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SUMMARY

Functional magnetic resonance imaging (fMRI) based on blood oxygenation

level dependent (BOLD) contrast has become a widespread technique in brain re-

search. The central challenge in fMRI is the detection of relatively small activity-

induced signal changes in the presence of various other signal fluctuations. Physio-

logical fluctuations due to respiration and cardiac pulsation are dominant sources of

confounding variability in BOLD fMRI. This dissertation seeks to characterize and

compensate for non-neural physiological fluctuations in fMRI. First, the dissertation

presents an improved and generalized technique for correcting T1 effect in cardiac-

gated fMRI data incorporating flip angle estimated from fMRI dataset itself. Using

an unscented Kalman filter, spatial maps of flip angle and T1 relaxation are estimated

simultaneously from the cardiac-gated time series. Accounting for spatial variation in

flip angle, the new method is able to remove the T1 effects robustly, in the presence

of significant B1 inhomogeneity. The technique is demonstrated with simulations and

experimental data. Secondly, this dissertation describes a generalized retrospective

technique to precisely model and remove physiological fluctuations from fMRI signal:

Physiological Impulse Response Function Estimation and Correction (PIRFECT). It

is found that the modeled long-term physiological fluctuations explained significant

variance in grey matter, even after removing short-term physiological effects. Fi-

nally, application of the proposed technique is observed to substantially increase the

intra-session reproducibility of resting-state networks.

x



CHAPTER I

INTRODUCTION

The most significant and revolutionary advance in magnetic resonance imaging (MRI)

in the past two decades occurred in the early 1990s when methods were developed for

noninvasive mapping of brain function without the use of an exogenous contrast agent

[2, 55]. Functional MRI (fMRI) has become a ubiquitously used methodology in both

basic and clinical neuroscience for studying brain function in its normal and diseased

states. The central challenge in fMRI is the detection of relatively small activity-

induced signal changes in the presence of various non-neural fluctuations such as

thermal noise, scanner related variations, subject movement, and physiological fluc-

tuations due to the respiratory and cardiac rhythms. This dissertation encompasses

efforts to characterize and reduce physiological fluctuations that interfere with fMRI

studies of activation mapping, as well as functional connectivity.

1.1 BOLD fMRI

The majority of fMRI experiments are based on blood-oxygen level dependent (BOLD)

contrast [61, 54, 53], which is derived from the fact that deoxyhemoglobin (dHb) in

blood is paramagnetic, and change in the local concentration of dHb within the brain

lead to alterations in the magnetic resonance signal [2, 55]. It is generally accepted

that neuronal activation induces an increase in regional blood flow without a com-

mensurate increase in the regional oxygen consumption rate (CMRO2) [26] in which

case the capillary and venous dHb concentrations should decrease, leading to an in-

crease in T∗2. This increase is reflected as an elevation of intensity in T∗2-weighted
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MR images. To date, fMRI has been applied to study a variety of neuronal pro-

cesses, ranging from activities in the primary sensory and motor cortices to cognitive

functions.

1.2 Physiological Fluctuations

A major confound in BOLD fMRI is the presence of systematic noise, which can

obscure the detection of these neuronal signal changes in functional imaging data.

Possible sources include (but are not limited to) signal drifts [1], physiological fluc-

tuations due to the respiratory and cardiac rhythms [39, 30, 5, 15], and subject head

motion [29]. Of these, physiological fluctuations due to respiration and cardiac pulsa-

tion are the dominant source of confounding variability in BOLD fMRI at high field

strengths [39, 30, 43]. Retrospective physiological noise correction techniques [39, 30]

have been introduced to reduce “short-term” effects, having instantaneous impact on

fMRI signal in concert with the respiratory and cardiac processes. The physiological

sources of short-term cardiac pulse effects are tissue motion, CSF motion, large ves-

sel pulsation, and changes in blood volume in the capillary bed [39, 19]. Pulsatility

of blood flow and cerebrospinal fluid (CSF) due to cardiovascular processes causes

artifacts near ventricles, sulci, and large vessels [19, 30]. Large vessel pulsatility may

cause tissue movement and produce an influx of unsaturated spins into the slice of

interest [19]. These changes can reduce the ability to detect hemodynamic changes

related to neural activity using fMRI. Retrospective correction [39, 30] has been com-

monly used to reduce physiological fluctuations. However, the motion of the brain

itself, as well as pulsatile flow of CSF and large vessels, makes retrospective cor-

rection of cardiac noise difficult, especially in subcortical regions such as brainstem

and thalamus. Short-term respiration effects result from head motion as well as B0

modulation due to bulk susceptibility changes from thoracic organ movement and gas
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volume [52, 39, 58, 57, 10, 64].

However, even after removing short-term effects using the retrospective techiques

[39, 30], significant correlation between fMRI change and physiological change such

as cardiac rate and respiratory volume change have been observed [65, 5, 60]. Breath-

to-breath variation in respiratory volume leads to fluctuations in the carbon dioxide

(CO2) content of arterial blood, a potent vasodilator. Cerebral blood flow fluctua-

tions induced by these variations in CO2 content result in low-frequency BOLD signal

fluctuations throughout gray matter and near large vessels [65]. Respiration volume

per time (RVT) has been proposed as an indicator of respiration induced signal fluc-

tuations and has been shown to be significantly correlated with the BOLD signal [5].

These respiration induced fluctuations typically occur at a frequency of approximately

0.03 Hz [65, 5]. In addition, significant correlations between cardiac rate and BOLD

signal fluctuations have been reported [60, 15]. While variations in respiration depth,

respiration rate and heart rate are examples of sources of long-term effects, there are

potentially other sources that have yet to be identified.

1.3 Functional Connectivity and Resting-State Networks

Along with the rapid growth of methods and applications of functional brain mapping

for localizing regions with specialized functions, there has been a great deal of inter-

est and progress made in studying brain connectivity. In particular, neuroimaging

data can be used to infer functional connectivity which permits a systematic under-

standing of brain activity and allows the establishment and validation of network

models of various brain functions. With the advent of functional neuroimaging, ap-

proaches have been developed to probe functional connectivity [44]. One approach

for examining connectivity, that has gained a great deal of interest, is based on the
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Figure 1: Examples of resting-state networks adapted from Van Dijk et al. [63].
Images were obtained using seed-based correlation for regions within default, motor,
visual, and attention networks.

temporal correlations in functional neuroimaging data [27]. Functional connectivity

has been defined as “temporal correlations between spatially remote neurophysiolog-

ical events [27].” With fMRI data acquired during the absence of an explicit task,

i.e., the resting-state, low-frequency time course fluctuations were found to be tempo-

rally correlated between functionally related areas. These low frequency oscillations

seem to be a general property of symmetric cortices and/or relevant regions, have

been shown to exist in a number of brain networks [36, 8, 9, 48] and have been re-

vealed with data-driven analysis approaches [18, 56]. These fluctuations agree with

the concept of functional connectivity defined by Friston et al. [27]. Examples of

such resting-state networks (RSNs) include visual, motor, and attention networks, as

well as default-mode network as depicted in Fig. 1.

Several signal-processing techniques may be employed to delineate functional con-

nectivity [45]. Of these, seed-based correlation and independent component analysis

(ICA) exemplify two of the most frequently-used classes of methods. In seed-based
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correlation, one computes an index of temporal similarity such as Pearson correla-

tion between one region of interests (ROI) and all other voles in the brain [32, 8].

Other techniques have been proposed for resting-state network such as independent

component analysis (ICA) [4] and self-organizing maps [56].

Long-term physiological effects are particularly detrimental in resting-state func-

tional connectivity analysis since their frequency range overlaps with the frequencies

of fluctuations believed to reflect resting brain activity. Recent studies have shown

significant correlations between the long-term physiological signal change and fMRI

throughout gray matter, impeding detection of resting-state networks [6, 16]. Fur-

thermore, studies have shown that the spatial distribution of the respiration long-term

effects coincide with the default mode network [6].
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CHAPTER II

CORRECTION FOR T1 EFFECT INCORPORATING

FLIP ANGLE ESTIMATED BY KALMAN FILTER

IN CARDIAC-GATED FMRI

2.1 Introduction

The central challenge in functional magnetic resonance imaging (fMRI) is the de-

tection of relatively small activity-induced signal changes (<3%) in the presence of

various other signal fluctuations. Pulsatility of blood flow and cerebrospinal fluid

(CSF) due to cardiovascular processes causes artifacts near ventricles, sulci, and large

vessels [19, 30]. Large vessel pulsatility may cause tissue movement and produce an

influx of unsaturated spins into the slice of interest [19]. These changes can reduce

the ability to detect hemodynamic changes related to neural activity using fMRI.

Retrospective correction [39, 30] has been commonly used to reduce physiological

fluctuations. However, the motion of the brain itself, as well as pulsatile flow of CSF

and large vessels, makes retrospective correction of cardiac noise difficult, especially

in subcortical regions such as brainstem and thalamus.

