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ABSTRACT 

Wildfires frequency and severity have been increasing in the western United 

States over the past few decades. This rising threat is caused by the accumulated fuel 

load, climate change, and the rapid expansion of housing in the wildland-urban interface 

(WUI). Since most mitigation and suppression costs are borne by taxpayers, policy 

analysts seek both market (e.g., protection and suppression cost) and non-market cost 

estimates of wildfires. As one tool, the hedonic pricing method is commonly used to 

investigate wildfire effects on property values. There are a variety of hedonic studies 

investigating wildfire, with mixed and/or inconsistent results. Model estimates are further 

complicated by a variety of data availability issues as well as varied econometric 

modeling decisions made by analysts. 
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This analysis applies spatial econometrics modeling strategies in a hedonic 

pricing model framework to examine the joint effect of both past fire occurrence and 

current risk on property values in Santa Fe County, New Mexico. The objective of this 

analysis is twofold. First, I systematically investigate wildfire effects on property values 

via the hedonic model using a variety of modeling approaches, including varying or 

alternative measures for property values, wildfire event and risk, and econometric 

modeling techniques. Secondly, using hedonic results as primary estimates, I then 

investigate how the effect of wildfire varies with data availability and econometric 

modeling techniques through internal meta-analysis. 

The systematic investigation can be grouped and classified as measures for 

property values, wildfire occurrence and risk (which capture data availability issues), or 

econometric modeling techniques (which capture subjective modeling decisions of the 

analyst). The systematic investigation includes: two dependent variables (estimated sale 

price and assessed property value); two measures for wildfire events (the nearest fire 

measure and the aggregate fire measure with 4 buffer zones), each with two time frames 

(7 year and 15 year); three risk measures (GIS-based composite hazard and risk 

assessment, WUI risk assessment and individual-level house risk assessment); two 

commonly-used hedonic functional forms (semi-log and double-log); and four spatial 

dependency approaches (independent, spatial lag, spatial error, general spatial model), 

with three weight matrix. Overall, variations in data and econometric specification 

produce 2,000 regression results for hedonic model. 

Summarizing the direction of wildfire estimates, I find that past wildfire 

events/occurrences have a negative effect on property value. Specifically, the marginal 
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implicit price (MIP) for a one kilometer increase in distance from the nearest fire $3,461 

(in 2013 dollars), implying an increase in assessed value of 1.1%. The MIP for one 

additional burn near the house is $14,375 (in 2013 dollars), implying a decrease in 

assessed value of 4.6%. 

Secondly, the effects of risk on property value vary by risk measure, risk level, 

and geographic area. For composite risk and WUI risk, wildfire risk increases property 

values below a certain risk level and the relationship tends to be negative or insignificant 

once risk reaches that threshold; for house level risk it reduces property value. The effects 

of wildfire risk also differ across Non-WUI and WUI. In the Non-WUI area, the positive 

effects of amenity dominate, and thus wildfire risks tend to increase property value. 

However in the WUI the negative effects of wildfire risk offset, or even exceed the 

positive effects of amenities, resulting in a non-significant or negative relationship.  

Further, meta-analysis reveals the following results. First, models that use 

assessed value data give higher R2 than models that use estimated sales price data. The 

assessed value models also lead to more significant estimates and larger MIP estimates. 

Secondly, ignoring spatial autocorrelation either leads to overestimate of MIP or has no 

significant effect on MIP estimates. Third, the measurements of wildfire risk significantly 

influence effects of past wildfire events on property value. This reveals the importance of 

joint estimation of both wildfire events and wildfire risks. Ignoring the effects of wildfire 

risk in hedonic models might result in inappropriate estimates.  

Overall, this analysis systematically investigates the effect of past fire occurrence 

and current risk on housing prices, using a variety of data measures and modeling 

techniques. Different from previous studies, which only present “the best fit model”, this 
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analysis conducts 2,000 hedonic regressions on wildfire effects, and then examines how 

judgements and choices made by researchers affect wildfire effects on property values. 

This approach synthesizes results of hedonic models in a concise and structured way, but 

also improves the robustness and reliability of our results in ways that are useful for 

informing policy recommendations. 
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Chapter 1 Introduction 

1.1 Background: the growing wildfire threat 

Wildfires have burned an increasing large areas in the United States (US), with 

the annual area burned reaching its highest level (4 million ha) in 2015 (National 

Interagency Fire Center, 2015a). Wildfires in the West have increased in frequency, size 

and severity over the past few decades (Anthony L. Westerling, Hidalgo, Cayan, & 

Swetnam, 2006; Littell, McKenzie, Peterson, & Westerling, 2009; Jay D. Miller, Safford, 

Crimmins, & Thode, 2009; Dillon et al., 2011; J. D. Miller, Skinner, Safford, Knapp, & 

Ramirez, 2012). There is an increasing trend in the occurrence of large fires (> 405 ha) 

with greater burn areas from 1984 to 2011 in the western US. Large fires are increasing at 

a rate of seven additional fires per year. The average area of the burn increases by 355 

square meters annually, on average (Dennison, Brewer, Arnold, & Moritz, 2014). A 

regional study of high-severity fires found the percentage of high-severity fires in Nevada 

and California increased significantly from1984 to 2010, as did the size of the areas 

burned by high-severity fires (Jay D. Miller & Safford, 2012). 

Past fire suppression policies and climate change are considered to be important 

drivers of the increasingly severe wildfire situation. Over the past century, the 

implementation of aggressive fire suppression policies impeded the role of fire as an 

ecological process that reduces fuel load (Keane et al., 2002). These suppression policies 

therefore contribute to “unnatural fuel buildup” (Brown, 1983), which in turn results in 

larger and more severe wildfires in recent years (Arno & Brown, 1991; PiñOl, Beven, & 

Viegas, 2005; Donovan & Brown, 2007; Keane et al., 2009). Climate change also has an 

impact on fire activities through the creation of warmer and drier conditions. This creates 
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longer fire seasons, increased fuel loads; climate change has also increased the frequency 

of lightning (National Wildfire Federation, 2008). Wildlands are more likely to 

experience fires when there are the contributing factors of high spring and summer 

temperatures, and earlier snowmelt (Anthony L. Westerling et al., 2006; P. Morgan, 

Heyerdahl, & Gibson, 2008; Anthony LeRoy Westerling, 2016). Littell et al. (2009) 

found that climate change explains 33 to 87 percent of the variation in area burned in the 

western US from 1977 to 2003.  

Furthermore, the wildfire threat is projected to increase as climate change 

continues (P. Morgan et al., 2008; Littell et al., 2010; Hurteau, Bradford, Fulé, Taylor, & 

Martin, 2014). Warmer temperatures and drier conditions predict higher fire potential, 

longer fire seasons and more frequent fires throughout the summer and autumn (Liu, 

Goodrick, & Stanturf, 2013). The growth of the wildland-urban interface (WUI) has also 

been thought to contribute to the increased threat of wildfires. According to a Blue 

Ribbon Panel Report, of the 17 million new homes built from 1990 to 2008, 10 million 

(59%) were constructed in fire-prone areas (International Code Council, 2008). Only 

34% of the WUI was developed by 2008; the remaining 66% is projected to be developed 

at a rate of 2 million acres a year (International Code Council, 2008). In 2010, the WUI 

covered an area of 771,000 square kilometers, making up 10% of conterminous land in 

the US.  Approximately 44 million houses are located in the WUI, with 98 million 

inhabitants, accounting for 34% of households and 32% of the total population 

(Martinuzzi et al., 2015). Moreover, according to a Forests and Rangelands report in 

2009, approximately 70,000 communities in the US are at risk of exposure to wildfire. Of 
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these communities, fewer than 8% have a Community Wildfire Protection Plan (CWPP) 

(Forests and Rangelands, 2009). 

Taken together, wildfire protection and suppression costs have risen substantially. 

In the 1990s, the average annual cost for suppression was less than $1 billion; it exceeded 

that figure for the first time in 2000. Since then, the average annual fire suppression 

expenditures have risen some 40% to $1.4 billion (National Interagency Fire Center, 

2015b).  Suppression costs are expected to continue to rise, reaching $1.8 billion in 2025 

(US Department of Agriculture, 2015). Further, the rising cost of firefighting is placing 

an ever-increasing burden on the Forest Service’s budget. In 1995 its share of the budget 

was 16%; by 2015 it had ballooned to more than 50% (US Department of Agriculture, 

2015). Making matters worse, the reported suppression costs capture only a relatively 

small proportion of the full cost. Hall (2014) estimated the cost of wildfires in the United 

States in 2011 amounted to $329 billion, which includes “the losses caused by fire and 

the money spent on fire prevention, protection and mitigation to prevent worse losses, by 

preventing them, containing them, detecting them quickly, and suppressing them 

effectively”. Although this estimation is larger than estimates from US Department of 

Agriculture, it still does not capture the full cost of wildfire (e.g., health impact). 

The rising firefighting appropriations limit the resources allocated to non-fire 

programs of the Forest Service. For example, from 2001 to 2015, the rising cost of fire 

has caused a 24% reduction in funding for vegetation and watershed management, a 68% 

reduction for recreation and administrative facilities, a 18% reduction in wildlife and 

fisheries habitat management, and a 46% reduction for the maintenance and construction 

of roads (US Department of Agriculture, 2015).  Furthermore, fire suppression costs as a 
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portion of the Forest Service’s budget are projected to continue rising to 67% by 2025. 

Based on this projection, the funding allocated to non-fire programs would drop by 

approximately $700 million between 2015 to 2025 (US Department of Agriculture, 

2015). 

Policy makers must allocate scarce resources between competing alternatives. 

Economic efficiency should be a major criterion for determining priorities. Therefore, 

there is a growing need for policy makers to evaluate the full cost of wildfires in order to 

create effective fire management strategies and policies. To evaluate the full cost of 

wildfires, policy analysts seek both market (e.g., protection and suppression cost) and 

non-market cost estimates (e.g., health impacts from wildfire smoke) (L. A. Richardson, 

Champ, & Loomis, 2012). Market costs are generally easy to measure while non-market 

costs are not.  

1.2 Motivation, research method and conclusions  

One of the non-market costs of wildfires is their impact on property value where 

the property itself is unscathed. These properties may also experience reductions in sale 

prices. With the rapid expansion of WUI, more houses are exposed to elevated wildfire 

risks, and therefore this non-market cost is expected to increase. Thus, estimating the 

effect of wildfire on property values is of increasingly critical importance.  

Several studies have quantified the effects of wildfire on property values through 

the hedonic pricing model, which is the most commonly used method to derive the 

relationship between property values and the environmental attributes. Previous hedonic 

papers examine the association between wildfire and property values from two 

perspectives: the effect of wildfire occurrence and the effect of wildfire risk. However, 
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these papers have several limitations. First, these studies examined the effect of 

occurrence and risk independently, and have overlooked any potentially confounding 

influence. Secondly, these studies found mixed effects. In some cases, wildfire 

occurrence is negatively associated with property values, in others wildfire effects vary 

by space and time. Wildfire risk effects are complicated by the fact that factors 

contributing to high risk are also associated with high amenity values, such as a view of a 

forest. These two have opposite effects on property values: fire risk lowers value while 

attractive features raise it. Thus the overall predicted effect of wildfire risk is ambiguous. 

Third, mixed and/or inconsistent results found across studies are further complicated by 

model uncertainty, including a variety of data employed by the analysts as well as varied 

econometric modeling decisions.  

Model uncertainty is well acknowledged in quantitative modelling. There is little 

theoretical guidance with respect to the best model specification, and thus the analyst 

generally conducts a large number of models. For example, the analyst can employ either 

linear or nonlinear functional form. However only a small proportion is published 

because of limited journal article spaces. In such case, one common practice is to 

selectively report model results based on a specific statistical measure (e.g. R-squared 

value) or models that yield significant parameter estimates (also referred to as publication 

bias). However, parameter estimates can vary considerately across different model 

specifications. That is, model uncertainty may result in large variation in estimates. Since 

only a restricted portion of estimated models is published, this creates asymmetric 

information between the analyst and the readers, and therefore, the readers have no 

information about changes in estimates. This dissertation contributes to the literature by 
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utilizing multiple data and econometric specifications to investigate wildfire effects on 

property value, and then summarizes how data and model specification affect variation in 

wildfire effects. 

This analysis applies spatial econometrics modeling strategies in a hedonic 

pricing model (HPM) framework to examine the joint effect of both past wildfire events 

and current risk on property values in Santa Fe County, New Mexico. We select Santa Fe 

County as study area for two reasons. First, this area has experienced severe wildfire 

situations, which have posed a threat to Santa Fe watershed, the major water source for 

Santa Fe city. Secondly, a fair amount of residential properties were located in the WUI, 

facing relatively high fire risk.  

For past wildfire events, I use wildfire perimeter data for fires that burned at least 

10 acres in two national forests: Santa Fe National Forest and Cibola National Forest. A 

portion of Santa Fe National Forest is located in the County; Cibola National Forest is 

adjacent to the southwestern corner of the County. Thus fires in these two forests may 

have impacts on housing prices in the County. I collect three wildfire risk data, which 

were assessed at different geographical scales (county, community and house level, 

respectively). The objective of this analysis is twofold. First, I investigate wildfire effects 

on property values. To accomplish this, I systematically examine wildfire effects using a 

variety of modeling approaches, including varying or alternative measures for property 

values, wildfire event/occurrence and risk, and econometric modeling techniques. 

Secondly, using results of hedonic models as primary estimates, I then investigate how 

the effect of wildfire varies with data availability and econometric modeling decisions 

through internal meta-analysis.  
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The systematic investigation can be grouped and classified as measures for 

property values, wildfire occurrence and risk (which capture data availability issues), or 

econometric modeling techniques (which capture subjective modeling decisions of the 

analyst). Specifically, I employ two data measurements for property values: assessed 

property value and estimated sale price. Two measures of past wildfire event/occurrence 

were used: the nearest fire and the aggregate fire, each with two time frames (7-year and 

15-year time window). The nearest fire measure focuses on the nearest fire burned for 

each property while the aggregate fire measure examines the effects of fires burned 

within a certain radius. For the nearest fire measure, three variables are considered: the 

distance from the house to the nearest fire, time since the nearest fire burned, and the size 

of that fire. For the aggregate fire measure, two variables are included: the number of 

fires burned within a certain radius and the average size of these fires. The variables of 

interest are distance from nearest fire and the number of fires burned, respectively. In this 

analysis, four radiuses are considered: fires burned within 10km, 15km, 20km and 25km 

of the property. In addition, two time frames are included. 7-year time window considers 

fires burned in the 7 years prior to the sale while 15-year time window considers fires 

burned in the 15 years prior to the sale; these two time windows are expected to capture 

the short- and long-term effect of wildfire on property values. Three categories of 

wildfire risk (composite risk, WUI risk, and house risk) were collected; these risks were 

assessed at different geographical scales (county, community and house level). It’s 

possible that homeowners’ perception of wildfire risk varies across geographic area. Thus 

I run further models with three geographic areas: Santa Fe County, the Non-WUI area, 

and the WUI area. I also consider a variety of model specifications, including four spatial 
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dependency approaches (independent/OLS, spatial lag, spatial error, general spatial 

model), with three weighted matrix structures (the four nearest neighbors, the eight 

nearest neighbors and the distance inverse weight matrix). Finally, I employ two 

commonly used hedonic functional forms: semi-log and double-log. Overall, this analysis 

employs two data sets for property values, 10 measurements of wildfire event/occurrence, 

three risk measures (with three geographical areas for composite risk), four spatial 

dependency models with three spatial weight matrices, and two hedonic functional forms 

to produce 2,000 regression results for hedonic model. 

I expect past wildfire events/occurrences have a negative effect on property 

values. There is no a priori expectation about the relationship between wildfire risk and 

property values, given that wildfire risk and amenity values are confounded in the risk 

assessment and they have opposite effects on property values. Amenities tend to increase 

property value while risks tend to decrease property value. I hypothesize that risk effects 

differ across geographic areas. In the Non-WUI, where fire risk is relatively low, people 

tend to place more value on amenities, thus the positive effects of amenities dominate and 

fire risk is positively associated with property values. In the WUI, the negative effects of 

wildfire risk offset, or even exceed the positive effects of amenities, resulting in a non-

significant or negative relationship. 

Consistent with the hypothesis, past wildfire events/occurrence have a negative 

effect on property value. Results show that an additional kilometer away from nearest fire 

would increase property value by $3,461, implying an increase in assessed value of 1.1%. 

Property value decreases by $14,375 for one additional burn near the houses, implying a 

decrease in assessed value of 4.6%. 
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The effect of wildfire risk is mixed. First, wildfire risk effects depend on risk 

measurement and risk level. For composite risk and WUI risk, the effects of risk change 

when risk achieves a certain level of risk. Property values increase with the increase in 

the risk at low risk levels. If risk reaches a certain threshold, the relationship becomes 

negative or insignificant. For house level risk, it has a negative effect on property value. 

Secondly, the effect of composite risk depends on geographic area, as expected. In the 

Non-WUI area, the positive effects of amenity dominate, and thus wildfire risk increases 

property value. However this relationship becomes negative or insignificant in the WUI 

area.  

The estimates indicate that houses located in zones with higher risk rating have 

higher values, except for houses located in the very high WUI risk zone. The increase in 

property value ranges from $7,040 to $22,611, indicating 2.2% and 7.2% of assessed 

value, respectively. However, if risk is measured at individual house level, 1-point 

increase in house risk score would decrease property value by $565, which represents a 

0.2% drop in assessed value. 

Meta-analysis results also show that models that use assessed value data not only 

give higher R2 but also find more significant estimates and larger MIP estimates than 

models that use estimated sales prices data. However, the assessed value models do not 

necessarily yield estimates with smaller standard errors. Second, ignoring spatial 

autocorrelation would lead to overestimate of MIP or it has no significant effect on MIP 

estimates. Third, the measurement of wildfire risk influences the effects of fire 

event/occurrence. This result reveals the importance of joint estimation of wildfire events 

and risks, and ignoring wildfire risks in hedonic models may yield inaccurate estimates.  
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1.3 Outline of the dissertation 

The reminder of the dissertation is organized as follows. Chapter 2 gives an 

overview of the literature on the economic impact of wildfire effects on property values, 

and summarizes the contribution of this research. Chapter 3 describes the study area, 

Santa Fe County, New Mexico and reasons for selecting this area. Chapter 4 introduces 

the hedonic theory, functional form and spatial autoregressive models. Chapter 5 

describes the data and our hypothesis. Chapter 6 presents test statistics for spatial 

autocorrelation and results of selected hedonic models. Chapter 7 first summarizes the 

descriptive statistics for results of hedonic model, and then investigate variation in the 

results via internal meta-analysis. Chapter 8 presents our conclusions, reviews the 

limitations of the research and discusses its policy implications. What follows is a more 

detailed overview of each chapter.  

• Chapter 2 critically reviews the literature on the economic impact of wildfire on 

property values from two perspectives: the effect of wildfire event/occurrence and the 

effect of wildfire risk. Mixed and/or inconsistent results are found across studies. I then 

explore possible explanations for these mixed results, including regional variations in 

historical fire characteristics, varying measurements for data and the analysts’ subjective 

decisions about constructing their econometric models. This paper contributes to the 

literature in that it utilizes a variety of data and econometric modeling techniques to 

investigate the effect of wildfire risk and occurrence on property values and examines 

what factors influence the variation in wildfire effects. 

• Chapter 3 describes the environment of the study area, Santa Fe County, New 

Mexico. These characteristics include location, geography, topography, climate, 
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vegetation and demographics. The reasons for selecting this study area are twofold: 

severe wildfire situation (pervasive wildfires, wildfire threat to watershed) and rapid 

home development in the WUI.  

• Chapter 4 first introduces hedonic price theory and functional forms commonly 

used in hedonic analysis. I then take into account spatial econometric techniques, 

including spatial models, spatial weight matrix, tests for spatial dependence and 

estimation methods. 

• Chapter 5 explains the data used in hedonic model and defines our hypothesis. 

Specifically, I employ two measures for property values (assessed value and estimated 

sales price), two measurements of past wildfire occurrence (the nearest fire and the 

aggregate fire), and three risk measures assessed at county, community and house level, 

respectively. I hypothesize that property values decrease with past wildfire 

events/occurrences; the effect of fire risk differs across geographic areas. I then present 

an overview of the data and econometric modeling techniques in this analysis, which 

produces 2,000 estimated hedonic models for the estimating equations. 

• Chapter 6 explores the spatial correlation in the data and the preferred model 

specification by utilizing test statistics, Moran’s I and LM test, and then selectively 

reports results of hedonic models. Results demonstrate that a spatial correlation is found 

in the vast majority of the models. Further, the preferred model specification vary by the 

choice of data (measurement for the dependent variable, past wildfire event/occurrence 

and risk) and econometric modeling decisions (functional form, spatial model and weight 

matrix).  
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• Chapter 7 summarizes results of 2,000 hedonic models via meta-analysis and 

investigates the variation in wildfire effects. Using the results from these 2,000 hedonic 

models as primary estimates, first results show the expected negative effect of wildfire 

event/occurrence. The effect of wildfire risk varies widely, depending on the 

measurement of fire risk, level of risk and the geographic area. Two meta-regressions 

find that data and econometric specification have significant effects on MIP estimates. 

• Chapter 8 summarizes the results, discusses the limitations of the research, 

prospects for future research and the policy implications.  
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Chapter 2 Review of wildfire impacts on housing prices and our contribution 

This chapter provides a critical literature review on the economic impacts of 

wildfire effects on property values. Previous studies have investigated the effect of 

wildfires from two perspectives: the effect of wildfire events/occurrences and the effect 

of wildfire risk. One caveat of previous research is that the effect of wildfire 

event/occurrence and risk were examined independently, overlooking the potential 

confounding influence. Overall, previous studies indicated mixed and/or inconsistent 

results, which might be attributable to varying measures for housing prices, past wildfire 

event/occurrence and risk, and the analysts’ decisions about model specification.  

2.1 The economic impact of wildfire on housing prices 

2.1.1 Wildfire event/occurrence effects on property values 

The first study to quantify the economic effect of a fire event on property value 

focuses on the Cerro Grande Fire. However this study didn’t utilize a hedonic model. It 

only compared housing prices before and after the fire. The Cerro Grande Fire, which 

started as a prescribed burn in May 2000, burned 48,000 acres, destroyed 235 homes and 

damaged 39 others near Los Alamos, New Mexico. In 2001, Price Waterhouse Coopers 

conducted a study to examine how the real estate market responded to this fire event 

immediately following the fire. Specifically, the primary interest was “whether the fire 

caused a decline in property values and, if so, which types of properties and which 

communities or neighborhoods were most affected” (Pricewaterhouse Coopers, 2001, p. 

3). Using housing transactions between January 1996 and January 2001, the study 

compared price trends in Los Alamos before and after the fire, as well as price trends 

across Los Alamos and similar communities. The study focused on single family houses 
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not physically damaged in the fire. Results indicated that, after the fire, their sale prices 

dropped from 3% to 11%. It should be noted that this study only examined the effect of 

fire for a short post-fire period (seven months after the fire).  

Later studies utilized hedonic model to examine the effect of past occurrence of 

wildfires, which are summarized in Table 2.1. I further classify the literature into two 

categories based on number of fires examined in the study. The first branch of the 

literature focused on a single fire event or multiple large, severe fires while the second 

branch focused on a large number of wildfires.  

2.1.1.1 Hedonic studies focusing on a single fire or multiple large, severe fires 

J. Loomis (2004) assessed the effect of the Buffalo Creek fire, which burned 

about 5,000 hectares in 1996, on house prices in the nearby unburned town (two miles 

away from the fire). The author included a pre-post fire dummy variable to indicate 

whether the property was sold prior or following the fire and compared house prices sold 

three years before the fire and five years after the fire. Results indicate the negative effect 

of fire on house prices, with selling prices dropping about 15% and 16% in the linear and 

semi-log model, respectively. However, given the short period studied, it is difficult to 

determine the negative effect of the fire and the reduced level of amenities (e.g., burned 

forest in the view) separately since the natural vegetation affected by the fire needed 

several years to regenerate.  

Huggett Jr, Murphy, and Holmes (2008) undertook an hedonic analysis to 

investigate the effect of three fires on house prices. These three fires, occurred during the 

summer of 1994 in Washington, was treated as a large fire event in the study. The 

analysis utilized a semi-log functional form but did not control for spatial correlation. The 
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variables of interest are distance from the house to the fire and a set of interactions 

between the distance and time of sale (e.g., 6 months, 6-12 months after the fire). The 

study found that, prior to the fires, houses near a potential fire area tend to have a higher 

price due to the possible amenity values associated with wilderness, and the fire then 

causes a decline in the housing prices. Specifically, a one kilometer reduction in the 

distance from a house to the burned area increases house prices by $676 prior to the fires 

while it decreases prices by $48 following the fires. This price drop is only observed in 

the immediate aftermath of the fire, which lasts for six to twelve months.   

J. Mueller, Loomis, and González-Cabán (2009) studied a region in Los Angeles 

County affected by repeated fires in the 1990s, then compared the short- and long-term 

effects of these fires. The analysis employed several functional forms (e.g., semi-log and 

double-log) in the standard hedonic model. The time interval between the first and second 

fires ranged from two to six years. Only houses within 1.75 miles of each fire were 

included in the analysis. Houses might have been affected by a varying number of fires 

(none, one, two, or three) depending on location and time of home sale. The main 

variables of interest that had the largest effects were whether a house experienced at least 

one fire, whether the house experienced at least two fires, days since the first fire, and 

days since second fire. They find that both fires had a negative effect on house prices; the 

second fire caused house prices to drop more. Opposite signs were detected for days 

since the first fire and days since the second fire. Although both fires would cause an 

initial drop in the house price, it continued to decrease after the first fire while it tends to 

increase after the second fire. According to their results, it generally takes five to seven 

years for house prices to recover following the second fire.  
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Using the same data, J. M. Mueller and Loomis (2014) employed quantile 

regression to estimate marginal implicit prices across different quantiles of house price. 

They found a large difference in the estimated implicit price for the first and second fire 

between the 0.25 quantile model and the 0.75 quantile models, which can be as high as 

$72,000 for the first fire and $99,000 for the second fire.  

J. M. Mueller and Loomis (2008) further explicitly identified and controlled for 

the spatial correlation and compared marginal implicit price across the OLS and spatial 

models. Spatial correlation was tested using Moran’s I and LM statistics, which indicate 

that the spatial error model is the appropriate alternative. Three weight structures were 

then employed to define the weight matrix: the four nearest neighbors, the eight nearest 

neighbors and the inverse-distance weight matrix that ensures each property has at least 

one neighbor. Overall, fire events would lower house prices and the OLS always over-

estimates the drop. The largest difference between the OLS and spatial correlated models 

is 24%. Thus they infer that OLS yields reasonable implicit price estimates even in the 

presence of spatial correlation given the relatively small difference in the implicit price 

across the OLS and spatial models. In a subsequent study, J. M. Mueller and Loomis 

(2010) details the use of the Bayesian estimation approach for choosing the appropriate 

spatial model and weight matrix. They compared the performance of three spatial models 

(spatial lag, spatial error and the spatial Durbin models), each with three weight matrix 

structures (the four, six and eight nearest neighbors and the inverse-distance weight 

matrix), using posterior probability. The Bayesian estimation method found support for 

the spatial error model with the inverse-distance weight matrix. They found a relatively 

small variation in the estimated implicit price (5%) between 12 models. 
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2.1.1.2 Hedonic studies focusing on a large number of fires 

Stetler, Venn, and Calkin (2010) studied the effects of 256 wildfires on house 

prices in northwest Montana. They focused on fires larger than four hectares that burned 

between 1996 and 2007. The primary variables of interest are the distance from the 

nearest fire to the house, time since the fire, size of the nearest fire and whether there is a 

view of the fire. For each house included in the study, the authors selected the nearest fire 

burned in the seven years and found that wildfire had had a dramatic negative effect on 

home prices, with prices dropping farther as the distance between the house and the 

burned area diminished. However, housing prices decrease with time since fire. That is, 

housing price would decrease with the increase in the time lag between fire and sale. One 

possible explanation is the short time window of fire history relative to the recovery of 

housing market; the paper only included fires burned in the last seven years. The authors 

also factored in the view of the burn from the home. As expected, house prices dropped to 

a greater extent if the burned area could be seen from the home.  

Instead of focusing on the nearest fire, Xu and van Kooten (2013) examined the 

effect of occurrence and average size of fires within a varying radius of each property in 

Kelowna, BC, Canada. The analysis utilized semi-log functional form and two measures 

for property value: sale price and unit price (price per square meter). Spatial correlation is 

detected in the sale price model but not in the unit price model. Specifically, they 

analyzed the effect of fires burned in the last 10 years prior to the sale of the house. The 

authors compared the fire effect according to radius constraints: 0.5km, 1km, 2km, 5km, 

and no limit, with an interest in two variables: the number of fires burned within the 

radius and their average size. Surprisingly, the occurrence of fire is found to be 
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statistically insignificant. Counterintuitively, the larger the average size of a fire, the 

higher the house price. The authors argued that large fires lower the potential for future 

fires, thereby lowering a homebuyer’s perceived risk, which eventually increases 

property value. 

Another study by Hansen and Naughton (2013) studied the effects of wildfires 

and bark beetles on assessed property values in the WUI of south-central Alaska. Since 

Alaska is a non-disclosure state, sale prices are not publicly available. Therefore, the 

assessed property value is used instead of house sale price. The authors categorized fires 

by their size (less than 3.3 hectares is considered small, while anything larger is classified 

as a large fire), distance from the fire to the house (less than 0.1 km, 0.1 to 0.5 km, 0.5 to 

1km, and greater than 1km), and number of years since the fire occurred (1 to 5 years or 6 

to 20 years). Generally, wildfires increase property value with the exception of small fires 

that are nearby. The positive relationship can be explained, for example, by the fact that 

nearby large fires may result in a better view of the ocean or mountains and reduce the 

perceived risk of future fires. Nearby small fires, on the other hand, decrease home value 

since their presence is a reminder of wildfire risk. Large wildfire effects on assessed 

value increase over time, while small wildfire effects diminish with time. 

2.1.2 Wildfire risk effects on property values 

Two studies have explicitly examined the effect of wildfire risk and one study 

investigated the impact of disclosure of fire-hazard zone. All three studies are reported in 

Table 2.2. 

Donovan, Champ, and Butry (2007) addressed the effect of wildfire risk on house 

prices. This risk rating was calculated by the Colorado Springs Fire Department, posted 
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on its website and publicly available in July 2002. Risk rating is computed based on a 

variety of underlying factors, including proximity to dangerous topography, the type of 

roof and siding material, vegetation and terrain characteristics, and then is rated in a 

categorical manner (as low, moderate, high, very high or extreme). They collected sale 

prices for the three years before the disclosure of risk rating and three years after. The 

main variables of interest are the underlying factors used to compute the rating and the 

categorical risk ratings in both pre- and post-web site models. The analysis explicitly 

takes the spatial correlation into account and it utilized general spatial model. The study 

found the categorical risk rating had positive effects on the prices of homes sold prior to 

publication on the website but insignificant effects for houses sold post-website 

publication. On average, price is found to be $40,000 lower for houses sold after the 

publication of these factors on the website.  Since wildfire risk and amenity values are 

compounded in the risk rating and they have opposite effects on house prices, the authors 

argued that the positive amenity effects outweighed the negative effects of wildfire prior 

to publication of the ratings on the website. However, the amenity effects were offset by 

the wildfire risk after website publication. Further investigation indicated that a 

structure’s materials, particularly roof and siding, have a dramatic effect on the 

association between risk ratings on home prices in the pre- and post-web site model. 

Using the same risk assessment, Rossi (2014) examined the effect of wildfire risk rating 

on housing prices. Surprisingly, results showed that wildfire risk has no significant effect 

on house prices. One possible explanation is that the positive effects of amenities on price 

cancel out the negative effect of risk.  
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The Natural Hazard Disclosure law (AB 1195) was passed in 1998 in California, 

which requires the seller to disclose when a property lies within a hazard zone that caused 

by fire, flood, or seismic conditions. Troy and Romm (2007) examined the effect of fire 

risk disclosure on house prices using a hedonic price model. It should be noted, however, 

that information on fire risk levels are not available, thus the analysis is focused on the 

impact of disclosure of fire-hazard zone rather than the specific effect of risk level. 

Further, the author also factored in wildfire event/occurrence by including a dummy 

variable to indicate property’s proximity to a burned area, which allows one to examine 

the combination effect of wildfire event/occurrence and risk disclosure. Mixed results 

were found. If one only considers the effect of risk disclosure, implementation of the law 

doesn’t have a significant effect on prices for houses located in a fire hazard zone. 

However, if one also takes into account wildfire event/occurrence, the passage of the law 

increases prices in the fire hazard zone, except for properties located near a recent major 

fire. Specifically, for houses located in a fire hazard zone and sold after passage of the 

law, price is found to be 5.1% lower when the property is near a burned area. The 

negative effect of wildfire event/occurrence is in line with previous results in the hedonic 

studies whereas the effects of fire risk zone disclosure seem to be contrary to the results 

in Donovan et al.,  

2.2 Summary  

Summarizing the reviewed wildfire hedonic studies, first one can see that 

previous studies have examined the effect of past wildfire event/occurrence and wildfire 

risk independently. Secondly, one finds that the effects of wildfire on housing value vary 

across different studies. Some studies find that wildfires decrease housing value, while in 
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others the effect of wildfires is mixed. Overall, one can see that wildfire effects vary 

spatially and also temporally. It is difficult to compare the estimates across the studies as 

measures for housing prices, past occurrence and risk, as well as econometric modeling 

techniques vary across those studies.  

With respect to data for housing prices, previous wildfire hedonic studies exploit 

the actual sale prices as the dependent variable. Xu and van Kooten (2013) utilized both 

the sale price and the unit price, which is calculated as the price per square meter. Hansen 

and Naughton (2013) used assessed value data given that the study area is within a non-

disclosure state where sale prices are not publicly available.  

Secondly, various measures were constructed to capture wildfire event/occurrence 

in earlier hedonic studies. Some used dummy variables to model wildfire 

event/occurrence, including whether the property experienced large fires within a certain 

radius (J. Loomis, 2004; Hansen & Naughton, 2013), while others utilized a combination 

of dummy and continuous variables, such as the distance from the fire (Huggett Jr et al., 

2008; J. M. Mueller & Loomis, 2008; Stetler et al., 2010). In addition, the reviewed 

wildfire hedonic studies cover a variety of locations. Historical wildfire characteristics 

(e.g., fire size, severity and frequency) associated with these sites may vary substantially 

by location, although the studies generally choose areas vulnerable to wildfires or areas 

with high fire risks. For example, the frequency of fires ranges from infrequent, to 

moderate to infrequent and moderate to frequent (Hansen, Mueller, & Naughton, 2014). 

Further, some studies covered solely the WUI area (e.g., Hansen & Naughton, 2013) 

while others examined the Non-WUI as well (e.g., Stetler el al., 2010). Thus, comparing 
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wildfire effects across studies is constrained by wide variation in historical fire 

characteristics as well as varied measurements for past occurrence. 

Third, varying measurements for wildfire risk were utilized. Two studies, 

Donovan et al. (2007) and Rossi (2014), utilized a risk rating assessed at house level; 

Troy and Romm (2007) examine the effect of risk disclosure. Although fuel, topography 

and weather are three risk factors typically thought to affect fire risk, assessments 

conducted at different geographical scales may vary with regard to underlying risk 

factors, and therefore result in different effects of risk on property values. For example, 

an assessment conducted at the community level may put more weight on the average 

characteristics of that community, such as the availability of fire hydrants or water.  

Finally, researchers utilized a variety of econometric modeling techniques in 

previous wildfire hedonic studies. For example, several functional forms have been 

employed: linear, semi-log (also called log-linear) and double-log (also called log-log). 

Moreover, there is no consensus regarding the importance of spatial autocorrelation. 

Most early works only use the standard hedonic model or OLS model while later studies 

explicitly take into account spatial autocorrelation. Also, there does not seem to be any 

consensus about the preferred model specification. For example, J. M. Mueller and 

Loomis (2008) exploited the spatial error model; Hansen and Naughton (2013) and 

Donovan et al. (2007) utilized the general spatial model, a combination of the spatial lag 

and spatial error model.  

2.3 Our contribution 

This study focuses on Santa Fe County, New Mexico. Focusing on a single study 

area eliminates the potential variation in the wildfire effects caused by varying historical 
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fire characteristics. To examine the sensitivity of wildfire effect to data feature, I first 

utilized two data for housing prices: estimated sale prices (derived from the mortgage 

amount) and assessed value. Thus the data allow us to estimate two hedonic models, one 

with the assessed value, the other with the estimated sales price. Secondly, I adopt two 

measures of wildfire event/occurrence: one considers the nearest fire for each property 

and the other considers fires burned within a certain radius. I also utilize three 

measurements for wildfire risk, assessed at county, community and house level, 

respectively. These three risk assessments are somewhat similar in that they all consider 

fuel, topography and weather as underlying risk factors. However, they have significant 

differences, such as different weight put on each factor, which may affect the impact of 

risk on housing prices. 

With respect to econometric modeling techniques, I first exploit two widely used 

hedonic functional forms: semi-log and double-log. Secondly, I explicitly address spatial 

dependence in hedonic model, and compare the results across OLS models and three 

spatial autoregressive models: spatial lag, spatial error and general spatial model, with 

three spatial weight matrix structures (the four nearest neighbor, the eight nearest 

neighbor and the distance inverse weight matrix).  

Wildfire effects can vary considerately across models that utilized different data 

or models that employ different specifications. This analysis contributes to the literature 

by utilizing multiple data and econometric specifications to investigate wildfire effects on 

property value, and then summarizes how data and model specification affect variation in 

wildfire effects via meta-analysis. This approach enables us to examine the variation in 
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wildfire effects across alternative models while also improving the robustness and 

reliability of our results in ways that are useful for informing policy recommendations.  
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Table 2.1: Summary of the effect of wildfire event/occurrence in hedonic model 

Studya Area Wildfire event/occurrence Spatial 

model 

Functional 

form 

Result 

(1) Studies focusing on a single fire or multiple large, severe fires 

Loomis 

(2004) 

CO, US Sold post fire=1, 0 otherwise No Linear and 

semi-log 

Negative; 

15% and 16% dec. in the linear 
and semi-log model, respectively 

Hugget et 
al. (2008) 

WA, US Distance to the closest fire; 
interaction of distance and sale 

time (during the fire, 6, 6-12, 12-18 

and 18-24 month after the fire) 

No Semi-log Negative; 
$676 dec. per km farther away 

from the fire before the fire; $48 

inc. per km after the fire 

Muller and 

Loomis 

(2008) 

CA, US Days since most recent fire; 

experienced at least one fire=1, 0 

otherwise; 
experienced at least two fires=1, 0 

otherwise 

 

Error Semi-log Negative; 

$29,802 to $32,547 dec. for the 

first fire; $16,161 to 21,274 dec. 
for the second fire; diff. ranges 

from 5% to 24% between the OLS 

and spatial models  

Muller et 

al. (2009) 

CA, US Days since the first fire; days since 

the second fire; experienced at 

least one fire=1, 0 otherwise; 
experienced at least two fires=1, 0 

otherwise 

No Semi-log, 

double-log 

and quadratic  

Negative; 

$14,744 (10%) dec. for the first 

fire; $34,453 (23%) dec. for the 
second fire 

Muller and 

Loomis 

(2010) 

CA, US Days since most recent fire; 

experienced at least one fire=1, 0 

otherwise; 
experienced at least two fires=1, 0 

otherwise 

Error Semi-log Negative; 

larger dec. in price in the OLS, 

about $11,986 (5%) 

Muller and 

Loomis 
(2014) 

CA, US Days since most recent fire; 

experienced at least one fire=1, 0 
otherwise; 

experienced at least two fires=1, 0 

otherwise 

No Semi-log Negative; 

94,728 to $167,104 dec. for the 
first fire; $63,790 to $163,080 for 

the second fire 

(2) Studies focusing on a large number of fires 

Stetler et 

al. (2010) 

MT, US House located within 0-5, 5-10, 10-

15, 15-20 km from the nearest fire;  
quarter since fire; View of fire=1, 0 

otherwise;  

size of the fire (>405 ha) =1, 0 
otherwise; located in WUI=1, 0 

otherwise 

No Double-log Negative; $33,232 (13.7%) lower 

within 5km; $18,924 (7.6%) 
lower between 5k and 10k; 

$301/quarter since fire dec. $6610 

lower with a view of burned area; 
$7,076 lower in the WUI  

Hansen and 

Naughton 
(2013) 

AK, US Large fire (>3.3 ha) within 0.1, 

0.1-0.5, 0.5-1 km of a house; small 
fire (<3.3 ha) within 0.1km, 0.1-0.5 

km, 0.5-1km of a house; each then 

interacted with two time frames 
(<5 years, 6-20 years) 

General Double-log Conflicting; 

18.6% inc. for large fire within 
0.1km; 

2.4% inc. for small fire within 

0.1-0.5k; 5.5% dec. for small fire 
within 0.1km. Large fire effect is 

magnified with time while small 

fire effect diminish with time. 
Xu and 

Kooten 

(2013) 

Kelowna, 

BC 

The number and average size of 

fires within 0.5, 1, 2 and 5km of a 

house as well as no radius limit 

Lag 

 

Semi-log Conflicting; 

$3.93 dec. in unit price for one 

extra fire within 5km; $-3,663 to 
$21,604 changes in sale price for 

one-hectare increment in the 

average size of fire, $4.45 to 
42.41 inc. in unit price for one-

hectare increment in the average 

size of fire. 
a Studies utilized house sales prices as the dependent variable in the hedonic model except for Hansen and Naughton, which used 
assessed property value. Xu and Kooten employed both house price and unit price (price per square meter) as the dependent variable. 
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Table 2.2: Summary of the effect of wildfire risk in hedonic model 

Studya Area Wildfire risk Spatial 

model 

Functional 

form 

Result 

Troy and 

Romm 

(2007) 

CA, 

US 

Located in fire hazard 

zone=1, 0 otherwise; 

interaction of located 

in hazard zone and 

sold after risk 

disclosure; 

interaction of located 

in hazard zone, sold 

after risk disclosure 

and near a recent and 

major fire 

No Semi-log Conflicting; 

risk disclosure 

increase prices in 

fire zone except 

for locations near 

a major fire  

Donavan 

et al. 

