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Abstract

The primary goal of this thesis is to provide processed experimental data
needed to determine whether driver intentionality and driving-related actions
can be predicted from quantitative and qualitative analysis of driver behaviour.
Towards this end, an instrumented experimental vehicle capable of recording
several synchronized streams of data from the surroundings of the vehicle, the
driver gaze with head pose and the vehicle state in a naturalistic driving envi-
ronment was designed and developed. Several driving data sequences in both
urban and rural environments were recorded with the instrumented vehicle.
These sequences were automatically annotated for relevant artifacts such as
lanes, vehicles and safely driveable areas within road lanes. A framework and
associated algorithms required for cross-calibrating the gaze tracking system
with the world coordinate system mounted on the outdoor stereo system was
also designed and implemented, allowing the mapping of the driver gaze with
the surrounding environment. This instrumentation is currently being used for
the study of driver intent, geared towards the development of driver maneuver
prediction models.
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Chapter 1

Introduction

Since August 1896 when Mary Ward killed in the first motor vehicle accident,

25 million people died in vehicle-related accidents. The proposed research

program aims at reducing vehicle-related fatalities and injuries first by creating

the required vehicular instrumentation for the study and modeling of driver

intent.

Over recent years, auto manufacturers have introduced various systems

to enhance driving safety, such as rear-view cameras and sensors, adaptive

cruise controls, enhanced night vision, and so on. However, these systems (in

production or under development in research laboratories) have yet to realize

their full potential. Our envisioned integration of ADAS technologies reveals

an extended capacity for context analysis and behavioural prediction that will

enhance traffic safety [3].

The pervasiveness of vehicle-related injuries and casualties imposes enor-

mous costs on our society. Such losses may become largely avoidable if ad-

dressed with proper technologies derived from research initiatives such as this

one.
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While there is large amounts of research performed on different aspects of

ADAS systems such as lane departure and collision avoidance warning systems,

little attention is devoted to the driver as a central part of the driving task.

There is evidence that 95 percent of all accidents are caused by human error,

and therefore monitoring and correcting driver behaviour seem to be crucial

in the effectiveness of a future ADAS.

1.1 Literature Survey

A forecast from the World Health Organization states that among the 10 lead-

ing causes of disease burden1, traffic-related injuries will rank 3rd in 2020, up

from 9th in 1999 [21]. While injuries per driven kilometer are in decline in

the developed countries [1], a reverse trend can be observed elsewhere in the

world, especially in countries where car ownership is rising quickly. In ad-

dition, further significant gains in traffic safety in developed countries seem

only possible via ADAS, since the impact of other forms of safety improve-

ments have begun to plateau [7]. The functions one finds in various current

ADAS are LDW (Lane Departure Warning), LCA (Lane Change Assistance),

LKA (Lane Keeping Assistance), FCW (Forward Collision Warning), BSW

(Blind Spot Warning), and DDW (Drowsy Driver Warning), among others.

LDW, LCA, and LKA systems alert the driver when unintentional or unsafe

lane changes are to take place, or to assist the driver in keeping or changing

lanes. These systems determine the vehicle position with respect to detected

lanes. This is usually performed with real-time computer vision algorithms,

since the detection of road markings and curbs is essential to locate lanes.

Additionally, such systems can be interfaced with vehicle turn signals, blind

1Disease burdens are measured in Disability Adjusted Life Years (DALYs).
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spot warning systems, and possibly driver monitoring systems to determine

if lane changes are safe and intentional. Stereo vision algorithms have been

successfully adapted for some of these tasks [6, 28, 18, 17, 20] , supported by

various computer vision techniques such as edge detection, image segmenta-

tion, feature tracking, and particle filtering. A consensus around vision-based

techniques for lane detection has recently emerged [25] mainly because vi-

sion sensors provide accurate positional information which do not involve any

instrumentation of highway infrastructures. When conditions prevent vision

sensors to perform correctly, data from other sensing devices may be fused

with the vision data to increase reliability. Other vision-based ADAS address

specific aspects of driving. For instance, one finds methods and algorithms for

detecting and evaluating the speed and distance of advance cars [42, 30], radar

and vision-based adaptive cruise control systems [14, 26, 9, 36], driver and ve-

hicle hardware in-the-loop frameworks [13, 29], driver attention and fatigue

management [11], pedestrian detection [8, 12, 23, 10, 31], and collision warn-

ing systems [34, 38, 37, 4]. Advanced Driving Assistance Systems are generally

designed to support decision making by providing ergonomic information on

the driving environment, such as the presence of surrounding vehicles, poten-

tial hazards, and general traffic conditions. Sensing may be performed with

radar [14, 41], lidar [15], or laser range finders [24]. However a majority of

ADAS rely principally on vision systems supported by other sensor modes

[25]. With such a variety of sensor modalities and hard real-time constraints,

fusion becomes central to ADAS and the current literature reflects this fact in

the large number of contributions that approach data and knowledge fusion in

this context [19, 14, 9, 43]. Alternatively, several functions of ADAS may be

realized using vehicle-to-vehicle (V2V) wireless communication protocols and

Global Positioning Systems (GPS). Examples include the diffusion of traffic
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information, [27, 35], collision warning systems [16, 39], lane changing assis-

tance [2], and tracking neighboring vehicles [32]. While research on ADAS

may integrate a number of different functions such as forward collision detec-

tion and lane departure tracking [22], most of them pay little attention to the

monitoring of events and factors that are directly concerned with the driver of

the vehicle. It is only recently that the cognitive aspects have been considered

as a legitimate part of intelligent ADAS [33]. Since 95 percent of all accidents

are caused by human errors such as cognitive (47 percent), judgment (40 per-

cent), and operational errors (13 percent), it is crucial that these aspects of

driving be a central part of any intelligent ADAS [40]. Keeping the driver

as an active participant in the feedback mechanisms allows for providing con-

textually motivated informational support and offers immediate applications

for enhancing safety [29]. Research efforts to integrate these various systems

have very recently begun, on the premise that integration is likely to generate

greatly enhanced functionality for the next generation of ADAS [3]. A survey

of possibilities include the following types of integration:

1. Lane change assistance with vehicle detection, blind spot monitoring,

driver head pose estimation, and car turn signal system: This type of

integration allows for increased safety during lane change maneuvers

as it is possible to determine the position and velocity of surrounding

vehicles, while the driver head pose (looking into the blind spot) and

monitoring of the turn signal systems allow to determine if the lane

change is intentional.

2. Driver gaze direction monitoring with vehicle, obstacle, pedestrian, and

road sign detection: This integration assists in determining if the driver

is cognizant of the general traffic conditions surrounding the vehicle, and
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brings the possibility of assessing whether the driver is seeing other vehi-

cles, road signs, and obstacles in the visual field. Warnings may then be

issued only if important traffic elements are not observed by the driver,

preventing cognitive overload and unnecessary distractions, among other

things. Additionally, the frequency with which the driver looks in the

rear view mirrors, the instrumentation panel, and other odometry- re-

lated equipment can be determined and constitutes a significant factor

when assessing the cognitive state of a driving agent.

3. Integrating vehicle odometry and sensor readings with computer vision

systems of ADAS: Vehicle odometry obtained in real-time through the

CANbus interface of the vehicle greatly improves and simplifies com-

puter vision processes such as feature tracking and motion estimation.

For instance, if the speed of the vehicle is known with accuracy, it is

then possible to infer the motion that should be observed from the pave-

ment surface and other elements of the scene. Any discrepancy with the

inference would indicate that an obstacle is detected on the surface of

the road, such as an advance vehicle. In this context it is relatively easy

to deferentially determine the speed of this vehicle. Other benefits of

integrating odometry with ADAS in general include the possibility to

know the current state of the steering, brakes, and acceleration (positive

or negative) of the vehicle, allowing once again to warn the driver only

when the appropriate maneuvers are not being applied given the current

driving context (driver level of attention, surrounding cars, and so on).

4. Integrating driver attention levels with the warning functions allows

ADAS to make informed decisions regarding the mode and intensity

with which warnings should be delivered to the driver. For example,
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an audio warning may not be suitable when the driver is engaged in a

conversation. Instead, seat or steering vibrations may be more effective

in this case.

5. Integrating V2V communications with the current driving context infor-

mation descriptors inside ADAS may substantially augment the knowl-

edge level of traffic conditions prevailing beyond the range of visual sen-

sors. As a result, warning on dangerous traffic conditions may be issued

well before traffic problems enter the drivers field of view.

The resulting outcomes of such a level of integration and capability ex-

tensions of ADAS are many. For one, driving behaviour can be analyzed over

time and correlated with traffic context and events to provide tailored warnings

and to enable the prediction of driving actions in the short term. The benefits

of observing a driver for extended periods of time include the assessment of

driving patterns, delineating the most common errors, and performing driver

re-training if so requested, as it was recently accomplished in the context of el-

derly drivers and driving simulators [5], and presently in instrumented vehicles.

The extended possibilities of integrated, intelligent ADAS are very relevant re-

search areas as they do not intend to replace the driver as much as to assist

in the process of driving safely. As it has been pointed out by Petersson et al.

[29], what remains to be automated to reach the state at which vehicles are

completely autonomous in a practical manner turns out to be difficult and elu-

sive in everyday driving situations. However driver support through i-ADAS

research offers immediate applications that are socio-economically beneficial.
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1.2 Research Overview

The primary goal of this research is to study driver intent towards the devel-

opment of predictive models of driver actions. In this thesis, we describe a

hardware and software vehicular instrumentation which permits the observa-

tion and recording of drivers in the context of urban driving with a minimum

of interference due to the instrumented vehicle. Of particular interest, is to

determine the relevance of ocular behaviour as it pertains to the next driving

maneuver. The instrumented vehicle was designed in such a way as to provide

sufficient contextual information to enable a comprehensive study of driver in-

tent. In our context, driver intent is meant to signify the relationship between

driver cephalo-ocular behaviour, current driving maneuvers, and vehicular at-

titude, with respect to the most probable next maneuver to be effected by

the driver. Understanding this relationship is fundamental to the creation of

predictive models of driver behaviour, that could be in turn, used in future

ADAS. The central concept being that an ADAS with predictive capabilities

could be more effective in protecting its driver if it could prevent a wrong

maneuver before it is effected, as opposed to reacting to that maneuver, as it

is applied by the driver.

The instrumented vehicle is capable of recording and computing the fol-

lowing information at a frame rate of 30 Hz:

1. video stream from a calibrated front stereo system. A depth map is

automatically computed at frame rate.

2. video stream from a pair of rear and front panomorph lenses with a

360◦field of view.

3. Vehicular information obtained from the internal network of the vehi-
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cle1. This stream of data contains real-time information on important

aspects of driving, including vehicle acceleration (in 3D), current speed,

steering wheel angle, accelerator and brake pedal pressure, the state of

turn signals, and more.

4. The vehicle also provides its own GPS coordinates, which are retrieved

on its internal network.

5. A driver eye-tracker capable of providing 3D head pose and gaze detec-

tion data, together with other useful parameters such as saccade and

blink frequencies.This system also provides confidence measures on the

provided data.

6. An on-board software subsystem that relates the 3D driver gaze with

the depth map from the front stereo sensors in a way as to provide the

absolute 3D coordinates of the driver gaze into the environment.

The sum of these data channels and computations are recorded and com-

puted at 30 Hz.

Many software components needed to be created in the process of instru-

menting the vehicle:

1. The recorder: is an on-board computer system recording the sum of the

data streams and performing the computation of the depth maps and the

absolute 3D gaze coordinates in the reference frame of the front stereo

system.

2. The calibration: allows the experimenters to calibrate the front stereo

system and to cross-calibrate the eye-tracker with it.

1This is achieved through the CANbus interface.
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3. The player: which allows experimenter to playback the recorded driving

sequences for further analysis.

We used the instrumented vehicle to conduct experiments with 16 volunteer

drivers under realistic driving condition1. The drivers followed a common path

of 28.5 kilometers within the city of London, Ontario.

1.3 Contributions

This thesis is an inherent part of the RoadLAB research program, instigated

by Professor Steven Beauchemin, and is entirely concerned with vehicular

instrumentation for the purpose of the study of driver intent. Chapters 2, 3,

4, and 5 have been published (or in the process of being) in recognized peer-

reviewed venues. In what follows I describe my contributions with regards to

each publication within the thesis:

1. Chapter 2: S.S. Beauchemin, M.A. Bauer, T. Kowsari, and J. Cho,

Portable and Scalable Vision-Based Vehicular Instrumentation for the

Analysis of Driver Intentionality, IEEE Transactions on Instrumenta-

tion and Measurement, Vol. 61, No. 1, pp. 159-173, 2013.

• Under a set of strict requirements, Professor Beauchemin gave me

the responsibility of designing and implementing the hardware and

software systems for the instrumented vehicle. This publication is

a direct result of this effort.

2. Chapter 3: T. Kowsari, S.S. Beauchemin, and M.A. Bauer, Map-Based

1These experiments were conducted under Ethnic Approval Notice number 102849, be-
tween August 22 and September 28 2012
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Lane and Driveable Area Detection, submitted to, VISAPP 2014 Con-

ference, Lisbon, portugal.

• I designed and implemented a new method to detect lanes and drive-

able areas within them in an effort to provide the experimental data

sequences with a reasonable annotation for further analysis. The

detection of driveable areas within lanes in front of the experimen-

tal vehicle appears sufficient to determine in most circumstances if

the current driver maneuver is correct.

3. Chapter 4: T. Kowsari, S.S. Beauchemin, and J. Cho, Real-Time Vehicle

Detection and Tracking Using Stereo Vision and Multi-View AdaBoost”,

IEEE Intelligent Transportation Systems Conference, Washington DC,

USA, pp. 1255-1260, October 5-7, 2011.

• For the purpose of experimental data sequence annotation, I devel-

oped an approach to vehicle detection that uses the horizon plane

to limit the number of generated hypotheses, sufficiently reducing

the computational burden to achieve a 25Hz rate. This approach

compared favorably with other recent methods found in the litera-

ture.

4. Chapter 5: T. Kowsari, S.S. Beauchemin, M.A. Bauer, D. Laurendeau,

and N. Teasdale, Multi-Depth Cross-Calibration of Remote Eye Gaze

Trackers and Stereoscopic Scene Systems, accepted in IEEE Transactions

on Instrumentation and Measurement, Dec. 2012.

• After initial discussions with Professor Beauchemin in which he

delineated a general approach to implement the cross-calibration, I

was able to design and successfully test a new method to relate the
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3D driver gaze onto the stereo depth map of the front stereo system

at frame rate (30Hz). This publication reports on the algorithms

and experimental results.

1.4 Thesis Organization

The organization of the thesis is as follows, in Chapter 2 we introduce the

instrumented vehicle, which is the main contribution of this thesis, and elabo-

rate on the design and implementation of the hardware and software systems.