To overcome this problem, cardiac-gated acquisition has been introduced as a

means to freeze pulsation-induced brain movement [34]. The primary difficulty with

this strategy lies in the TR inconsistency due to the variation of the cardiac cycle.

This TR variability introduces T1 related signal fluctuations (denoted “T1 effect”,

approximately 7% with a TR that has a 10% variation around 1 s, T1 = 1600 ms and

flip angle = 90◦ for gray matter), which may overwhelm the BOLD signal change (<
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3%). A passive approach to avoid this variation is to use a TR long enough (e.g. 9 -

10 s) to reach nearly full T1 relaxation in each measurement [33]. However, such an

approach inevitably sacrifices temporal resolution. A processing technique previously

introduced previously for correcting T1 effect [21, 34] is effective but only valid for

the flip angle of 90◦. B1 inhomogeneity can often cause the significant variation of a

flip angle, e.g., 65◦ to 105◦ over the entire brain for the nominal flip angle of 90◦ at

3T [40, 50]. In the presence of such spatial inhomogeneity, the existing technique is

not effective for correcting T1 variation over the entire volume of brain even for the

nominal flip angle of 90◦. Moreover, when a nominal flip angle less than 90◦ such as

the Ernst angle is used, the existing correction technique is also inappropriate.

In this chapter, I describe an improved and generalized technique for correcting

T1 effect in cardiac-gatedh fMRI data incorporating flip angle estimated from fMRI

dataset itself. Using an unscented Kalman filter [41], spatial maps of flip angle and

T1 relaxation are estimated simultaneously from the cardiac-gated time series. These

maps are subsequently used for removing the T1 effects in the fMRI data. The

robustness of this new approach is demonstrated with simulated and experimental

data.
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2.2 Theory

2.2.1 MR Signal Model

In a gated fMRI run, the longitudinal magnetization signal before the kth RF pulse

is applied, M−
z (k), is decried by [35]:

M−
z (k) = (cosα)M−

z (k − 1) e−
TRk
T1 +M0

[
1− e−

TRk
T1

]
(1)

where M0 is the equilibrium magnetization, TR is a repetition time, α is the nominal

flip angle, and k denotes the time point. Then, the transverse magnetization, Mxy(k),

obtained by multiplying sinα in the both sides of Eg. (1), noting that Mxy(k) =

M−
z (k) sinα, is

Mxy(k) = (cosα)Mxy(k − 1) e−
TRk
T1 +M0 sinα

[
1− e−

TRk
T1

]
. (2)

The MR signal for the kth time point, mk ,Mxy(k)e
− TE

T2∗
k becomes

mk = (cosα)Mxy(k − 1) e
− TE

T2∗
k e−

TRk
T1 +M0(sinα) e

− TE
T2∗

k

[
1− e−

TRk
T1

]
(3)

= (cosα)mk−1 e

(
TE

T2∗
k−1
− TE

T2∗
k

)
e−

TRk
T1 +M0(sinα) e

− TE
T2∗

k

[
1− e−

TRk
T1

]
. (4)

While the T2* term, e
− TE

T2∗
k , is time-varying, mostly owning to the BOLD contrast,

we assumed this variation negligible such that e

(
TE

T2∗
k−1
− TE

T2∗
k

)
can be set to 1, for the

purpose of estimating the flip angle and T1, because the BOLD signal varies slowly

[13]. With this approxiamation, the MR signal is given by

mk = (cosα)mk−1 e
−TRk

T1 +M0(sinα)e
− TE

T2∗
k

[
1− e−

TRk
T1

]
. (5)
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2.2.2 T1 Only Correction

For the special case of α being 90◦, the MR signal given by Eq. (5) is simplified to

mk = M0 e
− TE

T2∗
k

[
1− e−

TRk
T1

]
(6)

In conventional ungated acquisition (e.g. TRk = 2 sec), the T1-dependent signal

term, 1− e−
TRk
T1 is constant while the T2*-dependent signal term provides the signal

contrast of interest. However, in cardiac-gated acquisition, MR signal is also mod-

ulated by the T1-dependent term due to the variation of a cardiac cycle. This T1

effect may overwhelm the T2* signal change. Correction techniques for this T1 effect

were developed for the special case of α being 90◦ [21, 34]. With measurements with

TR of 20 sec and 1 sec, one can estimate the T1, assuming that TR of 20 sec allows

full T1 signal recovery [21]. With estimated T̂1 and average TR, the correction is

made by multiplying the following correction term:

mk,cor = mk

[
1− e−TRavg/T̂1

1− e−TRk/T̂1

]
. (7)

In the presence of spatial inhomogeneity of B1, this correction is not valid over the

entire volume of brain even for the nominal flip angle of 90◦

2.2.3 T1 Correction with Flip Angle Estimation

In this study, I describe a generalized technique for correcting T1 effect taking into

account the actual flip angle. I first estimated the flip angle and the T1. Unscented

Kalman filter, a recursive minimum mean square error (MMSE) estimator based on

the optimal Gaussian approximate Kalman filter framework [62], is used to simul-

taneously estimate the T1 and the flip angle from fMRI time series. Kalman filter
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has been widely used for nonlinear estimation including the estimation of the state

of a nonlinear dynamic system, such as fMRI time series [37]. The basic framework

for Kalman filtering involves the estimation of the state of a discrete-time dynamic

system described in a state-space model,

Sk = f (Sk−1,vk) (8)

yk = h (Sk, wk) , (9)

where Sk represents the state random variable of the system and yk is the measured

signal. The state and measurement noises are given by vk and wk, respectively.

The system dynamic models, f(·) and h(·), are assumed known. The Kalman filter

involves the recursive estimation of the mean and covariance of the state and consists

of two steps, prediction followed by update [42]:

Ŝk = (prediction of Sk) + Kk (yk − (prediction of yk))

= Ŝ−k + Kk

(
yk − ŷ−k

)
PSk

= P−Sk
−KkPỹkK

T
k ,

(10)

where Kk denotes the optimal Kalman gain, the optimal predictions of Sk and yk are

written as Ŝ−k and ŷ−k respectively and the covariance matrix is represented as P. The
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optimal terms in this recursion for a given system are expressed by

Ŝ−k = E [f(Sk−1,vk)]

ŷ−k = E
[
h(S−k , wk)

]
Kk = E [(Sk − Ŝ−k )(yk − ŷ−k )T ]E[(yk − ŷ−k )(yk − ŷ−k )T ]−1

= PSkỹk P−1ỹk ,

(11)

where Ŝ−k and ŷ−k are the expectation values of the corresponding random variables and

ỹk is the prediction error (or innovation, yk − ŷ−k ). The Kalman gain Kk is expressed

as a function of the expected cross-covariance matrix of the state prediction error and

the measurement prediction error, and the expected auto-correlation matrix of the

measurement prediction error. The optimal solution for Kalman filter requires taking

expectations of a nonlinear function of a state variable, which can be approximated by

an unscented transformation. The unscented transformation is a method to propagate

the statistics of a random variable through nonlinear transformations and builds on

the principle that it is easier to approximate probability distributions than it is to

approximate an arbitrary nonlinear function or transformation [41]. Please refer to

the Appendix for details on unscented transformation and unscented Kalman filter.

Now we put the MR signal model given in Eq. (5) into the Kalman filter framework.

The random state variable Sk consists of flip angle, T1, T2* signal change, and MR
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signal at the kth time point:

Sk =



sk,1

sk,2

sk,3

sk,4


=



α

T1

M0(sinα)e
− TE

T2∗
k

mk


. (12)

The MR signal time-series in Eq. (5) is represented as a state-space model, Sk =

f (Sk−1,vk):

sk,1 =sk−1,1 + vk,1

sk,2 =sk−1,2 + vk,2

sk,3 =sk−1,3 + vk,3

sk,4 =sk−1,4 cos(sk,1) e
−TRk

sk,2 + sk,3

[
1− e−

TRk
sk,2

]
,

(13)

where vk = [vk,1, vk,2, vk,3]
T is a random Gaussian state noise, vk ∼ N (0,Pvk

). It

is noted that T1 and the flip angle are modeled as random variables, allowing the

propagation of model mismatch through nonlinear functions, such as the exponential

term and cosine term in the MR signal model. The measured signal yk is described

as:

yk = h (Sk, wk) = sk,4 + wk (14)

where wk denotes a random Gaussian measurement noise, wk ∼
(
0, σ2

wk

)
.