(2007) 

CO, 

US 

Risk rating dummies 

(moderate, high, very 

high and extreme); 

distance to dangerous 

topography (<30 feet, 

30-100 feet); veg. 

density within 30 feet 

of the house (dense 

and moderately dense), 

average slope within 

150% of house, wood 

roof=1, 0 otherwise; 

wood siding=1, 0 

otherwise 

General 

 

Double-log Negative; 

$40,000 dec. in 

price post-web 

site; wood roof 

inc. price pre-web 

but dec. price 

post-web; wood 

siding 

insignificant pre-

web but dec. 

post-web 

Rossi 

(2014) 

CO, 

US 

Risk rating dummies 

(moderate, high, very 

high and extreme) 

No Semi-log No effect 

a All studies utilized house sales prices as the dependent variable. 
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Chapter 3 The Study Area: Santa Fe County, New Mexico 

In this chapter, I begin by introducing the environment of Santa Fe County, 

including location, geography, topography, climate, vegetation and demographics. Then, 

I illustrate two reasons for selecting Santa Fe as the study area. First, Santa Fe County has 

experienced severe wildfire situations, especially in the northern forest region. Wildfires 

pose a serious threat to the Santa Fe watershed, which, in turn, can affect infrastructure, 

property, human life and ecological environment significantly. Second, a fair amount of 

the county’s residential properties is located in the WUI, facing relatively high wildfire 

risks.  

3.1 Environment of Santa Fe County 

The study area for this research was Santa Fe County (Figure 3.1), which is 

located in the north-central portion of New Mexico and surrounded by seven counties 

(Los Alamos, Sandoval, Bernalillo, Torrance, San Miguel, Mora and Rio Arriba). Santa 

Fe County is about 70 miles long and 30 miles wide, covering an area of 1909 square 

miles. Of that, about 60% of the land is privately owned. US Forest Service owns 

approximately 20% of public land, followed by native tribes (8%), the state of New 

Mexico (6%) and the Bureau of Land Management (6%). The county includes one major 

city, Santa Fe, and one town, Edgewood. The city of Santa Fe is the capital of New 

Mexico. Two interstate routes run through Santa Fe County: north-south interstate 25 and 

east-west interstate 40. US Route 285/84, and New Mexico Routes 14 and 41 run north-

south through the study area. Overall, the majority of the study area is relatively flat with 

desert plains and small hills except for the highly mountainous regions of northeastern 
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Santa Fe. The state has an arid to semi-arid continental climate, with abundant sunshine 

and low precipitation rates (Western Regional Climate Center, 2008).  

According to the NatureServe United States Ecological Systems categories, 

vegetation in the study area consists of a mosaic of grassland communities (48%), 

forestland communities (46%), riparian woodlands and wetlands (2%), and other types 

(4%), such as agricultural and developed areas (NatureServe, 2007). The largest share of 

forested communities is the Southern Rocky Mountain Pinon-Juniper Woodland, 

constituting of approximately 60% of the county’s total forest land. This forested 

community is characterized by a mixed-severity fire regime, where severity can vary 

from non-lethal surface fires to lethal stand replacement fires (Keeley, 2009). This regime 

is responsible for one of the most widespread disturbances influencing western forests. 

Western Great Plains Shortgrass Prairie dominates the grassland community and accounts 

for approximately 46% of the total grass land. This grassland community has a low fire 

risk and low frequency of fires due to low fuel load; the fuel load is reduced in the 

western US by the arid to semi-arid continental climate (NatureServe, 2007).  

According to the 2010 United States Census, Santa Fe County has a population of 

144,170 (US Census Bureau, 2010). Santa Fe city is the most populated city, with 81,153 

residents. Throughout the county, there are about 61,313 households, with 2.34 persons 

per household. Out-of-state owners own about 11.2 percent of residential homes within 

Santa Fe County; this ratio increases to 16.2 percent in Santa Fe city (Last, 2015).  

About 51% of the population is female. 15% of residents are age 65 and over. 

88% of residents age 25 and over have completed a high school degree or higher. 76% of 

residents identify as Caucasian compared to the US average of 72%. According to the 
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2010-2014 estimates, the median household income and per capita income is $52,958 

and $32,454, respectively. The median household income is slightly lower than the 

national median house income ($53,482) while the per capita income is somewhat higher 

than the national level ($28,555). Most economic activity in the County centers on 

tourism and recreation.  

3.2 The wildfire problem  

3.2.1 Past occurrence 

I focus on the wildfire situation in two national forests: Santa Fe National Forest 

and Cibola National Forest (Figure 3.2). A portion of the Santa Fe National Forest is 

located within Santa Fe County. Although located outside the boundaries of Santa Fe 

County, Cibola National Forest is adjacent to the southwestern corner and has wildfires 

that may have an impact on housing prices, and is thus included in the study.  

Santa Fe National Forest encompasses approximately 2,435 square miles and is 

made up of five separate ranger districts: the Coyote, Cuba, Española, Jemez and 

Pecos/Las Vegas Ranger Districts. A portion of the Pecos/Las Vegas Ranger District is 

located in the north eastern part of the county. Two regions within the Española Ranger 

District are in Santa Fe County. One is located west of Santa Fe city and the other is 

located north of the city. Cibola National Forest covers an area of approximately 2,553 

square miles in New Mexico. This forest is divided into four ranger districts: Sandia, 

Mountainair, Magdalena and Mount Taylor. Of the four districts, Sandia Ranger District 

is adjacent to the county’s southwestern boundary. The shortest straight-line distance 

between the district and county boundary is about two miles. 
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According to wildfire event/occurrence data over the period 1970 to 2013 (US 

Department of Agriculture, 2013), there were 9,609 fires reported in both forests during 

this period. The number of fires has declined in the last two decades, from an annual 

average of 278 fires during 1993 to 2006 to 143 fires in 2007 to 2013. July has the 

highest number of fires, followed by June, August and May. Figures 3.3 and 3.4 illustrate 

activities of fires that burned at least 10 acres. 512 fires occurred in both forests, with an 

average of 11.6 fires burned per year. The average size burned is 12,571 acres per year 

with the total average area of 553,134 acres burned. It should be noted that, although the 

number of fires is relatively low in the last ten years, the total area burned is quite large 

and reached its highest level in 2011, at about 170,000 acres. Furthermore, of the 512 

fires burned, the vast majority of the fire (67%) are caused by lightning. The second 

major cause of fire is human activity, such as campfires, smoking, etc. 

3.2.2 The threat of wildfire to watershed  

Large and severe wildfires can cause severe damage to the Santa Fe Watershed, 

the major water source for Santa Fe city. The watershed is located on the west side of the 

Sangre de Cristo Mountains, northeast of Santa Fe city. It covers an area of 17,520 acres, 

with the vast majority owned by the Santa Fe National Forest (88%). As the primary 

drainage in the watershed, the Santa Fe River in the watershed collects rainfall and 

snowmelt from the Sangre de Cristo Mountains and provides water to two reservoirs: the 

McClure and Nichols, which supply approximately 40% of Santa Fe city water (Steelman 

& Kunkel, 2003). 

Over the past century, institutionalized fire suppression and livestock grazing in 

the watershed resulted in increased fuel accumulation as well as low levels of understory 
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vegetation. The long-run effect is an unnaturally dense forest in the watershed, which 

places the area at high risk for large fires, insect outbreaks and reduced biodiversity 

(Steelman & Kunkel, 2003). Additionally, the watershed is expected to experience fire 

every 15 years according to an estimation by Balmat, Baisan, and Swetnam (2005). 

However, this area has not seen widespread fire for approximately 100 years, which also 

leads to a high fuel load, and thus high risk of severe fire. Furthermore, according to 

Santa Fe CWPP WUI risk assessment in 2007, the watershed is located in the WUI, 

which is at very high risk from wildfire. According to the core team of the Santa Fe 

Watershed Investment Program, $5.1 million is needed to treat and maintain forests to 

protect the watershed from 2010 through 2019, an annual average of $258,000. Since 

2013, this program is mainly paid for by the Santa Fe water utility’s rate payers via a 

higher monthly water bill. The average ratepayer needs to pay an additional $0.65 a 

month or $7.8 a year1. The amount totaled $220,000 a year.    

High severity fire poses a serious threat to the Santa Fe city water supply. 

Wildfires can influence the hydrologic cycle of the watershed in many ways, the two 

most important ones being the reduction in vegetation interception and soil infiltration. 

First, wildfires would consume the surface vegetation and litter layer, resulting in 

decreased vegetation cover and interception loss. Second, change of soil properties can 

also be attributed to wildfires, perhaps the foremost change being the development of 

hydrophobic soils (Ice, Neary, & Adams, 2004; Larsen et al., 2009). The consequences of 

                                                 
1 Based on a contingent valuation survey, 82% of rate payers are willing to pay 65 

cents a month for the fund. 
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the reduction in ground cover and soil infiltration is a significant increase in surface 

runoff and erosion (Parlak, 2015).  

Surface runoff and erosion have dramatic consequences for water quality and 

quantity, which, in turn, can affect infrastructure, property, human life and ecological 

environment significantly. Runoff and erosion generally lead to increased sediment, 

debris, chemicals or other pollutants transported to streams, rivers and reservoirs. This 

may cause water quality degradation, actual damage to dams, reservoirs and water-

treatment plants, as well as a reduction in water storage capacity and thus threaten water 

supply. This may also damage the flood control system for reservoirs and lead to heavy 

flooding in the downstream area. Beyond this damage, excessive sediment and water 

chemistry may have an adverse impact on aquatic ecosystems, such as lowered fish 

population (Dunham, Young, Gresswell, & Rieman, 2003), loss of spawning and rearing 

habitats, and loss of streamside vegetation.  

3.2.3 Wildfire risk 

Focusing on the state level, according to the “Wildfire Hazard Risk Report” 

(Botts et al., 2013; Botts, Thomas, McCabe, Stueck, & Suhr, 2015)2, by CoreLogic Inc., 

there are 7,724 residential properties in New Mexico located in areas at the very high risk 

level, 24,663 located in the high risk category and 11,530 located in the moderate risk 

                                                 
2 All residential properties in New Mexico were assigned one of the following six 

categories (urban property, agricultural property, property with low risk, modertate risk, 

high risk or very high risk). Both urban and agricultural properties were considered to 

have low fire risk. 
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category, as of 2013. The estimated reconstruction value of very high risk properties 

totaled $1.1 billion, high risk properties amounted to $3.5 billion and moderate risk 

properties is estimated to be $1.6 billion. The number of very high and high risk 

properties increased by 23% and 4%, respectively, between 2013 and 2015. Accordingly, 

the estimated reconstruction cost of properties within the moderate risk category 

increased by 185%, followed by properties within the very high risk category (109%) and 

properties within the high risk category (102%).  The categorical risk measure (low, 

moderate, high and very high) only accounts for risk factors inside the property 

boundary. Besides the categorical risk measure, the research team also constructed a 

numerical risk score (1-50, 51-60, 61-80, 81-100), which considers risk factors both 

inside and outside of the boundary3. This trend of rapid cost increases is also detected 

when using the numerical risk score. The number of residential properties with a risk 

score of “81-100” increased from 35,024 to 39,871 between 2013 and 2015, and the 

reconstruction cost is estimated to rise by 108%. The number of properties with a risk 

score of “61-80” increased from 23,224 to 32,139 and the cost of reconstruction also 

increased dramatically (163%).  

Turning from a review of the state level to the county level, within Santa Fe 

County there are 76,455 parcels of land (Table 3.1). According to risk assessments 

conducted by Santa Fe CWPP team, about 66% is at moderate composite risk from 

wildfire, followed by high composite risk (31%), and extreme risk (2.16%). Furthermore, 

                                                 
3 All single-family residences in New Mexico were assigned a numerical risk 

score. 



34 

 

21,884 (29%) parcels are located in the WUI. Of these, 51% is in high WUI risk 

category, followed by moderate WUI risk (37%), very high WUI risk (11%) and extreme 

WUI risk (2%).  

Of the 76,455 parcels, 46,413 are single-family houses (60%). One can see the 

distribution of single-family houses by wildfire risk is quite similar to the risk faced by 

all parcels. The vast majority is in the moderate composite risk category (66%), followed 

by high composite risk (31%). Similarly, approximately 29% of single-family houses are 

in the WUI. Furthermore, a slightly higher percentage of single-family houses are at high 

WUI risk from wildfire (55%) while moderate and very high WUI risk single-family 

houses are two and three percentage points lower relative to all parcels, respectively. 
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Figure 3.1: Santa Fe County 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 3.2: Santa Fe and Cibola National Forests 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 3.3: Number of fires in Santa Fe and Cibola National Forest, 1970-2013 

 

Source: Southwestern region fire occurrence history—polygons from USDA, 2013.  
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Figure 3.4: Total acres burned in Santa Fe and Cibola National Forest, 1970-2013 

 

Source: Southwestern region fire occurrence history—polygons from USDA, 2013.  
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Table 3.1: Parcels distribution by composite risk and WUI risk, Santa Fe County 

 All land parcel (76,455) Single-family house (46,413) 

 Frequency Percentage Frequency Percentage 

Composite risk 

Low 136 0.18% 37 0.08% 

Moderate 50,621 66.21% 30,701 66.15% 

High 24,045 31.45% 14,535 31.32% 

Extreme 1,653 2.16% 1,140 2.46% 

WUI risk 

Moderate 8,017 36.63% 4,648 34.81% 

High 11,090 50.68% 7,345 55.01% 

Very high 2,359 10.78% 1,059 7.93% 

Extreme 418 1.91% 299 2.24% 

Source: All land parcel and single-family houses data from Santa Fe Assessor’s Office. 

Risk data obtained from Santa Fe Geographic Information Systems (GIS) Division.  
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Chapter 4 Hedonic theory, functional form and spatial econometrics  

This chapter will present hedonic price theory and functional forms commonly 

used in hedonic model. I then take into account spatial econometric techniques, including 

spatial autoregressive hedonic models, spatial weight matrix, tests for spatial dependence 

and estimation methods. 

4.1 The standard hedonic pricing model 

The hedonic model exploits the relationship between the price of a marketed good 

and the number of characteristics or attributes inherent in the good. It is a revealed 

preference method that measures the individual characteristic factor effects on prices, and 

specifically estimates the marginal implicit price of characteristics that a good possesses. 

This method has been widely used to evaluate non-market goods due to the fact that no 

explicit market exists for trading embodied characteristics in a differentiated product. For 

example, one can use peoples’ willingness to pay for property to estimate the value of 

some environmental attributes that are not observable on the market, such as the effect of 

air quality or the proximity of a piece of property to a lake.   

The hedonic model is based on the consumer theory that individuals do not derive 

utility from a good per se, but from the various characteristics of that good (Lancaster, 

1966). A product is defined by its various attributes and collections of those attributes. 

One can infer the price of each particular characteristic in a product through the price of 

the product. The hedonic price is expressed as the “implicit prices of attributes and are 

revealed to economic agents from observed prices of differentiated products and the 

specific amount of characteristic associated with them” (Rosen, 1974, p. 34). The 

marginal implicit price of the individual attribute, for a market with a “sufficiently large” 
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number of differentiated products, is defined as the changes in the price of the good for 

one unit increase in a given attribute.  

The theoretical framework of the hedonic pricing model is formalized by Rosen 

(1974) in terms of an equilibrium outcome from a differentiated goods market, where the 

equilibrium price can be expressed as a function of a product’s characteristics. Rosen 

characterizes the interactions of buyers and sellers through the demand decisions of 

customers and the supply behavior of producers. It is further assumed that customers 

derive utility from the characteristics associated with the good, not the good per se, and 

they maximize their utility by choosing from a set of available choices facing a budget 

constraint. At equilibrium, the price of a differentiated good is expressed as a function of 

number of characteristics that the good possesses, which provides a theoretical 

framework for hedonic pricing model.  

Following Taylor (2003), a good 𝑋 is defined by m characteristics vector x =

(𝑥1, 𝑥2, … , 𝑥𝑚) and the equilibrium price P is a function of these characteristics expressed 

by 

 𝑃(𝑥) = 𝑃(𝑥1, 𝑥2, … , 𝑥𝑚) (4.1) 

Assume the consumer’s utility depends two goods: 𝑋, a differentiated good, and 𝑡, 

a composite numeraire. Thus the consumers’ objective is to maximize utility subject to a 

budget constraint 𝑦: 

 𝑀𝑎𝑥 𝑈 (𝑡, 𝑥1, 𝑥2, … , 𝑥𝑚) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 = 𝑡 +  𝑃(𝑥) (4.2) 

Under the first order conditions, utility is maximized when the following 

condition is satisfied, 
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∂P

∂x𝑖
=

𝜕𝑈
∂x𝑖

𝜕𝑈
𝜕𝑡

 

(4.3) 

which is the marginal rate of substitution between a particular characteristic, x𝑖, and the 

composite numeraire, 𝑡, is equal to the marginal implicit price (MIP) of that 

characteristic, 
∂P

∂x𝑖
. Since 𝑡 is a composite numeraire, the marginal rate of substitution 

between x𝑖 and 𝑡 measures the amount of money that the customer is willing to pay for 

one unit increase in the characteristic x𝑖, that is, marginal willingness to pay. Thus, 

 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑝𝑙𝑖𝑐𝑡 𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑥𝑖

= 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥𝑖 𝑎𝑛𝑑 𝑡  

= 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑊𝑇𝑃 𝑓𝑜𝑟 𝑥𝑖 

(4.4) 

The hedonic pricing model has been widely applied in the housing market given 

that this market complies with assumptions in Rosen’s model: a competitive market with 

a continuum of good and perfect information. Following this framework, a house, as a 

differentiated good, can be viewed as a package of three main characteristics: housing 

structural characteristics (e.g., lot size and number of bedrooms), neighborhood 

characteristics (e.g., percentage of people over 65) and environmental attributes. The 

price of the house can therefore be expressed as: 

 𝑃 = 𝑓(𝑆, 𝑁, 𝐸) (4.5) 

where 𝑃 is property value,  𝑆  is a vector of housing structural characteristics,  𝑁 is a 

vector of neighborhood characteristics, and 𝐸 is a vector of environmental characteristics. 

The objective of this paper is to examine the effect of wildfire on property values, 

which is considered as part of the environmental characteristics 𝐸. Thus I first split 𝐸 into 

wildfire characteristics 𝑊 and locational characteristics 𝐿. Note that both the effect of the 
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wildfire event and wildfire risk are considered, then I further partition wildfire 

characteristics 𝑊 into wildfire events/occurrence 𝑊𝐸 and wildfire risk 𝑊𝑅. The final 

expression of the model is  

 𝑃 = 𝑓(𝑆, 𝑁, 𝐿,𝑊𝐸,𝑊𝑅) (4.6) 

The hedonic pricing model has been used to value environmental (dis)amenities, 

such as green space (Ready & Abdalla, 2005; Cho, Bowker, & Park, 2006; Kong, Yin, & 

Nakagoshi, 2007; Conway, Li, Wolch, Kahle, & Jerrett, 2010; Izón, Hand, Fontenla, & 

Berrens, 2010; Saphores & Li, 2012; Kolbe & Wüstemann, 2015), drinking water or 

water quality (Poor, Pessagno, & Paul, 2007; Anselin, Lozano-Gracia, Deichmann, & 

Lall, 2010), beach (Thrane, 2005; Gopalakrishnan, Smith, Slott, & Murray, 2011; Landry 

& Hindsley, 2011), or forest (Y.-S. Kim & Wells, 2005; Payton, Lindsey, Wilson, 

Ottensmann, & Man, 2008). It also has been used to estimate the value of outdoor 

recreation goods, such as a fishing trip (Carter & Liese, 2010; Pitts, Thacher, Champ, & 

Berrens, 2012), hunting permits (Little & Berrens, 2008) and ski area crowding (Fonner 

& Berrens, 2014).  

This model has also been used to estimate the value of environmental damage and 

risks, such as insect infestation in forests (Price, McCollum, & Berrens, 2010; Hansen & 

Naughton, 2013), flood hazards (A. Morgan, 2007; Bin, Crawford, Kruse, & Landry, 

2008; Bin, Kruse, & Landry, 2008; Samarasinghe & Sharp, 2010), and earthquakes 

(Keskin, 2008; Nakagawa, Saito, & Yamaga, 2009; Naoi, Seko, & Sumita, 2009; Uchida, 

Takahashi, & Kawahara, 2014).  

4.2 The choice of functional form  
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Rosen (1974) relates the price of the good to its inherent characteristics in the 

model, while providing little theoretical guidance as to the choice of appropriate 

functional form. Given the lack of a solid theoretical basis, researchers’ selection of 

functional form matters since it will determine the way that the price is affected by the 

characteristics, and thus the implicit price of the individual characteristic. A variety of 

functional forms have been applied in empirical estimates, including linear and non-linear 

forms. Four widely used forms are linear, semi-log, double-log and more flexible 

functional forms, particularly the Box–Cox transformations. These are discussed next.   

The linear functional form is the simplest hedonic form. If arbitrage activities are 

feasible and costless, meaning customers can easily unbundle and repackage the 

characteristics after purchase, the linear form should be employed (Rosen, 1974). The 

linear form is expressed as 

 𝑃 = α0 + α𝑖𝑋𝑖 + 𝜀 (4.7) 

where 𝑖 = 1, 2, …𝑚. With this functional form, the implicit price of characteristics is 

constant regardless of the level of attribute. For a given characteristic 𝑥𝑖, the marginal 

implicit price is simply the coefficient α𝑖 associated with that characteristic (e.g., 
∂P

𝜕𝑥𝑖
=

α𝑖). For example, the incremental value of an additional bedroom would be the same for 

a house with one bedroom as it would be for one with five bedrooms.  

However, in most cases arbitrage doesn’t hold. Thus non-linear functional forms 

rise where transformation of variables appears in the function. With nonlinearity, the 

implicit price of a given characteristic will depend on the level of that particular 

characteristic, as well as the level of other characteristics. One popular non-linear 
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functional form is semi-log, where the price is transformed using the natural logarithm 

transformation. The semi-log functional form is  

 𝑙𝑛𝑃 = γ0 + γ𝑖𝑋𝑖 + 𝜀 (4.8) 

γ𝑖, interpreted as semi-elasticity of the price with regards to characteristic 𝑥𝑖, measures 

the percentage change in price 𝑃 for one unit increase in 𝑥𝑖. Thus the marginal implicit 

price of 𝑥𝑖 is equal to  γ𝑖𝑒
γ0+γ𝑖𝑋𝑖+𝜀 or γ𝑖𝑃. Since price 𝑃 depends on the level of all other 

explanatory variables and the particular characteristic 𝑥𝑖 as well, so does the marginal 

implicit price of 𝑥𝑖.  

Another popular functional form is double-log, where the price as well as all 

continuous explanatory variables appear as a natural logarithm, expressed as 

 𝑙𝑛𝑃 = φ0 + φ𝑖𝑙𝑛𝑋𝑖 + 𝜀 (4.9) 

φ𝑖 is the elasticity of the price with regards to characteristic 𝑥𝑖 and interpreted as the 

percentage change in price 𝑃 for a one percent increase in 𝑥𝑖. The marginal implicit price 

of 𝑥𝑖 is 
∂P

𝜕𝑥𝑖
= φ𝑖

𝑒𝜑0+𝜑𝑖𝑙𝑛𝑋𝑖+𝜀

𝑥𝑖
 or φ𝑖

P

𝑥𝑖
. For both functional forms, the estimation of implicit 

price requires researchers to specify the value of price and/or the interested characteristic. 

It is a common practice to use the mean or median price or the interested variable for the 

sample.  

A priori restrictions are placed on the transformation parameters in semi-log and 

double-log functional forms. A more generalized and flexible functional form, the Box-

Cox transformation, was introduced in the 1970s (Box & Cox, 1964; Halvorsen & 

Pollakowski, 1981).  

 𝑃𝜃1 = µ0 + µ𝑖𝑋𝑖
𝜃2 + 𝜀 (4.10) 

where: 
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𝑃𝜃1 =
𝑃𝜃1−1

𝜃1
    if 𝜃1 ≠ 0  

𝑃𝜃1 = 𝑙𝑛 (𝑃)   if 𝜃1 = 0  

The same transformation applies to 𝜃2. 𝜃1  and 𝜃2 are transformation parameters. 

The marginal implicit price of 𝑥𝑖 is 
𝜕𝑃

𝜕𝑥𝑖
= µ𝑖𝑃

1−𝜃1𝑥𝑖
𝜃2−1 for 𝜃1 ≠ 0. The Box-Cox 

transformation is a parametric power transformation technique which involves the 

estimation of transformation parameters (Sakia, 1992). The transformation parameters are 

determined by the empirical estimation via maximum likelihood estimation or Bayesian 

method (Box & Cox, 1964). When 𝜃1 = 𝜃2 = 0, it is the double-log form. When 𝜃1 =

𝜃2 = 1, it yields a linear functional form. Thus linear and double-log specifications are 

special cases of the Box-Cox transformation. This transformation allows for flexible 

functional forms, such as inverse semi-log (𝜃1 = 1, 𝜃2 = 0), square roots (𝜃1 = 𝜃2 =

0.5) and quadratics (𝜃1 = 𝜃2 = 2).  

Although the Box-Cox transformation provides more flexibility, the calculation 

and interpretation of the marginal implicit price is obscure. Besides, Cropper, Deck, and 

McConnell (1988) compared the performance of various functional forms in the hedonic 

regression model. They find that the simpler models (e.g., linear, semi-log, double-log 

and the linear Box-Cox) perform best under omitted variable scenarios, while the 

complex functional forms (e.g., the quadratic and the quadratic Box-Cox) perform best 

when all explanatory variables are observed by the researcher. On the other hand, the 

Box-Cox transformation is not readily available in spatial econometrics (C. W. Kim, 

Phipps, & Anselin, 2003). Researchers have overwhelmingly adopted the simple 

functional forms, especially semi-log and double-log, in the subsequent literature to avoid 
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the risk of omitted variable bias. In line with the previous literature, these two functional 

forms are selected in this paper. 

4.3 Spatial autoregressive hedonic model 

4.3.1 Spatial models 

With the advance in spatial econometric techniques (Anselin & Bera, 1998; 

Anselin, 2013), the issue of spatial relationships has been receiving increased attention in 

hedonic pricing models for over 30 years. Earlier literature usually takes into account 

characteristics that vary spatially, e.g., proximity to forest, lake or contaminated site, 

while later works address this issue explicitly using spatial econometric models. Spatial 

dependence (or spatial correlation) is defined as “the coincidence of value similarity with 

locational similarity” (Anselin & Griffith, 1988, p. 241). This implies the lack of 

independence among data from nearby locations, which voids the common assumption of 

independence in statistical analysis. This “locational similarity” indicates a loss of 

information, and should be explicitly addressed in empirical estimation. A failure to 

account for spatial dependence may lead to biased estimation of parameters and the error 

term’s variance, as well as serious errors in the interpretation of standard regression 

diagnostics, such as for model selection and heteroscedasticity (Anselin & Griffith, 1988; 

C. W. Kim et al., 2003).  

Spatial correlation can also be positive or negative. Positive autocorrelation 

means that nearby locations tend to have very similar values while negative 

autocorrelation refers to very dissimilar values for neighboring units. Spatial 

autocorrelation is normally positive, e.g., similar climate or housing prices for 

neighboring locations.  Spatial correlation is analogous to time series autocorrelation but 
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more complex. Autocorrelation is unidirectional in time dimension since only past value 

can affect current value, which can be corrected with a lag operator. Spatial 

autocorrelation is exacerbated by the multidirectional nature in that all neighboring 

spatial units can affect each other. Correcting for spatial autocorrelation via spatial shift 

operator is not feasible because the number of neighbors and observations will affect the 

number of operator.  

In a spatial econometric model, two basic methods exist to characterize spatial 

relationships, suggesting sources of spatial correlation: the spatial lag model and the 

spatial error model. The spatial lag model assumes spatial dependence across 

observations of the dependent variable, while the spatial error model considers spatial 

dependence between the error terms. In real estate economics, clustering based on similar 

housing prices is widely observed. This pattern is called the adjacency effect and may be 

attributable to the fact that real estate professionals typically use recent house sales from 

nearby locations as a reference for a transaction (Can, 1992). On the other hand, omitted 

variables or measurement error problems would lead to spatially correlated errors 

(Anselin & Bera, 1998). If unobservable factors have influence on the dependent variable 

but are not modelled, then their impact is relegated to the error term. This spatial 

correlation in the error term can be explicitly addressed using a spatial error model.  

In a housing market, a spatial lag process indicates housing prices are influenced 

by prices of nearby or neighboring homes. Thus an additional explanatory variable is 

specified in the spatial lag model, namely a spatial lagged dependent variable. In a 

traditional hedonic model, housing price is regressed on standard explanatory 

characteristics, as are prices of neighboring houses. A spatial lag model is outlined as: 



49 

 

 𝑃 = 𝑋𝛽 + 𝜌𝑊1𝑃 + 𝜀 (4.11) 

where 𝑋 is 𝑛 ∗ 𝑘 matrix of explanatory variables including all structural 𝑆, neighborhood 

𝑁 and environmental variables 𝐸, 𝛽 is the 𝑘 ∗ 1 vector of estimated coefficients, 

𝜀 ~ 𝑁(0, 𝜎). 𝑊1 is the 𝑛 ∗ 𝑛 exogenous spatial weight matrix specifying the assumed 

dependence across observations. Observations considered as neighbors are represented as 

non-zero, or represented as zero if not neighbors. The specification of weight matrix will 

be discussed in detail in the following section.  𝑊1𝑃 is the spatially-weighted average of 

nearby home values, which is a spatially-lagged dependent variable, as discussed above.  

𝜌 is the spatial correlation or lag parameter, indicating the intensity of spatial 

dependence. If the assumed dependence doesn’t exist in the data, the estimated value of 𝜌 

would be insignificant. Solving (4.11) for 𝑃 

 𝑃 = (𝐼 − 𝜌𝑊1)
−1𝑋𝛽 + (𝐼 − 𝜌𝑊1)

−1𝜀 (4.12) 

where 𝐼 is the 𝑛 ∗ 𝑛 identity matrix，(𝐼 − 𝜌𝑊1)
−1 is spatial multipliers and can be 

expanded into an infinite series (Anselin, 2013):  

 (𝐼 − 𝜌𝑊1)
−1 = 𝐼 + 𝜌𝑊1 + ρ2𝑊1

2 + +ρ3𝑊1
3 + ⋯ (4.13) 

Thus the spatially-lagged dependent variable  𝑊1𝑃 is correlated with the error 

term, and must be treated as an endogenous variable. This endogeneity, resulting from 

simultaneity (e.g., your neighbor’s housing price affects you, but yours also affects your 

neighbors), will make the OLS estimates biased and inefficient.  

Due to the multidirectional nature of spatial data, a change in an explanatory 

variable at one location, will not only cause the dependent variable to change at that 

location, but also have an indirect or spillover effect on the dependent variable at all other 

locations. Thus the implicit price of change in one attribute should be corrected by the 
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spatial lag parameter 𝜌. In a linear hedonic model that considers no spatial effects, the 

indirect effect is zero and the marginal implicit price of an attribute, β𝑖, is equal to the 

direct effect. 

Spatial correlation can exist in the error term, where there is one or more omitted 

variable and where these omitted variables vary spatially. The errors associated with any 

one observation is given by a spatially-weighted average of the errors from the 

neighboring regions plus a random error component. The spatial error model is given by:  

 𝑃 = 𝑋𝛽 + 𝑢 (4.14) 

 𝑢 = 𝜆𝑊2𝑢 + 𝜀  

where 𝑊2 is 𝑛 ∗ 𝑛 exogenous spatial-weight matrix corresponding to the spatial-error 

process,  𝜆 is the spatial error operator. In the spatial-error model, the marginal implicit 

price of attribute 𝑥𝑖 is still the same as regular OLS and equals β𝑖. OLS can provide 

estimates of coefficients that remain unbiased, a non-spherical error term that remains a 

special case. Yet bias remains in the OLS estimators for standard errors, resulting in 

inefficient estimations.   

If both spatial lag and spatial error are present, a general spatial model allows for 

a spatial lag and spatially correlated errors can be formally written as: 

 𝑃 = 𝑋𝛽 + 𝜌𝑊1𝑃 + 𝑢 (4.15) 

 𝑢 = 𝜆𝑊2𝑢 + 𝜀  

Earlier empirical analysis generally set  𝑊1 = 𝑊2 = 𝑊 (Donovan et al., 2007; 

Breustedt & Habermann, 2011; M. A. Cole, Elliott, Okubo, & Zhou, 2013). In this 

analysis, I also implement the general spatial model with the same weight matrix. 

4.3.2 Three weight matrices 
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The spatial weight matrix is a basic concept that specifies spatial relationships 

between 𝑛 spatial units. All spatial econometric models discussed above require one to 

specify the weights in advance, which should be exogenous and reflect the potential 

interactions between observations at different locations (Anselin, 2013). Formally an 𝑛 ∗

𝑛 weight matrix W can be expressed as 

 

W𝑛∗𝑛 =

[
 
 
 
 
 
𝑤11 𝑤12 … 𝑤1𝑗 …
𝑤21 𝑤22 … 𝑤2𝑗 …
… … … … …
𝑤𝑖1 𝑤𝑖2 … 𝑤𝑖𝑗 …
… … … … …

𝑤𝑛1 𝑤𝑛2 … 𝑤𝑛𝑗 …

  

𝑤1𝑛

𝑤2𝑛

…
𝑤𝑖𝑛

…
𝑤𝑛𝑛]

 
 
 
 
 

 

(4.16) 

where the element 𝑤𝑖𝑗 represents the spatial dependence degree between unit j and i (𝑖 ≠

𝑗 ); if j and i are considered as neighbors, then 𝑤𝑖𝑗 ≠ 0; otherwise, 𝑤𝑖𝑗 = 0. 

Econometricians generally set the diagonal elements to zero 𝑤𝑖𝑖 = 0; this prevents 

regions from being considered neighbors to themselves. In addition, they normally row-

standardize the weight matrix by dividing the sum of all neighbor weights as 𝑤𝑖𝑗
𝑠 =

𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑗
,  

with 𝑤𝑖𝑗
𝑠  as the scaled weight.  Thus the sum of each row totals to 1. Such transformation 

of the spatial-weight matrix is mainly attributable to the econometric difficulties with 

maximum likelihood estimation. The transformation also facilitates the interpretation of 

an averaging of neighbor values as well as making spatial parameters comparable across 

different data sets, where ρ can be interpreted as the autocorrelation coefficient. In line 

with most empirical literature, I also specify a row standardized weight matrix with the 

diagonal element equal to 0. 

There is little theoretical guidance with respect to the specification of the weight 

matrix (Anselin, 2002) and therefore it largely depends on the analyst’s choice and 
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judgment. In earlier studies, weight matrices are usually constructed based on distance, 

contiguity or economic criteria, with the first two being the most commonly used. 

Contiguity weights consider whether spatial units share a boundary, and the length of the 

boundary while distance weights use the geographical distance between regions. 

Researchers are more likely to use a contiguity weights matrix for macro-level data (e.g., 

data collected at the county or state level). In contrast, one usually uses a distance matrix 

for micro data. In line with most empirical studies, I use the latter due to household-level 

data structure.  

Two main types of distance matrices are the K-nearest neighbor matrix and the 

distance band matrix. The K-nearest neighbor matrix specifies the k nearest spatial units 

as neighbors to a particular unit, with k varying from four to eight in the literature. This 

K-nearest neighbor matrix structure ensures each spatial unit has an equal number of 

neighbors, regardless of the distance between them. One normally sets 𝑤𝑖𝑗 = 1 if j is 

neighbor to i, and otherwise sets it to 0. However, in the distance band matrix, one presets 

a distance band or threshold distance of value d. Regions below the specified threshold d 

are considered as neighbors to a given region, while regions above are not. Units can 

have an unequal number of neighbors for the distance band matrix structure. One can 

imagine that the number of neighbors would depend on the density of houses in the 

region. For example, houses located in an urban area would have more neighbors than 

ones located in a rural area. In the earlier literature, one approach to choose the distance 

threshold d is to ensure that each unit has at least one neighbor, which depends on the 

number of observations and geographic location of each unit. Given the large sample size 

in this analysis, it takes an extremely long time to compute the estimators. Let 𝑑𝑖𝑗 denote 
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the distance between spatial units j and i, then 𝑤𝑖𝑗 ≠ 0 if 𝑑𝑖𝑗 ≤ 𝑑, and be equal to 0 if 

𝑑𝑖𝑗 > 𝑑. There are three commonly used weights for neighbors: (1) 𝑤𝑖𝑗 = 1; (2) 𝑤𝑖𝑗 =

1

𝑑𝑖𝑗
; (3) 𝑤𝑖𝑗 =

1 

𝑑𝑖𝑗
2 . The first weight structure assumes that each neighbor within the 

distance band d has the same impact. In the other two specifications, weights would 

decrease with distance up to threshold d. This allows neighbors have differential impacts; 

nearby units have a larger impact on price than do more distant units.  

Previous literature demonstrated that the parameter estimation is sensitive to the 

specification of weight matrix (Bell & Bockstael, 2000). Thus I use three different weight 

matrices for our estimation: the four nearest neighbors, the eight nearest neighbors and an 

inverse-distance matrix with distance band d = 0.5 mile. Specifically, for the nearest 

neighbor weight matrix structure, 𝑤𝑖𝑗 = 1. For the distance band matrix, I chose the 

inverse distance structure 𝑤𝑖𝑗 =
1

𝑑𝑖𝑗
 for the houses located within 0.5 mile.  

