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Abstract  

Swallowing is a process that happens hundreds of times per day during eating, drinking, or 

swallowing saliva. Dysphagia is an abnormality in any stage of the swallowing process. It 

can cause serious problems such as dehydration and respiratory infection. In order to help 

dysphasic patients, radiologists need to evaluate the patient’s swallowing ability, usually 

using Video Fluoroscopic Swallowing Study (VFSS). During the assessment, several 

measurements are taken and evaluated, such as the displacement of the hyoid bone and 

epiglottis. Usually radiologists perform evaluation by means of visual inspection, which is a 

time consuming process that produces subjective results. Previous research has made strides 

automating swallowing measurements in order to produce objective results, but there is no 

study that automatically tracks the movement of the epiglottis. This thesis presents a design 

and implementation of a Computer Aided Diagnosis (CAD) system that can automatically 

track the movement of the hyoid bone and the epiglottis using minimal user input. The 

correlation between these two movements will be studied. With the aid of this system, 

radiologists can more reliably and efficiently take measurements and evaluate the health of 

the swallowing process. 

 

Keywords: Dysphagia, Swallowing disorder, Videofluoroscopic Swallowing Study, 

Tracking, Hyoid bone, Epiglottis, SURF features, Template-Matching, Optical flow, 

correlate movements.    
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Chapter 1  
 

Introduction  
 

Swallowing is a process in the human body that regulates the movement of solids or 

liquids traveling from the mouth through the pharynx and esophagus to the stomach. 

Normally, people swallow hundreds of times a day while eating, drinking or 

swallowing saliva. Such regularity might lead one to think that the swallowing process 

is a simple one, but in fact this process is complex. It depends on multiple neural 

pathways, muscles and bones working in concert to make the traveling process 

successful.  

Swallowing abnormalities (referred to as dysphagia) can cause swallowing difficulties. 

Failure to deliver the full volume of food via the normal route to the stomach is an 

indicator of dysphagia. Dysphagia can happen at any age, but is most common in 

seniors. There are some diseases that can cause dysphagia, such as Parkinson Disease, 

head and neck cancer and stroke.  
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In order to assist the patients who have swallowing difficulties, radiologists require a 

reliable method for evaluating patients’ swallowing process. During the evaluation 

process, radiologists take several measurements that can be extracted from medical 

imaging. These measurements include timing the movement of food through the body, 

and timing and locating of different parts of the body during the swallowing process. 

Such measurements can be used as indicators to the health of various stages of the 

swallowing process. For example, maximum displacement of the hyoid bone and the 

rotation angle of the epiglottis through the swallowing process are important measures 

in the pharyngeal stage.    

Radiologists use Video Fluoroscopic Swallowing Study (VFSS) to take sequential X-

ray images of the head and neck area during the swallowing process. The patient is 

seated in front of a camera, and is asked to swallow different kinds of food mixed with 

barium (which is a contrast agent that is visible on X-ray images). By this means, 

radiologists can monitor the swallowing process and take measurements using the 

resulting series of X-ray images.  

1.1.  Inspiration   

In the current state of affairs, radiologists typically take measurements via visual 

inspection. One problem with visual inspection is that it produces subjective results, 

leading to intra- and inter-rater variation problems. Furthermore, visual inspection is 

expensive, complex and time consuming.  
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In order to help radiologists produce objective results, several researchers have 

attempted to automate or semi-automate the extraction of measurements from 

swallowing footage. Some research uses computers in very simple ways, such as using 

the mouse to track the points in all frames, while other applications are more advanced. 

One gap in the research is that there is no study that automates the tracking of the 

epiglottis movement. 

It is clear that the radiologists need a computer assistant to make their job easier and 

their results more reliable. One measure of ease of use is the amount and complexity of 

input required from the radiologist to allow the system to take measurements. 

Reliability can be measured by comparing multiple measurements (either by the same 

radiologist or different radiologists) from the same footage. 

1.2.  Contributions 

This thesis demonstrates a design and implementation of a Computer Aided Diagnosis 

(CAD) system that can automatically track the movement of the hyoid bone and the 

epiglottis using minimal user input. The hyoid bone and the epiglottis play a 

significant role in the swallowing process. During the swallowing process, the hyoid 

bone moves upward and forward, opening a slit in the upper esophageal sphincter. The 

epiglottis is tilting down to cover the larynx, preventing food from entering the air 

channel. The correlation between these two movements is crucial for a healthy 

swallowing process. The CAD system presented here assists radiologists to study this 

correlation. 
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The CAD system performs a series of image processing steps to assist the radiologist. 