In Chapters 3 and 4, contributions related to vehicle and lane detection are

presented. In Chapter 3, our Ada-Boost-trained vehicle detection system used

for detecting and annotating vehicles in the sequences is presented. In Chap-

ter 4, a map-based lane detection system is devised and explained. Our lane

detection system uses a particle filter-based tracker to fit spline lane sets ex-

tracted from the Google map of the drivers’ path to the lane feature detected

in the sequences. Using the stereo depth map, we also compute the safely

drivable area in the lanes, which consists of the obstacle-free portion of the

lanes ahead of the experimental vehicle.

In Chapter 5, another important contribution to this research is provided,

which consists of a cross-calibration method for calibrating the gaze detection

system with respect to the world coordinate system of the front stereo system.

In this Chapter we provide an algorithm for back projecting the point of gaze

on the image plane to find where the driver is looking at in absolute 3D

coordinates of the front stereo system and at frame rate (30 Hz). Chapter 6

offers a conclusion and outlines paths for future research.
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Chapter 2

Instrumented Vehicle

This Chapter is a reformatted version of the following article:

S.S. Beauchemin, M.A. Bauer, T. Kowsari, and J. Cho, Portable and Scal-

able Vision-Based Vehicular Instrumentation for the Analysis of Driver Inten-

tionality, IEEE Transactions on Instrumentation and Measurement, Vol. 61,

No. 1, pp. 159-173, 2013.

A portable and scalable vehicular instrumentation designed for on-road ex-

perimentation and hypothesis verification in the context of designing i-ADAS

prototypes is described in this contribution.

2.1 Introduction

World-wide deaths from injuries are projected to rise from 5.1 million in 1990

to 8.4 million in 2020, with traffic-related injuries representing the major cause

for this increase [15, 1]. Our research aims at reducing these fatalities by first

developing a deeper understanding of the cognitive (cephalo-ocular) task of

driving, identifying related risk factors and integrating these findings into pre-

dictive models of driver intentionality. The long term goals of this program in-
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clude the identification of the cognitive factors involved in driving that impact

traffic safety, the definition of sound principles for the design of automated

vehicular safety technologies, and the development of intelligent, Advanced

Driving Assistance Systems (i-ADAS), with driver behavior prediction and

correction as the central tenet of safety improvement.

While research on ADAS may integrate a number of different functions

such as forward collision detection and lane departure tracking [21], little at-

tention is devoted to the monitoring of events and factors that directly concern

the driver of the vehicle. It is only recently that cognitive aspects have been

considered as a legitimate part of intelligent ADAS [25]. Since 95 percent of all

accidents are caused by human error, it is crucial that these aspects of driving

be a central part of intelligent ADAS [31]. Keeping the driver as an active

participant in the feedback mechanisms allows for providing contextually mo-

tivated informational support and offers immediate applications for enhancing

safety [23].

The extended possibilities of integrated, intelligent ADAS are very relevant

research areas as they do not intend to replace the driver as much as to assist

in the process of driving safely. As it has been pointed out by Petersson et

al. [23], what remains to be automated to reach the state by which vehicles

become completely autonomous in a practical manner turns out to be difficult

and elusive in everyday driving situations. In light of this, it is our belief that

driver support through i-ADAS can be deployed more readily, with consequent

socio-economic benefits.

This contribution rests on earlier work in which preliminary instrumenta-

tion and tests were recently conducted [6]. It however differs significantly in

that it motivates the instrumentation in the form of clearly stated hypothe-

ses derived from a central conjecture and provides a performance evaluation
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of the platform, along with identified physical, sensory, and computational

limitations.

Our approach, while sharing common elements with those of others, is

unique in several ways. First, we designed a portable instrumentation re-

quiring no modification to the vehicular platform, using low-cost off-the-shelf

components that are widely available. Second, our on-board computational

approach rests on scalability. That is to say, additional computing power can

easily be added to the current instrumentation, without any modifications to

the existing system. This of course is a core requirement, as algorithms must

be run in real-time. Third, our approach integrates the driver in the system

as an inherent behavioral agent, in the aim of understanding and predicting

driving actions.

2.2 Related Literature

While many research groups provide brief descriptions of their vehicular in-

strumentation in the context of driving assistance, such as [22, 10] for vision

systems, and [28, 11] for multi-sensor instrumentation, few contributions di-

rectly address instrumentation strategies, concepts, and implementation in

the context of ADAS. A notable exception is by Thrun [30] in the context

of autonomous driving in which the sensory interface, perception modalities,

planning and control, user interfaces, and software services are described in

extensive detail. The motivation for our contribution partly stems from the

observation that the related literature is currently sparse.
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2.3 Hypothesis Verification

Our primary goal is to determine whether driver intentionality and driving-

related actions can be predicted from quantitative and qualitative analyses

of driver behavior. This broad question, while only partially answered [18],

conveys its importance in more than one way. For instance, predictive for-

mulations of the cognitive aspects of driving open the way to the design of

reliable models of driver intentionality prediction and may lead to advances in

safety-related vehicular technologies and accident prevention strategies from

the perspective of on-board safety systems, up to assisting in guiding policies

regarding the regulation of i-ADAS.

2.3.1 Primary Conjecture

Studies of driver behavior have approached the problem of intentionality from

various perspectives. Driver behavior models have been suggested along with

their empirical validations, with varying degrees of success [19]. However, “the

most effective technology may be that which monitors driver state and driving

behavior in order to help attend to the roadway and recognize unsafe behavior”

[9]. In addition, it has been demonstrated time and time again that eyes, in

general, “look directly at the objects they engage with” [3] and that the “fixation

that provides the information for a particular action immediately precedes that

action” [4]. These observations support our primary conjecture, which states

that if one considers a vehicle as an extension to the inherent human capability

for motion, then one must also admit the possibility that eye movements are as

predictive of driving actions as they are of physical movement. The underlying

rationale from which our conjecture stems rests on the demonstration that eye

movements reflect processes aimed at locating the information required to
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generate actions in relation to the environment [13, 16, 18].

2.3.2 Hypotheses

Since 95% of all accidents are caused by human error, it is imperative that

drivers be the central element of systems that provide driving support [32].

Consequently, our short term goals consist of the empirical testing of hypothe-

ses derived from the primary conjecture, in the hope of demonstrating that

on-board vehicle safety systems which focus on the predictability of driver be-

havior are capable of significantly increasing driving safety. Toward this end,

our primary conjecture is functionally fragmented into a number of hypotheses

which can be investigated effectively and objectively:

1. Cephalo-ocular behavior correlates with driver intentionality and precedes

driving actions: This hypothesis has been demonstrated in certain driv-

ing circumstances, as it is known that drivers negotiating a bend fixate

on its tangent point to gather information on its curvature. This fixa-

tion precedes steering adjustments by an average of 0.8s [16]. Are there

other driving circumstances (negotiating intersections, merging, high-

way driving, etc.) for which particular ocular behavior precede driving

actions? While it is clear that ocular behavior cannot be constantly pre-

dictive of actions due to secondary drivers tasks (such as attending to

vehicle functions), it is important to determine which behaviors possess

a predictive value. However, the possibility exists that ocular behavior

may not be sufficiently correlated with intentionality for use in predic-

tion models. In this case, other investigative avenues may be possible,

particularly through the observation of maneuvers being applied to the

vehicle by the driver. Current actions may be predictive of future actions
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and determining to which extent this may be the case would be central

to this scenario. A third investigative avenue may be that both current

driver maneuvers and ocular behavior are sufficient for useful prediction

purposes.

2. Driver levels of attention are indicative of the meaningfulness of cephalo-

ocular behavior: Driver visual attention is a central part of safe driving.

It has been shown that driver glances away from the road for 2s or more

resulted in 3.6 times more involuntary lane departures than glances of

1s [20]. Conversely, long visual fixations are not necessarily synonymous

with attention. While eyes may be fixating, attention may not be elicited

by events in the visual field. However, certain ocular patterns such as

fixations accompanied by regular saccades are descriptive of the visual

search behavior for information acquisition processes and correlate with

drivers attending to the roadway [26]. The identification of factors pro-

viding indications of meaningful cephalo-ocular movements is necessary

in order to assess whether or not the ocular behavior represents intent.

3. Information delivered to drivers does not increase their cognitive loads:

Drivers are exposed to increasing flows of information provided by mod-

ern on-board vehicle functions. Recent studies have revealed that drivers

are not always capable of eliciting a correct response to such solicitations

due to, among other factors, the complexity of the driving context, or an

increased cognitive load generated by actions not directly related to driv-

ing [2]. While it is suspected that the aforementioned hypothesis does not

hold in general, it is crucial to experimentally determine the modalities,

timings, and types of delivered information that can be tolerated and

understood sufficiently rapidly by drivers, such that there is available
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time to perform corrective maneuvers [9]. Still, it can be conjectured

that in most circumstances the cognitive loads of drivers may already

be high when safety-related information must be issued, probably in-

creasing driving risk rather than reducing it. In the case this conjecture

proves correct, it may become fruitful to investigate automated driving

interventions (without delivery of information) in particularly demand-

ing traffic contexts, or when information would not come in time, or

otherwise distract drivers even more.

4. Visual stimuli drivers attend to can be identified: Salient elements in the

visual field of drivers elicit cephalo-ocular responses aimed at attending

to such stimuli. Correspondences between cephalo-ocular behavior and

visual stimuli must be established to identify the elements within the

visual field to which driver attention is turned. This knowledge will al-

low predictive models to assess whether or not drivers are attending to

the appropriate stimuli, given current traffic contexts. This requirement

implies that elements in the environment be correctly identified, located,

and intersected with the 3D gaze direction of the driver. Consequently,

systems in charge of processing the output of stereo sensors must reli-

ably detect the presence of other vehicles, pedestrians, and obstacles in

general. This objective has only been partially attained with the use of

passive sensing (CCD cameras) mainly because the reliability of most

(if not all) techniques greatly depends on visual scene conditions [33].

While it is expected that passive vision systems will fail from time to

time in difficult driving conditions, there may be effective methods of

providing enhanced reliability by way of combining other sources of ve-

hicular information. Vehicle-to-Vehicle (V2V) inter-communication may
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be used in situations where vision systems fail or under-perform, such as

times when fog, snow, or rain are present. Such communication modal-

ities have the potential to both enrich and extend the range of visual

sensors when surrounding vehicles signal their presence and position.

These ideas may enhance the robustness of on-board vision systems and

are further investigated in [5].

The creation of effective predictive driving behavior models rests on the

confirmation of these hypotheses. While it is not expected that every aspect

of these ideas can be empirically demonstrated, it is believed their investigation

will extend the current knowledge of the cognitive task of driving and allow for

the establishment of strong principles for the design and operation of future

on-board safety systems.

2.4 Layered Approach to Vehicular Instrumen-

tation

The next generation of i-ADAS will require extensive data fusion and analysis

processes owing to an ever increasing amount of available vehicular informa-

tion. In this context a layered approach is best suited for real-time processing.

In particular, such an approach enables bringing real-time data from sensors to

a common level of compatibility and abstraction which significantly facilitates

fusion and analysis processes. Our proposed computational model consists of

four layers, with increasing levels of data abstraction (see Figure 2.1). The

innermost layer consists of the hardware and software required to capture ve-

hicle odometry, sequences from visual sensors, and driver behavioral data. The

second layer pertains to hardware synchronization, calibration, real-time data
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Layer 4:

Layer 3:

Layer 2:

Layer 1:

Data Fusion and Integration

Device Level Data Processing

Instrumentation

Predictive Behavioral Model

Figure 2.1: The four layers comprising the data processing strategy on-board
the instrumented vehicle.

gathering, and vision detection processes. The third layer is where the data is

transformed and fused into a single 4-dimensional space (x, y, z, t). The last

layer makes use of the fused data to compare driver behavioural data with

models of behavior that are appropriate given current odometry and traffic

conditions. While we proceed to describe the four layers, it is to be noted

that this contribution specifically addresses the instrumentation (layers one

and two) and its performance evaluation.

2.4.1 Instrumentation

Contemporary vehicles equipped with On-Board Diagnostic systems (OBD-II)

allow vehicle sensors to report on current status, and constitute the interface

through which odometry is made available in real-time. Since 2008, the CAN-

bus protocol1 has become mandatory for OBD-II. This standardization simpli-

fies the real-time capture of vehicle data. OBD-II to USB hardware interfaces

with appropriate drivers are now common devices used to feed vehicle-related

information to on-board computers or similar devices. The available informa-

1The CANbus (Controller Area Network bus) provides micro-controllers with the means
to communicate with each other within a vehicle.
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tion relevant to i-ADAS applications include current speed and acceleration

(longitudinal and lateral), steering wheel rotation, state of accelerator and

brake pedals, and independent wheel speed, which are real-time data captured

at frequencies generally comprised between 20 and 200Hz. These elements pro-

vide the information that is required to understand the maneuvers effected by

the driver.

In addition, several vision systems must instrument the vehicle in order

to appropriately monitor the immediate environment (lanes, other vehicles,

pedestrians, obstacles, etc) and the behavior of the driver (gaze direction, level

of attention, etc). These hardware systems must be capable of high sampling

rates (30Hz or more) such that sufficient accuracy in image processing and

automated vision processes is achieved. It is useful to keep in mind that the

position of a vehicle moving at 120 kph changes by 33 meters every second.

Similar observations apply concerning the changes in visual gaze direction

(known as saccades) as they occur very rapidly. For this reason, vision hard-

ware monitoring the gaze direction of the driver must have sufficiently dense

sampling rates as to allow for deriving driver intentionality prior to the execu-

tion of the anticipated behavior [17]. This part of the vehicle instrumentation

is realized with commercial hardware and software1 from which data such as

eye gaze direction, vergence distance, and saccade events are obtained at a

frequency of 60Hz.

Also part of the instrumentation layer is a GPS device which is used by

Vehicle-to-Vehicle (V2V) communications systems to provide other near-by

instrumented vehicles with knowledge of traffic conditions beyond the range

of their visual sensors.

Last but not least, on-board computing capabilities must also be sufficient

1FaceLAB 5tm implements our instrumentation for eye tracking.
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to process the sum of incoming data in real-time. To this end we have designed

and assembled a computer for real-time data processing and fusion consisting

of 16 cores, each running at 3.0GHz, with 16GB of internal memory and a

128GB Solid State Drive (SSD), with Linux Debian 5.01 as the operating

system. The nodes are networked with a high-end gigabit network switch, and

configured as a disk-less cluster, with the master node providing the operating

system image to other nodes.

