in standing and 

walking conditions. 
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Figure 4.5 Comparison of muscle synergies extracted from perturbation responses in the 
3 conditions studied here (standing balance, slow walking, and self-selected walking).  
Muscle synergies were extracted from the 3 PR time periods (100-325 ms following 
perturbation) in each condition.  All but one of the muscle synergies used in slow walking 
postural responses was similar to those used in standing balance postural responses.  All 
but one of the muscle synergies used in self-selected walking perturbation responses was 
similar to those used in standing and/or slow walking postural responses.  Correlations 
between each muscle synergy vector and the corresponding muscle synergy from 
standing balance are shown by r-values. 
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Figure 4.6 Muscle synergy recruitment tuning curves for similar muscle synergies across 
standing and walking perturbation responses.  W1, W2, and W3 were used in standing 
perturbation responses as well as postural responses during slow and self-selected 
walking.  W2 was recruited for backward perturbations in all conditions, whereas W3 
was recruited for medial/lateral perturbations.  W1 was recruited for anterior/posterior 
perturbations in standing postural responses, and for anterior and lateral perturbations in 
walking postural responses.  
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selected walking perturbation responses (Wsl5 and Wss5 see Figure 4.5) had strong 

contributions from hamstring muscles and TA, and was recruited following medial 

perturbations during walking (Figure 4.7A).  An additional muscle synergy identified 

during self-selected postural responses (Wss4), was similar to a muscle synergy used in 

unperturbed walking (Ww6, Figure 4.3, r=0.86), and was not strongly recruited in any 
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was not used in standing postural responses had strong contributions from PERO and 

TFL and was recruited in response to lateral perturbations during slow and self-selected 

walking (Figure 4.7B).  Several subjects used a muscle synergy with similar composition 

and tuning to this one, which resembles a muscle synergy previously identified that 

emerges in postural responses when a subject is standing on one leg (Torres-Oviedo and 

Ting 2010).   

The muscle synergies specific to standing perturbation responses were usually 

recruited for forward and backward perturbations.  W4 was recruited for both forward 

and backward perturbations in PR2 and strongly recruited for backward perturbations in 

PR3 in standing postural responses, but was not used in walking postural responses 

(Figure 4.8A).  Interestingly, W4 was used during regular walking (see Figure 4.3).  Four 

subjects had a muscle synergy tuned for backward perturbations in standing that was not 

used in walking perturbation responses.  Another subject had a muscle synergy with 

strong contributions from REAB, EXOB, and TA, which was strongly recruited 

following forward perturbations in standing but was not used in walking postural 

responses (Figure 4.8B).  A separate set of four subjects had a muscle synergy tuned for 

forward perturbations in standing that was not used in walking perturbation responses.   
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Figure 4.7 Muscle synergy recruitment tuning curves for muscle synergies that were 
specific to walking postural responses.  A) Wsl5 and Wss5, tuned for medial perturbation 
directions, were used during walking postural responses but not standing postural 
responses.  Wss4 was used during self-selected walking postural responses and regular 
walking, but not during slow walking or standing postural responses. B) A muscle 
synergy used during walking postural responses but not standing postural responses for 
another subject, tuned for lateral perturbations during walking.  Muscle synergies used in 
walking postural responses that were not used in standing postural responses were 
recruited for medial or lateral perturbation directions. 
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Figure 4.8 Muscle synergy recruitment tuning curves for muscle synergies that were 
specific to standing postural responses.  A) W4, tuned for backwards perturbations, was 
used during standing postural responses but not walking postural responses.  B) A muscle 
synergy used during standing postural responses but not walking postural responses for 
another subject, tuned for forward perturbations while standing.  Muscle synergies used 
in standing postural responses that were not used in walking postural responses were 
recruited for forward or backward perturbation directions. 
 

 

4.4 Discussion 

 We have shown that similar muscle synergies are used for walking and balance 

control, suggesting a common neural mechanism for not only balance control in various 

contexts, but for movement in general.  Our results demonstrate that muscle synergies are 

recruited from a common pool to generate walking patterns as well as respond to 

perturbations during standing and walking.  The same muscle synergies appear to be 

accessible from multiple commands, such as feed-forward recruitment of muscle 

synergies during walking and feedback recruitment during a postural response.  The CNS 
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appears to be using an integrated motor program built from shared (and some more 

specialized) motor modules in a variety of motor tasks.   

Differences between muscle synergies used in the various conditions studied here 

reflect differences in the functional demands of the tasks in the different contexts of each 

condition.  For instance, the extra muscle synergies identified from walking perturbation 

responses that were not used in standing perturbation responses were tuned for 

medial/lateral perturbation directions (Figure 4.7).  Their composition and tuning was 

similar to the task-specific muscle synergy identified previously that emerged when a 

subject responded to standing balance perturbations while standing on one leg (Torres-

Oviedo and Ting 2010).  The perturbation here was administered during early stance 

while the subject was standing on one leg only, so these additional muscle synergies 

needed to be recruited.  In standing postural responses it is likely that the left leg 

contributed largely to maintaining balance in the medial/lateral directions.  Perhaps these 

muscle synergies would also be used in different walking situations that require greater 

medial/lateral corrections, such as turning or walking in a circle. 

Likewise, most of the muscle synergies found in standing perturbation responses 

that were not used in walking perturbation responses (usually only one muscle synergy 

per subject) were tuned for anterior/posterior perturbations (Figure 4.8).  Presumably 

during walking the forward momentum of the body moves the body forward so an extra 

muscle synergy is not needed to pull the body forward.  Similarly, in walking the overall 

goal is to continue progressing forward, so an additional muscle synergy that would pull 

the body backward is not needed either.  Any extra muscle synergies used in unperturbed 

walking that were not used in perturbation responses tended to have very low recruitment 
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during slow walking and were active throughout different portions of the gait cycle in 

self-selected walking (Figure 4.4).  These muscle synergies (usually one per subject) 

were comprised of hip/trunk muscles, suggesting they may be playing a role in trunk 

stabilization during walking.  Despite these differences in muscle synergies recruited in 

each condition, generally the muscle synergies identified here were robustly used across 

distinct motor tasks of balance and locomotion.   

Several biomechanical functions are common across walking and postural control, 

and may explain why similar muscle coordination patterns are used in both tasks.  In 

balance control, the CoM must be maintained above the base of support (BoS) to prevent 

falling.  Even though walking is a dynamic condition in which the CoM is not usually 

located over the base of support of either stance foot (MacKinnon and Winter 1993), the 

CoM still needs to be controlled to maintain a certain speed during walking.  

Additionally, both walking and balance control require additional functions such as body 

support and trunk stabilization.  In addition to these shared functions, other functions are 

performed during walking, such as limb propulsion and deceleration each gait cycle, 

trunk propulsion, and foot placement.  Nevertheless, the muscle synergies used during 

balance control tasks were also used during walking, and thus were able to account for all 

of these various functions.   

 Our results suggest these muscle synergies are encoded in the CNS and accessible 

via multiple pathways.  Walking patterns are thought to originate from activation of a 

spinal CPG, but can be modified by higher centers (McCrea and Rybak 2008).  Here the 

walking patterns likely had some involvement from the cortex due to the instructions 

given to the subjects.  There was an aspect of intentionality to their walking because they 
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were instructed to try to match a specific walking speed, which they heard in advance via 

a metronome.  Perhaps the muscle synergies themselves are implemented in the spinal 

cord, but accessible via numerous descending pathways, and their recruitment may be 

modifiable via cortical control (Drew et al. 2008).  A previous study of perturbations to 

walking showed that responses to afferent input during walking are organized at the 

spinal level and modulated by supraspinal centers (Field-Fote and Dietz 2007).   

Although walking patterns are generally considered to be feedforward, the posture 

response is considered to be reactive, and likely requires modulation from brainstem or 

other higher centers due to the multiple sensory modalities which are integrated to 

generate a coordinated responses (Deliagina et al. 2008; Macpherson et al. 1997).  

Nevertheless, the same muscle synergies were recruited for these reactive postural 

responses, during both walking and standing still.  Therefore, it appears that multiple 

pathways in the CNS can and do recruit the same modules to achieve different tasks.   
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CHAPTER 5 

CONCLUSIONS 

 

5.1 Significance 

Complications resulting from falls are a leading cause of death among the elderly 

(Anderson et al. 2004).  Thus, it is important to better understand and improve balance 

and postural control.  Here we have identified the muscle coordination underlying 

postural control in healthy, young subjects, as a first step toward our eventual goal of 

applying our knowledge to adults with deficits. This is a necessary precursor that permits 

a better understanding of the underlying causes of impairments that are associated with 

walking and maintaining balance.  Once we can determine a mechanism underlying 

balance control problems in neuromuscular disease or deficit, it would be possible to 

develop appropriate, targeted therapies to address it, including training programs to 

develop the desired muscle synergy structure and activation patterns, thereby improving 

patients' ambulation and independence. 

Here we have shown that the same muscle synergies are used for balance control 

in a variety of tasks, such as standing, stepping, and walking, which could be useful for 

clinical tests of synergy structure, diagnosing impairments, and proposing better 

treatment strategies.  Clinicians could measure a patient’s responses to perturbations in 

only one condition, such as standing, and have information concerning their underlying 

muscle synergies without having to measure responses in multiple conditions.  

Alternatively, patients may have proper coordination in one behavior, but disrupted 

coordination in another behavior, which could be identified using muscle synergies.  
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Knowing the typical muscle coordination patterns should aid in identification of 

disrupted muscle coordination, as has been demonstrated in the muscle synergies of 

stroke patients (Clark et al. 2010).  The robust muscle coordination we identified here 

may be of interest to a variety of fields such as rehabilitation science, prosthetics, and 

robotics. 

 

5.2 Robust muscle synergies for CoM control across multiple motor tasks 

 We conclude that muscle synergies represent a mechanism for simplifying muscle 

coordination in a variety of motor tasks and contexts.  Muscle synergies were robustly 

used across static and dynamic postural tasks, as well as for muscle coordination during 

walking.  Here we showed similar muscle synergies used during reactive non-stepping 

postural responses, reactive stepping responses, walking, and postural responses during 

walking (Figure 5.1), behaviors that had previously been studied separately. Furthermore, 

the muscle synergies were related to task-level goals, rather than local variables.  For 

example, the same muscle synergies were recruited to produce a backward CoM 

acceleration in both a non-stepping response to a forward perturbation and in a backward 

step elicited in response to a backward perturbation.  Therefore the NS may only need to 

compute the desired CoM motion or force at the ground and recruit the appropriate 

muscle synergies to achieve that desired motion. 
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Figure 5.1 Overall study design.  We studied three postural tasks which have similarities 
and differences in both initial CoM movement resulting from a perturbation and desired 
CoM motion required to maintain balance depending on the response strategy selected 
and task goals.  The same muscle synergies were recruited according to desired direction 
of CoM motion across postural behaviors and walking. 
 

 

 Here we demonstrated that similar muscle synergies are used for walking and 

balance control, suggesting a common mechanism for not only balance control in various 

contexts, but for movement in general.  The differences in the timing and spatial 

organization of individual muscle activity standing, stepping, and walking postural 

responses were largely explained by altering the recruitment of a common set of muscle 

synergies, with the addition of only a single muscle synergy specific to each behavior.  

The timing and amount of muscle synergy recruitment varied across these behaviors to 
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account for the differences in individual muscle activity we observed.  This is consistent 

with previous results demonstrating shared and specific muscle synergies across different 

motor behaviors such as frog swimming, kicking, and jumping (Cheung et al. 2009; 

Cheung et al. 2005; d'Avella and Bizzi 2005; Hart and Giszter 2004a; Kargo and Giszter 

2000).  Furthermore, the muscle synergies identified here can explain both proactive and 

reactive balance strategies, accounting for both feed-forward and feedback balance 

control during walking as well as feedback balance control in response to unexpected 

disturbances. 

 Our results support the idea that muscle synergies are used to organize the 

musculoskeletal system to produce a predictable biomechanical function (Chiel et al. 

2009; Ting and McKay 2007), even in different postural behaviors.  We previously 

demonstrated a consistent relationship between muscle synergy recruitment and endpoint 

force production in cats across multiple postural configurations (Ting and Macpherson 

2005; Torres-Oviedo et al. 2006).  Here we showed not only that the same muscle 

synergies were recruited during behaviors with different movement dynamics, but more 

importantly, their recruitment was determined by the desired direction of CoM motion 

(Figure 5.1).  In non-stepping postural responses, a forward perturbation thrusts the body 

backward, and muscles are activated to return the CoM forward to the initial position.  In 

stepping postural responses, a forward perturbation thrusts the body backward, and the 

appropriate muscles are activated in order to take a step backward, moving the CoM 

further away from the starting position.  In backward perturbations, the body is thrust 

forward, and in non-stepping responses the CoM is returned backward to the initial 

position, whereas in stepping responses the CoM is moved further away as a forward step 
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is taken.  In both the non-stepping response to a forward perturbation, and the stepping 

response to a backward perturbation, the desired CoM direction is forward.  In these two 

contexts, the perturbation direction is different, resulting in different sensory input, the 

body is oriented differently, and the overall motion is different, but the goal of moving 

the CoM forward is the same.  Similarly, in walking conditions, the CoM is already 

moving at perturbation onset, whereas in standing postural responses it is initially 

stationary, and the goal following any perturbation direction is to regain balance and 

continue moving the CoM forward.  Despite the differences in sensory, biomechanical, 

and neural conditions in these three behaviors (standing, stepping, and walking), similar 

muscle synergies were recruited to achieve the desired CoM movement. 

