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SUMMARY 

Trace amines (TAs), tryptamine, tyramine, octopamine, and β-phenylethylamine, 

named for their low endogenous concentrations in mammals, are related to the classical 

monoamine transmitters, but have been understudied and thought of as false transmitters.  

They share structural, physiological, pharmacological, and metabolic similarities with the 

monoamines, including synthesis by the aromatic-L-amino acid decarboxylase (AADC) 

enzyme.  In 2001, a new class of receptors preferentially activated by the TAs, termed 

trace amine-associated receptors (TAARs), was discovered establishing a mechanism for 

TA actions independent of classic monoaminergic mechanisms.  While the TAs and some 

of their receptors are present in the mammalian central nervous system (CNS), their 

physiologic role remains uncertain.  I hypothesized that the TAs are found intrinsically in 

the spinal cord, and that they are able to modulate spinal neural networks.   

Using immunohistochemistry, numerous spinal neurons were identified that express 

AADC, the TAs (octopamine, tryptamine, and tyramine), and TAARs (TAAR1 and 

TAAR4).  Similar results were seen for AADC and TAAR1 with in situ hybridization. 

The most consistent observation was for labeling D cells associated with the central canal 

and in motoneurons.  Overall, these results provided evidence for the presence of an 

anatomical substrate onto which the TAs could have intrinsic biological actions in the 

spinal cord. 

Using exogenous application of the TAs in the isolated spinal cord in vitro, and in vivo 

in the mid-thoracic chronically spinalized, I showed that the TAs could induce rhythmic 

locomotor-like activity.  TA injection-induced hindlimb motor rhythms observed in 

chronic spinalized animals, supports TA spinal actions independent of the descending 



 xxi

monoaminergic systems.  In the presence of NMDA, TA applications recruited a variety 

of rhythmic motor patterns in the isolated spinal cord.  This ranged from locomotor 

activity indistinguishable from 5-HT/NMDA induced locomotion to complex patterns 

including, an episodic form of locomotion where there were locomotor bouts with 

intervening quiescent periods.  

TA actions of pattern generating circuits: (i) had slower kinetics of activation than 5-

HT and NA, (ii) were attenuated in the presence of monoamine transport inhibitors, and 

(iii) had increased intracellular labeling even when incubated in a nominally Na+-free 

solution.  Together these results suggest that the TAs required transport into neurons to 

exert their actions, and that transport occurred by Na+-dependent monoamine transporters 

as well as additional Na+-independent transporters.  

Finally, I used the in vitro isolated spinal cord with attached hindlimbs to record 

electromyographic (EMG) activity from various hindlimb muscles: (i) to compare the 

relationship between the TAs and serotonin (5-HT) evoked motor coordination, and (ii) 

to examine the ability of the TAs to modulate ongoing 5-HT and NMDA locomotor-like 

activity.  The TAs produced both the continuous and episodic patterns on muscles as 

observed in ventral root recordings, but EMG recordings provided more detailed insight 

into specific muscle actions.  The TAs also generally increased both frequency and 

amplitude of ongoing 5-HT locomotor frequency, with tyramine and octopamine also 

particularly able to alter 5-HT motor coordination patterns. 
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CHAPTER 1  

 INTRODUCTION  

1.1 The classical monoamine neurotransmitters 

1.1.1 General background of the monoamines  

The classical monoamine neurotransmitters are important central nervous system 

(CNS) neuromodulatory transmitters.  Projections to the spinal cord from descending 

monoaminergic nuclei are involved in modulating spinal motor, autonomic, and sensory 

functions (Gerin et al. 1995).  Altered monoamine transmitter levels are associated with 

many pathological disorders including dystonias, Parkinson’s disease, schizophrenia, 

drug addiction, and mood disorders (Premont et al. 2001).  

1.1.2 General monoamine transmission 

Like all classic neurotransmitters, the monoamines are stored in vesicles at synaptic 

terminals and released into the synaptic cleft when the neuron is depolarized.  On the 

postsynaptic side of the synapse, they bind G-protein coupled receptors, which lead to 

intracellular signaling pathways being activated.  The monoamines that do not make it 

across the synaptic cleft are taken up by the presynaptic neurons through specific 

monoamine transporters.  The monoamines are then repackaged into vesicles or are 

degraded by monoamine oxidases (Figure 1.1) (Premont et al. 2001). 

1.1.3 Structure and synthesis of the monoamines 

Monoamines have one amino group that is connected to an aromatic ring by a two-

carbon chain (-CH2-CH2-).  Two types of classical monoamines are catecholamines and 
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Figure 1.1: Monoamine synaptic terminal 
Monoamines are released from synaptic vesicles when the neuron is depolarized.  The monoamines either 
bind postsynaptic monoamine receptors, where they activate intracellular signaling, or are taking up by 
monoamine transporters.  Once transported into the presynaptic neuron, the monoamines are either taken 
back up into the synaptic vesicles or are degraded by monoamine oxidases (MAOs). 
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indoleamines.  Catecholamines, such as dopamine (DA), noradrenaline (NA), and 

adrenaline, contain a catechol group, which has two hydroxyl groups attached to a 

benzene ring.  Indolamines, like serotonin (5-HT), contain an indole group, which has 

six-member benzene ring fused to a five-member nitrogen-containing pyrrole ring.   

Both groups are synthesized from the precursor aromatic amino acids in neurons 

containing the appropriate synthesis enzymes, including aromatic-L-amino acid 

decarboxylase (AADC or DOPA decarboxylase), which is required for the synthesis of 

all of the monoamines (Figure 1.2).  Catecholamines synthesis starts with tyrosine 

hydroxylase (TH).  Then DA, NA, and adrenaline are formed by the cascade of AADC, 

dopamine-β-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT), 

respectively.  5-HT synthesis requires tryptophan hydroxylase followed by AADC. 

1.1.4 Descending monoaminergic systems 

Histofluorescence studies by Dahlstrom and Fuxe (1964) first identified populations 

of monoamine-containing nuclei, which have diffuse projections throughout the CNS.  

The nomenclature for these populations follows their discovery in chronological order. A 

cells are catecholaminergic.  B cells are serotonergic (Dahlstrom and Fuxe 1965; 1964).  

The monoamines are synthesized in these nuclei, which are located in the brainstem, and 

are transported into the spinal cord, where the monoamines are widely distributed within 

the spinal cord. 

DA projects to the spinal cord from the hypothalamus.  DA labeling was identified in 

all laminae of the spinal cord.  The labeling was concentrated in the dorsal horn and 

intermediolateral cell column.  Also, there were varicosities in the motoneuronal cell 

groups (Holstege et al. 1996). 
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NA projects to the spinal cord from locus coeruleus and A5 and A7 groups in the 

pontine lateral tegmental.  Locus coeruleus neurons project to the dorsal horn and 

intermediate zone.  A5 and A7 axons project in the ventral and dorsolateral funiculi and 

terminate in the ventral horn and the intermediolateral cell column (Fritschy and Grzanna 

1990). 

There are 9 groups of 5-HT-containing neurons (B1-B9) (Tork 1990).  5-HT projects 

to the spinal cord from the raphe nuclei (medulary raphe pallidus (B1), raphe obscuris 

(B2), and raphe magnus (B3)) and are widespread, innervating all levels of the spinal 

cord (Rajaofetra et al. 1989; Schmidt and Jordan 2000).  5-HT fibers enter the ventral 

lumbar spinal cord around embryonic day 15, while the dorsal spinal cord is innervated 

around embryonic day 20 (Rajaofetra et al. 1989).  

1.1.5 Monoamine oxidases 

Monoamine oxidase (MAO) is an enzyme that catalyzes oxidative deamination of 

dietary amines, monoamines, and TAs and is found in the outer membrane of 

mitochondria.  MAOs act rapidly and are very important in maintaining monoamine 

concentrations.  Two different types of MAO, named A and B, have been characterized.  

They are encoded by different genes, and were originally defined by their sensitivity to 

MAO inhibitors. MAOA is selectively inhibited by clorgyline, and MAOB is selectively 

inhibited by deprenly and pargyline.  MAOA has a high affinity for 5-HT and NA, while 

MAOB has a high affinity for PEA.  DA and the other TAs are degraded by both.  

However, it should be noted that in rodent brains, DA is mainly degraded by MAOA, 

while MAOB plays a larger role in humans and primates (Bortolato et al. 2008; Shih et 

al. 1999).  



 5

  

 
 

Figure 1.2: Biosynthesis of the monoamines and trace amines 
The monoamines [5-HT, DA, and NA] and the TAs [tryptamine, PEA, tyramine, and octopamine] have 
similar structures and synthesis.  Both the monoamines and TAs require aromatic-L-amino acid 
decarboxylase (AADC) for their synthesis from the aromatic amino acids [tryptophan, phenylalanine, and 
tyrosine].  Octopamine is the only TA that requires an additional enzyme, dopamine-β-hydroxylase, while 
all of the monoamines also require other enzymes including tyrosine hydroxylase, tryptophan hydroxylase, 
and/or dopamine- β-hydroxylase.  In the periphery, phenylalanine is also converted to tyrosine by 
phenylalanine hydroxylase. 
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In the brain, MAOA was found primarily in catecholaminergic neurons, whereas 

MAOB is mainly expressed in serotinergic and histaminergic neurons.  Both MAOs are 

also found in cerebral cortices, hippocampus, cerebellum, and spinal cord (Luque et al. 

1995; Westlund et al. 1985).  In situ hybridization demonstrated very strong expression 

of MAOA in motoneurons (Luque et al. 1995), while binding studies using selective 

MAOA and B-inhibitors suggest both MAOs are present in the spinal cord and central 

canal (Luque et al. 1995; Saura et al. 1992).  Also, a subpopulation of sensory neurons in 

dorsal root ganglion were reported to express TH and MAO (Vega et al. 1991). 

MAO inhibitors are used to treat a number of disorders, including depression, anxiety 

disorders, attention deficit disorder, Tourette’s, Parkinson’s disease, and Alzheimer’s 

disease (Bortolato et al. 2008; Shih et al. 1999).   

1.2 Trace amines 

1.2.1 General background of the trace amines 

The trace amines (TAs), named for their low endogenous concentrations in mammals, 

are a family of endogenous amines with structural, metabolic, physiological, and 

pharmacological similarities to classical monoamine neurotransmitters (Saavedra 1989). 

The TAs include tryptamine, tyramine, octopamine, and β-phenylethylamine (PEA).  

Like the classical monoamines, synthesis of the majority of the TAs is formed by the 

enzymatic decarboxylation of the precursor aromatic amino acids, phenylalanine, 

tyrosine, and tryptophan (Figure 1.2), by the enzyme AADC. Tyramine can be further 

enzymatically converted by DBH into octopamine.  Metabolism of the TAs is primarily 

via MAOs (Shimazu and Miklya 2004).  Like the classic monoamines, TAs are thought 

to play a role in human disorders such as schizophrenia, attention deficit disorder, 
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Parkinson’s disease, and depression (Branchek and Blackburn 2003).  Their presence has 

been documented in all vertebrate and invertebrate species studied, including humans 

(Axelrod et al. 1976; Berry 2004; Philips et al. 1978; Roeder 2005).  While the role of 

TAs as neurotransmitters in the sympathetic nervous system of invertebrates is well 

characterized (Roeder 2005), their role in the mammalian CNS is still being 

characterized.  Historically in mammals, TAs have been considered as metabolic by-

products (Berry 2004) or “false transmitters” that displace monoamines from storage.  

Since these compounds were not thought of as active neuromodulators, there was a loss 

of interest in TAs that began in the late 1980’s. 

1.2.1.1 Discovery of the trace amines 

PEA was first isolated from decomposing gelatin by Nencki, a contemporary of Louis 

Pasteur, in 1876.  Subsequently, PEA was isolated from putrid egg whites, decomposing 

mackerel, ripe Emmanthaler cheese, and other fermentation products (Grandy 2007).   

In 1906, Abelous and colleague demonstrated that extracts from putrefied horse meat 

dramatically increase arterial blood pressure.  In 1909, Barger and Walpole, isolated and 

purified PEA and tyramine from putrefied horse meat.  Barger and Dale demonstrated 

that PEA, tyramine, octopamine (which would be named later), and NA cause a rapid 

increase in arterial pressure when injected intravenously into the pithed cat, especially 

tyramine (Barger and Dale 1910; Barger and Walpole 1909; Grandy 2007). 

Octopamine was first detected by Erspamer and Boretti in the salivary gland of 

Octopus vulgaris, hence the name (Erspamer and Boretti 1951).  Subsequently, it was 

identified in the urine of several mammalian species, including humans and rats 

(Kakimoto and Armstrong 1962a; b). 
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1.2.1.2 Origin of the name “Trace Amines” 

The title, “trace”, was given to the TAs at the American College of 

Neuropsychopharmacology meeting in 1975 to describe their quantity (Boulton 1984; 

Usdin and Sandler 1976), which is several hundred-fold below those of the classical 

monoamines (Durden and Philips 1980; Usdin and Sandler 1976).  It has since been 

suggested that it is a misleading title that diminishes their importance (Boulton 1984; 

Burchett and Hicks 2006; Dewhurst 1984).   

As stated by Saavedra (1989): “On the basis of their low concentrations in 

mammalian brain, octopamine, β-phenylethylamine, tyramine, and tryptamine have been 

classified as “micro,” “minor,” or “trace” amines.  The connotation ‘trace’ has perhaps 

been too restrictive, since the concentrations in brain are heterogeneous under 

physiological conditions and their turnover rates are very high” (Saavedra 1989). 

1.2.1.3 Origin and understanding of the conventional view that the trace amines are 

“False Transmitters” 

In the past, the TAs in the mammal have been considered as metabolic by-products 

(Berry 2004) or “false transmitters” that displace monoamines from storage, and act on 

transporters much like the amphetamines, and have no function of their own (Boulton et 

al. 1988; Saavedra 1989; Usdin and Sandler 1976).  The first mention of “false 

neurochemical transmitter” in regard to the TAs came from Kopin et al. (1964).  A “false 

neurochemical transmitter” is defined as, “substances normally not present in significant 

amounts in sympathetic nerves, which can be made to accumulate in the nerve endings 

and which can then be discharged by sympathetic nerve stimulation” (Kopin et al. 1964).  

He further refines the definition by adding that for it to be a neurotransmitter rather than a 
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“false transmitter,” it must have the same physiological actions and pharmacological 

properties, in appropriate concentrations, as the natural transmitter” (Kopin 1968). 

During the late 1950s and 1960s, there was a substantial amount of research regarding 

the effects of different enzymes and inhibitors (like MAO inhibitors) involved in the 

regulation of monoamines and TAs and their effects on sympathetic nerve endings and 

blood pressure (Bejrablaya et al. 1958; Burn and Rand 1958a; 1957; 1958b; Davey et al. 

1963a; b; Day and Rand 1964; Kopin et al. 1964).  In interpreting the results, Kopin 

made some assumptions that lead to the propagation of the theory that the TAs are “false 

transmitters” and not endogenous amines with their own actions.  One was an important 

distinction between cause and effect.  It was thought that “false transmitters” alter the 

available amount of NA by altering catecholamine synthesis, rather than alterations to 

catecholamine synthesis forming “false transmitters” (Kopin 1968).  Second, Kopin’s 

(1964 and 1968) definition of a “false transmitter” is very limited, and basically his 

definition made anything that was produced and accumulated in sympathetic nerves that 

was not NA a “false transmitter.”  By his definition, if an amine had actions that were 

different than NA, it must be “false transmitter”. 

Unfortunately, this view was the predominant view for well over 30 years, and many 

studies were interpreted based on the idea that the TAs were “false transmitters” that 

were released with or instead of monoamines and interfered with monoamine actions 

rather than having their own independent actions.  These and other studies assume that 

there were no dedicated trace aminergic synapses so that the function of the TAs had to 

occur in other known monoamine-containing neural circuits (Boulton et al. 1988; 
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Saavedra 1989; Usdin and Sandler 1976).  TAs have NOT been thought of as active 

neuromodulators in mammals (Borowsky et al. 2001).     

1.2.2 Endogenous levels of the trace amines 

Endogenous levels of TAs are several hundred-fold below those of the classical 

neurotransmitters DA, NA, and 5-HT, yet their rate of synthesis and circulating levels are 

similar to that of DA and NA (Durden and Philips 1980; Henry et al. 1988; Paterson et al. 

1990).  As a result, the TAs have a extremely rapid turnover rate, seen as an endogenous 

pool half-life of approximately 30 seconds (Durden and Philips 1980) suggesting that the 

TAs are exquisitely attuned to moment-to-moment fluctuations in substrate. The turnover 

rates and circulating levels of these neuroactive compounds may “be a more significant 

index of their importance than their endogenous concentrations” (Saavedra 1989). It 

should be considered that the estimates on the concentrations of the TA are based on the 

assumption of a uniform distribution (Dyck 1989), and since the TAs have a 

heterogeneous distribution with variations present in the distribution of individual TAs 

(Durden and Philips 1980; Paterson et al. 1990), they may not accurately reflect local 

concentrations, which are likely to be higher.  The concentration of the TAs at the level 

of the single cell have yet to be determined (Berry 2007). 

1.2.2.1 Synthesis of the trace amines  

The TAs, PEA, tyramine, and tryptamine, are synthesized by the enzymatic 

decarboxylation of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan 

(Figure 1.2), by the enzyme AADC (Dyck et al. 1983).  Tyramine can be further 

enzymatically converted by DBH into octopamine.  Conversion from the TAs to the 

monoamines does not appear to occur (Berry 2007).  
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The conversion from tyrosine to phenylalanine is via tyrosine hydroxylase in the 

CNS, but in extra-neuronal tissue it is primarily via phenylalanine hydroxylase (Berry 

2007). 

1.2.2.1.1 Dietary affects on the levels trace amines and aromatic amino acids  

TAs and aromatic amino acids are found in many of the foods we eat.  For example, 

tyramine is found in aged meat and cheese (Gardner et al. 1996), PEA is found in 

chocolate (Ghozlan et al. 2004), and the aromatic amino acids are found in all foods that 

have protein, such as meat.  It has been shown that meals cause physiologic-size changes 

in aromatic amino acid concentrations (Fernstrom 1990).  The raised levels of the 

aromatic amino acids in the brain affect the synthesis of neurotransmitters such as 

serotonin (Fernstrom and Wurtman 1971) and the catecholamines (Wurtman et al. 1974), 

and, presumably, the synthesis of the TAs.  The enzyme composition of each neuron 

dictates what it will produce (Fernstrom 1990); for example, if a neuron takes up 

tryptophan and has AADC, but no tryptophan hydroxylase, it will produce tryptamine, 

but not 5-HT.  

While diet-related central changes in aromatic amino acids were assumed to alter brain 

function by altering monoamine transmitter levels (Fernstrom 1990; 1977), the 

importance of diet to TA modulatory status may be significant, since diets rich in TAs 

and aromatic amino acids affect brain function (Branchek and Blackburn 2003) and can 

lead to excitability changes in locomotor circuits (Foldes and Costa 1975; Jackson 1975a; 

1972; 1974; 1975b; Marsden and Curzon 1978; 1974; Thurmond et al. 1977).  

Some studies saw increases in locomotion from tryptophan in MAO inhibitor-treated 

rats (Foldes and Costa 1975; Marsden and Curzon 1978), while others gave tryptophan 



 12

alone and saw decreases in locomotor activity (Tricklebank et al. 1978; Wurtman et al. 

1980).  It has been suggested that the differences could be due to increased relative levels 

of tryptamine (Foldes and Costa 1975; Wurtman et al. 1980).  This is plausible since 

tryptophan caused a greater percent increase in brain tryptamine than brain 5-HT in MAO 

inhibitor-treated mice (Marsden and Curzon 1978; 1974) and since 5-HT accumulation 

rates due to tryptophan do not correlate with motility increases in MAO inhibitor-treated 

rats (Foldes and Costa 1975). 

Phenylalanine and PEA both appear to have effects on the motor systems, possibly 

through PEA. Mice given phenylalanine supplements show increased motility (Thurmond 

et al. 1977), while rodents injected with PEA exhibit behaviors resembling those of 

amphetamines including locomotor activity (Jackson 1975a; b).   

1.2.2.1.2 Aromatic-L-amino acid decarboxylase 

Aromatic-L-amino acid decarboxylase (AADC) or dopa decarboxylase is the enzyme 

that decarboxylates aromatic amino acid, L-dopa, and L-5HTP into TAs and 

monoamines.  It is not considered the rate-limiting enzyme for monoamines, except in 

Parkinson’s disease patients with exogenous L-dopa; however, it is the rate-limiting 

enzyme for the synthesis of TAs (Berry et al. 1996; Dyck et al. 1983).  Thus, events that 

regulate AADC activity should alter TA levels.  Rapid changes in AADC activity, like 

phosphorylation (see below), can act to change the levels of the TAs and fine tuning their 

actions, thus allowing minute to minute regulation (Berry et al. 1996). 

AADC can be regulated at both the level of protein activity and gene expression, 

which can lead to two phases of alteration in activity.  Like the short term regulation of 

TH (Masserano et al. 1989), the short term changes in activity due to AADC are likely 
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mediated by phosphorylation, which is a reasonable mechanism for a rapid response.  

cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) both 

phosphorylate AADC in vitro (Duchemin et al. 2000; Duchemin et al. 2010).  Long term 

regulation is due to changes in gene expression.  There is excellent correlation between 

mRNA level and AADC activity (Coge et al. 1990).  Two forms of AADC, neuronal and 

non-neuronal, have been identified.   They are coded by a single gene, but use two 

distinct promoters followed by alternative splicing (Hahn et al. 1993; Ichinose et al. 

1989).   

In response to MAO inhibitors, AADC appears to have different short term and long 

term effects.  Short term, AADC activity decreases following MAO inhibitors and l-

DOPA (Cumming et al. 1995).  Long term AADC has increased AADC mRNA (Berry et 

al. 1996).   

In the developing rat embryo, AADC positive neurons are observed on day 12 of 

development in all cells of the notochord and in neuroepithelial cells of the ventral neural 

tube.  AADC was enzymatically active, and these cells were tyrosine hydroxylase 

negative, which indicates that the monoamines are not being produced by these cells 

(Teitelman et al. 1983).  One possibility is that the TAs are being produced. 

There is also evidence that AADC levels in hypothalamus are under circadian controls 

(Ishida et al. 2002). 

1.2.2.1.3 AADC positive neurons in the central nervous system and D cells 

Histofluorescence studies by Dahlstrom and Fuxe (1964) first identified populations of 

monoamine-containing CNS neurons.  It is known that monoaminergic neurons are 

profound modulators of CNS function with diffuse projections throughout the CNS.  The 
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nomenclature for these populations follows their discovery in chronological order. A cells 

are catecholaminergic.  B cells are serotonergic (Dahlstrom and Fuxe 1965; 1964).  C 

cells discovered later by Hokefelt (1974) are adrenaline synthesizing neurons (Hokfelt et 

al. 1974).  In the 1980s, Jaeger and colleagues identified a fourth class of neurons that 

contain AADC, but do not produce 5-HT, and lack tyrosine hydroxylase (cannot 

synthesize DA, NA, or adrenaline) (Jaeger et al. 1984a; Jaeger et al. 1983).  Following 

the nomenclature, these cells were classified as D cells.  They exist as at least 14 different 

cell clusters within various regions of the CNS (Jaeger et al. 1984a). 

The first cluster of D cells, which are also the largest, are found in the spinal cord 

distributed along the central canal, primarily in lamina X (Jaeger et al. 1984a; Jaeger et 

al. 1983). These spinal cord containing AADC positive cells, called D1 cells, were 

identified by ultrastructural identification of synapses and secretory vesicles.  D1 cells 

project at least one of their processes into the lumen of the central canal, which makes 

them part of a group of cerebrospinal fluid (CSF)-contacting neurons (Jaeger et al. 1983; 

Vigh et al. 2004).  Spinal CSF-contacting nerve cells situated around the central canal are 

found from cyclostomes to mammals including monkeys (LaMotte 1988; Vigh et al. 

2004).  No neurotransmitter was identified for these neurons, and nothing is known about 

the function of spinal cord D1 cells.  It remains a possibility that the D cells could 

produce the TAs (Jaeger et al. 1983).  In fact, they are “ideally suited to the selective 

synthesis of TAs” (Berry 2004).   

The other D cells neuron groups are found in nuclei in the hypothalamus, forebrain, 

midbrain, pons, and medulla.  Interestingly, the most occur in the hypothalamus which is 

associated with the autonomic nervous system (Jaeger et al. 1984a).  D neurons have 
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been demonstrated immunohistochemically in the brain of laboratory shrews (Karasawa 

et al. 1994), mice (Nagatsu et al. 1988), rats (Jaeger et al. 1984b; Jaeger et al. 1983; 

Nagatsu et al. 1988), and cats (Kitahama et al. 1988; Kitahama et al. 2007; Kitahama et 

al. 1990), and humans (Kitahama et al. 2009). 

One intriguing hypothesis is that D1 cells function to monitor CSF-related events and 

relay the information into modulatory commands for the motor system. Urotensin II has 

been described as one of the most potent vasoconstrictor substances known to date 

(Watson and May 2004).  Interestingly, in fish, urotensin II-immunoreactive CSF-

contacting neurons were also demonstrated (Yulis and Lederis 1988a; b) with urotensin-

immunoreactive fibers forming an ascending pathway via the ventrolateral funiculus and 

possibly also innervating motoneurons (Yulis and Lederis 1988a).  Spinal motoneurons, 

in turn, have been reported to have the most intense urotensin II gene expression of all 

CNS neurons from frog to man (Coulouarn et al. 1998).  Interestingly since all members 

of the TA family in human are expressed in kidney, and D1 cells may be part of a trace 

aminergic neuromodulatory system, a role in blood pressure regulation and electrolyte 

homeostasis is implicated (Borowsky et al. 2001). 

It was recently reported that a loss of D-cells occurs in schizophrenic patients 

(Ikemoto et al. 2003). 

1.2.2.2 Degradation of the trace amines 

TAs are degraded via both MAOA and MAOB, except for PEA, which is 

preferentially degraded by MAOB (Philips and Boulton 1979; Yang and Neff 1973). 

1.2.2.3 Concentrations and distribution of trace amines  
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There have been a number of techniques used to determine the amount of the 

different trace amines in the brain, cerebral spinal fluid, and plasma.  Some of the 

techniques include measuring radioenzymatic assays with chromatographic separation 

(Danielson et al. 1977; Henry et al. 1988; Saavedra 1974), mass spectrometry with thin-

layer chromatography, or gas chromatography (Durden and Davis 1993; Durden et al. 

1974; Durden et al. 1973; Karoum et al. 1979; Philips et al. 1974a; b; Warsh et al. 1977; 

Wilner et al. 1974), and high-performance liquid chromatography (D'Andrea et al. 2003; 

D'Andrea et al. 2004; Yonekura et al. 1988).   

The concentrations of TAs have been looked at in human, rat, rabbit, fowl, octopus, 

locust, and starfish.  While the exact quantity of the TAs reported varies, they all agree 

that the TAs are heterogenously distribution in the brain.  The TAs concentrations in 

neuronal tissue probably are in the range of 0.1-13 ng/g (Boulton and Juorio 1982; 

Durden and Davis 1993; Durden et al. 1973; Philips et al. 1974a; b).  Adding MAO 

inhibitors increases the concentration by roughly 10-300% (Boulton 1976).   

The highest concentrations of PEA were found in the caudate nucleus, olfactory 

tubercles, and hypothalamus.  Smaller amounts were found in brainstem, cerebellum, and 

spinal cord (Juorio 1988).  There are mixed reports on whether the concentration of PEA 

is higher in the spinal cord or brain (Boulton et al. 1977; Karoum et al. 1979).  

The highest concentration of tyramine was found in the caudate nucleus, followed by 

hypothalamus and olfactory tubercles, and then finally followed by hippocampus, 

brainstem, cerebellum and the “rest” of the brain (Juorio 1979; 1977a; b; 1980).  

Tyramine was found in the spinal cord at higher concentrations that other brain regions 
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(Spector et al. 1963).  Immunolabeling has confirmed a heterogeneous distribution of 

tyramine in the brain (Kitahama et al. 2005).  

1.2.3 Transporters 

1.2.3.1 Plasma membrane transporters 

Plasma membrane transporters transfer substrates across the plasma membrane in or 

out of cells.  There are a number of them discussed below that are capable of transporting 

the monoamines and/or the trace amines across the plasma membranes (Figure 1.2). 

1.2.3.1.1 Monoamine transporters 

Monoamine transporters control the extracellular concentrations of monoamines and 

maintain presynaptic function.  They are localized to the presynaptic plasma membrane 

away from the synaptic cleft in the perisynaptic area and sometimes along axons and 

dendrites (Daws 2009), suggesting that the transmitters diffuse out of the synaptic cleft to 

be transported back into the terminal.  The different monoamine transporters are 

dopamine transporters (DAT), 5-HT transporters (SERT), and NA transporters (NET).  

Monoamine transporters are expressed in neurons that contain their neurotransmitter 

(Torres et al. 2003).  DAT, NET, and SERT are Na+, Cl--dependent transporters.  

Monoamine uptake involves sequential binding and co-transport of Na+ and Cl- ions due 

to an ion gradient (Torres et al. 2003).  It has been shown that DAT and NET can 

transport both DA and NA (Giros et al. 1994).   

Monoamine transporters are thought to be involved in psychiatric and neurological 

disorders.  The monoamine transporters are important sites for therapeutic agents.  Many 

drugs have been developed to target the monoamine transporters.  There are specific 
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drugs for each of them.  For example, selective serotonin reuptake inhibitors (SSRIs) 

target SERT and are used to treat depression.  Interestingly, the more specific transport 

inhibitors are actually less clinically efficacious than those that block multiple 

transporters (Daws 2009).  Monoamine transporters are also high affinity molecular 

targets for drugs of abuse like amphetamines, cocaine, and 3,4-methylenedioxy-

metamphetamine “Ecstasy” (Jayanthi and Ramamoorthy 2005; Torres et al. 2003). 

Xie et al. (2007) looked at the effects of co-expression of TAAR1 and the monoamine 

transporters in HEK (Human Embryonic Kidney) cells, a cell line commonly used in 

tissue culture to express and characterize proteins, including receptors (Thomas and 

Smart 2005).  Monoamine transporters greatly facilitate transport of the TAs across the 

membrane (Xie et al. 2007).  Further, when TAAR1 was co-expressed with monoamine 

transporters in HEK cells, PEA activation of TAAR1 inhibited uptake of the monoamines 

and increased the efflux of the monoamines, but this did not occur when only the 

monoamine transporters were expressed, suggesting an important modulatory role of 

TAAR1 in monoamine transporter function.  Additionally, transport inhibitors blocked 

monoamine efflux in the co-expressed cells (Xie and Miller 2008).   

Sotnikova et al. (2004) looked at the effects of PEA in wildtype, heterozygous, and 

DAT knockout mice (Sotnikova et al. 2004).  PEA produced pronounced striatal DA 

release in wildtype mice without any detected in DAT knockout mice.  Behaviorally, 

PEA produced a strong transient increase in locomotion in wildtype and heterozygous 

mice.  However, in DAT knockout mice, whose phenotypes already features increases 

locomotor activity and stereotypy, PEA acted as a potent depressant. These data 

demonstrate that PEA also acts on targets independent of DAT (Sotnikova et al. 2004).  
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Figure 1.3: Transportation of the trace amines across the plasma membrane and their possible 
intracellular pathways  

The TAs may be transported across the cell membrane via the Na+-dependent monoamine transporters, 
SERT, NET, and DAT, and by the Na+-independent transporters, L-amino acid transporters (LATs), 
organic cation transporters (OCTs), and the plasma membrane amine transporter (PMAT).  Aromatic amino 
acids are transported across the plasma membrane via LATs, and are synthesized into TAs by AADC inside 
the cell.  Additionally, the TAs could be having actions on the trace amine-associated receptors (TAARs), 
which are presumed to be located intracellularly.  The transport of the TA, octopamine, has not been 
examined. 
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1.2.3.1.2  Organic cation transporters 

Organic cation transporters (OCT) were first clone by Grundemann et al. (1994) and 

belong to a family of solute carrier (SLC) transporters, SLC22A (Grundemann et al. 

1994; Jonker and Schinkel 2004).  They are Na+ and Cl- independent transporters (Daws 

2009).  The family contains three subtypes OCT1, OCT1, and OCT3).  OCT3 is the most 

densely expressed in the brain, followed by OCT1.  OCT2 expression in the brain is low 

(Gorboulev et al. 1997; Grundemann et al. 1997).  All three are found to be present in the 

spinal cord (Allen_Spinal_Cord_Atlas 2009).  OCT3 is also known as extraneuronal 

monoamine transporter (Jonker and Schinkel 2004).   

Tyramine is the best physiological substrate for OCT1 and OCT2 and the second best 

for OCT3.  Histamine is the best physiological substrate in rat while it is NA in humans.  

While DA, NA, and 5-HT can be transported by OCT1 and OCT2 clearance is too low 

for them to be the primary molecule transported.  The same is true for DA and 5-HT 

transport by OCT3 (Breidert et al. 1998; Grundemann et al. 1998; Schomig et al. 2006).   

1.2.3.1.3 L-type amino acid transporters 

System L amino acid transporters are plasma membrane amino acid transport system 

involved in the Na+-independent transport of large neutral amino acids (Bodoy et al. 

2005; Christensen 1990).  It is essential in the penetration of amino acids through the 

blood-brain barrier (Christensen 1990).  Four proteins have been identified: L-type amino 

acid transporter 1-4 (LAT1-4).  LAT1 and LAT2 belong to the SLC7 family and are 

obligatory exchange, which means that they move their substrates in exchange for other 

substrates.  LAT3 and LAT4 belong to the SLC43 family and are facilitative diffusion 
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transporters, which mean that they move one substrate down its concentration gradient 

(Bodoy et al. 2005).   

LAT1 prefers large neutral amino acids with branched or aromatic side chains such as 

phenylalanine, tryptophan, leucine, isoleucine, methionine, histidine, tyrosine, and valine 

(Kanai et al. 1998). LAT2 exhibits broad substrate selectivity.  It transports all L-isomers 

of neutral α-amino acids.  Among those with the largest affinity are tyrosine, 

phenylalanine, and tryptophan (Segawa et al. 1999). Dopamine and tyramine did not 

inhibit LAT1 or LAT2-mediated transport (Morimoto et al. 2008; Uchino et al. 2002). 

LAT3 preferentially transports neutral amino acids, such as leucine, phenylalanine, 

isoleucine, and valine.    LAT3 also weakly transports tyrosine and PEA, but not tyramine 

(Babu et al. 2003).  LAT4 preferentially takes up neutral amino acids, phenylalanine, 

leucine, isoleucine, and methionine (Bodoy et al. 2005). LAT2-4 are found to be present 

in the spinal cord (Allen_Spinal_Cord_Atlas 2009).   

