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ABSTRACT 

 Heart failure (HF) still remains the leading cause of morbidity and mortality and 

imposes severe global affliction and enormous cost on the healthcare system. Although 

current pharmacological therapies have shown to slow down the progression of HF, but 

seems to have reached their limits in improving overall patient prognosis. Thus, an 

immediate call for novel alternate therapies are needed which act independently as well 

as in conjunction with current treatment modality. Studies were performed in the well-

established transverse aortic constriction (TAC) model of chronic pressure overload (PO) 

in mice. In the first series of studies, Male C57BL6 mice (26-28 g) were subjected to 

either sham or TAC surgery. One group of TAC mice was given daily resveratrol 

treatment (oral gavage, 100 mg/kg/body weight (bw) for 28 days starting on day 2 after 

surgery. Echocardiographic, biometric, and immunohistological analyses were performed 

on the three groups of mice which demonstrated significantly greater adverse cardiac 

remodeling and dysfunction in the TAC compared to the sham operated mice. These 

pathological changes were significantly improved by resveratrol treatment in TAC+RSV 

mice. At day 28 fractional shortening was 46.4±2.4%, 26.2±1.0%, and 35±2% in the 

sham, TAC, and TAC +RSV mice, respectively. This was reflected by lung weight/bw 

ratios of 4.8±0.5 mg/g (sham), 10.2±1.4 mg/g (TAC) and 6.2±1.5 mg/g (TAC+RSV).  

Resveratrol treatment also significantly reduced cardiac hypertrophy as determined by the 

heart weight/bw ratios (sham, 4.9±0.3 mg/g; TAC, 8.8±1.1 mg/g; and TAC+RSV, 

7.2±0.3 mg/g) as well as by measurement of cross-sectional area (CSA) 
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(sham, 108.02±12.85 µm²; TAC, 221.7±21.43 µm²; and TAC+RSV, 187±11.9 µm²). 

Likewise, the TAC protocol significantly increased fibrosis compared to the sham-

operated mice, which was attenuated by resveratrol treatment. Pro-inflammatory cytokine 

infiltration of mast cells and macrophage were found up-regulated in response to PO. 

Similarly, markers of oxidative stress such as 4-hydroxynonenal (4HNE) and 8-

hydroxydeoxyguanosine (80HdG) were up regulated while anti oxidative markers -

sodium oxidase dismutase (SOD), glutathione peroxidase (GSH) were down regulated in 

response to PO. Similar results were obtained when hypoxia induced factor alpha 

(HIF1α), including apoptosis by terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) and activated caspase-3 were assessed in TAC hearts. These TAC-

induced factors were significantly attenuated by resveratrol treatment indicating that the 

resveratrol was acting to inhibit the increased production of these stress inducible factors 

as well as able to up regulate the levels of detoxifying enzymes. In summary, these 

results demonstrate that resveratrol treatment significantly attenuates the adverse cardiac 

remodeling and dysfunction produced by the TAC protocol in C57/BL6 mice and that 

this activity is mediated, at least in part, by the inhibition of oxidative stress and hypoxia.  
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CHAPTER 1 

INTRODUCTION 

1.1 The Heart Overview 

Heart is considered to be the main engine that drives human body and is the first 

organ to be formed during embryonic development. Heart is remarkably a well-tuned 

organ and beats about two and a half billion times in an average human lifetime. Heart 

constantly keeps working even while we are at rest. Heart, blood and blood vessels make 

up the entire circulatory system. Heart is a hollow, muscular organ and consists of four 

chambers that are entirely different in its structure and function and are equipped with 

valves. Three layers of heart muscle namely endocardium, myocardium and epicardium 

plays integral role in maintaining normal homeostasis of the blood supply. Heart not only 

pumps the blood throughout the body but also supplies oxygen and nutrients that are 

essential for the normal human growth and development. Valves play a significant role in 

maintaining the proper orientation of the blood flow and preventing the backflow. Heart 

maintains its pumping mechanism by contraction and relaxation, which is due to the 

electrical conduction system generated in Sino atrial node and relayed through purkinjee 

fibers. This rhythmic contraction of the heart is essential in maintaining contraction and 

pumping blood via series of blood vessels within the heart known as coronary circulation, 

which is primarily responsible for distributing, oxygenated blood and other nutrients to 

the working heart muscle.  

  



 2 

Circulatory system of the heart makes use of all the four chambers where, 

function of the right atrium and right ventricle is to collect the deoxygenated blood 

returning from the organs and tissues and pump it to lungs where it gets oxygenated. This 

oxygenated blood is then received by left atrium and left ventricle, which then pumps it 

to the organs and tissues of the body to enable them, perform their normal functions. 

Blood is ejected out of the right and left ventricle by vigorous contraction of ventricular 

muscle to the body parts during ejection, which is known as systole while diastole ensues 

during filling phase. The amount of blood pumped through the heart each minute is called 

cardiac output and is the measure cardiac performance defined by ventricular ejection. 

Contractility, preload and afterload are the three aspects by which heart maintains its 

cardiac output and performance and these aspects determine the ventricular effectiveness 

during systolic phase. Component muscle fibers of myocardium undergo shortening in 

order to increase the intrinsic strength to produce work which is referred as contractility 

while preload is referred to pre-ejection filling of the ventricular chamber affecting 

preshortening stretch of its component fiber and finally afterload is referred to as the 

force against which myocardium has to work in order to contract and eject blood. Also, 

during normal physiological condition, increased cardiac preload and afterload are 

attributed to increased and decreased ejection of blood from the ventricles respectively. 

In order to complete the cardiac cycle, heart has to undergo two main steps to achieve 

diastolic ventricular filling which consists of an early rapid filling phase where blood 

stored in the atria rushes into the ventricles and second being the forceful atrial 

contraction pushing additional blood into the ventricles before their contraction thus 

contributing significantly to afterload. 
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1.2 Left Ventricular Hypertrophy & Congestive Heart Failure –Clinical 

Significance 

Heart failure (HF), also known as congestive heart failure (CHF), is the clinical 

endpoint of several types of primary and secondary pathologies during which pumping 

ability of the heart becomes incapable of the supply at the rate proportionate to the 

demands of the body. Clinically HF is defined as a syndrome due to pathological disorder 

of cardiac structure or function such as ischemic heart disease, hypertension or several 

specific cardiomyopathies, resulting in impairment of filling and/or ejection of blood 

from the ventricles (Klein et al., 2003). Currently, CHF is the number one cause of death 

in the western world. In United States alone approximately 5 million people are suffering 

from HF at present and about half of a million new cases are diagnosed each year (Klein 

et al., 2003). Clinically patients suffering from HF with presence of obvious symptoms 

have poor prognosis with 5-year survival rate at 50% upon diagnosis (Klein et al., 2003). 

Regardless of the advancement in the diagnosis, treatment and management of HF, 

unfortunately 75% of the new cases die each year and the death toll is still on sharp 

incline (Klein et al., 2003). HF is more commonly seen in elderly people with age more 

than 65 and this underlying disorder accounts for staggering 12-15 million office visits 

and 6.5 million hospital days. In the past decade the number has increased from 

approximately half a million to nearly one million for HF as primary diagnosis and 1.7 to 

nearly 2.6 million for secondary diagnosis (Klein et al., 2003). 6-10% of these elderly 

patients are diagnosed with primary HF and approximately 80% of them are hospitalized 

(Klein et al., 2003). Treatment and management of HF is very expensive and estimated 

21-50 billion dollars are annually spent in diagnosis and treatment of HF                  
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(Klein et al., 2003). Despite all the advancement in the management and treatment of HF 

patients, heart transplant seems to be the last resort out (Dorn and Molkentin, 2004). 

Being diagnosed with HF carries poor prognosis and the mortality in the advance stages 

can be as high as 45% (Jessup and Brozena, 2003).  

No definition of heart failure is entirely satisfactory. Depending upon the etiology 

of heart failure, symptoms in patients of HF such as breathlessness, fatigue and swelling 

ankle can vary greatly with the exception of patients suffering from myocardial infarction 

(MI). Onset of symptoms is usually acute in MI patients however it can be very subtle or 

even asymptomatic and progress over weeks or even months in patients with progressive 

HF (Francis, 2001). Although causes of HF can be due hypertension, different valvular 

disease, viral myocarditis, various drugs and toxins, genetic mutation including idiopathic 

cardiomyopathy however, MI due to coronary artery disease still remains the most 

common cause of HF (Adams, 2001). It is also possible to have a heart attack without 

experiencing any symptoms at all and is known as “silent” MI. Irrespective of the cause, 

dysregulated homeostasis due to significant deterioration in cardiac structure and function 

leads to attenuation in contraction and sharp decline in cardiac output which further 

follows into thinning of ventricular wall and dilation leading to ventricle enlargement and 

increased peripheral vascular resistance (Dorn and Molkentin, 2004). All of these above-

mentioned causes significant decrease in the cardiac output due to the impaired 

contraction/relaxation eventually the heart fails to meet the metabolic demands of the 

body and overt HF occurs. Figure. 1. 

Heart undergoes left ventricular remodeling in order to overcome the deficiency 

in the function of the ventricles to maintain required cardiac output                       
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(Heineke and Molkentin, 2006). Heart does this by undergoing hypertrophy. Initially, this 

mechanism of ventricular remodeling can be a beneficial compensatory response 

resulting in enlargement of myocyte as a means of preserving cardiac output thereby 

decreasing wall tension (Lorell and Carabello, 2000). However, this pathological 

hypertrophy possesses serious risk factor for cardiovascular disease and sudden death 

(Haider et al., 1998; Levy et al., 1990; Schillaci et al., 2001). In order to cope with the 

hypertension-induced pressure-overload, the heart undergoes two main remodeling 

patterns of hypertrophy namely concentric and eccentric hypertrophy during which 

change in the ventricular chamber size and increase in fibrosis ensues (Heineke and 

Molkentin, 2006). During concentric hypertrophy, ventricular chamber size is increased, 

thinning of wall, apoptosis followed by extensive cardiac fibrosis results. Characteristics 

of concentric hypertrophy at cellular level is increased synthesis of sarcomeres in parallel 

that results in increased cellular width, while dilation is characterized by laid down of 

sarcomeres in series that results in increased myocyte length (Heineke and Molkentin, 

2006). Due to the poor ventricular compliance and impaired relaxation, diastolic 

dysfunction can result if hypertrophy persists (Zile and Brutsaert, 2002). A number of 

other factors such as from genetic defects, MI can also directly damage the cardiac 

muscle and cause this type of remodeling (Heineke and Molkentin, 2006).  

Despite of the fact that there are a number of key players involved in the process 

of progression of left ventricular remodeling and might be mediating their role through 

various pathways, substantial evidence points towards the activation of endogenous 

neurohormonal systems that may be playing an important role in cardiac remodeling and 

thereby in the progression of HF. During the condition of decreased cardiac output, this 
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activation of neurohormonal system is thought to play protective effect by 

vasoconstriction, salt and water retention, and adrenergic stimulation of the heart thereby 

compensating for the decreased cardiac output and maintaining the hemodynamics. 

Under certain life threatening conditions such as hemorrhage, this short-term adaptive 

mechanism may seem to be beneficial however long term activation is maladaptive in the 

heart. By retaining excess sodium and water, it causes excessive increase in the 

hemodynamic stress on ventricles as well as exert direct toxic effects on cardiac cells and 

stimulate myocardial fibrosis, which can further alter the architecture and impair the 

performance of the failing heart (Harris, 1983; Packer, 1992). Other factors such as 

elevated circulating or tissue levels of norepinephrine, angiotensin II, aldosterone, 

endothelin, vasopressin, and cytokines is found in HF patients, and the action of these 

agents working alone or in concert can further deteriorate the structure and function of 

the heart. Chronic stress on the myocardium causes deterioration of left ventricular 

function and even in the absence of new insult, it progresses further resulting in chamber 

dilation and decreased cardiac output. Further deterioration in observed in the function of 

valves, which causes back flow of blood resulting from increasing hemodynamic 

overload. Cardiac remodeling is an ongoing pathological process, which keeps 

progressing and worsening of symptoms irrespective of the continuous treatment and 

management of patient with HF.  

Systolic or diastolic heart failure can now be well characterized with the use of 

advanced echocardiograms. Due to the characteristics of diastolic heart failure such as 

hypertension and pulmonary congestion, it still remains echo insensitive however 

characteristics of systolic failure is very sensitive to echocardiogram and the 
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characterized by left ventricular enlargement, reduced contractility and ejection fraction 

followed by pulmonary congestion.  

