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Abstract

Structural variations (SVs) are changes in the human genome that are reported in several

studies to be associated with some diseases. Therefore, designing methods to find these

types of variations would help us for early detection of those diseases and utilizing new

treatment methods such as personalized medicine. Currently computational methods

are applied to find structural variations from short reads obtained by Next Generation

Sequencing (NGS) platforms. Usually each method has more power in finding particular

types or sizes of SVs and limitations in finding others. Thus, still new approaches and

methods are on demand for SV discovery.

In this thesis, we introduce two new methods based on a de novo assembly framework

called SAGE for detecting SVs. We compare our proposed methods with existing ones

which are based on the same approaches. This comparison shows that our methods are

able to detect more SVs from the validation sets (true SVs) than the compared methods.

Keywords: structural variation, copy number variation, de novo assembly, next-

generation sequencing
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Chapter 1

Introduction

Every scientist in the field of Biology accepts that a better understanding of the human

genome will help to get a better understanding of ourselves. This is due to the undeniable

relationship between the human genome and all its biological functions. During the past

few decades this understanding has been improved with non-stop advancements in the

field of Deoxyribonucleic Acid (DNA) sequencing.

Indeed Next Generation Sequencing (NGS) technologies have been an important

breakthrough in DNA sequencing and in general in biological sciences. By introduc-

ing these technologies and obtaining a clearer view of the human genome in the past

decade, new problems have arisen that solving each one of them will help us in our path

of gaining a comprehensive understanding of the human genome structure.

Structural variation (SV) detection and Copy Number Variation (CNV) detection

are examples of such problems that have attracted a lot of attention during the past few

years. The reason is that variations (differences in two genomes) are sources of all of

the differences between two organisms. On the other hand, many SVs are reported to

be associated with diseases. Therefore, obtaining a comprehensive map of SVs in the

human genome will help design new treatments such as personalized medicine.

SV detection is a difficult problem, not only because SVs vary in size widely and there

are many types of them, but also due to the fact that they mostly occur within repet-

itive regions of DNA [3]. Early methods for SV detection were experimental methods

which had several limitations and could not detect all types of SVs. As a result, they

1



Chapter 1. Introduction 2

were replaced by computational methods that are more powerful. There are four main

approaches for computational SV detection, and each of them has advantages and limi-

tations. It is well known that computational SV detection methods are complementary

and different methods should be used to find a good map of structural variations.

In this thesis two new algorithms are proposed for SV detection, both of them based

on a de novo assembly framework called SAGE. The first algorithm is called SAGEcnv

and it employs the new idea of utilizing estimated copy count of short reads to detect

Copy Number Variations (CNVs). The second method is called SAGEsv and it tries to

improve the assemblies produced by SAGE in order to obtain better assemblies and use

them to detect SVs through a comparison with the reference genome.

1.1 Thesis overview

The remaining of this thesis is organized as follows. In Chapter 2 we present the necessary

background on human genome and structural variations as well as previous work in

structural variation detection. We briefly explain the main approaches and tools in the

state of the art and mention advantages and disadvantages of each one of them.

Then we explain our proposed methods. SAGEcnv is described in Chapter 3. Since

our proposed methods are both based on the SAGE assembler, we give a concise intro-

duction to this framework at the beginning of this chapter as well. Chapter 4 describes

SAGEsv and shows how the use of more information from the reference genome helps us

to improve assemblies.

The results and a discussion about them are presented in Chapter 5. Finally, Chapter

6 gives our conclusions and possible future research based on this work.



Chapter 2

Genomic Variations

2.1 Molecular biology primer

2.1.1 DNA

Deoxyribonucleic Acid (DNA) is a complex molecule within living organisms' cells, com-

posed of four types ofnucleotidesknown asadenine, cytosine, guanine and thymine. It

is simpler to imagine DNA as a long string of four lettersA, C, G and T, each of which

represents one type of DNA nucleotides, respectively. Genomes in complex organisms

are formed by a number of DNA molecules calledchromosomes.

Nucleotides of a DNA string are attached together using a connection calledphospho-

diester bond. However, this is not the only connection in the DNA structure. DNA has a

double helix structure which is made of two sequences of nucleotides called strands (see

Figure 2.1). Each nucleotide in one strand is attached to one nucleotide in the opposite

strand through a chemical connection calledhydrogen bondand forms a unit calledbase

pair (bp). The characteristics of DNA nucleotides are such that force an adenin (A) to be

always paired with a thymine (T), and a cytosine (C) to be always paired with a guanine

(G).

Hence, if we suppose that an A base is complementary of a T base and a C base is

complementary of a G base, we conclude that one DNA strand is the reverse complement

of the other strand. So from the computational point of view, we can consider only one

3









































Chapter 2. Genomic Variations 23

Figure 2.11: Detection of short insertion using Pindel. For insertion, searching for min-
imum and maximum unique substrings from the 3’ end of the unmapped read is done
within the range of two times of the insert size starting from the anchor point. The
search range for minimum and maximum unique substrings from the 5’ end of unmapped
read is within read length – 1 starting from the already mappd 3’ end of the unmapped
read. In this the whole read cannot be reconstructed certainly and the extra bases are
an inserted fragment compared to the reference genome [79].

two ends of the paired-end read.