4.3.3 Two tests for spatial dependence 

With the development of spatial econometrics, various diagnostic tests have been 

proposed to capture spatial dependence. The tests for spatial error dependence includes 

Moran’s I test and Kelejian-Robinson test. Anselin, Florax, and Rey (2013) classified 

both as diffuse tests since they are unable to suggest the proper alternative model (e.g., 

spatial lag model vs spatial error model). That is, they don’t point to a specific alternative 

hypothesis. The Lagrange Multiplier (LM) test is able to test between spatial lag and 

spatial error models, thus has its own advantages. Anselin and Florax (1995) has a 

detailed discussion of the LM test: the simple LM test for spatial error, the simple LM 

test for spatial lag and the robust LM test for error or lag. Other LM tests involve testing 

for a second-order spatial dependence or joint spatial lag and spatial moving average 
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error. The Wald and likelihood ratio tests are asymptotically equivalent to the LM test, 

thus they can also be applied to test spatial dependence. Moran’s I and LM tests with the 

robust versions remain the most commonly used tests for spatial dependence, and are 

used to examine the presence of spatial correlation in the paper.  

4.3.3.1 Moran’s I test 

The Moran’s I test proposed by Cliff and Ord (1972) is applied to the residual 

from an OLS regression, which is the most widely used method to test the presence of 

spatial dependence. The Moran’s I statistic can be written as 

 
𝐼 =

𝑁

𝑆0

𝑒′𝑊𝑒

𝑒′𝑒
 

(4.17) 

where 𝑆0 = ∑ ∑ 𝑊𝑁
𝑗=1

𝑁
𝑖=1 , 𝑊 is an unstandardized weight matrix, 𝑒 is the OLS residuals. 

For a row-standardized weight matrix 𝑊𝑠, the above equation can be simplified to 

 
𝐼 =

𝑒′𝑊𝑠𝑒

𝑒′𝑒
 

(4.18) 

since 𝑆0 = 𝑁. Under the null hypothesis of no spatial dependence 𝜆 = 0, the standardized 

Moran's I statistics follows a standard normal distribution. The standardized Moran I 

statistics can be written as: 

 
𝑍(𝐼) =

𝐼 − 𝐸(𝐼)

√𝑉𝑎𝑟(𝐼)
 ~ 𝑁(0,1) 

(4.19) 

where E(I) = 𝑡𝑟(𝑀𝑊𝑠)/(𝑁 − 𝑘), projection matrix M = I − 𝑋(𝑋′𝑋)−1𝑋′, 𝑉𝑎𝑟(𝐼) =

𝑡𝑟(𝑀𝑊𝑠𝑀𝑊𝑠′
)+𝑡𝑟(𝑀𝑊𝑠𝑀𝑊𝑠)+[𝑡𝑟(𝑀𝑊𝑠)]2

(𝑁−𝑘)(𝑁−𝑘+2)
− [𝐸(𝐼)]2, 𝑡𝑟 is the matrix trace operator. 

4.3.3.2 LM tests 

Two standard LM tests consider the null hypothesis of no spatial dependency. The 

LM test for spatial error assumes no spatial dependency in the error term in the spatial 
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error model, while the LM test for spatial lag assumes no dependency in the dependent 

variable in the spatial lag model. The LM error statistic with the null hypothesis 𝜆 = 0 

against the spatial error dependence alternative 𝜆 ≠ 0 can be written as: 

 
𝐸𝑟𝑟𝑜𝑟 =

(𝑒′𝑊𝑠𝑒/𝑠2)2

𝑇
 ~ 𝑥2(1) 

(4.20) 

with 𝑠2 = 𝑒′𝑒/𝑁 and 𝑇 = 𝑡𝑟[(𝑊𝑠 + 𝑊𝑠′)𝑊𝑠]. Alternatively, the LM test for spatial lag 

is based on the spatial lag model, with the null hypothesis that 𝜌 = 0. LM Lag statistic 

can be written as: 

 
𝐿𝑎𝑔 =

𝑠2(𝑒′𝑊𝑠𝑝/𝑠2)2

𝐺 + 𝑇𝑠2
 ~ 𝑥2(1) 

(4.21) 

with 𝐺 = (𝑊𝑠𝑋𝛽)′𝑀(𝑊𝑠𝑋𝛽)/𝑠2, 𝑀 = 𝐼 − 𝑋(𝑋′𝑋)−1𝑋′, T is the same as earlier. Both 

test statistics followed a chi-square distribution with one degree of freedom. Rejection of 

the null hypothesis indicates spatial dependence in the error (𝜆 ≠ 0) or lag term (𝜌 ≠ 0).  

Although the simple LM tests have power against the incorrect alternative, they 

ignore the other spatial autoregressive process, and thus are likely to reject the null 

regardless of the true spatial autoregressive process. The simple LM lag tends to reject 

the null even if the process is a spatial error and the simple LM error tends to reject the 

null hypothesis even if the process is spatial lag. As a result, the standard tests do not 

provide much help in terms of distinguishing alternative models. Anselin, Bera, Florax, 

and Yoon (1996) addressed this problem through the robust LM tests, which are robust 

against the presence of the other spatial autoregressive processes. The robust LM error 

statistic tests the spatial correlation of errors while correcting for the presence of 

spatially-lagged dependent variables, and the robust LM lag test examines the correlation 

between the dependent variable in the presence of spatially correlated error terms. Thus 
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the robust LM tests treat the other spatial autoregressive process as a nuisance parameter, 

and accounts for its effect on the likelihood. The robust LM lag statistic can be written as: 

 
𝑅𝐿𝑎𝑔 =

𝑠2(𝑒′𝑊s𝑝/𝑠2 − 𝑒′𝑊s𝑒/𝑠2)2

𝐺 + 𝑇(𝑠2 − 1)
 ~ 𝑥2(1) 

(4.22) 

The robust LM error statistic can be written as: 

 
𝑅𝐸𝑟𝑟𝑜𝑟 =

[𝑒′𝑊s𝑒/𝑠2 − 𝑇𝑠2(𝐺 + 𝑇𝑠2)−1𝑒′𝑊s𝑝/𝑠2]2

𝑇(1 −
𝑇𝑠2

𝐺 + 𝑇𝑠2)
 ~ 𝑥2(1) 

(4.23) 

If the simple LM lag statistic is significant and the simple error statistic is not, 

then the spatial lag model is more appropriate, and vice versa. If both simple LM test 

statistics are significant, then the robust LM test should be used, as suggested by Anselin 

et al. (1996). Furthermore, if robust the LM lag test is still significant while the robust 

LM error test is not, then one proceeds with the spatial lag model, and vice versa. 

However, if both robust statistics are significant, one chooses the model with the largest 

statistical value. 

4.3.4 Estimation method: the generalized methods of moments based on 

instrumental variables 

As stated earlier, the presence of spatial dependence would cause OLS estimates 

to be problematic. Depending on the nature of the dependence, OLS estimates may 

remain unbiased, yet inefficient with biased standard error estimates. Even worse, OLS 

can provide biased and inefficient parameter estimates under some circumstances. 

Several methods have been applied to account for this endogeneity and/or correlated 

errors issue in spatial models, including the maximum likelihood estimator (MLE) (Ord, 

1975), the generalized methods of moments based on instrumental variables (GMM/IV) 
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(Kelejian & Prucha, 1998, 1999; Anselin, 2013), and the Bayesian Markov Chain Monte 

Carlo (MCMC) estimator (LeSage, 1997).   

The MLE maximizes the joint probability density of the given sample, assuming 

the error terms are normally distributed. The GMM/IV estimator use the GMM approach, 

the IV approach or the combination of the two to yield consistent estimates. The GMM 

approach assumes that the error term is independent and identically distributed and the 

GMM doesn’t require any distributional assumption for the error term.  The Bayesian 

estimator has been receiving more attention in recent years. This method is based on 

inference using Bayes’s theorem. Belief about the distribution of the parameters was 

updated after taking the observed data into account, and researchers selected the model 

with the highest posterior probability. Bayesian posterior probability is the criterion to 

determine the appropriate weight matrix and spatial econometric models simultaneously. 

Nonetheless, the MLE and the GMM/IV investigate robustness of spatial econometric 

model with different weight matrix structures; the test for significant difference often 

requires nested models, such as the Likelihood Ratio test. The MLE and the GMM/IV are 

more commonly applied in spatial econometrics relative to the Bayesian estimator. 

Generally, the MLE requires stronger assumptions to derive consistent and 

asymptotic normal estimator, relative to the GMM/IV approach (Lee, 2004). Another 

disadvantage of the MLE computation is high complexity due to the calculation of the 

Jacobian term, especially for large data sets (LeSage & Pace, 2009). Furthermore, the 

MLE yields inconsistent estimations in the presence of heteroscedasticity of an unknown 

form, while the GMM makes use of the moment conditions to take heteroscedasticity into 

account (Dogan, 2015). The GMM/IV can handle spatial models with additional 
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endogenous variables other than the endogenous spatial lag, while the MLE cannot 

(Fingleton & Le Gallo, 2008).  

Given the large sample size and disadvantages associated with the MLE, I use the 

GMM/IV approach proposed by Kelejian and Prucha (1998, 1999) in this analysis. The 

GMM is an estimation principle that uses moment conditions to estimate parameters. It 

only requires assumptions about the moments instead of the entire distribution. One can 

then construct the sample moment from their population analog using the observed data. 

The basic idea of the GMM approach is to match the sample moments and their 

population counterparts as closely as possible. 

An initial effort to apply the GMM approach to estimate the spatial autoregressive 

model with autoregressive errors is reported by Kelejian and Prucha (1999), in which 

they demonstrate the consistency of the estimator. Furthermore, they propose a three-step 

procedure to estimate the general spatial model which contains spatial dependence in the 

dependent variable and the disturbance term (Kelejian & Prucha, 1998). In the first step, 

parameters are estimated using a two-stage least squares (2SLS) approach due to the 

presence of the endogenous spatial lag term. In the second step, to incorporate the spatial 

correlation of the error term, the spatial autoregressive parameter for the error term is 

estimated using the GMM approach suggested in Kelejian and Prucha (1999). In the third 

step, parameters are re-estimated by 2SLS in terms of the autoregressive parameter for 

the error term obtained via the second step.   
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Chapter 5 Data, hypotheses and systematic investigation of wildfire effects 

This chapter focuses on gathering the data that are central to our questions. I first 

introduce the data sources, samples and variables. I then propose two hypotheses about 

wildfire effects. Past wildfire event/occurrence is expected to negatively affect property 

value whereas the effect of wildfire risk is ambiguous since risk factors that contribute to 

higher risk also have higher amenity value and these two have opposite effects on 

property value. At last, I summarize the data and econometric modelling techniques 

exploited in this analysis, which yield 2,000 estimated hedonic models.  

5.1 Data source 

Two data sources for property value were collected: assessed value and estimated 

sales prices. I controlled for three categories of explanatory variables in the hedonic 

housing model to estimate the effect of wildfires on property values. Thus this study 

includes three categories of explanatory variables: housing structural characteristics, 

neighborhood characteristics and environmental characteristics (including locational and 

wildfire characteristics). 

5.1.1 Two data for housing prices: assessed property value and estimated 

house sale prices 

The main challenge in gathering data for this study is the confidentiality of house 

sale price data in New Mexico. New Mexico is a non-disclosure state. NMSA 1978, 

section 7-38-4 entitled “Confidentiality of Information”, prohibits government employees 

from providing the sales price of any particular property to the general public; thus house 
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sale prices are not publicly available4. In empirical studies, assessed values and the 

aggregate census data are alternatives to the actual sale prices data.  

Although the use of the actual sales data in the hedonic price model is prevalent, it 

is not without disadvantages. The actual sale prices are based on market transactions. 

Potential disadvantages associated with using this data include: lack of data for markets 

with slow or sparse sales, biased prices due to incomplete information, manipulated 

transactions by real estate agents and transactions between family members (Pollakowski, 

1995; Doss & Taff, 1996; Cotteleer & van Kooten, 2012; S. Ma & Swinton, 2012). When 

sales prices data are not desirable or publicly available, two potential alternatives, 

assessed value and the aggregate census data, are usually employed to capture housing 

values in hedonic studies.  

Properties are assessed by tax offices for tax purposes periodically, typically each 

year. Therefore, assessed values are usually available for all properties. Compared to the 

actual sale prices data, the advantage of assessed data is obvious: it is usually readily 

available and has relatively large data size. However assessed values are affected by 

many factors, such as personal opinion of assessors, comparable sales and historical 

appraisals (Cotteleer & van Kooten, 2012). Thus, there is some controversy as to whether 

assessed value data is a good proxy for the actual sale prices. One hedonic study found 

that sale prices data better captures the value of natural amenities relative to the assessed 

                                                 
4 I also contacted the Santa Fe Association of Realtors for housing sale prices. 

However, I didn’t obtain any data since it is against association policy to provide sales 

price information to the public. 
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data (Ma & Swinton, 2012). Other studies comparing assessed value with sale price 

found good overall comparability (R. Cole, Cuilkey, & Miles, 1986; Clapp & Giaccotto, 

1992; Rush & Bruggink, 2000; Grimes & Aitken, 2008). For example, in a study of price 

indices for property values, Clapp and Giaccotto (1992) found that the measurement error 

associated with assessed data is negligible due to the large sample size. In addition, 

several studies found that assessed value results are superior to sales price results 

(Schuler, 1990; Janssen & Söderberg, 1999; J. Kim & Goldsmith, 2009). Kim and 

Goldsmith (2009) assessed the impact of swine production on rural property values using 

hedonic price model. They found that, the sales price data is problematic due to poor data 

quality and spatial abnormality of properties. Parent and Vom Hofe (2013) argued that 

assessed value data is more appropriate than sales price data for their hedonic analysis 

since the size of sale prices data, which is based on actual market transactions, is 

significantly reduced. 

Researchers have also utilized census data on housing prices in hedonic studies 

(Harrison & Rubinfeld, 1978; Bair & Fitzgerald, 2005; Cho, Kim, Roberts, & Jung, 2009; 

Izón et al., 2010; Hanka, Ambrosius, Gilderbloom, & Wresinski, 2015). Census data 

report the median (or average) of owner-reported home values, which are aggregated at 

the census tract, block or block group level. The major concern with using the aggregate 

level data is “omitted factors that might be the actual source of the effects attributed to 

approximate measures of the site disamenities” (Palmquist & Smith, 2002, p. 7). Several 

studies revealed that census data is a good proxy for the actual sale prices. Kiel and Zabel 

(1999) found a tendency for owners to overvalue their home. However, this value is not 

systematically related to housing and neighborhood characteristics, and thus owners’ self-
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reported value produce unbiased estimates. Shultz and King (2001) found little difference 

in model fit and the estimated coefficients between census tract level data and individual 

house level data. Butsic, Hanak, and Valletta (2011) utilized two data sets, census tract 

data and actual sale prices for individual house to estimate the impact of climate change 

on housing prices. Their hedonic estimation results also revealed the consistency of 

parameter estimates across the two data sets.  

In this analysis, we collect two alternative sets of data: (1) assessed property value 

and (2) estimated sale prices to construct the dependent variable in the hedonic model. 

Assessed property values are obtained from Santa Fe County Assessor’s Office. 

Properties were assessed annually, purely for property tax purposes. Assessors assess 

values using home characteristics, historical assessments and comparable sales as inputs. 

A New Mexico state law limits how assessors can value residential property. Law 7-36-

21.2 mandates a three percent residential property value growth cap unless the property 

has been transferred. That is, the assessed value and the market value may be the same 

for properties that have changed hands within the past 10 years; for other properties the 

value is raised 3% annually until the market value has been reached. In spite of this 

limitation, assessed property values reflect the most current market information available.  

Estimated sale prices are obtained from a commercial vendor, CoreLogic Inc. For 

non-disclosure states, their database contains comprehensive loan information, including 

mortgage type, amount, interest rate, lender name, maturity data etc. Using mortgage type 

and loan amount, CoreLogic research team infer price information (referred as estimated 
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sale price) for each property that has transferred5. Although this price is based on market 

transaction, it is not the actual transaction price, but an estimation from the mortgage 

amount. At the time, we are unaware of any prior hedonic study which uses estimated 

sale prices. However it is a practical alternative when the actual sale prices are not 

available. 

5.1.2 Housing structural characteristics  

While pricing is restricted to assessed property values, the Santa Fe County 

Assessor’s Office also has detailed information about housing structural characteristics. 

Santa Fe Assessor’s office maintain a dataset including information about a home’s 

square feet, the number of bedrooms and bathrooms, whether the house has a fireplace 

and central air conditioning, and the condition of the dwelling. A GIS map of property 

boundaries in Santa Fe County is also available from Santa Fe County assessor’s Office. 

Using this map, the lot size of each property was calculated in square feet. I further create 

a point layer shapefile for each property (hereafter referred as property location point 

shapefile) based on the property boundaries polygon shapefile, which use the centroid of 

each parcel to represent the location of each property.  

5.1.3 Neighborhood characteristics 

                                                 
5 For example, in some states, the sales price is computed as follows. For 

conventional mortgage: estimated sale price =1.33 * loan amount; for Federal Housing 

Administration mortgage: estimated sale price = 1.01 * loan amount; for Veterans Affairs 

mortgage: estimated sale price = 0.98 * loan amount. 
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I controlled for three census tract-level characteristics that are widely used as 

neighborhood features in the literature. All data were obtained from US Census Bureau, 

and 2009-2013 American Community Survey (ACS) 5-year estimates was used (US 

Census Bureau, 2013)6. The first is a variable that measures the level of educational 

attainment, the percentage of the population aged 25 and older who has a high school 

degree or above. I use this as a proxy variable to measure school quality since a direct 

measure of school quality is unavailable. Two other neighborhood characteristics, the 

percentage of the population over 65 years old and the percentage who are white are also 

included in the model.  

5.1.4 Locational characteristics 

I also controlled for several locational measures regarding accessibility, including 

the distance to the nearest highway, to the nearest industrial center (for areas classified as 

industry, commercial and service, I name them industry in this analysis) and to the 

nearest town or city. Proximity to the highway and to an economic development center 

are crucial factors in residential location choices. Proximity to the highway represents the 

level of accessibility to transportation. It may have a positive or negative effect on the 

property values. Improved accessibility tends to positively affect the desirability of a 

                                                 
6 The ACS counts people based on “current residence” concept, which is defined 

by a “two-month rule”. A person is considered to be a resident of a unit if the person has 

lived in that unit for 2 months or more at the time of survey contact. Since the decennial 

census uses the “usual residence” rule, the ACS and census may result in different 

statistics for areas with seasonal populations. 
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location, thus increase property value. However, one also needs to consider the negative 

impact of highway traffic and noise pollution. A large body of literature found that 

proximity to a highway has a positive effect on property value. Distance to the location of 

employment is also found to have a dramatic effect on property value. Thus distance to 

an industry center, which offers jobs and extensive services, is also included as a measure 

of accessibility to employment. I also controlled for distance to the nearest town or city 

boundary to distinguish properties that are within the town/city boundary from those that 

are far away. Two environmental amenities were also controlled for: the distance to the 

nearest area that is classified as water (for areas classified as lakes and reservoirs, I name 

them water in this analysis) and to the nearest forest boundary. Research shows that 

proximity to these amenities tends to have a positive influence on property values.  

Highway and town/city shapefiles were obtained from the US Census Bureau, 

2010 data7. Land cover shapefile was obtained from the US Geological Survey, which 

maintains a website with land-use and land-cover data sets (US Geological Survey, 

2014). The 2007 land cover polygon shapefile is used to identify areas classified as water, 

and industry. Geospatial forest boundary shapefiles are available at USDA website.8 

These GIS maps were combined with property location point shapefiles to compute the 

distance from each property to the relevant characteristics. All distances are calculated as 

the straight-line distance from the centroid of the property and measured in kilometers. 

For example, the distance to the nearest highway is calculated as the straight-line (and the 

                                                 
7 https://www.census.gov/geo/maps-data/data/tiger.html 

8 ttp://www.fs.usda.gov/detail/r3/landmanagement/gis/?cid=STELPRDB5202474 



66 

 

shortest) distance from the centroid of the property to the nearest highway. Distance to 

the nearest town/city is calculated as a straight-line distance from the centroid of the 

property to the city boundary. 

5.1.5 Wildfire characteristics 

5.1.5.1 WUI 

I also controlled for whether the property is located within WUI area. The WUI is 

an area where human development and wildland meet or intermingle. There are three 

major components in the WUI definition: human presence, wildland vegetation 

characteristics (density, type and extent), and the buffer distance between human 

infrastructure and wildland vegetation (Stewart, Radeloff, Hammer, & Hawbaker, 2007). 

In the literature, human presence is usually identified through two measures: housing 

density and population density. The importance of the other two components of the WUI 

(wildland vegetation and buffer distance) are discussed but there appears to be a lack of 

consistency with regards to the measurement of these aspects.  

The WUI area used in the analysis is mapped by Santa Fe CWPP team. When 

mapping the WUI for Santa Fe County, the CWPP team considered Federal Register 

designation of WUI as well as factors such as post-fire effects, protection of watersheds, 

fuel conditions and special hazards. Then the team redefined a 2008 GIS WUI map 

(Figure 5.1), which is updated from a 2001 GIS WUI map. Overall, 43 WUI areas were 

identified. The total area covered by the WUI is just over 100,000 acres.  

According to Federal Register’s definition, the WUI is “where human and their 

development meet or intermix with wildland fuel.” (Glickman & Babbitt, 2001, pp. 752-

753). Specifically, the WUI area must meet a minimum density of 1 housing unit per 40 
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acres (6.17 housing units/km2). Additionally, two types of WUI are defined: intermix and 

interface.  Intermix WUI refers to areas where human structures intermingle with 

wildland vegetation, vegetation and fuels are dominant, and must meet the minimum 

housing density threshold. Interface WUI occurs where human development is adjacent 

to wildland vegetation, typically categorized by greater housing density, normally three 

or more structures per acre with shared municipal services. 

In the literature, researchers normally set a threshold for wildland vegetation and 

a buffer distance when mapping the WUI over a large area. Specifically, vegetation and 

fuel should be more than 50% for the intermix WUI and less than 50% in the interface 

WUI; areas within 1.5 miles (2.4 km) of wildland vegetation are usually categorized as 

interface WUI since this is roughly the average distance that firebrands can be carried 

ahead of a fire front (California Fire Alliance, 2001; Radeloff et al., 2005; Stewart et al., 

2007; Hammer, Stewart, & Radeloff, 2009).  

5.1.5.2 Wildfire event/occurrence 

Geospatial wildfire event/occurrence data are available at the USDA website (US 

Department of Agriculture, 2013). These data contain comprehensive wildfire perimeter 

information for fires that burned at least 10 acres in Santa Fe and Cibola National Forest 

from 1970 to 2013, including fire name, fire time, dollar cost of fire, cause of fire, and 

fire size. The data indicate that 255 fires occurred in Santa Fe National Forest and 354 

fires occurred in Cibola National Forest, respectively (Figure 5.2). Using GIS software, 

wildfire perimeter maps were combined with property location point shapefiles to 

identify wildfire events/occurrence around each house.  
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There are two commonly used measurements for environmental (dis)amenities in 

hedonic literature for estimating environmental values: one focuses on the nearest 

(dis)amenity (Morancho, 2003) while the other examines the overall impact of the 

surrounding (dis)amenities inside various distance bands (Price et al., 2010). I therefore 

consider wildfire event/occurrence effects on property values from two perspectives: the 

effects of the nearest fire burned (referred to as the nearest fire) and the effects of fire 

within a certain radius (referred to as the aggregate fire). Both measures have also been 

used to examine the effect of wildfires on property values: the nearest fire (Stetler et al., 

2010) and the aggregate fire (Xu & van Kooten, 2013) (Figure 5.3). For the nearest fire 

measure, three variables are considered: the distance from the house to the nearest fire, 

time since the nearest fire burned9, and the size of that fire. The variable of interest is the 

distance from nearest fire. For the aggregate fire measure, two variables are included: the 

number of fires burned within a certain radius and the average size of these fires. The 

variable of interest is number of fires burned. Both measures intend to capture past 

wildfire occurrence around properties, yet with different relative emphases. The first 

measure only considers the effect of one fire on each property, the nearest fire; the second 

measure generally incorporates the effect of multiple fires.  

It should be noted that the literature on hedonic pricing of wildfires has specified 

the time window of fires prior to the sale of the house. For example, Stetler et al. (2010) 

                                                 
9 For assessed value data, time since the nearest fire burned is the time lag 

between the time fire burned and the assessment year 2013 while for estimated sales price 

data, it is the time lag between the fire  and the actual sale time. 



69 

 

examined the fires burned in the 7 years prior to the sale; Xu and van Kooten (2013) 

examined the fires burned in the last 10 years. It is possible that the effect of the wildfire 

event/occurrence depends on the specified time window. Therefore, I consider two time 

windows in this analysis: fires burned within the last 7 years and within the last 15 years, 

respectively. These two time windows are expected to capture the short- and long-term 

effect of wildfire on pricing. Our selection of the time windows is consistent with 

previous wildfire hedonic studies (Stetler et al., 2010). Hanson and Naughton (2013) 

examined fires burned in the last 5 years prior to the sale and fires burned in the last 6 to 

20 years to distinguish the short-run and long-run effect of wildfire. 

For the assessed property value data, the assessment year 2013 is used. Therefore, 

fires burned in the previous 7-year window are those from the year 2006 to 2012. For the 

longer time window of 15 years, the data are taken from the years 1998 to 2012.  

For the estimated sales price data, the actual sale date is used. The beginning date 

of the time window starts 7 or 15 years prior to the actual sale date. However, the end 

date is at least 60 days before the recorded date of the house sale since the average 

decision to purchase a house is made two months before the actual closing date (Loomis, 

2004). For example, if a house was sold on 06/15/2012, I consider fires burned from 

06/15/2005 to 04/15/2012 for the 7-year time window. Fires burned after 04/15/2015 are 

excluded from the analysis because they are thought to have no impact on the sale price.  

It is possible that the effect of the aggregate fires depends on the distance from the 

property to the burned area. According to the descriptive statistics of the distance from 

the nearest fire, the minimum distance is about 10 kilometers and the maximum distance 

is about 20 kilometers. To ensure that enough properties in our sample have experienced 
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at least one fire, I start with a buffer zone of 10 kilometers, measured in increments of 5 

kilometers up to the maximum buffer zone distance of 25 kilometers. Thus this yields 

four distinct distance bands around each property: 10, 15, 20 and 25km, respectively. 

Overall, the measurement of past wildfire event/occurrence is then grouped into 10 

wildfire event/occurrence measures. The nearest fire measure and the aggregate fire 

measure (with 10, 15, 20 and 25km distance bands), combine with two time windows (7-

years and 15-years).  

5.1.5.3 Wildfire risk 

In this paper, I utilize three types of wildfire risk: GIS-based composite risk, 

community hazard and risk, and wildfire risk at the individual home level (Table 5.1). 

These three risk assessments are conducted at county, WUI and house level, respectively. 

The first two assessments are compiled by the Santa Fe CWPP team while the last one is 

compiled by the Santa Fe County Fire Department’s Wildland Fire Division.10 

(1) GIS-based composite risk assessment 

The first is GIS-based composite risk assessment, which is intended to identify 

areas prone to wildfire throughout Santa Fe County (hereafter referred to as the 

composite risk assessment). The process for this assessment is complex. Composite risk 

assessment is comprised of 5 input layers: flame length, rate of spread, fireline intensity, 

crown fire and fire occurrence. The first 4 layers were derived using GIS and fire 

                                                 
10 Detailed description of composite risk assessment and community hazard and 

risk assessment are available at 

http://www.emnrd.state.nm.us/SFD/FireMgt/documents/SantaFeCountyCWPP2.pdf. 
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behavior model FlamMap. Fire occurrence was developed based on the previous fire’s 

start points. These layers were combined using a weighted overlay tool in GIS to form the 

composite risk assessment, with weights reflecting the relative importance of each input 

layer. This assessment classifies fire risk into 4 categories: low, moderate, high and 

extreme (Figure 5.4).  

FlamMap is a computer program that models fire behavior characteristics across a 

landscape using constant weather and fuel moisture inputs at one point in time. To 

calculate fire behavior, FlamMap uses a number of GIS data layers as input files, 

including five required layers (elevation, slope, aspect, surface fuel model, canopy cover) 

and three optional layers (canopy height, canopy base height and canopy bulk density). 

Two additional fire behavior models, FARSITE and BehavePlus were also used to 

generate fuel moisture and landscape inputs files for FlamMap.  

The FlamMap inputs data can be classified into three major categories: 

topography, fuel and weather. Topographic data (elevation, slope and aspect) are required 

inputs for FlamMap. The fuel model uses 40 standard fuel models defined by Scott and 

Burgan (2005). Proper selection of fuel models is crucial to predicting fire behavior. The 

general classification of fuels by fire-carrying fuel type are: Nonburnable, Grass, Grass-

Shrub, Shrub, Timer-Understory, Timber Litter and Slash-blowdown. Topography and 

fuel inputs data used were gathered from the LANDFIRE project. Weather inputs for 

FlamMap mainly include three parts: wind speed, wind direction and fuel moisture, 

which were developed using a fire program called FireFamilyPlus and data from the 

remote automated weather station (RAWS). Since FlamMap calculates fire behavior 

using one set of wind and fuel moisture conditions, a single wind speed (20-foot wind 
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speed at 35 miles per hour) and wind direction (prevailing wind direction) was applied to 

the entire study area. Similarly, a single set of fuel moisture estimates were used, 

including the 1-hour, 10-hour and 100-hour dead fuel components, the live herbaceous 

and live woody components. 

FlamMap computes fire behavior characteristics for raster cells (a cell is 30m2) 

across the landscape, including 4 outputs for flame length, rate of spread, fireline 

intensity and crown fire. An additional layer, the fire occurrence density map, was 

derived based on the previous fire’s start locations, specifically start locations over a 5-

mile radius from 1970 to 2007. Fire ignition points were obtained from the New Mexico 

State Forestry Division and the US Forest Service. Using the weighted overlay tool in 

GIS, these five maps were then used as input layers for the composite risk assessment. To 

use this tool, each layer must be recalibrated to a common scale. Thus, the cell values of 

all input layers were converted to a scale from 1 to 4, with 1 denoting the favorite raster 

value that contributes to the lowest fire risk. Based on the importance of each layer, the 

team then weights all layers to form a composite risk assessment, with weights for flame 

length, rate of spread, fireline intensity, crown fire activity and fire occurrence being 

15%, 15%, 10%, 15% and 45%, respectively.  That is, the cell values of each layer is 

multiplied by the weight and then added together to produce the final fire risk. Fire risk 

evaluated within composite risk assessment was also classified into 4 risk categories: 

low, moderate, high and extreme. 

(2) Community hazard and risk assessment 

The second of the three risk assessments is community hazard and risk 

assessment, which is conducted in the WUI of Santa Fe County and is hereafter referred 
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to as the WUI risk assessment. This assessment uses the Wildland Fire Association 

Hazard Assessment Form to evaluate fire risk for each community in the WUI area (see 

Appendix A). It aims to evaluate fire risk at the community level, and thus numeric 

ratings are assigned based on averages of observed characteristics in the community. 

Based on these ratings, this assessment classifies fire risk into 4 categories: moderate, 

high, very high, and extreme (Figure 5.5).  

This system is comprised of two parts: fire environment and defensibility. The 

fire environment is defined as the surrounding conditions, influences, and modifying 

forces that determine wildfire behavior. It consists of three environmental components: 

fuel, weather and topography. Although the weather components vary in space and time, 

it is assumed to be constant over all communities in the County. The constant is created 

from the averages of northern New Mexico’s worst weather conditions for fire. These 

conditions occur before the monsoon season, usually in April through July. The fire 

environment within this assessment involves evaluating three parts: fuel hazard, slope 

hazard and special hazards. The fuel hazard component itself is comprised of 13 models 

as defined by the Forest Fire Laboratory, which is further classified into four categories: 

no fuel, light fuels (Grass, low shrubs), medium fuels (brush, large shrubs, and small 

trees) and heavy fuel (timber, slash, large brush and Bosque). Slope hazard describes the 

steepness of a slope as well as its aspect. Slope is expressed as a value in percentage 

terms.  Flat to mild is defined as 0-9.9%; mild to medium as 10-19.9%, medium to 

moderate is 20-39.9%, and moderate to extreme is reserved for measures that are 40% or 

greater. Special hazards consider vegetation conditions (for example, insects kill pinon 
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and ponderosa pine, and mistletoe) as well as special topographic conditions (chimney, 

steep canyon and saddles). 

In addition to that first part defined as the fire environment, the second part 

known as defensibility describes “the relative amount of difficulty that firefighters would 

encounter while attempting to defend a house or group of houses” (Santa Fe County, 

2008, p. 37). Four aspects are considered when evaluating defensibility. First is the 

average access length of dead-end road, which considers bridges, turnouts, bordering 

fuels, turnaround space, etc. It is described in increments as less than 600 feet, 600 to 

1,000 feet, 1,000 to 1,320 feet and greater than 1,320 feet. The second factor is the 

average structure type in the community, with flame-resistant vs. flammable 

roofing/siding. There is also the factor of the clearance/defensible space or firebreak 

around structures, which is broken down at 30 feet. Low numbers are assigned if the 

distance is greater, while higher numbers (indicating increased risk) are assigned as the 

width of the firebreak narrows. The last factor considers the availability of water in the 

community, with well water described as a limited water source and community water 

characterized as an uninterruptible water source. 

Numerical points were assigned to all the characteristics discussed above; the 

lower the points, the lower the fire risk. The highest possible rating for this assessment is 

36 points, with up to 20 coming from the fuel environment section and the remaining 16 

based on defensibility. Based on the numeric points awarded, the 43 communities in the 

survey were assigned categorical ratings from moderate, to high, very high and extreme. 

Specifically, a community is considered to be at moderate fire risk if the fire environment 

measures < 9 and defensibility is ≤ 4, is considered to be high if the fire environment 
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ranges from 9-12 and defensibility is in the 5-8 range, to be very high if fire the 

environment is between 13-15 and defensibility is between 9-1, and it is considered to be 

at extreme risk if the fire environment is in the 16-20 range and defensibility ranges from 

12-16. Of the 43 communities in the WUI area received a hazard rating: 14 of the areas, 

comprising 30,060 acres, were assigned a moderate level of risk for wildfires; 20 areas 

totaling 35,600 acres were assigned to the high risk category; 8 areas totaling 32,130 

acres received a rating of very high risk; and 1 area of 2,650 acres received the 

assessment of extreme risk. 

 (3) Individual-level house risk assessment  

Following the GIS-based composite risk and WUI risk assessment, the final 

assessment is the house wildfire hazard assessment, which is calculated by the Santa Fe 

County Fire Department’s wildland fire division, which was created in 2004 to address 

recommendations set forth in the CWPP. This assessment focuses on areas with relatively 

high fire risks throughout the county. House-level fire risk assessment includes four 

components: site hazard, structural hazard, hazard reduction behavior and the WUI risk 

rating for the area where the house is located (see Appendix A). Basically, forestry 

personnel will assess the fire risk of a particular house from the road or driveway by 

observing housing conditions, as well as the surrounding fire environment and 

defensibility. A set of 2,042 home assessments have been conducted from 2009 to 2013.  

Site hazard is mainly comprised of two parts: fire environment and defensibility. 

Overall, the maximum total points for site hazard is 105, with 70 points for fire 

environment and 35 points for defensibility. Higher number represents higher risk from 

wildfire. Fire environment is defined through answers to eight questions: the type of trees 
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and ground cover within 30 feet of the house, the proximity of ground fuels to the house, 

the existence of ladder fuel, the slope of the house, the location of jackpots (firewood, 

debris or combustibles) and flammable materials (gas cans and grills, pesticides), and 

external hazards such as outbuildings or propane tanks. Defensibility considers the length 

and width of the driveway, the length of overhead branches, road slope, presence of 

inadequate surface/bridge, whether the house has a locking gate and the visibility of the 

house from road.  

Structure hazard assesses the relative resistance to wildfire of the building based 

on its design and construction materials.  The total possible points for structure hazard is 

45, with two attributes (roofing material and type of foundation) comprising 55% of the 

average observed hazard. The other three attributes considered are the exterior walls 

material, vents and eaves, the presence of attachments and fuel traps (under steps, 

foundation indents), with 5 possible points for each.  

This assessment also considers hazard reduction activities done near the house to 

reduce fire risk. These can be aimed at reducing fire risk on site, to the structure as well 

as other activities, such as the availability of firefighting equipment. On example of 

reducing risk would be to remove ladder fuels within a 30ft perimeter to reduce the risk 

of crown fires. Doing so would lower the fire risk rating by a point. The total possible 

points for hazard reduction is -15, which makes up 10% of the total home risk 

assessment. This assessment also takes into account WUI risk rating where the house is 

located, with 5 numerical ratings denoting the relative risk: 5 points for low risk, 10 if 

moderate, 20 for high risk, 30 for very high risk and 35 for extreme.  

5.2 Variables and descriptive statistics 
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The estimated sale prices for 17,710 houses were obtained from CoreLogic Inc. 

covering 1993 to 201311. The most recent assessment of property in 2013 was used and 

this yielded 52,793 properties. After deleting properties whose data had missing or 

inaccurate prices, or missing structural and geospatial data, I were left with 14,168 and 

48,246 observations for estimated sales price and assessed property value, respectively. I 

limit our sample to single-family houses. I further limit the sample to houses with at least 

one bedroom and one bathroom, and exclude the top 1% of the sample based on the 

number of bedrooms (that is, houses with more than eight bedrooms in sales price data 

and houses with more than nine bedrooms in assessed value data).  

For the estimated sale price data, I also exclude transactions with sale prices well 

below the market, which may be due to unusual loan amounts or transactions between 

family members. As a result, after consulting with the state assessors, I excluded houses 

valued at less than $85.8 per square foot (the lowest 10%)12. I were left with 10,639 

transactions. For assessed property value data, I excluded houses with assessed value per 

square feet less than $32.50 (the lowest 1%). This yielded 41,004 houses. In addition, 

                                                 
11 About 33% of properties were sold twice during the study period. However, I 

only included the most recent transaction in the analysis since the first transaction data is 

subject to the following problems: (1) the mortgage amount used to derive estimated sale 

prices could not be confirmed; (2) the sale date is not available; (3)the sale date in the 

first transaction is really close to the sale date in the recent transaction. 

12 This cutoff seems reasonable. From 2003 through 2013, the annual average sale 

price per square foot ranges from $169 to $251 (Sacks, 2014).   
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estimated sale prices, which are available from 2003 to 2013, were adjusted to 2013 

dollars using the Federal Housing Finance Agency’s Housing Price Index (HPI). Since 

assessed values for the year 2013 are used, this makes estimated sales prices and assessed 

values directly comparable. 

I test multicollinearity of the explanatory variables via VIF scores. The VIF 

values of OLS models are below 4, indicating no problem of multicollinearity. All 

variables used in the hedonic models are defined in Table 5.2. Categorical variables were 

recoded into a set of dummy variables with one category omitted. There are three housing 

cooling systems, central air (Aircond), evaporative system (Evapcool), forced cool air, 

package unit or window units (Othercool), and none were omitted. There are four 

composite risk categories: low, moderate, high and extreme. Given an extremely small 

number of houses are at low composite risk (less than 0.1%), I merged the low rating 

with the moderate rating. Thus there are two categories for composite risk, Comp_high, 

Comp_ext, and low/moderate which is omitted. The WUI risk ratings categories are 

WUI_high, WUI_vhigh, WUI_ext and the moderate risk rating, which is omitted. For 

estimated sales price data, sale years, ranging from 2003 to 2013, is represented by ten 

dummy variables Yr2004, Yr2005, Yr2006, etc. where Yrxxxx indicates a sale in year 

xxxx. The omitted sale year is 2003. 

Table 5.3 and Table 5.4 provides summary statistics for estimated sales price data 

and assessed value data, respectively. The average estimated sales price is about 

$361,370, which is found to be higher than the average assessed value of $314,805. 

Further, the median estimated sales price value is $297,324, consistent with the median 
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home value reported by Zillow in 2015. The median assessed property values is 

somewhat lower, at $222,488.  

