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ABSTRACT 

 

 

In this dissertation, the value of wildlife watching recreation is used as the 

context for exploring different modeling approaches available for combining data 

from nonmarket valuation surveys such as the travel cost method (TCM) and 

contingent valuation method (CVM).  Another topic explored in this dissertation 

is the issue of nonresponse in nonmarket valuation surveys.  The results of this 

dissertation are useful for wildlife and land managers interested in obtaining 

theoretically consistent values of wildlife watching recreation using a 

combination of TCM and CVM data.  The practical solutions to nonresponse in 

nonmarket valuation surveys are useful for researchers who wish to implement 
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relatively small-scale surveys due to limited budgets and are concerned about 

maintaining the sample size.   

In the first segment of this dissertation (chapter 2), differences in the 

preference structure of wildlife watchers is studied by estimating a finite mixture 

(FM) model of wildlife watching recreation using data from a national survey.  

This model is unique in that the multiple imputation (MI) method was applied to 

the FM model framework to address missing travel cost data.  When compared to 

a truncated FM model, it was found that using the MI approach led to different 

consumer surplus estimates, but also greater performance in terms of goodness 

of fit. 

Combining TCM and CVM data has many advantages for recreation 

demand modeling in that it helps overcome some of the shortfalls where only one 

type of data is used.  An area less explored is the use of a utility-consistent 

modeling framework that unifies the TCM and CVM components to arrive at a 

single estimate of welfare.  However, the scenarios reflected in CVM questions 

may not always have a TCM counterpart, therefore leading to a discrepancy in the 

corresponding welfare measures.  Chapter 3 presents a utility-consistent joint 

model of wildlife watching recreation where the scenarios and the welfare 

measures from the TCM and CVM components are the same.  An advantage of 

this model is that welfare effects can be interpreted in terms of net benefits or 

willingness to pay.   

Nonresponse in CVM surveys can lead to a loss in statistical efficiency and 

bias.  In the final segment of this dissertation (chapter 4), a simple recoding 

procedure is introduced to address missing follow-up responses from a double-
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bounded dichotomous choice CVM survey.  A Monte Carlo simulation was used 

to examine the performance of recoding compared to list-wise deletion across 

three scenarios that included randomly arising nonresponse and systematically 

arising nonresponse.  The results of the simulation showed recoding led to lower 

losses in statistical efficiency.     
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Chapter 1: Introduction 

 

 

Wildlife watching recreation has become one of the most popular forms of 

outdoor recreation in the United States.  Nearly a quarter of the population 

enjoys observing, feeding, or photographing wildlife every year and there are 

substantial benefits to local economies (USFWS, 2012).  However, the growing 

interest by domestic and international visitors has prompted concerns over the 

sustainability of the wildlife watching industry.  Studies have shown excessive 

visitation may disturb animal populations and adversely affect the long-term 

health and viability of some species (Tappe, 2006).  For decades, data from 

national surveys such as the National Survey of Fishing, Hunting, and Wildlife-

Associated Recreation (FHWAR) has provided researchers with a plethora of data 

to model the behavior of wildlife watchers.  However, there has been little effort 

to better understand the disparate preference structures of wildlife watchers 

which can provide important insights on visitation patterns and help ensure 

sustainable wildlife populations without stifling local economies.  For example, a 

better understanding of the disparate behavioral patterns of wildlife watching 

groups may help recreational sites managers curb crowding at these sites by 

introducing different price schedules and through adjustments in visitation 

hours.  One of the key contributions of this dissertation is the investigation of the 

presence of preference heterogeneity in the U.S. wildlife watching population 

while employing the latest recreation demand modeling techniques to estimate 

the value wildlife watching activities.     
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The inclusion of contingent valuation method (CVM) questions in FHWAR 

surveys has provided researchers with the opportunity to take advantage of a 

methodological advancement in recreation demand modeling—the combining of 

CVM data with travel cost method (TCM) data.  While TCM data has been the 

traditional choice for recreational demand modeling, combining it with CVM data 

into a joint model has shown to have many advantages.  In particular, TCM data 

provides information on actual behavior; for example, the number of recreation 

trips taken over the course of a season and the costs associated with each trip.  On 

the other hand, CVM data provides information on hypothetical behavior which 

provides insights on how an individual might behave under different 

circumstances.  Combining TCM and CVM data has been shown to increase 

statistical efficiency (González-Sepúlveda, Loomis, & González-Cabán, 2008) as 

well as attenuate some problems that are particular to each data type (Cameron, 

1992).  Another key contribution of this dissertation is that it presents a utility-

consistent joint TCM-CVM model of wildlife watching recreation using FHWAR 

data.  The unique feature of this model is that it unifies the TCM and CVM 

modeling frameworks so that the preference structures, the scenarios under 

analysis, and the welfare measures used to assess the impact of the scenarios, are 

the same.  In particular, the equivalence between the welfare measures 

(consumer surplus and compensating variation) is explicitly incorporated into 

the econometric framework which has not been done in previous studies. 

A common problem faced by nearly all researchers employing survey data 

is when a respondent fails or refuses to answer a survey question, which can lead 

to a loss in statistical efficiency and bias.  This is an important problem when 
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estimates are used to determine a course of action that can affect a large 

population.  With missing data points, statistical inference may not accurately 

reflect, for example, the preference structure of wildlife watchers, and policy 

recommendations can be severely misleading because certain groups in the target 

population may be under or over-represented.  This dissertation contributes to 

the literature on nonresponse in nonmarket valuation surveys by: 1) introducing 

a new way of applying the multiple imputation imputation to missing TCM data, 

and 2) developing simple recoding procedure for missing CVM data.   

The substantive parts of this dissertation are contained in three chapters.  

In chapter 2, the demand for wildlife watching recreation is estimated using a 

finite mixture (FM) model to examine preference heterogeneity.  FM models are 

especially useful for examining and modeling preference heterogeneity as it 

allows the grouping of distinct user classes within a TCM regression framework.  

The FM and other latent-class modeling techniques are considered to be at the 

forefront of recent innovation in recreation demand modeling.  Using data from 

the 2006 FHWAR survey, the application of the FM model will aid in examining 

the composition of the wildlife watching population as well as recovering the 

estimated net benefits received by the differing user classes.  However, estimating 

TCM models requires data on the number of trips and the associated travel costs 

for each respondent.  One issue addressed in this chapter is missing travel cost 

data for nonparticipants—respondents who had not taken any trips during the 

survey period.  Missing travel cost data is problematic because these observations 

or respondents will be excluded from the analysis by way of list-wise deletion.  
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In addition to data on trip-related activities, the 2006 FHWAR survey 

included responses to CVM data that elicited the respondents’ choke price—the 

amount of cost that would have prevented the respondent from taking a trip.  The 

conceptual innovation of this chapter is that the CVM choke price data obtained 

from respondents who had taken at least one trip, can be used as a reference to 

fill-in missing travel cost values for nonparticipants.  This allows the analyst to 

avoid list-wise deletion and the TCM analysis and inference can be carried out at 

the population level.  The multiple imputation (MI) method was employed to 

carry out the data imputation process.  This technique has received very little 

attention in the nonmarket valuation literature despite the vast amounts of 

studies supporting its use to address nonresponse in large scale survey data.  In 

fact, this is the first study where the MI method was applied to a TCM framework 

and also the first time CVM data was used for the purpose of filling-in missing 

travel cost values.    

In chapter 3, TCM count data and CVM dichotomous choice data from the 

1996 FHWAR survey are combined into a unified joint model of wildlife watching 

recreation.  Much of the discussion focuses on the alignment of TCM and CVM 

theoretical and econometric frameworks.  The purpose of this chapter is to 

advocate for survey designs that can yield a higher degree of cohesion between 

the TCM and CVM frameworks both theoretically and econometrically.  In 

particular, the language of the CVM questions may not always be compatible with 

the TCM framework and therefore the two sets of information may not contribute 

equally towards understanding the scenario under consideration.  In addition, 

the benefits of combining data such as attenuating hypothetical bias and 
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obtaining nonuse values, may not be fully realized.  Although the survey 

employed in this chapter is outdated, it is still useful for demonstrating a case 

where the potential level of cohesion of the TCM and CVM information is high.  

Several econometric models are estimated to demonstrate not only the 

advantages of combining TCM and CVM data, but also to show that different 

approaches to joint modeling also can influence levels information cohesion.  

Finally, the chapter looks at the special case where the welfare measures arising 

from the TCM and CVM models (compensating variation and consumer surplus) 

are equal for the TCM and CVM scenarios reflected in the data. 

The third and final segment of this dissertation focuses on addressing 

nonresponse in double-bounded dichotomous choice (DB) CVM data.  The DB 

format in CVM surveys was introduced as a way of obtaining greater statistical 

efficiency compared to a single-bounded (SB) format.  As in a SB format, DB asks 

respondents if they would be willing to pay a certain amount of money, or bid 

value, contingent upon a given scenario, where the bid value is the basis for 

measuring willingness to pay (WTP).  The difference is that DB includes a follow-

up question that depends on the response to the initial question.  For example, 

suppose the respondent answers  to the initial question.  Then a follow-up 

question asks if they (respondent) would be willing to pay a higher amount, 

keeping the scenario constant.  If the respondent answers , then the follow-up 

question asks if they would be willing to pay a lower amount, again keeping the 

scenario constant.   

Since its initial introduction, researchers have noticed certain tendencies 

of respondents to answer the follow-up question in a way that is not consistent 
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with the way they answered the initial question.  For different reasons, the 

respondent may behave strategically in order to obfuscate their true preference 

structure.  The case examined in this chapter is when the respondent is either 

unable or refuses to answer the follow-up question.  Similar to other types of 

nonresponse, partial responses leads to the observation being excluded from the 

analysis through list-wise deletion.  The purpose of this chapter is to introduce a 

simple recoding procedure for DB data with nonresponse that allows the analyst 

to preserve the observation with the missing data and curtail the loss of statistical 

efficiency and potential bias from list-wise deletion.  The main objective is to 

compare the statistical efficiencies and biases from recoding and list-wise 

deletion using Monte Carlo simulations. 

The overarching aim of this dissertation is to provide a better 

understanding of the different modeling approaches available for combining 

TCM and CVM data within the context of wildlife watching recreation.  The 

results of this dissertation provides important insights for wildlife and land 

managers interested in obtaining theoretically consistent measures of the welfare 

effects from recreation and also options for combining disparate types of data.  In 

addition, the discussions concerning nonresponse are useful for researchers 

interested in implementing small-scale nonmarket valuation surveys due to 

limited budgets and concerned about maintaining the sample size.    
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Chapter 2: Finite Mixture Model of Wildlife Watching with Multiply-

imputed Travel Costs 

 

 

2.1.  Introduction 

Wildlife watching recreation continues to be one of the most popular forms of 

outdoor activities in the United States.  In 2011, an estimated 71.8 million U.S. 

residents enjoyed observing, feeding, or photographing wildlife (USFWS, 2012a).  

Steady growth in the number of wildlife watchers since 1996 (14 percent) has 

contributed substantially to the health of the nation’s, states’, and local 

economies.   For example, spending on wildlife-watching activities generated 

$18.2 billion in tax revenues and over a million jobs (Leonard, 2008).  Total 

industry output is estimated to be $122.6 billion with major U.S. sectors 

including retail trade, manufacturing, and hospitality and food services.  While 

wildlife watching has many benefits to tourism, there are also important 

implications for wildlife management.   

The growing interest by domestic and international visitors has prompted 

concerns over the sustainability of the wildlife watching industry.  Excessive 

visitation may disturb local animal populations and cause them to deviate from 

their normal behavior.  These changes could have serious physiological effects on 

wildlife with long-term implications for the survival of some species (Tapper, 

2006).   A better understanding of the disparate preference structures of wildlife 

watchers, which has been linked to their behavior, can provide important insights 



8 
 

on how to help ensure sustainable wildlife populations while not stifling the 

growth of local economies.   

Data from national surveys such as the National Survey of Fishing, 

Hunting, and Wildlife-Associated Recreation have been used extensively for 

studying the demand for wildlife watching (Hay & McConnell, 1979; Hay & 

McConnell, 1984; Rockel & Kealy, 1991; Zawacki, Marsinko, & Bowker, 2000) but 

have not yet been examined for preference heterogeneity.  In this paper, it is 

hypothesized that the wildlife watching population can be segmented into 

heterogeneous user classes that differ systematically in their visitation patterns.  

Consequently, group-level responses to policy changes may vary considerably.  

For example, site managers seeking to curtail excess visitation may find 

increasing access fees effective for some visitors, while adjusting visitation hours 

works better on others.  Hence, knowing the composition of wildlife watchers can 

lead to a more accurate analysis for policy assessment.  A finite mixture (FM) 

model was employed to estimate the composition of the wildlife watching 

population and the group-level demand functions using data from the 2006 

National Survey of Fishing, Hunting, and Wildlife-Associated Recreation.   The 

FM and other latent-class modeling techniques are considered to be at the 

forefront of recent innovations in recreation demand modeling (Moeltner & von 

Haefen, 2011).   

In addition to data on trip-related activities, the survey included responses 

to contingent valuation method (CVM) questions that elicited the respondents’ 

choke price for participation—that is, the amount of cost that would have 

prevented a current wildlife watcher from taking a trip (See Aiken, 2009 and 
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USFWS, 2012b).  The most direct application of the CVM responses (choke 

prices) is to assume a linear demand function so that choke price can be 

combined with travel cost and trip frequency to calculate the respondent’s 

consumer surplus or net benefits from wildlife watching recreation activities 

(Aiken & Rouche, 2003; Aiken, 2009; Hwang, 2012; USFWS, 2012b).  One 

limitation of this approach is that the analysis is exclusive to respondents who 

had reported taking at least one trip.  Incidentally, the survey did not collect  data 

on travel cost from respondents who did not take any trips during the survey 

period; thus, the usable sample is truncated to observations with positive trips.   

One approach to address this type of truncation is to employ a zero-

truncated count data model (Cameron & Trivedi, 1998).  For zero-truncated 

count data models (in particular, the negative binomial model), an important 

consideration is that the theoretical frequency of zeros predicted by the model 

depends on the distribution of the positive counts (Hilbe, 2011).  For instance, the 

theoretical probability of observing a zero value will be lower when the mean of 

the positive counts is large compared to when the mean is small.  This 

mechanism however, can misrepresent the data if there are outliers or extreme 

values in the distribution accompanied by a high frequency of zeros.  These 

values have the effect of inflating the conditional mean and in turn, the frequency 

of zero values predicted by the model underrepresents the actual number of zeros 

in the data.  In the context of recreation demand, the coefficient for the travel cost 

variable is biased upwards, hence a flatter inverse demand curve,  and the 

estimated consumer surplus is biased downwards.   
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In this paper, the multiple imputation (MI) method (Rubin, 1987) is 

employed to impute the missing travel cost data so that data truncation is no 

longer an issue.  With the imputed values incorporated into the FM model 

framework, the analysis revealed the presence of three distinct sub-populations 

or user classes in the wildlife watching sample.  The groups can be characterized 

by their intensity of participation and the amount of spending.  The performance 

of the MI FM model is compared to that of a zero-truncated FM model and found 

to provide a better fit to the data. 

To the best of my knowledge, this study is the first to estimate a FM model 

of wildlife watching recreation, and also the first to apply the MI method within a 

FM model framework.  The remainder of the paper is organized as follows.  The 

next section provides a review of the relevant literature.  Section 2.3 presents the 

theoretical framework of the FM model, the benefits formulas, and the MI 

method.  Section 2.4 presents the data and results of the analysis.  Finally, section 

2.5 concludes the paper with a discussion of the results and avenues for future 

research. 

 
2.2.  Literature Review 

2.2.1. Methods for Valuing Wildlife Watching Recreation  

Much of the existing research on wildlife watching recreation used data 

from national surveys on outdoor recreation.  Cicchetti (1973) used bird watching 

and wildlife photography data from the 1965 national survey of wildlife-

associated recreation to estimate a simultaneous equations model.  Hays and 

McConnell (1979) used the 1975 national survey to model participation in wildlife 
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watching and photography.  The authors found the amount of forested acres and 

the number of species were greater in states with higher participation rates.  The 

authors later extended the analysis to a joint decision model of wildlife watching 

and hunting participation and found the two activities may be complementary 

(Hay & McConnell, 1984).  In Rockel and Kealy (1991), wildlife watching was 

modeled as a two-stage decision process, treating the participation decision as 

being influenced by different factors than what might motivate the intensity of 

participation.  Using data from the 1980 national survey, the authors proposed 

using Heckman’s selection bias model (Heckman, 1979), and Cragg’s hurdle 

model (Cragg, 1971).  Similar to Hays and McConnell (1979; 1984) , the authors 

found the amount of forested acres to positively influence participation and also 

intensity.  Aggregate annual willingness to pay for access to wildlife watching 

recreation were between $8.7 billion and $164.5 billion for the 1980 sample, 

which was comparable to those of the 1991 sample studied by Zawacki, Marsinko, 

and Bowker (2000) who applied similar techniques.  Beginning 2001, the U.S. 

Fish and Wildlife Service’s National Survey of Fishing, Hunting, and Wildlife-

Associated Recreation (FHWAR) began collecting contingent valuation method 

(CVM) data on choke prices.  Aiken and Rouche (2003),  and later Aiken (2009), 

report consumer surplus estimates using the direct calculation method 

mentioned earlier.  Hwang (2012) obtained consumer surplus values the same 

way but used the data to test for temporal reliability across the 2001 and 2006 

surveys.  However, all the abovementioned studies assumed homogeneous 

preferences for the wildlife watching population. 
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2.2.2.  Preference Heterogeneity in Recreation 
 

Wildlife watching recreation is a natural candidate for exploring 

preference heterogeneity using the finite mixture approach.  Participants can vary 

greatly in skill level, experience, and economic constraints, which gives rise to 

different visitation patterns and perceived values of participation.  The FM model 

is especially useful for when there are different user classes or groups of 

individuals who are like-minded and share certain behavioral traits, which may 

be particularly useful for recreational site managers (Hynes, Hanley, & Scarpa, 

2008)i.  In a study of Lake Michigan anglers, Provencher, Baerenklau, and 

Bishop (2002) identified three angler classes distinguished by their time costs 

and trip frequencies.  Interestingly, their finding showed anglers with high time 

costs (and low trip frequencies) were comparably more sensitive to changes in 

fishing conditions.  In another study on anglers, Morey, Thacher, and Breffle 

(2006), used responses to attitudinal questions on topics such as boating fees, 

catch rates, and fish consumption advisories to identify angler classes.  Similar to 

Provencher, Baerenklau, and Bishop (2002), the authors found three to be the 

optimal number of angler classes.  Evidence of finite mixing in other forms of 

recreation, for example: rock climbing (Scarpa & Thiene, 2005; Scarpa, Thiene, & 

Tempesta, 2007); kayaking (Hynes, Hanley, & Scarpa, 2008); backcountry hiking 

(Baerenklau, 2010); and beaching (Landry & Liu, 2009; Kuriyama, Hanemann, & 

Hilger, 2010), seems to suggest that preference heterogeneity is now a common 

                                                           
i Because the focus here is on finite mixture models, we omitted the literature that addresses preference 
heterogeneity using a random parameters model.  While there are no theoretical reasons to use one over the 
other, the finite mixture model has been viewed as a nice alternative to the random parameters approach 
(Provencher, Baerenklau, & Bishop, 2002). The reader is referred to Train (1998), Chen & Cosselett 
(1998), Breffle and Morey (2000), Holmes and Englin (2010).   
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feature in recreation demand models and is generally well characterized by finite 

mixtures.  FM models have also been used in the past for handling count data 

with excess zeros (See Gurmu & Trivedi, 1996; McLachlan & Peel, 2000). 

 

2.2.3.   Imputation of Nonparticipant Travel Costs  
 
 For many recreation demand studies, the survey focuses on a specific site 

so that distance-based travel costs are imputed using information on the 

respondent’s place of origin regardless of whether the site was actually visited by 

the respondent or not (Hellerstein, 1991; Yen & Adamowicz, 1993; Haab & 

McConnell, 1996; Scarpa, Thiene, & Tempesta, 2007; Landry & Liu, 2009; 

Kuriyama, Hanemann, & Hilger, 2010; Baerenklau, 2010; Holmes & Englin, 

2010; and others)ii.  However national surveys, in particular FHWAR, will 

routinely censor information pertaining to respondents’ place of residence as well 

as their destinations in the public-use data in order to maintain confidentiality.  

FHWAR surveys collect travel cost data from respondents but only from those 

reported to have taken at least one trip during the survey period.  Some previous 

studies imputed missing data with average travel cost values in the respondent’s 

resident state (Zawacki, Marsinko, & Bowker, 2000), or with fitted or predicted 

values following a regression on the observed data (Hellerstein, 1998).  Mean and 

regression imputations have also been suggested for imputing missing data from 

CVM surveys (Whitehead, Groothuis, & Blomquist, 1993; Whitehead, 1994; Brox, 

                                                           
ii English and Bowker (1996) compared several distance-based measures with imputed values and noted the 
various discrepancies and effects on welfare values.  But the paper’s main focus was on exploring different 
price definitions and much less was said about the limitation of the imputation procedure used. 
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Kumar, & Stollery, 2003).  Here, the multiple imputation (MI) method (Rubin, 

1987) is proposed for imputing the missing data.    

MI is a technique specifically designed for handling nonresponse in large 

public-use data such as population surveys and censuses (Rubin, 1987; 1996)iii.  

MI produces multiple simulated-datasets (imputations) using a model designed 

to capture the missingness (imputation model).  Each of the imputations are 

analyzed using a method (for example, regression model) chosen by the analyst, 

and the results are combined using Rubin’s (1987) combination rules to produce 

estimates and confidence intervals that incorporate the missing-data uncertainty.  

One advantage of using MI is that it can incorporate the data collector’s 

knowledge concerning the missingness of values (Rubin, 1987; pp.15-16).  The 

information could also be related to sampling or interview methodology.  MI also 

overcomes some major problems from using mean and regression imputations 

such as the tendency to distort final estimates and statistical associations 

between variables (Lessler & Kalsbeek, 1992; Little & Rubin, 2002).  

One important consideration concerning the results is that imputed values 

may not always reflect a nonparticipant’s choke price but may sometimes 

correspond to corner solutions.   Smaller values may be more reflective of corner 

solutions, while larger values may suggest nonparticipation from realizing a 

choke price.  The treatment of nonparticipation in this paper is very different 
                                                           
iii MI has been used extensively to impute missing income and wage data (Schenker, et al., 2006; Zarnoch, 
Cordell, Betz, & Bergstrom, 2010; Durrant & Skinner, 2006), and to improve financial data with severe 
levels nonresponse (Kofman & Sharpe, 2003).  In simulation studies, using MI provided estimates that 
were less sensitive to model misspecification compared to top coded data, while adequately maintaining 
disclosure protection of confidential data (An & Little, 2007).  Moreover, MI has been suggested for 
merging data from two surveys where one of the surveys is missing a key variable that is imputed using MI 
(Brown, 2002).  Kohnen and Reiter (2009) show how disclosure protection can still be maintained through 
two stages of MI during merging.  Shafer (1999) notes the great virtues of MI are its simplicity in execution 
and generality of application.   
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from, for example the Kuhn-Tucker method (Wales & Woodland, 1983; Phaneuf 

& Herriges, 2000), which assumes all nonparticipation arise from corner 

solutions.  The idea is more similar to that applied in the Double Hurdle model 

proposed by Shonkwiler and Shaw (1996), but only in that it attempts to 

differentiate ‘potential’ participants, who may have realized their choke price, 

from nonparticipants at corner solutions.      

 

2.3.  Methodology 

2.3.1.   Finite Mixture Model  
 
The finite mixture model methodology is briefly explained in this section in 

general form.  Let  1,	2, … ,  be an outcome variable for observation i in a 

sample with size n, and probability density function	 .  Suppose  is drawn 

from a population comprising an additive mixture of  distinct subpopulations in 

proportions 	 1, 2, … , 	 1,	2, … , 	.  Given a vector of covariates x  and 

respective parameters	 , a -component finite mixture model can be written in 

the form 

 

1        ; Φ ;
1
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where ⋅  is the density function for component	 , and is a	mixing probability 

with	∑ 1, and	0 1iv.  Although not required, it is convenient and 

computationally simpler to restrict the densities to be the samev.  The log 

likelihood function for Φ using the observed data has the form 	ℓ Φ

∑ ln ;Φ  where the maximum likelihood estimate Φ can be obtained by 

solving the likelihood equation 	 ℓ Φ Φ 0⁄  using numerical methods, or via 

the Expectation Maximization (EM) algorithm (Dempster, Laird & Rubin 1977).  

Incidentally, Φ satisfies ∑ ∑ , ;Φ ; Φ 0⁄ , and 

∑ , ;Φ /  is the estimated posterior probability that 	belongs to 

component	  with the usual conditions	∑ , ⋅ 1, 0 , ⋅ 1, and 

, ; Φ ; ∑ ;⁄  (McLachlan & Peel 2000; p.47).   

A negative binomial distribution is used to model the integer nature of recreation 

trips and data over-dispersion.  Following Cameron and Trivedi (1998), the 

densities of a -component mixture negative binomial model can be expressed as 

 

2 							 ;
Γ ,

Γ 1 Γ ,

,

, ,

,
,

, ,
 

 

where	 ∈ ,	 , exp	 x  and	 , 1⁄ ,  , and t = 1 gives the constant 

dispersion negative binomial model (NB1) and t = 0 gives the mean dispersion 

                                                           
iv As mentioned in Cameron and Trivedi (1998; p.128), it is useful to parameterize the grouping 
probabilities using, for instance, a logit function: exp	 1 ∑exp⁄  to help ensure	0
1, where  may be further parameterized in terms of observable covariates  
v In the present formulation, the number of mixture components  is fixed and set by the analyst prior to 
estimation, but this need not be the case (See McLachlan and Peel, 2000 and references therein).   
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negative binomial model (NB2).  The corresponding conditional mean and 

variance functions of the mixture model are	 |x ; ∑ , ; and 

var |x ; ∑ , 1 , ̅ ̅ 2.   

 

2.3.2.   Estimation of Net Benefits from Access to Recreation 
 
Hellerstein and Mendelsohn (1993) showed if the outcome variable 	 ∗ follows a 

count distribution (Negative Binomial with k = 0 in this case) with mean	 ∗ , 

the expected consumer surplus for the sample can be calculated by integrating 

under the estimated mean function ̂  from an initial travel cost level  to a choke 

price	 1 0.  In the present context, the expected consumer surplus reflects the 

net economic benefits from access to recreational opportunities.  An exponential 

functional form is used to model the mean count function; hence	 ̂

1 ∑exp	 x 1 ∑exp	 x | 0 , where  is the sample size, x  is the vector of 

covariates for observation	 ,  is the vector of coefficient estimates, and 0 and 1 

are nonnegative constants.  The expected consumer surplus can be expressed in 

the form 

 

(3) 1 exp	 1 0 1 ∙ ̂ 										   

                     

where the estimated travel cost coefficient	 0 is assumedvi.  Hellerstein and 

Mendelsohn (1993) argued that (3) is an appropriate measure of expected 

                                                           
vi The per-trip consumer surplus is found by dividing (1) by	 ̂ , which gives 1 exp	 1

0 1 . 
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consumer surplus because the random errors in a count data model are 

incorporated in a parametric fashion rather than as a residualvii.  Furthermore, 

the authors showed that (3) approximates the expected compensating variation 

measure  by demonstrating how count models can be derived from 

repeated discrete choices similar to those in a Random Utility model framework.  

The standard practice is to evaluate the limit of (3) as 	 1 → ∞ which reduces to 

 

(4) | ∞ 1 ∙ ̂      

                           

This is a useful assumption as it guarantees correspondence with	 ̂ |∞ 0 in the 

limit.  In addition, (4) will equal  since the Marshallian and Hicksian 

demands will overlap for price increases that force 	 ∗ to zero.  This equivalence is 

more formally demonstrated in Hellerstein and Mendelsohn (1993).  However, 

one might ask about the implications of allowing 1 ≪ ∞ and if doing so could 

help obtain more accurate estimates.  In this light, (4) would provide an upper 

bound measure of (3).   It is clear from (3) that restricting 1 to be finite will in 

general yield estimates that are more conservative, especially when the 

magnitude of  is small.  If	| | is large, the difference between using 1 ∞ and 

1 ≪ ∞  will be smaller.  Given the availability of choke price data, estimates for 

both scenarios were obtained.  In the FM framework, the wildlife watching 

sample was partitioned into  components.  The overall expected consumer 

                                                           
vii See Bockstael and Strand (1987); Hellerstein (1992); Yen and Adamowicz (1993); Habb and McConnell 
(2002); and Beatty, Brozovic, and Ward (2005) for a comparison of discussions on this topic. 
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surplus is obtained by computing the weighted average of the component-level 

estimates. 

 

5 							
1

	 

 

where  is the estimated mixing probability for component	 .  For comparing 

models with 1 ∞ and 1 ≪ ∞, the sample mean of the CVM responses and 

travel costs for 0and 1 respectively was used in (3).   