1.2.3.1.4 Plasma membrane monoamine transporter 

Plasma membrane monoamine transporter (PMAT) was first cloned and characterized 

by the Wang group. It is a Na+-independent and membrane potential-sensitive transporter 

and is not homologous with SERT, DAT, and NET.  PMAT is a part of the SLC29 family 

(Engel and Wang 2005; Engel et al. 2004).  PMAT transports biogenic amines and the 

neurotoxin MPP+. Transport affinity varies with the affinity order of tryptamine > 

serotonin > dopamine > tyramine with NA and adrenaline having very low (millimolar) 

affinity binding to PMAT (Engel and Wang 2005). Tyramine was capable of cis and 

trans transport and is likely to be a true PMAT substrate. While tracer flux studies show 

PMAT to be a powerful substrate for tryptamine transport, it is trans-inhibitory, so 
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whether tryptamine is a true PMAT substrate remains uncertain (Engel and Wang 2005). 

PMAT has similar properties to the OCTs including bidirectional transport and prototype 

OCT inhibitors, including cimetidine, and type II cations are also PMAT inhibitors 

suggesting that PMAT functions as a polyspecific organic cation transporter.  PMAT is 

neuronally-expressed in widespread brain regions, is not found in astrocytes (Dahlin et al. 

2007), and is widely expressed in spinal cord neurons (Allen_Spinal_Cord_Atlas 2009; 

Engel et al. 2004).   

1.2.4 Storage and release of the trace amines 

The TAs are detectable in synaptosomes (Baldessarini and Vogt 1972; Boulton and 

Baker 1975), which means that they are present in nerve terminals.  PEA and tryptamine 

are unlikely to be stored or released from vesicles.  The evidence for tyramine is more 

contradictory.  Ultimately, it appears that while tyramine can be found in vesicles, it is 

unlikely to be released normally or via K+-induced depolarization (Berry 2004; Burchett 

and Hicks 2006).   

However, octopamine is likely stored in vesicles.  Once tyramine is transported into a 

vesicle it is likely converted to octopamine by vesicular DBH.  Octopamine can be 

released via K+-induced depolarization and is found in noradrenergic terminals (Burchett 

and Hicks 2006). 

1.2.5 Trace Amine actions in the spinal cord 

Intravenous PEA enhanced the monosynaptic reflex in rats (Ono et al. 1991). In earlier 

work in the neonatal rat cord, tyramine directly depolarized motoneurons with an EC50 

value comparable to DA (~50 µM) and depressed monosynaptic reflexes (Kitazawa et al. 

1985).  Tyramine has also been reported to have had antinociceptive actions (Reddy et al. 
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1980) and depress flexion and crossed-extension reflexes (Bowman et al. 1964).  Much 

less is known about octopamine in mammalian systems. In spinal dorsal horn neurons, 

octopamine facilitated spiking activity in many neurons that were depressed by NA 

(Hicks and McLennan 1978).  

1.2.6 Disorders in which the trace amines may be involved 

Like the classic monoamines, TAs are thought to play a role in human disorders such 

as depression, schizophrenia, Phenylketonuria, attention deficit disorder, Parkinson’s 

disease, migraines, addiction, and hypertension (Branchek and Blackburn 2003). 

1.2.6.1 Phenylketonuria 

Phenylketonuria (PKU) is an autosomal recessive deficiency of hepatic phenylalanine 

hydroxylase, which converts phenylalanine to tyrosine causing an accumulation of 

phenylalanine (Pietz 1998).  This accumulation of phenylalanine causes elevated levels of 

PEA in the urine and plasma, since phenylalanine is converted to PEA by AADC.  When 

left untreated, PKU is characterized by epilepsy, microcephaly, and mental retardation.  

Patients treated early by a phenylalanine-restricted diet are overall developmentally 

normal; but have motor-related neurological symptoms that include brisk deep tendon 

reflexes at lower limbs, tremor, clumsiness, and poor motor coordination (Pietz 1998).   

PEA has similar pharmacological effects, namely hyperactivity, irritability and 

excitability, to symptoms seen in PKU patients (Ghozlan et al. 2004).  Mice given 

phenylalanine supplements show increased motility (Thurmond et al. 1977), while 

rodents injected with PEA exhibit behaviors resembling those of amphetamines including 

locomotor activity and stereotypy (Boulton 1982; Jackson 1975a; 1972; 1974; 1975b; 

Paterson et al. 1990). 
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1.3 The trace amine-associated receptors 

1.3.1 Discovery of the trace amine receptors 

How the TAs were looked at needed revision when Borowsky et al. (2001) and 

Bunzow et al. (2001) independently identified a family of mammalian G protein-coupled 

receptors (GPCR) that displayed a high degree of homology to the classical monoamine 

receptors.  Importantly, two of the TA receptors, now referred to as trace amine-

associated receptors (TAARs) (Lindemann and Hoener 2005), were preferentially 

activated by TAs.  TAAR1 has high affinity for PEA and tyramine (Borowsky et al. 

2001; Bunzow et al. 2001), while TAAR4 has an affinity for PEA and tryptamine 

(Borowsky et al. 2001).  This identification gives credence to earlier binding studies on 

the presence of high-affinity sites for tyramine, tryptamine, and PEA (Hauger et al. 1982; 

Kellar and Cascio 1982; Nguyen and Juorio 1989; Vaccari 1986; van Nguyen et al. 1989) 

and establishes a mechanism by which TAs can produce effects of their own, rather than 

the conventional view of interfering with the actions of classical neuromodulators.  Also, 

it introduces the possibility of another major, currently uncharacterized, CNS aminergic 

transmitter system.  

Borowsky et al. (2001) originally identified 15 distinct receptors from human and 

rodent tissue.  Lindermann et al. (2005) set out to identify all TAAR receptors in human, 

chimpanzee, rat, and mouse.  Their genome sequence screening identified 53 TAAR 

genes in the 4 species.  They found   9 human (including 3 pseudogenes), 9 chimpanzee 

(including 6 pseudogenes), 19 in rat (including 2 pseudogenes), and 16 in mouse 

(including 1 pseudogene).  The TAAR genes maps to a narrow region of a single 

chromosome in each of the species (Lindemann et al. 2005).  In humans, this region is 
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associated with schizophrenia (Borowsky et al. 2001; Bunzow et al. 2001; Lindemann et 

al. 2005).  Phylogenetic analysis indicated that the TAAR genes are a distinct family of 

receptors, not an extension of closely related GPCR receptors like the 5-HT receptors.  

Additionally, it indicated that the TAAR genes originated from a common ancestor 

(Lindemann et al. 2005), that they evolved after the invertebrate/vertebrate split 

(Borowsky et al. 2001), and that there were nine genes at the time of the primate/rodent 

split.  These nine gene groups can be divided into three subgroups (TAAR1-4, TAAR5, 

and TAAR6-9) (Lindemann et al. 2005).   

When using pharmacophore similarity analysis to examine the amino acids in the 

binding pocket for receptor-ligand interactions, the TAARs have a high level of ligand 

binding pocket similarity.  This further agrees that the TAARs are more similar to each 

other than to other GPCRs, and that they can be divided into the same receptor subgroups 

as in the phylogenetic analysis.  The pharmacophore analysis also predicts that the 

currently unidentified TAARs ligands must be small molecular weight compounds that 

are structurally similar to the TAs (Lindemann et al. 2005; Lindemann and Hoener 2005).  

1.3.2 Nomenclature of the trace amine-associated receptors 

Initially, there were many inconsistencies with how the TA receptors were named.  

Borowsky et al. (2001) used the abbreviation TA1 for the TA receptors they found, while 

Bunzwo et al. (2001) used TAR.  As more TA receptors were discovered, it became 

obvious that a uniform nomenclature was necessary.  Since the majority of the TA 

receptors have unidentified ligands, Lindeman et al. proposed naming the receptor family 

trace amine-associated receptors (TAARs).  The nomenclature is based on the order of 

the genes on the chromosome and the phylogentic relationships (Lindemann et al. 2005).  
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This nomenclature has been accepted by The Human Genome Organization (HUGO) 

Gene Nomenclature Committee (Maguire et al. 2009) and has been adopted in the 

literature.  It is the nomenclature used here. 

The International Committee on Standardized Genetic Nomenclature for Mice and 

Rat Genome and Nomenclature Committee further recommends the use of uppercase for 

human genes and lower case italics for rodent genes (Maguire et al. 2009).   

Interestingly, although it acknowledges the use of the nomenclature TAAR, the 

International Union of Pharmacology (IUPHAR) officially calls TAAR1 TA1, which 

abides by IUPHAR convention that no R be added to the abbreviated name for receptor 

proteins (Maguire et al. 2009).  

1.3.3 Properties of the trace amine-associated receptors 

1.3.3.1 Trace amine-associated receptor 1 

1.3.3.1.1 Pharmacological characterization of trace amine-associated receptor 1 

TAAR1 is most potently activated by tyramine and PEA, and displays a low affinity 

for tryptamine, octopamine, and DA in the rat and human (Borowsky et al. 2001; 

Bunzow et al. 2001).  Numerous psychostimulant and hallucinogenic amphetamines, 

which have a very similar structure to tyramine and PEA, are also potent activators of rat 

TAAR1 (Bunzow et al. 2001).  In the rhesus monkey, octopamine and methamphetamine 

where the most potent activators of TAAR1, but TAAR1 could also be activated by other 

TAs, monoamines, and amphetamines (Xie et al. 2007).  Acetylcholine, nicotine, GABA, 

glutamate, morphine, and histamines do not activate rat TAAR1.  However, none of the 
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antagonists for the biogenic amine receptors tested were able to antagonize rat TAAR1 

(Bunzow et al. 2001).   

1.3.3.1.2 Distribution and cellular location of trace amine-associated receptor 1 

TAAR1 is localized to many regions of the CNS including the ventral horn of the 

spinal cord, olfactory bulb, cerebral cortex, amygdale, sustantia nigra, dorsal raphe, the 

locus coeruleus, and the ventral tegmental area.  Many of which are major areas of 

monoaminergic cell groups (Borowsky et al. 2001; Bunzow et al. 2001; Lindemann et al. 

2008; Xie et al. 2007).  TAAR1 expression in the CNS is found in a variety of species 

including human (Borowsky et al. 2001), rhesus monkey (Xie et al. 2007), mouse 

(Borowsky et al. 2001), and rat (Bunzow et al. 2001).   

Confocal images of HEK cells indicated that TAAR1 was found in the cytoplasm 

rather than at the cell surface (Bunzow et al. 2001; Miller et al. 2005), and was likely 

localized to intracellular membranes (Xie et al. 2008).  Immunohistochemistry of 

different brain regions clearly shows TAAR1 cytoplasmic staining within the cell body 

and extending into the axon in rhesus monkey and mice (Xie et al. 2007).  Two 

possibilities mechanisms by which the TAs have actions on an intracellular receptor are: 

first, transport into cells via transporters, LATs, OCT, PMAT, and monoamine 

transporters (see section 1.2.3) and second, synthesized in the cells where they are having 

actions (Figure 1.2). 

TAAR1 expression was also found in stomach, kidney, lung, small intestines, liver, 

pancreas, prostate, skeletal muscle, spleen, and heart (Borowsky et al. 2001; Chiellini et 

al. 2007). 

1.3.3.1.3 Facilitation of trace amine-associated receptor 1 by monoamine transporters 
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Given the probable intracellular location of TAAR1, access to TAAR1 agonists could 

be compromised in HEK cells.  Since tyramine and PEA are taken up into cells by the 

DAT (Miller et al. 2005; Sitte et al. 1998), Miller et al. (2005) found that by co-

expressing rhesus monkey TAAR1 and human DAT, PEA and tyramine significantly 

changed cAMP production compared to TAAR1 alone (Miller et al. 2005).  There are 

neurons that express TAAR1, or DAT, or co-express TAAR1 and DAT in the substantia 

nigra of both rhesus monkey and mice (Xie et al. 2007).  Further, co-expression of 

TAAR1 with the any of the monoamine transporters (DAT, SERT, and NET) enhanced 

the activation of TAAR1 by TAs, monoamines, and methamphetamine.  Blocking with 

monoamine transport inhibitors reduced the effect on TAAR1 activation (Xie et al. 2007).   

Further, when TAAR1 was co-expressed with monoamine transporters in HEK cells, 

PEA activation of TAAR1 inhibited uptake of the monoamines and increased the efflux 

of the monoamines, but this did not occur when only the monoamine transporters were 

expressed, suggesting an important modulatory role of TAAR1 in monoamine transporter 

function.  Additionally, transport inhibitors blocked monoamine efflux in the co-

expressed cells (Xie and Miller 2008).   Control experiments show that D1 receptors do 

not have the same effect as TAAR1 (Xie et al. 2007).  D2 autoreceptors have opposite 

effects as TAARs possibly providing a presynaptic balance in the control of transporter 

function (Xie and Miller 2009; Xie et al. 2007). 

1.3.3.1.4 Trace amine-associated receptor 1 knockout mice   

Wolinsky et al (2006) provided the first conclusive evidence for a role of TAAR1 in 

CNS function by demonstrating behavioral changes in TAAR1 knockout mice.  Here, the 

TAAR1 receptor agonist amphetamine, in the absence of its action on TAAR1, showed 
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an enhanced psychomotor-stimulating effect, temporally correlated with larger increases 

in striatal DA and NA release, and 2.6 fold increase in the proportion of striatal high-

affinity D2 receptors.  TAAR1 therefore appears to play a depressant modulatory role in 

catecholaminergic function (Wolinsky et al. 2007).  Lindemann et al (2008) also studied 

TAAR1 knockout mice and corroborated several of the above findings.  They also found 

that these mice display enhanced amphetamine-triggered increases in locomotor activity 

and an elevated spontaneous firing rate of dopaminergic neurons in the ventral tegmental 

area.  Tyramine specifically decreased the spike frequency of these neurons in wild-type 

but not in TAAR1 knockout mice (Lindemann et al. 2008).  Xie and Miller (2008) also 

examined TAAR1 knockout mice.  PEA significantly inhibited uptake and induced efflux 

of DA, NA, and 5-HT in transfected cells and brain synaptosome of rhesus monkeys and 

wild-type mice, but not in synaptosomes of TAAR1 knockout mice.  The PEA effect was 

blocked by transporter inhibitors demonstrating that TAAR1 signaling is required for 

PEA to alter monoamine transporter function.  They also showed these effects to be 

independent of monoamine autoreceptors (Xie and Miller 2008).  

1.3.3.2 Trace amine-associated receptor 4 

TAAR4, which was previously called TA2 (Lindemann and Hoener 2005) is activated 

by  PEA and tryptamine.  TAAR4 has “poor surface expression” and “subcellular 

localization” (Borowsky et al. 2001), which suggests that it too may be localized 

intracellularly. 

1.4 Spinal cord anatomy 

The spinal cord is an integral part of the central nervous system.  It is involved in the 

transfer of information from the brain to the rest of the body, as well as integration and 
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coordination of sensory, motor, and autonomic functions.  The spinal cord is protected by 

the vertebral column and surrounded by the meninges.  The meninges are three 

membranes that cover the spinal cord.  The outer layer is the dura mater, the middle layer 

is the arachnoid mater, and the innermost layer is the pia mater.  CSF is a clear fluid in 

the subarachnoid space and the ventricular system (central canal in the spinal cord) that 

also protects the spinal cord and maintains the electrolytic environment. 

The spinal cord is segmentally organized into cervical, thoracic, lumbar, and sacral 

segments. Spinal circuits controlling hindlimb function dominate in caudal thoracic and 

lumbar segments levels.  In humans, there are eight cervical, twelve thoracic, five lumbar, 

and five sacral segments.  In the rat, there are eight cervical, thirteen thoracic, six lumbar, 

and four sacral segments.  The spinal cord is divided into white and gray matter.  The 

white matter is located on the outside of the gray matter and consists of myelinated axons 

tracts that relay information to and from the brain and between spinal segments.  The 

gray matter, which is in the center of the cord and is shaped like a butterfly, consists of 

neuronal cell bodies and can be separated into dorsal and ventral horns.  The gray matter 

can be divided by cytological characteristics of the nerve cells and their cytoarchitectonic 

aggregation into ten anatomical layers called laminae or Rexed’s laminae (I-X) (Rexed 

1954; 1952).   

Sensory neurons enter the spinal cord via the dorsal roots and synapse onto spinal 

neurons largely within the dorsal horn, while the ventral horn contains neural elements 

associated with motor output.  These neurons orchestrate coordinated motor activity by 

projecting to motoneurons in lamina IX whose axons exit via ventral roots to innervate 

skeletal muscle at the neuromuscular junction (Hochman 2007).  Each muscles in 
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innervated by a pool of motoneurons that form longitudinal columns that may extend up 

to three spinal segments in the rat (Nicolopoulos-Stournaras and Iles 1983).  Among the 

largest neurons in the CNS, motoneurons receive large amounts of synaptic input through 

their extensive dendritic arbors which they are able to integrate.  Motoneurons are 

considered the “final common pathway” for motor processing as they are the final step in 

integrating all of the spinal cord systems, and their output creates the appropriate muscle 

contraction for the intended behavior (Brownstone 2006; Hochman 2007).   

1.5 Locomotion studies 

1.5.1 Central pattern generator 

The entire neural networks required for generating coordinated locomotor activity 

resides in the spinal cord (Grillner 1981; Kiehn and Butt 2003) and has been found in 

almost all vertebrate species studied (Hultborn and Nielsen 2007). These neuronal 

networks have been called the central pattern generators (CPGs) and consist of sets of 

interneurons that organized themselves into networks that control motor output through 

motoneurons.  Currently, the exact structure and location of the CPGs in mammals 

remains unknown, but many models exist trying to explain how the CPGs might work.  

These CPGs are present at birth (Cazalets et al. 1992; Kiehn 2006; Kudo and Yamada 

1987; Smith and Feldman 1987), and are not fully mature until a few weeks postnatal 

(Westerga and Gramsbergen 1990).   

Locomotion is defined as the act of moving from one place to another, in order to 

accomplish this goal, different vertebrate species use different strategies.  For example, 

lamprey and hagfish are today’s representatives of early vertebrates.  They employ a left-

right alternation of each segment, leading to a wave of motor activity along the body.  
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This strategy is also used by most fish and amphibian larva.  Fish that have fins, which 

are the precursors to limbs, use them to steer.  More complicated vertebrates with limbs, 

such as cats and rodents, must coordinate the limbs and the trunk to achieve smooth 

muscle movements and postural control.  It is thought that separate CPGs are present to 

help generate specific motor patterns whether it is simple walking or more complicated 

gait patterns such as trotting and galloping.  At its most basic level on a single limb, the 

CPG can be thought of as alternation between flexors and extensors  (Grillner and Jessell 

2009).   

1.5.1.1 Models of the central pattern generator 

1.5.1.1.1 Half-Center Model 

Graham Brown showed that rhythmic alternation of flexor and extensor muscles in 

the cat hindlimb is a central mechanism during experiments on decerebrate cats who were 

acutely spinalized and deafferented.  In order to explain the alternation between flexor 

and extensor activation in the limb, Brown proposed a simple neuronal organization, the 

“half-center” model.  Basically, two half-centers, one for flexors and one for extensors, 

receive reciprocal inhibition, so that only one of the two half centers would be active at a 

time.  The switch from one to the other would happen due to fatigue, leading to an 

alternation of flexor and extensor muscles. Before Brown and until Lundberg resurrected 

the idea of the half-center in the 1960s, the prevailing idea was that locomotor 

movements were due to a series of reflexes (Hultborn and Nielsen 2007; Stuart and 

Hultborn 2008).  Today, the idea of the half-center is still part of most models of the 

CPG.   
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1.5.1.1.2 Unit Burst Generator 

One limitation of the “half-center” model is that it assumes strict alternation of flexor 

and extensor activity.  However, it has been determined that activation of flexor and 

extensor muscles is more complex.  Instead, there are differences in the onset and offset 

of different muscles, which are activated at the appropriate time (McCrea and Rybak 

2008).  The unit burst generators model of the CPG assumes that there are multiple unit 

burst generators (or CPGs) that control the synergistic muscles at one joint (i.e.- knee 

flexors or ankle extensors).  Each unit burst generator is capable of bursting alone.  

Interconnections between the unit burst generators decide the relative phasing between 

different muscle groups and the timing during locomotion (Grillner 1981). 

1.5.1.1.3 Other CPG Models 

In order to account for more complex locomotor activity, models are becoming 

increasingly more complex.  They include more interneurons and more connections 

within the circuitry to account for experimental findings.  For example, some muscles, 

like semitendinosus, can generate two bursts per cycle; extra interneurons that provide a 

connection from both “half-centers” to both the extensor and flexor motoneurons 

populations can be added to the “half-center” model to correct for this (McCrea and 

Rybak 2008; Perret and Cabelguen 1980; Perret et al. 1988).  The “half-center” model 

also does not incorporate sensory feedback, and so extra interneurons, like Ia 

interneurons, can provide motoneurons with sensory input (McCrea and Rybak 2008; 

Orlovskiĭ et al. 1999).   

A number of models have proposed more than one level of organization to account 

for independent changes that cannot be explained single-level models (Burke et al. 2001; 
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Koshland and Smith 1989; Kriellaars et al. 1994; Perret and Cabelguen 1980; Perret et al. 

1988; Rybak et al. 2006a; Rybak et al. 2006b).  In particular, there appear to be 

independent changes in motoneurons recruitment and rhythm generation which can be 

separately affected by sensory input (Burke et al. 2001; Kriellaars et al. 1994). 

Studies of deletions, which are spontaneous reductions or absences of one or more 

expected rhythmic bursts of activity, provided clues into CPG organization (Lafreniere-

Roula and McCrea 2005).  Deletions have been observed during fictive locomotion, 

treadmill locomotion, and scratch in cats (Duysens 1977; Lafreniere-Roula and McCrea 

2005), as well as in the turtle scratch reflex (Stein 2005; Stein and Grossman 1980).  

Deletions are considered errors or failures in the rhythmic activity (Rybak et al. 2006a).  

There are different types of deletions including resetting and non-resetting deletions or 

complete deletions and partial deletions.  In a non-resetting deletion, despite the absence 

of a burst, the next burst reemerges at an integer number of the missing locomotor period 

at the time that would have been expected had the deletion not occurred, suggesting that 

the CPG “remembers” and maintains the pattern even when the motoneurons are silent.  

This pattern is not consistent with a simple “half-center” model (Lafreniere-Roula and 

McCrea 2005).   

Rybak et al. (2006a) proposed a model that combines features of both the half-center 

and the unit burst generator organizations into a two-level locomotor CPG model.  The 

model has a two-level architecture, where the first level is a half-center rhythm generator, 

which acts as the “clock.”  The second level is an intermediate pattern formation network 

that coordinates the activation of the motoneuron populations to which it projects.  This 

allows separate control of the two levels.  Therefore, sensory signals or perturbations can 
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affect one of the two levels without affecting the other.  This model was designed to have 

a great amount of flexibility and to be able to explain more complicated motoneuron 

activities, including double bursts and deletions.  For example, non-resetting deletions 

could occur due to changes in excitability to the pattern formation level and not the 

rhythm generator level.  It should be noted that while the model is quite extensive, it 

currently only models one limb (Rybak et al. 2006a). 

1.5.2 The neonatal rodent preparation  

The in vitro isolated spinal cord preparation in the neonatal rat was first developed by 

Otsuka and Konishi (1974) to allow for the precise control over the extracellular medium.  

They recorded from ventral roots using silver electrodes or glass suction electrodes, 

which they found to be stable.  They stimulated dorsal roots and were able to record 

monosynaptic and polysynaptic reflexes (Otsuka and Konishi 1974).  The preparation 

was used to study respiration (Smith and Feldman 1987; Suzue 1984).  Then by keeping 

the hindlimbs attached or using suction electrodes on ventral roots, it was demonstrated 

that locomotor patterning could be produced by chemical activation or stimulation of 

sensory pathways (Smith and Feldman 1987).   

The isolated intact neonatal rodent spinal cord can produce a coordinated hindlimb 

motor output that spatiotemporally resembles locomotion in the intact hindlimb (Atsuta et 

al. 1988; Cazalets et al. 1990; Kiehn and Kjaerulff 1996). This activity is referred to as 

locomotor-like activity (LLA), and the motor output recorded from lumbar roots L2 and 

L5 ventral roots largely corresponds to activity in flexors and extensors respectively 

(Kiehn and Kjaerulff 1998).  The muscles patterns in the neonatal rodent are similar to 
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locomotor patterns in the adult (Cowley and Schmidt 1995; Hayes et al. 2009; Juvin et al. 

2007; Kiehn and Kjaerulff 1996). 

1.5.3 Locomotor studies in the neonatal rodent 

1.5.3.1 Pharmacological activation 

Various neurochemicals have been used to initiate or induce rhythmic activity in the 

neonatal rodent spinal cord, including 5-HT (Cazalets et al. 1990; Cazalets et al. 1992; 

Kiehn and Kjaerulff 1996), NA (Kiehn et al. 1999; Sqalli-Houssaini and Cazalets 2000), 

DA (Kiehn and Kjaerulff 1996), γ-aminobutyric acid N-methyl-D-aspartate (NMDA) 

(Cazalets et al. 1990; Kudo and Yamada 1987), glutamate (Cazalets et al. 1992),  

acetylcholine (Cowley and Schmidt 1994a), Potassium (Bracci et al. 1998), and arginine 

vasopressin (Pearson et al. 2003). 

There are differences in the rhythmic patterns produced by the different 

neurochemical applications.  For example, DA induces rhythmic activity that is slower 

than 5-HT as well as differences in phase (Kiehn and Kjaerulff 1996), and NA produces a 

slow alternating pattern with clear right-left alternation, but not between flexors and 

extensors (Sqalli-Houssaini and Cazalets 2000). 

NMDA and 5-HT have been used widely both alone and in combination.  In 

combination, they are a very reliable method for inducing long lasting LLA (Kiehn et al. 

1999; Kjaerulff and Kiehn 1996; Sqalli-Houssaini et al. 1993).  

1.5.3.2 Electrical activation  

It has been shown that electrical stimulation techniques can activate the hindlimb 

locomotor CPG in the neonatal rodent spinal cord (Bonnot et al. 1998; Gabbay et al. 
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2002; Gordon and Whelan 2006; Lev-Tov et al. 2000; Lev-Tov and Pinco 1992; 

Marchetti et al. 2001).  Different areas can induce LLA, include the brainstem (Atsuta et 

al. 1990; 1988; Zaporozhets et al. 2004), the ventrolateral funiculus (Magnuson and 

Trinder 1997), dorsal roots (Marchetti et al. 2001; Whelan et al. 2000), sacrocaudal 

afferents (Lev-Tov et al. 2000; Strauss and Lev-Tov 2003), and cauda equina (Gordon 

and Whelan 2006; Whelan et al. 2000) . 

1.5.3.3 Lesioning studies  

Lesion and activity studies have mapped the core neuronal elements of the locomotor 

CPG to the ventral half of the spinal cord (Kjaerulff and Kiehn, 1996; Cowley and 

Schmidt, 1997) 

The ability to generate locomotor-like rhythms in the spinal cord is distributed 

through the lumbar enlargement; however, the more rostral segments (L1-L2 in rodents) 

have a greater ability to generate rhythmic outputs in isolation than caudal segments 

(Cazalets et al. 1996). 

1.5.3.4 The use of molecular genetics to understand CPGs 

Molecularly identification and genetic manipulation of different classes of neurons in 

the ventral half of the neural tube during development is starting to give insight into the 

roles of these neurons during locomotion.  Distinct dorsoventral gradients produced by 

expression of transcription factors trigger differentiation in the developing cord.  In the 

ventral cord, motoneurons and four ventral (V) interneuron populations (V0-V3) are 

derived (Goulding 2009; Jessell 2000).  All five classes appear to influence the CPG.  

Efforts are being made to correlate the embryonic cell type with previously identified 

adult cell types (Goulding 2009). 
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V0 interneurons are locally projecting intersegmental commissural interneurons 

(Moran-Rivard et al. 2001) that project to contralateral motoneurons and are responsible 

for left-right alternation during locomotion (Lanuza et al. 2004).  There are both 

excitatory and inhibitory subtypes (Goulding 2009). 

V1 inhibitory interneurons are a heterogeneous population of inhibitory interneurons 

that project ipilaterally to motoneurons.  They are located in region VII, which receives 

projections from muscle afferents.  Two known types of adult interneurons are derived 

from V1 intereneurons: Renshaw cells (9%) and Ia inhibitory interneurons (13%) 

(Alvarez et al. 2005).  V1 intereneurons affect the frequency of the locomotor CPG, 

specifically affecting the higher frequencies.  Three different genetic approaches were 

used to either inactivate or delete V1 interneurons, leading to an inability to burst or step 

at higher frequencies (Gosgnach et al. 2006).   

V2 interneurons are comprised of V2a excitatory and V2b inhibitory interneurons, 

both of which project ipsilaterally and to motoneurons (Al-Mosawie et al. 2007).  V2a 

interneurons play an important role in the controlling of left-right alternation.  After V2a 

neurons are ablated, there is an uncoupling of the left and right sides of the spinal cord 

and a loss of left–right alternation.  The V2a interneurons contact commissural 

interneurons, including V0 interneurons (Crone et al. 2008).  Not much is known about 

the function of V2b inhibitory interneurons (Goulding 2009). 

V3 interneurons are excitatory neurons that project primarily across the midline.  

Roughly 15% of the neurons project ipsilaterally, including some that have axonal 

processes to both sides of the spinal cord.  V3 interneurons contact motoneurons, Ia 
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inhibitory interneurons, Renshaw cells, and V2 intereneurons.  V3 help establish stable 

and balanced locomotor rhythm (Zhang et al. 2008). 

1.6 Neuromodulation 

Neurotransmission is accepted to be the primary means of communication between 

neurons and traditionally thought of as fast (milliseconds), point-to-point (neuron to 

neuron), and simple (either excitatory or inhibitory).  However, neural communication is 

not quite as simple as this.  Instead, there are many other ways that neurons can 

communicate that differ from classical neurotransmission.  One common way is through 

neuromodulation.  As a general guideline rather than a firm definition, neurotransmission 

is mediated by ionotropic receptors, which are ligand-gated ion channels responsible for 

the fast communication and neuromodulation is mediated by metabotropic receptors, 

which activate second-messenger systems (Katz 1999; Katz 1995).   

Neuromodulation is a substance that alters the cellular and synaptic properties of a 

neuron and alters the subsequent neurotransmission, so that even with the same input, the 

output will be different (Katz 1999; Katz 1995; Katz and Frost 1996).  Thus, it allows the 

circuit to become more flexible (Katz 1995). Three different types of neuromodulation 

are extrinsic neuromodulation, intrinsic neuromodulation, and biochemical integration. 

 Extrinsic neuromodulation is usually thought to originate from sources extrinsic to the 

circuit being affected and therefore not a part of the circuit itself (Katz 1995).  It is 

considered the ‘conventional’ form of neuromodulation typified by neuronal systems 

modulating the activity of other ‘hard-wired’ circuits (Katz 1995).  A classic example 

would be the monoaminergic nuclei, such as the raphe nuclei, substantia nigra, and locus 

coeruleus, which project fibers throughout the brain and spinal cord producing potent 
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modulation of spinal sensory, autonomic, and motor activity (Hochman et al. 2001; 

Millan 2002; Schmidt and Jordan 2000). 

 By contrast, with intrinsic neuromodulation, neuromodulatory substances can also be 

released by neurons that are intrinsic to a circuit, and can affect other neurons and 

synapses within the same circuit. One functional consequence of intrinsic 

neuromodulation is that it operates whenever the circuit is active because it is an integral 

part of the circuit and as such its actions are proportional to the amount of activity within 

the circuit itself (Katz and Frost 1996).  As stated by Katz and Frost (1996) “‘intrinsic 

neuromodulation is not as widely recognized as extrinsic neuromodulation, but we 

believe that it might be just as pervasive” (Katz and Frost 1996). 

Biochemical integration modulates the neuron in which it acts.  During biochemical 

integration, the biochemical intracellular signals (e.g. second messengers like cAMP) are 

integrated to affect the cellular and synaptic properties of the neuron, often across 

different time scales (Katz and Clemens 2001).  

1.7 The significance of an exquisitely regulated trace aminergic system 

The TAs have turnover rates similar to DA and NA (Durden and Philips 1980; 

Paterson et al. 1990) which is “a more significant index of their importance than their 

endogenous concentrations” (Saavedra 1989).  High turnover rates are demonstrated by 

blocking amine degradation with MAO inhibitors resulting in significant accumulation of 

TAs (Berry 2004).  In addition, it has been shown that AADC activity is physiologically-

modifiable and has dramatic influence over TA concentrations but not the classic 

monoamines levels (Berry 2004). Thus, endogenous levels of TA are much easier to 

control than the classical monoamines and represent a modulatory system whose 
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transmitter concentration can be altered several fold in a very short time (Berry 2004).  If 

the primary role for the TAs was via activation of the TAARs to modulate circuits 

activated by the classical monoamines, then control of the rate of synthesis by changing 

AADC activity could have profound modulatory actions on these circuits.  Simply 

changing the endogenous level of the TAs, could act as a switch to change the output, say 

as a “modulatory switch,” that could amplify/reinforce the circuitry. This mechanism 

could easily apply anywhere there was AADC expression.   
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CHAPTER 2  

GENERAL METHODS 

2.1 Electrophysiology 

2.1.1 The neonatal rat isolated spinal cord preparation 

The spinal cord contains all of the necessary circuitry at birth to produce complex 

motor outputs including locomotor patterning (Grillner 1981).  Over the last two decades, 

the in vitro isolated spinal cord preparation in the neonatal rodent has become the 

dominant animal model for studying the spinal mechanisms controlling the operation of 

the mammalian locomotor CPGs.  The in vitro isolated rodent spinal cord preparation can 

produce a coordinated hindlimb motor output that spatiotemporally resembles locomotion 

in the intact hindlimb (Atsuta et al. 1988; Cazalets et al. 1990; Kiehn and Kjaerulff 1996) 

as well as the adult (Cowley and Schmidt 1995; Hayes et al. 2009; Juvin et al. 2007; 

Kiehn and Kjaerulff 1996).   

Many different neurochemicals have been used to induce locomotor-like activity 

patterns.  Locomotor-like activity (LLA) can be characterized as left/right and ipsilateral 

alternation of bursts between flexors and extensors (Kiehn and Kjaerulff 1998; Sqalli-

Houssaini et al. 1993).  Locomotor-inducing neurochemicals include serotonin (5-HT), 

noradrenaline (NA), dopamine (DA), excitatory amino acids, acetylcholine, N-methyl-D-

aspartate (NMDA), glutamate, and acetylcholine (Barbeau and Rossignol 1991; Cazalets 

et al. 1990; Cazalets et al. 1992; Cowley and Schmidt 1994a; Kiehn and Kjaerulff 1996; 

Kiehn et al. 1999; Kudo and Yamada 1987; Sqalli-Houssaini and Cazalets 2000). 
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The isolated in vitro spinal cord preparation has become an important model due to its 

many advantages.  The extracellular medium can be controlled easily (Otsuka and 

Konishi 1974), and the spinal cord remains intact, which means that more of the spinal 

cord circuitry is intact than in a slice preparation (Suzue 1984).  With no blood brain 

barrier, it is possible to make all drugs accessible to the spinal cord, which means that 

instead of just studying the precursors like L-DOPA, drugs like dopamine could be tested 

on the spinal cord (Cazalets et al. 1992).  This easy access allows for manipulation of the 

system through pharmacology, stimulation, dissection of the spinal cord, and transgenics.  