With respect to housing characteristics, they are very similar across the two sets 

of data. Square footage of the average house is between 1,985 and 2,134 square feet for 

estimated sales price data and assessed value data, respectively, and reflective of size of a 

single family house. However, the homes seem to have a relatively large average lot size, 

61,576 and 127,588 square feet, respectively. Furthermore, the average house has 3.2 

bedrooms and 2 bathrooms. A larger majority of properties has fireplace, about 70 

percent. A majority of houses don’t have any cooling system. Take the example of 

estimated sales price data, only 16 percent of houses have forced cool air, either as a 

package unit or window units, followed by evaporative system (14%) and central air 

system (10%).13 There is variation in the physical conditions of the properties, ranging 

from low, fair, average, good, very good, excellent, to highly improved status. Overall, 

the dwelling condition of the average house is approximately 3.7, which falls between 

average and good condition.  

Neighborhood characteristics are also very similar across the two data sets. In a 

typical census tract, approximately 20% of the population were over age 65, 87% identify 

themselves as white, about 90% of the population over 25 years old has received a high 

school degree or above. 

                                                 
13 Percentages were rounded to the nearest whole number, which may not total to 

100 exactly.  
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Concerning locational characteristics, the average house is about 1.25 km from 

the nearest highway, 0.5 km from the house to the nearest town/city boundary, 5 km from 

the nearest industry center. It also seems that houses are relatively far away from 

environmental recreational areas, 9 km from the water boundary and 5 km away from the 

forest boundary.  

A small but significant share of houses is located within the WUI (24% for 

estimated sales prices data and 28% for assessed value data), which are similar to the 

percentage of all single-family houses located in the WUI (29%). First let’s consider the 

nearest fire burned within the last 7 years for each property.  The average house is about 

20 km away from the nearest fire. The time since the nearest fire burned is approximately 

58 months (4.75 years) for estimated sales price data, while there is a much shorter time 

interval for assessed value data, about 19 months (1.6 years). There is also variation in 

the size of the nearest fire. The average size of the nearest fire is 4,570 acres for the 

estimated sales price data and 6,272 acres for assessed value data, respectively. If one 

considers the nearest fire burned in the last 15 years, the following changes are notable. 

The distance between the house and the fire becomes shorter, 11km for estimated sales 

prices data and 13km for assessed value data. As expected the time lag becomes longer. 

The average size of the nearest fire now becomes much smaller, ranging from 639 acres 

to 1,577 acres.  

For the aggregate fire measure, first I see that the number of fires that burned 

within a specific distance band for the estimated sales price data is higher than that for the 

assessed value data, except for the 25km radius with the 15-year time window. Secondly, 

I see that both the number of fires and the average size of the fires that the house 
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experienced increased as the radius of the buffer zone increases, as one would expect. 

Take the example of estimated sale price data with 7-year time window, average fire size 

increased from 68 acres for the 10km radius, to 334 acres for the 15km radius, to the 

1259 acre for the 20 km radius and to 2,859 acres for the 25km radius.  

The distribution of single-family houses with regard to the three risk ratings were 

also similar across the two data sets. A larger share of houses is located in the low or 

moderate composite risk zone (63% and 67%), followed by the high composite risk zone 

(35% and 31%) and the extreme risk zone (2% and 2%) (Figure 5.6 and Figure 5.7). With 

regard to the WUI risk, the largest share of houses (60% and 56%) were located in the 

WUI and identified as being at high WUI risk, with an additional 33% or 35% identified 

as being at moderate WUI risk (Figure 5.8 and Figure 5.9). The distribution of single-

family houses by wildfire risk in the two data sets are quite similar to the risk faced by all 

single-family houses in the county. The average individual-level house risk score is 77.4 

for the estimated sales price data and 79.2 for the assessed value data; the maximum risk 

rating is also quite similar across the two data sets. The distribution of single-family 

houses with regard to individual-level house risk are shown in Figure 5.10 and 5.11. 

5.3 Hypothesis about wildfire effects 

In this paper, I examine the effect of wildfire on property values, specifically 

wildfire event/occurrence and wildfire risk. Thus our hypothesis is twofold: part 1 

concerns the effect of wildfire event on property values; part 2 focuses on the effect of 

wildfire risk.  

5.3.1 The effect of wildfire event/occurrence: negative 
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Previous wildfire hedonic studies generally found wildfire events would decrease 

property values (J. Loomis, 2004; J. Mueller et al., 2009; Stetler et al., 2010), with two 

studies having found mixed effects depending on the distance from the fire and the size 

of the fire (Hansen & Naughton, 2013; Xu & van Kooten, 2013).  In line with these 

previous empirical studies, I hypothesize that wildfire events have a negative effect on 

property values.  

I construct two different measurements of wildfire event/occurrence: the nearest 

fire and the aggregate fire, with different variables describing each term. Specifically, the 

nearest fire measure consists of three variables: the distance from the nearest fire, the 

time since the nearest fire burned (measured in months) and the size of that fire. I expect 

property values increase with the distance from nearest fire increases. In other words, 

proximity to wildfire has a negative effect on property value.  

For the aggregate fire, I also hypothesize a negative relationship. Since the 

aggregate fire events is measured using the number of fires burned and their average size 

within 10, 15, 20 and 25km of the house, I expect that property value decrease as the 

number of fires burned near the property increases. That is, frequent wildfires decrease 

property value. It is also hypothesized that both effects would decay as the radius of the 

buffer zone increases. The economic impact would be greater for fires that burned near 

the house and diminish as the radius increases. 

5.3.2 the effect of wildfire risk: ambiguous 

There is no a priori expectation on the relationship between wildfire risk and 

property value given that factors contributing to high fire risk also have high amenity 

value (e.g., a forested view) and these two have opposite effect on property values 
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(Donovan et al., 2007). Amenities are expected to increase property value while wildfire 

risk is supposed to decrease property value. Therefore, the effect of wildfire risk is 

ambiguous.   

The composite risk assessment is conducted throughout Santa Fe County, which 

includes both the Non-WUI and the WUI areas. One potential way to evaluate the effect 

of composite risk is to further segment the data by property location: the Non-WUI vs 

WUI. I hypothesize that people who live in the Non-WUI areas value amenities more, 

while in the WUI areas people are more concerned about wildfire risk. I may find, for 

example, that the positive effect of amenities dominates in the Non-WUI and therefore 

the risk rating has a positive effect on property value; in the WUI, the negative effects of 

fire risk may offset, or even outweigh the positive effect of amenities and therefore result 

in a nonsignificant or negative relationship. Thus, one should expect different wildfire 

risk effects on house pricing across geographic areas. Therefore, for models using the 

composite risk, I run further models according to geographic area, which generates three 

separate regressions: models covering the whole County, models covering the Non-WUI 

and models covering the WUI. The Non-WUI model is the Santa Fe County model fitted 

only to homes located in the Non-WUI, while the WUI model is the Santa Fe County 

model fitted only to homes in the WUI. 

Overall, I hypothesize a positive relationship between composite risk and property 

value for Santa Fe County in the Non-WUI area, but a negative or insignificant 

relationship between wildfire effect and property value for the WUI area. Thus the effect 

of composite risk varies by geographic area.  

5.4 Systematic investigation of wildfire effect: 2,000 specifications 
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This paper employed divergent measures of property value, wildfire 

event/occurrence and risk, and a variety of empirical modeling techniques to investigate 

the effect of wildfires. Table 5.5 summarizes these measures and empirical models. 

Specifically, two dependent variables, 10 measures for past wildfire event/occurrence, 

three wildfire risk measures (with three geographical areas for composite risk), four 

spatial dependence structures with three weight matrices, and two hedonic functional 

forms produce 2,000 specifications for hedonic price models14.  

5.4.1 Data feature 

Data source for housing prices: Two data sets are used to measure housing prices 

in hedonic model: assessed value and estimated sales price. In this analysis, 1,000 models 

used assessed value data and 1,000 models used estimated sales price data. 

Past wildfire event/occurrence measure: The effect of past fire event/occurrences 

is measured in two ways: the nearest wildfire or the aggregate fire for each property. The 

nearest fire captures the effect of the nearest fire for each property; the aggregate measure 

captures the surrounding fire within a certain radius. It is possible that the effect of a past 

                                                 
14 Overall, I have 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 =  2 ∗ 10 ∗ 5 ∗ 10 ∗ 2 = 2,000.  The 

first term 2 denotes 2 data sets for housing prices: assessed value and estimated sales 

price; the second term 10 denotes 10 measures for wildfire event/occurrence; the third 

term 5 denotes 3 risk measures (with 3 geographic areas for composite risk rating: Santa 

Fe County, the non-WUI and the WUI); the fourth term 10 denotes 10 spatial model 

specifications ( OLS, 3 spatial autoregressive models with 3 weight matrices), the last 

term 2 denotes 2 functional forms (semi-log and double-log). 
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fire event/occurrence depends on the time window of fires prior to the sale, and therefore 

I incorporate two different temporal windows: 7 years and 15 years. The 7-year time 

window considers fire burned in the last 7 years while the 15-year time window considers 

fires burned in that time frame. Furthermore, I specify four buffer zones for models using 

the aggregate fire measure: 10, 15, 20 and 25km radius. Overall, the nearest fire measure 

and the aggregate measure (with those 4 radius), each with two temporal windows yield 

10 wildfire event/occurrence measures. Of the 2,000 estimated hedonic models, 400 cases 

use the nearest wildfire measure, with 200 instances using the 7-year time window and 

200 using the 15-year time window. The remaining 1,600 instances all use the aggregate 

measure, also evenly split: 800 instances use the 7-year time window and the other 800 

use the 15-year time window. 

Risk measure: Three measurements for wildfire risk are incorporated in this 

analysis: composite risk, WUI risk, and house level risk. Composite risk rating is 

conducted throughout Santa Fe County while the latter two assessments focus on the 

WUI within the county. It is hypothesized that homeowners’ perception of composite risk 

might vary between the Non-WUI and the WUI, as described in detail earlier. Thus for 

models using the composite risk, I run further models with three geographic areas: Santa 

Fe County, the Non-WUI area and the WUI area. In this analysis, 1,200 models were 

created using composite risk, 400 models were created with WUI risk and 400 more were 

formed through the use of house level risk. Of 1,200 models using composite risk, 400 

covers the whole county, 400 covers the Non-WUI area and 400 covers the WUI area. 

5.4.2 Modeling techniques 
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Functional form: I employ two commonly used functional forms in hedonic 

literature: semi-log and double-log specification. 1,000 models utilized semi-log and 

1,000 models exploited the double-log functional form. For the double-log models, five 

explanatory variables were log-transformed: house square feet (Area), property lot size 

(Land), the distance to the nearest highway or state highway (Highway), the distance to 

the nearest fire (Dist) and the size of that fire (Size).  

Spatial correlation: A variety of model specifications were considered. First I 

apply the standard hedonic price model to examine the effect of wildfire, which doesn’t 

take spatial correlation into account. Further, I consider three spatial autoregressive 

models: spatial lag, spatial error and their combination, the general spatial model. For 

each spatial autoregressive model, three types of weight matrices were considered: the 

four nearest neighbors, the eight nearest neighbors and the inverse-distance weight matrix 

with the 0.5-mile cutoff. Overall, the OLS model, three spatial autoregressive models 

with three weight matrices yield 10 model specifications. Of the total 2,000 models, there 

are 200 OLS models and 1,800 spatial autoregressive models, which are equally 

distributed across 3 spatial autoregressive models and 3 weight matrices. 
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Figure 5.1: WUI map, Santa Fe County 

 

Source: constructed by the author in ESRI ArcMap 10.1   



88 

 

Figure 5.2: Wildfire event/occurrence in Santa Fe and Cibola National Forest, 1970-2013 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 5.3: The measurement of past wildfire event/occurrence 

 

  

Past wildfire event/occurrence data

Obtained from USDA Forest Services from 1970 to 2013; perimeters of fires 
larger than or equal to 10 acres in Santa Fe and Cibola National Forest. 

The nearest fire measure

Consider only the nearest fire burned before 
the house sold 
Variables:
1. the distance from the nearest fire
2. time since fire burned
3. the size of that fire

7-years time window
.

15-year time window

The aggregate fire measure

Consider fires burned within four radius 
before the house sold (10km, 15km , 20km 
and 20km)
Variables:
1. the number of fires
2. the average size of fires

7-year time window

15-year time window
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Figure 5.4: Composite risk rating, Santa Fe County (2007) 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 5.5: WUI risk rating, Santa Fe County (2007) 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 5.6: The distribution of single-family houses with regard to composite risk in 

estimated sales price data 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 5.7: The distribution of single-family houses with regard to composite risk in 

assessed value data 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 5.8: The distribution of single-family houses with regard to WUI risk in estimated 

sales price data 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 5.9: The distribution of single-family houses with regard to WUI risk in assessed 

value data 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 5.10: The distribution of single-family houses with regard to individual-level house 

risk in estimated sales price data 

 

Source: constructed by the author in ESRI ArcMap 10.1   
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Figure 5.11: The distribution of single-family houses with regard to individual-level house 

risk in assessed value data 

 

Source: constructed by the author in ESRI ArcMap 10.1 
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Table 5.1: Three wildfire risk assessments 

Wildfire  

Risk (WR) 

Assessment 

Description Source 

GIS-based 

composite 

risk 

assessment 

 

Assessment 1  

Fuels, topography and weather are inputs to fire behavior model 

(FARSITE, Behave Plus and Flammap), with outputs: flame length, 

rate of spread, fireline intensity, crown fire activity and spot fire 

potentials are predicted. These are combined with fire occurrence 

density, 1970 to 2007; Then, each output converted to values 1-4 (1= 

low, 2=medium, 3=high, 4=extreme). Outputs weighted to form 

composite risk assessment; weights for flame length, rate of spread, 

fireline intensity, crown fire activity and fire occurrence are 15%, 

15%, 10%, 15% and 45%, respectively. Final assessment classifies 

the County into 4 risk categories: low, moderate, high and extreme. 

Conducted by 

Santa Fe CWPP 

core team 

throughout Santa 

Fe County in 

2007; Obtained 

from the Santa 

Fe GIS Division. 

WUI risk 

assessment 

 

Assessment 2  

The WFA Hazard assessment form used; 2 components: fire 

environment and defensibility. Fire environment considers fuel 

hazards, slope hazards and special hazards (e.g., drought, insect-killed 

trees); defensibility considers access, structure type, defensibility 

space and water availability; total possible points for fire environment 

and defensibility are 20 and 16, respectively. Using these scores, all 

43 WUI areas were then classified into 4 risk categories: moderate, 

high, very high, and extreme risk. 

Conducted by 

Santa Fe CWPP 

core team in 

WUI areas in 

2007; Obtained 

from the Santa 

Fe GIS Division. 

On-site, 

individual-

level house 

risk 

assessment 

 

Assessment 3  

3 factors considered: site hazard, structural hazard, and hazard 

reduction factors. The total possible points for these 3 factors were 

105, 45 and -15, respectively. These ratings were then combined with 

WUI risk assessment score to determine individual house’s numerical 

risk score, which ranged from 24 to 188 (highest risk). 

Conducted on-

site by the Santa 

Fe Fire Wildland 

Division, 2009-

2013; focus on 

WUI areas; 

Obtained from 

the Santa Fe Fire 

Wildland 

Division. 
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Table 5.2: Variable Descriptions in the hedonic model 

Variable Description 

Dependent Variables 

Assval Assessed value  

Estsalep Estimated sale prices (adjusted to 2013 dollars) 

Structural Variables 

Area Dwelling area (square feet)  

Lotsize Lot size (square feet) 

Yrxxxxa Dummy variables for year of sale from year 2004 to year 2013 

(Omitted case is 2003) 

Bedroom Number of bedrooms 

Bathroom Number of bathrooms 

Fireplace Dummy variable equals 1 if a house has a fireplace, else 0 

Aircond Dummy variable equals 1 if a house has a central air system, 0 

otherwise (Omitted case is none) 

Evapcool Dummy variable equals 1 if a house has evaporative system, 0 

otherwise (Omitted case is none) 

Othercool Dummy variable equals 1 if a house forced cool air, package unit or 

window units, 0 otherwise (Omitted case is none) 

Phycond Physical condition  

(1=low, 2=fair, 3=average, 4=good, 5=very good, 6=excellent, 7= 

highly improved) 

Neighborhood Variables 

Highsch Percentage of residents aged 25 and older in census tract with high 

school degree and above 

Over65 Percentage of the population over 65 years old in the census tract 

White Percentage of white population in census tract 

Environmental Variables 

Highway Distance to the nearest highway (kilometers) 

City Distance to the nearest town/city (kilometers) 

Industry Distance to the nearest area that is classified as industry (kilometers) 

Lake Distance to the nearest area that is classified as lake or reservoir 

(kilometers) Forest Distance to the nearest forest boundary (kilometers) 

Wildfire Variables 

WUI Dummy variable if a home is located in the WUI, else 0 

1. Wildfire Event/occurrence  

(1) the nearest fire measure 

Dist Distance between the nearest fire burned and the house (kilometers) 

Timesincefire Time since the nearest fire burned (month) 

Size Size of the nearest fire (acres) 

(2) the aggregate fire measure 

Firenum_10 Number of fires within 10 km of the house  

Firenum_15 Number of fires within 15 km of the house  
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Variable Description 

Firenum_20 Number of fires within 20 km of the house  

Firenum_25 Number of fires within 25 km of the house  

Avgsize_10 Average size of fires within 10 km of the house (acres) 

Avgsize_15 Average size of fires within 15 km of the house (acres) 

Avgsize_20 Average size of fires within 20 km of the house (acres) 

Avgsize_25 Average size of fires within 25 km of the house (acres) 

2. Wildfire Risk 

(1) Composite Risk 

Comp_high Dummy variable equals 1 if composite risk level is high, else 0 

(Omitted case is low or moderate composite risk) Comp_ext Dummy variable equals 1 if composite risk level is extreme, else 0  

(Omitted case is low or moderate composite risk) (2) WUI Risk 

WUI_high Dummy variable equals 1 if WUI risk level is high, else 0 

(Omitted case is moderate level WUI risk) WUI_vhigh Dummy variable equals 1 if WUI risk level is very high, else 0 

(Omitted case is moderate level WUI risk) WUI_ext Dummy variable equals 1 if WUI risk level is extreme, else 0 

(Omitted case is moderate level WUI risk) (3) House risk 

Hriskscore Individual house fire risk score 
a xxxx after Yr indicate sale year. For example, Yr2004 equals one if a house was sold in 

2004, and zero otherwise. 
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Table 5.3: Descriptive statistics (estimated sale prices data) 

Variable N Mean Std. Dev. Min Max 

Estsalep 10639 361370 247304 60938 4655000 

Area 10639 1985 919.69 448 11837 

Land 10639 61576 762191 929 77000000 

Bedroom 10639 3.22 0.85 1 7 

Bathroom 10639 2.04 0.84 1 11 

Fireplace 10639 0.69 0.46 0 1 

Aircond 10639 0.1 0.3 0 1 

Evapcool 10639 0.14 0.35 0 1 

Othercool 10639 0.16 0.37 0 1 

Phycond 10639 3.8 1.02 1 7 

Highsch 10639 0.9 0.09 0.57 0.99 

Over65 10639 0.18 0.09 0.03 0.58 

White 10639 0.87 0.06 0.52 0.99 

Highway 10639 1.29 1.53 0 11.37 

City 10639 0.5 1.23 0 16.46 

Industry 10639 4.83 3.52 0.07 30.22 

Lake 10639 9.04 4.89 0 27.11 

Forest 10639 5.24 3.34 0 31.35 

WUI 10639 0.24 0.43 0 1 

Fires burned in the last 7 years (7-year time window) 

Dist 10639 19.24 6.66 0.98 41.01 

Timesincefire 10639 57.58 28.14 2.04 92.48 

Size 10639 4570.21 17465.2 9.88 156624.4 

Firenum_10 10639 0.13 0.38 0 5 

Firenum_15 10639 0.33 0.66 0 7 

Firenum_20 10639 0.78 1.01 0 8 

Firenum_25 10639 1.98 1.67 0 10 

Avgsize_10 10639 68.15 969.55 0 42981.3 

Avgsize_15 10639 334.2 2325.53 0 42981.3 

Avgsize_20 10639 1258.64 4678.9 0 156624.4 

Avgsize_25 10639 2858.7 8110.92 0 156624.4 

Fires burned in the last 15 years (15-year time window) 

Dist 10639 10.88 4.34 0.25 35.5 

Timesincefire 10639 124.47 40.48 2.07 187.43 

Size 10639 638.53 5739.45 9.88 156624.4 

Firenum_10 10639 0.52 0.67 0 7 

Firenum_15 10639 1.22 0.89 0 10 

Firenum_20 10639 2.22 1.26 0 12 

Firenum_25 10639 4.38 2.35 0 18 

Avgsize_10 10639 74.05 951.68 0 42981.3 

Avgsize_15 10639 312.67 2529.44 0 42981.3 

Avgsize_20 10639 729.29 2401.26 0 68632.8 
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Variable N Mean Std. Dev. Min Max 

Avgsize_25 10639 2390.64 4225.38 0 78659.54 

Comp_high 10639 0.35 0.48 0 1 

Comp_ext 10639 0.02 0.14 0 1 

WUI_high 2529 0.6 0.49 0 1 

WUI_vhigh 2529 0.05 0.22 0 1 

WUI_ext 2529 0.02 0.15 0 1 

Hriskscore 266 77.35 17.54 30 135 

Yr2004 10639 0.09 0.29 0 1 

Yr2005 10639 0.12 0.32 0 1 

Yr2006 10639 0.12 0.33 0 1 

Yr2007 10639 0.12 0.32 0 1 

Yr2008 10639 0.08 0.28 0 1 

Yr2009 10639 0.07 0.26 0 1 

Yr2010 10639 0.07 0.25 0 1 

Yr2011 10639 0.07 0.25 0 1 

Yr2012 10639 0.08 0.28 0 1 

Yr2013 10639 0.08 0.28 0 1 
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Table 5.4: Descriptive statistics (assessed value data) 

Variable N Mean Std. Dev. Min Max 

Assval 41004 314805 322353 17691 20400000 

Area 41004 2134 1152 168 23336 

Land 41004 127588 2915575 486 398000000 

Bedroom 41004 3.25 1.04 1 8 

Bathroom 41004 2.05 0.95 1 30 

Fireplace 41004 0.67 0.47 0 1 

Aircond 41004 0.07 0.26 0 1 

Evapcool 41004 0.12 0.33 0 1 

Othercool 41004 0.13 0.33 0 1 

Phycond 41004 3.67 1.06 1 7 

Highsch 41004 0.9 0.09 0.57 0.99 

Over65 41004 0.19 0.09 0.03 0.58 

White 41004 0.87 0.07 0.52 0.99 

Highway 41004 1.24 1.54 0 11.51 

City 41004 0.49 1.35 0 25.6 

Industry 41004 5.36 4.02 0 42 

Lake 41004 8.45 4.97 0 27.34 

Forest 41004 5.16 3.95 0 31.35 

WUI 41004 0.28 0.45 0 1 

Fires burned in the last 7 years (7-year time window) 

Dist 41004 20.24 4.24 3.44 41.62 

Timesincefire 41004 19.22 9.79 4.34 68.22 

Size 41004 6271.64 13781.3 20.01 156624.4 

Firenum_10 41004 0.01 0.12 0 2 

Firenum_15 41004 0.09 0.31 0 2 

Firenum_20 41004 0.54 0.56 0 3 

Firenum_25 41004 1.76 0.95 0 7 

Avgsize_10 41004 114.25 1068.44 0 10111.95 

Avgsize_15 41004 721.48 2600.28 0 10111.95 

Avgsize_20 41004 4328.48 13058.7 0 156625 

Avgsize_25 41004 7778.04 15554.8 0 83368.5 

Fires burned in the last 15 years (15-year time window) 

Dist 41004 13.54 4.22 0.91 36.12 

Timesincefire 41004 152.73 49.45 8.78 177.37 

Size 41004 1576.81 6435.98 9.88 42981.3 

Firenum_10 41004 0.24 0.53 0 7 

Firenum_15 41004 0.83 1.05 0 9 

Firenum_20 41004 2.12 1.58 0 11 

Firenum_25 41004 5.12 2.57 0 16 

Avgsize_10 41004 227.05 1579.9 0 42981.47 

Avgsize_15 41004 977.17 4192.82 0 42981.47 

Avgsize_20 41004 2729.53 6610.46 0 99803.26 
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Variable N Mean Std. Dev. Min Max 

Avgsize_25 41004 4846.82 8230.3 0 52521.67 

Comp_high 41004 0.31 0.46 0 1 

Comp_ext 41004 0.02 0.16 0 1 

WUI_high 11495 0.56 0.5 0 1 

WUI_vhigh 11495 0.07 0.26 0 1 

WUI_ext 11495 0.02 0.15 0 1 

Hriskscore 1293 79.2 17.62 24 137 
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Table 5.5: Data and econometric modeling techniques 

Variation 
 

Categories 

Data Data for  

housing prices 

HP_AV 1. Assessed value 

HP_ESP 2. Estimated sale price 

Measures for 

past fire 

event/occurrence 

 

The nearest fire measure 

NEAR7 1. 7-yr time window 

NEAR15 2. 15-yr time window 

The aggregate fire measure 

AGG710 3. 10km radius, 7-yr time window 

AGG715 4. 15km radius, 7-yr time window 

AGG720 5. 20km radius, 7-yr time window 

AGG725 6. 25km radius, 7-yr time window 

AGG1510 7. 10km radius, 15-yr time window 

AGG1515 8. 15km radius, 15-yr time window 

AGG1520 9. 20km radius, 15-yr time window 

AGG1525 10. 25km radius, 15-yr time window 

Wildfire risk 

measures (and 

geographic area) 

  

COMP_CT 1. Composite risk covering Santa Fe County 

COMP_NWUI 2. Composite risk covering the Non-WUI area 

COMP_WUI 3. Composite risk covering the WUI area 

WUIRISK 4. WUI risk 

HRISK 5. House level risk 

Econometric 

Modeling 

Spatial model 

and spatial 

weights  

OLS 1. No spatial OLS 

LAG_KNN4 2. Spatial lag model with KNN4 weight matrix 

LAG_KNN8 3. Spatial lag model with KNN8 weight matrix 

LAG_DIS0.5 4. Spatial lag model with the distance inverse 

weight matrix 

ERR_KNN4 5. Spatial error model with KNN4 weight matrix 

ERR_KNN8 6. Spatial error model with KNN8 weight matrix 

ERR_DIS0.5 7. Spatial error model with the distance inverse 

weight matrix 

GEN_KNN4 8. General spatial model with KNN4 weight 

matrix 

GEN_KNN8 9. General spatial model with KNN8 weight 

matrix 

GEN_DIS0.5 10. General spatial model with the distance 

inverse weight matrix 

Hedonic 

functional form  

SEMILOG 1. Semi-log 

DOUBLELOG 2. Double-log 
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Chapter 6 Model specification testing and estimation results 

In this chapter, I examine the presence of spatial correlation for all estimated 

models through 2 tests: Moran’s I and LM test. Generally, Moran’s I test show evidence 

for spatial correlation. I then selectively present the results of the preferred model.  

6.1 Spatial model specification testing 

I perform Moran’s I and LM test to explore the spatial correlation for all samples. 

Table 6.1 to 6.3 report Moran’s I statistics on OLS residuals for the assessed value 

models and the estimated sales price models, respectively. With regard to assessed value 

model, Moran’s I statistics are significant, indicating the presence of spatial correlation in 

all cases. However, for the estimated sales price data, Moran’s I statistics show evidence 

for spatial correlation with exception of models that use house level risk rating.  That is, I 

failed to reject the null hypothesis of no spatial correlation for models that use the 

estimated sales price as the dependent variable and house-level risk rating as the 

independent variable.  

One caveat with Moran’s I statistics is that it doesn’t point to the proper 

alternative (e.g., the spatial error model, the spatial lag model). LM test, including the 

simple LM and robust LM test, is then performed to further identify type of spatial 

correlation. LM test results are listed in Table 6.4-6.9. Table 6.4-6.6 report results for the 

assessed value data. One can see that all simple LM test results are statistically 

significant, and hence I strongly reject the null hypothesis of no spatial correlation in the 

error term as well as in the dependent variable. LM test statistics for estimated sales price 

data are reported in Table 6.7-6.9. The simple LM test statistic show both spatial 
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correlated errors and spatial correlated lagged dependent variables, except for models that 

use house level risk rating, which are generally insignificant.  

Table 6.10 summarizes LM test statistic results in Table 6.4-6.9. One can see that 

the preferred specification varies by the choice of data, geographic area, hedonic 

functional form and spatial weight matrix. Take the example of functional form, for 

models that use composite risk rating covering Santa Fe County area and knn4 weight 

matrix, the spatial lag model is preferred if semi-log functional form is used whereas the 

spatial error model is preferred if double-log functional form is used. The preferred 

specification is dependent on the data source for property value too. For models that use 

house level risk rating, generally I failed to reject the null hypothesis of no spatial 

correlation for estimated sales price data while spatial correlation is present for assessed 

value data. The preferred specification also varies across geographic area. For example, 

for models that use composite risk and knn8 weight matrix, spatial error model is 

appropriate if geographic area is the whole county or the Non-WUI area while spatial lag 

model is appropriate if study area is restricted to the WUI.  

6.2 Examples of estimation results  

For reasons of space, I selectively present results for the preferred hedonic 

models. First, I report results for models using assessed value as the dependent variable, 

the nearest fire measure with 7-year time window, double-log functional form with 

varying risk ratings (composite risk, WUI risk and house level risk rating). Then I 

illustrate results for models using estimated sales price as the dependent variable, the 

aggregate fire measure with 7-year time window, the semi-log functional form with 

various risk data.  
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I also include the MIP estimates in the tables. The MIP estimate is calculated 

using the average housing value and the average level of the independent variable for the 

sample population. For example, the average assessed value of single-family houses in 

Santa Fe County is $314,805 and the average sale price is $361,370. Calculation of the 

implicit price varies depending on variable type, functional form and econometric 

modelling techniques. For example, one needs to consider the spillover effect in SLM 

and GSM, and therefore the MIP estimate should be adjusted by the spatial lag 

coefficient 𝜌. The MIP estimates are directly comparable across OLS and SEM models. 

Calculation of the MIP is presented in Table 6.11. The percentage impact of dummy 

variables is calculated according to 100 ∗ (𝑒𝛽�̂� − 1) (Halvorsen and Palmquist, 1980). 

6.2.1 Model 1: models using assessed data, the nearest fire measure with 7-

year time window and double-log functional form  

The estimated coefficients, standard error and MIP estimates of Model 1 are 

reported from Table 6.12 to Table 6.16. The overall fit of OLS model is pretty good, with 

adjusted R-squared ranging from 0.76 to 0.81. 

First, let’s take a look at the estimated coefficients for Model 1 with composite 

risk rating covering Santa Fe County area. Column 1 of Table 6.12 reports OLS results. 

With respect to housing structural characteristics, almost all variables are of expected 

sign and highly significant. Square footage (Area), lot size (Land), number of bedrooms 

(Bedroom), number of bathrooms (Bathroom) and having a fireplace (Fireplace), are all 

significant and have positive effects on assessed value. House cooling system has mixed 

effects. Specifically, presence of central air system (Aircond), forced cool air, package 

unit and window units (Othercool) increase assessed value, compared to houses with no 
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cooling system. Presence of evaporative system (Evapcool) has a negative and 

unexpected effect. Property physical condition (Phycond) have a positive effect, 

indicating that properties in better conditions have a higher value.  

In terms of neighborhood characteristics, the percentage of residents have high 

school degree and above (Highsch) and the percentage of residents are 65 and older 

(Over65) in census tract are found to increase assessed property value in a statistically 

significant manner, which are in line with previous results in the hedonic literature. The 

estimated coefficient on the percentage of white population (White) is not statistically 

significant. 

With respect to environmental attributes, proximity to the nearest highway 

(Highway) and the nearest town/city boundary (City) have positive effects on assessed 

value. However proximity to  the industrial area (Industry) has a negative effect. These 

establishments measure accessibility to convenience, which tend to increase housing 

value. Nonetheless, they also generate dis-amenities such as crowd, traffic and noise, 

which are expected to have a negative impact. The estimated coefficients on the distance 

to lake (Lake) and the distance to forest boundary (Forest) are negative and significant, 

implying that houses far away from these environmental amenities have a lower assessed 

value, as one would expect. 

Wildfires are found to have significant effect on assessed value. Generally, past 

wildfire event/occurrence has a negative effect on assessed value. The coefficient on the 

distance to the nearest fire (Dist) is positive and significant, revealing that assessed value 

increases as the distance from the nearest fire increases. The MIP for a one 1 km increase 

in the distance from nearest fire is $1,881 (in 2013 dollars), indicating an increase in 
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assessed value of 0.6%. Nonetheless, the estimated coefficient on Timesincefire is 

significantly negative. Although unexpected, this result is not surprising since the actual 

sale date is not available for assessed value data and the time lag measures the lag 

between the time the nearest fire burned and the assessment year 2013. Assessed value 

decreases with the size of the fire (Size). This suggests that the bigger the fire the lower 

assessed value. Composite fire risk increases assessed value significantly; houses located 

in higher composite risk zones have a higher assessed value. Assessed value of properties 

located in the high and extreme composite risk zones are $13,311 and $31,082 higher 

than ones in the low or moderate risk zones, respectively. Accordingly, these values 

indicate 0.42% and 10% of assessed value. There is little difference in assessed value 

between houses located in the WUI (WUI) and ones located in the Non_WUI.  

Table 6.12 also provides results of spatial error model for all three weight 

matrices. The sign and significance of all housing structure, neighborhood and 

environmental characteristics are very similar to OLS results. Lambda, the coefficient on 

the spatial correlated error variable, is statistically significant for all three weight 

matrices. This is consistent with Moran’s I and LM test results. I note, however, the 

following changes. Evapcool variable is not statistically significant for all three weight 

matrices, indicating little difference exists in assessed values for properties that have 

evaporative system and ones that have no cooling system. The estimated coefficient on 

City becomes statistically negative for the inverse-distance weight matrix. The 

coefficients on high level composite risk (Comp_high) are still significantly positive 

whereas the coefficients on extreme composite risk level (Comp_ext) become 

insignificant for the knn8 and the inverse-distance weight matrices. Since both amenity 
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and risk are confounded in risk rating, one possible explanation is that the negative 

effects of risk are more likely to offset the positive effects of amenity for areas with 

higher risks. Furthermore, in all three weight matrices, the estimated coefficient on WUI 

becomes significantly negative for the knn4 and knn8 weight matrices but significantly 

positive for the inverse-distance weight matrix. With respect to the magnitude of the 

effect, I see that the impacts of some wildfire variables become larger in the spatial 

autoregressive models (e.g., WUI and Size) while others become smaller (e.g., 

Comp_high and Comp_ext).  

The effect of composite risk rating is expected to vary across geographic area. I 

further explore this issue by estimating separate models for houses located in the Non-

WUI and the WUI area. Column 1 of Table 6.13 and Table 6.14 reports OLS results for 

the Non-WUI and the WUI models, respectively. Comparing OLS results in Table 6.12, 

Table 6.13 and Table 6.14, one can see that the estimated coefficients are very similar15. 

It is notable that the estimated coefficient on Dist becomes significantly negative in the 

Non-WUI model, which is contrary to the previous results and our expectation16. 

Comparing the coefficients on composite risk variables across the Non-WUI and the 

WUI model, results show that geographic area has a dramatic effect on the relationship 

                                                 
15 In Non-WUI area model the exception is White, which becomes positively 

significant. In the WUI area model, Highsch and White have significant and unexpected 

negative effects; Industry becomes insignificant.  

16 However, the negative relationship between Dist and assessed value is not 

common, only found in 5% of models that use the assessed value data. 
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between composite risk and assessed value.  High composite risk (Comp_high) and 

extreme risk (Comp_ext) are both positive and statistically significant in the Non-WUI 

model, which now become negative or insignificant in the WUI model, again consistent 

with our hypothesis. Since there are two conflating effects, amenity and risk, associated 

with the risk rating, homeowners in the Non-WUI have a preference for amenity while 

homeowners in the WUI are more concerned about fire risk. Thus the positive effects of 

amenity value outweigh the negative ones in the Non-WUI. However, these two effects 

cancel each other out or the negative effects of risk outweigh the positive effects in the 

WUI. Table 6.13 and 6.14 also provide the best fit spatial econometric models. Spatial 

model results remain very similar to OLS results. I also see similar pattern regarding the 

effect of composite risk rating in spatial autoregressive models across the Non-WUI and 

the WUI models.  

Model 1 with WUI risk rating results are reported in Table 6.15. I begin by 

examining OLS results. The sign and significance of the coefficients are very similar to 

the previous results. The estimated coefficient on Dist is positively significant while the 

estimated coefficients on Timesincefire and Size are negatively significant. WUI risk has 

mixed effects. Compared to moderate level WUI risk, high level WUI risk (WUI_high) 

increases housing value, very high WUI risk level (WUI_vhigh) reduces housing value 

and there is little difference between the effect of moderate and extreme WUI risk 

(WUI_ext). This indicates that below certain risk level, wildfire risk increases house 

value; beyond that range the negative effects of risk offset, or even outweighs the positive 

effects of amenity, resulting in lower house value. One can see that assessed value are 

$35,251 higher for houses located in the high WUI risk zone whereas $43,845 lower for 
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houses located in the very high WUI risk zone, as compared with moderate WUI risk 

properties. Furthermore, spatial model results are quite similar to OLS results.   

Table 6.16 provides results for Model 1 with house level risk rating. First, house 

level risk rating (Hriskscore) has a negative effect on assessed value. That is, houses with 

higher risk rating would have a lower assessed value. This result is expected given that 

the assessment puts more weight on risk factors that contribute to high risk but not 

necessarily to high amenity value (e.g., location of firewood, debris, gas cans and gas 

grills), and these factors negatively affect property value. On average, the MIP for a one 

point increase in house risk score is $692 (in 2013 dollars). With respect to variables 

measuring the nearest fire, the variable Dist is still found to be positively significant. 

Assessed value still decrease with Timesincefire. However, the size of the fire (Size) now 

has a positive effect, suggesting that the bigger the fire the higher assessed value. This 

may be caused by the removal of a larger amount of flammable vegetation in areas 

previously afflicted by wildfire, which may reduce the perception of risk in those 

locations (Gardner et al., 1987). Spatial model results remain similar to OLS results.  

6.2.2 Model 2: models using estimated sales price, the aggregate fire measure 

with 7-year time window and semi-log functional form 

The estimated coefficients and standard errors are reported from Table 6.17 to 

Table 6.21. The MIP estimates are reported in Table 6.22 due to space limitations. Based 

on OLS results, adjusted R-squared of the various models are above 0.64, indicating good 

fit. 

I are now turning to results for Model 2 with composite risk rating covering Santa 

Fe County. Table 6.17 reports OLS results for 10km, 15km, 20km and 25km buffer 
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zones. Most variables, including housing structural characteristics, neighborhood and 

environmental characteristics, remain very similar to the previous results. There are 

several points to be seen regarding wildfire variables. First, houses located in the WUI 

have a higher estimated sales prices. Secondly, the estimated coefficients on the number 

of fires (Firenum) are generally negative and statistically significant (except for 25km 

buffer zone), indicating that average number has a negative effect on sale prices. 

Furthermore, this effect decay with the radius of the buffer zone; that is, the closer the 

wildfires, the greater effects on estimated sales prices. This result is consistent with 

findings in previous hedonic literature and our hypothesis. The MIP for an additional fire 

burned within 10km, 15k and 20k radius of a property, are $16,985, $12,287 and 

$12,287, respectively. All MIP estimates are measured in 2013 dollars. With respect to 

average size of fires (Avgsize), the effect is generally not significant. The estimated 

coefficients on composite risk are significantly positive.  

Table 6.18 reports spatial error model results for the inverse-distance weight 

matrix. The sign and significance of the estimated coefficients are quite similar to OLS 

results in Table 6.17. The variable Firenum is still negative and statistically significant, 

and the magnitude of the coefficient decrease as the radius of buffer zone increase. 

Average size of fires have no significant effect. The estimated coefficient on Comp_high 

is still positive and significant while the estimated coefficient on Comp_ext becomes 

insignificant.  