Once the flip angle and the T1 is estimated as T̂1 and α̂, the T2*-dependent

signal term, M0(sinα)e
− TE

T2∗
k is estimated using two consecutive fMRI measurements

12



from Eq. (5) by

M0(sinα)e
− TE

T2∗
k =

mk −mk−1(cos α̂)e−TRk/T̂1

1− e−TRk/T̂1
. (15)

Then, the corrected time series is generated using the general MR signal model given

by Eq. (5) as follows:

mk,cor = (cos α̂)mk−1,cor e
−TRavg

T̂1 +M0(sinα)e
− TE

T2∗
k

[
1− e−

TRavg

T̂1

]
. (16)

2.3 Methods

2.3.1 Simulation

Simulated cardiac-gated fMRI time series were generated from Eq. (5) for a range of

flip angles (60◦ ∼ 110◦) and T1s (800 ms ∼ 2000 ms) with the addition of T2* related

change (3%) and timing information of the experiment described below. TR variation

was based on actual scan parameters from a representative participant. Noise was

generated and added in such a way that a temporal SNR (tSNR) is 90 with a mixture

of 70% white noise and 30% first-order autoregressive noise [28]. Corrections for

T1 effect were performed using “T1 only” and the “T1 & flip angle” methods. The

performance of correction was evaluated using tSNR, calculated by dividing the mean

of a time series by the standard deviation of its corrected version.

2.3.2 Experimental Design

Data Acquisition

Seven healthy volunteers participated in the experimental study after giving informed

consent in accordance with Emory University’s institutional review board. All MRI
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experiments were conducted on a 3T Siemens Tim Trio scanner (Siemens Medical

Solutions, Malvern, PA) equipped with a twelve-channel head coil. Anatomic im-

ages were acquired with a 3D T1-weighted magnetization-prepared rapid gradient

echo imaging (MPRAGE) sequence (FOV = 256×256×176 mm3, resolution 1×1×1

mm3, TR = 2250 ms, TE = 2.52 ms, flip angle = 9◦). Each subject subsequently

underwent two randomly ordered fMRI scans, an ungated scan and a gated scan. All

functional scans were acquired using a T2*-weighted echo-planar imaging sequence

with the following parameters: 270-volumes, FOV = 220 × 220 mm2, matrix = 110

× 110, 8 ascending axial slices with 20 % gap, thickness = 3 mm, TE = 30 msec,

generalized auto-calibrating partially parallel acquisition (GRAPPA) imaging with

an acceleration factor of 2. For the gated scan, TR was determined by each subject’s

heart rate. The average heart rate of each subject was used to determine the TR

for the ungated scan to match the total scan time as well as the number of volumes.

In addition, two volumes were collected with the same parameter as functional scan

except with TR = 1 sec and 20 sec used to calculate T1 for the “T1 only” method.

To inspect a registration result between the partial coverage of the functional scan

and the whole brain anatomical scan, two sets of 2D T1-weighted anatomical images

were also collected on slices of the functional scans, one with the partial coverage

same as the functional scan and the other with the whole brain coverage.

Physiological Recording

All physiological recording was performed using an integrated Siemens Physiological

Monitoring Unit. During functional scans, the cardiac signal was monitored with a

pulse oximeter placed on a finger of subjects, which provides a delayed systolic signal

as well as the oxygenation saturation level. Respiratory signal was monitored with

a flexible pressure belt placed around the upper abdomen of subjects. The sampling
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frequency of all physiological recording was 50 Hz.

Task Design

A central fixation cross was presented continuously and subjects were instructed to

gaze at the cross during fMRI scans (30 TRs of rest). Each fMRI scan started with 30

TRs of rest, followed by four set of 30 TRs of visual stimulation and 30 TRs of rest. An

inverting half-filled checkerboard alternated between left and right hemifields at 8Hz

during the visual stimulation. Visual stimuli were generated by an LCD projector,

back-projected onto a screen mounted at the rear of a scanner bore, and viewed

through a mirror mounted on the head coil.

Data Analysis

For each subject, 4 types of time series were derived from the two scans: (1) un-

gated scan; (2) gated scan with no correction; (3) gated scan with the “T1 only”

correction; and (4) gated scan with the “T1 & flip angle” correction. AFNI (http:

//afni.nimh.nih.gov/afni/) was used for most of the data analysis. In addition,

FSL (http://www.fmrib.ox.ac.uk/fsl/) was used for brain segmentation and reg-

istration. The “T1 & flip angle” correction was performed using Matlab (MathWorks,

Natick, MA) routines with ReBEL Matlab toolbox (http://choosh.csee.ogi.edu/

rebel/) for unscented Kalman filter. The first ten volumes of each run were discarded

to remove T1 saturation effects. Remaining volumes underwent motion correction,

linear detrending, and spatial smoothing (full width of half maximum (FWHM) = 3

mm). Retrospective correction [30] was performed to reduce respiration effect for all

time-series and cardiac effect for ungated time series.
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A multiple regression analysis was performed in the native space of each individ-

ual subject. Regressors represent the two visual stimulation conditions (left and right

stimulus) and their temporal derivatives, were used to derive subject-level activation

maps which reflect the contralateral response of the visual system. To compare tem-

poral characteristics, tSNR was calculated from the standard deviation of the residual

time series produced by the regression analysis for each voxel. The regression coeffi-

cients were registered to a standard space using FSL’s nonlinear image registrations

tool (FNIRT) and fed into a one-sample t-test for group level activation maps. The

effect of different corrections on the activation was further examined by a regions of

interest (ROI) analysis. Two ROIs were functionally defined; one in the subcortical

region (the lateral geniculate nucleus (LGN)) and the other in the cortical region (vi-

sual cortex) based on the group activation maps (p < 0.01, uncorrected). Specifically,

LGN activations were identified from contiguous voxels in the anatomical location of

the LGN from the AFNI atlas. Visual cortex activations were restricted to Brodmann

areas 17 and 18. Finally, one common ROI was created by taking an inclusive union

of activated voxels across 4 different approaches for each ROI.
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Figure 2: Temporal SNR in simulated time series for varying flip angle and T1.

2.4 Results

Figure 2 shows tSNR map in the simulated time series as a function of the flip angles

(60◦ ∼ 110◦) and T1s (800 ms ∼ 2000 ms). While tSNR values in the “T1 only”

correction show a significant increase only around the flip angle of 90◦, tSNR values

in the “T1 & flip angle” correction exhibit an increase across the entire range of flip

angles tested. This clearly indicates that the “T1 only” correction is effective only

the actual flip angle is near 90◦.

The percentage changes in tSNR using the two correction methods for the gated

time series relative to the ungated time series are presented in Fig. 3. The increase

of tSNR was observed in subcortical regions including LGN and brain stem for both

correction methods compared to the ungated time series, as a result of cardiac-gated

acquisition. For the “T1 only” correction, the gain comes at the expense of substantial

decrease of tSNR in grey matter while the “T1 & flip angle” correction did not result

in the reduction of tSNR in grey matter. The tSNR was averaged across grey matter

for all participants (Fig. 4). The result from the gated times series with the “T1 & flip
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Figure 3: Changes in tSNR for the gated time series with (a) “T1 only” correction
and (b) “T1 & flip angle” correction compared to the conventional ungated time series
for 3 subjects.
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Figure 4: Grey matter tSNR, averaged from 7 subjects of the ungated time series
and gated time series with different correction methods

angle” correction was significantly higher than those from the “T1 only” correction

across subjects (a paired t-test p < 0.004). This indicates that the new correction

improved the temporal signal stability by reducing signal fluctuations induced by

variable TRs.

Representative time series from in vivo data are presented in Fig. 5. It is evident

that fluctuations are substantially more reduced by the “T1 & flip angle” correction

compared to the “T1 only” correction while the contrast of interest remains unaf-

fected. Time courses from a representative subject are illustrated in Fig. 6. The

estimated flip angle shows a wide variation, ranging from 62◦ to 95◦ consistent with

previous reports [50, 40]. Activation results clearly demonstrate that the “T1 & flip

angle” correction is superior over the “T1 only” correction in terms of statistical sig-

nificance and spatial extent in left visual cortex for a right stimulus condition.
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Figure 5: Time courses in a representative voxel in the right visual cortex derived
from two different correction methods (T1 only vs T1 & flip angle)

To further examine the activations in the two ROIs, we first compared the number

of activated voxels at the group level analysis. Figure 6 demonstrates that the number

of activated voxels in the LGN from both correction methods for the dated time series

(75 voxels for the “T1 only” and 79 voxels for the “T1 & flip angle”) is higher than

that of the ungated dataset (40 voxels). Gated time series with no correction did

not show any LGN activation at the group level analysis. The result indicates that

the gated fMRI acquisition with the correction approaches is effective at increasing

signal detection in the LGN. The effectiveness of the correction for T1 effect was

further assessed in terms of its impact on the statistics at the subject level analyses.

