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ABSTRACT 

Health hazards (e.g., West Nile virus and antibiotic resistance) by their nature are 

detrimental to the health of mankind and are a vexing problem for society. Health 

authorities’ awareness of the rising health care costs associated with these health hazards 

highlights the need to undertake research in these areas. This dissertation presents a series 

of papers on these health hazards. 
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Chapter 2 develops a spatial filtering panel data count model to examine the 

factors that contributed to the high prevalence of human West Nile virus (WNV) in 

California and Colorado using county-level data from 2003 to 2007. An econometric 

analysis was performed using a random effects negative binomial model to analyze the 

economic (income and home foreclosures) and biological (mosquitoes) factors associated 

with human WNV. Tests reveal the presence of spatial autocorrelation in the dependent 

variable (human WNV). The presence of this phenomenon implies that WNV in 

neighboring counties do impact the presence of WNV in adjacent counties. 

Consequently, the random effects negative binomial model is augmented with a spatially-

lagged dependent variable and a spatial filtering term to correct for this problem and 

obtain unbiased estimates of the variance. Specification tests also show that income and 

home foreclosures are endogenous, i.e., home foreclosures, income and human WNV 

counts are determined jointly. Hence an instrumental variable (IV) technique is applied to 

the spatial filtering and spatial lag random effects negative binomial models to obtain 

consistent estimates. The former model is preferred because it is parsimonious in terms of 

a model selection criterion. Tests of over-identification (validity tests) reveal that the 

excluded instruments are indeed exogenous and for that matter valid. A number of 

hypotheses are tested regarding the economic and biological variables. The findings 

indicate that West Nile virus is higher in counties characterized by a low median income, 

high home foreclosures and high number of mosquito breeding sites. It is recommended 

that counties that exhibit these economic and biological characteristics should be 

allocated a higher percentage of resources for surveillance and monitoring of the disease.  
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Chapter 3 is devoted to disease mapping and presentation of the variography of 

the various human WNV risk measures. It employs Geographic Information Systems 

(GIS) mapping tools to create thematic risk or hazard maps that visually depict the 

predicted probabilities of human WNV and the standardized morbidity ratios. The 

predicted probabilities were generated from the IV spatial filtering random effects 

negative binomial model. The hazard maps may ultimately assist policy makers in 

identifying areas of high and low West Nile virus risk, allocating scarce resources, and 

disease etiology. Variograms are estimated using geo-statistical methods to examine the 

spatial structure of the various risk measures. In this regard, both isotropic and 

anisotropic (directional) variograms are generated using exponential and Gaussian 

methods. They show the presence of strong spatial patterns in observed West Nile counts 

and the standardized morbidity ratios, but no spatial patterns in the model residuals. This 

study demonstrates how econometric methods can be used concurrently with GIS tools to 

inform public policy on the transmission of human West Nile virus. 

Chapter 4 builds a dynamic bio-economic model to study the impact of animal 

antibiotic use on the evolution of antibiotic resistance in humans. It reveals striking 

similarities between the theory of exhaustible resources in economics and antibiotic 

resistance. Antibiotic resistance is modeled as an exhaustible resource (common pool 

resource) extracted (used) over time. Each time an antibiotic is used it lowers the level of 

the resource (antibiotic effectiveness) by a small amount and thus raises the cost of using 

subsequent doses of an antibiotic. This process will continue and the next dose will lower 

the level of the resource even further making it more costly for future use of the drug. In 

other words, as more and more antibiotics are used the effectiveness of the drug dwindles 
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over time. The planner’s problem is therefore to find the optimal use of antibiotics in 

animals and humans over time and this necessitates the use of capital-theoretic methods. 

Consequently, an optimal control model is developed to examine the trade-offs between 

current antibiotic use in humans and animals and future antibiotic effectiveness. The 

results reveal that antibiotics should be used in the animal industry to the point where the 

immediate net marginal benefit is just counterbalanced by the long-term cost in terms of 

dwindling drug effectiveness. The results of the simulation exercise show that antibiotic 

effectiveness decreases over time because of an accumulation of resistance to the drug by 

bacteria. Also the shadow value of antibiotic effectiveness decreases over time because of 

the decreasing levels of effectiveness. Sensitivity analyses show that increased use of 

antibiotics in the animal industry drastically reduces the level of antibiotic effectiveness 

and its shadow value in a given period. 

 The results of this dissertation could assist health policy makers in the allocation 

of scarce resources. The findings underscore the importance of factors such as income, 

home foreclosures and the number of mosquito pools in the transmission of human 

WNV. Thematic maps of the standardized morbidity ratios and predicted probabilities 

provide information on areas of high and low WNV risks. The optimal control model 

provides an insightful perspective on how to allocate antibiotic resources between animal 

use and human medicine. 
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Chapter 1: Introduction 

1.1 Health Hazards 

 

A health hazard is an activity, event or condition that has the potential to cause acute or 

chronic illness or even death if exposure to such event or condition is not mitigated. One 

difficulty for researchers and practitioners is developing an economic framework for 

studying these hazards. Often, these hazards are considered within an epidemiological 

framework. Health hazards are studied from a resource allocation and management 

framework in this dissertation. Economic theory is primarily concerned with the 

allocation of scare resources that have alternative uses. This dissertation focuses on the 

major determinants of these hazards. The determinants of health hazards are used as 

inputs in decisions relating to the allocation of resources.  Devoting more resources to the 

mitigation of these hazards could have significant opportunity costs. This research is 

primarily motivated by this basic economic principle that resources are limited and this 

necessitates the need for an optimal allocation. 

The West Nile virus (WNV) is a health hazard because it negatively impacts the 

health of the population leading to a loss of work days, a decline in economic output, and 

an increase healthcare cost. Past research on the study of WNV focused on the role of 

climatic factors (Gibbs et al. 2006; Winter et al. 2008; Ruiz et al. 2004). Others focused 

on the role of biological factors such as dead birds in WNV transmission (Patnaik 2007; 

Kwan et al. 2008; Nielson et al. 2008), while a few focused on economic factors such as 

per capita income and mortgage delinquencies (Harrigan et al. 2010; Reisen et al. 2007). 

These studies were limited to only one county and also were conducted in a non-

economic framework. A purpose of this dissertation is to examine the role of economic 
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(income and home foreclosures) and biological (mosquito breeding sites) factors in WNV 

transmission. The approach adopted in this research is novel in the sense that it explores 

how these economic and biological factors can aid in the allocation of scarce resources to 

mitigate WNV.  

The study of WNV is important for three reasons. First, WNV is the leading cause 

of arboviral diseases in the US and the average number of confirmed cases per year 

between 1999 and 2008 was 2,896 (Lindsey et al. 2010). It was estimated that about 80 

percent of all WNV human infections are asymptomatic, i.e., symptoms do not manifest 

in the individual (Mostashari et al. 2001). Second, they impose some economic costs on 

individuals and governments. Individuals who are infected with WNV face medical and 

non-medical costs. These include pharmacy/medical supplies, diagnostics, productivity 

losses and premature deaths, cost of insecticide spraying and transportation to visit a 

healthcare provider. Government agencies face costs relating to mosquito vector 

surveillance and control programs. As select examples,  Zohrabian (2004) indicated that 

West Nile cost the state of Louisiana about $20.1 million in 2002 and the Huffington Post 

(2012) reported that on average the areal spraying costs in a single county in California is 

about $1 million. Third, they impose an externality on society. Undertaking preventive 

actions or policies may affect the likelihood that other people become infected. For 

example, vector control strategies such as the spraying of mosquito breeding sites with 

insecticides will lessen the probability that others will be bitten by an infected mosquito. 

This is something that the sprayer of the sites ignores in his actions, which is referred to 

as “pure infection externality” by Gersovitz and Hammer (2004).  
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Antibiotic resistance is another example of a health hazard because it reduces the 

effectiveness of an antibiotic (increase in resistance) and could render it ineffective 

overtime leading to rising bacterial infections. Previous studies on the study of antibiotic 

use have been undertaken solely within an economic, biological or epidemiological 

framework. As noteworthy examples, Seechi and Babcock (2002) studied optimal animal 

antibiotic use within an economic framework and Massad et al. (2008) studied optimal 

antibiotic use within a biological framework. The approach pursued in this dissertation is 

innovative because it integrates biological and epidemiological information into a 

resource allocation framework in economics. Antibiotic effectiveness is treated as an 

exhaustible resource that dwindles overtime. Thus, the economic model presented 

provides a set of conditions that characterize the optimal use of antibiotic resources.  

The study of antibiotic resistance is important from an economic standpoint for 

two reasons. First, economic cost to society resulting from antibiotic resistance includes 

higher mortality rates, longer hospital stays and the use of more expensive antibiotics. 

Coast and Smith (2003) estimated that the cost of antibiotic resistance in the United 

States amounts to approximately $7 billion annually.  Second, the use of antibiotics 

imposes an external cost on society. For example, in using antibiotics, individuals often 

ignore the effect of their actions on the future effectiveness of the drug. This results in 

declining levels of antibiotic effectiveness, which is a valuable resource to society. 

The analyses of these health hazards is organized into three chapters namely the 

geographic variation in West Nile virus, disease mapping (e.g., incidence of West Nile) 

and the economics of antibiotic resistance. 
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1.2 Geographic Variation in Human West Nile Virus 

 

This chapter primarily examines the role of income and home foreclosures in the 

transmission of WNV. It is important for policy makers to understand how these 

economic factors and WNV are linked to ensure that scarce resources are allocated as 

efficiently as possible to mitigate the disease. The basic economic tenet of this chapter is 

that median household income and the number of home foreclosures can aid in resource 

allocation. Areas with a lower median household income have a higher prevalence of 

WNV because its residents suffer disproportionately from adverse neighborhood and 

environmental conditions. Counties with a lower number of home foreclosures have a 

lower incidence of WNV because the number of unmaintained properties and neglected 

swimming pools are lower. On the basis of this hypothesis, more resources should be 

allocated to areas with low median household income and a high number of home 

foreclosures. 

1.3 Disease Mapping 

 

The objective of this chapter is to provide a geographical distribution of the WNV health 

hazard. The approach is to map relative risk that reflects the number of people who are 

infected with the virus (morbidity) in a given period of time. A map of the relative risk 

provides a visual summary of high-risk areas which are the focus of monitoring and 

surveillance efforts. Thus, they will ultimately aid in the allocation of scarce health 

resources for monitoring and surveillance. These maps are also helpful in assisting policy 

makers, among other things, in identifying the risk factors associated with the spatial 

distribution of WNV and in disease etiology.  
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1.4 Economics of Antibiotic Resistance 

 

This chapter develops a dynamic bio-economic model to study antibiotic resistance. This 

model is quite innovative because it integrates biological and epidemiological 

components into a resource management framework. The use of this model is appealing 

because it provides an insightful perspective on the inter-temporal trade-offs that exist 

between current antibiotic use in animals and humans and future drug effectiveness. 

Second, it allows us to study the dynamic interaction between animal antibiotic use and 

drug effectiveness. The results of this model provide guidelines on the optimal allocation 

of antibiotic resources between animal production and human medicine. Also, it provides 

an insight into the long-term balance between antibiotic use and antibiotic effectiveness. 

1.5 Contributions of this Dissertation 

 
This research undertakes three types of analyses on health hazards focusing on the 

geographic variation in WNV, disease mapping and economics of antibiotic resistance. 

The analyses are presented in the following three chapters: chapter 2, chapter 3, and 

chapter 4. 

 Chapter 2 is devoted to examining the factors associated with WNV transmission. 

The results indicate that WNV is negatively impacted by median household income. A 

novel finding of this research is that home foreclosures have a significant positive impact 

on the prevalence of WNV. Chapter 3 uses medical data to map the relative risk of WNV. 

The results indicate that areas close to each other seem to have similar relative risk values 

than those farther apart. This phenomenon is interesting and suggests that policy 

coordination is necessary in order to mitigate WNV. Chapter 4 develops an economic 

model to illustrate the trade-offs that result from using antibiotics in animal production 
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and in human medicine. Antibiotics effectiveness is treated as a non-renewable resource 

that is gradually extracted. An interesting finding is that increasing animal antibiotic use 

results in decreasing drug effectiveness or increasing antibiotic resistance.  

 This dissertation provides important results for advising health authorities on 

these health hazards. The results suggest that more resources should be allocated to areas 

that have low median income levels and high number of home foreclosures for WNV 

monitoring and surveillance. This research highlights the importance of neighborhood 

conditions in WNV prevalence. Poor environmental conditions, caused by economic 

hardships, could serve as breeding grounds for the mosquito vector. This suggests that 

maintenance of foreclosed homes should be encouraged because of the presence of 

standing water in swimming pools which serves as a breeding ground for mosquitoes. 

The findings of the antibiotic resistance research indicate that measures to reduce animal 

antibiotic use such as prescription requirements, would greatly assist in prolonging the 

potency of an antibiotic. This is because prescriptions can potentially decrease the 

volume of animal antibiotic use thereby increasing drug effectiveness.  
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Chapter 2: Examination of the Geographic Variation in Human West Nile Virus 

 

2.1. Introduction 

 

West Nile virus (WNV) is a mosquito-borne disease transmitted principally by 

mosquitoes in the Culex genus-pipiens, quinquefasciatus and tarsalis. Several bird 

species serve as reservoir hosts (Kramer et al. 2007). Since 1999, when the virus was first 

detected in New York, it has spread westward to all 48 contiguous states. Between 1999 

and 2011, more than 30,000 humans have been infected with the virus, and 400 of these  

resulted in deaths (CDC 2011).  The states of California and Colorado recorded some of 

the highest cases of WNV in the United States (US) between 2003 and 2007 (CDC 2011). 

During this time period, these two states accounted for approximately 28.2% of all WNV 

cases and 20% of all fatalities (CDC 2011). These states have consistently ranked either 

first or second in terms of WNV infections during the time period under study (CDC 

2011). These facts are visually shown in Figures 2-1 and 2-2. This observation is very 

interesting because these states constitute approximately 7.34% of the total land area of 

US, but account for almost 13.6% of the US population. It is somehow intriguing why the 

incidence of WNV is disproportionately higher in these states.  

These states are quite diverse in terms of geographical, climatic, demographic, 

socioeconomic and environmental factors. So they merit separate investigations as to the 

determinants of WNV incidence in these states. They also offer an important opportunity 

to evaluate the potential risk factors associated with the transmission of WNV to humans 

at the county level. Several studies on the determinants of WNV in these states have 

focused on geographic and climatic factors (Winters et al. 2008; Mongoh et al. 2007; 

Patnaik et al. 2007).  
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Figure 2-1: Comparison of Yearly Infections: The Two States and US 

 

 

Figure 2-2: Comparison of Yearly Fatalities: The Two States and US 

 

 

 

However, the role of economic factors in the transmission of the disease seems to be 

neglected in the literature. A number of WNV studies conducted in California (Reisen et 

al. 2008; Harrigan et al. 2010) focused on the role of economic conditions (per capita 
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income and mortgage delinquencies) in the transmission of WNV. These studies, 

however, were limited to only two counties in California; Orange and Kern. Similarly 

studies by Patnaik (2007), Kwan et al. (2008), Nielson et al. (2008) and Carney et al. 

(2011) which examined the role of dead birds and mosquitoes in WNV transmission in 

Colorado and California were restricted to a few counties. It is reasonable to argue that 

the presence of the Culex mosquito is necessary for WNV transmission, but not sufficient 

for an outbreak or spread of the disease. To improve our understanding of the potential 

risk factors that may amplify the incidence of WNV in these states, this study models 

WNV using data from all counties in both states. It is plausible to speculate that certain 

social, economic, demographic, environmental/biological, and ecological factors may be 

responsible for amplification/propagation of the disease.  

A variety of approaches have been employed in the literature to examine the 

determinants of WNV such as logistic regression models (Gibbs et al. 2006; Winter et al. 

2008; Ruiz et al. 2004) and principal component analysis (Mongoh et al. 2007). A critical 

review of the literature reveals some weaknesses of these studies. In fact, most did not 

adequately address some or all of estimation issues such as spatial autocorrelation, 

endogeneity, the count nature of human WNV, area-specific heterogeneity and the panel 

nature of the data. Albeit some studies (Messina et al. 2011; Linard et al. 2007) have used 

negative binomial techniques to address some of these issues, they fail to adequately 

address the panel nature of the data and potential endogeneity issues. The methodological 

approaches adopted in this dissertation overcome these weaknesses. This dissertation 

employs a panel data count model to study the key determinants of human WNV. The use 

of panel data has several advantages. First, they contain more variation and information 
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than cross-sectional data. Second, panel data leads to an increase in efficiency because of 

the availability of greater degrees of freedom. Third, we can control for the effects of 

missing or unobserved variables by the use of a random heterogeneity term. 

This study contributes to the health economics literature in a number of ways. 

First, it employs a random effects negative binomial model to primarily study the 

importance of economic factors in the transmission of WNV in California and Colorado. 

Many studies have focused on the significance of climatic and geographic factors, 

however the role of factors such as income and home foreclosures have been under-

studied in the literature. Second, it addresses the issue of spatial autocorrelation in the 

dependent variable within the context of a panel count data model. The presence of 

spatial autocorrelation in the dependent variable will cause the variance to be biased if 

not corrected.  It uses a spatially- lagged dependent variable and employs a spatial 

filtering technique to remove spatial autocorrelation from the model. Third, it applies an 

instrumental variable technique to the spatial lag and spatial filtering random effects 

negative binomial models to correct for endogeneity in income and home foreclosures. 

The presence of endogeneity will cause the estimates to be biased and inconsistent if not 

rectified. 

The overall objective of this chapter is to determine the important drivers of 

human WNV. The specific objectives are: (1) primarily examine the importance of 

economic (income and home foreclosures) factors in the transmission of human WNV in 

the states of California and Colorado using county-level panel data from 2003 to 2007.  

The role of biological factors in the propagation of the disease is also investigated.  In 

other words, it tests several hypotheses regarding economic and biological factors in the 
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transmission of human WNV. The analysis in this chapter uses the number of mosquito 

pools (mosquito breeding sites) as the only biological factor because a supplementary 

analysis conducted using dead birds showed that they do not strongly impact the 

transmission of WNV. An econometric analysis is performed to analyze the determinants 

of human WNV within a random effects negative binomial model framework. Based on a 

mix of theory and empirical studies climatic and spatial factors are also controlled for; 

and (2) Determine the nature of spatial autocorrelation and how important spatial factors 

are in explaining human WNV patterns overtime and construct an econometric model 

that incorporates such spatial pattern in order to provide reliable estimates. A spatial 

filtering model is proposed as a non-parametric method to remove spatial autocorrelation. 

The econometric model proposed in this paper is one possible approach that can be used 

to study the determinants of human WNV. This dissertation proposes that the use of this 

model will not only emphasize the role of economic and biological factors in human 

WNV amplification, but will also provide policy makers with a more appropriate 

framework for policy making purposes. In particular, the results show that income, home 

foreclosures and the number of mosquitoes breeding sites contribute significantly to the 

risk of human WNV. An empirical methodology is employed based on data obtained 

through archival, library, internet searches, and official State and Federal policy 

documents.  

The organization of this chapter is as follows. To underscore the dearth of studies 

on the role of particularly economic factors in the transmission of WNV in Colorado, 

California and the US in general, a detailed review of the relevant literature is provided in 

section 2. In section 3, the transmission cycle of WNV is reviewed. The economic costs 
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associated with WNV control and the economics of vector control are discussed in 

section 4. In section 5, a brief discussion of the data sources are presented. The 

econometric models employed in this paper are discussed in section 6, were the relative 

differences in models are described. Also the role of economic factors in and the 

determination of health outcomes are discussed.  The results of this study are presented in 

detail in section 7. In section 8, a discussion of the empirical evidence is undertaken and 

the conclusions and policy relevance are summarized. 

2.2 Background Literature 

 

The purpose of this section is to review studies on WNV with a view to highlighting the 

lack of research on the role income and home foreclosures in the transmission of WNV. 

2.2.1Economic Risk Factors 

 

Socioeconomic factors are hypothesized to be associated with human diseases because 

they may explain health disparities that may exist among certain segments of society 

(Nazroo 2003). In fact, the significance of socioeconomic factors is still the subject of 

considerable debate. Some authors indicate that they make a minimal contribution to 

explaining health disparities (Wild and McKeigue 1997).  

Messina et al. (2011) examined the spatial distribution of human WNV cases in 

the greater Chicago area from 2002 to 2006. The study area included Cook and Dupage 

counties because they had a relatively higher number of WNV cases than other counties. 

The authors identified certain environmental and socioeconomic factors that could serve 

as predictors of WNV. These include elevation, vegetation/land cover, housing age, race, 

age, income, the number of mosquito infection rate and April to August precipitation. 
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Generalized linear models (GLM) were used to model the determinants of WNV for each 

year and for all years. In particular, a Poisson or negative binomial model was used 

depending on whether the data displayed over-dispersion or not. Moran’s I test revealed 

the presence of both positive and negative local spatial autocorrelation. The final models 

estimated were accordingly corrected for spatial autocorrelation. Their findings showed 

that elevation, vegetation and housing density had a statistically significant negative 

impact on the incidence of WNV, while race and income had a statistically significant 

positive effect on WNV. 

 The study by Harrigan et al. (2010) focused on the role of economic factors in 

predicting the high incidence of human WNV in Orange County, California. This county 

has a reputation for being a hot spot in terms of the disease from 2004-2008. The 

variables used in their study included per capita income, number of neglected swimming 

pools, population density, elevation, temperature and a vegetation cover index. They 

employed a spatial modeling approach in order to determine the factors that could predict 

the incidence of WNV in Orange County. Their findings showed that per capita income 

explained the largest variation in WNV in both mosquitoes and humans. Their results 

also suggest that poorer communities (low-income neighborhoods) created environmental 

conditions conducive to the survival of the mosquito vector. The argument was that 

neglected swimming pools on foreclosed homes collect pockets of water that could aid in 

vector amplification. Additionally, poorer communities may not have well-functioning 

drainage systems which could further aid in the multiplication of the mosquito vector.  

Reisen et al. (2008) used surveillance and survey data to examine the factors 

responsible for the high prevalence of WNV in Kern County, California, using 2007 data. 
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They were interested in investigating whether the economic downturn and accompanying 

variable mortgage rates contributed to the outbreak of the disease. Their findings 

indicated that economic factors overwhelmingly accounted for the spike in WNV from 

2006 to 2007. The aerial survey showed the existence of a large number of abandoned 

swimming pools on foreclosed residential properties that were infested with algae. They 

concluded that the housing crisis in 2007 that emanated from adjustable mortgage rates 

and sub-prime lending were responsible for this trend. During this period Kern County 

saw a 300% increase in mortgage delinquencies, and a 276% increase in human WNV 

cases. The astronomical increase in the disease was attributed to the rise in the number of 

neglected swimming pools on foreclosed homes that serve as a breeding site for the 

mosquito vector. 

 Ruiz et al. (2007) examined the determinants of the high incidence of human 

WNV cases in the urban areas of Chicago and Detroit using 2002 data. They identified 18 

risk factors pertaining to socioeconomic, environmental and landscape factors. 

Socioeconomic factors included median family income, median age of the population, 

average age of housing, and the fraction of housing built in each decade from 1940 to 

2000.  Environmental factors included vegetation and land cover variables. In order to 

isolate which of these factors that could potentially explain most of the variation in 

human WNV cases, a principal component analysis was undertaken to select core 

variables that were unrelated. One important aspect of their study was the presence of 

spatial patterns in the data. In other words, tracts that displayed similar WNV cases were 

clustered together. They partitioned Chicago and Detroit into five urban classes: city, low 

income; city, high income; inner suburbs; outer suburbs; urban, no-man’s land. Analysis 
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of variance (ANOVA) methods were then used to reveal that there existed significant 

differences in the means of WNV cases for all urban classes. Age of the housing unit and 

land cover variables were significant in explaining the prevalence of WNV in the two 

cities. 

2.2.2 Environmental Risk Factors 

 

The environment may assist in creating biological or etiological conditions for the 

amplification of both vector and host. Earlier studies on the potential environmental risk 

factors are comparable to the analysis in this essay because the most dominant mosquito 

species in those studies are Culex pipiens and Culex tarsalis. Kwan et al. (2010) 

undertook a study to determine the ecological and environmental factors responsible for 

the emergence and persistence of WNV in the Los Angeles area between 2003 and 2008. 

The study area focused on the Los Angeles Basin, San Fernando Valley, San Gabriel 

Valleys, and the Santa Clarita Valley. The researchers were interested in investigating 

whether significant differences existed in the means of mosquito abundance, dead birds, 

sentinel chickens, temperature and rainfall. The ANOVA method revealed that there were 

significant differences in WNV cases whether mean temperatures were classified by year 

or by region. Also the ANOVA method showed that mean mosquito abundance (trap 

counts) was not statistically different between the Los Angeles Basin and Santa Clarita 

Valley. The mean difference in dead birds was found to be significantly different for each 

of the years. 

In another study conducted for the period 2002-2006, DeGroote et al. (2008) 

examined several factors that could account for the high incidence of WNV in Iowa using 

census block data. The authors used a variety of geographic, demographic, and climatic 
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variables as potential risk factors. The main technique of investigation was ANOVA. 

This method was used to identify factors that could explain differences in mean WNV 

cases between census blocks with WNV cases and those without WNV cases. The results 

revealed that population density, stream density, road density, land cover, irrigation, 

mean precipitation, and mean temperatures were statistically significant in explaining 

differences in mean WNV between census blocks. Tests revealed the presence of positive 

spatial autocorrelation. This means that adjoining census tracts have similar WNV 

counts.  

In a similar study Patnaik et al. (2007) conducted a study in the Colorado counties 

of Adams, Arapahoe, and Douglas in 2002. They were interested in isolating those 

environmental factors that could reliably predict the incidence of WNV cases. The 

environmental factors considered were birds that tested positive for WNV, the number of 

mosquito pools, the equine population, and the number of sentinel chickens. Using a 

spatial model developed using geographic information systems (GIS) they found that 

dead birds were responsible for predicting a vast majority of human cases. Mosquito 

pools and the equine population also predicted a reasonable proportion of human cases, 

but not as successfully as dead birds. 

Carney et al. (2011) developed a dynamic continuous area space-time (DYCAST) 

model to predict human cases of WNV based on dead birds in the California counties of 

Orange, Riverside and San Bernardino because these counties accounted for about 85% 

of all human cases in 2004. The results showed that the DYCAST model was 91% 

accurate in predicting human WNV cases using information on dead birds. In addition, 

the model identified high-risk populations about 5 weeks in advance of an outbreak. 
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In another study Nielson et al. (2008) used GIS tools as well as spatial statistics 

and surveillance systems to study the risk factors associated with human WNV infection 

in Davis (California). Their results showed that dead birds and equine cases were 

responsible for the high WNV counts in 2005. In 2006, on the other hand, mosquito pools 

were associated with the high counts of WNV. 

2.2.3 Climatic Risk Factors 

 

The impact of climate change and the environment on infectious diseases has been the 

subject of considerable debate, speculation and extensive study for centuries. Shope 

(1991) cites Jacob Henles 1840 study entitled “On Miasmata and Contagia” in which 

Henles asserts that  

Heat and moisture favor the production and propagation of the infusoria and the molds, 

as well as the miasmata and contagia, therefore miasmatic – contagious diseases are most 

often endemic in warm moist regions and epidemic in wet summer months 

Climate change is one of several variables that affect the rate of infectious diseases. It 

may affect the geographical distribution of zoonotic diseases prevalent in the United 

States. McMichael et al. (1996) contend that many of the biological organisms and 

processes associated with the propagation of infectious diseases are specifically 

influenced by variations in climatic variables such as temperature, precipitation and 

drought. McMichael et al. (1996) suggest that the impact of climate change on zoonoses 

can be understood by examining the direct effects of climate on vector biology, indirect 

effects of climatic variables on vectors, and the effect of climate change on the 

distribution of vector-borne diseases. The climatic variables that directly affect the 

biology of the vector, pathogen and host include temperature, humidity and precipitation.  
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The studies on the relationship between climate change and WNV in the US have 

focused on three main climatic variables: temperature, precipitation and drought. 

Wimberly et al. (2008) examined the role of climatic and land use variables in the 

transmission of WNV in the Northern Great Plains of the US (North Dakota, South 

Dakota, Nebraska, and some areas of Wyoming and Montana) using county-level data for 

2002 and 2003. They modeled WNV using a two-step process. In the first step of the 

modeling the determinants of WNV, five different models were run using a second-trend 

surface model of temperature and precipitation. In this stage, they accounted for spatial 

error effects generated by a conditional autoregressive process (CAR). This was to 

correct for any biases that might be present due to spatial autocorrelation. In the second 

step of their modeling exercise, the final model included land cover variables in addition 

to the climatic variables used in step one. Cluster analysis revealed that all three states in 

general formed one cluster. Their results indicated that temperature, irrigated lands, rural 

areas and wetlands had a substantial positive impact on the prevalence of WNV, while 

precipitation had a significant negative impact on WNV prevalence. 

Mongoh et al. (2007) studied the environmental and ecological determinants of 

equine WNV cases in North Dakota in 2002. Potential risk factors which they posited 

could be responsible for the occurrence of WNV in horses include birds, human cases, 

mosquito pools, temperature, rainfall, distance from water bodies, and elevation. A 

principal component analysis was undertaken to create a set of uncorrelated variables and 

to determine which components accounted for most of the variation (or were significant). 

The results of principal components regression showed that human WNV cases, positive 

mosquito pools, mean temperature, mean elevation, mean precipitation, and distance to 
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water bodies were statistically significant in explaining WNV in horses. Specifically, 

positive mosquito pools, mean temperature, and distance to water bodies were negatively 

related to equine WNV cases, while human WNV cases, mean elevation and mean 

precipitation were positively related to the occurrence of WNV in horses. 

2.2.4 Geographic Risk Factors 

 

Gibbs et al. (2006) undertook a WNV study to examine the factors that determined the 

serostatus of avian/bird collection sites in Georgia between 2002 and 2004. The authors 

identified variables such as land cover, elevation, human population density, and climatic 

variables as potential determinants. They employed a logistic regression method in 

conjunction with GIS tools to determine which of these variables could plausibly explain 

the geographical distribution of WNV in Georgia. The results of the logistic regression 

showed that temperature, housing density, land use in urban/suburban areas, and 

elevation were statistically significant in predicting the geographical distribution of WNV 

in Georgia. In particular, the risk of WNV was found to be higher in urban/suburban 

areas and lower in mountainous areas. 

Brown et al. (2008) examined the determinants of WNV in the eight Northeastern US 

states using county-level data from 1999-2006. They were particularly interested in the 

role of ecological factors in the transmission of the disease. The main variable of interest 

to the researchers was land use. To begin with, they classified land use as either urban or 

forest. Urban land included the following classes: low-intensity residential, high-intensity 

residential, commercial/industrial/transportation, and urban/recreational grasses. Land 

use devoted to deciduous, evergreen and mixed forests were classified as forests. The 

statistical methods they employed took into account the effect of spatial proximity. Their 
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findings suggest that urban counties where forest cover is less than 38%, were 4.4 times 

more likely to have above-median WNV incidence than rural counties where forest cover 

is greater than 70%. 

Winters et al. (2008) developed a predictive spatial model to study the geographic 

factors associated with the prevalence of human WNV cases in western and eastern 

Colorado using data from 2002-2006. The environmental factors considered in this study 

include elevation, July precipitation, heating-degree days in August, a vegetation cover 

index, September snow amounts, and March temperatures. A multivariate logistic model 

was employed to assist in predicting the incidence of WNV cases in both western and 

eastern Colorado. The models accurately predicted the high incidence of WNV in 27% of 

areas in eastern Colorado, compared to only 12% in western Colorado.  