 These muscle synergies were recruited to produce a consistent force at the ground 

and CoM acceleration in different postural behaviors as well as walking, rather than 

being recruited consistently according to perturbation direction across behaviors.  This is 

consistent with previous results showing the muscle activity in the initial postural 

response reflects task variables such as CoM motion (Gollhofer et al. 1989; Nashner and 

Mccollum 1985) rather than simple joint angle changes (Nashner 1977; Ting and 

Macpherson 2004).  These results demonstrate that the identified muscle synergies do not 

simply reflect somatosensory patterns triggering the responses, but rather motor modules 

flexibly recruited to produce biomechanical functions required to stabilize the CoM.  

Muscle synergy recruitment in other motor behaviors has also been related to functional 

outputs (Ajiboye and Weir 2009; Clark et al. 2010; Krishnamoorthy et al. 2004; Weiss 

and Flanders 2004), suggesting that muscle synergies are organized according to function 

in a variety of contexts. 
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 The idea that muscle synergies are recruited in order to accomplish behavioral 

goals is consistent with previous work in postural sway showing muscle components, 

called m-modes, that correspond to the direction of center of pressure changes used to 

stabilize the body (Aruin et al. 1998, Krishnamoorthy et al. 2004).  However, these m-

modes we identified using PCA, and their composition changed as the number of postural 

conditions increased (Krishnamoorthy et al. 2004).  Although we believe muscle synergy 

composition may change over long time scales as a result of individual experience, 

training, and adaptation, here we have shown that muscle synergy composition is 

consistent across a variety of postural behaviors.  Nevertheless, this work supports 

hypotheses suggesting muscle synergies are organized in order to achieve task-level 

goals. 

 Muscle synergy recruitment during walking also appears to be related to function 

rather than a specific phase of the gait cycle.  Even though walking is a dynamic 

condition in which the CoM is not usually located over the base of support of either 

stance foot (MacKinnon and Winter 1993), the CoM still needs to be directed during 

walking, perhaps explaining why the muscle synergies used during balance control tasks 

were also used during walking.  Previous studies suggest temporally fixed patterns of 

muscle recruitment occurring at specific times in the gait cycle that are coupled to 

spatially varying muscle weightings (Cappellini et al. 2006; Ivanenko et al. 2005; 

Ivanenko et al. 2004).  In this organization, the CNS chooses from a set of predefined 

temporal recruitment patterns to produce a rhythmic behavior in a feedforward manner.  

The fixed neural commands have access to all of the musculature, and the specific 

muscles activated can vary across trials and contexts.  It is unlikely that a temporally 
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fixed modular organization such as this would be able to explain EMG activity of 

involuntary or reactive tasks that rely more heavily on feedback control.  Here we studied 

perturbations during walking in order to determine whether the modularity in walking is 

organized according to fixed temporal recruitments or instead to fixed muscle groups.  

We saw muscle synergies recruited during different phases of a single gait cycle in 

response to a perturbation (such as one synergy recruited during swing as it is during 

regular walking and recruited again during stance following the perturbation where it is 

not usually recruited), demonstrating that fixed temporal components would not be 

sufficient to explain the additional posture response during walking.  Instead, fixed 

muscle synergies with varying temporal recruitment were able to explain both feed-

forward walking and feedback posture responses during walking, suggesting their 

recruitment is more likely related to a task-level function such as controlling the CoM. 

 

5.3 Central neural control of balance and locomotion 

 Our results in combination with the literature suggest these muscle synergies may 

be encoded in the CNS and accessible via multiple pathways.  It is possible that there are 

neural networks that specify the recruitment commands to a muscle synergy (C) which 

branch with different synaptic weights to the motor neurons of the muscles in the synergy 

(W) (Hart and Giszter 2010).  While such modules have been hypothesized to be encoded 

in the spinal cord for some tasks (Hart and Giszter 2010; Saltiel et al. 2001), postural 

responses likely require brainstem involvement (Deliagina et al. 2008; Honeycutt et al. 

2009; Macpherson et al. 1997), possibly in addition to spinal centers (Schepens et al. 

2008).  Walking patterns are thought to originate from activation of a spinal CPG, but 
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also can be modified by higher centers (McCrea and Rybak 2008).  Perhaps the muscle 

synergies themselves are implemented in the spinal cord, but accessible via numerous 

descending pathways, and their recruitment may be modifiable via cortical control (Drew 

et al. 2008).  This organization is consistent with previous work suggesting fixed motor 

modules encoded in the spinal cord that might also contribute to voluntary movements 

(Kargo et al. 2010) 

 Muscle synergies may reflect neural structures mediating motor control across a 

variety of behaviors and contexts.  Neurophysiological evidence suggests that postural 

responses in the limbs are not simply local reflexes, but rather an activation of a motor 

pattern to achieve a biomechanical goal (Carpenter et al. 1999; Dufosse et al. 1985).  

Current evidence suggests spinal circuits alone cannot generate the coordinated muscle 

activity required following postural perturbations (Macpherson and Fung 1999; Pratt et 

al. 1994).  Neurons in the pontomedullary reticular formation (PMRF) are recruited 

during both reactive and anticipatory postural adjustments (Schepens et al. 2008), and 

these firings are not correlated to individual muscle activity, but discharge in a manner 

consistent with the goal of restoring equilibrium (Stapley and Drew 2009).  Additionally, 

task-level information can be derived from aggregate afferent information in the dorsal 

root ganglia (Weber et al. 2007), as well as in the dorso-spinal cerebellar tract (DSCT) 

(Bosco et al. 1996). Therefore, it can be concluded that consistent neural structures may 

be flexibly accessed and differentially recruited during different motor behaviors by 

breaking motor activities into their component tasks. 

 It appears that multiple pathways in the NS may recruit the same modules to 

achieve different tasks.  The same muscle synergies were recruited for walking and 



 

 127 

reactive postural responses in different contexts.  It is possible that separate controllers 

exist for each task – a CPG controller and a postural controller – which both have access 

to the same set of muscle synergies.  It remains to be seen whether the same muscle 

synergies are used in both reactive and voluntary postural tasks, however, similar muscle 

tuning curves are generated during human whole body reaching tasks as in postural 

responses to perturbation (Leonard et al. 2009), suggesting that motor modules may be 

accessible by voluntary and reactive postural tasks in humans.   

 

5.4 Limitations and Future studies 

 

5.4.1 Different perturbation strengths/types/terrains 

 In Chapter 3 we showed that balance control during walking can be explained by 

modulating walking muscle synergies in most instances, but there are a few 

muscles/perturbation directions in which the walking muscle synergies either under or 

over-predict the perturbation response.  This suggests other studies that examine various 

perturbation strengths, directions, walking speeds, etc. to find the breaking point after 

which walking muscle synergies are no longer sufficient.  Perhaps postural muscle 

synergies are recruited in addition to walking ones to account for the perturbation 

responses in these instances. 

 It would be interesting to examine muscle synergies used while subjects walk on 

unfamiliar terrains, such as foam or rocks.  Perhaps they might initially use a different 

strategy or different muscle synergies as they are initially cautious, but as they become 

familiar with the terrain, they may continue to use the same "preferred" muscle synergies 
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that were used during regular overground walking.  If subjects do use some different 

muscle synergies or strategies initially and then return to their preferred walking muscle 

synergies when walking on different terrains, that would open the door to a variety of 

short-term adaptation studies as well, that would examine how long it takes for subjects 

to return to their preferred patterns. 

 

5.4.2 Role of the other leg 

 In this work, we examined muscle synergies and forces at the ground in the stance 

leg only.  Although we did relate this muscle activity to CoM acceleration, which is a 

whole-body measure that accounts for contributions from both limbs, it would be 

interesting to characterize the muscle synergies and forces produced in the other leg to 

gain a better understanding of the bilateral coordination involved in these postural and 

locomotor behaviors.  In chapter 2, we identified a component of CoM acceleration not 

associated with muscle activity in the stance leg, which we presumed was due to muscle 

activity in the other leg, but in the future it would be useful to quantify the left leg muscle 

activity and correlations to task-level variables.  Our lab is now equipped to record 32 

muscles as opposed to 16; future studies will examine muscle synergies in each limb 

individually for comparison, as well as bilateral muscle synergies and their relationships 

to task-level goals. 

 

5.4.3 Other task-level goals 

 Here we quantified relationships between muscle synergy recruitment and task-

level goals of forces at the ground and CoM acceleration.  In feline standing balance 
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control, it has been hypothesized that several muscle synergies are recruited in order to 

control center of mass (CoM) kinematics by modulating end-point forces (McKay and 

Ting 2008; Torres-Oviedo et al. 2006), therefore here we investigated correlations 

between muscle synergy recruitment and forces at the ground to see if similar 

relationships exist in human balance control.  The CoM is a likely control variable, 

because although several strategies may be used to maintain balance in various contexts, 

in any variation of the standing balance task, maintaining balance requires keeping the 

CoM above the base of support (BoS) (Massion 1992; Scholz et al. 2007; Ting et al. 

2009).  Also, previous work has shown that during non-stepping postural responses, the 

muscles recruited for postural stabilization depend upon the direction of CoM motion, 

rather than the local changes in joint angle displacements (Carpenter et al. 1999; 

Gollhofer et al. 1989; Ting and Macpherson 2004).  Therefore we do not believe that 

muscle synergies are recruited in order to modulate joint angles, or other local variables. 

 However, other global variables may also be controlled in balance behaviors and 

locomotion, such as head stabilization or trunk orientation.  Alternatively the goal may be 

to expand the limits of stability.  We did not explicitly test whether muscle synergy 

recruitment is correlated with any of these other task-level variables.  In future analyses, 

we could examine whether recruiting muscle synergies stab ilizes other global variables 

such as these across various behaviors.  Also, we chose to use a 60-ms delay between 

muscle activity and force/CoM acceleration due to previously reported electromechanical 

delays (Jacobs and Macpherson 1996).  Future work might include testing different, 

possibly longer delays, such as 100ms, to determine if the chosen delay changes the 

results. 
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5.4.4 Voluntary stepping 

 In Chapter 2 we demonstrated the same muscle synergies were recruited in 

voluntary postural tasks to direct the motion of the CoM to maintain balance.  In Chapter 

4 we demonstrated the same muscle synergies are also used during walking, which is a 

more voluntary task yet still considered automatic.  It will be interesting to investigate the 

muscle synergies used during a voluntary stepping task.   

 Studying voluntary stepping alongside reactive stepping allows the comparison of 

two tasks that have the same kinematics and CoM movement, but the command to 

activate the synergies comes from different levels of the nervous system.  The command 

in a voluntary step comes from motor cortex, but in a reactive step it comes from a lower 

level, perhaps brainstem, in response to a combination of sensory inputs that provide 

information about the body orientation and CoM position.   Additionally, the 

displacement of the CoM is achieved slightly different in these two conditions.  In 

reactive stepping, the CoM is displaced initially due to the platform motion, and then 

further displaced via generation of forces at the ground to cause a step.  In voluntary 

stepping, the initial destabilization and entire CoM displacement results from forces 

generated by the stance leg.  Even so, I predict that the same muscle synergies will be 

used in the stance leg in the voluntary stepping condition as were used in the reactive 

non-stepping and stepping tasks.  We hypothesize that muscle synergies are activated to 

perform a specific biomechanical function (such as generate forces at the ground) in 

order to control the movement of the CoM.  Since both of these tasks require control of 

CoM, I expect to see the same muscle synergies used in both tasks, and only the 
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recruitment of the muscle synergies will need to change in order to produce observed 

differences in individual muscle patterns and ground reaction forces.  Preliminary results 

from voluntary stepping are shown in Appendix B. 

 

5.4.5 Other motor tasks 

 Here we examined muscle synergies in postural strategies and locomotion.  

Perhaps similar muscle synergies were identified because walking and standing are 

similar tasks.  Much of walking is standing and falling, and although we analyzed the 

entire gait cycle in chapter 3, in chapter 4 our analysis of perturbed walking was limited 

to the small time window immediately following the perturbation during stance.  It would 

be interesting to examine the muscle synergies underlying other motor tasks, such as 

running, turning, backward walking, etc.  Since all of these tasks still require control of 

the CoM, we expect at least some of the same muscle synergies will be used in these 

tasks as we observed during the walking and postural tasks studied here.  As motor tasks 

become increasingly complex, more areas of the CNS are required for successful 

execution.  It is unknown whether the CNS can still access the same muscle synergies 

robustly used to direct the CoM in walking and balance tasks during more complex tasks 

such as these.   

 

5.4.6 Studies of skill and deficit 

 So far we have examined muscle synergies in healthy, young adults, in order to 

better understand normal muscle coordination in ideal circumstances.  However, the 

eventual goal is to use what we have learned in healthy subjects to better understand 
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neuromuscular and functional deficits in impaired populations, in order to develop better 

treatments and rehabilitation strategies that try to achieve the desired muscle 

coordination, thereby improving people’s motor control and daily functioning.  Improved 

muscle coordination could hopefully lead to improved control of the CoM, which may 

increase a person's limits of stability, thereby decreasing falls.  Previous work has shown 

stroke patients use fewer muscle synergies in the paretic leg compared to the non-paretic 

leg and healthy controls (Clark et al. 2010).  It appears that these impaired modules 

represent a merging of normal modules, suggesting that the appropriate neural structures 

may be intact, yet inaccessible.  Muscle synergy structure in other pathological conditions 

as well as normal aging has not been thoroughly explored.  We propose the number of 

muscle synergies available to accomplish motor tasks will be reduced with pathologies. 