2.4.2 Justification of sensors selection

In the context of our hypothesis, it is vital that the instrumentation be able

to provide information on current (and expected) driver behaviour and vehicle

operation. Two subsystems contribute to this goal. First, an OBD-II to USB

interface1 sends vehicular data (odometry and vehicle operation) to the on-

board computer for recording or real-time analysis, or both. Second, an eye

and head pose tracking system provides the necessary data for cephalo-ocular

behavior recording and analysis. The sum of these subsystems provide the

information required to determine the interactions between the driver and the

vehicle, in addition to ocular behavior parameters. The resulting instrumen-

tation allows to identify the visual stimuli drivers respond to in relation with

the driving surroundings and the most probable behavior to be observed next.

Our choice of passive sensors is motivated by the fact that data acquisition

is non-invasive and provides information conveyed by visual elements such as

road markings and signs, which are critical to the task of driving and yet

unavailable to active sensors such as radars or range finders [7]. In addition,

multiple lens and sensor configurations are possible. For instance, IR or near-

1A Kvaser Leaf Lighttm OBD-II to USB device implements this part of the instrumen-
tation.
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Figure 2.2: Color-coded calibrated stereo depth maps are obtained at 30Hz. The
distance between the instrumented vehicle and the roadside curbs, and other
vehicles, is estimated in real-time.

IR (Infra-Red) filters or sensors may readily be installed to provide night vision.

Conversely, lenses of various types may be mounted on the sensors without any

design modifications.

2.4.3 Device-Level Data Processing

For visual sensors, it is critical to obtain precise calibration parameters such as

lens distortion, the optical center, and the external orientation of sensors with

respect to each other. This calibration is required to perform stereo and to

estimate distances of objects (other vehicles, pedestrians, etc.), which in turn

greatly simplifies other vision-related tasks such as estimating motion, track-
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ing, and obstacle detection. The RoadLAB stereo calibration interface was

designed for this process. The interface is implemented using a calibration al-

gorithm from the OpenCV 2.1 open source library based on Zhang’s technique

[34]. The calibration process consists of two steps. Intrinsic parameters are

first estimated for each sensor and then, based on these, the extrinsic param-

eters for all possible sensor pairs are obtained. It is also possible to estimate

the extrinsic parameters dynamically [8]. All the image frames from visual

sensors are synchronized to within 125 µs. Once the synchronized frames are

obtained, stereo depth maps are computed at frame rate, based on the cali-

bration parameters (see Figure 2.2). The GPS data is obtained through gpsd,

a GPS service daemon from http://gpsd.berlios.de/ which provides an

event-driven architecture. The data from the OBD-II/CANbus is obtained in

a similar manner by creating a software layer for this purpose. Additionally,

the incoming data from the instrumentation provides timestamps, allowing

the system to fuse and select data elements in a synchronized fashion.

2.4.4 Data Fusion and Integration

Streams of data and video frames coming from monitoring the driver, the en-

vironment, and vehicle odometry must be placed in a suitable context for use

by the behavioral prediction engine. We define a driver-centered frame of ref-

erence, in which elements of the Cognitive State of Driver (CSD) descriptor

(head pose, gaze direction, blink events, lip movement), the Contextual Fea-

ture Set (CFS) descriptor (road lanes, other vehicles, pedestrians, etc), and

the Vehicle State of Odometry (VSD) are transformed into, from their local

sensor frames of reference (see Figure 2.3 for a depiction of the CSD and CFS

descriptors in the context of our layered model). This is performed by using



31

B
ehavior M

odel and P
rediction

Front/Side
Stereo Systems

OBD−II/CANbus

GPS Unit

Driving Agent

Instr. Vehicle

Environment

Layer 1 Layer 2 Layer 3 Layer 4

Gaze Analysis
System

V2V
Receive

V2V
Broadcast

Predicted RTDCurrent RTD

CSD

CFS

VSO

CSD

CFS

VSO

Driving
Assistance

Figure 2.3: A description of the retroactive mechanism operating between the
current and predicted RTDs with respect to the outlined layered approach, in
which driving assistance impacts both the current and predicted behavioral state
of the driving agent. The reception of V2V information enriches the current
CFS, which in turn impacts the predicted RTD. Informational elements from
both the current and predicted RTDs are broadcast to other instrumented ve-
hicles.

the extrinsic parameters obtained with the calibration of the visual sensors

with respect to each other. With these elements fused into a single frame of

reference, the current CSD, CFS, and VSO descriptors are updated at 30Hz,

and made available to the behavioral prediction engine.

Two modes of operation exist at this level. A recording mode captures

the data and video streams from the instrumentation for in-laboratory, off-

line analysis. A processing mode which performs as an i-ADAS operating in

real-time is also possible. Each sequence generated for off-line analysis obeys a

strict format standard, in which the calibration data, the timestamped frames

from the stereo systems, and the vehicle odometry are recorded at 30Hz.
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2.4.5 Predictive Behavioral Model

Our general hypothesis stems from research demonstrating that eye movements

reflect moment-to-moment cognitive processes used to locate the information

needed by the motor system for producing actions in relation to the environ-

ment [17, 14, 24]. This hypothesis is the foundation for our conjecture stating

that the analysis of driver gaze direction (and other facial features) fused with

the knowledge of the environment surrounding the vehicle (and its odometry)

lead to the possibility of predicting driving behavior for short time frames (a

few seconds). To accomplish these goals, it is necessary to infer a behavioral

driving agent model that puts in relation the cognitive state of the driver, the

vehicle odometry, and its surrounding environment as captured by sensors. For

this purpose, we devise a Real-Time Descriptor (RTD) for a moving vehicle

essentially consisting of a CFS, a CSD, and a VSO descriptor.

These elements represent the knowledge required in composing an extensive

RTD suited for our purposes. While we are interested in deriving practical and

predictive driving agent models, it is worth noting that both the CFS and the

VSO possess predictive models which are less difficult to formulate. We further

propose to structure the elements of the RTD within a retroactive mechanism

(see Figure 2.3) in which both the current and predicted descriptors (CSD,

CFS, and VSO) assist in determining not only the safety level of the context

derived from the current RTD, but also that posed by the predicted RTD.

At the heart of the behavioral prediction engine is a Bayesian model which

takes the current CSD, CFS, and VSO as inputs and predicts actuation behav-

ior of the driver in the next few seconds. It also gathers statistical information

about driving decisions and errors in a Driver Statistical Record (DSR) which

can be used over time to improve the prediction accuracy. The current CSD



33

and CFS are in turn used to establish a Driver Memory of Surroundings (DMS)

based on the attention level and gaze direction analysis of the driver. A Gen-

eral Forgetting Factor (GFF) is applied to the DMS as time elapses to reflect

common characteristics of short-term visual memory. In addition, a Driver

Cognitive Load factor (DCL) is inferred, based on the activities engaged by

the driver, which in turn impacts the DMS, among other things.

2.5 Inter-Vehicular Communication

Vehicular networks have been an area of research for the past two decades [27].

Interest has been shown by researchers, government agencies, and automobile

manufacturers in developing the technologies and protocols for vehicular net-

works. There is a number of major areas of interest where unique problems

must be solved, including protocols for the physical and link layer, higher

layer protocols to deliver traffic, safety, and security information. Beyond

these purely technical challenges, vehicles created by different manufacturers

must be able to communicate, thus rendering standardization essential.

Some standardization has already occurred with the IEEE 802.11p draft

standard and allocation of 75MHz in the 5.9GHz spectrum for Dedicated Short

Range Communications (DSRC) for the physical and link layer protocols. Fur-

ther standardization with the IEEE 1609 draft standards for higher level pro-

tocols and services is ongoing [12]. Nonetheless, there are numerous open

areas of research where solutions must be found before vehicular networks are

adopted in consumer vehicles. How these two sets of technologies intersect is

a topic that currently has not been looked at in depth. Vehicular networking

technologies can provide detailed information about other vehicles in a large

area, while sensor-based technologies can provide more detailed information
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about the environment immediately surrounding a vehicle in real-time. How

these two sets of technologies intersect is a topic that currently has not been

looked at in depth.

Being able to combine both sources of information provides greater detail

and breadth than any one technology can provide on its own. How to do

this exactly is an open research problem. There is also no guarantee that the

information provided by these separate system will agree. There is a wide

variety of circumstances in which data from both systems may not match and

the vehicle will need to deduce which one is most likely correct.

Our approach consists of the systems, strategies, and implementation of

the concept of using V2V to extend on-board visual sensor range. Coupling

V2V and sensory input may increase detection reliability and range for vi-

sual sensors. Conversely, sensors may inform i-ADAS of the presence of non-

communicating elements such as pedestrians and non-vehicular obstacles. The

potential that is held by integrating V2V communication with on-board sen-

sory perception is considerable.

An instrumented vehicle navigating in an environment where other vehicles

are similarly equipped would have access to critical traffic information well

beyond the range of its sensors. Additionally, cascading information between

communicating vehicles would allow a single vehicle to decide upon the range

within which traffic information is deemed desirable.

While it seems natural to integrate sensory information with V2V in the

context of i-ADAS, few research efforts have been conducted toward this goal.

We believe that the complementarity of information obtainable from on-board

sensors and V2V communication can form the basis for new approaches in

driver-assisted systems and technologies [5].
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Figure 2.4: The RoadLAB in-vehicle laboratory: a) (left): on-board computer
and LCD screen, b) (center): dual stereo front visual sensors, c) (right):
side stereo visual sensors.

2.6 In-Vehicle Laboratory

The design of the instrumented vehicle follows principles of sensor portability

and computing scalability. Sensor portability is achieved by using vacuum

devices to attach the instrumentation equipment to the the interior or exte-

rior surfaces of the vehicle (see Figure 2.4), such as stereo camera rigs and

LCD displays. Similarly, computing scalability is addressed with a disk-less,

master-slave cluster of computing nodes, configured with open source software

from Sandia National Laboratories (OneSIS). Additional computing nodes and

Graphical Processing Units (GPUs) may be added at will, with the obvious

cargo limitation imposed by the instrumented vehicle. Portability enables the

use of a wide variety of vehicles without compromising their physical integrity,

while computing scalability ensures an adequate supply of processing cores,

matching the many possible sensor configurations (see Figure 2.5).

2.6.1 Physical Equipment

Each minute, the sensory equipment sends 2 to 6GB of data to the on-board

computer, depending on the chosen sensory configuration. With such large

amounts of data to process, the computing equipment was designed with scal-
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Figure 2.5: Various mounting configurations: a) (left): dual stereo sensors
mounted on top of vehicle b) (center): dual stereo sensors mounted on hood
of vehicle, c) (right): experiment with an external sensor configuration

ability as a guiding principle. For this purpose, A disk-less cluster arrangement

was chosen essentially to provide the option of adding computing nodes as nec-

essary. Currently, the on-board computer is composed of 16 computing nodes

distributed over four boards networked with a gigabit switch. The nodes and

the switch are contained inside a portable server case which in turn can be

installed on the back seat or in the trunk of the vehicle. The computer and

instrumentation are powered with a 1500W inverter connected directly to the

battery of the vehicle. The instrumentation can be run continually without

battery drainage. See Figure 2.6 for the schematics of the physical instrumen-

tation.

2.6.2 Mounting Configurations

The visual sensors instrumenting the vehicle can be mounted in three dis-

tinct configurations. Figure 2.5 a) and c) depict an external, top-mounting of

the dual stereo head, while Figure 2.5 b) shows an external hood-mounting

configuration. Both of these set-ups do not hinder visibility for drivers. How-

ever, such external configurations limit the use of the instrumented vehicle to

periods of clement weather (without rain, fog, or snow). To counter this lim-

itation, the dual stereo head system was also designed to be mounted inside
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the front windshield of the vehicle (see Figure 2.4 b)). While this configu-

ration allows the operation of the vehicle in variable weather conditions, it

nonetheless hinders driver visibility substantially (a two-hour training session

in closed-circuit is required before the vehicle can be safely driven on public

roads). Another unintended effect created by this configuration is the visual

distortion introduced by the presence of the windshield, which is not currently

modeled by our calibration process, as it differs from radial and tangential

distortion. Consequently, the quality and density of the raw stereo data is

subjected to noticeable degradation (which lacks quantification at this time).

2.6.3 Software Services

The instrumented vehicle operational software architecture is based on a threaded

publisher/subscriber model (see Figure 2.7). Each component executes on its

own core, to ensure real-time performance. The RoadLAB recorder, depicted

in Figure 2.8, receives images from the stereo heads at 30 fps, performs rectifi-

cation, computes raw depth maps at frame rate, and saves the stereo images in

a cyclic queue, which are to be written onto a solid state drive by an indepen-

dent process which synchronizes with the recorder by means of semaphores.

The publisher/subscriber system receives information published by other

software components such as the driver monitoring system1, the OBD-II CAN-

bus interface, and the GPS device. The recorder, in turn, may subscribe

to various published elements and create instrumented sequences specifically

designed for use in subsequent experiments. Alternatively, general-purpose

instrumented sequences containing the totality of the published information

can be produced. In general, the RoadLAB recorder may be used to provide

1FaceLAB 5tm
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Figure 2.8: The RoadLAB Sequence Recorder in operation inside the instru-
mented vehicle
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Figure 2.9: A typical RoadLAB application using instrumented sequences pro-
duced with the vehicle operating in the recording mode

real-time information to the resident i-ADAS application, or to produce in-

strumented sequences for in-laboratory experiments regarding the testing of

sensing, integration, and i-ADAS algorithms.

2.6.4 Vehicular Operation

Operating the instrumented vehicle consists of several steps which must be

carefully followed. First, the instrumentation must be installed in the vehicle.

The computing nodes, gigabit switch, and the power conditioner (located in-

side the portable server case) are mounted onto the back seating area, while

the stereo sensors are installed in the chosen configuration by way of vacuum

devices. The GPS device magnetically attaches to the outside surface of the

vehicle, and the CANbus to USB interface connects to the OBD-II outlet lo-

cated under the vehicle instrumentation on the driver side. Once the sum of
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Figure 2.10: Real-time vehicle tracking experiment using the RoadLAB instru-
mented vehicle in i-ADAS mode
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these elements are connected to the on-board computer, the calibration pro-

cess takes place. A large calibration plane (125 by 155 cm) is used to capture

sets of calibration images (25 to 30) each with a different orientation of the

plane. A distance from 8 to 15 m must be respected between the vehicle

and the calibration plane in order to obtain accurate calibration parameters,

depending on the lenses being used with the stereo systems. A minimum of

three trained research assistants and 60 minutes are required for completing

the instrumentation and the calibration processes. At this stage, the vehicle

can be operated in the recording mode, the i-ADAS mode, or both. Figure 2.9

depicts a typical off-line RoadLAB application using instrumented sequences

produced with the vehicle in recording mode. Figure 2.10 shows a real-time

vehicle detection application, which is part of the resident i-ADAS software,

and constitutes an example of the vehicle being operated in the i-ADAS mode.