Signs and symptoms are very obvious in HF patients only in later advanced stages 

and may exhibit as pulmonary congestion and peripheral edema due to fluid retention 

thereby leading to breathlessness and reduced exercise tolerance, which is manifested as 

fatigue. HF is not a single disease but rather a complex syndrome resulting from a 

manifestation of different cardiovascular disorders, therefore cannot be treated with 

single cure. Exhibition of chief clinical signs and symptoms and the stage of the disease 

should be taken into account and the treatment regimen should be tailored to their 

individual characteristics. Figure 1.2 

According to the American heart association and American college of cardiology 

guideline published in 2001, prevention and treatment of patients with HF can be 

classified into four stages namely: Stage A- patients suffering from hypertension, 

coronary artery disease (CAD), or patients who recently had a myocardial infarction (MI) 

fall under this stage These HF do have some structural abnormality in their 

cardiovascular system but do not exert symptoms. Stage B- patients diagnosed with 

structural heart disease but do not express signs of heart failure fall under this stage. 

Structural abnormality of the heart is readily detectable on the echocardiogram and mild 

to moderate expression of symptoms. Stage C- patients showing obvious signs of heart 

failure with marked clinical manifestation of sign and symptoms such as dyspnea on 

exertion and fatigue and eventually stage D includes patients with end-stage heart failure 

awaiting transplantation and their mobility is very restricted and are under mechanically 

assisted devices to maintain CO.  
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1.3 Cardiac Hypertrophy And Heart Failure - The Molecular Basis   

One of the major questions in hypertrophy and HF research is the mechanism by 

which cardiac cells sense stretch, and significant progress has been made in the recent 

past regarding it. Despite of the identification of the major players of hypertrophic 

signaling in the myocardium, it is still unclear why and how the frequent transition from 

hypertrophy to failure occurs. Many pathways have been identified that leads to 

hypertrophy however the most vital and most studied pathway is mitogen activated 

protein-kinase pathway (MAPK). Hypertrophic cardiomyocyte growth is due to the 

activation of signaling pathway that in turn causes reactivation of fetal genetic 

program creating a chronic condition where these responses elements further exaggerates 

the heart damage leading to deterioration of function (Lorell and Carabello, 2000). 

Initially cardiomyocytes were thought to be incapable of differentiating, however the 

hypothesis has chanced in the recent past. The term cardiac hypertrophy is defined as an 

increase in the cellular mass in response to growth stimuli, which is thought to be an 

adaptive response during the common disorders such as pressure or volume overload, 

loss of cardiac mass due to MI etc. Cardiac hypertrophy is usually seem to accompany 

pathological processes such as MI, valvular disease, ischemic disease which can 

ultimately result in heart failure however, it can also occur in absence of other 

cardiovascular diseases. Initially cardiac hypertrophy is considered to a compensatory 

stage in response to stress signals such as hypertension or myocardial infarction and 

protects the heart by decreasing energy consumption as well as decreasing the systolic 

wall stress (Grossman et al., 1975). However, if the chronic stress persists for too long, 

arrhythmia and sudden death followed heart failure is inevitable. A pathological 



 9 

structural and functional change in the heart occurs due to persistent stress signals that 

cause cardiac remodeling. Remodeling involves not only the cardiomyocytes but also 

cardiac fibroblasts, elements of the interstitial matrix, and the entire coronary vasculature. 

Healthy or unaffected cardiomyocytes now has to take over the function of the affected or 

injured part making up for the loss as an adaptive response. This can be usually seen in 

condition such as MI. Cardiac remodeling at cellular and molecular level involves 

changes from physiology of the heart all the way to gene level.  

Activation of the rennin-angiotensin-aldosterone system (RAAS) as well as 

adrenergic and cytokine pathways are some of the secondary changes associated along 

with above mentioned primary remodeling which heart has to deal with. Sarcomeres are 

the force generating units, which undergo production of more sarcomeres through a gene 

transcription modification biochemical event in the nucleus upon increased force on the 

cardiomyocyes. This modification of gene transcription can also be achieved through 

various stimuli, which activates distinct receptors in the cardiomyocyte. Figure. 1.3.  

G-protein-coupled receptors, receptor tyrosine kinases and cardiotrophin receptors 

are some of the most studied receptor pathways which upon activation operates through 

signaling pathways and mostly comprises of series of phosphatases and kinases. The 

phosphatase pathways include calcineurin (PP2B), protein phosphatase 1 and protein 

phosphatase 2A (PP2A) while the kinase pathways include protein kinase C, protein 

kinase A, calcium-calmodulin-dependent kinase and mitogen-activated protein kinases.  

It has been shown that cardiac transcription factors are responsible for the 

differential gene expression induced by hypertrophic stimulation. Therefore hypertrophy 

of cardiomyocytes occurs when there is a sudden change in the transcriptional programs 
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mediated by cardiac signaling pathways and convert extracellular signals into 

intracellular signals. GATA family, (MEF2) family, and the homeobox factor 

(Csx/Nkx2.5) family are some of the most studied families of cardiac transcription 

factors and the genes that encode regulatory or structural proteins of the cardiomyocyte 

by eliciting changes in other cell types in the heart are regulated by these cardiac 

transcription factors which are transcriptional activators or repressors that regulate the 

expression of cardiac genes (Kolodziejczyk et al., 1999; Liang et al., 2001; Takimoto et 

al., 2000; Toko et al., 2002). 

1.4 Contraction, Relaxation And Regulation Of Failing Heart 
 

Heart muscle is remarkable and beats about 70 beats per minute and about 

100,000 times per day. Contraction and relaxation of the heart generate the force required 

to maintain the cardiac output. Cardiomyocyte contains thick and thin filaments namely 

actin and myosin. Sleeves of sarcoplasmic reticulum surround the myofilaments within 

the myocyte. Calcium plays a vital role in the maintenance of cardiac contractility and it 

is the second common messenger and the central regulator of cardiac contractility. Under 

normal physiological the exchange of sodium, potassium and calcium occurs in harmony 

and is well regulated to maintain the efficient contraction. The calcium release channels 

from heart and skeletal muscle SR are similar but not identical. Important differences 

distinguish the calcium release machinery in heart from that of skeletal muscle. The role 

of calcium as the key factor in coupling cardiac excitation (depolarization) and 

contraction. The calcium ion is the activator of chemically bound energy to mechanical 

energy in all types of contractile structures, from microfilaments to striated muscles. 

Strength of cardiac contraction can be varied by either altering the Ca2+ concentration or 
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by altering the sensitivity of the myofilaments to Ca2+ and this can be achieved by 

maintaining the intracellular calcium concentration by channels, pumps and exchangers. 

Sarcoplasmic reticulum in cardiomyocytes contains large internal store of Ca2+ and is 

released in large amounts following a small increase of extracellular Ca2+ into the 

cytosol. This phenomenon is called Ca2+ induced Ca2+ release. The myofilament 

proteins undergo conformational changes following the release of cytosolic calcium 

increase thereby achieving contraction. However, this cytosolic Ca2+ must then be 

removed in order to achieve a proper relaxation. Changes in the concentration of the 

Ca2+ homeostasis and or alterations in the contractile proteins may be one of the chief 

reasons for the likely cause of decreased contractility associated with heart failure 

(Piacentino et al., 2003). Figure 1.4 

1.5 Current Treatment Modalities For Hypertensive Heart Disease And 

Heart Failure 

HF has become increasingly prevalent as the population ages and has reached the 

epidemic proportion in USA as well as around the globe. HF possesses a substantial 

socio-economic burden on the families suffering from it as well as on the economy of the 

country. A wide range of pharmacological agents are employed in the prevention, 

management and treatment of patients suffering from HF. Popular and most widely used 

pharmacological agents such as vasodilators, positive inotropic agents, beta blockers, 

diuretics and inhibitors of neurohormonal activators have been able to address some of 

the cellular mechanisms of HF so far however, they fail to completely achieve their 

intended goal in stabilizing or regressing the disease progress and improving the quality 

of life by minimizing the pathological symptoms and enhancing the survival. Initially, 
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upon injury or stress, the feed back mechanism of the human body tries to play a 

compensatory role by activating a series of neurohormonal systems.  

One example of such compensatory neurohormonal activation is the activation of 

renin angiotensin aldosterone system (RAAS). In the event of decreased cardiac 

contractility, the cardiac output declines significantly thereby being unable to meet up 

with the demands of the body. RAAS causes retention of salt and water thereby 

expanding the blood volume and maintaining the cardiac output. This compensatory 

response is thought to be beneficial in the initial stages however, long-term activation of 

this neurohormonal system causes severe hemodynamic pathology leading to renal 

function deterioration and eventual HF (Rouse and Suki, 1994; Schrier and Abraham, 

1999). Increased pressure in diastolic filling due to the excessive expansion of fluid 

causes further severe pathological stress on the heart leading to ventricular hypertrophy 

and cardiac remodeling. Diuretics are the drugs of choice under condition and their action 

is mainly on the kidney. It causes the elimination of salt thereby preventing water 

retention and eventually decreasing the hemodynamic load placed on the heart. Another 

method by which compensatory mechanism of the heart tries to maintain the necessary 

cardiac output is by vasoconstriction and increasing the systemic vascular resistance. This 

significant increase in the peripheral vascular resistance causes increased afterload on the 

heart thereby imposing even greater pressure on LV against which it needs to eject the 

blood (Cohn and Franciosa, 1977a, b; Kass and Kelly, 1992). This vasoconstriction then 

becomes pathological problem and therefore needs to be relieved. Drugs that mediate 

vasodilation by increasing the diameter of the vessel should be employed. A number of 

commercially available potent vasodilators are the drug of choice. These vasodilator act 
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on the vascular smooth muscle cells by increasing the intracellular level of cGMP and 

inducing vasorelaxation thereby improving coronary blood flow as well as reducing 

ventricular filling pressure and wall stress (Fallen et al., 1995; Hare et al., 1995; Harrison 

and Bates, 1993).  

Upregulation of endogenous vasodilators such as ANP and BNP have been 

documented in patients suffering from HF (Vesely et al., 1994; Vesely et al., 1995) and 

also their positive roles in improving cardiac contractility, cardiac output and clinical 

status have been reported (Colucci et al., 2000; Mills et al., 2002). Apart form the 

pathological nuerohormonal cascade activation, heart also has to deal with deteriorated 

contractility leading to cardiac output. A choice of positive inotropic agents that are 

capable of reducing the hemodynamic overload from the heart in patients suffering from 

HF is an ideal choice to increase the cardiac contractility. One such drug of choice is 

Digoxin. It is a cardiac glycoside and the mechanism by which it works is by inhibiting 

Na/K ATPase pump thereby increasing the intracellular sodium which can be used for the 

exchange of calcium thus causing the improvement in the cardiac contraction and 

achieving optimum cardiac output (Blaustein, 1993; Hauptman and Kelly, 1999). 

Another similar pharmacological agent performing through different route to improve the 

cardiac contractility is adrenergic agonist. It mediates its effect by increasing the 

intracellular calcium level by binding to G-protein coupled receptors on the sarcolemma 

membrane thereby improving cardiac contractility. Following the increase in the level of 

intracellular cAMP, PKA is activated which causes the release of voltage gated calcium 

ion channels thereby even more pronounced cardiac contractility is achieved.  
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Another strategy of increasing intracellular calcium level is by relieving the 

inhibition of Ca2+-ATPase in sarcoplasmic reticulum (SR). Inhibition of PDE causes 

upregulation of cAMP. It has been shown that in SR, conversion of cAMP into AMP by 

PDE III takes place thereby even more PKA activation can be observed in the presence of 

excess cAMP that in turn causes phosphorylation of phospholamban and finally reliving 

the inhibition of Ca2+-ATPase pump in SR (Forfia et al., 2007; Koss and Kranias, 1996; 

Leroy et al., 1996; Movsesian et al., 1991). In addition to above, inhibition of PDE III 

and V can also cause vasodilation and one such drug of choice is sildenafil (Forfia et al., 

2007; Jiang et al., 1992). Angiotensin II has been known to cause smooth muscle 

proliferation, vasoconstriction thereby causing cardiac hypertrophy (Inagami, 1999). 

Drug of choice to inhibit such pathological effect can be achieved by using angiotensin 

converting enzyme inhibitor (ACEI), which prevents the formation of Ang II within the 

RAAS system thus preventing vasoconstriction and hypertrophy (Inagami, 1999). A need 

of other players such as Angiotensin receptor blocker (ARB) and aldosterone antagonist 

is essential because HF patients overtime develop resistance against ACEI. Thus this new 

drugs help to protect the heart further and improve cardiac contractility thereby 

increasing CO (Gottlieb et al., 1993; Havranek et al., 1999; Mazayev et al., 1998). 

However, every new drug has its own side effect along with its protective functions. 