 

2.3.3.  Predictive Mean Matching Multiple Imputation 

The predictive mean matching (PMM) multiple imputation method (Rubin, 1987; 

Little, 1988) was employed to obtain imputed travel cost values.  Based on 

Rubin’s (1986) ideas for statistical file matching, PMM combines the linear 

regression imputation and the nearest-neighbor imputation methods to fill in 

missing data points.  Let ∈ x  be an observed data point and ∈ x  be a 

missing data point, where x 	x 	|	x  is a partitioned column vector of the 

analysis model predictor matrix	X.  The first step is to fit a linear regression 

model to the observed data following |Z 	~	 Z γ, 2 , where Z  is a matrix of 

covariates. Using the estimates , 2 , fitted values	  are obtained and a new set 

of parameters , 2  are simulated from their joint posterior distribution 

, 2|	x  having the standard uninformative improper reference prior 

	 , 2 ∝ 1 2⁄ .  In particular, the parameter 2 is drawn from the 2 
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distribution with  degrees freedom, where 	is the sample size of the 

observed data, and  is the dimension of		 .  Using 2	~	 2 2 ,  is 

drawn following	 , 2 Z Z 1  giving the predicted values	 	which are drawn 

from the posterior predictive distribution |x  (Zhang, 2003)viii.  Missing 

values  are imputed by matching   with  that minimizes the distance 

metric	 , | 	 |, then taking the corresponding  as its imputation.  

If more than one candidate value is allowed, say the first  minimums, one value 

is randomly chosen for imputation.  The process is usually repeated several times 

giving multiple imputations. 

A useful feature of PMM is that only actual values are used for imputing.  

This allows the analyst to preserve the distribution of variables in the filled-in 

data and avoid extrapolating beyond the original data range.  This also allows the 

model to be less sensitive to misspecification (Little, 1988; Schenker & Taylor, 

1996). It was assumed that the data missingness mechanism is ignorable or the 

data are missing at random (MAR).  MAR refers to the situation where the 

missingness is independent of the missing data given the observed values (See 

Zhang, 2003 for a theoretical depiction)ix.   

The observed data from which the missing values are imputed included 

rows of both travel cost values and CVM responses which initially increase the 

                                                           
viii Zhang (2003, p.584) explains if the values of the parameters are drawn from their posterior predictive 
distribution , 2|	 , the corresponding draws from the conditional predictive distribution 

| , , 2  are equivalent to drawing from the posterior predictive distribution | .     
ix Schafer (1999) notes however, that the MI paradigm does not require the MAR assumption and will still 
produce valid results as demonstrated by Glynn, Laird, and Rubin (1993).  In the present case, missingness 
of travel costs can be conditioned on trip counts and other factors so the MAR assumption is expected to 
hold. 
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usable sample sizex.  This was done to incorporate as much information into the 

imputation model as possible.  It was assumed that there are travel cost values 

corresponding to all levels of participation which seems necessary since travel 

costs do not always carry the usual marginal adjustments in quantity-demanded 

interpretation when no trips are taken.  Thus, imputing based only on CVM 

responses seems too unrealistic because the language of the CVM questions 

requires a response where cost is the only reason for not participating.  Although 

the survey was designed to screen out individuals suspected to never participate, 

interested individuals may still fail to participate for reasons unrelated to costs—

for example, health ailments.  Lastly, all information associated with when a trip 

is actually taken would be excluded, hindering the imputation model from fully 

capturing the relationship between cost and its determinants.   

Referencing only travel cost observations seems limiting also.  The 

imputation model may inadvertently dismiss the possibility that nonparticipation 

arose due to choke prices.  Again, the imputation model would ignore pertinent 

information on behavior.  By utilizing both types of information, the imputations 

will be based on the full range of trip values.  Therefore, the imputed-travel costs 

should differentiate nonparticipants by what they may consider to be their 

perceived benefits of having access to wildlife watching recreation.  Because 

inferences are based on current or observed behavior, data on CVM responses 

were excluded during the estimation of the parameters of the FM model. 

Given 1 imputed data sets,  sets of parameter estimates	are obtained 

independently.  For instance, let Φ  1,	2, … , 	  be the vector of parameter 

                                                           
x Similar situation concerning nonignorable missing data can be found in Glynn, Laird, and Rubin (1993).   
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estimates using the th imputed data.  Then, the MI estimate of Φ is obtained by 

computing the average of the  estimates as follows. 

 

6 							Φ
1

Φ
1

																		 

 

The estimated total variance of Φ Φ  is given by 

 

7  						 1 1 					 

 

where	 1 ∑  is the within-imputation variance, 

and	 ∑ Φ Φ 2 1⁄  is the between-imputation variance (Rubin, 1987; 

p.76).  Hypothesis tests and confidence intervals are based on a Student’s t-

approximation	 Φ Φ /√ 		~	  with  degrees of freedom.  Under the large-

sample assumption	 1 1 1⁄ 2, where 1 1 /  measures the 

relative increase in variance (RVI) due to missing data.  Alternatively, the 

percentage increase in standard error due to missing data (SEI) can be obtained 

using the formula	%Δ ⁄ 1 100%.  Finally, the relative efficiency 

(RE) of an estimate is approximated by	 1 ⁄ 1xi, where 2/ 3 /

1  is the estimated fraction of missing information about Φ due to 

nonresponse (FMI).  For brevity, only the RVI and FMI values are reported.  

                                                           
xi This measure provides the efficiency of the current MI estimates compared to ones that used an infinitely 
large number of imputations. 
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An important feature of MI is that the imputation step is operationally 

distinct from the subsequent analysis; that is, the imputation model used to 

create the imputed datasets need not be compatible with the analysis model 

(Shafer, 1999).  When the imputation model is more general than the analysis 

model, MI gives valid inferences but with some loss of power due to the added 

variation from the imputed values.  When the imputation model is more detailed, 

the imputations may be characterized as what Rubin (1996) calls ‘superefficient’.  

Superefficient imputations contain information pertaining to Φ that goes beyond 

the complete-data estimate Φ, if for example, the researcher possess a priori 

knowledge of the true distribution of the subject variable.  Superefficient 

imputations can give Φ estimates that are more precise than could be achieved 

using the observed data and the analysis model alone.  Some authors caution 

against introducing too much detail in the imputation model as illegitimate 

assumptions can lead to biased estimates (Shafer, 1999).  Still, imputation 

models should include all variables believed to help predict the subject variable, 

and all variables used in the analysis model including non-exogenous variables to 

ensure that a multiple imputation is properxii (Little, 1988; Rubin, 1996).  

 

2.4.  Application to Wildlife Watching Recreation Data 

2.4.1.  Data 

Wildlife watching data was obtained from the 2006 National Survey of Fishing, 

Hunting, and Wildlife-Associated Recreation.  The survey is conducted every 5 
                                                           
xii A multiple imputation is said to be proper if it satisfies certain frequentist properties such as preserving 
the distributional relationships between the missing values and the observed values (See Zhang, 2003 for a 
summary of the consequences from improper imputations).  However, confidence-valid repeated-
imputation can still be obtained even in the case of improper multiple imputations (Rubin, 1987; 1996).   
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years by the U.S. Fish and Wildlife Service in conjunction with the U.S. Census 

Bureau.  The data includes an array of information on wildlife watching activities 

by residents around their homes and at least one mile away.  Data collection was 

carried out in two phases: an initial screening survey to identify current and 

potential wildlife watchers, and a series of follow-up interviews on the selected 

sample to collect detailed data on their wildlife watching activities.  The final 

sample consisted of 11,285 unique records that reported the total number of trips 

to a wildlife watching destination at least one mile from their home and the 

respective expenditures.  CVM questions were included for all respondents who 

had taken at least one trip.  More specifically, the participants were asked: what 

is the cost that would have prevented you from taking even one such trip?  In 

other words, if the trip cost was below this amount, you would have gone 

observing, photographing, or feeding wildlife…, but if the trip cost was above 

this amount, you would not have gone.  Two sets of CVM responses were 

collected: one pertaining to trips in their resident state, and one for trips in 

another state randomly chosen by the survey.   

Data points that were irregular or had unresolvable inconsistencies were 

deleted but these were relatively small in numbers (70 records). For example, 

some respondents reported having not taken any trips but also reported having 

observed, photographed, or fed fish during a trip.  Also, 45 records were deleted 

because of missing values in one of more of the other model variables.  The total 

number of unique records that remained was 11,161 (98.9%), where 8,453 records 

were nonparticipants with missing travel costs.  Similar to previous users of this 

survey (Rockel & Kealy, 1991; Zawacki, Marsinko, & Bowker, 2000), the analysis 
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model treats data on trips to multiple locations by the same respondent as 

additional independent records.  The sample size with this addition was 12,224 

records.  A list of the variables, their descriptions, and summary statistics are 

provided in table 2.1. 

The imputation model included an additional 3,091 records of CVM 

responses (choke prices) by participants which correspond to a hypothetical 

version of nonparticipation where the number of trips equals zero.  Here, CVM 

responses showing $10,000 or higher (33 records) were deleted as outliers giving 

a total of 15,315 records.  Therefore, 6,862 observed data points were used to 

impute 8,453 missing travel cost values for nonparticipants.  As mentioned 

before, the additional data rows were excluded from the FM procedure so 

estimates are based on current behavior.  The sampling weight provided in the 

survey was applied to all estimation procedures and the calculation of subsequent 

statistics.  This weight is a combination of several adjustment weights that brings 

the wildlife watching sample up to the screening sample so as to allow inference 

about the general population (See USFWS, 2007).  This weight was normalized to 

sum to the sample size of the analysis modelxiii.  Additional variables used 

elsewhere such as measures of state-level forest and rangeland compositions 

were constructed using data from the National Resources Inventory (USDA, 

2009; 2012). 

 
2.4.2.  PMM Results 

                                                           
xiii Wedel, ter Hofstede, and Steenkamp (1998) demonstrated how estimates of the number of class types, 
class probabilities, and class-level parameters can be severely biased when sampling weights are not used 
with FM models in complex surveys.  The authors noted measures of information criterion (AIC, BIC) 
tends to overshoot the optimal number of class types. 
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This section briefly explains the PMM procedures used and reports the 

imputation results.  PMM was used to generate 10 imputations with 3 

candidate donors for each missing valuexiv.  Simulations by Glynn, Laird, and 

Rubin (1993) showed their fully parametric mixture model performed well with  

10 even when the fraction of missing information (FMI) was large.  To 

account for positive skewing, the natural log transform of the travel cost variable 

was used in the imputation phase.  Following the suggestions by Rubin (1987, 

1996) and others, PMM included all variables used in the trip demand model, and 

other factors believed to have influenced missingness (or nonparticipation) as 

regressors.   

The mean estimates of the CVM responses as well as the observed travel 

costs at different trip counts are reported for comparison in table 2.2.  The CVM 

mean is more than two times the mean of the imputed values.  In addition, 

although the imputed values are on average larger than the overall travel cost 

mean, it is still smaller than the mean travel cost for a single trip.  These initial 

findings suggest the presence of structural differences between the preferences of 

some respondents who have taken wildlife watching trips, and some who have 

not.  The average relative increase in variance (RVI) was 0.461 for the imputed 

values and 0.428 for all values.  With 10, this implies the between-

imputations variance of the estimated mean was about 40 to 42 percent of the 

within-imputation variance.  Finally, the largest fraction of information missing 

                                                           
xiv STATA® module mi impute was used in the multiple imputation stage, and modules fmm and fmmlc 
were used to estimate the coefficients and obtain summary tables following the fmm procedures (Stata Data 
Analysis and Statistical Software, StataCorp LP, College Station, Texas).  MI estimates of the parameters 
and associated statistics were computed by the author.  A zero-truncated version of fmm was programed by 
the author. 
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due to nonresponse (FMI) was 0.331 and 0.313, which implies about one-third of 

the information in obtaining the mean estimates was missing due to missing 

travel cost data. 

 

2.4.3.  Criteria for the number of mixture components 

Two information criterion measures were employed to assess the optimal number 

of components: Akaike Information Criterion, AIC 2 ln 2  (Akaike, 1974) 

and the Schwarz-Bayesian Information Criterion, BIC 2 ln 	ln	  

(Schwarz, 1978).  Information criteria are used to compare a model’s goodness-

of-fit for sample size	  as additional parameters	  are included in the model.  In 

general, the model exhibiting the smallest criterion value is chosen.  Another 

criterion measure is the relative entropy index, 

1 	ln 1 ∑ ∑ , ln	 ,  (See Wedel & Kamakura, 2000).  

Although the  measure does not provide an explicit guide to choosing the 

optimal number of components, it can help assess the performance of the 

mixture model by gauging how well the groups are separated (Celeux & 

Soromenho, 1996).  More specifically,  uses the estimated posterior probabilities 

to arrive at a measure of the degree of group distinctiveness.  Values of  lie 

between 0 and 1, where values close to 1 indicate greater distinctiveness and 

values close to 0 imply less distinctivenessxv.  Table 2.3 reports the average values 

of the entropy and criterion measures from the 10 sets of MI estimates.   

                                                           
xv The relative entropy index  is a scaled version of the entropy of fuzzy 

classification	 ∑ ∑ ln	11 , where	 ∈ 0,∞ .  As mentioned by Celeux and Soromenho 

(1996),  cannot be used directly to assess the number of components.  The authors suggested a 
normalized entropy criterion but found some limitations in its applicability (p.202).  The Wedel and 
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Four models were estimated for comparison and the optimal number of 

components indicated by the entropy and criterion measures is highlighted with a 

box in table 2.3.  The AIC (25977.01) favored the 4-component model and 

possibly a 5-component model.  The BIC (26472.60) however, reached its 

minimum with the 3-component model, and  (0.596) was greatest for the 3-

component model as well.  Therefore the optimal number of components lies 

somewhere between 3 and 4 components with slightly more evidence supporting 

3.  It should be noted that the AIC has been observed to sometimes overestimate 

the optimal number of components (McLachlan & Peel, 2000; Wedel & 

Kamakura, 2000), so preference was given to the 3-component model suggested 

by the BIC and  xvi. 

 

2.4.4.  MI FM Model Results 

The results of the 3-component FM model are reported in table 2.4.  The single-

component model results are reported also for comparison.  The travel cost 

coefficient was statistically significant at the 1% level for all models while the 

ln[hincome] variable was not significant for any except in component 3 of the 3-

component FM model.  Other demographic variables showed varying significance 

across the models, while the wildlife watching variables (photo, feedbird, trip05, 

hunt06, fish06) were all significant at the 1% level but this was so only in the 

                                                                                                                                                                             
Kamakura (2000) relative measure has seen wider acceptance for use in latent class studies (See e.g., 
Morey, Thacher and Breffle 2006; Dias and Vermunt 2006; Dias and Vermunt 2008).     
xvi Other measures similar to the AIC and BIC are the Consistent Akaike Information Criterion (CAIC) 
(See Bozdogan 1987), Modified AIC (MAIC), and sample size adjusted BIC (SBIC).  The CAIC gives very 
similar values as the BIC especially with a large sample size, while the MAIC and SBIC gave values that 
more closely resembled the AIC.  A 5-component model was attempted but the estimates could not be 
obtained due to difficulties with model convergence.  
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single-component model.  Both the overall average RVI and largest FMI were 

smaller in the 3-component FM model, which favor the use of the 3-component 

model.  Additionally, the overall estimated mean number of trips from the 3-

component model ∑gE[trips|x']g was closer in value (2.05) to the sample mean 

(2.00) compared to that of the single-component model (2.69).  

The estimated probabilities of membership g from the 3-component 

model showed group representation was highly skewed.  Nearly 79% of the 

wildlife watching population was designated to component 1, 3.4% to component 

2, and 18.1% to component 3.  From the estimated trip means E[trips|x']g, it can 

be seen that component 1 was composed mostly of infrequent trip takers while 

component 2 included more frequent trip takers.  Component 3 included a 

mixture of the first two components.  The histograms in figure 2.1 illustrate the 

component distributions.  The distribution of component 2 can be distinguished 

by its less pronounced rightward skew and more mass in the positive direction.   

A closer examination of the results revealed that all nonparticipants were 

designated to component 1.  Table 2.5 provides the mean values of model 

variables across the componentsxvii.  The frequency count in the bottom row 

shows that nonparticipants (trips = 0) represented nearly 77 percent 

(8453/11042) of component 1.  The imputed travel cost (188.45) was slightly 

greater than the overall average (177.81) but less than the average for non-

resident trip takers (222.02).  Nonparticipants were on average older and 

included more retirees (0.24).  The lower levels for the income and schooling 

                                                           
xvii To check for premature convergence of the FM model, 10 different starting values were used to help 
ensure convergence to a global maximum.  Component designation was based on the maximum probability 
of component membership.   
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variables are consistent with this demographic, while there were no remarkable 

differences across the gender and marital status variables.  Nonparticipants had 

substantially lower values for the around-the-home variables (photo, feedbird, 

parks), as well as for contributions (wildcontr), previous trip experience (trip05), 

and participation in other forms of outdoor recreation (hunt06, fish06).  Finally, 

a measure for the abundance of state forest and rangeland was lowest (8.49 and 

0.43) for nonparticipantsxviii.     

The remaining 23 percent of component 1 spent an average of 3 to 4 days 

per trip.  However, there was a stark difference in the forest and rangeland values 

of out of state trips and in state trips (18.58 versus 9.50).  So, out-of-state travel 

for this group may be to locations with greater wildlife watching opportunities 

than in their resident state.  Age, rate of retirement, income, level of schooling, 

and travel cost were slightly higher for out-of-state travel compared to in-state.  

There was also a lower rate of participation around their homes and higher rates 

of contribution to wildlife organizations.  This could mean out-of-state trips are 

taken by more experienced and highly skilled wildlife watchers.  In addition, it’s 

been found that wildlife watchers may engage in different economic activities 

locally compared to when they travel (Davis, Tisdell, & Hardy, 2001).   

Forest and rangeland values for component 2 (22.66 and 0.49) are similar 

to those for out-of-state travelers in component 1 (18.58 and 0.48).  One 

explanation is that wildlife watchers in component 1 were traveling to the same 

                                                           
xviii The state forest and rangeland variables were excluded from the FM model because it was not clear 
how they should be interpreted for nonparticipants.  Specifically, it was unclear if the assigned values 
should correspond to their resident state or another state since it is possible they may have travelled to other 
states given the right circumstances.  Furthermore, it was believed the FM model sufficiently accounted for 
the effects of these variables through the mixture probabilities.  
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locations as wildlife watchers in component 2.  The higher trip frequencies and 

lower travel costs for component 2 may indicate people are choosing to reside 

close to their frequented sites in order to reduce their travel costs.  This behavior 

has been studied by Parsons (1991), and also by Baerenklau (2010) for 

backcountry hikers. The relatively low value of the non-resident variable (0.20) 

and high values for the forest and rangeland variables suggests component 2 

members prefer participating locally because of more opportunities.  Also, 

member of component 2 spent an average of $60.74 per trip and stayed about 2.5 

days each outing which were more than for component 3.  This suggests 

component 3, which had even lower rates of out-of-state travel (0.14), consist of 

novice or casual wildlife watchers.  In contrast, out-of-state-travelers in 

component 1 and members of component 2 resembled what could be considered 

skilled and experienced wildlife watchers.  Overall, the post estimation analysis 

revealed there may actually have been as many as five classes of wildlife watchers.  

 

2.4.5.  Expected Consumer Surplus Estimates 

The expected consumer surplus estimates derived from the MI model results are 

reported in table 2.6.  The first two rows are estimates with infinity as the upper 

limit c1 = ∞, and the second set of results used the mean of CVM response as the 

upper limit c1 < ∞ and the mean of travel cost as the lower limit c0.  Across the 3-

component models, one pattern that emerges is that component 2 places the 

highest value for access to wildlife watching recreation, but not at the per-trip 

level.  The highest per-trip values (shown in brackets) were found for component 

1 which is consistent with the finding from earlier that these trips tend to be 
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longer and more expensive.  As anticipated, consumer surplus estimates were 

larger when c1 = ∞; more than 1.5 times larger in the single-component model, 

and 4 times larger in the 3-component model.  For the 3-component model, 

notice the overall differences mainly arise from component 1.  Figure 2.2 

illustrates why this might occur.  This difference is shown as the striped area 

below the demand curve D1 which is excluded when a finite limit c1 is imposed.  

The surplus estimates for components 2 and 3 showed smaller differences 

perhaps because the demand curves lie farther below c1 as depicted by D2.  The 

overall estimates were also smaller for the 3-component model but the difference 

in estimates between the single-component model and the 3-component model 

was smaller when c1 = ∞ was used.  In both cases, the single-component model 

may have given too much weight to individuals designated to component 2, 

which was estimated here to be only 3.4 percent of the wildlife watching 

population.  The standard error estimates were smaller when c1 = ∞ was used, but 

this difference was less pronounced across components 2 and 3.  The discrepancy 

is in part caused by the smaller magnitude of the coefficients in component 1 and 

its influence on the calculation of the variance function which was approximated 

using the Delta method.  Overall, the difference in consumer surplus between 

models with c1 = ∞ and c1 < ∞ is quite large.  

 

2.4.6.  Zero-truncated FM Model Results 

The parameter estimates of the zero-truncated models are reported in table 2.7.  

Similar to before, estimates from a single-component model are reported 

alongside the 3-component FM model.  An analysis for the optimal number of 
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components showed the 3-component model was best but is suppressed here for 

brevity.  The log-likelihood values indicate the 3-component model was more 

efficient than the single-component model.  However, the conditional mean 

estimate gE[trips|trips>0]g for the single-component model is relatively closer 

in value to the truncated sample mean.  Compared to the MI model, the relative 

entropy index  is very small (0.22 versus 0.596).  This indicates the zero-

truncated FM model performed somewhat poorly in identifying distinct groups in 

the truncated sample.  One possibility is the data on the respondents that were 

omitted from the analysis contained information that was pertinent in identifying 

distinct groups of wildlife watchers.  It was seen from earlier that 23 percent of 

component 1 in the MI model consisted of respondents who had taken one or 

more trips.  The poorer performance of the zero-truncated FM model seems to 

provide further evidence that there is no clear divide between participants and 

nonparticipants.  Given the relatively low estimate of	 , we did not pursue a closer 

examination of the component memberships.  Some of the coefficients such as for 

age, agesq, male, ln[hincome], and wildcontr were similar to those from the MI 

models, but estimates for school, trip05, and hunt06 showed different signs.  

Estimates for other variables showed the same sign but were different in 

magnitudes.    Most notably, the travel cost coefficients were on average larger in 

magnitude in the zero-truncated models.  As shown in table 2.8, this resulted in 

smaller per-trip expected consumer surplus estimates compared to the MI 

models.  The patterns are very similar to those of the MI models.  It can be seen 

that the largest difference in values from using c1 = ∞ versus c1 < ∞ arose from 
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only one of the components.  Therefore a similar situation to that depicted in 

figure 2.2 may be present here as well.  

 

2.4.7.  Comparison of Goodness of Fit 

To more formally compare the performances of the MI and zero-truncated FM 

models, several measures of goodness of fit were obtained.  In order to simplify 

the analysis, a weighted average of the predicted trip values for each observation 

using the component level probabilities was calculated.  Also, the observations 

were restricted to the truncated sample (n = 3771) for comparability.  Table 2.9 

reports the summary statistics of the observed trip counts and predicted values 

from each of the models.  From this table, it is clear that the zero-truncated 

model failed to predict a significant number of large values as the maximum was 

55.23.  Table 2.10 reports five R2 measures to more formally compare the 

performance of each model.  A detailed discussion of these measures can be 

found in Cameron and Windmeijer (1996).  Table 2.10 clearly shows the MI 

model outperformed the zero-truncated model.  While the negative value of the 

deviance residual based R2 measure is unusual, the deviance residual value from 

which this R2 measure was based is smaller for the MI model (15239.91 versus 

29138.36) suggesting greater performance.  Figure 2.3 illustrates the differences 

in performances further using graphs of the cumulative distribution functions of 

observed counts and the model predictions.  Notice how the MI Trips line (solid 

line) is closer to the Observed Trips line (dotted line) nearly throughout the entire 

range of values.  Notice also the Truncated Trips line (dashed line) ceases at 55.23 

trips as previously shown in the summary statistics.   
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2.5.  Discussion and Conclusion 

This study applied a finite mixture model to wildlife watching recreation data 

from a national survey.  The predicted mean matching multiple imputation 

method was used to fill in missing travel cost values.  A unique feature of this 

approach is that contingent valuation method (CVM) responses were included to 

help obtain more accurate imputations for current nonparticipants, as the 

questions elicited respondents’ choke prices.   

The results provided strong evidence in support of heterogeneous 

preferences in the wildlife watching population, which was argued to have 

important implications for sustainable tourism and wildlife management.  The 

analysis identified three subgroups of wildlife watchers roughly characterized as: 

local enthusiasts, traveling enthusiasts, and average participants.  The groups 

exhibited very different visitation and spending patterns, as well as different 

benefits from access to wildlife watching.  An important policy implication from 

the results for wildlife and recreation site managers is that excess visitation can 

be curbed by spreading out the demand by using a mix of prices and visiting 

hours since some visitor were found to be traveling while others local.  Higher 

prices during the weekends and holidays may encourage local visitors to take 

more trips during times with less crowding.  For visitors that are less sensitive to 

prices, restricting visitation during important periods during the year such as 

breeding season may be required to help sustain a healthy stock of wildlife.  The 

post estimation analysis revealed further segmentation was possible 

differentiating skill and experience levels.  There were also indications that 
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wildlife watchers may consciously reside closer to their frequented sites in order 

to reduce travel costs, and their economic activities may differ when participating 

locally compared to when they travel.  The use of choke price data in the 

calculation of consumer surplus revealed some interesting discrepancies that may 

be an avenue for further study.  However, an important consideration in regards 

to the results is the difficulty in obtaining credible open-ended CVM responses.  

Therefore, an extension to these findings might study the mechanisms people use 

in deriving their choke prices more closely.  Finally, future studies could 

investigate the performance of models when the multiple imputation (MI) 

method is used to impute other types of CVM data, as the goodness of fit of a 

model using MI shown here was substantially higher than that of the traditional 

zero-truncated model. 
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Table 2.2: PMM results for travel cost

All: PMM imputed and observed valuesa

n  = 12224 169.44 0.428 0.313

PMM imputed values

trips  = 0

n  = 8453 189.67 0.461 0.331

Observed values
trips  = 1

n  = 1385 211.75 0.0 0.0

trips  = 2

n  = 546 89.42 0.0 0.0

trips = 3

n  = 395 54.87 0.0 0.0

trips  = 4+

n  = 1445 36.34 0.0 0.0

trips  > 0

n  = 3771 110.05 0.0 0.0

CVM Response
n = 3091 408.96 0.0 0.0

Note: Estimated means were obtained using the wildlife watching 
sample survey weight provided in the data.  RVI is the relative increase
in the variance due to nonresponse.  FMI is the fraction of missing
information due to nonresponse.
aImputed values and observed values are in reference to the travel cost
variable defined in table 2.1.

[33.08, 39.59]

[98.88, 121.22]

[372.47, 445.44]

[156.23, 182.64]

[172.41, 206.94]

[183.98, 239.52]

[69.53, 10930]

Mean
Average 

RVI
Largest 

FMI
95% Conf Interval

[45.30, 64.45]
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Table 2.4: MI parameter estimates of single and 3-component FM models 

— Comp-1 Comp-2 Comp-3

age 0.0304 0.0745** -0.0291 0.1063***
(0.0203) (0.0298) (0.0433) (0.0299)

agesq -0.00032 -0.00081*** 0.00035 -0.00113***
(0.00021) (0.00027) (0.00042) (0.00032)

male (=1) 0.4103*** -0.0164 0.7202*** 0.3817
(0.1245) (0.1245) (0.2387) (0.2338)

married (=1) -0.2544 -0.1716 -0.0495 -0.5101**
(0.1399) (0.1419) (0.4454) (0.2270)

ln[hincome ] 0.0654 0.2065 0.02060 0.6876*
(0.0918) (0.1160) (0.1851) (0.3962)

school 0.0556** 0.0714** 0.0161 0.0579
(0.0221) (0.0285) (0.0446) (0.0367)

travel cost (MI) -0.0029*** -0.00057*** -0.0097*** -0.0351***
(0.00037) (0.00017) (0.0021) (0.0121)

photo (=1) 0.8917*** 0.8349*** 0.5403** 0.7643
(0.1307) (0.1415) (0.2575) (0.312)

feedbird (=1) 0.8151*** 0.4978*** 0.6859** 0.6857***
(0.1203) (0.1337) (0.3434) (0.2507)

parks (=1) 1.071*** 1.203*** 0.5205 0.9192***
(0.1240) (0.1290) (0.4556) (0.2799)

wildcontr (=1) 0.4063*** 0.6971*** 0.4557 0.4947**
(0.1159) (0.1427) (0.3007) (0.2111)

trip05 (=1) 1.023*** 1.6887*** 0.3540 0.8345***
(.0986) (0.1320) (0.2461) (0.1670)

hunt06 (=1) 0.9739*** 0.5749** -0.0495 1.036**
(0.2456) (0.2776) (1.1906) (0.4728)

fish06 (=1) 0.8632*** 0.6951*** 1.0225 0.6020**
(0.2438) (0.1718) (0.6319) (0.2743)

constant -3.076*** -7.578*** 1.866 -9.172**
(1.069) (1.207) (2.453) (4.457)

g
a 6.643*** 1.452*** 1.952** 1.244

(0.3458) (0.2369) (0.5397) (0.3234)

g = prob[i ϵ g ]b 1.0 0.785 0.034 0.181

entrophy —

Variable Single-Component 3-Component

0.596
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Table 2.4: MI parameter estimates of single and 3-component FM models continued

— Comp-1 Comp-2 Comp-3

Average RVI 0.0148 0.0149 0.0034 0.0163
Overall Average RVI 0.0148
Largest FMI 0.0893 0.0767 0.0079 0.0596
Overall Largest FMI 0.0893

E[trips |x']g
c 2.69 0.58 16.07 5.85

∑g E[trips |x']g
c 2.69

sample meanc

n

Robust standard errors in parentheses
* significant at 10% level,** significant at 5% level, *** significant at 1% level
aSignificance are based on the t-statistics of the estimates of ln[]g  which were obtained 
using Rubin's (1987) rules. The standard errors were obtained using the Delta method.
bSignificance are based on the t-statistics of the estimates of the auxilary parameter g , where 

g  = exp(g )/(1+g exp(g )), which were obtained using Rubin's (1987) rules. 