Ruiz et al. (2004) analyzed factors associated with the incidence of human WNV 

in the Chicago area in 2002. This study was conducted in Cook and Dupage counties 

because they had the highest number of human WNV cases. The geographic and 

environmental risk factors considered included population density, income, race, age, 

elevation, distance to dead birds, and mosquito abatement efforts. Discriminant analysis 

was the main tool used in this study to select the set of explanatory variables to be 

included in the binary logit model. Tests of spatial autocorrelation were undertaken using 

the local version of Moran’s I test. The results showed that in general positive spatial 

autocorrelation was present. So census tracts with similar WNV cases were adjacent to 

each other. Their findings show that each of the potential risk factors included in the logit 

model were statistically significant in predicting WNV. 
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2.2.5 Literature Synthesis 

 

The literature review revealed several important facts. First, the role of climatic and 

geographic factors in amplification of the disease seems to be well-addressed. These are 

important determinants of the geographical distribution of WNV. However, their 

presence alone may not be sufficient to explain the amplification of the disease in 

California and Colorado. Second, the impact of factors of supreme interest in this study, 

income and home foreclosures have not been adequately addressed.  The motivation for 

this study is to contribute to the literature by filling the void. Third, different 

methodological approaches have been proposed to examine the important risk factors that 

aid in WNV amplification. These approaches did not take into account the count and 

panel nature of the data and did not adequately address spatial autocorrelation in human 

WNV. The econometric model proposed to study the determinants of WNV amplification 

in California and Colorado corrects for these shortcomings. Clearly, there is no single 

econometric model which is comprehensive enough to incorporate all the potential risk 

factors associated with WNV amplification and transmission. However, it can be argued 

that the econometric model proposed in this essay offers a better explanation of the 

relationship between human WNV incidence and the economic factors identified in this 

study than the models used in previous studies. 

2.3 Transmission Cycle of West Nile Virus 

 

The transmission of West Nile from mosquitoes to humans involves three organisms 

namely a vector, host and infectious agent. In epidemiology, a vector is an insect or any 

living carrier that transmits an infectious agent or pathogen (Roberts et al. 2008). In the 

US, common vectors that transmit WNV to humans or other animals are mosquitoes in 
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the Genus Culex. A vector is not only a crucial aspect of some parasite’s life cycles, but 

also transmits the parasite directly to subsequent hosts. A host is an organism upon which 

another organism lives as a parasite (McMichael et al. 1996). A reservoir host is a host in 

which viable infectious agents remain and from which infection of individuals may 

occur. Turell et al. (2002) explain that in the case of WNV the primary transmission cycle 

involves avian hosts. Humans and horses are considered to be accidental or dead-end 

hosts and develop very low levels of viremia which is not sufficient to infect mosquitoes 

(Hayes et al. 2005). An infectious agent or a pathogen or parasite is a biological organism 

that causes diseases. In the case of WNV the pathogen is a virus. The manner in which 

vector-borne diseases are transmitted to the human population depends on the characters 

and requirements of three living organisms – the pathologic agent, vector and human host 

and reservoir hosts. Typically, the vector injects the infectious agent into the blood 

stream of the host when it feeds on the blood of the host. For example, the female Culex 

mosquito (the vector for WNV), inserts its proboscis under the skin and feeds on its host 

blood. The parasites the mosquito carries, located in its salivary glands, are transmitted 

directed into the blood stream of the host. 

2.4 Economics of West Nile Virus Control 

 

The economic aspect of disease control is important in most epidemiological studies. In 

response to the rapid increase in WNV infections throughout the US, there has been a 

commensurate increase in the number of mosquito vector surveillance and control 

programs. These mosquito and surveillance programs are costly and time consuming. 

Economic information on costs and benefits assist policy makers in reinforcing and 

maintaining prevention and control measures, overhauling current surveillance systems, 
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and initiating other alternative policy interventions (Zohrabian et al. 2004). In the 

absence of a vaccine, surveillance of WNV is essential because it is the primary means 

of monitoring seasonal outbreaks of the disease so that prevention and control programs 

can be introduced. The California Department of Public Health (CDPH), the Mosquito 

and Vector Control Association of California (MVCAC), the University of California at 

Davis, and the Colorado Department of Public Health and Environment (CDPHE) 

undertake surveillance programs in California and Colorado. The cost to these agencies 

stem from mosquito abatement (including larval control), surveillance and education, 

communication services, and veterinary diagnostics and entomological services. 

According to the CDC (2011), the objectives of surveillance and monitoring for WNV 

include: (1) To evaluate the public health consequences of the disease; (2) Assess the 

need for public health intervention programs; (3) Identify potential risk factors 

responsible for transmission of the disease; (4) Determine which populations can be 

classified as high risk; and (5) identify which regions are in urgent need of interventions. 

2.4.1 Economics of Vector Control 

 

The study of dynamic economic control of vector-borne diseases has generated a lot of 

interest in recent years. The economic benefit of vector control derives from reducing 

vector longevity and thereby reducing disease transmission. The formal approach in 

economics is to examine the vector control problem within a capital-theoretic framework 

where the vector population is treated as a state variable. The objective of such studies is 

to find the optimal insecticide application which is then subsequently used to find the 

optimal path of the vector population. 
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 Gersovitz and Hammer (2004) studied the control of vector-borne diseases using 

the susceptible-infections-susceptible (SIS) model. They specify equations explaining 

the evolution of the number of infected people, the number of infected mosquitoes, and 

the total population of mosquito vector. Their research examined the effects of various 

policy interventions (bed nets, provision of prophylactic drugs, insecticide spraying and 

provision of drugs that hasten recovery) on controlling the vector population. The 

objective of the decision maker is to choose policy intervention parameters that 

maximize a net benefit function over time. Policies for which the marginal benefits of 

reducing the vector population exceed the marginal costs may be deemed feasible. 

Brown et al. (2009) examined the optimal control of the mosquito vector with respect to 

malaria. To begin with, they specify equations that describe the way malaria prevalence 

and susceptible allele evolve over time. Next they specify a function that represents the 

total cost of infections and indoor residual spraying (IRS). The choice variable of the 

policymaker is the fraction of households covered by IRS. The policymaker’s objective 

is to minimize the total present value of costs by choosing the optimal IRS policy. 

2.4.2 Economic Losses Associated with WNV 

 

The economic losses that accrue to individuals from a WNV infection include both 

medical and non-medical costs (Zohrabian et al. 2004). Medical costs include both 

inpatient and outpatient treatment costs—pharmacy/medical supplies, diagnostics, room 

and board, surgical services, intensive care and outpatient rehabilitation facilities and 

equipment. Non-medical costs include productivity losses, caused by illness and 

premature death, and transportation to visit a health care provider. Individuals or 
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households also incur significant cost on prevention measures such as insecticide 

spraying and using treated nets. 

2.5 Data Sources 

 
Data used in this study were collected from several sources. Data on temperature 

(    ), precipitation (      ) and the drought index (    ) were collated from the 

National Climatic Data Center (NCDC 2011). County-level climatic data was not readily 

available so information from weather stations in each county was used to calculate 

annual climate data. An arithmetic average was used to calculate the climatic variables 

in counties with several weather stations. Information on human WNV (  ) and the 

number of positive mosquito pools (        ) were acquired from the Centers for 

Disease Control (CDC 2011). Data on income (       ) and population density 

(        ) were taken from the US Department of Commerce/ Census Bureau 

(USDOC 2011). Data on home foreclosures (        ) was acquired from Data 

Quick News and the Colorado Department of Local Affairs. Tables 2-1 and 2-2 contain 

the descriptive statistic of each of these variables for each state. Three trends are obvious 

from a detailed analysis of the data. First, they show that the data on WNV cases are 

highly asymmetrical in nature. Clearly, there is evidence of over-dispersion in the data 

because the variances are larger than the means. Second, the mean of WNV counts in 

Colorado is about 1.5 times that of California. Third, the values of the economic and 

biological variables for California are much larger than those for Colorado (Figures 2-3 

and 2-4). The spatial distribution of human WNV cases and the key economic and 

biological variables for California and Colorado are shown in Figures 2-5 to 2-8 and 

Figures 2-9 to 2-12 respectively. 
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Table 2-1: Factors Used to Assess Risk of Human WNV in California 

Variable 

 

Description Mean S.D. Min Max 

HV
CDC

 human WNV case counts per county per 

year 

8.355 29.530 0 331 

INCOME
CB

 Natural log of median household income 

($)  

10.750 .246 10.258 11.341 

FORCLOSE
DQ

 Natural log of home foreclosures plus 1( 

in thousands of houses) 
4.004 3.668 0 10.603 

MOSQUITO
CDC

 Number of positive mosquito pools 14.679 43.901 0 408 

POPDENSE
CB

 Natural log of population density 4.508 1.993 .412 9.73 

PRECIP
NCDC

 Mean annual precipitation in inches 2.184 1.015 .270 4.283 

TEMP
NCDC

 Mean annual temperature in Fahrenheit 57.912 4.029 44.733 66.4 

PDSI
NCDC

 Palmer Drought Severity Index ranges 

from 0 to -5 

-.241 2.053 -5.040 4.215 

D2004 A dummy variable that equals one if 

year is 2004 and zero otherwise 

.2   .400 0 1 

D2005 A dummy variable that equals one if 

year is 2005 and zero otherwise 

.2    .400 0 1 

D2006 A dummy variable that equals one if 

year is 2006 and zero otherwise 

.2     .400 0 1 

D2007 A dummy variable that equals one if 

year is 2007 and zero otherwise 

.2    .400 0 1 

Data Sources: 
CDC

-Centers for Disease Control (2011), 
NCDC

-National  

Climatic Data Center (2011), 
CB

-US Census Bureau, 
DQ

-Data Quick News 
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Table 2-2: Factors Used to Assess Risk of Human WNV in Colorado 

Variable 

 

Description Mean S.D. Min Max 

HV
CDC

 Human WNV case counts per county 

per year 

13.365 51.777 0 546 

INCOME
CB

 Natural log of median household 

income ($) 

10.637 .288 9.986 11.458 

FORCLOSE
COLA

 Natural log of home foreclosures plus 

1(thousands of houses) 

2.903 2.669 0 8.975 

MOSQUITO
CDC

 Number of positive mosquito pools 5.593 21.051 0 247 

POPDENSE
CB

 Natural log of population density 2.509 1.797 -.368 8.227 

PRECIP
NCDC

 Mean annual precipitation in inches 1.337 .185 .803 1.62 

TEMP
NCDC

 Mean annual temperature in Fahrenheit 46.816 2.760 40.225 51.666 

PDSI
NCDC

 Palmer Drought Severity Index ranges 

from 0 to -5 

-.772 2.204 -5.705 3.005 

D2004 A dummy variable that equals one if 

year is 2004 and zero otherwise 

.2 .400 0 1 

D2005 A dummy variable that equals one if 

year is 2005 and zero otherwise 

.2 .400 0 1 

D2006 A dummy variable that equals one if 

year is 2006 and zero otherwise 

.2 .400 0 1 

D2007 A dummy variable that equals one if 

year is 2007 and zero otherwise 

.2 .400 0 1 

Data Sources: 
CDC

-Centers for Disease Control (2011), 
NCDC

-National  

Climatic Data Center (2011), 
CB

-US Census Bureau, 
COLA

-Colorado Department  

Of Local Affairs 
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Figure 2-3: Comparison of Economic Risk Factors (2003-2007) 

 

 

 

Figure 2-4: Comparison of Biological Risk Factors (2003-2007) 
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2.6 Econometric Modeling 

 

The choice of the econometric model was motivated by the need to correct for the panel 

nature of the data. In dealing with the human WNV data, it is natural to model the human 

WNV case counts using a negative binomial model. However, because the data contains 

county-specific effects which may vary, it makes econometric sense to introduce random 

county specific effects into the relationship. 

2.6.1 Random Effects Negative Binomial (RENB) Model 

 

The specification of a RENB model is theoretically appealing because it can account for 

dependence that can exist between WNV in counties through the use of a county-specific 

random heterogeneity term. This random term could capture hidden or omitted variables 

such as quality of surveillance or early warning systems, response time in removing dead 

birds and spraying of mosquito pools and other monitoring technology available. 

Hausman, Hall and Griliches (1984) extend the negative binomial model to 

accommodate random effects. The conditional negative binomial distribution is given as: 

               
          

              
 

  
    

 
   

 
 

    
 
   

                                   

where            indexes counties,          indexes a given time period,     

         ,   is the dispersion parameter and     is the number of WNV counts in any 

county in a given year. The moments (i.e. mean and variance) of this conditional 

distribution are: 
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In the analysis of panel data pertaining to negative binomial models, the individual 

effects relate to the distribution of the dispersion parameter, not the mean rate. Following 

Hausman, Hall and Griliches (1984), the expected number of WNV counts can be written 

as: 

                                                                                                                  

where    is the random effects across counties and               
 

 
   ,     is a 

vector of covariates and   is the coefficient vector to be estimated. The RENB model 

accounts for variation over time by allowing the dispersion parameter to follow a beta 

distribution such that: 

 

    
                                                                                                                          

with mean and variance respectively as: 

 

   
  

  

              
 

  and   are parameters of the beta distribution. The joint probability density function can 

be expressed as:  
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 2.6.2 Empirical Model Specification 

 

The general econometric model for studying the determinants of WNV can be specified 

as: 

                
     

            
  
                                                                                

The economic variables (income and home foreclosures) are represented by the vector 

  , the biological variable (mosquito pools) is represented by the vector     , the 

climatic variables (precipitation, temperature and drought) are represented by the vector 

    , population density is represented by the vector     and   is the random effects 

term. 

The econometric model specified uses human WNV (  ) as the dependent 

variable and home foreclosures (        ), income (       ), mosquito pools 

(        ), and population density (        ). Additional covariates, , are also 

controlled for. The following random effects negative binomial model is proposed to 

examine the determinants of human WNV transmission: 

                                                 
                         

                                                                

 

        ) indexes counties,   (     ) indexes time, and   is the random effects term. 

The control vector    comprises climatic variables including annual precipitation 

(      ), annual temperature (    ), annual drought (    ), and time fixed effects 

(dummies) for 2004 to 2007 (     ,      ,       and      ). The choice of 

controls is driven by a mix of theory and empirical findings of numerous WNV studies. 
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2.6.2.1 Role of Income 

 

A direct link between income and human WNV is relatively easy to establish. Individuals 

earn income in the form of wages and salaries by supplying their services on the labor 

market. Several authors generally agree that income is a major determinant of health 

(Nazroo 2003 and Ettner 1996).  However, it is very difficult to establish a direction of 

causality between income and health. Notwithstanding these issues, economists generally 

agree that income is positively related to health. It is therefore plausible to argue that the 

absence of health (disease/illness) is negatively related to income. According to the 

Center on Social Disparities in Health (CSDH 2010), income can directly affect an 

individual’s medical care, housing options, nutrition and physical activity options, 

education, neighborhood conditions, and stress level. Residents of low-income 

communities suffer disproportionately from adverse environmental factors, lack of 

maintenance of property (houses), and poor drainage (Harrigan et al. 2010). Another 

reason to account for income is that it could serve as a proxy for surveillance efforts 

(Brown et al. 2008). Previous studies on animal rabies used county-level per capita 

income as a surrogate for investment in surveillance and laboratory testing (Childs et al. 

2007).  Poverty has been linked to income as well because malnutrition can lead to a 

compromised immune system (Farmer 1999). In most cases it is reasonable to 

hypothesize that income is negatively related to disease transmission (Messina et al. 

2011; Linard et al. 2007). The variable        is included in the model to account for 

this effect. 
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2.6.2.2. Role of Home Foreclosures 

 

The relationship between home foreclosures and WNV is not conclusive and is still the 

subject of considerable debate. In economics, homes are considered an investment, and 

individuals and families buy homes to get a favorable return on their investment in the 

future. Home foreclosures were considered a potential risk factor in the transmission of 

human WNV during the housing crisis that began in 2004 and culminated in the financial 

crisis of 2007 (Reisen et al. 2008; Harrigan et al. 2010). The Federal Reserve (2008) 

stated that the hardest hit states were California, Arizona, Nevada, Colorado, Florida and 

some New England states. The argument was that the economic downturn and 

accompanying housing market crisis which began in 2004 adversely affected the 

economy of the US in general, and particularly the states of California and Colorado. The 

combined effect was a growing number of neglected swimming pools on foreclosed 

properties in particular across Southern California. This was attributed to the high 

number of home foreclosures and delinquent mortgages because home owners could not 

afford their mortgages. Most of these neglected swimming pools collected small pockets 

of water and served as breeding grounds for mosquitoes (Reisen et al. 2008; Harrigan et 

al. 2010). According to Reisen et al. (2008), WNV cases escalated by 276% in Kern 

County in the Summer of 2007. This was blamed on the sluggish economy that obtained 

in 2007, and the accompanying slowdown in the housing market. As a result residents 

could not afford their mortgage payments leading to an increase in foreclosures. The 

result was an increase in WNV because abandoned swimming pools collected pockets of 

water that served as breeding grounds for the mosquito vector and other pests. Harrigan 

et al. (2010) found a similar association between WNV incidence in Orange County and 
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neglected swimming pools on foreclosed residential properties. Based on these studies by 

Harrigan et al. (2010) and Reisen at al. (2008), it is reasonable to hypothesize a positive 

relationship between home foreclosures and the transmission of WNV. In order to further 

verify and clarify the role of home foreclosures on WNV transmission, the variable 

         is included in the model.  

2.6.2.3 Role of Mosquitoes 

 

The general consensus is that the presence of the Culex mosquito vector is necessary for 

the outbreak of WNV (Messina et al. 2011). Within the Culex genus, there are certain 

species local to specific regions of the US. In western US, the tarsalis and 

quinquefasciatus species are found in abundance (DeGroote et al. 2008). The Culex 

tarsalis is found in both Colorado and California, but the Culex quinquefasciatus is 

mostly restricted to California. The habitat location is different for each species of the 

Culex genus. The Culex tarsalis is the predominant vector in rural settings (Epstein et al. 

2001), although Reisen et al. (2008) reported their presence in urban areas of California. 

Their survival depends on the presence of surface water created by rainfall and irrigation 

projects. Culex tarsalis is mainly responsible for transmitting the virus to humans in 

Colorado (CDPH 2002). They are known to feed at dawn and dusk. During the day, they 

usually rest in dark and secluded areas such as under the roof eaves, storm drains, 

porches and tall shrubs. Their habitat includes areas characterized by standing water such 

as irrigated fields, old tires, flower pots, hoof prints or small pockets of water on the 

ground. Culex pipiens is mostly found in urban areas and lays its eggs in stagnant water. 

This includes areas with poor drainage, sewage treatment lagoons/pools, urban catch 

basins, and containers found on the compounds of many low-cost houses (Savage and 
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Miller 1995; Huhn et al. 2005). Mosquitoes get infected by feeding on a bird with the 

virus in its blood stream. Mosquitoes then spread the virus to new hosts by biting another 

bird or mammal. The biological evidence from the foregoing discussion suggests that the 

number of mosquitoes breeding sites may be positively related to human WNV. The 

variable          is included to control for vector abundance. 

2.6.2.4 Role of Population Density 

 

Population variables are included in this and many studies in epidemiology because they 

reflect the degree of exposure to a particular disease. In particular, the population can be 

used to calculate or measure the relative risk of a disease in each county. A limited 

number of studies have explicitly modeled the effect of population density on the 

transmission of WNV in California and Colorado (Harrigan et al. 2010). A high 

population density might increase the likelihood of vector abundance and the probability 

that an individual is bitten by an infected mosquito. In this regard, Trawinski and Mackay 

(2010) hypothesize that vector (mosquito) abundance is positively correlated with 

population density. Taylor et al. (1956) also found that areas with higher cases of WNV 

and mosquito abundance in Egypt also had higher population densities. From the 

foregoing discussion it is reasonable to hypothesize a positive relationship between 

human WNV transmission and population density. The variable          is included 

as a covariate to account for this effect. The          variable makes the use of an 

exposure/offset variable in the RENB regressions redundant. This is because the log of 

population, which is a component of         , serves that purpose. 
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2.6.2.5 Role of Climatic Factors 

 

Precipitation plays a significant role in the life cycle of insects such as mosquitoes. The 

presence or absence of breeding sites may depend on the amount of precipitation in an 

area. Guber et al. (2001) enumerates a range of possible channels through which rainfall 

can impact the diffusion of vector-borne diseases. These methods include: increased 

surface water can provide breeding sites for vectors; low rainfall can also increase 

breeding sites by slowing river flow; increased rainfall can increase vegetation and allow 

expansion in population of vertebrate host; flooding may eliminate habitat for both 

vectors and vertebrate and flooding may force vertebrate hosts into closer contact with 

humans. Some studies (Wimberly 2008; Winters et al. 2008) found evidence that 

precipitation had a negative impact on WNV, while Mongoh et al. (2006) and Messina et 

al. (2011) found evidence to the contrary. The variable        is included to control for 

the effect of precipitation. Changes in temperature have been known to affect the 

distribution of many arthropod vectors because the minimum and maximum temperatures 

affect their geographical distribution. Hunter (2003) posits that temperatures can affect 

both the distribution of the vector and the effectiveness of pathogen transmission through 

the vector. Gubler et al. (2001) enumerates a range of possible mechanisms by which 

changes in temperature can greatly impact the risk of transmission of vector-borne 

diseases. These effects include increase or decrease in survival of vector, changes in rate 

of vector population growth, changes in feeding behavior, changes in susceptibility of 

vector to pathogens, changes in incubation period of pathogen, changes in seasonality of 

vector activity, and changes in seasonality of pathogen transmission.  Thus, it could be 

hypothesized that the effect of temperature on WNV can be either negative or positive. A 
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number of empirical studies found a positive relationship between temperature and WNV 

(Winters et al. 2008; Mongoh et al. 2006; Gibbs et al. 2006). The variable      is 

included to control for this effect. Drought may also impact the incidence of human 

WNV.  A number of authors suggest that drier conditions increase the contact between 

vectors and reservoir hosts thereby leading to increased WNV transmission during 

periods of drought (Gibbs et al. 2006; Brown et al. 2011; DeGroote 2008). The variable 

     is included to control for the effect of drought.   

2.6.2.6 Role of Time Fixed Effects 

 

It is sometimes assumed that regression coefficients are the same in subsets of the data. 

This assumption is occasionally violated because these subsets of the data are structurally 

different.  Events that occur in each year may have unequal impact on counties. Because 

of the panel structure of the data, time effects are controlled for. The time effects are 

captured by the dummy variables     ,      ,       and      . They could also 

represent technological changes or county policies that may affect WNV over time. 

2.6.3 Statement of Hypotheses 

 

The following hypotheses regarding the economic (income and home foreclosures) and 

biological (mosquito pools) variables are tested. The former is the primary hypothesis, 

while the latter is the secondary hypothesis. 

Hypothesis 1:           

This hypothesis states that income will have a significant negative impact on the 

incidence of WNV. Under this hypothesis the regression coefficient on        is 

expected to be negative. 
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Hypothesis 2:             

This hypothesis states that home foreclosures will have a positive effect on WNV 

transmission. Under this hypothesis the regression coefficient on          is expected 

to be positive. 

Hypothesis 3:             

This hypothesis states that the number of mosquito breeding sites will have a significant 

positive impact on the incidence of WNV. Under this hypothesis the regression 

coefficient on          is expected to be positive. Summaries of all three hypotheses 

for each of the estimated models are provided in Tables 2-16 and 2-17. 

2.6.4 Endogeneity 

 

The model specified in equation (2.8) is appropriate only if all the explanatory variables 

are exogenous. This is potentially a problem due to the possibility of simultaneity bias 

caused by endogeneity between WNV counts and income and home foreclosures. Put 

simply, income and home foreclosures could be determined jointly with human WNV. 

Ettner (1996) and Biddle et al. (2007) argue that potential endogeneity may exist between 

income and human WNV. They further explained that finding instruments for income to 

overcome the endogeneity problem could prove to be a challenge. In other words, it is 

generally difficult to find a set of variables that are highly correlated with income, but not 

directly associated with health. It can be argued straightforwardly that the benefits that 

residents of a county derive from the consumption of goods and services depend on their 

state of health. At the same time only healthier people can supply their services on the 

labor market and earn income. Foreclosures, on the other hand, depend on a variety of 
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socioeconomic variables that directly impacts the transmission of human WNV. The 

impacts of these variables on WNV are dependent on other socioeconomic variables as 

well as policy relating to health and welfare systems. To correct this problem both 

income and home foreclosures are instrumentalized. In other words, we search for 

instruments highly correlated with income and home foreclosures, but uncorrelated with 

human WNV and then implement a two-step instrumental variable procedure. The array 

of economic, biological, climatic and geographic variables used as instruments include: 

mosquito pools (         , birds (    ), equine case (      ), population density 

(        ), precipitation (      ), temperature (    ), drought (    ), education 

(       ), the unemployment rate (      ), urbanization (     ), the number of 

airports (       ), elevation (       ), number of roads (    ), the log of 

population density (        ) and the time fixed effects (                  and 

     ). In the first step,        and          are regressed on the instruments 

described above to obtain the predicted values         and        respectively. In 

the second step, these predicted values are used to replace        and          in 

equation (2.8) to solve the endogeneity problem.  

2.6.4.1 Specification Tests for Endogeneity and Validity of the Instruments 
 

To test for endogeneity of income and home foreclosures, a version of the specification 

test due to Hausman (1983) was carried out. This test is asymptotically equivalent to the 

original Hausman test and can be generalized to non-linear models such as generalized 

linear models (GLM). The first step of this test involves obtaining the residuals of a 

RENB regression of income and home foreclosures on all the exogenous variables. In the 

second step, these residuals are used in a RENB regression to test the null hypotheses that 
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the coefficients on the included residuals are jointly zero. The computed chi-square 

statistics for California are 14.57, 15.02, 15.05 and 15.06 for models 1 to 4 respectively. 

The computed chi-square statistics for Colorado are 100.95, 114.95, 115.02 and 116.06 

for models 1 to 4 respectively. On the basis of these statistics, the hypotheses are rejected 

at the 10% level of significance, thus income and home foreclosures are endogenous. 

 Test for validity of the instruments (over-identification test) was conducted using 

Sargan’s statistic. Identification will be achieved if the instruments are uncorrelated with 

the error term, but correlated with income and home foreclosures. To implement this test, 

the residuals from the instrumental variable RENB estimation were regressed on the 

instruments. The joint null hypothesis of Sargan’s is that the excluded instruments are 

valid so they are rightly excluded (i.e. uncorrelated with the error terms) from the 

estimated equation. The test statistic calculated is     which follows a chi-square 

distribution with the degrees of freedom equal to the over-identifying restrictions. The 

calculated statistics for California are 0.90, 0.95, 0.96 and 0.98 for models 1 to 4 

respectively. The calculated statistics for Colorado are 0.50, 0.90, 0.95 and 0.96 for 

models 1 to 4 respectively. On the basis of these statistics, the null hypotheses cannot be 

rejected at the 10% level of significance, so the excluded instruments are valid. 

2.6.5 Spatial Autocorrelation 

 

Shope (1991) argues that climate change impacts the spatial distribution of vector-borne 

diseases because they affect: the current geographic distribution of the disease; the scope 

of non-human hosts and reservoir hosts; temperature-related vector and parasite 

development, and adaptive processes pertaining to reservoir and parasite interactions; 
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capacity for migration of vectors and parasites; and the current seasonality of 

transmission. Winds contribute significantly to the passive dispersal of flying insects and 

mosquitoes, therefore wind speed and wind direction will affect the distribution of the 

vector. Hack (1955) states that insect vectors such as the Culex mosquitoes and black 

flies have been known to be dispersed hundreds of kilometers from their original 

location. 

In this study, spatial autocorrelation may be caused by the fact that the 

geographical distribution of WNV is determined by factors that transcend county 

boundaries. Several authors have argued that these factors pertain to climate, 

environment, vegetation, hydrology and human activities (Kiszewski et al. 2004; Sattler 

et al. 2005). Spatial autocorrelation occurs when events in one location are dependent on 

events in another location (spatial externality/spill over). In particular, WNV infections in 

one county may spill over into an adjoining county. In other words, counties closer to 

each other may display similar infections rates than those farther apart. Anselin (2001) 

explains that spatial autocorrelation exists because residuals from different geographical 

units which are spatially correlated contain common omitted environmental, physical or 

economic factors.  Anselin (2002) alludes to the fact that in the case of linear models, 

spatial lag and spatial error models can be used to correct for endogenous and exogenous 

spatial autocorrelation. However, these models cannot be readily applied to generalized 

linear models (GLM) such as RENB models that rely on maximum likelihood estimation. 

Equation (2.8) does not address potential spatial autocorrelation that could arise when 

geographic data is used. Spatial autocorrelation emerges because human WNV in one 

county could be determined not only by economic, environmental, demographic, climatic 
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and geographic variables, but also by human WNV in adjoining counties. This 

dissertation employs two methods for correcting for spatial autocorrelation—the spatial 

lag method and the spatial filtering technique. The former method is a parametric method 

because it incorporates the structure of spatial autocorrelation into the model. It is also 

the preferred method employed by economists to fix the spatial dependency problem. The 

latter method is more of a geo-statistical technique and is viewed as a non-parametric 

method for correcting spatial autocorrelation. 

2.6.5.1 Spatial Lag Method 

 

Tackling the problem of spatial autocorrelation in the dependent variable within a GLM 

framework could be quite challenging because this issue is apparently under-studied in 

the econometrics literature (Lambert et al. 2010). An innovative and instructive approach 

was adopted in this study to address this problem. The method employed in this paper is 

straight forward and is motivated by the spatial lag model (simultaneous autoregressive 

lagged response model) specification for correcting spatial autocorrelation in the 

dependent variable in linear models. Because of the presence of spatial autocorrelation in 

human WNV counts, equation (2.8) can be augmented with a spatially-lagged dependent 

variable on the right hand side. The spatial lag version of equation (2.8) is: 

                                                

                       
 
                                                      

where   is the autoregressive coefficient that corresponds to the spatially-lagged 

dependent variable (    ) derived as              and   is an     spatial 

weights matrix that represents the contiguity relationship among counties. It represents 
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the effect of WNV in neighboring counties on the average WNV counts in adjoining 

counties. Each entry in   contains the length of a given county’s border that is shared by 

another county.  The presence of a lagged dependent variable as a covariate means that 

estimated coefficients would be biased and inconsistent due to endogeneity. For a 

particular county, this model is represented by: 

                                                              

The method employed in this paper to correct for spatial autocorrelation is a two-step 

instrumental variable approach which has been applied by Linard et al. (2007), Lambert 

et al. (2010) and Brown et al. (2011) in generalized linear models. In the first the step, the 

spatially-lagged dependent variable is regressed on a number of instruments using a 

RENB model to obtain the linear prediction (predicted values) of the dependent variable 

in adjoining spatial units. In the second stage, this linear prediction is included as an 

additional covariate in the RENB regressions. This linear prediction is used as a proxy for 

the spatial effect of one county on a neighboring county. This technique indirectly 

corrects for spatial autocorrelation in the dependent variable. To implement this method, 

     is regressed on the instruments described above to obtain the predicted values,  

       , in the first stage. In the second step, these predicted values are used to replace 

     in equation (2.9) to solve the endogeneity problem.  

2.6.5.2 Spatial Filtering Technique 

The second technique employed to correct for spatial autocorrelation is spatial filtering 

which is based on the spatial eigenvector mapping method. The rationale behind this 

method is that the configuration of spatial data points on a map, are reflected in 

covariates that capture spatial effects at different spatial scales. This is a non-parametric 
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method for correcting spatial autocorrelation (Patuelli et al. 2009). Spatial filtering 

techniques have been developed and implemented by several authors (Griffith 1981; 

Haining 1991; Getis and Griffith 2002; Tiefelsdorf and Griffith 2006). One merit of these 

techniques is that the variable of interest can be partitioned into spatial and non-spatial 

components which could then be used as covariates within a generalized linear model 

(GLM) framework. The spatial filtering technique employed in this paper is due to 

Griffith (2000). It is based on the formula for computing the Moran’s I statistic and 

eigenvector decomposition of a modified or centered spatial weights matrix. This 

transformed spatial weights matrix reflects the latent spatial autocorrelation inherent in 

the dependent variable (Griffith 2005). The eigenvectors extracted are by definition 

orthogonal and uncorrelated to each other. The idea is to extract those eigenvectors such 

that consecutive values of Moran’s I values are maximized so as to minimize spatial 

autocorrelation in the model residuals. In other words, eigenvectors are judiciously 

selected to minimize spatial autocorrelation in the model residuals. The first eigenvector 

has the greatest value of Moran’s I, the second eigenvector has the second highest value 

of Moran’s I and so on.  The steps involved in deriving the spatial filter are as follows: 

(1) It begins with constructing an     spatial weights matrix W that contain 

elements,    . The spatial weights matrix selected for this dissertation, and the 

one commonly used in epidemiological studies, emphasizes geographical 

distances. It is based on the length of a given county’s border shared by an 

adjoining county. The contiguity matrix is row-standardized so that the elements 

in each row sum to unity. 