First of all, it identifies the vertebrae area in the X-ray image; this helps to identify the 

hyoid bone and epiglottis area. Tracking the vertebrae movement allows the system to 

measure according to axes consistent with the patient’s location in the image. These 

axes allow the system to isolate the patient movement from the hyoid bone and 

epiglottis’ movements. Once the vertebrae are identified, the system locates the hyoid 

bone and tip of the epiglottis so that they can be indicated to the radiologist in all 

frames. Finally, the system correlates the hyoid bone movement with the epiglottis 

movement to approximate the base of the epiglottis location in all frames.  

Note that the proposed method is a CAD system that does not independently offer a 

diagnosis. Instead, it assists radiologists to take swallowing measurements.  

1.3.  Outline  

The rest of the thesis contains four chapters. Chapter 2 describes the swallowing 

process and its assessment in detail. This chapter also describes several medical and 

engineering studies that deal with the swallowing process. Chapter 3 describes the 

proposed method with the experiments that have been done to adjust the parameters. It 

also describes the data set that is used in this research. Chapter 4 describes a series of 

experiments and results for the proposed CAD system. Finally, Chapter 5 draws 

conclusions from these experimental results, noted some limitations of the proposed 

method, and outlines some directions for future work. 
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Chapter 2  
 

Background  
 

2.1.  Introduction 

Swallowing is a complex process that involves various muscles movement and neural 

processes. It has several stages to allow the bolus1 to travel from mouth to stomach. 

Any abnormality in any stage of the process can cause a swallowing disorder known as 

dysphagia, which can lead to severe problems. For the purpose of assisting dysphasic 

patients, a Videofluoroscopic Swallowing Study (VFSS) can be used to measure the 

patient’s ability to swallow. VFSS involves specific measurement calculations that are 

related to the time and the movement of the food inside the body. The limiting factor 

in performing VFSS efficiently is visual inspection to analyze the videos that capture 

the swallowing process. Recently, several research groups have been developing new 

computer systems to assist radiologists to analyze these videos semi-automatically. In 

                                                
1 Bolus is a medical term for a soft mass of chewed food (http://www.merriam-
webster.com/dictionary/bolus) 
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this chapter, the swallowing disorder and recent methods for assessing it are explained. 

2.2.  Medical Background  

The brain is considered the central organ in the nervous system in humans. Controlling 

the operation of other biological components is one of the brain’s fundamental 

functions; e.g., the brain controls the operation of the digestive system, the circulatory 

system, and the respiratory system. As such, any abnormality in the brain can cause 

severe problems in other parts of the body, for example, a movement disorder in 

various organs or limbs can be traced to problems in the brain [1]. 

One of the diseases that leads to movement disorders caused by an abnormality in the 

brain is Parkinson’s Disease (PD). PD has the following four primary symptoms: 

tremor (trembling in the face, jaw, hands, arms, or legs), rigidity (stiffness of the limbs 

and trunk), bradykinesia (slowness of movement) and postural instability (impaired 

balance and coordination) [1]. When these symptoms become acute, many patients 

with PD have difficulty with day-to-day activities such as talking, walking and 

swallowing. In this research, we are concerned with processing data captured from PD 

patients that may experience swallowing difficulty.  

2.2.1. Normal Swallowing Process  

Swallowing is a complex process that involves different levels of brain control and 

sequential activation and deactivation of various muscle groups, including oral, 

pharyngeal, laryngeal, and esophageal muscles. This complex process can be divided 

into four phases, namely, oral preparatory, oral, pharyngeal, and esophageal [33]. 
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Figure 2.1 shows some of the body parts that are involved in the swallowing process. 

The following subsections describe swallowing phases paraphrased from Logemann in 

[29].  

 

Figure 2.1: Some body parts involved in the swallowing process 

  

2.2.1.1.  Oral Preparatory phase 

During the oral preparatory phase food is chewed and mixed with the saliva then 

formed into a ball called a bolus. The bolus is kept inside the mouth, as seen in Figure 

2.2, under the hard palate between the front of the tongue, which is elevated to the lip 

and the back of the tongue which is elevated against the depressed soft palate. 
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Figure 2.2: Oral Preparatory phase [29] 

2.2.1.2.  Oral phase  

During the oral phase the tongue pushes the bolus to the back of the mouth via an 

anterior to posterior rolling motion (i.e., a front-to-back squeezing action). The back of 

the tongue is depressed as the front is elevated against the hard palate to push the bolus 

backward as shown in Figure 2.3. The oral phase ends when the bolus passes the 

anterior of the throat and touches the posterior wall of the pharynx. 