OLS results for Model 2 with WUI risk rating are presented in Table 6.19. The 

sign, significance and magnitude of the number of fires are still as expected. WUI risks 

were found to be statistically insignificant, expect for WUI_vhigh for 25k buffer zone. 
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Spatial error model results in Table 6.20 are very similar to OLS results. The key 

determinant of sale price continues to be the number of fires. Average size and WUI risks 

are not statistically significant.  

Table 6.21 contains OLS model results for Model 2 with house level risk rating. 

Generally, the variables on wildfire are statistically insignificant. All other variables also 

become statistically insignificant except for house area, physical condition, the distance 

to water/lake and the distance to industrial area.   
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Table 6.1: Moran’s I test results for the nearest fire measure 

Wildfire risk 

data 

Weight  

matrix 

Assessed value Estimated sale price 

7-yr  15-yr 7-yr  15-yr 

  SEMILOG 

Composite risk 

(county) 

KNN4 0.28a 0.27a 0.13a 0.12a 

KNN8 0.27a 0.26a 0.12a 0.11a 

DIS0.5 0.2a 0.19a 0.1a 0.09a 

Composite risk 

(Non-WUI) 

KNN4 0.28a 0.27a 0.13a 0.12a 

KNN8 0.26a 0.26a 0.12a 0.11a 

DIS0.5 0.17a 0.16a 0.1a 0.08a 

Composite risk 

(WUI) 

KNN4 0.2a 0.21a 0.06a 0.05a 

KNN8 0.18a 0.19a 0.04a 0.04a 

DIS0.5 0.16a 0.16a 0.05a 0.05a 

WUI risk KNN4 0.19a 0.2a 0.06a 0.05a 

KNN8 0.17a 0.18a 0.04a 0.04a 

DIS0.5 0.15a 0.15a 0.05a 0.05a 

House risk KNN4 0.15a 0.13a -0.01 -0.05 

KNN8 0.14a 0.13a -0.01 -0.05 

DIS0.5 0.15a 0.12a -0.03 -0.05 

  DOUBLELOG 

Composite risk 

(county) 

KNN4 0.29a 0.28a 0.13a 0.13a 

KNN8 0.28a 0.27a 0.12a 0.11a 

DIS0.5 0.21a 0.19a 0.1a 0.1a 

Composite risk 

(Non-WUI) 

KNN4 0.29a 0.28a 0.14a 0.13a 

KNN8 0.27a 0.26a 0.13a 0.12a 

DIS0.5 0.17a 0.17a 0.1a 0.09a 

Composite risk 

(WUI) 

KNN4 0.19a 0.19a 0.07a 0.07a 

KNN8 0.18a 0.17a 0.05a 0.05a 

DIS0.5 0.16a 0.15a 0.06a 0.07a 

WUI risk KNN4 0.17a 0.17a 0.07a 0.06a 

KNN8 0.16a 0.15a 0.05a 0.04a 

DIS0.5 0.14a 0.13a 0.06a 0.06a 

House risk KNN4 0.15a 0.13a -0.02 -0.07 

KNN8 0.15a 0.13a -0.01 -0.06 

DIS0.5 0.15a 0.13a -0.04 -0.07 
a significant at 1% level. 
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Table 6.2: Moran’s I test results for the aggregate fire measure (Data = Assessed value) 

Wildfire risk data Weight  

matrix 

Past fire event/occurrence 

7-yr time window 15-yr time window 

10km 15km 20km 25km 10km 15km 20km 25km 

  SEMILOG 

Composite risk 

(county) 

KNN4 0.295a 0.28a 0.296a 0.283a 0.288a 0.265a 0.268a 0.286a 

KNN8 0.278a 0.264a 0.28a 0.268a 0.272a 0.248a 0.252a 0.271a 

DIS0.5 0.212a 0.195a 0.213a 0.201a 0.205a 0.175a 0.181a 0.204a 

Composite risk 

(Non-WUI) 

KNN4 0.285a 0.278a 0.28a 0.274a 0.285a 0.277a 0.278a 0.276a 

KNN8 0.27a 0.263a 0.265a 0.259a 0.27a 0.262a 0.262a 0.261a 

DIS0.5 0.179a 0.172a 0.171a 0.169a 0.179a 0.169a 0.17a 0.171a 

Composite risk 

(WUI) 

KNN4 0.231a 0.218a 0.206a 0.222a 0.22a 0.199a 0.196a 0.23a 

KNN8 0.214a 0.201a 0.188a 0.205a 0.203a 0.179a 0.177a 0.214a 

DIS0.5 0.192a 0.176a 0.165a 0.183a 0.18a 0.154a 0.154a 0.192a 

WUI risk KNN4 0.217a 0.213a 0.204a 0.213a 0.207a 0.196a 0.191a 0.216a 

KNN8 0.198a 0.196a 0.186a 0.195a 0.189a 0.177a 0.172a 0.199a 

DIS0.5 0.174a 0.171a 0.162a 0.171a 0.164a 0.152a 0.149a 0.174a 

House risk KNN4 0.191a 0.171a 0.187a 0.193a 0.183a 0.178a 0.182a 0.201a 

KNN8 0.191a 0.17a 0.186a 0.193a 0.184a 0.179a 0.183a 0.202a 

DIS0.5 0.193a 0.172a 0.185a 0.195a 0.186a 0.179a 0.182a 0.203a 

  DOUBLELOG 

Composite risk 

(county) 

KNN4 0.307a 0.293a 0.307a 0.296a 0.301a 0.279a 0.281a 0.298a 

KNN8 0.291a 0.278a 0.292a 0.28a 0.286a 0.263a 0.265a 0.283a 

DIS0.5 0.224a 0.209a 0.224a 0.212a 0.217a 0.188a 0.193a 0.216a 

Composite risk 

(Non-WUI) 

KNN4 0.294a 0.289a 0.288a 0.284a 0.293a 0.289a 0.287a 0.286a 

KNN8 0.279a 0.273a 0.273a 0.269a 0.278a 0.274a 0.272a 0.271a 

DIS0.5 0.187a 0.181a 0.178a 0.176a 0.186a 0.178a 0.178a 0.179a 

Composite risk 

(WUI) 

KNN4 0.216a 0.208a 0.195a 0.21a 0.205a 0.189a 0.183a 0.218a 

KNN8 0.203a 0.195a 0.181a 0.197a 0.191a 0.175a 0.169a 0.205a 

DIS0.5 0.186a 0.178a 0.163a 0.18a 0.174a 0.156a 0.151a 0.188a 

WUI risk KNN4 0.2a 0.202a 0.192a 0.199a 0.192a 0.184a 0.174a 0.203a 

KNN8 0.186a 0.189a 0.179a 0.186a 0.178a 0.169a 0.16a 0.19a 

DIS0.5 0.168a 0.17a 0.16a 0.168a 0.16a 0.151a 0.142a 0.171a 

House risk KNN4 0.193a 0.175a 0.181a 0.19a 0.177a 0.176a 0.174a 0.203a 

KNN8 0.191a 0.173a 0.178a 0.188a 0.176a 0.178a 0.173a 0.202a 

DIS0.5 0.191a 0.174a 0.175a 0.188a 0.177a 0.176a 0.17a 0.202a 

a significant at 1% level. 
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Table 6.3: Moran’s I test results for the aggregate fire measure (Data = Estimated sale 

prices) 

Wildfire risk data 

 

Weight  

Matrix 

Past fire event/occurrence 

 7-yr time window 15-yr time window 

 10km 15km 20km 25km 10km 15km 20km 25km 

  SEMILOG 

Composite risk 
(county) 

KNN4 0.126a 0.122a 0.119a 0.127a 0.127a 0.124a 0.117a 0.126a 

KNN8 0.116a 0.111a 0.109a 0.117a 0.117a 0.113a 0.106a 0.115a 

DIS0.5 0.096a 0.093a 0.09a 0.098a 0.098a 0.094a 0.088a 0.096a 

Composite risk 

(Non-WUI) 

KNN4 0.132a 0.131a 0.13a 0.132a 0.131a 0.13a 0.126a 0.13a 

KNN8 0.125a 0.124a 0.122a 0.124a 0.124a 0.123a 0.118a 0.122a 

DIS0.5 0.096a 0.095a 0.093a 0.096a 0.096a 0.094a 0.09a 0.093a 

Composite risk 

(WUI) 

KNN4 0.06a 0.055a 0.056a 0.065a 0.063a 0.055a 0.057a 0.066a 

KNN8 0.043a 0.039a 0.041a 0.051a 0.048a 0.039a 0.042a 0.051a 

DIS0.5 0.058a 0.055a 0.055a 0.064a 0.061a 0.056a 0.057a 0.064a 

WUI risk KNN4 0.057a 0.054a 0.055a 0.061a 0.059a 0.053a 0.055a 0.062a 

KNN8 0.04a 0.039a 0.039a 0.046a 0.043a 0.038a 0.039a 0.047a 

DIS0.5 0.055a 0.054a 0.053a 0.06a 0.057a 0.055a 0.054a 0.06a 

House risk KNN4 0.015c -0.031 0.009c 0.035b 0.021b -0.027 -0.025 0.012c 

KNN8 0.011b -0.029 0.003c 0.028a 0.023a -0.036 -0.032 0.001c 

DIS0.5 0.009 -0.028 -0.007 0.01 0.014c -0.017 -0.03 -0.004 

  DOUBLELOG 

Composite risk 

(county) 

KNN4 0.133a 0.128a 0.125a 0.134a 0.134a 0.129a 0.123a 0.132a 

KNN8 0.121a 0.116a 0.113a 0.122a 0.122a 0.117a 0.111a 0.12a 

DIS0.5 0.105a 0.101a 0.098a 0.106a 0.107a 0.102a 0.096a 0.104a 

Composite risk 

(Non-WUI) 

KNN4 0.137a 0.136a 0.134a 0.136a 0.135a 0.135a 0.129a 0.134a 

KNN8 0.13a 0.128a 0.126a 0.129a 0.128a 0.127a 0.121a 0.126a 

DIS0.5 0.103a 0.102a 0.099a 0.103a 0.102a 0.101a 0.096a 0.1a 

Composite risk 
(WUI) 

KNN4 0.071a 0.069a 0.069a 0.077a 0.076a 0.068a 0.071a 0.077a 

KNN8 0.049a 0.048a 0.048a 0.057a 0.055a 0.048a 0.05a 0.058a 

DIS0.5 0.07a 0.069a 0.068a 0.075a 0.074a 0.069a 0.07a 0.075a 

WUI risk KNN4 0.07a 0.069a 0.067a 0.074a 0.072a 0.067a 0.068a 0.074a 

KNN8 0.047a 0.048a 0.046a 0.054a 0.05a 0.046a 0.047a 0.054a 

DIS0.5 0.068a 0.068a 0.066a 0.072a 0.07a 0.068a 0.067a 0.072a 

House risk KNN4 0.007c -0.04 0.008c 0.032b 0.013c -0.033 -0.016 0.008c 

KNN8 0.011b -0.032 0.006b 0.034a 0.02a -0.035 -0.021 0.007b 

DIS0.5 0.005 -0.035 -0.008 0.012 0.01 -0.023 -0.024 -0.004 

a significant at 1% level. 
b significant at 5% level. 
c significant at 10% level. 
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Table 6.4: LM test results for the nearest fire measure (Data = Assessed value) 

Wildfire 

risk data 

  

  

LM test 

  

  

Past fire event/occurrence 

7-yr  15-yr 7-yr  15-yr 

SEMILOG DOUBLELOG 

Composite 

risk (county)  

  

  

  

  

  

  

  

  

  

  

  

  

  

Spatial weight matrix = KNN4 

Error 7149.7a 6829.7a 7730.4a 7200.6a 

Lag 7709.8a 7152a 7077.9a 6044.5a 

RError 1208.8a 1225.8a 1793.3a 1909.1a 

RLag 1768.9a 1548.1a 1140.9a 753a 

Spatial weight matrix = KNN8 

Error 12595.5a 11940.6a 13719.5a 12705.4a 

Lag 10029.3a 9215.6a 9269.5a 7821.4a 

RError 4499.5a 4401.1a 5703.1a 5685.5a 

RLag 1933.4a 1676.1a 1253.1a 801.4a 

Spatial weight matrix = DIS0.5 

Error 39897.7a 35622.4a 43769.8a 37062.2a 

Lag 1496.1a 1386.2a 1292a 1207.1a 

RError 38670.6a 34509.2a 42669.5a 36076.6a 

RLag 269a 273a 191.6a 221.5a 

Composite 

risk (Non-

WUI)  

  

  

  

  

  

  

  

  

  

  

  

  

  

Spatial weight matrix = KNN4 

Error 4933.8a 4777.1a 5333.4a 5045.9a 

Lag 4818.6a 4687.9a 4508.9a 4291.2a 

RError 902.6a 879.6a 1258.2a 1199.3a 

RLag 787.4a 790.4a 433.7a 444.5a 

Spatial weight matrix = KNN8 

Error 8761a 8442.7a 9492.2a 8962.1a 

Lag 6547.4a 6314.3a 6265.8a 5893.8a 

RError 3120.5a 3038.9a 3749.1a 3600.7a 

RLag 906.8a 910.4a 522.7a 532.4a 

Spatial weight matrix = DIS0.5 

Error 30016.6a 27899.2a 32979.8a 29647.5a 

Lag 622.9a 658.9a 540.5a 591a 

RError 29480.4a 27356.5a 32498.4a 29151a 

RLag 86.7a 116.1a 59.2a 94.5a 

Composite 

risk (WUI) 

  

  

  

  

  

  

  

  

  

Spatial weight matrix = KNN4 

Error 1008a 1105.6a 913a 886.4a 

Lag 1702a 1554.5a 1376.9a 1035.5a 

RError 53.7a 93.5a 95.1a 148.5a 

RLag 747.7a 542.5a 558.9a 297.6a 

Spatial weight matrix = KNN8 

Error 1643a 1786.4a 1549.4a 1474.4a 

Lag 2030.8a 1862.3a 1636a 1201.8a 

RError 368.9a 458.5a 471.4a 543.3a 

RLag 756.6a 534.3a 558a 270.7a 
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Table 6.4: LM test results for the nearest fire measure (Data = Assessed value) (cont’d) 

Wildfire 

risk data 

  

  

LM test 

  

  

Past fire event/occurrence 

 7-yr  15-yr 7-yr  15-yr 

 SEMILOG DOUBLELOG 

  Spatial weight matrix = DIS0.5 

  Error 3585.6a 3792.8a 3553.3a 3336.7a 

  Lag 407.5a 326a 342.1a 218.6a 

  RError 3322.1a 3557.9a 3332.1a 3175a 

  RLag 144a 91.1a 120.9a 56.9a 

WUI risk 

  

  

  

  

  

  

  

  

  

  

  

  

  

Spatial weight matrix = KNN4 

Error 943.7a 1002.9a 778.6a 723a 

Lag 1658.8a 1512.7a 1282a 919.8a 

RError 40.9a 66.9a 62.4a 102.1a 

RLag 755.9a 576.7a 565.8a 299a 

Spatial weight matrix = KNN8 

Error 1513.7a 1590.4a 1291.3a 1163.6a 

Lag 1978.4a 1805.3a 1514.2a 1044.9a 

RError 309.3a 363.7a 348.8a 393.3a 

RLag 774a 578.7a 571.7a 274.6a 

Spatial weight matrix = DIS0.5 

Error 3234.6a 3278.4a 2891.5a 2522.5a 

Lag 387.6a 318.5a 310.7a 201.9a 

RError 2989.5a 3059.7a 2699.9a 2384.6a 

RLag 142.5a 99.8a 119.2a 63.9a 

House risk 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Spatial weight matrix = KNN4 

Error 62.6a 49.2a 69.3a 51.9a 

Lag 130.1a 93.9a 109.8a 81.4a 

RError 0.8 0.7 5.8b 3.7* 

RLag 68.3a 45.4a 46.4a 33.3a 

Spatial weight matrix = KNN8 

Error 121.3a 96.2a 133.5a 105.9a 

Lag 195.6a 145.5a 164.2a 128.2a 

RError 16.1a 11.8a 32.1a 23.9a 

RLag 90.4a 61.1a 62.8a 46.2a 

Spatial weight matrix = DIS0.5 

Error 145.8a 105.9a 158.4a 113.3a 

Lag 14.3a 11.8a 12.1a 7.6a 

RError 137.3a 99.4a 150.8a 108.4a 

RLag 5.9b 5.4b 4.5b 2.7 
a significant at 1% level. 
b significant at 5% level. 
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Table 6.5: LM test results for the aggregate fire measure (Data = Assessed value, 

Functional form = Semi-log) 

Wildfire 

risk data 

LM 

test 

Past fire event/occurrence 

 7-yr time window 15-yr time window 

 10km 15km 20km 25km 10km 15km 20km 25km 

Composit
e risk 

(County) 

Spatial weight matrix = KNN4 

Error 7857.1a 7108.8a 7930.5a 7275.3a 7538.2a 6374.6a 6513.1a 7420.8a 

Lag 7878.1a 7575.3a 8042a 7842.8a 7692.7a 6721.2a 7146.9a 7981.7a 

RErro
r 

1540.4a 1228.9a 1516.8a 1247a 1436.3a 1138.6a 1090.3a 1272.3a 

RLag 1561.4a 1695.5a 1628.3a 1814.5a 1590.9a 1485.2a 1724.2a 1833.2a 

Spatial weight matrix = KNN8 

Error 13889.1a 12486a 14085a 12836.7a 13278.5a 11037.9a 11350.7a 13136.9a 

Lag 10197.8a 9808a 10479.4a 10188.5a 9917.4a 8522.6a 9166.8a 10417.7a 

RErro

r 

5372.9a 4517.4a 5370.4a 4637.6a 5071.7a 4086.1a 4064.6a 4736.5a 

RLag 1681.6a 1839.4a 1764.8a 1989.4a 1710.5a 1570.7a 1880.7a 2017.2a 

Spatial weight matrix = DIS0.5 

Error 46228.2a 39326.6a 46939a 41513.5a 43248.9a 31692a 33912.6a 43135.1a 

Lag 1570.1a 1473.8a 1618.3a 1606.5a 1541.6a 1149.5a 1499a 1709.6a 

RErro

r 

44903.6a 38123a 45577.2a 40213.6a 41969.6a 30751.1a 32760.8a 41758.6a 

RLag 245.5a 270.1a 256.5a 306.6a 262.3a 208.6a 347.2a 333a 

Composit
e risk 

(Non-

WUI) 

Spatial weight matrix = KNN4 

Error 5271.2a 5002a 5089.6a 4869.6a 5263.7a 4986.9a 4998.5a 4939.5a 

Lag 5064.1a 5158a 4818.9a 4954.2a 5033.8a 4941.7a 4931a 5032.7a 

RErro

r 

1020a 824a 1001.5a 842a 1019.7a 907.4a 916.5a 846.8a 

RLag 812.9a 980a 730.8a 926.6a 789.8a 862.2a 849.1a 940a 

Spatial weight matrix = KNN8 

Error 9387.7a 8887.8a 9025.3a 8636.9a 9378a 8874.5a 8877.2a 8767.8a 

Lag 6824a 7016.3a 6475.2a 6694.9a 6801.4a 6662.2a 6656a 6827.4a 

RErro

r 

3492.6a 3013.6a 3377.1a 3019.4a 3478.4a 3199.6a 3200.1a 3038.5a 

RLag 928.9a 1142a 827a 1077.4a 901.8a 987.3a 978.9a 1098.1a 

Spatial weight matrix = DIS0.5 

Error 34529.1a 31754.2a 31607.9a 30705.1a 34385.9a 30907.7a 31137.7a 31634.4a 

Lag 741.7a 763.9a 657.2a 744.2a 712.8a 687.2a 740.8a 773.9a 

RErro
r 

33898a 31125a 31044.7a 30096a 33772.5a 30329.9a 30526.6a 31001.3a 

RLag 110.6a 134.7a 94a 135a 99.3a 109.4a 129.6a 140.8a 

Composit

e risk 
(WUI) 

Spatial weight matrix = KNN4 

Error 1370.4a 1219.3a 1089.7a 1260.6a 1246.9a 1017.4a 987.9a 1354.9a 

Lag 1980.1a 1823.4a 1766.4a 1949.9a 1805a 1503.5a 1580.5a 2014.5a 

RErro

r 

124.6a 100.3a 68.9a 92.5a 110.1a 81.4a 62.9a 112.5a 

RLag 734.3a 704.4a 745.6a 781.8a 668.3a 567.5a 655.5a 772.1a 

Spatial weight matrix = KNN8 

Error 2316.1a 2034.9a 1792.1a 2123.6a 2072.2a 1627.5a 1589.4a 2311.1a 

Lag 2430.1a 2205.1a 2128.3a 2396.3a 2179.6a 1752.2a 1871.6a 2493.8a 

RErro
r 

637.4a 540.4a 427a 535.6a 561.4a 420.9a 375.9a 613.9a 

RLag 751.3a 710.6a 763.2a 808.3a 668.8a 545.6a 658.1a 796.6a 

Spatial weight matrix = DIS0.5 

Error 5180.6a 4379a 3831.5a 4695.4a 4556.9a 3352a 3329.4a 5167.1a 

Lag 508.5a 456.1a 435.4a 484.8a 446.1a 334.2a 386.6a 519.6a 

RErro

r 

4829.3a 4072.7a 3549.6a 4367.3a 4250.2a 3125.7a 3083.2a 4811.1a 

RLag 157.2a 149.7a 153.5a 156.7a 139.3a 107.9a 140.3a 163.7a 
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Table 6.5: LM test results for the aggregate fire measure (Data = Assessed value, 

Functional form = Semi-log) (cont’d) 

a significant at 1% level. 
b significant at 5% level. 
c significant at 10% level. 

  

Wildfire 

risk data 

LM 

test 

Past fire event/occurrence 

 7-yr time window 15-yr time window 

 10km 15km 20km 25km 10km 15km 20km 25km 

WUI risk Spatial weight matrix = KNN4 

 Error 1204.3a 1169a 1067.6a 1164.3a 1105.5a 991.9a 938.9a 1200.1a 

 Lag 1871.2a 1812.8a 1747.6a 1874.6a 1705.5a 1525.8a 1582.4a 1899.9a 

 RError 85.5a 83.8a 63.4a 72.8a 78.6a 68.6a 48.2a 79.6a 

 RLag 752.5a 727.6a 743.4a 783.1a 678.6a 602.5a 691.7a 779.4a 

 Spatial weight matrix = KNN8 

 Error 1983.6a 1932.7a 1743.4a 1928a 1795.8a 1579.4a 1497a 1994.6a 

 Lag 2285.5a 2203a 2109.1a 2296.1a 2048.7a 1790.9a 1879.5a 2335.4a 

 RError 482a 476.7a 399.9a 449a 437a 379.4a 322.2a 474.1a 

 RLag 783.8a 746.9a 765.7a 817a 689.8a 590.9a 704.7a 814.9a 

 Spatial weight matrix = DIS0.5 

 Error 4252.6a 4091.7a 3681.7a 4134.4a 3787.9a 3235.7a 3103.3a 4279.7a 

 Lag 475.8a 451.5a 427.3a 462.2a 418.5a 341.9a 388.2a 482a 

 RError 3941.2a 3795.3a 3407.4a 3832a 3514.3a 3009.1a 2863.4a 3965a 

 RLag 164.5a 155.1a 153.1a 159.8a 144.9a 115.3a 148.3a 167.4a 

House risk Spatial weight matrix = KNN4 

 Error 107.9a 85.8a 103.3a 109.4a 98.5a 93.3a 97.4a 119.4a 

 Lag 201.2a 162.4a 180.6a 199.7a 180.7a 168.8a 166.8a 203.3a 

 RError 3.6c 2.5 4b 3.8c 3.3c 3.3c 4b 5.7b 

 RLag 96.9a 79.1a 81.2a 94.2a 85.4a 78.8a 73.3a 89.7a 

 Spatial weight matrix = KNN8 

 Error 212.6a 167.3a 201.3a 217.3a 196a 187.4a 195.9a 237.4a 

 Lag 298.7a 241.2a 272.6a 304.4a 272.8a 256.8a 255.5a 308.9a 

 RError 38.4a 28.6a 35.7a 37.8a 34.8a 33.6a 36.1a 46.1a 

 RLag 124.5a 102.5a 107a 124.9a 111.6a 103a 95.7a 117.6a 

 Spatial weight matrix = DIS0.5 

 Error 253.6a 201.7a 233.2a 258.9a 236.1a 218.6a 225.3a 279.8a 

 Lag 25.7a 23.1a 23a 26a 23.7a 24.1a 22.9a 25.7a 

 RError 238.4a 188.9a 219.5a 243.5a 222.1a 205a 211.9a 264a 

 RLag 10.5a 10.3a 9.3a 10.6a 9.7a 10.5a 9.5a 9.8a 
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Table 6.6: LM test results for the aggregate fire measure (Data = Assessed value, 

Functional form = Double-log) 

Wildfire 

risk data 

LM 

test 

Past fire event/occurrence 

 7-yr time window 15-yr time window 

 10km 15km 20km 25km 10km 15km 20km 25km 

Composit

e risk 

(County) 

Spatial weight matrix = KNN4 

Error 8512a 7799.8a 8561.6a 7911.5a 8218.9a 7061.8a 7152.8a 8069.7a 

Lag 7506.4a 7113.9a 7625.7a 7322a 7227.6a 6020.6a 6581.7a 7489.3a 

RErro

r 
2093.6a 1819.9a 2069.1a 1816.3a 2039.7a 1840.6a 1671.7a 1840a 

RLag 1088a 1134.1a 1133.2a 1226.7a 1048.5a 799.4a 1100.6a 1259.6a 

Spatial weight matrix = KNN8 

Error 15178.8a 13836.3a 15311.6a 14070.2a 14615.9a 12371.6a 12604.4a 14398.7a 

Lag 9828.9a 9285.7a 10032.5a 9594.3a 9415.7a 7693.8a 8515.5a 9861a 

RErro

r 
6530.9a 5784.5a 6516.4a 5833.1a 6331.6a 5511.8a 5293.8a 5938a 

RLag 1181.1a 1234a 1237.4a 1357.2a 1131.4a 834a 1204.9a 1400.3a 

Spatial weight matrix = DIS0.5 

Error 51608.2a 44870.7a 51999a 46252.8a 48607.3a 36361.7a 38390.1a 48118.9a 

Lag 1423.6a 1345a 1451a 1459.1a 1397a 1020.7a 1379.4a 1575.7a 

RErro

r 
50370.1a 43731.8a 50739.2a 45035.7a 47409.5a 35489.9a 37294.5a 46815a 

RLag 185.5a 206.1a 191.3a 242a 199.2a 148.9a 283.9a 271.8a 

Composit
e risk 

(non-

WUI) 

Spatial weight matrix = KNN4 

Error 5619.6a 5409.8a 5394.5a 5235.3a 5583.1a 5428.8a 5359.8a 5325.9a 

Lag 4892.6a 4928a 4589.6a 4595.3a 4847.1a 4640.4a 4664.2a 4691.3a 

RErro
r 

1278.6a 1127.9a 1269.7a 1188.4a 1271.7a 1280.8a 1223.3a 1200.7a 

RLag 551.5a 646.1a 464.9a 548.4a 535.8a 492.4a 527.7a 566a 

Spatial weight matrix = KNN8 

Error 10025a 9635.7a 9581.1a 9295a 9963.9a 9675.6a 9539.5a 9467.6a 

Lag 6738a 6828.1a 6297.1a 6317.4a 6686.8a 6382a 6424.9a 6464.1a 

RErro

r 
3943.9a 3589.6a 3831.1a 3645.8a 3913.8a 3882.4a 3749a 3694.6a 

RLag 656.9a 782a 547.1a 668.2a 636.7a 588.9a 634.4a 691.2a 

Spatial weight matrix = DIS0.5 

Error 37722.9a 35423.1a 34116.1a 33322.6a 37286a 34328.2a 34100.2a 34674.4a 

Lag 655.1a 675.1a 582a 670.3a 628.1a 608a 650.4a 703.9a 

RErro
r 

37147.1a 34844.4a 33603.6a 32759.4a 36729.2a 33798.2a 33544.3a 34083.3a 

RLag 79.2a 96.3a 69.5a 107.1a 71.2a 78a 94.5a 112.8a 

Composit

e risk 
(WUI) 

Spatial weight matrix = KNN4 

Error 1197.1a 1116.2a 974.7a 1130.1a 1076a 919a 861a 1215.6a 

Lag 1590.7a 1493.7a 1409a 1550.1a 1398.3a 1173.2a 1216.9a 1615.7a 

RErro

r 
166.3a 152.6a 112.8a 146.6a 155.1a 134.6a 103.4a 168.1a 

RLag 560a 530.1a 547.1a 566.6a 477.4a 388.7a 459.3a 568.2a 

Spatial weight matrix = KNN8 

Error 2080.8a 1929.3a 1662.4a 1962.5a 1842.4a 1538.4a 1438.5a 2130.5a 

Lag 1941.3a 1801.8a 1684.7a 1885.5a 1669.7a 1358.4a 1425.1a 1982.2a 

RErro

r 
708.3a 655.7a 526.5a 651a 640a 539.7a 461.4a 725.5a 

RLag 568.8a 528.1a 548.9a 574a 467.3a 359.6a 448.1a 577.3a 

Spatial weight matrix = DIS0.5 

Error 4862.7a 4434.2a 3749.9a 4554.8a 4251.8a 3432.9a 3193.5a 4977.9a 

Lag 418.7a 378.9a 347.4a 385.3a 350.2a 260.1a 303.4a 420.7a 

RErro
r 

4578a 4176.6a 3522a 4291.6a 4011.4a 3249.5a 2998.1a 4689.7a 

RLag 134.1a 121.3a 119.4a 122.1a 109.7a 76.8a 108.1a 132.5a 
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Table 6.6: LM test results for the aggregate fire measure (Data = Assessed value, 

Functional form = Double-log) (cont’d) 

a significant at 1% level. 

 

  

Wildfire 

risk data 

LM 

test 

Past fire event/occurrence 

 7-yr time window 15-yr time window 

 10km 15km 20km 25km 10km 15km 20km 25km 

WUI risk Spatial weight matrix = KNN4 

 Error 1026.8a 1047.5a 949.5a 1018.9a 946.4a 867.9a 781.9a 1057.5a 

 Lag 1483.1a 1467.7a 1393.1a 1472.9a 1314.1a 1171.1a 1198.2a 1497.2a 

 RError 117.4a 128.5a 104.7a 116.1a 117.5a 112.3a 76.1a 126.4a 

 RLag 573.7a 548.6a 548.3a 570.1a 485.3a 415.4a 492.5a 566.1a 

 Spatial weight matrix = KNN8 

 Error 1746.9a 1795.8a 1610.5a 1743a 1593.8a 1443.4a 1289.9a 1814.6a 

 Lag 1801.5a 1777.9a 1669.6a 1784a 1560.9a 1360.8a 1404a 1819.9a 

 RError 538.2a 575.3a 495.2a 541.5a 513.8a 475.2a 375.2a 574.4a 

 RLag 592.8a 557.3a 554.2a 582.5a 480.9a 392.6a 489.3a 579.7a 

 Spatial weight matrix = DIS0.5 

 Error 3948.8a 4071.4a 3617.1a 3956.2a 3579.5a 3208.8a 2840a 4114.8a 

 Lag 392.7a 376a 346a 367.5a 331.6a 266.5a 307.1a 388.7a 

 RError 3697.4a 3823.6a 3392.9a 3714.7a 3362.6a 3027.4a 2652.5a 3860.9a 

 RLag 141.3a 128.2a 121.7a 126a 114.7a 85.1a 119.5a 134.7a 

House risk Spatial weight matrix = KNN4 

 Error 109.7a 90.3a 97a 106.6a 92.9a 91.5a 88.9a 121.6a 

 Lag 169.5a 134.6a 138.4a 166.6a 139.2a 131.2a 125.2a 177.6a 

 RError 10.2a 9.2a 10.3a 9.6a 9.2a 10.1a 9.8a 12.9a 

 RLag 70a 53.5a 51.7a 69.6a 55.5a 49.9a 46a 68.9a 

 Spatial weight matrix = KNN8 

 Error 212.6a 174.7a 184.3a 206.3a 180.8a 183.9a 173.4a 237.6a 

 Lag 249.3a 199.3a 206.6a 250.5a 208.7a 198.9a 188.5a 266.3a 

 RError 55.3a 46.9a 48.4a 51.1a 47.3a 51.7a 46.9a 63.8a 

 RLag 92a 71.5a 70.8a 95.2a 75.3a 66.7a 62.1a 92.5a 

 Spatial weight matrix = DIS0.5 

 Error 248.5a 206.1a 208.7a 241.8a 212.5a 210.2a 197a 277a 

 Lag 22a 19.1a 17.9a 21.7a 19.1a 19.4a 17.7a 22a 

 RError 235.4a 195a 198a 228.9a 201.3a 198.9a 186.6a 263.2a 

 RLag 8.9a 8.1a 7.2a 8.8a 7.9a 8.2a 7.4a 8.2a 
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Table 6.7: LM test results for the nearest measure (Data = Estimated sale prices) 

Wildfire risk 

data 

  

  

LM test Past fire event/occurrence 

  

Past fire event/occurrence 

  

  7-yr 15-yr 7-yr 15-yr 

  SEMILOG DOUBLELOG 

Composite risk 

(County) 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Spatial weight matrix = KNN4     

Error 383.8a 367.2a 417a 392a 

Lag 481a 457.8a 410.6a 370.9a 

RError 26.1a 26a 63a 65.2a 

RLag 123.3a 116.6a 56.6a 44.1a 

Spatial weight matrix = KNN8     

Error 629.2a 602.1a 673.5a 626.8a 

Lag 648.2a 613.8a 541.4a 484.3a 

RError 125.1a 123.5a 197.4a 193.2a 

RLag 144.1a 135.2a 65.2a 50.7a 

Spatial weight matrix = DIS0.5     

Error 955a 920.2a 1106.2a 1038.1a 

Lag 46.2a 41a 41.4a 31.9a 

RError 924.6a 892.4a 1076.6a 1013.7a 

RLag 15.8a 13.2a 11.8a 7.6a 

Composite risk 

(Non-WUI) 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Spatial weight matrix = KNN4     

Error 322.3a 275.1a 346.5a 293.8a 

Lag 355a 323.1a 291.4a 251.6a 

RError 34.7a 24.1a 74.7a 61a 

RLag 67.4a 72.1a 19.6a 18.8a 

Spatial weight matrix = KNN8     

Error 561.5a 470.4a 605.9a 502.4a 

Lag 510.7a 466.3a 419.5a 358.7a 

RError 137.2a 100.5a 212.5a 169.8a 

RLag 86.5a 96.5a 26.1a 26.1a 

Spatial weight matrix = DIS0.5     

Error 1099.7a 863.6a 1280.1a 1008.2a 

Lag 20.5a 11.8a 15.1a 11.9a 

RError 1081a 852.2a 1265.2a 996.5a 

RLag 1.9 0.4 0.3 0.3 

Composite risk 

(WUI) 

  

  

  

  

  

  

  

  

  

Spatial weight matrix = KNN4     

Error 18.6a 17.3a 26.6a 26.5a 

Lag 52a 45.2a 55.9a 45.9a 

RError 1.7 1.2 0.2 0 

RLag 35.1a 29a 29.5a 19.4a 

Spatial weight matrix = KNN8 

  

  

  

  

Error 18.8a 17.4a 24.7a 25.5a 

Lag 59.2a 49.6a 59.6a 47a 

RError 0.8 0.4 0 0.3 

RLag 41.1a 32.6a 35a 21.9a 
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Table 6.7: LM test results for the nearest measure (Data = Estimated sale prices) (cont’d) 

Wildfire risk 

data 

  

  

LM test Past fire event/occurrence 

  

Past fire event/occurrence 

  

  7-yr 15-yr 7-yr 15-yr 

  SEMILOG DOUBLELOG 

  Spatial weight matrix = DIS0.5     

  Error 31.8a 33.1a 46.6a 48.2a 

  Lag 13.8a 10.7a 6b 2.9c 

  RError 28.3a 30a 44.1a 46.5a 

  RLag 10.3a 7.5a 3.5c 1.2 

WUI risk Spatial weight matrix = KNN4     

  Error 17.7a 15.5a 25.5a 21.7a 

  Lag 51.7a 45.2a 57a 42.7a 

  RError 2.3 2.2 0.5 0.1 

  RLag 36.3a 31.8a 32a 21.1a 

  Spatial weight matrix = KNN8     

  Error 17.4a 14.9a 22.9a 18.8a 

  Lag 58.6a 49.5a 60.9a 42.9a 

  RError 1.4 1.2 0.3 0.03 

  RLag 42.6a 35.8a 38.3a 24.1a 

  Spatial weight matrix = DIS0.5     

  Error 30a 29.8a 43.7a 39.5a 

  Lag 13a 9.8a 5.4b 1.8 

  RError 26.7a 27a 41.3a 38.3a 

  RLag 9.7a 6.9a 3.1c 0.6 

House risk Spatial weight matrix = KNN4     

  Error 0.1 1.5 0.1 2.6 

  Lag 0.9 0.6 0.7 0.5 

  RError 2.3 1 2.5 2.8c 

  RLag 3.2c 0.1 3c 0.6 

  Spatial weight matrix = KNN8     

  Error 0.2 2.9c 0.1 3.8c 

  Lag 1.7 0.6 1.6 0.6 

  RError 4.5b 3.1c 3.8c 4.4b 

  RLag 6b 0.9 5.3b 1.2 

  Spatial weight matrix = DIS0.5     

  Error 0.4 1.2 0.6 2.2 

  Lag 0.006 0.004 0.001 0.08 

  RError 0.5 1.2 0.6 2.2 

  RLag 0.02 0.02 0.0009 0.03 
a significant at 1% level. 
b significant at 5% level. 
c significant at 10% level. 
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Table 6.8: LM test results for the aggregate fire measure (Data = Estimated sale prices, 

Functional form = Semi-log) 

Wildfire 

risk data 

LM 

test 

Past fire event/occurrence 

 7-yr time window 15-yr time window 

 10km 15km 20km 25km 10km 15km 20km 25km 

Composite 

risk 

(County) 

Spatial weight matrix = KNN4 

Error 385.8a 360.8a 345.9a 393.8a 391.6a 369.7a 334.5a 385.4a 

Lag 464.9a 450.4a 453a 471a 464.7a 446.3a 440.6a 459.4a 

RError 31.5a 25.5a 19.5a 32a 33.6a 29.9a 18.4a 31.4a 

RLag 110.6a 115a 126.7a 109.2a 106.8a 106.5a 124.5a 105.4a 

Spatial weight matrix = KNN8 

Error 633.4a 587.9a 559.5a 649a 645.1a 601.3a 535.7a 632.7a 

Lag 619.8a 597.4a 604.3a 632.5a 620.3a 591.2a 584.7a 616.4a 

RError 140.2a 121.7a 102.9a 141.7a 146.6a 131.7a 96.7a 137.2a 

RLag 126.6a 131.2a 147.6a 125.3a 121.9a 121.7a 145.8a 120.9a 

Spatial weight matrix = DIS0.5 

Error 973a 897.9a 850.4a 1002.8a 1002.8a 924.4a 816.9a 966.7a 

Lag 47.1a 40.9a 44.2a 48.6a 47a 38.9a 42.6a 48.3a 

RError 942a 870.4a 822.1a 970.8a 971.4a 897.3a 789.7a 935.2a 

RLag 16.1a 13.3a 15.9a 16.6a 15.6a 11.8a 15.4a 16.9a 

Composite 

risk (Non-

WUI) 

Spatial weight matrix = KNN4 

Error 323.1a 318.1a 310.4a 319.4a 318.6a 313.3a 295a 311.1a 

Lag 353.4a 352.5a 353.9a 351.3a 348.1a 348.5a 341.6a 342.4a 

RError 36.1a 34a 30.1a 34.2a 35.5a 33a 27.1a 33.2a 

RLag 66.4a 68.4a 73.6a 66.1a 64.9a 68.3a 73.6a 64.4a 

Spatial weight matrix = KNN8 

Error 564.2a 552.9a 535.6a 557.8a 556.6a 547.3a 506.7a 538.7a 

Lag 509.6a 505.8a 509.8a 508.7a 501a 501.8a 488.4a 493.6a 

RError 140.7a 135.1a 122.6a 134.8a 139.2a 133.4a 113.8a 128.9a 

RLag 86.1a 88a 96.8a 85.6a 83.5a 87.9a 95.5a 83.8a 

Spatial weight matrix = DIS0.5 

Error 1115.4a 1087.1a 1043.5a 1103.3a 1100.7a 1075.2a 982.5a 1050.8a 

Lag 23.6a 22.8a 28.3a 21.5a 21a 22a 27a 21.7a 

RError 1094.6a 1067a 1020.2a 1084a 1081.7a 1055.7a 960.4a 1031.5a 

RLag 2.8* 2.7* 5.1b 2.2 2.1 2.5 4.9b 2.5 

Composite 

risk (WUI) 

Spatial weight matrix = KNN4 

Error 20.6a 17.5a 18.5a 24.8a 23.4a 17.4a 19.2a 25.2a 

Lag 53a 49.1a 52.9a 62a 56.7a 45.1a 53.1a 63a 

RError 1.2 1.7 2 1.1 0.9 1.2 1.7 1.1 

RLag 33.5a 33.2a 36.3a 38.4a 34.1a 28.9a 35.6a 38.9a 

Spatial weight matrix = KNN8 

Error 20.8a 17.4a 18.7a 29.3a 25.8a 17.5a 20.1a 29.9a 

Lag 59.5a 53.6a 60a 74.7a 64.8a 48.6a 61a 76.3a 

RError 0.4 0.6 0.9 0.09 0.07 0.3 0.6 0.1 

RLag 39.1a 36.9a 42.2a 45.5a 39a 31.4a 41.5a 46.5a 

Spatial weight matrix = DIS0.5 

Error 36.7a 33.8a 33.7a 45a 41.2a 35.1a 35.7a 45.6a 

Lag 15.2a 12.2a 13.8a 16.6a 14.1a 9.7a 12.9a 16.6a 

RError 32.8a 30.4a 30a 40.4a 37.2a 32.1a 32.1a 41a 

RLag 11.3a 8.8a 10.2a 12a 10.1a 6.6** 9.3a 12a 
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Table 6.8: LM test results for the aggregate fire measure (Data = Estimated sale prices, 

Functional form = Semi-log) (cont’d) 

a significant at 1% level. 
b significant at 5% level. 
c significant at 10% level. 
  