The t-statistic maps were converted to Z-statistics and the mean Z-statistics across

subjects for different approaches were compared. The values derived from the “T1 &

flip angle” correction are significantly higher than those of the “T1 only” correction

across all subjects according to a paired t-test (p < 0.002), indicating that the new

correction improved statistical detection. In the visual cortex, there is no significant

difference between the ungated approach and the “T1 & flip angle” approach in term
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Figure 6: Results from a representative subject: (top) estimated flip angle and T1
using Kalman filter, (middle) tSNR maps, and (bottom) activation maps for the right
field stimulus at p < 0.05 (corrected).
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Figure 7: Comparison of the activations in LGN and visual cortex ROIs for four
different time series: (top) mean Z-statistics and (bottom) the number of activated
voxels (p < 0.01, uncorrected).
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of the number of activated voxels and the mean Z-statistics. However, the “T1 only”

approach led to a mean Z-score that only 60 % of those obtained with the ungated

approach and the “T1 & flip angle” approach demonstrating that the “T1 only”

approach redues the detection power in the visual cortex, due to the use of incorrect

flip angle.

2.5 Discussion

This work introduces a more general technique, which accounts for spatial variation

in flip angle, for correcting T1 effect in cardiac-gated fMRI. The new method removes

T1 related signal fluctuations throughout the entire brain in the presence of B1 inho-

mogeneity. Cardiac-gated fMRI has been shown to improve the sensitivity of fMRI,

particularly for subcortical regions because they tend to move more with cardiac pul-

sation. Experimental results reported here demonstrated the improved detection of

LGN activation with gated acquisition and T1 correction. However, the gain in the

subcortical region by the “T1 only” is associated with a loss of sensitivity in the cor-

tex due to the use of incorrect flip angle in the presence of B1 inhomogeneity. This

loss of sensitivity is clearly seen in simulation and experimental data, particularly

in the lower statistics values (5.26) in the visual cortex activation derived with “T1

only” compared to that of the ungated (8.74). As demonstrated by simulation and

experimental results, “T1 & flip angle” approach introduced in this work completely

eliminated this loss of sensitivity and made the gated acquisition more robust.

It is challenging to study subcortical nuclei using fMRI because of their small

sizes, relatively low BOLD contrast, and deep locations susceptible to pulsatile motion

artifacts. From our results in this study, the hemifield retinotopic relationship in the

human brain was demonstrated in the LGN, the thalamic station in the projection of
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the visual pathway from retina to primary visual cortex. These results are consistent

with earlier observations [59, 17]. Thus, cardiac-gated fMRI with the correction

technique developed here offer opportunities for studying subcortical regions without

the compromise of reducing the detection power in cortical regions.

The new approach does not require additional scans to estimate the flip angle and

T1. The natural variability of TR in the gated fMRI allows the estimation of the

parameters directly from the acquired data using Kalman filter. The technique of

estimating the flip angle using Kalman filter may be be utilized in other applications

where a flip angle (or B1) map is needed. It is also worth noting that Kalman filter

can be also used to estimate the T2* change, sk,3 in Eq. (12), from noisy fMRI mea-

surements as the unobserved time-varying state estimation. We have used Kalman

filter for estimating the flip angle and T1 as unknown constants in this study. In state

estimation method, Kalman filter eliminates not only T1 effect, but also the measure-

ment noise, which would result in better tSNR. However, caution should be exercised

as the neural activity-related signal can be confounded with the measurement noise

in Kalman filter.

2.6 Conclusions

A technique for correcting T1 effects in cardiac-gated fMRI data is presented here.

Accounting for spatial variation in flip angle, the new method is able to remove the

T1 effects robustly, in the presence of significant B1 inhomogeneity. The technique

is demonstrated with simulations and experimental data. Therefore, the technique is

expected to be a promising tool for improving the ability of mapping activation in

fMRI,especially in subcortical regions.
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2.8 Appendix

2.8.1 Unscented Transformation

We consider the propagation of an L dimensional random variable X through an

arbitrary nonlinear function,

Y = g (X) (17)

Assume X has mean X̄ and covariance matrix PX. We define a set of 2L+1 weighted

samples, called sigma points {w(i),X(i)} are deterministically chosen so that they

completely capture the true mean and covariance of the prior random variable X as

follows:

X(0) = X̄ w(0) = 1/L i = 0

X(i) = X̄ +
(√

LPX

)(i)
w(i) = 1/2L i = 1, . . . , L (18)

X(i) = X̄−
(√

LPX

)(i)
w(i) = 1/2L i = L+ 1, . . . , 2L.

Each sigma point is now propagated through the nonlinear function

Y(i) = f(X(i)) i = 0, . . . , 2L (19)

and the approximated mean, covariance and cross-covariance of Y are computed as

follows:
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Ȳ ≈
2L∑
i=0

w(i)Y(i)

PY ≈
2L∑
i=0

w(i)
(
Y(i))− Ȳ

) (
Y(i) − Ȳ

)T

PXY ≈
2L∑
i=0

w(i)
(
X(i) − X̄

) (
Y(i) − Ȳ

)T
(20)

These estimates are accurate to the second order (third order for true Gaussian priors)

for any nonlinear functions [62]. Now, we apply the unscented transformation to the

recursive Kalman filter framework.

2.8.2 Unscented Kalman Filter

The unscented transformation is used to approximate the optimal terms in Eq. (11)

where the state random variable is redefined as the concatenation of the original state

and the process and observation noise random variables. By augmenting the state

random variable with the noise random variables as shown in Eq. (21), we take the

uncertainty in the noise random variables into account in the same manner as we do

for the state during the sigma point propagation.

Sa,k =

[
Sk vk wk

]T
PSa,k

=


PSk

0 0

0 PSvk
0

0 0 Pwk

 (21)

The unscented Kalman filter is summarized as follows [41]:

1) The set of sigma points is calculated by Eq. (18) based on augmented state random

variable as Eq. (21).
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2) The transformed set is given through the MR signal model, f(·) given by Eq. (13):

S
(i)
a,k|k−1 = f(S

(i)
a,k−1). (22)

3) The predicted mean and covariance is computed as

Ŝ−a,k =
2L∑
i=0

w
(i)
k S

(i)
a,k|k−1

P−Sa,k
=

2L∑
i=0

w
(i)
k

(
S
(i)
a,k|k−1 − Ŝ−a,k

)(
S
(i)
a,k|k−1 − Ŝ−a,k

)T
.

(23)

4) Each of the prediction points is instantiated through the measurement model,

Eq. (14):

y
(i)
k|k−1 = h

(
S
(i)
a,k|k−1

)
= s

(i)
k|k−1,4. (24)

5) The predicted measurement, the innovation, covariance matrix, and the cross co-

variance matrix are calculated by

ŷ−k =
2L∑
i=0

w
(i)
k y

(i)
k|k−1

Pỹk =
2L∑
i=0

w
(i)
k

(
y
(i)
k|k−1 − ŷ

−
k

)2

PSkỹk =
2L∑
i=0

w
(i)
k

(
S
(i)
k|k−1 − S−k

)(
y
(i)
k|k−1 − ŷ

−
k

)T
,

(25)

where the innovation ỹk is the measurement prediction error.

6) The Kalman gain is calculated by

Kk = PSk,ỹkP
−1
ỹk
. (26)
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7) Finally, the update can be performed using the Kalman filter equations:

Ŝk = Ŝ−k + Kk

(
yk − ŷ−k

)
PSk

= P−Sk
−KkPỹkK

T
k .

(27)
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CHAPTER III

PHYSIOLOGICAL IMPULSE RESPONSE FUNCTION

ESTIMATION AND CORRECTION TECHNIQUE:

PIRFECT

3.1 Introduction

Physiological fluctuations due to respiration and cardiac pulsation are the dominant

source of confounding variability in blood oxygenation level-dependent (BOLD) func-

tional MRI (fMRI) at high field strengths [39, 30, 43]. It is vital to precisely charac-

terize the impact of physiological events (single heart beat or breath) on the BOLD

signal, so that it can be estimated and removed. Retrospective physiological noise

correction techniques [39, 30] have been introduced to reduce short-term effects, hav-

ing instantaneous impact on fMRI signal in concert with the respiratory and cardiac

processes. The physiological sources of short-term cardiac pulse effects are tissue

motion, CSF motion, large vessel pulsation, and changes in blood volume in the cap-

illary bed [39, 19]. Short-term respiration effects result from head motion as well as

B0 modulation due to bulk susceptibility changes from thoracic organ movement and

gas volume [52, 39, 58, 57, 10, 64].

However, even after removing short-term effects using the retrospective techiques

[39, 30], significant correlation between fMRI change and physiological change such

as cardiac rate and respiratory volume change have been observed [65, 5, 60]. Breath-

to-breath variation in respiratory volume leads to fluctuations in the carbon dioxide
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(CO2) content of arterial blood, a potent vasodilator. Cerebral blood flow fluctua-

tions induced by these variations in CO2 content result in low-frequency BOLD signal

fluctuations throughout gray matter and near large vessels [65]. Respiration volume

per time (RVT) has been proposed as an indicator of respiration induced signal fluc-

tuations and has been shown to be significantly correlated with the BOLD signal [5].

These respiration induced fluctuations typically occur at a frequency of approximately

0.03 Hz [65, 5]. In addition, significant correlations between cardiac rate and BOLD

signal fluctuations have been reported [60, 15]. While variations in respiration depth,

respiration rate and heart rate are examples of sources of long-term effects, there are

potentially other sources that have yet to be identified.