Pathological effects such as profibrotic and arrhythmic effects of aldosterone cannot be 

overcome by either ARBs or ACEI, therefore an adjunct therapy using ARB is employed 

(Pitt, 1995; Ramires et al., 2000; Weber et al., 1993). As a compensatory response to 

increase the CO by increasing the cardiac contractility, the increase in the sympathetic 

output in response to adrenergic signaling is initiated (Haber et al., 1993). Desensitization 
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of this system is observed in patients with advanced stage HF as an adaptive mechanism 

by down regulating beta 1 however, activation of this pathway again is pathological in 

later stages as it causes increased overload on ventricular wall leading to ventricular 

dilation, contractile dysfunction and cardiomyocyte apoptosis (Bristow, 1997, 2000b; 

Bristow and Gilbert, 1995; Eichhorn and Bristow, 1996). Therefore by employing beta 

blockers, the harmful effects of NE can be attenuated significantly hence improvement in 

the systolic function as well as reversal of cardiac remodeling can be achieved (Abraham 

et al., 2002; Lowes et al., 2002). Figure 1.5 

Irrespective of the significant advancement in the medical field in the areas of 

diagnostic tools as well as development of novel pharmacological agents that can act 

individually or in concert with other agents to mediate their potential positive effect in the 

treatment of underlying pathology of HF. None have been efficient enough to stop the 

progression of disease, therefore a much more potent agent is needed to combat such 

disease that carries dismal prognosis.  A novel alternate therapy that can be used as 

adjunct with existing ones or that can act alone effectively in managing the 

neurohormonal cascades and improve overall quality of life in patients with HF is 

needed. One such potential drug has been recently discovered which shows promising 

effectiveness in the treatment and management of HF by mediating anti-oxidative 

1.6 Pathogenic Effects Of Oxidative Stress In Heart Failure 

Increase or decrease in the level of antioxidant protection depends on the oxidant 

and reactive oxygen species (ROS) generation during oxidative stress. Due to the 

variation of the redox condition influenced by ROS, a number of biological processes are 

influenced which causes changes in the signal transduction cascades upstream of nuclear 
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transcription factor (Palmer and Paulson, 1997). Characteristics of ROS are free radicals 

containing oxygen atoms and they are known to produce free radicals such as hydrogen 

peroxide, superoxide and peroxynitrite. A number of biological molecules such as 

macrophages, neutrophils and xenobiotics try to maintain the cellular defense preventing 

ROS by phagocytosis or by cellular respiration (Abe and Berk, 1998; Klaunig and 

Kamendulis, 2004; Palmer and Paulson, 1997; Pathak et al., 2005; Zangar et al., 2004). 

However, excessive ROS production due to any injury or stress causes the alteration in 

the macromolecules, essential proteins and DNA resulting in cell death. By inducing 

MAPK family and PKC pathway, ROS has been known to mediate a number of 

physiological as well as pathological stimuli such as inflammatory cytokines, angiotensin 

and ionization radiation. Depending upon the content of critical cysteine residues, 

different cell types exhibit different sensitivity to oxidation and ROS can regulate their 

essential biochemical events such as phoporylation/dephosporylation of proteins by 

changes in their structural confirmation thereby inducing growth, differentiation and even 

apoptosis of cell (Sundaresan et al., 1995). Another potential pathological property of 

ROS is shown to be able to cause chromosomal aberration leading to cellular mutation 

and carcinogenesis at low concentration while higher concentration causes cytotoxicity 

and cell death (Abe and Berk, 1998; Klaunig and Kamendulis, 2004; Palmer and Paulson, 

1997; Pathak et al., 2005; Zangar et al., 2004). 

Cardiac remodeling has been established as a fundamental process in the 

progression of HF. Cardiac remodeling is characterized by a series of alteration in the 

structure and function brought in by the changes in the gene and protein expression both 

in extracellular matrix (ECM) and individual cardiomyocyte. Despite the extensive 
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clinical and experimental studies to uncover the mechanisms that underlie the poor 

prognosis of HF patients, satisfactory treatment has not been achieved. This provides a 

strong reason to pursue this field to the utmost extent and eventually be able to elucidate 

the pathways that would be therapeutically targeted to improve the outcome of millions 

of HF patients. Oxidative stress and activation of matrix metalloproteinases (MMPs)- a 

family of enzymes capable of degrading all the matrix components of the heart, have 

received an increasing attention in the HF research area. Under normal physiological 

conditions, there exists a great balance between ECM formations and its degradation and 

MMP are critical in determining this balance. Inappropriate activation of MMPs and low 

levels of their inhibitors TIMPs have been shown to cause cardiac remodeling and 

influence the shape and size of the ventricular chamber. Similarly, oxidative stress due to 

injury of any kind on the heart has been shown to induce cardiac remodeling and HF and 

this has been shown in the clinical settings of HF (Sundaresan et al., 1995). Although 

pharmacological inhibition of MMPs by employing commercially available inhibitors 

such as TIMPs have been shown however, control of oxidative damage is not manageable 

by TIMPs and the patients with advanced HF show marked elevated levels of oxidative 

stress markers which again positively correlates with the role of oxidative stress in HF. It 

seems that an obvious mechanism of myocardial dysfunction is through oxidative stress, 

which causes cellular and protein function deterioration thereby leading to cardiac 

impairment and eventually death through apoptosis and necrosis. Figure 1.6. 

Toxicity and pathogenicity of ROS depends on its concentration, the site of 

production as well as over all cellular redox status (Finkel, 2011). A potential hypothesis 

can be developed by looking at the roles of ROS in the HF as well as its potential to 



 18 

influence ECM remodeling by activating MMPs (Spinale, 2002). A clinical study 

employing human subjects who have undergone coronary artery bypass surgery showed a 

strong link between oxidative stress, MMP activation and LV dilation (Kameda et al., 

2003). By this study, the authors were able to successfully demonstrate a positive 

correlation between the level of oxidative stress, activation of MMPs and cardiac 

remodeling which are characterized by increased pericardial levels of 8-isoprostane, 

MMP-2 and 9 and increased left ventricular end diastolic volume. Another mechanism by 

which ROS exerts its pathological effect on the cardiovascular system is by counteracting 

the endogenous nitric oxide (NO) production. NO is a potent antioxidant and it mediates 

its effect by vasodilation. When the concentration of ROS increases excessively, the NO 

cannot maintain their protective role anymore thereby causing vascular endothelial 

dysfunction. ROS further reacts with NO causing the production of peroxinitrite, which 

again is a harmful reactive oxygen species. These peroxinitrite are further capable of 

modulating diverse intracellular signaling pathways therefore causing pathological effects 

(Finkel, 2011). Some of the key proteins involved in the myocardial excitation-

contraction coupling are ion channels, calcium release channels from sarcoplasmic 

reticulum and myofilaments and these proteins are no exceptions in escaping redox 

signaling (Byrne et al., 2003).   

Effects on cellular energetics exerted by ROS as well as chronic changes in the 

cellular phenotype and pathophysiology of HF has been shown to be mediated by ROS 

(Byrne et al., 2003). Not only activation but also increased MMP expression has been 

reported by ROS (Spinale, 2002). Although attenuation of ROS by chronic treatment with 

ROS scavengers can lead to deactivation of redox sensitive signaling pathway (MAPK, 
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NFkB) thereby preventing cardiomyocyte hypertrophy however, targeting the potential 

source of ROS may be a better approach (Byrne et al., 2003). To date, some of the most 

potential sources of ROS have been identified which include infiltrating inflammatory 

cells, mitochondria, xanthine oxidase and important of all NADPH oxidase. Contractile 

dysfunction in advanced HF due to mitochondria derived excessive ROS production in 

cardiomyocytes have been demonstrated in the experimental models of HF. Similarly, 

human and canine study have shown elevated levels of xanthine oxidase in advanced HF 

stage. These above observations were further confirmed by a study in human subjects 

performed by Kameda et al where they demonstrated lower level of MMP and 8-

isoprostane achieved by treatment with xanthine oxidase inhibitor (Kameda et al., 2003). 

Apart from xanthine oxidase, an important source of ROS production is through NADPH 

oxidases- a family of complex enzymes. Initially they were characterized in neutrophils 

however, recent reports suggests its wide expression. As mentioned NADPH is a major 

source of ROS production and any pathophysiological stimuli in heart such as pressure 

overload (PO), volume overload (VO), TNF alpha, Ang II or alpha adrenergic agonist can 

cause serious ROS production through NADPH oxidases (Griendling et al., 2000). 

Several human and animal experiment studies have well implicated the pivotal role of 

NADPH oxidases in the ROS generation and pathogenesis of HF (Heymes et al., 2003; Li 

et al., 2002; Maack et al., 2003). Additional evidence is supported by the genetic 

knockdown of NADPH oxidase gene in rodent model and elucidating its role in Ang II 

induced cardiac hypertrophy and interstitial fibrosis (Bendall et al., 2002). Due to 

numerous pathological effects mediated by ROS, it certainly has a bad press however, it 

should be noted that net effect of ROS can be maladaptive by one enzymatic source but 
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can be adaptive through the next. Therefore ROS plays a clinical role in the CVD process 

and its progression to HF. 

1.7 Resveratrol And Its Diverse Protective Effects 

Since HF is not a single disease with a single etiology but rather a complex 

disorder resulting from a number of pathological conditions, therefore the treatment of 

HF cannot be achieved by specific targeting of certain pathways. It has to be done 

employing an agent that has a broad spectrum of coverage. Over the past several decades, 

a number of extracts from fruits and plants have been screened and studied in various 

experimental settings that may be beneficial to human health by responding to injury or 

infection as defense system. Among these phytochemicals, a non-flavonoid polyphenol 

resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a one such example. Fig. 1.7 Resveratrol 

has a long history and was first identified in 1940 in the roots of white hellebore, and 

later in the dried roots of Polygonum cuspidatum (Cichewicz et al., 2000; Vastano et al., 

2000). However, this stilbene polyphenol was discovered only in 1976 in the leaf 

epidermis and the grape skin (Langcake and Pryce, 1977). Fig 1.8  

By various researchers in diverse pathological conditions, resveratrol has been 

shown to have diverse bioactivities (Aggarwal et al., 2004; Fremont, 2000) Table 1.1 

including but not limited to modulation of antioxidant, lipid profile, anti-cancer, anti-

inflammatory, anti-glycemic, anti-platelet aggregation, anti-viral, anti-bacterial and 

including antioxidant activity, vasorelaxing activity, dyslipidemia and obesity, the ability 

to protect endothelial function and much more. By acting on RAAS system, resveratrol 

has been shown to eliminate salt and water retention thereby decreasing the pressure 

overload from the heart as well as inducing levels of endogenous anti-oxidant NO and 
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causing vasodilation thereby attenuating the hypertension and cardiac remodeling. 

Similarly resveratrol keeps a good check on lipid profile by various mechanisms and 

regulates level of HDL/LDL thereby attenuating dyslipidemia and obesity together with 

formation of atherosclerotic plaques. Resveratrol also increases the sensitivity of glucose 

to insulin in beta cells maintains check on diabetes. Resveratrol also have been shown to 

cause multiple other beneficial effects pertaining to CVD such as attenuating valvular 

disease, metabolic syndrome etc thereby ultimately leading to prevention of development 

and attenuation of progression of HF (Aggarwal et al., 2004; Aziz et al., 2003; Dong, 

2003; Fremont, 2000; Gusman et al., 2001; Jang et al., 1997; Savouret and Quesne, 2002; 

Signorelli and Ghidoni, 2005).  

Resveratrol has been credited for the low incidence of heart disease in France, 

popularly known as “French Paradox” (Pace-Asciak et al., 1995). Since the discovery of 

resveratrol, it has been widely used in a number of experimental settings due to the 

potential of resveratrol in prevention or regression of various illnesses such as CVD, 

cancer, and ischemic injury. This has caused the number of resveratrol citations in 

PubMed to increase dramatically. Moreover, resveratrol has been shown to increase the 

longitivity in various organisms and is thought to mediate this action by activating SIRT 

1- a gene widely studied in context of ageing (Baur and Sinclair, 2006). 

 Fresh grape skins are the major source of resveratrol containing 50-100 mg/g 

while red wine contains 10 µM resveratrol on average. Long before the actual discovery 

of resveratrol, folk medicines in Asia have been using these plants as a part of their herb 

for the treatment of various illnesses such as in inflammation and arthritis. Resveratrol is 

produced in plants in response to radiation injury or fungal infection. Chemical structure 
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of resveratrol is also an important aspect of this compound to be able to bind to diverse 

molecules and their receptors in order to mediate its wire array of protective effects. It 

consists of two aromatic rings linked by a styrene double bond with two hydroxyl groups 

at the 3 and 5 positions of one ring and one hydroxyl group at the 4’ position of the other 

ring. Resveratrol is more soluble in DMSO than in water and has a melting point of 253-

255°C and molecular weight of 228.25. Cardiovascular disease is a serious global health 

issue and possesses huge socio-economic burden. Since CVD is a syndrome rather than 

an isolated disorder resulting from various pathological processes and multiple etiologies 

therefore using a pharmacological agent that has the potential to target multiple molecular 

mechanisms may yield better therapeutic efficacy as opposed to the one that is very 

selective. Since resveratrol has been shown to possess protective potentials and achieves 

multi-targets related to CVD, it would be logical to cut down the cost by taking as few 

drugs as possible while maintain the similar level of efficacy through one potential drug. 