Wildfire 

risk data 

LM test Past fire event/occurrence 

 7-yr time window 15-yr time window 

 10km 15km 20km 25km 10km 15km 20km 25km 

WUI risk Spatial weight matrix = KNN4 

 Error 18.9a 17.2a 17.4a 21.8a 20.2a 16.5a 17.3a 22.4a 

 Lag 52.3a 50.1a 53.2a 59.4a 54.4a 46.6a 53.5a 59.7a 

 RError 1.9 2.3 2.8c 2 1.8 2 2.9c 1.8 

 RLag 35.3a 35.2a 38.6a 39.7a 36a 32a 39.2a 39.2a 

 Spatial weight matrix = KNN8 

 Error 18.2a 16.8a 17.1a 24.3a 20.8a 16.2a 17.3a 25.2a 

 Lag 58.4a 54.9a 60.5a 70.4a 61.6a 50.2a 61.4a 71.1a 

 RError 1.1 1.1 1.8 0.7 0.8 0.9 1.8 0.6 

 RLag 41.3a 39.2a 45.2a 46.8a 41.6a 35a 45.9a 46.5a 

 Spatial weight matrix = DIS0.5 

 Error 33.5a 32.4a 31.5a 39.5a 35.9a 32.9a 32.1a 40.3a 

 Lag 14.1a 11.7a 13a 14.9a 12.6a 9.1a 11.9a 15a 

 RError 29.9a 29.2a 28.1a 35.4a 32.4a 30a 28.8a 36.2a 

 RLag 10.4a 8.5a 9.6a 10.8a 9a 6.2b 8.6a 10.9a 

House risk Spatial weight matrix = KNN4 

 Error 0.1 0.6 0.05 0.8 0.3 0.4 0.4 0.09 

 Lag 1.2 0.4 2.3 1.7 1.2 0.1 0.5 0.3 

 RError 0.5 3.9b 2.3 0.04 0.3 0.4 3.1c 0.03 

 RLag 1.5 3.7c 4.5b 1 1.2 0.06 3.2c 0.2 

 Spatial weight matrix = KNN8 

 Error 0.2 1.1 0.01 0.9 0.6 1.6 1.3 0.001 

 Lag 2.6 0.8 3.8c 4.3b 2.7 0.01 0.9 1.2 

 RError 1.7 7.4a 5.1b 1 0.5 3.6c 8.1a 1.7 

 RLag 4.1b 7.1a 8.9a 4.4b 2.6 2 7.7a 2.9c 

 Spatial weight matrix = DIS0.5 

 Error 0.04 0.4 0.02 0.05 0.1 0.1 0.4 0.008 

 Lag 0.04 0.2 0.2 1 0.07 0.08 0.2 0.9 

 RError 0.03 0.4 0.04 0.02 0.08 0.2 0.5 0.03 

 RLag 0.04 0.2 0.2 0.9 0.06 0.1 0.3 0.9 
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Table 6.9: LM test results for the aggregate fire measure (Data = Estimated sale prices, 

Functional form = Double-log) 

Wildfire 

risk data 

LM 

test 

Past fire event/occurrence 

 7-yr time window 15-yr time window 

 10km 15km 20km 25km 10km 15km 20km 25km 

Composite 

risk 

(County) 

Spatial weight matrix = KNN4 

Error 426.2a 395.6a 381.4a 435.5a 432.6a 402.8a 368.8a 420.7a 

Lag 409.4a 386.6a 388.1a 422.5a 416.3a 384.4a 380.5a 407.6a 

RError 68.5a 60.8a 52.5a 67.4a 68.7a 65.2a 48.5a 64.9a 

RLag 51.8a 51.8a 59.2a 54.4a 52.4a 46.9a 60.2a 51.8a 

Spatial weight matrix = KNN8 

Error 690.5a 635.9a 608.7a 709.2a 704.6a 645.6a 582.3a 680.8a 

Lag 536.4a 501.6a 506.7a 557.2a 547.3a 499.4a 494.7a 535.3a 

RError 212.1a 191.3a 169.7a 212.5a 215.4a 198.1a 157a 202.7a 

RLag 58a 57a 67.7a 60.5a 58.1a 51.8a 69.4a 57.3a 

Spatial weight matrix = DIS0.5 

Error 1153.9a 1060.1a 1009.4a 1188.2a 1189.3a 1083.4a 972.4a 1126.6a 

Lag 41.8a 35.5a 40.8a 43.6a 39.9a 32a 38.7a 42.6a 

RError 1123.6a 1033.7a 981.1a 1156.8a 1159.6a 1058.5a 945.4a 1096.1a 

RLag 11.5a 9.1a 12.5a 12.1a 10.2a 7.1a 11.6a 12.1a 

Composite 

risk 

 (Non-

WUI) 

Spatial weight matrix = KNN4 

Error 345.8a 339.5a 328.7a 341.2a 336.7a 334.5a 308.4a 330.3a 

Lag 289.3a 286.8a 283.4a 289.5a 286.3a 288.8a 271.9a 281.3a 

RError 75.4a 72.3a 67.1a 71.8a 70.6a 67.5a 59.6a 68.8a 

RLag 18.9a 19.7a 21.8a 20.1a 20.2a 21.9a 23.1a 19.9a 

Spatial weight matrix = KNN8 

Error 608.8a 593.9a 570.4a 600.6a 593.5a 588.1a 533.2a 577.7a 

Lag 418.1a 411.7a 408.6a 419a 412.2a 416.5a 388.7a 404.9a 

RError 215.9a 208a 191.8a 208a 207.3a 199.9a 175.2a 198.8a 

RLag 25.1a 25.8a 30.1a 26.5a 26a 28.3a 30.7a 26a 

Spatial weight matrix = DIS0.5 

Error 1290a 1248.3a 1185.3a 1271.8a 1259a 1238.2a 1108.3a 1210.8a 

Lag 16.2a 15.8a 20.3a 14.8a 13.9a 14.8a 18.8a 14.6a 

RError 1274.3a 1233a 1166.6a 1257.3a 1245.3a 1223.7a 1091.1a 1196.5a 

RLag 0.5 0.5 1.7 0.3 0.2 0.3 1.5 0.3 

Composite 

risk (WUI) 

Spatial weight matrix = KNN4 

Error 29.3a 27.6a 27.8a 34.4a 33.3a 27a 28.9a 34.6a 

Lag 60.1a 57.7a 60.9a 70.1a 64.4a 54.3a 61.6a 70.9a 

RError 0.1 0.2 0.4 0.1 0.03 0.1 0.3 0.2 

RLag 30.9a 30.3a 33.5a 35.7a 31.1a 27.4a 33a 36.5a 

Spatial weight matrix = KNN8 

Error 26.8a 26a 26.4a 37.2a 33.6a 25.8a 28.3a 37.3a 

Lag 64a 60.7a 66.2a 80.7a 70.3a 56.6a 68a 81.9a 

RError 0.01 0.002 0.08 0.06 0.1 0.003 0.02 0.04 

RLag 37.2a 34.7a 39.9a 43.6a 36.7a 30.8a 39.7a 44.7a 

Spatial weight matrix = DIS0.5 

Error 53.7a 53.1a 51a 62.6a 60.3a 53.3a 53.4a 62.5a 

Lag 8.1a 6b 7.2a 10.3a 7.5a 4.8b 7a 10.6a 

RError 50.5a 50.4a 48.1a 58.6a 57.1a 50.9a 50.5a 58.6a 

RLag 4.9b 3.3c 4.3b 6.4b 4.3b 2.4 4.1b 6.6b 
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Table 6.9: LM test results for the aggregate fire measure (Data = Estimated sale prices, 

Functional form = Double-log) (cont’d) 

a significant at 1% level. 
b significant at 5% level. 
c significant at 10% level. 

  

Wildfire 

risk 

LM test Past fire event/occurrence 

  7-yr time window 15-yr time window 

  10km 15km 20km 25km 10km 15km 20km 25km 

WUI risk Spatial weight matrix = KNN4 

Error 28.1a 27.4a 26.4a 31.5a 30.1a 26.1a 26.8a 32a 

Lag 60.7a 59.6a 62a 68.7a 63.2a 56a 62.7a 69a 

RError 0.4 0.4 0.9 0.5 0.3 0.4 0.8 0.4 

RLag 33a 32.6a 36.5a 37.7a 33.4a 30.3a 36.7a 37.5a 

Spatial weight matrix = KNN8 

Error 25a 25.5a 24.3a 32.5a 28.7a 24.2a 25.2a 33.1a 

Lag 65a 63.2a 68a 78.6a 68.8a 58.6a 69.4a 78.9a 

RError 0.2 0.1 0.5 0.07 0.06 0.1 0.5 0.05 

RLag 40.3a 37.8a 44.3a 46.1a 40.1a 34.4a 44.6a 45.9a 

Spatial weight matrix = DIS0.5 

Error 50.9a 51.6a 47.9a 56.7a 54.5a 50.6a 49.1a 57.1a 

Lag 7.5a 5.8b 6.8a 9a 6.6b 4.3b 6.3b 9.3a 

RError 47.9a 49a 45.2a 53.2a 51.6a 48.4a 46.4a 53.5a 

RLag 4.5b 3.2c 4b 5.5b 3.7c 2.1 3.6c 5.7b 

House risk Spatial weight matrix = KNN4 

Error 0.03 1 0.04 0.6 0.1 0.7 0.2 0.04 

Lag 0.9 0.1 2.2 2 0.7 0.2 0.6 0.5 

RError 0.7 3.9b 2.3 0.2 0.3 0.6 2.4 0.3 

RLag 1.6 3c 4.5b 1.6 0.9 0.1 2.8c 0.7 

Spatial weight matrix = KNN8 

Error 0.2 1.3 0.05 1.4 0.5 1.5 0.5 0.06 

Lag 2.3 0.4 3.9b 5.3b 2 0.02 1.2 1.9 

RError 1.4 6.6b 4.6b 0.9 0.4 3.1c 6.3b 1.7 

RLag 3.5c 5.7b 8.4a 4.8b 1.9 1.6 7a 3.5c 

Spatial weight matrix = DIS0.5 

Error 0.01 0.6 0.03 0.07 0.05 0.3 0.3 0.007 

Lag 0.04 0.006 0.002 0.2 0.01 0.07 0.03 0.3 

RError 0.02 0.6 0.03 0.05 0.05 0.2 0.3 0.02 

RLag 0.04 0.0003 0.004 0.2 0.01 0.05 0.02 0.3 
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Table 6.10: The preferred model specification based on LM test results  

Wildfire risk data Weight matrix 

 KNN4 KNN8 DIS0.5 

Composite risk 

covering County or 

Non-WUI area  

Laga for semi-log, 

Error for double-log 

Errorb 

 

Error 

Composite risk 

covering WUI area or 

WUI risk 

Lag Lagc Error 

House level risk OLS for estimated sale 

prices datad, 

Lag for assessed value data 

 

OLS for estimated sale 

prices datae, Lag for 

assessed value data 

 

OLS for estimated 

sale prices data, 

Error for assessed 

value data 
a One exception is the preferred model specification is spatial error model for 

HP_AV&AGG720&COMP_NWUI&KNN4&SEMILOG. 
b The exceptions are the preferred model specification is spatial lag model for 

HP_ESP&AGG715&COMP_CT&KNN8&SEMILOG and 

HP_ESP&AGG720&COMP_CT&KNN8&SEMILOG.  
c The exceptions are the preferred model specification is spatial error model for 

HP_AV&NEAR15&COMP_WUI&KNN8&DOUBLELOG, 

HP_AV&NEAR15&WUIRISK&KNN8&DOUBLELOG,  

HP_AV&AGG710&COM_WUI&KNN8&DOUBLELOG, 

HP_AV&AGG715&COM_WUI&KNN8&DOUBLELOG, 

HP_AV&AGG725&COM_WUI&KNN8&DOUBLELOG, 

HP_AV&AGG1510&COM_WUI&KNN8&DOUBLELOG, 

HP_AV&AGG1515&COM_WUI&KNN8&DOUBLELOG, 

HP_AV&AGG1525&COM_WUI&KNN8&DOUBLELOG, 

HP_AV&AGG715&WUIRISK&KNN8&DOUBLELOG and 

HP_AV&AGG1510&WUIRISK&KNN8&DOUBLELOG and 

HP_AV&AGG1515&WUIRISK&KNN8&DOUBLELOG; 
d One exception is the preferred model specification is spatial error model for 

HP_ESP&NEAR15&HRISK&KNN4&DOUBLELOG. 
e The exceptions are the preferred model specification is spatial lag model for 

HP_ESP&AGG720&HRISK&KNN8&DOUBLELOG and 

HP_ESP&AGG725&HRISK&KNN8&DOUBLELOG; and spatial error model for 

HP_ESP&NEAR15&HRISK&KNN8&SEMILOG and 

HP_ESP&NEAR15&HRISK&KNN8&DOUBLELOG. 
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Table 6.11: Calculation of the marginal implicit price 

Model Type of variable Marginal implicit 

price 

 

Functional form = Semi-log 

OLS/SEM Continuous variable.  

E.g., Dist 
β�̂� ∗ �̅� β�̂� is the estimated 

coefficient on 

continuous variable, 

�̅� is the average 

housing value for the 

sample population. 

 Dummy variable 

E.g., Comp_high and 

Comp_ext 

(𝑒𝛽�̂� − 1) ∗ �̅� β�̂� is the estimated 

coefficient on 

dummy variable 

SLM/GSM Continuous variable  

 

1

(1 − 𝜌)
∗ β�̂� ∗ �̅� 

𝜌 is the coefficient on 

the spatially 

correlated dependent 

variable 

 Dummy variable 

 (𝑒
1

(1−𝜌)
∗𝛽�̂� − 1) ∗ �̅� 

 

Functional form = Double-loga 

OLS/SEM Continuous variable 

that is log-

transformed 

 

β�̂� ∗
�̅�

�̅�
 

�̅� is the average 

characteristics for the 

sample population. 

SLM/GSM Continuous variable 

that is log-

transformed 

 

1

(1 − 𝜌)
∗ β�̂� ∗

�̅�

�̅�
 

 

a For dummy variables and continuous variables that are not log-transformed, the formula 

for calculating the marginal implicit price estimate in double-log models is the same as 

that in the semi-log models. 
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Table 6.12: Hedonic regression results for model 1 with Composite risk (County) 

Variables No spatial OLS SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Constant 6.319 a 

(0.059) 

 6.533a 

(0.067) 

 6.555a 

(0.079) 

 6.452a 

(0.156) 

 

Ln(Area) 0.519a 

(0.006) 

 0.487a 

(0.005) 

 
0.48a 

(0.005) 

 
0.473a 

(0.005) 

 

Ln(Land) 0.03a 

(0.002) 

 0.058a 

(0.002) 

 
0.07a 

(0.002) 

 
0.079a 

(0.003) 

 

Bedroom 0.02a 

(0.002) 

 0.018a 

(0.002) 

 
0.018a 

(0.002) 

 
0.018a 

(0.002) 

 

Bathroom 0.019a 

(0.002) 

 0.018a 

(0.002) 

 
0.018a 

(0.002) 

 
0.018a 

(0.002) 

 

Fireplace 0.086a 

(0.004) 

 0.066a 

(0.003) 

 
0.062a 

(0.003) 

 
0.065a 

(0.003) 

 

Aircond 0.101a 

(0.007) 

 0.078a 

(0.006) 

 
0.072a 

(0.006) 

 
0.073a 

(0.006) 

 

Evapcool -0.014a 

(0.005) 

 0.00002 

(0.005) 

 
0.0004 

(0.005) 

 
-0.002 

(0.005) 

 

Othercool 0.05a 

(0.005) 

 0.044a 

(0.005) 

 
0.041a 

(0.005) 

 
0.047a 

(0.005) 

 

Phycond 0.28a 

(0.002) 

 0.249a 

(0.002) 

 
0.24a 

(0.002) 

 
0.225a 

(0.002) 

 

Highsch 0.655a 

(0.026) 

 0.745a 

(0.037) 

 
0.761a 

(0.046) 

 
0.54a 

(0.062) 

 

Over65 0.579a 

(0.028) 

 0.723a 

(0.041) 

 
0.736a 

(0.049) 

 
0.325a 

(0.064) 

 

White -0.004 

(0.035) 

 -0.032 

(0.049) 

 
-0.037 

(0.059) 

 
0.022 

(0.086) 

 

Ln(Highway) 0.011a 

(0.002) 

 0.011a 

(0.002) 

 
0.013a 

(0.003) 

 
0.016a 

(0.003) 

 

City 0.004a 

(0.002) 

 0.007a 

(0.002) 

 
0.007a 

(0.003) 

 
-0.012a 

(0.004) 

 

Lake -0.018a 

(0.0005) 

 -0.019a 

(0.0007) 

 
-0.02a 

(0.0009) 

 
-0.02a 

(0.002) 

 

Forest -0.015a 

(0.001) 

 -0.018a 

(0.0009) 

 
-0.02a 

(0.001) 

 
-0.023a 

(0.002) 

 

Industry -0.005a 

(0.001) 

 -0.007a 

(0.0009) 

 
-0.008a 

(0.001) 

 
-0.004c 

(0.002) 

 

WUI -0.009 

(0.006) 

-2,931 -0.016b 

(0.008) 

-5,056 -0.019b 

(0.009) 

-5,806 0.04a 

(0.014) 

12,834 

LN(Dist) 0.121a 

(0.012) 

1,881 0.074a 

(0.015) 

1,156 0.06a 

(0.019) 

930 0.113b 

(0.048) 

1,756 
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Table 6.12: Hedonic regression results for model 1 with Composite risk (County) (cont’d) 

Variables No spatial OLS SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Timesincefire -0.005a 

(0.0002) 

-1,495 -0.006a 

(0.0003) 

-1,740 -0.006a 

(0.0004) 

-1,789 -0.004a 

(0.0008) 

-1,248 

Ln(Size) -0.007a 

(0.001) 

-0.35 -0.008a 

(0.002) 

-0.41 -0.008a 

(0.002) 

-0.42 0.011a 

(0.004) 

0.56 

Comp_high 0.041a 

(0.004) 

13,311 0.023a 

(0.004) 

7,275 0.014a 

(0.004) 

4,475 0.014a 

(0.004) 

4,328 

Comp_ext 0.094a 

(0.011) 

31,082 0.028a 

(0.01) 

8,932 0.011 

(0.01) 

3,526 -0.003 

(0.01) 

-975 

Lambda   0.461a 

(0.011) 

 0.541a 

(0.016) 

 0.84a 

(0.06) 

 

Adj. R sqr 0.77       

N 41,004 

Data = Assessed value 

Past wildfire event/occurrence = the nearest fire burned in the last 7 years 

Wildfire risk = Composite risk covering the County 

Functional form = Double-log 
a, b and c denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
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Table 6.13: Hedonic regression results for model 1 with Composite risk (Non-WUI) 

Variables No spatial OLS SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Constant 7.015a 

(0.08) 

 
7.181a 

(0.098)  

7.137a 

(0.117)  

6.294a 

(0.396) 

 

Ln(Area) 0.506a 

(0.008) 

 
0.468a 

(0.006)  

0.463a 

(0.006)  

0.46a 

(0.006) 

 

Ln(Land) 0.026a 

(0.003) 

 
0.052a 

(0.003)  

0.062a 

(0.003)  

0.063a 

(0.003) 

 

Bedroom 0.028a 

(0.003) 

 
0.024a 

(0.002)  

0.023a 

(0.002)  

0.022a 

(0.002) 

 

Bathroom 0.017a 

(0.003) 

 
0.019a 

(0.002)  

0.019a 

(0.002)  

0.019a 

(0.002) 

 

Fireplace 0.075a 

(0.004) 

 
0.058a 

(0.004)  

0.055a 

(0.004)  

0.062a 

(0.004) 

 

Aircond 0.092a 

(0.008) 

 
0.073a 

(0.007)  

0.068a 

(0.007)  

0.072a 

(0.007) 

 

Evapcool -0.021a 

(0.005) 

 
-0.004 

(0.005)  

-0.0037 

(0.005)  

-0.007 

(0.005) 

 

Othercool 0.051a 

(0.005) 

 
0.044a 

(0.005)  

0.041a 

(0.005)  

0.048a 

(0.005) 

 

Phycond 0.241a 

(0.003) 

 
0.228a 

(0.003)  

0.224a 

(0.003)  

0.218a 

(0.003) 

 

Highsch 0.835a 

(0.028) 

 
0.919a 

(0.039)  

0.931a 

(0.048)  

0.465a 

(0.073) 

 

Over65 0.259a 

(0.033) 

 
0.319a 

(0.045)  

0.341a 

(0.055)  

0.07 

(0.077) 

 

White 0.125b 

(0.055) 

 
0.15c 

(0.077)  

0.164c 

(0.093)  

0.635a 

(0.138) 

 

Ln(Highway) 0.009a 

(0.002) 

 
0.009a 

(0.003)  

0.011a 

(0.003)  

0.013a 

(0.004) 

 

City 0.017a 

(0.004) 

 
0.018a 

(0.004)  

0.017a 

(0.005)  

-0.011 

(0.009) 

 

Lake -0.023a 

(0.001) 

 
-0.026a 

(0.001)  

-0.027a 

(0.001)  

-0.02a 

(0.005) 

 

Forest -0.017a 

(0.001) 

 
-0.019a 

(0.001)  

-0.019a 

(0.002)  

-0.021a 

(0.006) 

 

Industry -0.004a 

(0.001) 

 
-0.006a 

(0.002)  

-0.008a 

(0.002)  

-0.01c 

(0.006) 

 

LN(Dist) -0.102a 

(0.018) 

-1,428 
-0.131a 

(0.024) 

-1,838 
-0.125a 

(0.03) 

-1,756 
0.082 

(0.132) 

1,152 

Timesincefire -0.005a 

(0.0003) 

-1,386 
-0.005a 

(0.0004) 

-1,512 
-0.006a 

(0.0005) 

-1,573 
0.00007 

(0.001) 

20 



136 

 

Table 6.13: Hedonic regression results for model 1 with Composite risk (Non-WUI) 

(cont’d)  

Variables No spatial OLS SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Ln(Size) -0.003 

(0.002) 

-0.12 -0.006b 

(0.003) 

-0.25 -0.006c 

(0.003) 

-0.26 0.011c 

(0.006) 

0.49 

Comp_high 0.074a 

(0.005) 

21,481 0.041a 

(0.005) 

11,672 0.027a 

(0.005) 

7,784 0.019a 

(0.005) 

5,467 

Comp_ext 0.13a 

(0.012) 

38,900 0.051a 

(0.011) 

14,726 0.031a 

(0.011) 

8,885 0.006 

(0.011) 

1,627 

Lambda   0.411a 

(0.013) 

 0.539a 

(0.019) 

 0.959a 

(0.151) 

 

Adj. R sqr 0.76       

N 29,509 

Data = Assessed value 

Past wildfire event/occurrence = the nearest fire burned in the last 7 years 

Wildfire risk = Composite risk covering Non-WUI area 

Functional form = Double-log 
a, b and c denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
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Table 6.14: Hedonic regression results for model 1 with Composite risk (WUI) 

Variables No spatial OLS SLM SLM SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Constant 6.34a 

(0.124) 

 3.908a 

(0.158) 

 3.65a 

(0.164) 

 6.414a 

(0.19) 

 

Ln(Area) 0.53a 

(0.011) 

 0.502a 

(0.011) 

 0.503a 

(0.011) 

 0.507a 

(0.009) 

 

Ln(Land) 0.091a 

(0.004) 

 0.07a 

(0.004) 

 0.072a 

(0.004) 

 0.118a 

(0.005) 

 

Bedroom 0.007b 

(0.004) 

 0.01a 

(0.003) 

 0.01a 

(0.003) 

 0.01a 

(0.003) 

 

Bathroom 0.016a 

(0.004) 

 0.017a 

(0.004) 

 0.017a 

(0.004) 

 0.014a 

(0.003) 

 

Fireplace 0.094a 

(0.008) 

 0.082a 

(0.007) 

 0.081a 

(0.007) 

 0.075a 

(0.007) 

 

Aircond 0.092a 

(0.011) 

 0.065a 

(0.011) 

 0.063a 

(0.011) 

 0.075a 

(0.011) 

 

Evapcool 0.016c 

(0.009) 

 0.009 

(0.009) 

 0.011 

(0.009) 

 0.013 

(0.009) 

 

Othercool 0.047a 

(0.009) 

 0.037a 

(0.009) 

 0.037a 

(0.009) 

 0.041a 

(0.009) 

 

Phycond 0.298a 

(0.004) 

 0.238a 

(0.005) 

 0.236a 

(0.005) 

 0.242a 

(0.004) 

 

Highsch -0.296a 

(0.083) 

 -0.259a 

(0.08) 

 -0.27a 

(0.08) 

 -0.213 

(0.148) 

 

Over65 1.721a 

(0.082) 

 0.965a 

(0.081) 

 0.864a 

(0.081) 

 1.897a 

(0.144) 

 

White -0.642a 

(0.058) 

 -0.386a 

(0.055) 

 -0.347a 

(0.056) 

 -0.678a 

(0.102) 

 

Ln(Highway) 0.03a 

(0.003) 

 0.024a 

(0.003) 

 0.024a 

(0.003) 

 0.027a 

(0.006) 

 

City -0.005c 

(0.002) 

 -0.01a 

(0.002) 

 -0.012a 

(0.002) 

 -0.008b 

(0.004) 

 

Lake -0.007a 

(0.001) 

 -0.006a 

(0.0008) 

 -0.007a 

(0.0008) 

 -0.004b 

(0.002) 

 

Forest -0.016a 

(0.001) 

 -0.009a 

(0.001) 

 -0.008a 

(0.001) 

 -0.022a 

(0.003) 

 

Industry -0.001 

(0.001) 

 0.002c 

(0.0009) 

 0.002c 

(0.001) 

 -0.005b 

(0.002) 

 

LN(Dist) 0.216a 

(0.021) 

4,173 0.157a 

(0.02) 

4,018 0.152a 

(0.02) 

3,976 0.215a 

(0.042) 

4,145 

Timesincefire -0.002a 

(0.001) 

-752 -0.0009c 

(0.0005) 

-459 -0.0007 

(0.0005) 

-395 -0.004a 

(0.0009) 

-1,586 
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Table 6.14: Hedonic regression results for model 1 with Composite risk (WUI) (cont’d) 

Variables No spatial OLS SLM SLM SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Ln(Size) -0.022a 

(0.003) 

-1.42 -0.017a 

(0.002) 

-1.45 -0.016a 

(0.002) 

-1.42 -0.013b 

(0.005) 

-0.82 

Comp_high -0.023a 

(0.007) 

-9,097 -0.025a 

(0.007) 

-12,945 -0.026a 

(0.007) 

-14,000 -0.011 

(0.007) 

-4,509 

Comp_ext -0.014 

(0.023) 

-5,553 -0.026 

 (0.021) 

-13,793 -0.033 

 (0.021) 

-17,581 -0.037 

(0.022) 

-14,616 

Spatial 

Coefficient† 

  0.244a 

(0.012) 

 0.264a 

(0.012) 

 0.612a 

(0.067) 

 

Adj. R sqr 0.80       

N 11,495 

Data = Assessed value 

Past wildfire event/occurrence = the nearest fire burned in the last 7 years 

Wildfire risk = Composite risk covering WUI area 

Functional form = Double-log 
a, b and c denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
† If the preferred alternative is spatial lag model, then spatial correlation coefficient is rho. If it is spatial 

error model, then spatial correlation coefficient is lambda.  
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Table 6.15: Hedonic regression results for model 1 with WUI risk 

Variables No spatial OLS SLM SLM SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Constant 6.244a 

(0.124) 

 3.836a 

(0.156) 

 3.552a 

(0.161) 

 6.408a 

(0.185) 

 

Ln(Area) 0.533a 

(0.011) 

 0.506a 

(0.011) 

 0.506a 

(0.011) 

 0.507a 

(0.009) 

 

Ln(Land) 0.095a 

(0.004) 

 0.073a 

(0.004) 

 0.074a 

(0.004) 

 0.119a 

(0.004) 

 

Bedroom 0.008b 

(0.003) 

 0.011a 

(0.003) 

 0.01a 

(0.003) 

 0.01a 

(0.003) 

 

Bathroom 0.014a 

(0.004) 

 0.016a 

(0.004) 

 0.016a 

(0.004) 

 0.014a 

(0.003) 

 

Fireplace 0.094a 

(0.008) 

 0.082a 

(0.007) 

 0.081a 

(0.007) 

 0.076a 

(0.007) 

 

Aircond 0.101a 

(0.011) 

 0.073a 

(0.011) 

 0.071a 

(0.011) 

 0.076a 

(0.011) 

 

Evapcool 0.017c 

(0.009) 

 0.011 

(0.009) 

 0.012 

(0.009) 

 0.014 

(0.009) 

 

Othercool 0.053a 

(0.009) 

 0.041a 

(0.009) 

 0.041a 

(0.009) 

 0.042a 

(0.009) 

 

Phycond 0.294a 

(0.004) 

 0.236a 

(0.005) 

 0.234a 

(0.005) 

 0.243a 

(0.004) 

 

Highsch -0.15c 

(0.084) 

 -0.165b 

(0.081) 

 -0.181b 

(0.081) 

 -0.126 

(0.145) 

 

Over65 1.682a 

(0.086) 

 0.977a 

(0.084) 

 0.876a 

(0.085) 

 1.848a 

(0.145) 

 

White -0.545a 

(0.059) 

 -0.324a 

(0.056) 

 -0.287a 

(0.057) 

 -0.613a 

(0.1) 

 

Ln(Highway) 0.021a 

(0.003) 

 0.017a 

(0.003) 

 0.017a 

(0.003) 

 0.022a 

(0.005) 

 

City 0.003 

(0.003) 

 -0.003 

(0.002) 

 -0.005c 

(0.003) 

 -0.002 

(0.004) 

 

Lake -0.009a 

(0.001) 

 -0.008a 

(0.0009) 

 -0.009a 

0.0009) 

 -0.005a 

(0.002) 

 

Forest -0.017a 

(0.002) 

 -0.01a 

(0.001) 

 -0.009a 

(0.002) 

 -0.023a 

(0.003) 

 

Industry -0.001 

(0.001) 

 0.0002 

(0.001) 

 0.0001 

(0.001) 

 -0.005b 

(0.002) 

 

Ln(Dist) 0.167a 

(0.022) 

3,229 0.13a 

(0.021) 

3,329 0.127a 

(0.021) 

3,336 0.173a 

(0.042) 

3,346 

Timesincefire -0.004a 

(0.001) 

-1,475 -0.002a 

(0.0005) 

-1,219 -0.002a 

(0.0005) 

-1,157 -0.005a 

(0.0009) 

-2,145 
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Table 6.15: Hedonic regression results for model 1 with WUI risk (cont’d) 

Variables No spatial OLS SLM SLM SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Ln(Size) -0.025a 

(0.003) 

-1.66 -0.02a 

(0.002) 

-1.71 -0.019a 

(0.002) 

-1.68 -0.016a 

(0.005) 

-1.07 

WUI_high 0.084a 

(0.012) 

35,251 0.08a 

(0.011) 

45,053 0.082a 

(0.011) 

47,492 0.067a 

(0.02) 

27,783 

WUI_vhigh -0.115a 

(0.02) 

-43,845 -0.063a 

(0.019) 

-32,533 -0.057a 

(0.019) 

-30,083 -0.118a 

(0.034) 

-44,878 

WUI_ext 0.006 

(0.024) 

2,564 -0.01 

(0.022) 

-5,143 -0.016 

(0.022) 

-8,571 0.005 

(0.045) 

1,925 

Spatial 

Coefficient† 

  0.243a 

(0.011) 

 0.265a 

(0.012) 

 0.594a 

(0.071) 

 

Adj. R sqr 0.81       

N 11,495 

Data = Assessed value 

Past wildfire event/occurrence = the nearest fire burned in the last 7 years 

Wildfire risk = WUI risk 

Functional form = Double-log 
a, b and c denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
† If the preferred alternative is spatial lag model, then spatial correlation coefficient is rho. If it is spatial 

error model, then spatial correlation coefficient is lambda. 
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Table 6.16: Hedonic regression results for model 1 with House level risk 

Variables No spatial OLS SLM SLM SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Constant 5.522a 

(0.438) 

 3.231a 

(0.514) 

 2.491a 

(0.519) 

 5.606a 

(0.52) 

 

Ln(Area) 0.461a 

(0.03) 

 0.451a 

(0.028) 

 0.449a 

(0.028) 

 0.45a 

(0.025) 

 

Ln(Land) 0.125a 

(0.015) 

 0.107a 

(0.015) 

 0.105a 

(0.015) 

 0.124a 

(0.014) 

 

Bedroom -0.007 

(0.01) 

 -0.006 

(0.01) 

 -0.005 

(0.009) 

 -0.003 

(0.008) 

 

Bathroom 0.021c 

(0.012) 

 0.02c 

(0.011) 

 0.022b 

(0.011) 

 0.019b 

(0.01) 

 

Fireplace 0.111a 

(0.023) 

 0.103a 

(0.022) 

 0.101a 

(0.022) 

 0.113a 

(0.021) 

 

Aircond 0.151a 

(0.04) 

 0.121a 

(0.039) 

 0.114a 

(0.037) 

 0.129a 

(0.041) 

 

Evapcool 0.059c 

(0.035) 

 0.065b 

(0.033) 

 0.058c 

(0.033) 

 0.053 

(0.034) 

 

Othercool 0.029 

(0.031) 

 0.049c 

(0.03) 

 0.052c 

(0.029) 

 0.034 

(0.029) 

 

Phycond 0.286a 

(0.011) 

 0.245a 

(0.012) 

 0.232a 

(0.012) 

 0.255a 

(0.012) 

 

Highsch -0.724a 

(0.264) 

 -0.412 

(0.269) 

 -0.339 

(0.264) 

 -0.636c 

(0.364) 

 

Over65 0.522b 

(0.264) 

 0.119 

(0.26) 

 -0.021 

(0.258) 

 0.664c 

(0.393) 

 

White 0.425 

(0.286) 

 0.281 

(0.286) 

 0.26 

(0.286) 

 0.344 

(0.338) 

 

Ln(Highway) 0.029b 

(0.014) 

 0.019 

(0.014) 

 0.015 

(0.013) 

 0.028 

(0.018) 

 

City -0.002 

(0.008) 

 -0.003 

(0.008) 

 -0.004 

(0.007) 

 -0.003 

(0.012) 

 

Lake -0.005 

(0.004) 

 -0.004 

(0.003) 

 -0.004 

(0.003) 

 -0.005 

(0.005) 

 

Forest -0.049a 

(0.005) 

 -0.034a 

(0.005) 

 -0.03a 

(0.005) 

 -0.052a 

(0.006) 

 

Industry 0.003 

(0.003) 

 0.004 

(0.003) 

 0.004 

(0.003) 

 0.003 

(0.005) 

 

WUI 0.137a 

(0.035) 

46,323 0.1a 

(0.033) 

43,074 0.092a 

(0.032) 

43,607 0.119a 

(0.042) 

39,866 

Ln(Dist) 0.428a 

(0.062) 

6,654 0.329a 

(0.059) 

6,586 0.301a 

(0.059) 

6,599 0.46a 

(0.093) 

7,158 
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Table 6.16: Hedonic regression results for model 1 with House level risk (cont’d) 

Variables No spatial OLS SLM SLM SEM 

KNN4 KNN8 DIS0.5 

  MIP($)  MIP($)  MIP($)  MIP($) 

Timesincefire -0.009a 

(0.002) 

-2,898 -0.005a 

(0.002) 

-2,190 -0.004b 

(0.002) 

-1,847 -0.01a 

(0.003) 

-3,244 

Ln(Size) 0.043a 

(0.009) 

2.14 0.033a 

(0.009) 

2.13 0.031a 

(0.009) 

2.22 0.049a 

(0.014) 

2.47 

Hriskscore -0.002a 

(0.001) 

-692 -0.002a 

(0.0006) 

-706 -0.002a 

(0.0006) 

-778 -0.002a 

(0.0006) 

-648 

Spatial 

Coefficient† 

  0.223a 

(0.029) 

 0.291a 

(0.03) 

 0.443a 

(0.135) 

 

Adj. R sqr 0.78       

N 1,293 

Data = Assessed value 

Past wildfire event/occurrence = the nearest fire burned in the last 7 years 

Wildfire risk = House level risk 

Functional form = Double-log 
a, b and c denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
† If the preferred alternative is spatial lag model, then spatial correlation coefficient is rho. If it is spatial 

error model, then spatial correlation coefficient is lambda. 
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Table 6.17: Hedonic regression results (OLS) for model 2 with Composite risk (County) 

Variables No spatial OLS 

10km 15km 20km 25km 

Constant 11.4*** 11.4*** 11.5*** 11.3***  
(0.058) (0.059) (0.058) (0.057) 

Area 2.4x10-4*** 2.4x10-4*** 2.5x10-4*** 2.4x10-4***  
(5.84x10-6) (5.85x10-6) (5.84x10-6) (5.81x10-6) 

Land 2.4x10-8*** 2.4x10-8*** 2.4x10-8*** 2.4x10-8***  
(1.8x10-9) (1.97x10-9) (1.96x10-9) (1.68x10-9) 

Yr2004 0.012 0.006 0.007 0.03**  
(0.0132) (0.0133) (0.013) (0.0128) 

Yr2005 -0.032** -0.038*** -0.035*** -0.013  
(0.0132) (0.0134) (0.013) (0.0129) 

Yr2006 -0.066*** -0.08*** -0.089*** -0.047***  
(0.013) (0.014) (0.014) (0.013) 

Yr2007 -0.086*** -0.1*** -0.11*** -0.067***  
(0.013) (0.014) (0.014) (0.013) 