SOAPsv

SOAPsv is a tool based on sequence assembly approach which uses assembled scaffolds

obtained by SOAPdenovo [44]. This method is able to detect structural variants of small

and intermediate size (1 bp-50 Kbp) and their precise breakpoints [46]. To use this

method, first the short read dataset should be used to assemble scaffolds using de novo

sequence assembly algorithm, SOAPdenovo. Details of the SOAPdenovo algorithm can

be found in [44].

Then, assembled scaffolds are aligned to the reference genome using BLAT [32]. BLAT

is designed to find alignments very quickly instead of very carefully. This gives a big

picture of possible alignments of a scaffold to a specific chromosome. Next, scaffolds

which are aligned to the same chromosome are chosen for more careful alignment to that

chromosome. This is done by the LASTZ alignment tool [23] with the ambiguous ‘N’

treatment and gap-free extension tolerance up to 50 Kbp options enabled. Scaffolds with

no hit using BLAT, are aligned to the whole reference genome using LASTZ with the
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same options.

In the next step, the best hit of every single location on each chromosome is chosen

using a utility called axtBest [63]. Then these hits are analyzed to find putative SV calls.

If a gap is opened in the reference, it shows existence of an insertion and if a gap is

opened in the scaffold a deletion could be found.

The last step is to validate putative SV calls and report the validated SV calls as

detected. SOAPsv uses different approaches for validating small SVs and larger SVs.

For SVs ≤50 bp, short reads are mapped to the reference genome using BWA [42].

If at least four reads have alignments that support a candidate SV call (position and

length of gap opening should be in concordance with the prediction) then this SV call is

validated and reported.

For SVs >50 bp, a measure called S/P ratio is defined. To calculate S/P ratio, short

reads are aligned to the reference genome (both as single-end and paired-end reads). For

a candidate SV, S/P is calculated as the ratio between the number of normally mapped

paired-ends reads (which have the expected orientation and insert size) and single-end

aligned reads (which are originally from a paired-end read but only one end is aligned)

in a 50 bp flanking region of the SV boundaries. Then a Fisher’s exact test is performed

to test whether the S/P ratio of each structural variation is significantly different from

the S/P ratio of the whole genome.

CNVer

CNVer is a tool for CNV detection that takes advantage of both read depth and read

pair approaches [52]. This is done by combining read depth and read pair signatures

with the reference genome in a novel framework called donor graph. Then the problem

of CNV detection is modelled as a minimum cost flow problem on this donor graph. By

solving this problem, in addition to SV calling, CNVer is able to predict the copy count

of each region.

This method has several advantages over methods which use only one of the read depth

or read pair signatures. First, it is capable of identifying the breakpoints of deletions

(detected by read depth signatures) using the read pair signatures. Moreover, it can
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detect insertions larger than the insert size, which is not possible using only read pair

signatures. Furthermore, using two signatures yields a more robust framework that

indicates a reduction in the false positive rate.

However, the authors stated that there is still a fraction of CNVs found by other

methods like RDxplorer that CNVer is not able to find (even using both read depth and

read pair signatures). Same thing can be observed by almost all other SV/CNV detec-

tion methods. In fact, it is well known that current approaches and tools for SV/CNV

detection are complementary [3].

Other methods

We explained only a few of the available methods for SV/CNV detection that are utilized

in the 1000 genome project (except CNVer). We present below a list of methods for each

of the approaches mentioned above.

Read depth approach : There are many read depth approach methods among

which the bast are RDxplorer [80], CNVnator [2], JointSLM [48], CNVem [72]. In ad-

dition, there are a few tools that take advantage of a control genome. They are usually

able to find changes in a tumour genome (donor genome) relative to a normal genome

(control genome). Segseq [9], CNVseq [77], CNAseq [31], rSW-seq [35], BICseq [75] and

seqCBS [65] are examples of such methods.

Read pair approach : Read pair methods are the earliest methods developed for SV

detection. BreakDancer [8], PEMer [36], VariationHunter [25, 26], MoDIL [39], MoGUL

[40], and HYDRA [61] are based on this approach.

Split read approach : Unlike read depth and read pair approaches, only a few

methods are developed based on the split read approach, such as Pindel [79], AGE [1]

and Clipcrop [68].

Sequence assembly approach : A small amount of work has been done on this

approach. The only methods based on sequence assembly are SOAPsv [46], Cortex [30]

and NovelSeq [21].

Combining approach : There are a few methods that combine two or more ap-

proaches in one framework. This would usually increase the robustness and decrease the
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false positive rate. CNVer [52], Genome STRiP [22], GASVPro [66], inGAP-SV [60], and

CREST [71] are examples of such methods.



Chapter 3

SAGEcnv

In this chapter, we propose a new algorithm based on a read depth approach called

SAGEcnv. This method needs to predict the number of times each short read appears

in the donor genome, which is known as copy count. We use a modified implementation

of a de novo assembly tool called SAGE to perform copy count estimation.

3.1 SAGE

SAGE [20] is a de novo assembler which uses an overlap graph to reconstruct the donor

genome from short reads obtained from NGS platforms. Overlap graph is a graph plat-

form which represents the overlapping of short reads. More precisely, in the overlap

graph each read is denoted by a node and the overlapping of reads are denoted by edges

between those reads. Since both of our methods are developed based on SAGE, in this

section we present a brief explanation of this tool.