2.6.5 Limitations

Several limitations are experienced while instrumenting a vehicle for purposes

such as ours. On the sensing side, the use of vacuum devices to attach the

instrumentation to the vehicle limits the time of continuous vehicular operation

to 30 minutes. After such time, the vacuum device pumps must be operated

once more, to securely maintain the equipment in place. In addition, long-

range lenses (with long focal lengths), when installed on the stereo systems,

are sensitive to vibrations generated by both the condition of the pavement

and the operation of the vehicle, resulting in a degradation of the raw 3D

depth data. This problem is made worse when the mounting configuration is

located inside the windshield, as it introduces distortions that cannot be easily

calibrated for. When conditions allow, an external mounting configuration
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coupled with short to medium range camera lenses lead to noticeably improved

3D depth perception performance.

The availability of on-board computing power is inherently limited by the

available space and electrical power in the vehicle. For instance, the use

of high-resolution imagery would severely compromise our requirements for

frame-rate processing. In this case, the problem may be addressed by re-

placing the computing nodes with GPUs, involving significant material costs.

There is also the possibility of vehicle battery drainage with the use of high-end

computing equipment, requiring the installation of a high-output, after-market

vehicle alternator. In addition, our use of solid state drives limits the amount

of time the vehicle can be operated in recording mode. In our case, this limit

is between 10 to 30 minutes, depending on how many visual sensors are in use

while recording.

While these limitations are significant, the use of the instrumented vehicle

for the validation of our previously stated hypotheses is justified, as we proceed

to demonstrate.

2.7 Methodological Considerations

Our current vehicular instrumentation is subservient to the validation of our

hypotheses as described in this contribution and results from the following

methodological considerations:

1. Instrumented sequences produced with test drivers are analyzed to de-

termine what driving contexts correlate with cephalo-ocular behavior

and to what extent this behavior can be considered predictive of driv-

ing actions. For this hypothesis to be tested correctly, drivers must
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be in an adequate state of alertness, which is measured by both eye

saccade frequency and fixation mean duration [26]. Subsequently, corre-

lations between cephalo-ocular movements and resulting driving actions

are measured. We hope to find out which cephalo-ocular behavior pre-

dict driver intentionality. Insights gained from this approach assist in

the creation of effective predictive models of driver behavior.

2. Driver level of attention may or may not provide significance to observed

cephalo-ocular behavior when various driving environments are factored

in. From instrumented sequences, it is possible to measure correlations

between attention (defined as frequency and mean duration of glances

away from the roadway) and driving environments (urban, rural, high-

way, congestion), in order to infer the meaningfulness of cephalo-ocular

behavior (excluding fatigue-related considerations). These results assist

in determining what factors are descriptive of meaningful cephalo-ocular

behavior as it relates to driving.

3. Correlation between increases in cognitive load, defined as degradation of

mean reaction time, and density of information delivery using a variation

of modalities (audio, tactile, and visual), defined as events per time unit,

are measured in an attempt to evaluate the effects of warning systems

on the cognitive loads of drivers.

4. Our last hypothesis relates to computer vision processes and our ad-

vances are evaluated against those that operate in similar contexts. In

this case, metrics are standard and relate to performance, measured as

computational efficiency and quantitative accuracy. In addition, proto-

cols for V2V in terms of improving on-board sensory range and robust-
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ness require other instrumented vehicles to communicate with, which

are not available at this time, motivating our choice to explore this path

with traffic simulators [5].

The in-vehicle laboratory as described in this contribution is capable of effect-

ing the required measurements toward the validation of our hypotheses. Of

particular importance is the extraction of driver behavior by using eye track-

ing and facial expression recognition techniques coupled with the maneuvers

drivers apply to the vehicle, as obtained through the CANbus interface to form

a basis for driver behavior prediction.

2.8 Performance Evaluation of Platform

The dual stereo systems constitute an essential component of the instrumented

vehicle and for this reason, their performance (related to raw 3D depth data)

is crucially important. We first consider the problem of range resolution,

which is inversely related to object distance. The relationship governing range

resolution is given by

∆r =
r2

bf
∆d (2.1)

where r is distance to object; f , focal length of imaging lens; b, stereo baseline

length; and ∆d, pixel size divided by the interpolation factor of the epipolar

scan-line algorithm (for sub-pixel-precision 2D matching). The range resolu-

tions for our dual stereo systems constitute a reliable indication of the error

levels contained in the depth data, provided that calibration is accurate and

that the depth measurements do not stem from incorrect 2D matches (due

to occlusion, spatial aliasing, image noise, or related problems). Many dense

stereo vision algorithms have been comparatively evaluated (including that of
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OpenCV, which we use) with image sequences for which true depth is avail-

able in terms of incorrect match density and resilience to noise [29]. The

short-range stereo system has a baseline of length b = 357 mm, a smallest

detectable 2D disparity of 1
16

of a pixel, a focal length of f = 12.5 mm, and a

physical pixel square size of 4.40 µm. The long range stereo system differs only

in its baseline (b = 678 mm) and focal length (f = 25.0 mm). Figure 2.11

displays the range resolution functions for both stereo systems. As expected,

the range resolution of the long range stereo pair surpasses that of the short

range, due to an extended baseline and a longer focal length of the lens.

We have computed the average match density of both the long and short

range stereo systems using instrumented sequences produced with the vehicle

on public roads1. Results are reported in Table 2.1, where different values of

the minimum disparity2 were used. As can be observed, the short-range stereo

1The instrumented sequences used to perform these computations are publicly available
at www.csd.uwo.ca/faculty/beau/roadlab download/index.html.

2The minimum disparity parameter controls the offset to the disparity search window.
Increasing positive values have an effect identical to augmenting the convergence of the
stereo cameras.
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Table 2.1: Stereo match density for short and long range sys-
tems, where d is minimum disparity and D is match density with
standard deviation σ

Stereo Average Density

Short Range Long Range

d = 32 d = 64 d = 64 d = 96

D σ D σ D σ D σ

71.6% 9.0% 82.5% 10.1% 49.4% 7.7% 41.3% 7.5%

system performs better in terms of density, due to several factors, including the

reported fact that operational vibrations introduce more noise in long-range

systems.

Each instrumentation layer as shown in Figure 2.1 has access to four cores

(one node) to perform its real-time tasks. A total of sixteen cores are available

for the four instrumentation layers. Currently, only one in the four available

cores for each layer is in use. While the software is in the later stages of

development, its current performance at 30Hz (for all layers) is consonant

with the rate at which the visual sensors sample the environment. As the

software modules are completed, the use of the remaining cores may become

necessary to sustain the current performance. In the case where this would still

be insufficient, an entire node can be added within the current configuration

without any difficulty.

The performance of the quad-core computing nodes is largely sufficient to

execute the stereo software at frame rate (30 fps). While one core suffices for

the stereo computation, other cores may also be involved in processing other

visual aspects of the captured frames and hence the speed at which frames

can be transferred from one node to another is a critical constraint. By way

of a high-end gigabit switch, the cores transfer frames (with resolution of 320
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by 240 pixels) between nodes at 1.4MHz (or 0.7 ms per frame), a speed which

does not impede on the performance of the system. Additionally, the highest

transmission rate on the OBD II CANbus was measured at 200Hz, while our

system reads and stores CANbus status at 2MHz, ensuring that no incoming

message could be missed out1.

2.9 Conclusion

We have addressed the problem of vehicle instrumentation as an experimen-

tal platform for the design of i-ADAS, while maintaining our requirements

for physical portability and computational scalability. We framed the data

processing strategy of the instrumentation within a layered approach in which

data abstraction increases with the number of layers. The predictive behavioral

model was also integrated with our layered structure, yielding a comprehen-

sive implementation for hardware, software, and data abstraction framework.

The resulting in-vehicle laboratory, its various configurations, software ser-

vices, and operation modes were described in depth. We demonstrated that

this platform, in spite of its limitations, can be effectively used to address the

hypotheses we formulated in relation to the design of i-ADAS.

1Performance ratings of other aspects of our instrumentation such as the GPS device
(GloablSat BU-353) and FaceLAB 5tm are published by manufacturers and not reported
herein.
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Chapter 3

Lane Detection System

This Chapter is a reformatted version of the following article:

T. Kowsari, S.S. Beauchemin, and M.A. Bauer,Map-Based Lane and Drive-

able Area Detection, submitted to, VISAPP 2014 Conference, Lisbon, portu-

gal.

In this Chapter we propose a map based lane detection approach which

can robustly detect the lanes in the city as well as rural roads and highways.

In addition we present an algorithm for finding the obstacle free and safely

drivable zone in the lanes based on the stereo depth map of the scene.

3.1 Introduction

Today, almost every new vehicle has some form of Advanced Driving Assistance

System (ADAS). From adaptive cruise control, collision avoidance, and lane

crossing warning systems to parking assistance, ADAS has made driving a

safer and more enjoyable task. While a simple driving assistance system still

requires a wealth of information on the state of the vehicle and its relationship

to the immediate environment, intelligent ADAS requires even more, including
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information on the state of the driver. Furthermore, the relative position

and speed of other vehicles (and obstacles) constitute essential informational

elements in the determination of lane-based safe and driveable areas directly

located in front of the vehicle. In this contribution, we present an innovative

lane detection system which combines GPS information and a global lane

map with a forward facing vehicular stereo system to achieve robust lane

detection. In addition, the stereo depth map enables the detection of of lane-

based, obstacle-free areas.

Lane detection may appear trivial, at least in its basic setting. For instance,

a relatively simple Hough transform-based algorithm can be used to detect the

host lane for a short distance ahead without any tracking. This method proves

effective in roughly 90% of the highway cases [2]. However, lane detection

is considered a very challenging task when lanes other than the host one,

obstacles of all kinds, and sharp turns are taken into account. Figure 3.1

shows a few examples of challenges posed by these conditions. The absence

of lane markers (or worn-off ones), various lane shapes and sizes, occlusion,

illumination changes, and weather conditions are among the reasons why lane

detection is not as simple as it seems.

A recent lane and road boundary detection survey [5] explored a large body

of research on lane detection and demonstrates the common work flow (at least

partly) of lane detection systems (see Figure 3.2). Gradient-based feature

detection [15, 12, 16], steerable filters [10], box filters [6, 19], or learning-

based lane pattern recognition [4] are just a few examples of numerous feature

detection approaches used in the literature.

Lane models, such as straight lines [9, 13, 14], parabolic curves [6, 10],

semi-parametric formulations such as splines [9], or active contours [16] are

found in the literature. Different model-fitting methods have been adopted
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Figure 3.1: Challenges of lane detection: a) (top-left): different curvature and
shapes b) (bottom-left): vanished lane markers c) (top-right): splitting and
merging lanes d) (bottom-right): occlusion and clutters

Figure 3.2: Common work flow of a typical lane detection system.

including RANSAC [16], particle swarms [20], energy-based optimization [16],

genetic algorithms [15], and more. Despite this vast body of research, there

are problems which yet remain to be satisfactorily addressed:

• Lane markings cannot be detected with range finders or other types of

sensing that do not provide visible spectrum images. Even when sensors

are adapted to lane marking detection, external problems arise, such

as adverse weather, weak illumination, and worn-off markings, among

others. Only a few authors in the literature have used specialized sensors

such as line sensors [11] or GPS [7] to assist the detection process. In
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this contribution we demonstrate how GPS and vehicle speed obtained

from the internal network of the vehicle (CANbus) may be used in the

design of a robust lane detection algorithm.

• Except in a few instances [9, 6], in almost the entire lane detection

literature, lane models are not taking splitting and merging lanes (such

as left turn lanes or opening and closing lanes) into account. Models

often consist of parallel lanes without any distortion or starts and end

to them. We have used a very simple yet flexible way of representing

lanes such that all types of lanes can be represented and detected in most

situations.

• Current lane detection algorithms are usually designed and tested either

on highways or rural roads where sharp changes in lane position and

orientation are not often observed. Our approach was tested successfully

in dense urban areas where sharp turns, vehicle clutters, lane marker

coverage, buildings, or other urban artifacts distract conventional lane

detection algorithms.

• Most times, the most important lane from the point of view of the detec-

tion process is the host lane. However, in some cases we are interested

in being able to describe a more complex environment such as the sum

of lines adjacent to the host one.

We first provide a map-based framework which uses the GPS, vehicular

speed, and a pre-loaded digital lane map as inputs to the lane detection algo-

rithm. We then present the lane feature detection mechanism together with

a particle swarm based tracking algorithm which fits the map with the lanes

in the images. Subsequently, we use a simple yet effective stereo depth-based
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obstacle detection by which we find the obstacle-free lane areas in front of the

vehicle.

This contribution is organized as follows: Section 3.2 introduces the global

lane map and lane modeling, Section 3.3 provides lane features and the Parti-

cle Swarm Optimization (PSO) algorithm, Section 3.4 describes the obstacle

detection mechanism and the method to compute the obstacle-free lane ar-

eas, Section 3.5 presents the experimental results, and Section 3.6 offers a

conclusion.

3.2 Lane Model

We present a global lane model for lane detection. While this type of model is

not very common in the literature, we believe that it provides key advantages

to the development of robust lane detection mechanisms. Using a lane map

containing all lane paths and vehicle location on that map (with GPS or other

methods for localization) facilitates the lane detection process and results in

a more robust approach to the problem. To form the required lane maps, we

annotated lanes in images provided by Google Earth satellite imagery.

In most of the methods found in the existing literature, it is generally

assumed that the lane markers on the ground plane are approximately parallel.

However, in reality, lane markers do not conform to this assumption. Even

on roads where there is no splitting or merging of lanes, there are frequent

lane shape distortions. In addition, most methods are concerned with the

detection of the host lane only. We propose that modeling multiple lanes can

significantly contribute to the robustness of lane detection algorithms, as any

detectable part of a lane assists in preserving stability, especially in the absence

of other cues. In light of this, it is believed that a robust model should have
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the following properties:

• The model should address the observed shapes of lanes.

• In addition to the detection of the host lane, the model should be able

to detect visible adjacent lanes.

• The model should include splitting and merging lanes (for instance, left

turn lane parts in the center of the road at intersections or highway

merging lanes)

The model contains a number of splines which model the entire map of the

region of interest. Each spline is a lane marker and consists of points whose

absolute positions on the map are their GPS latitude and longitude. In addi-

tion, these splines are binned into grid buckets representing non-overlapping

contiguous regions each 500m2 in size. The sum of these buckets cover the

entire lane map.

Each time the vehicle records data (it does so at 30Hz), a search for spline

buckets that are most probably visible occurs, given the vehicle’s position and

orientation, and the front stereo system viewing angle. The lane marking

splines from the selected buckets are subsequently sorted in space with respect

to the perpendicular of the direction of the vehicle, which amounts to a sorting

from left to right in terms of visibility from the point of view of the stereo

system.