 
Figure 2.3: Oral phase [29]  
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2.2.1.3.  Pharyngeal phase 

During the pharyngeal phase, the airway is closed to prevent the entering of the bolus 

to the respiratory system. The soft palate is elevated and separated from the tongue to 

open a slit in the upper pharynx. At the same time, the nasal aperture is closed as a 

result of the elevation of the soft palate to prevent the bolus from entering into the 

nasopharynx region. In addition, the larynx is elevated and the laryngeal aperture is 

closed by the epiglottis to prevent the food from entering into the airway, as shown in 

Figure 2.4. 

 
Figure 2.4: Pharyngeal phase [29]  

2.2.1.3.1.  Laryngeal Sub-phase 

The pharyngeal phase contains a sub-phase called the laryngeal sub-phase. This sub-

phase involves few concurrent actions. First, the hyoid bone and the larynx are pulled 

upward and forward to enlarge the pharynx, which creates a vacuum that pulls the 

bolus down. Second, the vocal folds adduct. Third, the epiglottis closes the top of the 

larynx to force the bolus to enter the esophagus. 
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2.2.1.4.  Esophageal phase 

Finally, during the esophageal phase, the bolus travels down the esophagus to the 

stomach, propelled by a squeezing action of the throat muscles, as shown in Figure 2.5 

[29].  

 
 Figure 2.5: Esophageal phase [29]  

2.2.2. Dysphagia 

Dysphagia, difficulty in swallowing, manifests as one or more abnormalities in any 

phase of the swallowing process. It can cause serious problems such as malnutrition, 

dehydration, and respiratory infection. There are several conditions that can cause 

dysphagia, including stroke, head and neck cancer, multiple sclerosis, myasthenia 

gravis and PD. 

2.2.3. Evaluation of Swallowing  

To evaluate the ability of swallowing, there are several measurements that need to be 

calculated in each phase in the swallowing process. For example, in the pharyngeal 
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phase, tracking and analyzing of the hyoid bone’s horizontal and vertical movements, 

as well as the duration of these movements are very important measures. These 

movements are called the hyolaryngeal excursion [33]. 

In addition, in the pharyngeal phase, tracking the epiglottis movement by calculating 

the rotation angle of the epiglottis and the speed of the rotation are important 

measurements to evaluate the swallowing process. Moreover, the movement of the 

hyoid bone is related to the movement of the epiglottis. Consequently, any abnormality 

in the hyoid bone movement can cause abnormality in the epiglottis movement 

[16],[18].  

The transit time is another important class of measurements, which can be assesses by 

calculating the time that the bolus needs to pass specific regions such as oral and 

pharyngeal [8]. The Pharyngeal Transit Time (PTT) is defined as the time that the 

bolus takes to pass the region between the ramus of the mandible and the 

cricopharyngeal [3] (i.e., from the ramus of the mandible to the upper esophageal 

sphincter). The Oral Transit Time (OTT) defined as the time taken from the beginning 

of the backward movement of the bolus until the bolus tail passes the lower edge of the 

mandible (i.e., until it crosses the tongue base) [3].   

In addition, it is important to measure the amount of bolus residue after swallowing in 

several regions, such as oral (oral stasis), pharyngeal (pharyngeal stasis), valleculea 

(valleculea stasis) and pyriform recesses (pyriform recess stasis) regions. 

Aspiration and Penetration time are also important measures, which can be calculated 

as the time prior to, during and after the swallow when a bolus enters the airway.  
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Moreover, there are additional objective measurements that can be calculated from the 

movement of some soft tissues. These measures are mentioned in Baijens, et al., [6] 

and summarized in Table 2.1.  