(2) Transform the spatial weights matrix based on Moran’s I as follows:  
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where   is an      identity matrix, 1 is a column vector of ones and   is the 

number of contiguous spatial units. This transformation is mathematically 

equivalent to the numerator in the formula for Moran’s I value: 

  
                      

                   

                                                                                    

where    is the value of the dependent variable at spatial unit  ,    is the average 

and     is an element of the spatial weights matrix. 

(3) Extract the eigenvectors of the transformed spatial weights matrix. 

(4) Select   (less than  ) candidate eigenvectors to be included in the spatial filter 

based on a criterion that uses  Moran’s I. Include eigenvectors in the filter as long 

as 

  
        

                                                                                                                       

A total of 19 candidate eigenvectors were extracted for California, while a total of 

20 eigenvectors were extracted for Colorado.  

(5) Select the subset of all candidate eigenvectors to be used as components of the 

spatial filter (       ) or spatial covariates. The optimal number of eigenvectors 

was chosen based the stepwise backward elimination model selection procedure 

using a 5% level of significance.  A full list of the selected eigenvectors is 

provided in Tables 2-14 and 2-15. 

Griffith (2003) contends that the stepwise selection procedure is appropriate because it 

maximizes the percentage of variance in the geo-referenced dependent variable accounted 
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for by the selected eigenvectors. He further asserts that restricting attention to those 

eigenvectors with a Moran’s ratios in excess of 0.25 ensures that each eigenvector 

accounts for at least some degree of spatial autocorrelation in the geo-referenced 

dependent variable. The combined use of these criteria produces regression residuals 

devoid of spatial autocorrelation. 

The components of         are then used as additional covariates in equation 

(2.8) to correct for spatial autocorrelation in the dependent variable. The spatial filtering 

RENB model is specified as follows: 

                                                

                                                                             

where          is an array of selected eigenvectors (spatial filter components), denoted 

by    , of the transformed spatial weights matrix for county  . The spatial filter can be 

perceived as a proxy for omitted or missing variables from the regression (Patuelli et al. 

2009). Getis and Griffith (2002) contend that all the   eigenvectors extracted represent all 

the possible orthogonal map patterns. In other words, they represent a kaleidoscope of all 

possible map patterns. Specifically the first two principal eigenvectors extracted are often 

associated with North-South and East-West patterns respectively. Eigenvectors with 

intermediate values of Moran’s I typically exhibit regional patterns, while eigenvectors 

with extremely low values of Moran’s I are associated with local map patterns. 

2.7 Estimation and Results 

 

Estimation of the parameters of the RENB model was undertaken by the technique of 

maximum likelihood.  The maximum likelihood associated with the RENB is as follows: 
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where    is the weight for the     group and all other variables are as previously defined. 

All estimations were carried out in STATA. Pearson’s correlation and variance inflation 

factors (VIF) were employed to ascertain the degree of multi-collinearity among the 

potential risk factors identified in this study. In conformity with tradition, only those risk 

factors whose correlations were not in excess of 0.8 were retained in all the models 

(Messina et al. 2011). 

 The econometric analysis estimates five different regressions using     as the 

dependent variable- non-spatial RENB regression, spatial lag RENB regression, IV 

spatial lag RENB regression, spatial filtering RENB regression and IV spatial filtering 

RENB regression. Four models were estimated under each regression. The baseline 

model (Model 1) excludes climatic and biological variables. In Model 2,          and 

         are included. In Model 3, only the climatic variable      is included. 

Finally in Model 4, only the      climatic variable is included. The AIC and BIC, which 

are model selection criteria, reveal that the IV spatial filtering RENB regressions, which 

correct for both endogeneity and spatial autocorrelation, are the most preferred. A 

conservative significance level of 10% was chosen to verify that residuals in these 
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models display spatial independence. On this basis, we cannot reject the null hypothesis 

that the residuals are spatially independent. Because the IV regressions include generated 

regressors (       and       ), the estimated standard errors are not reliable. In 

order to obtain reliable and robust estimates, a bootstrap procedure was implemented. 

The number of replications was initially set at 100 and gradually increased to 1000. In all 

cases, the results were consistent and robust. Perhaps, it is worthwhile pointing out that 

the results of Models 2 to 4 could be used as a robustness check of the stated hypotheses. 

The results show that the random effects term,   , follows a beta distribution with shape 

parameter values   and   provided in each table. In fact, in all Tables     and this 

implies that the distribution is not symmetric. Wackerly et al. (2002, p. 183) posit that if 

     , the beta distribution looks like a normal distribution. If    , as is the case 

here, the distribution is left skewed and not normal.  

2.7.1 Spatial Autocorrelation 

 

To test for spatial autocorrelation a spatial weights/ contiguity matrix,  , must be 

constructed. Separate matrices had to be constructed for both California and Colorado 

because the two states are not contiguous. With the number of contiguous counties in 

California equal to 58, the dimensions of   for California are       with each element 

of   denoted by wij.  With the number of contiguous counties in Colorado equal to 63, 

the dimensions of   for Colorado are       with each element of   denoted by wij. 

While there are several options
1
 in designing   this study uses a type of the spatial 

                                                           
1
 Bailey and Gatrell (1995) suggest the simplest form of the spatial weights matrix: wij = 1 if geographical 

units (here states) i and j share a common border and wij = 0 otherwise.  Another possibility to let each 

element of W be a distance decay function where the spatial weights matrix is constructed using a simple 

exponential decay model where wijis defined as  wij = exp(-λdij) where dij is the Euclidean distance between 

the centroids of areas i and j, and λ is a constant to be estimated from the data. 
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weights matrix in which each cell contains the length of a given county’s border that is 

shared by another county
2
. Moran’s I (Moran 1948) test was undertaken to verify the 

presence/absence of spatial autocorrelation in West Nile virus counts in each county. A 

positive and significant z-value (low p-value) for Moran’s I is indicative of positive 

spatial autocorrelation (Anselin 1983). The results of this test are presented in Table 2-3. 

It shows that the z-values for Moran’s I are positive and significant, indicating the 

presence of positive spatial autocorrelation in the WNV counts.  

 

Table 2-3: Global Spatial Autocorrelation Test on WNV counts 

Year Moran’s I Test for California Moran’s I Test for Colorado 

 Moran’s I statistic z-value p-value Moran’s I statistic z-value p-value 

2003 0.056 3.431 0.000 0.435 5.224 0.000 

2004 0.439 4.875 0.000 0.432 5.406 0.000 

2005 0.205 2.446 0.007 0.182 3.214 0.001 

2006 0.318 3.774 0.000 0.284 3.992 0.000 

2007 0.203 2.519 0.006 0.290 3.498 0.000 

All years 0.350 8.552 0.000 0.537 14.848 0.000 
 

 

2.7.2 California Regression Results 

2.7.2.1 Non-Spatial Random Effect Negative Binomial Regression 

 

The results of this regression are contained in Table 2-4. In each of the models the 

coefficients on        are statistically significant at the 1% level, with values ranging 

from -1.734 to -2.181. The negative relationship is expected, suggesting that WNV 

prevalence is higher in counties with a lower median income. The coefficient on 

         is positive and significant at the 1% level and its value is 0.010. This result 

                                                           
2
This can be considered the Rook criterion (locations sharing a boundary) or the queen criterion (locations 

sharing a vertex). 
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suggests that a high number of mosquito breeding sites increases the prevalence of 

human WNV. The          coefficients are significant at the 1% level in all models. 

The       coefficient is negative and significant at the 1% level 

2.7.2.2 Spatial Lag Random Effects Negative Binomial Regression 

 

Table 2-5 reports the results of this regression. The coefficient on          is 

significant in only Model 1 at the 10% level with a value of 0.084. The sign of the 

coefficient suggest a positive relationship between human WNV and home foreclosures. 

The coefficients on        are negative and significant at the 1% level in all models, 

with values ranging from -2.160 to -2.571. The coefficients on          are 

significant at the 1% level in all models and range from 0.004 to 0.005. Thus human 

WNV incidence is higher in counties with a higher number of mosquito breeding sites. 

The coefficients on            are positive and significant at either the 1% level in all 

models, with values ranging from 0.314 to 0.339. This suggests that WNV prevalence is 

higher in counties with higher population densities.  

2.7.2.3 IV Spatial Lag Random Effects Negative Binomial Regression 

 

The results of this regression are presented in Table 2-6. The estimated coefficients on 

       are positive and significant at either the 5% or 10% level in all models, with 

values ranging from 0.180 to 0.301. This result suggests that home foreclosures were a 

significant contributory factor in the high incidence of human WNV in California. The 

coefficients on        are negative and statistically significant at either the 5% or 10% 

level in Models 1-3, with values ranging from -1.444 to -2.385. This result implies that a 

high median county income reduces the prevalence of human WNV. The coefficient on 
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         is positive and significant at the 10% level in only Model 1 with a value of 

0.300. The coefficients on         are positive and significant at either the 1% level in 

all models, with values ranging from 0.498 to 0.597.  Hence human WNV prevalence in 

one county is dependent on WNV incidence in neighboring counties. 

2.7.2.4 Spatial Filtering Random Effects Negative Binomial Regression 

 

Table 2-7 presents the results of this regression. The coefficient on          is 

positive and statistically significant at the 10% level in only Model 1 with a value of 

0.091. The coefficients on        are statistically significant at the 1% or 5% level in 

Models 1-4, with values ranging from -2.004 to -2.875. The coefficients on           

are significant at the 1% level in all models, with values ranging from 0.010 to 0.011. The 

coefficients on          are statistically significant at the 1% level in all models, with 

values ranging from 0.296 to 0.411. Of all the          components included in the 

regression, only the eigenvectors     ,      ,       ,       and       are 

statistically significant at the 1% , 5% or 10% level. 

2.7.2.5 IV Spatial Filtering Random Effects Negative Binomial Regression 

 

The results of this regression are presented in Table 2-8. The results of this regression are 

the most preferred because not only do they correct for both spatial autocorrelation and 

endogeneity, but they also have the lowest AIC values. The estimated coefficients on 

       are positive and statistically significant at the 5% level in all models, with 

values ranging from 0.382 to 0.413. The expected positive relationship suggests that 

WNV prevalence is higher in counties with a higher number of foreclosed homes. The 

coefficients on        are negative and significant at either the 1% or 10% level in l 
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Models 1-3, with values ranging from -1.206 to -4.183. This result provides evidence that 

median county income is an important factor in WNV transmission in California. The 

coefficient on the biological factor (        ) is highly significant at either the 5% or 

10% level in all models with a value of 0.005. This result provides evidence that WNV 

prevalence is higher in counties with a higher number of mosquito pools. The coefficient 

on          is significant the 5% level in Model 1 only. Only the eigenvectors     , 

     ,       and       are significant at either the 1%, 5% or 10% level.  Because 

this was the most preferred regression, supplementary regressions were run to check the 

robustness of the primary hypotheses. These additional regressions included an 

interaction term between          and          as an additional covariate and the 

significance of the economic variables did not change. Thus, the results were robust using 

all four model specifications. The results of these supplementary regressions are 

presented in Appendix E. 

2.7.3 Colorado Regression Results 

2.7.3.1 Non-Spatial Random Effects Negative Binomial Regression 

 

The results of this regression are presented in Table 2-9. The coefficient on          

is positive and significant at the 1% level in all models with a value of either 0.004 or 

0.005. The coefficients on           are highly significant at either the 1% or 5% 

level in all models, with values ranging from 0.265 to 0.639. Only the climatic variables, 

     and     , are statistically significant at the 1% level.  

2.7.3.2 Spatial Lag Random Effects Negative Binomial Regression 

 

These results are presented in Table 2-10. They reveal that the coefficients on 

         are positive and significant at either the 1% or 5% level in all models, with 
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values ranging from 0.285 to 0.447. The spatial lag term,        , is statistically 

significant in Models 1-4 at the 1% level with values ranging from 0.763 to 1.112. The 

coefficient on      is significant at the 1% level and its value is 0.210. 

2.7.3.3 IV Spatial Lag Random Effects Negative Binomial Regression 

 

These results are shown in Table 2-11. They indicate that the economic variables, 

       and        are statistically significant at the 1% level. The coefficients on 

       are positive, with values ranging from 2.009 to 2.709 in all models. This result 

provides evidence that counties with a higher human WNV prevalence also have a higher 

number of home foreclosures. The coefficients on        are consistently negative in 

all models and range from -3.896 to -4.518. This result suggests that median county 

income is an important factor in WNV transmission in Colorado. The coefficient on 

        is positive and significant at the 1% level in Model 1 indicating the presence 

of spatial spillover effects. 

2.7.3.4 Spatial Filtering Random Effects Negative Binomial Regression 

 

Table 2-12 presents the results of this regression. The estimated coefficient on 

         is positive and significant at the 10% level in only Model 1 with a value of 

0.066. The coefficients on        are positive and significant at the 5% or 10% level 

in Models 1 and 3 only. This is contrary to what is expected theoretically. The coefficient 

on           is statistically significant at the 1% or 5% level, with values ranging 

from 0.002 to 0.004. The coefficients on          are consistently positive and 

statistically significant at the 1% level in all models, with values ranging 0.365 to 0.654. 

All the components of         are statistically significant at either the 1%, 5% or 10% 



54 
 

level, except the eigenvector       and      . The drought index,     , is positive 

and significant at the 1% level with a value of 0.293.  

2.7.3.5 IV Spatial Filtering Random Effects Negative Binomial Regression 

 

The results of this regression are presented in Table 2-13. This regression is the most 

preferred and parsimonious because it has the lowest AIC value and also corrects for both 

spatial autocorrelation and endogeneity. The coefficients on        are consistently 

positive and statistically significant at the 1% level, with values ranging from 2.631 to 

2.926. This provides evidence that home foreclosures contributed significantly to the high 

incidence of human WNV in Colorado. The coefficients on        are consistently 

negative and statistically significant at the 1% level in all models, with values ranging 

from -3.706 to -4.573. This result implies that human WNV is lower in counties with a 

higher median income. The coefficient on          is positive and statistically 

significant at the 10% level with a value of 0.007 in Models 3 and 4. These results 

provide evidence that human WNV is higher in counties with a higher number of 

mosquito pools or breeding sites. All the components of         are significant at 

either the 1% or 10% level.  Because this regression was the most parsimonious and 

preferred, additional regression were run to verify that the economic variables were 

robust to different model specifications. An interaction term involving          and  

         were included as extra regressors and the significance of the economic 

variables did not change. This suggests that the results were robust to various 

specifications. The results of these additional regressions are provided in Appendix E. 
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Table 2-4: Non-Spatial Random Effects Negative Binomial Regression for California 

 Model 1 Model 2 Model 3 Model 4 

FORCLOSE 0.073 0.064 0.048 0.025 

 (1.27) (1.03) (0.76) (0.41) 

INCOME -2.181 -1.734 -1.797 -2.079 

 (2.84)*** (2.23)** (2.33)** (2.78)*** 

MOSQUITO  0.010 0.010 0.010 

  (9.37)*** (9.59)*** (11.37)*** 

POPDENSE 0.274 0.327 0.326 0.451 

 (2.43)** (2.69)*** (2.80)*** (3.46)*** 

D2004 2.879 2.790 2.801 2.550 

 (4.67)*** (4.59)*** (4.61)*** (4.16)*** 

D2005 4.155 3.451 3.589 4.457 

 (6.87)*** (5.67)*** (5.96)*** (6.81)*** 

D2006 3.522 3.191 3.229 3.443 

 (5.77)*** (5.23)*** (5.30)*** (5.63)*** 

D2007 3.501 3.336 3.198 2.486 

 (5.59)*** (5.29)*** (5.13)*** (3.77)*** 

PRECIP  0.245   

  (1.54)   

TEMP   -0.003  

   (0.09)  

PDSI    -0.257 

    (3.32)*** 

CONSTANT 17.916 12.582 13.970 16.239 

 (2.28)** (1.58) (1.62) (2.13)** 

Observations 290 290 290 290 

Number of location 58 58 58 58 

AIC 1112.89 1083.319 1085.854 1075.842 

BIC 1149.589 1127.358 1129.892 1119.88 

r 0.794 

S.E. (0.169) 

1.023 

S.E. (0.253) 

1.090 

S.E. (0.285) 

1.145 

S.E. (0.293) 

s 1.693 

S.E. (0.699) 

2.350 

S.E. (1.140) 

2.888 

S.E. (1.488) 

2.932 

S.E. (1.407) 
Moran’s I on Residuals (p value) 0.000 0.000 0.000 0.000 
 

Absolute value of z statistics in parentheses     

* significant at 10%; ** significant at 5%; *** significant at 1%  
S.E. denotes the standard errors 
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Table 2-5: Spatial Lag Random Effects Negative Binomial Regression for California 

 Model 1 Model 2 Model 3 Model 4 

FORCLOSE 0.084 0.079 0.081 0.035 

 (1.70)* (1.36) (1.42) (0.63) 

INCOME -2.571 -2.160 -2.316 -2.246 

 (4.40)*** (3.36)*** (3.65)*** (3.47)*** 

MOSQUITO  0.006 0.006 0.007 

  (5.93)*** (5.76)*** (6.30)*** 

POPDENSE 0.314 0.331 0.321 0.399 

 (3.83)*** (3.30)*** (3.32)*** (3.67)*** 

D2004 -0.943 -0.591 -0.571 -0.176 

 (1.18) (0.70) (0.68) (0.22) 

D2005 -0.847 -0.388 -0.230 0.846 

 (1.02) (0.45) (0.27) (0.90) 

D2006 -0.366 0.234 0.252 0.781 

 (0.49) (0.30) (0.33) (0.99) 

D2007 -0.546 0.340 0.142 0.189 

 (0.71) (0.43) (0.18) (0.24) 

SLAGHAT
c
 1.234 1.008 1.011 0.875 

 (8.80)*** (6.38)*** (6.42)*** (5.45)*** 

PRECIP  0.277   

  (2.13)**   

TEMP   -0.048  

   (1.45)  

PDSI    -0.151 

    (2.05)** 

CONSTANT 25.010 19.699 24.746 20.610 

 (4.18)*** (2.98)*** (3.45)*** (3.10)*** 

Observations 290 290 290 290 

Number of location 58 58 58 58 

AIC 1082.513 1053.28 1056.065 1053.996 

BIC 1122.881 1100.989 1103.773 1101.704 

r 3.162 

S.E. (2.354) 

2.050 

S.E. (0.900) 

2.240 

S.E. (0.994) 

1.957 

S.E. (0.758) 

s 23.707 

S.E. (27.364) 

7.981 

S.E. (6.322) 

9.853 

S.E. (7.543) 

7.507 

S.E. (5.156) 
Moran’s I on Residuals (p value) 0.000 0.000 0.000 0.000 
z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1%  

c-represents instrumentalized version of     . 

Instruments are bird, mosquito, net migration precip, temp, pdsi poverty, unemployment rate, education, 

airport, equine, elevate, urban, popdense, roads, log of area and D2004-D2007 

 

S.E. denotes the standard errors 
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Table 2-6: IV Spatial Lag Random Effects Negative Binomial Regression for California 

 Model 1 Model 2 Model 3 Model 4 

FORHAT
a
 0.180 0.253 0.301 0.238 

 (1.97)** (1.67)* (1.68)* (1.77)* 

INCHAT
b
 -2.385 -1.444 -1.650 -1.474 

 (2.30)** (1.71)* (1.82)* (1.40) 

MOSQUITO  0.002 0.002 0.002 

  (0.90) (0.84) (1.02) 

POPDENSE 0.300 0.163 0.145 0.161 

 (1.73)* (0.77) (0.69) (0.93) 

D2004 1.010 0.925 0.979 1.104 

 (0.44) (0.26) (0.22) (0.32) 

D2005 1.546 1.306 1.484 2.021 

 (0.67) (0.38) (0.34) (0.59) 

D2006 1.934 1.721 1.812 2.066 

 (0.85) (0.49) (0.41) (0.60) 

D2007 1.811 1.690 1.641 1.526 

 (0.79) (0.48) (0.37) (0.44) 

SLAGHAT
c
 0.597 0.578 0.561 0.498 

 (3.88)*** (3.28)*** (2.86)*** (3.57)*** 

PRECIP  0.152   

  (1.46)   

TEMP   -0.047  

   (1.51)  

PDSI    -0.099 

    (1.32) 

CONSTANT 36.045 24.967 30.493 26.750 

 (3.41)*** (1.87)* (2.63)*** (2.19)** 

Observations 290 290 290 290 

Number of location 58 58 58 58 

AIC 1047.9351 1048.576 1048.6282 1048.5851 

BIC 1088.3037 1096.2845 1096.3366 1096.2936 

r 1.783 

S.E. 

(16.419) 

1.800 

S.E. 

(17.232) 

1.755 

S.E. 

(15.951) 

1.839 

S.E. 

(1.568) 

s 4.907 

S.E. 

(48.987) 

4.951 

S.E. 

(50.135) 

4.717 

S.E. 

(47.553) 

5.312 

S.E. 

(8.800) 
Moran’s I on Residuals (p 

value) 
0.193 0.196 0.194 0.194 

z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1%  

a, b, c-represent instrumentalized versions of         ,        and     respectively. 
Instruments are bird, mosquito, net migration precip, temp, pdsi poverty, unemployment rate, education, 

airport, equine, elevate, urban, popdense, roads, log of area and D2004-D2007 

 

S.E. denotes the standard errors 
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Table 2-7: Spatial Filtering Random Effects Negative Binomial Regression for California 

 Model 1 Model 2 Model 3 Model 4 

FORCLOSE 0.091 0.035 0.079 0.064 

 (1.69)* (0.57) (1.36) (0.97) 

INCOME -2.875 -2.174 -2.794 -2.004 

 (3.74)*** (2.94)*** (3.67)*** (2.57)** 

MOSQUITO  0.010 0.011 0.011 

  (8.72)*** (9.90)*** (11.09)*** 

POPDENSE 0.308 0.336 0.296 0.411 

 (2.77)*** (3.04)*** (2.65)*** (3.16)*** 

D2004 2.834 2.786 2.777 2.485 

 (4.60)*** (4.58)*** (4.56)*** (4.04)*** 

D2005 4.304 3.651 3.796 4.535 

 (7.10)*** (5.79)*** (6.30)*** (6.91)*** 

D2006 3.648 3.299 3.409 3.452 

 (5.98)*** (5.39)*** (5.60)*** (5.64)*** 

D2007 3.617 3.375 3.299 2.346 

 (5.79)*** (5.01)*** (5.30)*** (3.53)*** 

PRECIP  0.155   

  (0.58)   

TEMP   -0.009  

   (0.26)  

PDSI    -0.254 

    (3.16)*** 

VEC3 2.299 2.615 2.279  

 (2.15)** (2.66)*** (2.33)**  

VEC16 -1.781 -2.691 -1.113 -0.793 

 (1.65)* (2.70)*** (1.17) (0.74) 

VEC25 -1.047 -1.419 -1.287  

 (1.03) (1.62) (1.41)  

VEC29 -2.322 -2.756 -2.551 -2.941 

 (2.32)** (2.92)*** (2.65)*** (2.80)*** 

VEC46 2.745 2.307 3.043  

 (2.58)*** (2.33)** (3.25)***  

VEC1  -1.481  1.381 

  (0.65)  (1.14) 

VEC11  0.400   

  (0.47)   

VEC13  -0.264   

  (0.28)   

VEC15  -1.419   

  (1.53)   

VEC21  0.605   

  (0.71)   

VEC26  1.647 

(1.53) 
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Table 2-7 (cont.): Spatial Filtering Random Effects Negative Binomial Regression for 

California 

 

 Model 1 Model 2 Model 3 Model 4 

VEC27  -0.802   

  (1.04)   

VEC33   -1.668  

   (1.79)*  

VEC34  2.901   

  (3.09)***   

CONSTANT 24.774 16.960 24.659 15.412 

 (3.14)*** (2.22)** (2.89)*** (1.93)* 

Observations 290 290 290 290 

Number of location 58 58 58 58 

AIC 1104.085 1073.117 1070.276 1072.563 

BIC 1159.133 1164.864 1136.334 1127.611 

r 1.037 

S.E. (0.245) 

3.041 

S.E. (1.516) 

1.766 

S.E. (0.649) 

1.257 

S.E. (0.338) 

s 3.539 

S.E. (1.599) 

19.349 

S.E. 

(14.781) 

7.857 

S.E. (5.159) 

3.397 

S.E. (1.709) 

Moran’s I on Residuals (p 

value) 

0.000 0.000 0.000 0.000 

 
z statistics in parentheses     

* significant at 10%; ** significant at 5%; *** significant at 1%  

S.E. denotes the standard errors 
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Table 2-8: IV Spatial Filtering Random Effects Negative Binomial Regression for California 

 Model 1 Model 2 Model 3 Model 4 

FORHAT
a
 0.406 0.382 0.413 0.387 

 (2.16)** (2.39)** (2.33)** (2.52)** 

INCHAT
b
 -4.183 -1.206 -1.234 -1.012 

 (3.72)*** (1.69)* (1.70)* (0.95) 

MOSQUITO  0.005 0.005 0.005 

  (2.28)** (1.81)* (2.36)** 

POPDENSE 0.417 0.022 0.005 -0.001 

 (2.25)** (0.11) (0.03) (0.01) 

D2004 3.288 2.870 2.861 2.743 

 (1.09) (0.75) (0.63) (0.84) 

D2005 4.294 3.652 3.665 3.968 

 (1.41) (0.96) (0.80) (1.24) 

D2006 4.114 3.413 3.405 3.454 

 (1.33) (0.89) (0.74) (1.06) 

D2007 4.157 3.335 3.290 2.899 

 (1.34) (0.88) (0.72) (0.88) 

PRECIP  0.037   

  (0.33)   

TEMP   -0.023  

   (0.63)  

PDSI    -0.111 

    (1.39) 

VEC4 -3.263    

 (4.08)***    

VEC6 1.638    

 (1.20)    

VEC15 -1.630    

 (1.76)*    

VEC16 -2.201 -1.728 -1.725 -1.696 

 (1.74)* (1.64) (1.53) (1.67)* 

VEC46 2.402    

 (2.22)**    

VEC47 1.319    

 (1.21)    

VEC41    -0.013 

    (0.01) 

CONSTANT 48.989 20.222 21.861 17.605 

 (4.12)*** (1.65)* (1.79)* (1.44) 

Observations 290 290 290 290 

Number of location 58 58 58 58 

AIC 1044.021 1055.9445 1055.7214 1055.9667 

BIC 1102.7391 1103.6529 1103.4298 1107.3451 
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Table 2-8 (cont.): IV Spatial Filtering Random Effects Negative Binomial Regression for 

California 

 

 Model 1 Model 2 Model 3 Model 4 

r 2.111 

S.E. (0.714) 

1.668 

S.E. (0.492) 

1.656 

S.E.(0.422) 

1.787 

S.E. (0.958) 

s 7.474 

S.E. (4.172) 

4.689 

S.E. (2.413) 

4.598 

S.E. (4.910) 

5.414 

S.E. (5.846) 

Moran’s I on Residuals (p 

value) 

0.196 0.200 0.200 0.195 

 

z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1% 
a, b-represent instrumentalized versions of          and        respectively 

Instruments are bird, mosquito, net migration, precip, temp, pdsi poverty, unemployment rate, education, 

airport, equine, elevation, urban, popdense, road, log of area and D2004-D2007 

 

S.E. denotes the standard errors 
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Table 2-9: Non-Spatial Random Effects Negative Binomial Regression for Colorado 

 Model 1 Model 2 Model 3 Model 4 

FORCLOSE 0.041 0.050 0.010 0.032 

 (0.74) (0.89) (0.24) (0.59) 

INCOME -0.733 -0.990 -0.512 -0.727 

 (1.13) (1.52) (0.77) (1.15) 

MOSQUITO  0.005 0.004 0.004 

  (3.47)*** (2.70)*** (2.64)*** 

POPDENSE 0.308 0.342 0.639 0.265 

 (2.49)** (2.76)*** (5.53)*** (2.30)** 

D2004 -2.193 -2.478 -2.209 -2.878 

 (10.19)*** (8.26)*** (12.06)*** (12.89)*** 

D2005 -2.480 -2.631 -2.759 -3.631 

 (10.67)*** (10.43)*** (13.29)*** (12.62)*** 

D2006 -2.183 -2.371 -2.401 -2.875 

 (10.12)*** (10.13)*** (13.44)*** (13.23)*** 

D2007 -1.437 -1.722 -1.309 -2.666 

 (7.44)*** (8.05)*** (8.12)*** (10.44)*** 

PRECIP  1.155   

  (1.57)   

TEMP   0.401  

   (6.35)***  

PDSI    0.275 

    (5.12)*** 

CONSTANT 8.297 9.420 -13.727 9.420 

 (1.25) (1.44) (1.68)* (1.45) 

Observations 315 315 315 315 

Number of location 63 63 63 63 

AIC 1341.671 1334.327 1294.175 1312.54 

BIC 1379.196 1379.358 1339.206 1357.571 

r 0.745 

S.E. 

(0.150) 

0.842 

S.E. 

(0.184) 

1.079 

S.E. 

(0.225) 

0.877 

S.E. 

(0.181) 

s 0.860 

S.E. 

(0.268) 

1.102 

S.E. 

(0.419) 

1.295 

S.E. 

(0.389) 

0.955 

S.E. 

(0.304) 

Moran’s I on Residuals (p 

value) 

0.000 0.000 0.000 0.000 

 
Absolute value of z statistics in parentheses     

* significant at 10%; ** significant at 5%; *** significant at 1%  

 
S.E. denotes the standard errors 
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Table 2-10: Spatial Lag Random Effects Negative Binomial Regression for Colorado 

 Model 1 Model 2 Model 3 Model 4 

FORCLOSE -0.059 -0.058 -0.051 -0.067 

 (1.31) (1.25) (1.25) (1.54) 

INCOME -0.305 -0.478 -0.161 -0.149 

 (0.47) (0.72) (0.24) (0.22) 

MOSQUITO  -0.000 -0.000 -0.001 

  (0.26) (0.03) (0.63) 

POPDENSE 0.285 0.296 0.447 0.293 

 (2.33)** (2.43)** (3.51)*** (2.35)** 

D2004 -0.240 -0.422 -0.619 0.230 

 (0.77) (1.08) (1.77)* (0.45) 

D2005 -0.043 -0.107 -0.682 0.582 

 (0.12) (0.27) (1.55) (0.90) 

D2006 -0.192 -0.284 -0.672 0.261 

 (0.63) (0.82) (1.85)* (0.54) 

D2007 0.057 0.001 -0.124 0.592 

 (0.25) (0.00) (0.47) (1.17) 

SLAGHAT
c
 0.964 0.954 0.763 1.112 

 (9.04)*** (8.01)*** (5.49)*** (6.73)*** 

PRECIP  0.595   

  (0.90)   

TEMP   0.210  

   (2.87)***  

PDSI    -0.073 

    (1.14) 

CONSTANT 1.832 2.883 -9.511 -0.421 

 (0.28) (0.43) (1.16) (0.06) 

Observations 315 315 315 315 

Number of location 63 63 63 63 

AIC 1272.577 1275.686 1268.383 1275.245 

BIC 1313.855 1324.469 1317.167 1324.029 

r 1.098 

S.E. 

(0.233) 

1.113 

S.E. 

(0.238) 

1.169 

S.E. 

(0.247) 

1.121 

S.E. 

(0.238) 

s 0.961 

S.E. 

(0.282) 

1.024 

S.E. 

(0.316) 

1.040 

S.E. 

(0.294) 

0.936 

S.E. 