With t sorted lane marking splines hypothetically forming t− 1 lanes and

two out-of-road areas, and the position (latitude and longitude) and orienta-

tion (obtained with the vector formed from the last two GPS coordinates) of

the vehicle, the positions of the splines are converted into the reference frame

of the front stereo system (with its origin at the optical center of the left cam-
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Figure 3.3: Images from the map building application a) (left): visible lanes in
presence of traffic b) (center): Splitting lane sample c) (right): Several neighbor-
ing lanes

era) in meter units. Each lane Li ∈ {L0, . . . , Lt−1} is composed of two lane

marking splines.

In order to specify the modalities of splitting and merging lanes, the model

requires the opening and closing distances of the lanes from the vehicle. To

address this, at each time interval, we assign t− 1 variables LaneCloses(i) for

the closing distance of each lane and another t−1 variables LaneOpens(i) with

the same size for the opening distance of each lane. The opening distances for

the lanes which are already open are set to 0, while the closing distances for

the lanes that are not yet closed are set to ∞.

Since we require our model to detect obstacle-free areas in the lanes, we

considered another t + 1 variables LaneBlocks(i) which contain either ∞ to

signify not blocked or a distance in meters indicating that there is an obstacle

in this lane at that distance.
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3.2.1 Spline Lane Marker Model

We adopted the Catmull-Rom spline formalism for the lane-marking splines

[3] since it interpolates the control points. For each spline segment between

control points Pi and Pi+1, the spline is obtained with control points Pi−1 to

Pi+2 as [18]:

S(t) =
[
1 t t2 t3

]
M



Pi−1

Pi

Pi+1

Pi+2


(3.1)

where S(t) is either the x or y element of the coordinates of the curve points,

t ∈ [0, . . . , 1] and

M =
1

2



0 2 0 0

−1 0 1
2

0

2 −5 4 −1

−1 3 −3 1



3.2.2 Generating the Lane Map

Google Earth satellite images are used to build the lane maps. Satellite images

adequately fit our purposes as lane markers are not occluded by vehicles or

other urban structures. These images can also be addressed directly by lon-

gitude and latitude which is desirable since we use GPS coordinates to locate

the vehicle on the map and extract hypothetically visible lanes from the stereo

images. We created an application which uses Google static API to obtain and

display bird’s eye images of the region of interest at requested positions. (see

Figure 3.3). This application also allows a user to draw and edit splines as
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lane markers. The user is also able to navigate through the map and follow the

road while drawing lanes. The resulting data is saved as a set of lane-marking

splines, each of them containing a set of control points. In our experiments,

we extracted a path that was traveled by the experimental vehicle within the

city of London, Ontario. This path consists of 94 lanes and lane segments,

including right and left turn lanes.

3.3 Model Fitting Using a Particle Filter

With the knowledge of the position and orientation of the vehicle within the

lane map, we proceed to fit our lane model onto the detected lane features in

the left stereo image.

Since the GPS data frequency (1Hz) is significantly slower than that of the

front stereo system (30Hz), the most recent speed data of the vehicle obtained

from the CANBus is used to extrapolate the most recent available GPS data

to coincide with the most recent image frame from the front stereo system.

This can be thought as a form of synchronization of the GPS device and the

front stereo system. In addition, the GPS data has a relatively large error (we

observed a ±5m error), and can be used only as a seed for the lane fitting

process.

With the approximate position and orientation of the vehicle, the visi-

ble parts of the lane map in the image can be identified. The lane-marking

splines are projected onto the stereo left image and an optimization algorithm

attempts to find the best relative change in the position and orientation of

the vehicle which best fits the projection with the lane features in the image.

This optimization yields two parameters δX and δθ which correct the current

vehicle position and orientation obtained form the GPS at each frame.
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In order to project the lane markers onto the image we need to know

the ground plane equation parameters in the camera coordinate system. Even

though the ground plane parameters are very stable, we noticed that including

a correction parameter δλ representing an offset to the pitch angle of the

ground plane improves the accuracy of the projection process by compensating

for the unexpected tilt variations due to vehicle suspension.

3.3.1 Ground Plane Estimation

The ground parameters needed for projecting the lanes on the image can be

computed from the depth map obtained from the stereo system. With rectified

stereo images, finding disparities and hence depth map merely consists of a

1-D search with a block matching algorithm (our implementation uses the

stereo routines from Version 2.4 of OpenCV) Assuming that the ground plane

equation is of the form

ax+ by + cz = d (3.2)

where ~n = (a, b, c) is the unit normal vector to the plane, we pose

d =
1√

a′2 + b′2 + c′2
(3.3)


a

b

c

 = d


a′

b′

c′

 (3.4)

With the coordinates of 3D points in the reference system of the left camera

(Xi, Yi, Zi) (3.5)
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Figure 3.4: a) (left): The raw image b) (center): Low-level lane feature detection
result c) (right): Features depicted on the image.

we can write

Ax = B (3.6)

and solve for x in the least-squares sense as

x = (ATA)−1ATB (3.7)

where

A =



X1 Y1 Z1

X2 Y2 Z2

...
...

...

Xn Yn Zn


B =



1

1
...

1


x =


a′

b′

c′



Often times the ground surface leads to inordinate amounts of outliers,

due in part to a lack of texture from the pavement or other driveable surfaces.

With the sensitivity of least-squares to outliers being known, we resort to the

use of RANSAC in selecting the inliers and obtain a robust estimation of the

ground plane coefficients, in the following way:

1. randomly select three points from the 3D points believed to be represen-

tative of the ground plane
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Figure 3.5: a) (left): Color-coded stereo depth map and the region used for ground
plane estimation b) (right): Horizon line estimated from ground plane

2. compute the coefficients of the plane defined by the randomly selected

points using (3.6)

3. count the points whose distance to the plane is less than a threshold ε

4. repeat these steps n times where n is sufficiently large1

5. among the n fits choose the largest inlier set which respect to ε and

compute the coefficients of the ground plane this time using least-squares

as in (3.7)

The plane parameters are averaged over a short period of time in order to

stabilize them further. The coefficients of the plane are recomputed at each

new stereo frame arrival. However, in cases when the number of depth values

is low (poor texture, etc.) or other vision modules indicate the presence of

a near obstacle, the coefficients of the ground plane are not recomputed, the

previous parameters are used instead.

The horizon line is approximated by intersecting the plane parallel to that

of the ground and passing through the focal point with the image plane of

the sensor, and converting to image coordinates using calibration parameters.

1Choosing n > 20 does not significantly improve the number of inliers with respect to ε.
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Figure 3.5 displays a sample disparity map and estimated horizon line, used

in our hypothesis generation mechanism.

Introducing the tilt parameter δλ, the ground plane equation becomes:

ax+ by + (c+ δλ)z = d (3.8)

3.3.2 Likelihood Function

The estimation of the best fit parameters between projected lane-marking

splines and the detected lane features in the left stereo image is performed by

defining a likelihood function

L(z|x) (3.9)

where z is a particular parameter fit, and x = (δx, δθ, δλ). Estimating this

likelihood function requires first the detection of lane boundary features from

the stereo imagery. Image features must satisfy a number of constraints before

they can be considered as lane boundary features, such as being located on

the ground plane, featuring a lighter gray level than that of the ground plane,

and be contained within two significant gradient values of a predefined width

(which depends on the observed depth).

The algorithm to detect lane boundary features is formally described in

Algorithm 1 and uses the left camera stereo image I and its depth map Id as

inputs to produce a Gaussian smoothed lane boundary feature image F , such

as that displayed in Figure 3.4b. Constants found in the algorithm are α and β,

used for computing the width expectation of the lane markings Lmax, factored

by their distance from the vehicle. Constants NL and LD indicate the state of

the lane edge search. NL represents the state in which no lanes are detected,

while LD is its complement. Threshold τh represents the minimum gradient
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value required for a transition from NL to LD. Constant Oh is the minimum

variation in height from the ground plane for a pixel to be considered part of

an obstacle. Oh and τh depend on imagery and are experimentally determined.

Algorithm 1 Lane Feature Detection Algorithm

G← 1D Gaussian row smoothing of I with σ = 0.5
G← horizontal gradient of G using 3-point central differences
Remove the values corresponding to obstacles from G using threshold Oh

State← NL
F initialized to 0
for all rows i in I starting from the image bottom do
Lmax ← β − iα
Count← 0
for all column j in I do
if (Gi,j > τh ∧ (State = NL ∨ Count > Lmax)) then
State← LD

end if
if (State = LD) ∧ (Gi,j < −τh) then
for k = j − Count→ j do
Fi,k ← 1

end for
State← NL
Count← 0

end if
end for

end for
F ← 1D Gaussian row smoothing of I with σ = 0.5

The likelihood function (3.9) may be estimated using the extracted lane

marking features F and the sorted (from left to right) lane marking splines

contained in the visible spline buckets. The lane-marking splines from the map

are aligned with the direction of the vehicle by a rotation and then projected on

the image plane so as to find a best fit with the detected lane marking features.

Assuming that the Z axis of the 3D reference frame of the front stereo system

of the vehicle makes an angle θ with the Y axis of the 2D reference frame of
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the lane map, a spline point Q = (X,Y ) in the coordinates of the lane map is

rotated according to:

 Xr

Zr

 =

 cos(θ) sin(θ)

cos(θ) − sin(θ)


 X

Y

 (3.10)

With the ground plane equation, we estimate the tilt-corrected height coordi-

nate in the reference frame of the stereo system as:

Yr =
d− aXr − Zr(c+ δλ)

b
(3.11)

where Qr = (Xr, Yr, Zr) is the 3D spline point expressed in the reference

frame of the stereo system. The projection of Qr onto the stereo imaging

plane is performed by applying the classical projection matrix P obtained for

the calibration process of the stereo system:

w


u

v

1

 = P



Xr

Yr

Zr

1


(3.12)

where w is a scaling factor due to the use of homogeneous coordinates.

With the lane feature image F and the projected, visible lane-marking

splines, the likelihood function becomes

L(z|x) =
∑

(i,j)∈S
F (i, j) (3.13)

where S is the set of all projected points of the lane-marking splines.
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3.3.3 Particle Filtering

With the likelihood function, we need to estimate the parameters x of the fit

as:

x = argmaxL(z|x)x (3.14)

Solving this optimization problem is not easily achievable by regular hill-

climbing methods due to the non-concavity of the function. Since the search

space is large, an exhaustive search is prohibitively expensive while the prob-

ability of finding the global maximum remains low [17].

A particle swarm method may be more appropriate. The particle swarm

lane detection algorithm by Zhou [20] is a single image frame method, which we

adapt here as a particle filter working on a sequence of frames1. Our approach

consists of generating a set of uniformly distributed particles, each representing

a set of possible values for parameters x = δx, δθ, δλ. The likelihood of each

particle is estimated with (3.14).

At each iteration, each particle is replaced with a number of newly gener-

ated, Gaussian position-disturbed particles. The number of generated particles

is proportional to the likelihood of the particle they replace. Their likelihood

are estimated again with (3.14) and normalized. This ensures that the stronger

particles generate more particles in their vicinity than the weaker ones. Par-

ticles with normalized likelihoods lower than a certain threshold are removed

and, if the number of particles becomes less than a threshold, the process

repeats.

These iterations eventually lead to groups of particles concentrated at the

most likely answers in the search space and the particle with the maximum

1PSO is a population-based stochastic optimization method first proposed by Eberhart
and Kennedy [8].
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Figure 3.6: a)(top-left): Color-mapped stereo depth map b) (top-right): Ac-
cumulated projected obstacle points c) (bottom): Results of obstacle-free areas
detection

likelihood is chosen as the solution. In addition, keeping the particles over time

makes the particle filter to act as a tracker for the lane detection mechanism.

3.4 Obstacle Detection

With a set of detected lanes represented by projected splines, the stereo depth

map can be used to locate obstacles within each detected lane. The inputs

to the obstacle-free detection algorithm are the stereo disparity map Id, the
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classical projection and re-projection matrices P and D, the ground plane

parameters a, b, c, d, and δλ, and the projected lane-marking splines. The

output consists of the distance from the vehicle to first obstacle (if present)

for each lane. The algorithm uses constant Oh as previously defined, and

threshold Ot which is the minimum ratio of obstacle pixels to all pixels across

a lane, for each row in the image.

The first stage of the algorithm consists of detecting pixels whose 3D po-

sitions computed as:

W



X

Y

Z

1


= D



u

v

d

1


(3.15)

are not lying on the ground plane. The distance of the 3D point from the

ground plane is obtained as:

Dist = aX + bY + (c+ δλ)Z − d (3.16)

The algorithm keeps an obstacle map O the size of the original image. The

3D coordinates of each pixel whose height from the ground plane qualifies it

as an obstacle is projected onto the ground plane by setting its Y coordinate

according to (3.11), and then projected onto the obstacle map O, using

w


u′

v′

1

 = P



X

Yg

Z

1


(3.17)

where the corresponding image location in O is incremented by one.
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The last stage of the algorithm consists of scanning all rows of image O

from the bottom. In each row, between the boundaries of each lane which is

not yet blocked, the values of O at the positions across the lane are summed

up and divided by the total number of pixels in that lane, forming a lane ratio

γ. If this ratio exceeds threshold Ot, the lane is assumed to be blocked by an

obstacle at that row and the distance of the obstacle is recorded for that lane.

The formal description of this algorithm is given in 2. Figure 3.6 shows an

example of accumulated projected obstacle points map and the resulting free

zone detection for the lanes.

Algorithm 2 Obstacle-Free Zone Detection Algorithm

O initialized to 0
for all O(u, v) do
Compute 3D coordinates of the point in the stereo reference frame using
Id and (3.15)
Dist← aX + bY + (c+ δλ)Z − d
if Dist > Ot then
Yg ← (d− aX − (c+ δλ)Z)/b
Compute (u′, v′) using (3.17)
O(u′,v′) ← O(u′,v′) + 1

end if
end for
for all rows i in O do
for all lanes do
if lane ratio γ > Ot and lane still open then
Output the lane as a blocked lane at corresponding distance

end if
end for

end for
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Examples of lane detection results a) Out-of-sight lane markers b) Mul-
tiple curved lanes c) Occluded lane markers d) Splitting lane e) Urban distractions
f) Multiple lanes partially occluded g) Splitting lane and occlusion h) Irregular lane
shape
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Figure 3.8: Examples of obstacle-free area detection results a) (left): Ongoing
traffic, within the detected lanes b) (right): Incoming traffic outside of detected
lanes

3.5 Experimental Results

We applied this approach to a set of sequences recorded form an instrumented

experimental vehicle [1]. The implementation of the technique executes at

15Hz, including the stereo depth computation, ground plane detection, particle

filtering for lane detection, and obstacle-free area estimation. Thirty initial

particles for the particle swarm were used, and the stereo image size was 320

by 240 pixels.

Figure 3.7 shows samples of detected lanes and Figure 3.8 shows samples

of detected blocking of the lanes by vehicles or other obstacles. The exper-

iments subjectively demonstrated that the algorithm is robust to occlusion

and partially worn-off or occluded lane markers and various urban artifacts.