Estimates ofg  for components 1 and 2 were significant at ≤ 5% level.
cParameter and mean estimates were obtained using the available survey weights.
Note: RVI is the relative increase in variance due to nonresponse, and FMI is the fraction of missing
information due to nonresponse.

2.05

2.0
12224

Variable Single-Component 3-Component

0.0115

0.0767
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Table 2.5: Component-level mean values 

Comp-2 Comp-3
trip≥ 0 trip = 0 trip > 0 trip > 0

travel cost 177.81 143.04 222.02 66.17 188.45 60.74 23.00

age 50.39 48.82 50.06 47.62 50.87 49.80 47.34

male (=1) 0.46 0.47 0.45 0.49 0.46 0.48 0.52

married (=1) 0.69 0.74 0.75 0.73 0.68 0.66 0.67

ln[hincome ] 10.92 11.14 11.20 11.08 10.85 10.68 10.90

school 13.93 15.02 15.19 14.86 13.59 13.30 13.90

retired (=1) 0.22 0.17 0.19 0.14 0.24 0.23 0.16

photo (=1) 0.23 0.49 0.47 0.50 0.16 0.26 0.29

feedbird (=1) 0.58 0.72 0.68 0.75 0.54 0.54 0.65

parks (=1) 0.16 0.42 0.41 0.44 0.08 0.12 0.21

wildcontr (=1) 0.13 0.31 0.36 0.27 0.08 0.11 0.15

trip05 (=1) 0.29 0.68 0.67 0.69 0.17 0.32 0.39

hunt06 (=1) 0.04 0.07 0.05 0.09 0.03 0.05 0.08

fish06 (=1) 0.14 0.23 0.19 0.26 0.12 0.14 0.19

days 1.44 6.13 5.20 7.02 0 63.88 17.08

days/trips — 3.17 3.79 2.57 0 2.47 1.19

non-resident (=1) — 0.49 1 0 — 0.20 0.14

forrest & rangeland proportion 9.78 13.98 18.58 9.50 8.49 22.66 11.87

forrest & rangeland per capita 0.44 0.45 0.48 0.43 0.43 0.49 0.45

1312 8453 149 1033n 11042 2589 1277

Variable

all out of state in state

Comp-1
trip > 0

Multiple Imputation 3-Component Finite Mixture Model
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Table 2.6: Expected Consumer surplus estimates from MI models

— Comp-1 Comp-2 Comp-3

[342.38] [1756.85] [103.22] [28.50]

E[CS |c 1 = ∞]g 919.97 1018.36 1658.84 166.65

(111.13) (310.27) (362.21) (57.25)
95% Conf. Interval {702.15,1137.78} {410.23,1626.49} {948.91,2368.77} {54.44,278.86}

[342.38] [1388.60]

∑ g E[CS |c 1 = ∞]g 919.97 886.06

(111.13) (283.97)
95% Conf. Interval {702.15,1137.78} {329.48,1442.64}

c 1  = 408.96 a

c 0
	  = 90.89a

[207.16] [290.94] [98.49] [27.19]

E[CS |c 1 < ∞]g 556.62 168.64 1582.70 159.00

(195.79) (616.02) (430.06) (57.26)
95% Conf. Interval {172.87,940.37} {-1038.80,1376.04} {739.78,2425.62} {46.77,271.23}

[207.16] [236.77]

∑ g E[CS |c 1 < ∞]g 556.62 214.67

(195.79) (552.19)
95% Conf. Interval {172.87,940.37} {-867.62,1296.96}

Note: E[CS |c 1 = ∞]g  is the expected consumer surplus with upper limit set to infinity, E[CS|c1< ∞]g is the

consumer surplus with upper limit set to the mean of CVM response (408.96) and lower limit set to the sampl

mean (90.89), and g  is the component-level estimated probability of membership. 

Per-trips expected consumer surplus estimates in brackets and standard errors using the Delta Method in
parentheses.
a  The estimated mean of CVM response and travel cost were obtained using the available survey weights.

3-Component Single-Component
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Table 2.7: Parameter estimates of single and 3-component  zero-truncated FM model

— Comp-1 Comp-2 Comp-3

age 0.0334   0.0823 0.0342 0.0627**
(0.0227)   (0.0571) (0.0257) (0.0268)

agesq -0.00027   -0.00084 -0.00029 -0.00068**
(0.00023)   (0.00056) (0.00025) (0.00029)

male (=1) 0.5263*** 0.7905*** 0.4734*** 0.3374**
(0.1413)   (0.2680) (0.1712) (0.1401)

married (=1) -0.4408** -0.9980*** -0.5059** -0.0298
(0.1733)   (0.3138) (0.1978) (0.1877)

ln[hincome ] 0.0232   0.6657*** 0.1494 0.4924***
(0.1091)   (0.2441) (0.1252) (0.1591)

school -0.0404   -0.1205** -0.0248 -0.0683*
(0.0304)   (0.0532) (0.0351) (0.0365)

travel cost -0.00867*** -0.0037*** -0.0285*** -0.0294***
(0.00092)   (0.00080) (0.0023) (0.0042)

photo (=1) 0.3687** 0.5341* 0.4687*** 0.1537
(0.1439)   (0.2858) (0.1720) (0.1427)

feedbird (=1) 0.3759*** 0.5125* 0.1572 0.2718
(0.1378)   (0.2974) (0.1585) (0.1730)

parks (=1) 0.4542*** -0.4136 0.5780*** 0.1792
(0.1385)   (0.2938) (0.1693) (0.1591)

wildcontr (=1) 0.1860   0.4543 0.4091** 0.2020
(0.1565)   (0.3024) (0.2070) (0.1701)

trip05 (=1) -0.0345   -0.00079 -0.0018 0.1424
(0.1291)   (0.2963) (0.1910) (0.1485)

hunt06 (=1) 0.6595*** 1.334** 0.3306 0.8194***
(0.2433)   (0.5551) (0.3300) (0.2486)

fish06 (=1) 0.3472*  0.0969 0.4136* 0.2422
(0.1943)   (0.3340) (0.2405) (0.1618)

constant -8.884   -15.386*** 0.5146 -4.475***
(7.663)   (2.189) (1.269) (1.703)

g
a 65512.746 10055.087*** 4.118*** 1.867***

(490690.468) (11853.058) (2.044) (0.4053)

g = prob[i ϵ g|trips>0 ]b 1.0 0.184 0.209 0.607

entrophy —

Variable Single-Component 3-Component

0.220
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Table 2.7: Parameter estimates of single and 3-component  zero-truncated FM model continued

— Comp-1 Comp-2 Comp-3

E[trips |trips >0]g
c 7.28 3.00 18.41 4.39

∑ g E[trips |trips >0]g
c 7.28

ln (L ) -7590.718

sample meanc

n

Robust standard errors in parentheses
* significant at 10% level,** significant at 5% level, *** significant at 1% level
aSignificance are based on the t-statistics of the estimates of ln[]g .  The standard errors were

obtained using the Delta method.
bSignificance are based on the t-statistics of the estimates of the auxilary parameter g , where 

g  = exp(g )/(1+g exp(g )). 

Estimates ofg  for components 1 and 2 were significant at ≤ 5% level.
cParameter and mean estimates were obtained using the available survey weights.

7.88
3771

Variable Single-Component 3-Component

7.06

-7333.147
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Table 2.8: Expected Consumer surplus estimates from zero-truncated models 

— Comp-1 Comp-2 Comp-3

[115.34] [271.85] [35.12] [33.96]

E[CS |c 1 = ∞]g 839.68 815.55 646.57 149.10

(89.10) (176.57) (52.66) (21.45)
95% Conf. Interval {665.04,1014.32} {469.47,1161.63} {543.36,749.78} {17.06,191.42}

[115.34] [77.98]

∑ g E[CS |c 1 = ∞]g 839.68

(89.10)
95% Conf. Interval {665.04,1014.32} {216.53,534.87}

c 1  = 408.96 a

c 0
	  = 90.89a

[108.03] [187.48] [35.12] [33.96]

E[CS |c 1 < ∞]g 786.41 562.43 646.50 149.08

(110.34) (340.76) (1059.69) (500.88)
95% Conf. Interval {570.14,1002.68} {105.46,1230.32} {-1430.50,2723.49} {-832.64,1130.80}

[108.03] [62.45]

∑ g E[CS |c 1 < ∞]g 786.41

(110.34)
95% Conf. Interval {570.14,1002.68} {-923.38,1581.58}

Note: E[CS |c 1 = ∞]g  is the expected consumer surplus with upper limit set to infinity, E[CS|c1< ∞]g is the

consumer surplus with upper limit set to the mean of CVM response (408.96) and lower limit set to the sampl

mean (90.89), and g  is the component-level estimated probability of membership. 

Per-trips expected consumer surplus estimates in brackets and standard errors using the Delta Method in
parentheses.
a  The estimated mean of CVM response and travel cost were obtained using the available survey weights.

375.70

(81.21)

329.10

(639.02)

Single-Component 3-Component 
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Table 2.9: Summary statistics of observed trips counts and predicted values  

Observed 7.98 21.39 1 365
MI 7.58 11.91 0.013 219.77
Zero-truncated 7.59 5.86 0.028 55.23
n

Predicted values for MI and zero-truncated models were calculated using

the formula ξi  = ∑ gigi , where gi  is the predicted trip value for the
i th observation in component g .

Mean Std. Dev. Min Max

3771
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Table 2.10: R 2  measures for MI and zero-truncated FM models

Residual Sum of Squares 0.378 0.072

Explained Sum of Squares 0.310 0.075

Squared Sample Correlation 0.382 0.073

Pearson Residuals 0.756 0.459

Deviance Residual 0.698 -0.500
[Deviance Residual Value] [15239.91] [29138.36]

Note: MI values reflect the truncated sample, i.e.,
trips >0, for comparability (n  = 3771).

R 2   measure MI Truncated

Model
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CHAPTER 3: Utility-consistent Joint Estimation of the Value of 

Wildlife Watching Recreation 

 

 

3.1.  Introduction 

Combining revealed preference (RP) data with stated preference (SP) data has 

been shown to have many advantages and applications in nonmarket valuation 

(Cameron, 1992; Dhazn, Woodward, Ozuna Jr., & Griffin, 2003; Eom & Larson, 

2006; González-Sepúlveda, 2008;  González-Sepúlveda, Loomis, & González-

Cabán, 2008; Whitehead, Dumas, Hertine, Hill, & Buerger, 2008).  RP data 

provides information on actual behavior which can be used to reveal an 

individual’s preference for a nonmarket good given the current circumstances 

(Herriges & Kling, 1999).  SP data provides information on hypothetical behavior 

which can also be used to reveal preferences, but within a hypothetical context 

where the circumstances are changed (Mitchell & Carson, 1989).  Combining the 

two types has advantages such as increased statistical efficiency (González-

Sepúlveda, Loomis, & González-Cabán, 2008) and an ability to attenuate some 

problems that are particular to each data type (Cameron, 1992; Azevedo, 

Herriges, & Kling, 2003).   

However, when joining RP information such as travel cost method (TCM) 

data with SP information such as contingent valuation method (CVM) data, 

different approaches may yield different degrees of data integrebility and 

cohesion of information.  Furthermore, the modeling frameworks that arise from 

TCM and CVM may not always reflect the same preference structure nor are they 
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guranteed to describe the same scenario.  This paper presents a joint model that 

combines TCM count data with CVM dichotomous choice data in a way so that 

the preference structure reflected in the two data types as well as the scenarios 

being analyzed and welfare measures are consistent. 

The integration of TCM and CVM data into a joint model can be 

accomplished is several ways (For example, Loomis, 1997; González-Sepúlveda, 

Loomis, & González-Cabán, 2008).  The framework used in this paper follows 

Cameron (1992) who proposed a modeling approach that constrains the utility 

function reflected in the TCM data to be the same as the utility function reflected 

in the CVM data.  Cameron (1992) argued the decisions of a utility maximizing 

economic agent, be they actual or hypothetical, should reflect the same 

underlying preference structure.  Moreover, by requiring the hypothetical 

behaviors from CVM to be consistent with actual TCM behaviors, the problem of 

hypothetical bias attributed to CVM questions may be attenuated.  In a similar 

manner, the CVM data contributes information about demand that is difficult to 

capture from using TCM data alone such as nonuse values.  Cameron’s (1992) 

utility-consistent joint model combines the TCM and CVM modeling frameworks 

so that a single set of estimates incorporating both types of information are 

obtained.  However, success in integrating the models depends on the 

cohesiveness of the two types of information.      

Combining TCM and CVM data can be more fruitful if they can jointly be 

used to investigate a common scenario.  A scenario described in the CVM survey 

to elicit compensating/equivalent variation (CV) (or willingness to pay) should 

align with the scenario reflected by a (change in) consumer surplus (CS) (or net 
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benefits) from TCM.  However, scenarios that can easily be depicted in CVM 

surveys may not be as easy to analyze using a TCM model.  Compared to CVM, a 

TCM analysis is less direct since it involves first estimating a demand function 

and then calculating the change in consumer surplus.  Even with a common 

scenario however, the welfare measures of TCM and CVM (CV and CS) will 

generally differ due to their theoretical underpinnings.  In this paper, we present 

a utility-consistent joint model where the TCM and CVM welfare measures are 

equal.  The advantage of having this equivalence is that welfare effects can be 

interpreted from either a Hicksian and Marshallian perspective—that is, a single 

estimate can be interpreted in terms of willingness to pay or net benefits.   

The remainder of the paper is as follows.  The next section reviews the 

existing literature on combining RP and SP data and the utility-consistent joint 

estimation approach.  Section 3.3 presents the methodology used to estimate the 

utility-consistent model, and the formulas underlying the econometric estimation 

and calculation of the welfare measures.  The data used in the analysis is 

discussed in section 3.4 and the results are reported in section 3.5.  Section 3.6 

provides the discussion and conclusion, and avenues for future research to end 

the paper.      

 

3.2.  Literature Review 

3.2.1.  Combining Revealed and Stated Preference Data 

Nonmarket valuation data has taken two major forms over the past several 

decades; revealed preference (RP) and stated preference (SP).  RP data consists 

of information on observed behavior, such as the number of recreation trips 
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taken over the course of a year and the amount of money spent on these trips.  SP 

data consists of responses or statements concerning hypothetical behavior.  Here, 

the respondent may be asked to consider a hypothetical rise in the cost of access 

to a recreational facility or the quality of the facility.  They would then be asked 

whether they would change their behavior in response to the scenario.   

 RP data are analyzed using the Travel Cost Method (TCM) or Hedonic 

Price Models (HPM).  TCM is used to estimate demand functions for recreation 

trips, where the cost of travel acts as the price.  The coefficient estimate for the 

travel cost can be used to derive an estimate of the consumer surplus.  In HPM, 

benefits from nonmarket goods are estimated by observing its effect on the prices 

of market goods such as residential real estate.  For SP data, the Contingent 

Valuation Method (CVM) is the most common means of collecting information 

while other methods such as the choice experiment method is popular as well.  

With CVM, individuals may be asked to provide a yes or no response to a 

proposed hypothetical scenario whereby the data are analyzed using discrete 

choice models.   

 Criticisms surrounding the use of CVM data concern the hypothetical 

nature of the responses and its credibility as a reliable source of information on 

preferences (Bishop & Heberlein, 1979, 1986), although there is little consensus 

on the matter as subsequent validation studies have refuted these aspects as a 

problem (Loomis, 1989; Carson, Flores, Martin, & Wright, 1996).  The use of 

TCM data has been criticized for its inability to capture passive or nonuse values 

and sensitivity to how the travel cost variable is defined.  By combining the data 

types, it is hoped that they can complement each other and overcome some of the 
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weaknesses that have been found when they are used individually (Azevedo, 

Herriges, & Kling, 2003; Whitehead, Pattanayak, Houtven, & Gelso, 2008).   

Loomis (1997) merged TCM and CVM data within the framework of the 

dichotomous choice format initiated by Hanemann (1984) and Bishop and 

Heberlein (1979).  Loomis (1997) used the notion that positive trip records reflect 

an implicit yes response with respect to current costs.  These were matched with 

responses to CVM questions which served as an additional choice observation 

with a relatively higher hypothetical cost.   

González-Sepúlveda, Loomis, and González-Cabán (2008) combined CVM 

dichotomous choice data with TCM count data in a joint model.  Their CVM 

question asked respondents if they would have taken their last trip if the cost was 

increased by a certain amount chosen by the survey.  Recreation trips in the TCM 

component were modeled as count data and adjusted for truncation and 

endogenous stratification.  The CVM dichotomous choice responses were 

modeled as a Probit distributed discrete variable.  Their modeling approach 

allowed the parameters of the TCM model to be independent of the parameters of 

the CVM model.   

 

3.2.2.  Utility-consistent Joint Estimation 
 
Cameron (1992) developed a way of combining stated and revealed preference 

data into a model where a single set of parameters are shared by the TCM and 

CVM models.  In a study about recreational fishermen, the CVM questions asked 

whether the respondent would entirely cease taking salt water fishing trips given 

a increase in total cost.  A quadratic functional form was adopted for the utility 
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function which was then used to derive a corresponding demand function.  In the 

econometric model, recreation trips in the TCM component were modeled as a 

continuous and normally distributed variable while the CVM dichotomous choice 

responses were modeled as a Probit discrete variable.  In order to impose the 

requirement that the CVM and TCM decisions reflect the same utility function, 

the models were estimated simultaneously in a joint maximum likelihood 

function.  Compensating variation and equivalent variation estimates were 

obtained using Hanemann’s (1984) utility difference approach.   

Dhazn, Woodward, Ozuna Jr., and Griffin (2003) extended Cameron’s 

(1992) utility-consistent framework of combining CVM dichotomous choice data 

with TCM data by modeling the TCM data as a truncated normal distribution.  

The CVM portion of the survey presented respondents with a randomly chosen 

price for a program to maintain the current red snapper catch rates, and then 

were asked if they would be willing to pay that price or consider the alternative of 

an eventual elimination of the red snapper population.  Similar to Cameron 

(1992), the authors used the utility-difference approach outlined in Hannemann 

(1984) to derive a compensating variation measure to estimate respondents’ 

willingness to pay for maintaining red snapper catch rates.  One caveat 

acknowledged by the authors however is that the responses to their CVM 

questions reflect discrete changes in fishing stock while the trip responses may be 

affected by marginal changes in fishery.  Although the data may capture 

essentially the same preferences, the authors still found the TCM welfare 

estimates to be different from the CVM estimates. 
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Eom and Larson (2006) also combined data from TCM and CVM data in a 

utility-consistent unified model.  Their goal however was to use this framework to 

develop a way to more easily obtain estimates of use, nonuse, and total values of 

environmental quality changes.  In their approach they were also able to test 

whether preferences satisfied weak complementarity.  The utility-consistent 

modeling approach was slightly different from Cameron (1992) in that the 

authors began with the demand function which took on a semi-log functional 

form and then derived a quasi-expenditure function to finally arrive at an indirect 

utility function.  The advantage of using Eom and Larson’s (2006) approach is 

that a semi-log functional form of the demand function is used which conforms to 

the functional form of the count data regression model.  A count data regression 

model has been shown to be more appropriate for modeling recreation trip data 

(Hellerstein, 1991; Hellerstein & Mendelsohn, 1993; Cameron & Trivedi, 1998; 

Hilbe, 2011).  This extension on Cameron’s (1992) model was also adopted by 

González-Sepúlveda (2008) to study recreators at the El Yunque National Forest 

in Puerto Rico but the author here used a truncated count data distribution to 

model the recreation trip data.       

González-Sepúlveda (2008) developed a utility-consistent version of the 

joint model used in González-Sepúlveda, Loomis, and González-Cabán (2008).  

González-Sepúlveda’s (2008) extension of Cameron (1992) followed closely with 

that of Eom and Larson (2006) in deriving the utility-difference model but 

adopted the econometric framework used in González-Sepúlveda, Loomis, and 

González-Cabán (2008).  The author also reported estimates of consumer surplus 

(CS) and median compensating surplus.  The CS measure captures the net 
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benefits from access to recreation trips.  The CVM question however, asked 

respondents about their ‘last’ or most recent trip, and not ‘all’ trips which would 

be more reflective of access.  Therefore, the CVM scenario is different from the 

TCM scenario and also the welfare measures: CS from TCM, and the 

compensating variation (CV) from the CVM, do not equal.  

 The model presented in this study uses the utility-consistent frameworks 

of Cameron (1992), Eom and Larson (2006), and González-Sepúlveda (2008), 

but the scenarios reflected by the CS measure from TCM is the same for CV 

measure from CVM.  The CVM questions follows a similar scenario as in 

Cameron (1992) while the TCM scenario is similar to that in González-Sepúlveda 

(2008) resulting in a CS = CV.  The model presented in this paper demonstrates 

how understanding the language used in the CVM questions and the limitations 

of the TCM analysis can improve the integration of TCM and CVM information.  

The next section derives the utility-consistent framework used in this study.     

 

 
3.3.  Methodology 

 
3.3.1.  Derivation of Utility-difference Model using TCM Parameters 

Similar to Cameron (1992) and others, we express the utility maximization 

objective function with recreation trips	 , a composite of all-other-goods	 , 

travel cost	 , cost of all-other-goods	 , and income  as 

 

(1) max ,      subject to     
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Here, the Marshallian demand function for recreational trips follows a semi-log 

form as given by 

 

2 							 , exp	 ′ξ  

 

where  is a vector of other factors, and	 0 and 0 are assumed for 

theoretical consistency.  The advantage of using the semi-log form is its 

consistency with the count data regression model.  Due to the integer or count 

nature of recreation trip data, count data distributions such as the Poisson and 

negative binomial have been recommended (Hellerstein, 1991; Hellerstein & 

Mendelsohn, 1993; Cameron & Trivedi, 1998; Hilbe, 2011).  Following Eom and 

Larson (2006) and González-Sepúlveda (2008), a quasi-expenditure function 

corresponding to the demand function in (2) is given by  

 

3 						e ,
1
ln	 exp ′ξ  

 

where  is a constant of integration.  The quasi-expenditure function (3) is 

defined under 0 ⁄  (See Eom & Larson, 2006).  For simplicity, we allow 

 to possess the same functional properties as the theoretical reference utility 

level  so that an indirect utility function corresponding to (3) can be expressed 

as 
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4 						 ,
1
exp

1
exp ′ξ  

																											
exp exp	 ′ξ

 

 

The validity of the above expression can be verified using Roy’s Identity.  In 

addition, the corresponding direct utility function can be obtained by multiplying 

(4) by the unit factor exp /exp	  and rearranging as follows. 

 

5 						 ∗ exp	 ′ξ
exp	

 

																								
∗

exp	
 

 

where ∗ 0	is the observed number of trips optimally chosen by the respondent.  

In this study, the utility-difference equation was model after the CVM question 

found in the 1996 National Survey of Fishing, Hunting, and Wildlife-Associated 

Recreation.  The CVM question asked respondents: Would you have taken any 

trips…if your total cost were $B more than the amount you just reported?  

(Boyle & Roach, 1998), where $B  is randomly chosen by the survey.  In 

responding, we assume the respondent decides whether their utility of paying the 

additional $B and continuing to take positive trips would have been greater than 

the utility of not paying and completely forgoing taking any trips.  This “all or 

nothing” style of dichotmous choice questions have been used by many CVM 

practitioners (See Bishop, Heberlein, & Kealy, 1983; Cameron, 1988; Hanemann, 
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1984; McConnell, 1990; Cameron, 1992).  Therefore, the utility of paying the 

additional $B and taking positive trips can be expressed as 

 

6 					 ∗ 0| 0 	
∗

exp	
 

																																																																			
∗

exp	

∗

exp	
 

																																																																			
∗ ∗

exp	
 

																																																																			
∗ 1

exp	
 

 

where ⁄ exp	 ′ξ , and for present purposes / ∗.  The 

utility of not paying $B and foregoing participation is 

 

7 						 ∗ 0| 0
1

exp	
 

 

Therefore given (6) and (7), the respondent is expected to answer yes to the CVM 

question if and only if 

 

8 						Δ ∗ 0| 0 ∗ 0| 0 0 

																			
∗ 1

exp	
1

exp
0 

																			
∗ 1
exp	

0 
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∗ 1
exp	

0 

																			
∗ 1 | |
| |exp	

0 

 

As noted in Cameron (1992), survey data leading to TCM expressions such as (2) 

reflect the respondent’s utility maximizing quantity decisions given the current 

conditions.  Thus, we expect the CVM model expressed in (8) to be based on the 

same preference structure as the TCM model in (2).  

 

3.3.2.  Estimation of Utility-consistent Model Parameters 

Following previous studies that applied the utility-consistent framework, the 

utility-difference model was combined with the TCM count data model in a 

maxium likelihood  function and the two models were estimated simultaneously.  

Parameter estimates of the utility-consistent model was found by maximizing the 

log-likelihood function 

 

, ln Φ 1 , ln 1 Φ  

								 , ln
exp θ

1 exp θ
1

ln 1 exp θ ln Γ ,
1

ln Γ , 1 ln Γ
1

ln 1 1 exp θ ⁄  
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where ,  is the CVM dichotomous response variable, Φ ∙  is the standard 

normal cumulative distribution function, ,  is the TCM count variable that 

follows a zero-truncated negative binomial distribution with mean function 

exp θ exp ξ , where  is a vector of covariates and θ is a 

vector of model parameters.  For the utility-consistent joint model, 

 

Δ
, 1  

 
 

where	Δ  is the utility-difference expression shown in equation (8), 0 is the 

standard normal standard deviation, and  is the correlation coefficient.  Also, 

,  is a standardized fitted error in the demand function (Cameron, 1992) 

defined as 

 

, , E , var ,  , with conditional expected value 

function  

 

E ,
exp θ

1 1 exp θ ⁄  

 

The conditional variance function as shown in Grogger and Carson (1991) is  

 

var ,
E ,

1 exp θ
1 1 exp θ ⁄ E , 	 
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It should be mentioned that the utility difference formulation in (8) is evaluated 

with travel cost set to infinity because of the semi-log specification of demand.  As 

explained by Hellerstein and Mendelsohn (1993), the expected compensating 

variation measure	E  is equivalent to the expected consumer surplus measure 

E[CS] as a consequence of evaluating the welfare measures with the travel cost in 

(7) set to infinity.   

 

3.2.3.  Econometric Equivalence between Compensating Variation and 

Consumer Surplus 

Hellerstein and Mendelsohn (1993) showed that because count data models can 

be derived from repeated discrete choices, the standard expected consumer 

surplus E[CS] formula provides an approximation to a measure of the expected 

compensating variationxix.  While the derivation of this result is shown in 

Hellerstein and Mendelsohn (1993), we provide the resulting expression below. 

  

9        E , , E  

 

where ,  is the probability that the good will be chosen on day	 , ,  is 

the expected value of the count variable with  and  as the lower and upper 

price limits of integration, and income y.  The implication of (9) used in this 

                                                           
xix This conclusion has also been reach by Willig(1976) in his support for the use of consumer surplus as an 
acceptable approximation for the compensating variation. 
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paper and mentioned by Hellerstein and Mendelsohn (1993) however is that 

when , exp	 θ  and ∞ in (1),	E E ⁄ , where  is 

the coefficient for p.  This equivalence is convenient in that welfare changes can 

be interpreted in terms of net benefits or willingness to pay.  However, it is 

unclear whether the E E 	result can be assumed to hold in general and 

was not explained in Hellerstein and Mendelsohn (1993) whether this 

equivalence should be true even when TCM data is used alone.  As mentioned 

earlier, the utility-consistent model presented in this paper imposes this 

equivalence within the modeling framework.  The CVM questions in the survey 

used in this study presented respondents with an ‘all or nothing’ scenario as 

reflected in the utility-difference equation in (8).  In fact, it could be argued that 

both CVM and TCM must be evaluated in terms of the ‘all or nothing’ scenario for 

this relation to be realized.  A graphical depiction of this scenario is shown in 

figure 3.1.   