3.1.1 Building the overlap graph

Short reads generated by NGS platforms usually contain some errors (different platforms

generate different types of errors such as substitutions or indels). Correcting these errors

can help de novo assembler tools to reconstruct better contigs. This is usually done in

a preprocessing step. SAGE uses a powerful error correction tool called RACER [29] to

27
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Figure 3.1: A small example of a short read dataset [20].

fix errors in the short read datasets.

To build the overlap graph SAGE finds short reads that overlap with each other. Two

strings overlap with each other if a prefix of one of them is identical to a suffix of the

other. SAGE looks for maximum overlaps between two reads. Due to double stranded

nature of DNA, one read can overlap with the reverse complement of the other read. In

the overlap graph, the nodes represent short reads. If there is an overlap between two

reads r1 and r2, an edge will be inserted to the overlap graph that connects r1 and r2.

Each edge in the overlap graph is bi-directed, which means it has two arrowheads; one at

each endpoint. This is designed to capture the double stranded structure of DNA. The

type of this edge depends on the type of the overlap between the reads.

To see a small example, consider the short reads in Figure 3.1. The overlaps between

these short reads are displayed in Figure 3.2 and the corresponding overlap graph is

shown in Figure 3.3. A naive way of finding all overlaps between every pair of reads in a

dataset of n reads has time complexity of O(n2). However, SAGE reduces this complexity

by using a hash table to efficiently find all overlaps.

After inserting all edges which correspond to overlaps between reads, some of the

edges are redundant because the information stored in them is already presented in the

graph. In Figure 3.3 such edges are drawn with dashed lines which are called transitive

edges. A linear time algorithm was proposed in [57] to remove transitive edges from an

overlap graph. However, this algorithm can be utilized only when the whole overlap graph

is created. SAGE uses a modified version of the algorithm that removes transitive edges
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Figure 3.2: Overlapping of short reads of Figure 3.1. A read can overlap with another
read or its reverse complement [20].

Figure 3.3: The overlap graph constructed based on the overlaps in Figure 3.2. Dashed-
lines show the transitive edges [20].

during overlap graph construction. This dramatically reduces the memory required and

makes SAGE capable of assembling large genomes. Therefore, the overlap graph does

not have any transitive edges at the end of the overlap graph construction (see Figure

3.4).

Since the graph does not contain transitive edges, most of the nodes in the constructed

overlap graph have degree 2. In Figure 3.4, r2 and r3 are examples of such nodes. These

nodes can be removed because there is only one path containing them. For instance,
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Figure 3.4: The overlap graph constructed by SAGE which does not contain any transitive
edges [20].

nodes r2 and r3 can be removed because there is only one path between r1 and r4. In

other words, the path between r1 and r4 can be contracted by removing nodes r2 and r3.

SAGE performs this so-called contracting composite paths to reduce the overlap graph

to a simpler graph. In this graph, each edge is actually a contig that is obtained by

SAGE. Figure 3.5 shows the reduced graph which corresponds to Figure 3.4 obtained by

contracting its composite paths.

3.1.2 Using Minimum Cost Flow to compute copy counts

To reconstruct the genome as closely as possible to the donor genome, the number of

times that each contig appears in the genome should be calculated. In order to do this,

an algorithm was proposed in [51] which converts this problem to an instance of the

Minimum Cost Flow (MCF) problem. In the MCF problem, given a graph G, a flow

upper bound UB(e) for each edge e, and a cost c(e) for each edge e, the goal is to assign

a flow f(e) to each edge e that minimizes the total cost, i.e. :
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Figure 3.5: The overlap graph after contracting composite paths. Each edge stores some
information about the reads that are represented by that edge [20].

minimize
∑
∀e

c(e)f(e). (3.1)

The proposed algorithm in [51] uses a cost function for each edge in the overlap graph

which maximizes the likelihood that the corresponding contig appears as many times as

it appears in the donor genome. SAGE improves this idea by using a statistical analysis

to set flow lower bounds for the edges. Then an MCF solver called CS2 [17] is used to

find a solution to the MCF instance. This solution shows how many times each contig

should appear in the assembled genome.

3.1.3 Final contigs extraction

The contigs in the overlap graph can be joined together to make larger sequences called

scaffolds. Paired-end (mate pair) information is used for this purpose. If there is a

paired-end read with one end in one contig and the other end in another contig, that

paired-end is supporting joining those two contigs. If there are several paired-end reads

that support joining the same contigs, those contigs are joined together. Sometimes there
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is a gap between two contigs which will be filled with the ambiguous character ‘N’. At

the end, scaffolds are reported in FASTA format 1.

3.2 Copy count estimation

Our algorithm for detecting CNV needs to estimate copy counts of short reads. In order

to obtain copy counts of the reads, the flow in the overlap graph, which is calculated by

the Minimum Cost Flow solver, can be used. This flow gives an estimated copy number

of each contig, because the cost function of the MCF instance was defined in such a way

that maximizes the likelihood that the number of flow units on this contig is the same

as the number of times that it appears in the donor genome.