(0.269) 

Moran’s I on Residuals (p 

value) 

0.000 0.000 0.000 0.000 

z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1% 

 c-represents instrumentalized version of     . 
Instruments are bird, mosquito, net migration, precip, temp, pdsi poverty, unemployment rate, education, 

airport, equine, elevation, urban, popdense, road, log of area and D2004-D2007 

 

S.E. denotes the standard errors 
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Table 2-11: IV Spatial Lag Random Effects Negative Binomial Regression for Colorado 

 Model 1 Model 2 Model 3 Model 4 

FORHAT
a
 2.009 2.709 2.557 2.637 

 (4.50)*** (5.10)*** (6.11)*** (6.62)*** 

INCHAT
b
 -3.896 -4.504 -4.360 -4.518 

 (2.89)*** (3.63)*** (3.28)*** (3.66)*** 

MOSQUITO  0.005 0.005 0.005 

  (1.17) (1.53) (1.39) 

POPDENSE 0.076 -0.058 0.000 -0.040 

 (0.46) (0.32) (0.00) (0.24) 

D2004 -1.640 -2.079 -2.204 -2.135 

 (3.43)*** (4.54)*** (4.77)*** (2.87)*** 

D2005 -1.683 -2.335 -2.433 -2.304 

 (3.25)*** (4.71)*** (5.08)*** (2.18)** 

D2006 -1.724 -2.307 -2.383 -2.296 

 (3.17)*** (5.22)*** (5.78)*** (3.11)*** 

D2007 -1.562 -2.365 -2.348 -2.332 

 (4.05)*** (5.47)*** (6.08)*** (2.71)*** 

SLAGHAT
c
 0.433 0.203 0.176 0.215 

 (2.83)*** (1.28) (1.26) (0.84) 

PRECIP  -0.374   

  (0.40)   

TEMP   0.047  

   (0.51)  

PDSI    -0.005 

    (0.04) 

CONSTANT 37.825 44.438 40.426 44.149 

 (2.74)*** (3.46)*** (2.54)** (3.39)*** 

Observations 315 315 315 315 

Number of location 63 63 63 63 

AIC 1237.283 1229.362 1229.213 1229.723 

BIC 1278.562 1278.145 1277.996 1278.506 

r 1.792 

S.E. 

(0.739) 

1.991 

S.E. 

(0.590) 

1.948 

S.E. 

(0.565) 

2.001 

S.E. 

(0.623) 

s 2.828 

S.E. 

(1.247) 

3.400 

S.E. 

(1.266) 

3.248 

S.E. 

(1.294) 

3.461 

S.E. 

(1.457) 

Moran’s I on Residuals (p 

value) 

0.127 0.128 0.128 0.128 

z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1%  

 

a, b, c-represent instrumentalized versions of         ,        and     respectively. 
 

Instruments are bird, mosquito, net migration, precip, temp, pdsi poverty, unemployment rate, education, 

airport, equine, elevation, urban, popdense, road, log of area and D2004-D2007 

S.E. denotes the standard errors 
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Table 2-12: Spatial Filtering Random Effects Negative Binomial Regression for Colorado 

 Model 1 Model 2 Model 3 Model 4 

FORCLOSE 0.066 0.058 0.060 0.069 

 (1.68)* (1.36) (1.47) (1.34) 

INCOME 1.760 0.734 1.683 -1.073 

 (2.05)** (1.00) (2.01)** (2.23)** 

MOSQUITO  0.002 0.003 0.004 

  (2.12)** (2.23)** (3.11)*** 

POPDENSE 0.365 0.556 0.514 0.654 

 (3.04)*** (4.22)*** (3.85)*** (6.76)*** 

D2004 -3.053 -3.020 -2.930 -2.748 

 (18.65)*** (13.63)*** (14.64)*** (11.92)*** 

D2005 -3.179 -3.087 -3.091 -3.621 

 (17.84)*** (16.79)*** (16.54)*** (12.31)*** 

D2006 -2.637 -2.604 -2.623 -2.756 

 (17.32)*** (17.04)*** (16.73)*** (12.31)*** 

D2007 -1.831 -1.821 -1.880 -2.673 

 (12.80)*** (12.38)*** (11.10)*** (10.76)*** 

PRECIP  0.331   

  (0.57)   

TEMP   0.014  

   (0.17)  

PDSI    0.293 

    (5.89)*** 

VEC1 10.989 9.485 10.072  

 (8.55)*** (7.59)*** (5.79)***  

VEC2 2.579  2.703  

 (1.86)*  (1.94)*  

VEC11 3.985 2.489 3.348 0.877 

 (3.34)*** (2.23)** (2.82)*** (1.08) 

VEC21 -3.970 -4.216 -4.087 -2.239 

 (3.61)*** (3.91)*** (3.63)*** (2.84)*** 

VEC28 1.505  1.018  

 (1.23)  (0.86)  

VEC29 -1.596 -1.474 -1.584 -1.219 

 (1.36) (1.36) (1.46) (1.60) 

VEC35 -3.508 -2.399 -2.750 -0.273 

 (3.03)*** (2.09)** (2.36)** (0.33) 

VEC58 -3.633 -2.984 -3.263  

 (3.27)*** (2.80)*** (2.99)***  

VEC4  3.246 3.122 6.037 

  (2.35)** (2.06)** (5.78)*** 

CONSTANT -17.744 -7.979 -18.211 10.944 

 (2.01)** (1.08) (1.97)** (2.17)** 

Observations 315 315 315 315 
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Table 2-12 (cont.): Spatial Filtering Random Effects Negative Binomial Regression for 

Colorado 

 

 Model 1 Model 2 Model 3 Model 4 

Number of locations 63 63 63 63 

AIC 1264.235 1262.436 1261.042 1300.218 

BIC 1331.781 1333.735 1339.846 1364.012 

r 1.387 

S.E. (0.317) 

1.525 

S.E. (0.362) 

1.496 

S.E. (0.359) 

2.621 

S.E. (1.249) 

s 1.570 

S.E. (0.540) 

2.077 

S.E. (0.798) 

2.009 

S.E. (0.785) 

12.731 

S.E. (10.347) 

Moran’s I on Residuals (p 

value) 

0.000 0.000 0.000 0.000 

 
z statistics in parentheses     

* significant at 10%; ** significant at 5%; *** significant at 1% 

S.E. denotes the standard errors 
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Table 2-13: IV Spatial Filtering Random Effects Negative Binomial Regression for Colorado 

 Model 1 Model 2 Model 3 Model 4 

FORHAT
a
 2.631 2.854 2.926 2.961 

 (9.80)*** (6.36)*** (6.89)*** (7.95)*** 

INCHAT
b
 -3.737 -4.573 -3.706 -4.071 

 (3.28)*** (3.83)*** (2.46)** (3.91)*** 

MOSQUITO  0.006 0.007 0.007 

  (1.07) (1.85)* (1.96)* 

POPDENSE 0.326 0.135 0.205 0.055 

 (1.63) (0.60) (1.15) (0.36) 

D2004 -2.692 -2.453 -2.643 -2.733 

 (10.96)*** (7.01)*** (9.73)*** (13.88)*** 

D2005 -2.968 -2.854 -2.953 -3.066 

 (14.49)*** (11.53)*** (13.43)*** (11.75)*** 

D2006 -2.923 -2.768 -2.934 -2.985 

 (9.46)*** (10.30)*** (11.82)*** (11.80)*** 

D2007 -2.689 -2.736 -3.023 -3.066 

 (12.21)*** (9.18)*** (9.89)*** (10.87)*** 

PRECIP  -0.637   

  (0.68)   

TEMP   -0.030  

   (0.31)  

PDSI    0.024 

    (0.30) 

VEC2 4.392  4.707 4.005 

 (3.56)***  (3.83)*** (2.94)*** 

VEC4 3.269 2.554 3.320  

 (2.98)*** (1.68)* (2.41)**  

VEC6 3.319 1.937 3.175 2.753 

 (2.86)*** (2.02)** (3.06)*** (2.48)** 

VEC22 1.866 1.597 1.607 1.643 

 (1.82)* (1.76)* (1.80)* (1.68)* 

CONSTANT 35.232 45.016 36.123 39.195 

 (3.02)*** (3.74)*** (2.02)** (3.65)*** 

Observations 315 315 315 315 

Number of location 63 63 63 63 

AIC 1221.647 1221.554 1205.827 1213.728 

BIC 1274.183 1277.842 1265.869 1270.017 

r 2.438 

S.E. (1.351) 

2.552 

S.E. (4.443) 

2.856 

S.E. (7.898) 

2.464 

S.E. (0.905) 

s 6.376 

S.E. (3.206) 

6.075 

S.E. (10.964) 

7.300 

S.E. (21.131) 

5.042 

S.E. (1.873) 

Moran’s I on Residuals (p-value) 0.125 0.130 0.125 0.123 
z statistics in parentheses, * significant at 10%, ** significant at 5% *** significant at 1%  

a, b-represent instrumentalized versions of          and        respectively 

Instruments are bird, mosquito, net migration, precip, temp, pdsi poverty, unemployment rate, education, 

airport, equine, elevation, urban, popdense, road, log of area and D2004-D2007 

 

S.E. denotes the standard errors 
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Table 2-14: Selected Eigenvectors for Spatial Filtering Random Effects Negative 

Binomial Regression 

Model  Selected Eigenvectors 

                                                  California 

 

Level of 

Significance 

1 VEC3, VEC1, VEC25, VEC29, VEC46 5% 

2 

3 

4 

VEC1, VEC3, VEC11, VEC13, VEC15, VEC16,VEC21, VEC25, 

VEC26, VEC27, VEC29, VEC34, VEC46 

VEC1, VEC16, VEC29 

                                                  Colorado 

 

5% 

5% 

5% 

Model Selected Eigenvector  

1 VEC1, VEC2, VEC11, VEC21, VEC28, VEC29, VEC35, VEC37, 

VEC58 

5% 

2 VEC1, VEC4, VEC11,VEC21, VEC29, VEC35, VEC58 5% 

3 

4 

VEC1, VEC2, VEC4, VEC11, VEC21, VEC28, VEC29, VEC35, 

VEC58 

VEC4, VEC11,VEC21,VEC29,VEC35 

5% 

5% 

 

 

 

 

Table 2-15: Selected Eigenvectors for IV Spatial Filtering Random Effects Negative 

Binomial Regression 

Model  Selected Eigenvectors 

                                  California 

 

Level of Significance 

1 VEC4, VEC6, VEC15, VEC16, VEC46, VEC47 5% 

2 VEC16 5% 

3 

4 

VEC16 

VEC16, VEC41 

                                  Colorado 

5% 

5% 

Model Selected Eigenvector  

1 VEC2, VEC4, VEC6, VEC22 5% 

2 VEC4, VEC6,VEC22 5% 

3 

4 

VEC2, VEC4, VEC6, VEC22 

VEC2,VEC6,VEC22 

5% 

5% 
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Table 2-16: Sign and statistical significance of the economic and biological covariates for 

California 

Non-Spatial Random Effects Negative Binomial 

Regression 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Home Foreclosures + + + + 

Income -
***

 -
**

 -
**

 -
***

 

Mosquito  +
***

 +
***

 +
***

 

     
Spatial Lag Random Effects Negative Binomial 

Regression 
    

Home Foreclosures +
*
 + + + 

Income -
***

 -
***

 -
***

 +
***

 

Mosquito  +
***

 +
***

 +
***

 

     
IV Spatial Lag Random Effects Negative Binomial 

Regression 
    

Home Foreclosures +
**

 +
*
 +

*
 +

*
 

Income -
**

 -
*
 -

*
 - 

Mosquito  + + + 

     

Spatial Filtering Random Effects Negative Binomial 

Regression 

    

Home Foreclosures +
*
 + + + 

Income -
**

 -
***

 -
***

 -
**

 

Mosquito  +
***

 +
***

 +
***

 

     

IV Spatial Filtering Random Effects Negative 

Binomial Regression (Preferred Model) 

    

Home Foreclosures +
**

 +
**

 +
**

 +
**

 

Income -
***

 -
*
 -

*
 - 

Mosquito  +
**

 +
*
 +

**
 

     
*
indicates significance at the 10% level, 

**
indicates significance at the 5% level and 

***
 indicates 

significance at the 1% level.  
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Table 2-17: Sign and statistical significance of the economic and biological covariates for 

Colorado 

Non-spatial Lag Random Effects Negative Binomial 

Regression 
Model 

1 

Model 

2 

Model 

3 

Model 

4 

 
Home Foreclosures + + + + 
Income - - - - 
Mosquito  +

***
 +

***
 +

***
 

     
Spatial Lag Random Effects Negative Binomial 

Regression 
    

Home Foreclosures - - - - 
Income - - - - 
Mosquito  + + + 
     
IV Spatial Lag Random Effects Negative Binomial 

Regression 
    

Home Foreclosures +
***

 +
***

 +
***

 +
***

 
Income -

***
 -

***
 -

***
 -

***
 

Mosquito  + + + 
     
Spatial Filtering Random Effects Negative Binomial 

Regression 
    

Home Foreclosures +* + + + 
Income +

**
 + +

**
 -

**
 

Mosquito  +
**

 +
**

 +
***

 
     
IV Spatial Filtering Random Effects Negative 

Binomial Regression (Preferred Model) 
    

Home Foreclosures +
***

 +
***

 +
***

 +
***

 
Income -

***
 -

***
 -

***
 -

***
 

Mosquito  + +
*
 +

*
 

     
*
indicates significance at the 10% level, 

**
indicates significance at the 5% level and 

***
 indicates 

significance at the 1% level.  
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Figure 2-5: Spatial Distribution of Human WNV in California (2003-2007) 
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Figure 2-6: Spatial Distribution of Income in California (2003-2007) 
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Figure 2-7: Spatial Distribution of Home Foreclosures in California (2003-2007) 
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Figure 2-8: Spatial Distribution of Mosquito Pools in California (2003-2007) 
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Figure 2-9: Spatial Distribution of Human WNV in Colorado (2003-2007) 
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Figure 2-10: Spatial Distribution of Income in Colorado (2003-2007) 
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Figure 2-11: Spatial Distribution of Home Foreclosures in Colorado (2003-2007) 
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Figure 2-12: Spatial Distribution of Mosquito Pools in Colorado (2003-2007) 
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2.8 Discussion and Conclusions 

 

The results of all the IV random effects negative binomial regressions for each state show 

some important findings. Specifically, the risk of human WNV is high in counties 

characterized by a high number of home foreclosures, low median income and a large 

number of mosquito pools. One interesting trend that emerged from the results is that the 

impact of the economic factors on the risk of WNV transmission is much stronger than 

those of the biological factor.  

Counties with high median incomes have lower poverty levels all else equal. 

Residents of counties with a high median income level could afford to live in more 

decent neighborhoods with improved housing conditions. This fact is consistent with the 

finding of Harrigan et al. (2010) who found that per capita income was negatively 

associated the incidence of WNV in Orange County, California. He argued that poor 

neighborhoods provided an environment conducive to mosquito breeding. If income is 

used as a proxy for surveillance effort (Brown et al. 2008) and not as an index of poverty, 

the results still make epidemiological sense. Counties with higher surveillance efforts 

experienced a lower incidence of human WNV. The home foreclosure hypothesis is 

supported for both California and Colorado. These results are consistent with findings of 

Reisen et al. (2008) and Harrigan et al. (2010) who found that delinquent mortgages and 

neglected swimming pools were contributory risk factors in WNV transmission in Kern 

and Orange counties respectively. During the housing crises that began in 2004 there 

were significant increases in mortgage delinquencies and home foreclosures in several 

parts of California and Colorado. Mosquitoes are the primary vector responsible for the 

transmission of WNV and their populations are usually measured by the number of 
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mosquito pools or breeding sites. The presence of mosquito pools or WNV-infected 

mosquitoes are a necessary condition for human infection. Hence counties with a large 

number of mosquito pools are likely to have a higher risk of human WNV. 

Moran’s test revealed the presence of spatial autocorrelation, while the Hausman 

specification test indicates that home foreclosures and income are endogenous. To correct 

these problems, an instrumental variable technique is applied to the spatial lag and spatial 

filtering regressions. Diagnostic tests on the residuals obtained from these regressions 

show that they are spatially independent. The AIC and BIC model selection criteria 

indicate that the IV spatial filtering model is the most preferred. The time dummies show 

that shocks that occurred in each year affected each state differently. The evidence 

showed that WNV in Colorado was significantly lower in subsequent years after 2003. 

California on the other hand had significantly higher WNV cases between 2004 and 2007 

relative to 2003. The period from 2004-2007 was characterized by the housing bubble 

that lead to high number of home foreclosures and delinquent mortgages.  

The spatial dependency term showed that spatial spillovers or externalities were 

present in the data. Counties with similar WNV cases were adjacent to each other. From a 

policy making perspective, one political unit cannot act alone to address the problem of 

WNV. For example, suppose one county enacts policy interventions to reduce the risk of 

WNV but adjoining counties do not follow suit, policy interventions in the first county 

would be less effective. Thus the presence of spatial dependency signifies that a 

coordinated policy approach is recommended to address the problem of WNV, rather an 

individual effort by a single political unit. The results also suggest more resources should 

be allocated to counties that exhibit certain economic and biological characteristics such 
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as a high number of home foreclosures, a low median income and a high number of 

mosquito pools. This will enable them to undertake a comprehensive surveillance and 

monitoring program to mitigate the disease. Perhaps it is worth pointing out that although 

this study was conducted at the county level, the policy relevance may be more 

appropriate at the census track or block level. 
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Chapter 3: Disease Mapping and Variography 

3.1 Introduction 

 

The aim of disease mapping is to provide a visual representation of the geographical 

distribution of the risk or hazard of a particular disease in a given study area. The 

traditional approach is to map risk that reflect actual deaths resulting from a disease 

(mortality) or number of people who suffer from the disease (morbidity) in a given period 

of time for the population at risk. Disease mapping (production of disease atlases) has a 

long history in medical geography and epidemiology and can be traced back to the 1800s 

(Walter and Birnie 1991). These maps provide an insightful and visual summary of 

spatial or areal pattern of a particular disease or other measures of health outcomes. They 

are generally used for descriptive purposes, for monitoring and surveillance with a view 

to assessing which areas are high risk, identifying risk factors responsible for a particular 

disease, assisting in policy formulation and allocation of health care resources, and 

etiological disease hypotheses (causes of a disease).  Knowledge of the etiology of a 

disease creates a useful platform for cost-effective preventive and public health services. 

It will also assist in the discovery of cost-effective strategies to treat the disease. From a 

historical perspective, early disease maps were often devoted to the depiction of the 

spatial pattern of infectious diseases such as cholera and yellow fever in the US and 

Europe. As a select example, Snow (1855) developed a spot map to demonstrate a 

cholera outbreak in London. 

 Variograms are geo-statistical techniques used to detect spatial autocorrelation in 

regional variables. They are quite useful in examining the spatial structure of a variable 

because they show how the spatial structure varies over a certain distance. Compared to 
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correlation or covariance functions that show the degree of similarity between two 

variables, variograms indicate the degree of dissimilarities between two variables as a 

function of lag distances. In some respect they can be used to depict the nature of local 

spatial autocorrelation. They are used here to examine the spatial structure of observed 

human WNV, the standardized morbidity ratio and the model residuals in both California 

and Colorado. The estimation and fitting methods used to generate the variograms are 

also described in this chapter. 

 The main objectives of this chapter are as follows: (1) Develop thematic maps of 

the standardized morbidity ratio and predicted probabilities from the spatial filtering 

random effects negative binomial model. This model was chosen because it had a 

relatively lower AIC value and was considered to be the most parsimonious. These maps 

may ultimately assist policy makers in the surveillance and monitoring of human WNV 

with a view to identifying high and low risk areas; (2) Develop spatial variograms to 

study the spatial structure of the standardized morbidity ratios, the observed human WNV 

counts and the model residuals. This chapter allows the integration of econometric 

methods and Geographic Information Systems (GIS) to produce human WNV risk maps 

for both states.  The organization of this chapter is as follows. Section 2 presents thematic 

maps that show the spatial visualization of various risk measures. Section 3 describes the 

variogram analysis performed to uncover the spatial structure of the data. 
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3.2 Thematic Maps 

 

Maps were created using GIS tools to visually display the risk of WNV in both states. 

These maps were restricted to the standardized morbidity ratio and the predicted 

probabilities 

3.2.1 Standardized Morbidity Ratio 

 

The relative risk of a disease is often measured by the standardized morbidity ratio 

(SMR). This is a summary measure used in most epidemiological studies and is defined 

as 

         
  
  
                                                                                                               

where    and    are the observed and expected number of WNV counts in area   

respectively. A relative risk greater than 1 means that observed human WNV counts 

exceeds expected human WNV counts. Counties with SMR values in excess of 1 are of 

interest to decision makers because they can be classified as high risk areas. 

The expected number of counts is defined by the formula 

   
     

 
   

   
 
   

                                                                                                                      

where    is the population of area   (         . The raw estimates of the SMR do 

have a number of drawbacks. Specifically, they provide inaccurate estimates when the 

number of cases is small (Clayton and Kaldor 1987). The variances of the estimates are 

inversely related to    so there will be high sampling variability for regions with small or 

large populations. In other words the SMRs on a map tend to be dominated by areas with 
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small populations that have extreme values of the SMRs. To rectify this problem, it is not 

unusual to smooth the raw rates using a variety of methods. There are a variety of 

methods available in the literature to obtain smoothed estimates of the relative risk using 

the empirical Bayes method. These methods differ mainly by the distributional 

assumptions made about the relative risk and include the Poisson-Gamma method, the 

Log-normal method and Marshall’s Global method.  

In the Poisson Gamma distribution, estimates of the SMR are derived using a two-

level distribution. The observed values are assumed to be independent Poisson random 

variables with means      conditional on the   ’s . Second, the   ’s are assumed to be 

independently distributed a priori as Gamma random variables with parameters   and  . 

Mathematically,  

                        

              

with mean,       
 
     and variance,         

 
    where   and   are slope 

and scale parameters respectively. The Bayes estimator of    is then given by: 

    
    

    
 

                

where    
 

    
 . If    and   are replaced with their estimates    ,    and  respectively, 

the empirical Bayes estimate is obtained as 
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where     
   

     
 and    and     are obtained using method of moments estimates as 
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An alternative estimator proposed by Clayton and Kaldor (1987) assumes that the 

logarithm of the relative risk (       ) follows a multivariate normal distribution with 

mean   and variance   , i.e., 

                 
   

Under this method, the log of the relative risk is         
 

 
     to ensure that the 

estimates are non-negative. The estimate of the relative risk is given as  

       

       
 

 
        

    
 

 
 

  
       

      
 

 
    

                                                           

where    and     are estimates of the prior mean and variance estimated as 
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The Expectation-Maximization (EM) algorithm is used to obtain estimates of the mean 

and variance. Estimates of    are successively iterated using previous formulae until it 

converges. In the limit, the estimate of    is given as              . 

Marshall (1991) developed the Marshall’s global empirical Bayes estimator of the 

relative risk. He assumes that the relative risks    have a common mean   and variance 

  , but they do not follow any particular distribution. The method of moment estimator is 

used to derive an estimator of the relative risk as 

                                                                                                                                 

where 

   
   
 
   

   
 
   

 

   
        

                         
 

and    is the mean of the   ’s and    is the unbiased estimate of the variance of the 

    ’s. The raw SMR estimates are shown in Figures 3-1 and 3-2 for both states.  
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Figure 3-1: Raw SMR Estimates for California 

 

 

Figure 3-2: Raw SMR Estimates for Colorado 
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Figure 3-3: Empirical Bayes Poisson-Gamma SMR Estimates for California 

 

 

Figure 3-4: Empirical Bayes Poisson-Gamma Estimates for Colorado 
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Figure 3-5: Empirical Bayes Log-Normal SMR Estimates for California 

 

Figure 3-6: Empirical Bayes Log-Normal SMR Estimates for Colorado 
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Figure 3-7: Empirical Bayes Global Marshall SMR Estimates for California 

 

Figure 3-8: Empirical Bayes Global Marshall SMR Estimates for Colorado 

 

Figure 3-1 shows the raw SMRs each county in California. This map indicates that there 

is a tendency for the SMR to cluster. Noticeable grouping of counties with moderately 

high SMRs (between 1.292 and 3.265) occur in the Southern and middle regions of  
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California. In general most counties in the state have a relatively low SMR with the 

exception of Glenn county which has a SMR greater than 15. The raw SMR estimates 

obtained for each county in Colorado are mapped in Figure 3-2. The map shows that 

counties with similar SMR values tend to be clustered together especially in the Central 

and North-east portions of the state. Most counties have a SMR between 0.028 and 0.50, 

with the exception of Logan, Sedgwick, Phillip and counties that show relative risks over 

6. The smoothed SMR estimates using the various empirical Bayes methods are shown in 

Figures 3-3 to 3-8. The smoothed estimates for the most part are consistent with the raw 

estimates. The spatial patterns shown for both states are similar for those obtained for the 

raw SMR values. 

 3.2.2 Predicted Probabilities 

 

Probability maps are increasingly becoming an alternative way to visually depict the risk 

of a particular disease. Albeit less popular the SMRs, they can provide useful information 

about the spatial distribution of the probability of death (mortality) or infection 

(morbidity) from a disease. Probability maps developed by Choyonowski (1959) are a 

suitable method of visually representing the significance of observed values of disease 

counts. They show the probability of a count exceeding the observed value given the 

assumptions we have made about the model. Alternatively, they depict the p-value of the 

observed number of counts produced by the current model. In this study, the predicted 

probabilities are generated under the assumption that the observed number of cases 

follows a negative binomial distribution. In particular, the predicted probabilities 

generated using the spatial filtering negative binomial model derived in Chapter 2 as: 
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The maps of predicted probabilities for each county in California and Colorado are 

mapped in Figures 3-9 and 3-10 respectively. They show that the values range from 0 to 

0.2 for California and 0 to 0.12 for Colorado. Figure 3-9 reveals that California counties 

with similar predicted probabilities tend to be clustered together. This is especially true in 

the Northern and Southern regions of the state were counties with predicted probabilities 

between 0.016 and 0.05 are clustered together. Figure 3-10 on the other hand reveals less 

spatial clustering of the probabilities in Colorado counties. They are grouped into five 

classes to make the map more comprehensible. It is worth pointing out that Sacramento 

County in California and Adams, Routt, Kiowa, Crowley and Otero counties in Colorado 

had the highest predicted risk in their respective states.  

Figure 3-9: Predicted Probabilities for California 
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Figure 3-10: Predicted Probabilities for Colorado 

 

3.3 Variogram Analysis 

 

The variogram is a geostatistical tool used to investigate the spatial structure of a 

particular variable of interest. Mathematically a variogram is defined as: 

                                                                                                                 

Following geostatistical convention   is a vector of spatial coordinates,      is a 

variable that is dependent on spatial location,   is a vector of separation distances (lag 

vector) measured in kilometers and        refers to the lag of     . If   is replaced by 

    then spatial autocorrelation is assumed to be isotropic so this phenomenon behaves 

the same way in all directions, otherwise spatial autocorrelation is anisotropic. It is 

further assumed that the mean of the process is stationary. This is mathematically 

represented as: 
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If equations (3.7) and (3.8) are satisfied, the process is said to be intrinsically stationary. 

Clearly, the variogram depends on both the magnitude and direction of the separation 

distance. The variogram is estimated from the sample data using the formula: 

      
 

     
                

                                                                       

    

   

 

where      is the number of sample data pairs separated by lag   and all other variables 

are as previously defined. The coordinates of the spatial locations represent the centroids 

of each county and the lags are measured in kilometers. 

 The empirical variogram has three components namely the sill, range and nugget. 

The sill is the semivariance value at which the variogram tapers off. The range of a 

variogram is the distance or lag at which correlations are effectively zero. Alternatively, 

it is the lag distance at which the variogram reaches the sill value and beyond the range 

autocorrelations are effectively zero. Finally, the nugget refers to the value of the 

variogram for lag distances close to zero. It is essentially the intercept value of the 

variogram. If the variogram is a positive constant for all lag distances, then the variables 

separated by a lag are uncorrelated and there is no spatial structure or spatial 

autocorrelation. In other words, if the variogram is a horizontal line for all values of  , 

then spatial autocorrelation does not exist. 

 The empirical variogram formula presented so far only provides a useful 

conceptual or theoretical framework for studying variograms and is not adequate to 

statistically estimate it. In order to obtain estimates of the variogram, explicit parametric 
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models must be used. The most commonly used parametric models used in fitting 

variograms are the exponential, spherical and Gaussian models. The spherical model is 

the simplest and widely used model in modeling variograms. The spherical model 

assumes that correlations are zero at very large distances. This is an unrealistic 

assumption given that some degree of correlation will exist even at large distances. It is 

represented by the following equation: 

           

 
 

 
     

        
  

  
 

  

   
 

      

                                                    

where       and     are parameters and    .  

 The exponential model overcomes the weaknesses of the spherical model and is 

defined as 

            
     

                        
                                    

The Gaussian model is represented by the formula: 
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3.3.1 Observed Human West Nile Virus 

 

To verify that observed human WNV counts have a tendency to cluster in both states, 

variograms are estimated and fitted to investigate this phenomenon. The variograms fitted 

for observed human WNV are shown in Figures 3-11 to 3-14 for California and 

Colorado.  

 

 

Figure 3-11: West Nile Virus Isotropic Variogram for California 
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Figure 3-12: West Nile Virus Isotropic Variogram for Colorado 

 

 

Figure 3-13: West Nile Virus Anisotropic Variogram for California 
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Figure 3-14: West Nile Virus Anisotropic Variogram for Colorado 

 

They were fitted using exponential models to quantify the strength of spatial 

autocorrelation. Figures 3-11 and 3-12 depict the case where the variogram plot is 

omnidirectional or isotropic. They show that human WNV has a strong spatial structure 

in both states. The semivariance increases as the lag or separation distance increases. This 

is indicative of a strong spatial structure in WNV. To investigate whether different spatial 

autocorrelation structures exist in different directions, anisotropic variograms are 

developed. Spatial autocorrelation is examined along the principal cardinal points 0
o
 

(North), 90
o
 (East), 180

o
 (South) and 270

o
 (West). These variograms are plotted in 

Figures 3-11 and3-12 and they do not show overwhelming evidence of anisotropy. 
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3.3.2 Standardized Morbidity Ratio 

 

In Figures 3-15 and 3-16, isotropic variograms were fitted to investigate the spatial 

structure of the relative risk (SMR) in both states. They show that the semivariance rises 

steadily with the lag value. This suggests that counties with similar values of SMR tend 

to cluster or be close to each other, while counties with dissimilar SMR values are farther 

from each other. The presence of this phenomenon indicates a strong spatial trend in this 

variable. The directional variograms are plotted in Figures 3-17 and 3-18 do not show 

any evidence that the spatial structure of the SMRs is different along the four principal 

axis (North, South, East and West). 

 

Figure 3-15: Standardized Morbidity Ratio Isotropic Variogram for California 
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Figure 3-16: Standardized Morbidity Ratio Isotropic Variogram for Colorado 

 

Figure 3-17: Standardized Morbidity Ratio Anisotropic Variogram for California 
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Figure 3-18: Standardized Morbidity Ratio Anisotropic Variogram for Colorado 

 

3.3.3 Model Residuals 

 

To verify that the residuals from the spatial filtering random effects negative binomial 

model are devoid of spatial autocorrelation, isotropic variograms are fitted for both states 

and plotted in Figures 3-19 and 3-20. They show that the semivariance exhibits pure 

spatial independence and is not a function of the lag distance. In other words, the 

empirical semivariance of the model residuals reveals that the spatial pattern present in 

the observed WNV counts was removed by the spatial filtering RENB model which was 

also the most parsimonious and preferred model. Thus the range of the empirical 

variogram is the same regardless of the lag distance. This result is not surprising at all 

because the spatial filtering model by construction removes the spatial component from 

the residuals. The directional (anisotropic) variograms shown in Figures 3-21 and 3-22 

also reveal the absence of spatial autocorrelation and do not indicate that spatial 

autocorrelation is different along the four cardinal points.  
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Figure 3-19: Model Residuals Isotropic Variogram for Colorado 

 
 

 

Figure 3-20: Model Residuals Isotropic Variogram for Colorado 
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Figure 3-21: Model Residuals Anisotropic Variogram for California 

 
 
 

Figure 3-22: Model Residuals Anisotropic Variogram for Colorado 
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3.4 Discussion and Conclusions 

 

The findings of this chapter reveal some important facts. The predicted probability maps 

show that Sacramento county in California and Crowley, Kiowa and Otero counties in 

Colorado have extremely high values. These can be classified as high-risk or high priority 

areas by health authorities. The standardized morbidity ratios in California were much 

higher than those of Colorado. The maps of the relative risks show that about 50% of 

counties in California do have a SMR greater than 1. This suggests that most counties 

face a greater relative risk of human WNV. Glenn county in California had the highest 

SMR (16.93), while Monterey county had the lowest SMR (0.012) in the state. In 

Colorado on the other hand, less than 50% of the counties had a relative risk in excess of 

1. Phillips and Sedgwick counties had SMRs in excess of 7 which were the highest in the 

state. These maps can assist policy makers in the formulation of intervention strategies to 

control the disease. Adequate resources should be allocated to counties with high 

predicted probabilities and relative risk values for disease monitoring and surveillance 

because they represent high-risk areas. The variograms constructed indicate that there is a 

strong spatial presence in the distribution of the observed human WNV counts and 

SMRs. However, they do show that the model residuals are spatially independent. They 

also reveal that the spatial structure of human WNV counts and the SMRs are 

independent of the direction in which the variograms are constructed. This study provides 

an example of how GIS mapping tools can be combined with econometric methods to 

produce hazard maps of counties at risk of human WNV infections.  These maps can 

assist health officials in the formulation of long-term mitigation plans and in the 



106 
 

development of least-cost routes of delivering medical supplies to high-risk areas in the 

event of an outbreak of the disease. 
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Chapter 4: Economics of Antibiotic Resistance: Impact of Animal Antibiotic Use on 

the Evolution of Antibiotic Resistance in Humans 

 

4.1 Introduction 

 

As with numerous other countries and regions, there is an increasing concern over the 

emergence of drug-resistant strains of bacteria in the United States (US) (Seechi and 

Babcock 2002). The importance of this “antibiotic resistance crisis” at both the national 

and international levels is seen through the resulting decline in antibiotic effectiveness 

(antithesis of antibiotic resistance). Some of the contributory factors hypothesized to be 

responsible for the crisis in the US emanated from the use of antibiotics in animals and 

over-consumption of antibiotics in humans (Levy 1992; Smith et al. 2002; Graham et al. 