Yr2008 -0.21*** -0.23*** -0.24*** -0.19***  
(0.014) (0.014) (0.015) (0.015) 

Yr2009 -0.23*** -0.25*** -0.26*** -0.21***  
(0.014) (0.014) (0.015) (0.015) 

Yr2010 -0.23*** -0.25*** -0.27*** -0.21***  
(0.014) (0.015) (0.015) (0.015) 

Yr2011 -0.23*** -0.24*** -0.26*** -0.21***  
(0.014) (0.015) (0.015) (0.016) 

Yr2012 -0.23*** -0.24*** -0.26*** -0.21***  
(0.013) (0.014) (0.014) (0.014) 

Yr2013 -0.23*** -0.24*** -0.25*** -0.2***  
(0.014) (0.014) (0.014) (0.014) 

Bedroom 0.018*** 0.017*** 0.017*** 0.018***  
(0.004) (0.004) (0.004) (0.004) 

Bathroom 0.004 0.003 0.004 0.004  
(0.004) (0.004) (0.004) (0.004) 

Fireplace 0.069*** 0.068*** 0.067*** 0.07***  
(0.006) (0.006) (0.006) (0.006) 

Aircond 0.013 0.011 0.01 0.014  
(0.01) (0.01) (0.01) (0.01) 

Evapcool -0.023*** -0.023*** -0.026*** -0.021***  
(0.008) (0.008) (0.008) (0.008) 

Othercool 0.011 0.0086 0.0064 0.012  
(0.008) (0.008) (0.008) (0.008) 
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Table 6.17: Hedonic regression results (OLS) for model 2 with Composite risk (County) 

(cont’d) 

Variables No spatial OLS 

10km 15km 20km 25km 

Phycond 0.14*** 0.13*** 0.14*** 0.14***  
(0.004) (0.004) (0.004) (0.004) 

Highsch 0.27*** 0.28*** 0.25*** 0.26***  
(0.038) (0.038) (0.038) (0.038) 

Over65 0.5*** 0.5*** 0.54*** 0.47***  
(0.052) (0.052) (0.052) (0.052) 

White 0.13* 0.052 0.062 0.17**  
(0.075) (0.076) (0.075) (0.074) 

Highway 0.007*** 0.007*** 0.006** 0.006***  
(0.002) (0.002) (0.002) (0.002) 

City 0.006** 0.004 0.003 0.006**  
(0.003) (0.003) (0.003) (0.003) 

Lake -0.015*** -0.015*** -0.015*** -0.016***  
(0.0007) (0.0007) (0.0007) (0.0006) 

Forest -0.012*** -0.012*** -0.011*** -0.011***  
(0.001) (0.001) (0.001) (0.001) 

Industry 0.003*** 0.005*** 0.007*** 0.003**  
(0.001) (0.001) (0.001) (0.001) 

WUI 0.048*** 0.053*** 0.05*** 0.054***  
(0.01) (0.01) (0.01) (0.01) 

Firenum -0.047*** -0.034*** -0.034*** -0.0027  
(0.01) (0.006) (0.004) (0.003) 

Avgsize -2.6x10-7 -4.3x10-6*** -9.4x10-7 3.2x10-7  
(2.23x10-6) (1.54x10-6) (6.64x10-7) (3.34x10-7) 

Comp_high 0.021*** 0.021*** 0.024*** 0.02***  
(0.006) (0.006) (0.006) (0.006) 

Comp_ext 0.044* 0.038 0.045* 0.043* 

  (0.023) (0.023) (0.023) (0.023) 

Adj. R sqr 0.695 0.696 0.697 0.694 

N 10,639    

Data = Estimated sale prices 

Past wildfire event/occurrence =  the aggregate fire burned in the last 7 years 

Wildfire risk = Composite risk covering the County 

Functional form = Semi-log 

***, ** and * denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
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Table 6.18: Hedonic regression results (Spatial) for model 2 with Composite risk (County) 

Variables Spatial error model with DIS0.5 weight matrix  

 10km 15km 20km 25km 

Constant 11.414*** 

(0.088) 

11.45*** 

(0.088) 

11.472*** 

(0.087) 

11.41*** 

(0.088) 

Area 2.3x10-4*** 

(4.4x10-6) 

2.3x10-4*** 

(4.4x10-6) 

2.3x10-4*** 

(4.4x10-6) 

2.3x10-4*** 

(4.4x10-6) 

Land 2.3x10-8*** 

(3.6x10-9) 

2.4x10-8*** 

(3.6x10-9) 

2.3x10-8*** 

(3.6x10-9) 

2.3x10-8*** 

(3.6x10-9) 

Yr2004 0.015 

(0.013) 

0.011 

(0.013) 

0.011 

(0.013) 

0.032*** 

(0.012) 

Yr2005 -0.02 

(0.013) 

-0.025** 

(0.013) 

-0.024* 

(0.012) 

-0.003 

(0.012) 

Yr2006 -0.056*** 

(0.013) 

-0.069*** 

(0.014) 

-0.079*** 

(0.014) 

-0.039*** 

(0.013) 

Yr2007 -0.074*** 

(0.013) 

-0.087*** 

(0.014) 

-0.097*** 

(0.014) 

-0.056*** 

(0.013) 

Yr2008 -0.203*** 

(0.014) 

-0.217*** 

(0.015) 

-0.231*** 

(0.015) 

-0.187*** 

(0.015) 

Yr2009 -0.224*** 

(0.014) 

-0.238*** 

(0.015) 

-0.252*** 

(0.015) 

-0.208*** 

(0.015) 

Yr2010 -0.224*** 

(0.015) 

-0.239*** 

(0.016) 

-0.255*** 

(0.016) 

-0.205*** 

(0.016) 

Yr2011 -0.221*** 

(0.015) 

-0.236*** 

(0.016) 

-0.256*** 

(0.016) 

-0.204*** 

(0.017) 

Yr2012 -0.224*** 

(0.014) 

-0.237*** 

(0.016) 

-0.252*** 

(0.015) 

-0.204*** 

(0.015) 

Yr2013 -0.222*** 

(0.014) 

-0.235*** 

(0.016) 

-0.247*** 

(0.015) 

-0.2*** 

(0.014) 

Bedroom 0.018*** 

(0.004) 

0.018*** 

(0.004) 

0.017*** 

(0.004) 

0.018*** 

(0.004) 

Bathroom 0.005 

(0.004) 

0.005 

(0.004) 

0.005 

(0.004) 

0.005 

(0.004) 

Fireplace 0.059*** 

(0.006) 

0.059*** 

(0.006) 

0.058*** 

(0.006) 

0.059*** 

(0.006) 

Aircond 0.017* 

(0.01) 

0.016* 

(0.01) 

0.016* 

(0.01) 

0.017* 

(0.01) 

Evapcool -0.003 

(0.008) 

-0.003 

(0.008) 

-0.004 

(0.008) 

-0.002 

(0.008) 

Othercool 0.022*** 

(0.008) 

0.022*** 

(0.008) 

0.021*** 

(0.008) 

0.023*** 

(0.008) 
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Table 6.18: Hedonic regression results (Spatial) for model 2 with Composite risk (County) 

(cont’d) 

Variables Spatial error model with DIS0.5 weight matrix  

 10km 15km 20km 25km 

Phycond 0.126*** 

(0.004) 

0.125*** 

(0.004) 

0.127*** 

(0.004) 

0.127*** 

(0.004) 

Highsch 0.362*** 

(0.065) 

0.359*** 

(0.064) 

0.34*** 

(0.064) 

0.35*** 

(0.065) 

Over65 0.51*** 

(0.075) 

0.491*** 

(0.074) 

0.512*** 

(0.074) 

0.494*** 

(0.076) 

White 0.04 

(0.109) 

0.023 

(0.109) 

0.022 

(0.107) 

0.046 

(0.109) 

Highway 0.008** 

(0.004) 

0.008** 

(0.004) 

0.007* 

(0.004) 

0.007* 

(0.004) 

City 0.008** 

(0.004) 

0.008* 

(0.004) 

0.006 

(0.004) 

0.009** 

(0.004) 

Lake -0.015*** 

(0.001) 

-0.015*** 

(0.001) 

-0.015*** 

(0.001) 

-0.016*** 

(0.001) 

Forest -0.013*** 

(0.002) 

-0.014*** 

(0.002) 

-0.013*** 

(0.002) 

-0.013*** 

(0.002) 

Industry 0.003 

(0.002) 

0.004** 

(0.002) 

0.006*** 

(0.002) 

0.003 

(0.002) 

WUI 0.059*** 

(0.015) 

0.063*** 

(0.015) 

0.062*** 

(0.014) 

0.064*** 

(0.015) 

Firenum -0.043*** 

(0.01) 

-0.031*** 

(0.007) 

-0.031*** 

(0.005) 

-0.003 

(0.003) 

Avgsize 2.4x10-6 

(4.6x10-6) 

-7.x10-7 

(1.5x10-6) 

9.3x10-7 

(7.1x10-7) 

-9.4x10-8 

(3.9x10-7) 

Comp_high 0.026*** 

(0.006) 

0.027*** 

(0.006) 

0.028*** 

(0.006) 

0.026*** 

(0.006) 

Comp_ext 0.025 

(0.02) 

0.024 

(0.02) 

0.028 

(0.02) 

0.026 

(0.02) 

Lambda 0.476*** 

(0.083) 

0.468*** 

(0.085) 

0.462*** 

(0.086) 

0.479*** 

(0.083) 

N 10,639 

Data = Estimated sale prices  

Past wildfire event/occurrence = the aggregate fire burned in the last 7 years  

Wildfire risk = Composite risk covering the County  

Functional form = Semi-log  

***, ** and * denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
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Table 6.19: Hedonic regression results (OLS) for model 2 with WUI risk 

Variables No spatial OLS 

10km 15km 20km 25km 

Constant 11.5*** 11.6*** 11.6*** 11.4***  
(0.15) (0.15) (0.16) (0.15) 

Area 2.1x10-4*** 2.1x10-4*** 2.1x10-4*** 2.1x10-4***  
(1.1x10-5) (1.1x10-5) (1.1x10-5) (1.1x10-5) 

Land 9.2x10-8* 9.3x10-8** 9x10-8* 7.3x10-8  
(4.8x10-8) (4.7x10-8) (4.7x10-8) (4.6x10-8) 

Yr2004 -0.012 -0.034 -0.026 -0.013  
(0.027) (0.028) (0.028) (0.028) 

Yr2005 -0.058** -0.08*** -0.069*** -0.058**  
(0.025) (0.026) (0.026) (0.026) 

Yr2006 -0.11*** -0.14*** -0.14*** -0.12***  
(0.027) (0.028) (0.029) (0.029) 

Yr2007 -0.11*** -0.14*** -0.14*** -0.12***  
(0.027) (0.028) (0.029) (0.028) 

Yr2008 -0.21*** -0.24*** -0.25*** -0.22***  
(0.028) (0.03) (0.031) (0.031) 

Yr2009 -0.23*** -0.26*** -0.27*** -0.24***  
(0.028) (0.029) (0.031) (0.031) 

Yr2010 -0.21*** -0.24*** -0.24*** -0.21***  
(0.028) (0.03) (0.032) (0.033) 

Yr2011 -0.23*** -0.27*** -0.27*** -0.24***  
(0.026) (0.029) (0.031) (0.032) 

Yr2012 -0.22*** -0.25*** -0.25*** -0.22***  
(0.025) (0.027) (0.029) (0.031) 

Yr2013 -0.21*** -0.24*** -0.24*** -0.21***  
(0.026) (0.029) (0.03) (0.031) 

Bedroom 0.005 0.004 0.005 0.004  
(0.008) (0.008) (0.008) (0.008) 

Bathroom 0.011 0.011 0.011 0.011  
(0.008) (0.008) (0.008) (0.008) 

Fireplace 0.052*** 0.049*** 0.05*** 0.052***  
(0.014) (0.014) (0.014) (0.014) 

Aircond 0.029 0.027 0.028 0.032  
(0.022) (0.022) (0.022) (0.022) 

Evapcool -0.0002 -0.003 -0.004 -0.0008  
(0.017) (0.017) (0.017) (0.017) 

Othercool 0.026 0.023 0.02 0.026  
(0.018) (0.018) (0.018) (0.018) 
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Table 6.19: Hedonic regression results (OLS) for model 2 with WUI risk (cont’d) 

Variables No spatial OLS 

10km 15km 20km 25km 

Phycond 0.16*** 0.16*** 0.16*** 0.16***  
(0.009) (0.009) (0.009) (0.009) 

Highsch 0.017 0.07 0.012 0.0024  
(0.16) (0.16) (0.16) (0.16) 

Over65 0.12 0.14 0.27* 0.19  
(0.15) (0.15) (0.16) (0.16) 

White 0.26** 0.12 0.13 0.28**  
(0.12) (0.13) (0.13) (0.13) 

Highway 0.009** 0.009** 0.007* 0.009**  
(0.003) (0.003) (0.004) (0.004) 

City 0.02*** 0.018*** 0.02*** 0.022***  
(0.005) (0.005) (0.005) (0.005) 

Lake -0.01*** -0.011*** -0.011*** -0.01***  
(0.001) (0.001) (0.001) (0.001) 

Forest -0.008*** -0.01*** -0.007*** -0.006**  
(0.002) (0.002) (0.002) (0.002) 

Industry 0.008*** 0.01*** 0.011*** 0.011***  
(0.002) (0.002) (0.002) (0.002) 

Firenum -0.081*** -0.045*** -0.025*** -0.006  
(0.022) (0.01) (0.007) (0.006) 

Avgsize 4.7x10-6 -3x10-6 -1.5x10-6* -2.3x10-7 

 (5.5x10-6) (2.2x10-6) (8x10-7) (5.7x10-7) 

WUI_high 0.001 0.004 0.008 -0.002  
(0.022) (0.022) (0.023) (0.023) 

WUI_vhigh -0.07 -0.04 -0.045 -0.09**  
(0.044) (0.044) (0.046) (0.044) 

WUI_ext 0.0092 -0.026 0.016 0.017 

  (0.054) (0.054) (0.054) (0.054) 

Adj. R sqr 0.678 0.679 0.678 0.676 

N 2,529    

Data = Estimated sale prices 

Past wildfire event/occurrence =  the aggregate fire burned in the last 7 years 

Wildfire risk = WUI risk 

Functional form = Semi-log 

***, ** and * denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
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Table 6.20: Hedonic regression results (Spatial) for model 2 with WUI risk 

Variables Spatial error model with DIS0.5 weight matrix  

 10km 15km 20km 25km 

Constant 11.539*** 

(0.165) 

11.666*** 

(0.169) 

11.636*** 

(0.17) 

11.509*** 

(0.171) 

Area 2x10-4*** 

 (8.0x10-6) 

2x10-4*** 

(8.0x10-6) 

2x10-4*** 

(8.0x10-6) 

2x10-4*** 

(8.1x10-6) 

Land 9.4x10-8*** 

(3.5x10-8) 

9.7x10-8*** 

(3.4x10-8) 

9.2x10-8*** 

(3.4x10-8) 

8.1x10-8** 

(3.5x10-8) 

Yr2004 -0.012 

(0.028) 

-0.033 

(0.028) 

-0.023 

(0.028) 

-0.011 

(0.028) 

Yr2005 -0.055** 

(0.025) 

-0.076*** 

(0.026) 

-0.065** 

(0.025) 

-0.054** 

(0.025) 

Yr2006 -0.111*** 

(0.026) 

-0.138*** 

(0.027) 

-0.135*** 

(0.027) 

-0.113*** 

(0.028) 

Yr2007 -0.115*** 

(0.026) 

-0.144*** 

(0.027) 

-0.142*** 

(0.027) 

-0.119*** 

(0.028) 

Yr2008 -0.21*** 

(0.028) 

-0.24*** 

(0.029) 

-0.242*** 

(0.031) 

-0.218*** 

(0.032) 

Yr2009 -0.229*** 

(0.029) 

-0.26*** 

(0.03) 

-0.262*** 

(0.031) 

-0.234*** 

(0.033) 

Yr2010 -0.209*** 

(0.03) 

-0.242*** 

(0.031) 

-0.24*** 

(0.033) 

-0.21*** 

(0.035) 

Yr2011 -0.237*** 

(0.028) 

-0.273*** 

(0.03) 

-0.272*** 

(0.032) 

-0.24*** 

(0.036) 

Yr2012 -0.218*** 

(0.028) 

-0.249*** 

(0.029) 

-0.25*** 

(0.031) 

-0.217*** 

(0.035) 

Yr2013 -0.213*** 

(0.028) 

-0.244*** 

(0.029) 

-0.242*** 

(0.031) 

-0.211*** 

(0.033) 

Bedroom 0.007 

(0.007) 

0.006 

(0.007) 

0.007 

(0.007) 

0.007 

(0.007) 

Bathroom 0.01 

(0.007) 

0.01 

(0.007) 

0.01 

(0.007) 

0.01 

(0.007) 

Fireplace 0.053*** 

(0.015) 

0.051*** 

(0.015) 

0.052*** 

(0.015) 

0.053*** 

(0.015) 

Aircond 0.019 

(0.02) 

0.017 

(0.02) 

0.019 

(0.02) 

0.02 

(0.02) 

Evapcool -0.003 

(0.017) 

-0.005 

(0.017) 

-0.005 

(0.017) 

-0.004 

(0.017) 

Othercool 0.023 

(0.017) 

0.021 

(0.017) 

0.019 

(0.017) 

0.023 

(0.017) 
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Table 6.20: Hedonic regression results (Spatial) for model 2 with WUI risk (cont’d) 

Variables Spatial error model with DIS0.5 weight matrix  

 10km 15km 20km 25km 

Phycond 0.151*** 

(0.008) 

0.151*** 

(0.008) 

0.153*** 

(0.008) 

0.154*** 

(0.008) 

Highsch 0.084 

(0.203) 

0.117 

(0.2) 

0.063 

(0.2) 

0.067 

(0.204) 

Over65 0.19 

(0.164) 

0.189 

(0.165) 

0.312* 

(0.166) 

0.268 

(0.168) 

White 0.171 

(0.141) 

0.065 

(0.147) 

0.086 

(0.148) 

0.17 

(0.145) 

Highway 0.009** 

(0.004) 

0.009** 

(0.004) 

0.008* 

(0.004) 

0.01** 

(0.004) 

City 0.021*** 

(0.006) 

0.019*** 

(0.006) 

0.021*** 

(0.006) 

0.023*** 

(0.006) 

Lake -0.009*** 

(0.002) 

-0.01*** 

(0.002) 

-0.01*** 

(0.002) 

-0.01*** 

(0.002) 

Forest -0.009*** 

(0.003) 

-0.01*** 

(0.003) 

-0.008*** 

(0.003) 

-0.007** 

(0.003) 

Industry 0.008*** 

(0.002) 

0.009*** 

(0.002) 

0.01*** 

(0.002) 

0.01*** 

(0.003) 

Firenum -0.078*** 

(0.021) 

-0.045*** 

(0.01) 

-0.023*** 

(0.007) 

-0.005 

(0.006) 

Avgsize 6.6x10-6 

(6.6x10-6) 

-1.6x10-6 

(1.9x10-6) 

-7.4x10-7 

(9.4x10-7) 

-3.8x10-7 

(6.5x10-7) 

WUI_high -0.006 

(0.026) 

-0.004 

(0.026) 

-2.2x10-4 

(0.026) 

-0.01 

(0.027) 

WUI_vhigh -0.073 

(0.045) 

-0.044 

(0.045) 

-0.053 

(0.046) 

-0.095** 

(0.046) 

WUI_ext -0.003 

(0.054) 

-0.036 

(0.054) 

0.002 

(0.053) 

-0.002 

(0.055) 

Lambda 0.202* 

(0.118) 

0.2* 

(0.119) 

0.198* 

(0.119) 

0.216* 

(0.117) 

N 2,529 

Data = Estimated sale prices  

Past wildfire event/occurrence = the aggregate fire burned in the last 7 years  

Wildfire risk = WUI risk  

Functional form = Semi-log  

***, ** and * denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
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Table 6.21: Hedonic regression results (OLS) for model 2 with House level risk 

Variables No spatial OLS 

10km 15km 20km 25km 

Constant 11.9*** 12.1*** 11.9*** 11.8***  
(0.48) (0.46) (0.49) (0.43) 

Area 1.7x10-4*** 1.7x10-4*** 1.7x10-4*** 1.8x10-4***  
(2.5x10-5) (2.5x10-5) (2.5x10-5) (2.4x10-5) 

Land 1.3x10-7 1.6x10-7 1.3x10-7 8.4x10-8  
(1.3x10-7) (1.2x10-7) (1.3x10-7) (1.3x10-7) 

Yr2004 0.065 0.067 0.082 0.065  
(0.086) (0.085) (0.083) (0.084) 

Yr2005 -0.10 -0.11 -0.085 -0.097  
(0.079) (0.083) (0.081) (0.083) 

Yr2006 -0.077 -0.090 -0.053 -0.099  
(0.086) (0.087) (0.088) (0.094) 

Yr2007 -0.18** -0.19** -0.17** -0.19**  
(0.079) (0.082) (0.081) (0.083) 

Yr2008 -0.21** -0.23** -0.19* -0.17*  
(0.090) (0.095) (0.098) (0.10) 

Yr2009 -0.093 -0.11 -0.078 -0.040  
(0.099) (0.10) (0.10) (0.11) 

Yr2010 -0.18* -0.23** -0.15 -0.11  
(0.095) (0.11) (0.11) (0.12) 

Yr2011 -0.25** -0.30*** -0.21* -0.18  
(0.098) (0.11) (0.12) (0.12) 

Yr2012 -0.21** -0.26*** -0.17 -0.18*  
(0.088) (0.100) (0.11) (0.10) 

Yr2013 -0.18** -0.21** -0.13 -0.16  
(0.081) (0.097) (0.10) (0.10) 

Bedroom 0.019 0.018 0.016 0.015  
(0.023) (0.023) (0.023) (0.022) 

Bathroom 0.018 0.01 0.016 0.024  
(0.027) (0.026) (0.027) (0.027) 

Fireplace 0.073 0.082* 0.073 0.074*  
(0.045) (0.044) (0.045) (0.044) 

Aircond 0.043 0.048 0.041 0.047  
(0.068) (0.068) (0.066) (0.070) 

Evapcool 0.014 0.025 0.0068 0.0039  
(0.089) (0.089) (0.093) (0.091) 

Othercool 0.023 0.014 0.024 0.028  
(0.054) (0.054) (0.054) (0.054) 
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Table 6.21: Hedonic regression results (OLS) for model 2 with House level risk (cont’d) 

Variables No spatial OLS 

10km 15km 20km 25km 

Phycond 0.13*** 0.13*** 0.13*** 0.12***  
(0.026) (0.027) (0.027) (0.028) 

Highsch -0.24 -0.32 -0.34 -0.25  
(0.49) (0.49) (0.49) (0.48) 

Over65 -0.16 -0.27 -0.055 -0.32  
(0.44) (0.46) (0.46) (0.45) 

White 0.16 0.22 0.25 0.23  
(0.49) (0.51) (0.50) (0.46) 

Highway -0.007 -0.002 -0.008 -0.016  
(0.01) (0.01) (0.01) (0.01) 

City 0.032** 0.022 0.031* 0.025  
(0.016) (0.015) (0.018) (0.015) 

Lake -0.014*** -0.017*** -0.017*** -0.013***  
(0.005) (0.004) (0.005) (0.004) 

Forest 0.0008 -0.0008 0.002 0.011  
(0.007) (0.007) (0.008) (0.008) 

Industry 0.017*** 0.018*** 0.019*** 0.019***  
(0.005) (0.004) (0.005) (0.005) 

WUI 0.024 0.022 0.005 0.007 

 (0.050) (0.051) (0.051) (0.051) 

Firenum -0.066 -0.059** -0.002 -0.003 

 (0.04) (0.025) (0.025) (0.021) 

Avgsize 2.4x10-7 -1.3x10-5 -2.5x10-5 2.1x10-5***  
(1.7x10-5) (1.4x10-5) (1.5x10-5) (7.7x10-6) 

Hriskscore -1.2x10-4 -3.5x10-4 3.2x10-5 2.5x10-4  
(0.001) (0.001) (0.001) (0.001) 

Adj. R sqr .645 .652 .643 .647 

N 270    

Data = Estimated sale prices 

Past wildfire event/occurrence =  the aggregate fire burned in the last 7 years 

Wildfire risk = House level risk 

Functional form = Semi-log 

***, ** and * denote significance at 1%, 5% and 10%, respectively. Standard Errors are in parentheses. 
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Table 6.22: Marginal implicit price estimates for model 2 

Variables Marginal implicit prices (in 2013 dollars) 

 10km             15km              20km                25km 

Model 2 with Composite risk (County): No spatial OLS 

WUI $17,768 $19,669 $18,527 $20,050 

Firenum -$16,985 -$12,287 -$12,287 -$976† 

Avgsize -$0.09 -$1.55 -$0.34† $0.12† 

Comp_high $7,669 $7,669 $8,777 $7,300 

Comp_ext $16,255 $13,996† $16,633 $15,877 

Model 2 with Composite risk (County): Spatial error model with DIS0.5 weight matrix 

WUI $21,932 $23,497 $23,240 $23,953 

Firenum -$15,497 -$11,346 -$11,166 -$1,216† 

Avgsize $0.88† -$0.26† $0.34† -$0.03† 

Comp_high $9,702 $9,770 $10,087 $9,599 

Comp_ext $9,131† $8,916† $10,082† $9,361† 

Model 2 with WUI Risk: No spatial OLS 

Firenum -$36,559 -$20,311 -$11,284 -$2,573† 

Avgsize $2.12† -$1.35† -$0.68 -$0.10† 

WUI_high $451† $1,763† $3,807† -$767† 

WUI_vhigh -$30,514† -$17,698† -$19,861† -$38,847 

WUI_ext $4,171† -$11,584† $7,279† $7,738† 

Model 2 with WUI risk: Spatial error model with DIS0.5 weight matrix 

Firenum -$35,412 -$20,430 -$10,510 -$2,215† 

Avgsize $3.02† -$0.73† -$0.33† -$0.17† 

WUI_high -$2,779† -$1,868† -$101† -$4,545† 

WUI_vhigh -$31,780† -$19,481† -$23,503† -$40,902 

WUI_ext -$1,507† -$16,127† $1,061† -$1,008† 

Model 2 with House level risk: No spatial OLS 

WUI $10,067† $9,219† $2,202† $2,744† 

Firenum -$27,355† -$24,454 -$705† -$1,327† 

Avgsize $0.10† -$5.39† -$11† $8.70 

Hriskscore -$50† -$146† $13† $103† 

† The marginal implicit price is derived from insignificant coefficients. 
  



154 

 

Chapter 7 Summarizing hedonic model results: internal meta-analysis 

This chapter comprehensively summarizes all 2,000 hedonic regression results 

using meta-analysis.  

7.1 Introduction 

This analysis exploits the hedonic model to examine the effect of wildfire on 

housing value, with varying data and econometric modeling techniques. Overall, the 

variation in the data and modeling techniques produces 2,000 results. For each model 

estimated, I save the features of the model, including R2, data and econometric 

specification. I also save the sign and significance of the estimated wildfire variables 

together with the MIP estimates. I then use Krinsky Robb method to calculate 95% 

confidence intervals (and the standard error) for all MIP estimates (Krinsky & Robb, 

1986). 

Summarizing wildfire effects on property value, results show the expected 

negative effect of wildfire event/occurrence. Specifically, the mean estimate of the MIP 

for a one kilometer increase in the distance from the nearest fire is $3,461, implying an 

increase in assessed value of 1%. The mean estimate of the MIP for one additional burn 

near the house is $14,375, implying a decrease in assessed value of 5%. Nonetheless, the 

effect of wildfire risk ranges from a positive to an insignificant or a negative effect, 

depending on the measurement of fire risk, level of risk and geographic area.  

Following Banzhaf and Smith (2007), I further investigate the variation in the 

MIP estimates via an internal meta-analysis approach using the results from these 2000 

hedonic models as primary estimates. Specifically, I investigate what factors influence 

wildfire effects on property value. I conduct two meta-regressions, with the dependent 
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variables being the MIP for a one kilometer increase in distance from the nearest fire and 

the MIP of one additional burn near the house, respectively. The explanatory variables 

are all dummy variables, capturing the features of hedonic model. They include a set of 

dummies indicating the measurement for data (i.e., measure for property value, wildfire 

event and risk) and a set of dummies indicating model specification (i.e., spatial model 

structure and associated weight matrices, and hedonic functional form). I run weighted 

least square on the meta-regression model, with the weights being the standard error of 

the observed MIP estimates.  

Meta-analysis results show that models that use assessed value data not only give 

higher R2 but also find more significant estimates and larger MIP estimates than models 

that use estimated sales prices data. However, the assessed value models do not 

necessarily yield estimates with smaller standard errors. Second, ignoring spatial 

autocorrelation either leads to overestimate of MIP or it has no significant effect on MIP 

estimates. Third, the measurement of wildfire risk significantly influences the effects of 

fire event/occurrence. This result reveals the importance of joint estimation of wildfire 

events and risks, and ignoring wildfire risks in hedonic models may yield inaccurate 

estimates.  

7.2 What is meta-analysis?  

Meta-analysis is a quantitative approach to synthesize the results on a particular 

topic in the literature, aiming to explain variation in the results obtained in different 

primary studies. Thus it requires a common empirical value in the primary studies, such 

as MIP estimate for a particular good or elasticity. Meta-analysis is the analysis of 

analyses (Glass, 1976). It provides a concise and structured way to integrate findings, as 
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compared with the traditional narrative literature review. As a quantitative literature 

review, it usually employs a meta-regression to provide a statistical analysis of the 

variation in the results. Overview of primary studies is crucial to meta-analysis, and 

failure to collate all empirical evidence would result in bias in meta-analysis conclusion 

(Rothstein, Sutton, & Borenstein, 2006; Ahmed, Sutton, & Riley, 2012).  

Nelson and Kennedy (2009) summarize several major objectives of meta-analysis. 

First, meta-analysis allows the investigator to draw pooled estimates of the underlying 

empirical value from primary studies, which is considered to be more reliable and 

accurate since it integrates findings in all relevant studies. Secondly, meta-analysis 

assesses the variation in the underlying empirical value. Primary studies may employ 

varying data, study design and model specification, and thus yield conflicting results. 

Meta-analysis investigates the variation in the results via meta-regression whose 

dependent variable is the underlying empirical value obtained in the primary study and 

whose independent variables are related to characteristics of the primary study, such as 

data employed and variables constructed, study design and hypothesis, and econometric 

models and techniques. Third, meta-analysis can also be used to predict within-sample 

and out-of-sample estimates of the dependent variable. Finally, a new application of 

meta-analysis is to summarize multiple results obtained in a single study/article, also 

called “internal” meta-analysis (Banzhaf & Smith, 2007; Kuminoff, Zhang, & Rudi, 

2010; Klemick, Griffiths, Guignet, & Walsh, 2015). 

Meta-analysis has been widely used to summarize the valuation measures 

obtained in environmental economics, such as endangered species (J. B. Loomis & 

White, 1996; L. Richardson & Loomis, 2009), environmental Kuznets Curve (Cavlovic, 
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Baker, Berrens, & Gawande, 2000), pesticide risk (Florax, Travisi, & Nijkamp, 2005), 

environmental contamination (Simons & Saginor, 2006), railway station (Debrezion, 

Pels, & Rietveld, 2007), water quality (Van Houtven, Powers, & Pattanayak, 2007), open 

space (Brander & Koetse, 2011), renewable energy (C. Ma et al., 2015). Several meta-

analysis studies particularly focus on welfare estimates obtained in hedonic property 

value models, such as air quality (Smith & Huang, 1995), noise damage (Schipper, 

Nijkamp, & Rietveld, 1998; Nelson, 2004), waste site (Braden, Feng, & Won, 2011).  

7.2.1 Internal Meta-analysis 

Meta-analysis summarizes the results across a set of studies. For example, 

Cavlovic et al. (2000) used 25 studies on the estimation of environmental Kuznets Curve, 

which yield 121 observations for meta-analysis. In recent years, researchers apply this 

approach in the context of a single study and summarize the results estimated from a 

particular study. When applied in a single study context, meta-analysis was designated as 

internal meta-analysis (Kuminoff et al., 2010). One can see that the difference between 

the standard and the internal meta-analysis lies in the source of data: the data used in 

internal meta-analysis are obtained from a single study while the data for the standard 

meta-analysis are usually obtained from multiple studies.  

Kuminoff et al. (2010) explained the procedure of an internal meta-analysis. The 

first step requires one to specify a set of models that systematically vary along multiple 

dimensions (e.g., measurements for key variables, model specifications and econometric 

techniques). The choices researchers made along these dimensions and their possible 

combinations can lead to a huge number of models. The second step is to estimate all 

models or a random subset (when the number of models is overwhelmingly large). 
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Typically, the models contain a common economic value (e.g., marginal WTP estimates). 

For each model estimated, one saves its economic value and features of the model in 

which model attributes include the choices researchers made along different dimensions. 

The third step is to regress economic values against model attributes. This allows one to 

explore what influences researchers’ choices have on the economic value obtained via the 

second step.  

The first internal meta-analysis examining the effect of choices and assumptions 

made by researchers is by Banzhaf and Smith (2007). They estimated households’ WTP 

for improved air quality based on home buyers' behavior in the housing market. This 

requires the researchers to specify alternative houses that buyers considered, or the choice 

set. They made assumptions about choice sets along three dimensions: spatial boundary, 

budget boundary and time boundary. Spatial boundary refers to the area that buyers 

consider when purchasing a house. Two potential spatial boundaries are defined: the 

actual county of residence or the entire area. Budget boundary defines the price range that 

buyers search. They defined four high-end budget constraints; a household would 

consider houses whose annualized price is less than or equal to 100%, 63%, 52% or 44% 

of annual income. They also defined four low-end budget constraints: house annualized 

price greater than or equal to 0%, 10%, 14% or 17% of annual income. The time window 

defines how long buyers and houses would stay in the market. Specifically they 

considered four time windows: 1, 2.5, 3 and 7 months. Overall variations in spatial, 

budget and temporal boundaries yield 128 potential choice sets. After defining choice 

sets, they further estimated households’ willingness to pay for air quality improvement 

using discrete choice model. Finally, they exploited meta-regression to explain how 
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assumptions about choice sets affect welfare estimates, with the dependent variable being 

WTP for air quality improvement and the independent variables being indicator variables 

for the boundaries in each dimension. They found choice set boundaries have significant 

effects.  

Later, Kuminoff et al. (2010) used internal meta-analysis to investigate the 

sensitivity of welfare estimates derived from hedonic models to econometric modelling 

decisions, including functional form and the choices of covariates. In their study, they 

first employed hedonic model to examine the premium WTP for green hotels. They 

utilized two functional forms: linear and log-linear. They also considered different 

combination of covariates in the hedonic model (e.g., number of floors, whether the hotel 

provide free breakfast or free internet), up to 24 potential covariates. Two potential 

functional forms and 24 potential covariates yield more than 33 million hedonic models. 

They randomly select 40,000 specifications to estimate customers premium WTP for 

green hotels. Subsequently, they performed a meta-analysis of how decisions about 

functional form and covariates affect welfare estimates, with the dependent variables 

being premium WTP and the independent variables being indicator variables for 

functional form and whether each covariable is included in the hedonic model. They 

found that the price premium is quite robust to hedonic functional form as well as the 

choices of covariates.  

Walsh, Griffiths, Guignet, and Klemick (2017) conducted a series of hedonic 

models to systematically investigate the effect of water clarity on housing value. 

Systematic investigation includes varying functional forms (semi-log and double-log), 

geographic areas (14 counties) and variable constructed (5 measures for proximity to 
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Chesapeake Bay and 2 measures of water clarity). Combination of the choices made 

along these dimensions yield 280 estimated hedonic model results. Using results from 

Walsh et al., analysis, Klemick et al. (2015) utilized meta-analysis to explain the 

variation in the elasticity of water clarity. The dependent variable in meta-analysis is 

elasticity of water charity derived from hedonic models, and the independent variables 

include indicator variables for functional forms, measures of water clarity, etc.  

7.3 Meta-analysis: theoretical background 

7.3.1 Methodological issues 

Similar to meta-analysis, internal meta-analysis also faces several major 

methodological issues, as outlined by Nelson and Kennedy (2009). These estimation 

issues include dependent or correlated effect sizes, heterogeneity among effect sizes and 

heteroskedasticity associated with effect size variance. 

7.3.1.1 Correlated effect sizes 

Meta-analysis assumes effect size estimates obtained from the primary studies are 

independent. However, dependent or correlated effect sizes are very common in 

empirical research. Dependency can arise for a variety of reasons. Two types of 

dependencies are categorized in meta-analysis: correlated effects and hierarchical effects 

(Tipton, 2013; Tanner‐Smith & Tipton, 2014). Correlated effects can occur when 

multiple observations are derived from the same participant (e.g., alcohol consumption at 

6 month and 12 month post-intervention) or multiple treatments are contrasted with a 

single control group. Hierarchical effects occur when effect sizes are nested within 

clusters. For example, a study might provide multiple estimates or several studies use the 

same functional form. These two types of dependency can both exist within a single 
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meta-analysis. Failure to account for dependence can result in biased standard error and 

more weight given to studies providing more effect sizes (Scammacca, Roberts, & 

Stuebing, 2014).  

To address dependent estimates, several approaches have been used in the 

literature. First, the analyst only uses one estimate from each study (Mark & Wilson, 

2001; Rose & Stanley, 2005). For example, the analyst might randomly choose one 

estimate or he might use the mean or median estimate from each study. Thus there is 

great loss of information associated with this approach. Besides, there is little theoretical 

guidance about how to select the estimate. Secondly, the analyst includes dummy 

variables (fix effects) for studies providing multiple estimates or studies utilizing the 

same functional form. The analyst can also employ a multivariate meta-analysis (Olkin & 

Gleser, 2009). However this approach requires information about dependence structure of 

effect size or the underlying data, and thus it is not commonly used in the literature 

(Riley, 2009).  

7.3.1.2 Heterogeneous effect size variance 

When pooling estimates from multiple studies, it is common that some studies 

provide more precise estimates. That is, effect size estimates have heterogeneous 

variance. These studies carry more accurate estimates, and thus should be given more 

weights. To account for heterogeneity, the meta-analyst usually calculates the weighted 

mean of effect sizes or performs weighted regression models, in which each observation 

is weighted using the inverse of the variance or standard error of effect size (Cipollina & 

Salvatici, 2010; Klemick et al., 2015). In most cases, effect size variance are not reported 

in primary studies. Instead, the meta-analyst usually uses sample size of the primary 
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study as weights (Florax et al., 2005; Van Houtven et al., 2007). However effect size 

variance are generally available in internal meta-analysis since it is typical that the same 

author conducts both primary studies and the following meta-analysis. 

7.3.1.3 Within-study and between-study variance 

Deriving the summary effect size requires the meta-analyst to make assumptions 

about the population effect size. In empirical analysis, different assumptions lead to two 

different meta-analysis models: fixed-effects model and random-effects model 

(Brockwell & Gordon, 2001).17 Fixed effect model assumes that there is one true 

population effect size shared by all studies, and thus variation in the observed effect is 

simply due to random sampling error (also called within-study variance). However 

random-effects model assumes that the population effect sizes vary across studies, 

generally following normal distribution, and the observed estimates are a random sample 

from a distribution of all possible population effect sizes. Thus random-effects models 

assumes variation in effect sizes is influenced by multiple characteristics of primary 

studies, including sample, study design, model specification, and so on. Therefore, the 

observed variation in effect sizes reflect both within-study variance and between-study 

variance. 