 Conversely, muscle synergy structure in highly skilled populations has not been 

thoroughly examined either.  We might expect to see Tai Chi masters or highly skilled 

dancers recruit a greater number of muscle synergies during postural tasks, because they 

have learned and practiced fine motor movements for many years.  We observe young, 

healthy subjects using anywhere from 5-7 muscle synergies during postural tasks; 

perhaps this discrepancy in number across individuals is due to their prior experiences 

and training.  It would be interesting to compare the number, structure, and recruitment of 

muscle synergies across a wide range of populations, ranging from highly skilled all the 

way to balance impaired. 
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5.4.7 Changes in muscle synergies over time  

 We hypothesize that on short time scales (days), muscle synergy composition is 

invariant, and only the recruitment of the muscle synergies vary.  Preliminary work has 

shown the same muscle synergies are used from one consecutive experiment day to the 

next.  However, it is unclear how muscle synergies change over longer time periods 

(years).  Individual experience, training, and adaptation all may affect muscle synergy 

composition over time.  Acquiring specialized skills may reveal additional muscle 

synergies, or new muscle coordination patterns may result during the course of normal 

development (from infancy to adulthood) or aging.  As muscles are consistently activated 

together, perhaps new networks are formed or reinforced that branch to the motoneurons 

of the coordinated muscle groups.  As people age, muscle synergies may merge or 

become less accessible, resulting in decreased flexibility of movements and decreased or 

delayed control over the CoM.  These could be investigated by comparing the muscle 

synergies used by specialized populations (as discussed above), or by a longitudinal study 

following the same population over time, such as following a group of children for a 

number of years until they are adults. 

 

5.4.8 Translating our methods into a clinical setting 

 Currently, muscle synergies are identified after subjects perform a variety of 

postural or locomotor tasks over the course of a 3-hour experiment.  In order to obtain 

enough data for the analysis, subjects perform hundreds of trials.  The perturbation 

platform we use in the lab is large and expensive.  It is unrealistic to expect these 

perturbation platforms will ever be widely available and cost-effective, and elderly or 
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impaired populations will be unable to withstand such long and tedious experimental 

protocols.  Additionally, the NNMF analysis we use to identify muscle synergies is 

difficult, and probably not appealing to clinicians.  Therefore, a more practical means of 

assessing a person's muscle synergy structure is needed, one that can be performed 

quickly and efficiently.  This would include a perturbation system that still delivers 

relevant perturbations mimicking those experienced in daily living, but is portable and 

inexpensive, as well as a user-friendly method of analyzing EMG and identifying muscle 

synergies. 

 

 In conclusion, the robust muscle coordination we identified here in healthy adults 

will be useful to a variety of fields such as rehabilitation science, prosthetics, and 

robotics.  It provides a framework with which to compare altered muscle coordination as 

a result of skill, adaptation, or deficit.  These results will provide a baseline for future 

studies to develop targeted rehabilitation therapies or more realistic prostheses. 
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APPENDIX A 

DECOMPOSING MUSCLE ACTIVITY IN MOTOR TASKS 

________________________________________________________________________ 

This chapter was originally published in Motor Control 

 

Ting LH and Chvatal SA. Decomposing muscle activity in motor tasks: methods and 

interpretation. In: Motor Control, edited by Danion F, and Latash, Mark L. Oxford, 2010. 

 
 
Used with permission by Oxford University Press. 
________________________________________________________________________ 
 

 In this chapter, we examine methodologies for dimensional analysis and linear 

decomposition of multivariate data sets and discuss their implicit hypotheses and 

interpretations for muscle coordination of movement. We present tutorials (available for 

download at http://neuro.gatech.edu/groups/ting/PMCtutorial.html) to compare how two 

common methods, principal components analysis (PCA) and non-negative matrix 

factorization (NMF), decompose electromyographic signals into underlying components. 

To facilitate the integration of such mathematical techniques with physiological 

hypothesis testing, we focus on developing an intuitive understanding to the two 

techniques. A simple two-dimensional tutorial is provided, focusing on how 

orthogonality constraints in PCA and non-negativity constraints in NMF impact the 

resulting data decomposition and physiological relevance. Examples are presented using 

real data sets from human balance control and locomotion, examining the structure of the 

resulting components, their robustness across tasks, and their implications for various 
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muscle synergy hypotheses. We address practical issues and caveats in organizing 

datasets, the selection of the appropriate number of components, and considerations and 

pitfalls of experimental design and analysis, as well as suggestions and cautions for 

interpreting results. Based on these comparisons, and on the work in the visual system 

over the last decade, we present evidence for the increased neurophysiological relevance 

of the factors derived from NMF compared to PCA. 

 

A.1 Introduction 

 How do humans and animals move so elegantly through unpredictable and 

dynamic environments? Why does this question continue to pose such a challenge? 

During any motor task, many physiological elements throughout the body must be 

coordinated, such as limbs, muscles, neurons, etc. A major question in motor control is: 

How do the overall functions and characteristics of movements arise from the functional 

arrangement and coordination of both neuromuscular elements and environmental 

interactions? Although modern technology allows us to collect an unprecedented amount 

of data on the activity of neurons, muscles, and limbs during a wide variety of behaviors, 

we still lack an understanding of how individual elements of the body interact to produce 

the many movements we perform, let alone characteristics such as grace or clumsiness. 

Interpreting both structure and variability in the motor system and relating it to 

the resulting biomechanical and behavioral outputs remains a grand challenge in 

understanding how we move. Nikolai Bernstein noted the fact that motor behaviors never 

repeat themselves exactly, even when the same task is performed in succession 

(Bernstein 1967). On the other hand, he also noted that characteristic output patterns 
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occur even when a motor task is performed by different sets of muscles, such as when 

drawing shapes or letters on a piece of paper versus on a blackboard, or with a different 

appendage. Similarly, more recent studies also demonstrate that the performance of a 

motor task, such as reaching to a target, can occur quite consistently even when there is a 

great deal of variability in the underlying joint motions or torques contributing to that 

task (Newell and Carlton 1988; Latash et al. 2002; Ko et al. 2003; Reisman and Scholz 

2006). These findings highlight the fact that the our bodies have a large number of 

degrees of freedom in the joints, muscles, and neurons that allow them to be flexible and 

functionally reconfigured to perform the same task, as well as different tasks (see Kelso, 

Sternad, this volume). During any so-called coordinated movement, synchrony and 

similarity are observed across many different kinematic, kinetic, electromyographic, and 

neural signals (Bernstein 1967; Macpherson 1991). But, when looking across a wide 

behavioral repertoire, the synchrony and coordination observed in one movement may be 

abolished in another, such that fluctuations in the spatiotemporal dynamics of the 

multiple measures may appear coordinated in one instance and independent in another 

(Bernstein 1967; Macpherson 1991). Such differences are potentially due to both changes 

in the neural control of muscles, as well as to changing interactions of the body with the 

environment under various conditions. 

Controlling movements requires not only organizing physiological processes for 

movement, but also requires consideration of the complex interactions of forces acting 

between the organism and the environment. Bernstein defined the coordination of 

movement as: “the process of mastering redundant degrees of freedom of the moving 

organ, in other words, its conversion to a controllable system” (Bernstein 1967). By 
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“controllable” Bernstein meant that coordinated motor activity causes predictable 

biomechanical events, such as force generation and motion, that allow us to reliably 

perform a motor task. Thus, understanding movement requires characterizing the degrees 

of freedom of the physiological system that are used in the performance of any particular 

movement, the reconfiguration of such degrees of freedom in the performance of 

divergent movements (see Latash, this volume), and the relationships of these degrees of 

freedom to the biomechanical interactions that ultimately generate the movement (see 

Prilutsky, this volume). Gathering large sets of data during natural movements is 

becoming increasingly easier, thus allowing us to characterize coordination across many 

variables at different levels of the motor system; however, interpreting such large data 

sets and analyzing them to test motor control hypotheses remains a challenge. 

Computational methods for analyzing large set of data are now easily accessible 

and available; however, the utility of such methods for providing insight into motor 

control is debated. Can such techniques help us to understand increasingly large data 

sets? Can quantitative analysis provide further insight than that which scientists have 

gathered from observation? Are automated pattern-recognition techniques able to reveal 

that which an experienced scientist can see when examining raw data? What are the 

potential benefits and pitfalls of using such techniques? These questions will be 

addressed in this chapter. 

Here, our goal is to provide instructive tutorials to provide an intuitive guide to 

the similarities and differences between two primary techniques used for the analysis and 

decomposition of multiple signals in motor control and neuroscience, as well as in 

engineering fields: principal components analysis (PCA) and non-negative matrix 
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factorization (NMF) (Lee and Seung 1999). Although comprehensive texts on the 

quantitative aspects of these techniques are readily available (Ramsay and Silverman 

2005), we present methods for understanding how the properties of each technique affect 

the decomposition and physiological interpretation of muscle activation patterns in a 

simple example and in actual data from postural control and walking. We have chosen 

two commonly used linear decomposition techniques that render the most divergent 

results; however, similar principles could be used as a basis for comparing other 

decomposition techniques, such as independent components analysis (ICA) or k-means 

analysis (Tresch et al. 2006). We will discuss the interpretations and implications of the 

results and how such techniques might be used to understand principles of motor 

coordination, as well as give insight into the function of the nervous system in translating 

goal-level intentions into specific muscle activation patterns for movement. 

 

A.2 Basic Properties and Differences Between PCA and NMF: A Simple Example 

 Although PCA and NMF are similar in their underlying concept and mathematical 

representations, there are key differences in their implementation and in the resulting 

components. Both PCA and NMF are linear decomposition techniques that assume that 

the set of measured data is composed of linear combinations of a smaller number of 

underlying elements (Fig. A.1A). That is, given a number of simultaneous observations 

of multiple data channels, any particular observation could be represented as: 

Mj = c1j W1 + c2j W2 +… + cnj Wn + error   (Eq. 1) 

Here, Mj is a vector that represents measurements of multiple channels of data (Fig. 

A.1B); for example, the activity of m muscles at a given time point, arranged in a column. 
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On the right side of the equation, the components or basis functions Wi are vectors, also 

of length m, that represent invariant patterns of activity across those different channels. 

The pattern of muscle activity can be described by n scalar values cij, each of which 

specifies the contributions of each component to the measured muscle activation pattern 

Mj. If there are m muscles and n < m components, then the representation of Mj in terms 

of the components Wi and the weight or scaling factors cij is lower-dimensional than 

simply stating the value of each element of Mj. Such linear decomposition techniques 

therefore test the hypothesis that, over a large number of observations of Mj, the 

components Wi remain fixed, but the scaling factors cij are allowed to change and are 

sufficient to account for all of the variations of the data measured across different 

conditions. When analyzing muscle activation patterns, the modules Wi are often referred 

to as muscle synergies (Tresch et al. 1999; Cheung et al. 2005; Ting and Macpherson 

2005; Torres-Oviedo and Ting 2007) or M-modes (Danion et al. 2003; Krishnamoorthy 

et al. 2004; Latash et al. 2007). In this context, the hypothesis is that muscle synergies 

remain fixed, but activation of these synergies can vary, resulting in observed variations 

in individual muscle activity. 
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Figure A.1 Electromyograph (EMG) data decomposition schematic and muscle synergy 
concept. A: Any pattern of multiple muscle activation can be represented as a linear 
combination of the activations of that muscle by each muscle synergy component.  In this 
example, there are n = 2 components and m = 3 muscles, thus M(q) can be represented in 
terms of the lower-dimensional combination of muscle synergies (components, Wi) and 
activation commands (ci(q)). B: Organization of the data matrix and the structure of the 
W and c matrices. 
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Although similar in concept, in practice, PCA and NMF are quite different; each 

method decomposes the variability with a given data set in very different ways. PCA is 

an analytical technique, meaning that the components are found through a straightforward 

set of computations. Therefore, it is easy to use and there are readily available algorithms 

included in most data processing software packages. This is possible because PCA 

requires that the components be orthogonal (e.g., perpendicular) to each other, creating a 

unique solution to any decomposition. Furthermore, it is relatively straightforward to 

select the appropriate number of components needed to explain a given data set based on 

a cutoff value for the variance accounted for. In contrast, NMF is found using a search 

algorithm, which means that it has to start with a set of random components and 

iteratively improve on them until an adequate proportion of the variability in the dataset 

is accounted for. Components generated by repeated searches will not be numerically 

identical but will be similar. Because NMF constrains both the weights ci, as well as all of 

the elements of the components, Wi to be non-negative, the problem is what is called 

convex. That is, there are no local minima for the search to be “stuck” in, therefore 

components from multiple searches are numerically similar. In a non-negative space, it is 

not possible for the components to be orthogonal; however, they must be independent, 

meaning that no component can be defined as a linear combination of the other 

components. The iterative technique also requires that the number of components be 

specified in advance, so that multiple searches must be done to determine the right 

number. 

In the following set of tutorials, we use a simple two-dimensional example of a 

simulated dataset to illustrate the differences in how PCA and NMF decompose 
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variability in the dataset. For all three examples, simulated muscle activity data are 

fabricated by assuming that there are two underlying components, which can be 

interpreted as muscle synergies, W1 and W2 that each define a different ratio between the 

activity of two muscles (Fig. A.2A, gray bars). These components can also be drawn as 

vectors on a two-dimensional plot (Fig. A.2A, gray arrows). A set of data, M, is created 

by randomly assigning the activation level of each component (c1 and c2) from a uniform 

distribution between 0 and 1. Each data point, or observation Mj, can be represented as a 

vector [m1j m2j], and plotted as a single point on a set of axes representing the level of 

activation of muscle 1 versus muscle 2 (Fig. A.2A). The tutorials are available for 

download as part of the supplementary materials, at 

http://neuro.gatech.edu/groups/ting/PMCtutorial.html.  