These studies indicate that existing retrospective techniques [39, 30] are inappro-

priate to remove long-term effects because they do not adequately characterize the

noise contributions that span several physiological cycles. Previous works suggested

including RVT and cardiac rate as nuisance regressors in general linear model (GLM)

analyses [5, 60]. However, the physiological effects may not be limited to simple lin-

ear combinations of the RVT and cardiac rate time courses even though the both

are correlated with the fMRI signal. In addition, estimating the voxel specific delay

is challenging. Another method employs the respiration response function (RRF),

which is the transfer function between RVT changes and BOLD signal change. To

estimate the RRF, calibration scans in which subjects perform a single deep breath

are performed and the BOLD signal acquired during this scan is averaged across

brain voxels over several subjects [7] and used in the estimation. While this approach

models the temporal shape of respiration effects, it assumes that the response of a

single controlled breath precisely models the BOLD response of respiration. This

may be the reason why the RRF model has a better goodness of fit to the controlled

breathing task data than the resting state data. Furthermore, the RRF used earlier
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[7] did not account for spatial and inter-subject variability.

Long-term physiological effects are particularly detrimental in resting-state func-

tional connectivity analysis since their frequency range overlaps with the frequencies

of fluctuations believed to reflect resting brain activity. Recent studies have shown

significant correlations between the long-term physiological signal change and fMRI

throughout gray matter, impeding detection of resting-state networks [6, 16]. Fur-

thermore, studies have shown that the spatial distribution of the respiration long-term

effects coincide with the default mode network [6].

Here, I describe an alternative approach to precisely model and remove physiolog-

ical fluctuations from fMRI signal, physiological impulse response function estimation

and correction (PIRFECT). A physiological impulse response function (PIRF), that

is subject- and voxel-specific, is used to characterize how physiological events are

translated into BOLD signal. The estimation of PIRF does not require a calibration

scan. Once the PIRF is known it is used to generate a time course of physiological

noise that is then removed from the data. PIRFECT is based on relative physio-

logical timing information such as respiration and cardiac cycles and generalizes the

retrospective techniques [39, 30] by relaxing the duration of physiological effects.
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3.2 Theory

3.2.1 Model of Physiological Fluctuation

The retrospective physiological motion correction techniques described previously

[39, 30] assume that physiological motion effects are pseudo-periodic and that their

duration is limited to single physiological cycle. In this work, I generalized theses

retrospective techniques by relaxing the duration of the physiological motion effect

and including long-term effects that last several physiological cycles.

x(t) 
y[n],  fMRI signal 

model 
error 

+ Sampling 
y(t) 

PIRF p(t) 

h(θ) 
respiration or 
heartbeat peak 

Figure 8: Schematic representation of time series of a voxel in fMRI signal in the
reduced PIRFECT model

I first examine a reduced PIRFECT model including only one of physiological

fluctuations. For a physiological impulse train p(t), the impulse locations correspond

to cycle epochs (i.e., the time of maximum inspiration or the R-wave peak) and

magnitude is the cycles depth of respiration or 1 for heart beat. As shown in Fig. 8,

the time series of a voxel in fMRI signal, y(t), is modeled as the modeled physiological

fluctuations with an unknown PIRF and a residual:

y(t) = x(t) + e(t)

= p (θ(t)) ∗ h (θ(t)) + e(t)

(28)

where x(t) represents the modeled physiological signal change, θ(t) is the relative
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Figure 9: Illustration of model of long-term respiration fluctuations. Each impulse
represents respiration epoch and magnitude represents the depth of respiration. As-
suming the PIRF (to be estimated) is given as right plot, each respiration event
contribute differently to fMRI signal at time t = kTR depending on relative cycle.

cycle of physiological process, t represents the time at which data point is measured,

h(θ) is the PIRF to be estimated, ∗ represents convolution, and e(t) represents model

error including other signal fluctuations. In this formalism, the previous retrospective

techniques [39, 30] estimate a PIRF, h(θ) , for one physiological cycle (i.e., {θ : 0 ≤

θ ≤ 1}) using a Fourier basis set. I generalize this idea from one to several cycles to

account for long-term effects. Therefore, the long-term effects, such as fluctuations in

BOLD signal due to breath-to-breath variations and heart rate variations, which are

not modeled in previous techniques [39, 30], are modeled here. For the kth timepoint,

the physiological signal change x(kTR) is modeled by a linear combination of scaled

and time delayed instances of the PIRF.

x(kTR) =
∑

{i | p< θi(kTR)}

ai h (θi(kTR)) , (29)

where θi(kTR) = kTR−ti
ti+1−ti , ti represents the time of ith epoch, p and q denote the limits

of the support of a PIRF h(θ) and TR represents the sampling period of y(t). A

full PIRFECT model is described as a sum of short-term and long-term respiration

fluctuation as well as both cardiac fluctuations as shown in Fig. 10. To increase model
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Figure 10: Schematic representation of time series of a voxel in fMRI signal in the
full PIRFECT model

accuracy, other fluctuations, such as movement parameters, averaged white-mater and

cerebrospinal fluid (CSF) regressors can be included in the model.

y(t) = xSresp(t) + xLresp(t) + xSheart(t) + xLheart(t) + o(t) + e(t) (30)

where xSresp(t) is short-term respiration fluctuations, xLresp(t) is long-term respiration

fluctuations, xSheart(t) is short-term cardiac fluctuations, xLheart(t) is long-term cardiac

fluctuations, o(t) is other modeled fluctuations, and plus model error, e(t).
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3.2.2 Estimation of Physiological Impulse Response

Without loss of generality, a reduced PIRFECT model is used to describe a estimation

of PIRF. By dividing the compact support of a PIRF h(θ) into M bins (where M

is equal to or less than the number of time points N), we can express the ideal

physiological signal in a matrix-vector form as follows:

x = Ah (31)

where x = [x(1× TR), x(2× TR), . . . , x(N × TR)]T and the element akj of the N×M

matrix A is the contribution of the physiological signal to the jth bin of the PIRF

at the kth TR, and h =
[
h(1× p−1

M
), x(2× p−1

M
), . . . , x(N × p−1

M
)
]T

. Noisy fMRI

measurements are expressed as:

y = Ah + r, (32)

where y = [y(1× TR), y(2× TR), . . . , y(N × TR)]T and e denotes a N × 1 error

vector including model error and other signal fluctuations. Our goal is to estimate

the PIRF h(θ) from the measured fMRI signal y. Assuming independent zero mean

Gaussian noise, the well-known maximum-likelihood (ML) estimator is

ĥML = [ATA]−1ATy. (33)

The matrix ATA may be be ill-conditioned and the solution may be unstable. To

overcome this problem, we will use a penalized-likelihood (PL) estimation which

regularizes the solution. Specifically, we find hPL by minimizing the following cost

functions:

Ψ(h) = − log p(A|h) + βR(h) (34)
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The first term is the negative log-likelihood and the second term is a regularization

penalty function in which β denotes the regularization parameter. The regularization

penalty is formed from the observation that physiological signal variations occur at

lower frequencies [65, 5, 60, 7, 15] and thus, a smooth PIRF is desirable. It is also

assumed that the PIRF is zero at its boundaries. The smoothness condition and

boundary condition are embodied in the following regularization penalty function:

R(h) =
1

2
(h[1]− 0)2 +

1

2
(h[M ]− 0)2 +

M∑
n=2

1

2
(h[n]− h[n− 1])2, (35)

Assuming independent zero mean Gaussian noise, the solution of Eq. (34) is

ĥPL = [ATA + βσ2R]−1ATy. (36)

where σ2 is the noise variance and the element Rkj of the (M + 1)×M matrix R is

Rkj = 2 δ[k − j] + δ[k − j − 1] + δ[k − j + 1]. (37)

Alternatively, one can estimate the PIRF h using a Fourier basis set as previously

done [39, 30]. I express Eq. (31) as

x = AFb = Gb, (38)

where b denotes the (2s + 1) × 1 Fourier coefficients vector, s denote the order of

Fourier series, and F represents the M × (2s+ 1) matrix form of Fourier basis:

{Fjk} =


sin
(

2π j·k
q−p

)
, if j = 1, 3, 5, · · ·

cos
(

2π j·k
q−p

)
, if j = 2, 4, 6, · · ·

. (39)
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The ML estimator of Fourier coefficients b̂ is given by

b̂ = [GTG]−1GTy. (40)

In this approach, the previous retrospective techniques [39, 30] are the special case

when p = 0 and q = 1.

Once the PIRF is estimated from Eq. (36) or Eq. (40), the correction is performed

on a voxel-by-voxel basis by removing the estimated physiological effects from mea-

surement based on Eq. (31) or Eq. (38). Instead, the correction can be made by

inclusion of the (2s + 1) physiological regressors, Gb̂ in GLM analyses as nuisance

covariates, as well as other covariates such as the motion parameters, for the Fourier

basis approach.