Therefore, the copy count of each read r can be extracted by finding the contig that

contains r and assigning the flow of that contig as its copy count. An important point

here is that SAGE uses unique reads, meaning it considers each read only once. As a

result, we also work with unique reads. Sometimes a particular unique read can appear

in more than one contig. In this case, the copy count of that read is defined as the sum

of the flows of all contigs which contain that read.

3.3 Short read alignment

Due to the existence of repeats and segmental duplications in the human genome, a

fraction of the short reads will not be aligned to the reference genome uniquely. Although

by utilizing the paired-end information more reads can be mapped uniquely, still a small

fraction of reads can map to multiple locations of the reference genome. This presents a

challenge to the read depth approach, as this approach works mainly by aligning short

reads to the reference genome.

Different methods have dealt with this challenge differently. A few tools have ignored

such short reads completely (which is clearly not a good choice). Some choose one of

the possible alignment positions randomly. MAQ [43] and Bowtie [38] are instances of

1For information about FASTA format, please check http://en.wikipedia.org/wiki/FASTA format



Chapter 3. SAGEcnv 33

short read aligners which make such a random choice. This sort of handling of multiply

aligned short reads is much better than ignoring those reads and does not effect the read

depth. However, they still ignore all mappings of each read.

There are a few methods that deal with all “good” mappings of each short read to

improve the sensitivity within duplicated regions. These alignments can be obtained

using some read alignment tools such as Bowtie, BWA [42], mrFAST [4], and mrsFAST

[19]. We use Bowtie to align all unique short reads to the reference genome to find all

possible alignments.

3.4 CNV calling

Having estimated the copy counts as well as all possible alignments of each unique short

read we can use this information for CNV detection. By unique short read, we mean that

each short read is processed only once, even if it appears many times in the read dataset.

The basic idea is that for normal regions (non CNV regions) with possibly a few repeats

in the reference genome, it is expected that the estimated copy count of unique reads

sequenced from that region is almost equal to the number of alignments of those unique

reads. Otherwise, if there is a deletion (insertion) in the donor genome, the estimated

copy count is expected to be less (more) than the number of alignments.

As a result, for each read we can define a ratio that can be considered as the depth of

that read in the reference genome. Denoting, for each read r, the estimated copy count

by rcc and the number of times it aligns to the reference genome by rna, the depth of

coverage of read r is defined as :

rdoc =
rcc
rna

. (3.2)

If rdoc is equal to 1, it means the read r is sequenced from a normal region. If rdoc is

greater than 1, it means the read r is sequenced from a region with more copies in the

donor genome than the reference genome (insertion) and if rdoc is less than 1, it means

the read r is sequenced from a region with fewer copies in the donor genome than the

reference genome (deletion).
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Figure 3.6: The distribution of depth of coverage (DOC) in the reference genome in
the case of deletion (loss in copy number). In this figure, vertical axis is the DOC and
therefore, each point shows the DOC of a window in the reference genome.

We consider windows of fixed size in the reference genome and calculate the sum of

rdoc values of all reads in each window. This number can be considered as the depth

of coverage (DOC) of that window. As mentioned in the Chapter 2, the coverage of

NSG sequencing platforms is biased by GC-content. Therefore, the depth of coverage

of windows should be adjusted to remove the effect of GC-content. We perform this

correction according to the following formula :

DOC ′
i = DOCi ×

m

mGC

, (3.3)

where DOCi is the depth of coverage of the i-th window, mGC is the median depth of

coverage of all windows that have the same GC-content as the i-th window, and m is the

overall median depth of coverage of all the windows.

Based on the definition of rdoc, we can deduce that the regions that have a loss of copy

number should have a drop in the corresponding windows DOC. Figure 3.6 illustrates this
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Figure 3.7: The distribution of DOC in the reference genome in the case of insertion
(gain in copy number). In this figure, vertical axis is the DOC and therefore, each point
shows the DOC of a window in the reference genome.

case. Conversely, regions that have a gain of copy number have a rise in the corresponding

windows DOC which is shown in Figure 3.7.

Using the GC-adjusted depth of coverage of windows, a change point analysis can be

done to find regions that have significantly higher or significantly lower depth of coverage

than the average as the detected CNV. In order to perform CNV calling, we use the tool

proposed in RDxplorer [80] which uses a significance test to detect CNVs. The general

steps of SAGEcnv are illustrated as pseudo-code in Algorithm 1. Later in the Chapter 5,

the accuracy of SAGEcnv algorithm will be evaluated by comparing with other methods.
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Algorithm 1: Pseudo-code for SAGEcnv.

input : • short reads obtained from a donor genome using an NGS platform

• the reference genome

output: copy number variations, their type and breakpoints

1 estimate copy count of each unique read

2 for each unique read r do

/* align read r to the reference genome */

3 positions[1..m]← all mapping positions of read r

4 count← estimated copy count of read r

/* depth of coverage calculation */

5 for i ← 1 to m do // process all alignments

6 depth[positions[i]]← depth[positions[i]] + count
m

7 end

/* windows depth of coverage calculation */

8 len← length of the genome

9 winSize← the desired size of windows

10 winNo← len
winSize

11 for i ← 1 to winNo do // process every window

12 for j ← 1 to winSize do

13 winDepth[i]+ = depth[i ∗ 100 + j]

14 end

15 end

/* Call EWT method [80] to detect CNVs */

16 EWT(winDepth)

17 end
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SAGEsv

As mentioned in the discussion about the existing work on the SV detection problem in

Section 2.3, little has been done using the sequence assembly approach. This is because

de novo assembly is a challenging problem (due to the existence of repeats and segmental

duplications) and hence, structural variation detection using the other approaches seems

a much easier task.