As observed, our technique remains stable, even for some frames without any

evidence of lane markers, which is very difficult for most of the existing lane de-

tection approaches. Even in the presence of significant lane marker occlusions,

our approach still properly detects lanes.

One may argue that the requirement for GPS-addressable, lane-annotated
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maps limits the areas in which this approach may be used, which is correct.

However, we believe this approach can be used in most driving situations, so

long as lane-annotated maps are automatically generated and made available

to instrumented vehicles. Additionally, the confidence measure obtained from

thresholding the likelihood function may be used to assess the reliability of

detected lanes.

3.6 Conclusion

We proposed a map-based lane detection and obstacle-free area detection using

lane-annotated maps, particle filtering, and stereo depth maps. Our main

contribution consists of our lane model obtained from lane-annotated maps,

allowing us to represent irregular, opening, and closing lanes that are often

ignored in the current literature. Ironically, these types of lanes are crucially

important for iADAS as they occur in critical areas such as intersections and

merging and turning areas which constitute perilous zones. Our approach uses

a robust model that does not entirely depend on an on-board imaging system

easily lead astray by the presence of occluding obstacles and worn-off lane

markers.
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Chapter 4

Vehicle Detection System

This Chapter is a reformatted version of the following article:

T. Kowsari, S.S. Beauchemin, and J. Cho, Real-Time Vehicle Detection and

Tracking Using Stereo Vision and Multi-View AdaBoost”, IEEE Intelligent

Transportation Systems Conference, Washington DC, USA, pp. 1255-1260,

October 5-7, 2011.

In this Chapter, we propose a multi-layer, real-time vehicle detection and

tracking system using stereo vision, multi-view AdaBoost detectors, and op-

tical flow. By adopting a ground plane estimate extracted from stereo infor-

mation, we generate a sparse set of hypotheses and apply trained AdaBoost

classifiers in addition to fast disparity histogramming, for Hypothesis Verifi-

cation (HV) purposes. Our tracking system employs one Kalman filter per

detected vehicle and motion vectors from optical flow, as a means to increase

its robustness.
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4.1 Introduction

Most Driving Assistance Systems (DAS) rely on the detection of relevant fea-

tures in the immediate environment of the vehicle, such as other vehicles,

pedestrians, lanes, traffic signs, and other potential obstacles [2]. Many driv-

ing assistance systems such as adaptive cruise control, collision warning, blind

spot monitoring, and park assist rely on some form of obstacle detection mech-

anisms. While obstacle detection in general can be made simpler with the use

of active sensors, the resulting cross-talk and noise from other vehicles can

potentially deteriorate the robustness of such systems. Moreover, for large

distances and increased resolution, passive sensing seems more applicable [7].

Recently, visible spectrum vision-based vehicle detection has attracted a lot

of attention due to improved machine vision algorithms and the availability

of low-cost high computational power [33]. Real-time detection is vital for

DAS as road-based imagery is highly dynamic (a vehicle moving at a speed of

120 kmh changes its position by 33 m every second). While very dependable

techniques and methods for object detection have appeared [20], most of them

require high-cost, advanced hardware to be executed in real-time, if at all

possible.

This contribution proposes a real-time, multi-layer vehicle detection sys-

tem using stereo vision, optical flow, and a machine-learning classifier, and

is structured as follows: Section 4.2 reviews the recent vehicle detection lit-

erature, Section 4.3 presents our main approach, while Sections 4.4, 4.5, and

4.6 describe Hypothesis Generation (HG), Hypothesis Verification (HV), and

Tracking respectively. Section 4.7 presents our experimental results while Sec-

tion 4.8 offers a conclusion.
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4.2 Related Literature

There exists a large body of research from the last two decades on DAS. With

the goal of creating autonomous vehicles, many research groups have launched

several projects in different aspects of DAS [37, 27, 6, 8, 36, 21, 35, 33].

Our focus is on detecting and tracking vehicles as imaged by passive sensors

inside an instrumented vehicle. The vehicle detection stage is usually broken

into three parts: Hypothesis Generation (HG), Hypothesis Verification (HV),

and tracking. For HG, several contributions have proposed various methods,

including the selective detection of vertical and horizontal edges [34], symmetry

maps [4], color [9], stereo depth [23, 25, 40], texture [17], and motion [14], either

in isolation or in combination.

In Region Of Interest (ROI) based HG, Cheng et al. use vanishing points

obtained from the intersection of detected lanes [11] and achieved 20fps on

conventional hardware. While lane-based vanishing point detection requires

salient road markings, Sappa et al. computed ROIs with horizon lines obtained

from stereo depth data [29]. In addition, Keller et al. proposed a similar

algorithm but employ a B-Spline model for the road rather than a flat plane

[18]. In both cases however, a lack of knowledge about obstacles on the road

often leads to erroneous ground plane estimations. Conversely, samples of

disparity-based obstacle detection methods are that of Jung et al. [16] and

Mandelbaum et al. [24] in which the authors used disparity histogram peaks

as evidence of obstacles.

The HV stage is often performed with either block matching [15, 28] or

appearance-based methods, which take features such as Scale Invariant Feature

Transform (SIFT) [22], Principal Component Analysis (PCA) [39], summation

of intensity or Gabor filtering [31], to train a classifier into verifying generated
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hypotheses. Different classifiers such as Support Vector Machines (SVMs) [31],

neural networks [26], AdaBoost [38], and nearest neighbor [39] are often used

in the literature.

4.3 Description of Approach

We propose a three-stage vehicle detection method which includes: Hypoth-

esis Generation based on ground plane estimation, Hypothesis Verification

with Haar-like features, an AdaBoost classifier, and disparity histogramming,

followed by vehicle tracking using optical flow and Kalman filters.

With the depth map we estimate the parameters of a plane which fits the

data in a near rectangle at the bottom of the image where there is no visible

obstacle. The absence of obstacles in this region is determined by the absence

of peaks within the part of the disparity histogram corresponding to the ground

plane near the vehicle. By using RANdom SAmple Consensus (RANSAC) in

estimating the parameters of the ground plane, the effects of depth outliers

are minimized. The horizon line can in turn be estimated by intersecting the

plane parallel to the ground plane and containing the focal point with the

imaging plane of one of the sensors. The horizon line constitutes the basis

for generating hypotheses. These are then tested with a set of AdaBoost

classifiers trained with four different views of various vehicles from existing

data sets. An integral disparity histogram is used to increase the robustness

of the verification stage. Following these steps, optical flow data provides

assistance in tracking sparse features on verified hypotheses. If the number of

overlapping rectangles of similar scale containing detected vehicles exceeds a

certain limit in a number of consecutive frames, they are then merged into a

single rectangle and a Kalman filter is created to track the detected vehicle(s)



84

within the extent of the merged rectangle. The algorithm is discussed with

greater detail in the next Sections.

4.4 Hypothesis Generation

With rectified stereo images, finding disparities merely consists of a 1-D search

with a block matching algorithm (our implementation uses the stereo routines

from Version 2.2 of OpenCV). As expected, the presence of an obstacle in the

image creates a peak in the disparity histogram. Considering this, an obstacle-

free area from the bottom portion of the image may be determined and then

used to estimate the position of the ground plane.

Using the disparities and the calibration parameters of the stereo system,

the 3D positions of the image pixels in the camera coordinate system are

computed. Assuming that the ground plane equation is of the form

ax+ by + cz = d (4.1)

where ~n = (a, b, c) is the unit normal vector to the plane, we pose

d =
1√

a′2 + b′2 + c′2
(4.2)


a

b

c

 = d


a′

b′

c′

 (4.3)

With the coordinates of 3D points in the reference system of the left camera

(Xi, Yi, Zi) (4.4)
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we can write

Ax = B (4.5)

and solve for x in the least-squares sense as

x = (ATA)−1ATB (4.6)

where

A =



X1 Y1 Z1

X2 Y2 Z2

...
...

...

Xn Yn Zn


B =



1

1
...

1


x =


a′

b′

c′



Often times the ground surface leads to inordinate amounts of outliers, due in

part to a lack of texture from the pavement or other drivable surfaces. With

the sensitivity of least-squares to outliers being known, we resort to the use of

RANSAC in selecting the inliers and obtain a robust estimation of the ground

plane coefficients, in the following way:

1. randomly select three points from the 3D points believed to be represen-

tative of the ground plane

2. compute the coefficients of the plane defined by the randomly selected

points using (4.5)

3. count the points whose distance to the plane is less than a threshold ε

4. repeat these steps n times where n is sufficiently large1

1Choosing n > 20 does not significantly improve the number of inliers with respect to ε.
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Figure 4.1: a) (left): Color-coded stereo depth map and the region used for ground
plane estimation b) (right): Horizon line estimated from ground plane

5. among the n fits choose the largest inlier set which respect to ε and

compute the coefficients of the ground plane this time using least-squares

as in (4.6)

The plane parameters are averaged over a short period of time in order to

stabilize them further. The coefficients of the plane are recomputed at each

new stereo frame arrival. However, in cases when the number of depth values

is low (poor texture, etc.) or other vision modules indicate the presence of

a near obstacle, the coefficients of the ground plane are not recomputed, the

previous parameters are used instead.

The horizon line is approximated by intersecting the plane parallel to that

of the ground and passing through the focal point with the image plane of

the sensor, and converting to image coordinates using calibration parameters.

Figure 4.2 depicts the geometry involved in approximating the horizon line,

while Figure 4.1 displays a sample disparity map and estimated horizon line,

used in our hypothesis generation mechanism.

We generate hypotheses as rectangular shapes in which vehicles may be
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Focal point

Horizon line

Visual sensors

Optical axis

containing 3D focal point

Ground plane

Imaging plane with horizon line

Plane parallel to ground 

Figure 4.2: The geometry of estimating the horizon line in camera coordinates

found. Consider a hypothesis

H(x, y, w, h) (4.7)

where x and y are the image coordinates of the top-left corner of the rectangle

and w and h are the width and height of the rectangle forming the hypothesis.

The method to generate hypotheses first postulates that, since the sensors

are located on the roof of the vehicle, every other vehicle with similar (or

smaller) height will appear under the horizon line in the image. Consequently,

the imaging of taller vehicles such as transport trucks and buses will include

image sections that are above the imaged horizon line.

The fact that the horizon line is parallel to the detected ground plane does

not signify that the resulting imaged horizon line is parallel to the x-axis of

the image (due to the roll of the vehicle, for instance). Vehicular acceleration

and deceleration generally cause tilting of the vehicle and as a consequence
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the estimation of the horizon line may be somewhat imprecise at times. For

this reason, we generate hypotheses for the presence of other vehicles within

±δ vertical pixels of the imaged horizon line.

Given these observations, we generate hypotheses along a band of pixels

comprised within the set of image lines {L} : f(x) = mx + b ± δ. For the

smallest image area considered for hypothesis generation, we posit that there

could be a vehicle in any of the image regions with all the possible x-axis

coordinates acting as upper-left corners within the image band. For taller

vehicles, we allow every generated hypothesis to grow above l ∈ L by as much

as 2
3
of its own side height h. A total of four classifiers are defined and trained

for the detection of

1. front views

2. back views

3. front-side and back-side views

4. side views

with some of them requiring different aspect ratios1. For rear and front views,

the smallest hypothesis rectangle is of size 15 × 15 pixels, 15 × 36 pixels for

front-side and rear-side views, and 15×45 pixels for side views. Each generated

smallest-area hypothesis is then used to generate other, larger hypotheses to

account for the detection of vehicles that are at closer range, and thus appear

larger on the image plane. For this purpose, we scale each hypothesis by a

factor of 1.2 repeatedly, until the region outgrows the image plane.

1The aspect ratio is 1 for the front and rear classifiers, 2.4 for vehicle front side and back
side classifiers and 3.0 for the side classifier.
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Figure 4.3: Histogram of depth map depicted for different rectangular areas. High
peaks constitute evidence of presence of an obstacle in that area. The position of the
peak defines acceptable scale ranges.

4.5 Hypothesis Verification

AdaBoost (short for Adaptive Boosting) introduced by Freund and Schapire

[13] is a method for choosing and combining a set of weak classifiers to build

a strong classifier. Combining the concept of the integral image as an efficient

way of computing Haar-like features and cascaded AdaBoost, Viola and Jones

introduced a powerful method for object recognition [38]. We adopted this

approach for the hypothesis verification stage. We used four cascaded Ad-

aBoost classifiers to discriminate positive from false-positive hypotheses. The

Haar-training module from OpenCV is used to train our classifiers. We used

in excess of two hundred vehicle images (positive samples) for each classifier.

The images used for different vehicular views are borrowed from the dataset

used by Cornells and Leibe [12, 19]. For the negative examples we used a set

of more than five hundred images randomly downloaded from the Internet.

In order to increase the robustness of the hypothesis verification stage, we
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considered the fact that there should be a peak in the disparity histogram

where obstacles above the ground plane are imaged. Figure 4.3 shows areas

with or without obstacles, and their corresponding disparity histograms. Al-

though disparity histogram peaks have been used for obstacle detection before

[16, 24], we are not aware of any work using our approach for testing several

rectangular areas from the image. The main reason is probably the high com-

putational cost of repetitive histogram generation for overlapping areas. To

efficiently compute the disparity histogram, an integral disparity histogram is

extracted from the disparity map. This integral disparity histogram defined

by us is inspired from the integral image concept introduced by Viola and

Jones [38]. To reduce the required processing time, the original disparity map

is down-sampled to half of its size, and then the integral value for each bin of

the histogram is computed. A total of twenty bins are used for the histogram.

Computing the disparity histogram for any rectangular area amounts to per-

forming two additions and one subtraction for each bin. The processing time

required to compute the integral histogram is 5ms on conventional hardware.

Given a positive vehicle detection from our classifiers, we can further affirm

that, for a given image area, if the disparity histogram peak is greater than a

certain threshold, there is little probability that this hypothesis constitutes a

false positive. Conversely, and again for a verified hypothesis, the absence of

a clear peak is considered to signify a false-positive. Furthermore, if the peak

disparity in the histogram (as a clue to obstacle depth) is inconsistent with

the image area for which there is a detection, the hypothesis can be rejected

outright.
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Figure 4.4: Examples of detection results for various frames, including errors

4.6 Hypothesis Fusing and Tracking

In every frame, image regions standing as verified hypotheses may overlap.

It thus may be necessary to fuse these hypotheses into one, more consistent

detection event. Hypotheses sharing more than 40% of their area are then

fused into the smallest rectangular image region containing the overlapping

hypotheses. This list of rectangles is used for maintaining and confirming

current detections.