Figure 3.1 illustrates the scenario where the consumer is completely 

substituting away from recreation trips (Trips) towards All Other Goods (AOG) 

because their current travel cost increased from P to P*.  At P*, the consumer 

does not take any recreation trips and allocates their entire budget towards AOG.  

This is illustrated as a movement from point A to B, representing a decrease in 

utility from U0 to U1, and a pivot of the budget line B to where it aligns with the y-

axis.  In this case, the indifference curves must intersect the y-axis because a 

choke price P* exists, thus suggesting a quasi-linear function form for utility.  The 

compensating variation (CV), defined as the difference in expenditure (or utility) 

functions when the individual faces the choke price (Whitehead & Aiken, 2007), 
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can be measured as the difference between points C and D.  Notice this is exactly 

equal to the consumer surplus (CS), as measured by the area underneath the 

inverse demand function D and above price P since the Marshallian (DM) and 

Hicksian (DH) demands are equal here.  This is easily shown by setting (8) to zero 

in order to isolate	 , which serves as a measure of CV (Hanemann, 1984).    

Taking the expected value of the above expression gives the expected 

compensating variation measure which is exactly equal to the expected consumer 

surplus measure derived from the travel cost model. 

 

10 						E[CV] E[B]
E ∗

| |
∙ E ∗ E[CS] 

 

where the truncated mean E ,  is used in place of E ∗ .  Expression (10) is 

an econometric expression of the theoretical equivalence between CS and CV.  

 

3.4.  Data 

Wildlife watching recreation in the United States is one of the most popular 

forms of outdoor recreation.  An estimated 71.8 million U.S. residents enjoyed 

observing, feeding, or photographing wildlife in 2011 (USFWS, 2012).  The 

number of wildlife watchers has grown steadily since 1996 (14 percent) and has 

contributed in various ways to the health of the nation’s, states’, and local 

economies.  Spending on wildlife-watching activities generated $18.2 billion in 

tax revenues and 1.1 million jobs (Leonard, 2008).  Total industry output is 

estimated to be $122.6 billion in major sectors in the U.S. such as retail trade, 
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manufacturing, and hospitality and food services.  There are also important 

implications for wildlife management which has led to some pioneering studies 

on the relationship between wildlife watching recreation and management 

programs (Cicchetti, 1973; Bishop, 1978; Hay & McConnell, 1979; Hay & 

McConnell, 1984; Rockel & Kealy, 1991). 

Wildlife watching data was obtained from the 1996 National Survey of 

Fishing, Hunting, and Wildlife-Associated Recreation which is conducted every 5 

years by the U.S. Fish and Wildlife Service in conjunction with the U.S. Census 

Bureau.  Although the analysis from this data is outdated, it is still useful for 

examining and comparing different econometric approaches.  The data includes 

an array of information on wildlife watching activities by residents around their 

homes and at least one mile away.  Data collection was carried out in two phases: 

an initial screening survey to identify current and potential wildlife watchers, and 

a series of follow-up interviews on the selected sample to collect detailed data on 

their wildlife watching activities.  The final sample consisted of 11,759 unique 

records (individuals) that reported the total number of trips for the purpose of 

observing, feeding, or photographing wildlife at least one mile from their home 

and the respective expenditures.  Nonparticipants, who accounted for about 62 

percent of the sample, were excluded from the analysis because of missing travel 

cost data.  The final sample size used in this study was 4,482 records.   

Descriptions of the variables and their summary statistics are reported in table 

3.1. 

Contingent valuation method (CVM) questions were included for all 

persons who had taken at least one trip during 1996.  CVM questions were 
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presented using the dichotomous-choice format.  Respondents were asked to 

provide a yes or no response to the question:  

…Would you have taken any trips during 1996 for the PRIMARY PURPOSE of 

observing, photographing, or feeding wildlife in [state] if your total costs were 

$[bid value] more than the amount you just reported? 

The travel cost variable was constructed using the respondent’s total 

transportation costs, access costs, and their opportunity cost of time.  The cost of 

time can have a significant influence on the estimation of recreation demand.  As 

shown in previous studies, ignoring time costs can lead to an overestimate of the 

travel cost parameter, and therefore an underestimate of benefits (Cesario & 

Knetsch, 1976; McConnell & Strand, 1981; Bockstael, Strand, & Hannemann, 

1987).  The opportunity cost of time was calculated using the reported total 

number of potential work days (250 days) and an estimate of their personal 

income in order to arrive at an estimate of their daily earnings.  Daily earnings 

were used instead of hourly wage because the data on the amount of time spent 

on each trip was recorded in days.  Following González-Sepúlveda, Loomis, and 

González-Cabán (2008), the wage factor o.33 was used but divideds by 8 

(estimated daily work hours) to arrive at the factor 0.04xx.   

Other variables included here are an estimate of personal income, age, 

marital status, gender, and indicators of wildlife watching activities, other 

outdoor recreation activities, and measures of the amount of forrest and 

                                                           
xx There is much variation in the literature regarding which wage factor should be used.  For instance, 
McConnell and Strand (1981) suggests the wage factor 0.612 for anglers which was adopted by Dhazn, 
Woodward, Ozuna Jr., and Griffin (2003).  Rockel and  Kealy (1991) however, applied 0.30 and 0.60 for 
wildlife watchers, while Zawacki, Marsink, and Bowker (2000) provided estimates that used 0.0, 0.25, and 
0.50 for wildlife watchers.   
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rangeland at their destinations.  Table 3.2 provides the summary statistics of the 

variables used in the analysis. 

 

3.5.  Results 

The results of the utility-consistent model are reported in table 3.2.  For 

comparison, the results of individual TCM and CVM models (INDIVIDUAL) and 

a joint model of the TCM and CVM data (JOINT TCM-CVM) are also reported in 

table 3.2.  Similar to the utility-consistent model, the zero-truncated negative 

binomial regression model (ZTNB) was used to estimate the TCM portion of the 

individual and joint models, while Cameron and Englin’s (1997) censored-normal 

(CENSORED) model was used to estimate the CVM portions.  The framework of 

the joint model follows closely with that used in González-Sepúlveda, Loomis, 

and González-Cabán (2008). Similar to González-Sepúlveda, Loomis, and 

González-Cabán (2008), the results for the joint model shows there was a slight 

improvement in statistical performance compared to the individual models as 

indicated by comparing the log-likelihood value (-15450.08) to the sum of the 

values from the individual ZTNB and CENSORED models (-15460.03).  This 

improvement is also reflected in the Akaike Information Criterion and the 

Bayesian Information Criterion measures.  The travel cost coefficient in the ZTNB 

portion of the joint model is slightly larger than in the individual model leading 

to a smaller E[CS] estimate.  The differences across the other ZTNB variables are 

also small, and no substantial differences across the predicted values E[trips|x', 

trips>0].  The differences in the estimates across the CVM portions are also 

unremarkable.  The E[CV] value is estimated to be smaller in the joint model 
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compared to the individual model and the same is true for the  estimate.  The 

estimate is positive and significant indicating that the CVM and TCM portions 

of the joint model are positively correlated.  However, the magnitude of  (0.071) 

suggests the association between the two models is not very strong.  Reported 

also are the per-trip values of E[CV] for the INDIVIDUAL and JOINT TCM-CVM 

models to compare with E[CS].  It is clear that they are not equal in these casesxxi.   

The utility-consistent joint model results were obtained using the formulas 

presented in the methodology section.  Most of the coefficient estimates are in the 

range of the other two ZTNB models but the estimated  is quite large.  One 

reason for this may be due to the fact that the utility-difference model in the CVM 

portion is not a regression model as is the case in the individual and joint models.  

Therefore, it may have not been able to explain much of the variation in the CVM 

responses which could lead to an inflated .  Also, the log-likelihood values are 

lower, and the information criterion values higher than the joint model.  

However, it is unclear whether we can accurately compare the performance of the 

utility consistent model with the individual and joint models using these 

measures since the modeling frameworks are very different.  The estimate is 

also positive and significant so the joint and utility-consistent models both agree 

that the CVM and TCM portions move in the same direction.  The welfare 

measures for the CVM and TCM portions are the same in this model, that is 

E[CS] = per-trip E[CV].  The value (63.51) is lower than that from the other ZTNB 

                                                           
xxi It is possible that scaling the variances of the two model components, where one is normalized and the 
other a proportion of the first might provide a better comparison of the results.  However, it was not 
obvious how this could be accomplished since one model uses a binary variable and the other a count 
variable.   
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models and much lower than the CENSORED models still.  This is in contrast to 

the results found in González-Sepúlveda (2008) where the utility-consistent 

model provided E[CS] estimates that lied in between those of the individual 

ZTNB and CENSORED models.            

 

3.6.  Discussion and Conclusion 

This paper estimated a utility-consistent joint model of wildlife watching 

recreation using TCM count data and CVM dichotomous choice data.  It was 

argued in this paper that consistency across the TCM and CVM scenarios when 

combining data allowed for better cohesion in the two types of information.   

Also, certain types of scenarios such as the “all or nothing” scenario, led to the 

TCM welfare measure being equal to the CVM welfare measure but it was shown 

that this equivalence needed to be explicitly incorporated into the modeling 

framework to hold.  Thus, the novelty of the utility-consistent model presented 

here was that it was consistent across the welfare measures as well.  Although it 

was unclear how its statistical performance fared against other modeling 

frameworks, its adoption may be argued purely from a conceptual standpoint.  

Thus, the argument for combining RP and SP data is still largely supported in 

this paper, although justifying the method by which it should be carried out may 

require further study.  The utility-consistent model presented in this paper 

demonstrated how greater cohesion between the RP and SP information can be 

obtained by taking care at matching the modeling frameworks and scenarios at 

the design phase of the survey.  While the focus of this paper was on combining 

TCM and CVM data, expanding the integration exercise to data from other 
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nonmarket valuation methods such as the hedonic price model and choice 

experiment surveys, could prove fruitful.  
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Table 3.2: Individual and joint model, and utility-consistent model results 

travel cost (10$) -0.1538**** — -0.1557**** — -0.1574****
(-5.21)   (-5.25)    (-5.24)   

personal income (1000$) -0.0013   0.0036**** -0.0015    0.0035**** -0.0020   
(-0.69)   (5.55) (-0.79)    (5.52)    (-1.04)   

age (10 yrs.) 0.2048**** 0.0187* 0.2067**** 0.0179*   0.2058****
(6.09)   (1.80) (6.85)    (1.76)    (6.17)   

married (=1) -0.2699*** -0.0415 -0.2755*** -0.0402    -0.2678***
(-3.05)   (-1.32) (-2.77)    (-1.31)    (-2.98)   

male (=1) 0.1759*   0.0279 0.1664*   0.0290    0.1585   
(1.89)   (0.92) (1.81)    (0.97)    (1.69)   

photo (=1) 0.3058**** 0.1499**** 0.3057**** 0.1478**** 0.2826****
(3.76)   (4.66) (3.42)    (4.72)    (3.47)   

parks (=1) 0.4501**** 0.0860*** 0.4563**** 0.0847*** 0.4425****
(4.82)   (2.64) (4.64)    (2.66)    (4.69)   

private (=1) 0.7919**** 0.1629**** 0.7848**** 0.1627**** 0.7564****
(9.91)   (4.92) (9.27)    (5.03)    (9.36)   

forrest & rangeland proportion 0.1494   -0.0268 0.1790    -0.0292    0.1653   
(0.67)   (-0.34) (0.75)    (-0.38)    (0.73)   

hunted (=1) 0.4504*** 0.0080 0.4335*** 0.0087    0.4218***
(3.13)   (0.14) (3.11)    (0.16)    (3.04)   

fished (=1) 0.1724*   -0.0556 0.1869*   -0.0536    0.1983*   
(1.70)   (-1.53) (1.82)    (-1.51)    (1.92)   

constant -0.6214*   -0.1754** -0.6382    -0.1930**  -0.5320*   
(-1.95)   (-2.13) (-0.91)    (-2.36)    (-1.67)   

ln() 2.4022*** — 2.4067**** — 2.3879****
(8.54)   (3.96)    (8.53)   

 11.05 11.10 10.89
ln() — -0.4228**** -0.4470**** 20.10****

(-3.78) (-4.09)    (11.12)   
 — 0.655 0.640 5.362e+08
atanh() — — — 0.0708**** 0.0932****

(4.37)    (5.09)   
 — — — 0.071 0.093

INDIVIDUAL JOINT  TCM-CVM
UTILITY-

CONSISTENT

ZTNB CENSORED ZTNB CENSORED ZTNB
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Table 3.2: Individual and joint model, and utility-consistent model results continued

sample mean
E[trips |x', trips >0] 8.79 — 8.74 — 8.95
E[CS ] 65.03 — 64.22 — 63.51
E[CV ] — 146.59 — 120.61 —
Per-trip E[CV ] 16.67 13.80 63.51

log L -12592.26 -2867.77 -15679.97

aic 25210.52 5759.54 31389.95

bic 25293.82 5836.43 31486.06

n

t statistics in parentheses using robust standard errors clustered by person
designation.
* p<0.10, ** p<0.05, *** p<0.01, **** p<0.001
Estimates were obtained using the available sampling weights provided in the data.

INDIVIDUAL JOINT  TCM-CVM
UTILITY-

CONSISTENT

ZTNB CENSORED ZTNB CENSORED ZTNB

8.98

-15450.08

30952.16

31118.76

4482

-15460.03

30970.06

31130.25
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CHAPTER 4: Recoding Double-bounded Dichotomous Choice 

Contingent Valuation Method Data with Nonresponse 

 

 

4.1.  Introduction 

The double-bounded dichotomous choice (DB) format in contingent valuation 

method (CVM) surveys was introduced as a way of obtaining greater statistical 

efficiency compared to a single-bounded (SB) format (Hanemann, Loomis, and 

Kanninen, 1991).  Similar to a SB format, DB asks survey participants if they 

would be willing to pay a certain amount of money (BID), contingent upon 

realizing a described scenario, where BID is the basis for measuring willingness 

to pay (WTP) (Bishop & Heberlein, 1979; Hanemann, 1984).  The difference is 

that DB includes a follow-up question that depends on the response to the initial 

question.  For example, suppose the respondent answers  to the initial 

question.  Then a follow-up question asks if they (respondent) would be willing to 

pay a higher amount, keeping the scenario constant.  If the respondent 

answers	 , then the follow-up question asks if they would be willing to pay a 

lower amount, again keeping the scenario constant.   

Since its initial introduction, researchers have noticed certain tendencies 

of respondents in that they may answer the follow-up questions differently than 

how they answered the initial question (See Haab & McConnell, 2002).  For 

example, respondents initially answering yes may answer no to the follow-up 

question because they feel as if they are being exploited.  Along the same lines, 

respondent answering no to the initial question may feel the quality of the good 
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may be lower than expected when faced with a lower bid amount in the follow-up 

question.  The fundamental problem here is that the respondent’s expectations 

concerning the good may have changed from the initial response to the follow-up 

response.  This behavior has been referred to as strategic behavior to describe 

how respondents may strategically alter their responses in order to obfuscate 

their true preferences.  The particular case examined in this paper is where 

respondents fail or refuse to answer the follow-up question, or nonresponsexxii.  

Failing to answer may be caused by an inability to decide which course of action 

should be preferred.  Refusing to answer may be a sign of strategic behavior in 

that the respondent may be trying to deter additional questions being asked from 

the surveyor.  Here, there may be a disconnect between the respondent’s actual 

preference structure and the preference structure reflected by their responses (or 

nonresponses).  Whether nonresponses are due to indecisions or strategic 

refusals, there are losses in statistical efficiency and bias when observations with 

nonresponses are excluded from the analysis through list-wise deletion (Brox, 

Kumar & Strollery, 2003).  In this paper, a simple recoding procedure for DB 

data with nonresponse is introduced that allows the analyst to preserve the 

observation with the missing data and curtail the loss in statistical efficiency and 

bias from list-wise deletion. 

                                                           
xxii Issues have been raised as to whether the questions are incentive compatible (Alberini, Kanninen & 
Carson, 1997; Whitehead, 2002) and also whether the elicited values are consistent across the initial and 
the follow-up questions (Cameron & Quiggin, 1994).  Cameron and Quiggin (1994) find that the value 
distributions examine in their study are not the same across the initial and follow-up responses.  
Nevertheless, some researchers have extended the bidding process to a third level or triple-bounded 
(Langford, Bateman & Langford 1996), or developed other variants such as the one-and-one-half bound 
(Cooper, Hanemann & Signorello, 2002) and the multiple-bounded formats (Welsh & Poe, 1998).  
Unfortunately, this scope of this study is limited to addressing the nonresponse itself and therefore does not 
investigate the underlying causes of strategic nonresponse.   
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The basic idea is to recode the data so that the remaining (non-missing) 

information from the initial response can still be incorporated into the analysis.  

In other words, respondents that do not answer the follow-up question will have 

their data recoded so that their initial response becomes their final response.  The 

main objective of this study is to compare the statistical efficiencies and biases 

from recoding and list-wise deletion.  The double-bounded interval model 

introduced by Hanemann, Loomis, and Kanninen (1991) is used to obtain the 

parameter estimates from Monte Carlo simulations.  Two types of nonresponse 

are examined in this study:  random nonresponse and systematic nonresponse.  

The next section reviews the literature on nonresponse in contingent valuation 

surveys and its effects, and conventional approaches to address nonresponse in 

surveys.  Section 4.3 presents the recoding procedure applied to nonresponse in 

the DB follow-up question and the Monte Carlo simulation used to create the 

nonresponse scenarios.  The results of the simulation are reported in section 4.4, 

and section 4.5 concludes the paper with discussions about the findings.   

 

4.2.  Literature Review 

4.2.1. Nonresponse in Contingent Valuation Surveys 

4.2.1.1.  Unit versus Item Nonresponse  

Unit nonresponse (UNR) occurs when recipients of surveys either fail to return 

the survey or it is returned without any responses.  Item nonresponse (INR) 

occurs when only certain questions are left unanswered.  Although contingent 

valuation method (CVM) surveys are at risk of both types of nonresponses, UNR 

is considered to be a more serious issue and addressed more often in the 
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literature.  In CVM surveys, the questions having the highest propensity for 

nonresponse are the bid or WTP questions (Mitchell & Carson, 1989; Dietz, 

2001).  Because of the importance of WTP questions in CVM, INR in these 

questions may have the same effect as a UNR by way of list-wise deletion of 

observations.  

 

4.2.1.2.  Sources of Nonresponse  

UNR occurs when the sampled unit is missing because respondents either 

explicitly refused to participate or there is some failure in establishing contact.  

INR can occur when individuals are asked to disclose sensitive information such 

as income and they refuse.  Incidentally, studies have shown that the level of 

income may have a systematic effect on nonresponse (Korinek, Mistiaen & 

Ravallion, 2007).  INR may also arise because individuals are either disinterested 

in the subject matter of the question or are simply indifferent.  Also, if there are 

too many questions being asked or if the questions themselves are mentally 

exhausting, individuals may experience survey fatigue which will lead to INR 

(Riphahn & Serfling, 2005 and references therein).  

Another source of INR is the removal of responses by the analyst.  Analysts 

are sometimes faced with deciding the validity of certain responses.  For instance, 

participants may sometimes provide a negative response to express extreme 

dislike or protest against the question and not necessarily the subject at hand 

(See Halstead, Luloff, & Stevens, 1992).  By the same token, participants may be 

overtly positive in their response such as expressing that they would contribute 

more than they are capable in an attempt to influence the final results.  Strategic 
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nonresponse may be another symptom of the issue studied by Cameron and 

Quiggin (1994) where the preference structure reflected by the initial and follow-

up responses are not the same.  In such cases, the analyst may resort to 

discarding the observation.  As mentioned by Brox, Kumar and Strollery (2003) 

however, list-wise deletion of observation may not always be a viable option if the 

resulting sample size is small as this may bias the estimates (Dalecki, Ilvento, & 

Moore, 1988).      

 

4.2.1.3.  Consequences of Nonresponse  

When the sample available for analysis is not representative of the target 

population due to nonresponse, parameter estimates may be biased.  

Nonresponse bias may occur if certain subgroups are under or over represented 

in the sample thereby skewing the population values.  Nonresponse bias can also 

take the form of sample size bias if the sample available for estimation is too 

small and lacks any real variation.  If the rate of nonresponse is systematically 

influenced by factors such as income or the WTP amount, a self-selection bias can 

occur.  Self-selection refers to when certain individuals tend to self-select 

themselves out of the sample (Greene, 2003).  Conducting inferences on a sample 

where self-selection is prevalent can lead to parameter estimates that are biased 

and inconsistent.  Both UNR and INR can lead to nonresponse bias and (self) 

selection bias, where INR may operate exactly like UNR when certain key 

variables are missing.  Consider also the situation where INR occurs within a 

sample already hindered by UNR.  Here, we may have selection that is driven by 

one factor causing UNR, while driven by another factor causing INR.  Messonnier 
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et al. (2000) provides an insightful analysis of the two effects and shows how to 

account for them when data describing the unit nonrespondents are available.    

 

4.2.2. Conventional Methods for Addressing Nonresponse 

4.2.2.1.  Weight Adjustments 

Population weights can be applied to make the sample more representative of the 

target population if certain groups are underrepresented.  Typically, weights are 

calculated based on past demographic (income, gender, race, education), and 

geographical distributions which are obtained from previous surveys.  Most 

national surveys can provide reliable weights because the sample size is typically 

large and the survey has been conducted for several decades.  On the other hand, 

CVM samples tend to be smaller and more variable in their implementation and 

subject matter, so reliability of weights may be difficult to ascertain.  For 

instance, if WTP is not temporally reliable (Whitehead & Aiken, 2007) the use of 

weights from previous studies could lead to maladjustments.  

 

4.2.2.2.  Imputation and Nonparametric Methods  

Imputation methods can be useful when INR is random.  The idea is to use 

information on the respondents to predict values for nonrespondents.  For 

example, Whitehead (1994) used imputation for missing income responses, while 

Bhat (1994) showed how this could be accomplished when the variables are 

categorical.  A more comprehensive approach to imputing missing data points 

was introduced by Rubin (1987) where estimates from multiple imputed data sets 

are averaged together.  However, imputation should not be used when the 
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subsample of respondents do not accurately represent the nonrespondents.  This 

may happen if some individuals are selecting themselves out of the sample.  

Imputation in the presence of self-selection can lead to estimates that are biased 

and inconsistent.  Horowitz and Manski (1998) corrected for nonresponse bias by 

estimating asymptotic bounds on the bias due to nonresponse then applying 

them to the population parameters.  This method however, has not been 

commonly adopted as many CVM analysts prefer parametric or semi-parametric 

methods.   

 

4.2.2.3.  Heckman’s (1979) Two-Step Procedure 

The Heckman (1979) procedure is the most popular method for correcting 

nonresponse bias.  In particular, it is designed to detect and correct for self-

selection bias.  It does so by augmenting the primary equation with a selection 

variable.  Whitehead, Groothuis and Blomquist (1993) applied the Heckman 

procedure to SB data with UNR.  Messonnier et al. (2000) used the procedure to 

correct for both UNR and INR.  Brox, Kumar and Strollery (2003) added the 

Heckman procedure to interval regression to analyze payment card data with 

INR.  Harpman, Welsh and Sparling (2004) used a bivariate probit model with 

selection to correct for UNR in multiple-bounded data.  Similar to weight 

adjustments, correction for selection depends on data describing nonrespondents 

which may not be available with UNR.  Correction for selection in INR may be 

limited by the size of the usable sample and is highly sensitive to misspecification 

(Puhani, 2000).  
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The recoding procedure presented in this paper serves as a simple 

alternative to the more sophisticated approaches mentioned above.  In the next 

section, the intuition behind the recoding procedure and its simplicity of 

application are demonstrated.     

 

4.3.  Methodology 

4.3.1.  Econometric Model for Double-bounded Dichotomous Choice Data    

The willingness to pay function for the ith individual can be expressed as  

 

(1)  

 

where  is a vector of independent factors,  is a vector of associated coefficients, 

and  is the stochastic error term with	 ~	 0, .  Let  and  be binary or 

dichotomous variables that reflect the individual’s response to the initial and the 

follow-up questions, and	  be positive constants representing the 

respective bid values.  The probabilities of the response scenarios are 

 
(2) 1, 0 

 

 Pr , Pr  

																							 Pr  

																							 Pr
	

 

																							 Φ
	

Φ  
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(3) 1, 1 

 

Pr , Pr ,  

																							 Pr ,  

																							 Pr 	  

																							 1 Φ  

 

(4) 	 0, 1 

 

 Pr , Pr 	  

																							 Pr 	  

																							 Pr
	

 

																							 Φ
	

Φ  

 

(5) 0, 0 

 

Pr , Pr ,  

																							 Pr ,  

																							 Pr 	  
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																							 Φ  

 

As shown in Cameron and James (1992), a probit model provides estimates that 

are a composite of  and  in the form of ⁄  and 1⁄ , where  and  

are the estimated coefficients associated with the independent factors and the bid 

variable respectively.  The expected willingness to pay can therefore be calculated 

as 

 

6 							 |  

 

Following Hanemann, Loomis, and Kanninen (1991),  and  are estimated 

directly where the log-likelihood function to be maximized is 

 

ln Φ
	

Φ ln 1 Φ  

									 ln Φ
	

Φ 	 ln Φ 	 

 

where	 ,	 , , and  are binary variables to indicate each of the cases, 

and Φ ∙  is the standard normal cumulative distribution function.  

 The main hypothesis tested in this study is that recoding leads to better 

statistical performance.  In particular, both statistical efficiency and bias are 
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examined with data exhibiting random and systematic nonresponse.  For 

efficiency, the root mean squared error (RMSE) is used as the unit of comparison.  

For statistical bias, we examine the estimated parameters and WTP for trends 

and deviations from true values. 

 

4.3.2.  Monte Carlo Simulations 

In order to simulate the scenario where the respondent fails or refuses to answer 

the follow-up question in a DB CVM survey, a Monte Carlo simulation was used.  

Monte Carlo simulations are useful for comparing competing statistical 

methodologies with artificially generated data.  For example, Bohara, Kerkvliet, 

and Berrens (2001) used a Monte Carlo simulation to examine the influence of 

negative willingness to pay on the performance of alternative distributional 

assimptions.  In this study however, the data generating process began with the 

DB choice format responses in (2)—(5) given by 

 

(7) 1, 1 

 Response , 1					if 		 5 0.5 0.75 1.25 0 

 

(8) 0, 0 

Response , 1				if				 5 0.5 0.75 1.25 0 

 

(9) 	 1, 0	

Response , 1				if				 5 0.5 0.75 1.25 0 and 
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                                                    5 0.5 0.75 1.25 0  

 

(10) 0, 1 

Response , 1				if				 5 0.5 0.75 1.25 0 and 

                                                    5 0.5 0.75 1.25 0  

 

where the initial bid value  is continuous and uniformly distributed from 0 to 5, 

the follow-up bid value to an initial no response  is uniformly distributed from 

0 to 2.5 (half the initial bid), the follow-up bid value to an initial yes response  

is uniformly distributed from 0 to 10 (twice the initial bid), independent factors 

 and  are uniformly distributed from 0 to 5, and finally the stochastic error 

term  follows a standard normal distribution.  In essence, the WTP for the ith 

individual corresponding to framework of (7)—(10) is 

 

(11) WTP 10 1.5X 1.25Z  

 

where  is the stochastic error following a normal distribution. 

 Three nonresponse scenarios were explored using this simulation: 1) 

random nonresponse; 2) systematic nonresponse in observations with upper X  

values; and 3) systematic nonresponse in observations with upper Z  values.  

Estimation was carried out following Hanemann, Loomis, and Kanninen (1991) 

with a sample size of 1000 observations.  The simulation was repeated 5000 

times for each scenario at 10%, 25%, and 50% nonresponse rates.   
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 The basic idea of the recoding procedure is to preserve the observation by 

shifting the bid interval and substituting a response for the missing value.  More 

specifically, if the respondent answered yes to the initial question at the bid value 

 but did not answer the follow-up question, we can deduce the respondent 

would have also answered yes to ≪ .  Therefore, we can replace the missing 

follow-up response and bid  with a yes response and bid , while also 

replacing the initial bid  with ≪  and keeping the initial response yes.  If 

the respondent answered no to the initial question with bid , then we know 

they would have also answered no to a bid ≫ .  In this case, we can replace 

the missing follow-up response and bid with a no response and bid , while also 

replacing the initial bid with ≫  and keeping the initial response no.  A 

summary of the recoding procedure is given below.    

 

(12) 1,  

Recode 1, and then replace the initial bid value  with ≪  and 

the follow-up bid value  with the initial bid value . 

 

(13) 0,  

Recode 0, and then replace the initial bid value  with ≫  and 

the follow-up bid value  with the initial bid value . 
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The root mean squared error (RMSE) was calculated across the replications and 

used as a measure of statistical efficiency, and was compared between the list-

wise deletion case and for when the recoding procedure was used. 