Further, the surgery and electrode placement is relatively fast and easy.  Due to the small 

size of the neonatal spinal cord, passive diffusion of oxygen and the control medium 

maintain viability of the spinal cord to keep it alive for extended periods of time (Smith 

and Feldman 1987).  It also allows for intracellular recordings (Fulton and Walton 1986; 

Jahr and Yoshioka 1986).  Use of the in vitro neonatal rodent preparation has increased 

our understanding of the spinal motor system. 

In chapter 4, I used the isolated neonatal rat spinal cord maintained in vitro to study 

trace amine (TA) modulatory actions on the spinal cord and then compared them to the 

classical monoamine transmitters.  To do this, the spinal cord of postnatal (P) day 0-5 

neonatal Sprague-Dawley rats was isolated and motor activity was monitored using glass 

suction electrodes attached to ventral lumbar roots, typically bilaterally on L2 and L5 

(Figure 2.1).  Although the ventral roots contain both flexor and extensor motor axons, 

L2 ventral root activity primarily indicates activity in flexors, while L5 ventral root 

activity primarily indicates activity in extensors (Kiehn and Kjaerulff 1998).  Activity 

was induced with the TAs [tyramine, octopamine, PEA, and tryptamine] and the 
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Figure 2.1: In vitro neonatal rat isolated spinal cord experimental setup  
A. All of the electrophysiological experiments conducted in Chapter 4 use the isolated neonatal rat spinal 
cord maintained in vitro.  For studies on locomotor-like motor rhythms, suction electrodes are placed on 
lumbar L2 and L5 ventral roots bilaterally to monitor population motoneuron flexor and extensor activity, 
respectively.  Drugs are applied to the bath.  B.  Recording of locomotor-like activity showing alternation 
between right and left L2 flexors, with each flexor rhythm alternating with the L5 extensor rhythm on the 
same side.  For most of the result subsequently displayed, raw electroneurograms are displayed below their 
rectified filtered waveforms. 

 

 

 

  

Figure 2.2: In vitro neonatal rat isolated spinal cord with attached hindlimbs experimental setup   
A. All of the electrophysiological experiments conducted in Chapter 5 use the isolated neonatal rat spinal 
cord with attached hindlimbs maintained in vitro.  For studies on the output of muscle coordination, glass 
suction electrodes were placed on the left lumbar L2 ventral root and typically 7 muscles of the hindlimb.  
Drugs are applied to the bath.  B. Electromyographically recording of locomotor-like activity showing 
coordination of the muscles. 
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monoamines [5-HT, dopamine, and noradrenaline] both alone and in the presence of 

NMDA.  Locomotor-like activity was analyzed using custom MATLAB software that I 

wrote, and is described below in Section 2.3. 

2.1.2 The neonatal isolated spinal cord with attached hindlimbs  

While ventral root recordings offer a simple way to monitor the spinal motor output, 

they do not give the whole story.  Ventral root activity may not reflect recruitment of 

individual muscles (Cowley and Schmidt 1994b).  Anatomical studies have shown that 

ventral roots are actually quite heterogeneous, containing axons projecting to both flexors 

and extensors (Nicolopoulos-Stournaras and Iles 1983).  Important changes in motor 

coordination between flexor and extensor activity may be lost due to the heterogeneity of 

these roots.  It has been long known that muscle recruitment by spinal cord circuitry is 

more complicated than just simple flexor/extensor alternation.  These distinct complex 

patterns and sequential activation of muscles have more recently been demonstrated in 

the in vitro spinal cord (Grillner 1981; Kiehn and Kjaerulff 1996).  Distinct motor 

patterns of recruited muscles were observed when induced by different transmitters such 

as 5-HT and dopamine as well as pharmacological and electrical stimulation, suggesting 

that the spinal locomotor network is flexible and that extrinsic modulation can modify the 

network coordination (Kiehn and Kjaerulff 1996; Klein et al. 2010).   

In chapter 5, I used the in vitro isolated spinal cord of P day 0-5 neonatal Sprague-

Dawley rats with attached hindlimbs to record muscle activation electromyographically.  

I studied the patterns produced by the TAs and NMDA compared to 5-HT and NMDA, as 

well as the ability of the TAs to modulate ongoing 5-HT and NMDA LLA.  To do this, 

the spinal cord of neonatal Sprague-Dawley rats were isolated with the hindlimbs still 
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intact and with the dorsal roots cut.  Dorsal roots were severed to eliminate the sensory 

feedback and simplify the spinal cord output to reflect the changes in spinal cord circuitry 

due to the trace amines.  Modulatory actions of the TAs can be inferred to reflect the 

actions on motor circuits.   

Glass suction electrodes were then placed on the left lumbar L2 ventral root and up to 

7 muscles of the hindlimb (Figure 2.2).  Recordings were acquired from the following 

muscles: tibialis anterior (TibA; ankle flexor), medial gastrocnemius (MGas; ankle 

extensor), semitendinosus (SemT; knee flexor / hip extensor), semimembranosus (SemM; 

knee flexor / hip extensor), vastus medialis (VasM; knee extensor), rectus femoris (RecF; 

knee extensor / hip flexor), and adductor magnus (AddM; hip adductor).  Some of the 

muscles (e.g. TibA) were often recorded bilaterally. The left lumbar L2 ventral root was 

always recorded for two reasons: comparison of ventral root activity profile in relation to 

that obtained in the isolated spinal cord preparation reported above, and its reliable 

recruitment allowed a common comparison between experiments where muscle EMG 

recruitment was variable.  Rhythmic motor activity was evoked by two different 

pharmacological methods.  First, tryptamine, tyramine, octopamine, PEA, or 5-HT was 

co-applied with NMDA.  Second, 5-HT and NMDA were co-applied to get ongoing 

locomotor-like activity onto which tryptamine, tyramine, octopamine, and PEA were 

added.  Locomotor-like activity was analyzed using custom MATLAB software I wrote 

especially for this project, described below in Section 2.3. 

2.2 Terminology for bursting patterns 

In both chapter 4 and chapter 5, three main types of locomotor-like patterning were 

encountered.  First, there is locomotor-like bursting with a regular frequency.  Second, 
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the same locomotor-like pattern is produced, but significantly slower.  Third, there are 

multiple types of episodic bursting patterns produced; however, each is characterized by 

bouts of rhythmic bursting interrupted regularly by quiescent periods (Figure 2.3).  The 

figure below is intended to clarify the types of patterns and the terminology used to 

describe the bursting. 

2.3 SpinalMOD: A MATLAB Graphic User Interface for Burst Detection  

SpinalMOD (Spinal Motor Output Detector) is a MATLAB Graphical User Interface 

(GUI) I wrote for the analysis of locomotor-like activity.  It detects the onset and offset of 

the bursts being analyzed and calculates the bursts statistics, such as period, burst 

duration, and phase.  It is designed with a simple GUI so that it can be operated easily by 

users who are not familiar with programming languages (Figure 2.4).   

2.3.1 GUI menu structure 

 When SpinalMOD is first opened, there are a series of menus in the top left hand 

corner.  There are three first level menus, namely “File”, “Edit”, and “Settings”.  The 

“File” menu offers options to open data, save analysis, open figures into a pop-up 

window for closer examination, and for exporting analysis.  The “Edit” menu offers the 

ability to undo and redo changes in variables.  The “Settings” menu offers options to 

change the file name and set the sample frequency of the data being analyzed.  Once an 

option has been selected, most options have a pop-up window that guides the user 

through the desired action. 
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Figure 2.3: Terminology for the different types of trace amine induced bursting 
There are three different broad types of bursting for the TAs.  A. The first type is continuous locomotor-
like bursting that has a regular frequency.  The frequency of 5-HT/NMDA and TA/NMDA locomotor-like 
activity is statistically indistinguishable. B.  The second type is continuous locomotor-like bursting that has 
a significantly slower burst frequency.  C.  The third type is episodic bursting, which is characterized by 
bouts of bursting with epochs of comparatively quiescent periods.  The bursting in the bouts is typically 
locomotor-like.  The lower box in C shows a bout of bursting on the same time scale as seen in A&B. 
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Figure 2.4: SpinalMOD Graphical User Interface   
The graphical user interface (GUI) is designed to be easy to use.  The input variables are listed to the left 
under VARIABLES for all four channels.  To change the variable, the user simply clicks inside the white 
box and changes the value.  The waveforms for the data are show in the middle.  Raw data is in green.  
Filtered data is in blue.  Onset stems are in red, and offset stems are in magenta.  If the stems are not in the 
correct location, the user changes the variables and selects “Run with Updated Variables.”  If the algorithm 
fails to find the correct onset and offsets for the bursts, the stems can be manually changed with the 
“Change On/Off Stem Marks.”  To run the burst analysis, the user would push the “Run Burst Analysis” 
button, and select first the number of bursts to be analyzed and then the first burst to be analyze.  Black 
stems mark the beginning and end of the analyzed period.  Once analyzed, the values calculated are shown 
in the Burst Analysis section to the right of the GUI. 
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2.3.2 Running the burst detection 

To get started analyzing data, the user selects the file to be analyzed from the location 

it has been saved.  Currently, two types of files can be opened for analysis.  The first file 

format is the .abf, which was recorded using pCLAMP acquisition software (v8-9, 

Molecular Devices; Union City, CA).  This data is inputted into SpinalMOD via a custom 

script written by Michael Sorensen, called readabf.m.  The second file format is the .mat, 

which is the form data that has already been analyzed in MATLAB is saved. 

When new data is being entered, the user can select how many seconds of data to 

open, which channels are to be analyzed, and the name of the channels to be analyzed.  

The GUI can analyze four channels of data at one time.  For each channel, the raw data is 

rectified and processed through a low-pass Chebyshev filter.  The burst threshold is 

calculated by taking the mean of the filtered data.  Values above the threshold are tested 

to determine the onset and offset of each burst.  An algorithm (found in Appendix C) 

uses the input variables on the left side of the GUI.  A series of if statements determines 

the onset and offset of a burst by evaluating whether specific criteria are met.  The if 

statements start at the beginning of the rectified and filtered array and evaluate every 

point above threshold to determine if it fits the criteria to be first a burst onset and second 

a burst offset.  The onset of each burst crosses the threshold on an upward slope, and the 

offset of each burst crosses the threshold on a downward slope. 

The important variables for detecting the bursts are: 1st Burst’s Start Time (s), Min. 

Period (s), Min. Burst Duration (s), Min. InterBurst Time (s), and Min. Ringing Time (s) 

(Figure 2.4 and 2.5).  1st Burst’s Start Time (s) is the time in seconds that the user wants 

the GUI to start searching for the first burst onset to be detected and later analyzed.  Min. 
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Period (s) is the minimum period in seconds between the onset of each burst.  Min. Burst 

Duration (s) is the minimum time in seconds of the burst duration.  Min. InterBurstTime 

(s) is the minimum time in seconds between the offset of one burst and the onset of the 

next burst.  Min. ringing time (s) is a variable to prevent early detection of the burst 

offset.  Since the algorithm examines the array point by point, this variable is the 

minimum time in seconds after the offset has been detected that there cannot be another 

offset detected (Figure 2.5). 

Once the data has been opened and has gone through the first calculation of onset and 

offset, the raw data, filtered data, onsets, and offsets are then graphed for the user.  The 

user can change the input variables and select the “Run with Updated Variables” button, 

repeating the burst analysis to correct the burst analysis output.  If the algorithm is unable 

to detect the onset and offset correctly, typically due to noise or a poor signal to noise 

ratio, the user has the option to manually place the burst onset and offset markers.   

2.3.3 Running the burst analysis 

Once the burst markers correctly mark the beginning and end of each burst, the user 

can select the “Run Burst Analysis” button, and the burst characteristics will be 

calculated.    The burst analysis calculates frequency, average period, average burst 

duration, average duty cycle, mean peak-to-peak amplitude, mean peak amplitude, 

relative modulation amplitude, the phase between the different channels, the power 

spectrum, and the average waveform (Kjaerulff and Kiehn 1996).  To examine the data 

and analysis further, pop-up windows open graphs for the waveforms, phase, power 

spectrum, average waveform, changes in period, changes in burst duration, changes in 

duty cycle, and changes in peak amplitude. 
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Figure 2.5: SpinalMOD terminology 
The important variables to calculate the burst onset and offset are 1st Burst’s Start Time (s), Min. Period 
(s), Min. Burst Duration (s), Min. InterBurst Time (s), and Min. Ringing Time (s).  A.  A graphical 
representation of 1st Burst’s Start Time, Period, Burst Duration, and InterBurst Time are shown.  B. The 
min. ringing time variable was implemented to prevent early detection of the end of the burst.  While many 
points may fit the other criteria for being the end of the burst, ringing time helps to insure that the last of 
these points is selected.  Shown here are 4 points that fit the other criteria for the end of the burst.  If the 
time of the Min. Ringing Time is not long enough (left) then the wrong point is marked as the end of the 
burst.  When it is long enough (right), the correct point is marked.  B is a zoom in of the offset for the first 
burst in A. 
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2.4 Contributions to this dissertation 

While I did the majority of the work for this dissertation, I would like to acknowledge 

the people who helped and whose work is included in this dissertation.  The technical 

work for the in situ hybridization work for AADC and TAAR1 was carried out by Dr. 

Hong Zhu.  The technical work for all of the immunohistochemistry and DiI was carried 

out by Michael A. Sawchuck.  Michael A. Sawchuck also helped me to create the 

confocal images while I was processing the immunohistochemistry work.  Their work 

was conducted in consultation with Dr. Shawn Hochman and me.   

I was responsible for all electrophysiology and in vivo experiments, the analysis, the 

statistics, and the writing of the dissertation.  Dr. Shawn Hochman acted as an advisory 

role. 

I wrote the whole SpinalMOD program, with some help on the filtering and getting 

started on using GUIs from Kate Williams Meacham.  SpinalMOD runs a custom script 

written by Michael Sorensen, called readabf.m, that takes data recorded using pCLAMP 

acquisition software (.abf) and converts it to be inputted into MATLAB.   
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CHAPTER 3  

THE LOCALIZATIONS OF AADC, THE TRACE AMINES, AND 
TAARS PROVIDE AN ANATOMICAL SUBSTRATE FOR THE 

TRACE AMINES IN THE MAMMALIAN SPINAL CORD 

3.1 Abstract 

Like the conventional monoamine transmitters, the trace amines (TAs), tryptamine, 

tyramine, octopamine, and β-phenylethylamine (PEA), are synthesized from the same 

precursor amino acids via aromatic amino acid decarboxylase (AADC) and metabolized 

via monoamine oxidases (MAOs).  While these TAs are present in the mammalian CNS, 

their physiologic role remains uncertain.  Using in situ hybridization and 

immunohistochemistry, widespread AADC labeling was observed in many spinal 

neurons, including motoneurons and D cells surrounding the central canal.  Tyramine, 

tryptamine, and octopamine also had widespread labeling in similar areas consistent with 

AADC producing them.   The trace amine-associated receptor 1 (TAAR1) and 4 

(TAAR4), which are activated by TAs, had similar labeling patterns, in total providing 

the substrate for the TAs to have intrinsic biological actions.   

3.2 Introduction 

The classical monoamine neurotransmitters, dopamine (DA), noradrenaline (NA), and 

serotonin (5-HT), play an important role in modulating spinal cord sensory and motor 

function (Clarac et al. 2004; Hochman et al. 2001; Jacobs and Fornal 1993; Millan 2002; 

Rekling et al. 2000; Schmidt and Jordan 2000).  They are not made in the spinal cord, but 

in descending monoaminergic neurons that project to the spinal cord (Gerin et al. 1995).   
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These transmitters are closely related to another group of endogenous monoamines 

called trace amines (TAs), which may also act as neuromodulatory transmitters (Berry 

2004; Burchett and Hicks 2006; Lindemann and Hoener 2005).  The TAs, tryptamine, 

tyramine, octopamine, and β-phenylethylamine (PEA), have structural, metabolic, 

physiologic, and pharmacologic similarities to the classical MA transmitters (Saavedra 

1989).  Both the monoamines and the TAs are synthesized from the same precursor 

amino acids.  However, while both require the synthesis enzyme aromatic-L-amino acid 

decarboxylase (AADC), unlike the classical monoamines, AADC is the only enzyme 

required to produce most of the TAs; octopamine (like NA) further requires dopamine-β-

hydroxylase (DBH).  Conversion from the TAs to the monoamines does not appear to 

occur (Berry 2007).  

While traditionally viewed as metabolic by-products or false transmitters in 

vertebrates (Berry 2004; Boulton 1976; Grandy 2007; Kopin et al. 1965), the recent 

discovery of trace amine-associated receptors (TAARs) establishes a mechanism by 

which TAs can produce effects of their own (Borowsky et al. 2001; Bunzow et al. 2001; 

Hauger et al. 1982; Kellar and Cascio 1982; Lindemann and Hoener 2005; Nguyen and 

Juorio 1989; Vaccari 1986; van Nguyen et al. 1989).  Tyramine and PEA activate 

TAAR1, while PEA and tryptamine activate TAAR4 (Borowsky et al. 2001).   The 

presence of other TAARs in rat spinal cord, and whether the TAs act on them remains to 

be determined (however see (Liberles and Buck 2006)).  

A trace aminergic neuronal system has yet to be identified.  Candidate cells include D 

cells, which contain the essential synthesis enzyme AADC, but not tyrosine hydroxylase 

(TH), DBH, or phenylethanolamine N-methyltransferase   (PNMT),  and hence are able 
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to produce the TAs, but not the classical monoamines (Berry 2004; Jaeger et al. 1984a; 

Jaeger et al. 1984b; Jaeger et al. 1983; Nagatsu et al. 1988).  D1 cells are associated with 

the lumen of the central canal and were the first non-monoaminergic AADC positive 

cells to be identified in the spinal cord (Jaeger et al. 1984b; Jaeger et al. 1983).  It has 

also been reported that there are more cells in the gray and white matter, but nothing is 

known of their properties (Nagatsu et al. 1988).  In the presence of the precursor amino 

acids, phenylalanine, tyrosine, and tryptophan, AADC containing cells should be able to 

synthesize the TAs, PEA, tyramine, and tryptamine, respectively. TAAR1 mRNA is also 

found in the spinal cord (Borowsky et al. 2001), but no studies have looked at TAAR1 or 

TAAR4 spinal protein expression or function. 

I hypothesized that the TAs are an intrinsic amine system in the spinal cord, and 

therefore, that the spinal cord would contain the AADC, TAs, and TAARs.  To test this 

hypothesis, immunohistochemistry was used to identify spinal neurons that express 

AADC, tyramine, tryptamine, octopamine, and the TAARs, and in situ hybridization was 

used to identify AADC and TAAR1.  Overall, AADC, tyramine, tryptamine, octopamine, 

and the TAARs were found to be present in the spinal cord.  Some of these results have 

been presented in abstract form (Gieseker et al. 2004; Gozal et al. June 15, 2007; Gozal et 

al. 2010; 2007b; Gozal et al. 2006).  

3.3 Methods 

All experimental procedures complied with the NIH guidelines for animal care and the 

Emory Institutional Animal Care and Use Committee.  Sprague-Dawley rats postnatal (P) 

day 0-5, 14, and adult were used.  

3.3.1 In situ hybridization 
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Complete adult rat spinal cords were dissected out and the whole cords were stored in 

RNAlater (Qiagen, Valencia, CA) at -80° until use.  Total RNA was extracted from the 

mouse spinal cord by using Qiagen RNeasy Mini kits (Qiagen, Valencia, CA).  Five 

microgram of total RNA was subject to cDNA synthesis with oligo-dT15 primer and 

SuperScript II Reverse transcriptase (Invitrogen, Carlsbad, CA) for one hour at 42° C.  

The reverse transcriptase was inactivated, and RNA was degraded by heating at 95° C for 

5 min. Of the 20 µl of cDNA obtained from the synthesis reaction 5 µl were directly 

added to the PCR reaction using a PCR Mastermix kit (Eppendorf, Hamburg, Germany) 

containing 1 µM gene-specific primers.  The primer used in this study was designed by 

the Invitrogen-OligoPerfect™ Designer program (Invitrogen, Carlsbad, CA).  Non-

radioactive single-stranded digoxigenin cRNA probes were used for in situ hybridization 

using methodology reported previously (Zhu et al. 2007).  Briefly, single stranded, 

digoxigenin-labeled antisense and sense probes are transcribed in vitro using T7 and Sp6 

RNA polymerase (Promega).  The probe sequence for rat dopa decarboxylase (AADC) is 

523-927bp (GenBank U31884), 404 bp product.  The probe sequence used for TAAR1 is 

400bp long (GeneBank#AF380186). Hybridization is carried out at 68 °C overnight with 

3µg/ml digoxigenin-labeled antisense cRNA probe.  Sense probes were used at identical 

concentrations and development reaction as a negative control.  Sections were washed 

with concentrated standard saline citrate (SSC) and then incubated with anti-digoxigenin-

AP, Fab fragments (1:5000, Roche) in blocking buffer overnight at 4C.  The color 

development reaction was carried out in the dark and neutralized with color stop buffer 

(10 mM Tris, pH 5, 1 mM EDTA).  Slides were then dehydrated through a series of 
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alcohol washes, coverslipped with Vectamount (Vector Labs) and viewed on a Nikon 

E800 light microscope.  Images are digitized with Nikon ACT-1 software. 

3.3.2 Thoracic transection of the spinal cord 

Rodents were anesthetized with isoflurane via inhalation.  Following dorsal 

laminectomy to expose lower-thoracic segments of the cord, one section of the cord 

between T8-T12 was removed using surgical microdissection scissors.  Gel foam was 

placed in the site of transection to maintain the gap between rostral and caudal cord.  The 

incision was closed with sutures.  Rodents recovered for 1-3 weeks before 

immunohistochemistry or lipophilic dye labeling of axonal tracts.  This is a sufficient 

time for degeneration of descending monoaminergic axon terminals (Commissiong and 

Toffano 1989).   

3.3.3 Immunohistochemistry 

Sprague-Dawley rats were anesthetized with urethane (1.5 mg/kg), perfused with 1:3 

volume/body weight of prefix (0.9%NaCl, 0.1%NaNO2 , 10units/1m heparin) followed 

by equal volume/body weight of Lana’s fixative (4% paraformaldehyde, 0.2% picric acid, 

0.16 M PO3); pH 6.9.  In a small subset of experiments, the isolated cords of P2 

littermates were incubated in regular aCSF either with or without the TAs, octopamine, 

tyramine, and tryptamine (all at 100 µM) for 2 hours and then processed.  In many of the 

experiments, Fluorogold, which does not cross the blood brain barrier, was injected 

intraperitoneal (i.p.) 24 hours prior to sacrifice to retrogradely label most spinal 

motoneurons (Ambalavanar and Morris 1989; Merchenthaler 1991).  The spinal cords 

were then isolated and post-fixed for 1 hour in Lana’s fixative than cryoprotected in 10% 

sucrose, 0.1M PO3 until sectioned into 10 um thick sections on a cryostat and processed 
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for immunohistochemistry.  All incubations and washes were performed in 0.1M PO3-

buffered saline containing 0.3% triton X-100 (PBS-T).  Tissue was washed overnight in 

PBS-T at 4°C followed by incubation in primary antibody for 48-72 hours.  Slides were 

then washed three times for 30 minutes and incubated in secondary antibody.  The 

following antibodies combinations were used:  

Table 3.1: Antibodies used for immunohistochemistry expression 

Primary Antibody Secondary Antibody Tertiary 
Rabbit anti-tyramine 1:1000 

(Chemicon) Biotin anti-rabbit 1:250 
(Jackson Immunoresearch) 

Extravidin Cy3 
1:1000 
(Sigma) Rabbit anti-TAAR1 1:1000 

(Lifespan Biosciences) 
Rabbit anti-DDC 1:00 

(Biomol Sciences) 

cy3 anti-rabbit 1:250 
(Jackson Immunoresearch) 

  

Rabbit anti-tyramine 1:100 or 1:1000 
(Chemicon) 

Rabbit anti-tryptamine 1:50 
(Chemicon) 

Rabbit anti-octopamine 1:500 
(Chemicon) 

Rabbit anti-TAAR1 1:1000 
(Lifespan Biosciences) 

Rabbit anti-TAAR4 1:5000 
(Novice Biochemicals) 
Sheep anti-DDC 1:100 

(Biomol Sciences) 
FITC anti-sheep 1:100 

(Jackson Immunoresearch) 
Mouse anti-NeuN 1:50 

(Chemicon) 
FITC anti-mouse 1:100 

(Jackson Immunoresearch) 
 

In all experiments, omission controls were used for the primary antibodies. Others 

have provided pre-absorption controls abolishing staining for AADC (Ishida et al. 2002), 

tryptamine (Dabadie et al. 1990), and octopamine (Karhunen et al. 1993), but there is 

only evidence for displaced tyramine binding (Geffard et al. 1984).  Thus, tyramine pre-

absorption controls were performed.  Appropriate antibody concentrations (1:100 and 

1:1000) were absorbed with 1mg of antigen (Cell Sciences) for 1 hour prior to 
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incubation.  This abolished staining for tyramine in 6 of 7 animals.  Images were 

photographed with a Nikon (Tokyo, Japan) digital camera through a Nikon E800 

microscope or using an Olympus FV1000 inverted confocal microscope.  Images were 

processed using Corel Draw (Corel, Ottawa, Ontario, Canada).   

3.3.4 Lipophilic dye labeling 

One week after midthoracic spinalization the P14 rats were anesthetized, and the cords 

were isolated and preserved in 2% paraformaldehyde fixative.  Cords were then 

suspended in agarose gel and labeled with the carbocyanine dye DiI.  Crystals of DiI 

were placed at the cut surface of various ventral funiculus regions.  The dye was allowed 

to diffuse to identify grey matter projections sites.  The cord was then imaged via 

fluorescent microscopy using the Neurolucida.  

3.4 Results 

3.4.1 AADC and the trace amines were widely expressed in adult rodent spinal 

cords  

In situ hybridization (Figure 3.1) and immunohistochemistry (Figure 3.2) carried out 

in adult rat lumbar spinal cord showed that AADC was detected with widespread labeling 

throughout the spinal cord.  AADC expression was most notable around the central canal, 

the ventral funiculus, and in ventral neurons, including motoneurons.  There was some 

nuclear binding for AADC in the motoneurons, which has been previously reported for 

AADC (Mann and Bell 1991).  AADC labeling around the central canal was consistent 

with labeling of D cells as reported previously (Jaeger et al. 1983).  There was also clear  
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Figure 3.1: In situ hybridization reveals AADC expression throughout the spinal gray matter  
Top row. Sense and RNAase treatment confirms specificity of antisense probe.  Lower row provides 
magnification of boxed regions in top panel. Left. Central canal regions with arrow pointing to putative D 
cell. Right. AADC labeling in putative motoneurons at arrows. 
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Figure 3.2: Immunohistochemistry reveals AADC labeling throughout the spinal gray matter 
Intense AADC labeling was found in blood vessels (pink arrows) and in the D cells (yellow arrows). Top 
row at right show a magnification of the ventromedial cord to highlight the vessel labeling, the D cells, and 
the AADC+ labeling in the ventral white matter (arrowheads).  Middle left panel is a further blow-up to 
show the AADC+ cells at the central canal.  Note that some AADC+ neurons were also found in the dorsal 
central canal.  Middle right panel show AADC+ terminal arborizations surrounding motoneurons. Most of 
these arborizations are presumably from descending monoaminergic systems. Note however that 
motoneurons also appear to be weakly AADC+ (arrowheads). Bottom row are the omission controls for 
ventromedial cord (left) and motoneurons (right). 
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AADC immunolabeling surrounding blood vessels (Figure 3.2, top) where AADC 

activity is known to be high (Hardebo et al. 1979; Nagatsu et al. 1988).  It is known that 

the amino acid precursors can be transported across blood vessels into the CNS (Daniel et 

al. 1976); therefore, one possible explanation for the presence of AADC in blood vessels 

is the synthesis of TAs as they cross the blood brain barrier.   

To determine the extent to which AADC labeling was related to expression in 

descending axons fibers, I performed a complete mid-thoracic spinalization of an animal 

at P4, and waited 3 weeks prior to sacrifice.  After spinalization, TH labeling was 

abolished (not shown).  There was a near-complete loss of AADC fiber labeling in the 

spinal cord consistent with most expression arising from descending aminergic systems.  

However, AADC labeling remained in the ventral funiculus, around the central canal, 

including D cells, as well as associated with blood vessels, and in ventral neurons, 

including motoneurons (Figure 3.3B).  Interestingly, even in these cells, AADC labeling 

intensity appeared reduced.  It is noteworthy that, unlike the in situ data, with widespread 

AADC expression, AADC immunolabeling post-spinalization is much more restricted.  

The most obvious explanation for these differences is that intrinsic AADC expression is 

altered by events related to spinalization.  The absence of TH labeling in lumbar cord 

suggests that after spinalization the only amines that can be intrinsically produced in 

these spinal regions are the TAs.  

To confirm the presence of AADC and absence of TH and DBH after spinalization, I 

examined expression profiles created previously in the lab by microarray analysis using 

the mouse U74Av2 Affymetrix gene chip (Cui et al. 2006).  I found that AADC cDNA 

was present in the whole spinal cord and in medial and lateral motor column 
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motoneurons both in control mice and in mice 3 weeks after thoracic spinal cord 

transection, thus confirming the above immunolabeling results.  Also, I found that TH 

and DBH cDNA were absent both in control mice and mice 3 weeks after cord 

transection. Thus, all of the immunolabeling for TH I observed in the control spinal cord, 

and the TH and DBH labeling found by others (MacDermid et al. 2004) is due to 

expression in descending projection systems.   

Next, immunolabeling was undertaken to compare octopamine, tryptamine, and 

tyramine expression in the ventral horn of the adult rat spinal cord (Figure 3.4).  

Octopamine and tryptamine immunolabeling were observed throughout the neuropil of 

the ventral horn, and for both, expression appeared to be in a subpopulation of 

motoneurons.  In comparison, tyramine expression is weak or absent in motoneurons, but 

had unique punctate labeling surrounding motoneurons.  Immunolabeling for PEA was 

not done because there is not a specific antibody commercially available for PEA. 

3.4.2 AADC and the trace amines were widely expressed in neonatal rat spinal 

cords  

Next, immunolabeling studies of AADC and TA expression were conducted in the 

neonatal spinal cord to match the age at which electrophysiological studies were 

undertaken in the subsequent chapters (Figure 3.5 and 3.6).  AADC labeling was similar 

to that found in the adult with widespread labeling.  Labeled spinal neurons were most 

notable adjacent and ventral to the central canal, the ventral funiculus, and in ventral 

neurons, including motoneurons (Figure 3.5A).  As observed in the adult, but more 

strikingly, AADC+ neurons associated with the central canal projected ventrally in a 

stream of cells with subsequent termination of putative axonal projections in the most  
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Figure 3.3: AADC labeling in the adult lumbar spinal cord before and after transection 
A. Labeling of AADC in the ventral spinal cord of the control P25 adult rat. Top. Arrow identifies AADC+ 
tract at the midline of the ventral funiculus white matter.  Boxes identify the central canal and motoneuron 
regions, which are magnified below.  Middle. Epithelial cell layer surrounding central canal (outlined) 
includes AADC+ neurons as well as additional neurons emanating from ventral aspect of canal (e.g. yellow 
arrows).  Some blood vessels also appear to be AADC+ (white arrows). Punctate labeling for AADC is 
associated with axonal arborizations. Bottom. AADC+ labeling surrounding motoneurons (yellow 
arrowheads). B. AADC labeling 3 weeks after midthoracic spinalization in a littermate of A.  Same format 
as in A.  Note that AADC+ puncta were lost while neuronal labeling associates with the epithelial region 
surrounding the central canal and around motoneurons, while white matter labeling in the ventral funiculus 
remain.  Also, note that motoneurons appear to be weakly AADC+.  Again, structures surrounding blood 
vessels also appear to be AADC+.  All images are confocal images taken at optical section thickness of 3.52 
µm, top panel; 0.94 µm, middle and bottom panels. 
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Figure 3.4: Trace amine labeling in the adult rat spinal cord 
A. Octopamine immunolabeling was seen throughout the neuropil of the ventral horn. Interestingly some 
motoneurons appear to be octopamine+ (arrowheads) and other are octopamine- (arrows). B. Like 
octopamine, tryptamine immunolabeling was diffuse and weak in the ventral horn neuropil and a 
subpopulation of motoneurons appear to be tryptamine+ (arrowhead) and others were tryptamine- (arrows). 
C. Tyramine immunolabeling was weak or absent from motoneurons (arrows) but, unlike tryptamine and 
octopamine, tyramine labeling was more punctate and appears to surround motoneurons.  D. Omission of 
primary antibody to show background labeling generated with the fluorescent antibody used to label the 
TAs.    
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Figure 3.5: Distribution of AADC and tyramine in the neonatal spinal cord 
A. Left. Low power of AADC immunolabeling in spinal cord.  Superimposed on this section is an outline 
of the spinal cord (black) with interior white lines approximately demarcating dorsal and ventral gray 
matter and central canal region.  Note that strongest labeling was associated with D cells intermingled with 
epithelial cells surrounding the central canal (top arrow).  Also, note the associated vertical row of cellular 
labeling projecting ventrally, and bilateral white matter labeling in the ventral funiculus (bottom arrow). 
There was also weak AADC immunolabeling in putative motoneurons (in lamina IX below dotted lines).  
Right.  Three panels showing higher power images from separate sections illustrating the diversity of 
AADC labeling in the ventral medial grey matter region.  Epithelial cell layer surrounding central canal is 
outlined.  Common to all was the vertical stream of projections with intermingled cells ventral to the 
central canal. These appear to end in a white matter tract in the ventral funiculus (arrowheads).  B. 
Tyramine immunolabeling in motoneurons retrogradely labeled with Fluorogold.  The day before sacrifice 
the rat pup was injected i.p. with fluorogold to retrogradely label the motoneurons.  C. Tyramine labeling 
was found in a subset of neurons primarily in the ventral half of the cord.  The central region (1) and 
laminae V-IX (2) are shown magnified.  Note the tyramine labeled cells intermingled with epithelial cells 
lining the central canal in middle panel (arrows) and labeled neurons in the central gray matter (arrows) and 
in putative motoneurons (circled region) in the right panel. 
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Figure 3.6: Co-expression of tyramine and AADC in neuron subpopulations of the neonatal rat 
lumbar spinal cord 

A. AADC and tyramine immunolabeling in putative motoneurons. While AADC produces more uniform 
cytoplasmic labeling (left) tyramine labeling includes larger puncta, which were not co-labeled in merged 
image at right.  B. AADC and tyramine labeling in D cells associated with the central canal (yellow arrows; 
left panels for each pair)  and its ventral cellular projection stream appearing to terminate at a midline tract 
in the ventral funiculus (right panels in each pair).  White arrows identify ventral funiculus.  Note D cells, 
ventral midline cells and ventral funiculus are co-labeled.  All images in A and B are high power confocal 
images with an optical section of 0.4 µm.  C. Evidence for tryptamine and octopamine co-expression with 
AADC.  Images were obtained from 10 µm sections.  Confocal microscopy was not used for this panel. 
Scale bar; 20 µm in A and B, 50 µm in C. 
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medial portion of the ventral funiculus (Figure 3.5A, right).  In addition, AADC+ 

neurons were found often in the lateral regions near the central canal as well as in the 

dorsal horn, although more rarely.   