However, the sequence assembly approach has some advantages over other approaches.

There are some types of variations that cannot be found by other approaches among

which novel insertion is the most important one. Methods based on sequence assembly

are able to find novel insertions as well as any other types of variations. Moreover, when

sequence assembly based methods become mature enough, they will be the best tools to

find variations in the donor genome because not only they can determine the types of

variations, but also they provide information about the content and the exact breakpoints

of all of them.

These facts provide a high level of motivation to work more on the sequence assembly

approach. In this chapter, we introduce a new method called SAGEsv, also based on the

SAGE assembler. A brief explanation of SAGE was presented in Section 3.1. Here we

just describe how it is modified to find structural variations.

37
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4.1 Utilizing the reference genome

The basic idea of SAGEsv is to use more information from the reference genome. As

it was mentioned earlier, de novo assemblers do not use, by definition, any information

from the reference genome. Thus, it is expected that if we use some information from

the reference genome, we can attain a better assembly.

This is due to the fact that the donor genome is supposed to be very similar to the

reference genome. On the other hand, the reference genome should be only used as a

guide and not for assembling the sequence. That is because the differences between the

donor genome and the reference genome are exactly those regions that are interesting to

study from the viewpoint of SV detection. Therefore, we use the reference genome just

as a guide and still use the overlap graph (which is built based on the donor genome) to

find sequences.

4.2 Anchors

SAGEsv uses the reference genome in order to fill the gaps between contigs and join

them to get longer contigs. Suppose that all the steps of SAGE are completed, i.e., the

overlap graph is build from short reads, the Minimum Cost Flow problem is solved, the

corresponding flow of each edge is calculated, and the paired-end information is used

to join contigs to get scaffolds. The result is an overlap graph in which every edge

corresponds to one scaffold. We try to join some of these scaffolds to get even longer

ones.

Each scaffold is aligned to the reference genome using BWA and all mapping positions

of that scaffold are stored. It is expected that many of these scaffolds appear only once in

the reference genome. A scaffold is called unique if it appears only once in the reference

genome and the flow of its corresponding edge is 1. In other words, a unique scaffold

appears only once in both the reference genome and the donor genome. We consider these

unique scaffolds as anchors in the reference genome. In addition, we assume that pairs

of consecutive unique scaffolds are usually aligned to the reference genome in the same
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order in which they appear in the donor genome. This assumption can be wrong in some

cases, when unique scaffolds appear in translocated or inverted regions. Nevertheless,

whenever the assumption is true, if we can find a “good” path in the donor genome

between two scaffolds, they can be joined to make a larger scaffold.

4.3 Finding paths

For a particular pair of consecutive unique scaffolds us1 and us2, the overlap graph is

explored to find all paths between these unique scaffolds. However, since the overlap

graph can be very big, some restrictions are needed to make it computationally possible.

As we have the mapping positions of all edges, we can easily determine three sets of

edges:

1. Those edges whose corresponding scaffolds are mapped to the reference genome in

the region between us1 and us2. These edges are stored in set A.

2. The edges whose corresponding scaffolds are mapped to the reference genome but

not to the region between us1 and us2. They are stored in set B.

3. The edges whose corresponding scaffolds do not map to the reference genome (these

may be novel sequences in the donor genome). They are stored in set C.

When exploring the overlap graph, we are only interested in those paths that have a

small overlap with sets B and C. In addition, the length of the path should be close to

the distance between mappings of unique scaffolds in the reference genome. Supposing

the distance between mapping positions of us1 and us2 is indicated by d, only those paths

that have all of the three conditions below will be accepted as valid paths:

1. At most 0.1× d bp of its sequence belongs to the set B.

2. At most 0.1× d bp of its sequence belongs to the set C.

3. Its length is in the range of [0.8× d, 1.2× d].
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Reference

Anchor Anchor

… …us1 us2

Path in the overlap graph
(donor genome)

Figure 4.1: Finding a path in the overlap grpah between two consecutive unique scaffolds.
In this figure, unique scaffolds have color green. The region between these scaffolds is gray
and the regions which are not between unique scaffolds are shown in red. In addition,
new sequences (novel insertions) are shown in blue. A valid path should use more from
the gray region and just a small fraction of the red and blue regions.

Figure 4.1 shows an example of such a path. We do not pose any restriction on the

fraction of the path belonging to the set A because we expect the sequence of the donor

genome between the two scaffolds to be close to the sequence of the reference genome

between the two scaffolds. By applying these restrictions to the path finding process,

it becomes faster. We implemented a backtracking algorithm constrained by the above

conditions, to find all the simple paths in the overlap graph (donor genome) between us1

and us2. A simple path is a path that contains each node at most once.