 

4.4.  Results 

4.4.1.  Random Nonresponse 

Table 4.1 shows the Monte Carlo simulation results with random nonresponse in 

the DB follow-up response.  An increase in random nonresponse led to larger 

RMSE values for both recoding and list-wise deletion, but the log difference 

values (last column) showed that the RMSE values were consistently larger in the 

list-wise deletion case.  In particular, RMSE values for 0, X, Z, , and WTP 

were rougly 12, 13, 11, 12, and 6 percent larger in the list-wise deletion case 

compared to recoding when half of the observations (500) were randomly 

assigned a missing follow-up response.  There was little evidence of a trend in the 

estimates across the different nonresponse levels which can be used to assess 

bias.   

 

4.4.2.  Systematic Nonresponse in Upper X  

In table 4.2, the simulation results with systematic nonresponse in the upper X 

values are reported.  Here, observations with X variables in upper 10, 25, and 50 

percent ranges were assigned a missing follow-up response.  This may be similar 

to the situation where respondents with higher household income levels fail or 

refuse to answer the follow-up question.  The RMSE values with recoding and 

list-wise deletion were not noticeably different than in the random nonresponse 
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scenarios in table 4.1.  Some of the RMSE values were smaller and some larger.  

Similar to the random nonresponse scenario, the log-difference of RMSE values 

showed recoding led to a lower efficiency loss compared to list-wise deletion.  

Again, there were no noticeable trends in the estimates to indicate bias although 

the WTP estimates with 50% nonresponse were slightly larger for both recoding 

and list-wise deletion cases.    

 

4.4.3.  Systematic Nonresponse in Upper Z 

The results for the systematic nonresponse in upper Z values are reported in table 

4.3.  In this scenario, observations with Z variables in upper 10, 25, and 50 

percent ranges were assigned a missing follow-up response.  This variable was 

included to simulate the effects of the availability of substitute goods.  For 

example, the willingness to pay for outdoor recreation may decrease with the 

availability of indoor recreation opportunities.  Compared to the random 

nonresponse and systematic nonresponse in X values scenarios, the RMSE values 

for the list-wise deletion case were noticeably larger, while in the recoding case, 

the RMSE values were about the same.  Notice also, the larger RMSE values in 

the list-wise deletion case led to larger values in the log-difference of RMSE.  For 

instance, the RMSE for Z was over 100 percent larger in the list-wise deletion 

case compared to recoding, and the RMSE for WTP was 57 percent larger in the 

list-wise deletion case.  There was a slight upward trend in the 0 and Z 

estimates in the list-wise deletion case suggesting some upward bias, while there 

were no noticeable trends in the recoding case. 
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4.5.  Discussion and Conclusion 

This paper introduced a simple procedure for recoding missing follow-up 

responses from a double-bounded dichotomous choice contingent valuation 

method survey.  Nonresponse can lead to losses in statistical efficiency as well as 

biased estimates.  In this paper, the effects of randomly arising nonresponse and 

two different types of systematically arising nonresponse scenarios were 

investigated.  The results of Monte Carlo simulations showed the loss in 

statistical efficiency was lower when the recoding procedure was used compared 

to when list-wise deletion was used.  However, it was unclear from the results 

whether recoding will always fare better in addressing statistical bias because the 

magnitudes of the bias from list-wise deletion were not substantial.  One possible 

reason may be that the simulated willingness to pay model was relatively simple 

in structure in that both explanatory variables followed a uniform distribution 

and the sample size was fixed at 1000.  Therefore, the benefits from recoding may 

be revealed using a more complex model with a higher potential for bias from 

list-wise deletion and smaller sample sizes.  While there are many other 

approaches for addressing nonresponse, the simplicity of the recoding procedure 

and its application may still be preferred over other more sophisticated 

techniques.  A future avenue of research may be to develop other nonstatistics-

based approaches to addressing nonresponse in CVM survey data.    
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CHAPTER 5: Conclusion 

 

 

The aim of this dissertation was to provide a better understanding of the different 

modeling approaches available for combining travel cost method (TCM) and 

contingent valuation method (CVM) data within the context of wildlife watching 

recreation.  Emphasis was placed on the methodological aspects as well as in 

obtaining theoretically consistent measures of the welfare effects from recreation.  

In addition, this dissertation sought to address the issue of nonresponse which 

nearly every researcher employing survey data has faced at one time or another.  

These approaches were demonstrated using data from a national survey as well 

as data that were computer simulated.  

 In chapter 2, a finite mixture (FM) model was applied to wildlife watching 

recreation data from the 2006 National Survey of Fishing, Hunting, and Wildlife-

Assocaited Recreation (FHWAR).  The results provided strong evidence in 

support of heterogeneous preferences in the wildlife watching population, which 

has important implications for sustainable tourism, and wildlife and land 

management.  The analysis revealed there were three subgroups or user classes of 

wildlife watchers that can be characterized as: local enthusiasts, traveling 

enthusiasts, and average participants.  These user classes exhibited very different 

visitation and spending patterns, and derived different levels of benefits from 

their activities.  However, post estimation analysis revealed further segmentation 

was possible that differentiated within the user classes by skill and experience 

levels.  There were also indications that wildlife watchers may consiciously reside 
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closer to their frequented sites in order to reduce their travel costs, and their 

economic activities may differ when participating locally compared to when they 

travel.  Another unique feature of this model was that CVM choke price data were 

used to fill-in missing travel cost values for respondents who had not taken any 

trips.  In particular, the predicted mean matching (PMM) multiple imputation 

(MI) method was used to carry out the procedure of imputing these values which 

is entirely unique to this study.  The advantages of using MI in recreation 

demand analysis was demonstrated by comparing its performance to that of a 

zero-truncated FM model.  Goodness of fit measures showed the MI FM model 

performed much better than the zero-truncated FM model.   

The use of choke price data in the calculation of consumer surplus 

revealed some interesting discrepancies that may be an avenue for further study.  

However, it was mentioned that an important consideration in regards to the 

results is the difficulty in obtaining credible open-ended CVM responses as 

previous research has shown.  Therefore, a logical extension to this work might 

investigate the mechanisms people use in deriving their choke prices to develop 

questions that are less susceptible to these issues.  Another extention that was 

suggested was to explore the performance of models that use MI in other types of 

CVM data. 

Chapter 3 estimated a utility-consistent joint model of wildlife watching 

recreation using TCM count data and CVM dichotomous choice data from the 

1996 FHWAR survey.  The chapter advocated for better cohesion between the two 

types of information by carefully adjusting the language of the CVM questions to 

match the TCM framework.  The chapter pointed out certain types of CVM 
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scenarios such as the “all or nothing” scenario, can lead to the TCM consumer 

surplus being equal to the CVM compensating variation measure.  However, it 

was shown that this equivalence needed to be explicitly incorporated into the 

modeling framework to hold.  Thus, the novelty of the utility-consistent model 

presented in this chapter was that the estimates were consistent across the 

welfare measures.  Although, it is still unclear how the statistical performance of 

the utility-consistent joint model fared against other joint modeling frameworks, 

its adoption may be supported purely from a conceptual standpoint.  Overall, the 

argument for combining TCM and CVM data was largely supported.  One avenue 

for future research may be to investigate the policy implications of using a welfare 

measure that can be interpreted in terms of net benefits as well as willingness to 

pay, as the only obvious advantage seems to be a more simplified welfare 

measure for decision making.  Finally, while the focus of this chapter was on 

combining TCM and CVM data, expanding the integration exercise to other data 

types such as the hedonic price model and choice experiment survey data, could 

prove fruitful. 

The final chapter of this dissertation focused on the issue of nonresponse 

in double-bounded dichotomous choice (DB) CVM data.  The chapter introduced 

a simple procedure for recoding missing follow-up responses in DB data that can 

attenuate the loss in statistical efficiency and bias.  In particular, the analysis 

examined scenarios depicting a randomly arising nonresponse and two types of 

systematically arising nonresponse.  Using Monte Carlo simulations, the root 

mean squared error (RMSE) estimates from recoding was compared to that of 

when list-wise deletion was used.  Comparisons of the RMSE in the three 
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nonresponse scenarios showed the recoding procedure was favored over using 

list-wise deletion in all cases.  It was unclear whether recoding will always fare 

better in addressing statistical bias because the magnitudes of the biases from 

list-wise deletion were not substantial.  One possible reason that was mentioned 

was that the simulated willingness to pay (WTP) model was relatively simple in 

that the two explanatory variables followed a uniform distribution and the 

sample size was fixed at 1000.  Therefore, the benefits from recoding may be 

revealed using a more complex model with a higher potential for bias from list-

wise deletion and smaller sample sizes.  When applicable however, the simplicity 

of the recoding procedure and its application may make it more attractive than 

other more sophisticated approaches such as the MI method.  The chapter 

concluded by recommending further research on developing other nonstatistics-

based techniques to addressing nonresponse in CVM survey data. 

It is my greatest wish that this dissertation can serve as a useful reference 

for those interested in combining disparate types of nonmarket valuation data as 

well as providing options for how to remedy issues of nonresponse.  I also hope 

that this dissertation can incite continued research on the value of wildlife 

watching recreation.  Wildlife watching recreation is increasingly becoming the 

most popular form of outdoor recreation in the U.S. but current valuation models 

still have not connected the demand for wildlife watching recreation to the 

benefits of conservation.  Future research may try to couple these two topics into 

a more comprehensive model that can shed light on how humans can coexist 

more peacefully with the natural environment.                         
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Appendix A: Contingency table of average posterior probabilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component 1 Component 2 Component 3
prob[i  ϵ 1] 0.850 0.018 0.132
prob[i  ϵ 2] 0.029 0.828 0.143
prob[i  ϵ 3] 0.110 0.128 0.761

MI 3-Component FM Model
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Appendix B: Average information criterion and entropy values for 
truncated FM models 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Components n ln L p AIC BIC

1 12224 -7590.72 16 15247.44 15453.19
2 12224 -7405.42 33 14876.85 15082.61
3 12224 -7333.15 50 14765.29 14938.05

Note: Values are averages taken over MI estimates. p is the number of 
parameters.
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Appendix C: Zero-truncated Finite Mixture Count Model 

 

Following Lourenço, Ferreira, and Barros (2006), a -component finite mixture 

model with vector of covariates x  and respective parameters	 , can be written in 

the form 

 

C1 							 ; Φ ;
1

		 

 

, where ⋅  is the density function for component	 , and  is a	mixing 

probability with	∑ 1, and	0 1.  The probability that the outcome 

variable  is greater than zero is 

 

C2 							 0;Φ 0;
1

1 0;
1

	 

 

Therefore, the density of the truncated sample can be expressed as 

 

C3 							 0;Φ
∑ ;1

1 ∑ 0;1
) 

 

In Lourenço, Ferreira, and Barros (2006), the authors reexpress (C3) as 
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0;Φ
; 1 0;

1 ∑ 0;1 1 0;
																				 

;
1 0;

	 

 

, where  is a mixing probability in the truncated population and is given by 

 

1 0;

1 ∑ 0;1
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Appendix D: Derivation of Expected Consumer Surplus with Finite 
Upper Limit 
 

Let	 ̂ ∑ exp	 x ∑ exp	 x | , where  and  are nonnegative 

constants.  The expected consumer surplus is defined as 

 

1 ∑exp	 x
1

0	 																										  

 

												 1 1 ∑ exp	 x | 1 exp	 x | 0 	              

 

												 1 1 ∑exp	 x | 1 ∑exp	 x | 0 	   

 

Rearrange the above expression after multiplying by ̂ ̂⁄  which gives  

 

												 1 exp	 1 0 1 ∙ ̂ 																																		                 
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Appendix E: Variance Function of Expected Consumer Surplus with 
Finite Upper Limit 
 

The variance function corresponding to equation (3) in chapter 2 with ̂  set to a 

constant was obtained using the Delta method. 

 

var ≅ ̂ ∙ var ⁄           

 

, where	 exp 1 1, and var  is the estimated 

variance of	 .  Notice 1 when	 ∞.  Yen and Adamowicz (1993) argued 

that mathematical approximations can be problematic for inference especially 

when the distribution is asymmetric.  The authors suggest using the simulation 

procedure by Krinsky and Robb (1986, 1990) to find the moment estimates.  

However, it is unclear as to how this can be applied in a multiple imputation 

framework.  Therefore, for the purpose of this study, the approximations are used 

and the aforementioned issue to be resolved in future works.  A variance function 

approximation to equation (5) in chapter 2 is given by 

 

var ≅ ∙ var ∙ var 	

                 2 ∙ cov ,           

         

															≅ ∙ var ⁄ ∙ var  

     2 ⁄ ∙ cov ,        
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, where cov ,  is the estimated covariance between	  and	 .  For simplicity, 

we assumed var 0 and cov , 0 which gives 

var ≅ var  
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Appendix F: Goodness of Fit Measures for Count Data Models 

 

Several R2 measures discussed in Cameron and Windmeijer (1996) were used to 

assess the models’ goodness of fit.  The following are the formulas for these 

measures. 

 

Residual Sum of Squares 1
∑

∑
  

Explained Sum of Squares 1
∑

∑
  

Squared Sample Correlation Coefficient 
∑

∑ ∑
  

Pearson Residuals 1
∑ /

∑ /
  

Deviance Residual (DR)	 1
∑ ⁄

∑ ⁄ ⁄
  

DR Value ∑ 2 log ξ⁄ log ξ  

 

, where ξ ∑ μ , and μ  is the component-level predicted value of the count 

variable . 
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Appendix G: Joint Estimation of TCM and CVM Model Parameters 

 

Parameter estimates of the joint TCM-CVM model is found by maximizing the 

log-likelihood function given by 

 

, ln Φ 1 , ln 1 Φ  

								 , ln
exp θ

1 exp θ
1

ln 1 exp θ ln Γ ,
1

ln Γ , 1 ln Γ
1

ln 1 1 exp θ ⁄  

 

, where ,  is the CVM dichotomous response variable, Φ ∙  is the standard 

normal cumulative distribution function, ,  is the TCM count variable that 

follows a zero-truncated negative binomial distribution with mean function 

exp θ exp ξ , where  is a vector of covariates and θ is a 

vector of model parameters.   

 

γ
, 1  

 

, where	 γ is the set of CVM regressors,  is the bid value, 0 is the standard 

normal standard deviation, and  is the correlation coefficient.  Also, ,  is a 

standardized fitted error in the demand function (Cameron, 1992) defined as 
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, , E , var ,  , with conditional expected value 

function  

E ,
exp θ

1 1 exp θ ⁄  

 
, and the conditional variance function as shown in Grogger and Carson (1991) is  

 

var ,
E ,

1 exp θ
1 1 exp θ ⁄ E , 	 
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Appendix H: Stata Codes 

 

Chapter 1 Stata Codes 

//================FILE 1================// 
 
//This file prepares the data from the screening survey (FH2) for merging with 
the data from the detailed wildlife watching survey(FH4)./ 
 
//Screening file// 
use "I:\fh2.dta"  
 
//Prepare data for merging with FH4// 
replace everhunt=0 if everhunt==. 
replace everfish=0 if everfish==. 
replace observe05=0 if observe05==. 
replace feed05=0 if feed05==. 
replace photo05=0 if photo05==. 
replace plant05=0 if plant05==. 
replace interest06=0 if interest==. 
replace trip05=0 if trip05==. 
replace tripday05=0 if tripday05==. 
replace tripspend05=0 if tripspend05==. 
replace trip06=0 if trip06==. 
replace hunt05=0 if (hunt05==. & everhunt==0) 
replace huntday05=0 if hunt05==0 
replace huntspend05=0 if hunt05==0  
replace hunt06=0 if everhunt==0 
replace fish05=0 if everfish==0 
replace fishday05=0 if fish05==0 
replace fishspend05=0 if fish05==0 
replace fish06=0 if everfish==0 
gen retired=retire==1 
replace retire=5 if (job==1 & retire==.) 
ren hincome hincome_fh2 //renamed to compare with fh4 and use as substitute 
in case of nonresponse// 
ren i_resident i_resident_fh2 
 
sum i_resident_fh2 relation job retire hunt05 huntfirst05 huntday05 /// 
huntspend05 hunt06 huntyear  huntlike06 fish05 fishfirst05 fishday05 /// 
fishspend05 fish06 fishyear fishlike06 intlike06 tripday05 tripspend05 /// 
triplike06 hincome_fh2 everhunt everfish observe05 feed05 photo05 plant05 /// 
interest06 trip05 trip06 perwgt personid id retired 
 
//Reducing data set to utilized variables// 
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keep i_resident_fh2 relation job retire hunt05 huntfirst05 huntday05 /// 
huntspend05 hunt06 huntyear  huntlike06 fish05 fishfirst05 fishday05 /// 
fishspend05 fish06 fishyear fishlike06 intlike06 tripday05 tripspend05 /// 
triplike06 hincome_fh2 everhunt everfish observe05 feed05 photo05 plant05 /// 
interest06 trip05 trip06 perwgt personid id retired 
 
//Saving a thinned version of the data set to be used for merging with detailed 
wildlife watching survey data FH4// 
save "I:\fh2_thin.dta", replace 
 

//================FILE 2================// 
 
//This file was used primarily to merge the detailed wildlife watching sample file 
FH4 with the screening file FH2 which were prepared in FILE 1.// 
//Other data that includes state level variables and GIS shape file data are 
included in the merge also.//  
 
clear  
 
use "I:\fh4.dta" //Detailed Wildlife Watching sample file// 
 
merge m:1 i_resident using "I:\medinc.dta" //state median income, wildlife 
watching sites, number of species// 
drop _merge 
merge m:1 i_resident using "I:\usdb.dta" //us states and territories GIS shape 
file// 
drop if personid==. 
drop _merge 
merge m:1 personid using "I:\fh2_thin.dta" //thinned screening file// 
drop if _merge==2 
drop _merge 
count if i_resident!=resstate //70 obs where the individual moved to a different 
state between wave1 and wave3 interviews// 
 
//Saving merged data// 
save "I:\fh2_4merge2.dta", replace 
 

//================FILE 3================// 
 
//This file was used to create a data set that includes only the contingent 
valuation responses from participants with positive trips.// 
//The file includes additional preparations to data such as renaming, recoding, 
transformations, and in some cases, simple data imputing.  The user should be 
aware that some// 
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//variables were not used in the main analysis, but rather served as instruments 
for conducting diagnostics.  The final data set was formatted//   
//to long form.// 
 
clear  
 
use "I:\fh2_4merge2.dta" 
 
//Prepare data for Analysis// 
replace gemsasz=. if gemsasz==9 
replace gemsast=. if gemsast==9 
replace geur=. if geur==9 
gen urban=(geur==1) 
 
gen cendiv_ne=cendiv==1 
gen cendiv_ma=cendiv==2 
gen cendiv_enc=cendiv==3 
gen cendiv_wnc=cendiv==4 
gen cendiv_sa=cendiv==5 
gen cendiv_esc=cendiv==6 
gen cendiv_wsc=cendiv==7 
gen cendiv_mt=cendiv==8 
gen cendiv_pac=cendiv==9 
 
gen agesq=age^2 
gen male=1 if sex==1 
replace male=0 if sex==2 
gen white=(scrace==1) 
gen black=(scrace==2) 
gen natam=(scrace==3) 
gen asian=(scrace==4) 
gen pacif=(scrace==5) 
gen hisp=(hispanic==1) 
gen marr=(marital==1) 
gen divor=(marital==3) 
recode school (0/12=1 "High School or less")(13/15=2 "1 to 3 yrs. College") /// 
(16=3 "4 or more/Bachelor's")(17/18=4 "Some grad/prof school or degree"), 
gen(educ) 
 
//Simple imputation of missing values// 
replace retire=5 if (hincome!=. & retire==.) //have a job/business// 
replace retire=1 if (age>=65 & retire==.) //retired// 
replace retire=4 if retire==. //doing something else// 
 
foreach X of varlist observe photograph feed private public observe_bird 
photo_bird /// 
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feed_bird bird_prey bird_fowl bird_water bird_song bird_other feed_fish 
feed_large /// 
feed_small feed_marine feed_other /// 
{ 
replace `X'=0 if `X'==. 
} 
ren moreqp5 wildbooks 
ren moreqp6 wildcontr 
 
//Resident state// 
ren econadd wildtrip1 
ren econcstz wildexp1 
ren econncuz wildchoke1 
 
//Non-resident state// 
ren econadd2 wildtrip2 
ren econcst2z wildexp2 
ren econncu2z wildchoke2 
 
//Environmental Indices// 
egen birdspec_min=min(birdspec) 
egen birdspec_max=max(birdspec) 
egen wildsites_min=min(wildsites) 
egen wildsites_max=max(wildsites) 
gen birdspec_std=(birdspec-birdspec_min)/(birdspec_max-birdspec_min) 
gen wildsites_std=(wildsites-wildsites_min)/(wildsites_max-wildsites_min) 
gen env_index=birdspec_std+wildsites_std 
 
//Household income intervals// 
gen hhinc_max=9999 if hincome==1 
replace hhinc_max=19999 if hincome==2 
replace hhinc_max=24999 if hincome==3 
replace hhinc_max=29999 if hincome==4 
replace hhinc_max=34999 if hincome==5 
replace hhinc_max=39999 if hincome==6 
replace hhinc_max=49999 if hincome==7 
replace hhinc_max=74999 if hincome==8 
replace hhinc_max=99999 if hincome==9 
replace hhinc_max=2000000 if hincome==10 
replace hhinc_max=2000000 if hincome==. 
 
gen hhinc_min=1 if hincome==1 
replace hhinc_min=10000 if hincome==2 
replace hhinc_min=20000 if hincome==3 
replace hhinc_min=25000 if hincome==4 
replace hhinc_min=30000 if hincome==5 
replace hhinc_min=35000 if hincome==6 
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replace hhinc_min=40000 if hincome==7 
replace hhinc_min=50000 if hincome==8 
replace hhinc_min=75000 if hincome==9 
replace hhinc_min=100000 if hincome==10 
replace hhinc_min=1 if hincome==. 
 
gen lhhinc_min=ln(hhinc_min) 
gen lhhinc_max=ln(hhinc_max) 
 
//Household income estimates obtained using Interval Regression// 
quietly intreg lhhinc_min lhhinc_max age agesq male black natam asian /// 
pacif hisp i.retire i.marital school urban i.cendiv, vce(robust) /// 
predict lhincome_hat, e(lhhinc_min, lhhinc_max) 
 
 
//Preparing cost variables for creating final trip cost variable(nctc):nctc= /// 
airplane cost+train cost+bus cost+private vehicle+public land access fee /// 
+private land access fee// 
 
foreach X of varlist ncushr1d1 ncushr1d2 ncushr1d3 ncushr1d4 ncushr1d5 /// 
ncushr1d6 ncushr1d7 ncushr1d8 ncushr1d9 ncushr1d10 /// 
ncushr2d1 ncushr2d2 ncushr2d3 ncushr2d4 ncushr2d5 ncushr2d6 /// 
ncushr2d7 ncushr2d8 ncushr2d9 ncushr2d10 /// 
ncushr3d1 ncushr3d2 ncushr3d3 ncushr3d4 ncushr3d5 ncushr3d6 ///  
ncushr3d7 ncushr3d8 ncushr3d9 ncushr3d10 /// 
ncushr4d1 ncushr4d2 ncushr4d3 ncushr4d4 ncushr4d5 ncushr4d6 /// 
ncushr4d7 ncushr4d8 ncushr4d9 ncushr4d10 /// 
ncushr5d1 ncushr5d2 ncushr5d3 ncushr5d4 ncushr5d5 ncushr5d6 ///  
ncushr5d7 ncushr5d8 ncushr5d9 ncushr5d10 /// 
ncushr6d1 ncushr6d2 ncushr6d3 ncushr6d4 ncushr6d5 ncushr6d6 /// 
ncushr6d7 ncushr6d8 ncushr6d9 ncushr6d10 /// 
ncushr7d1 ncushr7d2 ncushr7d3 ncushr7d4 ncushr7d5 ncushr7d6 ///   
ncushr7d7 ncushr7d8 ncushr7d9 ncushr7d10 ncushr8d1 ncushr8d2 /// 
ncushr8d3 ncushr8d4 ncushr8d5 ncushr8d6 ncushr8d7 ncushr8d8 /// 
ncushr8d9 ncushr8d10 ncushr9d1 ncushr9d2 ncushr9d3 ncushr9d4 /// 
ncushr9d5 ncushr9d6 ncushr9d7 ncushr9d8 ncushr9d9 ncushr9d10 /// 
ncushr10d1 ncushr10d2 ncushr10d3 ncushr10d4 ncushr10d5 ///          
ncushr10d6 ncushr10d7 ncushr10d8 ncushr10d9 ncushr10d10 /// 
ncushr11d1 ncushr11d2 ncushr11d3 ncushr11d4 ncushr11d5 ///                
ncushr11d6 ncushr11d7 ncushr11d8 ncushr11d9 ncushr11d10 /// 
ncushr12d1 ncushr12d2 ncushr12d3 ncushr12d4 ncushr12d5 ///            
ncushr12d6 ncushr12d7 ncushr12d8 ncushr12d9 ncushr12d10 /// 
{ 
replace `X'=0 if `X'==. 
} 
 
//=====================================================// 
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//Format data into long form// 
 
//These variables were generated to make the procedure feasible// 
gen wildchoke3=. 
gen wildchoke4=. 
gen wildchoke5=. 
gen wildchoke6=. 
gen wildchoke7=. 
gen wildchoke8=. 
gen wildchoke9=. 
gen wildchoke10=. 
gen wildtrip3=. 
gen wildtrip4=. 
gen wildtrip5=. 
gen wildtrip6=. 
gen wildtrip7=. 
gen wildtrip8=. 
gen wildtrip9=. 
gen wildtrip10=. 
gen wildexp3=. 
gen wildexp4=. 
gen wildexp5=. 
gen wildexp6=. 
gen wildexp7=. 
gen wildexp8=. 
gen wildexp9=. 
gen wildexp10=. 
 
//Reshape data to long format// 
reshape long wildchoke wildtrip wildexp ncu_std ncutotd ncudaysd ///   
trp1_q1d trp1_q2d trp1_q3d trpday1d trpday2d trpday3d ncuprivd ///    
ncupubd birds1d birds1ad birds2d  birds3d typbrd1d typbrd2d ///         
typbrd3d typbrd4d typbrd5d animls1d animls2d animls3d /// 
animls4d animls5d ncushr1d ncushr2d ncushr3d ncushr4d ///                   
ncushr5d ncushr6d ncushr7d ncushr8d ncushr9d ncushr10d ///              
ncushr11d ncushr12d ncutotamtd, i(personid id) j(choke)  
 
//Renaming varibles// 
ren ncu_std ncstate 
ren ncutotd nctrips 
ren ncudaysd ncdays 
ren trp1_q1d ncobsrv 
ren trp1_q2d ncphoto 
ren trp1_q3d ncfeed 
ren trpday1d obday 
ren trpday2d phday 
ren trpday3d feday 



125 
 

ren ncuprivd pvtlnd 
ren ncupubd publnd 
ren birds1d obbird 
ren birds1ad birdday 
ren birds2d  phbird 
ren birds3d febird 
ren typbrd1d brdprey 
ren typbrd2d brdwater 
ren typbrd3d brdshore 
ren typbrd4d brdsong 
ren typbrd5d brdother 
ren animls1d opffish 
ren animls2d opfbig 
ren animls3d opfsml 
ren animls4d opfmarine 
ren animls5d opfturtle 
ren ncushr1d foodcost 
ren ncushr2d lodgcost 
ren ncushr3d aircost 
ren ncushr4d traincost 
ren ncushr5d carcost 
ren ncushr6d guidecost 
ren ncushr7d pubfee 
ren ncushr8d pvtfee 
ren ncushr9d equipcost 
ren ncushr10d fuelcost 
ren ncushr11d boatcost 
ren ncushr12d cookcost 
ren ncutotamtd totrescost 
 
//Collasping data to only those having contingent valuation responses(Choke 
price)// 
drop if wildchoke==. 
 