2007). A prominent feature of this crisis was the inappropriate use of antibiotics in 

animals for growth promotion and prophylaxis (APUA 2012; Smith et al. 2002). The 

reduction in the effectiveness of antibiotics is a growing concern and the public health 

consequence is that it raises the economic costs to society. Costs associated with 

antibiotic resistance include higher mortality rates, longer hospital stays and the necessity 

to use different or more expensive antibiotics (Sihapi 2008; Bishit et al. 2009). 

Antibiotics are a precious resource because they are used to treat infectious diseases in 

humans. It is therefore imperative that interventions be promulgated to prolong the 

effectiveness of these drugs. In this regard, a number of measures have been proposed 

and tried with varying success. They include the use of vaccines, controls or reductions of 

antibiotic use or recycling of different antibiotics (APUA 2012; Bonhoeffer et al. 1997).  

The study of antibiotic use in the animal industry in the US is critical for several 

reasons. First, animal antibiotic use accounts for about 70% of all antibiotics used in the 
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US (Grace Communication Foundation 2011; Graham et al. 2007; Seechi and Babcock 

2002; Smith et al. 2002; Mellon etal. 2001). Second, prescriptions are not required for the 

use of some antibiotics in the animal industry. A vital link between animal antibiotic use 

and the emergence of resistance in humans is often conjectured or hypothesized (Miller et 

al. 2002; Seechi and Babcock 2002) because of these issues. This hypothesis is reflected 

and reinforced by recent studies that show that there are many pathways through which 

resistant bacteria can be transferred to humans. These include farm workers (US GAO 

2004; Smith et al. 2002; Simonsen et al. 1998), farm produce (US DHHS 2007; 

Chadwick et al. 1996;) and soil and water sources (US GAO 2004; Chaplin et al. 2004; 

Chee-Sanford et al. 2001). The foregoing discussion underscores the urgent need to 

address the problem of animal antibiotic use.  

Several mathematical models have been developed by researchers to evaluate the 

extent to which bacteria (commensal and non-commensal) could be transferred to 

humans and the rate at which they could contribute to reduced antibiotic effectiveness. 

Select examples include the works of Miller et al. (2002) and Seechi and Babcock (2002). 

Notwithstanding these efforts, there is an apparent absence of models to study these 

issues within an epidemiological model of infectious diseases. It is imperative that a valid 

framework that can generate reliable predictions concerning antibiotic effectiveness be 

pursued. 

This chapter develops a dynamic bio-economic model to study the vital link 

between animal antibiotic use and antibiotic resistance in humans. It contributes to the 

economics literature on antibiotic resistance in three ways. First, it investigates the issue 

of animal antibiotic use within an epidemiological model of infectious diseases known as 
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the susceptible-infected-susceptible (SIS) model. Second, it uses the results from the SIS 

model to generate predictions about the time path of antibiotic effectiveness. Third, it 

considers the dynamic interaction between animal antibiotic use and antibiotic 

effectiveness in humans. The specific objectives of this chapter are to use simulation 

methods to: (1) examine the impact of animal antibiotic use on the trajectory of antibiotic 

effectiveness; and (2) examine the impact of animal antibiotic use on the optimal time 

path of the shadow value of antibiotic effectiveness. This model is proposed as one 

possible framework that a decision maker can use to formulate long-run antibiotic use 

policies. Clearly, there is no singular model that will provide a panacea for all the 

problems of antibiotic resistance because of the complexity of the issue. It can however 

be argued that in the present context the proposed model is suitable in addressing the 

issue at stake. This conviction is supported by the results of this study which suggest that 

the predictions of the model are consistent with the stylized facts on antibiotic resistance. 

The main argument of this chapter is that the extensive use of antibiotics in animal 

production causes bacteria to evolve resistance which can then be transferred to humans 

through several channels or pathways. 

 The organization of the reminder of this chapter is as follows. The next section 

presents a survey of the relevant literature and the gaps/voids in the literature are also 

highlighted. In section 3, the use of antibiotics in the animal industry is discussed in 

detail where the relative benefits and costs (human health risks) of antibiotic use are also 

presented. The biological mechanisms responsible for the evolution of antibiotic 

resistance are discussed in section 4. The SIS model of infectious diseases, which forms 

the basis of the resistance model in this chapter, is presented in detail in section 5. Section 
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6 develops a dynamic mathematical model to study the impact of animal antibiotic use on 

the evolution of resistance in humans. The model developed analyzes the role of 

antibiotic use in humans and animals in the determination of antibiotic resistance. Section 

7 presents an optimal control model to analyze the trade-offs between current antibiotic 

use in both human medicine and animal production and future antibiotic effectiveness. 

The discussion also determines the economic conditions that characterize the optimal use 

of antibiotics in human and animals. In section 8, the mechanics of deriving the singular 

optimal control for both human and animal uses are presented. The results of the 

simulation analyses are discussed in section 9. In section 10, a discussion of the results 

and the concluding remarks are presented. 

4.2 Background Literature  

 

Hueth and Regev (1974) were the first to model the resistance problem. They employed a 

pest management framework with a view to illustrating the similarities between the 

economics of pest resistance and the theory of exhaustible resources in economics. In 

their seminal paper, Hueth and Regev modeled the resistance problem using a discrete 

time capital theoretic approach. The decision maker (planner) is assumed to make choice 

decisions over chemical pest and non-pest inputs. The planner’s problem is to maximize a 

net benefit function subject to the equations of motion of the system relating to potential 

plant product, pest population density and the stock of pest susceptibility.  They 

concluded that pesticide use is optimal when the marginal profits are equated to the 

shadow value of pest susceptibility. Laxminarayan and Brown (2001) use an 

epidemiological model known as the susceptible-infected-susceptible (SIS) model due to 

Kermack and McKendrick (1927) to address the resistance problem. A continuous time 
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optimal control model is developed and nets benefits are maximized by choosing the 

fraction of infected people treated with two different antibiotics subject to equations of 

motion for antibiotic effectiveness and infections. The authors conclude that in a hospital 

setting where two antibiotics are used it makes more sense to use the least costly 

antibiotic first. Their simulation results revealed that antibiotic effectiveness decreases 

over time i.e. antibiotic resistance increases over time.  

Turning to the issue of modeling the relationship between animal antibiotic use 

and the development of resistance in animals, there seem to be some research in this area 

albeit under-studied.  A review of the literature indicates that Brown and Layton (1996) 

were the first to model this relationship. In their seminal paper “Resistance economics: 

social cost and the evolution of antibiotic resistance” they used general functions to 

illustrate the externality that arises when farmers and individuals make decisions 

regarding antibiotic use independently. Their idea was to model the effect of animal 

antibiotic use on drug effectiveness (bacteria susceptibility). In their model both 

individuals and farmers maximize private net benefits given a common pool of 

resistance.  The conditions that characterize the solution to the individual’s and farmer’s 

problems indicate that too much antibiotics are consumed over time. The social planner’s 

approach internalized the externality by maximizing society’s net benefit function given a 

certain level of resistance. This approach yields the conventional result that antibiotic 

consumption is higher when individuals and farmers make private decisions than when a 

social planner makes decisions. In other words, bacteria susceptibility to antibiotics is 

higher when a social planner makes decisions than when decisions are made by private 

agents. McNamara and Miller (2002) also modeled the externality associated with 
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antibiotic use by both humans and animals. They modeled the externality problem within 

a static framework using utility maximization and profit maximization models. The 

consumer maximizes utility by choosing a combination of antibiotics and food subject to 

a budget constraint. The animal producer on the other hand chooses antibiotics and grains 

to maximize her profits subject to the neoclassical production function used to produce 

food for humans. The problem is that both consumers and producers do not take into 

account the social cost of their actions. The social planner’s program takes into account 

the externality created by both individuals and producers making decisions independently 

based on private costs and benefits. The social planner will maximize net benefits to 

society as a whole by choosing plans for consumers and producers simultaneously. The 

conditions that characterize the optimal solution to the planner’s problem imply that the 

use of antibiotics will be much lower than when consumers and producers make 

decisions independently.  In their model on the evolution of human commensal bacteria, 

Smith et al. (2002) illustrated the medical consequences of antibiotic use in animals. To 

illustrate the relationship between animal antibiotic use and resistance in humans, their 

models are based on the use of Vancomycin in hospitals and the use of Avoparcin in the 

agricultural industry for growth promotion. They asserted that Vancomycin and 

Avoparcin are different names for the same antibiotic. Hence pathogens resistant to 

Vancomycin should also be resistant to Avoparcin. They use simulation exercises to 

demonstrate the potential health consequences of antibiotic use in agriculture. The results 

revealed that the rate of antibiotic resistance in humans to be much higher with antibiotic 

use in animals. In addition, the increased use of antibiotics in humans for medical 

purposes contributed to the increased rate of antibiotic resistance in humans. The authors 
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conclude that drug effectiveness in humans can be prolonged by delaying the use of 

antibiotics in animals.  Secchi and Babcock (2002) developed an optimal control model 

to study the trade-offs between the current use of antibiotics in humans and animals and 

the future use of antibiotics in both humans and animals. In particular, they were 

interested in how antibiotics used as growth promoters affect drug efficacy (bacteria 

susceptibility). In their model, the utility that individuals derive from their health state 

depends on net income and the effectiveness of the antibiotic. The evolution of resistance 

is posited to depend on the proportion of animals given antibiotics, individual use of 

antibiotics, the proportion of humans treated, and the rate at which resistance is 

transmitted from animals to humans. The social planner maximizes the discounted utility 

of the treated and untreated overtime. Their findings suggest that animal antibiotic use 

contributed to increased resistance in humans. Their results are also consistent with 

standard economic principle that animal antibiotic use is warranted if the net marginal 

benefits exceed the marginal costs. In addition, the results support the stylized fact that 

antibiotic effectiveness decreases over time. Furthermore, the findings showed that 

human use of antibiotics partly contributed to increased resistance. 

4.2.1 Literature Synthesis 

 

The literature review revealed a couple of important facts and some gaps. The role of 

animal antibiotic use has been acknowledged as a significant contributory factor in the 

evolution of antibiotic resistance in humans. In addition, a number of studies (Brown and 

Layton 1996; Secchi and Bacock 2002; McNamara and Smith 2002) have modeled 

explicitly how animal antibiotic use impacts the development of antibiotic resistance in 

humans. However, some specific issues seem to be under-studied in the literature. First, 
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the relationship between animal antibiotic use and the evolution of antibiotic resistance in 

humans has seldom been studied within an epidemiological model of infectious diseases 

such as the SIS model. This model was developed by Kermack and McKendrick (1927) 

to study the evolution of antibiotic effectiveness and human infections and would be an 

ideal candidate for the current investigation. Second, the dynamic interaction between 

animal antibiotic use and antibiotic effectiveness seems to be under-investigated. The 

objective of this research is to fill in gaps in the present literature. 

4.3 Animal Antibiotic Use  

 

This purpose of this section is to put into perspective the benefits and human health 

hazards that result from the use of antibiotics in the animal industry. 

4.3.1 Benefits of Using Antibiotics in Animal Production 

 

Antibiotics are used in the animal industry for non-therapeutic/sub-therapeutic purposes 

(growth promotion and prophylaxis) and therapeutic purposes (treatment of diseases). A 

large proportion of antibiotics used in the animal industry are for growth promotion and 

prophylactic purposes. Antibiotics are used in animal production because they confer 

several benefits to producers and society as a whole. First, they are used to maintain the 

health and welfare of animals (Ziv 1986; Gustafson and Bowen 1997; Levitt 2011; Grace 

Communications Foundation 2011). In this regard, antibiotics are administered to 

improve the gastrointestinal tract and absorptive processes of farm animals, i.e. to 

improve the internal ecology of the animal (NRC 1999). The antibiotic is applied 

indiscriminately to both healthy and sick animals. It is usually placed in their feed or 

drinking water daily and this practice is repeated over a protracted period of time. 

Second, animal antibiotic use is encouraged because it promotes growth, weight gain and 
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feed efficiency. This ultimately improves the overall quality of the carcass on the market. 

Also the economics of agriculture makes it prudent to use antibiotics.  From an economic 

perspective, the therapeutic use of antibiotics to treat a disease or infection is justified. In 

most cases the economic benefit of treating the animal with antibiotics exceeds the 

economic costs. The economic benefits are realized in terms of feed efficiency and 

performance, i.e., the growth rate of the animal. Research shows that the use of 

antibiotics in agriculture results into an increase in efficiency and performance by up to 

15% (NRC 1999). The economic incentives for using antibiotics in agriculture are to 

maximize profits (minimize cost) so as to reduce the cost of meat to society (CBS 2010). 

Hence it is cheaper to apply antibiotics to the entire herd for disease prevention and 

growth promotion than to administer them individually. Lastly, animal antibiotic use is 

warranted because they fight infectious diseases that can be transmitted to humans. As 

select examples, the Council for Agricultural Science and Technology (CAST 1981) 

reported that the use of antibiotics such as chlortetracycline, oxytetracycline and tylosin 

in the animal industry led to a drastic decline in the incidence of liver abscesses. 

 4.3.2 Human Health Risks  

 

The health risks associated with the use of antibiotics in animals are many and varied. 

There are several pathways through which resistant bacteria can be transferred to 

humans. These include residues of antibiotics on foods, transfer of resistant genes, and 

zoonotic organisms, transmission by farmer workers and contamination by animal waste. 

These arguments are seen in Gustafson and Bowen (1997) who argue that these health 

hazards could be on the rise. 
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4.3.2.1 Contamination of Food Products 

 

Antibiotics are usually administered through drinking water in poultry and turkey, and 

administered through injections or feed in cattle. Occasionally, when dairy products such 

as eggs and milk are packed, they are tainted with small amounts of residues from farms.  

Resistant bacteria are sometimes present in these residues and humans acquire these 

resistant bacteria when they consume these products or do not cook them properly (US 

DHHS 2007). This poses a health hazard to humans and the animal industry could take 

steps to reduce the residue on food products by banning certain antibiotics.  

4.3.2.2 Transmission of Resistant Genes 

 

The main issue of concern is whether human health is compromised by the presence of 

resistant bacteria in animals.  Some evidence has been found to suggest that antibiotic 

resistance in humans is linked to bacteria resistance in animals (CAST 1981; Smith et al. 

2002; Office of Technology Assessment 1995). In an experimental study in 

Massachusetts, Levy (2002) concluded that a resistant gene found in farm animals was 

responsible for spreading resistant strains of Escherichia coli to farm family members. 

These E. coli persisted in the environment and spread to several animals including 

humans. A reduction in the volume of antibiotics used in the animal industry could 

greatly improve human health. 

 4.3.2.3 Disease Transmission by Farm Workers 

 

Farm workers are directly exposed to a myriad of bacteria in their work environment so 

they can be an important channel through which resistant bacteria are transferred to 

humans. The United States General Accounting Office (US GAO 2004) argued that farm 

workers are sometimes exposed to resistant bacteria that cause them to contract food-
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borne illnesses. They can spread these organisms to the general public when they get sick 

and go to the hospital. 

4.3.2.4 Contamination by Animal Waste 

 
A number of authors notably O’Brien (2002) and Summers (2002) have argued that 

release of farm waste that contaminates the water supply system and the soil also poses a 

serious environmental problem. These studies demonstrate that there is the potential for a 

greater degree of interaction between animal and human ecosystems. The use of organic 

manure also poses a serious health threat and could compound the problem because some 

bacteria in the feces of farm animals get transferred on to arable lands (Levitt 2011). 

4.4 Antibiotic Resistance: A Primer 

 

Antibiotics are a group of drugs that inhibit or decelerate the growth of bacteria (Levy 

1998). There are two types of bacteria identified in the medical literature-susceptible 

(sensitive) bacteria and resistant (insensitive) bacteria. Resistant bacteria have evolved to 

the point where antibiotics are ineffective against them. Levy (1998) contends that 

resistant bacteria evolve in such a way that they develop proteins that shield them from 

attacks by antibiotics. Put simply, they release proteins that render antibiotics ineffective. 

In some cases resistant strains of bacteria develop enzymes that degrade antibiotics (Levy 

1998). 

 The evolution of antibiotic resistance is caused by three main mechanisms: 

natural selection, genetic recombination mechanisms, and mutation (Massad et al. 2007; 

Sipahi 2008; Palumbi 2001; Levy 1998). Natural selection occurs because nature endows 

all bacteria with the ability to fight antibiotics. This is the classic example of “survival of 
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the fittest” whereby the least susceptible bacteria (most resistant bacteria) to a given 

antibiotic multiply rapidly giving rise to a vast number of other resistant bacteria. 

Resistant bacteria with the least fitness cost are those who survive bombardment with 

antibiotics.  From an economic perspective, fitness cost can be viewed as a type of 

opportunity cost. This is so because the resistant strains thrive in the presence of 

antibiotics, but the cost of not using antibiotics is that they perish rapidly. Mutation is 

also another mechanism through which bacteria can evolve. Mutations can lead to the 

development of new traits or the reinforcement of ones already present (Levy 1998). 

Another way in which bacteria can acquire resistant genes is through the transfer of 

plasmids. Plasmids are small strands of DNA that assist bacteria in surviving a harsh or 

unfavorable environment. There are several examples of bacteria that have evolved to 

become resistant. Staphylococcus aureus (bacteria responsible for staph infections), 

which once responded well to Methicillin and Vancomycin, is now often resistant to both 

antibiotics. Strains of Mycobacterium tuberculosis (the most common cause of 

tuberculosis) have developed resistance to antibiotics that were previously successful 

against it. Escherichia coli, which was once treated successfully with Tetracycline is now 

often resistant to it. 

4.5 An Epidemiological Model of Infectious Diseases 

 

The fundamental model used in the analysis of infectious diseases is the Susceptible-

Infected-Susceptible -SIS Model (Kermack and McKendrick 1927). It is also the key 

building block of the bio-economic model presented in this chapter. The model describes 

the process by which the population moves between the susceptible and infected stages 

via infection and treatment. The model assumes that the total population     can be 
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partitioned into two sub-populations namely susceptible     – the population that is in 

good health, but susceptible to infection- and the infected population    . The model 

presented in this paper makes the following assumptions: (1) the force of infection or the 

rate of transmission      determines the rate at which the population moves from   to  ; 

(2) the human population can be infected by two strains of bacteria – one that is sensitive 

to the antibiotic and one that is resistant; (3) the proportion of the population who are 

infected with the sensitive strain of bacteria are cured faster through antibiotic treatment, 

while those infected with a resistant strain however recover at a less rapid rate; (4) 

immunity of an individual is not allowed so an individual can become susceptible to an 

infection after treatment; (5) super-infections are not permitted so an individual is not 

susceptible to any secondary infection; (6) resistance has been introduced in advance so 

that a small number of individuals carry the resistant strain; (7) only one antibiotic is 

prescribed to treat infections. Therefore, at any time  ,                            

where    represents the uninfected fraction of the population,    denotes the fraction of 

the population infected,    denotes the fraction of the population infected with the 

sensitive type, and    is the proportion of the population infected with the drug-resistant 

strain. Since some of the members of the uninfected population will become infected 

through contagion, the SIS model assumes that the term       incorporates this idea. 

Assuming a constant population, the susceptible sub-population dynamics is described by 

the differential equation 
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where,             is the rate of addition to the infected population via both the 

resistant and sensitive strains,      is the total number of those infected with the 

sensitive strain that recover naturally,      is the total number of those infected with 

the resistant strain that recover naturally,     is the total number of those infected with 

the sensitive strain that are treated with antibiotics,   is the fraction of the infected 

population treated with a single antibiotic     is the rate of recovery of the sensitive 

strain in the absence of treatment, and    is the rate of recovery of the resistant strain 

in the absence of antibiotics. An inherent assumption is that the populations infected 

by both sensitive and resistant strains have equal access to treatment. It is worth 

pointing out that    can be normalized to 1 so that       and             . 

It is appropriate that fitness cost be introduced into the analysis. Fitness cost measures 

the idea that the resistant strain survives in the presence of antibiotics so depriving 

them of antibiotics represents a biological cost and is measured as         –    . If 

the resistance bacteria perish at a much faster rate than the sensitive bacteria, the 

fitness cost is positive and effectiveness is considered as a renewable resource. On the 

other hand, if both the resistant strain and the sensitive strain clear at the same rate the 

fitness cost is zero. So effectiveness is considered as a non-renewable resource. The 

evolution of the sub-populations infected with the sensitive and resistant strains are 

described by the differential equations 
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 and antibiotic effectiveness is expressed by the fraction 

   
  
 
 

   
     

                                                                                                                     

In other words,   is the ratio of those infected with the sensitive strain to the total 

number of infections.  Intuitively, if the antibiotic is effective in curing the disease 

this fraction should be higher. Combining equations (4.1)-(4.4), the two fundamental 

equations of the SIS model can be written as 

  

  
  

   
  

  
   
  

          –    –                                                                      

  

  
                                                                                                              

These two equations describe the evolution of the infected sub-population and the 

effectiveness of the antibiotic over time. In this study, effectiveness is being considered 

as a non-renewable natural resource because       . Consequently, the rate of recovery 

of an infected person from susceptible strain is identical to that of a resistant strain (i.e. 

       ). It can be implied from equation (4.6) that the antibiotic effectiveness 

decreases over time which is consistent with the stylized facts on resistance. 

4.6 Mathematical Model  

 

The model presented in this section develops a framework to assess the impact of animal 

antibiotic use on the evolution of antibiotic resistance in humans. This is an adaptation of 

the SIS model developed to study the evolution of infectious diseases in humans. This 

model is modified to handle a potential link between animal antibiotic use and the 

emergence of antibiotic resistance in humans. Compared to the SIS model there are some 
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principal differences with this resistance model.  First, the term               

(explained below) is included in the effectiveness equation to account for the potential 

transmission of resistance bacteria from animals to humans. This specification is 

consistent with those of Brown and Layton (1996) and McNamara and Miller (2002) in 

the sense that the rate at which antibiotic effectiveness evolves over time is linear in both 

human and animal antibiotic use. Second, the term    replaces   in the infections 

equation and these two terms are mathematically equivalent.  This notation is used in 

order to be consistent with the notational scheme of section 4.7. The two fundamental 

equations of the model that describe the evolution of effectiveness and infections are 

modifications of (4.5) and (4.6) and presented as follows: 

  

  
                                                                                                       

  

  
                                                                                                                 

 

where   is the marginal contribution of animal antibiotic use to human resistance,   is the 

marginal contribution of human antibiotic use to human resistance,       is the fraction 

of the infected human population treated with antibiotics,      ) is the tonnage of 

antibiotics used in the animal industry, and all other variables are as previously defined. 

If    , then animal antibiotic use has no impact on drug effectiveness and only human 

use impacts effectiveness. On the other hand if    , then animal antibiotic use impacts 

antibiotic effectiveness and the magnitude of     now becomes an important policy 

variable. Because   is now an important determinant of policy, policy makers must 

determine the optimal    or the conditions that characterize the optimal use of      
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4.7 Economics of Antibiotic Resistance 

 

The objective of this section is to model the antibiotic resistance problem as an 

exhaustible resource problem. An optimal control model is subsequently developed to 

determine the optimal use of antibiotics in both animals and humans. 

4.7.1 Antibiotic Resistance as an Exhaustible Resource 

 

Antibiotic resistance and exhaustible resources in economics share some salient features. 

First, it is common to conceptualize antibiotic effectiveness as a large pool (reserve) of a 

valuable resource such as oil (Brown and Layton 1996). Every time antibiotics are used 

(extracted), it lowers the level of the reserve by a small amount. This raises the cost of 

using antibiotics for subsequent doses prescribed. This process will continue for the next 

dose prescribed and subsequent doses will continue to lower the level of the reserve or 

pool of effectiveness. Another way of modeling this problem is to consider a common 

pool of bacteria that are capable of becoming resistant. As these bacteria populations are 

assaulted with antibiotics they evolve resistance. This means that the next dose prescribed 

will be more expensive. This process will continue making subsequent doses more and 

more expensive to prescribe. To put things in perspective, increasing use of antibiotics 

leads to increasing resistance which translates into rising treatment costs. It is also 

possible to conceive of a situation where the cost of treatment is so prohibitive that 

antibiotics are no longer useful. Second, antibiotics are quite unusual in the sense that 

their current use jeopardizes their future effectiveness because bacteria evolve resistance 

to them. In other words, there is a trade-off between current antibiotic use and future drug 

effectiveness. Third, the decision to use more of the resource today has two effects. The 

use of the resource influences the rate at which the stock is changing not only today, but 
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also its availability in subsequent periods of time and the flow of net benefits to society. 

Finally, the antibiotic resistance is a dynamic problem and the derivation of the 

conditions that characterize the optimal use of antibiotics necessitates the use of optimal 

control techniques. 

4.7.2 An Economic Approach to Antibiotic Resistance 

 

The ultimate goal of this economic analysis is to formulate a net benefit function (     ) 

and derive conditions that characterize the optimal use of antibiotics. The benefit 

obtained by humans from the use of each antibiotic can be written as 

                   , where    represents the dollar value per benefit associated with 

each successful treatment using the antibiotic and  all other variables are as previously 

defined. The total cost incurred by humans from using antibiotics is                 

          . The cost of a human treatment is               , and the cost associated 

with a human infection is given as            and where    is the unit cost of treatment 

using antibiotics and    is the unit cost of an infection. The benefit obtained by animal 

producers from the use of each antibiotic is        , where    represents the dollar value 

per benefit associated with one ton of animal antibiotic use. The cost associated with 

animal antibiotic use is        , where    is the unit cost per ton of antibiotic use. The 

state variables associated with this problem are the level of effectiveness and the level of 

infection. The state equations (equations of motion) are given by equations (4.9) and 

(4.10).  
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It is important to note that      has been replaced with        in (4.10) since      

           . The control variables are the fraction of the human population treated 

with antibiotics   , and the tonnage of antibiotics used in the animal industry,  . 

Mathematically, the resistance problem is formulated as 

   
     

            
   

   

                                 

                         

s.t. 

  

  
                                                                                           

  

  
                                                                                                 

Disregarding dependence on time, the current-value Hamiltonian is: 

                                                         

                                                                                                             

                                                                                                                 

 

where                            and                    are 

called switching functions because they determine whether the controls switch from the 

upper values to the lower values. The Hamiltonian can be interpreted as follows: the total 

rate of increase in the value of antibiotic resources is the sum of net returns at time   plus 

the marginal value of drug effectiveness and the marginal value of infections.  
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Application of Pontryagin’s Maximum Principle yields the following necessary 

conditions: 

  

   
                                                                     

  

   
                                                                                   

  

  
                                                                  

  

  
                                                           

where    and    are the co-state variables for   and  . The transversality conditions are: 

   
   

    
   

                                                                                                                                       

   
   

    
   

                                                                                                                                         

Equation (4.14) can be re-arranged as: 

                                                                                                 

The economic interpretation of (4.20) is: the immediate net marginal benefit of changing 

the fraction of the human population treated with antibiotics equals the long-term 

marginal cost of changing the fraction of human population treated with antibiotics. The 

immediate net marginal benefit has two components: the marginal benefit of curing 

infections (     ) and the marginal cost of each infection (   ). The marginal cost also 

has two components: marginal cost of reducing the value of effectiveness           

and the marginal cost of increasing infections (    ). Note that    is the shadow value of 
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a unit of effectiveness and    is the shadow value of a unit of infections. It is worth 

noting that      since antibiotic effectiveness can be considered as good capital or 

beneficial, while      since infections could be considered as bad capital or harmful. 

Equation (4.15) can also be re-arranged as: 

                                                                                                                         

The economic interpretation of (4.21) is: the immediate net marginal benefit of changing 

the tonnage of antibiotics used equals the long-term marginal cost of changing the 

tonnage of antibiotics used. Note that the marginal cost of decreased effectiveness is 

(         . In other words, the net benefits of animal antibiotic use would have to be 

counterbalanced by the cost to humans in terms of decreasing drug effectiveness. If 

(                , then a ban on animal antibiotics use could be justified solely 

on economic grounds. On the other hand, if                 then animal 

antibiotic use is justified strictly on economic grounds. The threshold value of   beyond 

which a ban on animal antibiotic use is justified on economic grounds is derived in 

Appendix B.  

The first-order conditions for maximization of the Hamiltonian provides 

information that will assist in finding the path of antibiotic effectiveness, infections and 

the co-state variables. Since the Hamiltonian is linear in the controls,    and   , the 

optimal control will be a combination of the Most Rapid Approach Path (bang-bang 

control) and a singular solution. This is illustrated as follows: 
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where   is the tonnage of antibiotics produced in the US in a single year. The optimal 

paths for the co-state variables from (4.16) and (4.17) are as follows: 

    
   
  

                                                                            

    
   
  

                                                                    

Equations (4.24) and (4.25) illustrate how the shadow prices of antibiotic effectiveness 

and infections evolve over time. These shadow prices could increase or decrease over 

time depending on whether the levels of antibiotic effectiveness and infections increase 

or decrease over time.  

4.8 Derivation of the Singular Controls 

 

From equation (4.22)   
  is the optimal trajectory of the fraction of infected people 

treated with antibiotics that follows the singular path. Along the singular path, the 

immediate net marginal benefit of using antibiotics in human medicine is 

counterbalanced by the long-term costs in terms of decreasing drug effectiveness and 

rising human infections. Likewise from equation (4.23)   
  is the optimal trajectory of 

animal antibiotic use and tracks the singular path. Along the singular path, the immediate 

net benefit of animal antibiotic use is just counterbalanced by the long-term costs in terms 

of reduced drug effectiveness. Singular solutions (sometimes referred to as singular arcs) 

arise in optimal control problems in which the Hamiltonian is linear in the control. In 

such cases, a direct application of Pontryagin’s Maximum Principle breaks down and 
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cannot give a complete solution.  Rather the singular solution is found by successively 

differentiating the switching functions with respect to time until the control explicitly 

appears in the equation. After this differentiation is performed   ,   ,    , and     are 

substituted for using equations (4.11), (4.12), (4.24) and (4.25).This equation can then be 

set equal to zero and the control can be solved for. If this equation does not depend on the 

controls,    and   , then another differentiation will have to be performed. Because the 

problem at hand involves two controls (control vector), restrictions are placed on    in 

(4.26) and likewise restrictions are imposed on    in (4.28). These restrictions take the 

form of the assertion that the control cannot appear in an odd order derivative. In other 

words, 

 

  

  

   
 
  

   
    

in equation (4.28) and 

 

  

  

   
 
  

   
    

in equation (4.26) and     is the order of the singular arc. Substituting these 

restrictions into (4.26) and (4.28) yields a joint system of two equations which are both 

linear in    and   . The singular paths are then derived using standard linear algebra.  