Table 2.1: Several objective measurements with definitions [6] 

Name Definition 

GPJo (Glossopalatal junction opening) Moment of separation of the tongue and 
the soft palate 

GPJc (Glossopalatal junction closure) Moment of contact of the tongue and the 
palate after bolus propulsion 

GPJd (Glossopalatal junction duration) Δt between GPJo and GPJc 

VPJc (Velopharyngeal junction closure) 
Moment of the first contact of the soft 
palate against the posterior pharyngeal 
wall 

VPJo (Velopharyngeal junction opening) 

Moment of separation of the soft palate 
and the posterior pharyngeal wall with re-
entry of air in the retrolingual space from 
the nasopharynx 

VPJd (Velopharyngeal junction duration) Δt between VPJc and VPJo 

LVc (Laryngeal vestibule closure) 

Moment when laryngeal elevation results 
in making contact between the arytenoid 
cartilages and the underside of the 
epiglottis 

LVo (Laryngeal vestibule opening) 

Moment of separation of the arytenoid 
cartilages and the underside of the 
epiglottis with re-entry of air in the 
laryngeal vestibule 

LVd (Laryngeal vestibule duration) Δt between LVc and LVo 
UESo (Upper esophageal sphincter 
opening) 

Moment of opening of the esophagus with 
entry of either air or barium 

UESc (Upper esophageal sphincter 
closure) 

Moment of closure of the esophagus after 
bolus transport 

UESd (Upper esophageal sphincter 
duration) ΔT between UESo and UESc 

GPJo-LVc ΔT between GPJo and LVc 
GPJo-UESo ΔT between GPJo and UESo 
GPJo-UESc ΔT between GPJo and UESc 
Aspiration-penetration Moment of aspiration or penetration 

In addition, there are a group of subjective measurements mentioned in the same paper 

[6]. These measurements are evaluated using three-, five- or eight-point Likert scales, 
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where a smallest score refers to the normal ability of swallowing. These measures are 

summarized in Table 2.2.  

Table 2.2: Several subjective measurements with definitions [6] 

Name Definition Rating scale 

Pre-swallow anterior spill 
Preswallow loss of bolus 
from the lips 

Five-point scale (0–4) 

Pre-swallow posterior spill 
Preswallow loss of bolus 
into the pharynx 

Five-point scale (0–4) 

Lingual pumping 
Preswallow involuntary 
repetitive tongue 
movements 

Five-point scale (0–4) 

Swallow hesitancy 
Delayed onset oral 
transport 

Three-point scale (0–2) 

Piecemeal deglutition 
Sequential swallowing on 
the same bolus 

Five-point scale (0–4) 

Delayed initiation 
pharyngeal reflex 

Delayed onset pharyngeal 
triggering 

Three-point scale (0–2) 

Post-swallow oral residue 
Postswallow pooling in the 
oral cavity 

Five-point scale (0–4) 

Post-swallow vallecular 
pooling 

Postswallow pooling in the 
valleculae 

Three-point scale (0–2) 

Post-swallow pyriform 
sinus pooling 

Postswallow pooling in the 
pyriform sinuses 

Three-point scale (0–2) 

Penetration aspiration 
scale (PAS) 

Penetration and/or 
aspiration 

Eight-point scale (1–8) 

 

2.2.4. Clinical Assessment of the Dysphagia  

During the clinical swallowing assessment process, several modalities can be utilized 

to evaluate the ability of swallowing, e.g., ultrasonography and videofluoroscopy. In 

Yabunaka, et al. [44], ultrasonography is used to evaluate the hyoid bone movement 

because it is inexpensive and has no known side effects. Due to the large amount of 
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noise involved in the produced ultrasound images, the visual inspection of 

videofluoroscopy frames is still considered the gold standard method. 

VideoFluoroscopy or VideoFluoroscopic Swallowing Study (VFSS) is currently 

considered the most precise and accurate method for the capturing the swallowing 

process for clinical assessment.  It is defined as dynamic X-ray images of swallowing 

that combine traditional fluoroscopy with video technology to capture the motion and 

record it. Using this video, the swallowing process is reviewed by a specialist in real 

time, frame-by-frame, or in slow motion. To capture a fluoroscopic video of the 

swallowing process, the subject sits upright in front of an X-ray machine while the 

camera records a lateral view of the head and neck area, as shown in Figure 2.6. 

During this recording process, subjects are asked to eat food mixed with barium to 

make the bolus visible in the X-ray video. The radiologist usually gives the subject soft 

food, hard food or liquids in various quantities. The X-ray machine is turned on only 

during the swallow to limit the radiation dose. See Palmer et al. [34] for a detailed 

description of the VFSS procedure. 
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Figure 2.6: Patient seated on the platform attached to the fluoroscopy table so that the 
upper aerodigestive tract can be viewed laterally [29]  
 

2.2.5. Medical Studies Background  

Currently, radiologists still perform visual inspection to assess and examine 

videofluoroscopic images. Many medical studies rely on radiologists’ visual inspection 

to calculate some of the measurements like hyoid bone movement, transit time and 

bolus residual in several regions. 