//Generating zeros for associated trips// 
replace nctrips=0  
 
//Creating another unique identifier to differentiate these responses from 
others// 
gen personid2=(((personid+id+choke)/age)+retire)/relation*choke*age 
 
//Checking uniqueness of identifier// 
duplicates list personid2 
 
//Additional data cleaning and augmentation// 
ren lhincome_hat lhinc 
gen outstate=0 if (ncstate==resstate) 
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replace outstate=1 if (outstate==.) 
gen partic=1 if nctrips>0 
replace partic=0 if partic==. 
gen lwildsites=ln(wildsites) 
gen lbirdspec=ln(birdspec) 
gen nchunt=ncu_hnt 
replace nchunt=1 if (hunt06==1 & nchunt==.)  
gen nchunt06=hunt06 
replace nchunt06=1 if (ncu_hnt==1 & hunt06==0) 
gen ncfish06=fish06 
replace ncfish06=1 if (ncu_fish==1 & fish06==0) 
 
//Dropping miscellaneous variables// 
drop perstat1 linenum i_wave1 i_wave2 mode_a letter_a perstat2 letter_b /// 
outcome1 outcome2 mode_b i_wave3 perstat3 letter_c outcome3 mode_c /// 
Name i_resident_fh2 
 
replace ncstate=ncustate if ncstate=="" 
 
save "I:\fh24mergelongchoke.dta", replace 
 

//================FILE 4================// 
 
This file begins with the same data in FILE 3, but is used primarily for generating 
the travel cost variable for participants with positive trips.  The file includes 
additional preparations to data such as renaming, recoding, transformations, and 
in some cases, simple data imputing.  The user should be aware that some 
variables were not used in the main analysis, but rather served as instruments for 
conducting diagnostics.  The final data set was formatted to long form and 
includes all respondents including nonparticipants.  The procedure however is 
identical to that in FILE 3 until the reshaping procedures.  This file also merges 
the data obtained from FILE 3 with that obtained here. 
 
clear  
 
use "I:\fh2_4merge2.dta" 
 
//Prepare data for Analysis// 
replace gemsasz=. if gemsasz==9 
replace gemsast=. if gemsast==9 
replace geur=. if geur==9 
gen urban=(geur==1) 
 
gen cendiv_ne=cendiv==1 
gen cendiv_ma=cendiv==2 
gen cendiv_enc=cendiv==3 
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gen cendiv_wnc=cendiv==4 
gen cendiv_sa=cendiv==5 
gen cendiv_esc=cendiv==6 
gen cendiv_wsc=cendiv==7 
gen cendiv_mt=cendiv==8 
gen cendiv_pac=cendiv==9 
 
gen agesq=age^2 
gen male=1 if sex==1 
replace male=0 if sex==2 
gen white=(scrace==1) 
gen black=(scrace==2) 
gen natam=(scrace==3) 
gen asian=(scrace==4) 
gen pacif=(scrace==5) 
gen hisp=(hispanic==1) 
gen marr=(marital==1) 
gen divor=(marital==3) 
recode school (0/12=1 "High School or less")(13/15=2 "1 to 3 yrs. College") /// 
(16=3 "4 or more/Bachelor's")(17/18=4 "Some grad/prof school or ///         
degree"), gen(educ) 
 
//Simple imputation of missing values// 
replace retire=5 if (hincome!=. & retire==.) //have a job/business// 
replace retire=1 if (age>=65 & retire==.) //retired// 
replace retire=4 if retire==. //doing something else// 
 
foreach X of varlist observe photograph feed private public observe_bird /// 
photo_bird feed_bird bird_prey bird_fowl bird_water bird_song ///   
bird_other feed_fish feed_large feed_small feed_marine feed_other /// 
{ 
replace `X'=0 if `X'==. 
} 
ren moreqp5 wildbooks 
ren moreqp6 wildcontr 
 
//Resident state// 
ren econadd wildtrip1 
ren econcstz wildexp1 
ren econncuz wildchoke1 
 
//Non-resident state// 
ren econadd2 wildtrip2 
ren econcst2z wildexp2 
ren econncu2z wildchoke2 
 
//Environmental Indices// 
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egen birdspec_min=min(birdspec) 
egen birdspec_max=max(birdspec) 
egen wildsites_min=min(wildsites) 
egen wildsites_max=max(wildsites) 
gen birdspec_std=(birdspec-birdspec_min)/(birdspec_max-birdspec_min) 
gen wildsites_std=(wildsites-wildsites_min)/(wildsites_max-wildsites_min) 
gen env_index=birdspec_std+wildsites_std 
 
/*Household income intervals*/ 
gen hhinc_max=9999 if hincome==1 
replace hhinc_max=19999 if hincome==2 
replace hhinc_max=24999 if hincome==3 
replace hhinc_max=29999 if hincome==4 
replace hhinc_max=34999 if hincome==5 
replace hhinc_max=39999 if hincome==6 
replace hhinc_max=49999 if hincome==7 
replace hhinc_max=74999 if hincome==8 
replace hhinc_max=99999 if hincome==9 
replace hhinc_max=2000000 if hincome==10 
replace hhinc_max=2000000 if hincome==. 
 
gen hhinc_min=1 if hincome==1 
replace hhinc_min=10000 if hincome==2 
replace hhinc_min=20000 if hincome==3 
replace hhinc_min=25000 if hincome==4 
replace hhinc_min=30000 if hincome==5 
replace hhinc_min=35000 if hincome==6 
replace hhinc_min=40000 if hincome==7 
replace hhinc_min=50000 if hincome==8 
replace hhinc_min=75000 if hincome==9 
replace hhinc_min=100000 if hincome==10 
replace hhinc_min=1 if hincome==. 
 
gen lhhinc_min=ln(hhinc_min) 
gen lhhinc_max=ln(hhinc_max) 
 
//Household income estimates obtained using Interval Regression// 
quietly intreg lhhinc_min lhhinc_max age agesq male black natam asian /// 
pacif hisp i.retire i.marital school urban i.cendiv, vce(robust) predict /// 
lhincome_hat, e(lhhinc_min, lhhinc_max) 
 
 
//Preparing cost variables for creating final trip cost variable(nctc):nctc= 
airplane cost+train cost+bus cost+private vehicle+public land access fee+private 
land access fee// 
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foreach X of varlist ncushr1d1 ncushr1d2 ncushr1d3 ncushr1d4 ///         
ncushr1d5 ncushr1d6 ncushr1d7 ncushr1d8 ncushr1d9 ncushr1d10 /// 
ncushr2d1 ncushr2d2 ncushr2d3 ncushr2d4 ncushr2d5 ncushr2d6 /// 
ncushr2d7 ncushr2d8 ncushr2d9 ncushr2d10 ncushr3d1 ncushr3d2 /// 
ncushr3d3 ncushr3d4 ncushr3d5 ncushr3d6 ncushr3d7 ncushr3d8 /// 
ncushr3d9 ncushr3d10 ncushr4d1 ncushr4d2 ncushr4d3 ncushr4d4 /// 
ncushr4d5 ncushr4d6 ncushr4d7 ncushr4d8 ncushr4d9 ncushr4d10 /// 
ncushr5d1 ncushr5d2 ncushr5d3 ncushr5d4 ncushr5d5 ncushr5d6 ///   
ncushr5d7 ncushr5d8 ncushr5d9 ncushr5d10 ncushr6d1 ncushr6d2 /// 
ncushr6d3 ncushr6d4 ncushr6d5 ncushr6d6 ncushr6d7 ncushr6d8 /// 
ncushr6d9 ncushr6d10 ncushr7d1 ncushr7d2 ncushr7d3 ncushr7d4 /// 
ncushr7d5 ncushr7d6 ncushr7d7 ncushr7d8 ncushr7d9 ncushr7d10 /// 
ncushr8d1 ncushr8d2 ncushr8d3 ncushr8d4 ncushr8d5 ncushr8d6 /// 
ncushr8d7 ncushr8d8 ncushr8d9 ncushr8d10 ncushr9d1 ncushr9d2 /// 
ncushr9d3 ncushr9d4 ncushr9d5 ncushr9d6 ncushr9d7 ncushr9d8 /// 
ncushr9d9 ncushr9d10 ncushr10d1 ncushr10d2 ncushr10d3 ///            
ncushr10d4 ncushr10d5 ncushr10d6 ncushr10d7 ncushr10d8 ///         
ncushr10d9 ncushr10d10 ncushr11d1 ncushr11d2 ncushr11d3 ///           
ncushr11d4 ncushr11d5 ncushr11d6 ncushr11d7 ncushr11d8 ///              
ncushr11d9 ncushr11d10 ncushr12d1 ncushr12d2 ncushr12d3 ///           
ncushr12d4 ncushr12d5 ncushr12d6 ncushr12d7 ncushr12d8 ///           
ncushr12d9 ncushr12d10 /// 
{ 
replace `X'=0 if `X'==. 
} 
 
//=====================================================// 
//Format data into long form// 
 
reshape long ncu_std ncutotd ncudaysd trp1_q1d trp1_q2d trp1_q3d /// 
trpday1d trpday2d trpday3d ncuprivd ncupubd birds1d birds1ad birds2d  /// 
birds3d typbrd1d typbrd2d typbrd3d typbrd4d typbrd5d animls1d ///     
animls2d animls3d animls4d animls5d ncushr1d ncushr2d ncushr3d /// 
ncushr4d ncushr5d ncushr6d ncushr7d ncushr8d ncushr9d ncushr10d /// 
ncushr11d ncushr12d ncutotamtd, i(personid id) j(site) 
 
ren ncu_std ncstate 
ren ncutotd nctrips 
ren ncudaysd ncdays 
ren trp1_q1d ncobsrv 
ren trp1_q2d ncphoto 
ren trp1_q3d ncfeed 
ren trpday1d obday 
ren trpday2d phday 
ren trpday3d feday 
ren ncuprivd pvtlnd 
ren ncupubd publnd 
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ren birds1d obbird 
ren birds1ad birdday 
ren birds2d  phbird 
ren birds3d febird 
ren typbrd1d brdprey 
ren typbrd2d brdwater 
ren typbrd3d brdshore 
ren typbrd4d brdsong 
ren typbrd5d brdother 
ren animls1d opffish 
ren animls2d opfbig 
ren animls3d opfsml 
ren animls4d opfmarine 
ren animls5d opfturtle 
ren ncushr1d foodcost 
ren ncushr2d lodgcost 
ren ncushr3d aircost 
ren ncushr4d traincost 
ren ncushr5d carcost 
ren ncushr6d guidecost 
ren ncushr7d pubfee 
ren ncushr8d pvtfee 
ren ncushr9d equipcost 
ren ncushr10d fuelcost 
ren ncushr11d boatcost 
ren ncushr12d cookcost 
ren ncutotamtd totrescost 
 
gen personid2=. 
 
//Travel Cost// 
gen tc=(aircost+traincost+carcost+pubfee+pvtfee)/nctrips 
 
//Calculating opportunity costs: total potential work days=250 days(weekdays 
less 10 federal holidays// 
 
//Since we are using daily earnings instead of hourly, the wage factor should be 
divided by eight, i.e. .333/8=.04// 
gen ncoppcost=.04*earn_hat*(ncdays/nctrips) 
gen nctc=tc+ncoppcost 
replace nctrips=0 if (nctrips==. & wildtrip1==0 & wildtrip2==0 & site==1) 
replace ncstate=resstate if nctrips==0 
replace ncdays=0 if nctrips==0 
replace nctc=medtc1a if (nctrips==0) 
drop if nctrips==. 
 
//Additional data cleaning and augmentation// 
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ren lhincome_hat lhinc 
gen outstate=0 if (ncstate==resstate) 
replace outstate=1 if (outstate==.) 
gen partic=1 if nctrips>0 
replace partic=0 if partic==. 
gen lwildsites=ln(wildsites) 
gen lbirdspec=ln(birdspec) 
gen nchunt=ncu_hnt 
replace nchunt=1 if (hunt06==1 & nchunt==.)  
gen nchunt06=hunt06 
replace nchunt06=1 if (ncu_hnt==1 & hunt06==0) 
gen ncfish06=fish06 
replace ncfish06=1 if (ncu_fish==1 & fish06==0) 
 
//Dropping miscellaneous variables// 
drop perstat1 linenum i_wave1 i_wave2 mode_a letter_a perstat2 letter_b /// 
outcome1 outcome2 mode_b i_wave3 perstat3 letter_c outcome3 mode_c Name 
i_resident_fh2 
 
//Dropping entry errors/uncertain data values// 
drop if (nctrips==0 & opffish!=.) //these were contradictions in the data: 134 
obs// 
drop if (nctrips==0 & ncobsrv!=.) //1 obs// 
 
save "I:\fh24mergelong.dta", replace 
 
 
//Merging with choke price data and state level land data// 
clear  
 
clear matrix 
 
use "I:\fh24mergelong.dta" 
 
merge m:1 personid2 using "I:\fh24mergelongchoke.dta" 
replace nctc=. if (personid2==. & nctrips==0) 
replace nctc=wildchoke if personid2!=. 
drop _merge 
merge m:1 ncstate using "I:\rangeforest.dta" //2007 state level rangeland and 
forest (1000) acres from Natural Resources Inventory 
(NRI)(http://www.nrcs.usda.gov)//  
drop _merge 
 
//Correcting Data entries// 
replace range=0 if ncstate=="DC" 
replace forest=0 if ncstate=="DC" 
replace forest=101918.5 if ncstate=="AK" 
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replace range=201528.5 if ncstate=="AK" 
gen range1=range/1000 
gen forest1=forest/1000 
gen land=(range+forest)/(pop06/1000) 
gen land2=(range+forest)/(acres*1000) 
replace land=0 if land==. 
replace range1=range1+1 
replace forest1=forest1+1 
gen land3=forest/(acres*1000) 
gen land4=range/(acres*1000) 
 
//Data used for FM Model analysis// 
save "I:\fh24mergelongimpute.dta", replace 
 

//================FILE 5================// 
 
//This file was used to obtain the PMM imputations, and the FM model 
estimates//  
 
use "I:\fh24mergelongimpute.dta"   
 
//Data contains additional rows of choke prices in the travel cost column. 3128 
additional rows were added totaling 6906 and grand total 15400// 
 
drop if (nctc>=10000 & nctc!=.) //33 obs(1.1% of choke price obs) were deleted 
because they were extreme values max=.999 million.//  
//Including them led to unreasonably high imputed values and problems in 
achieving convergence// 
 
replace job=0 if job==. //all 50 observations were either retired, going to 
school,...// 
 
replace env_ind=env_index if wildchoke!=. //in order to remain consistent w/ 
current zero trippers, env_ind is replace w/ home state values// 
 
//Opportunity cost of a single trip to zero trippers & contingent zero trippers to 
be added after imputation// 
 
//Imputation model based on 'tc' which is nctc less opportunity cost// 
replace ncoppcost=.04*earn_hat if nctrips==0 // 
gen nctc_choke=wildchoke+ncoppcost 
replace nctc=nctc_choke if wildchoke!=. 
replace tc=wildchoke if wildchoke!=. 
gen lcp=ln(wildchoke) 
gen ltc=ln(tc) //missing values generated from tc=0// 
gen lnctc=ln(nctc) 



133 
 

 
 
//Strata indicators following fhwar06 report; p.152// 
gen wstrata=1 if (trip06==1 | interest06==1) //active// 
replace wstrata=2 if ((trip06==0 & trip05==1) & (tripday05==5 | 
tripspend05==5)) //avid// 
replace wstrata=3 if (((trip06==0 & trip05==1) & (tripday05<5 & tripspend<5)) | 
intlike06==1 | triplike06==1 | observe05==1 | feed05==1 | photo05==1 | 
plant05==1) //average// 
replace wstrata=4 if ((trip06==0 & trip05==0) & (intlike06==2 | intlike06==3 | 
triplike06==2 | triplike06==3)) //infrequent// 
replace wstrata=5 if ((trip06==0 & trip05==0) & (intlike06==4 | triplike06==4)) 
//nonparticipant// 
tab wstrata if personid2==. & site==1, plot  
 
gen nonpartic= wstrata==5 
sum nonpartic if personid2==. & nctrips==0 
sum nonpartic if personid2==. & nctrips>0 
 
gen npartic=1 if nctrips==0 
replace npartic=0 if nctrips>0 
 
//Create participation potential indicators// 
gen partind=1 if nctrips==0 & wstrata==5 //trip05==0 & (intlike06==4 & 
triplike06==4) & (observe05==0 | feed05==0 | photo05==0 | plant05==0)// 
//market nonparticipant// 
replace partind=2 if nctrips==0 & (trip06==1 | trip05==1) & (intlike06!=4 | 
triplike06!=4 | intlike06==. | triplike06==.) & (tripday05>0 | tripspend05>0) & 
(observe05==1 | feed05==1 | photo05==1 | plant05==1) //market participant// 
*tabstat env_ind if personid2==., by(ncstate) stat(n mean p50 sd min max) //141 
obs for AK & 137 obs for HI & 9 for DC// 
replace partind=3 if nctrips>0 
tab partind if personid2==. & site==1, plot  
 
sum nctrips age male marr lhinc wildlife wildcontr trip05 nchunt06 ncfish06 
env_ind parks private natrarea retire urban photo feedbrd feedfsh aown alease 
mainplnt /// 
wildbooks school cendiv tripspend05 white  observe05 feed05 photo05 plant05 
outstate if personid2==. /*& nctrips>0 & site==1*/ 
//initially nctrips(12272 obs), then 12224 obs =>dropped 48// 
 
foreach X of varlist nctrips age agesq male marr lhinc wildlife wildcontr trip05 
nchunt06 ncfish06 env_ind parks private /*natrarea*/ retire urban photo 
feedbrd feedfsh /*aown alease mainplnt*/ /// 
wildbooks school cendiv tripspend05 white  observe05 feed05 photo05 plant05 
/// 
{ 
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drop if (`X'==.) //52 obs// 
}  
 
egen totncwgt=total(ncwgt) if personid2==. 
gen totncwgt1000=totncwgt/1000 
dis totncwgt1000 
gen ncwgt2=ncwgt*12224/115957630 //adjusts weights so it sums to sample size, 
n=12224// 
egen totncwgt2=total(ncwgt2) if personid2==. 
dis totncwgt2 
 
//Multiple Imputation of Travel Cost for nonparticipants// 
mi set wide 
mi register imputed lnctc 
set seed 12380 
 
mi svyset [pweight=ncwgt2] 
 
 
//The natural log of nctc was used because nctc failed the normality test. Also, 
the predicted mean matching (PMM) used 3 closest neighbors// 
 
mi impute pmm lnctc nctrips age agesq male marr lhinc wildlife wildcontr /// 
trip05 nchunt06 ncfish06 parks private i.retire urban /// 
photo feedbrd feedfsh wildbooks school i.cendiv i.tripspend05 white /// 
observe05 feed05 photo05 plant05 [pweight=ncwgt2], add(10) knn(3) 
 
mi passive: gen nctc_mi=exp(lnctc) 
mi passive: replace nctc_mi=nctc if nctc!=. & personid2==. 
 
//Table 2.2: PMM Results for travel cost// 
mi estimate: svy: mean nctc_mi if personid2==. 
mi estimate: svy, subpop(partic): mean nctc_mi if personid2==. 
mi estimate: svy: mean nctc_mi if personid2==. & nctrips==0 
mi estimate: svy: mean nctc_mi if personid2==. & nctrips==1 
mi estimate: svy: mean nctc_mi if personid2==. & nctrips==2 
mi estimate: svy: mean nctc_mi if personid2==. & nctrips==3 
mi estimate: svy: mean nctc_mi if personid2==. & nctrips>3 
 
//End of PMM procedure.  Begin FM Model Estimation// 
 
//Table 2.3: Average information criterion and entrophy values; Testing for 
components// 
 
/*1-Component*/ 
forvalues i=1/10 { 
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nbreg nctrips age agesq male marr lhinc school _`i'_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
fitstat 
} 
 
/*2-Component*/ 
forvalues i=1/10 { 
fmm nctrips age agesq male marr lhinc school _`i'_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) /// 
components(2) 
fmmlc 
} 
 
/*3-Component*/ 
forvalues i=1/10 { 
fmm nctrips age agesq male marr lhinc school _`i'_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) /// 
components(3) from(.0780568     -.000842    -.0091116    -.1632147     /// 
.1960878     .0695426    -.0005897     .8433348     .4699351      1.20976      /// 
.703454     1.678239     .5607098  .6972714    -7.532573     -.028683     /// 
.0003464     .7186719    -.0508844     .0368727     .0157604    -.0098542 ///    
.5299923     .6883075     .4587726      .474313 .3594805     -.0816081     /// 
1.026804     1.725451     .1077329    -.0011352     .3739535    -.5148367    ///  
.6594796      .049071    -.0346685     .7949065     .6319239 /// 
.949179     .4923119      .804073     1.032272     .5959123    -8.755179     /// 
1.418229    -1.761949      .338601     .6615518      .229392) 
*fmmlc 
} 
 
/*4-Component*/ 
forvalues i=1/10 { 
fmm nctrips age agesq male marr lhinc school _`i'_nctc_mi photo feedbrd parks 
wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) /// 
components(4) from(.0932981    -.0009609     .3735991    -.2547126     /// 
.2930519    -.0202652  -.0037552     .4848303     .2242133     .4896062  ///   
.5758752     .4690702     .9045633  .1436699    -3.728027    -.0176296    ///  
.0001295     .6371824    -.2780966     .7016975     .1065705    -.0783202 ///    
.9455834     .7727241     .6346586     .3497921 .5117884     .6174938     ///   
1.179355    -5.958894     .0912965    -.0012018      -.01206    -.1599273     /// 
.4287372     .0195941    -.0085934     1.139986     .8376455 1.084964     /// 
.9203508     1.671505     .6398412     1.045063    -8.015345     .0924681    ///           
-.0008889     .0198871    -.2316165     .1060584     .0892847    -.0002252 /// 
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.8650737      .130724     1.050429     .7178906     1.842565     .7531802    ///  

.3606856    -7.788876      -2.2534    -1.764246    -1.016855    -.5642304  /// 

.6693763 -.5458257    -.4208959)  
fmmlc 
} 
 
//Estimating Single-component models for the 10 imputed data sets// 
 
nbreg nctrips age agesq male marr lhinc school _1_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c1 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _2_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c2 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _3_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c3 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _4_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c4 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _5_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c5 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _6_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c6 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _7_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c7 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _8_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c8 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _9_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
predict c9 if e(sample) 
nbreg nctrips age agesq male marr lhinc school _10_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06 if personid2==. [pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr) 
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predict c101 if e(sample) 
 
gen tp_nb=(c1+c2+c3+c4+c5+c6+c7+c8+c9+c10)/10 
 
//Obtain MI estimates for Single-Component model// 
mi estimate: nbreg nctrips age agesq male marr lhinc school nctc_mi photo 
feedbrd parks wildcontr trip05 nchunt06 ncfish06 if personid2==. 
[pweight=ncwgt2], /// 
difficult vce(cluster personid) technique(nr)  
 
//Using estimates from mi estimate to create CS lower limit in Single-component 
model// 
gen tcon=exp(-3.046768+.0303139*age-.0003226*agesq+.4101752*male- /// 
.2577584*marr+.0642338*lhinc+.0548194*school+.8909739*photo+ /// 
.8141454*feedbrd+1.073308*parks+.4086888*wildcontr+1.023345*trip05 /// 
+.9778609*nchunt06+.8616468*ncfish06) if personid2==. 
 
gen c0_nb=(1/-.0029207)*ln(3.276973/4.26014) //c0_nb=89.835274// 
dis c0_nb 
 
//Estimating 3-component models for the 10 imputed data sets// 
 
fmm nctrips age agesq male marr lhinc school _1_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) /// 
components(3) /*trace*/ /// 
from(.0780568     -.000842    -.0091116    -.1632147     .1960878     .0695426 ///    
-.0005897     .8433348     .4699351      1.20976      .703454     1.678239   ///  
.5607098 .6972714    -7.532573     -.028683     .0003464     .7186719   ///  -
.0508844     .0368727     .0157604    -.0098542     .5299923     .6883075   ///  
.4587726      .474313  .3594805     -.0816081     1.026804     1.725451    ///  
.1077329    -.0011352     .3739535    -.5148367     .6594796      .049071    /// -
.0346685     .7949065     .6319239 .949179     .4923119      .804073    ///    
1.032272     .5959123    -8.755179     1.418229    -1.761949      .338601     /// 
.6615518      .229392) 
 
predict tp11 if e(sample), equation(component1) 
predict tp21 if e(sample), equation(component2) 
predict tp31 if e(sample), equation(component3) 
predict tp1231 if e(sample) 
predict pst11 if e(sample), posterior equation(component1) 
predict pst21 if e(sample), posterior equation(component2) 
predict pst31 if e(sample), posterior equation(component3) 
gen g1=1 if (pst11>pst21 & pst11>pst31) 
replace g1=2 if (pst21>pst11 & pst21>pst31) 
replace g1=3 if (pst31>pst11 & pst31>pst21) 
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univar nctrips _1_nctc_mi outstate age male marr lhinc school retired wildlife 
wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd land if nctrips>0, by(g1)  
 
gen tcon11=exp(-7.532573+0.0780568*age-0.000842*agesq-0.0091116*/// 
male0.1632147*marr+0.1960878*lhinc+0.0695426*school+0.8433348*/// 
photo+0.4699351*feedbrd+1.20976*parks+0.703454*wildcontr+1.678239/// 
*trip05+0.5607098*nchunt06+0.6972714*ncfish06) if e(sample) 
gen tcon21=exp(1.725451-0.028683*age+0.0003464*agesq+0.7186719*/// 
male-0.0508844*marr+0.0368727*lhinc+0.0157604*school+///         
0.5299923*photo+0.6883075*feedbrd+0.4587726*parks+0.474313*/// 
wildcontr+0.3594805*trip05-0.0816081*nchunt06+1.026804*ncfish06) if 
e(sample) 
gen tcon31=exp(-8.755179+0.1077329*age-0.0011352*agesq+0.3739535*/// 
male-0.5148367*marr+0.6594796*lhinc+0.049071*school+0.7949065* /// 
photo+0.6319239*feedbrd+0.949179*parks+0.4923119*wildcontr+/// 
0.804073*trip05+1.032272*nchunt06+0.5959123*ncfish06) if e(sample) 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _2_nctc_mi photo feedbrd parks 
wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) /// 
components(3) /*trace*/ /// 
from(0.0708973 -0.0007806 -0.0313866 -0.174372 0.2072993 ///
 0.0692952 -0.0005079 0.847606 0.5003767 1.204931 ///
 0.6979081 1.664115 0.5913673 0.7001766 -7.454391 /// 
-0.0280852 0.0003415 0.7161696 -0.0396754 0.0152953 ///  
0.012303 -0.0098941 0.5316211 0.6895315 0.5118858 /// 
0.4737978 0.333105 -0.0043157 0.9879732 1.923338 /// 
0.110506 -0.0011647 0.3615294 -0.5173733 0.7071932 /// 
0.0569523 -0.036461 0.768718 0.670128 0.9261724 0.4756491 ///
 0.8289184 1.02183 0.6217959 -9.423879 /// 
1.464485 -1.634971 0.4065391 0.6916477 0.2148769) 
predict tp12 if e(sample), equation(component1) 
predict tp22 if e(sample), equation(component2) 
predict tp32 if e(sample), equation(component3) 
predict tp1232 if e(sample) 
predict pst12 if e(sample), posterior equation(component1) 
predict pst22 if e(sample), posterior equation(component2) 
predict pst32 if e(sample), posterior equation(component3) 
gen g2=1 if (pst12>pst22 & pst12>pst32) 
replace g2=2 if (pst22>pst12 & pst22>pst32) 
replace g2=3 if (pst32>pst12 & pst32>pst22) 
univar _2_nctc_mi outstate age male marr lhinc school retired wildlife /// 
wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd land if nctrips>0, by(g2)  
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gen tcon12=exp(-7.454391+0.0708973*age-0.0007806*agesq- /// 
0.0313866*male-0.174372*marr+0.2072993*lhinc+0.0692952* 
school+0.847606*/// photo+0.5003767*feedbrd  /// 
+1.204931*parks+0.6979081*wildcontr+1.664115*trip05+0.5913673*/// 
nchunt06+0.7001766*ncfish06) if e(sample) 
gen tcon22=exp(1.923338-0.0280852*age+0.0003415*agesq+/// 
0.7161696*male- /// 
0.0396754*marr+0.0152953*lhinc+0.012303*school+0.5316211*photo /// 
+0.6895315*feedbrd /// 
+0.5118858*parks+0.4737978*wildcontr+0.333105*trip05- /// 
0.0043157*nchunt06+0.9879732*ncfish06) if e(sample) 
gen tcon32=exp(-9.423879+0.110506*age-0.0011647*agesq+/// 
0.3615294*male- 
///0.5173733*marr+0.7071932*lhinc+0.0569523*school+0.768718 /// 
*photo+0.670128*feedbrd /// 
+0.9261724*parks+0.4756491*wildcontr+0.8289184*trip05+1.02183 /// 
*nchunt06+0.6217959*ncfish06) if e(sample) 
 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _3_nctc_mi photo feedbrd /// 
parks wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], 
/// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) components(3) 
/*trace*/ /// 
from(.074843    -.0008105    -.0134107    -.1847175     .2188725     .0731565    ///    
-.0005993     .8459815     .4977331     1.195974     .6993784     1.682093     /// 
.5164949 /// 
.7014508    -7.742872    -.0259345     .0003208     .7189236     -.047614    ///  
.0153803     .0138082    -.0097269     .5144137     .6916606     .4819593     /// 
.4457557 .3284057     .0573018     .9979791     1.904004     .1011659    ///                   
-.0010588    .3827304    -.5212476     .6829229     .0615322     -.035335      /// 
.8245169    .6783392 .950509     .5117617     .8648746     .9921521    ///                    
.6303132        -9.134355     1.432894    -1.721493     .3579461     .6532512     ///                  
.2631812) 
predict tp13 if e(sample), equation(component1) 
predict tp23 if e(sample), equation(component2) 
predict tp33 if e(sample), equation(component3) 
predict tp1233 if e(sample) 
predict pst13 if e(sample), posterior equation(component1) 
predict pst23 if e(sample), posterior equation(component2) 
predict pst33 if e(sample), posterior equation(component3) 
gen g3=1 if (pst13>pst23 & pst13>pst33) 
replace g3=2 if (pst23>pst13 & pst23>pst33) 
replace g3=3 if (pst33>pst13 & pst33>pst23) 
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univar _3_nctc_mi outstate age male marr lhinc school retired wildlife ///                   
wildcontr trip05 nchunt06 ncfish06 nonpartic ncdays ncobsrv ncphoto ///                  
ncfeed pvtlnd publnd, by(g3)  
 