Tyramine immunolabeling was characterized by enormous variability between 

different animals, but with consistent motoneuronal labeling.  The identity of 

motoneurons was confirmed by prior retrograde labeling of motoneurons (Figure 3.5B).  

The most common pattern seen across animals was a widespread diffuse labeling.  This is 

consistent with the widespread distribution of the TA synthesis enzyme AADC.  In a 

subset of animals tested, tyramine preferentially labeled ventral horn interneurons.  

Figure 3.5C shows tyramine expression in an animal with particularly extensive 

interneuronal labeling in the ventral horn.  Widespread labeling was also seen for 

tryptamine and octopamine.  I presume that the variability in different animals reflects the 

exquisite sensitivity of the TAs to shifts in network activity, substrate availability, 

transport efficacy, synthesis, and degradation.   

While there was clear co-labeling of AADC and tyramine in spinal motoneurons, the 

co-labeling revealed differences; tyramine labeling also included larger puncta (Figure 

3.6A). While not shown, comparable punctate labeling was also seen for octopamine and 

tryptamine.  Tyramine, tryptamine, and octopamine were co-expressed with AADC in 

central canal D cells, in the ventral stream of cells at the midline, and in the ventral 

funiculus (Figure 3.6B and C).  These results are consistent with the notion that D cells 

and related midline neurons are tyraminergic and tryptaminergic.  With no DBH found in 

spinal cord neurons, octopamine should not be produced in the spinal cord yet significant 

labeling was observed.  As octopamine can be co-released with NA (Saavedra 1989) and 
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subsequently taken up into neurons, this may account for the observed expression. 

Additionally or alternately, a recently identified enzyme, monooxygenase, DBH-like 

1(Moxd1) may be converting tyramine to octopamine in spinal neurons. 

As mentioned above for tyramine, there was enormous variability for expression of all 

three TAs examine; the D cell and other midline neurons were not always clearly 

immunopositive for all the TAs.   

3.4.3 Central canal cells project to the ventral funiculus 

To determine whether cells at the central canal could have axonal projections to the 

ventral funiculus, DiI crystals were applied to various ventral funicular regions in the 

fixed lumbar spinal cords of a P14 rat one week after thoracic spinalization.  When dye 

placement contacted the midline tract, central canal-associated cells were retrogradely 

labeled, confirming that cells consistent with the location of D cells can project to the 

ventral funicular white matter tract (Figure 3.7), as expected based on the AADC 

labeling. 

3.4.4 The trace amines were transported into neurons 

To test whether the TAs are selectively taken up by neurons, isolated spinal cords 

were preincubated in the TAs in animals injected with Fluorogold the day before to 

retrogradely label motoneurons (Merchenthaler 1991).  Immunostaining showed that 

Fluorogold labeled motoneurons were TA+ (Figure 3.8).  Further, tyramine, tryptamine, 

and octopamine uptake appears to be selective to neurons, not glia as staining for the 

neuron specific marker, NeuN, and the TAs showed that virtually all ventral spinal cord 

neurons were labeled (Figure 3.8).  The selectivity to neurons argues against global non-  
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Figure 3.7: Central canal cells project to the ventral funiculus 
DiI crystals were placed on fixed lumbar spinal cords at the medial ventral funiculus or just lateral to it and 
allowed to diffuse to identify grey matter projections sites.  A. When dye placement contacts the midline 
tract, neurons associated with the central canal were retrogradely labeled.  P14 rat 1 week after with a 
midthoracic spinalization.  B. Neurons in the central canal were not labeled.  Sections are 70 µm in A and 
30 µm in B. 
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Figure 3.8: Trace amine labeling appears to preferentially label neurons 
The isolated spinal cords of P2 rat were pre-incubated in TAs for 2 hours. The day before the treatments, 
the rat pups were injected with Fluorogold to retrogradely label motoneurons (top row).  Row 2 shows 
immunostaining for tyramine (left), tryptamine (middle), and octopamine (right).  Row 3 provides 
immunostaning for the neuron-specific marker, NeuN.  Row 4 is a merge of the trace amine with NeuN to 
show that the TAs were observed in many neurons, including motoneurons.   
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Figure 3.9: TAAR1 and TAAR4 receptors are expressed in the ventral horn 
A.TAAR1 mRNA expression in spinal neurons.  In situ hybridization reveals TAAR1 labeling throughout 
the P2 rat spinal cord (compare sense to antisense).  Particularly notable was the  labeling found in the 
ventral horn, including motoneurons (arrows).  B. TAAR1  receptor immunolabeling was found in many 
spinal neurons in the gray matter of the ventral horn, with particularly strong labeling in motoneurons 
(region expanded in middle panel).  There was apparent labeling of cells surrounding the central canal (see 
asterisks in region expanded in right panel).  Note also the punctate labeling that extends as a thread 
adjacent to epithelial cells with expansion in central canal interior.  C. TAAR4  receptor immunolabeling 
was also found in many spinal neurons in the gray matter ventral horn, including strong labeling in 
motoneurons (region expanded in middle panel).  TAAR4 receptors appears to localize in cells ventral to 
the central canal.  Scale bar: 100 µm, left panels; 25 µm, middle and right panels.  All images in A and B 
are confocal images taken at optical section thickness of 1.14 µm, left panels; 0.30 µm, middle and right 
panels. 
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selective uptake via passive diffusion.  Moreover, this suggests that spinal cord neurons 

are sensitive to extracellular TA levels. 

3.4.5 Trace amine-associated receptors 1 and 4 were widely expressed in the spinal 

cord  

In situ hybridization for TAAR1 in the neonate demonstrated widespread, albeit weak, 

labeling throughout the spinal cord including motoneurons (Figure 3.9A). In P1 neonatal 

rat spinal cord, immunolabeling for both TAAR1 and TAAR4 was found throughout the 

spinal cord, especially in motoneurons (Figure 3.9B and C).  Cells around the central 

canal were also TAAR1 and TAAR4 immunopositive.  Labeling in all neurons appear 

cytoplasmic.  The cytoplasmic location of the ligand and the receptor (e.g. tyramine and 

TAAR1) supports intracellular activation of signal transduction pathways, as suggested 

previously.  The presence of TAAR1 and TAAR4 provides potential binding sites for the 

TAs to have independent actions in the spinal cord.   

3.5 Discussion 

I showed that an anatomical substrate exists for the TAs, a little studied but pervasive 

class of neuroactive molecules, to be produced and have actions in the spinal cord.  The 

synthesis enzyme, AADC, which is required for production of all of the TAs, was found 

throughout the spinal cord, but especially around the central canal, ventral funiculus, and 

in ventral neurons, including motoneurons.  Tyramine, tryptamine, and octopamine were 

also found in similar locations in the spinal cord.  It seems highly likely that tyramine, 

tryptamine, and PEA (which was not examined due to a lack of a specific antibody) are 

produced in the spinal cord by AADC.  AADC expression was still present after 
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spinalization, but TH labeling was absent, suggesting that after spinalization tyramine, 

tryptamine, and PEA can be intrinsically produced in the spinal cord.   

Octopamine further requires DBH, which is located only in descending neurons, 

implying that octopamine is only produced in descending noradrenergic neurons. 

However as stated above, another enzyme, Moxd1 has comparable function (Chambers et 

al. 1998; Xin et al. 2004) and could also theoretically convert tyramine to octopamine.  

Moxd1is strongly expressed in the mouse spinal cord including in presumed motoneurons 

and around the central canal (Appendix A.1) (Allen_Spinal_Cord_Atlas 2009).  Further 

studies will be required to determine if Moxd1 does in fact produce octopamine, and 

hence, if octopamine is also intrinsically produced in the spinal cord.  Further, as 

indicated in our studies and in those of others, the lack of both TH and DBH in the spinal 

cord indicates that the monoamines are not produced in the spinal cord neurons, but are 

made in terminal of descending neurons.  Figure 3.10 shows the possible locations of 

production of the TAs and monoamines.   

Since the TAs appear to be transported into neurons (explored in more detail later), 

this would explain how the TAs, including octopamine, could be found in neurons 

besides those where it could be produced.  The presence of the TAs into neurons is a 

mechanism by which they can be having actions on the intracellularly located TAARs.  

TAAR1 and TAAR4 also have widespread expression in the spinal cord and are activated 

by the TAs: TAAR1 by tyramine and PEA, and TAAR 4 by tryptamine and PEA 

(Borowsky et al. 2001).  That the TAs have a family of receptor to which they 

preferentially bind, suggests that they can produce effects on their own independent of  
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Figure 3.10: Summary of the locations that the trace amine and monoamines can be produced 
The TAs, tyramine, tryptamine, and PEA, are likely produced in the spinal cord.  AADC, the only enzyme 
required for their production, was found with widespread labeling throughout the spinal cord in neurons 
and axons that are labeled above in the spinal cord cross section.  Labeling of tyramine and tryptamine 
supports widespread production of the TAs.  DBH one of the required enzymes for octopamine is not found 
in the spinal cord; however, another enzyme Moxd1 that may also produce octopamine is found in the 
spinal cord.  Therefore, it is currently unknown whether octopamine can be produced in the spinal cord.  
The enzymes necessary for production of both the monoamines and TAs are found in descending neurons.   
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the monoamines and their receptors, thus giving an anatomical substrate for the TAs to 

have independent intrinsic biological actions.   

3.5.1 AADC and trace amines are widely expressed in the spinal cord   

Previously, many neuronal populations were observed to be AADC+ that did not 

express 5-HT or TH (cannot synthesize DA, NA, or adrenaline).  They were called D 

cells (Jaeger et al. 1984a; Jaeger et al. 1983).  One of the 14 identified groups was located 

in the spinal cord and called D1 cells (Jaeger et al. 1984a).  D1 cells project at least one 

of their processes into the lumen of the central canal, which makes them part of a group 

of cerebrospinal fluid (CSF)-contacting neurons (Jaeger et al. 1983; Vigh et al. 2004).  

No neurotransmitter was identified for these neurons, and nothing is known about their 

function.  It has been speculated that D cells could produce the TAs (Berry 2004; Jaeger 

et al. 1983).   

Here, AADC was expressed in spinal cord of adult and neonatal rat.  Labeling was 

widespread but relatively weak in most cells.  However, the cells surrounding the central 

canal, a ventral stream from this region, and blood vessels appeared strongly AADC+.  

Labeling of cells around the central canal is consistent with the previous identification of 

D1 cells  (Jaeger et al. 1983).  The additional AADC+ neurons that were identified 

confirms that there are other spinal neurons that have yet to be examined and classified in 

the vicinity (Nagatsu et al. 1988).  Motoneurons and other cells were more weakly 

labeled.  Neither the in situ hybridization nor immunodetection of AADC have been 

previously reported in rat spinal motoneurons.   However, the in situ hybridization 

performed by the Allen Mouse Spinal Cord Database confirms widespread neuronal 



 78

labeling in both adult and neonatal mouse spinal cord.  Labeling around the central canal 

and in motoneurons was notable (Appendix Figure A.1). 

The AADC+ D cells found near the central canal, as mentioned above, were CSF-

contacting neurons.  While the function of these D cells is still unknown, there are CSF-

contacting neurons positioned very similarly in the zerbrafish larva.  These neurons can 

initiate slow swimming by optogenetic stimulation, their genetic silencing reduces the 

frequency of spontaneous locomotion, and they provide the necessary tone for 

spontaneous forward swimming (Wyart et al. 2009).  Based on the similarity in location, 

it seems plausible that the D cells may be contributing to the frequency and tone of 

locomotion in the rat, but further studies will be needed to determine this conclusively. 

It is noteworthy that while the in situ hybridization labeling shows widespread AADC 

expression in a normal animal, AADC immunolabeling post-spinalization was much 

more restricted after the degradation of descending monoaminergic terminals.  The most 

obvious explanation for these differences is that intrinsic AADC expression was altered 

by events related to spinalization.  AADC can be regulated at both the level of protein 

activity and gene expression with long term regulation being due to changes in gene 

expression.  It has been shown that there is an excellent correlation between mRNA level 

and AADC activity (Coge et al. 1990).   

The most consistent observation common among all TAs tested was the central cell, 

midline, and motoneuronal labeling.  These locations were consistent with the locations 

of AADC.  The apparent specificity of tyramine to a population of ventral horn 

interneurons was seen in only a small number of animals tested.  I presume the variability 

reflects the exquisite sensitivity of the TAs to shifts in network activity, substrate 
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availability, transport efficacy, synthesis, and degradation.  Also, there were differences 

in motoneuron expression of the TAs compared with the adult, suggesting that there were 

developmental differences. This is not surprising given that AADC expression changes 

from embryonic to adult rats (Teitelman et al. 1983).  For example, somatic 

motoneuronal tyramine immunolabeling is found in neonate but appears absent in the 

adult and replaced instead by apparent pericellular labeling. The explanation for this 

difference in expression pattern is currently unknown.  

TA incubation studies showed that tyramine, tryptamine, and octopamine were 

transported specifically into neurons and not glia, arguing against global uptake via 

passive diffusion.  Many transporters are bi-directional, meaning that the TAs are likely 

both taken up and released from neurons via transporters.  Once in neurons, the TAs 

would be available to activate TAARs, which I showed to be intracellular.  Also, since 

the TAs are produced in neurons, like motoneurons, they could be acting in the neurons 

in which they were made, in addition to being transported out of these neuron and acting 

at nearby neurons. A more detailed discussion of transport mechanisms is provided in 

Chapter 4. 

3.5.2 Trace amine-associated receptors 1 and 4 were widely expressed in the spinal 

cord  

TAAR1 and TAAR4 both had widespread expression in the spinal cord.  Of particular 

relevance was that TAAR expression overlapped with the expression of AADC and TAs.  

Thus, mechanisms for TA synthesis and actions are anatomically coincident, providing a 

substrate by which TAs can produce effects on their own. As has been observed before 

for TAAR1 in HEK cells (Bunzow et al. 2001; Miller et al. 2005), I observed cytoplasmic 
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labeling for TAAR1 and TAAR4, both of which are activated by the TAs.  Tyramine and 

PEA activate TAAR1, while PEA and tryptamine activate TAAR4 (Borowsky et al. 

2001).  The cytoplasmic location of the ligand and the receptor (e.g. tyramine and 

TAAR1) supports intracellular activation of signal transduction pathways, as suggested 

previously (Miller et al. 2005).  Such a co-localization would not require release from 

vesicles and could explain why the TAs do not appear to be found in vesicles.  It could 

also explain the relatively trace amounts of TAs found in the spinal cord.  If the 

production of the TAs was typically by or adjacent to the cells that had cytoplasmic 

TAARs, there would be no need to keep the concentration high.   

Since access to the TAARs is limited by the presence of transporters (Xie et al. 2007), 

this would explain the observed low potency of the TAs for TAAR4 expressed in HEK 

cells (Borowsky et al. 2001).  Further, the intracellular location may also explain why 

studies to identify the ligands for other TAARs have failed despite the prediction that the 

ligands must be small molecular weight compounds that are structurally similar to the 

TAs (Lindemann et al. 2005; Lindemann and Hoener 2005).  The assays assume cell 

surface expression of the receptor.  

Previously, In situ hybridization, RT-PCR and LacZ reporter expression studies all 

observed labeled TAAR1 in the brain (Borowsky et al. 2001; Bunzow et al. 2001; 

Lindemann et al. 2008) with one report also examining spinal cord (Borowsky et al. 

2001).  Additionally, immunohistochemistry for TAAR1 in rhesus monkey observed 

labeling in substantia nigra, thalamus, and cerebellum, as well as in mouse brain (Torres 

et al. 2003).  On the other hand, Liberles and Buck (2006) could not detect any TAARs in 

mouse brain with RT-PCR (Liberles and Buck 2006) and the Allen Mouse Spinal Cord 
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Database in situ hybridization expression studies report the TAARs to be absent in both 

P4 and P56 with similarly little to no expression in brain (Appendix Figure A.3)  

(Allen_Spinal_Cord_Atlas 2009).  Here, I present evidence that TAAR1 and TAAR4 are 

expressed in the neonatal rat spinal cord (Figure 3.9), most notably with labeling in 

motoneurons.  Furthermore, close inspection of the Allen Mouse Spinal Cord Database 

shows clear weak diffuse labeling for both TAAR1 and TAAR4 in both P4 and P45, 

including in putative motoneurons (Appendix Figure A.4A). I assume their designation 

‘absent’ is based on conservative threshold detection.    

Wolinsky et al (2007) provided the first conclusive evidence for a role of TAAR1 in 

CNS function by demonstrating behavioral changes in TAAR1 knockout mice.  There, 

the TAAR1 receptor agonist amphetamine, in the absence of its action on TAAR1, 

showed an enhanced psychomotor-stimulating effect, temporally correlated with larger 

increases in striatal DA and NA release, and 2.6 fold increase in the proportion of striatal 

high-affinity D2 receptors.  TAAR1 therefore appears to play a depressant modulatory 

role in brain catecholaminergic function (Wolinsky et al. 2007).  Lindemann et al (2008) 

also studied TAAR1 knockout mice and corroborated several of the above findings.  

They also found that these mice display enhanced amphetamine-triggered increases in 

locomotor activity and an elevated spontaneous firing rate of dopaminergic neurons in the 

ventral tegmental area.  Tyramine specifically decreased the spike frequency of these 

neurons in wild-type but not in TAAR1 knockout mice (Lindemann et al. 2008).  It is 

important to note that the locomotor-enhancing actions of TAAR1knockout mice is 

associated with modulation of basal ganglia dopaminergic neurons. Here, in the isolated 

spinal cord it is possible that the effects would be different, and based on our 
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electrophysiologiy studies described below, I would predict that TAAR1 knockout would 

depress spinal locomotion. Xie and Miller (2008) also examined TAAR1 knockout mice.  

PEA significantly inhibited uptake and induced efflux of DA, NA, and 5-HT in 

transfected cells and brain synaptosome of rhesus monkeys and wild-type mice, but not in 

synaptosomes of TAAR1 knockout mice.  The PEA effect was blocked by transporter 

inhibitors demonstrating that TAAR1 signaling is required for PEA to alter monoamine 

transporter function. They also showed these effects to be independent of monoamine 

autoreceptors (Xie and Miller 2008).  As TAAR1 receptor knockout mice have shown 

clear modifications in CNS behavior, these receptors seem to play a functional role in the 

nervous system (Sotnikova et al. 2009; Wolinsky et al. 2007).   

3.5.3 Summary 

This chapter establishes an anatomical substrate onto which the TAs could be having 

intrinsic spinal cord biological actions.  AADC, the TAs, and TAARs were found to be 

widely present in the spinal cord and in neurons with similar locations.  Since the TAARs 

are intracellular there are two likely mechanisms by which the TAs could have effects in 

spinal neurons.  The first would be paracrine signaling of nearby neurons with the TAs 

using transporters to enter the cell, and the second would be that the TAs, with the 

possible exception of octopamine, were acting in autocrine fashion in the neurons in 

which they are produced. 
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CHAPTER 4  

NEUROMODULATORY ACTIONS OF TRYPTAMINE, 
TYRAMINE, OCTOPAMINE, AND Β-PHENYLETHYLAMINE ON 
MOTOR AND LOCOMOTOR ACTIVITY IN THE MAMMALIAN 

SPINAL CORD  

4.1 Abstract 

An anatomical substrate for trace amine (TA) effects in the spinal cord was 

demonstrated.  Here, I tested whether the TAs were able to have effects on motor activity 

by comparing the actions of the TAs to those of the classical monoamine transmitters in 

the in vitro isolated neonatal rat spinal cord.  Tyramine and tryptamine most consistently 

increased motor activity, including by direct actions on motoneurons.  When applied 

alone tyramine, tryptamine, and octopamine could also activate spinal pattern-generating 

circuits.  In the presence of NMDA, all TAs produced a locomotor-like activity 

indistinguishable from that observed with serotonin (5-HT), supporting TA-induced 

actions on conventional locomotor central pattern generating interneurons. Intriguingly, 

the TAs also produced unique rhythms characterized by episodic bouts of rhythmic 

bursting. In vivo injections of the TAs into previously spinalized animals also activated 

hindlimb locomotor patterns consistent with bath application thereby supporting a role of 

the TAs independent of descending monoaminergic systems.   

TA and DA evoked actions were observed to be initiated at much longer latency than 

5-HT or NA, supporting a requirement for intracellular transport.  To test whether TA 

and DA transport into neurons was required for their effects, I blocked Na+-dependent 

uptake with monoamine transport inhibiters.  TA and dopamine-induced bursting events 
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were attenuated but not blocked while 5-HT and noradrenaline actions were unaffected. 

Evidence of a further contribution from Na+-independent transporters was shown with 

increased neuronal labeling after incubation of the spinal cord with TAs in a nominally 

Na+-free solution.  As multiple Na+-independent transporters that transport the TAs are 

shown to be widely expressed in the spinal cord, an intrinsic spinal neuronal transport 

system likely exists that is independent of transport-mediated action at descending 

monoaminergic.   

These results demonstrate that the TAs are capable of producing complex and 

differentiable modulatory actions on motor function. It is likely that distinct actions of the 

TAs are complex and based on interactions with transporters, synthesis and metabolic 

enzymes, and receptors found heterogeneously in the spinal cord.  Overall, I assert that 

the TAs represent an intrinsic modulatory control system that works with the 

conventional monoamines to control spinal motor behavior. 

4.2 Introduction 

The classical monoamine neurotransmitters, dopamine (DA), noradrenaline (NA), and 

serotonin (5-HT), modulate spinal cord sensory and motor function (Clarac et al. 2004; 

Hochman et al. 2001; Jacobs and Fornal 1993; Millan 2002; Rekling et al. 2000; Schmidt 

and Jordan 2000).  They have structural, metabolic, physiologic, and pharmacologic 

similarities to another group of endogenous amines called trace amines (TAs) (Saavedra 

1989), whose function is unknown.  The TAs, tryptamine, tyramine, octopamine, and β-

phenylethylamine (PEA), are synthesized from the same precursor amino acids by the 

enzyme aromatic-L-amino acid decarboxylase (AADC) with octopamine (like NA) 

further requiring dopamine β-hydroxylase (DBH).  Conversion from the TAs to the 
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monoamines does not appear to occur (Berry 2007).  Degradation is primarily via 

monoamine oxidases (Shimazu and Miklya 2004).  TA synthesis rates are comparable to 

the classical monoamines, but their exceedingly rapid turnover rates (half-life ~ 30 s) and 

limited vesicular storage results in low endogenous levels (Boulton et al. 1977; Durden 

and Philips 1980; Dyck 1989; Juorio et al. 1988; Wu and Boulton 1973; 1974; 1975).   

The discovery of the trace amine-associated receptors (TAARs) establishes a 

mechanism by which the TAs can produce effects on their own (Borowsky et al. 2001; 

Bunzow et al. 2001; Hauger et al. 1982; Kellar and Cascio 1982; Lindemann and Hoener 

2005; Nguyen and Juorio 1989; Vaccari 1986; van Nguyen et al. 1989) rather than 

function as metabolic-by-products or false transmitters as the TAs have traditionally been 

viewed (Berry 2004; Boulton 1976; Grandy 2007; Kopin et al. 1965).   

In the previous chapter, I established that AADC, the TAs, TAAR1, and TAAR4 were 

found in the spinal cord, and hence provide and anatomical substrate by which the TAs 

can have their own actions.  I also found that the TAs were able to be transported into 

neurons, and that the TAARs were found intracellularly.  Consistent with the TAARs 

being intracellular, activation of TAAR1 by the TAs was shown to be greatly enhanced 

after co-expression of monoamine transporters in HEK cells, an enhancement that is 

subsequently reduced by monoamine transport inhibitors (Xie et al. 2007).  

I hypothesized that TA affect spinal motor networks and can produce rhythmic motor 

behaviors.  To test this hypothesis, I used the isolated intact neonatal rat spinal cord 

maintained in vitro. The spinal cord contains neural circuitry capable of generating 

locomotion, and its properties have been thoroughly studied in this model system in 

rodents.  Fundamental insights into the neuromodulatory role of the classical 
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monoamines have been gained through the use of this model system, which makes in 

appropriate for studying the TAs (Hochman et al. 2001; Schmidt and Jordan 2000; Wallis 

1994; Whelan 2003).  I show that the TAs can produce rhythmic motor behaviors and 

have distinct actions.  Some of these results have been presented in abstract form 

(Gieseker et al. 2004; Gozal et al. 2007a; Gozal et al. 2010; Gozal et al. 2006). 

4.3 Methods 

All experimental procedures complied with the NIH guidelines for animal care and the 

Emory Institutional Animal Care and Use Committee.   

4.3.1 Electrophysiology  

4.3.1.1 General setup 

Sprague-Dawley rats postnatal (P) day 0-5 were decapitated, eviscerated, and placed 

in a bath containing oxygenated (95% O2, 5% CO2) artificial cerebral spinal fluid (aCSF) 

containing the following (in mM): 128 NaCl, 1.9 KCl, 1.2 KH2P04, 26 NaHCO3, 2.4 

CaCl2, 1.3 MgSO4, and 10 glucose (pH of 7.4).  The spinal cord was exposed by a ventral 

vertebrectomy and carefully dissected out of the body cavity leaving the dorsal and 

ventral roots attached.  The spinal cord was secured with insect pins to a chamber with 

Sylgard (Dow) on the bottom.  Glass suction electrodes were applied to dorsal and/or 

ventral roots, after which the preparation was allowed to recover for at least 1 hour before 

experimentation at room temperature.  The ventral root electroneurographic activity was 

amplified (10,000x), band-pass filtered at 10-3,000 Hz and digitized at 5 kHz (Digidata 

1321A, 16-bit; Axon Instruments). Band-pass filter frequency settings were selected with 

consideration to observed frequency components with the low-pass filter set ant mush 
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greater than the Nyqist frequency. Data was captured on a computer with the pCLAMP 

acquisition software (v8-9, Molecular Devices; Union City, CA).    Electrophysiological 

data analysis was performed using pCLAMP analysis software (Clampfit) or software 

written in-house using MATLAB.  Statistical comparisons were made in MATLAB using 

ANOVA or Student’s t-test.  The means is reported as mean ± SD. 

4.3.1.2 Motor activity and motor patterning experiments 

Motor activity was monitored using glass suction electrodes attached to ventral lumbar 

roots, typically bilaterally to L2 and L5.  L2 ventral root activity primarily indicates 

activity in flexors, while L5 ventral root activity primarily indicates activity in extensors 

(Kiehn and Kjaerulff 1998).   

4.3.1.2.1 General motor activity 

General motor activity was examined by first applying a RC high-pass filter at 1Hz to 

reduce drift and then calculating the root mean square (RMS) of a representative ventral 

root signal and comparing 100 second periods before application of these TAs and 

monoamines and during their period of maximal response.  Changes were expressed as a 

percent increase over baseline. 

4.3.1.2.2 Locomotor-like activity 

Locomotor-like activity was analyzed using the in-house MATLAB software, 

SpinalMOD, which calculated the frequency, peak amplitude, and phase, which was 

calculated using the middle of the burst (Matsushima and Grillner 1992). I wrote 

SpinalMOD, and it is discussed in chapter 2. 

4.3.1.2.3 Neurochemicals 
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Neurochemicals, which were stored in 10mM or 100mM stock solutions at -20°C, 

were added to the bath (typically 30mL) to achieve the final concentration in the 

chamber.  Neurochemicals were obtained from Sigma-Aldrich (St. Louis, MO), including 

N-methyl-D-aspartate (NMDA) (3-5 µM) and methysergide (5-HT1, 5-HT2, 5-HT7 and 

tryptamine binding site antagonist; 1-10 µM).   

The following monoamines were used: 5-HT (50 µM), noradrenaline (50 µM), and 

dopamine (50 µM). Drug concentrations were chosen at values comparable to those 

previously used. The following TAs were used: tryptamine (50 µM), tyramine (1-100 

µM), octopamine (50-100 µM), PEA (50-100 µM). TA doses were chosen to match those 

of the monoamines under the assumption that they have equivalent transporter uptake and 

degradation following exogenous application. Due to the efficiency of the monoamine 

transporters, it has been estimated that the actual dose is 1/30th that applied (David 

Bennett, personal communication).  

4.3.1.3 Reflex experiments 

To evoke the reflexes, constant current stimuli were applied to the dorsal roots while 

motor activity was recorded from ventral lumbar roots, typically L5.  Stimulus intensities 

were 500 µA and durations ranging from 100 to 500 µs.  For experiments examining 

motoneuron activity in the absence of synaptic transmission, reflexes were abolished after 

switching from regular aCSF to with high Mg2+, low Ca2+ aCSF or zero Ca2+ aCSF.   

4.3.1.4 Transport inhibitors 

First, either the TAs or monoamines were applied with NMDA to induce motor 

rhythmicity.  The bath was then washed, and a cocktail of transport inhibitors was 

applied.  Finally, the TAs and monoamines were re-applied with NMDA in the transport 
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inhibitors and compared. The following monoamine uptake transport blockers were used: 

citalopram (SERT inhibitor, 1 µM), bupropion (DAT inhibitor, 1 µM), and clomipramine 

(SERT and NET inhibitor, 5 µM). 

4.3.2 Behavioral studies in transected neonates 

Rodents were anesthetized with isoflurane via inhalation.  Following dorsal 

laminectomy to expose lower-thoracic segments of the cord, one section of the cord 

between T8-T12 was removed using surgical microdissection scissors.  Gel foam was 

placed in the site of transection to maintain the gap between rostral and caudal cord 

before being closed up.   

Rats were spinalized at P2-3 and behavioral experiments were conducted at either P4-

5 to complement the in vitro work or at P11-12 to allow a longer time from transection to 

allow sufficient time for degeneration of descending monoaminergic axonal terminals 

(Commissiong and Toffano 1989).  The spinal cord-transected rats were intraperitoneal 

(i.p.) injected with TAs at 50 mg/kg (or saline control) and videotaped.  .  The rhythmic 

locomotor hindlimb movements were observed with the rats either held in a harness to 

monitor air-stepping or in a half-body chamber with hindlimbs resting on a moving 

treadmill belt.  The half-body chamber was an adjustable horizontal apparatus where the 

neonatal rats voluntarily crawl into a size-limited and depth-adjustable tube with their 

hindlimbs suspended, similar to the harness, except that the rats were more supported, 

less stressed, and in a more physiologic relevant postural position.  The results for the 

harness and half-body chamber were considered equivalent regarding the ability to 

monitor leg movements and were grouped together.  A rough frequency of leg 



 90

movements was calculated by counting leg movements over a period of time and dividing 

the leg movements by the time. 

4.3.3 Immunohistochemistry 

The spinal cord was isolated from rats who had been i.p. injected with Fluorogold 24 

hours prior to sacrifice to retrogradely label most spinal motoneurons (Ambalavanar and 

Morris 1989) (Merchenthaler 1991).  A set of incubation experiments was done to 

examine whether exogenously applied TAs could increase cytoplasmic expression levels 

in spinal neurons, and whether uptake was NA+-dependent.  Isolated cords were 

incubated in one of three different treatments for 2 hours: (1) control regular aCSF, (2) 

the TAs, octopamine, tyramine, and tryptamine (all at 100 µM), in regular aCSF, and (3) 

the TAs (all at 100 µM) in zero Na+ (replaced with equimolar choline).   

The spinal cords were then post-fixed for 1 hour in Lana’s fixative than cryoprotected 

in 10% sucrose, 0.1M PO3 until sectioned into 10 um thick sections on a cryostat and 

processed for immunohistochemistry.  All incubations and washes were performed in 

0.1M PO3-buffered saline containing 0.3% triton X-100 (PBS-T).  Tissue was washed 

overnight in PBS-T at 4°C followed by incubation in primary antibody for 48-72 hours.  

Slides were then washed three times for 30 minutes and incubated in secondary antibody.  

The following antibodies combinations were used:  

Table 4.1: Antibodies used for immunohistochemistry expression 

Primary Antibody Secondary Antibody 
Rabbit anti-tyramine 1:100 or 1:1000 

(Chemicon) 
cy3 anti-rabbit 

(Jackson Immunoresearch) 
Rabbit anti-tryptamine 1:50 

 (Chemicon) 
Rabbit anti-octopamine 1:500 

 (Chemicon) 
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In all experiments, omission controls for the primary antibodies were used. Others 

have provided pre-absorption controls abolishing staining for tryptamine (Dabadie et al. 

1990) and octopamine (Karhunen et al. 1993), but there is only evidence for displaced 

tyramine binding (Geffard et al. 1984). Thus, tyramine pre-absorption controls were 

performed. Appropriate antibody concentrations (1:100 and 1:1000) were absorbed with 

1 mg of antigen (Cell Sciences) for 1 hour prior to incubation.  This abolished staining 

for tyramine in 6 of 7 animals.  Images were photographed with a Nikon (Tokyo, Japan) 

digital camera through a Nikon E800 microscope or using an Olympus FV1000 inverted 

confocal microscope.  Images were processed using Corel Draw (Corel, Ottawa, Ontario, 

Canada).   

4.4 Results 

4.4.1 Trace amines can induce motor activity and rhythmic locomotor bursting 

patterns 

To examine whether the TAs have actions on the recruitment of motoneurons while 

synaptic transmission was intact, the motor output before and after application of the TAs 

and monoamines were compared).  As shown in Figure 4.1A and C, the increases in 

activity were overt and significant for 5-HT and NA, where the increases in activity were 

279% (n=11) and 253% (n=14), respectively.  DA, tyramine, and tryptamine, also 

significantly increased activity by 50% (n=14), 67% (n=10), and 80% (n=18), 

respectively.  Octopamine and PEA did not have significant actions on motor activity 

(26±50% [n=9] and -3±5% [n=7], respectively).   

In a subset of experiments, monoamine application initiated rhythmic motor activity.  