 

A.2.1 Orthogonality Versus Independence 

 The constraints of orthogonality and independence in PCA, and independence 

without orthogonality in NMF, account for the large differences between the components 

extracted by each technique. In this example, the activity of each component was equally 

weighted, so that the data is scattered evenly between the two vectors, W1 and W2, used 

to create the data (Fig. A.2A). When PCA is applied to the data, two components are 

extracted (Fig. A.2B). The first aligns with the center of the long axis of the data and 

accounts for 87% of the variability. Because the scaling factors can be positive or 

negative, the direction that W1 points does not matter, only the line it defines. The second 

component must be at a right angle to the first component to satisfy orthogonality. It 

accounts for a much smaller portion of the variability, only 13%. Neither PCA 
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component looks like the original components used to generate the data. Using NMF, the 

extracted components are similar to the original components, W1 and W2, used to 

generate the data, appearing at the edges of the data points (Fig. A.2C). The variability 

accounted for by each component is similar, 49% and 51%, respectively. Although the 

components are not orthogonal, the addition of a second component nonetheless increases 

the set of possible patterns of muscle activation between muscles 1 and 2. 

 

A.2.2 PCA Is Descriptive; NMF Is Prescriptive 

 PCA, much like a multiple regression, describes the mean and residual variance 

from the mean in successive principal components. Before identifying the components, 

the original dataset is typically demeaned; if this is not done, then the first principal 

component represents the mean value of each variable across the dataset. Otherwise, as in 

this example, the first principal component in PCA describes the largest deviation from 

that mean in each muscle across a given dataset. Each additional component describes the 

orthogonal direction containing the next largest deviations from that mean. In our two-

dimensional example, it means that, if the first component changes, then the second 

component must also change. The percentage of variability accounted for by each 

component decreases monotonically, describing the degree to which the dataset varies in 

the corresponding direction. Because PCA allows for both negative and positive values 

for the scaling factors, it is possible to describe any point on the plane with two 

independent components derived from data in that plane, regardless of the direction that 

they point (Fig. A.2B). Data with multiple dimensions can be restricted to a plane by 

choosing only the first two principal components.  
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Figure A.2 A 2-D example illustrating differences between components identified using 
principal components analysis (PCA) and non-negative matrix factorization (NMF). A: 
Data is constructed using two components specifying fixed ratios of muscle activation 
between two muscles, W1 (m1=0.5*m2) and W2 (m1=2*m2). The contribution of each 
component for a given observation, or data point, is found by multiplying each 
component by a scaling factor (c1 and c2) selected from a uniform distribution ranging 
from 0–1. B: Components identified using PCA to decompose the data from A.  The 
percentage of total data variability that each component accounts for is shown beside 
each vector.  The first component is directed along the long axis of the data cloud, and 
the second is constrained to be in the orthogonal direction. C: Components identified 
using NMF to decompose the data from A.  Components are found near the edges of the 
data cloud. Note the similarity to the original components (W1 and W2) used to generate 
the data.  D: Data is constructed using the same two components as in A, except now it is 
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weighted towards using W1.  In order to generate this data, c1 was taken from a uniform 
distribution between 0 and 1, whereas c2 was taken from a uniform distribution between 0  
and 0.3.  E: Components identified using PCA to decompose the data from D.  W1pca 
looks similar to W1, reflecting the bias towards W1 in the generation of the data set, but 
W2pca is different from W2.  F: Components identified using NMF to decompose the data 
from D. Despite the bias in the generation of the data set, these components are similar to 
those used to generate the data, as well as the components identified in C. G: Data is 
constructed using the same two components as in A and D, except now part of the data is 
weighted towards using W1 and part is weighted towards using W2.  To generate this 
data, c1 was taken from a uniform distribution between 0 and 0.3, whereas c2 was taken 
from a uniform distribution between 0 and 1, and this was included along with the data 
from D.  H: Components identified using PCA to decompose the data from G.  W1pca 
passes between the two “clouds” of data where the mean values of m1 and m2 lie, and the 
components look similar to those identified in B.  I: Components identified using NMF to 
decompose the data from G.  Again the components are similar to those used to generate 
the data. 
 

In NMF, the components prescribe a subspace within which all data points must 

lie. Because of the non-negativity constraints, only the points lying between the two 

components can be described (e.g., Fig. A.2A). Thus, components from NMF tend to 

identify the edges of the dataset and define a convex hull, or polygon, within which all of 

the feasible data points lie (e.g., Fig. A.2C). The condition of independence requires that 

each additional component increase the allowable subspace, as no two components can 

be represented as a linear combination of other components. Because there is no 

constraint on orthogonality, it is also possible for one component to change and the others 

to remain the same.  

 Therefore, the non-negativity constraints within NMF make it more restrictive 

than PCA, delimiting regions of the low-dimensional space that cannot be reached. 

Although dimension reduction can be achieved in both techniques by examining only the 

first few components, NMF imposes further restrictions. Components derived from PCA 

tend to describe the major direction of the data without imposing restrictions within the 
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space defined by those components. In contrast, NMF prescribes a subspace in which 

possible combinations of muscle activity lie, restricting the expressible data points using 

those components. 

Consider an example using the same components, W1 and W2, as in the previous 

tutorial, except this time the data are preferentially weighted toward using W1 (Fig. A.2D, 

data construction). This dataset was created from sampling the same muscle activation 

components as in the prior example, but with a higher activation of W1 over W2. Using 

PCA, both components changed direction compared to the previous tutorial (compare 

Fig. A.2E and 2B). The first PCA component (W1pca) rotated closer to the mean of the 

observed pattern of muscle activity and now looks qualitatively similar to the original W1 

used to construct the data (Fig. A.2A), accounting for 97% of the variance. The second 

component must rotate a similar amount to maintain orthogonality (compare Fig. A.2B 

and 2E). Both components identified in this case look different from those identified 

using PCA in the previous example. Thus, PCA describes the data in a similar sense to a 

mean and standard deviation. In contrast, both components found using NMF (Fig. A.2F) 

were similar to the components W1 and W2 used to generate the data (Fig. A.2D) and to 

those identified in the previous tutorial (Fig. A.2C). There was a slight shift in the second 

component simply because there is less variance in that direction, and therefore a larger 

confidence interval. Thus, the components obtained from NMF identify vectors that 

prescribe the same space of possible solutions using those two components as in the prior 

tutorial, even when one component is more heavily weighted than the other.  
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A.2.3 Physiological Interpretability of PCA Versus NMF Components 

 In PCA, a component, Wi, can contain positive and negative numbers representing 

relative muscle activation levels, as well as positive and negative weightings, ci. This 

means that positive and negative relationships can be inverted easily by negative 

weighting values. In the context of muscle activation patterns, this equal relationship 

between positive and negative activation is inconsistent with the transformation between 

motorneuron action potentials and muscle activity. Although motoneurons no doubt 

receive inhibitory as well as excitatory neural activity, the inhibitory effect can only be 

seen on motor output if there is also a high background level of muscle activity. That is, 

if inhibition occurs when muscles are quiescent, they have no effect on muscle activity 

due to the rectifying properties of neural transmission. Moreover, excitatory pathways 

and effects cannot be made inhibitory, and vice versa, so that there is no reason to think 

that an excitatory pattern would be identical to an inhibitory one. In contrast, in NMF, the 

components are constrained to be non-negative, which is physiological for neural and 

muscle output, since neurons are either firing action potentials (positive signal) or else in 

a resting state (zero signal).  

One interesting result of the non-negativity constraint in NMF is that the 

underlying components resemble a “parts-based” decomposition, in which a series of 

parts are summed to create a whole. Since each component, or part, that is added cannot 

be subtracted out through the contributions of another component, the parts must 

resemble identifiable features of the output. In contrast, allowing negative numbers in 

PCA means that a given data point is created by addition and subtraction of contributions 

from different components to a given muscle’s activity. The first component describes 
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the mean, and the next components can add or subtract activity from that mean. 

Therefore, the resulting data point may bear no resemblance to the identified principal 

components.  

Here, we demonstrate the different ways in which PCA and NMF deal with data 

that are not evenly distributed. Consider an example using data constructed from the 

same components, W1 and W2, from the first two tutorials, except now part of the data is 

skewed toward using W1 and part skewed toward using W2 (Fig. A.2G). The components 

identified using PCA are similar to those found in the first tutorial: The first component 

passes between the two main “clouds” of data, and the second is orthogonal to the first 

(compare Fig. A.2H to 2B). In contrast, components extracted using NMF look very 

similar to the original W1 and W2 used to generate the data, as well as to those identified 

in the first two tutorials (compare Fig. A.2I to 2F and 2C). The components lie along the 

edges of the data “clouds,” and therefore can be used to describe any data points between 

them.  

In this example, the components from PCA are directed in similar directions as in 

first example, with the first component aligned along the mean values of m1 and m2 

across the dataset (Fig. A.2H). Most of the data points are reached by scaling the 

contribution of the first component and adding or subtracting a contribution of the second 

component. However, these components do not resemble the two-armed “parts” of the 

dataset. In contrast, the components from NMF are again similar to those used to generate 

the data, and similar to the components found from the two other data sets (Fig. A.2I). 

Here, the two components from NMF clearly identify two of the underlying “parts” that 

are obvious in the dataset (similar results can also be achieved through independent 
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components analysis [ICA] in combination with PCA (Hyvärinen 2001; Tresch et al. 

2006). 

Similarly, in the original paper describing differences between PCA and NMF, 

the components underlying decomposition of an image of a face were compared (Lee and 

Seung 1999). All of the PCA components look like entire faces, which are then added 

and subtracted together to generate a given face. To generate a face with a medium nose, 

large eyes, and small mouth, one might imagine starting with the mean face expressed by 

the first principal component and adding a component with a large nose, large eyes, and 

medium mouth, then subtracting another component with a small nose, medium eyes, and 

small mouth. The NMF components, however, are characterized by face parts such as the 

nose, eyes, and mouth. A face would be generated by selecting a component nose, scaling 

it by a medium number, selecting a component eyes and scaling it by a larger number, 

and selecting a component mouth and scaling it by a smaller number. Interestingly, this 

kind of parts-based decomposition is similar to the type of neural representations 

observed in the visual and other sensory encoding systems (Olshausen and Field 2004). 

Accordingly, there has been a shift from the use of PCA to NMF in visual system 

research (Simoncelli and Olshausen 2001). 

 

A.3 Identifying Components Using PCA and NMF: A Postural Control Example 

 
 Taken together, these three tutorials illustrate key differences in how PCA and 

NMF describe and partition the variability in a given data set, which are relevant to how 

they can be used to test motor control hypotheses. Although all of the data were 

generated from the same set of underlying components, the components identified by 
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PCA changed when the mean levels of muscle activation changed, and all of the 

components changed simultaneously. NMF has the ability to identify components that are 

stable across different conditions, but combined differently. This demonstrates how 

different conclusions regarding the robustness and generality of components might be 

drawn depending on which decomposition algorithm is used. 

 In the literature, both PCA and NMF have been used to examine whether stable 

motor modules are used for generating movements. Several studies have addressed 

muscle coordination in standing balance control, because muscles in various regions of 

the body tend to act synchronously, and patterns of muscle activation can be easily 

related to a direction of body motion. During postural body sway, PCA has been used to 

identify components, called M-modes, that correspond to the direction of center of 

pressure changes used to stabilize the body (Aruin et al. 1998; Krishnamoorthy et al. 

2003a). Similarly, in responses to different directions of perturbation during standing 

balance control, components from NMF, referred to as muscle synergies, have been 

identified that correspond to the direction of force applied at the ground to stabilize the 

body (Ting and Macpherson 2005; Torres-Oviedo et al. 2006). However, as the number 

of postural conditions is increased, the underlying M-modes from PCA are found to 

change (Krishnamoorthy et al. 2004), whereas the muscle synergies from NMF remain 

consistent (Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2010).  

 Rarely are both techniques used in the same study, so that it is difficult to know 

whether the differences in the literature reflect the techniques used, the experimental 

design, or the particular motor tasks tested. Moreover, since NMF requires several 

decisions on the part of the investigator, choosing the right number of muscle synergies is 
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not necessarily straightforward, which may also lead to different conclusions being 

drawn. Here, we provide examples where both PCA and NMF are performed on actual 

data from one subject during postural responses to multidirectional perturbations. 

 

A.3.1 Introduction to Postural Responses 

 In order to maintain balance in light of an unexpected perturbation of the support 

surface, humans and animals must keep the projection of their center of mass (CoM) 

within the limits of their base of support. Various strategies may be used when balance is 

disrupted, requiring the activation of different muscles, such as taking a step, grabbing a 

handrail, or maintaining the feet in place to restore balance. When standing balance is 

disturbed with a discrete perturbation, first the direction of falling is sensed, and then the 

appropriate muscles are activated to restore balance. The initial change in muscle activity 

in the lower limbs does not occur until approximately 100 ms following the onset of a 

perturbation, and this initial muscle activity is called the automatic postural response 

(APR). Variations are observed even in responses to the same perturbation direction due 

to attention, expectation, and the like (Woollacott and Shumway-Cook 2002). When 

many trials and many perturbation directions are examined, the differences observed in 

individual muscle activations are difficult to interpret (Henry et al. 1998; Horak and 

Macpherson 1996). One hypothesis is that the nervous system activates these muscles in 

groups, and decomposition techniques such as PCA and NMF can be used to identify 

such groups and the relationships between the muscle activations (Krishnamoorthy et al. 

2003a; Krishnamoorthy et al. 2003b; Torres-Oviedo and Ting 2007). 
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To generate the postural data examined here, subjects stood on a platform, which 

was suddenly moved in one of 12 different directions in the horizontal plane. 