(Baur and Sinclair, 2006; Opie and Lecour, 2007).  A number of in vivo and vitro studies 

of animal models in regards to CVD have been done and resveratrol has been shown to 

mediate protection against ROS and preserve cardiovascular function making it a novel 

drug of choice for the treatment of HF. 

1.8 Mechanism By Which Resveratrol Mediates Oxidative Stress  

Until recently, it was highly debated as to whether resveratrol’s primary 

protective effect is mediated by acting as a radical scavenging antioxidant or by inducing 

the endogenous antioxidant that are already present in the body. The reaction by which 

resveratrol acts as a radical-scavenging antioxidant is shown: Res-(OH)3 + R· → Res-

(OH)2O· + RH, in this reaction, Res-(OH)3 represents resveratrol while R· represents free 
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radical (Karlsson et al., 2000). Res -(OH)2O is the unpaired electron of resveratrol which 

delocalizes over aromatic ring thereby making resveratrol ‘s reactivity poor. Structural 

study mentioned above clears the methodical doubt of how resveratrol counteracts ROS 

and is therefore by upregulating endogenous cellular antioxidants rather than direct 

scavenging activity of ROS (Spanier et al., 2009). Figure 1.9. Several published studies 

have shown sufficient evidence regarding the inhibition of ROS by resveratrol and is 

shown to be primarily mediated by attenuating pro-oxidative genes (NADPH oxidases 

and myeloperoxidases) (Baur and Sinclair, 2006; Dolinsky et al., 2009; Spanier et al., 

2009) and in addition also by inducing anti-oxidative enzymes like superoxide dismutase 

(SOD), glutathione peroxidase (GSH-Px) and catalase, (Spanier et al., 2009; Tanno et al., 

2010; Thirunavukkarasu et al., 2007; Ungvari et al., 2007).  SOD is located in 

mitochondria and resveratrol has been shown to regulate the level of this anti-oxidant by 

acting on mitochondrial electron transport chain thereby attenuating ROS production 

(Tanno et al., 2010). ROS has been shown to cause oxidative stress in the cells by 

inducing lipid peroxidation and resveratrol counteracts this pathological effect by 

chelating transition metallic copper that is responsible for lipid peroxidation and 

generating free radicals (Belguendouz et al., 1997; Ferretti et al., 2004). Another method 

by which resveratrol has been shown to counteract the ROS is by upregulating stress 

response protein heme oxygenase (HO-1) (Thirunavukkarasu et al., 2007; Ungvari et al., 

2007). By modulating the deacetylation of endothelial nitric oxide synthase (eNOS) and 

inducible NO synthase (iNOS), resveratrol has been shown to  upregulate the level of 

plasma nitric oxide thereby attenuating ROS induced oxidative stress (Arunachalam et 

al., 2010; Csiszar et al., 2009; Wallerath et al., 2002; Zou et al., 2003). NO has been 
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shown to have more more affinity for O2 – compared to SOD and during the reaction of 

iNOS with O2 −, peroxynitrite is generated, NO has been shown to react with –SH group 

of thiol and ascorbate and eliminate O2 therefore resveratrol/NO pathway plays vital role 

in elimination of O2 − (Hattori et al., 2002). Table 2. 

1.9 Anti-inflammatory Response Of Resveratrol 

 Traditional viewpoint regarding inflammation is depicted as a response developed 

to protect against infection and tissue injury and to repair damaged tissue. Depending 

upon the context, inflammation can be both beneficial as well harmful. Current view of 

inflammation describes it as an adaptive response to restore interrupted tissue 

homeostasis. Inflammation is mediated by tissue resident macrophages or other 

inflammatory cells. The inflammatory response however is a very complicated 

interaction of various inflammatory cells both from innate and acquired immune system. 

A controlled inflammation can be beneficial however, uncontrolled inflammatory 

response can be very detrimental and the outcome is tightly associated with various 

determinants. Under normal physiological conditions, inflammatory cells act as host 

defense. Innate immune players such as neutrophils, monocytes and macrophages all 

impart their protective effects by phagocytosis. Adaptive immune system however is 

mainly able to distinguish body’s own vs foreign and eventually clear out the pathogen. 

These cells are B, T and dendritic cells along with macrophages. However under 

pathological conditions, they secrete histamine and sertonins degraded products and 

degranulation in cells are triggered. Similarly proteolytic enzymes such as tryptase and 

chymase cause degradation of ECM as well thereby initiating cardiac remodeling. 

 A number of studies in the heart have focused on interrelation between 
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inflammation and fibrosis that ultimately causes damage to cardiomyocyte and eventual 

death by apaoptosis. One such example of experimental study is during Ang II induced 

hypertension and activation of inflammatory response leading to cardiac remodeling. 

Under condition of pressure overload, these macrophages and mast cells have been 

shown to dramatically increase in their number and cause fibrosis. Due to these reasons 

of inflammation and the pathological mechanisms that underlie the harmful process of 

HF, it has gathered a significant attention in scientific community. Inflammation is not an 

occurrence due to a single etiology nor a single inflammatory cell type causes the entire 

process. A number of pathological conditions such as hypertension, diabetes, obesity, 

neurohormonal factors, radiation exposure as well as autoimmune all can trigger the 

process of pathological inflammation. Because of the significance of inflammation in 

these pathological processes, it has always been closely studied with heart diseases. One 

such example is during atherosclerosis, which is characterized by not only lipid 

deposition in the arterial wall but also subsequent activation of cascade of inflammatory 

response. These cells further causes ECM degradation and weakening of fibrous cap of 

the athromatous plaque which can eventually rupture to cause coronary artery disease, MI 

and even sudden death (DeMarco et al., 2010). Under such conditions of cellular injury 

potentiated by HTN, excessive ROS generation through NADPH is reported. These ROS 

further aggravates the pathological stimuli causing even greater adverse cardiac 

remodeling (DeMarco et al., 2010; Rizvi, 2010). Fortunately resveratrol has been shown 

to interfere with the release of inflammatory mediators, suppressing macrophages, T 

cells, B cells activity thereby mediating anti-inflammatory activity and protecting the 

heart (Fremont, 2000; Sharma et al., 2007). Resveratrol does this by inhibiting COX and 
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its subcomponents COX 1 and 2 that are required for the conversion of arachdonic acid 

into prostanoids and thromboxane. Resveratrol acts as a anti-platelet aggregation agent 

via COX 1 (Fremont, 2000; Jang et al., 1997; Szewczuk and Penning, 2004) and mediate 

inhibition of prostaglandin by COX 2 (Dave et al., 2008; Martinez and Moreno, 2000; 

Subbaramaiah et al., 1999). Moreover, treatment with resveratrol has been shown to 

attenuate MMP production thereby preventing progression of plaque formation as well as 

rupture of plaque cap (Dave et al., 2008).  

 Proteoglycan is an endogenous anti-inflammatory agent and its level is shown to 

be decreased during the autoimmune inflammation, however treatment with resveratrol 

has been shown to upregulate the level of proteoglycan thereby attenuating the 

pathological progression of autoimmune inflammation (Dave et al., 2008). Similarly 

inhibition of NFkB- a marker of autoimmune inflammation has been shown by 

resveratrol treatment in patients with increased risk of CVD (Kang et al., 2009; Karlsson 

et al., 2000; Leiro et al., 2004). With such diverse array of anti-inflammatory property 

packed into resveratrol, it makes resveratrol a novel therapeutic agent in the treatment 

and management of plaque stabilization and inhibition of thrombus formation thereby 

lowering the incidence of CVD significantly as well as improving the overall quality of 

life tremendously in patients with HF. 

1.10 Effect Of Resveratrol On Endothelial Protection 

 Bone marrow derived mononuclear cells (BMMCs) are reported to be major 

source of circulating stem cells. These cells are integral in the formation and repair 

mechanism of vessels. During injury or oxidative stress, these cells die rapidly thereby 

normal functioning of the blood vessels is compromised. Fortunately resveratrol has been 
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shown to be a major player in mediating the level of BMMCs by activating PI3K/AKT 

pathway. This hypothesis was tested by a study where they induced ischemia in the hind 

limb of ApoE KO rodent and resveratrol was able to attenuate the ischemia by decreasing 

the oxidative stress as well as inducing angiogenesis (Gan et al., 2009). Another study 

showed that resveratrol works through VEGF and causes protection in experimental 

models of oxidized EPCs (Lefevre et al., 2007). In addition, resveratrol has been shown 

to protect endothelial cells by induction of iNOS in macrophages (Arunachalam et al., 

2010; Cho et al., 2002) as well as via upregulating eNOS pathway (Klinge et al., 2008). 

Integrity of vascular wall is essential for the normal functioning of heart and resveratrol 

have successfully been shown to impart these protective effects through various 

mechanisms thereby making it a potential therapeutic agent for the treatment and 

management of HF (Lefevre et al., 2007; Wang et al., 2007; Xia et al., 2008).  

1.11 Protective Effects Of Resveratrol In Cardiac Hypertrophy And Heart 

Failure 

 A number of recent studies using rodent models of PO and VO induced HF 

reported successful regression of cardiac hypertrophy and dysfunction by (Behbahani et 

al., 2010; Thandapilly et al., 2010). Resveratrol has been shown to upregulate the level of 

eNOS/NO thereby causing vasodilation and mediating anti-hypertrophic effect of 

cardiomyocyte (Juric et al., 2007). Similarly resveratrol has been shown to mediate anti-

oxidative stress by activating AMPK and preventing LKB1 inhibition (Chan et al., 2004; 

Dolinsky et al., 2009; Langley et al., 2002). During decompensatory stage, cardiac 

remodeling causes excessive fibrosis, which further leads to apoptosis eventually 

resulting in cardiomyocyte deficiency that cannot be easily replaced. Fortunately 
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resveratrol has been shown to actively repair the damaged DNA and stabilize the 

genome. Also by activating SIRT1, resveratrol has been shown to limit premature cellular 

ageing thereby promoting life span in failing myocytes (Langley et al., 2002; Pillai et al., 

2006). In patients with chronic HF, level of noradrenaline is increased due to decreased 

reuptake of catecholamine, however resveratrol has been reported to normalize the 

density of beta adrenoreceptor thereby restoring the sestivity of myocardium to 

catecholamines (Gaemperli et al., 2010). Resveratrol also has been reported to be able to 

reduce the infarct size in patients with MI (Burstein et al., 2007). Resveratrol has been 

reported to attenuate the frequency of cardiac arrhythmia by improving sympathetic 

neural remodeling (Xin et al., 2010). The reduction in the NE level by resveratrol also 

causes secondary effects on RAAS thereby improving cardiac performance and CO. A 

study demonstrated that Ca2+ uptake in the SR is controlled by SR Ca2+-ATPase, and 

this level of Ca2+ was found to be decreased in mice model of diabetic cardiomyopathy 

and in rats with MI. Resveratrol was able to attenuate this decline in the level of Ca2+ 

thereby maintain proper cardiac contractility (Schmidt et al., 2002; Sulaiman et al., 2010; 

Xin et al., 2010). Intriguingly, SIRT1 activation by resveratrol activates SERCA 2 level 

thereby further improving cardiac function. Therefore the findings of these studies 

suggest an invaluable role of resveratrol in mediating cardioprotection.  

1.12 Potential Role Of Resveratrol On Cardiomyocytes Regeneration 

After an acute or chronic insult, a number of cardiac myocytes undergo apoptosis 

however, for a normal functioning of the heart these losses needs to be repaired. 

Differentiation of these myocytes is therefore utmost essential.  Although, under normal 

physiological conditions, endogenous anti-oxidants keep working to ward off excessive 
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production of ROS however, they are vital signaling molecule and activate myogenic 

differentiation (Ding et al., 2008; Yang et al., 2008; Yang et al., 2009). Level of 

antioxidant enzymes such as Nrf2 and Ref 1 has been shown to be regulated by 

resveratrol, enhancing the regeneration of cardiac stem cells and hence mediating the 

cardioprotection during oxidative insult (Gurusamy et al., 2010). One such study 

pretreated the cardiac stem cells with resveratrol and upon their transplantation in the 

damaged heart, surprisingly improved the cardiac performance. Therefore it would be of 

significant clinical and therapeutic value by utilizing the cardioprotective effects of 

resveratrol in stem cells mediated cardioprotection.  

1.13 Role Of Resveratrol In Vascular Remodeling 

Cardioprotective effect of resveratrol has been shown in number of ways and via 

various pathways. One important aspect to consider is the maintenance of normal 

morphology of the vascular wall. Following an insult or injury not only the cardiac 

myocytes but also the blood vessels are greatly affected. Decrease in the endogenous 

anti-oxidant levels and activation of neurohormonal cascades further deteriorates the 

vascular wall morphology as shown in a study (Baur et al., 2006). Factors such as IL-18 

and MMP causes proliferation of vascular smooth muscle wall thereby narrowing the 

lumen which further causes increased systemic vascular resistance thereby causing 

vascular as well as cardiac remodeling. Resveratrol has been shown to cause vasodilation 

by increasing the level of endogenous anti-oxidant NO and attenuate the level of IL-18 as 

well as inhibit the activation of MMP (Ekshyyan et al., 2007; Venkatesan et al., 2009). 