4.8.1 Derivation of the Double Singular Control Path 

 

The double singular path is the solution path that contains the singular controls for both 

animals and humans. Application of the Maximum Principle yields equation (4.14). 

Differentiation of (4.14) with respect to time yields 
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Using equations (4.11), (4.12) and (4.24) in equation (4.26), the singular solution for    

is derived as: 

   
  

    
        

                                                                                                                         

  Application of the Maximum Principle yields equation (4.15).  Differentiation of (4.15) 

with respect to time yields: 

 

  
 
  

   
      

  

  
  

  

  
    

  

  
     

   
  

     
  

  
     

   
  

   
  

  
 

     
   
  

   
  

  
     

  

  
                                                             

Using equations (4.11), (4.12), (4.24) and (4.25) in (4.28), the singular control for    is 

derived as follows: 

  
   

  
  
                                                                                                                                

where    and    are defined as follows: 

                         
                                                                         

              
                                                                                                       

and  
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Cliff (1999) asserts that if the first-order conditions are successively differentiated with 

respect to time, then the controls can only appear in an even-order derivative. By the 

implicit function theorem, this assertion is represented by the expression: 

 

  
 
   

    
 
  

  
                                                                                                                        

where   is a vector of controls and   is the order of the singular arc. From the foregoing 

discussion, a necessary condition for the singular solution to exist is known as the 

Generalized Legendre-Chebsch condition which states that  

     
 

  
 
   

    
 
  

  
                                                                                                              

4.9 Simulation Methods and Results 

 

In order to numerically analyze the solutions to the optimal control problem, the model 

needs to be parameterized or calibrated. Parameter values for parameters defined in 

section 4.6 are available in the literature. For the fraction of humans treated with 

antibiotics,    is derived as 0.003 using reported cases of E. coli infection, number of 

physician visits and number hospitalized. The tonnage of antibiotics used in agriculture 

ranged from 1.4 million pounds to 10.45 million pounds. For the benefit per ton of using 

antibiotics in the animal industry, this is imputed to be between $30.1 to $40.6 using 

information on the benefits and net return for pigs. The marginal contribution of animal 

antibiotic use to human resistance was estimated to be 0.7 using information provided on 

the fraction of antibiotics used in the animal industry. Likewise, the marginal contribution 

of antibiotic use in human medicine to human resistance was imputed to be 0.3 from data 

on the fraction of antibiotics used in treating humans. The fraction of humans infected 
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was derived from reported cases of E. coli. The cost of a human infection was calculated 

as the opportunity cost of a day’s work and was between $68 and $70. With an annual 

discount rate of 0.10, the monthly rate was calculated to be 0.008. The parameter values, 

their description and sources are provided in Table 4-1. The general solution to antibiotic 

effectiveness is provided in Appendix A. The simulations of the time paths of antibiotic 

effectiveness and its shadow value (equations 4.11 and 4.24) were performed in Excel. 

The Excel code is provided in Appendix D. To evaluate the full impact of animal 

antibiotic use on drug effectiveness and its shadow value, the composite variable 

(     ), is used in the analyses that follows to represent the total volume of animal 

antibiotic use.  

 4.9.1 Illustrative Example: Tetracycline Use in Humans and Animals 

 

To illustrate the key aspects of this model, the parameter values used or estimated are 

consistent with current knowledge of the use of tetracycline in human medicine and 

animal production and the spread of Escherichia coli in human society. There has been 

widespread use of tetracycline for prophylaxis and growth promotion in the animal 

industry since it was approved in 1948 (Tadesse et al. 2012). 

 The time paths of effectiveness and the shadow value of antibiotic effectiveness 

are shown in Figures 4-1 and 4-2.  Figure 4-1 indicates that initially when the antibiotic is 

introduced or given to humans, the level of effectiveness (low resistance) is high. Over 

time bacteria begin to develop resistance to the new drug and it begins to lose its potency 

thus effectiveness declines over time. Figure 4-2 shows the time path of the shadow value 

of effectiveness. Initially, the shadow value of effectiveness is high because of the high 

level of antibiotic effectiveness. Over time as antibiotic effectiveness declines, its shadow 
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value decreases accordingly. The trajectory of infections is depicted in Figure 4-3. The 

Figure indicates that the introduction of antibiotics or a new drug to human society 

lowers the level of infection initially. Over time however, the level of infection starts to 

increase but tapers off as antibiotics become less effective. The time path of the shadow 

value of infection is displayed in Figure 4-4. The shadow value increases in absolute 

value as the level of infections goes down and tapers off as infections level off. 

4.9.2. Sensitivity Analysis 

 

To investigate the sensitivity of antibiotic effectiveness and its shadow value to changes 

in the total volume of animal antibiotic use, the baseline case will be the reference model. 

The baseline case corresponds to the scenario where   is set equal to its initial value. 

 In the first experiment, the sensitivity of the optimal paths of antibiotic 

effectiveness to changes in the total volume of animal antibiotic use is investigated. 

Figure 4-5 plots the time paths of antibiotic effectiveness under the baseline scenario and 

the scenarios where animal antibiotic use is rising. The graph reveals that antibiotic 

effectiveness is much lower at every point in time under the new scenarios than in the 

baseline case all else equal. In other words, increasing use of antibiotics in animal 

production, ceteris paribus, ultimately leads to increasing antibiotic resistance in humans. 

This finding supports the main thesis of this paper and is consistent with the views shared 

by Levy (2002) and Secchi and Babcock (2002) that animal antibiotic use contributes to 

increased resistance in humans.   

In the second experiment, the sensitivity of the optimal path of the shadow value 

of drug effectiveness to changes in the total volume of animal antibiotic use is 
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investigated. Figure 4-6 reveals that the shadow value of antibiotic effectiveness declines 

when higher values of animal antibiotic use are introduced.  This is because the new drug 

loses its effectiveness over time so its shadow value has to decrease. 
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Figure 4-1: Trajectory of Antibiotic Resistance 

 

 

 

Figure 4-2: Optimal Time Path of the Shadow Value of Effectiveness 
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Figure 4-3: Time Path of Infections 

 

 

 

Figure 4-4: Time Path of the Shadow Value of Infections 
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Figure 4-5: Time Paths of Antibiotic Effectiveness with Varying Animal Antibiotic Use 

 

g represents the volume of animal antibiotic use. 

 

 

Figure 4-6: Optimal Time Paths of the Shadow Value of Effectiveness with Varying Animal 

Antibiotic Use 

 
 

 
g represents the volume of animal antibiotic use. 
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4.10 Discussion and Conclusions 

 

This research provides an example of a study that combines biological theory, 

epidemiological knowledge and economic analysis. The purpose of this study was to 

examine the impact of animal antibiotic use on the evolution of antibiotic resistance in 

humans. The findings indicate that antibiotic resistance is a classic example of extraction 

of a non-renewable natural resource. As more and more antibiotics are used in animal 

production, the effectiveness of the antibiotic (natural resource) dwindles over time. This 

study developed an optimal control model to examine the trade-offs between current 

antibiotic use and future antibiotic effectiveness. A number of instructive findings are 

revealed when the economic objectives of optimal control are applied to the model and 

simulation exercises are performed. The main finding of this study is that antibiotic 

effectiveness declines with increased use of antibiotics in animal production. So to 

ameliorate the excessive depletion of this resource or to arrest the increase in resistance 

animal antibiotic use should be reduced.  

One finding of this research consistent with the arguments seen in Secchi and 

Babcock (2002) and Laxminarayan and Brown (2001) is that it is beneficial to use an 

antibiotic so long as the net marginal benefits exceed the long-term marginal costs. 

However, they differ significantly from the conclusion reached by Bonhoeffer et al. 

(1997) and Massad et al. (2008). The former argued that a single antibiotic should be 

used: (1) until the resistant bacteria constitutes a specific percentage of the total 

population; and (2) if it minimizes the population of infected hosts (maximizes the 

population of uninfected hosts). The latter contends that an antibiotic should be 

administered only if it minimizes the mortality rate and hospitalization time. Clearly, 
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these criteria completely disregard economic considerations. Ignoring the economic 

aspects could change the decision-making outcome. In using antibiotics both economic 

and biological considerations must be taken into account. Economics would dictate that a 

particular antibiotic be used so long as the marginal benefits exceed the marginal costs.  

A corollary of this result is that antibiotics should be used in the production of 

animals so long as the immediate net marginal benefit more than counterbalances the 

long-term costs in terms of increased antibiotic resistance in humans. Otherwise a ban on 

animal antibiotic use could be justified on economic grounds. This will make much more 

sense especially if the antibiotic is of high value in human medicine. One might argue 

that if the marginal contribution of animal antibiotic use to antibiotic resistance is greater 

than zero (i.e.     , then a ban or partial ban on animal antibiotic use is justified. The 

results of the model suggests that the determinants of a ban on animal antibiotic use 

include the magnitude of  , the net marginal benefit to animal producers, and the cost in 

terms of decreasing effectiveness of drugs. On the other hand, if this marginal 

contribution to antibiotic resistance is negligible (i.e.,   ), then animal antibiotic use 

should be encouraged.  

A planner can use information obtained from the model to determine the critical 

level of effectiveness of a particular antibiotic beyond which an intervention is necessary. 

Palumbi (2001) contends that antibiotic resistance is usually observed anywhere from a 

few months to two decades after a new antibiotic is introduced.  The decision maker can 

determine the volume of antibiotics to be used in the animal industry based on the rate of 

decrease in antibiotic effectiveness (increase in antibiotic resistance). Since antibiotic use 

imposes a negative externality on society, a Pigouvian tax could be imposed by the 
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planner. This tax could be based on the marginal external cost imposed by animal 

producers or on the marginal contribution of animal antibiotic use to resistance in 

humans. This would encourage the planner to discourage the current low-value use (use 

of antibiotics to treat viral infections in humans and use for growth promotion in animals) 

of antibiotics and preserve the effectiveness of antibiotics for high-value use (use of 

antibiotics to treat infectious diseases in humans) in the future. The results could also be 

of assistance to a central planner at a pharmaceutical firm. The planner can use 

information on drug effectiveness and the patent to decide whether it is worthwhile to 

develop a new drug. For example suppose an antibiotic has a patent of 20 years but after 

10 years of use the drug effectiveness is 15%, the planner has to decide whether to 

develop a new drug or allow the drug to remain on the market until its patent expires. 
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Table 4-1: Parameter Values and Description Used in Simulations Exercises 

Parameter Description Source Value Range 

 

   Fraction of the human 

population treated with 

antibiotics 

Calibrated from Mead 

et al. (1999) 

0.003 0.003-

0.009 

   Tonnage on antibiotics used 

in the animal industry (in 

thousands of tons) 

Secchi and Babcock 

(2002) and Graham et 

al.(2007) 

1.4 1.4-10.45 

   Benefit for each successful 

treatment of infected 

humans ($) 

Laxaminarayan and 

Brown (2001) 

500 200-2000 

   Benefit per ton of using 

antibiotics in animal 

industry (in thousands of $) 

Calibrated from 

Cromwell (2002) 

30.1 30.1-40.6 

   Cost per treatment of a 

human infections ( $) 

UNM Pharmacy (2012) 4.24 4.24-5.50 

   Cost of a human infected 

($) 

Frenzen et al. (2005) 68 68-70 

   Cost per ton antibiotics (in 

thousands of $) 

Cromwell (2002) 30 30-40 

  Antibiotic Effectiveness 

(fraction) 

Laxaminarayan and 

Brown (2001) 

0.96 0.81-0.96 

  Marginal contribution of 

animal antibiotic use to 

human resistance (fraction) 

Calibrated from 

Graham et al. (2007) 

0.70 0.13-0.80 

  Marginal contribution of 

human antibiotic use to 

human resistance (fraction) 

Calibrated from 

Graham et al. (20070 

0.30 0.2-0.87 

     Fraction of human 

population infected with the 

disease  

Calibrated from Mead 

et al. (19990 

0.0002 0.0002-

0.00028 

     Fraction of humans 

susceptible, but not infected 

Calibrated from Mead 

et al. (1999) 

0.9900 0.9972-

0.9998 

  Social discount Laxaminarayan and 

Brown (2001) 

0.008 0.004-

0.10 
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Chapter 5: Discussion and Conclusions 

5.1 Summary of Dissertation 

 

This dissertation analyzed two health hazards namely West Nile virus and antibiotic 

resistance within an economic framework. This dissertation begins by examining the 

economic and biological factors associated with the geographic variation in human WNV 

in chapter 2. Disease mapping is undertaken using GIS tools to visually identify areas of 

high and low risk of WNV in chapter 3. Variogram analyses are also performed to 

examine the spatial structure of the standardized morbidity ratio, observed counts of 

WNV and the model residuals. The final chapter develops an optimal control model to 

study the inter-temporal trade-offs between current antibiotic use and future antibiotic 

effectiveness. 

 5.2 Geographic Variation in Human West Nile Virus 

 

The primary goal of this analysis is to test a series of hypotheses relating to economic 

(home foreclosures and income) factors using a spatial filtering random effects negative 

binomial model. The hypotheses that income has a negative impact on the incidence of 

West Nile virus, home foreclosures are positively related to WNV and that mosquito 

pools have a positive effect on the prevalence of human WNV are supported in both 

states. The two main estimation problems encountered were endogeneity and spatial 

autocorrelation. Hence, an instrumental variable version of spatial filtering and spatial lag 

models are estimated to correct for these problems. The spatial filtering model is the 

preferred model based on the AIC and BIC model selection criteria. 
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5.3 Disease Mapping and Variography 

 

Disease mapping and variogram analysis were undertaken in chapter 3 using GIS and 

geo-statistical tools. Thematic maps of the standardized morbidity ratios that the relative 

risks are generally higher in California counties than in Colorado counties. The 

probability maps, which show the probability of WNV being higher than the observed 

value, is higher in California than in Colorado. The variogram analysis reveals the 

presence of a strong spatial structure in the standardized morbidity ratio and observed 

counts of WNV in both states. However, they do reveal that the model residuals are 

devoid of spatial autocorrelation. 

 5.4 Economics of Antibiotic Resistance 

 

The optimal control model illustrates that a trade-off exists between current antibiotic use 

in humans and animals and the future effectiveness of antibiotics. In particular, this 

chapter emphasizes the contribution of animal antibiotic use to the evolution of drug 

resistance in humans. The parameter values used to calibrate the model are derived from 

a variety of sources or imputed from existing data.  A sensitivity and simulation analyses 

are conducted to investigate the impact of animal antibiotic use on the trajectory of 

antibiotic effectiveness and its shadow value. The simulation results show that increasing 

animal antibiotic use decreases the level of antibiotic effectiveness and its concomitant  

shadow value. The economic analysis reveals that there are certain conditions that 

characterize the optimal use of antibiotics resources in animals and humans. Antibiotics 

should be used in animal production to the point where the immediate net marginal 

benefits are exactly offset by the long-term marginal cost in terms of decreasing drug 

effectiveness. On the other hand, antibiotics should be used in human medicine to the 
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point where the immediate net marginal benefits are counterbalanced by the long-term 

costs in terms of decreasing drug effectiveness and rising infections. 

5.5 Policy Implications 

 
The issues examined in each chapter of this study have significant policy implications. 

The IV spatial filtering regression results do indicate that WNV prevalence is higher in 

counties that display certain economic and biological characteristics such as a low 

median income, a high number of home foreclosures and a high number of mosquito 

pools. Vector control strategies such as insecticide spraying and the use of mosquito nets 

that could reduce WNV infections are suggested by this research. This research 

highlights the importance of neighborhood conditions in WNV prevalence. Poor 

environmental conditions, caused by economic hardships, could serve as breeding 

grounds for the mosquito vector. It also suggests that maintenance of foreclosed homes 

should be encouraged. This is because it will prevent the existence of standing water in 

swimming pools which could serve as a breeding ground for mosquitoes. Thus, the 

results of this dissertation suggest that more resources should be allocated to counties that 

have a low median income, a high number of home foreclosures and a high number of 

mosquito pools for disease surveillance and monitoring in order to mitigate the disease. 

This will ultimately assist in reducing the incidence of West Nile virus. 

 Disease maps are useful to policy makers because they summarize the spatial 

variation in human WNV risk. The information provided by these maps can be used to 

formulate hypotheses about disease etiology, for monitoring and surveillance of areas 

classified as high risk, and in the allocation of scarce health resources. They can also be 

used to determine the minimum-cost path of delivering medical supplies to high-risk 
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areas in the event of a disease outbreak. Disease etiology could also assist policy makers 

in designing cost-effective preventive measures. 

There is the need for policy makers to adopt a multidisciplinary approach-

economics and epidemiology-in addressing the resistance problem. The results reveal 

how insights from antibiotic resistance fit well within the context of optimal control and 

policy making. Estimating the volume of animal antibiotic use and the initial level of 

effectiveness is crucial in formulating policies on antibiotic use. High volumes of animal 

antibiotic use and low magnitudes of antibiotic effectiveness translate into rising 

infections in the long-run. The results of the optimal control model can be useful to a 

decision maker concerned about the declining rate of antibiotic effectiveness. The 

decision maker can use the parameter values of the model to determine a threshold value 

of antibiotic effectiveness beyond which it may be necessary to switch to a new drug or 

enact policies to intervene in the decline in the effectiveness of a particular drug. Since 

antibiotics differ from each other with respect to the marginal benefit they bestow on the 

user, the marginal cost of use, and the rate of decline in effectiveness there may be the 

urgent need to intervene in the use of certain antibiotics quicker than others to prolong 

their effectiveness. The planner can therefore select the level of animal antibiotic use to 

derive a time path of antibiotic effectiveness consistent with its goal of conserving a 

particular antibiotic. Policies to regulate animal antibiotic use such as the prescription 

requirements are suggested by this research. Also since antibiotic use creates a negative 

externality on society, the planner can impose a tax equivalent to the marginal cost of the 

externality to discourage the overuse of antibiotics. The results could also be of assistance 

to a central planner at a pharmaceutical firm. The planner can use information on drug 



146 
 

effectiveness and the patent expiration date to decide whether it is worthwhile to develop 

a new drug to replace the old drug before the patent on the existing drug expires. 

5.6 Directions of Future Research 

The results of this study rested heavily on the spatial scales used in the analysis of WNV. 

This study employed county-level data to study the determinants of the high incidence of 

WNV in California and Colorado. It may be more meaningful studying the determinants 

of WNV using census tract or block level data. In terms of future research, it may be 

worthwhile further investigating the role of dead birds in WNV transmission. Also there 

are a couple of extensions that could be made to antibiotic resistance model. First, an 

equation could be incorporated to describe the evolution of resistance in animals. Second, 

the model can be modified to handle the use of two antibiotics. Simulations can then be 

performed to determine which antibiotic deteriorates faster in effectiveness so that its use 

can be discontinued. Third, the assumption of uniform antibiotic resistance is not quite 

realistic. Heterogeneity in resistance and infections could be introduced by specifying 

evolution equations for infections and effectiveness that vary by geographic region, 

distance to industrial farms and age. 
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Appendix A: General Solution for Effectiveness 

  

  
                                 

Let p=               then ignoring time subscripts 

             

So                

Is an example of a Bernoulli equation so dividing by     and re-arranging yields 

                     

Let m=    be a transformation. Then           and substituting into ** yields 

                                                                                  

Multiply (A1) by an integrating factor      . This yields the following equation: 

                                                                                                             

Next we need to find a      such that the left hand side of equation A2 equals the derivative of 

      . The derivative of        is equal to                 . By making      satisfy 

          and choosing              will make A2 equivalent to the following equation: 

 

  
                  

Hence        is an indefinite integral of          , so there has to exist a constant   such that 

                                                                                                                  

Multiplying (A3) by        we get 

                             

Hence the general solution for m is: 

                                                                                                           

and      . 
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Appendix B: Derivation of Threshold Value of Effectiveness 

Equation (7.13) can be re-written in quadratic form as: 

    
              . So the threshold hold is calculated as follows: 
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Appendix C: Explanation of Optimal Control Units 

Parameters: 

  =benefit associated with each treatment (dose) of the antibiotic measured in [$/ person] 

  = benefit associated with each use of the antibiotic measured in [$/ton]  

  

c1= unit cost of human treatment (dose) [ $/person]  

 

c2=unit cost of human infection [ $/person] 

 

ca=unit cost per ton of administering antibiotics to animals measured [$/ton]. 

 

r=recovery rate/clearance rate [%] 

 

β=transmission rate [%]  

 

k=marginal contribution of animal use of antibiotics to resistance due to one more use of the drug 

[%] 

z=marginal contribution of human use of antibiotics to resistance due to one more use of the drug 

[%] 

 

Variables 

               

     fraction of  humans that are susceptible to infections [unitless]=  
                       

                       
   

Susceptible population is measured in [person/t] and total human population is in [person/time] 

     fraction of  humans that are infected [unitless]=  
                    

                       
  

Infected population is measured in [person/t] 

 

       fraction of humans infected with the resistant strain  

[unitless]=  
                                            

               
  

Fraction infected with resistant strain is measured in [person/t] and total infected is measured in 

[person/t] 

 

     =fraction of humans infected with the susceptible strain 

[unitless]=  
                                          

              
  

Fraction infected with susceptible strain is measured in [person/t] and                 . 
 

    =effectiveness of antibiotic and is equal to the ratio of humans infected with the susceptible 

strain to the total infected population [unitless]=  
                                        

              
  

 

  =fraction of the infected population treated with antibiotics 

[unitless]=  
        

                         
   

Treated are measured in [person/t] 

  =tonnage of antibiotics used in animal industry [tons/t] 

Benefit to Humans 
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Benefit to Humans: 

 

 
 

 

       
                   

        

                         
 

  
                          

                       
  

 

 
 

 

       
 
       

 
                        

 

 
 

 Cost to Humans: 

                                                     

 

 

 
 

 

       
  

       

                         
   

                         

                      
 

 
 

        
  

         

                      
  

 

 
 

 

       
 
       

 
          

 

        
 
        

 
       

 

 
 

 

Benefit to Animal Producers:  

                           

 

[$/time] = [$/ton]*[number of tons] 

 

 
 

 

   
 
   

 
 
 

 
 

 

Cost to Animal Producers:                                                   

[$/t] = [$/ton]*[number of tons] 
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Appendix D: Stata, R and Excels Codes Stata Codes 

 

************************************************************************************** 

* Stata 9.2                                                                                                                                                                      

*         

* Dissertation Chapter 2: Examination of Geographic Variation in Human West Nile Virus                                     

* 

* WNVCA0307.do. This file estimates the Random Effects Negative Binomial Regressions for California             

* 

* It uses data on West Nile Virus and other climatic, economic and environmental variables from 2003-

*2007          

*It reproduces Tables 2-4 to 2-8                                                                                                                                   

* 

************************************************************************************** 

 

California Codes 

 

clear 

#delimit; 

cap log close; 

set mem 80m; 

set more off; 

set scrollbufsize 300000; 

 log using E:\research\zoonotic, replace; 

insheet using E:\research\WNVCA0307.csv; 

gen migrate=netmigr/population;   // generates a migration rate 

gen lnincome=ln(income); 

gen elevate=elevation/1000;   // scales down elevation 

gen lnpop=ln(population);   // generates the exposure variable 

gen lnpop2=ln(lnpop);   // generates the offset variable 

gen fcloseca=ln(fclose+1);   // transforms home foreclosures 

gen newhuman=ln(human+1); 

gen lnarea=ln(area); 

tabulate year, gen(time);   // generates the time fixed effects 

encode county, generate(location);   // generates the random effects variable 

gen popdense=population/area;   // generates the population density 

gen lnpopdense=ln(popdense);   // generates the log of population density 

summarize human lnincome fcloseca bird mosquito migrate pwhite lnpop lnpopdense precip temp pdsi 

urban elevate time2-time5;  

summarize bird mosquito equine migrate precip temp pdsi educate poverty unrate airport urban elevate 

lnpopdense lnarea road time2-time5; 

corr bird mosquito equine fcloseca income urban educate poverty elevate migrate lnpop lnpopdense temp 

precip pwhite pdsi; 

 

***********Spatial Autocorrelation Test TABLE 2-3***************************************** 

spatwmat using E:\research\swm_ca.dta, name(W) eigenval(E) standardize; // reads W a 58X58 spatial 

weights matrix 

 set matsize 400; 

 matrix I = I(5); // creates a 5X5 identity matrix 

 matrix W1=I#W; // creates a new 290 X 290  matrix 

 spatgsa human, weights(W1) moran geary; // Moran’s I test on WNV cases 

 

**************************************************************************************

***** 

matrix I58=I(58);   // creates a 58 X 58 identity matrix                                                                                               
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mkmat O;   // reads a 58 X 1 column of ones 

matrix C1=I58-OO'/58;   // transforms the identity matrix 

matrix C=C1*W*C1;   // creates a centered spatial weights matrix 

matrix symeigen X v = C;  // extracts the eigenvectors from the centered spatial weights matrix C  

 

******************************TABLE 2-4 MODELS 1-4 (4 COLUMNS)******************* 

*Model 1 Non-spatial Random Effects Negative Binomial Regression (Equation 2.8) 

xtnbreg human fcloseca lnincome lnpopdense time2-time5,i(location) iterate(100)nolog; 

outreg using G:\research\WNV1.doc, title(NB-IV) ctitle (Model 1)3aster replace; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat1, xb; 

gen resh1=human-hhat1;   // generates model residuals 

spatgsa resh1, weights(W1) moran geary; // spatial autocorrelation test on model residuals 

estat ic; 

 

*Model 2 Non-spatial Random Effects Negative Binomial Regression (Equation 2.8) 

xtnbreg human  fcloseca lnincome mosquito lnpopdense precip time2-time5, i(location) iterate(100)nolog; 

outreg using G:\research\WNV1.doc, title(NB-IV) ctitle (Model 2) 3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat2, xb;   // generates the predicted values 

gen resh2=human-hhat2;   // generates model residuals 

spatgsa resh2, weights(W1) moran geary;// spatial autocorrelation test on model residuals 

estat ic; 

 

*Model 3  Non-spatial Random Effects Negative Binomial Regression (Equation 2.8) 

xtnbreg human  fcloseca lnincome mosquito lnpopdense temp time2-time5, i(location) iterate(100)nolog; 

outreg using G:\research\WNV1.doc, title(NB-IV) ctitle (Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat3, xb;   // generates the predicted values 

gen resh3=human-hhat3;   // generates model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

estat ic; 

 

Model 4 Non-spatial Random Effects Negative Binomial Regression (Equation 2.8) 

xtnbreg human  fcloseca lnincome mosquito lnpopdense pdsi time2-time5, i(location) iterate(100)nolog; 

outreg using G:\research\WNV1.doc, title(NB-IV) ctitle (Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb;   // generates the predicted values 

gen resh=human-hhat4;   // generates model residuals 

spatgsa resh4, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

************************************************************************************** 

 

 

*********************************TABLE 2-5 MODELS 1-4 (4 COLUMNS)***************** 

*Model 1 Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog; // instrumentalizes the spatial lag 

predict slaghat1, xb;   // generates predicted values of spatial lag 

adjust,exp; 

xtnbreg human fcloseca lnincome  lnpopdense time2-time5 slaghat1, i(location) iterate(100) nolog; 

outreg using G:\research\WNV2.doc, title(RE-IV) ctitle(Model 1)3aster replace; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat1, xb;  // generates model predicted values 

gen resh1=human-hhat1;   // generates model residuals 

spatgsa resh1, weights(W1) moran geary;  //spatial autocorrelation test on model residuals 
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estat ic; 

 

*Model 2 Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5,i(location)iterate(100)nolog; // instrumetnalize the  spatial lag 

predict slaghat2, xb; 

adjust,exp; 

xtnbreg human fcloseca lnincome mosquito lnpopdense precip time2-time5 slaghat2, i(location) 

iterate(100) nolog; 

outreg using G:\research\WNV2.doc, title(FE-IV) ctitle(Model 2)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat2, xb;   // generates model predicted values 

gen resh2=human-hhat2;   // generates model residuals 

spatgsa resh2, weights(W1) moran geary; //spatial autocorrelation test on the model residuals 

estat ic; 

 

*Model 3 Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5,i(location)iterate(100)nolog;    //instrumentalizes spatial lag 

predict slaghat3, xb;   / generates predicted spatial lag values 

adjust,exp; 

xtnbreg human fcloseca lnincome mosquito lnpopdense temp time2-time5 slaghat3, i(location) iterate(100) 

nolog; 

outreg using G:\research\WNV2.doc, title(FE-IV) ctitle(Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat3, xb;   // generates model predicted values 

gen resh3=human-hhat3;   // generates model residuals 

spatgsa resh3, weights(W1) moran geary;  //spatial autocorrelation test on the model residuals 

estat ic; 

 

**Model 4 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5,i(location)iterate(100)nolog;    //instrumentalizes spatial lag 

predict slaghat4, xb;   / generates predicted spatial lag values 

adjust,exp; 

xtnbreg human fcloseca lnincome  lnpopdense  mosquito pdsi time2-time5 slaghat4, i(location)iterate(100) 

nolog; 

outreg using E:\research\WNV2.doc, title(RE-IV) ctitle(Model 4)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 

estat ic; 
 

 

************************************************************************************** 

 

 

*****************************TABLE 2-6 MODELS 1-4 (4 COLUMNS)********************* 

Model 1 IV Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg fcloseca  educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;  //  instrumentalizes home 

foreclosures  

predict fhat1, xb;   // generates the predicted values of home foreclosures 

adjust,exp; 

gen resf=fcloseca-fhat1;  // generates home foreclosure residuals 
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egen zresf=std(resf);   // generates the standardized home foreclosure residuals 

regress lnincome  educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5;   //  instrumentalizes income 

predict yhat1,xb;   // generates the predicted values of log of income 

gen resinc=lnincome-yhat1;   // generates income residuals 

egen zresinc=std(resinc);   //  generates the standardized income residuals 

xtnbreg lag1 fcloseca  educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5,i(location)iterate(100)nolog;   // instrumentalizes the 

spatial lag 

predict slaghat1, xb;   // generates the predicted values of the spatial lag 

adjust,exp; 

gen respat=lag1-slaghat1;   // generates the spatial lag residuals 

egen zrespat=std(respat);   // generates the standardized spatial lag residual 

xtnbreg human fhat1 yhat1 lnpopdense time2-time5 slaghat1, i(location) 

iterate(100)vce(bootstrap,rep(100))nolog; 

outreg using G:\research\WNV3.doc, title(RE-IV) ctitle(Model 1)3aster replace; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat1, xb;   // generates the model predicted values 

gen resh1=human-hhat1;   // generates model residuals 

spatgsa resh1, weights(W1) moran geary;   // spatial autocorrelation test on the model residuals 

estat ic; 

 

**Endogeneity Test** 

xtnbreg human fcloseca lnincome bird mosquito migrate zresf zresinc zrespat time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf=zresinc=0;   // tests equality of standardized residuals 

 

**Validity/Over-Identification Test** 

xtnbreg human fhat1 yhat1 bird mosquito migrate time2-time5 slaghat1, 

i(location)iterate(100)exposure(lnpop)nolog; 

predict wnvhat,xb;   // generates the IV predicted values 

adjust, exp; 

gen reswnv=human-wnvhat;   // generates the IV residuals 

egen zreswnv=std(reswnv);   // generates the standardized IV residuals 

gen zreswnv1=zreswnv+1;   // transforms the standardized residuals 

sum(zreswnv1); 

xtnbreg zreswnv1 precip temp pdsi educate equine unrate poverty bird mosquito migrate airport pwhite 

elevate urban time2-time5,i(location)iterate(100)vce(bootstrap,rep(5))nolog;   // regresses standardized 

residuals on instruments 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // get R
2
 from regression to calculate test statistic 

 

*Model 2 IV Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   //instrumentalizes home 

foreclosures 

predict fhat2, xb;   // generates predicted values of home foreclosures 

adjust, exp; 

gen resf2=fcloseca-fhat2;   // generates the home foreclosure residuals 

egen zresf2=std(resf2);   // generates standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes log of income  

predict yhat2, xb;   // generates the predicted values of income 

gen resinc2=lnincome-yhat2;   // generates the income residuals 

egen zresinc2=std(resinc2);   // generates standardized income residuals 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5,i(location)iterate(100)nolog;   // instrumentalizes the spatial lag 
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predict slaghat2, xb;   // generates the spatial lag predicted values 

adjust, exp; 

gen respat2=lag1-slaghat2;   // generates the spatial lag residuals 

egen zrespat2=std(respat2);   // generates standardized spatial lag residuals 

xtnbreg human fhat2 yhat2 mosquito lnpopdense precip time2-time5 slaghat2, i(location) iterate(100) 

vce(bootstrap,rep(100)) nolog; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat2, xb;   // generates the model predicted values 

gen resh2=human-hhat2;   // generates the model residuals 

spatgsa resh2, weights(W1) moran geary;   // spatial autocorrelation test on the residuals 

estat ic; 