Electromyographic (EMG) signals were collected from 16 lower trunk and leg muscles 

from the right side. For each trial, mean muscle activity during three time windows 

during the APR was calculated: 100–175 ms following perturbation onset (PR1), 175–

250 ms (PR2), and 250–325ms (PR3), as well as one background time window before the 

perturbation began (Fig. A.3A). Therefore, this data set consisted of 16 muscles and 240 

conditions (4 time windows × 12 perturbation directions × 5 trials in each direction). All 

of the data were arranged in a matrix in which each of the 16 rows contains the 240 

observed values for a single muscle. The values in each row were normalized to the 

maximum value in that row, corresponding to the maximum level of muscle activity 

observed for that muscle across all conditions. Therefore, for each muscle all values 

ranged from 0 to 1. Before components are extracted using NMF, each muscle was also 

normalized to have unit variance, meaning that the sum of the squared values in the row 

equals 1. This allows the variations in each muscle to be considered with equal 

importance by the algorithm. One practical consideration is that, for NMF, the data 

should always be presented in the format N muscles × M conditions. However, PCA 

requires the data be transposed, in the format N conditions × M muscles. 
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Figure A.3 Example of postural responses to a backward and leftward perturbation of the 
support surface.  A: Platform displacement during the ramp-and-hold perturbation.  
Electromyograph (EMG) responses occur 100 ms after the onset of platform motion 
(vertical dashed line).  Shown here are tibialis anterior (TA), medial gastrocnemius 
(MGAS), rectus femoris (RFEM), and rectus abdominus (REAB) EMG responses.  Mean 
EMG activity was calculated for three time bins during the APR (shaded region), 
beginning 100 ms (PR1), 175 ms (PR2), and 250 ms (PR3) following perturbation, as 
well as one background time period.  Ground reaction forces under the right foot are also 
shown. B: Muscle tuning curves generated from 12 evenly spaced perturbation directions, 
taken from time window PR2. Muscle tuning curves vary in magnitude over all 
perturbation directions, and their shapes vary from muscle to muscle.  In addition to the 
four muscles shown in A, tensor fasciae latae (TFL), semimembranosus (SEMB), 
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semitendinosus (SEMT), biceps femoris long head (BFLH), peroneus (PERO), lateral 
gastrocnemius (LGAS), erector spinae (ERSP), abdominal external oblique (EXOB), 
gluteus medius (GLUT), vastus lateralis (VLAT), vastus medialis (VMED), and soleus 
(SOL) were also collected.  Shown are the mean tuning curves ± standard deviations for 
five trials in each perturbation direction, presented randomly. 
 

In response to horizontal plane disturbances, each muscle was preferentially 

activated for particular perturbation directions (Fig. A.3B). The muscle “tuning curves” 

demonstrate the directional sensitivity of the muscles. Each muscle is active maximally in 

a given direction, and less so for other directions. Some muscles have a single preferred 

direction (e.g., vastus medialis, VMED), whereas others have multiple tuning directions 

(e.g., rectus abdominus, REAB). The muscle tuning curves demonstrate that each 

direction of perturbation evokes a different combination of muscle activity. The error 

bars on the muscle tuning curves also illustrate trial-to-trial variations observed in 

postural responses. Therefore, across perturbation directions, and even within a 

perturbation direction, different patterns of muscle activity are evoked. Does this mean 

that each muscle must have an independent neural command specifying its level of 

activation (Macpherson 1991)? Using NMF and PCA, we can test the hypothesis that the 

observed variations can be explained by the activation of a few muscle synergies (Fig. 

A.1). In the following section, we will compare how NMF and PCA describe postural 

response data, and include practical issues of selecting the appropriate number of 

components, and examine the robustness of the components across different postural 

tasks, specifically, two-legged versus one-legged perturbation responses. 
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A.3.2 Components of Postural Responses Identified by PCA and NMF 

 Here, we compare five components selected by NMF and PCA to describe the 

postural response data for normal, two-legged stance (the procedure for selecting the 

number of components will be described in a later section).  

The components identified by PCA are composed of muscle contributions that are 

both positive and negative, and are activated by weighting coefficients (or scaling 

factors) that may also be positive or negative (Fig. A.4A). This example illustrates again 

that the components are identified in order of the percentage of variance that each 

explains. The first component describes the mean level of activity of the muscles across 

all conditions, and therefore has positive contributions from all of the measured muscles, 

with strong contributions from TA and PERO (Fig. A.4A, W1pca). The first component is 

also strongly activated for forward (90-degree) and backward (270-degree) perturbation 

directions, which evoke much more muscle activity than lateral perturbation (Henry et al. 

1998). The subsequent components have contributions from fewer muscles, and these 

contributions are both positive and negative. Additionally, the activation coefficients may 

be positive or negative for different perturbation directions, and the magnitude of 

activation decreases with each subsequent component. 

The way in which PCA decomposes data can best be illustrated by examining 

how the components contribute to an individual muscle tuning curve. Due to the positive 

and negative values taken both by the components and the activation coefficients in PCA, 

contributions from different components can be added and subtracted to obtain the total 

predicted muscle activity. An example of this can be seen in the reconstruction of the 

VMED tuning curve from the individual contributions from each component (Fig. A.4B), 
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which are found by multiplying the height of the VMED bar in each component with the 

activation coefficient for a given direction. Thus, each of the contributions resembles a 

scaled and possibly inverted version of the activation coefficient tuning curves of each 

component (Fig. A.4A). The resulting tuning curve for VMED is generated by adding all 

five curves together (Fig. A.4B, bottom). Although the peaks of the various contributions 

can vary, the resulting VMED tuning curve peaks near 90 degrees, and is roughly zero 

between 180 and 360 degrees. The response of the VMED to the 90-degree perturbation 

is high, and is due to positive contributions from W1pca, W2pca, W4pca, and W5pca and a 

negative contribution from W3pca (Fig. A.4B, bars). Similarly, in the region between 180 

and 360 degrees, negative and positive contributions from all the components cancel each 

other out, so that the resulting tuning curve is near zero. To reconstruct the tuning curve 

of MGAS, the same curves are scaled differently and added together. The near-zero 

activity of MGAS in the 90-degree perturbation direction results from the cancellation of 

positive and negative contributions, primarily from W1pca and W2pca. In general, when 

using components identified by PCA, the reconstructions tend to underpredict the 

recorded muscle activity. 

In contrast to PCA, the components and activation coefficients identified by NMF 

contain only positive values, as constrained by the algorithm. They are identified in no 

particular order, as evidenced by the percentage of total variance accounted for by each 

component (Fig. A.4C). Each component has large contributions from a few muscles, and 

smaller contributions from several other muscles, illustrating the multijoint coordination 

required for postural control. Each component has a corresponding activation coefficient 
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that is tuned for a particular range of perturbation directions. These activations are also 

positive, and the magnitude of activation is similar across all five of the components.  

 

 
Figure A.4 Components and activation coefficients identified from postural response 
data using principal components analysis (PCA) and non-negative matrix factorization 
(NMF).  A: Components identified using PCA may have positive and/or negative muscle 
contributions and activation coefficients.  Each bar represents the contribution of that 
muscle to that component.  Percentages indicate the amount of total data variability 
accounted for by each component.  Activation coefficient tuning curves from PR2 are 
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shown as mean ± standard deviation of five trials.  B: Tuning curves created from a 
single trial in each direction for two muscles reconstructed using the components 
identified in A.  The contribution from each component is added or subtracted to form the 
reconstructed muscle tuning curve.  The original data are shown with a dashed black line 
and the reconstructed data are shown with a solid black line.  The variability accounted 
for (VAF) by the reconstruction as well as r2 values are shown for each muscle tuning 
curve. C: Components identified using NMF have only positive muscle contributions and 
activation coefficients. Percentages indicate the amount of total data variability accounted 
for by each component.  Activation coefficient tuning curves from PR2 are shown here as 
mean ± standard deviation of 5 trials.  D: Two muscle tuning curves reconstructed using 
the components identified in C.  The contribution from each component is added to form 
the reconstructed muscle tuning curve.  The original data are shown with a dashed black 
line and the reconstructed data are shown with a solid black line.  The variability 
accounted for (VAF) by the reconstruction as well as r2 values are shown for each muscle 
tuning curve. 
 

The reconstruction of the individual muscle tuning curves illustrates the 

differences between PCA and NMF in the way the components are combined to predict 

the recorded data. As with PCA, the height of the VMED bar in each NMF component is 

used to scale the contribution of each component’s tuning curve. In this case, since 

VMED is virtually zero in W2nmf and W3nmf, these components make essentially no 

contribution to the VMED tuning curve. In contrast to the case with PCA decomposition, 

the activity of VMED at 90 degrees is due to the additive contributions of three 

components W1nmf, W4nmf, and W5nmf  (Fig. A.4D).  

Using NMF, there is no cancellation of features (Fig. A.4D). Each muscle’s 

activity is reconstructed by adding the contributions from each muscle synergy, all of 

which are positive. Once a feature of the tuning curves is expressed in the contribution of 

a given component, it cannot be subtracted out. For MGAS, the tuning curve consists 

primarily of contributions from W3nmf , which causes high activity of MGAS between 180 

and 360 degrees, and W5nmf, which is responsible for a low level of activity of MGAS 

between 0 and 180 degrees.  
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The separation of the contributions from each component makes it possible to use 

the patterns of muscle activity within each component to make predictions about the 

activity of other muscles. In this case, the activity of MGAS between 180 and 360 

degrees can be attributed to W3nmf, which coactivates high MGAS activity with high 

extensor activity in the LGAS, GLUT, and SOL. When MGAS is active between 0 and 

90 degrees, its activity is due to W5nmf, which coactivates small MGAS activity with high 

flexor and hamstring activity in SEMB, TA, and SEMT. This demonstrates that MGAS 

activity in different perturbation directions results from fundamentally different muscle 

coordination patterns. It may be a prime mover in 180- to 360-degree perturbations, and a 

stabilizer in 0- to 90-degree perturbations. The analysis demonstrated that MGAS is 

strictly covaried with SOL from 180 to 360 degrees, and strictly covaried with TA from 0 

to 90 degrees. A traditional correlation analysis would reveal MGAS to be strongly 

correlated to SOL, and weakly correlated to TA, but it would not be able to decompose 

the different portions of MGAS activity to one or the other. 

Here, the coefficient of determination (r2) and variability accounted for (VAF), 

which are measures of goodness-of-fit between the predicted and recorded EMG signals, 

demonstrate that NMF components can explain the recorded muscle responses more 

closely than PCA components (NMF average r2 for all muscles: 0.84, average VAF: 

95.5%; PCA average r2 for all muscles: 0.81, average VAF: 58.9%). Both r2 and VAF are 

defined as the coefficient of determination, or percent variability accounted for in the 

dataset (1 –  sum of squares error/total sum of squares). The Pearson correlation 

coefficient, r, is based on a linear regression with an offset and thus compares only 

shapes of two curves, allowing for their actual values to differ. VAF is based on a linear 
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regression that must pass through the origin, and therefore requires that the actual values 

of the measurements be equal to have a high percent of variability accounted for. In the 

standard Pearson correlation coefficient (r2), the sum of squares is taken with respect to 

the mean, whereas in the uncentered case (VAF), it is taken with respect to zero. In this 

postural example, PCA reconstructs the shape of the tuning curve well, but not the offset; 

as expressed by the reasonably high r2 values, but much lower VAF. In contrast, NMF 

reconstructs the level of activity well, and allows for more differences in the shape of the 

curve, which is evidenced in the high VAF values. 

  

A.3.3 Selecting the Appropriate Number of Components Using NMF 

 In both NMF and PCA, the investigator must determine the number of 

components required to sufficiently explain the data. With PCA, a cutoff of the total 

percent variability explained is typically chosen, and the components with the largest 

contributions are chosen to meet that criterion. A similar criterion can be used in NMF, in 

which the analysis is run multiple times, each with a different number of components, 

and VAF can be plotted as a function of component number (Fig. A.5A). In this postural 

data example, a cutoff of 90% VAF selects four components. Note, however, that the 

VAF due to one component is very high, so that high VAF values can be misleading in 

the overall variability because generally they represent a small portion of the data having 

a large amplitude that contributes the most to the overall data variability. 

Whether using PCA or NMF, using the overall variability accounted for to select 

the number of components may not generate adequate reconstructions of data, 

particularly when there are certain conditions in which generally less activity occurs, but 
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which nonetheless are an important feature of the dataset. In the postural control 

example, the overall level of muscle activity is higher in forward and backward 

directions. When choosing a smaller number of components, the muscle activity in 

forward and backward directions tends to be well-explained, whereas activity in lateral 

directions may not be well-reconstructed. Because muscle activity in lateral directions 

represents a small fraction of the total variability, it is difficult to discern from the overall 

VAF scree plot when such variations are accounted for. In both analyses, large 

differences in the magnitude of the variability across conditions always poses a problem 

when selecting components. 

A number of additional criteria can be imposed to ensure that desired features of 

the dataset are reconstructed. For our postural control example, we further examined the 

variability accounted for within subsets of the data. We examined the VAF of each 

muscle, which ensures that each muscle’s tuning curve is well-reconstructed. In certain 

cases, when a muscle’s contribution to the overall variability is low, the features of its 

tuning curve may not be well reconstructed by the selected number of components, 

requiring additional components to be added. We then examined the data by perturbation 

direction, ensuring that the differences in the relative levels of activity by direction do not 

cause muscle activity in certain directions to be ignored. In these cases, rather than 

having a smooth increase in VAF as components are added, there tend to be jumps when 

the salient features are accounted for. Therefore, we specify a minimum %VAF that 

should be accounted for in all muscles and all perturbation directions, as well as require 

that the addition of the next component should not drastically improve the VAFs. 

Ultimately, however, only an experienced researcher examining the reconstructions of the 
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original raw data traces can determine whether the features accounted for are 

physiological or are artifacts. 

 

Figure A.5 Scree plots showing variability accounted for (VAF) between the original 
data and the reconstruction using non-negative matrix factorization (NMF) components 
for the data shown in Figure A.3.  A: VAF for increasing number of components over the 
entire data set.  B: VAF for increasing number of components for four individual 
muscles: REAB, TFL, GLUT, VMED.  One component accounts for variability in GLUT 
relatively well, three components can explain VMED variability, but five is better at 
explaining variability in TFL and REAB.  C: VAF for increasing number of components 
across individual perturbation directions.  Shown here are the four cardinal directions, but 
the number of components needed was selected by looking at these types of plots for all 
muscles and all perturbation directions. 
 