The weighted means of the observed effect size for k studies is calculated as 

 
γ =

∑ 𝑤𝑖𝛾𝑖
𝑘
𝑖=1

∑ 𝑤𝑖
𝑘
𝑖=1

 
(7.1) 

                                                 
17 In this analysis, the terms, fixed-effects and random-effects models are specific 

to models used in meta-analysis, which are different from models used in panel data 

analysis. 
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where 𝛾𝑖 is the observed effect size in study 𝑖, 𝑊𝑖 is the weights for study 𝑖. Using 

the variance of the observed effect size as the weights (Higgins & Thompson, 2002), then 

𝑤𝑖 =
1

𝑆𝑒(𝛾𝑖)
2 for fixed-effects model 

𝑤𝑖 =
1

𝑆𝑒(𝛾𝑖)
2+�̂�2

 for random-effects model 

where �̂�2 is the between-study variance. Standard error for γ is 

 
Se(γ) =

1

√∑ 𝑤𝑖
𝑘
𝑖=1

 
(7.2) 

Compared to weights in fixed-effects models, incorporating between-study 

variance results in smaller weights for studies with more precise estimates while larger 

weights for studies with less precise estimates. Random-effects models also lead to more 

conservative estimates because of larger standard error and confidence intervals for the 

weighted mean estimates. Three statistics have been used in the literature to test effect 

size homogeneity. The 𝐼2index, which would report the percentage of heterogeneity 

attributable to between-study variance, is used in this analysis (Huedo-Medina, Sánchez-

Meca, Marín-Martínez, & Botella, 2006). Following Higgins and Thompson (2002), I use 

𝐼2 value of 25, 50 and 75 to indicate low, moderate and high heterogeneity, respectively. 

For example, 𝐼2 value of 0 means all heterogeneity among effect size estimates are due to 

random sampling error; 𝐼2 value of 25 means 25% of heterogeneity are due to the true 

heterogeneity between study, or between-study variance). 

7.3.2 Meta-regression 

A standard meta regression model typically includes a set of moderator variables 

to explain heterogeneity in the observed effects, expressed as 
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 𝛾𝑖 = 𝑎 + 𝛽 ∗ 𝑍𝑖 + 𝜀𝑖 (7.3) 

where 𝑍𝑖 is a set of explanatory variables capturing characteristics of study i, 

including sample, study design, model specification and so on. 𝛾𝑖 is the same as defined 

in (7.1). The regression model in internal meta-analysis is similar to the standard meta-

analysis with one exception. In internal meta-analysis, one summarizes effect size 

estimates obtained from a set of models instead of a set of studies. Therefore, 𝛾𝑖 denotes 

the observed effect in model i and 𝑍𝑖 is a set of explanatory variables capturing 

characteristics of model i. 

As explained earlier, the error term in meta-regression 𝜀𝑖 might be heterogeneous. 

The meta-analyst generally conducts weighted regression models, with the weights 

measuring the precise of the observed effect (Cavlovic et al., 2000; Cipollina & Salvatici, 

2010; Braden et al., 2011; Soon & Ahmad, 2015). Following Higgins and Thompson 

(2002), I divide (7.3) by the standard error of the observed effect and estimate meta-

regression model using weighted least squares: 

 γ𝑖

𝑆𝑒(𝛾𝑖)
= 𝑎 + 𝛽 ∗

𝑍𝑖

𝑆𝑒(𝛾𝑖)
+ 𝜀𝑖 

(7.4) 

The analyst also needs to take into account dependent effect size (e.g., multiple 

estimates from one study or one dataset).  The common practice is to cluster at the study 

level or the sample level to get cluster-robust standard errors. In addition, the analyst 

needs to employ random-effects model to take into account between-study variance. In 

this analysis, both clustering and random-effects are handled since I include a full set of 

dummy variables (fixed effects) representing all characteristics of hedonic models. Thus 

the meta-regression model is estimated with weighted lease squares method. 

7.3.2.1 Dependent variables 
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I conduct two meta-regressions. The dependent variable in the first meta-

regression is the MIP for a one kilometer increase in distance from the nearest fire (Dist). 

The dependent variable in the second meta-regression is the MIP of one additional burn 

near the house (Firenum).   

7.3.2.2 Explanatory variables 

The explanatory variables in meta-regression are all dummy variables, which 

capture the characteristics of hedonic model. All explanatory variables are defined in 

Table 7.1. Overall, model features can be categorized into two groups: data and 

econometric specification. More specifically, I include dummy variables to indicate data 

source for housing prices (assessed value or estimated sales prices), data for past wildfire 

event/occurrence (fires burned in the last 7 years or fires burned in the last 15 years, 

10km, 15km, 20km and 25km radius buffer zone), measurement of wildfire risk 

(composite risk, WUI risk or house level risk). For econometric specification, I include 

dummy variables for hedonic functional form (semi-log or double-log) and spatial 

dependency structure and weight matrices.  

7.4 Descriptive statistics of wildfire effects 

Of 2,000 estimated hedonic models, 200 models are estimated using OLS method. 

The adjusted R-squared of OLS models range from 0.66 to 0.82, with an average of 

0.73.18 This indicates that OLS models have good measures-of-fit. More specifically, the 

                                                 
18 No R-squared or adjusted R-squared is obtained for spatial autoregressive 

models since these models use the generalized methods of moments based on 

instrumental variables. 
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t-test shows the average adjusted R-squared for assessed value models (0.77) are 

significantly higher than that in estimated sales price models (0.68). This finding is 

consistent with previous studies (Schuler, 1990; Kim & Goldsmith, 2005; Grimes & 

Aitken, 2008, Ma &Swinton, 2012). 

7.4.1 Descriptive statistics of the sign  

To investigate the direction of wildfire effects, I categorize the sign of estimated 

coefficients on wildfire variables into three categories: positively significant, negatively 

significant, or insignificant, where the cut-off level of significance is 10%.19 Table 7.2 

reports the direction of wildfire effects. The big two conclusions are as follows. First, 

past wildfire event/occurrence have a negative effect on property value. Secondly, the 

effects of wildfire risks are mixed, depending on risk measure, risk level and geographic 

area. 

For effects on wildfire events on property values, we focus on the direction of two 

variables: Dist and Firenum. First, the vast majority of the models (72%) find the 

expected positive effect of Dist. 18% of models find nonsignificant relation, and the 

remaining 10% produce a significantly negative one. 20 Thus proximity to nearest wildfire 

reduces property values. Secondly, 71% of hedonic models report significantly negative 

coefficients on Firenum, while 25% of the models find no significant relationship. Thus 

frequent wildfires also lower property value. However, only 20% of the models find the 

                                                 
19  All significance levels are based on two-tail tests. 

20 Of 40 models generating the negative estimates of Dist, 30 models utilized 

composite risk data covering the Non-WUI area. 
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negative effects of Firenum decrease with the radius of buffer zone increase. Overall, 

past wildfire events/occurrence have a negative effect on property values. This finding is 

consistent with earlier studies on the effects of past wildfire events/occurrence (J. 

Loomis, 2004; J. Mueller et al., 2009; Stetler et al., 2010). 

The effects of wildfire risk vary by risk level. Specifically, 66% of models report 

significantly positive coefficients on Comp_high while 73% of models report 

nonsignificant positive coefficients on Comp_ext. A similar pattern is detected for the 

effects of WUI risk. 51% of 400 models find significantly positive coefficients on 

WUI_high; 43% of models find significantly negative coefficients on WUI_vhigh, and 

57% were not significant; 67% of models find nonsignificant coefficient on WUI_ext. 

This finding shows wildfire risk increases property values below a certain risk level and 

the relationship tends to be negative or insignificant once risk reaches a certain level. In 

addition, the estimated coefficient on house level risk is found to be significantly negative 

in 46% of models, while 54% didn’t find a significant effect. Thus the effect of wildfire 

risk vary by risk level as well as risk measure.  

In addition, the effects of wildfire risk vary by geographic area. Table 7.3 report 

the sign of estimated coefficients on composite risk in the WUI models and Non-WUI 

models. In the Non-WUI models, 40% of the models find significantly positive 

coefficients for both Comp_high and Comp_ext; 60% of the models find significantly 

positive coefficient for Comp_high and nonsignificant coefficient for Comp_ext. In the 

WUI models, 77% of models find both nonsignificant estimates and 19% find at least one 

negatively significant estimate. Thus the positive effect of amenity dominates in the Non-

WUI whereas the relationship becomes insignificant or negative in the WUI. It is 
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consistent with our hypothesis that the effect of wildfire risk differs across geographic 

areas. Overall, the effect of wildfire risk is mixed, depending on risk measure, risk level 

and geographic area. This finding further confirms Donovan et al.’s arguments about the 

complexity of risk effects: wildfire risk and amenity values are confounded in the risk 

assessment and they have opposite effects on property values.  

7.4.2 Comparing the direction of wildfire event effects across alternative 

models 

I then compare the sign of the estimated coefficients on Dist and Firenum across 

alternative models via Pearson’s chi-square test (Table 7.4). The test statistics indicate 

there is significant difference in the distribution of signs across models that use assessed 

value data and models that use estimated sales price. The assessed value models are more 

likely to find the negative effects of wildfire events on property values (more significant 

positive estimates for Dist and more significantly negative estimates for Firenum). This 

finding is consistent with arguments in Kim and Goldsmith’s study that assessed value 

data is superior to sale prices data in terms of revealing environmental effects on property 

values, especially when the size of sale prices data is significantly reduced due to poor 

data quality or slow sales. However little difference exists across OLS models and spatial 

autoregressive models.  

7.4.3 The simple statistics of MIP estimates 

This section summarizes the magnitude of wildfire effects. The MIP estimates are 

calculated using the average housing value and the average level of the independent 

variable for the sample population (Table 6.11). I then divide MIP estimates by the 

average assessed value $318,934 (expressed as a percentage change in assessed value) to 
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give a better understanding of wildfire effects on property value. All MIP estimates are 

measured in 2013 dollars. Table 7.5 presents the simple statistics of estimates, which 

does not take into account statistical significance and variance of the observed estimate. 

Generally, the observed estimates range from negative values to positive values, implying 

the existence of negative marginal WTP estimates. F test results reject the null hypothesis 

that the average of estimates is equal to 0. 

On average, the mean estimate of MIPDist, the MIP for a one kilometer increase in 

distance from the nearest fire (Dist), is $3,553 (in 2013 dollars), implying an increase in 

assessed value of 1.1%. The mean estimate of MIPFirenum, the MIP for one additional fire 

near the house (Firenum), is $20,151 (in 2013 dollars), implying a decrease in assessed 

value of 6.4%. Further, houses located in zones with higher risk rating have higher 

values, except for houses located in the very high WUI risk zone. For example, the mean 

estimate of MIPComp_high, the MIP for living in high composite risk zone (Comp_high), is 

$6,065 (in 2013 dollars); the mean estimate of MIPComp_ext, the MIP for living in extreme 

composite risk zone (Comp_ext), is $10,472. Overall, the increase in property value 

varies from $6,065 to $18,013, indicating 1.9% and 5.7% of assessed value, respectively. 

However, if risk is measured at individual house level, the mean estimate of MIPHriskscore, 

the MIP for a one point increase in house risk score (Hriskscore), is $383 (in 2013 

dollars), which represents a 0.1% drop in assessed value. 

I then compare the distribution of the observed effects across alternative models 

to see if there are distinctive patterns across models that use different data or model 

specifications. I focus on two estimates: MIPDist and MIPFirenum. Figure 7.1 to Figure 7.5 

provide the kernel density estimate of MIPDist across alternative models.  First, the 
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distribution of MIPDist estimates is lopsided, with the majority report positive MIPDist. 

This is consistent with the hypothesis that proximity to near fire reduces house value. 

Secondly, KS test results indicate there is significant difference in the distribution of 

MIPDist estimates between models that use assessed value and models that use sales 

prices, or models that use 7-year time window and models that use 15-year time window, 

or models that covering the Non-WUI area and models that covering the WUI area, or 

models that different hedonic functional form. However little significant difference exists 

between OLS models and spatial autoregressive models. Figure 7.6 to 7.10 provides the 

kernel density estimate of MIPFirenum across alternative models.  Similarly, there is 

significant difference in the distribution of MIPFirenum estimates with two exceptions. 

Little difference is found across the semi-log models and the double-log models, or OLS 

models and spatial autoregressive models.  

7.4.4 Meta-analytic summary statistics of MIP estimates 

As explained earlier, meta-analytic summary statistics is different from the simple 

summary statistics in that each observed effect size is weighted based on its associated 

statistical significance and variance. Specifically, in fixed-effects model, the weights are 

variance of the observed effect while in random-effects model the weights also take into 

account between-study variance. Thus the fixed-effects model is a special case of the 

random-effects model. In empirical analysis, the random-effects model is more 

commonly used since the assumption of a common effect size in fixed-effects model 

seems unrealistic. Moreover, the 𝐼2index shows that a large proportion of heterogeneity 

between the observed effect are attributable to between-study variance. Therefore, I focus 

on estimates derived in the random-effects model.  
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Table 7.6 presents the meta-analytic average of MIP estimates and 95% 

confidence intervals. The null hypothesis of no effect is highly rejected. The pooled 

estimates in random-effects model are somewhat different from the simple summary 

statistics. The pooled effects of wildfire events are smaller in random-effects models 

while the effects of wildfire risk are larger in random-effects models. For example, the 

pooled MIPDist estimate is $3,461[95% CI: $3,188, $3,734], indicating 1.1% of assessed 

value; the pooled MIPFirenum estimate is $14,375 [95% CI: $13,821, $14,928], 

representing 4.6% of assessed value.  

Huggett Jr et al. (2008) find that sale prices increase approximately $48 per 

kilometer farther away from the closet fire, representing a 0.04% increase in sale prices. 

Generally MIPDist estimates in this analysis are slightly higher than their estimates. Xu 

and van Kooten (2013) find that the number of fires does not significantly affects sale 

prices while it has a significant effect on unit price (price per square meter). One extra 

burn within 5km radius would reduce unit price by $3.93, representing 0.8% of unit price. 

MIPFirenum estimates in this analysis are higher than their estimates.  

Overall, our MIP estimates are in the lower end of the range of estimates reported 

in earlier wildfire studies. J. M. Mueller and Loomis (2010) find price drop caused by 

fires is about 5%. Hansen and Naughton (2013) find a 5.5% decrease for small size fires 

burned within 0.1 kilometer. The Cerro Grande fire caused price drop ranging from 3% to 

11%. Stetler et al. (2010) find prices drop caused by wildfire event varies from 7.6% to 

13.3%. Loomis (2004) find fire burned nearby decreases the price by approximately 15%.  

J. Mueller et al. (2009) report the first fire burned would decrease house price by 10% 

and the second fire would further decrease price by 23%. 
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7.4.5 Comparison of the standard error of MIP estimates across alternative 

models 

I also compare the standard error of MIP estimates via Kolmogorov-Smirnov 

(KS) test, a statistic comparing distribution across two samples(Table 7.7). I reject the 

null hypothesis of identical distribution across OLS and spatial autoregressive models. 

One observes that OLS models are more likely to produce precise MIP estimates than 

spatial autoregressive models. That is, the standard errors of MIP are relatively smaller in 

OLS models. However there is no consistent pattern across models that use different data 

or functional form. For example, the assessed value models produce smaller standard 

errors of MIPDist  but larger standard errors of MIPFirenum. 

7.5 Meta-regression results 

Table 7.8 report meta-regression results. The dependent variable in the first 

column is MIPDist and the dependent variable in the second column is MIPFirenum. Both 

models show a good fit, with the R2 value of 0.68 and 0.7, respectively. This implies that 

characteristics of hedonic models can explain about 70% of variation in the MIP 

estimates. Overall, the estimated coefficients in the meta-analysis are statistically 

significant, indicating that data and econometric modeling techniques significantly 

influence MIP estimates.  

First, the dummy variable for whether the model used assessed value data are 

positive and significant at 1% levels in both models. This shows models that use assessed 

value data are more likely to yield larger MIP estimates relative to models that use 

estimated sale prices data. J. Kim and Goldsmith (2009) find the superiority of assessed 

value data over sales price data due to significantly reduced data size and spatial 



173 

 

abnormality of properties. This meta-analysis results confirm that assessed values are 

more likely to reveal environmental effects on property values when there is slow sales 

where the size of sale prices data is relatively small.  

Secondly, the dummy variables for risk measurements are significant at 1% level, 

suggesting the measurements for risk have significant effects on the estimates of wildfire 

event/occurrence. Moreover, the magnitude of these coefficients are relatively large, 

meaning that the measurement for risk is the most important factor that influences 

wildfire events effects on property value. Therefore, previous studies investigating the 

effects of wildfire events but didn’t take into account wildfire risk may lead to 

inappropriate estimates.  

Third, the effects of time frame is mixed. Using fires burned in the last 7 years 

would yield larger MIPFirenum estimates than using fires burned in the last 15 years but it 

has no significant effect on MIPDist. The estimated coefficients on radius of buffer zones 

are negative and significant at 1%, suggesting that fires burned near the house (within 

10km buffer zone) reduce property value more than fires burned farther away. However, 

MIP estimates increases with the increase in buffer zone, which is contrary to our 

expectation. 

There is no consistent pattern in the effect of functional form. The semi-log 

models find larger MIPDist while smaller MIPFirenum, compared to the double-log models. 

The estimated coefficients on spatial dependency are either insignificant or significantly 

negative, indicating that there is no significant difference in MIP estimates across OLS 
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models and spatial autoregressive models or OLS models yield larger MIP estimates.21  J. 

M. Mueller and Loomis (2008) find that little difference exist in MIP estimates between 

OLS models and spatial correlated models. The meta-analysis results partially confirm 

their findings. J. Kim and Goldsmith (2009) find that OLS models tend to overestimate 

the impact of swine production on property values. Their finding is also consistent with 

the meta-analysis results that OLS models are more likely to report overestimates of MIP. 

  

                                                 
21 There are two exceptions. Spatial autoregressive models yield larger MIPFirenum 

estimates than OLS model: the first case is spatial lag model with four nearest neighbor 

weight matrix and the second case is general spatial model with the distance inverse 

weight matrix.   
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Table 7.1: Variable descriptions, descriptive statistics in meta-regression  

Variablea Definition Mean 

(Std. Dev) 

Data 

Assessed value =1 if the hedonic model uses assessed value data 0.5 

(0.5) 

7-yr time window =1 if the hedonic model uses fires burned in the last 7 years  0.5 

(0.5) 

15km radiusb =1 if the hedonic model uses 15km radius buffer zone  0.25 

(0.43) 

20km radiusb =1 if the hedonic model uses 20km radius buffer zone  0.25 

(0.43) 

25km radiusb =1 if the hedonic model uses 25km radius buffer zone  0.25 

(0.43) 

Composite risk 

(County) 

=1 if the hedonic model uses composite risk data, which 

covers the Santa Fe County  

0.2 

(0.4) 

Composite risk  

(WUI area) 

=1 if the hedonic model uses composite risk data, which 

covers the WUI area 

0.2 

(0.4) 

WUI risk =1 if the hedonic model uses WUI risk data 0.2 

(0.4) 

House risk =1 if the hedonic model uses house level risk data 0.2 

(0.4) 

Econometric specification 

Semi-log =1 if the hedonic model uses semi-log functional form  0.5 

(0.5) 

Lag, WM=Knn4 =1 if the hedonic model is spatial lag model with Knn4 

weight matrix 

0.1 

(0.3) 

Lag, WM=Knn8 =1 if the hedonic model is spatial lag model with Knn8 

weight matrix 

0.1 

(0.3) 

Lag,  

WM=Distance inverse 

=1 if the hedonic model is spatial lag model with the distance 

inverse weight matrix 

0.1 

(0.3) 

Error, WM=Knn4 =1 if the hedonic model is spatial error model with Knn4 

weight matrix 

0.1 

(0.3) 

Error, WM=Knn8 =1 if the hedonic model is spatial error model with Knn8 

weight matrix 

0.1 

(0.3) 

Error,  

WM=Distance inverse 

=1 if the hedonic model is spatial error model with the 

distance inverse weight matrix 

0.1 

(0.3) 

General, WM=Knn4 =1 if the hedonic model is general spatial model with Knn4 

weight matrix 

0.1 

(0.3) 

General, WM=Knn8 =1 if the hedonic model is general spatial model with Knn8 

weight matrix 

0.1 

(0.3) 

General, WM=Distance 

inverse 

=1 if the hedonic model is general spatial model with the 

distance inverse weight matrix 

0.1 

(0.3) 
a The omitted case is the hedonic model that use estimated sale prices data, or 15-year time window, or 10km 

radius buffer zone, or composite risk covering the Non-WUI area, or double-log functional form, or OLS 

model. 
b The variable is only included in the meta-regression if the dependent variable is the marginal implicit price 

for one additional fire near the house. 
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Table 7.2: Direction of wildfire effects on property values 

Variable Significantlya 

Positive 

Significantlya 

negative 

Insignificant # of 

estimates 

Wildfire event 

Dist 289 (72.25%) 40 (10%) 71 (17.75%) 400 

Firenum 62 (3.88%) 1,132 (70.75%) 406 (25.38%) 1,600 

Wildfire risk 

Comp_high 792 (66%) 71 (5.92%) 337 (28.08%) 1,200 

Comp_ext 318 (26.5%) 8 (0.67%) 874 (72.83%) 1,200 

WUI_high 204 (51%) - 196 (49%) 400 

WUI_vhigh 3 (0.75%) 170 (42.5%) 227 (56.75%) 400 

WUI_ext 134 (33.5%) - 266 (66.5%) 400 

Hriskscore - 182 (45.5%) 218 (54.5%) 400 
a The cutoff level of significance is 10%, based on two-tail tests. 
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Table 7.3: Direction of composite risk on property values in the Non-WUI area vs the WUI 

area 

a The cutoff level of significance is 10%, based on two-tail tests. 
 

 

 

  

Model Signa Frequency 

(percentage) Comp_high Comp_ext 

Model using Composite 

risk (Non-WUI area) 

Positive  Insignificant 242 (60.5%) 

Positive Positive 158 (39.5%) 

Model using Composite 

risk (WUI area) 

Insignificant  Insignificant 309 (77.25%) 

Negative  Insignificant 69 (17.25%) 

Positive  Insignificant 9 (2.25%) 

Insignificant  Negative 6 (1.5%) 

Insignificant  Positive 3 (0.75%) 

Positive  Positive 2 (0.5%) 

Negative  Negative 2 (0.5%) 
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Table 7.4: Pearson’s chi-square test results of the sign of the estimated coefficient on Dist 

and Firenum  

Model 

Characteristics 

Dista Firenuma 

Insignificant Positive Negative Insignificant Positive Negative 

Data for housing prices 

Assessed value 7% 88% 5% 13.75% 4.88% 81.38% 

Estimated sale 

price 
28.50% 56.50% 15% 37% 2.88% 60.12% 

Chi-square test Reject the null hypothesis of identical distribution 

Functional form 

Semi-log 19.50% 68.50% 12% 27.88% 3.75% 68.38% 

Double-log 16% 76% 8% 22.88% 4% 73.13% 

Chi-square test Fail to reject the null hypothesis 
Reject the null hypothesis of identical 

distribution at 10% level 

Spatial dependency structure and weight matrices 

OLS 15% 72.50% 12.50% 20% 3.75% 76.25% 

Lag, WM=Knn4 17.50% 72.50% 10% 25.62% 3.75% 70.63% 

Lag, WM=Knn8 25% 67.50% 7.50% 25.62% 5% 69.38% 

Lag,  

WM=Distance 

inverse 

15% 72.50% 12.50% 18.13% 3.75% 78.13% 

Error, WM=Knn4 12.50% 75% 12.50% 22.50% 3.13% 74.38% 

Error, WM=Knn8 12.50% 75% 12.50% 23.13% 3.13% 73.75% 

Error,  

WM=Distance 

inverse 

22.50% 70% 7.50% 31.87% 2.50% 65.63% 

General,  

WM=Distance 

inverse 

20% 72.50% 7.50% 32.50% 3.13% 64.38% 

General, 

WM=Knn4 
17.50% 72.50% 10% 25.62% 5% 69.38% 

General, 

WM=Knn8 
20% 72.50% 7.50% 28.75% 5.63% 65.63% 

Chi-square test Fail to reject the null hypothesis of identical distribution 

a The cutoff level of significance is 10%, based on two-tail tests. 

 

 

  



179 

 

Table 7.5: Descriptive statistics of MIP estimatesa  

MIP estimate Mean Min Max % change 

in assessed 

value 

(based on 

mean 

estimates) 

 # of 

estimates 

Wildfire event 

MIPDist $3,553 -$9,024 $19,141 1.1%  400 

MIPFirenum
b $20,151 -$283,306 $280,768 6.4%  1,600 

Wildfire risk 

MIPComp_high $6,065 -$15,908 $28,054 1.9%  1,200 

MIPComp_ext $10,472 -$20,872 $45,324 3.3%  1,200 

MIPWUI_high $18,013 -$10,126 $49,623 5.7%  400 

MIPWUI_vhigh -$20,810 -$72,205 $19,234 -6.6%  400 

MIPWUI_ext $17,648 -$18,779 $78,052 5.6%  400 

MIPHriskscore -$383 -$1,060 $346 -0.1%  400 
a All values are measured in 2013 dollars. 
b In addition, drop in property value decrease with the increase in radius, from $39,126 for 

10km radius, to $24,619 for 15km radius, $10,645 for 20km radius and $6,215 for 25km 

radius. Accordingly, drop in assessed value varies from 2% to 12%. 
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Table 7.6: Meta-analysis of MIP estimates using the random-effects modela 

MIP estimate Pooled 

estimate 

95%CI 

(LL) 

95%CI 

(UL) 

% change in 

assessed value 

(based on 

mean 

estimates) 

p-Value 

for H0: no 

effect 

Wildfire event 

MIPDist $3,461 $3,188 $3,734 1.1% 0.00 

MIPFirenum
b $14,375 $13,821 $14,928 4.6% 0.00 

Wildfire risk 

MIPComp_high $7,040 $6,636 $7,444 2.2% 0.00 

MIPComp_ext $10,662 $9,831 $11,493 3.4% 0.00 

MIPWUI_high $19,316 $17,911 $20,721 6.1% 0.00 

MIPWUI_vhigh -$24,284 -$26,469 -$22,099 -7.7% 0.00 

MIPWUI_ext $22,611 $20,240 $24,981 7.2% 0.00 

MIPHriskscore -$565 -$599 -$531 -0.2% 0.00 
a All values are measured in 2013 dollars. 
b In addition, drop in property value decrease with the increase in radius, from $25,134 for 

10km radius, to $22,277 for 15km radius, $11,910 for 20km radius and $5,392 for 25km 

radius. Accordingly, drop in assessed value varies from 1.6% to 8%. 
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Table 7.7: Kolmogorov-Smirnov (KS) test results for the standard error of MIP estimates 

Model Characteristics 
Standard error of MIPDist Standard error of MIPFirenum 

Mean Min Max Mean Min Max 

Data for housing prices 

Assessed value 792 121 2,611 14,253 365 1,032,194 

Estimated sale price 1,114 149 8,356 6,122 715 117,916 

KS test Reject the null hypothesis of identical distribution 

Functional form 

Semi-log 1125 160 8,356 10,496 381 956,760 

Double-log 781 121 4,625 9,879 365 1,032,194 

KS test 
Reject the null hypothesis of identical 

distribution 
Fail to reject the null hypothesis 

Spatial dependency structure 

OLS 752 121 5,138 5,291 365 34,441 

Spatial 975 128 8,356 10,732 383 1,032,194 

KS test Reject the null hypothesis of identical distribution 
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Table 7.8: Mega-analysis of MIP estimates as a function of data and econometric modelling 

techniques 

Model characteristics Meta-regression 

Model 1 

Meta-regression 

Model 2 

Dependent 

variable=MIPDist 

Dependent  

variable=MIPFirenum 

Data 

Property value  Assessed value 7867*** 25313.4*** 

 (321.3) (4276.8) 

Past wildfire 

events/occurrence 

7-yr time window -475.9 14531.8*** 

 (317.9) (4531.5) 

Buffer zone 

radius 

15km  -79622.9*** 

  (4509.5) 

20km  -61512.7*** 

  (5808) 

25km  -50024.7*** 

  (6480) 

Wildfire risk data 

 

Composite risk 

(County) 

2611.8*** -96407.9*** 

 (724.2) (7075.2) 

Composite risk 

(WUI area)  

6896.6*** -96663.4*** 

 (592.8) (6148.4) 

WUI risk 6650.9*** -106439.7*** 

 (589.1) (6058.1) 

House risk 6463.7*** -122424.8*** 

 (499) (4971) 

Econometric Specification 

Functional form Semi-log 1203.5*** -28243.9*** 

 (305.8) (3280.9) 

Spatial 

dependency and 

weight matrix 

 

Lag, WM=Knn4 -1061.2 16606.5* 

 (716.6) (8835.9) 

Lag, WM=Knn8 -1456.2** -13677.6 

 (699.5) (9288.4) 

Lag, WM= 

Distance  

inverse 

-80.19 -1812.4 

 (757.5) (10063.4) 
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Table 7.8: Mega-analysis of MIP estimates as a function of data and econometric modelling 

techniques (cont’d) 

Model characteristics Meta-regression 

Model 1 

Meta-regression 

Model 2 

Dependent 

variable=MIPDist 

Dependent  

variable=MIPFirenum 

 Error, WM=Knn4 -211.5 -1590.7 

 (744.9) (9929.9) 

Error, WM=Knn8 -382.4 -6105.4 

 (733.3) (9786) 

Error, WM= 

Distance inverse 

-203.8 -4366.2 

(697.2) (8408.1) 

General, 

WM=Knn4 

-1935.4*** -80171.9*** 

 (715) (8643.9) 

General, 

WM=Knn8 

-3332.2*** -25032.6*** 

 (689.5) (8914.7) 

General, WM= 

Distance inverse 

-390.7 35112.5*** 

(690.3) (8360.3) 

 Constant -4589.7*** 166815.4*** 

 (730.2) (9201.1) 

N 400 1,600 

Adj. R2 0.68 0.7 

*** significant at 1%, ** significant at 5%, * significant at 10%. Standard Errors are in 

parentheses. 
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Figure 7.1: Kernel density estimates of MIPDist across models that use assessed value data 

and models that use estimated sales price data 
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Figure 7.2: Kernel density estimates of MIPDist across models that use fires burned in the 

last 7 years (7-year time window) and fires burned in the last 15 years (15-year time 

window) 
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Figure 7.3: Kernel density estimates of MIPDist across models that use composite risk 

covering Non-WUI area and WUI area 
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Figure 7.4: Kernel density estimates of MIPDist across models that use semi-log functional 

form and models that use double-log functional form 
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Figure 7.5: Kernel density estimates of MIPDist across OLS models and spatial 

autoregressive models  
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Figure 7.6: Kernel density estimates of MIPFirenum across models that use assessed value 

data and models that use estimated sales price data 

  

  

MIPFirenum 



190 

 

Figure 7.7: Kernel density estimates of MIPFirenum across models that use 10, 15, 20 and 

25km radius 
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Figure 7.8: Kernel density estimates of MIPFirenum across models that use composite risk 

covering Non-WUI area and WUI area 
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Figure 7.9: Kernel density estimates of MIPFirenum across models that use semi-log 

functional form and models that use double-log functional form 
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Figure 7.10: Kernel density estimates of MIPFirenum across OLS models and spatial 

autoregressive models 
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Chapter 8 Conclusion and policy implications 

8.1 Conclusion  

This analysis utilizes spatial autoregressive hedonic models to investigate the joint 

effect of past wildfire event/occurrence and current risk on property values. I contribute 

to the literature by systematically investigate wildfire effects using a variety of data and 

econometric modeling techniques. First, the unique data sets allow us to estimate hedonic 

models using two data sources for property value; two measures for past wildfire 

event/occurrence (combined with varying time window and buffer zones) and three risk 

measures. Secondly, I use two hedonic functional forms and a variety of spatial 

dependency structures in the hedonic model to examine wildfire effects. The variations in 

the data and modeling techniques, in turn, enable comparison of wildfire effects across 

alternative models. I then employ an internal meta-analysis approach to examine how the 

effects of wildfire vary with data and econometric modeling decisions. This analysis is 

the first application of meta-analysis on hedonic studies concerned with wildfire effects 

on housing market.  

Results of hedonic models show the negative effect of past wildfire 

event/occurrence, which is consistent with Stetler et al. (2010) and Huggett Jr et al. 

(2008). However, the influences of wildfire risk are mixed, depending on the 

measurement of risk, level of risk and geographic area. Since risk assessments vary with 

regard to input data, this result is not surprising. There are still two points worth noting. 

First, the effects of the risk change when risk reaches a certain threshold. At lower levels 

of risk, property values increase with the increase in wildfire risk. Once risk level rises 

above a certain threshold, the relationship tends to be negative or insignificant. Secondly, 
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the effects of composite risk differ across geographic area. In the Non-WUI the positive 

effects of amenities dominate, and therefore fire risk has a positive effect on property 

values. In the WUI, the negative effects of wildfire risk offset, or even exceed the 

positive effects of amenities, resulting in a non-significant or negative relationship. As 

stated earlier, Donovan et al. (2007) also examined the effects of wildfire risk on property 

values and found that wildfire effects change after publication of risk on the website. 

However, it is not clear whether risk assessment used in their study is directly 

comparable to one of risk assessments in this analysis since the algorithm used to 

calculate risk rating is not published.   

Meta-analysis results show that models that use assessed value data not only give 

higher R2 but also find more significant estimates and larger MIP estimates than models 

that use estimated sales prices data. However, the assessed value models do not 

necessarily yield estimates with smaller standard errors. Second, ignoring spatial 

autocorrelation either leads to overestimate of MIP or it has no significant effect on MIP 

estimates. Third, the measurement of wildfire risk significantly influences the effects of 

fire event/occurrence. This result reveals the importance of joint estimation of wildfire 

events and risks, and ignoring wildfire risks in hedonic models may yield inaccurate 

estimates.  

8.2 Limitations and future research 

First, our study is limited in that I utilize the estimated sales price, which is 

derived from the mortgage amount. Previous hedonic literature has exploited either 

assessed value or the actual sales price as the dependent variable. There has been no 

empirical analysis using the estimated sales price in hedonic model, and therefore it is not 
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clear how this would affect the estimates of wildfire effects. Future research might further 

explore this issue focusing on an area with both assessed value and the actual sales price 

data available. 

Secondly, for past wildfire event/occurrence data, this research only used fires 

burned larger than 10 acres. Further research can examine a more complete activities of 

fires by including fires burned less than 10 acres. One can then compare the results from 

these two models and comprehensively understand the effects of wildfire size on property 

values. Further, for both measures of past wildfire event/occurrence, this analysis focus 

on multiple fires. One can select one big fire and exploit differences-in-differences 

approach to investigate the effect of a single fire. 

Finally, estimation of past wildfire event/occurrence effects is complicated by the 

fact that fires are generally burned in wildland area, which also have high amenity values. 

Similarly, the roles of wildfire risk in housing market are double edged: factors 

contributing to high wildfire risk also tend to have high amenity values, such as wood 

roof. One extension is to decompose risk ratings to the underlying factors used to 

compute the rating. For example, two parts are used to compute WUI risk rating: fire 

environment (e.g., fuel, slope) and defensibility (e.g., length of dead-end road, water 

availability). One can then regress property value on defensibility, or even length of 

dead-end road rather than the overall risk rating. This may help to distinguish the effects 

of amenities from the effects of risk. For example, length of dead-end road captures 

wildfire risk but not amenity. Another extension is to use stated preference method (e.g., 

contingent valuation or choice experiment) to further explore tradeoffs between wildfire 

risk and amenity. Wildfire effects differ across the Non-WUI and the WUI area. Thus, 
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the sample should include homeowners in both areas. First, it could identify attributes or 

risk factors that are important to homeowners. Second, it could measure tradeoffs 

between a variety of risk factors, quantify homeowners’ willingness to pay for a certain 

risk factor or a bundle of risk factors. Third, it could capture the difference in 

homeowners’ preference on varying risk factors across the Non-WUI and the WUI area. 

8.3 Policy implications 

To efficiently allocate resources among competing projects, policy makers need 

to evaluate the full cost of wildfires. The costs of suppression cost and rehabilitation are 

relatively easy to measure. However, the costs of wildfires go beyond these direct costs. 

My results indicate that houses that are not physically damaged by fires will suffer a price 

drop, suggesting that these costs should also be measured and factored into policy 

decisions. Given the rapid development in the WUI, together with the growing threat 

from wildfires, the impact of wildfires on housing market is expected to increase. Our 

findings help capture these escalating hidden costs. Fire managers can use these results to 

estimate the impact of fire on the housing market.  

Furthermore, our meta-analysis results indicate that the analysts’ choice of data 

and econometric modeling decisions significantly affect the estimated wildfire effects. 

This finding is consistent with other meta-analysis results. Researchers have to be 

cautious in interpreting empirical evidence regarding wildfire effects on property values; 

policy implications have to be drawn with caution as well.   

Our findings of the negative economic impact of wildfire on property values also 

shed light on strategies for communication and outreach. National fire policies place a 

great deal of emphasis on pre-fire mitigation and preparedness by private landowners, 
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homeowners and communities in fire-prone areas (e.g., the National Fire Plan, Firewise 

Community/USA Recognition Program, Healthy Forest Restoration Act). A 

comprehensive body of research demonstrates that multiple factors have an impact on 

mitigation decisions, such as knowledge about wildfire, past experiences with wildfire, 

perceived wildfire risk and effectiveness of risk reduction activities (Brenkert–Smith, 

Champ, & Flores, 2006; Martin, Bender, & Raish, 2007; Paton, 2008; McCaffrey, 

Stidham, Toman, & Shindler, 2011; Ascher, Wilson, & Toman, 2013; Champ, Donovan, 

& Barth, 2013; Fischer, Kline, Ager, Charnley, & Olsen, 2014; Meldrum et al., 2014). 

Most WUI residents recognize wildfire risk to be high, however awareness alone is not 

sufficient for effective mitigation activities. One key factor affecting mitigation decisions 

is the cost of mitigation efforts and their potential benefits (Steelman, 2008). 

Homeowners are more likely to undertake action when the benefits outweigh the costs. 

Conveying the potential price drop caused by the threat of wildfire might encourage 

homeowners to take into account the non-market cost of wildfire. Knowledge of the 

negative impact on the value of their property tends to increase the expected benefits of 

mitigation actions, and thus the likelihood of mitigation.  

Further, our findings about spatial autocorrelation would encourages homeowners 

to work together to take fire-mitigation activities. The existence of spatial autocorrelation 

implies that the change in one house’s price/characteristics has a significant effect on 

neighboring sites. Thus one homeowner’s risk reduction activities would not only 

increase the value of his home but also the value of neighboring houses, implying the 

benefit of reduction activities is shared among neighboring properties. Furthermore, 

research show that neighbors play a crucial role in mitigation decisions (Shafran, 2008; 
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Brenkert-Smith, 2010; Dickinson, Brenkert-Smith, Champ, & Flores, 2015). Residents 

are more willing to take mitigation action on their own property if their neighbors also 

take risk mitigation measures.  The dissemination of the positive externality of mitigation 

activities help build relationships between neighbors, encourage them to take mitigation 

actions on individual properties as well as throughout communities, and help facilitate 

Firewise and Fire Adapted Communities.  

With the growing wildfire problem, assessing wildfire risk also grows in 

importance. Our results indicate that wildfire risk has a significant effect on property 

values and further, this effect varies depending on the scale of the risk assessment. The 

findings provide support for conducting risk assessment at various geographic scales. 

Risk assessments developed at different spatial scales vary regarding input data. 

Generally, assessments covering large geographical areas, such as at the state or county 

level, tend to concentrate on three factors: fuel, topography and weather; community-

specific or site-specific assessment also takes into account characteristics of a 

community, vegetation near the house or characteristics inside the property boundary 

(e.g., building design and material).  Broad-scale assessment facilitates the direct 

comparison of fire risk between geographic areas. However, it generally ignores 

community-specific or site-specific characteristics, and cannot be used to provide more 

accurate risk reduction recommendations. To develop risk mitigation plans both at the 

macro level and at the community and home level, policy makers must have access to 

multi-level risk assessment. Moreover, risk assessments conducted at varying 

geographical scales can provide researchers and policy makers with a greater 

understanding of the effect of risk on the housing market.  
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Appendix A 

Figure A.1: Wildland Fire Association Hazard Assessment Form  
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Figure A.2: Individual-level house risk assessment 
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