37



3.3 Methods

3.3.1 Image acquisition

Eleven healthy volunteers participated in this study after giving informed consent in

accordance with Georgia Institute of Technology’s Institutional Review Board. All

MRI experiments were conducted on a 3T Siemens Tim Trio scanner (Siemens Medical

Solutions, Malvern, PA) equipped with a twelve-channel head coil. Anatomic images

were acquired with a 3D T1-weighted magnetization-prepared rapid gradient echo

imaging (MPRAGE) sequence (FOV = 256×256×176 mm3, resolution 1×1×1 mm3,

TR = 2250 ms, TE = 3.98 ms, flip angle = 9◦). Resting state data were acquired

using a T2*-weighted echo-planar imaging sequence with the following parameters:

148-volumes, FOV = 204 × 204 mm2, matrix = 68 × 68, 37 interleaved axial slices

with 17 % gap, thickness = 3 mm, TE = 30 msec, flip angle = 90◦, generalized auto-

calibrating partially parallel acquisition (GRAPPA) imaging with an acceleration

factor of 2 while the subjects were inactive (lying still with a visual fixation cross

projected onto the screen).

3.3.2 Physiological recording

All physiological recording was performed using an integrated Siemens Physiological

Monitoring Unit. During functional scans, the cardiac signal was monitored with a

pulse oximeter placed on a finger of subjects, which provides a delayed systolic signal

as well as the oxygenation saturation level. Respiratory signal was monitored with

a flexible pressure belt placed around the upper abdomen of subjects. The sampling

frequency of all physiological recording was 50 Hz.
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3.3.3 Data Preprocessing

Resting-state scans were preprocessed using AFNI (http://afni.nimh.nih.gov/

afni/) for most of the data analysis. In addition, FSL (http://www.fmrib.ox.ac.

uk/fsl/) was used for brain segmentation and registration. The first four volumes

of each run were discarded to remove T1 saturation effects. the data were corrected

for motion by aligning each volume to the mean image volume using Fourier in-

terpolation in AFNI. Then the data were spatially smoothed using a 5-mm FWHM

Gaussian kernel. Mean-based intensity normalization was done by scaling all volumes

by the same factor (10,000). The data were temporally filtered using both a high-pass

(Gaussian-weighted least squares straight- line fitting, with σ = 100.0s) and low-pass

(Gaussian low-pass temporal filtering, with a HWHM of 2.8 s) filter, followed by lin-

ear detrending to remove any residual drift. After the skull was removed using AFNI,

registration of each individuals high-resolution anatomic image to a common stereo-

tactic space [the Montreal Neurological Institutes 152-brain template (MNI152); 3

mm isotropic voxel size] was done using a 12degrees of freedom linear affine trans-

formation (FLIRT) in FSL toolbox. The resulting transformation was then applied

to each individuals functional dataset.

3.3.4 Models of Physiological Effects

The PIRFECT technique was performed with in-house MATLAB (MathWorks, Nat-

ick, MA) routines. Short-term physiological effects were modeled using Fourier basis

with p = 0, q = 1 and s = 2. This approach is equivalent to RETROICOR [30]. Previ-

ous study [7] showed that fMRI signal change with respect to a breath-hold challenge

was characterized as a bimodal response with an early signal increase, peaking at 3

s, followed by a pronounced undershoot of even greater magnitude, peaking at 16 s

and returning to baseline at 40 s. With average respiration cycle of 4 s, long-term
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respiratory effects were modeled with p = 0, q = 9 and s = 3 resulting the best

goodness-of-fit on preliminary data. Long-term cardiac effects were modeled with

p = 0, q = 20 and s = 3 based on the cardiac response function [15].

For each subject, physiological fluctuations were removed voxel-wise from the

data via multiple regression. The full PIRFECT model consists of short-term and

long-term respiratory effects as well as short-term and long-term cardiac effects. In

the regression model, additional regressors are included as nuisance signals including

white matter (WM), cerebrospinal fluid (CSF), and six motion parameters. The WM

and CSF covariates were generated by segmenting each individuals high-resolution

structural image (using FAST in FSL). The resulting segmented WM and CSF images

were thresholded to ensure 80% tissue type probability. These thresholded masks were

then applied to each individuals time series, and a mean time series was calculated by

averaging across time series of all voxels within each mask. The six motion parameters

were calculated in the motion-correction step during preprocessing. Movement in each

of the three cardinal directions (X, Y, and Z) and rotational movement around three

axes (pitch, yaw, and roll) were included for each individual. The variance explained

by the long-term effects was computed using an R2-test.
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3.4 Results

The estimated respiration signal change was highly correlated with RVT change de-

layed by 2 second (see Fig. 11). This result agrees well with a previous study [65, 5]

and demonstrates that the proposed method accurately estimated the respiration in-

duced signal change. Maps depicting the percent signal variance explained at each

voxel for the long-term PIRFECT model are shown for 3 subjects in Fig. 12. For

all subjects, the long-term PIRFECT model explained significant variance over some

extent of the brain. The PIRFs exhibit significant regional variations as expected.

Unlike the transfer function method [7] which uses a separate calibration scan to es-

timate the average response of deep breaths in the entire brain, the PIRF described

here is estimated from the dataset itself, voxel-by-voxel without separate calibration

dataset.

It is not known whether a single averaged respiration response function such as

Birn’s RRF [7] can serve as a representative mapping of each voxels. Subject aver-

aged respiratory PIRF were computed for each as well as global averaged one for all

subjects in voxels reached significance (p < 0.01, uncorrected) by a F-test. The Pear-

son correlation coefficient (CC) between average PIRFs and each PIRFs for supra-

threshold voxels were calculated (Fig. 13). With subject average PIRFs, means of

CC varied substantially across the subjects (min: 0.25 and max: 0.68). The ratio

of standard deviations to the means of CC was large (average ratio 1.14) indicating

spatial variability in respiration PIRF shape. With global average PIRF, means of

CC was smaller than with subject average. This suggests that there is substantial

subject variability as well as spatial variability. Large standard deviations (average

0.46) with small means of CC (average 0.18) support that global respiration PIRF

may not be a good representation of other PIRFs.

41



(A) PIRF 

Figure 11: An example: (A) The estimated PIRF of respiration from a representative
voxel in a representative subject. (B) fMRI time courses. The standard deviation is
reduced by 28% (D) The estimated respiration-related fluctuations. (F) The 2 second
delayed RVT. The correlation between the estimated signal and 2 second delayed RVT
is positively high (CC = +0.62). (C, E, and G) Fourier transforms of time courses
in panel B, D, and F respectively. Black: uncorrected time course after band-passed
filtering (0.009 Hz < f < 0.08 Hz), Red: corrected time course with band-filtering.
The correction is made before filtering. Blue: Fourier basis method, Green: penalized
likelihood method and Bold black: RVT time course.
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Figure 12: Maps of the percent signal variance explained by the long-term PIRFECT
model for 4 subjects.

F igure 2. (I) Clustering of respiration PIRFs in 6 slices in all 8 
subjects. Each row represents a subject. Each cluster represents in a 
different color (I I) Average PIRFs of each cluster (black line) and 
one standard deviation (red line). (I I I) Percentage of each cluster per 
a subject 

I 

F igure 1. Means and standard deviations of Pearson correlation 
coefficients(CC); with subject average PIRF (blue) and global 
average PIRF (red)    
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Figure 13: Means and standard deviations of Pearson correlation coefficients (CC);
with subject average PIRF (blue) and global average PIRF (red)
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To examine space and subject variability of long-term respiration effects by clus-

tering the voxel-specific PIRFs, K-means clustering, based on using sample correlation

as distance measure, was performed on voxels in which the respiratory components

reached significance (p < 0.01, uncorrected) by a F-test from eight subjects using 5

clusters (Fig. 14). The average and standard deviation of PIRFs were calculated for

each cluster (Fig. 15). To compensate for inter-subject variability in BOLD signal

change, the signal was normalized before taking the average. Supra-threshold voxels

were located in mostly grey matter. There are overlapped areas in supra-threshold

voxels across the subjects. However, the patterns of the clusters varied substantially

across subjects. Cluster A and B were the most dominant components (23% and 26%

respectively). However, other clusters (D and E) were the most dominant in some

subjects (4, 6 and 8). The substantial variation in the average cluster PIRFs indi-

cates the spatial and subject variability of respiration artifacts. The small standard

deviations of the average PIRFs show that clusters are relatively tight.