Inhibition of DNA synthesis, cell cycle arrest and p53 induction are some of the 
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mechanisms by which resveratrol imparts its cardioprotective effects (Wang et al., 2006; 

Zou et al., 2000).  

1.14 Overall Objective, Specific Aims And Hypothesis 

Irrespective of the recent advance in the diagnostic tools and treatment modalities 

in the area of HF in the last decade, HF still remains the number one cause of morbidity 

and mortality in USA and imposes serious global healthcare affliction as well as socio-

economic burden. Current pharmacological such as diuretics, inotropic agents, ACE 

inhibitors, ARBs, aldosterone antagonists, and β-blockers coupled with improved 

diagnostic features although slow the progression of HF, but have reached their limits in 

improving patient prognosis (Bristow et al., 1996; Coats, 2002; Colucci et al., 1996). 

Thus, novel therapies are needed that act independently as well as in combination with 

abovementioned agents (Bristow, 2000a; From, 1998; Sabbah and Stanley, 2002; Tang 

and Francis, 2003). Given the importance of oxidative injury in the development and 

progression of HF, anti-oxidative approach to achieve better cardiac performance sounds 

reasonably attractive. 

 Thus, the aim of this study was to determine the antioxidant efficacy of resveratrol on 

the stressed heart, specifically to illuminate novel pathways leading to  the development 

of cardiac hypertrophy and failure. There were two specific aims: 

1. Examine the effect of resveratrol treatment on the development of LV hypertrophy, 

remodeling, and contractile dysfunction in response to pressure overload. 

2. To elucidate the underlying signaling cascades by which resveratrol is able to impart 

its cardioprotective effect. 
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Figure 1.1. Hypothetic natural history of stress-induced heart disease.	
  Depicted 
four chamber sections of normal murine heart from surgically induced pressure-
overload hypertrophy and failure. 
Hill, J.A. Electrical remodeling in cardiac hypertrophy. 2003 Trends in 
Cardiovascular Med. 

Figure 1.2. Heart Failure Staging: ACC/AHA 2005 guideline for stages of heart 
failure. 
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Figure 1.3. Neurohormonal 
systems in heart failure (HF). A 
review of the Renal and 
Neurohormonal Effects of B-type 
Natriuretic Peptide- Andrew J. 
Burger. 

Figure 1.4. Ca2+ is the central regulator of cardiac contractility. As 
illustrated in the top section, Ca2+ generates signals by changing internal and 
external concentrations. In the heart there is a large store of Ca2+ in the SR. 
During contraction (middle section), a small increase of extracellular Ca2+, 
mediated by the L type Ca2+ channel induces a much larger release of Ca2+ 
into the cytosol from SR. Increased cytosolic Ca2+ initiates contraction by 
binding its effector TnC allowing for cross bridge formation. Ca2+ removal in 
relaxation (bottom section) is carried out primarily by the action of SERCAA2a 
and NCX, although the extent that each contributes varies between species. 
Solaro RJ. Regulation of Cardiac Contractility. San Rafael (CA): Morgan & 
Claypool Life Sciences; 2011. 
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Figure 1.5. Stages in the development of heart failure and recommended therapy 
by stage. 
ACCA/AHA 2005 Guideline for Diagnosis and Management of chronic HF in adult. 
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Figure 1.6. NADPH oxidase-dependent oxidative stress in failing heart. From 
pathogenic roles to therapeutic approach. NADPH oxidases serve as a major 
contrin=butor in producing reactive oxygen species (ROS) in myocardium and 
fibroblast. Oxidative stress is caused by increased ROS. 
Yanti Octavia et al. Free Radical Biology and Medicine Volume 52, Issue 2. 2012 
291-297 
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Figure 1.7. Schematic showing structure of resveratrol and some of its most 
potent effects. 
Slevin et al. Vascular Cell. 2012 

Figure 1.8. Sources of resveratrol. Resveratrol is a natural phytoalexin found in a 
number of different plants, including grapes, peanuts and mulberries. Resveratrol 
is produced by these plants in response to stress and fungal infection. 
Aggarwal et al. Role of resveratrol in prevention and therapy of cancer: preclinical 
and clinical studies. Anticancer Res. 2004 Sep-Oct;24(5A):2783-840 
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Figure 1.9. A schematic representation of ROS formation and its pathogenic 
effects.  These effects include increased levels of asymmetric dimethylarginine 
(ADMA), increased formation of reactive oxygen species (ROS), oxidative stress, 
reduced bioavailability of NO, inflammation, hypertrophy of vascular muscle, and 
changes in DNA methylation. The resulting changes include impairment of signaling 
by NO, endothelial dysfunction, reductions in maximum vasodilator capacity, and 
alterations in gene expression. 
Neil Baldwin et al. Advances in stroke. 2003. 
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Table 1. Effects of resveratrol on different cell signaling pathways.  
Huige Li et al. Cardiovascular effects and molecular targets of resveratrol. Nitric 
Oxide. 2012 
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Table 2. Effects of resveratrol in different animal model of cardiovascular disease 
along with concentration used. 
Huige Li et al. Cardiovascular effects and molecular targets of resveratrol. 
Nitric Oxide. 2012. 
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CHAPTER 2 

Material and Methods 

2.1 Pressure Overload Model 

 For the pressure-overload model, eight to ten weeks old (26-28 g) C57/ BL6 male 

mice were used in this study. (Harlan Sprague Dawley, USA). Surgical details of the 

TAC procedure are described elsewhere (Wojciechowski et al., 2010). Briefly, mice were 

kept in a temperature- and humidity-controlled room with a 12-h light:12-h dark cycle for 

1 week before creation of the PO model. Standard mice chow and tap water were 

available ad libitum. All mice were anesthetized for surgeries with 5% isoflurane carried 

by oxygen at a flow rate of 2 l/min. Mice were then maintained in surgical plane of 

anesthetic with 2% isoflurane. Hair on the surgical area was removed using hair remover 

lotion and incision site was disinfected using 100% alcohol and iodine.  

A midline thoracotomy was performed at the level of the suprasternal notch. 

Gently the ribs were retracted and isthmus was separated allowing direct visualization of 

the transverse aorta without entering the pleural space thereby avoiding the need for 

mechanical ventilation. A fine needle and 7-0 silk suture was used to pass under and 

around the transverse aorta between the right innominate and left common carotid 

arteries. A piece of 27-gauge needle piece was placed over the transverse aorta and 

quickly a knot was secured to the diameter of a 27-gauge needle yielding a 70-80% 

constriction. The needle and 7-0 silk suture was the retracted. Successful bands were
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snug while blood flow to the brain and body was maintained. The sternum, thoracic 

musculature and the skin incisions were closed by standard techniques with absorbable 

suture and auto clips.  

Sham operations on sex- and age-matched mice underwent exact same procedure 

as TAC with the exception of actual aortic banding and served as a control for all 

experimental groups. At 24 hours after surgery aortic-banded mice were randomly 

divided into two groups. One group of aortic-banded mice were administered resveratrol 

(100 mg·kg body wt−1·day−1) by oral gavage for a period of 4 wk while sham operated 

and the other group of aortic banded mice were given vehicle treatment (0.5ml water). 

All the three groups (sham-operated, aortic-banded; resveratrol- treated,) were 

maintained for a total of 4 wk. (Figure 2.1) 

2.2 Echocardiographic Assessment of Cardiac Structure and Function  

Two-dimensional-guided (2D) M-mode echocardiography of the mice was 

performed on days 0, 7, 14, 21 and 28, using Vevo 770 High-Resolution Imaging System 

with a 37.5-MHz high-frequency linear transducer (VisualSonics Inc. Toronto, ON, 

Canada) as previously described (Xing et al., 2012).  Briefly, mice were anesthetized 

with 3% isoflurane and maintained with 1.5% isoflurane in room air supplemented with 

100% O2. After the anterior chest was shaved, the animals were placed on a warming pad 

to maintain normothermia. Echocardiographic gel was warmed prior to use in order to 

avoid hypothermia. Care was taken to avoid excessive pressure on the thorax, which can 

induce bradycardia and result in severe deterioration of functional parameters and or even 

death. Two-dimensionally (2D) long axis images of left ventricle (LV) were acquired at 

the level of the aortic and mitral where the LV cavity is largest allowing adequate 
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visualization of the LV apex. Echocardiographic recording of anterior and posterior LV 

wall was done in M-mode at the speed of 21 frames per second. Images were acquired at 

the level of the papillary muscle tips, and measurements were then performed to obtain 

the LV internal dimension during systole (LVIDs; in mm), the LV internal dimension 

during diastole (LVIDd; in mm), LV posterior wall thickness during systole (LVPWs; in 

mm) and LV posterior wall thickness during diastole (LVPWd; in mm) according to the 

leading-edge method of the American Society of Echocardiography. LV percent ejection 

fraction (EF) and fractional shortening (FS) was calculated via VisualSonics 

Measurement Software. 

2.3 Isolation Of Mice Heart. 
After the 4-wk echocardiographic assessment, mice from all groups were weighed 

and anesthetized by using isoflurane before being euthanized. Toe pinch was performed 

to make sure the mice were totally unresponsive. Hearts and lungs were quickly isolated 

and washed in ice-cold saline and the wet weight of the heart (HW) and wet weight of the 

lung (LW) were measured as indices of cardiac hypertrophy and lung edema. Tissue was 

separated, flash-frozen in liquid nitrogen, and subsequently stored at −85°C until further 

experimentation. 

2.4 Preparation Of The Homogenate. 
LV tissue was pulverized and homogenized in a buffer containing 10 mM 

NaHCO3, 5 mM NaN3, and 15 mM Tris·HCl at pH 6.8 (10 ml/g tissue). This was 

aliquoted and frozen in liquid nitrogen before storage at −85°C. The buffer used for LV 

tissue homogenization also contained a cocktail of protease inhibitors consisting of (in 
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µM) 1 leupeptin, 1 pepstatin, and 100 phenylmethylsulfonyl fluoride to prevent protein 

degradation during the procedure. 

2.5 Histological And Immunochemical Analysis 

Hearts were exercised and washed with ice-cold 0.9% saline, fixed in 4% 

paraformaldehyde, and were embedded in paraffin. 5 µm thick paraffin sections were 

prepared using (Leica RM2030, rotary microtome) and stored at room temperature until 

further staining. Immunohistochemistry involved the use of microwave based antigen 

retrieval process. Using three changes of xylene and five chances of alcohol at varying 

concentration, sections were deparaffinized and the Texas Red-X conjugated wheat germ 

agglutinin (WGA) (Invitrogen Corp., Carlsbad, CA) staining was done to stain the 

membranes to acquire left ventricular cardiomyocyte cross-sectional area (CSA) as 

described elsewhere (Xing et al., 2012). Images were acquired by observing slides under 

the fluorescence microscope (Nikon Eclipse E600; Nickon In, Melville, NY) at 400 × 

magnification. By using Q capture software (MAG Corp., Pleasanton, CA), twenty fields 

of each section were randomly photographed and cardiomyocyte area was measured 

using Image-Pro Plus software (Media Cybernetics, Inc., Bethesda, MD).  

PO induced myocardial fibrosis was assessed by staining the sections for collagen 

with Masson’s Trichrome Kit (Poly Scientific, Bay Shore, NY). Myocardial sections 

from LV were deparaffinized, rehydrated and stained with products supplied in the kit 

according to the protocol provided by the manufacturer. Images were acquired under the 

light microscope (Nikon Optiphot-2; Nikon Inc., Melville, NY) at 200 × magnification. 

The relative fibrotic area (% of total area) was averaged from 20 fields of each section 

that were randomly photographed.  
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To access the extent of damage caused by inflammatory response, sections were 

stained for macrophage. Sections were deparaffinized, rehydrated and rat anti-mouse 

macrophage antibody Mac-2 primary antibody (1:200 dilution) (cedarlane,NC) along 

with staining kit (Immunocruz ABC staining system, santa cruz) and corresponding 

secondary antibody was used according to the protocol provided by the manufacturer. 

Sections were observed under light microscope (Nikon Optiphot-2; Nikon Inc., Melville, 

NY) at 200 × magnification. Twenty fields of each section were randomly photographed 

using Axio Vision 3.1 software (Carl Zeiss Inc., Maple Grove, MN). The number of (the 

brown stained cells) was counted by Image-Pro Plus software (Media Cybernetics, Inc., 

Bethesda, MD), and quantitative assessment of macrophage density was performed by 

counting the number of Mac-2 immunopositive cells and expressed as percentage change 

relative to control. 

Similarly staining for mast cells as a marker of inflammatory response was done 

using Toluidine blue O (Sigma Aldrich). The sections were stained with 0.1% toluidine 

blue for mast cell identification. Paraffin sections were deparaffinized, hydrated, and 

rinsed in deionized water according to the protocol provided by the manufacturer. 