5-HT (n=4), NA (n=8), and DA (n=1) produce rhythmic motor activity similar to that  
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Figure 4.1: Trace amines increased motor activity and induced rhythmic motor bursting patterns 
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Figure 4.1: continued 
A. All TAs and monoamines were able to significantly increase lumbar ventral root activity, except 
octopamine and PEA.  B1. Dorsal root stimulation evoked reflexes (left) were abolished when synaptic 
transmission was blocked in low Ca2+, high Mg2+ ACSF (right). B2.  Under these conditions, direct 
excitatory actions were still observed.  C. The changes in ventral root activity were quantified with and 
without synaptic transmission for the TAs and monoamines. (* indicates p<0.05 and ** indicates p<0.01).  
D. Dopamine produced high frequency bursting overlaid by a slow frequency bursting, typically on only 
one ventral root.  E. Tryptamine, tyramine, and octopamine occasionally induced rhythmic motor bursting 
patterns. Here, tryptamine and tyramine produced synchronous bursts on the L5 ventral roots and 
alternating bursts on the L2 ventral roots.  Octopamine generated alternating bursts on the L2 ventral roots.  
Drug concentrations in the figure were 50 µM for tyramine, octopamine, tryptamine, dopamine, and 
noradrenaline, and 100 µM for PEA, except in E2 were the concentration was 10 µM for tyramine.  The 
ventral roots are denoted as right lumbar segment 2 (r-L2), left lumbar segment 2 (l-L2), left lumbar 
segment 5 (l-L5), and right lumbar segment 5 (r-L5). In D, E, and subsequent figures, the upper traces in 
black at each lumbar root have been rectified and low-pass filtered. 
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 previously reported (Barriere et al. 2004; Cazalets et al. 1990; Cowley and Schmidt 

1994a; Kiehn and Kjaerulff 1996; Kiehn et al. 1999; Sqalli-Houssaini and Cazalets 

2000); however, in my experiments DA (n=2) also produced higher frequency bursting, 

on only the right L5 ventral root (0.125 ± 0.002 Hz, n=2) that was overlaid by a second 

slower bursting frequency (0.012 ± 0.001 Hz, n=2; Figure 4.1D).   

A subset of tryptamine, tyramine, and octopamine experiments also produced 

rhythmic motor activity that was different than the rhythmic patterns produced by the 

monoamines.  Tryptamine (n=3) induced rhythms varied with a mean frequency of 0.026 

± 0.001 Hz (n=3).  The patterns observed were: alternation between L3 roots, rhythmicity 

in an individual root, and synchronous bursts on the L5 ventral roots with alternating 

bursts on L2 (Figure 4.1E1).  Tyramine (n=3) produced two different bursting patterns.  

First, tyramine produced synchronous bursts on the L5 ventral roots and alternating 

bursts on the L2 ventral roots (0.018 ± 0.003 Hz, n = 2).  The pattern was relatively stable 

and lasted until tyramine was removed (40 minutes or 3 hours) (Figure 4.1E2).  The 

second pattern was restricted to the right L5 ventral root with a very slow frequency 

(0.008 Hz; not shown).  Octopamine (n=1) produced a faster motor rhythm (0.12 Hz) 

with alternating bursts recorded from L2 ventral roots and tonic activity from L5 ventral 

roots (Figure 4.1E3).  These results demonstrate that tyramine, octopamine, and 

tryptamine can act on pattern-generating circuits.   

To test whether the TAs were acting directly on motoneurons, chemical synaptic 

transmission was minimized by replacing the regular aCSF with either a high Mg2+, low 

Ca2+ aCSF or zero Ca2+ aCSF. Under these conditions, recorded reflexes were completely 

abolished (Figure 4.1B1).  Subsequently, the motor output before and after application of 
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the TAs and monoamines were compared (Figure 4.1B2 and C). 5-HT, tryptamine, and 

tyramine significantly increased activity (397±312% [n=4], 98±61% [n=4], and 13% ± 

10% [n=4], respectively); however, these changes in activity were not statistically 

different than observed with intact synaptic transmission. Octopamine (n=4), PEA (n=4), 

NA (n=3), and DA (n=3) did not have significant effects on motor activity, although 

there were visual increases in activity in some experiments.  Only the changes in activity 

for NA were significantly different (reduced) following synaptic isolation, supporting 

activity derived more prominently from premotoneuronal actions.  Despite not having 

synaptic transmission, 5-HT, NA, DA, and tyramine had rhythmic bursting (Figure 

4.1B2), which was likely due to synchronization of motor neuron oscillations across gap 

junctions (Tresch and Kiehn 2000).   

4.4.2 Trace amines produce both regular locomotor-like rhythms and episodic 

rhythms 

NMDA is commonly co-applied with 5-HT to produce stable, regular, and 

physiologically comparable locomotor-like rhythm (Kiehn et al. 1999; Kjaerulff and 

Kiehn 1996; Sqalli-Houssaini et al. 1993).  The locomotor-like pattern seen with 5-HT 

and NMDA is seen as left/right and ipsilateral alternation of bursts between flexors (L2) 

and extensors (L5) (Kiehn and Kjaerulff 1998; Sqalli-Houssaini et al. 1993).  Here, 

NMDA was applied at concentrations that never produced rhythmic motor locomotor-like 

activity on its own (3-5 µM; n=15).  In the presence of NMDA, tryptamine (n=14/19), 

tyramine (n=24/26), octopamine (n=11/13), PEA (n=10/10), NA (n=14/14), DA 

(n=14/14), and 5-HT (n=24/24) almost always recruited rhythmic motor activity.  

4.4.2.1 Trace amines can produce locomotor-like rhythms comparable to 5-HT 
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In several instances, all monoamines and TAs could recruit a locomotor-like pattern 

broadly comparable to 5-HT (n=22).  Incidences are: tryptamine (13/14), tyramine 

(12/24), octopamine (3/11), PEA (3/10), DA (5/14), and NA (2/14).  Examples are shown 

in Figure 4.2A. All amines burst at frequencies statistically indistinguishable from 5-HT 

(Figure 4.3).  Tyramine also produced a second rhythm that was significantly slower, but 

with comparable coordination (p<0.0001; n=5/24) (Figure 4.2B and Figure 4.3).  Since 

the bursting patterns produced by the TAs and NMDA are often similar to 5-HT and 

NMDA, the TAs can recruit either the same pattern-generating circuits or different 

circuits that lead to the same output. 

4.4.2.2 Trace amines also produce episodic rhythmic motor behaviors 

Additionally, tryptamine (n=1/14), tyramine (n=8/24), octopamine (n=9/11), and PEA 

(n=7/10) were able to generate a bursting pattern never seen with 5-HT in this 

preparation.  The pattern was more complex with episodic bouts of bursting where the 

frequencies of the bursts within the bouts were statistically indistinguishable compared to 

that observed during stable 5-HT locomotion.  The episodic bouts of bursting alternated 

with comparatively quiescent periods.  The average frequencies of these episodic bouts 

were very slow (Figure 4.4A-D and Figure 4.3).  Notably, this was the dominant 

temporal pattern of bursting for octopamine and PEA.  Overall, the profile of the episodic 

bursting was highly variable, containing 1-47 bursts within a bout and with quiescent 

periods varying from 5 to 230 seconds.  Typically, there were progressive increases and 

decreases in the locomotor burst amplitude within each episode, which are noticeable in 

at least some bouts for all TAs tested (Figure 4.4).  Similarly, locomotor frequency  
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Figure 4.2: The trace amines and monoamines can all produce a continuous locomotor-like activity 
pattern 

A. Tryptamine, tyramine, octopamine, PEA, 5-HT, dopamine, and noradrenaline can all produced a 
continuous locomotor-like activity pattern in the presence of NMDA.  The patterns were similar.  B. 
Tyramine also produces a slower locomotor-like activity pattern that was statistically slower. 
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Figure 4.3: Differences in frequency between the different types of bursting activity for the 
monoamines and trace amines 

The monoamines and TAs were able to produce different types of bursting activity in the presence of 
NMDA.  The frequencies varied depending on the type of bursting.  Note that not every monoamine or TA 
produced each type of activity.  The DA pattern and the episodic pattern that the TAs produced were 
grouped together and classified as alternate LLA.  Since the episodic TA LLA has both a fast and a slow 
component in the same traces, both were represented in the graph under high frequency bursts of alternate 
LLA and slow frequency episodes of alternate LLA.  The frequencies of the slow LLA, slow frequency 
episodes of alternate LLA, and non-LLA bursting were statistically slower than the frequencies for LLA 
and high frequency burst of alternate LLA.  LLA stands for locomotor-like activity. 
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Figure 4.4: The trace amines produce episodic bursting patterns that are different than the regular 
pattern seen with  5-HT in the presence of NMDA 
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Figure 4.4: continued 
A-D. Tyramine, tryptamine, PEA, and octopamine can produce episodic rhythmic motor bursting patterns 
where bouts of locomotor-like bursting were interrupted by relative quiescent periods.  Typically, the bouts 
were concurrently bursting on all of the ventral roots.  However, occasionally, as shown for octopamine (D) 
and also seen with PEA, the bouts of bursting alternated on the right and left side.  E. Episodic bouts of 
locomotor activity were commonly associated with wax and wane changes in amplitude and frequency.  
Shown is the bout highlighted in the tyramine example for r-L2 in panel A.  The burst numbers in the bout 
are on the x-axis, and overlaid plots of instantaneous locomotor frequency and peak amplitude of the 
rectified filtered response are on the y-axis.  Note the trend for both amplitude and frequency to increase 
then decrease over the episodic bout of locomotion. Events within the shaded box emphasize the higher 
frequency, higher amplitude values observed in the middle of the bout. 
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appeared to wax and wane during these bouts, supporting a sinusoidal drive to the CPG.  

This is highlighted in Figure 4.4A in a bout of r-L2 rhythmical activity, whose amplitude 

and frequency are further quantified in Figure 4.4E.  As shown, there are large 

progressive increases then decreases in burst amplitude, and locomotor frequency 

increased then decreased with the middle bursts clearly being of the highest frequency. 

Coordination between roots was also variable for this pattern.  The predominant 

pattern for all the TAs was that the bouts would be concurrent on all of the ventral roots, 

while the bursts within these bouts were locomotor-like (shown for tyramine, tryptamine, 

and PEA in Figure 4.4A-C) (cf. (Beato and Nistri 1999; Whelan et al. 2000)).  The 

number of bursts within these bouts varied between roots, but typically with clear 

transitions between bouts of bursting and quiescent periods.  Besides this pattern, 

octopamine (n=2/9) and PEA (n=1/7) produced bouts of bursting that alternated between 

the right and left side of the spinal cord (shown for octopamine in Figure 4.4D).  

Sometimes there was a slight overlap between bouts on the right and the left, and during 

these times coordination was consistent with locomotor-like pattern (not shown).  For 

tyramine and octopamine, there was an experiment for each where the bursting pattern 

changed from the continuous locomotion shown in Figure 4.2 to the more complex 

pattern with quiescent periods shown in Figure 4.4.   

4.4.3 Dopamine can produce fast and slow locomotor-like rhythms simultaneously 

DA (n=3/14) in the presence of NMDA produced its own unique alternate pattern 

where the typical locomotor-like frequency occurs in conjunction with a much slower 

locomotor-like rhythm (Figure 4.3 and Figure 4.5A).  In essence there appear to be two 

distinct locomotor CPGs operating simultaneously. These longer bursts interact with the 
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Figure 4.5: Dopamine and noradrenaline produce bursting patterns that are different than the 
regular pattern seen with  5-HT in the presence of NMDA 

A. DA produced a pattern where the typical locomotor-like pattern occurs and then a long burst appears to 
overlay the bursting, increasing the amplitude at the time, but not disrupting the frequency of bursts.  Grey 
boxes provide expanded timescale to highlight burst structure within bouts of bursting.  B. NA and DA (not 
shown) often produced continuous bursting that was slow and not locomotor-like.  Pink highlighted areas 
identify duration of the slow rhythms in A and B.   
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 higher frequency locomotor bursts to increase their amplitudes.  However, they do not 

alter locomotor frequency of the bursts or produce quiescent periods.   

In many experiments also in the presence of NMDA, DA (0.04 ± 0.02 Hz; n=6/14) 

and NA (0.02 ± 0.02; n=12/14) also produced continuous bursting that was not 

locomotor-like (Figure 4.5B shows NA), and was significantly slower than 5-HT and its 

own locomotor-like rhythm (Figure 4.3). 

4.4.4 Trace amines can cause locomotor-like behavior in transected neonates 

To investigate behavioral relevance of TAs on spinal motor behavior, the TAs were 

i.p. injected into spinalized neonatal rats in vivo at P4-5 or P11-12 to determine whether 

actions on spinal motor circuits. A great advantage of the spinal cord is that a chronic 

transection can lead to near-complete to complete loss of descending monoaminergic 

transmission (Commissiong and Toffano 1989).  Therefore, especially in the P11-12 rats, 

any change in motor behavior would be due to the effect of the TAs independent of 

descending monoaminergic axonal terminals. 

Octopamine, PEA, and tryptamine were tested in different animals, but not tyramine, 

since it is not thought to be transported across the blood-brain barrier (Oldendorf 1971).  

Aside from a transient injection-induced pain reflex response, saline control injections in 

all of these animals were without effect.   

In 9/9 transects, the TA injected produced hindlimb motor activity.  Octopamine 

abruptly activated hindlimb locomotion that lasted several minutes with frequencies 

ranging between 1.2-1.8 Hz (n=4/4).  As observed in vitro, octopamine induced 

locomotion was episodic, occurring in bouts with intervening quiescent periods.  PEA 

activated alternating locomotor-like activity (n=3/3).  Also similar to the in vitro, the legs 
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alternated between periods of rhythmic leg movements and quiescent periods.  In 

comparison, tryptamine produced adduction / hyperflexion (n=2/2), which was 

accompanied by very slow alternating leg movements that were ~0.2 Hz.  These studies 

support TA actions on spinal motor systems independent of descending monoaminergic 

systems. 

4.4.5 Transport inhibitors attenuate trace amine and dopamine induced bursting  

The monoamine transporters, SERT, DAT, and NET, are expressed in monoaminergic 

neurons. In spinal cord, they are located on presynaptic descending aminergic axon 

terminals, but not in spinal neurons. These transporters are responsible for both 

monoamine and TA uptake.  To examine whether the motor actions of the TAs observed 

here require transport via monoamine transporters, I examined their actions in the 

presence of monoamine transport inhibitors: Citalopram, a SERT Inhibitor; Bupropion, a 

DAT Inhibitor; and Clomipramine, a SERT and NET Inhibitor] Figure 4.6). 

Application of the transport inhibitors alone did not change motor activity. 5-HT 

(n=3/3) and NA (n=4/4) produced similar motor patterns both before and after transport 

inhibitor application.  In comparison, the motor patterns for DA and the TAs were 

attenuated and variably affected (Figure 4.6).  There was a trend toward decreasing 

frequency for all the TAs and DA (Figure 4.7A), which reached statistical significance 

when the TAs and DA were pooled (p<0.05).  Burst amplitude was significantly reduced 

after application of the transport inhibitors for NA, tryptamine, and tyramine (Figure 

4.7B; p<0.05) with a trend toward reduction for octopamine (p=0.08).  There was also a 

trend towards a reduction in total number of induced bursts for the TAs and DA 

(Figure4.7C).  The effect was significant for octopamine (p<0.05).  For all applied 
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Figure 4.6: The monoamine transport inhibitors preferentially depress trace amines and dopamine 
modulatory actions.  

The monoamines and TAs were applied in the presence of NMDA before and after the transport inhibitors 
[1 µM Citalopram, a SERT Inhibitor; 1 µM Bupropion, a DAT Inhibitor; 5 µM Clomipramine, a SERT and 
NET Inhibitor].  The waveforms show before transport inhibitors on the left and after transport inhibitors 
on the right. The patterning of 5-HT and NA remained similar before and after transport inhibitors, 
including their frequencies.   
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Figure 4.7: Effects of monoamine transport inhibitors on bursting properties 
A. There was a trend toward reduced burst frequency in the presence of the TAs and DA, which when 
pooled attained statistical significance.   B. There were significant decreases in the peak amplitude for NA, 
tryptamine, and tyramine.  The percent change is in reference to before the addition of the transport 
inhibitors. C. There was a trend toward a reduced number of evoked motor bursts in the presence of the 
transport inhibitors which reached statistical significance for octopamine. (* indicates p<0.05). 
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neurochemicals, there was a trend for longer times to initiate bursting in the presence of 

transport inhibitors.  Only for NA was this significant (p=0.02).  However, if all TAs and 

DA were pooled, significance also emerges (p<0.05). 

Overall, it appears that unlike 5-HT and NA, the action of TAs and DA were 

attenuated after block of intracellular transport.  This suggests that TA and DA transport 

into presynaptic terminals contributes to the bath application-induced motor activity, but 

that the bursting is partially independent since bursting remains following transporter 

inhibition. 

4.4.6 Trace amines can be transported into spinal neurons by a Na+-independent 

mechanism  

In the previous chapter, I found that spinal neurons increased cytoplasmic expression 

levels in spinal neurons. To confirm this and determine whether the uptake was NA+-

dependent or Na+-independent, spinal cords were incubated in control aCSF, control 

aCSF in the presence of TAs, or TAs in a solution having nominally zero Na+ aCSF.  

Qualitative increases in the immunolabeling of the TAs suggested that the TAs were 

taken up in a Na+-independent manner (Figure 4.8).  Importantly, since the monoamine 

transporters SERT, DAT, and NET are all Na+-dependent (Torres et al. 2003) and not 

produced in the spinal cord (Allen_Spinal_Cord_Atlas 2009), uptake in zero Na+ must be 

by other mechanisms.  Three families of Na+-independent transporters are known to 

transport TAs across the plasma membrane in the spinal cord.  These are the L-type 

amino acid transporters (LATs), the organic cation transporters (OCTs), and the plasma 

membrane monoamine transporter (PMAT) (Appendix Figures A.6-7) 

(Allen_Spinal_Cord_Atlas 2009).  
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Figure 4.8: The trace amines were transported into spinal neurons by a Na+-independent mechanism  
Apparent increase in TA expression following pre-incubation in TAs.  Presented are low-power 
photomicrographs of a 10 µm section showing a complete hemicord.  The isolated cords of P2 littermates 
were incubated in one of 3 different treatments for 2 hours: (1) control aCSF, (2) control aCSF in the 
presence of TAs, or (3) TAs in a solution having nominally zero Na+ aCSF.  Note that TA transport was 
Na+-independent and thus independent of the monoamine transporters. 
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4.4.7 Trace amines and dopamine actions have much slower kinetics of activation 

Given the intracellular location of the TAARs and that the TAs may need to be 

transported into the neurons to be activated, I compared the time to burst onset after bath 

application of the TAs and monoamines in the presence of NMDA (Figure 4.9).  5-HT 

(n=12) and NA (n=4) had rapid burst onset with medians of 7.5 and 2.5 seconds 

respectively.  In comparison, it took dramatically longer for DA (480 seconds, n=4), 

tryptamine (300 seconds, n=5), tyramine (300 seconds, n=7), octopamine (300 seconds, 

n=5), and PEA (540 seconds, n=3) to initiate bursting (all are p<0.05).  That the time to 

initiate bursting was longer for the TAs and DA indicates that they are not acting 

predominantly at classical plasma membrane monoaminergic receptors.  Behaviorally, it 

would appear that the TAs would not be recruited to initiate descending commands for 

burst initiation. Rather it seems their recruitment is more consistent with modulation of 

ongoing activity. The actions of the TAs during ongoing 5-HT-induced locomotion are 

explored in Chapter 5. 

4.4.8 Differences in methysergide sensitivity to activity block 

Methysergide is a 5-HT1, 5-HT2, 5-HT7 and tryptamine binding site antagonist.  To 

test whether the TAs and monoamines bound the receptor sites with similar affinities, 

methysergide was added to TA and monoamine–induced rhythms (with NMDA) at 

progressively increasing doses.  Concentration dependent differences were discovered 

(Table 4.1).  Tryptamine was by far the most sensitive with 1 µM of methysergide 

always stopping locomotion.  Methysergide generally blocked 5-HT locomotion at 2 µM.  

In comparison, tyramine and octopamine were more insensitive to methysergide, while 

PEA, NA, and DA were methysergide insensitive even at the highest dose tested (10  
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Figure 4.9: Differences in time to burst onset of bursting between the monoamines and trace amines. 
DA and the TAs take a significantly longer time to initiate bursting than 5-HT and NA.  The time was 
defined as the time it took to initiate bursting after the drugs were added (always in the presence of 
NMDA).  The box-and-whisker plots show the time it takes to initiate bursting.  The black line is the 
median. Outliers were defined as more than 1.5 times the interquartile range.  An outlier for tryptamine at 
1800 seconds is not shown. (* indicates p<0.05). 
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µM).  Based on methysergide sensitivity it appears likely that tyramine, octopamine, and 

PEA do not act predominantly on the 5-HT receptors implicated in locomotion, while 

tryptamine may act either at a tryptamine binding site, possibly TAAR4, or at 5-HT 

receptors. 

Table 4.2: Methysergide blocks tryptaminergic bursting.   
The number of animals in which locomotion was blocked following methysergide administration in the 
presence of the listed drug and NMDA. 

 Total Methysergide 
Drug 1µM 2µM 5µM 10µM 
5-HT 2 / 8 5 / 5   
tryptamine 6 / 6    
tyramine 1 / 6 0 / 5 2 / 5 0 / 3 
octopamine 0 / 3 0 / 3 1 / 3 0 / 2 
PEA 0 / 3 0 / 3 0 / 3 0 / 3 
noradrenaline 0 / 4 0 / 4 0 / 4 0 / 4 
dopamine 0 / 6 0 / 4 0 / 4 0 /4 

 

4.5 Discussion 

I have shown that the TAs have distinct actions on the spinal motor circuitry.  

Tryptamine, tyramine, octopamine, and PEA all recruited locomotor-like patterns similar 

to that observed for 5-HT as well as more complex episodic patterning.  Both continuous 

and episodic locomotor phenotypes could be observed within individual animals 

indicating that the episodic pattern involves activation of additional cellular/network 

interactions that influence the output of the spinal locomotor central pattern generator.  

I have shown evidence that the TAs are likely having actions both at descending 

terminals of monoaminergic neurons, as well as in spinal cord neurons.  The high-affinity 

Na+-dependent monoamine transporters NET, DAT and SERT, are found only on 

descending adrenergic, dopaminergic and serotonergic terminals, respectively.  As 

monoamine transport inhibitors attenuated the action of the TAs on the motor system, TA 
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uptake into descending terminals contributes to the observed response.  However, as 

responses were not abolished and rhythmicity persisted, additional TA effects must be 

due to actions at other sites.  Further, support of TA actions occurring independent of 

descending monoaminergic systems was provided with in vivo i.p. TA administration 

experiments in rats having undergone chronic mid-thoracic cord transection.  Under these 

conditions, all TAs tested induced rhythmic hindlimb motor activity, strongly supporting 

TA-induced actions via intrinsic modulation of spinal neural networks.  While it is 

possible the TA actions on spinal circuits are secondarily due to unknown TA action on 

peripheral primary afferent receptors, the similarity in patterning seen to that in the in 

vitro isolated spinal cord makes this unlikely.  

One possible means of TA actions is via activation of TAAR receptors, as I have 

shown that TAAR1 and TAAR4 receptors are found intracellularly in spinal neurons (see 

Chapter 3).  To activate the intracellular receptors, the TAs must be transported into the 

neurons.  However, spinal neurons lack the Na+-dependent monoamine transporters 

known to transport TAs.  To demonstrate that alternate routes of transport exist for spinal 

neurons, I showed that TAs can be transported into spinal neurons in the absence of 

external Na+, supporting the presence of Na+-independent transport mechanisms in spinal 

neurons.  Indeed, as shown in the Allen Institute in situ hybridization studies provided in 

the Appendix figures, multiple Na+-independent transporters, including LATs, OCTs and 

PMAT, have been shown to transport PEA, tyramine, and tryptamine and the are widely 

expressed in the spinal cord. Based on these data, an intrinsic TA transport system for 

spinal neurons seems highly likely.   
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4.5.1 Trace amines can induce motor activity and rhythmic locomotor bursting 

patterns 

When applied alone, the monoamines, tryptamine, and tyramine increased motor 

activity, including excitatory actions on motoneurons.  This agrees with a previous study 

showing that tyramine can act directly on motoneurons (Kitazawa et al. 1985).  NA 

action of motor activity was significantly reduced following synaptic isolation, 

supporting a more prominent NA-induced activity derived from premotoneuronal actions. 

PEA is an agonist at both TAAR1 and TAAR4 (Borowsky et al. 2001; Bunzow et al. 

2001), and therefore, the prediction would be that it would facilitate motor activity.  

However, no overt actions were observed.  One possibility is that PEA is also acting on 

one of the other TAARs whose ligand has yet to be determined and which are Gi-

coupled.  Another possibility is that PEA has currently unstudied actions on classical 

monoamine receptors which are Gi-coupled (e.g. 2-adrenergic) and compete with 

TAAR1 and TAAR4 Gs-coupled activity. 

Application of 5-HT, NA, and DA are each known to produce signature patterns of 

rhythmic motor activity when applied alone.  I found them to produce rhythmic motor 

activity similar to those previously reported (Barriere et al. 2004; Cazalets et al. 1990; 

Cowley and Schmidt 1994a; Kiehn and Kjaerulff 1996; Kiehn et al. 1999; Sqalli-

Houssaini and Cazalets 2000).  However, I also saw a pattern not reported for DA where 

the high frequency bursting was overlaid by a second slower bursting frequency (Figure 

4.1D).  Both DA frequencies observed were within the range found previously (Kiehn 

and Kjaerulff 1996).  Like the monoamines, the TAs, tyramine, octopamine, and 

tryptamine, but not PEA, can recruit rhythmic motor patterns and with distinctive 
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appearance.  Tyramine and tryptamine produced patterns of long and variable cycle 

periods whereas octopamine had a much shorter cycle period.   

4.5.2 Trace amines produce continuous and episodic rhythmic bursting patterns 

when added with NMDA 

NMDA is commonly used to stabilize 5-HT induced locomotor–like activity (Kiehn et 

al. 1999; Kjaerulff and Kiehn 1996; Sqalli-Houssaini et al. 1993).  The use of NMDA as 

an adjunct neuroexcitant to facilitate TA and monoamine-induced rhythmical motor 

behavior in complicated by the fact that it can activate locomotion by itself at higher 

doses, and even at the doses I used as reported by other labs (e.g. (Beato and Nistri 1998; 

Bracci et al. 1998)).  Regardless, there is well documented inter-strain and intra-strain 

differences in spinal cord function (Shay et al. 2005), and I emphasize that the doses I 

used here never activated locomotion in my studies.  Moreover, it is clear that there is a 

complex interplay between 5-HT and NMDA receptors in motor rhythm generation 

(MacLean et al. 1998). 

Here, in the presence of sub-locomotor concentrations of NMDA, the TAs produced 

locomotor-like activity similar to 5-HT suggesting that the TAs can recruit either the 

same pattern-generating circuits or different circuits that lead to the same output.  Based 

on flexor/extensor and left/right coordination during the continuous locomotor-like 

pattern, it is very likely that the TAs are acting on neurons at the level of the central 

pattern generator (CPG) to produce the patterning.  The TAs also produced episodic burst 

patterns.  Whelan et al (2000) reported spontaneous episodes of rhythmic ventral root 

activity in the mouse very similar to those seen here (Whelan et al. 2000).  This supports 

the observed TA-induced episodic pattern of motor activity as a physiologic pattern also 
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recruited by endogenous mechanisms.  Speculation on behavioral relevance is in the 

discussion of Chapter 5. 

Both continuous and episodic locomotor phenotypes could be observed within 

individual animals indicating that the episodic pattern involves activation of additional 

cellular/network interactions that influence the output of the spinal locomotor central 

pattern generator.  Assuming that these different modulatory actions were due to actions 

at distinct spinal cord sites, there are three possible levels of network neurons that could 

be affected by tyramine, octopamine, and PEA to give the unique episodic patterns 

(Figure 4.10).  In all cases in Figure 4.10, it was assumed that the regular locomotor-like 

activity pattern was produced at the CPG level by the TAs (Figure 10A).  The first level 

where the modulation could be occurring would be in neurons that project onto the CPG 

(Figure 10B, left circuit).  These neurons could produce an alternation of excitatory and 

inhibitory drive to the CPG, thus causing the waxing and waning of activity.  The second 

level where the modulation could be occurring would be in neurons within the CPG 

where both slow episodic events and locomotor rhythmicity co-exist (Figure 10B, middle 

circuit).  For example, rhythms at locomotor frequency could be associated with synaptic 

network interactions while a second slower modulation of neural excitability could be via 

non-synaptic somatic biochemical pathways (Katz and Clemens 2001).  As the slow 

rhythm changes, locomotor frequency changes (e.g. Figure 4.4E).  The third level where 

the modulation could be occurring would be in neurons downstream of the CPG (Figure 

10B, right circuit).  For example, motoneurons can enter high conductance states 

(Heckman et al. 2003; Kiehn 1991).  Conceivably, a high conductance state may be 

sufficient to prevent synaptic input from the CPG to reach threshold effectively silencing 
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Figure 4.10: continued 
Both the monoamines and the TAs were able to produce continuous bursting, while tryptamine, tyramine, 
octopamine, and PEA additionally produced episodic bursting.  Continuous locomotion is depicted in panel 
A, and putative episodic locomotor circuits are shown in panel B.  There are three possible levels of TA 
actions that could result in unique episodic patterns.  The first level where the modulation could be 
occurring would be neurons that project onto the CPG.  The second level where the modulation could be 
occurring would be in neurons within the CPG where two events co-exist with distinct time courses.  The 
third level where the modulation could be occurring would be in neurons downstream of the CPG (e.g. 
motoneurons).   
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 motor output (Alaburda et al. 2005; Prescott et al. 2006; Raastad et al. 1996).  In this 

case, locomotor frequency would be unchanged, but amplitude would alternate between 

more excitable and less excitable states.  I think that since there appears to be 

coordination between the bouts of bursting across flexors/extensors and left/right 

alternation, that the first two possibilities are more likely. 

Reith and Sillar (1998) observed episodic locomotor rhythms in Xenopus larvae with 

5-HT and NMDA which was associated with a ‘slow’ NMDA receptor dependent 

motoneuron membrane bistability.  However, their ‘slower’ modulatory rhythm (~0.5 

Hz) is comparable to frequencies of NMDA receptor-induced oscillations in neonatal rat 

motoneurons (Hochman et al. 1994b; MacLean et al. 1997) and orders of magnitude 

faster than the slow rhythms here (~0.013 Hz).  NMDA receptor dependent oscillations 

of comparable frequency to those observed here are more consistent with that seen in 

medial intermediate grey interneurons (Hochman et al. 1994a) and so would be more 

consistent with actions occurring in spinal interneurons.   

4.5.3 Dopamine can produce fast and slow rhythms simultaneously 

The observation that both a slow rhythm and normal locomotor rhythm can be 

observed simultaneously has important implications regarding the organization of the 

CPG.  First, it suggests that, as with larval zebrafish (McLean et al. 2007), there are two 

distinct CPGs with network connectivity consistent with a coordination required for 

locomotion.  Thus, the presumption that V1 interneurons are responsible for locomotor 

speed but not locomotor CPG operation may be incorrect (Gosgnach et al. 2006).  

Instead, it is seems possible that genetic deletion of the V1 interneurons was actually 

essential for the fast locomotor CPG, and in its absence, the slow rhythm with locomotor-
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like coordination becomes predominant.  Here, it is possible that DA activated two 

distinct neuronal interneuron populations; both a fast CPG and a slow rhythm generator 

whose outputs were integrated.  That both rhythms have not been previously reported to 

be observed concurrently suggests that under normal conditions these circuits may be 

mutually inhibitory.  In this regard, they may related to the observed short- and long-

latency flexor reflex afferent (FRA) pathways observed with administrations of L-dopa in 

the cat (Jankowska et al. 1967; Lundberg 1969).  FRA pathways represent higher 

threshold afferent-evoked reflex pathways. Afferents involved include group II-IV 

muscle, joint, and high threshold cutaneous afferents.  It has been shown that following 

intravenous administration of L-dopa in the acute spinal cat, short-latency FRA pathways 

that normally produce the flexion reflex are depressed and longer-latency pathways 

emerge that are associated with the production of spinal stepping (Jankowska et al. 1967).  

While it has been assumed that L-dopa acted by increasing NA, the present observations 

with DA support a contribution of dopaminergic mechanisms in this switch as well, given 

that both tend to recruit the slower rhythms.  It is also possible that the slow rhythms 

occasionally seen with the TAs in the absence of NMDA activate the same slow CPG 

recruited by NA and DA in the presence of NMDA. Additional studies are required to 

examine these interactions at the synaptic, cellular and network level. 

4.5.4 Trace amines can cause locomotor-like behavior in transected neonates 

Assuming that the duration of spinalization was sufficient to permit complete or near-

complete degeneration of descending monoaminergic terminals, the observation that i.p. 

administered TAs were capable of evoking robust and consistent rhythmical hindlimb 
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movements in previously spinalized animals provides the strongest evidence that TAs can 

modulate function independently of  monoamine transmitter release.  

 It could be argued that the injected doses of TAs (50 mg/kg) were not within 

therapeutic dose range. It is difficult to estimate the circulating levels of injected drugs 

without formal quantitative study. This could be done using high performance liquid 

chromatography and mass spectrometry or negative chemical ion gas chromatography 

and mass spectrometry (Durden and Davis 1993). Based on similarity of actions to the in 

vitro studies it is not unreasonable to assume that these injected doses lead to 

concentration in the high µM range (e.g. 50-250 µM).  The injected doses chosen were 

based on those used by others (Borison et al. 1977) and so may have clinical relevance  

for subsequent pharmacological approaches aimed at modulating motor function after 

spinal cord injury.   

4.5.5 Transport inhibitors attenuate trace amine and dopamine induced bursting  

Two differences common to all TAs were their slow onset time and sensitivity to the 

transport inhibitors.  Both differences support a requirement for the TAs to be transported 

across the membrane prior to having biological action.  The 5-HT, DA, and NA 

transporters SERT, DAT, and NET respectively, are symporters that move these 

monoamines across the cell membrane by coupling their movement to the movement of 

Na+ down its concentration gradient.  In the spinal cord, only descending monoaminergic 

axons contain the monoamine transporters.  Indeed, the Allen Institute in situ 

hybridization studies in spinal cord show an absence of SERT, DAT, and NET 

expression in either neonatal or adult spinal cord neurons (Appendix Figure A.4A); 

therefore, in my experiments, the attenuation of motor activity in the isolated spinal cord 
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caused by the transport blockers is likely via prevention of TA entry into descending 

monoaminergic nerve terminals.  However, we cannot exclude the possibility that the 

transport blockers had actions at other sites, including at Na+-independent transporters on 

spinal neurons (discussed below) (Haenisch and Bonisch 2010). 

Xie et al. (2007) found that TA uptake is facilitated by monoamine transporters, and 

that such uptake greatly enhances activation of TAAR1 in HEK cells (Xie et al. 2007).  

Further, when TAAR1 was co-expressed with monoamine transporters in HEK cells, 

PEA activation of TAAR1 inhibited uptake and increased efflux of the monoamines, 

which did not occur when only the monoamine transporters were expressed (Xie and 

Miller 2008).  Since it has been reported that TAs can facilitate monoamine transmitter 

efflux in the CNS via reverse transport (Paterson et al. 1990; Sulzer et al. 2005), it seems 

likely that TAARs play an important modulatory role in regulating monoamine 

transporter function.  Therefore, one very plausible site for TAs actions is on presynaptic 

descending terminals by causing monoamine efflux (Figure 4.11).  Based on the above, 

such release may depend on the descending systems expressing TAARs. Once the 

monoamines have been released they can act at receptors on the postsynaptic neuron.  For 

tryptamine, transport across SERT and activation of TAAR4, for which it is an agonist 

(Borowsky et al. 2001), could lead to 5-HT release with subsequent 5-HT receptor 

activation mediated induction of locomotion.  Like 5-HT, tryptamine-induced locomotion 

is blocked by methysergide, so efflux of 5-HT from descending monoaminergic axons 

may explain the observed actions of tryptamine.  It is important to note however that even 

after complete inhibition of monoamine transport with inhibiters, TA actions including 

those of tryptamine remained albeit attenuated (Figure 4.6 and 4.7). I conclude that 
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while TA induced monoamine efflux contributes to the observed motor actions, TAs are 

also binding at sites independent of descending monoamine presynaptic terminals.   