To test the effectiveness of removing the breath-to-breath variations, I compared

the correlations between the BOLD signal and delayed RVT changes for uncorrected

and corrected datasets. The RVT changes were obtained by dividing the difference

between the maximum and minimum belt positions by the time between the maximum

belt positions (the respiration period) and filtering this raw time course using low pass

filter (f < 0.1 Hz) as described by Birn et al [5]. The correlation maps were generated

and converted to Z-maps. The correlations between the resting-state fMRI time

courses and delayed RVT changes are substantially reduced in the corrected dataset

(see Fig. 16), demonstrating that the PIRFECT significantly reduced non-neuronal

BOLD signal variations.
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F igure 2. (I) Clustering of respiration PIRFs in 6 slices in all 8 
subjects. Each row represents a subject. Each cluster represents in a 
different color (I I) Average PIRFs of each cluster (black line) and 
one standard deviation (red line). (I I I) Percentage of each cluster per 
a subject 

I 

F igure 1. Means and standard deviations of Pearson correlation 
coefficients(CC); with subject average PIRF (blue) and global 
average PIRF (red)    
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Figure 14: Clustering of respiration PIRFs in 6 slices in 8 subjects. Each row
represents a subject. Each cluster represents in a different color
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F igure 2. (I) Clustering of respiration PIRFs in 6 slices in all 8 
subjects. Each row represents a subject. Each cluster represents in a 
different color (I I) Average PIRFs of each cluster (black line) and 
one standard deviation (red line). (I I I) Percentage of each cluster per 
a subject 

I 

F igure 1. Means and standard deviations of Pearson correlation 
coefficients(CC); with subject average PIRF (blue) and global 
average PIRF (red)    
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Figure 15: (top) Average PIRFs of each cluster (black line) and one standard de-
viation (red line). (bottom) Percentage of each cluster per a subject shown in Fig
14
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(a) RV T map : Uncorrected 

(b) RV T map : Cor rected 

Z 
-3.29 

-6 

p<0.01 

Figure 16: Maps representing significant correlated with respiration volume per time
(RVT) changes (A) before and (B) after long-term PIRFECT correction
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3.5 Discussion

Previous studies have found significant correlation between the BOLD signal and

respiration volume change and heart rate [65, 5, 60, 7, 6, 15]. In this work, I assume

that 1) BOLD signal response to the physiological event (single heart beat and breath)

lasts longer than a single physiological cycle and 2) this response is voxel specific and

subject dependent. With these assumptions, a generalized retrospective correction

technique, PIRFECT, is introduced and demonstrated with respiration and cardiac

effects.

It has been observed that the BOLD signal is highly correlated with external phys-

iological monitored signals, including RVT, the partial pressure of end-tidal carbon

dioxide and heart rate [65, 5, 60, 7, 6, 15]. Nonetheless, the retrospective techniques

proposed earlier [39, 30, 43] are not successful in removing these fluctuations. It

can be explained in the PIRFECT framework. If single physiological event has the

long-term (e.g. 30 sec) fMRI response, several neighborhood events simultaneously

contribute to fMRI signals at each time point. Therefore, the fluctuations in res-

piration and heart rate would lead to fluctuations in fMRI signal due to varying

cumulative effects of several neighborhood events. The existing techniques [39, 30]

estimate the instantaneous fMRI response within single physiological cycle, do not

address the overlapping effects from multiple cycles and cannot correct the long-term

fluctuations.

In estimating PIRF, I observe regional variability across the brain. On the other

hand, I also found that adjacent regions have similar PIRFs. The long-term respi-

ration fluctuations are likely related to carbon dioxide, a potent cerebral vasodilator
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[65] although the precise physiological origin is unclear at this point. The BOLD sig-

nal results from complicated contributions from cerebral blood flow, metabolism and

brain vasculature. It is not surprising that the physiological effects are region-specific

and subject-specific.

The regularization and Fourier basis method yield smooth PIRF. The smoothness

leads to physiologically plausible solution and prevents unacceptably noisy solution

due to over-fitting [31, 14]. This is one of reasons why a previous direct deconvolution

approach failed to obtain a reliable response function [7]. The resolution property of

penalized likelihood estimation can be found in a review [22]. An advantage of Fourier

basis approach is that it can be integrated into the GLM analysis as nuisance regres-

sors using routinely available fMRI analysis tools. More importantly, this approach

enables PIRFECT flexible to use and can improve estimation accuracy and the va-

lidity of the drawn inferences by including confounding effects such as motion, mean

WM/CSF regressors in the GLM analysis [49]. The implicit assumption of PIRFECT

is that long-term physiological fluctuations are not correlated with the neuronal sig-

nal changes. If this assumption is violated, PIRFECT may remove signals of interest

as well as physiological fluctuations. This may be particularly a concern in brain

regions involving the control of respiration and heart beat. Also, because PIRFECT

employs a linear time-invariant (in sense that the physiological change depends on

the relative cycles despite of physiological period) system approach, it is difficult to

model irregular physiological effects such as breath-holding and sudden increase in

the depth of breathing.

The PIRFECT approach estimates the voxel-specific physiological response with-

out the need of a separate calibration scan. The reliability of these estimates can

be gauged by the goodness-of-fit. It should be noted that the goodness-of-fit here
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needs to be interpreted with caution because BOLD signal variations that arise not

from respiration or heart beat are considered as error in the fit. Thus, it is not al-

ways true that a “reliable” estimate lead to a “good fit.” The present study employs

regularization in PIRF estimation to avoid over-fit and to obtain physiologically plau-

sible response. In present study, the RVT is used as independent measured signal to

supplement a reliability of estimate in agreement with previous study [5].

The PIRFECT method is a generalization of retrospective techniques. First of all,

the duration of physiological effects is allowed to be longer than a single cycle and its

starting time is also flexible. The physiological cycle instead of the absolute time is

used to estimate PIRF in this sense. Unlike instantaneous physiological effects, long-

term fluctuations are expected to take some time to develop. This flexible starting

time lag can be included in PIRFECT model to increase estimation accuracy and to

reduce residual instantaneous effects.
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CHAPTER IV

EFFECT OF PHYSIOLOGICAL FLUCTUATIONS

ON RESTING-STATE NETWORKS

4.1 Introduction

Along with the rapid growth of methods and applications of functional brain mapping

for localizing regions with specialized functions, there has been a great deal of inter-

est and progress made in studying brain connectivity. In particular, neuroimaging

data can be used to infer functional connectivity which permits a systematic under-

standing of brain activity and allows the establishment and validation of network

models of various brain functions. With the advent of functional neuroimaging, ap-

proaches have been developed to probe functional connectivity [44]. One approach

for examining connectivity, that has gained a great deal of interest, is based on the

temporal correlations in functional neuroimaging data [27]. Functional connectivity

has been defined as “temporal correlations between spatially remote neurophysiolog-

ical events [27].” With fMRI data acquired during the absence of an explicit task,

i.e., the resting-state [24, 11], low-frequency time course fluctuations were found to

be temporally correlated between functionally related areas. These low frequency

oscillations seem to be a general property of symmetric cortices and/or relevant re-

gions, have been shown to exist in a number of brain networks [36, 8, 9, 48] and have

been revealed with data-driven analysis approaches [18, 56]. These fluctuations agree

with the concept of functional connectivity defined by Friston et al. [27]. Several such

sets of temporally correlated regions, known as resting-state networks (RSNs), can be

identified consistently across human subjects [3, 20, 12]. and are presumed to reflect

a basic functional organization of the brain. While the mechanism of interregional
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correlation in resting state fluctuations is not well understood, this correlation may be

due to strengthened synaptic connections between areas with synchronized electrical

activity, in accordance with Hebb’s theory [38]. Several recent studies have shown

decreased low frequency correlations for patients in pathological states, including co-

caine use [46], cerebral and Alzheimer’s disease [47]. Thus, low frequency functional

connectivity provides an important characterization of the brain. Interestingly, there

seems to be a concordance between connectivity identified from baseline data and that

identified from data acquired during a continuous task [36]. Several signal-processing

techniques may be employed to delineate functional connectivity [45]. Of these, seed-

based correlation and independent component analysis (ICA) exemplify two of the

most frequently-used classes of methods. In seed-based correlation, one computes

an index of temporal similarity such as Pearson correlation between one region of

interests (ROI) and all other voles in the brain [32, 8]. Other techniques have been

proposed for resting-state network such as independent component analysis (ICA) [4]

and self-organizing maps [56].

However, non-neural physiological fluctuations arising from respiratory and car-

diac processes are particularly detrimental in resting-state functional connectivity

analysis since their frequency range overlaps with the frequencies of fluctuations be-

lieved to reflect resting brain activity. Recent studies have shown significant correla-

tions between the long-term physiological signal change and fMRI throughout gray

matter, impeding detection of resting-state networks [6, 16]. Furthermore, studies

have shown that the spatial distribution of the respiration long-term effects coincide

with the default mode network [6]. This chapter seeks to characterize the effects of

physiological fluctuations on resting-state networks.
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4.2 Methods

4.2.1 Image acquisition

Eleven healthy volunteers participated in this study after giving informed consent in

accordance with Georgia Institute of Technology’s Institutional Review Board. All

MRI experiments were conducted on a 3T Siemens Tim Trio scanner (Siemens Medical

Solutions, Malvern, PA) equipped with a twelve-channel head coil. Anatomic images

were acquired with a 3D T1-weighted magnetization-prepared rapid gradient echo

imaging (MPRAGE) sequence (FOV = 256×256×176 mm3, resolution 1×1×1 mm3,

TR = 2250 ms, TE = 3.98 ms, flip angle = 9◦). Resting state data were acquired

using a T2*-weighted echo-planar imaging sequence with the following parameters:

148-volumes, FOV = 204 × 204 mm2, matrix = 68 × 68, 37 interleaved axial slices

with 17 % gap, thickness = 3 mm, TE = 30 msec, flip angle = 90◦, generalized auto-

calibrating partially parallel acquisition (GRAPPA) imaging with an acceleration

factor of 2 while the subjects were inactive (lying still with a visual fixation cross

projected onto the screen).