Briefly, sections were placed in 1% acid alcohol for 3–5 min, followed by a transfer to 

0.5% toluidine blue solution for 15 min. The sections were then rinsed in deionized 

water, dehydrated in acetone, and cleared in acetone-xylene. Finally, the sections were 

mounted in permount and coverslipped. Images were acquired by observing under light 

microscope (Nikon Optiphot-2; Nikon Inc., Melville, NY) at 200 × magnification. 

Twenty fields of each section were randomly photographed using Axio Vision 3.1 

software (Carl Zeiss Inc., Maple Grove, MN). The number of (the blue stained cells) was 
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counted by Image-Pro Plus software (Media Cybernetics, Inc., Bethesda, MD). Mast cell 

density was assessed by counting all mast cells identified per section and expressed as 

average mast cell number in percentage change relative to control. 

Staining of 4-Hydroxy-2-Nonenal (4-HNE), a marker of lipid peroxidation, was 

performed with a mouse anti 4-HNE antibody (ab48506, Abcam Inc., Cambridge, MA) 

according to the protocol recommended by the manufacturer. Elaborate procedure is 

described elsewhere (Xing et al., 2012). Briefly, 5 µm thick paraffin sections were 

prepared using (Leica RM2030, rotary microtome) and stored at room temperature until 

further staining. Using three changes of xylene and five chances of alcohol at varying 

concentration, sections were deparaffinized. Immunohistochemistry involved the use of 

microwave based antigen retrieval process for 30 minute in citrate buffer. Sections were 

blocked using 5% serum at 20 degree for 20 minutes followed by incubation with 

primary antibody (1/25 dilution) for overnight at 4 degree and corresponding secondary 

antibody was used. Cardiomyocytes were stained with rabbit anti-tropomyosin 

I(ab55915, Abcam Inc, Cambridge, MA) and nuclei were stained with DAPI. Images 

were acquired by observing slides under the fluorescence microscope (Nikon Eclipse 

E600; Nickon In, Melville, NY) at 400 × magnification. By using Qcapture software 

(MAG Corp., Pleasanton, CA), twenty fields of each section were randomly 

photographed and quantification was done using Image-Pro Plus software (Media 

Cybernetics, Inc., Bethesda, MD). Relative fluorescent intensity was semi-quantified and 

represented as integrated optical density (IOD) with respect to the area measured. 

Staninig for 8- hydroxydeoxyguanosine (8-OHdG), a marker of DNA oxidization, 

was performed with a mouse anti 8-OHdG antibody (sc-660369, Santa Cruz 
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Biotechnology, Inc., Santa Cruz, CA), according to the protocol of the manufacturer. 

Detailed method is described elsewhere (Xing et al., 2012). Briefly, 5 µm thick paraffin 

sections were prepared using (Leica RM2030, rotary microtome) and stored at room 

temperature until further staining. Using three changes of xylene and five chances of 

alcohol at varying concentration, sections were deparaffinized. Immunohistochemistry 

involved the use of microwave based antigen retrieval process for 30 minute in citrate 

buffer. Sections were blocked using 5% serum at 20 degree for 20 minutes followed by 

incubation with primary antibody (1/25 dilution) for overnight at 4 degree and 

corresponding secondary antibody was used. Cardiomyocytes were stained with rabbit 

anti-tropomyosin I(ab55915, Abcam Inc, Cambridge, MA) and nuclei were stained with 

DAPI. Images were acquired by observing slides under the fluorescence microscope 

(Nikon Eclipse E600; Nickon In, Melville, NY) at 400 × magnification. By using 

Qcapture software (MAG Corp., Pleasanton, CA), twenty fields of each section were 

randomly photographed and quantification was done using Image-Pro Plus software 

(Media Cybernetics, Inc., Bethesda, MD). Relative staining area was quantified and 

represented as integrated optical density (IOD) with respect to the area measured. 

TUNEL staining on tissue sections by using In Situ Cell Death Detection Kit was 

done to access apoptosis, TMR red (Roche Applied Science, Indianapolis, IN) according 

to the protocol provided by the manufacturer. Detailed procedure is described elsewhere 

(Xing et al., 2012). Briefly, the sections were deparaffinized, rehydrated, microwaved for 

30 minutes for antigen retrieval and incubated with 50 µl TUNEL Reaction Mixture at 

37oC for 1 hr. A section was digested for 30 minutes with DNase (RNase-Free DNase 

Set, QIAGEN Inc., Valencia CA) for positive control and a negative control section was 
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only incubated with labeling solution. The apoptotic nuclei were labeled with TUNEL 

(red) all nuclei were counterstained with DAPI (blue) (Invitrogen Corp., Carlsbad, CA), 

and the F-actin was stained by Alexa Fluor® 488 phalloidin (green) (Invitrogen Corp., 

Carlsbad, CA). Images were acquired by observing slides under the fluorescence 

microscope (Nikon Eclipse E600; Nickon In, Melville, NY) at 400 × magnification. By 

using Qcapture software (MAG Corp., Pleasanton, CA), twenty fields of each section 

were randomly photographed and quantification was done using Image-Pro Plus software 

(Media Cybernetics, Inc., Bethesda, MD). TUNEL positive cells were quantified as a 

percent of all nuclei in the section of LV. 

2.6 Western Blotting And Protein Activity 
The protein content of sodium oxide dismutase  (SOD) was measured by SOD 

assay kit (Sigma, Switzerland) and Glutathione synthase (GSH) was measured by GSH-

Glo Glutathione assay kit (Promega, Madison, WI) according to the protocol provided by 

the company. 20/20 luminometer (Turner BioSystems, Sunnyvale, CA) was used to 

detect the total GSH activity while spectra max plus (Sunnyvale, CA) was used to detect 

the total SOD activity. Myocardial protein content of cleaved caspase-3 (Santa Cruz 

Biotechnology, Santa Cruz, CA), hypoxia inducible factor 1alpha (Hif-1α) (Novus 

Biologicals, Littleton, CO) from LV homogenates were determined by Western blot 

analysis as described previously (DiPette et al., 1989; Latronico et al., 2008; Zhang et al., 

2007). Briefly, total protein from LV tissue was extracted by T-PER tissue protein 

extraction reagent (Thermo Scientific, Rockford, IL).  Protein samples (25-30 µg) were 

fractionated by sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-

PAGE), then transferred to nitrocellulose membranes.  The membranes were probed with 

corresponding primary antibodies. Appropriate HRP-conjugated secondary antibodies 
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were used and the antibody-antigen complexes in all membranes were detected by the 

ECL PLUS Detection Kit (Thermo Scientific, Rockford, IL). The expression of these 

proteins was quantified with Scion Image (NIH) and adjusted to β-actin. 

2.7 Statistical Analysis 
Data were expressed as mean ±SD. Differences among groups were tested by 

one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test. A value 

of p<0.05 was considered significantly different. 
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CHAPTER 3 

RESULTS 

3.1 Hemodynamics, Survival Rate, Body Weight, Heart Weight And Heart 

Rate Prior To TAC 

There were no operative deaths within 24 h after TAC or SHAM operation. 

Baseline blood pressure was taken by tail cuff method (MC4000 Blood pressure analysis 

system). No significant difference in the systolic blood pressure was observed among the 

three groups. Similarly no significant difference in the heart rate was found among the 

three groups. There was no significant increase in mortality of any of the group. However 

autopsy revealed that mice that died before 4 weeks of TAC had apparent signs of heart 

failure (data not shown). 

3.2 Assessment Of Body, Heart And Lung Weights After TAC. 

Analysis of surviving mice after 4 weeks of chronic pressure overload showed 

that heart weight (HW) in ratio of body weight (BW) were significantly greater in TAC 

mice compared to sham-operated mice (4.9 ±0.3 vs 8.8 ±1.1). Similarly the ratio of lung 

weight to body weight (LW/BW) was also found to be significantly higher in TAC mice 

compared to sham.  and (4.80 ±0.53 vs 10.28 ±1.4). The increase in (HW/BW) and 

(LW/BW) ratios after TAC were significantly attenuated in the TAC+RSV treatment 

group (7.2 ±0.3) and (6.2 ± 1.8) . Figure 3.1 
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3.3 Resveratrol Treatment Improves Cardiac Function 

Echocardiography clearly demonstrated ventricular hypertrophy and LV 

dysfunction induced by pressure overload (PO) in (TAC) mice. Figure 3.2 shows typical 

representation of the echocardiogram showing cardiac dimensions whereas Figure 3.3A-F 

illustrates representative echocardiograms from the three groups taken over the course of 

4 weeks.  

Cardiac structure assessment involved measurements of LVID, LVPW, IVS, %EF 

and %FS at both systole and diastole. After 4 weeks of TAC, LV internal dimensions 

during diastole (LVID;d) was significantly increased in TAC mice (5.16±0.26) compared 

to sham operated (4.08 ±0.10). Resveratrol treatment was able to significantly attenuate 

this adverse parameter (4.39 ±0.12).  Similarly LV internal dimension during systole 

(LVIDs) were significantly increased in TAC mice compared to sham-operated. 

(3.4±0.03 vs 2.46±0.09). Remarkably, diastolic impairment was significantly attenuated 

with resveratrol treatment in TAC+RSV group (2.72±0.08). LV systolic function, as 

assessed by LV ejection fraction (%EF), fractional shortening (%FS) were significantly 

decreased in the TAC mice to a greater extent relative to sham-operated mice.(64.2 ±2.0 

VS 33.13 ±1.87 and 46.46 ±2.41 vs 26.15 ±1.97) Interestingly, resveratrol treatment 

significantly attenuated the sharp decline of both parameters (52.4 ±4.37 and 35 ±2.63) 

and maintained cardiac performance. 

3.4 Attenuation Of Cardiac Hypertrophy And Fibrosis By Resveratrol. 

LV hypertrophy assessed by WGA staining was significantly greater in TAC mice 

(221.7 ±21.43) compared to sham treated (108.02 ±12.85). However the degree of 

hypertrophy was significantly attenuated in RSV treated mice (187 ±11.9) as compared to 
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TAC alone. Figure 3.4A. Similarly LV interstitial and perivascular fibrosis as determined 

by Masson’s trichrome staining was found to be significantly higher in TAC mice (2.23 

±0.3 and 0.87 ±0.1) respectively as compared to sham treated mice (0.28 ±0.05 and 0.10 

±0.06). However this increase in fibrosis was significantly attenuated in RSV treated 

group as compared to TAC alone (1.29±0.20 and 0.65±0.13).  Figure 3.4 B 

3.5 Anti-inflammatory Activity Mediated By Resveratrol  

Macrophage infiltration was found to be significantly increased after 4 weeks of 

TAC (14.8 ± 0.06 ) compared to sham operated (1.71 ± 0.01). Treatment with resveratrol 

was found to attenuate macrophage infiltration in the heart of TAC+RSV (10.43 ± 0.03) 

mice as compared to TAC alone. Figure 3.5 A 

Similarly pressure overload induced increase in the number of cardiac mast cells 

were significantly higher in TAC group (12.5 ± 0.03) compared to sham operated (2.56 ± 

0.02). However treatment with resveratrol was found to attenuate mast cells infiltration as 

well in the heart of mice as compared to TAC alone (7.96 ± 0.03). Figure 3.5 B 

3.6 Resveratrol Attenuates Oxidative Damage In TAC Induced Heart. 

Anti-oxidative property of resveratrol in hearts of TAC induced PO mice was 

assessed by measuring myocardial biomarker expression of 4-hydroxynonenal (4-HNE) 

which is a marker of oxidative index of lipid peroxidation, and 8-hydroxydeoxyguanosine 

(8-OHdG), a marker of DNA damage induced by oxidative stress. These myocardial 

biomarkers of oxidative stress 4HNE were significantly increased in the mice that 

underwent TAC procedure (18.4±3.1%) relative to sham surgery (3.38±1.0%). 

Resveratrol treatment however, was able to attenuate the upregulation of 4-HNE in the 

TAC+RSV group (14.4±1.9%). Figure 3.6 A 
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Similarly, the oxidative marker 8-OHdG level was sharply upregulated in the 

TAC mice (22.7±3.1%) compared to sham counterparts (2.8±1.0%). Again, treatment 

with resveratrol was able to significantly attenuate this pathological damage in 

TAC+RSV group (16.22±0.9%). Figure 3.6 B 

3.7 Resveratrol Prevents Cardiomyocyte Apoptosis 

Decrease in the LV function with chronic pressure overload induced LV 

hypertrophy may be mediated by excessive apoptosis resulting in a reduction in total 

contractile units and LV mass. TUNEL immunohistochemical shaining was performed to 

access the cardiomyocyte apoptotic death. Treatment with resveratrol may prevent 

myocyte apoptosis thereby maintaining LV mass. As expected, the number of apoptotic 

nuclei in the heart of TAC mice (0.13±0.01) was significantly greater than in sham 

operated mice (0.01±0.007). Resveratrol treatment was able to successfully attenuate the 

ongoing apoptosis to a significant level (0.09±0.01) relative to untreated group. Figure 

3.7 

3.8 Resveratrol Protects Heart Failure By Inhibiting Hypoxia And Inducing 

Antixoidative Enzymes. 