There are many studies that assess various measures that indicate a swallowing 

disorder through visual inspection of videofluoroscopic images. Rosenbek et al. [39] 

evaluate the accuracy of an eight-point Likert scale to indicate the penetration and 

aspiration during the swallowing process. Kahrilas et al. [23] analyze the mechanism 

of volume accommodation. Robbins et al. [36] use the same scale in [39] to evaluate 

airway protection. Eisenhuber et al. [15] evaluate the clinical significance of 

pharyngeal retention to predict aspiration in patients with dysphagia. Moreover, 

Kendall et al. [25] identified abnormalities of the timing and extent of Upper 
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Esophageal Sphincter (UES) opening in dysphasic elderly patients. Perlman et al. [35], 

determine the relationship between events observed with simultaneous 

videofluoroscopy and respirodeglutometry. In addition, Gokyigit et al. [17] investigate 

the time interval between glottis closure and the opening of upper esophageal 

sphincter. Rofes et al. [37] diagnose oropharyngeal dysphagia in the elderly. Choi et 

al. [10] investigate the mechanisms of aspiration with respect to the viscosity of 

ingested material. 

Some of medical studies focus on dysphasic patients under specific medical 

conditions, For example, several studies focus on dysphasic patients with stroke 

[19],[11],[43]. Kluin et al. [26] evaluate the dysphagia in elderly with myasthenia 

gravis. In addition, Eisbruch et al. [14] study patients with head and neck cancer. Sun 

et al. [41] study patients with globus pharyngeus. Higo et al. [20] assess patients with 

myasthenia gravis. Jang et al. [22] measure the ability of swallowing for patients with 

vocal cord paralysis. Namaki et al. [32] focus on patients with oral cancer. Leonard et 

al. [28] evaluate swallowing parameters in dysphasic patients after anterior cervical-

spine surgery.  

Several studies attempt to measure the reliability of analysis the videofluoroscopic 

images. Kuhlemeier et al. [27] measure the intra- and inter-rater variation in the 

evaluation of VF swallowing. Mccullough et al. [31] measure the inter- and intra-judge 

reliability of videofluoroscopic footage. Finally, Stoeckli et al. [40] assess the 

interobserver reliability of videofluoroscopy for swallow evaluation.  

Additionally, some studies evaluate the accuracy of computational methods of 
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obtaining relevant measures from videofluoroscopic footage from a medical 

perspective. Rommel et al. [38] studied the growth of the oropharynx and 

hypopharynx in infants and young children using a computer program designed 

specifically for this purpose. Also, Dyer et al. [13] calculate the bolus residue in the 

valleculae through computer assessment. 

 It is important to note that even though several of the above mentioned studies apply 

some level of computer assessment, all of them involve visual inspection and manual 

assessment. The main drawback of visual inspection of videofluoroscopic images is its 

subjective nature; radiologists usually face intra- and inter-observer repeatability issues 

and bias when taking measurements [4]. Moreover, the visual inspection process is 

expensive, complex, and time consuming. Consequently, there are several research 

programs aimed at automating the evaluation of the swallowing process. 

2.3.  Computer Aided Diagnosis (CAD) Background  

Computer Aided Diagnosis (CAD) is an approach to engineering diagnostic tools, 

which assumes that there is a role for both human experts and computers in an efficient 

and accurate diagnostic process. CAD is different from automatic computer diagnosis, 

which attempts to replace human diagnosticians completely [12]. In most CAD 

systems, digital medical images are analyzed by computer systems; however, the result 

is used as a second opinion to assist physicians to make their final diagnostic 

decisions. In the next subsections, recent CAD systems for analyzing the swallowing 

process are summarized. 
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2.3.1. Calculating OTT and PTT  

Aung et al. [3] introduce new software that helps radiologists to quantify OTT and 

PTT (described in Section 2.2.3) using two boundary lines or landmarks that separate 

the oral cavity from the pharynx and the pharynx from the esophagus, respectively, as 

shown in Figure 2.7.  