4.4 Merging scaffolds

If there is a unique path between two consecutive unique scaffolds, we will join those

scaffolds by the unique path between them. In this case, the whole path will be converted

to a new edge enew by merging all the edges in that path starting form one unique scaffold

and ending at the other one.

Every time an edge e is merged with enew, we look at its flow. If the flow is 1, edge

e will be deleted after merging. If the flow is greater than 1, edge e will not be deleted

after merging but one unit will be deducted from its flow. In other words, the process of

merging the path into the new edge enew should be a flow-obeying process.
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To process all the unique scaffolds, we sort them based on their mapping positions in

the reference genome. Then, two consecutive unique scaffolds with the smallest mapping

positions are selected. If there is a unique path between them, the scaffolds are joined

together using that path and the next pair of consecutive scaffolds is processed.

4.5 Extracting variations

The final overlap graph contains improved scaffolds which give a better assembly of the

donor genome. These scaffolds can be used to extract SVs by a careful comparison with

the reference genome. We use a tool developed in [46] to detect structural variations.

The general idea is to first align scaffolds to the reference genome using BLAT [32], to

find out the source chromosome of each scaffold. Next, structural variations are detected

using a more careful alignment. For SVs smaller than 50 bp BWA [42] is employed and

for longer SVs (up to 50 Kb) LASTZ [23] is used.
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Comparison

In this chapter we compare our algorithms with previously proposed methods. Our CNV

detection algorithm, SAGEcnv, which is based on the read depth approach is compared

with RDxplorer [80] and CNVer [52]. SAGEsv is compared to SOAPsv [46] since they

are both based on the sequence assembly approach.

5.1 A discussion about validation sets

An important point, which should be noted here, is that no true “gold standard” for

structural variations has been reported yet [69]. It means there is no comprehensive

validation set of SVs/CNVs that a) contains all of the real SVs of a particular genome

and b) does not contain any incorrect SVs. More surprisingly, suggested gold standards

which contain SVs validated by experimental methods are not necessarily consistent. For

example, a study on two suggested gold standards, Kidd et al. [34] and Conrad et al.

[12], reported relatively poor consistency between them [82].

On the other hand, different SV detection methods are complementary as it is also

reported in the 1000 genomes project’s paper [56]. In this project 19 different SV discov-

ery methods were used. For each of these methods, there is a set of SV calls that can be

detected only by that particular method (refer to the supplementary material of [56]).

The lack of true gold standards makes the evaluation of SV detection methods difficult.

Nevertheless, previously published papers have usually used a set of SV calls obtained

42
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by another method (or methods) for the same individual or a population of individuals

containing that individual, which are validated by experimental methods. Although such

sets contain SVs that are highly likely true SVs for the case study, it is quite possibly

not a comprehensive set of SVs, i.e. there are many real SV calls that are not included

in those sets.

5.2 Datasets and experiments

5.2.1 SAGEcnv

In order to evaluate SAGEcnv, we used a dataset of short reads sampled from the individ-

ual NA18507, which can be obtained from NCBI1 under accession number SRA000271.

This dataset contains about 3.5 billion short reads of length 36 bp with a mean insert size

of 208 bp. The exact same dataset is also used in the experiments reported by RDxplorer

[80] and CNVer [52], which allows us to directly compare our results with theirs. Instead

of working on the whole genome, the Bowtie [38] aligner was used to find those short

reads that can be aligned to chromosome 1 of the reference genome. These short reads

were considered as the input dataset for our evaluation.

This dataset was used as input for SAGEcnv. We used Bowtie to find all possible

mappings of each short read allowing at most 3 mismatches. Then, after estimating the

copy count of each short read using a modified version of SAGE, SAGEcnv was run to

find CNV calls (see Algorithm 1). We used a window size of 175, which was chosen

carefully based on the performed experiments. The results are presented in the next

section.

5.2.2 SAGEsv

To assess the accuracy of SAGEsv, an experiment on the simulated data obtained from

chromosome 17 of the HuRef assembly [41] was performed. We decided to work on

synthetic data because if we use real dataset of short reads, it is not possible to specify

1http://www.ncbi.nlm.nih.gov
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the origin of each short read (i.e. we do not know which chromosome each short reads

comes from). In other words, in order to use real dataset, the whole dataset should be

processed which needs a lot of effort. Therefore, we decided to evaluate the performance

of our method on the synthetic data at this point. Moreover, the advantage of using

the HuRef dataset is that a set of variations has been available which is validated by

experimental methods. Although this gold standard does not contain all of the SVs, we

still can use it to evaluate our SV discovery method.

All of the data related to HuRef can be obtained freely from the Craig Venter Institute

website2. We performed our experiments on chromosome 17. An Illumina simulator

called pIRS [28] was used to generate a dataset of synthetic short reads of length 100 bp

and mean insert size of 300. We used this dataset to run both SAGEsv and SOAPsv for

comparison. The results are presented in the next section.

5.3 Results

5.3.1 SAGEcnv

The results of CNV detection from chromosome 1 of individual NA18507 using RDx-

plorer, CNVer and SAGEcnv are shown in Table 5.1. In this table, the number of calls

shows the number of detected CNVs using each method, each of which can be a true CNV

region or a false one. In order to evaluate these methods, detected CNVs are compared

with two validation sets. The first validation set is Genome Structural Variation Consor-

tium database (GSV)3, which is a database of 8599 CNV regions found in 40 individuals

using experimental methods. The second one is the gold standard obtained previously

for the same individual NA18507 by Kidd et al. [34].