gen tcon13=exp(-7.742872+0.074843*age-0.0008105*agesq- ///                    
0.0134107*male-0.1847175*marr+0.2188725*lhinc+0.0731565 ///                   
*school+0.8459815*photo+0.4977331*feedbrd /// 
+1.195974*parks+0.6993784*wildcontr+1.682093*trip05+0.5164949*///                  
nchunt06+0.7014508*ncfish06) if e(sample) 
gen tcon23=exp(1.904003-0.0259344*age+0.0003208*agesq+ ///                  
0.7189234*male-0.0476142*marr+0.0153803*lhinc+0.0138082 ///                   
*school+0.5144138*photo+0.6916607*feedbrd /// 
+0.4819598*parks+0.4457556*wildcontr+0.3284058*trip05+ ///                   
0.057302*nchunt06+0.9979787*ncfish06) if e(sample) 
gen tcon33=exp(-9.134362+0.1011659*age-0.0010588*agesq+ ///                   
0.3827307*male- ///                  
0.5212474*marr+0.6829236*lhinc+0.0615322*school+0.8245164 ///                  
*photo+0.6783394*feedbrd /// 
+0.9505087*parks+0.5117615*wildcontr+0.8648747*trip05+ ///                  
0.9921523*nchunt06+0.6303128*ncfish06) if e(sample) 
 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _4_nctc_mi photo ///                  
feedbrd parks wildcontr trip05 nchunt06 ncfish06  if personid2==. ///                   
[pweight=ncwgt2], mixtureof(negbin2) vce(cluster personid) difficult  ///                  
technique(nr) components(3) /*trace*/ /// 
from(.0757717    -.0008249    -.0114037    -.1868786     .2100781     ///                   
.0695924    -.0006193     .8263674     .5017736     1.212104     .6853117     ///                  
1.685827     .6142868  .6796289    -7.597151    -.0297359     .0003538      ///                  
.724043    -.0483157     .0282348     .0147377    -.0096973     .5496611     ///                  
.6791634     .4820176     .4685902 .3557187    -.1146064     1.047677     ///                  
1.871717     .1049171    -.0011132     .3814262    -.5119896     .6445525    ///                   
.0555395    -.0331326     .7546436     .6866012 .9440965     .4912773     ///                  
.8166562     1.046998     .6141657   -8.654384     1.481821    -1.736899      ///                  
.383567     .6393538     .2106884) 
predict tp14 if e(sample), equation(component1) 
predict tp24 if e(sample), equation(component2) 
predict tp34 if e(sample), equation(component3) 
predict tp1234 if e(sample) 
predict pst14 if e(sample), posterior equation(component1) 
predict pst24 if e(sample), posterior equation(component2) 
predict pst34 if e(sample), posterior equation(component3) 
gen g4=1 if (pst14>pst24 & pst14>pst34) 
replace g4=2 if (pst24>pst14 & pst24>pst34) 
replace g4=3 if (pst34>pst14 & pst34>pst24) 
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univar _4_nctc_mi outstate age male marr lhinc school retired wildlife ///                  
wildcontr trip05 nchunt06 ncfish06 nonpartic ncdays ncobsrv ncphoto ///                  
ncfeed pvtlnd publnd, by(g4)  
 
gen tcon14=exp(-7.597148+0.0757708*age-0.0008249*agesq-///                  
0.0114025*male-///                  
0.1868764*marr+0.210081*lhinc+0.0695917*school+0.8263661///                  
*photo+0.5017751*feedbrd /// 
+1.212102*parks+0.6853109*wildcontr+1.685828*trip05+ ///                  
0.614284*nchunt06+0.6796322*ncfish06) if e(sample) 
gen tcon24=exp(1.871658-0.0297346*age+0.0003538*agesq+///                  
0.7240283*male-///                  
0.0483324*marr+0.0282313*lhinc+0.0147382*school+0.5496614 ///                  
*photo+0.6791655*feedbrd /// 
+0.4820541*parks+0.4685838*wildcontr+0.3557261*trip05- ///                  
0.1145798*nchunt06+1.047629*ncfish06) if e(sample) 
gen tcon34=exp(-8.65496+0.1049177*age-0.0011132*agesq+ ///                  
0.3814535*male-///                  
0.5119717*marr+0.6445525*lhinc+0.05554*school+0.7546101* ///                  
photo+0.6866155*feedbrd /// 
+0.9440807*parks+0.4912602*wildcontr+0.8166628*trip05+ ///                   
1.047009*nchunt06+0.6141359*ncfish06) if e(sample) 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _5_nctc_mi photo feedbrd parks 
wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) components(3) 
/*trace*/ /// 
from(.0779535    -.0008352    -.0098337    -.1703383     .1922358     ///                  
.0778584    -.0006187     .8254089     .4784475     1.188945     ///                  
.6962863     1.688665     .5625217 /// 
.6869882    -7.602526    -.0290204     .0003487     .7145895    ///                               
-.0486902     .0232256     .0192482    -.0097451     .5461551     ///                  
.6788694     .5297874     .4548459 /// 
.3570483    -.1014167     1.016827     1.765604     .1069923    -.0011328     ///                  
.4119678    -.5000939     .7035616     .0613461    -.0371987     .7686411     .6869706 
.8875225     .5116731     .8265945     1.047386     .6005649     -9.42004     ///                  
1.380241    -1.696266     .3105988     .6914445     .2702445) 
predict tp15 if e(sample), equation(component1) 
predict tp25 if e(sample), equation(component2) 
predict tp35 if e(sample), equation(component3) 
predict tp1235 if e(sample) 
predict pst15 if e(sample), posterior equation(component1) 
predict pst25 if e(sample), posterior equation(component2) 
predict pst35 if e(sample), posterior equation(component3) 
gen g5=1 if (pst15>pst25 & pst15>pst35) 
replace g5=2 if (pst25>pst15 & pst25>pst35) 
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replace g5=3 if (pst35>pst15 & pst35>pst25) 
univar _5_nctc_mi outstate age male marr lhinc school retired wildlife ///                  
wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd, by(g5)  
 
gen tcon15=exp(-7.602526+0.0779535*age-0.0008352*agesq-///                  
0.0098337*male-///                  
0.1703383*marr+0.1922358*lhinc+0.0778584*school+0.8254089 ///                  
*photo+0.4784475*feedbrd /// 
+1.188945*parks+0.6962863*wildcontr+1.688665*trip05+0.5625217 ///                  
*nchunt06+0.6869882*ncfish06) if e(sample) 
gen tcon25=exp(1.765602-0.0290204*age+0.0003487*agesq+ / //                  
0.7145896*male-///                  
0.0486906*marr+0.0232258*lhinc+0.0192482*school+0.546155* ///                  
photo+0.6788698*feedbrd /// 
+0.5297875*parks+0.4548459*wildcontr+0.3570483*trip05- ///                  
0.1014149*nchunt06+1.016827*ncfish06) if e(sample) 
gen tcon35=exp(-9.42004+0.1069923*age-0.0011328*agesq+ ///                  
0.4119678*male-///                  
0.5000939*marr+0.7035616*lhinc+0.0613461*school+0.7686411* ///                  
photo+0.6869706*feedbrd /// 
+0.8875225*parks+0.5116731*wildcontr+0.8265945*trip05+ ///                  
1.047386*nchunt06+0.6005649*ncfish06) if e(sample) 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _6_nctc_mi photo feedbrd parks 
wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) components(3) 
/*trace*/ /// 
from(.0708887    -.0007873    -.0279639     -.163999     .2066887     ///                  
.0691788    -.0005342     .8360727     .5053213     1.193486     .7042503 ///                       
1.690595     .6464416 /// 
.6991508    -7.436987    -.0302653      .000359     .7281187    -.0480176  ///                    
.0133438     .0180519    -.0096869     .5453554     .6813864     .5544011   ///                    
.4445855 /// 
.3588027    -.1132916     1.030052     1.937496     .1090012    -.0011589   ///                    
.3665494    -.5041877     .7202556      .059273    -.0350962     .7439782      ///                  
.713064  .8826755     .4986136     .8269235     1.088872     .6070921    ///                   
-9.57355     1.521671    -1.641607     .4184927     .6644148     .1684165) 
predict tp16 if e(sample), equation(component1) 
predict tp26 if e(sample), equation(component2) 
predict tp36 if e(sample), equation(component3) 
predict tp1236 if e(sample) 
predict pst16 if e(sample), posterior equation(component1) 
predict pst26 if e(sample), posterior equation(component2) 
predict pst36 if e(sample), posterior equation(component3) 
gen g6=1 if (pst16>pst26 & pst16>pst36) 
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replace g6=2 if (pst26>pst16 & pst26>pst36) 
replace g6=3 if (pst36>pst16 & pst36>pst26) 
univar _6_nctc_mi outstate age male marr lhinc school retired wildlife w ///                  
ildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd, by(g6)  
 
gen tcon16=exp(-7.436987+0.0708887*age-0.0007873*agesq- ///                  
0.0279639*male- ///                  
0.163999*marr+0.2066887*lhinc+0.0691788*school+0.8360727 ///                  
*photo+0.5053213*feedbrd /// 
+1.193486*parks+0.7042503*wildcontr+1.690595*trip05+0.6464416 ///                  
*nchunt06+0.6991508*ncfish06) if e(sample) 
gen tcon26=exp(1.937496-0.0302653*age+0.000359*agesq+ ///                  
0.7281187*male-///                  
0.0480176*marr+0.0133438*lhinc+0.0180519*school+0.5453554* ///                  
photo+0.6813864*feedbrd /// 
+0.5544011*parks+0.4445855*wildcontr+0.3588027*trip05- ///                  
0.1132916*nchunt06+1.030052*ncfish06) if e(sample) 
gen tcon36=exp(-9.5735+0.1090012*age-0.0011589*agesq+ ///                  
0.3665494*male-///                  
0.5041877*marr+0.7202556*lhinc+0.059273*school+0.7439782 ///                  
*photo+0.713064*feedbrd /// 
+0.8826755*parks+0.4986136*wildcontr+0.8269235*trip05+ ///                  
1.088872*nchunt06+0.6070921*ncfish06) if e(sample) 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _7_nctc_mi photo feedbrd parks 
wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) components(3) 
/*trace*/ /// 
from(.0758311    -.0008291    -.0229071    -.1482405     .2058946      ///                   
.074374    -.0005461     .8249749     .5260225      1.22422     .7123037      ///                  
1.681839     .5493531 /// 
.7210285    -7.681908    -.0290843     .0003459     .7235422    -.0448934     ///                  
.0110161      .015717    -.0093675     .5497895     .6726555     .5097662     ///                   
.4431818 /// 
.3622747    -.0973945     1.064539     2.001135     .1077662     -.001148      ///                  
.3623654    -.4931171     .6309466     .0575541    -.0318545     .7577236      ///                  
.715547 .9516074     .5238737     .8339863     1.041989     .6107923    - ///                  
8.653926     1.515831    -1.698703       .38185     .6403727     .2307349) 
predict tp17 if e(sample), equation(component1) 
predict tp27 if e(sample), equation(component2) 
predict tp37 if e(sample), equation(component3) 
predict tp1237 if e(sample) 
predict pst17 if e(sample), posterior equation(component1) 
predict pst27 if e(sample), posterior equation(component2) 
predict pst37 if e(sample), posterior equation(component3) 
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gen g7=1 if (pst17>pst27 & pst17>pst37) 
replace g7=2 if (pst27>pst17 & pst27>pst37) 
replace g7=3 if (pst37>pst17 & pst37>pst27) 
univar _7_nctc_mi outstate age male marr lhinc school retired wildlife wildcontr 
trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd, by(g7)  
 
gen tcon17=exp(-7.681908+0.0758311*age-0.0008291*agesq-0.0229071*male-
0.1482405*marr+0.2058946*lhinc+0.074374*school+0.8249749*photo+0.526
0225*feedbrd /// 
+1.22422*parks+0.7123037*wildcontr+1.681839*trip05+0.5493531*nchunt06+
0.7210285*ncfish06) if e(sample) 
gen tcon27=exp(2.001135-0.0290843*age+0.0003459*agesq+0.7235422*male-
0.0448934*marr+0.0110161*lhinc+0.015717*school+0.5497895*photo+0.67265
55*feedbrd /// 
+0.5097662*parks+0.4431818*wildcontr+0.3622747*trip05-
0.0973945*nchunt06+1.064539*ncfish06) if e(sample) 
gen tcon37=exp(-8.653926+0.1077662*age-0.001148*agesq+0.3623654*male-
0.4931171*marr+0.6309466*lhinc+0.0575541*school+0.7577236*photo+0.7155
47*feedbrd /// 
+0.9516074*parks+0.5238737*wildcontr+0.8339863*trip05+1.041989*nchunt0
6+0.6107923*ncfish06) if e(sample) 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _8_nctc_mi photo feedbrd parks 
wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) components(3) 
/*trace*/ /// 
from(.0724633    -.0007957    -.0076931    -.1688684     .2042587     .0702085    -
.0004974     .8384893      .497014     1.202331      .693626     1.696706      .547249 
/// 
.700792    -7.492898     -.032672      .000378     .7114763    -.0357256     .0041805     
.0193429      -.00959     .5596117     .6771816     .5811016     .4577401 /// 
.3661606    -.0892211     1.025671      1.99336     .1068909    -.0011353     .4077529     
-.511473     .7497179     .0602064    -.0384632     .7039106     .6972749 /// 
.869247     .4898828     .8220303     1.044915     .5283158     -9.78146      1.50528    
-1.551913     .4038016     .7246557     .1696543) 
predict tp18 if e(sample), equation(component1) 
predict tp28 if e(sample), equation(component2) 
predict tp38 if e(sample), equation(component3) 
predict tp1238 if e(sample) 
predict pst18 if e(sample), posterior equation(component1) 
predict pst28 if e(sample), posterior equation(component2) 
predict pst38 if e(sample), posterior equation(component3) 
gen g8=1 if (pst18>pst28 & pst18>pst38) 
replace g8=2 if (pst28>pst18 & pst28>pst38) 
replace g8=3 if (pst38>pst18 & pst38>pst28) 
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univar _8_nctc_mi outstate age male marr lhinc school retired wildlife wildcontr 
trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd, by(g8)  
 
gen tcon18=exp(-7.492898+0.0724633*age-0.0007957*agesq-0.0076931*male-
0.1688684*marr+0.2042587*lhinc+0.0702085*school+0.8384893*photo+0.49
7014*feedbrd /// 
+1.202331*parks+0.693626*wildcontr+1.696706*trip05+0.547249*nchunt06+0
.700792*ncfish06) if e(sample) 
gen tcon28=exp(1.99336-0.032672*age+0.000378*agesq+0.7114763*male-
0.0357256*marr+0.0041805*lhinc+0.0193429*school+0.5596117*photo+0.6771
816*feedbrd /// 
+0.5811016*parks+0.4577401*wildcontr+0.3661606*trip05-
0.0892211*nchunt06+1.025671*ncfish06) if e(sample) 
gen tcon38=exp(-9.78146+0.1068909*age-0.0011353*agesq+0.4077529*male-
0.511473*marr+0.7497179*lhinc+0.0602064*school+0.7039106*photo+0.69727
49*feedbrd /// 
+0.869247*parks+0.4898828*wildcontr+0.8220303*trip05+1.044915*nchunt0
6+0.5283158*ncfish06) if e(sample) 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _9_nctc_mi photo feedbrd parks 
wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) components(3) 
/*trace*/ /// 
from(.072783    -.0007934    -.0140748    -.1590192     .2155736     .0687449      -
.00057     .8282696     .4830566     1.187148     .6828708     1.706293     .5410034 
/// 
.7062497    -7.604495     -.029041     .0003476     .6982083    -.0451293     
.0094589     .0170762    -.0097117     .5380089     .6656172     .5418408      .458521 
/// 
.3620847    -.0901166     .9998603     1.908933     .1085862      -.00115     .4141809    
-.5114906     .7799658     .0589894    -.0385898     .7493254     .7184858 /// 
.8941871     .4759828     .8632638     1.075834     .6149584    -10.25801     1.414485    
-1.598671     .3457343     .7087563     .2501986) 
predict tp19 if e(sample), equation(component1) 
predict tp29 if e(sample), equation(component2) 
predict tp39 if e(sample), equation(component3) 
predict tp1239 if e(sample) 
predict pst19 if e(sample), posterior equation(component1) 
predict pst29 if e(sample), posterior equation(component2) 
predict pst39 if e(sample), posterior equation(component3) 
gen g9=1 if (pst19>pst29 & pst19>pst39) 
replace g9=2 if (pst29>pst19 & pst29>pst39) 
replace g9=3 if (pst39>pst19 & pst39>pst29) 
univar _9_nctc_mi outstate age male marr lhinc school retired wildlife wildcontr 
trip05 nchunt06 ncfish06 nonpartic /// 
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ncdays ncobsrv ncphoto ncfeed pvtlnd publnd, by(g9)  
 
gen tcon19=exp(-7.604495+0.072783*age-0.0007934*agesq-0.0140748*male-
0.1590192*marr+0.2155736*lhinc+0.0687449*school+0.8282696*photo+0.483
0566*feedbrd /// 
+1.187148*parks+0.6828708*wildcontr+1.706293*trip05+0.5410034*nchunt06
+0.7062497*ncfish06) if e(sample) 
gen tcon29=exp(1.908933-0.029041*age+0.0003476*agesq+0.6982083*male-
0.0451293*marr+0.0094589*lhinc+0.0170762*school+0.5380089*photo+0.66
56172*feedbrd /// 
+0.5418408*parks+0.458521*wildcontr+0.3620847*trip05-
0.0901166*nchunt06+0.9998603*ncfish06) if e(sample) 
gen tcon39=exp(-10.25801+0.1085862*age-0.00115*agesq+0.4141809*male-
0.5114906*marr+0.7799658*lhinc+0.0589894*school+0.7493254*photo+0.718
4858*feedbrd /// 
+0.8941871*parks+0.4759828*wildcontr+0.8632638*trip05+1.075834*nchunt0
6+0.6149584*ncfish06) if e(sample) 
 
/*****************************************************************/ 
fmm nctrips age agesq male marr lhinc school _10_nctc_mi photo feedbrd parks 
wildcontr trip05 nchunt06 ncfish06  if personid2==. [pweight=ncwgt2], /// 
mixtureof(negbin2) vce(cluster personid) difficult technique(nr) components(3) 
/*trace*/ /// 
from(.0759582    -.0008286    -.0156957    -.1963789       .20828     .0717438    -
.0006094     .8321341     .5184441     1.213525     .6954017     1.712399     .6199228 
/// 
.6586268    -7.636743    -.0280322     .0003371     .7478974    -.0857765     
.0487991     .0145827    -.0096031      .537938     .7347365     .5530767     .4357401 
/// 
.3572624     .1394161     1.027387     1.631027      .099214    -.0010617     .3546976    
-.5146526     .5977464      .058045    -.0300469     .7761371     .6585633 /// 
.9368653     .4759611     .8577358     .9623489     .5964677    -8.060461     1.557239    
-1.729004     .3854412     .6127237     .1746849) 
predict tp110 if e(sample), equation(component1) 
predict tp210 if e(sample), equation(component2) 
predict tp310 if e(sample), equation(component3) 
predict tp12310 if e(sample) 
predict pst110 if e(sample), posterior equation(component1) 
predict pst210 if e(sample), posterior equation(component2) 
predict pst310 if e(sample), posterior equation(component3) 
gen g10=1 if (pst110>pst210 & pst110>pst310) 
replace g10=2 if (pst210>pst110 & pst210>pst310) 
replace g10=3 if (pst310>pst110 & pst310>pst210) 
univar _10_nctc_mi outstate age male marr lhinc school retired wildlife 
wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd, by(g10)  
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gen tcon110=exp(-7.636728+0.0759579*age-0.0008286*agesq-
0.0156968*male-
0.1963782*marr+0.2082801*lhinc+0.0717435*school+0.8321341*photo+0.5184
439*feedbrd /// 
+1.213524*parks+0.6954028*wildcontr+1.7124*trip05+0.6199287*nchunt06+0.
6586281*ncfish06) if e(sample) 
gen tcon210=exp(1.631205-0.0280357*age+0.0003371*agesq+0.7478951*male-
0.0857385*marr+0.0487865*lhinc+0.0145838*school+0.5379462*photo+0.734
706*feedbrd /// 
+0.5530573*parks+0.435745*wildcontr+0.3572623*trip05+0.1392546*nchunt0
6+1.027429*ncfish06) if e(sample) 
gen tcon310=exp(-8.060484+0.0992154*age-
0.0010617*agesq+0.3546983*male-
0.5146653*marr+0.5977471*lhinc+0.0580448*school+0.7761326*photo+0.658
5734*feedbrd /// 
+0.9368644*parks+0.4759624*wildcontr+0.8577316*trip05+0.9624*nchunt06
+0.5964613*ncfish06) if e(sample) 
 
//The MI coefficient estimates for the 3-component FM model reported in Table 
2.4 were calculated in MS Excel// 
//The MI estimate of the relative entropy value was obtained using the 
calculations reported below// 
 
//Calculating MI mixing probabilities// 
gen pst1=(pst11+pst12+pst13+pst14+pst15+pst16+pst17+pst18+pst19+pst110)/10 
gen 
pst2=(pst21+pst22+pst23+pst24+pst25+pst26+pst27+pst28+pst29+pst210)/10 
gen 
pst3=(pst31+pst32+pst33+pst34+pst35+pst36+pst37+pst38+pst39+pst310)/10 
gen g=1 if (pst1>pst2 & pst1>pst3) 
replace g=2 if (pst2>pst1 & pst2>pst3) 
replace g=3 if (pst3>pst1 & pst3>pst2) 
 
//=============Relative Entropy================// 
 
gen lpst1=ln(pst1) 
gen lpst2=ln(pst2) 
gen lpst3=ln(pst3) 
replace lpst1=-81 if pst1==0 
replace lpst2=-81 if pst2==0 
replace lpst3=-81 if pst3==0 
 
gen pst1lpst1=pst1*lpst1 
gen pst2lpst2=pst2*lpst2 
gen pst3lpst3=pst3*lpst3 
gen sum_pstlpst=pst1lpst1+pst2lpst2+pst3lpst3 
egen tot__pstlpst=total(sum_pstlpst) 
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gen entropy=1+(tot__pstlpst/(12224*ln(3))) 
 
dis entropy //e=0.57688624// 
 
//Table 2.5: Component-level mean values// 
univar nctc_miavg nctrips outstate age male marr lhinc school retired wildlife 
wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd land land2 if personid2==., by(g)  
univar nctc_miavg nctrips outstate age male marr lhinc school retired wildlife 
wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd land land2 if personid2==. & 
nctrips>0, by(g)  
univar nctc_miavg nctrips outstate age male marr lhinc school retired wildlife 
wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd land land2 if personid2==. & 
nctrips==0, by(g)  
 
//Calculate component-level lower bounds c0 and expected counts using MI 
estimates// 
 
gen 
tcon1=(tcon11+tcon12+tcon13+tcon14+tcon15+tcon16+tcon17+tcon18+tcon19+t
con110)/10  
gen 
tcon2=(tcon21+tcon22+tcon23+tcon24+tcon25+tcon26+tcon27+tcon28+tcon29
+tcon210)/10  
gen 
tcon3=(tcon31+tcon32+tcon33+tcon34+tcon35+tcon36+tcon37+tcon38+tcon39
+tcon310)/10  
 
gen tp1=(tp11+tp12+tp13+tp14+tp15+tp16+tp17+tp18+tp19+tp110)/10  
gen tp2=(tp21+tp22+tp23+tp24+tp25+tp26+tp27+tp28+tp29+tp210)/10  
gen tp3=(tp31+tp32+tp33+tp34+tp35+tp36+tp37+tp38+tp39+tp310)/10  
gen 
tp123=(tp1231+tp1232+tp1233+tp1234+tp1235+tp1236+tp1237+tp1238+tp1239
+tp12310)/10 
 
sum tcon1 tcon2 tcon3 tp1 tp2 tp3 tp123 pst1 pst2 pst3 nctrips if e(sample) 
 
gen c01=(1/-0.0005692)*ln(.7500889/.8142377) 
gen c02=(1/-0.00968767)*ln(18.48249/32.42402) 
gen c03=(1/-0.03508482)*ln(7.15158/30.42196) 
 
sum c01 c02 c03 tp1 tp2 tp3 tp123 pst1 pst2 pst3 if e(sample) 
 
//Data used for obtaining CS estimates// 
save "I:\fmm_post.dta", replace 
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//================FILE 6================// 
 
//This file is used to conduct post-estimation analyses// 
 
 
use "I:\fmm_post.dta" 
  
gen ncdaystrip=ncdays/nctrips 
gen ncdaystrip2=ncdaystrip 
replace ncdaystrip2=0 if ncdays==0 & personid2==. 
 
//Table 2.5: Component-level mean values// 
mi estimate: mean nctc_mi if personid2==. & g==1 
mi estimate: mean nctc_mi if personid2==. & g==1 & nctrips==0 
mi estimate: mean nctc_mi if personid2==. & g==1 & nctrips>0 
mi estimate: mean nctc_mi if personid2==. & g==1 & nctrips>0 & outstate==0 
mi estimate: mean nctc_mi if personid2==. & g==1 & nctrips>0 & outstate==1 
 
mi estimate: mean nctc_mi if personid2==. & g==2 
mi estimate: mean nctc_mi if personid2==. & g==3 
 
mi estimate: mean nctc_mi if personid2==. 
mi estimate: mean nctc_mi if personid2==. & nctrips==0 
mi estimate: mean nctc_mi if personid2==. & nctrips>0 
 
univar tp1 tp2 tp3 nctrips ncdaystrip outstate age male marr lhinc school retired 
wildlife wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd obbird phbird febird birdday 
brdprey brdwater brdshore brdsong brdother opffish opfbig opfsml opfmarine 
opfturtle /// 
land land2 urban birdspec wildsites if personid2==. & nctrips>0, by(g)  
univar tp1 tp2 tp3 nctrips ncdaystrip outstate age male marr lhinc school retired 
wildlife wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd obbird phbird febird birdday 
brdprey brdwater brdshore brdsong brdother opffish opfbig opfsml opfmarine 
opfturtle /// 
land land2 urban birdspec wildsites if personid2==. & nctrips>0 & outstate==0, 
by(g)  
univar tp1 tp2 tp3 nctrips ncdaystrip outstate age male marr lhinc school retired 
wildlife wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd obbird phbird febird birdday 
brdprey brdwater brdshore brdsong brdother opffish opfbig opfsml opfmarine 
opfturtle /// 
land land2 urban birdspec wildsites if personid2==. & nctrips>0 & outstate==1, 
by(g) 



150 
 

univar nctrips ncdaystrip outstate age male marr lhinc school retired wildlife 
wildcontr trip05 nchunt06 ncfish06 nonpartic /// 
ncdays ncobsrv ncphoto ncfeed pvtlnd publnd obbird phbird febird birdday 
brdprey brdwater brdshore brdsong brdother opffish opfbig opfsml opfmarine 
opfturtle /// 
land land2 urban birdspec wildsites if personid2==. & nctrips==0, by(g)  
 
 
//Calculating survey weighted expected trip count and lower limit values needed 
to calculate consumer surplus(CS) estimates// 
//Final CS values reported in Table 2.6 were obtained using MS Excel//  
 
mi unset 
svyset [pweight=ncwgt2] 
 
svy: mean nctc_choke //408.9574// 
svy: mean partic nctrips tp_nb tp1 tp2 tp3 tp123 c0_nb c01 c02 c03 tcon tcon1 
tcon2 tcon3 if personid2==.  
 
gen svyc0_nb=(1/-.0029207)*ln(2.68695/3.503886) //90.89// 
gen svyc01=(1/-0.0005692)*ln(.585412/.6314361) //132.96// 
gen svyc02=(1/-0.00968767)*ln(16.58438/28.33156) //55.28// 
gen svyc03=(1/-0.03508482)*ln(5.967343/25.4918) //41.39// 
 
svy: mean partic nctrips tp_nb tp1 tp2 tp3 tp123 c0_nb svyc0_nb svyc01 svyc02 
svyc03 svyc1_nb svyc11 svyc12 svyc13 tcon1 tcon2 tcon3 svyc0_nb nchunt06 
ncfish06 if personid2==.  
 