Interestingly, in line with the maintained attenuation of elevated TUNEL positive 

nuclei, myocardiac level of cleaved caspase-3 was significantly also found to be 

significant up-regulated in TAC mice (177±3.2) compared to sham operated (154±3.1). 

attenuated in the  TAC+RSV group(166±7.9 ) Figure 3.8. The results between western 

blot and immunostaining show a strong positive correlation. 

In addition, we analyzed the cardiac expression of the angiogenic factor HIF-1α.  

It has been reported that VEGF and HIF1α is up-regulated in the pressure overload-
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induced hypertrophic WT hearts (Hilfiker-Kleiner et al., 2005; Sano et al., 2007). In the 

TAC WT hearts there was a significant increase in HIF-1α (176±10 ) levels as compared 

to sham-operated mice (83.2±4.4). The increase in HIF-1α may be due to high demand of 

oxygen to hypoxic heart and may play a role in the increase in capillary density through 

VEGF. Treatment with resveratrol however attenuated the HIF-1α level in TAC+RSV 

group (115±7.4) suggesting resveratrol may be mediating anti-hypoxic activity through 

other pathway. Figure 3.8 

Likewise the levels of antioxidative enzymes such as SOD  and GSH was found 

to be sharply declined in the TAC mice (7.3±0.9 U/mg and 5.2±0.2 nM/mg ) compared to 

sham surgery(10.7±1.3 U/mg and 8.5±0.27 nM/mg) . Resveratrol was able to 

successfully attenuate this decline to a significant extent in RSV treatment group relative 

to TAC alone (9.4±0.4 U/mg and 6.69±0.32 nM/mg).  Figure 3.9  
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Figure 3.1. Assessment of body, heart and lung weight after TAC. Groups 
(n=7/group) of WT mice were subjected to either SHAM or TAC surgery. Wet weight 
of heart and lung was recorded as an index of cardiac hypertrophy and heart failure at 
day 28 post surgery. (A), Heart weight/body weight (HW/BW) ratio (B) Lung 
weight/body weight ratio (LW/BW). Both HW/BW and LW/BW ratio were found to 
be significantly increased in TAC mice compared to SHAM. Resveratrol treatment 
however attenuated this pathological change. Values are expressed as mean±SD. 
p<0.05 was considered statistically significant.  

Figure 3.2: Representative image acquired from 2D echocardiogram (Vevo 770) 
showing the internal dimentions of LV.  LVAD, LVPW, LVID parameters were 
compared between sham operated,TAC and TAC+RSV treated at 0,7,14, 21 and 28 
day respectively. 
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Figure 3.3. A.  Resveratrol treatment attenuates cardiac contractile dysfunction 
in PO mice. Groups (n=7/group) of WT mice were subjected to either SHAM or TAC 
protocol and parameter for left ventricular inter diameter during systole was obtained 
at given time points.  Values are expressed as the mean ± SD.  * p<0.05 vs SHAM, ¥ 
P<0.05 vs T+R.   

Figure 3.3. B.  Resveratrol treatment attenuates cardiac contractile dysfunction 
in PO mice. Groups (n=7/group) of WT mice were subjected to either SHAM or TAC 
protocol and parameter for left ventricular inter diameter during diastole was obtained 
at given time points.  Values are expressed as the mean ± SD.  * p<0.05 vs SHAM, ¥ 
P<0.05 vs T+R.   
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Figure 3.3. C.  Resveratrol treatment attenuates cardiac contractile dysfunction 
in PO mice. Groups (n=7/group) of WT mice were subjected to either SHAM or TAC 
protocol and parameter for left ventricular posterior wall thickness during systole was 
obtained at given time points.  Values are expressed as the mean ± SD.  * p<0.05 vs 
SHAM, ¥ P<0.05 vs T+R 

Figure 3.3. D.  Resveratrol treatment attenuates cardiac contractile dysfunction 
in PO mice. Groups (n=7/group) of WT mice were subjected to either SHAM or TAC 
protocol and parameter for left ventricular posterior wall thickness during diastole was 
obtained at given time points.  Values are expressed as the mean ± SD.  * p<0.05 vs 
SHAM, ¥ P<0.05 vs T+R.   
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Figure 3.3. E.  Resveratrol treatment attenuates cardiac contractile dysfunction 
in PO mice. Groups (n=7/group) of WT mice were subjected to either SHAM or TAC 
protocol and parameter for percent change in ejection fraction was obtained at given 
time points.  Values are expressed as the mean ± SD.  * p<0.05 vs SHAM, ¥ P<0.05 vs 
T+R.   
	
  

Figure 3.3. F.  Resveratrol treatment attenuates cardiac contractile dysfunction in 
PO mice. Groups (n=7/group) of WT mice were subjected to either SHAM or TAC 
protocol and parameter for percent change in fractional shortening was obtained at 
given time points.  Values are expressed as the mean ± SD.  * p<0.05 vs SHAM, ¥ 
P<0.05 vs T+R.   
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Figure  3.4 (A) TAC induced PO causes  exacerbation of  cardiac hypertrophy.   
WT mice were subjected to TAC or sham-surgery. Upper panel representative WGA 
staining of LV sections (400x magnification) in sham control, aortic banded mice 
treated with or without resveratrol at day 28 post surgery). Quantitation of myocyte 
surface area is shown in lower left panel. Values are expressed as the mean ± SD.  * 
p<0.05 was considered statistically significant. The number of hearts (n=6/group).  
	
  



 58 

	
  

	
  

	
  

 

 

	
  

	
  

	
  

	
  

Figure 3.4 (B): Resveratrol treatment significantly attenuates exacerbation of 
cardiac fibrosis following TAC. A and C. Myocardial fibrotic area was measured 
from sham, TAC and Tac+Rsv treated mice  and  analysis of digital images of sections 
stained by Masson’s trichrome kit was done at day 28.  In the upper panel 
representative photomicrographs of fibrotic areas of  LV  interstitial fibrosis and lower 
panel showing LV perivascular fibrosis. (200x magnification). Values are represented 
as a percentage of total microscopic area per heart. The numbers (n=6/group) 
represents the number of sham and TAC hearts analyzed. Values are expressed as the 
mean ± SD. * p<0.05 was considered statistically significant. 
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Figure 3.5(A): Resveratrol attenuates exacerbation of inflammation following 
TAC. Groups (n=6/group) of WT mice underwent either SHAM or TAC protocol. 
Upper panel, representative immunohistochemical staining of macrophage with anti-
macrophage antibody Mac-2 (brown color) from LV sections of sham, TAC and 
TAC+RSV treatment mice  at day 28 (200x magnification). Lower panel, slides were 
quantified and depicted as percent macrophage cells with respect to control group. 
Values are expressed as the mean ± SD. * p<0.05 was considered statistically 
significant. 
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Figure 3.5 (B): Resveratrol attenuates exacerbation of inflammation following 
TAC. Groups of mice (n=6/group) underwent SHAM or TAC protocol. Upper panel, 
representative staining of mast cells with toluidine blue (blue color) from LV sections 
of sham, TAC and TAC+RSV treatment mice  at day 28 (100x magnification).  Lower 
panel, slides were quantified and depicted as percent mast cells with respect to control 
group. Values are expressed as the mean ± SD. * p<0.05 was considered statistically 
significant. 
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Figure 3.6 (A): Exacerbation of oxidative stress in TAC induced PO mice heart.  
Upper panel, representative  images of 4-HNE staining of LV sections at day 28 from 
TAC, sham mice and Rsv treated mice. Lower panel- level of 4-HNE was semi-
quantification by measuring IOD of six randomly chosen fields in each myocardial 
tissue section. Areas shown in red are positive for 4-HNE. Cardiomyocytes is stained 
green using anti-Tropomyosin I and nuclei in blue were labeled with DAPI. 
(n=6/group).* p<0.05 was considered statistically significant. 
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Figure3.6 (B): Exacerbation of oxidative stress in TAC induced PO mice heart. 
Upper panel  representative  images of 8OHdG staining of LV sections at day 28 from 
TAC, sham and Tac+Rsv treated mice. Lower panel- level of 8-OHdG was semi-
quantification by measuring IOD of six randomly chosen fields in each myocardial 
tissue section. Areas shown in red are positive for 8OHdG. Cardiomyocytes is stained 
green using anti-Tropomyosin I and nuclei in blue were labeled with DAPI. 
(n=6/group). * p<0.05 was considered statistically significant. 
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Figure 3.7: Effect of resveratrol on myocardial apoptosis in TAC induced PO 
mice heart.  Representative images of TUNEL staining of left ventricular are shown 
in upper panel.  Quantification of TUNEL positive cells are shown in lower panel. 
Apoptotic nuclei in TAC hearts were quantified by using image pro plus and 
represented as percent of total nuclei in the section of LV. Apoptotic nuclei shown in 
red, myocardium green and nuclei in blue. (400x magnification). (n=6/group). * 
p<0.05 was considered statistically significant. 
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Figure 3.8: Resveratrol protects heart failure by inhibiting apoptosis and hypoxic 
damage. Group (n=7/group) of WT mice were subjected to either sham or TAC 
surgery and one group was treated with resveratrol for 4 weeks. LV tissue was 
extracted and processed for western blot analysis for caspase 3 and HIF1-α, 
normalized to β-actin as control for equal loading .  Each lane contained 30 µg of 
protein. Lower panel-representative quantitation by densitometric tracing of protein 
bands (n= 3/group). * p<0.05 was considered statistically significant. 
	
  

Figure 3.9: Treatment with resveratrol causes upregulation of anti-oxidative 
proteins in the heart. Group (n=7/group) of WT mice were subjected to either sham 
or TAC surgery and one group was treated with resveratrol for 4 weeks. Tissue was 
extracted and processed for total activity measurement at day 28. A: Quantitation of 
total tissue SOD activity (U/mg protein). B: Quantitation of total GSH content in the 
cardiac tissue (nM/mg protein). * p<0.05 was considered statistically significant. 
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CHAPTER 4 

DISCUSSION 

Prevention of cardiac structural and functional alterations by resveratrol treatment 

in experimental model of pressure overload created by TAC has been reported (Juric et 

al., 2007). Similarly regression of PO–induced cardiac hypertrophy and its deleterious 

consequences on heart function have also been reported previously in resveratrol-treated 

abdominal aortic-banded rats. (Li et al., 2005). Thus, it appears that resveratrol is 

beneficial in treating pathological pressure overload conditions that include hypertension. 

The main purpose of this study was to investigate the use of resveratrol as a 

potential alternative therapy for PO-induced HF. It has been firmly established that 

sustained chronic PO causes the activation of various oxidases which in turn causes 

increased ROS formation to induce cardiac hypertrophy, including cardiac myocyte 

hypertrophy, myocardial fibrosis and apoptosis leading to heart failure (El Hasnaoui-

Saadani et al., 2013). Given the critical role of resveratrol in antioxidant defenses, it was 

not surprising to find that resveratrol is cardio protective by decreasing oxidative damage 

in the heart. 

The significant findings of this study were that resveratrol treatment resulted in 1) 

significant attenuation of myocardial dysfunction; 2) prevention of cardiac myocyte 

against oxidative stress damage including attenuation of cardiac hypertrophy, fibrosis, 

inflammation and apoptosis, 3) upegulation of anti-oxidative proteins thereby combating  
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the oxidative injury. These beneficial effects of resveratrol occurred despite the continued 

presence of cardiac hypertrophy and hypertension in this model and if left untreated 

would ultimately result in LV dilation and overt heart failure. 

4.1 TAC-induced PO Mice Presents Signs Of Heart Failure. 

Four weeks after TAC surgery, mice developed PO induced concentric cardiac 

hypertrophy and decreased cardiac performance characterized by significant change in 

LV wall thickness, %EF, %FS leading to diastolic dysfunction. These results are 

consistent with previous studies and validate the experimental models used in this study 

(Juric et al., 2007; Li et al., 2005; Wojciechowski et al., 2010). 

4.2 Treatment With Resveratrol Improves Cardiac Function And Enhances 

Survival. 

Echocardiographic analysis revealed that that the WT hearts developed adverse 

structural remodeling and progressive dilation following induction of PO. This led to a 

significant reduction of EF and FS as well as a significant increase in the LW/BW ratio, a 

strong indication that these hearts were beginning to fail. The adverse remodeling and 

dilation was markedly exacerbated in the TAC hearts resulting in an even more 

pronounced decline in FS and a sharp increase in the LW/BW ratio by day 28 compared 

to the RSV treated. Additional evidence for the increased vulnerability of the TAC hearts 

to PO-induced heart failure is provided by the increased HW/BW ratio and 

cardiomyocyte size (CSA) in the TAC mice compared to their WT counterparts. 