There is evidence that at least PEA has actions both at DAT and independent of DAT.  

Sotnikova et al (2004) looked at the effects of PEA in wildtype, heterozygous, and DAT 

knockout mice.  PEA produced pronounced striatal DA release in wildtype mice, but no 

DA release was detected in DAT knockout mice.  Behaviorally, PEA produced a strong 

transient increase in locomotion in wildtype and heterozygous mice, whereas in knockout 

mice, PEA acted as a potent depressant (Sotnikova et al. 2004).  

It was unexpected that DA had actions resembling those of the TAs.  Both the slow 

onset time and sensitivity to transport inhibitors of DA support a requirement for the DA 

to be transported across the membrane prior to having biological actions.  Since 

dopamine receptors are thought to exert their actions on the plasma membrane, and there 

is no evidence that they are active once internalized, DA actions could be via activation 

of TAARs.  Indeed, it is known that the monoamines also bind to TAAR1, although at 

lower affinity (Borowsky et al. 2001; Bunzow et al. 2001).  In HEK cells co-expressing 

DAT and TAAR1, at high enough concentrations, DA halts DA uptake and initiate DA 

efflux starting around 3 minutes of incubation.  This was not seen in cells expressing only 

DAT (Xie and Miller 2007).  This suggests that DA transport across DAT and subsequent 

activation of TAARs similarly to the TAs, and would be consistent with the common 

actions observed between DA and the TAs in the Results section above.   

4.5.6 Possible trace amines actions on monoamine receptors 

In addition to the presynaptic actions just described, the TAs are likely acting on 

postsynaptic neurons as well.  Since the TAs are structurally similar to the classical 
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monoamines and the TAARs have a high homology to the monoamine receptors 

(Borowsky et al. 2001), the possibility must be considered that the TAs are acting as 

agonists to the monoamine receptors in the spinal cord.  Tryptamine directly activates 

5HT2 and 5HT7 receptors (Boess and Martin 1994), on which 5-HT induced locomotion 

is dependent (Liu et al. 2009; Liu and Jordan 2005; Madriaga et al. 2004).  This would 

explain why tryptamine and 5HT locomotion appear the same.  It is also consistent with 

its sensitivity to block with methysergide.  In comparison to tryptamine, all other TAs 

appear to have very low affinity to the monoamine receptors tested, such that the applied 

doses would not be expected to have direct actions on monoamine receptors (Peddi et al. 

2003; Shen et al. 1993; U'Prichard et al. 1977).  

4.5.7 Evidence supporting trace amine uptake by Na+-independent transporters 

While inhibition by monoamine transport inhibitors attenuated TA bursting, it did not 

abolish it, suggesting that the TAs are acting at sites in the spinal cord other than just the 

presynaptic descending monoaminergic terminals.  Incubation of spinal cords in TAs and 

zero Na+ aCSF showed that the TAs can be transported into spinal neurons via a Na+-

independent mechanism, strongly supporting the presence of Na+-independent TA 

transporters.  Three families of Na+-independent plasma membrane transporters, LATs, 

OCTs, and the PMAT, have been shown to transport TAs across the plasma membrane.  

They are widely expressed in the spinal cord according to the in situ performed by the 

Allen Institute for Brain Science (Appendix Figure A.5 and Figure A.6) 

(Allen_Spinal_Cord_Atlas 2009), providing an intrinsic substrate for independent actions 

within spinal neurons (Figure 4.11).  Importantly, as transport across these transporters is 

bidirectional, the TAs can be synthesized and effluxed.  In this scenario, observed TA 
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selectivity and expression patterns would depend on levels of available substrate 

(aromatic amino acids), circulating TAs, synthesis enzymes (AADC and DBH), 

degradative/metabolic enzymes (MAOA, MAOB, and PNMT), and presence of 

membrane transporters. 

There are three OCTS (OCT1-3), all of which can transport tyramine (Schomig et al. 

2006).  There are four LATs (LAT1-4).  The LATs preferentially transport amino acids, 

including the aromatic amino acid precursors (Babu et al. 2003; Bodoy et al. 2005).  

Additionally, LAT3 transports PEA (Babu et al. 2003).  Moreover, both tyramine and 

tryptamine are transported by PMAT.  PMAT transport affinity order for the TAs and 

monoamines were: tryptamine > serotonin > dopamine > tyramine with NA and 

adrenaline having very low (millimolar) affinity binding to PMAT (Engel and Wang 

2005).  Importantly, it is possible that the transport inhibitors used in this study are 

having actions at PMAT, as PMAT is inhibited by commonly used monoamine transport 

inhibitors, albeit at lower affinity (Haenisch and Bonisch 2010).  In particular, I used 

citalopram, whicht has a much higher affinity to SERT than sertraline, currently the most 

potent PMAT transport blocker of the antidepressants tested (Ki = 5 µM) (Haenisch and 

Bonisch 2010).  Future studies on the effects of known inhibitors of PMAT on TA 

modulation should be undertaken to support their role in observed TA and monoamine 

neuromodulatory actions (e.g. cimetidine).  

4.5.8 Possible mechanism for trace amine actions in the spinal cord 

It seems highly-likely that the TAs are exerting at least part of their observed actions 

through the TAARs, since the TAs and the TAARs are found in similar locations in the 

spinal cord and both TAAR1 and TAAR4 are activated by TAs.  The TAs must be found 
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intracellularly to act on the intracellular TAARs.  I showed in Chapter 3 that TAAR1 and 

TAAR4 are present in spinal neurons.  There are two ways that the TAs could be found in 

spinal neurons (Figure 4.11).  First, they could be made in AADC-expressing spinal 

neurons from aromatic amino acids precursors.  Second, they could be transported there.  

Transport presynaptically into descending monoaminergic neurons is likely via the 

monoamine transporters, which when blocked here, attenuated rhythmic bursting.  

Postsynaptically, transport is likely via the LATs, OCTs, and PMAT, which are all Na+-

independent.  This is consistent with the incubation experiments here where I showed that 

uptake into neurons was Na+-independent, as well as with electrophysiological studies 

where I showed a slow activation time.  While transporter mechanisms dominate when 

TAs are bath applied to the spinal cord, endogenous actions are more likely dominated by 

autocrine TA synthesis in neurons having AADC and TAARs as well as paracrine actions 

in local neurons having TAARs via transport across bidirectional Na+-independent 

transporters. 

   Presynaptically, once the TAs are in the neurons, they likely act on TAARs, which lead 

to modulation of neuronal function that induces an efflux of monoamines into the 

synapse.  This efflux is consistent with reports that the TAs can facilitate monoamine 

transmitter efflux in the CNS via reverse transport (Paterson et al. 1990; Sulzer et al. 

2005).  Extracellular TAs could also have action on presynaptic monoamine receptors. 

Postsynaptically, there are two major routes by which the TAs actions could lead to 

modulation of neuronal function.  First, they could act on TAARs and modulate neuronal 

function by altering signal transduction pathways.  Second, extracellular TAs could act 

on postsynaptic monoaminergic receptors.   
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Figure 4.11: Possible intracellular mechanism for trace amine actions 
The TAs could be having actions both pre and post-synaptically.  It is possible for them to be both made 
and transported into both neurons.  Once inside, the TAs could be having effects on intracellular TAARs.  
Presynaptically, it appears that the activation of the TAARs could lead to an efflux of monoamines.  This 
efflux of monoamines can lead to activation of monoamine receptors on the postsynaptic neuron, which can 
lead to intracellular signaling that can activate the phosphorylation of AADC and an increase in TA 
production.  This increase in TAs could activate TAARs, hence leading to modulation of neuronal function.  
What exactly this modulation is has yet to be determined, but one likely possibility is that it is refining or 
reinforcing the output of the neuron.  Currently, octopamine transport has not been tested at these 
transporters. 
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   It also seems likely that activation of conventional monoamine receptors interacts with 

TA signaling. For example, previous reports suggest that the monoamine receptors, 5-

HT2, 5-HT7, D1, and α1, are involved in mediating actions on the locomotor network 

(Gabbay and Lev-Tov 2004; Liu et al. 2009; Liu and Jordan 2005; Madriaga et al. 2004).  

Activation of these receptors leads to downstream signal transduction pathways capable 

of phosphorylating AADC, which increases the activity of AADC and increases the 

levels of the TAs (Berry 2004; Duchemin et al. 2000; Duchemin et al. 2010; Neff and 

Duchemin 2002). In this manner, monoaminergic action could lead to subsequent 

modulation of intrinsic spinal function via enhanced activation of the TAARs. 

5-HT7 and D1 both activate the Gsα subunit, which stimulates adenylate cyclase (AC) 

to produce cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). 

cAMP, a second messenger, activates protein kinase A (PKA, cAMP-dependent protein 

kinase) (Gervasi et al. 2007), and PKA phosphorylates AADC (Duchemin et al. 2000).   

5-HT2 and α1 both activate the Gqα subunit, which stimulates phospholipase C (PLC) 

to hydrolyzes phosphatidylinositol 4,5-biophosphate (PIP2) into two second messengers, 

diacyl glycerol (DAG) and inositol triphophate (IP3).  IP3 causes the release of calcium 

from intracellular stores, leading to the activation of Calcium/calmodulin-dependent 

protein kinase type II (CaMKII) (Dash et al. 2007).  CaMKII phosphorylates AADC 

(Neff and Duchemin 2002). 

Currently, the role of the TAARs in the spinal cord is unknown.  However, it is known 

that they that they are Gαs-coupled proteins able to activate cAMP (Borowsky et al. 2001; 

Bunzow et al. 2001).  There are a number of classes of downstream substrates which 

cAMP signaling can activate including transcription factors, voltage-gated ion channels, 
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ion pumps, and neurotransmitter receptors, all of which are candidates after TAAR 

activation (Greengard 2001).   

An interesting and very plausible role for the anatomical substrate created by the 

widespread expression of AADC, the TAs, and the TAARs would be as an activity 

amplifier / reinforcement mechanism.  Changes in excitability observed could be based 

on AADC activity and TAAR activation.  Such a role would support a tight 

interdependence of the TAs with the monoamines on spinal motor function.  If true, the 

the TAs may predominantly serve a downstream role of refinement of monoamine-

induced locomotor pattern, not necessarily the initiation of it.  This implies that the 

monoamines and the TAs work together, but that each has its own role.   

It is important to emphasize that in this scenario, other pathways independent of the 

monoamine and their receptors that also co-activate the same signal transduction 

pathways could also recruit the TAARs leading to the unique intrinsic modulatory actions 

of the TAs.  

4.5.8.1 Possible mechanism for contribution by NMDA in vitro  

As many of my in vitro experiments also used NMDA, intracellular cascades 

following NMDA receptor activation could also potentially increase TA levels. NMDA 

receptor activation-induces Ca2+ entry into the neurons, which activates CaMKII and 

nitric oxide synthase (NOS) (Matsumura et al. 2010) (Figure 4.12).  CaMKII 

phosphorylates AADC (Neff and Duchemin 2002).  NOS produces nitric oxide (NO), 

which can lead to inhibition of MAO activity (Muriel and Perez-Rojas 2003), and thereby 

reducing TA degradation.  Further, NO leads to the activation of cGMP-dependent 
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protein kinase (PKG) (Schlossmann and Hofmann 2005), which can then phosphorylate 

AADC (Duchemin et al. 2010) and lead to modulation of neural function. 

Another important role for NMDA to consider is that there may be a critical activity 

level which a neuron needs to reach for the TA modulatory actions to be significantly 

altered, and adding NMDA to the bath may help the neuron to achieve this level. 

4.5.9 Conclusions 

Overall, the present work has laid the groundwork for understanding the complex 

interplay between the well established role of the monoamine transmitters and the 

existence of a more diffuse, more variable, more modifiable class of structurally related 

neuromodulatory amines.  Based on the distribution of transporters, the synthesis enzyme 

AADC, and the TAAR receptors, these so called ‘trace’ amines appear capable of 

exerting profound neuromodulatory actions.  
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Figure 4.12: Possible mechanism for contribution by NMDA 
 When NMDA activates the NMDA receptor, it can set off and intracellular cascade that can lead to 
modulation of the TAs.  Increasing intracellular levels of Ca2+ leads to activation of CaMKII and PKG, 
which can phosphorylation of AADC, which increases activity of AADC and hence production of the TAs.  
The TAs can then activate TAARs, leading to modulation of neural function.  Further, NOS produces NO, 
which can lead to inhibition of MAO activity. 
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CHAPTER 5  

MODULATORY ACTIONS OF THE TRACE AMINES ON 
HINDLIMB MOTOR COORDINATION 

5.1 Abstract 

In the previous chapter, I showed that when recording from ventral roots, the trace 

amines (TAs), in the presence of NMDA, can produce a continuous locomotor pattern as 

well as a unique episodic rhythm characterized by bouts of rhythmic bursting.  Here, 

using the in vitro isolated spinal cord with attached hindlimbs to record 

electromyographic (EMG) activity from various hindlimb muscles, I found that that the 

TAs induced the previously observed continuous and episodic locomotor patterns as well 

as previously undescribed episodic bursting phenotypes.  There were differences in 

phasing as well as amplitude when comparing the TAs to 5-HT.  

When the TAs were applied during ongoing 5-HT/NMDA locomotion, all TAs except 

for tryptamine increased frequency, and all TAs except for PEA increased L2 ventral root 

amplitude.  The most pronounced effects in patterning to 5-HT locomotion were to a 

subgroup of tyramine and octopamine applications where dramatic changes were 

observed.  By recording from both ventral roots and muscles, the EMG recordings 

revealed patterns that were undetected by the ventral root alone, demonstrating that 

ventral root activity can be an inaccurate reflection of the actual motor patterns generated.  

Overall, I conclude that the TAs increase the strength and frequency of ongoing 5-HT 

locomotion while also being capable of modifying the rhythmic motor pattern generated.  

5.2 Introduction 
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The spinal cord contains all of the necessary circuitry at birth to produce complex 

motor outputs including locomotor patterning (Grillner 1981).  In the isolated in vitro 

neonatal rodent spinal cord, many different neurochemicals have been used to induce 

locomotor-like activity (LLA) patterns, which can be characterized as left/right and 

ipsilateral alternation of bursts between flexors and extensors (Kiehn and Kjaerulff 1998; 

Sqalli-Houssaini et al. 1993).  Locomotor-inducing neurochemicals include serotonin (5-

HT), noradrenaline (NA), dopamine (DA), excitatory amino acids, acetylcholine, N-

methyl-D-aspartate (NMDA), glutamate, acetylcholine, (Barbeau and Rossignol 1991; 

Cazalets et al. 1990; Cazalets et al. 1992; Cowley and Schmidt 1994a; Kiehn and 

Kjaerulff 1996; Kiehn et al. 1999; Kudo and Yamada 1987; Sqalli-Houssaini and 

Cazalets 2000) and most recently my work with the trace amines (TAs) (see previous 

chapter). 

The TAs, named for their low endogenous concentrations in mammals, are a family 

of endogenous amines with structural, metabolic, physiological, and pharmacological 

similarities to classical monoamine neurotransmitters (Saavedra 1989).  The TAs include 

tryptamine, tyramine, octopamine, and β-phenylethylamine (PEA).  In chapter 3, I found 

that an anatomical substrate exists for the TAs to be produced in the spinal cord, and then 

in chapter 4, I found that the TAs can produced rhythmic bursting patterns.  Using ventral 

root recordings in the isolated spinal cord preparation, the TAs in the presence of NMDA 

can produce both a continuous LLA pattern similar to 5-HT and NMDA as well as an 

episodic pattern characterized by bouts of activity with intervening quiescent periods.  

The episodic bouts of bursting had a locomotor-like pattern and frequency statistically 
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indistinguishable from the continuous LLA pattern.  The quiescent periods had relatively 

low activity and no bursting. 

While ventral root recordings offer a simple way to track the spinal motor output, 

they do not give the whole story.  Ventral root activity may not reflect recruitment of 

individual muscles (Cowley and Schmidt 1994b).  Anatomical studies have shown that 

ventral roots are actually quite heterogeneous, containing axons projecting to both flexors 

and extensors (Nicolopoulos-Stournaras and Iles 1983).  Important changes in motor 

coordination between flexor and extensor activity may be lost due to the heterogeneity of 

these roots.  It has been long known that muscle recruitment by spinal cord circuitry is 

more complicated than just simple flexor/extensor alternation.  These distinct complex 

patterns and sequential activation of muscles have been demonstrated in the in vitro 

spinal cord (Grillner 1981; Kiehn and Kjaerulff 1996).  Distinct motor patterns of 

recruited were observed between different transmitters such as 5-HT and DA as well as 

pharmacological and electrical stimulation, suggesting that the spinal locomotor network 

is flexible and that extrinsic modulation can modify the network coordination (Kiehn and 

Kjaerulff 1996; Klein et al. 2010).   

I hypothesized that TA would have distinct differentiable actions on motor pool 

recruitment during rhythmic motor behaviors and that the TAs can modulate recruited 

activity with distinct actions.  To test this, I used the in vitro isolated spinal cord with 

attached hindlimbs to record muscle activation electromyographically.  I found that the 

TAs can activate distinct motor patterns and modulate ongoing activity in complex 

fashion.  Some of these results have been presented in abstract form (Gozal et al. 2008; 

Gozal et al. 2007b). 
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5.3 Methods 

All experimental procedures complied with the NIH guidelines for animal care and 

the Emory Institutional Animal Care and Use Committee.   

5.3.1 General setup 

  Sprague-Dawley neonatal rats postnatal day 0-5 were decapitated, eviscerated, and 

the skin was removed except that covering the feet.  The preparation was placed in a bath 

containing continuously oxygenated (95% O2 and 5% CO2) high magnesium, low 

calcium artificial cerebral spinal fluid (aCSF) [containing (in mM): 128 NaCl, 1.9 KCl, 

1.2 KH2P04, 26 NaHCO3, 0.85 CaCl2, 6.5 MgSO4, and 10 glucose (pH of 7.4)].  The 

spinal cord was exposed by a ventral vertebractomy and a dorsal laminectomy.  The dura 

mater, connective tissue, and dorsal roots were carefully cut by angled scissors.  The 

ventral roots were cut rostrally down to the thoracic roots 12-13 (T12-13) or lumbar 1 

(L1), leaving the spinal cord, lumbar and sacral ventral roots, and innervated hindlimbs 

intact.  To increase superfusion to the spinal cord, the vertebral column surrounding the 

cervical and most of the thoracic spinal cord was removed.  The spinal cord and attached 

hindlimbs were immobilized ventral side upward with insect pins to a chamber with 

Sylgard on the bottom.  All dorsal roots were cut to remove the influence of afferent 

feedback on the neurochemically-induced rhythm and simplify the spinal cord output to 

reflect the changes in spinal cord circuitry due to the TAs.  Modulatory actions of the 

TAs can be inferred to reflect the actions on motor circuits.  The perfusing medium was 

then switched to the standard aCSF solution (same concentrations as above except 

MgSO4 and CaCl2 adjusted to 1.3 mM and 2.4 mM respectively).  A gravity-fed 

superfusion system that used a Cole Palmer Masterflex L/S compact pump to bring the 
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perfusate back to the upper beaker to be recirculated was used.  Later when the 

neurochemicals were added, they were added to the upper beaker.  Glass suction 

electrodes were then placed on the left lumbar 2 (l-L2) ventral root and up to 7 muscles 

of the hindlimb, after which the preparation was allowed to recover for about 1 hour 

before experimentation at room temperature.  Activity was amplified (10,000x), band-

pass filtered at 10-3,000 Hz, digitized at 5kHz (Digidata 1321A, 16-bit; Axon 

Instruments), and captured on a computer with the pCLAMP acquisition software (v8-9, 

Molecular Devices; Union City, CA).   

5.3.2 Recordings from the ventral root and muscles 

Recordings were obtained from the following muscles: tibialis anterior (TibA; ankle 

flexor), medial gastrocnemius (MGas; ankle extensor), semitendinosus (SemT; knee 

flexor / hip extensor), semimembranosus (SemM; knee flexor / hip extensor), vastus 

medialis (VasM; knee extensor), rectus femoris (RecF; knee extensor / hip flexor), and 

adductor magnus (AddM; hip adductor).  Some of the muscles (e.g. TibA) were often 

recorded bilaterally.  

The left L2 ventral root was always recorded for two reasons: for comparison of 

ventral root activity profile in relation to that obtained in the isolated spinal cord 

preparation reported above, and because its reliable recruitment allowed a common 

comparison between experiments where muscle EMG recruitment was variable.    

In 21 experiments, which always included recordings from the left L2 ventral root 

and 7 muscle EMGs, 7.1 ± 2.2 recorded channels were active at some point during the 

experiment (Table 5.1).  However in a given experiment some muscles were active only 

in the presence of a specific neurochemical.  For the channels that were inactive, I cannot 
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rule out whether there was damage to them, although I can comment that r-RecF, was the 

least likely muscle to be active in general.   

Table 5.1: Number of experiment where the ventral root/muscles was active 
Ventral 
root or 
muscle 

Number of experiment where 
the ventral root/muscles was 

active during at least one drug 
application 

Number of experiment from 
which the ventral root/muscle 

was recorded 

l-L2  21 21
l-TibA 18 18
r-TibA 18 19

l-MGas 7 7
r-MGas 19 19
l-SemT 6 7
r-SemT 17 17
l-SemM 2 2
r-SemM 17 18
r-VasM 1 2
r-RecF 8 16

r-AddM 2 3
 

5.3.3 Motor activity and motor patterning experiments 

Rhythmic motor activity was evoked by two different types of experiments.  First, 

tryptamine, tyramine, octopamine, PEA, or 5-HT was co-applied with NMDA.  In 

experiments were the TAs and NMDA were co-applied, an application of 5-HT and 

NMDA was also performed for the sake of later comparison.  Second, 5-HT and NMDA 

were co-applied to obtain ongoing LLA, after 10-20 minutes tryptamine, tyramine, 

octopamine, and PEA were added.  Typically there were 3-7 drug co-applications per 

experiment, lasting 20-60 minutes each.  Within each experiment, the amines were 

applied in random order.  The order did not appear to affect the output.  A wash with 

aCSF was performed between all drug co-applications, lasting a minimum of 30 minutes, 

long after baseline had been reached.  Recorded files were 5 minutes long and continuous 
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from the start of the 5 minute baseline until right before the drugs were washed out of the 

bath.   

5.3.3.1 Neurochemicals 

All neurochemicals were stored in 10mM or 100mM stock solutions at -20°C and 

were thawed, then diluted into a circulating bath (100mL) to achieve the final desired 

concentration in the chamber.  The following neurochemicals obtained from Sigma-

Aldrich (St. Louis, MO) were used: 5-HT (20-50 µM), N-methyl-D-aspartate (NMDA) 

(3-5 µM), tyramine (40-100 µM), octopamine (40-100 µM), PEA (50-100 µM), and 

tryptamine (50 µM). 

5.3.3.2 Analysis 

Electrophysiological data analysis was performed using custom software, 

SpinalMOD, written in MATLAB (The MathWorks).  Frequency, peak amplitude, and 

phase were calculated.  Briefly, to calculate onset and offset of a burst, the data was 

rectified, then low-pass filtered, creating a burst envelope.  A custom algorithm was 

constructed to detect burst onset and offset.  

Typically 10 consecutive representative bursts were selected for analysis.  When 

bouts of episodic bursting contained less than 10 bursts consecutively (see Figure 5.3) 

non-consecutive bursts were selected for analysis.  In these cases, the different bouts of 

bursting were pooled.  Calculations made this way allowed for more reliable statistical 

comparisons between conditions.  In the experiments where a TA was added to ongoing 

5-HT and NMDA LLA, the 10 cycles were chosen immediately preceding TA 

application while 10 cycles after the addition of the TAs were chosen once the modified 

rhythm stabilized 
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Since the hindlimbs were pinned down and there were no movement to base timing, 

muscles are classified as flexors and extensors based on terminology from previous 

studies (Kiehn and Kjaerulff 1996).  For the phase diagrams, step cycles are defined in 

reference to the onset of the left L2 ventral root, which are generally considered to 

represent primarily flexor activity.  Left L2 ventral root was chosen due to its pattern 

stability and my ability to consistently acquire recordings from it.  Muscles on the left 

side that were in phase with left L2 ventral root are considered active during the flexor 

phase, while those that are out of phase were active during the extensor phase.  The 

opposite is true of muscles on the right side.  Those that were active with left L2 ventral 

root are considered active during the extensor phase, while those out of phase were active 

during the flexor phase.   

Using MATLAB, a paired Student’s t-test was used for statistical comparison of 

frequency and amplitude, while a Watson-William’s test was used for the phase 

diagrams. A significance level set at p<0.05.  The data are reported as mean ± SD.    

5.4 Results 

5.4.1 Trace amines can produce locomotor activity 

Previously in the isolated spinal cord preparation, I found that the TAs in the presence 

of NMDA produced distinct rhythmic motor patterns.  I wanted to further investigate how 

these unique patterns translated to motor coordination patterns in the hindlimb.  Here, in 

the isolated rat spinal cord with attached hindlimbs, NMDA was applied at 

concentrations that never produced rhythmic motor locomotor-like activity (LLA) on its 

own (3-5 µM; n=7/7).  In the presence of NMDA, 5-HT (n=22/22), tryptamine 

(n=10/11), tyramine (n=14/14), octopamine (n=10/11), and PEA (n=14/14) almost 
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always recruited rhythmic motor activity.  As expected, the overall patterning was similar 

to that found in the isolated spinal cord reported in the previous chapter, including the 

ability to change phenotype over time.  The same three main patterns were produced, but 

with some differences: 

5.4.1.1 The trace amines produced three main patterns 

5.4.1.1.1 Trace amines produce a continuous locomotor-like activity pattern 

First, tryptamine (n=10/10), tyramine (n=10/14), octopamine (n=5/10), and PEA 

(n=8/14) all produced a continuous LLA pattern (Figure 5.1A) with frequency values 

that were statistically indistinguishable from 5-HT (n=22/22) (Figure 5.2), similar to 

what was found in the isolated spinal cord.   The mean frequency values were 

numerically slightly higher for tryptamine, octopamine, PEA, and 5-HT than in the 

isolated spinal cord without hindlimbs, but not statistically different.   

5.4.1.1.2 Trace amines produce a slow continuous locomotor-like activity pattern  

Second, octopamine (n=1/10) and PEA (n=1/14) produced a slow continuous LLA 

pattern with significantly slower frequency than the faster continuous LLA pattern 

(Figure 5.1B and Figure 5.2D, middle left).  Although this pattern was only seen in 

tyramine (n=5/24) in the isolated spinal cord, it was never seen in the hindlimb attached 

preparation (n=0/14). 

5.4.1.1.3 Tyramine, octopamine, and PEA produce episodic activity patterns 

Third, tyramine (n=5/14), octopamine (n=5/10), and PEA (n=8/14), but not 

tryptamine (n=0/14) produced an episodic pattern that was generally characterized by 
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Figure 5.1: Trace amines and 5-HT induced locomotor-like activity 
A. 5-HT, tryptamine, tyramine, PEA, and octopamine can all produce a LLA pattern in the presence of 
NMDA.  The pattern and the phase are similar.  B. Octopamine and PEA also produce a slower locomotor-
like activity pattern.  In this and subsequent figures, the upper traces in black for each trace has been 
rectified and low-pass filtered.  Vertical dotted lines are provided as a visual aid to examine motor 
coordination in this and subsequent figures.  Abbreviations in this and the following figures are as follows: 
left L2 ventral root (l-L2), tibialis anterior (TibA; ankle flexor), medial gastrocnemius (MGas; ankle 
extensor), semitendinosus (SemT; knee flexor / hip extensor), semimembranosus (SemM; knee flexor / hip 
extensor), vastus medialis (VasM; knee extensor), rectus femoris (RecF; knee extensor / hip flexor), and 
adductor magnus (AddM; hip adductor).  
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Figure 5.2: Frequencies vary depending on the type of bursting   
Note 5-HT and tryptamine only produced LLA, while tyramine, octopamine, and PEA produced other 
types as well.  The regular and slow frequency parts of episodic LLA are different components of the same 
experiments.  LLA stands for locomotor-like activity.  The slow LLA and the slow frequency bouts of 
episodic pattern were significantly slower than the LLA and Regular frequency bursts of episodic pattern.  
(* indicates p<0.05) 
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bouts of bursts with quiescent periods between them (Figure 5.3).  The frequencies of the 

bursts within the bouts for tyramine and octopamine were statistically indistinguishable 

from 5-HT LLA, similar to the isolated spinal cord (Figure 5.2, middle right); however, 

PEA was statistically faster than the frequency of 5-HT (p < 0.01).  When the frequencies 

were compared to the isolated spinal cord, tyramine and octopamine were statistically 

indistinguishable with values that were numerically slightly higher, while PEA was 

statistically faster (p<0.01).  As in the isolated spinal cord, the frequencies of the bouts 

were very slow in comparison to the locomotor rhythm (Figure 5.2, right).  The mean 

frequency values were numerically greater than reported in the isolated spinal cord, but 

not statistically different.   

As in the isolated spinal cord, episodic bursting was characteristically variable.  

Overall there were 1-26 bursts within the bouts of activity and a break of 5-120 seconds 

between bouts during the quiescent periods.  Another aspect that was variable was the 

patterning.  The episodic pattern can be subdivided into distinct varieties.  The most 

common pattern observed involved concurrently active bouts of LLA with the quiescent 

periods on ventral root and the muscles (Figure 5.3A and Figure 5.3C, right).  This was 

seen in tyramine (n=5/5), octopamine (n=4/5), and PEA (n=5/8).  Seen less commonly 

was alternation of the bouts between the ventral root and the muscles on the right and left 

sides of the body (Figure 5.3B).  This was seen for tyramine (n=1/5), octopamine 

(n=2/5), and PEA (n=2/8).  There were a couple other notable varieties of episodic 

patterning.  In one experiment, the left L2 ventral root rhythmicity was continuous yet the 

r-SemM muscle was episodic (Figure 5.3C, left side).  In another experiment with slow 

LLA, multiple higher frequency bursts replaced a single slow burst seen on the other 
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Figure 5.3: Tyramine, PEA, and octopamine produce episodic rhythmic motor bursting patterns  
These episodic patterns have bouts of locomotor-like bursting that were interrupted by relatively quiescent 
periods.  A. Typically, when tyramine, PEA, and octopamine produced an episodic pattern, the bouts were 
concurrently bursting on the ventral root and muscles (also see the right half of C).  B. Occasionally, 
octopamine and PEA produced episodic bouts of bursting that alternated on the right and left side.  C. 
Once, for octopamine there was continuous bursting on one channel and episodic bursting on another.  D. 
Once, for PEA there was a slow LLA pattern where one channel, r-TibA, had bursting within the episodes 
during the time of the long bursts on the other channels (highlighted).  C&D. For tyramine, octopamine and 
PEA there were a few experiments where the pattern changed over time with no additional intervention.  
The upper traces in black for each trace have been rectified and low-pass filtered. 
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channels (Figure 5.3D, highlighted).  In another the opposite occurred, where a slow 

burst replaced a bout of higher frequency bursting replaced (Figure 5.3B, highlighted).   

5.4.1.1.4 Trace amines induced bursting could change phenotypes over time 

The pattern of motor rhythmicity spontaneously changed phenotype over time 

(Figure 5.3C and D).  This was seen in tyramine (n=2/14), octopamine (n=2/10), and 

PEA (n=2/14).  This included patterns that started out as continuous and changed to 

episodic or vice versa, as well as patterns that start out continuous and changed to slow 

LLA (Figure 5.3D).   

5.4.1.2 Phasing of muscles in 5-HT and the trace amines 

Overall, the 5-HT/NMDA phasing was consistent with what has been found 

previously for 5-HT, where tibialis anterior, an ankle flexor, was active during the flexor 

phase, and medial gastrocnemius, an ankle extensor, was active during the extensor phase 

(Figure 5.4A).  Semimembranosus and semitendinosus, both knee flexor and hip 

extensors, were usually both active during the extensor phase, while rectus femoris, a 

knee extensor and hip flexor was active during the flexor phase.  The only difference 

observed from an earlier report was that adductor magnus was active during either the 

extensor (n=1/2) or flexor phase (n=1/2) rather than just the extensor phase (Kiehn and 

Kjaerulff 1996). 

Phase diagrams revealed differences in phasing during continuous locomotion of the 

TAs as compared to that observed for 5-HT, showing that different muscles were affected 

more by certain TAs (Figure 5.4B).  It should be first emphasized that the left L2 ventral 

root did not have any significant changes in phasing for any of the TAs, and thus 

provided a strong standard for comparisons between muscles under the different 
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Figure 5.4: Phase diagrams for 5-HT and the trace amines 
A. 5-HT. B. Tryptamine, tyramine, octopamine and PEA. The phase diagrams show the relationship 
between the phases for regular LLA patterns.   All phases are in reference to the onset of the l-L2 ventral 
root.  Bars represent the average burst duration of muscles normalized to cycle duration.  Burst onset is on 
the left and burst termination on the right for the TA compared to 5-HT.  The numbers of rats used to 
obtain the diagrams are given in the middle.  The phase diagram for 5-HT underlays the phase diagrams of 
the TAs in B.  Significant shifts in the average phase of the TAs compared with 5-HT are indicated as * for 
p<0.05 and ** for p<0.01. 
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neurochemical conditions.  In comparison to 5-HT, all TAs preserved the muscles in their 

respective flexor and extensor phase without evidence of phase conversions (i.e. between 

flexor and extensor activity phases); however, there were shifts in the average phase 

within the dominant activity period.  In all cases, these were leftward shifts towards 

earlier in the phase.  For tryptamine this occurred with tibialis anterior, semitendinosus, 

and semimembranosus.  For tyramine, there were shifts in phase for tibialis anterior and 

rectus femoris.  For octopamine, there were shifts in semitendinosus and 

semimembranosus. There were no significant shifts observed with PEA.    

Unlike for continuous locomotion, TA muscle activity phase conversions were 

observed in a given TA during episodic patterning compared to continuous TA 

locomotion.  For example, during tyramine induced episodic bursting, the extensor right 

medial gastrocnemius muscle can shift into the flexor phase (Figure 5.3A), and for 

octopamine, the right semimembranosus muscle is shifted almost entirely into the flexor 

phase rather than being almost entirely in the extensor phase (Figure 5.3C, right).  There 

did not appear to be changes in phase for the episodic bursting when there was alternation 

of the bouts between the right and left sides for octopamine and PEA (Figure 5.3B). 