 
Figure 2.7: The first step in this system is to initialize the landmarks at the showing 
locations [3] 
 

After initializing the landmarks by user interaction, the registration process is applied 

to update the coordinate of the landmarks in each frame in order to compensate for the 

patient’s movement during the swallowing process. Then, a spatiotemporal plot can be 

generated. The intensity and the rate of change of intensity of the pixels at the 

landmark are plotted against both time (frame number) and location along the length of 

the landmark. When the bolus passes by the landmark, a black area appears on the 

spatiotemporal plot.  

Finally, the system is automatically determining the frame number, α, at which the 
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bolus head arrives at the landmark and the frame number β, at which the bolus tail 

passes the landmark. These frame numbers can be used to calculate PTT and OTT. The 

correlation coefficients between the results obtained by the three oral pathologists and 

the CAD system are calculated. 

A second study [5] implements the same idea as in the previous study [3]; however, it 

has some alternative methods applied in the last stage (the way of calculating α and β 

frames). All beginning stages are the same as in the previous study [3].  

2.3.2. Determining several boundaries automatically      

Another study by Aung et al. [4] introduces a CAD system with minimal user input 

that could determine accurate locations for several boundaries of the anatomical 

swallowing region using a deformable shape template. This template can be 

automatically fit to each image using the Active Shape Model (ASM).  

During the swallowing assessment, radiologists focus on several anatomical regions 

including the pharyngeal, laryngeal and hyoid bone. Therefore, a simple shape model 

is designed by marking the boundaries of these regions using only 16 points (eight 

straight lines). These points represent the vertebrae, the hyoid bone and the laryngeal 

walls as shows in Figure 2.8. 
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Figure 2.8: The 16-points active shape model demarcating 8 salient edges [4] 

The training set of shapes is manually created by locating these 16 anatomical points in 

each image in a training database. To determine the statistics of the relative variations 

of shapes, the Principal Component Analysis (PCA) method is applied to find the 

principal axes of the ellipsoidal clusters. 

Once the mean shape, range and modes of allowable shape variations are determined 

from the training set, the next step is to find the best fitting model in a new image. 

Overall, fitting was found to be more reliable on the vertebrae and inferior points of 

the larynx compared to the superior laryngeal points and hyoid bone.    

2.3.3. Calculating the PTT, OTT and hyoid bone trajectory  

Ceccarelli et al. [8] attempts to measure the swallowing parameters using a semi- 

automatic system. The main goal of this study is to calculate the OTT, PTT, and the 

trajectory of the hyoid bone movement.  
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For calculating the transit time, a radiologist defines two straight lines as the 

landmarks in the first frame, as shown in Figure 2.9. Then, the landmarks in each 

frame were calculated. Finally, PTT and OTT can be calculated after extracting the 

frame numbers at which the bolus arrives and passes the landmarks respectively.   

 

Figure 2.9: Landmarks positions in this system [8] 

The second task in this system is tracking the hyoid bone movement. A radiologist 

chooses two frames that show the resting position for the hyoid bone (R-frame) and 

maximum displacement of the hyoid bone (M-frame). The radiologist should select 6 

points in these frames to assist the system in calculating the horizontal and vertical 

displacement of the hyoid bone. 

2.3.4. Oral movement   

Chen et al. [9] proposed a CAD system that computes measurements of oral movement 

in videofluoroscopic images. The system can automatically track small metal markers 

attached to the subject’s tongue and teeth by utilizing template matching. Generic 

templates of markers are designed by inspecting the shape, size and gray-value pattern 

of manually identified markers in the sample shape. The generic template is matched 

in the frames to find the location of the markers. Due to the head movement, the 
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movement markers are expressed with respect to a number of reference markers.  

2.4.  More medical background most related to this thesis  

For our research, we have designed a CAD system that is focusing on tracking the 

hyoid bone and epiglottis movement in PD patients. The main goal of this research is 

minimizing the required input from the user (user interaction) to streamline 

radiologists’ workflow. As described in Section 2.2.3, calculating the movement of the 

hyoid bone and epiglottis are important measures to evaluate the swallowing ability.  

It is worth mentioning that, the hyoid bone is not connected with other bones; instead, 

it is attached to a group of muscles under the tongue. The shape of this bone is like a 

horseshoe (similar to letter the U). The surrounding muscles direct the hyoid bone 

during swallowing; this movement has both vertical and horizontal components. The 

epiglottis is a small flap of cartilage located at the base of the tongue under the 

mandible. The main function of the epiglottis is protecting the larynx by closing the air 

channel to prevent the bolus from entering the airway. In the next subsections, 

additional information about the hyoid bone and epiglottis that is pertinent to our 

research is reported.  