 The scree plots from the postural response example demonstrate how five 

components were selected in this case (Fig. A.5). Examining the overall VAF (Fig. A.5A) 

reveals that one component seems sufficient to explain the variability in the data, using a 

75% VAF criterion. However, examining the scree plots for individual muscles reveals 

that five components are necessary in order for each of the muscles to achieve >75% 

VAF (Fig. A.5B). These curves demonstrate that the activity of GLUT is well accounted 

for by the first component, but that activity of the other muscles is not. Three components 

are necessary for VMED to pass the 75% threshold. However, the addition of the second 

and third components does not change the VAF of TFL and REAB, as illustrated by the 

flat part of the lines. The fourth and fifth synergies account for the variability in TLF and 
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REAB, respectively. Note that the addition of a sixth component does not drastically 

improve the VAF in any muscle. Therefore, five muscle synergies were chosen. 

Examining the variability accounted for across the various perturbation directions leads 

to a similar conclusion (Fig. A.5C). Most directions have >75% VAF using only one or 

two  components, but there is a sizeable improvement from four to five components for 

backward perturbations (270 degrees). 

Finally, the composition of the components should be examined as additional 

components are added. The sharp jumps in the scree plots of VAF by muscle and by 

perturbation direction suggest that including an additional component may cause a 

previous component to split (Fig. A.5B, sharp jump in REAB VAF from four to five 

components). The number of components selected as sufficient to explain the data should 

be high enough such that the components have stabilized, and the addition of new 

components does not significantly change the previous components. In this example, the 

composition of the components when six components (not shown) were used was 

compared with the five components identified here and shown not to alter the 

composition of the five components. Additionally, the reconstructions of the data and the 

activation coefficients of the sixth component can be used to deduce its contribution to 

features in the data. If the additional component accounts for a feature, such as a 

particular burst of muscle activity or tuning direction, that is unaccounted for by the other 

components, then it may be important; the investigator must decide whether this is a 

critical and/or physiological feature. If the activation coefficients appear to be evenly 

distributed across all perturbation directions, it is unlikely to account for a feature 

associated with muscle activation in a given direction, but is more likely noise. 
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A.4 Using NMF Versus PCA to Test Motor Control Hypotheses: Standing and 

Walking 

 Although it is possible to apply either PCA or NMF to any data matrix, the results 

may not necessarily provide insight into the underlying physiological mechanisms. It is 

important to ensure that the results are not artifacts of data collection or experimental 

design. Both techniques allow the dimension of the dataset to be identified. However, the 

maximum dimension is limited by the number of muscle signals analyzed, as well as by 

the number of disparate conditions examined. Therefore, it is critical that the data matrix 

itself be of high enough dimension such that a reduction in dimension is meaningful. The 

extraction of components relies on muscles being coordinated in different patterns. 

Therefore, the number of muscles recorded must be adequately high to capture different 

patterns of covariation, and the number of experimental conditions or possible variations 

observed must be of high enough dimension to capture different coordination patterns 

among the muscles. If muscle activation patterns are truly independent, this will also be 

reflected in the component analysis.  

 For example, the early studies of postural responses examined only two directions 

of perturbation (forward and backward). It was suggested that there were only two 

muscles synergies necessary, one active for forward perturbations, and another for 

backward perturbations (Nashner 1977; Horak and Macpherson 1996). However, these 

finding revealed experimental rather than physiological constraints. If NMF or PCA were 

applied only to forward and backward perturbations, they would arrive at a similar 

conclusion because the data only represent two conditions. By examining multiple 
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perturbation directions, it becomes clear that more than two muscle synergies are needed 

to describe the full repertoire of postural responses (Macpherson 1988; Macpherson 

1991; Henry et al. 1998), but a new muscle synergy is not necessary for each perturbation 

direction (Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2007). Similarly, the total 

number of components that can be extracted is limited by the number of muscles that are 

recorded. It also depends upon muscles being coactivated during certain conditions and 

not others. Therefore, if only a few muscles are recorded, it is possible that they would 

each comprise a single synergy if they are independently activated. Conversely, if they 

are always coactivated, then they will comprise only a single muscle synergy. Again, 

sufficient experimental conditions must be tested to demonstrate that the muscles could 

be coactive or independent, depending upon the condition. Such manipulations in 

pedaling revealed that certain muscles that are always coactive during forward pedaling 

may have different patterns of activation in backward pedaling (Ting et al. 1999). 

 Once it is established that the number of muscles and conditions is appropriate and 

can provide enough variability to extract a smaller number of components, the robustness 

of such components can then be tested across tasks (Krishnamoorthy et al. 2004; Cheung 

et al. 2005; d'Avella and Bizzi 2005; Torres-Oviedo et al. 2006). The generality of 

muscle synergies has been shown in a few studies in which synergies were shared 

between multiple tasks, such as frog kicking, jumping, and swimming, and in human 

walking/running, and pedaling forward and backward (Raasch and Zajac 1999; Ting et al. 

1999; Cheung et al. 2005; d'Avella and Bizzi 2005; Cappellini et al. 2006; Torres-Oviedo 

et al. 2006). Although some synergies are used in multiple tasks, sometimes new 

synergies emerge when a new motor task is presented (Ivanenko et al. 2005) or the 
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activation of the synergies may be adjusted (Cappellini et al. 2006).  

Here, we provide two examples of the differences between NMF and PCA when 

applied to test the robustness of muscle synergies (a) across postural tasks, and (b) during 

walking.  

 

A.4.1 Are Muscle Synergies Stable or Artifact? Shared Versus Specific Components 

 Here, we used PCA and NMF to test whether muscle synergies are stable across 

postural tasks by comparing the components extracted from perturbations in two-legged 

stance extracted above (Fig. A.4) to those from perturbations during one-legged stance. 

Subjects stood on their right leg and were subject to 12 directions of perturbations of 

smaller velocity and amplitude than in two-legged stance. One- and two-leg data were 

recorded in the same session, so that the activity of the 16 lower trunk and leg muscles 

from the stance side could be directly compared.  

 When PCA was applied to the one-leg data set to identify muscle synergies, two 

of the components extracted were similar to those identified from the two-leg postural 

responses (Fig. A.6A). The first component (W'1pca) is comprised of small contributions 

from all of the muscles, representing the average responses, so these would be expected 

to remain the same. Because the similarity between components from one- and two-

legged stance are mainly based on the mean level of muscle activity, the VAF provides a 

better representation of the similarity than r2 (r2=0.0291, VAF = 82%). The third 

component from one-leg responses, W'3pca (Fig. A.6A, gray bars), looks similar to the 

second one identified from two-leg responses, W2pca (Fig. A.6A, black bars), suggesting 

it is more highly activated in two-leg responses. The other components, most of which 
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account for a smaller percentage of variance, are quite different in the one-leg task 

compared to the two-leg task (max r2 = 0.176, max VAF=17.5%). Therefore, if PCA 

were used to identify muscle synergies, the conclusion would be that different muscle 

synergies are used for one- and two-leg postural responses. 

 When NMF was applied to the one-leg data set to identify muscle synergies, 

however, four of the five components were very similar to those used during the two-leg 

balance responses (r2=0.27 – 0.76, VAF=51%–85%, Fig. A.6B). The muscle 

contributions to each of these four components was similar, and the activation coefficient 

tunings shifted slightly to account for differences in individual muscle tuning curves. The 

fifth component from two-leg stance (W2nmf)  had a large contribution from REAB, a hip 

flexor, whereas the fifth component in one-leg stance (W'5nmf) has primarily SOL activity, 

an ankle extensor. This is likely because subjects were more likely to use a hip strategy in 

two-leg stance compared to one-leg stance. Further, the component used in one-leg stance 

(W'5nmf) was strongly activated for rightward (0 degree) perturbations. Note that, in the 

two-leg stance, none of the five components were tuned for rightward perturbation 

directions (Fig. A.6B). This suggests that when both legs can be used to respond to a 

rightward perturbation, subjects use muscles in the left leg to restore their balance, but 

when the left leg is not available, an additional component in the right leg must be 

activated to compensate for the loss of stability provided by the left leg. These results 

show that there are similar components that are used across postural tasks, suggesting that 

the muscle synergies derived from NMF are physiological constraints that the nervous 

system uses for muscle coordination, and not simply artifacts of the experiment or 

analysis. 
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Figure A.6 Comparison between components identified from one-leg postural responses 
compared to those identified from two-leg postural responses.  A: Comparison of 
components and activation components identified using principal components analysis 
(PCA).  Black bars and lines are two-leg responses (same as in Figure A.4), and gray bars 
and lines are one-leg responses.  Percentages on the left-hand side of each component 
represent the percent total variability that each component accounts for.  Numbers to the 
right of each component are indicators of how closely the component from one-leg 
responses matches the one from two-leg responses.  Both r2 and uncentered r2 (variability 
accounted for; VAF) are shown.  The first component from one-leg (W'1pca) and two-leg 
responses (W1pca) matches fairly well, and the third component from one-leg responses 
(W'3pca) matches the second component from two-leg responses (W2pca).  Subsequent 
components do not match; due to the orthogonality constraint of PCA, when one 
component changed, subsequent components changed also.  B: Comparison of 
components and activation coefficients identified using non-negative matrix factorization 
(NMF).  The same components are used in one-leg and two-leg responses, with the 
exception of one component that is specific to either condition.  The additional 
component used in one-leg responses is tuned for 0-degree perturbations, which 
presumably are accounted for by the left leg in two-leg responses.  The same 
components, or muscle synergies, can explain the different individual muscle activations 
observed between these two tasks, by only changing the activation of the muscle 
synergies. 
 

 

 Although the example demonstrates the possibility of stable components across 

tasks, thorough cross-validation tests should be performed to ensure that the components 

are indeed stable across tasks. Therefore, to draw stronger conclusions about the 

physiological basis of the components, the results of analyses across different subsets and 

combinations of the data should be compared (e.g Torres-Oveido and Ting 2010). Apart 

from extracting components independently from control (e.g., two-leg) and test (e.g., 

one-leg) tasks, the components from the control condition can be used to reconstruct the 

test data. If they do not explain a sufficient percentage of the variability, then condition-

specific components may be extracted from the remaining variability of the data (Cheung 

et al. 2005). Additionally, components extracted from the control and test data pooled 

into one large data set should render similar results. If the same components are identified 
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in all of these cases, it is more likely that the technique has identified underlying 

physiological features of the data. In our example using NMF, the same components are 

identified in one-leg and two-leg stance using all these different combinations (not 

shown). In contrast, PCA generates different components depending on which data 

combination is used.  

 

A.4.2 Using Time As a Condition: Muscle Synergies During Walking 

 When applying PCA and NMF to a continuous motor task, such as locomotion, 

time can be considered to be a condition. Similar to the different directions of postural 

perturbations, different coordination patterns across muscles are observed across different 

time points in the locomotor cycle. However, if muscles are activated in a similar pattern 

across time, such as in an isometric task, the use of time as a condition may not provide 

enough variability in the data to allow for meaningful interpretation. In this example, 

subjects walked freely at a slow (0.7 m/s) pace for at least ten steps each trial. Data were 

recorded beginning at heel strike of the third to fourth step, so that subjects had already 

reached a steady-state gait, and each trial includes at least three full stride cycles. Seven 

trials were included in the data matrix. Sixteen EMG signals were recorded in one leg 

(Fig. A.7).  
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Figure A.7 Example of muscle activity during a forward walking trial.  Shown are eight 
muscles of the 16 recorded.  The subject was walking at a speed of approximately 0.7 
m/s.   The shaded gray boxes indicate stance phase. 
 

To create the data matrix, the mean activity was computed in 10 ms bins over the 

three steps in each trial. Binning has the advantages of smoothing the data, reducing the 

total number of conditions, thus reducing computation time, while maintaining much of 

the detail in the variations of the EMG within and across cycles. Note that the muscle 

activation patterns do not resemble the idealized sinusoidal EMG patterns often found 

due to smoothing or averaging. Additionally, the pattern of muscle activity and the 

duration of the stance phase vary from step to step, as does the number of bins. There is 

no need to stretch or shorten the data across time to obtain a consistent number of data 
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points per stride. When creating the data matrix, different trials are simply concatenated 

end to end.  

 It is important to distinguish between two mutually exclusive hypotheses that can 

be tested by decomposing walking data into muscle synergies. For both PCA and NMF, 

the components Wi are assumed to be fixed, whereas the activation coefficients or scaling 

factors ci are allowed to vary (Clark et al. 2010). Here we choose W’s to refer to fixed 

muscle activation patterns, whereas we allow c’s to vary across time. The data must be 

structured such that the muscles are the observations (rows for NMF, columns for PCA) 

and the time windows are the conditions (columns for NMF, rows for PCA). Conversely, 

it is possible to hypothesize that the timing patterns are stereotypical across cycles, and 

that the muscle coordination patterns vary (Ivanenko et al. 2004; Cappellini et al. 2006). 

Fixed timing patterns might be generated by a central pattern-generating neural circuit, 

with their muscle targets changing with phase. In this case, it is necessary to stretch the 

cycles in time so that they all have the same number of points. In this case, the data 

should be transposed, such that the time points are the observations, and the muscles are 

the conditions, with repeated trials or cycles concatenated. However, in neither analysis 

can both the components and the timing patterns vary. Either muscular coactivation 

patterns or timing patterns must be assumed to be the same across all conditions.  