The representation of detected vehicles consists of a list of rectangles to-

gether with a detection counter. If this detection counter becomes higher than

a certain threshold τ2, the rectangle state changes to active (the probability

of a vehicle in the image region is high), otherwise it remains in the list to
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be either activated based on future hypothesis confirmation, or removed after

sufficient evidence accumulates that no vehicle is present in it. Before new

hypotheses can be added to the current list of confirmed detections, it is nec-

essary to maintain it by tracking the detected vehicles. To this end, an optical

flow field is computed for each detection along with a Kalman filter to perform

the tracking.

As a new image frame becomes available, hypotheses (rectangular areas)

are added to the list with their detection counter set to a value τ1, correspond-

ing to their maximum lifetime (measured in number of frames) before they can

be removed from the list, if no confirming evidence can be found for the pres-

ence of a vehicle. We use the same technique as above to perform the merging

of overlapping areas and the setting of thresholds τ1 and τ2. A hypothesis is

removed from the list when its detection counter reaches zero. As a result, a

tracking continues if a vehicle is detected every τ1 frames on average, and a

tracking is terminated if it is not detected for τ2 frames in a row1.

4.7 Experimental Results and Discussion

We used the RoadLAB instrumented vehicle for recording sets of sequences in

the urban area of London Ontario, Canada (see Figure 4.5) [3]. The algorithm

has been tested on 7,814 frames containing 13,513 vehicles in different lanes,

orientations, and directions. Table 4.1 shows the accuracy of the system for

vehicles closer than 50m, 100m, and 150m for leading, oncoming, other, and

all vehicles, where other includes parked vehicles and those in other views such

as at intersections. Figure 4.4 shows some correctly and incorrectly detected

vehicles.

1Acceptable results are obtained with τ1 = 3 and τ2 = 10.
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Figure 4.5: The RoadLAB in-vehicle laboratory

Table 4.1: Detection Rates for different distances and vehicles
Hit Rate Leading Oncoming Other All

Dis. < 50 0.9853 0.9886 0.8004 0.9858
Dis. < 100 0.8669 0.8135 0.8028 0.8548
Dis. < 150 0.8171 0.7393 0.8145 0.7990
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In the sum of frames used for the experiments, the number of false positives

amounts to 2,008 (about 0.26 per frame or less than 7×10−6 False Positive Per

Window (FPPW)). Since false positives are mostly detected outside the area

occupied by the roadway, better results could still be achieved by rejecting

hypotheses related to detections that are not located on the roadway. The

execution time of the algorithm is 25fps on generic hardware.

Our main contribution is two-fold. First, the integration of horizon-based

ROI generation together with multi-view vehicle detection allows it to execute

very efficiently, since many hypotheses can be rejected outright, given their

relative location with respect to the horizon line. In addition, the horizon

detection stage can take advantage of the tracking data and the disparity

histogram to verify the absence of obstacles at close range, yielding a robust

horizon line estimate. Other similar techniques often do not take advantage

of detected obstacles which may lead to erroneous ground plane estimation

[29, 18]. Second, the efficient integral disparity histogram-based hypothesis

rejection removes a significant portion of false positives. Excellent results

are obtained with AdaBoost classifiers trained on very small sets of images,

resulting in a training time for each classifier under 5 minutes.

Table 4.2 shows the number of false positives and algorithm speed, using

AdaBoost with and without the horizon line constraint and the depth his-

togram. Removing the disparity histogram constraint results in twice as many

false positives, accompanied by a modest increase of the frame rate.

Figure 4.6 illustrates the difference between the detection rates for on-

coming, leading, and other vehicles. Detection rates for on-coming vehicles

are slightly worse than those of leading vehicles. A possible explanation may

be that headlights are on in our sequences while off in the training images.

The detection rates are worse for parked vehicles and those at intersections,
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Table 4.2: The effect of the image horizon line and disparity his-
togram constraints on false positives and frame rates

FP FPS

Complete Technique 13% 25
Without Disparity Histogram 42% 27

Without Disparity Histogram and Horizon 58% 18

Table 4.3: Comparison on frame rates, distance (or size), hit rates,
false positives, and vehicle views

Authors Distance
of Farthest
Detection

FPS HR FP Notes

Chang and Cho [10] 32×32 5 99% 12% Rear detection

Southall et al. [30] 40m 16 99% 1.7% Single lane rear detection

Bergmiller et al. [5] 83.12% 16.7% Rear detection

Sun et al. [32] 32×32 10 98.5% 2% Rear detection

Alonso et al. [1] 92.63% 3.63% Rear and front detection

Cheng et al. [11] 20 90% 10% Rear and front detection

Our Results 120m 25 98.6% 13% Multi-view
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possibly because of partial occlusion.

Figure 4.7 depicts the relation between hit-rates (provably correct detec-

tions) and vehicle distance. The performance of our technique decreases dra-

matically for vehicles located farther than 80m. A possible cause of this perfor-

mance degradation may be that the smallest windows for which our classifiers

are trained are of modest size (15×15 pixels) and provide crude resolution. We

have compared the frame rates, hit rates, and the farthest detectable vehicles

with other contributions cited in Table 4.3. Since all compared contributions

are not applied on the same dataset, we have to trust on the fact most of the

road scene and vehicles are closely comparable. Among these other techniques,

ours has the best frame rate, with comparable hit rates for distances under

50m.
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4.8 Conclusion

We have developed a real-time, multi-vehicle detection and tracking system us-

ing stereo information, optical flow, Kalman filters, and an AdaBoost classifier.

The technique executes at 25fps on generic hardware and has been tested on

the RoadLAB instrumented vehicle [3]. Research is currently being conducted

to determine whether vehicular odometry may provide additional constraints

to improve the quality of our results. We plan to use a similar framework,

possibly with different constraints, to detect pedestrians in real-time.
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Chapter 5

Driver Gaze Mapping

This Chapter is a reformatted version of the following article:

T. Kowsari, S.S. Beauchemin, M.A. Bauer, D. Laurendeau, and N. Teas-

dale, Multi-Depth Cross-Calibration of Remote Eye Gaze Trackers and Stereo-

scopic Scene Systems, accepted in IEEE Transactions on Instrumentation and

Measurement, Dec. 2012.

In this Chapter we present a robust and accurate technique for the cross-

calibration of 3D remote gaze trackers with stereoscopic vision systems be-

tween which no common imaging area exists. We empirically demonstrate

that a multi-depth calibration approach yields remarkably superior results for

obtaining 3D Point-of-Gaze (PoG) when compared with other methods using

eye vergence or co-planar eye gaze calibration points.

5.1 Introduction

Remote gaze trackers have been in use for various applications together with

scene cameras to determine the point of gaze (PoG) of human subjects on an

imaged scene. Several types of applications benefit from the use of such sys-
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tems including vehicle driver training and advanced driver assistance systems,

the context in which the results herein have been obtained.

The task of projecting back the 3D gaze direction onto the imaged scene

requires a cross-calibration between the remote gaze tracking device and the

scene. In most if not all of commercially available systems, this type of cali-

bration is performed by requiring that test subjects fixate specific, pre-selected

image points on a planar surface placed at a known distance such as on a com-

puter screen or, by using a scene image from a monocular camera and treating

it essentially as a 2D object (co-planar fixation calibration points).

Such approaches are dependable when the subject’s eye center is not highly

offset from the scene camera(s). In other words, because the origin of the ref-

erence system of the scene cameras and the subject’s eye center approximately

coincide, the projection ray of any fixated object will also approximately lie

on the line of sight regardless of the depth of the object. In such cases, the

calibration process may be performed correctly. Otherwise, objects with dif-

ferent depths along the line of sight correspond to different image locations,

and must be calibrated for as such.

Our primary goal is to determine whether driver intent and driving-related

actions can be predicted from qualitative and quantitative analyses of driver

behavior. Toward this end, it is necessary to establish the correspondence

between cephalo-ocular behavior and visual stimuli in such a way as to identify

the elements in the visual field to which driver attention turns to. This type

of information in turn may facilitate the task of a driving assistance system to

assess whether drivers are attending to the appropriate stimuli, given traffic

context [2].
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5.2 Literature Survey

Hennessey and Lawrence presented a 3D PoG method which employs eye ver-

gence to estimate the 3D position of a fixated object [5]. In their experiments,

fixated objects were contained in a 1.725 m3 volume located in front of the

subject. The reported average positional error was 3.93 cm. It constituted the

first binocular system for estimating the absolute 3D coordinates of where one

is looking in the 3D world.

Alternatively, Yamashiro et al. devised an automatic calibration to es-

timate the gaze of vehicle drivers by using known reference points such as

the rear-view and the side mirrors of the vehicle [6]. The gaze of drivers

was recorded and an Expectation-Maximization algorithm was used to cluster

glances to the reference points. An automatic calibration of gaze could be

achieved from the collected gaze data over time as the vehicles were driven.

In these approaches, it is assumed that the subject’s eye center coincides

with the origin of the reference frame of the scene cameras. When this con-

straint is satisfied, the depth of fixated objects does not influence the position

of the gaze onto the scene images. Significant errors can be introduced oth-

erwise, as we proceed to demonstrate in this contribution. Hence we propose

a method to cross-calibrate a stereo scene camera system with a remote eye

gaze tracker using variable depth calibration points and compare the resulting

error with a co-planar calibration approach.

5.3 System Configuration

Our systems consist of a remote gaze tracker with two cameras pointed toward

the driver’s face and a stereo system oriented toward the front of an experi-
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Figure 5.1: Physical configuration a) (left): Remote eye-tracking system, and b)
(right): RoadLAB stereoscopic vision system

mental vehicle. Our aim is to determine which objects within the visual scene

in front of the vehicle elicit visual responses from drivers.

Our remote gaze tracker computes several variables including gaze Euler

angles, eye center location, and head position and orientation with respect to

the coordinate system of the tracker, located in the middle of the stereo cam-

eras pointed toward the driver’s face. Our scene stereo system attaches to the

roof of the vehicle, with its reference frame centered on the left camera. Both

systems require a calibration prior to use. Figure 5.1 shows the configuration

of the experimental vehicle.

5.4 Computing the Gaze Vector

The orientation of the gaze with respect to the coordinate system of the tracker

is given by Euler angles describing the rotations around the X axis and the

Y axis. Performing these rotations amounts to aligning the the Z axis of the

tracker with the 3D direction of the gaze. The eye gaze direction defined in

this way is a unit vector originating from the eye center. Figure 5.2 shows the

relation between the gaze vector and a fixated point in the field of view. Given

Euler angles θi and φi, the gaze unit vector is obtained as:
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,xi iy
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Figure 5.2: The topology of the tracker and scene reference frames, where xi and
yi are coordinates of the fixated point in the scene, o is the reference frame of the
stereo scene system, o′ that of the tracker, and ci and gi are the eye center position
and gaze vector respectively.

gi = Ry(θi)Rx(φi)


0

0

1

 =


sin(φi) cos(θi)

− sin(θi)

cos(θi) cos(φi)

 (5.1)

5.5 Technique

The objective consists of computing estimates of the rotation matrix and the

translation vector between the reference frame of the scene stereo system and

that of the remote eye tracker. The calibration process consists of asking the

driver to fixate pre-selected points for which depth estimates are available

and record the gaze vector and eye center location of the driver, along with

the 3D position of the fixated points in the scene for a brief period (2 s) per

fixated point. This data is then used to estimate the rotation matrix and the
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translation vector relating the reference frames.

The eye center and gaze vector, both expressed within the reference frame

of the tracker, represent a 3D line passing through the fixated point which

in turn is expressed in the reference frame of the stereo scene system. Let

us assume that the fixated points are known in both reference frames, and

find the rigid body transformation parameters that bring the points from one

reference frame to the other. The relation between the fixated points and the

reference frames is given by:

yi = Rxi +T (5.2)

where xi is the position of the ith fixated point measured in the scene reference

frame, yi is the position of xi in the reference frame of the tracker, and R and

T are the rotation matrix and translation vector between the reference frames.

We estimate the rigid transformation parameters following the approaches

devised by Arun [1] and Challis [4], and use a confidence measure on the

fixated points xi, since the accuracy of their depth measurements is inversely

proportional to their distance from the stereo scene system1.

The centers of mass of the fixated points in both reference frames are given

by:

x̄ =

∑n
i=1 w

2
i xi∑n

i=1 w
2
i

and ȳ =

∑n
i=1 w

2
i yi∑n

i=1 w
2
i

(5.3)

where wi is a weight factor reflecting the reliability of the ith point, and n is

the number of points (n > 2 [4]).

1Consequently, we use the disparity, defined as the inverse of depth, as the confidence
measure.
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With the following substitution in variables:

x′
i = xi − x̄ and y′

i = yi − ȳ

a matrix can be formed as:

C =

∑n
i=1 w

2
i y

′
ix

′T
i∑n

i=1 w
2
i

(5.4)

and decomposed with SVD as

C = UDV T (5.5)

According to [4], setting

R = UV T (5.6)

minimizes the error in the least-squares sense. Since both the reflection and

the rotation matrices minimize the least-squares error, then R is either the

reflection or the rotation matrix. If R is the reflection matrix, then det(R) =

−1 and the rotation matrix is obtained in the following way:

R = U


1 0 0

0 1 0

0 0 det(R)

V T (5.7)

and the translation vector is obtained as:

T = ȳ −Rx̄ (5.8)

The 3D fixated points are not directly known, as the eye center and the gaze
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direction only yield a 3D line onto which a fixated point lies. Additionally,

these lines are expressed within the reference frame of the eye tracker. In

order to overcome this difficulty, we assume that the transformation is already

known and write:

di = ‖Rxi +T‖ (5.9)

where di is the distance of the ith fixated point from the origin of the

reference frame of the eye tracker, and xi is the 3D coordinate of the point in

the scene reference frame. Hence, the fixated points can be approximated in

the reference frame of the tracker as:

yi = digi + ci (5.10)

where yi is the 3D position of the fixated point in the reference frame of the

tracker, with gi and ci defined as before. This set of fixated points allows us

to approximate the rotation matrix R and the translation vector T iteratively.

It is initially assumed that both reference frames coincide exactly, starting the

iterative process with R the identity matrix and T a null vector. Since the

reliability of the fixated points (partly) depends on their distance to the stereo

system (a characterization of this error is provided in [2]), we use the stereo

disparity of the fixated points, defined as the inverse of distance, to provide the

weighting values wi in (3) and (4). Algorithm 3 shows the detailed procedure

for the cross-calibration.