5.4.1.3 Amplitude of TAs compared to 5-HT 

In order to examine the relative motor pool recruitment of the TAs compared to 5-HT, 

the percent difference in peak amplitude in the same preparation was examined.  Overall, 

the TAs appeared to have decreased amplitudes with tryptamine exhibiting the least 

difference (Figure 5.5).   Pooling continuous and episodic bursting together, all four of 

the TAs had significantly decreased amplitudes for left L2 ventral root when compared to 

5-HT in the same experiments.  Examining tibialis anterior, there was a trend for 
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decreased amplitude for tyramine, octopamine, and PEA.  This was significant for left 

tibialis anterior and right tibialis anterior during tyramine and right tibialis anterior during 

octopamine induced LLA (Figure 5.5).  Overall the sample sizes were too small to 

individually compare most of the muscles.  When grouping all of the muscles together, 

EMG amplitudes were lower for all four TAs compared to 5-HT.  This difference was 

significant for tyramine (p<0.001, n=13), octopamine, (p<0.05, n=9), tryptamine (p<0.05, 

n=10), but not PEA (p= 0.15, n=14).   

5.4.2 Trace amines modulate ongoing locomotor activity 

Aromatic-L-amino acid decarboxylase (AADC) is the rate limiting enzyme in the 

production of TAs, but not the monoamines.  This highly regulated enzyme can undergo 

rapid changes in its activity via phosphorylation, which can changes the levels of the 

TAs, but not the monoamines, allowing minute to minute regulation of TA synthesis 

(Berry et al. 1996).  In Chapter 3, I found that AADC expression is widespread 

throughout the spinal cord, meaning that TA synthesis is also widespread.  Unlike the 

monoamine, the TAs are produced in the spinal cord, but not typically stored in vesicles, 

leading to a high turnover rates (Berry 2004; Burchett and Hicks 2006).  This high level 

of TA regulation makes it an ideal candidate for modulating motor activity.  It is possible 

that the TAs act as an additional modulatory layer to further alter ongoing 

monoaminergic based activity in the spinal cord.  To examine this I tested whether the 

TAs can modulate ongoing 5-HT/NMDA LLA.  As will be described below, I found that 

the TAs altered locomotor patterning, frequency, and amplitude.  The most striking 

changes were to subgroups of tyramine and octopamine, where dramatic changes to 

patterning were observed.   
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Figure 5.5: Differences in burst amplitude of the trace amines compared to 5-HT   
The percent change in left L2 ventral root (l-L2) ENG and muscle EMG amplitude of the TAs/NMDA 
compared with 5-HT/NMDA in the same experiment was calculated and are shown for individual 
experiments as either diamonds for continuous LLA or squares for episodic LLA.  The decreases in 
amplitude of the l-L2s were significant for all of the TAs (tyramine, octopamine, PEA, and tryptamine). * 
indicates p<0.05, and ** indicates p<0.01. 
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The trace amines either maintain locomotor-like activity or produce episodic patterning 

when added to ongoing locomotion 

Adding the TAs to ongoing 5-HT/NMDA LLA led to two main responses.  First, the 

continuous locomotor-like pattern produced by 5-HT/NMDA was maintained after the 

addition of the TAs (Figure 5.6).  All TAs could have this response.  In fact for 

tryptamine (n=12/12) and PEA (n=11/11), this was the only response seen.  However, for 

tyramine (n=8/12) and octopamine (n=3/7) maintaining the continuous pattern was not 

the only response.  

The second response was the conversion from continuous locomotor-like pattern 

produced by 5-HT/NMDA to and episodic pattern due to the addition of tyramine 

(n=4/12) and octopamine (n=4/7) (Figure 5.7).  Thus, tyramine and octopamine could 

convert the phenotype of 5-HT locomotion. This is interesting in relation to the section 

above describing the TA induced patterning in the absence of 5-HT.  Here, the incidence 

of episodic patterning was similar for all TAs except PEA.  For PEA, the episodic 

activity that was previously evoked (8/14 animals) was now completely suppressed in the 

presence of 5-HT (0/11). 

5.4.2.1.1 Trace amines alter the frequency and amplitude of ongoing 5-HT locomotor-

like activity  

For ongoing continuous 5-HT/NMDA LLA monitored at the L2 ventral root, PEA 

increased frequency (11±12%; p<0.05) without changing amplitude (p=0.19), while 

tryptamine increased amplitude (10±11%, p<0.01) without changing frequency (p=0.6) 

(Figure 5.8, and Figure 5.9).  For octopamine and tyramine, when continuous and 

episodic patterns were pooled, octopamine increased the 5-HT-evoked frequency 
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Figure 5.6: Effects of the trace amines on normal 5-HT evoked locomotor-like activity 
When the TAs were added to ongoing LLA, continuous LLA can be maintained with the pattern and the 
phasing between recorded muscles remaining largely comparable.  Note however that for any given 
muscle, addition of the TA can lead to overt changes in EMG amplitude.   



 151

 

 

Figure 5.7: Tyramine and octopamine can convert continuous 5-HT locomotion into the episodic 
pattern 
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Figure 5.7: continued 
These episodic patterns have bouts of locomotor-like bursting that were interrupted by relatively quiescent 
periods.  A&B. For tyramine and octopamine, the most common pattern was where some of the muscles 
and/or ventral root converted to episodic bursting while others maintained a more continuous form of 
bursting.  C. For tyramine, there was the conversion to concurrent episodic locomotor bursting.  D. For 
octopamine, there was episodic bursting that alternated between the right and left sides.  E. For tyramine, 
continuous 5-HT/NMDA LLA may be modulated into episodic bursting by tyramine and then back to 
continuous bursting with no further intervention 
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(61±42%; p<0.01) with tyramine exhibiting a similar trend for increase (48±65%; 

p=0.12) (Figure 5.8).  Tyramine and octopamine also increased the amplitude of the left 

L2 ventral root when added to ongoing 5-HT/NMDA LLA (14±12%, p<0.05; and 

11±12%, p<0.05; respectively) (Figure 5.9).   

Assuming L2 ventral root amplitude reflects flexor muscle activity, this implies that 

the TAs, tryptamine, tyramine and octopamine, facilitated flexor activity (Kiehn and 

Kjaerulff 1996).  Based on this, I would conclude that the TAs generally facilitate flexor 

activity with a clearly significant facilitation from tyramine and tryptamine during 

continuous locomotion (Figure 5.9).  However, EMG amplitude for the ankle flexor 

tibialis anterior actually decreased in amplitude with tyramine (p<0.05) with a similar 

trend observed with tryptamine (p=0.08). One explanation for this discrepancy is that the 

large majority of tibialis motoneurons exit from the L3 spinal segment (Nicolopoulos-

Stournaras and Iles 1983).  On the other hand, hip and knee flexors appear to exit L2 

(iliacus, rectus femoris, pectineus, and gracilis).  Of these, I occasionally recorded from 

rectus femoris (knee extensor/hip flexor) which was always active during the flexor phase 

of locomotion.  While the sample sizes are too small to make statistical comparison, 

rectus femoris did appear to increase in amplitude in the presence of tryptamine and 

tyramine supporting the notion that these TAs increase hip flexions while concomitantly 

decreasing ankle flexion (i.e. tibialis anterior). 

For tryptamine, muscles that can act as knee extensors and active during the extensor 

phase (semimembranosus and semitendinosus) also underwent a significant reduction in 

amplitude when pooled together (p<0.05).   
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Figure 5.8: The frequency of the motor rhythm increases significantly when octopamine and PEA are 
added to ongoing 5-HT locomotor like activity 

Tyramine also tended toward increases in frequency, while tryptamine has no affect.  In one of the tyramine 
experiments (labeled same experiment above), episodic LLA eventually converted to continuous LLA.  The 
frequency of this experiment was the average of the episodic and continuous LLA and was denoted by a 
grey diamond inside of a grey square.  * indicates a p<0.05. 
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Figure 5.9: Percent change in burst amplitudes after adding the TAs to ongoing 5-HT locomotor-like 
activity 

The increases in amplitude of l-L2 ventral root ENG were significant for tyramine, octopamine, and 
tryptamine.  * indicates a p<0.05. 
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5.4.2.1.2  Tyramine and octopamine convert continuous locomotor-like activity to 

episodic patterns  

In a subset of experiments, tyramine (n=4/12), and octopamine (n=4/7) converted 

continuous 5-HT/NMDA LLA into episodic bursting (Figure 5.7). The patterns produced 

were similar to those observed when the TAs and NMDA were applied alone (Figure 

5.3).  There were a number of different ways that this pattern manifested itself. 

First, the most common pattern observed was where some muscles and/or ventral root 

converted to episodic bursting while others maintained a more continuous form of 

bursting.  This was seen for both tyramine (n=2/4) and octopamine (n=3/4).  For 

example, while the left L2 ventral root and right rectus femoris bursting are continuous, 

right semimembranosus and right adductor magnus have episodic bursting (Figure 5.7A 

and B).   

Second, the simplest behavior seen with tyramine (n=1/4) was the conversion to 

concurrent episodic locomotor bursting (Figure 5.7C).  This was by far the most 

common episodic activity pattern seen when the TAs were applied without 5-HT in the 

section above (see Figure 5.3).   

Third, episodic bursting that alternated between the right and left sides was seen only 

once (with octopamine and had some LLA overlap during transition periods; Figure 

5.7D).  When the TAs were applied without 5-HT as reported above, this form of 

bursting was observed for tyramine (1/5), octopamine (2/5), and PEA (2/8), and in the 

isolated cord, it was observed for octopamine (2/9) and PEA (1/7).   

Finally, a pattern never observed previously was seen once for tyramine (1/4).  There 

were alternating bouts that were not associated with flexor/extensor or left/right 
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coordination (right tibialis anterior alternating with left L2 ventral root, right 

semimembranosus, and right semitendinosus; Figure 5.7E, middle). Additionally, the 

type of pattern could change over time. This was seen for tyramine (n=2/4).  For 

example, continuous 5-HT/NMDA LLA may be modulated into episodic bursting by 

tyramine and then back to continuous bursting with no further intervention (Figure 

5.7E).   

5.4.2.2 Trace amines maintain the locomotor phase relations established by 5-HT 

Adding the TAs to ongoing 5-HT/NMDA did not significantly change the phasing for 

any muscle compared for either the continuous or episodic result (Figure 5.10). 

5.5 Discussion 

In this, study, I examined the effects of the TAs on muscle activity recorded in the in 

vitro isolated rat spinal cord with intact hindlimbs.  I found that consistent with the 

patterns observed using ventral root recordings in the isolated spinal cord, the TAs 

recruited the same predominant patterns: regular continuous locomotion, a slow rhythmic 

activity whose coordination pattern was consistent with recruitment of locomotor circuits, 

and episodic patterns that included locomotion.  One difference, however, was that the 

episodic patterns produced were more numerous in the attached hindlimb preparation.  

Since I hypothesized that the TAs would have distinct differentiable actions on motor 

pool recruitment during rhythmic motor behaviors, I examined differences in recruitment 

and found that indeed the TAs did have differences, especially in phasing compared with 

5-HT. 
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Figure 5.10: Summary of phasing before and after adding the trace amines to ongoing 5-HT induced 
locomotor-like activity 

Adding the TAs to ongoing 5-HT/NMDA LLA did not significantly change the phasing.  The mean phase 
is shown on the y-axis.  On the left is the phase for 5-HT/NMDA LLA, and on the right is the phase once 
the TA has been added to the ongoing 5-HT/NMDA LLA.  Open circles or open diamonds indicate an 
experiment where the root or muscle was present before and after the TA was added; there is a line between 
the circles or diamonds to demonstrate the change for that experiment.  When muscle EMG activity was 
present only before or emerged only after, it is indicated by a filled in circle or diamond.  All phases are in 
reference to the onset of the l-L2 ventral root.   Experiments without a l-L2 are not included. 
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Further, I examined the ability of the TAs to modulate ongoing 5-HT/NMDA 

locomotor-like activity, since the TAs may predominantly be acting as modulators of 

ongoing locomotion.  I demonstrated that the TAs modulated the ongoing pattern, and 

that there were differences between the TAs.  All TAs but tryptamine increased 

locomotor frequency, and all TAs but PEA increased the L2 ventral root amplitude.  The 

most pronounced effects to motor coordination produced with 5-HT locomotion by the 

TAs were to a subgroup of tyramine and octopamine applications where dramatic 

changes in patterning were observed.   

Overall, given the widespread expression of the synthesis enzyme for the TAs and 

their high turnover rates, I think that the TAs act to locally modulate the neurons in which 

they are currently being made.  Unlike the monoamines, which are not produced in the 

spinal cord, the TAs can react to the cellular environment to change the output and add 

flexibility to motor control mechanisms.  It is possible that the widespread range of 

effects seen by bath application of the TAs does not reflect endogenous actions occurring 

during normal behavior; however, they give clues to how the TAs ca act as modulators in 

the spinal cord, even if exaggerated.  In this regard, the possibility that they could be used 

pharmacologically for therapeutic strategies could be explored.  

5.5.1 TAs can produce locomotor activity 

5.5.1.1 Comparison the output produced by the isolated spinal cord preparation with 

and without attached hindlimbs  

Here, the TAs in the presence of sub-locomotor concentrations of NMDA produced 

patterns consistent with those observed using ventral root recordings in the isolated spinal 



 160

cord.  The same predominant patterns were observed; namely, regular continuous 

locomotion, a slow rhythmic activity whose coordination pattern was consistent with 

recruitment of locomotor circuits, and episodic patterns that included locomotion. 

Despite having an almost identical in vitro experimental arrangement, there were 

several major differences between isolated and the hindlimb-intact rhizotomized 

preparations.  First, the proportions of the different patterns were different.  Unlike in the 

isolated spinal cord where the slow rhythmic pattern was produced 5 of 24 times by 

tyramine, it was never produced in the attached hindlimbs preparations.  Conversely, 

octopamine and PEA, which never produced the pattern in the isolated spinal cord, each 

produced the pattern once in the attached hindlimb preparation.  This difference is less 

surprising, given the low occurrence.  Additionally, while episodic patterning was 

dominant for octopamine and PEA in the isolated spinal cord, its expression incidence 

was equal to regular continuous locomotion in the attached hindlimbs. Second, there was 

a trend towards higher frequencies in the attached hindlimb preparation, with PEA being 

significantly faster.  Third, the episodic patterns produced in the attached hindlimb 

preparation were more numerous than in the isolated spinal cord, which could be partially 

reflecting the number of channels from which I was recording.  By adding the complexity 

of muscles, the output could be increased, since it has been previously suggested that use 

of ventral root activity may not reflect recruitment of individual muscles (Cowley and 

Schmidt 1994b).  A prime example being where I found that the ventral root was 

continuously bursting while at least one muscle was having different actions (Figure 

5.3C, left) 
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That there were differences between the preparations is interesting given that there 

was no sensory feedback from the muscles since the dorsal roots were cut.  An interesting 

and perhaps decisive difference in experimental set-up between the isolated spinal cord 

and the attached hindlimb preparation was the addition of a superfusion system rather 

than static bath, which likely increased tissue oxygenation by increasing the flow rate.  

Increasing flow rate has been shown to affect the locomotor-like activity (Wilson et al. 

2003).  

5.5.1.2 Trace amines produce continuous locomotor-like activity pattern 

The general phasing of muscle characteristics of 5-HT and TA induced continuous 

locomotion were similar to that seen in adult rat (de Leon et al. 1994; Gruner and Altman 

1980; Gruner et al. 1980) and in previous work in the isolated spinal cord with one 

hindlimb attached (Kiehn and Kjaerulff 1996).  While there were sometimes distinct 

amine-dependent shifts in the timing within the phase, tibialis anterior, vastus medialis, 

and rectus femoris were active at some point during the flexor phase, and medial 

gastrocnemius, semitendinosus and semimembranosus were active during the extensor 

phase.  The major differences in phasing between 5-HT and tyramine were to muscles 

acting during the flexor phase (tibialis anterior, an ankle flexor, and rectus femoris, a 

knee extensor / hip flexor), which were both active earlier in the phase than during 5-HT.  

This presumably causes the leg to be move forward earlier.  The biggest differences with 

octopamine were to muscles active during the extensor phase (semitendinosus and 

semimembranosus, both knee flexor/hip extensor), which were both active earlier in the 

phase than 5-HT.  This presumably causes the leg to pull into the equivalent of stance 

phase earlier.  Tryptamine also shifted muscles to earlier in the stage both flexors (tibialis 
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anterior) and extensors (semitendinosus and semimembranosus, both knee flexor/hip 

extensor).   

The exact behavior represented by each of these shifts in patterns is not clear.  With 

the limited behavior of the neonate, there are very few patterns to which these results can 

be compared.  Previous work has suggested that late flexion of rectus femoris observed in 

5-HT rhythms is most consistent with swimming.  Of the patterns examined, this appears 

to be the pattern to which the TAs are most similar (de Leon et al. 1994; Kiehn and 

Kjaerulff 1996).  However, all of the TAs have rectus femoris active earlier in the flexor 

phase rather than later as seen with swimming.  DA has been observed to be the most 

similar to walking (de Leon et al. 1994; Kiehn and Kjaerulff 1996).  Galloping is another 

interesting behavior to consider; however, there is almost co-contraction of tibialis 

anterior and gastrocnemius, which is not seen in TA induced patterning.  In neonatal rats, 

crawling is actually the dominant pattern until the middle of the second week postnatal 

since the rats are not strong enough to pull their bellies off of the ground (Westerga and 

Gramsbergen 1990); however, there are not enough muscles to make meaningful 

comparisons with the available EMGs (Juvin et al. 2005).  

5.5.1.3 Tyramine, octopamine, and PEA produce episodic activity patterns 

The more intriguing pattern to reflect on is the episodic pattern.  I do not know the 

significance of these various patterns of activity or if they are actually relevant, but there 

are a number of interesting possibilities to consider.  First, they could represent simply 

the starting and stopping of locomotion.  Interestingly, normal rodent locomotion is not 

continuous as seen with 5-HT, but periodic as observed with the TAs (De Bono et al. 

2006; Rodnick et al. 1989).  Second, it could be part of a different behavior such as 
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scratch, copulation, or orgasm (Carro-Juarez and Rodriguez-Manzo 2005; 2006; 

Robertson et al. 1985).  Third, the TAs may be playing a role in development.  Episodic 

spontaneous bursting has been observed during development in chick, mouse, and rat 

many facilitate the formation of functional synaptic connections (Bekoff et al. 1975; 

Hanson and Landmesser 2003; Nakayama et al. 2004; O'Donovan et al. 2008; Whelan et 

al. 2000).  Interestingly, in the developing rat embryo, AADC positive neurons are 

observed on day 12 of development in all cells of the notochord and in neuroepithelial 

cells of the ventral neural tube.  AADC was enzymatically active, and these cells were 

tyrosine hydroxylase negative, which indicates that it is likely that the TAs are being 

produced in these cell and could be playing a role in development (Teitelman et al. 1983).   

5.5.1.4 Amplitude of trace amines compared to 5-HT 

As compared to that observed with 5-HT, I observed a decreased amplitude of the left 

L2 ventral root for all of the TAs and tibialis anterior for tyramine and octopamine.  

While Kiehn and Kjaerulff (1996) did not observe consistent changes in amplitude 

between DA and 5-HT (Kiehn and Kjaerulff 1996), Klein et al. (2010) did see higher 

amplitude for adductor magnus in cauda equine stimulation evoked patterns than 5-

HT/NMDA evoked patterns (Klein et al. 2010) consistent with my work that there can be 

changes. 

The observed smaller EMG amplitude for the TAs compared with 5-HT may be 

related to the excitability of the motoneuron pool.  Indeed, 5-HT is known to depolarize 

motoneurons (Hochman and Schmidt 1998).  In Chapter 4, I showed that while 

tryptamine and tyramine directly depolarize motoneurons, the percent increase over 

baseline was much smaller than 5-HT.  Also, PEA and octopamine do not significantly 
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change the activity of motoneurons.  Therefore, while 5-HT increases excitability in the 

motoneurons and the neurons at the level of the CPG, the TAs appear to more 

preferentially CPG neurons. This could easily explain why the TAs have decreased 

amplitudes compared with 5-HT.  If PEA and octopamine are more selective recruiters of 

the CPG, these may be preferred in clinical strategies clinically where motoneurons are 

already over-excited and there is the desire to just recruit the CPG. 

5.5.2 TAs modulate ongoing locomotor activity 

5.5.2.1 The TAs can alter the frequency and amplitude of ongoing locomotor-like 

activity  

When the TAs are added to ongoing 5-HT/NMDA LLA, I observed consistent 

increases in the frequency for tyramine, octopamine, and PEA which implies that they are 

having modulatory effects on interneurons that control frequency.  The increase in 

frequency supports facilitation at the level of the rhythm-generator CPGs (Rybak et al. 

2006b). One possible group of interneurons that has been identified are the V1 

interneurons, which when either inactivate or deleted lead to an inability to burst or step 

at higher frequencies (Gosgnach et al. 2006).  Since tryptamine does not change the 

frequency of ongoing 5-HT locomotion, it is presumed that it is not acting on these 

interneurons.   

PEA does not have actions on left L2 ventral root amplitude.  Unlike the other TAs, 

PEA never had an effect on motoneurons as reported in the last chapter, and therefore, it 

is plausible that it would not act to increase amplitude here.  Surprisingly, there were no 

significant changes in amplitude for any of the muscles after the addition of the TAs.  

This is likely due to the small sample size.  The addition of tryptamine and tyramine led 
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to trends towards increases in amplitude for rectus femoris, supporting the notion that 

these TAs increase hip flexions.  Trends towards decreases were seen for tibialis anterior 

(ankle flexor) and semimembranosus and semitendinosus (both knee extensors).   

5.5.2.2 Tyramine and octopamine produce episodic bursting patterns  

Tyramine and octopamine dramatically modulated on-going 5-HT locomotor-like 

activity by converting it to episodic bursting.  Like with the TAs alone, there is a huge 

amount of variability in the patterning produced.  This is potentially a good thing.  

Variability and flexibility allow the spinal cord to adapt depending on the 

neuromodulatory state of the system and the requirements of the system (Klein et al. 

2010).  The modulatory state of the TAs is readily changed by varying the amount of 

aromatic amino acids, the activity of AADC, or the activity level of the monoamine 

oxidases, and this variability could account for some of the different patterns seen.  Many 

of the different possibilities as to what could be happening are discussed above.  

I demonstrated that one important advantage of the isolated spinal cord with hindlimbs 

attached is that it provides a more accurate representation of the distinct motor patterns 

produced by the TAs than ventral root recordings.  I showed examples where ventral root 

recordings alone did not accurately report what was happening in the hindlimb muscles.  

For example, continuous L2 ventral root activity could be coincident with episodic EMG 

(Figure 5.7A and B).  Interestingly this was the dominant pattern in the presence of 5-

HT, yet was only seen once with the TAs applied without 5-HT.  As a result of the EMG 

the more complex nature of the TAs was revealed.  Similarly, it is likely that the unique 

pattern produced by DA seen in Chapter 4 could demonstrate important complexities in 

the DA motor pattern. 
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5.5.3 Conclusions 

This chapter provides evidence that overall, the TAs are capable of facilitating 

ongoing locomotor output.  The TAs can produce unique patterning as well as alter motor 

patterns produced by 5HT.  The most pronounced effects on coordination to 5-HT 

locomotion by the TAs were to a subgroup of tyramine and octopamine applications 

where dramatic changes in patterning were observed.  While it remains to be seen 

whether these effects are seen normally, the TAs do appear to be produced endogenously, 

and therefore controlling their release and/or receptor activation may provide new 

therapeutic strategies for the management of spinal cord dysfunction after spinal cord 

injury, and therefore, warrants further study to determine their efficacy. 
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CHAPTER 6  

DISCUSSION AND CONCLUSIONS 

6.1 Summary 

Trace amines (TAs) named for their low endogenous concentrations in mammals, are 

related to the classical monoamine transmitters, but have been understudied and thought 

of as false transmitters.  They share structural, physiological, pharmacological, and 

metabolic similarities with the monoamines, including synthesis by the aromatic-L-amino 

acid decarboxylase (AADC) enzyme.  In 2001, a new class of receptors preferentially 

activated by the TAs, termed trace amine-associated receptors (TAARs), was discovered 

establishing a mechanism for TA actions independent of classic monoaminergic 

mechanisms. While the TAs and some of their receptors are present in the mammalian 

central nervous system (CNS), their physiologic role remains uncertain.  I hypothesized 

that the TAs are found intrinsically in the spinal cord and that they are able to modulate 

spinal neural networks.   

Using immunohistochemistry, numerous spinal neurons were identified that express 

AADC, the TAs (octopamine, tryptamine, and tyramine), and TAARs (TAAR1 and 

TAAR4).  Similar results were seen for AADC and TAAR1 with in situ hybridization. 

The most consistent observation was for labeling D cells associated with the central canal 

and in motoneurons. Overall, these results provided evidence for the presence of an 

anatomical substrate onto which the TAs could have intrinsic biological actions in the 

spinal cord. 
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Using exogenous application of the TAs in the isolated spinal cord in vitro, and in vivo 

in the mid-thoracic chronically spinalized, I showed that the TAs could induce rhythmic 

locomotor-like activity.  TA injection-induced hindlimb motor rhythms observed in 

chronic spinalized animals, supports TA spinal actions independent of the descending 

monoaminergic systems.  In the presence of NMDA, TA applications recruited a variety 

of rhythmic motor patterns in the isolated spinal cord. This ranged from locomotor 

activity indistinguishable from 5-HT/NMDA induced locomotion to complex patterns 

including an episodic form of locomotion where there were locomotor bouts with 

intervening quiescent periods.  

TA actions of pattern generating circuits: (i) had slower kinetics of activation than 5-

HT and NA, (ii) were attenuated in the presence of monoamine transport inhibitors, and 

(iii) had increased intracellular labeling even when incubated in a nominally Na+-free 

solution. Together these results suggest that the TAs required transport into neurons to 

exert their actions, and that transport occurred by Na+-dependent monoamine transporters 

as well as additional Na+-independent transporters.  

Finally, I used the in vitro isolated spinal cord with attached hindlimbs to record 

electromyographic (EMG) activity from various hindlimb muscles: (i) to compare the 

relationship between the TAs and serotonin (5-HT) evoked motor coordination, and (ii) 

to examine the ability of the TAs to modulate ongoing 5-HT and NMDA locomotor-like 

activity.  The TAs produced both the continuous and episodic patterns on muscles as 

observed in ventral root recordings, but EMG recordings provided more detailed insight 

into specific muscle actions.  The TAs also generally increased both frequency and 
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amplitude of ongoing 5-HT locomotor frequency, with tyramine and octopamine also 

particularly able to alter 5-HT motor coordination patterns. 

6.2 Mechanisms involved in trace amine modulation of spinal cord motor function 

6.2.1 Trace amines are intrinsically produced in the spinal cord 

My immunohistochemistry results confirmed previous analysis of tissue samples 

(Boulton et al. 1977; Juorio 1988; Karoum et al. 1979; Spector et al. 1963) and 

demonstrated that the TAs are present in the spinal cord.  Two not mutually exclusive 

options explain their presence.  First, some TAs could arise from dietary sources 

(Gardner et al. 1996; Ghozlan et al. 2004) with subsequent transport across the blood 

brain barrier via transporters. This is known for PEA and tryptamine but not tyramine 

(Oldendorf 1971).  Indeed, the L-type amino acid transporters (LATs), which transport 

PEA, were found at the blood-brain barrier (Segawa et al. 1999).  Octopamine transport 

has not been studied.  

A second and probably more widespread mechanism is via endogenous synthesis in 

the spinal cord by AADC from the aromatic amino acid precursors, which were also 

found in many foods (Gardner et al. 1996).  It has been shown that meals cause 

physiologic-size changes in aromatic amino acid concentrations (Fernstrom 1990) that 

cross the blood brain barrier (Oldendorf 1971), likely via LATs (Segawa et al. 1999).  

The raised levels of the aromatic amino acids in the brain increase the synthesis of the 

monoamine transmitters (Fernstrom and Wurtman 1971; Wurtman et al. 1974) and so, 

while not explicitly studied, must also be increasing the synthesis of the TAs as the same 

essential synthesis enzyme is involved (AADC).   
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With AADC as the rate-limiting enzyme for the synthesis of TAs (Berry et al. 1996; 

Dyck et al. 1983), events that regulate AADC activity should alter TA levels.  Indeed, 

changes in AADC activity produced proportional changes in TA production (Jones et al. 

1983; Juorio 1982; Juorio et al. 1991a; Juorio et al. 1991b).  Thus, rapid changes in 

AADC activity by phosphorylation can change TA levels and fine tune their actions, thus 

allowing minute to minute regulation (Berry et al. 1996).  My results demonstrated 

widespread AADC labeling in the spinal cord, indicating that the TAs can be produced 

all over the spinal cord, thus giving a substrate for widespread TA production. 

TA labeling was located in the same locations as AADC, including labeling in central 

canal cells, ventral stream cells emanating from the central canal, ventral funiculus, 

ventral horn interneurons, and motoneurons. The observed labeling pattern varied 

between animals, the most common pattern being a widespread diffuse labeling. 

Nonetheless, there was a subset of animals with more selective and intense labeling in 

ventral horn interneurons.  With TA synthesis dependent on the dietary availability of 

aromatic amino acids and the modifiable levels of AADC activity in different cells based 

on their phosphorylation status, the observed variability in TA labeling would be 

expected.   If there were both a high level of aromatic amino acids and increased activity 

of AADC, there should be a higher level of the TAs in the spinal cord.  However, a low 

supply of aromatic amino acids and/or low activity of AADC would lead to less TA 

synthesis and consequent labeling.  This variability could be an advantage for the 

modulation of spinal motor function. 

In addition to AADC, octopamine further requires DBH, which is located only in 

descending neurons, implying that octopamine is only produced in descending 
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noradrenergic neurons. However, another enzyme, called monooxygenase, DBH-like 

1(Moxd1) has comparable function (Chambers et al. 1998; Xin et al. 2004) and so could 

also theoretically convert tyramine to octopamine.  Moxd1is strongly expressed in the 

mouse spinal cord including in presumed motoneurons and around the central canal 

(Appendix A.1) (Allen_Spinal_Cord_Atlas 2009).  Further studies will be required to 

determine if Moxd1 does in fact produce octopamine, and hence, if octopamine is 

producing intrinsically in the spinal cord.  

6.2.2 Aromatic-L-amino acid decarboxylase positive neurons represent a intrinsic 

trace aminergic system 

As stated above, I found widespread AADC labeling in the spinal cord, including 

expression around the central canal, the ventral funiculus, and in ventral neurons, 

including motoneurons.  The strongest labeling was consistently found around the central 

canal in cells consistent with D1 cells (Jaeger et al. 1984a; Jaeger et al. 1983).  Co-

labeling of the TAs with AADC in the central canal cells provides strong evidence that 

the D cells are in fact trace aminergic as had been previously hypothesized (Berry 2004; 

Jaeger et al. 1983).   

D1 cells project at least one of their processes into the lumen of the central canal, 

which makes them part of a group of CSF-contacting neurons (Jaeger et al. 1983; Vigh et 

al. 2004).  The specific role of the D cells and whether they are specifically involved in 

locomotion will need further investigation, although one intriguing hypothesis is that D1 

cells function to monitor and transport aromatic amino acids from the CSF and then 

synthesize TAs to intrinsically increase their activity (via TAs intracellularly activating 

Gs-coupled TAARs) . This increased activity could then be synaptically relayed to the 
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motor system.  Indeed, it should be noted that CSF-contacting cells present in zebrafish 

larva can initiate slow swimming by optogenetic stimulation and that these neurons 

provide the necessary tone for spontaneous forward swimming (Wyart et al. 2009). 

Importantly, I showed that D cells and their white matter projection system were 

maintained after chronic spinalization demonstrating that that the white matter tract is 

part of an intrinsic spinal aminergic system.  

The presence of other AADC+ neurons elsewhere in the spinal cord, based on both in 

situ hybridization and immunohistochemistry, demonstrated that there are other 

populations of cells in the spinal cord also capable of synthesizing TAs. This includes 

motoneurons. 

6.2.3 Trace amine-associated receptors provide a substrate for trace amine actions 

in the spinal cord 

I found that both TAAR1 and TAAR4 were widely expressed in the neonatal rat spinal 

cord, including in the central canal, ventral interneurons, and motoneurons.  TAAR 

expression was found in the same locations as AADC and the TAs, providing a 

mechanism though which the TAs can produce intrinsic modulatory actions.  As has been 

observed before for TAAR1 in HEK cells (Bunzow et al. 2001; Miller et al. 2005), I 

observed cytoplasmic labeling for TAAR1 and TAAR4, both of which are activated by 

the TAs.  Tyramine and PEA activate TAAR1, while PEA and tryptamine activate 

TAAR4 (Borowsky et al. 2001).  The cytoplasmic location of the ligand and the receptor 

(e.g. tyramine and TAAR1) supports intracellular activation of signal transduction 

pathways, as suggested previously (Miller et al. 2005).  Since the TAARs are 

intracellular, access to them is limited.  Hence, in order to have actions on them, the TAs 
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must either be produced in the cells from their aromatic amino acids precursors, or be 

taken up by transporters (described below).  Importantly, this form of intrinsic 

neuromodulation does not require release from synaptic vesicles, and could explain why 

the TAs do not appear to be concentrated in vesicles.  It could also explain the relatively 

trace amounts of TAs found in the CNS, as TA actions would not require storage as long 

as their production was in the vicinity of the intracellularly located TAARs.  This also 

means that access to the TAARs in cells not producing TAs would be limited by cell 

membrane transporters, and would explain the low potency of the TAs for TAAR4 

expressed in cell lines not containing such transporters (e.g. HEK cells in (Borowsky et 

al. 2001).  An exclusive intracellular location of TAARs may also explain why other 

studies failed to identify TAAR ligands despite the prediction that they must be small 

molecular weight compounds structurally similar to the TAs (Lindemann et al. 2005; 

Lindemann and Hoener 2005).  Almost all assays have assumed cell surface expression 

of the receptor. 

Currently, the role of the TAARs in the spinal cord is unknown.  However, it is known 

that they that they are Gαs-coupled proteins able to activate cyclic adenosine 

monophosphate (cAMP) (Borowsky et al. 2001; Bunzow et al. 2001).  There are a 

number of classes of downstream substrates which cAMP signaling can activate 

including transcription factors, voltage-gated ion channels, ion pumps, and 

neurotransmitter receptors, all of which are candidates after TAAR activation (Greengard 

2001).   

6.2.4 Evidence of trace amine actions on descending monoaminergic terminals  
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In my work, one possible mechanism by which the TAs could exert their action then, 

is by transporter-mediated TA uptake at descending monoaminergic terminals.  It has 

been reported that TAs can facilitate monoamine transmitter efflux in the CNS via 

reverse transport (Paterson et al. 1990; Sulzer et al. 2005).  This monoamine efflux could 

contribute to the bursting I see in my experiments.  TAs uptake is facilitated by 

monoamine transporters, which are greatly enhanced by TA activation of TAAR1 (Xie et 

al. 2007).  Further, PEA activation of TAAR1 is required for monoamine efflux via the 

monoamine transporters, suggesting an important modulatory role of TAAR1 in 

monoamine transporter function (Xie and Miller 2008).  In my experiments, I observed 

that inhibition of monoamine transport significantly attenuated motor actions for the TAs 

but not for 5-HT or NA (Figure 4.6 and 4.7).  This suggests then that a significant 

component of TA-evoked actions is likely due to monoamine transmitter efflux from 

descending terminals.  However, TA induced motor rhythmicity remained after 

monoamine transporter block indicating that TAs are binding at sites at least partly 

independent of descending monoamine presynaptic terminals (Figure 4.11).   