Here, we compare six components extracted from one subject’s walking data 

using PCA and NMF (Fig. A.8). 
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Figure A.8 Components and activation coefficients identified from walking data using 
principal components analysis (PCA) and non-negative matrix factorization (NMF).  A: 
Components identified using PCA may have positive and/or negative muscle 
contributions and activation coefficients.  Percentages indicate the amount of total data 
variability accounted for by each component.  The shaded gray boxes indicate stance 
phase.  Activation coefficients from one trial of walking (the same trial as in Figure A.7) 
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are shown.  Components from PCA have contributions from many muscles.  The first few 
components have activation patterns that are aligned with particular phases of the gait 
cycle, whereas the last few have less identifiable patterns. B: TA muscle activity from a 
single trial reconstructed using the PCA components identified in A.  The original data 
are shown with a dashed black line and the reconstructed data are shown with a solid 
black line.  Variability accounted for (VAF) and r2 indicate goodness-of-fit.  C: 
Components identified using NMF have only positive muscle contributions and 
activation coefficients.  Components from NMF tend to have strong contributions from 
only a few muscles.  Activations coefficients for some components (W1nmf, W2nmf, W3nmf, 
and W6nmf) are aligned with particular phases of the gait cycle, whereas others may be 
stabilizing components since they are active throughout the entire trial (W4nmf and W5nmf). 
D: TA muscle activity from a single trial reconstructed using the NMF components 
identified in C.  The original data are shown with a dashed black line and the 
reconstructed data are shown with a solid black line.  VAF and r2 indicate goodness-of-
fit.  
 

Similar to the postural response example, the first component identified using 

PCA primarily describes the mean level of muscle activity, and the later ones described 

deviations from that mean. The first two components contained primarily positive 

contributions from nearly all of the muscles. The first component was activated positively 

at the beginning and end of stance and activated negatively in swing, whereas the second 

component was positively activated in swing but negatively activated in stance. The 

subsequent components all had both negative and positive contributions from different 

muscles, and their activation coefficients over time decreased in amplitude, but increased 

in frequency. Although the first three components had peaks that corresponded to 

identifiable events in the gait cycle and various EMG activity (Fig. A.7), the last three 

had high-frequency oscillations that were not localized to a particular phase in the 

locomotor cycle. Reconstructing the TA EMG signal reveals that the activity during 

swing phase is composed of contributions from two components primarily, although there 

are small contributions from all components (Fig. A.8B). Both components contribute to 

the large peak in TA activity. However, the smaller, secondary burst is due to a positive 
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contribution from W2pca that is largely cancelled by a negative contribution from W3pca. 

(Fig. A.8B). Note that the r2 value is quite high, indicating a good match of shape, 

whereas the VAF level is low, indicating that the predicted EMG amplitudes do not 

match measured values. 

 The six components extracted using NMF were quite different from those found 

using PCA. Each component consists of large contributions from a small number of 

muscles, and the muscles tend to be grouped according to joint or function. Some of the 

components were activated at specific points during the gait cycle, such as W3nmf being 

activated at early stance and again at late stance, W1nmf activated during early swing, and 

W6nmf during late swing. Other muscle synergies were activated throughout both stance 

and swing, suggesting that they may be used for stabilization (W4nmf and W5nmf). As in 

the postural example, the bursts of activity appearing in the activation coefficients 

resemble the bursts observed in the original EMG data (Fig. A.7). Only two NMF 

components contribute to TA EMG activity (Fig. A.8D). W1nmf contributes most of the 

TA activity, including the large burst in early swing phase. The contribution from W6nmf 

adds a small secondary burst. 

Again, the components extracted during walking must also be cross-validated 

over a number of different test extractions to be sure that they are stable and not artifacts 

of the way the data are represented. In our NMF analyses, we find components to be 

stable across time bins sizes of 10 to 100 ms during walking. Components are also stable 

if fewer trials are analyzed, or if faster walking speeds are analyzed. Moreover, the 

components extracted from one speed can account for variations in EMG occurring with 

changes in walking speed (Clark et al. 2010). However, the components change if EMGs 
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are averaged across strides, and less of the variability from stride to stride is accounted 

for by components extracted from averaged data.  

 

A.5 Conclusion 

 Are linear decomposition techniques useful for understanding motor control 

(Macpherson 1991; Tresch and Jarc 2009)? Ultimately, no decomposition technique is 

perfect, and much discretion and interpretation must be exercised on the part of the 

investigator when drawing conclusions from any such analysis. Computational analyses 

cannot replace the judgment and intuition of the researcher, and ultimately the results 

must make sense in a physiological context. Therefore, it is critical that the implicit 

hypotheses, assumptions, and constraints inherent in any technique be understood in 

order to use it usefully in motor control or other scientific research. In the best-case 

scenario, a linear decomposition can be a tool that can formally test a hypothesis that the 

researcher formulates by looking at the raw data and observing the synchrony and 

variability across multiple EMG signals. It allows different periods of activity within a 

muscle to be attributed to different underlying components. In the end, the relationship 

between the derived components and the original data may potentially allow a researcher 

to draw conclusions about the underlying neural mechanisms if the components do not 

represent limitations of the recordings, experimental conditions, or other data artifact. 

Ultimately, to make any sort of physiological conclusion, the extracted components must 

be interpreted in terms of the known underlying physiological mechanisms and 

biomechanical outputs. The examples presented here demonstrate intuitively the 

workings of NMF and PCA, with the aim of informing and aiding in the interpretation of 
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data. Such exercises can be performed to better understand any kind of decomposition 

technique, each with its own advantages and disadvantages (Tresch et al. 2006).  

Is the added computation useful for understanding motor tasks? In some cases, the 

answer may be “no,” particularly for any kind of initial analysis of a motor task or 

experimental condition. The technique must appropriately match the hypothesis. 

Component decompositions can be useful when examining the detailed workings of 

complex multimuscle coordination. It is useful for comparing complex muscle 

coordination across different tasks or trials in which muscle activity changes, but the 

underlying coordination principles may be the same, as we have shown in fast and slow 

walking (Clark et al. 2010), or one- and two-legged postural control (Torres-Oviedo and 

Ting 2010). In cases in which repeated measures are not possible, such as in patient 

populations, highly variable motor patterns are difficult to analyze from traditional 

techniques that rely on averaging. In this case, a component decomposition can identify 

whether common underlying elements are being activated across different trials or tasks 

(Clark et al. 2010). Similarly, the underlying components may provide a better measure 

of similarity or differences across individuals than the comparison of individual EMG 

traces (Ting 2007; Ting and McKay 2007). It is possible to identify whether individuals 

with different EMG patterns have similar underlying components but activate them 

differently, or if instead they have different numbers or composition of underlying 

components (Torres-Oviedo and Ting 2007; Clark et al. 2010) 

 Decomposition can also be useful for understanding the function of the underlying 

components. These analyses are difficult and do not always work. They require many 

practical considerations to accommodate limitations of the analysis techniques, and 
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require the investigator to guess at the correct variables that are being controlled. But if a 

relationship is not found, it does not mean that there is no functional role for that 

component. Previous work in postural control has shown in cats that muscle synergies are 

recruited to control forces at the ground (Ting and Macpherson 2005; Torres-Oviedo et 

al. 2006). Such an analysis includes biomechanical variables as additional observations 

(rows) in the data matrix and extracts functional muscle synergies, which are composed 

of both muscles and functional variables (Torres-Oviedo et al. 2006). However, the 

application of NMF to biomechanical variables poses a challenge because negative and 

positive changes in forces necessarily result from different muscle groups requiring them 

to be partitioned physiologically (Ting and Macpherson 2005; Torres-Oviedo et al. 2006; 

Valero-Cuevas 2009). Because changes in velocity and position require the integration of 

forces, the relationship between muscle activity and kinematics is highly redundant, and 

also difficult to predict without explicit models (Gottlieb et al. 1995; Lockhart and Ting 

2007). This redundancy is evident in studies relating the activation of components found 

using PCA to center-of-pressure shifts in human balance control using the uncontrolled 

manifold hypothesis (Latash et al. 2002; Krishnamoorthy et al. 2003a; Ting and 

Macpherson 2005). These studies demonstrate that, although functional roles of 

individual components may be identified, the variability in their activation may not be 

reflected in the variability of the output because they are precisely coordinated by higher 

mechanisms in the nervous system to reduce variations in the desired motor task. 

Alternately, biomechanical simulation and analysis techniques allow the functional role 

of the muscle coordination patterns identified by the extracted components to be 

explicitly tested (Raasch et al. 1997; Berniker et al. 2009; Neptune et al. 2009). 
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Additionally, the feasibility of robustly using such components to coordinate a repertoire 

of movement can also be explored (Kargo and Giszter 2008; McKay and Ting 2008; 

Raasch and Zajac 1999; Valero-Cuevas 2000; Valero-Cuevas et al. 2003). However, it is 

difficult to build appropriate dynamics models and to record from all of the muscles 

involved in a movement to use such techniques. Moreover, models of the neural control 

mechanisms that shape and use the components effectively need to be explored (Berniker 

et al. 2009). Again, in order for any of these techniques to be useful in relating muscle 

activity to functional variables, the investigator must have a good understanding of their 

raw data and the underlying physiological and biomechanical mechanisms in order to 

interpret the results of the component analysis appropriately. 

Do the identified components extracted using computational techniques reflect the 

organization of neural circuits for movement? One of the attractive features of 

components from NMF is that they generate a part-based type of representation that 

appears similar to both neurophysiological observations, as well as to predictions from 

“sparse-coding” algorithms in sensory systems (Olshausen and Field 2004). The idea is 

that in a retinotopic, somatotopic, or other sort of spatial sensory map in the nervous 

system, only a small region is activated for any given stimulus, such as a location in 

space, or a part of the body. This “sparse” coding means that a minimum of neurons is 

used to encode a particular feature from among all of the information contained in that 

map. But, as in PCA, it is also possible to imagine a system in which neurons in the entire 

map are activated given a particular stimulus, and their net output results in the 

identification of a particular stimulus. The sparseness property has also been proposed for 

motor system and is proposed to improve energetic expenditure by reducing the number 
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of neurons involved in any given behavior, as well as improving computational 

efficiency, thus reducing the total number of elements that need to be modified during 

motor adaptation (Olshausen and Field 2004; Fiete et al. 2007; Ting and McKay 2007). 

Accordingly, localized regions of motor cortex are activated to perform a given 

movement, and muscle synergies for reaching have been proposed to result from cortico-

motoneuronal cells that project to multiple muscles (Graziano and Aflalo 2007; Scott and 

Kalaska 1997). Similarly, reticulospinal neurons active during postural control (Schepens 

and Drew 2006; 2004; Schepens et al. 2008; Stapley and Drew 2009) also project to 

multiple muscles in the limbs and trunk, and interneurons in the spinal cord may facilitate 

coordination of muscles within and between the limbs during locomotion (Drew et al. 

2008; McCrea 2001; Quevedo et al. 2000).  

Although, NMF components may provide one computational tool among the 

many needed to understand the sensorimotor transformations involved in determining 

how we move, much research is warranted before any of the questions about the utility 

and interpretability of the resulting components can be resolved. Component 

decompositions allows large datasets of EMG data and other variables to be decomposed 

into components that must be interpreted and compared to the organization of neural 

control systems upstream, and their functional biomechanical outputs downstream. NMF 

is especially useful for examining neural and muscle activity signals that are inherently 

non-negative. PCA may prove more useful for analyzing biomechanical variables that 

take on both positive and negative values without consideration for muscle activity. The 

continued development of physiologically relevant decomposition techniques combined 
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with experimental and computational studies may eventually allow us to better 

understand how learning, adaptation, and rehabilitation occurs in the motor system.  
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APPENDIX B 

VOLUNTARY STEPPING 

 

B.1 Introduction 

Previous studies have shown differences in muscle activity and step latency 

between a reactive step in response to a perturbation and a voluntary step.  In voluntary 

steps (pre-planned steps in which a perturbation is the cue), the muscles were not 

activated as much as in reactive stepping, and the latency to step is longer due to the 

presence of an anticipatory postural adjustment (APA) when a step is pre-planned (Horak 

and Macpherson 1996; Maki and McIlroy 1997; McIlroy and Maki 1993a).  The APA 

which has been observed in voluntary steps consists of initial vertical loading of the 

stepping foot before lift off, which serves to move the center of mass (CoM) toward the 

stance foot, ensuring that the body is supported during the movement (Maki and McIlroy 

1997).   This anticipatory behavior is absent in reactive steps taken in response to a 

perturbation (McIlroy and Maki 1993a).  Even so, I predict that the same muscle 

synergies will be used in the stance leg in the voluntary stepping condition as were used 

in the reactive non-stepping and stepping tasks (see Chapter 2).  The kinematics and CoM 

movement will be the same for reactive and voluntary stepping tasks, but the command to 

activate the synergies will come from different levels of the nervous system.  The 

command in a voluntary step comes from motor cortex, but in a reactive step it comes 

from a lower level, perhaps brainstem, in response to a combination of sensory inputs that 

provide information about the body orientation and CoM position.   
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Additionally, the displacement of the CoM is achieved slightly different in these 

two conditions.  In reactive stepping, the CoM is displaced initially due to the platform 

motion, then further displaced via generation of forces at the ground to cause a step.  In 

voluntary stepping, the entire CoM displacement results from forces generated by the 

stance leg.  We hypothesize the muscle synergies are activated to perform a specific 

biomechanical function (such as generate forces at the ground) in order to control the 

movement of the CoM.  Since both of these tasks require control of CoM, I expect to see 

the same muscle synergies used in both tasks, and only the commands to the synergies 

will need to change in order to produce the differences in individual muscle patterns that 

have been observed and required ground reaction forces. 

 In this study, I plan to identify muscle synergies underlying both reactive and 

voluntary steps.  Thus the biomechanics of the tasks will be identical but the command to 

the muscles will originate from different levels of the nervous system, giving us an 

indication of how accessible the muscle synergies are and the role sensory feedback plays 

in their activation.  As a first step, I examined the kinetics, kinematics, and EMG 

underlying reactive and voluntary stepping in different directions.  While a few studies 

have examined reactive stepping in multiple directions (Maki and McIlroy 1997; Zettel et 

al. 2002), multidirectional voluntary stepping has not been studied nor compared to 

reactive stepping.  