Chapter 2 Stata Codes 

//This file merges the screening survey data with the wildlife watching sample 

data(merge fh24_96.do)// 

 
use "G: \fh4_96" 
 
merge m:1 personid using "Gfhwar_96 dta\fh2_96" //screening file// 
drop if _merge==2 //dropping observations not included in fh4_96 file giving 
n=11,759// 
drop _merge 
 
save "G: \fh24_96.dta", replace 
 

//This file recodes and cleans the data for analysis// 
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clear 
 
use "G:\ \fh24_96.dta" 
 
//Investigating participants only// 
 
//Renaming variables// 
ren econww cvm1  
ren econww2 cvm2  
ren wwpick1 bid1 
ren wwpick2 bid2 
ren econadd wildtrip1 
replace wildtrip1=0 if wildtrip1==. 
ren econadd2 wildtrip2 
replace wildtrip2=0 if wildtrip2==. 
ren econest totcost1 
ren econest2 totcost2 
ren travel_a dist_a 
ren travel_b dist_b 
ren travel_c dist_c 
ren rectrp_a sitetype_a 
ren rectrp_b sitetype_b 
ren rectrp_c sitetype_c 
 
recode direct_a (1=1 "North")(2=2 "Northeast")(3=3 "East")(4=4 "Southeast") 
/// 
(5=5 "South")(6=6 "Southwest")(7=7 "West")(8=8 "Northwest"), 
gen(sitedirect_a) 
recode direct_b (1=1 "North")(2=2 "Northeast")(3=3 "East")(4=4 "Southeast") 
/// 
(5=5 "South")(6=6 "Southwest")(7=7 "West")(8=8 "Northwest"), 
gen(sitedirect_b) 
recode direct_b (1=1 "North")(2=2 "Northeast")(3=3 "East")(4=4 "Southeast") 
/// 
(5=5 "South")(6=6 "Southwest")(7=7 "West")(8=8 "Northwest"), 
gen(sitedirect_c) 
 
recode sitetype_a (1=1 "Ocean side")(2=2 "Lake or stream side")(3=3 "Marsh, 
wetland, or swamp")(4=4 "Woodland") /// 
(5=5 "Brush covered area")(6=6 "Open field")(7=7 "Man made area")(8=8 
"Other"), gen(type_a) 
recode sitetype_b (1=1 "Ocean side")(2=2 "Lake or stream side")(3=3 "Marsh, 
wetland, or swamp")(4=4 "Woodland") /// 
(5=5 "Brush covered area")(6=6 "Open field")(7=7 "Man made area")(8=8 
"Other"), gen(type_b) 
recode sitetype_c (1=1 "Ocean side")(2=2 "Lake or stream side")(3=3 "Marsh, 
wetland, or swamp")(4=4 "Woodland") /// 
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(5=5 "Brush covered area")(6=6 "Open field")(7=7 "Man made area")(8=8 
"Other"), gen(type_c) 
 
 
//Per-trip cost// 
gen cost1=totcost1/wildtrip1 
gen cost2=totcost2/wildtrip2 
 
gen cendiv_ne=cendiv==1 
gen cendiv_ma=cendiv==2 
gen cendiv_enc=cendiv==3 
gen cendiv_wnc=cendiv==4 
gen cendiv_sa=cendiv==5 
gen cendiv_esc=cendiv==6 
gen cendiv_wsc=cendiv==7 
gen cendiv_mt=cendiv==8 
gen cendiv_pac=cendiv==9 
 
gen age_10=age/10 
gen agesq=age^2 
gen agesq_10=(age_10)^2 
gen male=1 if sex==1 
replace male=0 if sex==2 
gen white=(race==1) 
gen black=(race==2) 
gen natam=(race==3) 
gen asianpac=(race==4) 
gen othe=(race==5) 
gen hisp=(hispanic==1) 
gen marr=(marital==1) 
gen divor=(marital==3) 
recode school (0/12=1 "High School or less")(13/15=2 "1 to 3 yrs. College")(16=3 
"4 or more/Bachelor's")(17/28=4 "Some grad/prof school or degree"), gen(educ) 
gen retired=1 if retire==1 
replace retired=0 if retire!=1 
replace retire=5 if (job==1 & retire==.) 
 
//Imputing missing values*/ 
replace retire=5 if (income!=. & retire==.) /*have a job/business*/ 
replace retire=1 if (age>=65 & retire==.) /*retired*/ 
replace retire=4 if retire==. /*doing something else*/ 
gen urban=1 if place=="1" 
replace urban=0 if place!="1" 
 
ren ntrip95 trip95 
replace trip95=0 if trip95==. 
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//Creating hunting and fishing variables// 
gen hunt_96=1 if (hunt96==1 | ww_hunt==1) 
replace hunt_96=0 if (hunt96==0 | ww_hunt==0) 
replace hunt_96=0 if hunt_96==. //imputing hunt_96// 
gen fish_96=1 if (fish96==1 | ww_fish==1) 
replace fish_96=0 if (fish96==0 | ww_fish==0) 
replace fish_96=0 if fish_96==. //imputing fish_96// 
 
//Personal income intervals// 
gen pinc_max=9999 if income==1 
replace pinc_max=19999 if income==2 
replace pinc_max=24999 if income==3 
replace pinc_max=29999 if income==4 
replace pinc_max=34999 if income==5 
replace pinc_max=39999 if income==6 
replace pinc_max=49999 if income==7 
replace pinc_max=74999 if income==8 
replace pinc_max=99999 if income==9 
replace pinc_max=2000000 if income==10 
replace pinc_max=2000000 if income==. 
 
gen pinc_min=1 if income==1 
replace pinc_min=10000 if income==2 
replace pinc_min=20000 if income==3 
replace pinc_min=25000 if income==4 
replace pinc_min=30000 if income==5 
replace pinc_min=35000 if income==6 
replace pinc_min=40000 if income==7 
replace pinc_min=50000 if income==8 
replace pinc_min=75000 if income==9 
replace pinc_min=100000 if income==10 
replace pinc_min=1 if income==. 
 
gen lpinc_min=ln(pinc_min) 
gen lpinc_max=ln(pinc_max) 
 
//Total number of days spent wildlife watching in resident state// 
gen wildday1=wwday1 if resstate==wwstate1 
replace wildday1=wwday2 if resstate==wwstate2 
replace wildday1=wwday3 if resstate==wwstate3 
replace wildday1=wwday4 if resstate==wwstate4 
replace wildday1=wwday5 if resstate==wwstate5 
replace wildday1=wwday6 if resstate==wwstate6 
replace wildday1=0 if wildday==. 
replace wildday1=wildtrip1 if (wildday1==0 & wildtrip1>0) 
replace wildtrip1=0 if wildtrip1==. 
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//Total number of days spent wildlife watching in nonresident state// 
gen wildday2=wwday1 if wwst==wwstate1 
replace wildday2=wwday2 if wwst==wwstate2 
replace wildday2=wwday3 if wwst==wwstate3 
replace wildday2=wwday4 if wwst==wwstate4 
replace wildday2=wwday5 if wwst==wwstate5 
replace wildday2=wwday6 if wwst==wwstate6 
replace wildday2=wildtrip2 if (wildday2==0 & wildtrip2>0) 
replace wildday2=wildtrip2 if (wildday2==0 & wildtrip2>0) 
replace wildtrip2=0 if wildtrip2==. 
 
//Visited private land in resident state// 
gen private1=wwpriv1 if resstate==wwstate1  
replace private1=wwpriv2 if resstate==wwstate2 
replace private1=wwpriv3 if resstate==wwstate3 
replace private1=wwpriv4 if resstate==wwstate4 
replace private1=wwpriv5 if resstate==wwstate5 
replace private1=wwpriv6 if resstate==wwstate6 
 
//Visited private land in nonresident state// 
gen private2=wwpriv1 if wwst==wwstate1  
replace private2=wwpriv2 if wwst==wwstate2 
replace private2=wwpriv3 if wwst==wwstate3 
replace private2=wwpriv4 if wwst==wwstate4 
replace private2=wwpriv5 if wwst==wwstate5 
replace private2=wwpriv6 if wwst==wwstate6 
 
//Visited public land in resident state// 
gen public1=wwpub1 if resstate==wwstate1  
replace public1=wwpub2 if resstate==wwstate2 
replace public1=wwpub3 if resstate==wwstate3 
replace public1=wwpub4 if resstate==wwstate4 
replace public1=wwpub5 if resstate==wwstate5 
replace public1=wwpub6 if resstate==wwstate6 
 
//Visited public land in nonresident state// 
gen public2=wwpub1 if wwst==wwstate1  
replace public2=wwpub2 if wwst==wwstate2 
replace public2=wwpub3 if wwst==wwstate3 
replace public2=wwpub4 if wwst==wwstate4 
replace public2=wwpub5 if wwst==wwstate5 
replace public2=wwpub6 if wwst==wwstate6 
 
//Creating predicted annual personal income// 
intreg lpinc_min lpinc_max age agesq male black natam asianpac hisp other 
i.retire i.marital school urban i.cendiv, vce(robust) 
predict lpinc_hat, e(lpinc_min, lpinc_max) 
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gen pinc_hat=exp(lpinc_hat) 
sum lpinc_hat pinc_hat, detail 
 
//Creating daily earnings: 250 days// 
gen earn_hat=pinc_hat/250  
gen oppcost_quart1=.04*earn_hat*(wildday1/wildtrip1) if wildtrip1>0 
gen oppcost_quart2=.04*earn_hat*(wildday2/wildtrip2) if wildtrip2>0 
gen tottc1=totcost1+oppcost_quart1*wildtrip1 
gen tottc2=totcost2+oppcost_quart2*wildtrip2 
gen tc1=cost1+oppcost_quart1 
gen tc2=cost2+oppcost_quart2 
gen pinc_1000=pinc_hat/1000 
gen bid1_1000=bid1/1000 
gen bid2_1000=bid2/1000 
gen bid1_10=bid1/10 
gen bid2_10=bid2/10 
gen lbid1=ln(bid1) 
gen lbid2=ln(bid2) 
gen tc1_10=tc1/10 
gen tc2_10=tc2/10 
gen hypcost1=tottc1+bid1 
gen hypcost2=tottc2+bid2 
gen hypcost1_1000=hypcost1/1000 
gen hypcost2_1000=hypcost2/1000 
gen hyptc1=hypcost1/wildtrip1 
gen hyptc2=hypcost2/wildtrip2 
gen hyptc1_10=hyptc1/10 
gen hyptc2_10=hyptc2/10 
gen lhypcost1=ln(hypcost1) 
gen lhypcost2=ln(hypcost2) 
gen tc_pchng1=100*(hypcost1-tottc1)/tottc1 
gen tc_pchng2=100*(hypcost2-tottc2)/tottc2 
gen dp1=bid1/wildtrip1 
gen dp1_10=dp1/10 
gen dp2=bid2/wildtrip2 
gen dp2_10=dp2/10 
 
 
// Format data into long form // 
reshape long ncstate wildtrip cvm bid totcost cost wildday private public 
oppcost_quart tottc tc hypcost hyptc lhypcost tc_pchng dp a b la lb, i(personid 
id) j(site)  
 
sum wildtrip if wildtrip>0 
gen tc_10=tc/10 
gen dp_10=dp/10 
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save "G:\fh24_96long.dta" 
 

//===================================================// 
 
//This file estimates the models from Table 3.3// 

 
use "I:\fh24_96long.dta" 
 
//Merging with 1996 state level rangeland and forest (1000) acres from NRI// 
merge m:1 ncstate using "I: rangeforest96.dta"  
drop _merge 
gen bid_10=bid/10 
gen bid_1000=bid/1000 
gen land=(range+forest)/(pop96/1000) 
gen land2=(range+forest)/(totarea) 
sum land land2 
 
gen outstate=1 if site==1 
replace outstate=0 if site==2 
foreach X of varlist wildtrip tc tc_10 pinc_1000 marr age_10 male bid cvm 
private public /// 
{ 
drop if (`X'==.) 
}  
drop if wildtrip==0 
drop if ncstate=="DC" 
 
//Table 3.2// 
sum wildtrip tc tc_10 pinc_1000 pinc_hat marr age age_10 male photo parks  
bid cvm private public land land2 oppcost_quart  hunt_96 fish_96 /// 
wildtrip tc_10 pinc_1000 age_10 marr male photo parks private land2 hunt_96 
fish_96 
drop if tc>500 
drop if wildtrip>250 
 
 
//Canned procedure for ZTNB// 
tnbreg wildtrip tc_10 pinc_1000 age_10 marr male photo parks private land2 /// 
hunt_96 fish_96, cluster(personid) tech(bfgs nr) 
 
est sto ZTNB 
predict cmu_hat, cm 
sum wildtrip cmu_hat 
di "E[CS] = " -10/_b[tc_10] 
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//Program for Censored(threshold) normal model (Cameron(1991))// 
capture program drop cnormal 
 program define cnormal 
 args lnl b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 s 
 tempvar xb pi sigma 
 
 //WTP model// 
 qui gen double 
`xb'=`b0'+`b1'*pinc_1000+`b2'*age_10+`b3'*marr+`b4'*male+`b5'*photo  ///  
+`b6'*parks+`b7'*private+`b8'*land2+`b9'*hunt_96+`b10'*fish_96 
  
 //Defining Sigma// 
 qui gen double `sigma'=exp(`s') 
  
 //Defining CVM probit// 
 qui gen double `pi'=normprob((`xb'-bid_1000)/`sigma') 
 
 //Log-likelihood Function// 
 qui replace `lnl' = cvm*ln(`pi')+(1-cvm)*ln(1-`pi') 
 
 end 
  
 ml model lf cnormal (wtp_cons:) (wtp_pinc_1000:) (wtp_age_10:) 
(wtp_marr:) (wtp_male:) (wtp_photo:) /// 
 (wtp_parks:) (wtp_private:) (wtp_land2:) (wtp_hunt96:) (wtp_fish96:) 
(s:), technique(nr bfgs) cluster(personid)  
 *ml check 
 ml init -.1754269 .0036068 .0187455 -.0414852 .027948 .1498656 
.0860281 .162887 -.0267908 .0080004 -.0555778 -.4227889, copy 
 ml search 
 ml maximize, difficult /*trace*/ 
 
 di "sigma = " exp([s]_cons) 
 gen 
wtp_cn=[wtp_cons]_cons+[wtp_pinc_1000]_cons*pinc_1000+[wtp_age_10]_
cons*age_10+[wtp_male]_cons*male+[wtp_marr]_cons*marr /// 
+[wtp_photo]_cons*photo+[wtp_parks]_cons*parks+[wtp_private]_con /// 
s*private+[wtp_land2]_cons*land2+[wtp_hunt96]_cons*hunt_96+  ///  
[wtp_fish96]_cons*fish_96 
gen wtp=wtp_cn*1000 
 sum wtp_cn wtp 
 est sto THRESHOLD 
 
 
//Program for Joint TCM-CVM model// 
 capture program drop utility1 
 program define utility1 
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 args lnl a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 b0 b1 b2 b3 b4 b5 b6  ///  
 b7 b8  b9 b10 /*b11*/ lalpha s kap 
 tempvar xb exb zb p0 cmean cvar z sigma rho pi f 
 
 //Count(TCM) model// 
 qui gen double 
`xb'=`a0'+`a1'*tc_10+`a2'*pinc_1000+`a3'*age_10+`a4'*marr+`a5'*male+`a6'
*photo+`a7'*parks+`a8'*private+`a9'*land2+`a10'*hunt_96+`a11'*fish_96 
 qui gen double `exb' = exp(`xb') 
  
 //Prob(y>0)// 
 qui gen double `p0'=1/((1+exp(`lalpha')*`exb')^(1/exp(`lalpha'))) 
  
 //E(y|y>o)// 
 qui gen double `cmean'=`exb'/(1-`p0') 
  
 //Var(y|y>0)// 
 qui gen double `cvar'=(`cmean'/((`p0')^exp(`lalpha')))*(1-
`cmean'*(`p0')^(1+exp(`lalpha'))) 
 
 *qui gen double `z'=(wildtrip-`cmean')/(sqrt(`cvar')) 
 qui gen double `z'=sqrt(((wildtrip-`cmean')^2)/(`cvar')) 
  
 //Probit regression// 
qui gen double 
`zb'=`b0'+`b1'*pinc_1000+`b2'*age_10+`b3'*marr+`b4'*male+`b5'*photo+`b
6'*parks+`b7'*private+`b8'*land2+`b9'*hunt_96+`b10'*fish_96 
  
 //Defining Sigma// 
 qui gen double `sigma'=exp(`s') 
  
 //Defining rho// 
 qui gen double `rho'=tanh(`kap') //hyperbolic tangent function// 
  
 //Defining CVM probit// 
 *qui gen double `pi'=normprob((`zb'+`sigma'*`rho'*`z')/(`sigma'*sqrt(1-
(`rho')^2)))   
 qui gen double `pi'=normprob((bid_1000-`zb'-
`sigma'*`rho'*`z')/(`sigma'*sqrt(1-(`rho')^2))) 
  
 //Defining TCM Zero-truncated NB2// 
 qui gen double `f'=exp(lngamma(wildtrip+1/exp(`lalpha'))-
lnfactorial(wildtrip)-lngamma(1/exp(`lalpha')) /// 
 +wildtrip*ln(exp(`lalpha')*`exb')-
(wildtrip+1/exp(`lalpha'))*ln(1+exp(`lalpha')*`exb')-ln(1-`p0')) 
 
 //Log-likelihood Function// 
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 qui replace `lnl' = (1-cvm)*ln(`pi')+cvm*ln(1-`pi')+ln(`f')   
 *qui replace `lnl' = cvm*ln(`pi')+(1-cvm)*ln(1-`pi')+ln(`f')   
 
 end 
  
 ml model lf utility1 (ztnb_cons:) (ztnb_tc_10:) (ztnb_pinc_1000:) 
(ztnb_age_10:) (ztnb_marr:) (ztnb_male:) /// 
 (ztnb_photo:) (ztnb_parks:) (ztnb_private:) (ztnb_land2:) 
(ztnb_hunt96:) (ztnb_fish96:) /// 
 (prob_cons:) /*(prob_bid_10:)*/ (prob_pinc_1000:) (prob_age_10:) 
(prob_marr:) (prob_male:) /// 
 (prob_photo:) (prob_parks:) (prob_private:) (prob_land2:) 
(prob_hunt96:) (prob_fish96:) /// 
 (lalpha:) (s:) (kap:), technique(nr) cluster(personid)  
   
 ml init -.6214306     -.1537789     -.0013296      .2047646     -.2699383      
.1759307      .3058146      .4501337       .791881      .1494254      .4504297      
.1723992     -.1754328      .0036069      .0187457      -.041486  .0279484      
.1498675      .0860289      .1628891     -.0267907      .0080003     -.0555786      
2.402233     -.4227794 .01, copy 
  

ml maximize, trace  
  
 est sto JOINT_CORR 
  
 di "alpha = " exp([lalpha]_cons)  
 di "sigma = " exp([s]_cons) 
 di "rho = " tanh([kap]_cons) 
 di "Joint ZTNB2/Utility tc beta = " [ztnb_tc_10]_cons  
 di "Joint ZTNB2/Utility E[CS] = " -10/[ztnb_tc_10]_cons  
 
gen 
etrip_util=exp([ztnb_cons]_cons+[ztnb_tc_10]_cons*tc_10+[ztnb_pinc_1000]
_cons*pinc_1000+[ztnb_age_10]_cons*age_10+[ztnb_male]_cons*male+[ztnb
_marr]_cons*marr /// 
+[ztnb_photo]_cons*photo+[ztnb_parks]_cons*parks+[ztnb_private]_cons*pri
vate+[ztnb_land2]_cons*land2+[ztnb_hunt96]_cons*hunt_96+[ztnb_fish96]_
cons*fish_96) 
 
gen pr0=1/(1+exp([lalpha]_cons)*etrip_util)^(1/exp([lalpha]_cons)) 
 
gen etrip_tr=etrip_util/(1-pr0) 
 
sum wildtrip cmu_hat etrip_tr, detail 
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gen 
wtp_joint=1000*([prob_cons]_cons+[prob_pinc_1000]_cons*pinc_1000+[pro
b_age_10]_cons*age_10+[prob_male]_cons*male+[prob_marr]_cons*marr /// 
+[prob_photo]_cons*photo+[prob_parks]_cons*parks+[prob_private]_cons*pr
ivate+[prob_land2]_cons*land2+[prob_hunt96]_cons*hunt_96+[prob_fish96]
_cons*fish_96) 
  
sum wtp_joint 
 

//Program for Utility-consistent model// 
 capture program drop utility1 
 program define utility1 
 args lnl a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 lalpha s kap 
 tempvar xb exb u0 u1 du p0 cmean cvar z sigma rho pi f 
 
 //Count(TCM) model// 
 qui gen double 
`xb'=`a0'+`a1'*tc_10+`a2'*pinc_1000+`a3'*age_10+`a4'*marr+`a5'*male+`a6'
*photo+`a7'*parks+`a8'*private+`a9'*land2+`a10'*hunt_96+`a11'*fish_96 
 qui gen double `exb' = exp(`xb') 
  
 //Prob(y>0)// 
 qui gen double `p0'=1/((1+exp(`lalpha')*`exb')^(1/exp(`lalpha'))) 
  
 //E(y|y>o)// 
 qui gen double `cmean'=`exb'/(1-`p0') 
  
 //Var(y|y>0)// 
 qui gen double `cvar'=(`cmean'/((`p0')^exp(`lalpha')))*(1-
`cmean'*(`p0')^(1+exp(`lalpha'))) 
 
 qui gen double `z'=(wildtrip-`cmean')/(sqrt(`cvar')) 
  
 //Utility Difference// 
 qui gen double `u0'=(-1/(`a2'*exp(`a2'*pinc_1000))) 
 qui gen double `u1'=(-`a1'-
`a2'*wildtrip*(1+`a1'*(dp_10)))/(`a1'*`a2'*(exp(`a2'*pinc_1000))) //dp_10 = 
hyptc_10-tc_10// 
 qui gen double `du'=-
wildtrip*(1+`a1'*dp_10)/(`a1'*exp(`a2'*pinc_1000)) 
  
 //Defining Sigma// 
 qui gen double `sigma'=exp(`s') 
  
 //Defining rho// 
 qui gen double `rho'=tanh(`kap') //hyperbolic tangent function// 
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 //Defining CVM probit// 
 qui gen double `pi'=normprob((`du'+`sigma'*`rho'*`z')/(`sigma'*sqrt(1-
(`rho')^2)))   
 
 //Defining TCM Zero-truncated NB2// 
 qui gen double `f'=exp(lngamma(wildtrip+1/exp(`lalpha'))-
lnfactorial(wildtrip)-lngamma(1/exp(`lalpha')) /// 
 +wildtrip*ln(exp(`lalpha')*`exb')-
(wildtrip+1/exp(`lalpha'))*ln(1+exp(`lalpha')*`exb')-ln(1-`p0')) 
 
 //Log-likelihood Function// 
 *qui replace `lnl' = (1-cvm)*ln(`pi')+cvm*ln(1-`pi')+ln(`f')   
 qui replace `lnl' = cvm*ln(`pi')+(1-cvm)*ln(1-`pi')+ln(`f')   
 
 end 
  
 ml model lf utility1 (ztnb_cons:) (ztnb_tc_10:) (ztnb_pinc_1000:) 
(ztnb_age_10:) (ztnb_marr:) (ztnb_male:) /// 
 (ztnb_photo:) (ztnb_parks:) (ztnb_private:) (ztnb_land2:) 
(ztnb_hunt96:) (ztnb_fish96:) (lalpha:) (s:) (kap:), technique(bfgs nr) 
cluster(personid)  
 *ml check 
 ml init -.3801276 -.1432526 -.0025163 .1926361 -.2558721 .1261794 
.2276727 .4064981 .6874352 .1471791 .3692333 .2148833 2.401282 6.970658 -
.200626, copy 
 *ml search 
 ml maximize, difficult /*trace*/  
  
 est sto ZTNB_RESUTILITY 
  
 di "alpha = " exp([lalpha]_cons)  
 di "sigma = " exp([s]_cons) 
 di "rho = " tanh([kap]_cons) 
 di "Joint ZTNB2/Utility tc beta = " [ztnb_tc_10]_cons  
 di "Joint ZTNB2/Utility E[CS] = " -10/[ztnb_tc_10]_cons  
 
gen 
etrip_util=exp([ztnb_cons]_cons+[ztnb_tc_10]_cons*tc_10+[ztnb_pinc_1000]
_cons*pinc_1000+[ztnb_age_10]_cons*age_10+[ztnb_male]_cons*male+[ztnb
_marr]_cons*marr /// 
+[ztnb_photo]_cons*photo+[ztnb_parks]_cons*parks+[ztnb_private]_cons*pri
vate+[ztnb_land2]_cons*land2+[ztnb_hunt96]_cons*hunt_96+[ztnb_fish96]_
cons*fish_96) 
gen pr0=1/(1+exp([lalpha]_cons)*etrip_util)^(1/exp([lalpha]_cons)) 
gen etrip_tr=etrip_util/(1-pr0) 
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sum wildtrip cmu_hat etrip_tr, detail 
 

//Table 3.3// 

esttab   ZTNB THRESHOLD JOINT_CORR  ZTNB_RESUTILITY, b(%12.4f) t 

stats(N ll aic bic) mtitles parentheses star(* .10 ** .05 *** .01 **** .001) 

Chapter 3 Stata Codes 

//=========Double-Bound Regression Simulation=======// 
 
clear all 
set obs 1000 
set seed 12345 
 
gen bid0 = 5*uniform() //range is [0,5] w/ mean=2.5// 
gen bid1 = 2*bid0 
gen bid2 = bid0/2 
gen x = 5*uniform() 
gen z = 5*uniform() 
gen wtp_fixed=10+1.5*x-2.5*z //wtp_true=10+1.5*(2.5)-2.5*(2.5)=7.5// 
gen double xb = 5 + .75*x - 1.25*z 
 
sum bid0 bid1 bid2 x z wtp_fixed 
 
//Save data to be called in simulation program// 
save "D:/ doubleb.dta", replace 
 
//Program to be called for simulation// 
program sim1, rclass 
version 12.0 
use  "D:\doubleb.dta", clear 
gen u=rnormal(0,1) 
 
gen byte YY = (-.5*bid1+xb+u) >= 0 
gen byte NN = (-.5*bid2+xb+u) < 0 
gen byte YN = ((-.5*bid0+xb+u) >= 0) & ((-.5*bid1+xb+u) < 0) 
gen byte NY = ((-.5*bid0+xb+u) < 0) & ((-.5*bid2+xb+u) >= 0) 
 
//Creating responses// 
gen r1=1 if (YY ==1 | YN ==1) 
replace r1 =0 if r1 ==. 
gen r2 =1 if (NY ==1 | YY ==1) 
replace r2 =0 if r2 ==. 
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//Creating first and second bids for doubleb regression// 
gen b1 =bid0 
gen b2 =bid1 if (YYr==1 | YN ==1) 
replace b2 =bid2 if (NY ==1 | NN ==1) 
 
//Creating random missing r2// 
*replace r2 =. in 901/1000 
*replace r2 =. in 751/1000 
*replace r2 =. in 501/1000 
 
//Creating systematic missing r2 at largest/smallest 10,25,50 percent// 
 
 
//dropping largest x// 
*sort x 
*replace r2 =. in 901/1000 
*replace r2 =. in 751/1000 
*replace r2 =. in 501/1000 
 
//dropping largest z// 
*sort z 
*replace r2 =. in 901/1000 
*replace r2 =. in 751/1000 
*replace r2 =. in 501/1000 
 
 
//Creating missing adjustments(recoding)// 
replace r2 =1 in 501/1000 if r1 ==1 
replace b1 =bid2 in 501/1000 if r1 ==1 
replace b2 =bid0 in 501/1000 if r1 ==1 
replace r2 =0 in 501/1000 if r1 ==0 
replace b1 =bid1 in 501/1000 if r1 ==0 
replace b2 =bid0 in 501/1000 if r1 ==0 
 
 
doubleb b1 b2 r1 r2 x  z 
 
return scalar b=_b[Beta:_cons] 
return scalar bx=_b[Beta:x] 
return scalar bz=_b[Beta:z] 
return scalar s=_b[Sigma:_cons] 
return scalar wtp=(_b[Beta:_cons]+_b[Beta:x]*(2.5)+_b[Beta:z]*(2.5))  
return scalar se_b=(_b[Beta:_cons]-10)^2 
return scalar se_bx=(_b[Beta:x]-1.5)^2 
return scalar se_bz=(_b[Beta:z]+2.5)^2 
return scalar se_s=(_b[Sigma:_cons]-2)^2 
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return scalar se_wtp=((_b[Beta:_cons]+_b[Beta:x]*(2.5)+_b[Beta:z]*(2.5))-
7.5)^2 
 
end 
 
simulate s=r(s) b=r(b) bx=r(bx) bz=r(bz) wtp=r(wtp) se_b=r(se_b) 
se_bx=r(se_bx) se_bz=r(se_bz)  se_s=r(se_s)  se_wtp=r(se_wtp),  reps(5000): 
sim1 
 
//Tables 4.1 to 4.3// 
//Root mean squared error// 
sum b bx bz s wtp 
sum se_b 
dis (r(mean)^.5) 
sum se_bx 
dis (r(mean)^.5) 
sum se_bz 
dis (r(mean)^.5) 
sum se_s 
dis (r(mean)^.5) 
sum se_wtp 
*dis r(mean) 
dis (r(mean)^.5) 
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