 

***Endogeneity Test 

xtnbreg human fcloseca lnincome bird mosquito migrate zresf2 zresinc2 zrespat2 time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf2=zresinc2=0;  // tests for equality of standardized residuals 

 

**Model 3 IV Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   //instrumentalizes home 

foreclosures 

predict fhat3, xb;   // generates the predicted values for home foreclosures 

adjust, exp; 

gen resf3=fcloseca-fhat3;   // generates home foreclosure residuals 

egen zresf3=std(resf3);   // generates the standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes log of income  

predict yhat3, xb;   // generates the predicted values of log of income 

gen resinc3=lnincome-yhat3;    // generates the income residuals 

egen zresinc3=std(resinc3);   // generates the standardized income residuals 

xtnbreg lag1  educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5,i(location)nolog;  // instrumentalizes the spatial lag 

predict slaghat3, xb;   // generates the predicted values of the spatial lag 

adjust, exp; 

gen respat3=lag1-slaghat3;   // generates the spatial lag residuals 

egen zrespat3=std(respat3);  // generates the standardized spatial lag residuals 

xtnbreg human fhat3 yhat3 mosquito lnpopdense temp time2-time5 slaghat3, i(location)  iterate(100) 

vce(bootstrap,rep(100)) nolog; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat3, xb;   / generates the model predicted values 

gen resh3=human-hhat3;   // generates the model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test on the model residuals 

estat ic; 

 

***Endogeneity Test 

xtnbreg human fcloseca lnincome bird mosquito migrate zresf3 zresinc3 zrespat3 time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf3=zresinc3=0;   // equality test of standardized residuals 

 

Model 4 

xtnbreg fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog; 

predict fhat4, xb; 

adjust, exp; 

reg lnincome fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate 

urban lnpopdense lnarea road time2-time5; 
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predict yhat4, xb; 

xtnbreg lag1 fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate 

urban lnpopdense lnarea road time2-time5 ,i(location)iterate(100)nolog; 

predict slaghat4, xb; 

adjust, exp; 

xtnbreg human fhat4 yhat4 lnpopdense mosquito pdsi time2-time5 slaghat4, i(location) 

iterate(100)vce(bootstrap,rep(100)) nolog; 

outreg using E:\research\WNV3.doc, title(RE-IV) ctitle(Model 4)3aster append; 

*display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 

estat ic; 

 

 

******************************TABLE 2-7 MODELS 1-4 (4 COLUMNS)******************* 

 **Model 1 Spatial Filtering Random Effects Negative Binomial Regressions (Equation 2.16).  

xtnbreg human fcloseca lnincome  lnpopdense time2-time5 e3 e16 e25 e29 e46, i(location) iterate(100) 

vce(bootstrap, rep(100)) nolog; 

outreg using G:\research\WNV4.doc, title(RE-IV) ctitle(Model 1)3aster replace; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat1, xb;   // generates the model predicted values 

gen resh1=human-hhat1;   // generates the model residuals 

spatgsa resh1, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

estat vce; 

estat ic; 

 

**Model 2 Spatial Filter Random Effects Negative Binomial Regressions (Equation 2.16). 

xtnbreg human fcloseca lnincome mosquito lnpopdense precip time2-time5 e1 e3 e11 e13 e15 e16 e21 e25 

e26 e27 e29 e34 e46, i(location) iterate(100) vce(bootstrap, rep(100)) nolog; 

outreg using G:\research\WNV4.doc, title(FE-IV) ctitle(Model 2)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat2, xb;   // generates the model predicted values 

gen resh2=human-hhat2;   // generates the model residuals 

spatgsa resh2, weights(W1) moran geary;   //spatial autocorrelation test on model residuals 

estat ic; 

 

**Model 3  Spatial Filter Random Effects Negative Binomial Regressions (Equation 2.16). 

xtnbreg human fcloseca lnincome mosquito lnpopdense temp time2-time5 e3 e16 e25 e29 e33 e46, 

i(location) iterate(100) vce(bootstrap, rep(100)) nolog; 

outreg using G:\research\WNV4.doc, title(FE-IV) ctitle(Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat3, xb;   // generates the model predicted values 

gen resh3=human-hhat3;   // generates the model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

estat ic; 

 

***Model 4 

xtnbreg human fcloseca lnincome  lnpopdense mosquito pdsi time2-time5 e1 e16 e29, i(location) 

iterate(100) vce(bootstrap, rep(100)) nolog; 

outreg using E:\research\WNV4.doc, title(RE-IV) ctitle(Model 4)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 

estat ic; 
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**************************TALE 2-8 MODELS 1-4 (4 COLUMNS)************************* 

**Model 1 IV Spatial Filter Random Effects Negative Binomial Regressions (Equation 2.16). 

xtnbreg fcloseca  educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes home 

foreclosures 

predict fhat1, xb;   // generates the home foreclosures predicted values 

adjust,exp; 

gen resf=fcloseca-fhat1;   // generates the home foreclosure residuals 

egen zresf=std(resf);   // generates the standardized home foreclosure residuals 

regress lnincome  educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5;   //instrumentalizes the log of income 

predict yhat1,xb;   // generates the predicted values of log of income 

gen resinc=lnincome-yhat1;   // generates income residuals 

egen zresinc=std(resinc);   // generates the standardized income residuals 

xtnbreg human fhat1 yhat1 lnpopdense time2-time5 e4 e6 e15 e16 e46 e47, i(location) iterate(100) 

vce(bootstrap,rep(100)) nolog;    

outreg using E:\research\WNV5.doc, title(RE-IV) ctitle(Model 1)3aster replace; 

predict hhat1, xb;   // generates the model predicted values 

gen resh1=human-hhat1;   // generates the model residuals 

spatgsa resh1, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

estat ic; 

 

***Endogeneity Test 

xtnbreg human fcloseca lnincome bird mosquito migrate zresf zresinc zrespat time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf=zresinc=0;   // tests the equality of the standardized residuals 

 

**Validity/Over-Identification Test 

xtnbreg human fhat1 yhat1 bird mosquito migrate time2-time5 slaghat1, 

i(location)iterate(100)exposure(lnpop)nolog; 

predict wnvhat,xb;   // generates model predicted values 

gen reswnv=human-wnvhat;   //generates  model residuals 

egen zreswnv=std(reswnv);   // standardized model residuals 

gen zreswnv1=zreswnv+1;   // transformed model residuals 

sum(zreswnv1); 

xtnbreg zreswnv1 precip temp pdsi educate equine unrate poverty bird mosquito migrate airport pwhite 

elevate urban time2-time5,i(location)iterate(100)vce(bootstrap,rep(5))nolog;   // regress standardized 

residuals on instruments 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // get R
2
 to calculate test statistic 

 

/*predict reshat, xb; 

gen essres=reshat-1; 

gen essres2=(essres)^2; 

sum(essres2); 

gen tssres=reswnv-1; 

gen tssres2=(tssres)^2; 

sum(tssres2); 

predict reswnvhat, xb; 

adjust, exp; 

list reswnv;*/ 

 

**Model 2 IV Spatial Filter Random Effects Negative Binomial Regressions (Equation 2.16). 

xtnbreg fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes home 

foreclosures 
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predict fhat2, xb;   // generate predicted values of home foreclosures 

adjust, exp; 

gen resf2=fcloseca-fhat2;   // generates home foreclosures residuals 

egen zresf2=std(resf2);   // generates the standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes log of income 

predict yhat2, xb;   // generates the predicted values of log of income 

gen resinc2=lnincome-yhat2;  // generates the log of income residuals 

egen zresinc2=std(resinc2);   // generates the standardized income residuals 

xtnbreg human fhat2 yhat2 mosquito lnpopdense precip time2-time5 e16, i(location) iterate(100) 

vce(bootstrap,rep(100))  nolog; 

predict hhat2, xb;   // generates the model predicted values 

gen resh2=human-hhat2;   // generates the model residuals 

spatgsa resh2, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

estat ic; 

 

***Endogeneity Test 

xtnbreg human fcloseca lnincome bird mosquito migrate zresf2 zresinc2 zrespat2 time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf2=zresinc2=0;   // tests for equality of standardized residuals 

 

**Model 3 IV Spatial Filter Random Effects Negative Binomial Regressions (Equation 2.16). 

xtnbreg fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes home 

foreclosures 

predict fhat3, xb;   // generates the predicted values of home foreclosures 

adjust, exp; 

gen resf3=fcloseca-fhat3;   // generates the home foreclosures residuals 

egen zresf3=std(resf3);   // generates the standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes the log of income 

predict yhat3, xb;   // generates the predicted values of income 

gen resinc3=lnincome-yhat3;   // generates the income residuals 

egen zresinc3=std(resinc3);   // generates the standardized income residuals 

xtnbreg human fhat3 yhat3 mosquito lnpopdense temp time2-time5 e16, i(location) iterate(100) 

vce(bootstrap,rep(100)) nolog; 

predict hhat3, xb;   // generates the model predicted values 

gen resh3=human-hhat3;   / generates the model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test on the residuals 

estat ic; 

 

**Endogeneity Test 

xtnbreg human fcloseca lnincome bird mosquito migrate zresf3 zresinc3 zrespat3 time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100) nolog; 

test zresf3=zresinc3=0;  // tests the equality of the standardized residuals 
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Model 4 

xtnbreg fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog; 

predict fhat4, xb; 

adjust, exp; 

reg lnincome fcloseca educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate 

urban lnpopdense lnarea road time2-time5; 

predict yhat4, xb; 

xtnbreg human fhat4 yhat4  lnpopdense mosquito pdsi time2-time5 e16 e41, i(location) iterate(100) 

vce(bootstrap,rep(100)) nolog; 

outreg using E:\research\WNV5.doc, title(RE-IV) ctitle(Model 4)3aster append; 

*display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 

estat ic; 
 

 

Colorado Codes 

************************************************************************************** 

  Stata 9.2                                                                                                                                                                                   

  Dissertation Chapter 2: Examination of Geographic Variation in Human West Nile Virus 

  WNVCO0307.do. This file estimates the Random Effects Negative Binomial Regressions for Colorado 

  It uses data on West Nile Virus and other climatic, economic and environmental variables from 2003-  

2007 

  It reproduces Tables 2-9 to 2-13 

************************************************************************************** 

clear 

#delimit; 

cap log close; 

set mem 80m; 

set more off; log using E:\research\zoonotic, replace; 

insheet using E:\research\WNVCO0307.csv; 

gen migrate=netmigr/population; 

gen lnpop=ln(population);   // creates the exposure variable 

gen lnpop2=ln(lnpop);   // generates the offset variable 

gen lnincome=ln(income);   // generates the log of income 

gen elevate=elevation/1000;   // scales down elevation 

gen fcloseco=ln(fclose+1);   // transforms home foreclosures 

gen newhuman=ln(human+1); 

gen lnarea=ln(area); 

tabulate year, gen(time);   // generates the time fixed effects 

encode county, generate(location);   // generates the random effects 

gen popdense=population/area;   // generates the population density 

gen lnpopdense=ln(popdense);   // generates the log of population density 

summarize human lnincome fcloseco bird mosquito migrate pwhite lnpop lnpopdense precip temp pdsi 

urban elevate time2-time5; 

summarize bird mosquito equine migrate precip temp pdsi educate poverty unrate airport urban elevate 

lnpopdense lnarea road time2-time5; 

corr bird mosquito fcloseco lnincome educate urban elevate migrate temp precip pdsi pwhite equine lnpop 

lnpopdense; 
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**************** TABLE 2-3 SPATIAL AUTOCORRELATION TEST ON WNV COUNTS******* 

spatwmat using G:\research\swm_co.dta, name(W) eigenval(E) standardize; // reads W a 63 X 63 spatial 

weights matrix 

set matsize 400; 

matrix K=W; 

matrix I = I(5); // creates a 5 X 5 identity matrix 

matrix list I; 

matrix W1=I#W; // creates a 315 X 315 weights matrix using a Kroenecker product 

spatgsa human, weights(W1) moran geary;   // spatial autocorrelation test on WNV counts 

**************************************************************************************

******* 

matrix I63=I(63);   // creates a 63 X 63 identity matrix 

mkmat O;   // reads a 63 X 1 column of ones 

matrix C1=I63-OO'/63;   // transforms the identity matrix 

matrix C=C1*W*C1;   // creates a centered spatial weights matrix 

matrix symeigen X v = C;  // extracts the eigenvectors from a centered  spatial weights matrix C 

 

********************TABLE 2-9 MODELS 1-4 (4 COLUMNS)****************************** 

**Model 1 Non-spatial Random Effects Negative Binomial Regressions (Equation 2.8).  

xtnbreg human fcloseco lnincome lnpopdense time2-time5, i(location) iterate(100)nolog; 

outreg using G:\research\WNV1.doc, title(FE-IV) ctitle(Model 1)3aster replace; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // calculates the R2 

estat ic; 

predict hhat1, xb;   // generates the model predicted values 

gen resh1=human-hhat1;   // generates the model residuals 

spatgsa resh1, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

**Model 2 Non-spatial Random Effects Negative Binomial Regressions (Equation 2.8). 

xtnbreg human fcloseco lnincome mosquito lnpopdense precip time2-time5, 

i(location)exposure(lnpop)iterate(100)nolog; 

outreg using G:\research\WNV1.doc, title(FE-IV) ctitle(Model 2)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // calculates the R2 

estat ic; 

predict hhat2, xb;   // generates model predicted values 

gen resh2=human-hhat2;   // generates the model residuals 

spatgsa resh2, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

**Model 3  Non-spatial Random Effects Negative Binomial Regressions (Equation 2.8). 

xtnbreg human fcloseco lnincome mosquito  lnpopdense temp time2-time5, i(location) iterate(100) nolog; 

outreg using G:\research\WNV1.doc, title(FE-IV) ctitle(Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // calculates the R2 

estat ic; 

predict hhat3, xb;   // generates the model predicted values  

gen resh3=human-hhat3;   // generates the model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

Model 4 

xtnbreg human fcloseco lnincome  lnpopdense mosquito pdsi time2-time5, i(location) iterate(100) nolog; 

outreg using E:\research\WNV1.doc, title(FE-IV) ctitle(Model 4)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 

estat ic; 
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************************************************************************************** 

 

 

**************************TABLE 2-10 MODELS 1-4 (4 COLUMNS)*********************** 

**Model 1 Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9).  

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   //  instrumentalizes the spatial lag 

predict slaghat1, xb;   // generates the spatial lag predicted values 

adjust, exp; 

xtnbreg human fcloseco lnincome lnpopdense time2-time5 slaghat1, i(location) iterate(100) nolog; 

outreg using G:\research\WNV2.doc, title(FE-IV) ctitle(Model 1) 3aster replace; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // calculates the model R
2
 

estat ic; 

predict hhat1, xb;   // generates the model predicted values 

gen resh1=human-hhat1;   // generates the model residuals 

spatgsa resh1, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

**Model 2 Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9). 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes the spatial lag 

predict slaghat2, xb;   // generates the spatial lag predicted values 

adjust, exp; 

xtnbreg human fcloseco lnincome mosquito precip time2-time5 slaghat2, i(location) iterate(100) nolog; 

outreg using G:\research\WNV2.doc, title(FE-IV) ctitle(Model 2)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // calculates the model R
2
 

estat ic; 

predict hhat2, xb; 

gen resh2=human-hhat2; 

spatgsa resh2, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

**Model 3 Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9). 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes the spatial lag 

predict slaghat3, xb;   // generates the spatial lag predicted values 

adjust, exp; 

xtnbreg human fcloseco lnincome mosquito lnpopdense temp time2-time5 slaghat3, i(location) iterate(100) 

nolog; 

outreg using G:\research\WNV2.doc, title(FE-IV) ctitle(Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // calculates the model R2 

estat ic; 

predict hhat3, xb;   // generates the model predicted values  

gen resh3=human-hhat3;   // generates the model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

**Model 4 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate urban 

lnpopdense lnarea road time2-time5, i(location)nolog; 

predict slaghat4, xb; 

adjust, exp; 

xtnbreg human fcloseco lnincome  lnpopdense mosquito pdsi time2-time5 slaghat4, i(location) iterate(100) 

nolog; 

outreg using E:\research\WNV2.doc, title(FE-IV) ctitle(Model 4)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 



163 
 

estat ic; 

 

************************************************************************************** 

 

 

**********************TABLE 2-11 MODELS 1-4 (4 COLUMNS)*************************** 

**Model 1 IV Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg fcloseco educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes home 

foreclosures 

predict fhat1, xb;   // generates home foreclosures predicted values 

adjust, exp; 

gen resf=fcloseco-fhat1;   // generates home foreclosure residuals 

egen zresf=std(resf);   // generates the standardized home foreclosures residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes log of  income  

predict yhat1, xb;   // generates predicted values of income 

gen resinc=lnincome-yhat1;   // generates the income residuals 

egen zresinc=std(resinc);   // generates the standardized income residuals 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes the spatial lag 

predict slaghat1, xb;   // generates the predicted values of the spatial lag 

adjust, exp; 

gen respat=lag1-slaghat1;   // generates the spatial lag residuals 

egen zrespat=std(respat);  // generates the standaridzed spatial lag residuals 

xtnbreg human fhat1 yhat1 lnpopdense time2-time5 slaghat1, i(location) iterate(100) vce(bootstrap, 

rep(100)) nolog; 

outreg using G:\research\WNV3.doc, title(FE-IV) ctitle(Model 1)3aster replace; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // calculates the model R
2 

estat ic; 

predict hhat1, xb;   // generates the model predicted values 

gen resh1=human-hhat1;   // generates the model residuals 

spatgsa resh1, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

***Validity/Over-Identifaction Tests 

xtnbreg human fhat1 yhat1 bird mosquito migrate time2-time5 slaghat1, 

i(location)iterate(100)exposure(lnpop)nolog; 

predict wnvhat,xb;   // generates model predicted values 

gen reswnv=human-wnvhat;   // generates model residuals 

egen zreswnv=std(reswnv); // generates standardized IV regression residuals 

gen zreswnv1=zreswnv+1; // transforms the generated IV residuals 

xtnbreg zreswnv1 precip temp pdsi educate equine unrate poverty bird mosquito migrate airport pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog; // regresses residuals on 

instruments 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // gives the model R
2
 to calculates test statistics 

 

/*predict reshat, xb; 

gen essres=reshat-1; 

gen essres2=(essres)^2; 

sum(essres2); 

gen tssres=reswnv-1; 

gen tssres2=(tssres)^2; 

sum(tssres2); 

predict reswnvhat, xb; 

adjust, exp; 

list reswnv; 
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***Endogeneity Test 

xtnbreg human fcloseco lnincome bird mosquito migrate zresf zresinc zrespat time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf=zresinc=0; // for equality of standardized residuals 

 

**Model 2 IV Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg fcloseco educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5,i(location)iterate(100)nolog;   // instrumentalizes home 

foreclosures 

predict fhat2, xb;   // generates the predicted values of home foreclosures 

adjust, exp; 

gen resf2=fcloseco-fhat2;   // generates home foreclosures residuals 

egen zresf2=std(resf2);   // generates standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes the log of income 

predict yhat2, xb;   // generates the predicted values of income 

gen resinc2=lnincome-yhat2;   // generates the residuals of income 

egen zresinc2=std(resinc2);   // generates standardized income residuals 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5,i(location)iterate(100)nolog;   // instrumentalizes the spatial lag 

predict slaghat2, xb;   // generates the spatial lag predicted values  

adjust, exp; 

gen respat2=lag1-slaghat2;   // generates the spatial lag residuals 

egen zrespat2=std(respat2);   // generates standardized spatial lag residuals 

xtnbreg human fhat2 yhat2 lnpopdense mosquito precip time2-time5 slaghat2,i(location) iterate(100) 

vce(bootstrap, rep(100)) nolog; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // gives model R2 

estat ic;   // produces model diagnostics 

predict hhat2, xb;   // generates model predicted values 

gen resh2=human-hhat2;   // generates model residuals 

spatgsa resh2, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

***Endogeneity Test 

xtnbreg human fcloseco lnincome bird mosquito migrate zresf2 zresinc2 zrespat2 time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf2=zresinc2=zrespat2=0;   // equality test of standardized residuals 

 

**Model 3 IV Spatial Lag Random Effects Negative Binomial Regressions (Equation 2.9) 

xtnbreg fcloseco educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes the 

spatial lag 

predict fhat3, xb;   // generates the predicted values of the spatial lag 

adjust, exp; 

gen resf3=fcloseco-fhat3;   // generates the spatial lag residuals 

egen zresf3=std(resf3);   // generates standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes the log of income 

predict yhat3, xb;   // generates the predicted values of log of income 

gen resinc3=lnincome-yhat3;   / generates the  income residuals 

egen zresinc3=std(resinc3);   // generates standardized income residuals 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes the spatial lag 

predict slaghat3, xb;   // generates the predicted values of the spatial lag 

adjust, exp; 

gen respat3=lag1-slaghat3;   // generates the spatial lag residuals 

egen zrespat3=std(respat3);   // generates standardized spatial lag residuals 



165 
 

xtnbreg human fhat3 yhat3 mosquito lnpopdense temp time2-time5 slaghat3, i(location) iterate(100) 

vce(bootstrap, rep(100) )nolog; 

outreg using G:\research\WNV3.doc, title(FE-IV) ctitle(Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // gives the model R2 

estat ic;   // gives the model diagnostics 

predict hhat3, xb;   // generates the model predicted values 

gen resh3=human-hhat3;   // generates the model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test on the model residuals 

 

***Endogeneity Test 

xtnbreg human fcloseco lnincome bird mosquito migrate zresf3 zresinc3 zrespat3 time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf3=zresinc3=zrespat3=0;   // equality test of standardized residuals 

 

**Model 4 

xtnbreg fcloseco educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog; 

predict fhat4, xb; 

adjust, exp; 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate urban 

lnpopdense lnarea road time2-time5; 

predict yhat4, xb; 

xtnbreg lag1 educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate urban 

lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog; 

predict slaghat4, xb; 

adjust, exp; 

xtnbreg human fhat4 yhat4 mosquito lnpopdense pdsi time2-time5 slaghat4, i(location) iterate(100) 

vce(bootstrap, rep(100) )nolog; 

outreg using E:\research\WNV3.doc, title(FE-IV) ctitle(Model 4)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 

estat ic; 

 

 

************************TABLE 2-12 MODELS 1-4 (4 COLUMNS)************************* 

**Model 1 Spatial Filtering Random Effects Negative Binomial Regressions (Equation 2.16).  

xtnbreg human fcloseco lnincome  lnpopdense time2-time5 e1 e2 e11 e21 e28 e29 e35 e58, i(location) 

iterate(100) nolog; 

outreg using G:\research\WNV4.doc, title(FE-IV) ctitle(Model 1)3aster replace; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // displays the R2 

estat ic;   // gives the model diagnostics 

predict hhat1, xb;   // generates the predicted values of the model 

gen resh1=human-hhat1;   // generates the model residuals 

spatgsa resh1, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

**Model 2 Spatial Filtering Random Effects Negative Binomial Regressions (Equation 2.16). 

xtnbreg human fcloseco lnincome mosquito lnpopdense precip time2-time5 e1 e4 e11 e21 e29 e35 e58, 

i(location) iterate(100) nolog; 

outreg using G:\research\WNV4.doc, title(FE-IV) ctitle(Model 2)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // displays the R2 

estat ic;   // gives model diagnostics 

predict hhat2, xb;   // generates the model predicted values 

gen resh2=human-hhat2;   // generates the model residuals 

spatgsa resh2, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 
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**Model 3 Spatial Filtering Random Effects Negative Binomial Regressions (Equation 2.16). 

xtnbreg human fcloseco lnincome mosquito lnpopdense temp time2-time5 e1 e2 e4 e11 e21 e28 e29 e35 

e58, i(location) iterate(100) nolog; 

outreg using G:\research\WNV4.doc, title(FE-IV) ctitle(Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // displays model R2 

estat ic;   // gives model diagnostics 

predict hhat3, xb;   // generates the model predicted values 

gen resh3=human-hhat3;   // generates model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test 

 

**Model 4 

xtnbreg human fcloseco lnincome  lnpopdense mosquito pdsi time2-time5 e4 e11 e21 e29 e35, i(location) 

iterate(100)nolog; 

outreg using E:\research\WNV4.doc, title(FE-IV) ctitle(Model 4)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 

estat ic; 
 

 

***********************TABLE 2-13 MODELS 1-4 (4 COLUMNS)************************** 

**Model 1 IV Spatial Filtering Random Effects Negative Binomial Regressions (Equation 2.16) 

xtnbreg fcloseco educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes home 

foreclosures 

predict fhat1, xb;   // generates home foreclosures predicted values  

adjust, exp; 

gen resf=fcloseco-fhat1;   // generates residuals from home foreclosures regression 

egen zresf=std(resf);   //  generates standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes log of income 

predict yhat1, xb;   // generates the predicted values of log of income 

gen resinc=lnincome-yhat1;   // generates residuals from income regression 

egen zresinc=std(resinc);   // generates standardized income residuals 

xtnbreg human fhat1 yhat1 lnpopdense time2-time5 e2 e4 e6 e22, i(location) iterate(100) vce(bootstrap, 

rep(100)) nolog; 

outreg using G:\research\WNV5.doc, title(RE-IV) ctitle(Model 1)3aster replace; 

predict hhat1, xb;   // generates the model predicted values 

gen resh1=human-hhat1;   // generates the model residuals 

spatgsa resh1, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // displays the model R2 

estat ic;   //gives the model diagnostics 

 

***Validity/Over-Identifaction Tests 

xtnbreg human fhat1 yhat1 bird mosquito migrate time2-time5 slaghat1,  

i(location)iterate(100)exposure(lnpop)nolog;    

predict wnvhat,xb; 

gen reswnv=human-wnvhat;   // generates residuals from IV regression 

egen zreswnv=std(reswnv);   // generates standardized IV residuals 

gen zreswnv1=zreswnv+1;   // transform standardized residuals 

sum(zreswnv1); 

xtnbreg zreswnv1 precip temp pdsi educate equine unrate poverty bird mosquito migrate airport pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   //regresses standardized 

residuals on instruments 
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display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // gives the model R
2
 to calculates test statistics 

/*predict reshat, xb; 

gen essres=reshat-1; 

gen essres2=(essres)^2; 

sum(essres2); 

gen tssres=reswnv-1; 

gen tssres2=(tssres)^2; 

sum(tssres2); 

predict reswnvhat, xb; 

adjust, exp; 

list reswnv;*/ 

 

***Endogeneity Test 

xtnbreg human fcloseco lnincome bird mosquito migrate zresf zresinc  time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf=zresinc=0;   // equality test of standardized residuals 

 

**Model 2 IV Spatial Filtering Random Effects Negative Binomial Regressions (Equation 2.16) 

xtnbreg fcloseco educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5,i(location)iterate(100)nolog;   //instrumentalizes home 

foreclosures 

predict fhat2, xb;   // generates the predicted values of home foreclosures  

adjust, exp; 

gen resf2=fcloseco-fhat2;   // generates home foreclosures residuals 

egen zresf2=std(resf2);   // generates standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5; 

predict yhat2, xb; 

gen resinc2=lnincome-yhat2;   // generates income residuals 

egen zresinc2=std(resinc2);   // generates standardized income residuals 

xtnbreg human fhat2 yhat2 mosquito lnpopdense precip time2-time5 e4 e6 e22,i(location) iterate(100) 

vce(bootstrap, rep(100)) nolog; 

outreg using G:\research\WNV5.doc, title(FE-IV) ctitle(Model 2)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // displays model R2 

estat ic;   // gives model diagnostics 

predict hhat2, xb;   // generates model predicted values 

gen resh2=human-hhat2;   // generates model residuals 

spatgsa resh2, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

***Endogeneity Test 

xtnbreg human fcloseco lnincome bird mosquito migrate zresf zresinc  time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf2=zresinc2=0;   // equality test of standardized residuals 

 

**Model 3 IV Spatial Filtering Random Effects Negative Binomial Regressions (Equation 2.16) 

xtnbreg fcloseco educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite 

elevate urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog;   // instrumentalizes home 

foreclosures 

predict fhat3, xb;   // generates the predicted values of home foreclosures 

adjust, exp; 

gen resf3=fcloseco-fhat3;   // generates home foreclosure residuals 

egen zresf3=std(resf3);   // generates standardized home foreclosure residuals 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi pwhite elevate 

urban lnpopdense lnarea road time2-time5;   // instrumentalizes log of income 

predict yhat3, xb;   // generates the predicted values of log of income 

gen resinc3=lnincome-yhat3;   // generates income residuals 
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egen zresinc3=std(resinc3);   // generates the standardized income residuals 

xtnbreg human fhat3 yhat3 mosquito lnpopdense temp time2-time5 e2 e4 e6 e22, i(location) iterate(100) 

vce(bootstrap, rep(100)) nolog; 

outreg using G:\research\WNV5.doc, title(FE-IV) ctitle(Model 3)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0);   // displays the model R2 

estat ic;   // gives model diagnostics 

predict hhat3, xb;   // generates the model predicted values 

gen resh3=human-hhat3;   // generates model residuals 

spatgsa resh3, weights(W1) moran geary;   // spatial autocorrelation test on model residuals 

 

***Endogeneity Test 

xtnbreg human fcloseco lnincome bird mosquito migrate zresf zresinc  time2-time5 lag1, 

i(location)exposure(lnpop)iterate(100)nolog; 

test zresf3=zresinc3=0;   // equality test of standardized residuals 

 

**Model 4 

xtnbreg fcloseco educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate 

urban lnpopdense lnarea road time2-time5, i(location)iterate(100)nolog; 

predict fhat4, xb; 

adjust, exp; 

reg lnincome educate equine unrate poverty bird mosquito migrate airport precip temp pdsi elevate urban 

lnpopdense lnarea road time2-time5; 

predict yhat4, xb; 

xtnbreg human fhat4 yhat4  lnpopdense mosquito pdsi time2-time5 e2 e6 e22, i(location) iterate(100) 

vce(bootstrap, rep(100)) nolog; 

outreg using E:\research\WNV5.doc, title(FE-IV) ctitle(Model 4)3aster append; 

display "Pseudo-R^2"=1-e(ll)/e(ll_0); 

predict hhat4, xb; 

gen resh4=human-hhat4; 

spatgsa resh4, weights(W1) moran geary; 

estat ic; 

 

R Codes 

###################################################################################### 

#R 2.15.2                                                                                                                                                                            

# Dissertation Chapter 3: Disease Mapping and Presentation of the Variogram                                                           

# CA_SMR.R, CO_SMR.R, CA_variogram.R. CO_variogram.R, CA_predict_prob.R, CO_predict_prob.R. 

These #files estimates the Standardized Morbidity Ratios , the variograms and predicted probabilities for 

California and #Colorado 

# It uses data on West Nile Virus and population variables from 2003-2007          

#It reproduces Figures 3-1 to 3-22  

######################################################################################                                                                                                                                   

 

# Calculating the Standardized Morbidity Ratios (SMR) for California 

 

########################### Raw SMRs (Equation 4.1) ################################### 

#read in data from the file cross_ca0307  

cawnv<-read.table("E:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#load the Dcluster library 

library(DCluster) 

#define the WNV data 

wnv<-data.frame(Observed=human) 

#calculate the expected number of cases 

wnv<-cbind(wnv, Expected=population*sum(human)/sum(population)) 
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#calculate the raw SMR 

raw<-human/E 

#list the SMR values 

raw 

 

################### Poisson-Gamma Empirical Bayes SMR (Equation 4.3) ##################### 

# read in data from the file cross_ca0307 

cawnv<-read.table("E:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#load the Dcluster library 

library(DCluster) 

#define the WNV data 

wnv<-data.frame(Observed=human) 

#calculate the expected number of cases 

wnv<-cbind(wnv, Expected=population*sum(human)/sum(population)) 