6.2.5 Possible trace amine action at monoamine receptors 

One site of TA-evoked actions that are independent of presynaptic descending 

terminals is on monoamine receptors. Tryptamine directly activates 5HT2 and 5HT7 

receptors (Boess and Martin 1994), the same critical receptors required 5-HT induced 

locomotion (Liu et al. 2009; Liu and Jordan 2005; Madriaga et al. 2004).  This would 

explain why tryptamine and 5HT evoked similar locomotor patterns with similar 

sensitivity to block with methysergide. However, in comparison to tryptamine, all other 

TAs appear to have very low affinity to the monoamine receptors tested, such that the 
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applied doses would not be expected to have direct actions (Peddi et al. 2003; Shen et al. 

1993; U'Prichard et al. 1977). Thus, tyramine, PEA and octopamine must also be acting 

at additional sites. 

6.2.6 Trace amine actions through transporters found in the spinal cord  

I showed that there is widespread expression of somatic TAAR1 and TAAR4 

receptors. They are located intracellularly consistent with earlier observations for TAAR1 

(Bunzow et al. 2001; Miller et al. 2005; Xie et al. 2007). To activate these receptors, the 

TAs require a transport mechanism. This was demonstrated by (Xie et al. 2007) 

associated with the monoamine transporters. As monoamine transporters are not found in 

spinal neurons (Appendix A.4), in order for the TAs to exert their actions alternate 

transport systems must be present. I showed that the TAs can be transported into spinal 

neurons via a Na+-independent mechanism. Multiple Na+-independent plasma membrane 

transporters have been shown to transport PEA, tyramine, and tryptamine and are widely 

expressed in the spinal cord (Appendix Figure A.5 and Figure A.6), providing an 

intrinsic substrate for independent actions within spinal neurons (Figure 4.11).  These 

plasma membrane transporters were the L-type amino acid transporters (LATs), the 

organic cation transporters (OCTs), and the plasma membrane monoamine transporter 

(PMAT).  PEA can be transported via LATs, tyramine via OCTs and PMAT, and 

tryptamine via PMAT.  Currently, octopamine transport has not been tested at these 

transporters.  Importantly, since these transporters have bidirectional transport, the TAs 

can be synthesized in one neuron, and transported into nearby neurons.  This allows 

modulatory actions via TAARs in neurons not endogenously synthesizing TAs (i.e. 

AADC negative).  In my experiments, it is reasonable to assume that exogenous 
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application of relatively high TA concentrations would be sufficient to activate TAAR1 

and TAAR4 in spinal neurons (Borowsky et al. 2001; Bunzow et al. 2001).  Given their 

widespread distribution and the similarly widespread presence of required Na+-

independent transporters, broad modulation of spinal circuits would be expected. 

6.2.7 Differences in the trace amines  

While the TAs are similar to each other in many ways, there are differences in 

structure, synthesis, storage, transport, receptor activation, and degradation.  Many of 

these differences are highlighted in the Table 6.1 below. 
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Table 6.1: Differences between the trace amines 

tryptamine tyramine octopamine PEA 
structurally similar to 5-HT yes no no no 
structurally similar to DA and NA no yes yes yes 

immunohistochemical evidence that 
the TA is found in the spinal cord 

yes yes yes 
no 

antibody 
available

1st synthesis enzyme AADC AADC AADC AADC 

2nd synthesis enzyme none none 
DBH (or 
Moxd1?) 

none 

synthesized in descending terminals yes yes yes yes 
synthesized in blood vessels yes yes no yes 

synthesized in spinal cord neurons yes yes 
unknown 
(Moxd1?) 

yes 

found in vesicles no 
small 

amounts 
yes no 

transported via monoamine 
transporters 

yes yes yes yes 

immunohistochemical evidence that 
transported into spinal cord neurons 

yes yes yes 
no 

antibody 
available

transporter known to transport the TA 
is found in the spinal cord 

PMAT 
OCTs 
and 

PMAT 
unknown LATs 

activates TAAR1, which is found in 
the spinal cord 

yes 
yes 

(highest 
affinity) 

yes 
yes (2nd 
highest 
affinity) 

activates TAAR4, which is found in 
the spinal cord 

yes no no yes 

increases in cAMP with co-
expression of  monamine transporters 
and TAAR1 over just monoamine 
transporters 

yes yes yes yes 

actions on 5-HT receptors yes no no no 
action on catecholamine receptors no no no no 
degraded by MAOA yes yes yes no 
degraded by MAOB, which is not 
found in spinal cells 

yes yes yes weakly 
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6.2.8 Mechanisms associated with TAAR activation and signaling 

Previous reports suggest that the monoamine receptors, 5-HT2, 5-HT7, D1, and α1, are 

involved in mediating actions on the locomotor network (Gabbay and Lev-Tov 2004; Liu 

et al. 2009; Liu and Jordan 2005; Madriaga et al. 2004).  An interesting and very 

plausible role for the anatomical substrate created by the widespread expression of 

AADC, the TAs, and the TAARs would be as an activity amplifier / reinforcement 

mechanism.  In this scenario, descending monoamine transmitters known to promote 

locomotion activate G-proteins, leading to downstream signal transduction pathways 

capable of phosphophorylating AADC (Figure 4.11).   

5-HT7 and D1 both activate the Gsα subunit, which stimulates adenylate cyclase (AC) 

to produce cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). 

cAMP, a second messenger, activates protein kinase A (PKA, cAMP-dependent protein 

kinase) (Gervasi et al. 2007), and PKA phosphorylates AADC (Duchemin et al. 2000).   

5-HT2 and α1 both activate the Gqα subunit, which stimulates phospholipase C (PLC) 

to hydrolyzes phosphatidylinositol 4,5-biophosphate (PIP2) into two second messengers, 

diacyl glycerol (DAG) and inositol triphophate (IP3).  IP3 causes the release of calcium 

from intracellular stores, leading to the activation of Calcium/calmodulin-dependent 

protein kinase type II (CaMKII) (Dash et al. 2007).  CaMKII phosphorylates AADC 

(Neff and Duchemin 2002). 

As many of my in vitro experiments also used NMDA, intracellular cascades 

following NMDA receptor activation could also potentially increase TA levels. NMDA 

receptor activation-induces Ca2+ entry into the neurons, which activates CaMKII and 

nitric oxide synthase (NOS) (Matsumura et al. 2010) (Figure 4.12).   CaMKII 
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phosphorylates AADC (Neff and Duchemin 2002).  NOS produces nitric oxide (NO), 

which can lead to inhibition of MAO activity (Muriel and Perez-Rojas 2003), and thereby 

reducing TA degradation.  Further, NO leads to the activation of cGMP-dependent 

protein kinase (PKG) (Schlossmann and Hofmann 2005), which can then phosphorylate 

AADC (Duchemin et al. 2010). 

The aforementioned phosphorylations of AADC increase its activity and cause an 

increase in the levels of TAs (Berry 2004; Duchemin et al. 2000; Duchemin et al. 2010; 

Neff and Duchemin 2002), leading to activation of the TAARs.  This could then 

transform the externally-generated increase in neuronal excitability to a self-sustaining 

intrinsic mechanism where TAAR induced increases in G proteins produce a positive 

feedback continued phosphorylation of AADC and TA production. In this scenario, 

activity is amplified and self-sustaining until terminated by Gi-coupled pathways (e.g. 

5HT1 receptors).  Thus, the TAs and their receptors may act as an activity switch which 

leads to cellular changes in excitability based on the environment, AADC activity, and 

receptor activation.  These details support a tight interdependence of the TAs with the 

monoamines on spinal motor function. If true, the downstream role of the TAs suggests a 

refinement of monoamine-induced activity ongoing locomotor pattern, not necessarily the 

initiation of it.  This implies that the monoamines and the TAs work together, but that 

each has its own role.   

It is important to emphasize that in this scenario, other pathways independent of the 

monoamine and their receptors that also co-activate the same signal transduction 

pathways could also recruit the TAARs leading to the unique intrinsic modulatory actions 

of the TAs.  
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6.2.9 TA actions in the spinal cord on a network level 

Tryptamine, tyramine, octopamine, and PEA all recruited locomotor-like patterns 

similar to that observed for 5-HT as well as more complex episodic locomotor rhythms.  

Based on flexor/extensor and left/right coordination during the continuous locomotor-like 

pattern, the TAs are likely acting at the level of the central pattern generator (CPG) to 

produce the patterning (Figure 4.10). 

Both continuous and episodic locomotor phenotypes could be observed within 

individual animals indicating that the episodic pattern involves activation of additional 

cellular/network interactions that influence the output of the spinal locomotor central 

pattern generator.  Assuming that these different modulatory actions were due to actions 

at distinct spinal cord sites, there are three possible levels of network neurons that could 

be affected by tyramine, octopamine, and PEA to give the unique episodic patterns 

(Figure 4.10).  In all cases, it was assumed that the CPG level produced the regular 

locomotor-like activity pattern, which was then further modulated to produce the unique 

episodic bursting.  The first level where the modulation could be occurring would be 

neurons that project onto the CPG.  These neurons could produce a slow alternation of 

excitatory and inhibitory drive to the CPG, thus causing the waxing and waning of 

activity.  The second level where the modulation could be occurring would be in neurons 

within the CPG where two events co-exist with distinct time courses.  For example, one 

could be associated with synaptic network interactions occurring at the locomotor 

frequency while a second could be via non-synaptic biochemical pathways occurring at a 

slower frequency (Katz and Clemens 2001).  As the slow rhythm changes, locomotor 

frequency changes (e.g. Figure 4.4E).  The third level where the modulation could be 
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occurring would be in neurons downstream of the CPG (e.g. motoneurons).  In this case, 

locomotor frequency would be unchanged during the rhythm, but amplitude would 

alternate between more excitable and less excitable states.  I think that since there appears 

to be coordination between the bouts of bursting across flexors/extensors and left/right 

alternation, that the first two possibilities are more likely.  

6.3 The trace amines function as neuromodulators 

Neuromodulation is a substance that alters the cellular and synaptic properties of a 

neuron and alters the subsequent neurotransmission, so that even with the same input, the 

output will be different (Katz 1999; Katz 1995; Katz and Frost 1996). Thus, it allows the 

circuit to become more flexible (Katz 1995).  As a general guideline rather than a firm 

definition, neuromodulation is mediated by metabotropic receptors (Katz 1999; Katz 

1995).   

The first type is extrinsic neuromodulation.  It is usually thought to originate from 

sources extrinsic to the circuit being affected and therefore not a part of the circuit itself.  

This is considered the ‘conventional’ form (Katz 1995)and is typified by the descending 

classical monoaminergic neurons as they project to the spinal cord and potently modulate 

spinal sensory, autonomic, and motor activity (Hochman et al. 2001; Millan 2002; 

Schmidt and Jordan 2000).  

A second type of neuromodulation is intrinsic neuromodulation and not as widely 

recognized.  During intrinsic neuromodulation, neuromodulatory substances can also be 

released by neurons that are intrinsic to a circuit, and can affect other neurons and 

synapses within the same circuit. One functional consequences of intrinsic 

neuromodulation is that it operates whenever the circuit is active because it is an integral 
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part of the circuit and as such its actions are proportional to the amount of activity within 

the circuit itself (Katz and Frost 1996).   

A third type of neuromodulation has been referred to as biochemical integration, 

which modulates the neuron in which it acts.  During biochemical integration, the 

biochemical intracellular signals (e.g. second messengers like cAMP) are integrated to 

affect the cellular and synaptic properties of the neuron, often across different time scales 

(Katz and Clemens 2001).  

I have demonstrated that the TAs are intrinsic to the spinal circuits and can affect the 

activity of spinal motor circuits.  The possibility must be considered that that TAs act as 

both intrinsic neuromodulators as well as a biochemical integrators.   

Under normal conditions, I hypothesize that the TAs act as part of a biochemical 

activity monitor that sets the excitatory ‘tone’ of the neuron to regulate its output. This 

form of biochemical integration may control the excitability of spinal neuronal networks 

via TAARs, and as such, should be an additional route that can be explored for 

therapeutic manipulation after spinal cord injury.  It may turn out that the TAs are better 

at temporally modulating the spinal function or easier to manipulate than the 

monoamines.   

6.4 Relevance of the trace amines an intrinsic neuromodulatory system  

While the TAs are potentially important modulators of CNS function, most studies 

aimed at understanding their functional role on the neural systems were undertaken 

decades ago in the mammalian spinal cord. The seminal discovery in 2001 of a new 

family of G-protein coupled receptors preferentially activated by TAs (Borowsky et al. 

2001; Bunzow et al. 2001) rekindled interest in this dying field (Berry 2004; Branchek 
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and Blackburn 2003; Davenport 2003; Kim and von Zastrow 2001; Premont et al. 2001).  

However, without an identifiable circuitry for these traces substances, there was little real 

physiological experimentation that can be accomplished.  Perhaps this has prevented the 

predicted resurgence of studies on TAs (Berry 2004; Branchek and Blackburn 2003; 

Davenport 2003; Kim and von Zastrow 2001; Premont et al. 2001),  leaving their 

physiological role as speculative (Berry 2004).  

The research presented here was one step towards establishing the TAs as bona fide 

endogenous neuromodulators with their own actions.  These studies improve our 

understanding of the TAs by establishing a spinal cord substrate for TA to have intrinsic 

biological actions on the spinal motor circuitry.   

The TAs appear to be the first irrefutable amine neuromodulatory system intrinsic to 

the mammalian spinal cord.  Since the TAs can modulate sensory (Bowman et al. 1964; 

Reddy et al. 1980) and motor systems, control of their release and/or receptor activation 

may provide new therapeutic strategies for the management of spinal cord dysfunction, 

including after loss of descending monoaminergic systems as occur after spinal cord 

injury.    

6.5 Future studies 

In order to further establish the how the TAs are functioning in the spinal cord, future 

studies are necessary. 

(i) To demonstrate that endogenous production of the TAs can produce spinal cord 

actions, in preliminary work I have shown that blocking TA degradation with MAO 

inhibitors caused rhythmic motor activity similar to endogenous application of the TAs 

(see Appendix B). 
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(ii) To further establish the requirement of transporters in spinal neurons in spinal 

motor function transport inhibitors for the LATs, OCTs, and PMAT should be used.  

Recently, transport inhibitors were tested for PMAT, and sertraline was found to be the 

most potent (Haenisch and Bonisch 2010).   

(iii) To demonstrate that dietary alterations in aromatic amino acids have functional 

consequences on motor circuits, in preliminary work I observed that applications of the 

aromatic amino acids could increase motor activity and that phenylalanine could activate 

rhythmical activity (not shown). 

(iv) To investigate behavioral relevance of TAs on spinal motor behavior in adult rats 

to more closely approximate spinal cord injuries in adults, injections of the TAs into 

spinalized adult rats in vivo should be investigated to determine if they too have rhythmic 

locomotor hindlimb movements that could suggest clinical application.  

(v) Interestingly, I found that dopamine was similar to the TAs both by having a 

unique pattern as well as its longer time for burst initiation.  A new study in PLoS one 

just came out showing that A11 is likely L-dopa-ergic (Barraud et al. 2010), which opens 

the possibility that L-dopa is released from A11and transported into other neurons to 

make dopamine intracellularly.  

 (vi) Unfortunately, TAAR antagonists are currently unavailable; however, they 

should be tested when they do become available.   

(vii) Also, future studies should address the role of the TAs during development.  With 

only AADC activity and no TH activity early in development, the TAs could be playing 

an important role in development (Teitelman et al. 1983). 

. 
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APPENDIX A 

ALLEN SPINAL CORD ATLAS  

The Allen Spinal Cord Atlas (http://mousespinal.brain-map.org) provides a 

comprehensive searchable RNA in situ hybridization database of gene expression of the 

mouse spinal cord at postnatal days 4 and 56 (Allen_Spinal_Cord_Atlas 2009).  Spinal 

cord in situ hybridization expression patterns obtained from the Allen Spinal Cord Atlas 

of the synthesis enzymes, degradative enzymes, trace amine-associated receptors, and 

transporters associated with the monoamine and putative trace amine neuromodulators 

are in the following figures.  Expression for each gene is marked as absent or present 

based on the annotation index designation.  However, on several occasions, overt reaction 

product were observed in some neurons even though tagged as absent. 
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Figure A.1: Allen Spinal Cord Atlas in situ hybridization of synthesis enzymes  
AADC, aromatic amino acid decarboxylase (also called dopa decarboxlase); TH, tyrosine hydroxylase; 
DBH, dopamine b-hydroxylase; Moxd1, monooxygenase, DBH-like 1. 
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Figure A.2: Allen Spinal Cord Atlas in situ hybridization of degradation enzymes  

MAOA, monoamine oxidase A; MAOB, monoamine oxidase B; PNMT, phenylethanolamine n-methyl 
transferase. 
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Figure A.3: Allen Spinal Cord Atlas in situ hybridization of trace amine-associated receptors and 
trace amine receoptor 3  

TAAR, Trace amine associated receptor 
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Figure A.4: Higher magnification of select TAARs 
A. Higher magnification and contrast enhanced images of TAAR1 and TAAR4 show clear reaction product 
in motoneurons at both P4 and P56.  B. In addition, weak labeling for TAAR2, TAAR3, TAAR5, and 
TRAR3 may be present in the adult ventral horn. 
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Figure A.5: Allen Spinal Cord Atlas in situ hybridization of monoamine and vesicular transporters 
A. Expression results for the high affinity monoamine transporters SERT, NET and DAT. B. The vesicular 
monoamine transporter 2 (VMAT2) is expressed in P4 spinal cord but reported as absent in the adult. 
Labeling at P4 Higher magnification and contrast enhanced image of VMAT2 in the neonate shows 
labeling in motoneurons and other spinal neurons (arrows). 
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Figure A.6: Allen Spinal Cord Atlas in situ hybridization of organic cation transporters and the 
plasma membrane monoamine transporter 

A. The organic cation transporters, OCT1-3, are widely expressed in spinal neurons in both neonate and 
adult mouse spinal cord. B. The low affinity plasma membrane monoamine transporter is preferentially 
expressed in intermediate gray and ventral horn regions in both neonate and adult mouse spinal cord 
implicating a predominant role in motor function. 
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Figure A.7: Allen Spinal Cord Atlas in situ hybridization of L-amino acid transporters  
L-amino acid transporters (LATs) 2-4 are widely expressed in the mouse spinal cord. 
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APPENDIX B 

EVIDENCE FOR TRACE AMINE PRODUCTION IN THE SPINAL 
CORD 

B.1 Introduction 

TAs are synthesized from aromatic amino acids via aromatic amino acid 

decarboxylase (AADC) and further by dopamine-b-hydroxyase (DBH) for octopamine.  

A defining feature that makes TAs ‘trace’ amines is their lack of sequestration in synaptic 

vesicles and consequent rapid degradation by monoamine oxidases (MAOs), their 

presumed primary mechanism for termination.  Two different types of MAO, named A 

and B, have been characterized.  Both MAOA and MAOB are found in the spinal cord, 

with MAOA found in motoneurons (Luque et al. 1995; Saura et al. 1992).  MAOB has a 

high affinity for PEA, while the other TAs are degraded by both (Bortolato et al. 2008; 

Shih et al. 1999) 

The MAOs do not have short-term effects on the release of the classical monoamine 

transmitters (Berry 2004; Cragg et al. 2000; Houdouin et al. 1990) and therefore, can be 

used to study the faster effects of increased intracellular TAs on neural function. 

B.2 Methods 

All experimental procedures complied with the NIH guidelines for animal care and the 

Emory Institutional Animal Care and Use Committee.   

B.2.1 Immunohistochemistry 



 194

The spinal cord was isolated from rats who had been intraperitoneally injected with 

Fluorogold 24 hours prior to sacrifice to retrogradely label most spinal motoneurons 

(Ambalavanar and Morris 1989) (Merchenthaler 1991).   

Isolated spinal cords were incubated in one of four different treatments for 2 hours: (1) 

control, (2) in the presence of aromatic amino acid precursors phenylalanine, tyrosine, 

and tryptophan (all at 100 µM), (3) the TAs (all at 100 µM), and (4) the TAs plus MAOA 

and MAOB inhibitors clorgyline and deprenyl, respectively (both at 100 µM).  

Subsequent tyramine immunolabeling and densitometry was performed on lateral MNs to 

measure changes in expression. 

The spinal cords were then post-fixed for 1 hour in Lana’s fixative than cryoprotected 

in 10% sucrose, 0.1M PO3 until sectioned into 10 um thick sections on a cryostat and 

processed for immunohistochemistry.  All incubations and washes were performed in 

0.1M PO3-buffered saline containing 0.3% triton X-100 (PBS-T).  Tissue was washed 

overnight in PBS-T at 4°C followed by incubation in primary antibody for 48-72 hours.  

Slides were then washed three times for 30 minutes and incubated in secondary antibody.  

The primary antibody was following Rabbit anti-tyramine 1:1000 (Chemicon) and the 

secondary antibody was cy3 anti-rabbit (Jackson Immunoresearch). 

Densitometry was performed on lateral MNs using the Neurolucida Software at a scale 

of 1700x magnification.  Omission and absorption controls were blank. 

B.2.2 Electrophysiology  

B.2.2.1 General setup 

Sprague-Dawley rats postnatal (P) day 0-5 were decapitated, eviscerated, and placed 

in a bath containing oxygenated (95% O2, 5% CO2) artificial cerebral spinal fluid (aCSF) 
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containing the following (in mM): 128 NaCl, 1.9 KCl, 1.2 KH2P04, 26 NaHCO3, 2.4 

CaCl2, 1.3 MgSO4, and 10 glucose (pH of 7.4).  The spinal cord was exposed by a ventral 

vertebrectomy and carefully dissected out of the body cavity leaving the dorsal and 

ventral roots attached.  The spinal cord was secured with insect pins to a chamber with 

Sylgard (Dow) on the bottom.  Glass suction electrodes were applied to dorsal and/or 

ventral roots, after which the preparation was allowed to recover for at least 1 hour before 

experimentation at room temperature.  The ventral root electroneurographic activity was 

amplified (10,000x), band-pass filtered at 10-3,000 Hz and digitized at 5kHz (Digidata 

1321A, 16-bit; Axon Instruments). Band-pass filter frequency settings were selected with 

consideration to observed frequency components with the low-pass filter set ant mush 

greater than the Nyqist frequency. Data was captured on a computer with the pCLAMP 

acquisition software (v8-9, Molecular Devices; Union City, CA).     

B.2.2.2 Neurochemicals 

Neurochemicals, which were stored in 10mM or 100mM stock solutions at -20°C, 

were added to the bath (typically 30mL) to achieve the final concentration in the 

chamber.  Neurochemicals were obtained from Sigma-Aldrich (St. Louis, MO), including 

NMDA (5 µM) and tyramine (10µM). 

The following monoamine oxidase inihibitors were used: nialimide (non-specific 

MAOA and MAOB inhibitor; usually at 10 mM), clorgyline (MAOA inhibitor; up to 

dose of 100 µM), and deprenyl (MAOB inhibitor; up to a dose of 100 µM).  

The aromatic amino acids were used: phenylalanine (100 µM), tyrosine (100 µM), and 

tryptophan (100 µM). 
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Figure B.1: MAO inhibitors can increase endogenous trace amines 
Tyramine expression was increased in motoneurons following pre-incubation in the presence of MAO 
inhibitors.  Changes were quantified using densitometry in lateral motoneuronal tyramine labeling after 
incubations in control, aromatic amino acids, the TAs, and the TAs plus the MAOs inhibitors clorgyline 
and deprenyl. (* indicates p<0.01). 
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B.3 Results 

B.3.1 Monoamine oxidase inhibitors can cause an accumulation of tyramine  

To examine the effects of metabolism on tyramine expression, spinal cords were 

incubated in control aCSF, aromatic amino acids, TAs, and TAs plus MAO inhibitors 

(Appendix Figure B.1) with subsequent tyramine immunolabeling and densitometry to 

measure changes in expression.  Tyramine expression did not increase in the presence of 

aromatic amino acids suggesting that their concentration was not rate limiting (n=2).  

Tyramine increased, albeit not significantly, after incubation in the TAs alone (n=2).  

TAs and MAO inhibitors led to a significant increase in tyramine immunolabeling (n=2; 

p<0.01), indicating that tyramine was accumulating in motoneurons since its degradation 

was being blocked. 

B.3.2 Actions of monoamine oxidase inhibitors support an endogenous role for the 

trace amines  

 Since MAO inhibitors can cause tyramine to accumulate in motoneurons and, 

importantly, they do not have short-term effects on the release of the classical 

monoamine transmitters (Berry 2004; Cragg et al. 2000; Houdouin et al. 1990), the MAO 

inhibitors can be used to study the faster effects of increased intracellular TAs on neural 

function.  Deprenyl, clorgyline, and nialamide were tested since they are used clinically, 

so any observed actions on spinal circuits may have clinical relevance. 

When applied alone to the bath, the MAO inhibitors were able to produce slow burst 

of activity with nialamine (n=1/4) and sudden transient increase in spontaneous activity 

lasting several minutes with clorgyline and deprenyl (n=3/5).  These observations suggest 
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Figure B.2: MAO inhibitors can increase neuroactivity 
A. The bath was incubated in 100 µM clorgyline, 100 µM deprenyl, and 2 µM NMDA.  Subsequent 
addition of 2 µM NMDA resulted in the expression of long-lasting L5 left-right alternating ventral root 
activity. The L2 ventral roots remained silent, suggesting selective recruitment of the extensor half-center. 
B. The MAOA and MAOB inhibitor, nialamide, converted NMDA-evoked spontaneous ventral root 
activity into episodic LLA. Only the l-L2 channel is shown due to poor recording quality of the other 
channels. 
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that amplifying endogenous concentrations of TAs promote motor activity but are 

insufficient to recruit locomotion. 

In the presence of NMDA at doses that did not evoke consistent activity, clorgyline 

and deprenyl produced stable left/right L5 alternation that lasted for the 25 minute 

duration of the recording (0.1 Hz; n=1/1; Appendix Figure B.2A).  Similarly, nialamide 

recruited rhythmical motor activity (n=2/4): one displaying right/left L2 flexor alternation 

(0.075 Hz) that lasted over 1 minute and the other episodic LLA  lasting over 15 minutes  

at 0.21 Hz (Appendiz Figure B.2B). Intriguingly, in the two animals where nialamide 

with NMDA did not produce rhythmicity, application of the aromatic amino acid 

precursors (tyrosine, tryptophan, and phenylalanine) led to pronounced increases in motor 

activity; in one, clear busting events lasted for the 25 minute duration of the recording.  

This did not happen in the absence of nialamide implying that increased levels of 

aromatic amino acids are capable of synthesizing TAs via AADC, which in the absence 

of degradation, can elevate TAs levels to exert a biological action on the motor system.  

B.4 Discussion 

B.4.1 MAO inhibitors increase endogenous trace amines and can increase 

neuroactivity  

As MAOA is distributed throughout the P4 mouse spinal cord (Appendix Figure 

A.2), and AADC also has widespread expression, the application of MAO inhibitors 

should increase TA levels.  Indeed, the incubation experiments show that MAO inhibitors 

do increase the levels of TAs.  Also, application MAO inhibitors alone were able to 

increase activity.  That they do not always increase activity, could be due to other factors 
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in the spinal cord, including not enough aromatic amino acids available to make more or 

not enough AADC activity to convert the aromatic amino acids to TAs. 

Further, the MAO inhibitors were capable of recruiting rhythmic motor activity in the 

presence of NMDA including the wax and wane episodic activity so characteristic of 

tyramine, octopamine, and PEA bath application.  To support the idea that the state of the 

spinal cord matters, adding aromatic amino acids to the bath after MAO inhibitors where 

unable to produce rhythmic activity did produce bursting in one cord.  Together these 

actions strongly support endogenous production of the TAs in the spinal cord, and that at 

high enough local concentrations they are able to affect motor function. 

Interestingly, while both MAOA and MAOB are found in the in spinal cord using 

immunohistochemistry and radioligands to look at expression of the enzymes (Luque et 

al. 1995; Saura et al. 1992), examining the in situ hybridization in the Allen Spinal Cord 

Database shows that only MAOA, and not MAOB, is expressed in the spinal cord, 

meaning MAOB is likely found in the descending monoaminergic terminals (Appendix 

Figure A.2) (Allen_Spinal_Cord_Atlas 2009).  This has implications regarding 

especially the local concentration of PEA, which is preferentially degraded by MAOB 

(Bortolato et al. 2008; Shih et al. 1999).  If PEA is produced in, say motoneurons, where 

there is no MAOB, it must be transported out of the neuron and into another neuron 

where it can be degraded, possibly implying a higher concentration in the cell that 

typically assumed.   
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APPENDIX C 

SPINALMOD ALGORITHM FOR BURST DETECTION 

function [begmarks,endmarks] = BurstDetection(filtered, BurstThresh, ... 

    MinBurstDur, MinPeriod, BurstStart, MinInterBurst,EndMin, sampfreq) 

  

%These formulas convert the time inputed by the user into sample points 

%more easily used by the computer. 

if BurstStart==0 

    BurstStart=1; %Prevents the program from stopping b/c it can't handle 0 

else 

    BurstStart=BurstStart*sampfreq;%Start time of the 1st burst 

end 

if MinPeriod==0 

    MinPeriod=1; 

else 

    MinPeriod=MinPeriod*sampfreq;%Minimum period btw bursts 

end 

if MinBurstDur==0 

    MinBurstDur=1; 

else 

    MinBurstDur=MinBurstDur*sampfreq;%Minimum burst duration 

end 
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if MinInterBurst==0 

    MinInterBurst=1; 

else 

    MinInterBurst=MinInterBurst*sampfreq;%Min. time btw bursts 

end 

if EndMin==0 

    EndMin=1; 

else 

    EndMin=EndMin*sampfreq; 

    %Minimum time btw fluctuations at the end of the burst  

end 

  

%Cuts off all the filtered data before the beginning of the burst, 

%thus reducing the number of false positives for the start of the burst 

cutfiltered=filtered(BurstStart:end); 

%Checks whether the filtered data is above the Burst Threshold and 

%returns the indicies of the filtered data that are above threshold 

y=[find(cutfiltered>BurstThresh)];%Indicies of points above threshold 

%Creates arrays of the filtered data to be compared with each other to 

%find the points that cross threshold and indicate the start or end of a 

%burst 

abovethresh=cutfiltered(y);%All values that are above the threshold 
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%The following will test the to see if the points before and after the 

%indicies above threshold exist 

q=find(cutfiltered); 

if q(1)==y(1) 

    %Filltered data one point before the threshold points 

    testbeg=[cutfiltered(y(1)) cutfiltered(y(2:end)-1)]; 

    %Filtered data one point after the threshold points 

else 

    testbeg=cutfiltered(y-1); 

end 

if q(end)==y(end); 

    testend=[cutfiltered(y(1:end-1)+1) cutfiltered(y(end))]; 

else 

    testend=cutfiltered(y+1); 

end 

%ii=1;iii=1; I=1;Burst=false;endmarks=[];%Used for initialization 

  

%The following finds the bursts. 

%For the onset, it checks all points above threshold with the point 

%immediately before it.  If the point before is below threshold, it is 

%marks an onset, and then, it starts to look for the end of the burst.  It 

%checks all points above threshold with the point immediately after it.  If 

%the point after is below threshold, it marks a potential end.  It then 
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%takes a number of end points to see if the difference btw them is greater 

%than a user inputted EndMin, the minimim distance btw the burst and the  

%next point to cross the threshold, which hopefully is hte next burst. 

%MinInterBurst is the minimum distance btw the end of the burst and the 

%beginning of the next.  If so, it marks the first point as end. Then, it 

%goes back to find the next onset making sure the value is greater than the 

%user inputted MinPeriod, the minimum distance btw bursts. To do this, it 

%goes back a number of points so that it does not miss the first point. 

if BurstStart==1 

    BurstStart=0; 

else 

    BurstStart=BurstStart-1; 

end 

  

begmarks=[]; 

endmarks=[]; 

ii=1;iii=1; I=1;Burst=false;endmarks=[];a=[]; 

for i=1:length(y) 

    %The following code looks for the beginning of a burst 

    if (Burst==false) && (abovethresh(i)>testbeg(i)) &&... 

            (testbeg(i)<BurstThresh) && (ii==1 ) %this looks for the first burst's 

beginning 

        begmarks(ii)=y(i)+BurstStart; 
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        ii=ii+1; 

        Burst=true;%true indicates that the beginning of a burst has been marked 

    elseif (Burst==false)&&(abovethresh(i)>testbeg(i))&&... 

            (testbeg(i)<BurstThresh)&&... 

            (y(i)-(begmarks(ii-1)-BurstStart) > MinPeriod) &&... 

            (y(i)-(endmarks(iii-1)-BurstStart) > MinInterBurst) 

        begmarks(ii)=y(i)+BurstStart; 

        ii=ii+1; 

        Burst=true; 

    end 

     

    %The following code looks for the end of a burst 

    if (Burst==true) && (abovethresh(i)>testend(i)) &&... 

            (testend(i)<BurstThresh) &&... 

            ((y(i)-(begmarks(ii-1)-BurstStart)) > MinBurstDur) 

        em(I)=y(i)+BurstStart; 

        if I>1 && ((em(I)-em(I-1))>=EndMin) 

            endmarks(iii)=em(I-1); 

            a=find(y==(endmarks(iii)-BurstStart)); 

            iii=iii+1; 

            Burst=false;%false indicates that the end of a burst has been marked    

            I=1; 

        else 
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            I=I+1; 

        end 

    end 

     

    %The following code goes back and check the point for the beginning of 

    %a burst 

    if isempty(a)==0 

        for b=a:i 

            if (Burst==false)&&(abovethresh(b)>testbeg(b))&&... 

                    (testbeg(b)<BurstThresh)&&... 

                    ((y(b)-(begmarks(ii-1)-BurstStart)) > MinPeriod) &&... 

                    ((y(b)-(endmarks(iii-1)-BurstStart)) > MinInterBurst) 

                begmarks(ii)=y(b)+BurstStart; 

                ii=ii+1; 

                Burst=true; 

            end 

        end 

        a=[]; 

    end 

     

    %The following code double checks for the end of a burst 

    %This portion of the code was added later to fix the EMG problem... 

    if (Burst==true) && (abovethresh(i)>testend(i)) &&... 
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            (testend(i)<BurstThresh) &&... 

            ((y(i)-(begmarks(ii-1)-BurstStart)) > MinBurstDur) 

        em(I)=y(i)+BurstStart; 

        if I>1 && ((em(I)-em(I-1))>=EndMin) 

            endmarks(iii)=em(I-1); 

            iii=iii+1; 

            Burst=false;%false indicates that the end of a burst has been marked    

            I=1; 

        else 

            I=I+1; 

        end 

    end 

 end 
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