5.6 Calibration Process

We proceed to describe the data-gathering procedure that is used with the

drivers of the experimental vehicle. For each selected calibration point the
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Figure 5.3: The calibration procedure a) (top): The operator selects calibration
points from a set of Hessian salient points provided by OpenCV. b) (bottom left):
The driver gazes at selected points one at a time while the gaze data and depth is
recorded. c) (bottom right): Driver gaze transformed into the reference frame of
the stereo imaging system and intersected with the depth-map at frame rate (30Hz).
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Algorithm 3 Cross Calibration Algorithm

R← I
T← 03×1

repeat
for i = 0→ n do
di ← ‖Rxi +T‖
yi ← digi + ci

end for

C ←
∑n

i=1
w2

i y
′
ix

′T
i∑n

i=1
w2

i

(U,D, V T )← SVD(C)
R← UV T

R← U

 1 0 0
0 1 0
0 0 det(R)

V T

T′ ← T
T← ȳ −Rx̄

until ‖T′ −T‖ < ε

driver is asked to fixate, the gaze vector and the position of the eye center in

the reference frame of the eye tracker are recorded, along with the 3D position

of the calibration point in the reference frame of the stereo imaging system.

We refer to these captured data elements as gaze data sets. While a minimum

of three non co-planar calibration points are needed, we generally use 15 to

20 points to ensure sufficient precision in the computation of the calibration

parameters. The calibration procedure is defined as follows:

1. Salient points provided by the stereo imaging system are detected and the

calibration operator selects a suitable subset of these points (a suitable

subset contains 3D points that are visible to the driver and that are

found at various depths in the scene). We use the GoodFeaturesToTrack

function from the OpenCV library to provide the initial set of salient

points (Figure 5.3a).
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Figure 5.4: A depiction of the integrated calibration interface. The cross-calibration
area of the interface is located in the bottom right corner.

2. The software displays the calibration point the driver is asked to fixate

and records the current gaze data set for a period of 2s (Figure 5.3b).

A RANSAC algorithm is used in cases when the driver experiences a

saccade while requested to fixate the calibration point. This ensures the

rejection of the saccade gaze data from the sample.

3. When all the points have been fixated by the driver and the gaze data

recorded for each point, the operator initiates the calibration stage. Once

the systems are cross-calibrated the gaze of the driver is in relation with

the depth map from the stereo imaging system in real-time (see Figure

5.3a), b) and c)).

The eye tracker provides a real-time confidence measure related to the

quality of the computed gaze for each eye of the driver. During the calibration

process, we compute a set of cross-calibration parameters R and T for each

eye. Once the systems are cross-calibrated and in use, we determine in real-
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time which set of parameters to use based on the confidence measures provided

by the eye tracker. It is possible to force the system to use a specified eye for

both the calibration and the gaze projection stages in case of abnormality of

one of the driver’s eyes (see Figure 5.4 for a graphical representation of the

calibration interface).

5.7 Projection of the Gaze on the Scene Image

Once the cross-calibration process has completed, the Line of Gaze (LoG) is

projected onto the imaging plane of the stereo system and, when this line

intersects with a valid depth estimate (which is most times), the PoG is then

identified as the region around this intersection. To perform this projection,

we first compute the 3D parameters of the LoG in the reference frame of the

stereo system. The gaze vector and eye center position in the scene frame are

obtained as:

g = RTge (5.11)

where g and ge represent the gaze direction in the stereo imaging system

reference system and in that of the eye tracker, respectively, and

c = RT (ce −T) (5.12)

where c and ce represent the eye center position in the stereo imaging system

reference system and in that of the eye tracker, respectively. Then the LoG in

the scene camera coordinate system becomes

X − cx
gx

=
Y − cy
gy

=
Z − cz
gz

(5.13)
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where c = (cx, cy, cz) and g = (gx, gy, gz). Using x = X
Z
and y = Y

Z
(perspective

projection) yields

(gxcz − gzcx)y − gxcy = (gycz − gzcy)x− gycx (5.14)

where x and y are 2D coordinates of the LoG stereo scene camera frame of

reference. To obtain the LoG in image coordinates, the intrinsic calibration

matrix of the stereo scene system is applied to the equation, resulting in

(gxcz − gzcx)

(
y′ − sy
fy

)
− gxcy =

(gycz − gzcy)

(
x′ − sx
fx

)
− gycx (5.15)

where x′ and y′ are image coordinates of the perspective projection of the LoG.

sx, sy, fx, and fy are obtained from the intrinsic calibration matrix K of the

scene stereo system:

K =


fx 0 sx

0 fy sy

0 0 1

 (5.16)

Then, the 2D image coordinate of the PoG is that which satisfies

(x′
p, y

′
p) = argmin [‖Zd − Zl‖, {x′, y′}] (5.17)

where {x′, y′} is a pixel on the projected LoG, Zd is its depth component, and

Zl is the corresponding depth value within the depth map. Zd and Zl are

obtained as:

Zl =
cz(gz − gx)

gz
(
x′−cx
fx

)
− gx

(5.18)
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Zd =
Z

W
(5.19)

where Z and W originate from the re-projection in 3D of points (x′, y′, d, 1)T :



X

Y

Z

W


= Q



x′

y′

d

1


(5.20)

where d is the disparity associated with (x′, y′) and Q is the re-projection

matrix obtained with the StereoRectify function from OpenCv:

Q =



1 0 0 −cx
0 1 0 −cy
0 0 0 f

0 0 −T−1
x (cx − c′x)Tx


(5.21)

where (cx, cy) is the principal point in the left image, and c′x the x coordinate

of that of the right image [3]. Since the correct disparity dp is immediately

available once (x′
p, y

′
p) is obtained with (5.17), then the 3D PoG is directly

given by:

G = (Xp, Yp, Zp, 1)
T = W−1

s (Xs, Ys, Zs,Ws)
T (5.22)

where 

Xs

Ys

Zs

Ws


= Q



x′
p

y′p

dp

1


(5.23)
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5.8 Experimental Protocol

Two important aspects of this technique need to be evaluated. First, an em-

pirical convergence study must be conducted1 and second, an error analysis

performed within the conditions in which the experimental vehicle is used. We

performed the convergence rate and error analysis with a group of four test

drivers, composed of two males and two females, averaging 26.5 years of age.

This group was composed of one Caucasian and three Middle-Eastern subjects

and had no known visual problems.

5.8.1 Convergence Rate

Our study of the convergence rate begins with initializing the cross-calibration

parameters R and T. The rotation matrix is set to identity, while the trans-

lation vector is given a manually measured (an therefore approximate) vector

between the centers of projection of both the eye tracker inside the vehicle

and the stereo scene system on its rooftop. Figure 5.5 shows the progres-

sion of ‖T′ − T‖ toward 0 with respect to the number of iterations. As it is

observed, a few hundred iterations (≈ 500) ensure adequate convergence for

all test subjects. Since the algorithm is numerically simple, convergence is

achieved within 1 s. Interestingly, convergence is particularly rapid for two

of the four subjects. While only a conjecture, we believe this may be due to

an unusual precision of the gaze of the test subjects when requested to fixate

calibration points.

1Our algorithm is a straightforward extension to Arun et al.’s and consequently sub-
jected to identical noiseless and noisy degenerate cases [1], justifying our decision to only
study the numerical convergence rate.
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Figure 5.5: A depiction of the convergence rate of the cross-calibration algorithm
for the four test subjects.

5.8.2 Error Analysis

The error analysis we conducted included two distinct scenarios: one for which

the cross-calibration points were co-planar (CoP), and the other for which

the points experienced significant non co-planarity (NcP). The aim was to

compare the effects on precision when the scene camera is monocular (and

hence the calibration must proceed with forcibly co-planar image points, an

assumption only valid when the centers of projection of the scene camera and

the eye tracker coincide) and our technique. Figure 5.6 shows a typical CoP

scene along with a an NcP scene, each used for CoP and NcP calibrations,

respectively. In each scenario, we measured angular error for fixated points

within the scene used for calibration (which we refer to as the training scene),

and then within an altogether different scene (which we refer to as the test

scene), using identical cross calibration parameters for both the training and

test scenes.
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Figure 5.6: a) (left): A wall and its depth map are used to perform experiments
with co-planar calibration points. b) (right): A typical scene used to perform
experiments with non co-planar calibration points.

In all cases, we performed angular error analysis by requesting test subjects

to fixate pre-selected points p in the scene for which the 3D position is known

within the error margin of the scene stereo system. For each point p, we

requested the test subject to fixate it for 2 s (using the same technique as when

calibrating), recorded the gaze data set, and computed its LoG in 3D, where

we measured the angle between it and the LoG of p. This method of error

evaluation comprises the stereo scene system error (characterized in [2], the

eye tracker error (characterized by the manufacturer of the eye tracker1), and

whether the test subject is accurately fixating the point (difficult to quantify).

Figure 5.7a) displays the angular errors obtained on a per test subject basis.

The green bars represent angular errors for the test scenes and the blue bars

those from the training scenes, for both co-planar (CoP) and non co-planar

1FaceLAB 5, from SeeingMachines Inc.
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Figure 5.7: a) (left): Angular errors (with standard deviation bars) obtained with
the four test subjects on test and training scenes with CoP and NcP calibrations. b)
(right): Angular error averages (with standard deviation bars) over the test subjects
obtained on test and training scenes with CoP and NcP calibrations.

(NcP) calibration points. As expected, for experiments conducted with CoP

calibration, the errors for the test scenes (blue bars) are significantly higher

than those of the training scenes (green bars). This experimental context

clearly shows the inadequacy of assuming coinciding projection centers for

the scene camera and the eye tracker. In the case of experiments conducted

with NcP calibration, the angular error differences between the training and

test scenes are significantly smaller, empirically demonstrating the superiority

of our approach. This result is also clearly observed in Figure 5.7b), where

errors are averaged over the test subjects. The difference in angular error

between CoP and NcP calibration for the test scenes is superior to 2◦, (or by

a multiplicative factor just under 3).

In order to visually appreciate the error differences between CoP and NcP

calibrations, we requested one of the test drivers to fixate a number of pre-

selected points on a test scene with a CoP calibration (Figure 5.8a)) and then

another set of pre-selected points on a test scene with an NcP calibration (Fig-

ure 5.8b)). We then projected the difference of PoGs between points requested

to be fixated (displayed in green) and points actually fixated (displayed in red)
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Figure 5.8: a) (left): 2D image errors in re-projection between points requested
to be fixated and points actually fixated under a CoP calibration for a test scene b)
(right): 2D image errors in re-projection between points requested to be fixated and
points actually fixated under an NcP calibration for a test scene

determined by the cross calibration parameters. These results speak for them-

selves.

5.9 Conclusion

In 2009, Hennessey and Lawrence claimed to be first in devising a binocular

system for estimating the absolute 3D coordinates of where one is looking in

the 3D world, by using vergence [5]. In their experiments, fixated objects

were close to test subjects and contained in a 1.725 m3 volume. They ob-

tained an average PoG error of 3.93 cm. We devised a novel, superior method

which remains precise for much larger volumes and distances by combining a

binocular eye gaze tracker with a binocular scene stereo system through an in-

novative cross calibration procedure. Our system operates in real time (30Hz)

and is installed in an operational, experimental vehicle. To our knowledge,

this experimental vehicle is the first of its kind, capable of computing the

absolute 3D PoG of its driver sufficiently precisely to conduct scientific exper-

iments addressing ocular behavior in relation to visual stimuli; an important
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step toward understanding visual attention behavior and possibly predicting

imminent maneuvers.
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Chapter 6

Conclusion and Future Work

Probably the most promising breakthroughs in vehicular safety will emerge

from intelligent, Advanced Driving Assistance Systems (i-ADAS). Research

institutions and large manufacturers work in lockstep to create advanced, on-

board safety systems by means of integrating the functionality of existing

systems and developing innovative sensing technologies. In this thesis, we

described a portable and scalable vehicular instrumentation designed for on-

road experimentation and hypothesis verification in the context of studying

driver intent.

In Chapter 3, we proposed a map-based lane detection approach which

robustly detects road lanes. While there exists a considerable amount of re-

search on the subject of lane detection, we required a robust algorithm capable

of using surrounding information to detect multiple lanes in various context

such as rural roads, urban roads, and highways.

Subsequently, we presented an algorithm for finding the obstacle-free and

safely driveable zone within lanes, based on the stereo depth map of the scene.

Our experiments showed that our method robustly detects lanes and driveable
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zones, even in the case of partially occluded or worn-off lane markers.

Important surrounding objects that we needed to detect and annotate in

the sequences were vehicles. In Chapter 4, we proposed a multi-view, real-

time vehicle detection and tracking system using stereo vision, multi-view

Ada-Boost detectors, and optical flow. By adopting a ground plane estimate

extracted from stereo information, we generated a sparse set of hypotheses

and applied trained Ada-Boost classifiers along with disparity histogramming

for Hypothesis Verification (HV) purposes. Our tracking system employed one

Kalman filter per detected vehicle and motion vectors from optical flow, as a

means to increase its robustness. An acceptable detection rate with few false

positives was obtained at 25 Hz with generic hardware.

Lastly, in order to study drivers’ visual attention with respect to the visible

scene, we needed to cross-calibrate the eye-tracker with the front stereo system

to obtain the precise location of the driver 3D gaze into the stereo depth

map. Chapter 5 describes the algorithm and subsequent experiments that

demonstrate the adequacy of the chosen approach.

The most important part of the results, other than the instrumented vehicle

itself, is a set of sequences recorded from 16 subjects in real driving environ-

ments within the city of London Ontario. Each of the sequences is approxi-

mately one hour long and contains different channels of information including

GPS data, vehicle odometry, driver gaze and head information, stereo depth

maps, and wide angle views of the front and rear of the vehicle. After recording

the sequences, an intensive effort has been made to apply the lane detection

algorithm to the sequences to create a set of annotated, single channel stream

of processed information.

Our contribution to this research can be summarized as follows:
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1. Designing and implementing of an in-vehicle laboratory for studying

driver intent

2. Presenting a novel method for multi-depth gaze cross-calibration and

projection

3. Constructing a real-time vehicle detection system

4. Developing a map-based lane detection system as a novel and robust

lane detection methodology.

5. Recording several sequences from drivers in natural driving environments

with real vehicles on real roads, including synchronized streams of stereo

images, driver gaze, GPS data, and vehicle states.

6. Annotating the sequences, and converting several heterogeneous input

streams to a single stream of numeric data.

6.1 Future Work

Research on driver intent is relatively recent with the potential for significant

results and applications in the near future. Here are a few possible research

areas that may be undertaken immediately:

1. The main purpose of this research was to study driver intent. With the

experimental data in hand and by training a predictive system, one may

successfully develop a driver intent prediction system.

2. Instrumented vehicle may exchange data via V2V, and our instrumen-

tation could be duplicated for the study of distributed ADAS.
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3. While the instrumentation represents a successful proof of concept, it was

noted that wider viewing angles for the stereo cameras and eye-trackers

using more than two cameras (to compensate for head rotations) would

allow us to track the 3D driver gaze into the surroundings in a more

comprehensive manner.

4. The physical limitations of the instrumentation prevented its use at night

and in adverse weather conditions. Such limitations could be removed

entirely by a judicious choice of hardware, enabling the study of driver

intent in diverse conditions.
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