For GSV calls, we have reported the percentage of predicted CNV calls validated by

GSV (those which have an overlap with one of the calls in GSV) as well as the percentage

of bases in CNV calls validated by GSV. For Kidd et al. calls, we have reported the

percentage of CNV calls in the gold standard that are detected by each method.

2http://huref.jcvi.org
3http://projects.tcag.ca/variation/ng42m cnv.php
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Table 5.1: Comparison of CNV calls detected by three methods for chromosome 1 of
NA18507. We show the number of detected calls, the percentage of chromosome 1 bases
covered by CNV calls, the percentage of CNV calls validated by GSV, the percentage of
CNV bases validated by GSV, and the percentage of Kidd et al. calls detected by these
methods.

Method Number of

calls

Coverage

(%)

Against GSV

(by calls)

Against GSV

(by bases)

Against

Kidds calls

SAGEcnv 427 2 45.9 63.2 90.9

Rdxplorer 1151 2.45 34 54 82

CNVer 435 1.75 73 62 82

Although these results show that SAGEcnv detects fewer calls from GSV, more bases

of the detected calls are validated by GSV calls. This means CNV calls detected by

SAGEcnv have more overlaps with GSV calls. In addition, SAGEcnv performs better in

detecting the Kidd et al. calls. RDxplorer predicts more CNV calls but has a high False

Detection Rate (FDR). It should also be noted that CNVer uses both a read depth and

a read pair approaches for CNV discovery, which helps it to attain better sensitivity.

5.3.2 SAGEsv

To compare SAGEsv with SOAPsv, we analyzed deletions and insertions separately. In

addition, since these programs are based on sequence assembly approach and are able to

find variations of any size, to perform a better analysis we consider different size ranges

for comparing. Table 5.2 shows the comparison for deletions. Since we are using the

variations reported by HuRef’s website as the gold standard, the analysis is easier than

in the case of SAGEcnv.

This table reports the percentage of gold standard SV calls (in each size range) that

are detected by each method. There are two commonly used conventions for considering

a deletion as detected. The first one is to consider a deletion as detected if one of the

predicted deletions overlaps with it by at least 1 bp. The second one is to consider a

deletion as detected if at least 50% of its bases overlap with the predicted deletions. The

results show better performance of SAGEsv in both measures, except for the deletion in
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Table 5.2: Comparison of SOAPsv and SAGEsv in detecting deletions with different sizes
in the synthetic dataset obtained from chromosome 17 of the HuRef genome. In each
case, the better result is shaded.

Table 5.3: Comparison of SOAPsv and SAGEsv in detecting insertions with different
sizes in the synthetic dataset obtained from chromosome 17 of the HuRef genome. In
each case, the better result is shaded.

the size range [1, 20].

The comparison of the methods for insertions is presented in Table 5.3. As in the

case of deletions, this table shows the percentage of SV calls detected by the methods.

However, since insertions are known by only a single breakpoint in the reference genome,

the definition of detection should be different. An insertion in the gold standard is

considered as detected if at least one of the predicted insertions is ”close enough” to

it. Here we consider two insertions to be close enough if the distance between them is

at most 300 bp. The same definition of close breakpoints is used in another study of

structural variation detection [27].

The comparison shows that SAGEsv is better than SOAPsv in all size ranges. More

interestingly, the difference is bigger for longer insertions. This clearly demonstrates the

higher power of SAGEsv for detection of long insertions.
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Conclusions

Since several studies have shown association of structural variations to some diseases,

extensive research has been conducted on SV discovery during the past few years. In

this thesis we proposed new ideas for SV/CNV detection based on the SAGE de novo

assembler. We showed how the proposed method for CNV detection, SAGEcnv, uses

estimated copy counts to detect CNVs more accurately than an existent method based

on read depth, RDxplorer. To the best of our knowledge, this is the first use of estimated

copy counts of short reads to solve a computational biologic problem.

In the other proposed method, SAGEsv, we tried to improve the assembled sequences

produced by SAGE using the reference genome as a guide, and then used them for SV

detection. We compared our method with SOAPsv, which is also based on sequence

assembly and showed the better performance of SAGEsv. The advantage of sequence

assembly approaches is that it can detect any types of variations and give any information

such as size, content and location of each variation. However, more work needs to be

done on such methods since they are not mature enough at this point.

We believe that the proposed algorithms could be improved. Possible future work

for SAGEcnv is using other signatures like read pair to improve sensitivity. Usually

methods which combine different approaches provide better accuracy. On the other

hand, for SAGEsv there are several ideas worth trying. Maybe the most important one

is designing a new method for extracting variations from sequenced assemblies, because

the proposed method used in SOAPsv is very slow and difficult to use on large genomes

47
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such as the human genome. Another possible idea is to try to find more complex paths

between unique scaffolds instead of simple paths. In addition, in the case when more

than one path are found, it may be still possible to choose one of them to fill the gap

between unique scaffolds and merge them.
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Simon Tavaré. CNAseg–a novel framework for identification of copy number changes

in cancer from second-generation sequencing data. Bioinformatics, 26(24):3051–

3058, 2010.