4.2.2 Physiological recording

All physiological recording was performed using an integrated Siemens Physiological

Monitoring Unit. During functional scans, the cardiac signal was monitored with a

pulse oximeter placed on a finger of subjects, which provides a delayed systolic signal

as well as the oxygenation saturation level. Respiratory signal was monitored with

a flexible pressure belt placed around the upper abdomen of subjects. The sampling

frequency of all physiological recording was 50 Hz.
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4.2.3 Data Preprocessing

Resting-state scans were preprocessed using AFNI (http://afni.nimh.nih.gov/

afni/) for most of the data analysis. In addition, FSL (http://www.fmrib.ox.

ac.uk/fsl/) was used for brain segmentation, registration, and Independent Com-

ponent Analysis (ICA). The first four volumes of each run were discarded to remove

T1 saturation effects. the data were corrected for motion by aligning each volume

to the mean image volume using Fourier interpolation in AFNI. Then the data were

spatially smoothed using a 5-mm FWHM Gaussian kernel. Mean-based intensity nor-

malization was done by scaling all volumes by the same factor (10,000). The data were

temporally filtered using both a high-pass (Gaussian-weighted least squares straight-

line fitting, with σ = 100.0s) and low-pass (Gaussian low-pass temporal filtering,

with a HWHM of 2.8 s) filter, followed by linear detrending to remove any residual

drift. After the skull was removed using AFNI, registration of each individual’s high-

resolution anatomic image to a common stereotactic space [the Montreal Neurological

Institute’s 152-brain template (MNI152); 3 mm isotropic voxel size] was done using

a 12-degrees of freedom linear affine trans- formation (FLIRT) in FSL toolbox. The

resulting transformation was then applied to each individual’s functional dataset.

Physiological fluctuations removal

Consistent with common practice in the resting-state fMRI literature [49, 5, 7, 15,

16, 63], nuisance signals were removed from the data via multiple regression before

functional connectivity analyses were performed. This step is designed to control

for the effects of physiological processes, such as fluctuations related to motion and

cardiac and respiratory cycles. The common regressors include white matter (WM),

cerebrospinal fluid (CSF), and six motion parameters. The WM and CSF covariates
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were generated by segmenting each individual’s high-resolution structural image (us-

ing FAST in FSL). The resulting segmented WM and CSF images were thresholded

to ensure 80% tissue type probability. These thresholded masks were then applied

to each individual’s time series, and a mean time series was calculated by averaging

across time series of all voxels within each mask. The six motion parameters were

calculated in the motion-correction step during preprocessing. Movement in each of

the three cardinal directions (X, Y, and Z) and rotational movement around three

axes (pitch, yaw, and roll) were included for each individual.

Besides the common regressors, the physiological fluctuations are modeled in 6

different ways to examine the effect of physiological noise correction on the RSNs.

For each subject, 6 types of time series were derived with multiple linear regression:

1) No correction, 2) reduced PIRFECT model (only short-term effects equivalent

to RETROICOR [30]) consisting of 4 respiratory regressors and 4 cardiac regressors

using Fourier basis up to 2nd orders, 3) full PIRFECT model (both short-term and

long-term effects) consisting of 8 short-term regressors and additional 12 regressors

for long-term effects using Fourier basis up to 3rd orders, 4) short-term regressors and

global signal regressor generated by averaging across the time series of all brain voxels,

and 5) 8 short-term regressors and two long-term regressors described by Birn et al

[7] for respiratory effects (RV) and by Chang et al [15] for cardiac effects (HR). The

each individual’s residual 4D time series data were spatially normalized by applying

the previously computed transformation to the MNI152 standard space.

4.2.4 Impact on resting-state networks

Seed-based correlation analysis

The each individual’s 4D time series were divided into two sessions of 4D time series

using the half of time points to evaluate the intra-session reproducibility of RSNs.

55



Two session datasets were processed identically to delineate RSNs. Three 5-mm-

radius seed regions of interest (ROIs) centered on the coordinates previously used by

[63] were created to examine functional connectivity for each of three regions. The

ROIs were located in the posterior cingulate cortex (PCC; MNI Coordinate 0, -53,

26), the right primary visual cortex (V1; 30, -88, 0), and the right primary motor

cortex (M1; 36, -25, 57). Then the time series for each seed was extracted from

these data. Time series were averaged across all voxels in each seed’s ROI. For each

session dataset, the correlation between the time series of the seed ROI and that of

each voxel in the brain was determined. This analysis was implemented using 3dfim+

(AFNI) to produce individual-level correlation maps of all voxels that were positively

or negatively correlated with the seed’s time series. For each subject, two correlation

maps were compared with the correlation coefficient.

Group ICA and dual regression

To gauge the influence of long-term physiological removal by PIRFECT on RSNs in

the group ICA, dual regression [23] allowing for voxel-wise comparisons of resting

functional connectivity, was performed between two groups of datasets before and af-

ter long-term physiological noise correction. Short-term physiological fluctuations are

modeled and removed. This approach proceeds in 3 stages. First, the concatenated

multiple fMRI data sets are decomposed using ICA to identify large-scale patterns

of functional connectivity in the population of subjects. In this analysis, the data

set was decomposed into 11 components, in which the model order was estimated us-

ing the Laplace approximation to the Bayesian evidence for a probabilistic principal

component model. RSNs of interest were selected using spatial correlation against a

set of three maps from seed-based correlation analysis. Second, the dual-regression

approach is used to identify, within each subject’s fMRI data set, subject-specific
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temporal dynamics and associated spatial maps. This involves (i) using the full set

of group-ICA spatial maps in a linear model fit (spatial regression) against the sep-

arate fMRI data sets, resulting in matrices describing temporal dynamics for each

component and subject, and (ii) using these time-course matrices in a linear model

fit (temporal regression) against the associated fMRI data set to estimate subject-

specific spatial maps. Finally, the different component maps are collected across

subjects into single 4D files (1 per original ICA map, with the fourth dimension be-

ing subject identification) and tested voxel-wise for statistically significant pair-wise

differences between groups using nonparametric permutation testing (5,000 permuta-

tions) [51]. This results in spatial maps characterizing the between-group differences.

These maps were thresholded using an alternative hypothesis test based on fitting a

Gaussian/gamma mixture model to the distribution of voxel intensities within spatial

maps and controlling the local false-discovery rate at p < 0.05.

4.3 Results

The functional connectivity map are presented after both short-term and long-term

physiological noise correction (Fig. 17) with the posterior cingulate cortex (PCC), the

primary visual cortex (V1), and the primary motor cortex (M1) as seed’s ROIs. Ap-

plication of short-term physiological noise correction yielded increased reproducibility

of all three RSNs. Of different correction technique, the full PIRFECT model showed

the highest mean correlation compared to the global signal model and the existing

long-term model introduced by [7, 15]. Similar RSNs were identified using group

ICA in Fig. 18 after full PIRFECT correction. After long-term physiological noise

correction, the significant decreased coactivation were observed for all three RSNs at

p < 0.05 (corrected).
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Figure 17: Effects of physiological noise corrections on the reproducibility of func-
tional connectivity maps using seed-based correlation analysis: (left) functional con-
nectivity maps with the posterior cingulate cortex (PCC), the primary visual cortex
(V1), and the primary motor cortex (M1) as seed’s ROI, (right) mean correlation
coefficient across 11 subjects between functional connectivity maps from two intra-
sessions
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Figure 18: Impacts on resting-state networks using group ICA: (left) Group-level
spatial maps representing (A) the default mode network, (B) the visual network,
and (C) the sensory-motor network are identified. (right) RSNs comparison between
the before and after long-term physiological fluctuations removal using PIRFECT
revealed significantly decreased coactivation after removal (p < 0.05, corrected)
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4.4 Discussion and Conclusions

This study indicates that low-frequency resting-state networks in fMRI are still present

after short-term and long-term physiological noise correction with seed-based corre-

lation analysis and ICA analysis. The reproducibility of RSNs has substantially

increased after removing physiological fluctuations using full PIRFECT model, even

higher than the global signal removal approach [24, 25] and the existing RVHR ap-

proach [7, 15]. These results suggest that physiological noise correction will be vital

for fMRI resting-state functional connectivity study.
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