 Here we examined whether the presence of APAs in voluntary steps and absence 

in reactive steps generalizes to other directions of stepping.   The biomechanics of 

stepping are different depending on the direction of the step; in order to execute the step, 

muscles are activated differently over different directions.  What is the nature and 
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function of the APA and under what conditions is it necessary?  Studies of whole-body 

reaching have shown that APAs do not necessarily oppose a focal movement, but instead 

may vary to set up the desired task dynamics (Stapley et al. 1999).  Here examined the 

sequence of events that occured during reactive and voluntary stepping, focusing on the 

presence or absence of an APA.  Furthermore, we investigated the origin and function of 

the APA by examining its timing relative to muscle activity. 

 

B.2 Methods 

 First subjects were asked to maintain standing balance as the support surface 

translated in any of 12 directions in the horizontal plane; they were instructed to step with 

their left foot if necessary.  Next, subjects were asked to voluntarily step with their left 

foot in the same 12 directions as quickly as possible following the onset of a visual cue.  

EMG activity was measured from 16 muscles of the right (stance) leg and lower trunk.  

Mean EMG levels were calculated just before and after step initiation, and EMG tuning 

curves across directions were examined.   

 

B.2.1 Data Collection 

 Eight healthy subjects between the ages of 19 and 26 were exposed to two sets of 

support-surface translations according to an experimental protocol that was approved by 

the Institutional Review Boards of Georgia Tech and Emory.  Subjects stood on a 

platform that translated in 12 equally spaced directions in the horizontal plane (see Figure 

1).  They were instructed to maintain balance without stepping if possible, but if a step 

was necessary, to step with their left foot.  This was done to ensure steps would be 
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reactive and not voluntary, intentional steps.  Two blocks of ramp-and-hold perturbations 

in each of these 12 directions were presented.  In the reactive stepping block, the 

platform's displacement was 23 cm, velocity was 45 cm/s and acceleration was 0.75g.  In 

the non-stepping block, the platform’s displacement was 12.4 cm, velocity was 35 cm/s, 

and acceleration was 0.5g.  The perturbation directions were randomized during each 

block of perturbations to minimize anticipatory adjustments and increase response 

variability.  Due to the influence of prior trials on a subject’s response (Horak and 

Nashner 1986), we first collected the stepping block of trials and then the non-stepping 

block of trials. Five trials of each condition (stepping and non-stepping) in each of the 12 

directions of perturbation were collected.  In the stepping condition, all subjects took a 

step in response to perturbations in all directions.  Occasionally subjects stepped with 

their right foot and these trials were excluded from the analysis.  In the non-stepping 

condition, all subjects maintained balance without taking a step.   

 For some subjects, the parameters used to induce stepping in the reactive stepping 

condition actually did not cause the subjects to step, particularly in lateral directions.  

Increasing the input velocity caused an increase in platform acceleration in cardinal 

directions, but in diagonal directions caused a curved trajectory.  We attempted to get a 

consistent stepping response in all directions; therefore, the parameter set used during the 

reactive stepping condition had increased velocity input values for directions 0 and 180, 

which resulted in a platform acceleration of ~0.95g.  A previous study used different 

displacements for medial perturbations compared with anterior/posterior perturbations 

due to differences in stability when perturbed in those directions (Macpherson 1988), 
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confirming this is a reasonable approach to ensure consistent responses across all 

directions. 

 Subjects also performed two sets of voluntary steps in multiple directions.  A 

screen in front of the subjects showed empty circles in the same 12 directions as the 

reactive conditions.  In each trial, one of the circles would light up, indicating to the 

subject which direction they should step.  In the voluntary step out and back condition, 

subjects were instructed to step as quickly as possible towards the direction of the 

indicator light, using their left foot, and were told the light would turn off once they had 

shifted their weight to the stepping leg.  They were instructed to immediately step back to 

the starting position when the light turned off.  The reason for them to quickly return to 

the starting position was because in reactive stepping responses, subjects tended to step 

very quickly, just long enough to catch themselves before falling, and then immediately 

returned their feet to the center.  They shifted ~75% of their weight onto the stepping leg 

before stepping back to the center.  Therefore the weight shift required to turn the light 

back off in the voluntary step out and back condition matched as closely as possible the 

weight shift observed in reactive stepping responses.  There were no markers on the floor 

indicating where exactly they should step to; they were simply told to step towards the 

direction indicated by the light while looking straight ahead.  The kinematics of this 

voluntary stepping task seem to match closely the kinematics of the reactive step, 

ensuring that any differences we see in muscle activity/synergies are due to the different 

commands rather than a different movement.  Note that if subjects were not instructed to 

step quickly, the motion of the step looked completely different, so any differences 

observed could be due to a different movement rather than a different command.  This 
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condition mimicked the reactive stepping in that the subject knows their end goal is to 

return the CoM to the center. 

 Subjects also performed a second set of voluntary steps in the voluntary step out 

and hold condition.  In this condition, again subjects stepped quickly towards the 

direction of the indicator light with their left foot, but this time they were instructed to 

shift their weight onto the stepping leg (without lifting the right foot) and hold it there.  

Thus the end goal in this condition was to push the CoM away, similar to a gait initiation 

step. 

 Surface EMG activity was recorded from sixteen lower back and leg muscles on 

the subject’s right side, which was the stance leg in all stepping conditions.  The muscles 

recorded included:  vastus lateralis (VLAT), rectus femoris (RFEM), rectus abdominis 

(REAB), biceps femoris, long head (BFLH), semitendinosus (SEMT), adductor magnus 

(ADMG), erector spinae (ERSP), abdominal external oblique (EXOB), vastus medialis 

(VMED), tibialis anterior (TA), medial gastrocnemius (MGAS), lateral gastrocnemius 

(LGAS), soleus (SOL), peroneus (PERO), tensor fasciae latae (TFL), and gluteus medius 

(GMED).  EMG data were high pass filtered at 35 Hz, de-meaned, rectified, and low-pass 

filtered at 40 Hz, using custom MATLAB routines.  Additionally, kinetic data were 

collected at 1080 Hz from force plates under the feet (AMTI, Watertown, MA) and 

kinematic data were collected at 120 Hz using a motion capture system (Vicon, 

Centennial, CO) and a custom 25-marker set that included head-arms-trunk (HAT), and 

bilateral thigh, shank, and foot segments (Winter 1990).  CoM acceleration was 

calculated from ground reaction forces (F=ma), and CoM position was calculated using 

kinematic data and the Vicon Plug-in-Gait model.   
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B.2.2 Data Processing 

To distinguish any anticipatory muscle activation from the actual stepping 

movement, two time bins were analyzed: one prior to step initiation and one following 

step initiation.  Step initiation and APA onset were defined by divergences in GRF.  Step 

initiation was defined as the time when the right foot began rapidly loading while the left 

foot began unloading, and APA onset was the time when the left foot began loading 

while the right foot started unloading.  To analyze forces, two time bins were defined: the 

APA period which lasted from APA onset to step initiation, and the Step period which 

last from step initiation until 200ms after step initiation (Figure B.1, gray shaded 

regions).  To analyze EMG patterns that would have been responsible for generating 

these force shifts, each time bin was shifted back by 60ms to account for 

electromechanical delays.  Therefore, for EMG analysis, the APA period was from 60ms 

before APA onset until 60ms before step initiation, and the Step period was from 60ms 

before step initiation until 140ms after step initiation.  Mean muscle activity for each 

muscle during each time bin was calculated for each trial.  These numbers were 

assembled to form a data matrix, which consisted of 2 time bins x 12 directions x 5 trials 

= 120 points for each of the 16 each muscles. For display purposes, each muscle’s EMG 

values were initially normalized to the maximum value across all time periods, 

perturbation directions, and conditions so that each value was between 0 and 1.  Tuning 

curves were generated with respect to step direction in order to examine muscle activity 

across all 12 perturbation directions in each condition and time bin. 
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Figure B.1 Example of EMG and GRF during a rightward voluntary step. Vertical 
dashed line indicates the onset of the light cue, and EMG responses generally occur 
~300-400ms after the cue.  Shown here are tibialis anterior (TA) and vastus medialis 
(VMED) from the right (stance) leg.  Ground reaction forces under the feet are also 
shown.  EMG activity was averaged during two time periods, the APA period and step 
period, to generate tuning curves.  For EMG analysis, the APA period begins 60ms 
before APA onset (yellow vertical line) and lasts until 60ms before step initiation (green 
vertical line).  These windows are 60ms earlier than time windows used to analyze forces, 
to allow for electromechanical delays. 
 

 

B.3 Results 

Voluntary steps in response to a visual cue were initiated later than reactive steps 

in response to a perturbation, as expected (Figure B.2).  Nevertheless, reactive and 

voluntary steps had similar kinematics.  Voluntary steps were slightly longer duration and 

slightly longer step length than reactive steps, but generally the voluntary steps from the 

voluntary step out and back condition matched the reactive steps fairly well.  The 
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variability in step locations observed in voluntary steps was similar to that observed in 

reactive steps.   

 

 

Figure B.2 Step kinematics for reactive and voluntary steps.  Shown are the left asis, 
knee, and heel marker for a leftward step and a forward step in each condition.  Although 
reactive steps are slightly quicker and slightly shorter than voluntary steps, generally the 
steps are quite similar in distance and duration. 
 

 For steps toward the front, back, and right, APAs were present in voluntary steps, 

as expected (Figure B.3).  In rightward voluntary steps, muscle activity preceding the 

APA onset can be seen during the APA period.  TA activation that presumably generates 

the weight shift characterizing the APA was observed during the APA period in forward 

and rightward steps, whereas BFLH was active during the APA period in backward steps 

(Figure B.3).  However, for voluntary steps with a leftward component, no APA was 

observed.  Therefore in voluntary leftward steps, subjects were able to push with the 

stance leg without prior preparatory weight shift or muscle activity.   
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Figure B.3 GRF and EMG during voluntary steps in all 12 directions.  The APA period 
is indicated by light gray shaded box and the step period is indicated by darker gray 
shaded box.  APAs were present in voluntary steps towards the right, front, and back, 
along with associated muscle activity during the APA period that generates the APA.  No 
APA was observed in leftward voluntary steps.  
 

 Conversely, in reactive steps towards the front, back, and right, no APAs were 

observed, as expected (Figure B.4).  However, in reactive leftward steps, the swing limb 

was loaded due to the perturbation and was unloaded prior to the step, resulting in an 

"APA-like" weight shift and associated muscle activity.  No muscle activity was 

observed during the APA period for most reactive stepping directions, indicating that 

APA-like weight shifts are passive and due to the perturbation rather than active control.  

All muscle activity in reactive stepping responses began after the APA onset, and the 

timing of this muscle activity was consistent with a postural response.  The automatic 
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postural response (APR) has been well-characterized and occurs ~100 ms following the 

perturbation (Horak and Macpherson 1996), which is consistent with what we observed 

in reactive stepping responses. 

 

 

Figure B.4 GRF and EMG during reactive steps in all 12 directions.  The APA period is 
indicated by light gray shaded box and the step period is indicated by darker gray shaded 
box.  No APAs were present in voluntary steps towards the right, front, and back.  An 
"APA-like" weight shift was observed in leftward voluntary steps, due to the platform 
motion, without associated muscle activity. 
 

 Further, differences in the function of the stance leg in the generation of reactive 

and voluntary steps were evident in the different muscle tuning curves associated with 

stepping.  During the APA period, different muscles are used in reactive and voluntary 

steps (Figure B.5).  In voluntary stepping, muscle activity during the APA period 
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generates an APA.  However, in reactive stepping, muscle activity in the APA period 

represents a postural response, since it occurs after APA onset.  During the step period, 

opposite muscles were activated during voluntary and reactive steps for steps in the 

anterior/posterior directions.  For example, VMED was activated for forward voluntary 

steps and backward reactive steps (Figure B.5).  In voluntary steps, the stance leg 

generates the propulsion needed for the step, whereas in reactive steps, the stance leg acts 

as a brake to stop the momentum caused by the perturbation.  But, in medial/lateral 

directions, the same muscles were activated during voluntary and reactive steps, because 

the stance leg generates propulsion in both of these conditions.   

 

B.4 Discussion 

 We propose a new role for the APA to set the state of the system to perform a 

movement.  In rightward voluntary steps, the APA is necessary to shift the CoM toward 

the stance leg, supporting the CoM during the step.  This suggests that the APA functions 

to change the initial state of the system.  By contrast, in leftward steps, there is no need to 

shift the CoM rightward towards the stance leg because the overall goal is to step 

leftward.  For leftward voluntary steps, APAs may not be necessary because the body is 

in the correct state to perform the movement. 
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Figure B.5 Muscle tuning curves during reactive stepping (black) and voluntary stepping 
(gray) during the APA period and step period.  Shown are the mean tuning curves ± 
standard deviations for 5 trials of each perturbation direction for each condition. 
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differences in their initiation and execution, because they have particular biomechanical 

goals that have to be achieved in order to take a step. 

 The next step will be to examine the muscle synergies used during voluntary steps 

to determine if similar neural mechanisms for muscle coordination are used in voluntary 

and reactive stepping.  Our results from Chapter 4 showed a common pool of muscle 

synergies was robustly recruited across various motor tasks such as walking and posture 

responses.  Therefore, I expect to see similar muscle synergies used during the Step 

period to push the CoM away from the starting position in both reactive stepping and 

voluntary stepping.  Furthermore, the same set of muscle synergies may be used to direct 

the CoM during anticipatory movements voluntary stepping conditions. 
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