[32] W James Kent. BLAT–the BLAST-like alignment tool. Genome research, 12(4):656–

664, 2002.

[33] W James Kent, Charles W Sugnet, Terrence S Furey, Krishna M Roskin, Tom H

Pringle, Alan M Zahler, and David Haussler. The human genome browser at UCSC.

Genome research, 12(6):996–1006, 2002.



BIBLIOGRAPHY 53

[34] Jeffrey M Kidd, Gregory M Cooper, William F Donahue, Hillary S Hayden, Nick

Sampas, Tina Graves, Nancy Hansen, Brian Teague, Can Alkan, Francesca An-

tonacci, et al. Mapping and sequencing of structural variation from eight human

genomes. Nature, 453(7191):56–64, 2008.

[35] Tae-Min Kim, Lovelace Luquette, Ruibin Xi, and Peter Park. rSW-seq: algorithm for

detection of copy number alterations in deep sequencing data. BMC bioinformatics,

11(1):432, 2010.

[36] Jan O Korbel, Alexej Abyzov, Xinmeng Jasmine Mu, Nicholas Carriero, Philip Cayt-

ing, Zhengdong Zhang, Michael Snyder, Mark B Gerstein, et al. PEMer: a computa-

tional framework with simulation-based error models for inferring genomic structural

variants from massive paired-end sequencing data. Genome Biol, 10(2):R23, 2009.

[37] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody,

Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, et al.

Initial sequencing and analysis of the human genome. Nature, 409(6822):860–921,

2001.

[38] Ben Langmead, Cole Trapnell, Mihai Pop, Steven L Salzberg, et al. Ultrafast and

memory-efficient alignment of short dna sequences to the human genome. Genome

Biol, 10(3):R25, 2009.

[39] Seunghak Lee, Fereydoun Hormozdiari, Can Alkan, and Michael Brudno. MoDIL:

detecting small indels from clone-end sequencing with mixtures of distributions.

Nature Methods, 6(7):473–474, 2009.

[40] Seunghak Lee, Eric Xing, and Michael Brudno. MoGUL: detecting common inser-

tions and deletions in a population. In Research in Computational Molecular Biology,

pages 357–368. Springer, 2010.

[41] Samuel Levy, Granger Sutton, Pauline C Ng, Lars Feuk, Aaron L Halpern, Brian P

Walenz, Nelson Axelrod, Jiaqi Huang, Ewen F Kirkness, Gennady Denisov, et al.



BIBLIOGRAPHY 54

The diploid genome sequence of an individual human. PLoS biology, 5(10):e254,

2007.

[42] Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows–

Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[43] Heng Li, Jue Ruan, and Richard Durbin. Mapping short dna sequencing reads and

calling variants using mapping quality scores. Genome research, 18(11):1851–1858,

2008.

[44] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin Shi,

Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen, et al. De novo assembly

of human genomes with massively parallel short read sequencing. Genome research,

20(2):265–272, 2010.

[45] Wenli Li and Michael Olivier. Current analysis platforms and methods for detecting

copy number variation. Physiological genomics, 45(1):1–16, 2013.

[46] Yingrui Li, Hancheng Zheng, Ruibang Luo, Honglong Wu, Hongmei Zhu, Ruiqiang

Li, Hongzhi Cao, Boxin Wu, Shujia Huang, Haojing Shao, et al. Structural variation

in two human genomes mapped at single-nucleotide resolution by whole genome de

novo assembly. Nature biotechnology, 29(8):723–730, 2011.

[47] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu,

and Maggie Law. Comparison of next-generation sequencing systems. Journal of

Biomedicine and Biotechnology, 2012, 2012.

[48] Alberto Magi, Matteo Benelli, Seungtai Yoon, Franco Roviello, and Francesca Torri-

celli. Detecting common copy number variants in high-throughput sequencing data

by using JointSLM algorithm. Nucleic acids research, 39(10):e65–e65, 2011.

[49] Elaine R Mardis. A decade’s perspective on DNA sequencing technology. Nature,

470(7333):198–203, 2011.



BIBLIOGRAPHY 55

[50] Christian R Marshall, Abdul Noor, John B Vincent, Anath C Lionel, Lars Feuk,

Jennifer Skaug, Mary Shago, Rainald Moessner, Dalila Pinto, Yan Ren, et al. Struc-

tural variation of chromosomes in autism spectrum disorder. The American Journal

of Human Genetics, 82(2):477–488, 2008.

[51] Paul Medvedev and Michael Brudno. Ab initio whole genome shotgun assembly with

mated short reads. In Research in Computational Molecular Biology, pages 50–64.

Springer, 2008.

[52] Paul Medvedev, Marc Fiume, Misko Dzamba, Tim Smith, and Michael Brudno.

Detecting copy number variation with mated short reads. Genome research,

20(11):1613–1622, 2010.

[53] Paul Medvedev, Monica Stanciu, and Michael Brudno. Computational methods for

discovering structural variation with next-generation sequencing. Nature methods,

6:S13–S20, 2009.
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