#calculate the Poisson-Gamma SMR 

smth<-empbaysmooth(human, E) 

smth 

 

## ####################Log-Normal Empircal Bayes SMR (Equation 4.4) ###################### 

# read in data from the file cross_ca0307 

cawnv<-read.table("E:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#load the Dcluster library 

library(DCluster) 

#define the WNV data 

wnv<-data.frame(Observed=human) 

#calculate the expected number of cases 

wnv<-cbind(wnv, Expected=population*sum(human)/sum(population)) 

#calculate the Log-Normal SMR 

smthln<-lognormalEB(human, E) 

#exponentiate to get values 

ebln<-exp(smthln$smthrr) 

ebln 

 

## #################Global Marshall Empircal Bayes SMR (Equation 4.5) ###################### 

# read in data from the file cross_ca0307 

cawnv<-read.table("E:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#load the Dcluster library 

library(DCluster) 

#define the WNV data 

wnv<-data.frame(Observed=human) 

#calculate the expected number of cases 

wnv<-cbind(wnv, Expected=population*sum(human)/sum(population)) 

#calculate the Global SMR 

smtheb<-EBest(human, E) 

smtheb 

 

## #####Calculating the Standardized Morbidity Ratios (SMR) for Colorado################### 

 

############### Raw SMR (Equation 4.1) ################################################ 

# read in data from the file cross_co0307 

cownv<-read.table("E:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#load the Dcluster library 
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library(DCluster) 

#define the WNV data 

wnv<-data.frame(Observed=human) 

#calculate the expected number of cases 

wnv<-cbind(wnv, Expected=population*sum(human)/sum(population)) 

#calculate the raw SMR 

raw<-human/E 

raw 

 

## ################Poisson-Gamma Empirical Bayes SMR(Equation 4.3) ############## 

# read in data from the file cross_co0307 

cownv<-read.table("E:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#load the Dcluster library 

library(DCluster) 

#define the WNV data 

wnv<-data.frame(Observed=human) 

#calculate the expected number of cases 

wnv<-cbind(wnv, Expected=population*sum(human)/sum(population)) 

#calculate the Poisson-Gamma SMR 

smth<-empbaysmooth(human, E) 

smth 

 

## ############Log-Normal Empirical Bayes SMR (Equation 4.4) ##################### 

# read in data from the file cross_co0307 

cownv<-read.table("E:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#load the Dcluster library 

library(DCluster) 

#define the WNV data 

 

wnv<-data.frame(Observed=human) 

#calculate the expected number of cases 

wnv<-cbind(wnv, Expected=population*sum(human)/sum(population)) 

#calculate the Log-Normal SMR 

smthln<-lognormalEB(human, E) 

#Exponentiate to get value 

ebln<-exp(smthln$smthrr) 

ebln 

 

## #############Marshall Global Empircal Bayes SMR (Equation 4.5)########################## 

# read in data from the file cross_co0307 

cownv<-read.table("E:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#load the Dcluster library 

library(DCluster) 

#define the WNV data 

wnv<-data.frame(Observed=human) 

#calculate the expected number of cases 

wnv<-cbind(wnv, Expected=population*sum(human)/sum(population)) 

#calculate the Global SMR 

smtheb<-EBest(human, E) 

smtheb 
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################## Maps of the SMRs and Predicted Probabilities for California############## 

 

## ####################Raw SMR (Equation 3.1) Figure 3-1################################# 

#load the maptools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the intervals tools 

library(classInt) 

#read California shape file containing data 

ca_map<- readShapePoly("E:/research/california_wnv_maps.shp") 

#Assigns different shades of the color gray 

grays=gray.colors(5,start = 1.00, end = 0.3) 

#define breaks 

brks<-classIntervals(ca_map$smr, n=5, style="equal") 

brks<- brks$brks 

#plot the map 

plot(ca_map,col=grays[findInterval(ca_map$smr,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft", legend=leglabs(round(brks)), fill=grays, bty="n") 

 

## Poisson-Gamma Bayes Smoothed (Equation 3.3). This code produces Figure 3-3 

#load the maptools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the interval tools 

library(classInt) 

# read the California shape file containing data 

ca_map<- readShapePoly("E:/research/california_wnv_maps.shp") 

#define different shades of the color gray 

grays=gray.colors(5,start = 1.00, end = 0.3) 

#define a class intervals and breaks points 

brks<-classIntervals(ca_map$bayesmr, n=5, style="equal") 

brks<-brks$brks 

#plot the map 

plot(ca_map,col=grays[findInterval(ca_map$bayesmr,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft", legend=leglabs(round(brks)), fill=grays, bty="n") 

  

######## Log-Normal Empirical Bayes (Equation 3.4). This code produces Figure 3-5############### 

#load the map tools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

load the interval tools 

library(classInt) 

#read the California shape file containing data 

ca_map<- readShapePoly("E:/research/california_wnv_maps.shp") 

#define different shades of the color gray 

grays=gray.colors(5,start = 1.00, end = 0.3) 

#define class intervals and break points 

brks<-classIntervals(ca_map$lnsmr, n=5, style="equal") 

brks<- brks$brks 

#plot the SMR 

plot(ca_map,col=grays[findInterval(ca_map$lnsmr,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft",legend=leglabs(round(brks)) , fill=grays, bty="n") 
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######## Marshall Global Empirical Bayes (Equation 3. 5) Figure 3-7############################ 

#load the maptools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the class interval tools 

library(classInt) 

#read the California shape file containing data 

ca_map<- readShapePoly("E:/research/california_wnv_maps.shp") 

#define different shades of the color gray 

grays=gray.colors(5,start = 1.00, end = 0.3) 

#define class intervals and break points 

brks<-classIntervals(ca_map$ebsmr, n=5, style="equal") 

brks<- brks$brks 

#plot the SMR 

plot(ca_map,col=grays[findInterval(ca_map$ebsmr,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft",legend=leglabs(round(brks)), fill=grays, bty="n") 

 

 

###################### Predicted Probabilities from (Equation 3.6) 

#load the map tools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the class interval tools 

library(classInt) 

#read the California shape file containing data 

ca_map<- readShapePoly("E:/research/california_wnv_maps.shp") 

#define different shades of gray and break points 

grays=gray.colors(5,start = 1.00, end = 0.3) 

#define intervals and break points 

brks<-classIntervals(ca_map$prob, n=5, style="equal") 

brks<- brks$brks 

#plot the SMR 

plot(ca_map,col=grays[findInterval(ca_map$prob,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft",legend=leglabs(round(brks)), fill=grays, bty="n") 

 

 

## ##############Maps of the SMRs and Predicted Probabilities for Colorado################# 

 

## Raw SMR (Equation 3.1). This produces Figure 3-1######################################## 

#load the map tools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the class interval tools 

library(classInt) 

#read the California shape file containing data 

ca_map<- readShapePoly("E:/research/colorado_wnv_maps.shp") 

#define different shades of gray 

grays=gray.colors(3,start = 1.00, end = 0.3) 

#define intervals and break points 

brks<-classIntervals(ca_map$smr, n=3, style="equal") 

brks<- brks$brks 

#plot the SMR 

plot(ca_map,col=grays[findInterval(ca_map$smr,brks,all.inside=TRUE)],axes=F) 
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legend("bottomleft", legend=leglabs(round(brks)), fill=grays, bty="n") 

 

## ###########Poisson-Gamma Bayes Smoothed (Equation 3.3) Figure 3-4####################### 

#load the map tools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the class interval tools 

library(classInt) 

#read the California shape file containing data 

ca_map<- readShapePoly("E:/research/colorado_wnv_maps.shp") 

#define different shades of gray 

grays=gray.colors(3,start = 1.00, end = 0.3) 

#define intervals and break points 

brks<-classIntervals(ca_map$bayesmr, n=3, style="equal") 

brks<-brks$brks 

#plot the SMR 

plot(ca_map,col=grays[findInterval(ca_map$bayesmr,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft", legend=leglabs(round(brks)), fill=grays, bty="n") 

  

## ########Log-Normal Empirical Bayes (Equation 3.4) Figure 3-6############################# 

#load the map tools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the class interval tools 

library(classInt) 

#read the California shape file containing data 

ca_map<- readShapePoly("E:/research/coorado_wnv_maps.shp") 

#define different shades of the color gray 

grays=gray.colors(3,start = 1.00, end = 0.3) 

#define class intervals and break points 

brks<-classIntervals(ca_map$lnsmr, n=3, style="equal") 

brks<- brks$brks 

#plot the SMR 

plot(ca_map,col=grays[findInterval(ca_map$lnsmr,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft",legend=leglabs(round(brks)) , fill=grays, bty="n") 

 

############### Marshall Global Empirical Bayes (Equation 3.5) Figure 3-8##################### 

#load the map tools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the class interval tools 

library(classInt) 

#read the California shape file containing data 

ca_map<- readShapePoly("E:/research/colorado_wnv_maps.shp") 

#define different shades of the color gray 

grays=gray.colors(3,start = 1.00, end = 0.3) 

#define class intervals and break points 

brks<-classIntervals(ca_map$ebsmr, n=3, style="equal") 

brks<- brks$brks 

#plot the SMRs 

plot(ca_map,col=grays[findInterval(ca_map$ebsmr,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft",legend=leglabs(round(brks)) , fill=grays, bty="n") 
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## #############Predicted Probabilities from Equation 3.6 Figure 3-10########################## 

#load the map tools 

library(maptools) 

#load the color tools 

library(RColorBrewer) 

#load the class interval tools 

library(classInt) 

#read the California shape file containing data 

ca_map<- readShapePoly("E:/research/colorado_wnv_maps.shp") 

#define different shades 

grays=gray.colors(3,start = 1.00, end = 0.3) 

#define a class interval and break points 

brks<-classIntervals(ca_map$prob, n=3, style="equal") 

brks<- brks$brks 

#plot the SMRs 

plot(ca_map,col=grays[findInterval(ca_map$prob,brks,all.inside=TRUE)],axes=F) 

legend("bottomleft",legend=leglabs(round(brks)), fill=grays, bty="n") 

 

################################### Variogram Plots for California####################### 

 

## #########Isotropic Variogram for Observed WNV using equation 3.11 Figure 3-11############## 

#reads a data file cross_ca0307.csv 

cawnv<-read.table("G:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#loads the gstat tools 

library(gstat) 

#assigns coordinates to the data 

coordinates(cawnv) <- c("x", "y") 

#transforms WNV counts 

lnhuman<-log(human+1) 

#specify a model to fit 

wnv.var2 <- variogram(lnhuman~1,Cressie=TRUE,data=cawnv) 

model.variog <-vgm(psill=1, model="Exp", nugget=1, range=60) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

 

 

## ####Anisotropic Variogram for Observed WNV using equation 3.11 Figure 3-13################# 

#reads a data file cross_ca0307.csv 

cawnv<-read.table("G:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#loads the gstat tools 

library(gstat) 

#assigns coordinates the data 

coordinates(cawnv) <- c("x", "y") 

#transforms WNV counts 

lnhuman<-log(human+1) 

#specify a model to fit 

wnv.var2 <- variogram(lnhuman~1, locations=~x+y,Cressie=TRUE,data=cawnv,alpha=c(0:3)*90) 

model.variog <-vgm(psill=1, model="Exp", nugget=1, range=60) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 
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## ######## Isostropic Variogram for the SMR using equation 3.11 Figures 3-11################### 

#reads a data file cross_ca0307.csv 

cawnv<-read.table("G:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#load the gstat tools 

library(gstat) 

#assigns coordinates to the data 

coordinates(cawnv) <- c("x", "y") 

#transform SMR 

lnsmr<-log(smr) 

#specify a model to fit 

wnv.var2 <- variogram(lnsmr~1, locations=~x+y,Cressie=TRUE,data=cawnv) 

model.variog <-vgm(psill=1, model="Exp", nugget=1, range=60) 

#fit a variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

 

## #########Anisotropic Variogram for the SMR using equation 3.11 Figure 3-13################## 

#reads a data file cross_ca0307.csv 

cawnv<-read.table("G:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#load the gstat tools 

library(gstat) 

#assign coordinates to the data 

coordinates(cawnv) <- c("x", "y") 

#transform the SMR 

lnsmr<-log(smr) 

#generate a scatterplot 

variog<-variogram(lnsmr~1,data=cawnv) 

hscat(lnsmr ~ 1, data=cawnv,breaks=c(0,5,10)) 

#specify a model to fit 

wnv.var2 <- variogram(lnsmr~1, locations=~x+y,Cressie=TRUE,data=cawnv,alpha=c(0:3)*90) 

model.variog <-vgm(psill=1, model="Exp", nugget=1, range=60) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

 

## #########Isotropic Variogram for the Model Residuals from equation 3.6 Figure 3-19############ 

#reads a data file cross_ca0307.csv 

cawnv<-read.table("G:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#load the gstat tools 

library(gstat) 

#assign coordinates to the data 

coordinates(cawnv) <- c("x", "y") 

#generate  scatterplot 

hscat(residuals ~ 1, data=residuals,breaks=c(0,5,10)) 

#specify a model to fit 

wnv.var2 <- variogram(residuals~1, locations=~x+y,Cressie=TRUE,data=cawnv) 

model.variog <-vgm(psill=1, model="Exp", nugget=1, range=60) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 
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############# Anisotropic Variogram for the Model Residuals from equation 3.6 Figure 3-21######## 

#reads a data file cross_ca0307.csv 

cawnv<-read.table("G:/research/cross_ca0307.csv",header=T,sep=",") 

attach(cawnv) 

#load the gstat tools 

library(gstat) 

#assign coordinates to the data 

coordinates(cawnv) <- c("x", "y") 

#generate a scatterplot 

hscat(residuals ~ 1, data=cawnv,breaks=c(0,5,10)) 

#specify a model to fit 

wnv.var2 <- variogram(residuals~1, locations=~x+y,Cressie=TRUE,data=cawnv,alpha=c(0:3)*90) 

model.variog <-vgm(psill=1, model="Exp", nugget=1, range=60) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

 

## #######################Variograms for Colorado#################################### 

 

## #####Isotropic Variograms for Observed WNV Counts using equation 3.12 Figure 3-12########### 

#reads a data file cross_co0307.csv 

cownv<-read.table("G:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#loads the gstat tools 

library(gstat) 

#assigns coordinates to the data 

coordinates(cownv) <- c("x", "y") 

#transforms WNV counts 

lnhuman<-log(human+1) 

#generate a scatterplot 

hscat(human ~ 1, data=cownv, breaks=c(0,5,10,15)) 

#specify a model to fit 

wnv.var2 <- variogram(lnhuman~1, locations=~x+y, Cressie=TRUE,data=cownv) 

model.variog <-vgm(psill=1, model="Gau",nugget=800,range=1) 

#fit the model 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

######## Anisotropic Variograms for Observed WNV Counts using equation 3.12 Figure 3-14######## 

#reads a data file cross_co0307.csv 

cownv<-read.table("G:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#loads the gstat tools 

library(gstat) 

#assigns coordinates to the data 

coordinates(cownv) <- c("x", "y") 

#transforms the WNV counts 

lnhuman<-log(human+1) 

#generates a scatterplot 

hscat(human ~ 1, data=cownv, breaks=c(0,5,10,15)) 

#specify a model to fit 

wnv.var2 <- variogram(lnhuman~1, locations=~x+y, Cressie=TRUE,data=cownv,alpha=c(0:3)*90) 

model.variog <-vgm(psill=1, model="Gau",nugget=800,range=1) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 
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#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

 

###########Isotropic Variograms for the SMR using equation 3.12 Figure 3-15#################### 

#reads a data file cross_co0307.csv 

cownv<-read.table("G:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

library(gstat) 

#assigns coordinates to the data 

coordinates(cownv) <- c("x", "y") 

#specify a model to fit 

wnv.var2 <- variogram(smr~1, locations=~x+y, Cressie=TRUE,data=cownv) 

model.variog <-vgm(psill=1, model="Gau",nugget=800,range=1) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the variogram 

plot(wnv.var2,fit.variog) 

 

## Anisotropic Variograms for the SMR using equation 3.12. This produces Figure 3-17. 

#reads a data file cross_co0307.csv 

cownv<-read.table("G:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#loads the gstat toos 

library(gstat) 

#assigns the coordinates to the data 

coordinates(cownv) <- c("x", "y") 

#specify a model to fit 

wnv.var2 <- variogram(smr~1, locations=~x+y, Cressie=TRUE,data=cownv,alpha=c(0:3)*90) 

model.variog <-vgm(psill=1, model="Gau",nugget=800,range=1) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

 

 

#########Isotropic Variograms for Model Residuals derived from equation 3.6 Figure 3-20########### 

#reads a data file cross_co0307.csv 

cownv<-read.table("G:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#load the gstat tools 

library(gstat) 

#assign coordinates to the data 

coordinates(cownv) <- c("x", "y") 

#specify a model to fit 

wnv.var2 <- variogram(residuals~1, locations=~x+y, Cressie=TRUE,data=cownv) 

model.variog <-vgm(psill=1, model="Gau",nugget=800,range=1) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

 

##########Anisotropic Variograms for Model Residuals derived from equation 3.6 Figure 3-21####### 

#reads a data file cross_co0307.csv 

cownv<-read.table("G:/research/cross_co0307.csv",header=T,sep=",") 

attach(cownv) 

#load the gstat tools 
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library(gstat) 

#assign coordinates to the data 

coordinates(cownv) <- c("x", "y") 

#specifies a model to fit 

wnv.var2 <- variogram(residuals~1, locations=~x+y, Cressie=TRUE,data=cownv,alpha=c(0:3)*90) 

model.variog <-vgm(psill=1, model="Gau",nugget=800,range=1) 

#fit the variogram 

fit.variog<-fit.variogram(wnv.var2, model.variog) 

#plot the fitted variogram 

plot(wnv.var2,fit.variog) 

 

## Calculating Predicted Probabilities for California 

#reads a data file wnvco0307.csv 

cawnv<-read.table("G:/research/wnvca0307.csv",header=T,sep=",") 

attach(cawnv) 

#generate the exposure and offset variables 

lnpop<-log(population) 

lnpop2=log(lnpop) 

#transform home foreclosures 

fcloseca<-log(fclose+1) 

#transform income 

lnincome<-log(income) 

#generate a migration rate 

migrate=netmigr/1000 

#generate the year/time fixed effects dummies 

dum<-factor(year) 

dummies<-model.matrix(~dum) 

dummies 

#instrumentalize income 

reg1<-

lm(lnincome~migrate+bird+mosquito+precip+temp+pdsi+poverty+unrate+education+airport+equine+elev

ation+area+urban+factor(year),data=cawnv) 

lp<-predict(reg1) 

#instrumentalize home foreclosures 

zinbf<-

lm(fcloseca~migrate+bird+mosquito+precip+temp+pdsi+poverty+unrate+education+airport+equine+elevat

ion+area+urban+factor(year),data=cawnv,dist="negbin") 

pf<-predict(zinbf,type="count") 

exppf<-exp(pf) 

zinb<-zeroinfl(human~pf+lp+lnpopdense+factor(year)+e4+e6+e15+e16+e46+e47,data=cawnv, 

dist="negbin") 

summary(zinb) 

#generate predicted probabilities 

Prediction<-predict(zinb,type="prob")  

Prediction 

sum_pred<-rowSums(Prediction) 

sum_pred 

prhat<-predprob(zinb, newdata=pr) 

prhat 

 

## Calculating Predicted Probabilites for Colorado 

#reads a data file wnvco0307.csv 

cawnv<-read.table("G:/research/wnvco0307.csv",header=T,sep=",") 

attach(cawnv) 

#generate the exposure and offset variables 

lnpop<-log(population) 



179 
 

#transform home foreclosures 

fcloseca<-log(fclose+1) 

#transform income 

lnincome<-log(income) 

#generate a migration rate 

migrate=netmigr/1000 

#generate time fixed effects dummies 

dum<-factor(year) 

dummies<-model.matrix(~dum) 

dummies 

#instrumentalize income 

reg1<-

lm(lnincome~migrate+bird+mosquito+precip+temp+pdsi+poverty+unrate+education+airport+equine+elev

ation+area+urban+factor(year),data=cawnv) 

lp<-predict(reg1) 

instrumentalize home foreclosures 

zinbf<-

lm(fcloseca~migrate+bird+mosquito+precip+temp+pdsi+poverty+unrate+education+airport+equine+elevat

ion+area+urban+factor(year),data=cawnv,dist="negbin") 

pf<-predict(zinbf,type="count") 

exppf<-exp(pf) 

#run negative binomial regression 

zinb<-zeroinfl(human~pf+lp+lnpopdense+factor(year)+e4+e6+e15+e16+e46+e47,data=cawnv, 

dist="negbin") 

summary(zinb) 

#generate predicted probabilites 

Prediction<-predict(zinb,type="prob")  

Prediction 

sum_pred<-rowSums(Prediction) 

sum_pred 

prhat<-predprob(zinb, newdata=pr) 

prhat 

 

Excel Code 

######################################################################## 

#Chapter 4: Economics of Antibiotic Resistance: Impact of Animal Antibiotic Use on the 

#Evolution of Resistance in Humans. 

# The file resistance_simulation_1 contains data obtained from several sources and the 

results of #the simulations. It also contains the code used to simulate the time paths of 

antibiotic #effectiveness using Euler’s method. 

 

######################################################################## 

 The time path of antibiotic effectiveness is represented by the differential equation: 
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Initial values of the parameters are given as follows: 

        ,          ,        ,           ,           ,        , 

       ,        ,      ,      ,     ,       ,      ,        , 

      ,         

Euler’s method in approximating the solution to (1) is      , where    represents the 

differential equation in (1). The Excel code is obtained by typing  

=$B$16*(G43)^2-G43*$B$16  

into the appropriate cell. Repeating this for           and           produces 

Figure 4.5 when the fill down command is used forward the system 

 

This code is used to simulate the time paths of the shadow value of antibiotic 

effectiveness using Euler’s method. The time path of the shadow value of antibiotic 

effectiveness is represented by the differential equation: 

    
   
  

                                          

Euler’s method in approximating the solution to (2) is       
 , where    represents the 

differential equation in (2). The Excel code is obtained by typing  

=($B$15-($B$13*$B$2+$B$14*$B$1)*(2*E43-1))*P43-

$B$8*G83*$B$1+P6*$B$1*G83 

into the appropriate cell. Repeating this for           and           produces 

Figure 4.6 when the fill down command is used to forward the system 
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Appendix E: Supplementary IV Spatial Filtering RENB Regressions 

 

IV Spatial Filtering RENB for California 
  Model 1 Model 2 Model 3 Model 4 

FORHAT 0.448 0.302 0.324 0.315 

 (2.66)*** (1.82)* (1.67)* (1.91)* 

INCHAT -2.680 -1.515 -1.571 -1.232 

 (2.15)** (1.68)* (1.66)* (1.15) 

LNPOPDENSE 0.182 0.139 0.127 0.094 

 (0.89) (0.67) (0.56) (0.48) 

MOSPOP 0.000 0.002 0.001 0.001 

 (1.23) (0.88) (0.66) (0.74) 

D2004 2.994 2.881 2.876 2.743 

 (0.89) (0.87) (0.66) (0.89) 

D2005 3.936 3.635 3.667 3.950 

 (1.17) (1.11) (0.84) (1.29) 

D2006 3.727 3.429 3.437 3.456 

 (1.09) (1.04) (0.78) (1.12) 

D2007 3.668 3.392 3.353 2.917 

 (1.07) (1.04) (0.77) (0.94) 

VEC4 -2.949    

 (3.88)***    

VEC6 1.404    

 (1.11)    

VEC15 -1.473    

 (1.66)*    

VEC16 -2.118 -1.642 -1.646 -1.620 

 (1.99)** (1.58) (1.44) (1.63) 

VEC46 2.103    

 (2.13)**    

VEC47 1.331    

 (1.15)    

MOSQUITO  0.015 0.015 0.014 

  (1.30) (1.01) (1.16) 

PRECIP  0.049   

  (0.43)   

TEMP   -0.018  

   (0.49)  

PDSI    -0.113 

    (1.43) 

VEC41    0.053 

    (0.05) 

CONSTANT 33.363 23.765 24.863 20.639 

 (2.52)** (1.86)* (1.89)* (1.59) 

Observations 290 290 290 290 

Number of location 58 58 58 58 

AIC 1063.487 1082.009 1081.533 1080.793 

BIC 1125.875 1133.388 1132.911 1135.841 

r 1.506 

S.E. (4.871) 

1.069 

S.E. (2.510) 

1.085 

S.E. (2.810) 

1.196 

S.E. (3.118) 

s 5.756 

S.E. (19.961) 

2.619 

S.E. (7.108) 

2.756 

S.E. (8.268) 

3.346 

S.E. (10.008) 

Moran’s I on Residuals (p value) 0.193 0.208 0.205 0.197 
z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1% 
MOSPOP is an interaction term between MOSQUITO and POPDENSE 
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IV Spatial Filtering RENB for California 

 Model 1 Model 2 Model 3 Model 4 

FORHAT 0.406 0.404 0.440 0.418 

 (2.16)** (2.43)** (2.41)** (2.51)** 

INCHAT -4.183 -1.428 -1.415 -1.196 

 (3.72)*** (1.68)* (1.67)* (1.11) 

LNPOPDENSE 0.417 0.025 0.002 -0.009 

 (2.25)** (0.12) (0.01) (0.05) 

D2004 3.288 2.925 2.912 2.803 

 (1.09) (0.89) (0.68) (0.91) 

D2005 4.294 3.742 3.738 4.014 

 (1.41) (1.14) (0.87) (1.33) 

D2006 4.114 3.494 3.473 3.516 

 (1.33) (1.06) (0.81) (1.15) 

D2007 4.157 3.413 3.367 3.007 

 (1.34) (1.04) (0.79) (0.97) 

VEC4 -3.263    

 (4.08)***    

VEC6 1.638    

 (1.20)    

VEC15 -1.630    

 (1.76)*    

VEC16 -2.201 -1.799 -1.794 -1.774 

 (1.74)* (1.67)* (1.59) (1.69)* 

VEC46 2.402    

 (2.22)**    

VEC47 1.319    

 (1.21)    

MOSPOP  0.001 0.001 0.001 

  (1.59) (1.21) (1.65)* 

PRECIP  0.023   

  (0.21)   

TEMP   -0.023  

   (0.63)  

PDSI    -0.102 

    (1.29) 

VEC41    0.019 

    (0.02) 

CONSTANT 48.989 22.315 23.830 18.846 

 (4.12)*** (1.78)* (1.90)* (1.48) 

Observations 290 290 290 290 

Number of location 58 58 58 58 

AIC 1044.021 1058.4467 1056.1735 1058.7184 

BIC 1102.7391 1106.1551 1100.2121 1110.0968 

r 1.292 

S.E. (4.054) 

1.277 

S.E. (5.429) 

1.270 

S.E. (4.521) 

1.320 

S.E. (4.117) 

s 3.042 

S.E. (10.048) 

2.833 

S.E. (13.073) 

2.795 

S.E. (10.879) 

3.178 

S.E. (11.032) 

Moran’s I 0.196 0.200 0.200 0.196 
z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1% 

MOSPOP is an interaction term between MOSQUITO and POPDENSE 
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IV Spatial Filtering RENB for Colorado  

 Model 1 Model 2 Model 3 Model 4 

FORHAT 2.789 2.860 2.937 2.975 

 (9.39)*** (7.52)*** (6.44)*** (8.67)*** 

INCHAT -3.555 -4.582 -3.718 -4.084 

 (2.83)*** (3.82)*** (2.58)*** (3.54)*** 

LNPOPDENSE 0.243 0.135 0.203 0.056 

 (1.31) (0.52) (1.22) (0.34) 

MOSPOP 0.001 0.000 0.001 0.001 

 (1.67)* (0.07) (0.11) (0.30) 

D2004 -2.589 -2.464 -2.656 -2.773 

 (10.11)*** (7.43)*** (11.01)*** (11.99)*** 

D2005 -2.901 -2.865 -2.971 -3.124 

 (16.39)*** (13.10)*** (14.29)*** (12.13)*** 

D2006 -2.866 -2.779 -2.953 -3.036 

 (12.26)*** (10.61)*** (12.57)*** (13.41)*** 

D2007 -2.874 -2.751 -3.049 -3.142 

 (11.20)*** (9.84)*** (9.07)*** (9.65)*** 

VEC2 4.559  4.704 4.000 

 (3.59)***  (3.73)*** (2.81)*** 

VEC4 3.312 2.535 3.298  

 (2.81)*** (1.72)* (2.72)***  

VEC6 3.284 1.935 3.167 2.743 

 (3.47)*** (1.91)* (2.78)*** (2.62)*** 

VEC22 1.502 1.603 1.623 1.666 

 (1.86)* (1.87)* (1.64) (2.06)** 

MOSQUITO  0.007 0.010 0.013 

  (0.36) (0.41) (0.63) 

PRECIP  -0.627   

  (0.69)   

TEMP   -0.030  

   (0.31)  

PDSI    0.028 

    (0.37) 

CONSTANT 33.217 45.097 36.250 39.348 

 (2.54)** (3.78)*** (2.08)** (3.28)*** 

Observations 315 315 315 315 

Number of location 63 63 63 63 
AIC 1204.822 1223.534 1207.769 1215.312 
BIC 1261.11 1283.575 1271.562 1275.353 
r 2.739 

S.E. (1.017) 

2.559 

S.E. (4.122) 

2.871 

S.E. (10.145) 

2.487 

S.E. (0.821) 
s 6.883 

S.E. (3.134) 

6.073 

S.E. (9.924) 

7.308 

S.E. (27.732) 

5.041 

S.E. (1.723) 
Moran’s I on Residuals (p value) 0.125 0.129 0.125 0.122 
z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1% 

MOSPOP is an interaction term between MOSQUITO and POPDENSE 
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IV Spatial Filtering RENB for Colorado 

 Model 1 Model 2 Model 3 Model 4 

FORHAT 2.631 2.821 2.877 2.928 

 (9.80)*** (6.22)*** (7.21)*** (7.80)*** 

INCHAT -3.737 -4.536 -3.666 -4.054 

 (3.28)*** (3.83)*** (2.48)** (3.92)*** 

LNPOPDENSE 0.326 0.140 0.213 0.059 

 (1.63) (0.62) (1.21) (0.38) 

D2004 -2.692 -2.412 -2.605 -2.695 

 (10.96)*** (6.92)*** (9.55)*** (13.78)*** 

D2005 -2.968 -2.808 -2.903 -3.010 

 (14.49)*** (10.82)*** (13.25)*** (11.16)*** 

D2006 -2.923 -2.719 -2.881 -2.934 

 (9.46)*** (10.04)*** (11.85)*** (11.03)*** 

D2007 -2.689 -2.665 -2.935 -2.977 

 (12.21)*** (9.04)*** (10.35)*** (10.46)*** 

VEC2 4.392  4.685 3.981 

 (3.56)***  (3.75)*** (2.91)*** 

VEC4 3.269 2.637 3.381  

 (2.98)*** (1.72)* (2.52)**  

VEC6 3.319 1.950 3.206 2.761 

 (2.86)*** (2.03)** (3.03)*** (2.47)** 

VEC22 1.866 1.579 1.564 1.634 

 (1.82)* (1.73)* (1.82)* (1.67)* 

MOSPOP  0.001 0.001 0.001 

  (1.06) (1.77)* (1.84)* 

PRECIP  -0.670   

  (0.71)   

TEMP   -0.027  

   (0.28)  

PDSI    0.020 

    (0.25) 

CONSTANT 35.232 44.684 35.582 39.025 

 (3.02)*** (3.75)*** (2.03)** (3.66)*** 

Observations 315 315 315 315 

Number of location 63 63 63 63 

AIC 1221.647 1222.055 1206.626 1215.023 

BIC 1274.183 1278.344 1266.667 1271.311 

r 2.438 

S.E. (1.351) 

2.521 

S.E. (4.145) 

2.798 

S.E. (6.430) 

2.430 

S.E. (0.903) 

s 6.376 

S.E. (3.206) 

6.083 

S.E. (10.350) 

7.228 

S.E. (17.563) 

5.035 

S.E. (1.936) 

Moran’s I 0.125 0.130 0.125 0.123 
z statistics in parentheses * significant at 10%; ** significant at 5%; *** significant at 1% 
MOSPOP is an interaction term between MOSQUITO and POPDENSE 
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