Resveratrol treatment attenuated concentric remodeling by normalizing LVPW thickness 

both at systole and diastole. These beneficial effects of resveratrol in attenuating PO-

induced cardiac hypertrophy are consistent with other recent study that demonstrated 
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anti-hypertrophic effects of RSV in a rat model of PO-induced cardiac 

hypertrophy  (Wojciechowski et al., 2010). In this model, chronic RSV administration 

(2.5mg/kg bw) for 28 days was ensued. Echocardiographic and histopathological studies 

clearly showed marked deterioration in the cardiac function characterized by significant 

increment in the LV wall thickness and reduction in the cardiac function parameters as 

compared to sham or vehicle treated rats. Treatment with RSV was found to regress 

cardiac hypertrophy and dysfunction significantly. 

4.3 Resveratrol Treatment Induces Anti-oxidative Enzymes And Protects 

Against Oxidative Damage In Pressure Overloaded Mice Heart.  

Reactive oxygen species play an integral role in the development of inflammation 

and promote oxidative stress during hypertension (DeMarco et al., 2010). Another 

characteristic of resveratrol is anti-inflammation. Resveratrol not only modulates 

biochemical responses of polymorphonuclear leukocytes by interfering with the release 

of inflammatory meaditors but also suppresses the activity of macrophages (Sharma et 

al., 2007). The inflammatory response of the heart to pressure overload, as determined by 

macrophage infiltration was significantly higher levels in the TAC mice compared to 

their WT counterparts. This response is likely initiated by multiple pathways through 

increased oxidative stress, inhibition of cyclooxygenase (COX) and activation of the 

potent pro-inflammatory NF-κB system. Our study and other have shown that RSV 

attenuates the generation of ROS and inhibits macrophage infiltration (Kang et al., 2009; 

Karlsen et al., 2010; Leiro et al., 2005). Macrophage infiltration in TAC+RSV group 

dropped significantly indicating that in the absence of control over ROS production, there 
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is a marked acceleration of the pathophysiological mechanisms that underlie the 

development of heart failure. 

  Similarly, mast cells have been implicated in the pathogenesis of HF by 

degranulating myocardial collagen and inducing fibrosis in response to infectious and 

inflammatory stimuli (Matsumori et al., 1994). Although found mainly in the skin, 

gastrointestinal tract, and airways, they are normally known to reside in cardiac tissue 

(Mina et al., 2013). Interestingly, levels of mast cells show a similar increase following 

the TAC procedure. This increase in mast cell number was strikingly higher in TAC 

compared to sham treatment. However, treatment with RSV was able to attenuate this 

mast cell infiltration significantly as compared to TAC alone.   

4.4 Resveratrol Exerts Marked Anti-fibrotic Property In TAC Induced PO 

Mice Heart. 

Consistent with the enhanced inflammatory response in the TAC mice compared 

to their WT counterparts, we also found striking increase in both interstitial and 

perivascular fibrosis in the pressure overloaded TAC hearts. This is most likely the 

primary cause of the significant deterioration of cardiac function. These data clearly 

indicates that the PO-induced fibrosis seen in the TAC mice is markedly increased 

compared to sham surgery. This may be in part, by necrotic cell death. There is a 

significant increase in LV apoptosis in the TAC WT mice compared to the sham mice. 

While myocyte apoptosis is well documented in heart failure and can reduce the force-

generating capacity of the myocardium (Juric et al., 2007), apoptotic cells are scattered 

across the wall of the chamber and are usually found as single cell losses. Indeed, 

replacement fibrosis in heart failure is the result of multiple diffuse foci that contain a 
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much larger number of dead cells than seen in apoptosis. While necrosis is not as well 

studied as apoptosis, it is now clear that this is a tightly regulated process. In heart failure, 

it appears that necrotic cell death is triggered at the level of the mitochondria by multiple 

factors including sympathetic and Ca2+ overload, oxidative and metabolic stress, and 

hypoxia (Schmidt et al., 2002). Several lines of evidence indicate that RSV has 

significant anti-apoptotic activity, both in vivo and in vitro, that is mediated by the 

inhibition of NF-κB, p53, Enos and PGC-1α via activation of SIRT1 pathways which 

stimulate survival pathways (Rodgers et al., 2005; Vaziri et al., 2001; Yeung et al., 2004).  

4.5 Exaggeration Of Cardiomyocyte Hypoxia In TAC Mice Is Attenuated 

With Resveratrol Treatment 

In addition, we analyzed the cardiac expression of the angiogenic factors  HIF-1α. 

Accumulating evidence has demonstrated that during development of cardiac 

hypertrophy, a mismatch between the number of capillaries and the size of 

cardiomyocyte develops, leading to myocardial hypoxia and subsequent cell death 

(Maeda et al., 2013).  It has been reported that HIF1α and VEGF were up-regulated in the 

pressure overload-induced hypertrophic WT hearts (Hilfiker-Kleiner et al., 2005; Sano et 

al., 2007).  In the present study, we found that TAC  resulted in significant increase in 

HIF-1α level which might have predisposed cardiomyocytes vulnerable to pressure 

overload induced cardiomyocyte apoptosis.  However treatment with RSV protected 

cardiomyocytes against hypoxia induced injury and death.  The angiogenic effect of RSV 

found in this study was consistent with other observations that RSV increased 

angiogenesis during ulcer and wound healing (Razban et al., 2012).  
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Past and present studies have shown a growing consensus pointing towards NO as 

an endogenous anti hypertrophic molecule (Kempf and Wollert, 2004). It would be 

therefore beneficial to explore its potential in combating cardiac hypertrophy. Endothelial 

dysfunction (characterized as an impairment of endothelium-dependent relaxation) is 

known for structural changes in vasculature leading to endothelial dysfunction and 

ultimately hypertension. Several studies have shown that treatment with resveratrol 

results in enhancement of agonist-stimulated , endothelium dependent relaxation 

(Mizutani et al., 2000; Silan, 2008; Zhang et al., 2009). This improvement is largely 

attributable to NO derived from endothelial NO synthase (Enos) and is mediated through 

multiple mechanisms  (Li and Forstermann, 2009a, b). eNOS serves as a vital role in 

regulating beta-adrenergic transduction system and therefore cardiac function where 

chronic activation of beta-adrenergic receptor results in cardiac hypertrophy (Buys et al., 

2007). Given the role of resveratrol in mediating oxidative stress by upregulating 

endothelial nitric oxide in PO mice model of HF (Juric et al., 2007). Our results fit well 

with the anti-hypertrophic and cardioprotective roles of NO as we observed that 

resveratrol treatment significantly attenuated cardiac hypertrophy and as well as 

prevented contractile dysfunction as compared to TAC alone.  

Moreover it should be noted that resveratrol may also indirectly improve cardiac 

energy metabolism through its vasorelaxing effect, which could ameliorate perfusion and 

enhance oxygen and substrate delivery to the heart and the periphery. Finally, the 

beneficial cardiovascular and metabolic effects of resveratrol could also result from its 

phytooestrogenic properties. As a polyphenolic compound, resveratrol has been shown to 

be scavenger of hydroxyl, superoxide (Hung et al., 2002). Resveratrol induces 
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antioxidant enzymes in cardiovascular tissue (Cao and Li, 2004). SOD catalyze the 

dismutation of superoxide into hydrogen peroxide, which is further inactivated by 

glutathione (Forstermann, 2010). However it remains largely unclear as to how 

resveratrol causes induction of these antioxidant enzymes. Recent studies have 

demonstrated that overexpression of SIRT 1 leads to upregulation of SOD (Ungvari et al., 

2009). Consistent  with above study, our results show that PO causes myocardial levels of 

SOD and GSH to decrease dramatically relative to sham operated. Treatment with 

resveratrol however was able to induce the level of antioxidants and protect 

cardiomyocyte from oxidative injury. Resveratrol has also been reported to reduce 

oxidative stress by inhibiting ROS production through NADPH oxidase (NOX) system 

(Forstermann, 2010). 

4.6 Mode Of Action Of Resveratrol In Mediating Anti-oxidative Property 

Attenuation of hypertrophic response and also delaying the transition from 

hypertrophy to heart failure has been shown to be mediated by LKB1/AMPK pathway 

(Dolinsky et al., 2009).  LKB1 is an upstream kinase of AMPK and it inhibits cardiac 

remodeling by preventing angiotensin II –induced myocardial fibrosis. Oxidative stress 

has been reported to regulate LKB1/AMPK pathway. Lipid peroxidation product such as 

4-HNE is elevated during oxidative stress (Dolinsky et al., 2009). 4-HNE forms covalent 

adducts with LKB1 leading to inhibition of LKB1/AMPK signaling and activation of 

Mtor/p70s6 kinase mediated protein synthesis and cardiac myocyte growth. Treatment 

with resveratrol has been shown to prevents 4HNE modification of LKB1/AMPK 

signaling by blunting prohypertrophic p70S6 kinase response thereby attenuating left 

ventricular hypertrophy (Dolinsky et al., 2009). Consistent with the above mentioned 
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study, our results show a sharp induction of 4-HNE level in TAC mice compared to sham 

operated. However this upregulation of 4-HNE level was attenuated sharply with 

resveratrol treatment. 

4.7 Anti-apoptotic Potential Of Resveratrol. 

In failing heart, decompensation due to the chronic PO and cardiomyocyte 

deficiency due to fibrosis and apoptosis turns to be the predominat problem. Under such 

condition, resveratrol has been thought to potentiate an active DNA repair process instead 

of an inhibited protein synthesis, which preserves the genomic stability of cardiomyocyte. 

Oxidative DNA damage in cardiomyocyte was assessed to to determine extent of 

oxidative stress in PO hearts. 8OHdG and TUNEL positive stained nuclei were 

determined as an indicator of oxidative DNA damage in the heart. The induction of 

8OHdG and immunopositively stained TUNEL nuclei indicated the presence of oxidative 

DNA damage. Consistent with others findings, (Sin et al., 2013) our results demonstrated 

a significant oxidative damage in TAC hearts compared to sham. However this induction 

was significantly attenuated with resveratrol treatment. The content of 4HNE was 

positively correlated with the number of 8OHdG and TUNEL immunopositive nuclei. 

4.8 Clinical Relevance 

Irrespective of numerous protective roles mediated by resveratrol in various 

diseases and experimental settings, it has not yet achieved the clinical significance 

through mass human clinical trials. Variety of fruits and food has been shown to contain 

resveratrol and is expected to keep people healthy by scavenging free oxygen radicals. 

However due it its short half-life and rapid metabolizing property, the potency of 

resveratrol cannot be maintained for long in the body thereby ways to improve its 
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bioavailability either by blocking its rapid metabolism or developing analogs which can 

potentiate similar yet long lasting effects is needed (Baur and Sinclair, 2006). Although 

there are various ongoing research whose primarily focus have been the structure of 

resveratrol (Lagouge et al., 2006), yet great deal of difficulties and challenges are 

encountered in the process of screening the effective elements of resveratrol in vivo and 

determining the differences between in vivo and in vitro results (Baur and Sinclair, 

2006). Another challenge is to figure out the effective yet safe dose in humans because 

the dose at which resveratrol shows its potential to inhibit or treat certain disease might 

not apply on humans simply by extrapolating the figure or weight conversion (Reagan-

Shaw et al., 2008). There has been significant increase in the number of publications 

involving protective effects of resveratrol in diverse disease and experimental settings, 

while on the other side numerous clinical trials are ongoing regarding the safety and 

efficacy of this molecule. Fortunately, several phase one study have been completed 

among which one showed potential decrease in circulating IGF-1 as well as IGF- binding 

protein 3 in normal human subjects as compared to pre-dosing values (Patel et al., 2011). 

Another study involving resveratrol in human subjects showed marked attenuation of 

reactive oxygen species leading to downregulation of tumor necrosis factor-α as well as 

inflammation markers interleukin-6 and C-reactive protein (Ghanim et al., 2010). So far 

resveratrol has not been shown to cause significant side effects (Boocock et al., 2007; 

Camins et al., 2010; Ghanim et al., 2010; Patel et al., 2011) however, some increase in 

blood bilirubin and alanine aminotransferases were noted in healthy volunteers receiving 

high doses (Almeida et al., 2009). Some degree of headache, dizziness, myalgia and 

epididymitis were also reported in a rising multiple-dose study in healthy volunteers 
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providing the evidence that resveratrol is well tolerated under conditions of repeated 

administration (Almeida et al., 2009). 

With such diverse protective effects, resveratrol is expected to do much more 

wonders in treatment and management of HF. In the setting of cardiovascular disease, by 

correcting the oxidative stress, resveratrol sharply regulates the pathogenic factors like 

inflammation, hyper coagulation, obesity, dyslipidemia, atherogenic plaque formation, 

hyperglycemia, apoptosis, fibrosis and cardiac dysfunction thereby providing ample 

evidence of being prime candidate for treatment of heart failure.  However, much 

research is needed to finally achieve targeted therapy, treat cardiovascular diseases and 

increase the quality of life in HF patients.  
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