2.4.1. Epiglottis  

2.4.1.1.  Movement of the epiglottis  

The epiglottis can be seen in x-ray images as a leaf-shaped flap of cartilage tissue and 

lies just behind the root of the tongue [18]. It is on the right side of the hyoid bone and 
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the left side of the C2 - C3 - C4 cervical vertebrae, under the mandible and upper 

airway channel. The epiglottis can be seen in the white box in Figure 2.10. 

 

Figure 2.10: The epiglottis place in the x-ray (frame from the available data) 

In normal swallowing, the epiglottis moves from its vertical resting position, tilts 

completely downward, and returns to its resting position in less than a second. The 

epiglottis tilts down in two steps during swallowing: The first movement is from an 

upright to a transverse position. The second movement is from a transverse position to 

inverted position when the epiglottis tilted completely into esophageal [16]. The tilting 

process is illustrated in Figure 2.11. 

 
Figure 2.11: Normal movement of the epiglottis The epiglottis is in the resting 
position. The arrows show its movements. First, tilts completely down. Second, return 
back to resting position [18] 
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2.4.1.2.  Epiglottis measurements  

There are several studies that focus on epiglottis movement. Ekberg et al. [16] describe 

the normal epiglottis movement from anatomical point of view. In contrast, Garon et 

al. [18] identify the abnormal pattern for the epiglottis movement in the dysphasic 

patient. Pike et al. [33] calculate the angle of the epiglottis rotation for the normal 

subject and dysphasic patients from different epilogists. Their results indicate that the 

rotation angle of the epiglottis for the patient groups is significantly different than that 

of the normal group. See Figure 2.12 that shows the mean of the epiglottis rotation for 

normal and patient groups.  

 

Figure 2.12: Mean for the rotation angle of the epiglottis [33] 

Analyzing the epiglottis movement can yield several important measurements. First, 

the rotation angle can be calculated. The initial angle is 0 when the epiglottis in the 

resting position, the angles are calculated in the clockwise direction. To achieve this, a 

line from the base to the tip of the epiglottis is identified. Then, the rotation of the 

angle is computed. In addition, the maximum angle of the rotation can be estimated 
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when the epiglottis is completely downward (tilted). Finally, the speed of the rotation 

can be measured as well. 

These measurements can be used to evaluate the epiglottis’s ability to protect the 

airway and can help to measure the movement status (normal or not). In addition, 

identifying the movement pattern can help the radiologist to recognize the etiology of 

the dysphagia. Moreover, the speed of the rotation can be significant for determining 

aspiration status. The speed of rotation is estimated by measuring the time elapsed to 

complete one rotation (normal time for one rotation < 1 second) [16],[18]. 

2.4.2. Hyoid bone  

2.4.2.1.  Movement of the hyoid bone  

In the X-ray, the hyoid bone can be seen as a U-shaped form just behind the epiglottis. 

The hyoid bone is under the mandible and in the left side of the epiglottis, which is on 

the left side of the C2 - C3 - C4 vertebrae. The hyoid bone can be seen in in the white 

box in Figure 2.13.  

 
Figure 2.13:  The hyoid bone place in the x-ray show in white box (available data) 
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The movement of the hyoid bone during swallowing has both vertical and horizontal 

components. During normal swallowing, the hyoid bone moves upward and forward, 

and then pauses in place for a short time. Then, the hyoid bone moves downward and 

backward to its original position. Figure 2.14 shows the normal trajectory of the hyoid 

bone.   

 
Figure 2.14: Pattern of normal movement of the hyoid bone (edit from [33]) 

 

2.4.2.2.  Hyoid bone measurements  

Tracking hyoid bone movement can yields several important measurements; horizontal 

and vertical displacement, as well as duration of movement indicate normality (or 

abnormality) of the swallowing process. In addition, speed of the horizontal and 

vertical displacement is essential to evaluate the hyoid bone ability during swallowing.  

For tracking the hyoid bone, several studies have tried to track the hyoid bone 

movement manually. Paik et al. [33] examine the hyoid bone and epiglottis 

trajectories, comparing healthy subjects in a control group against dysphasic patients in 

an experimental group. In addition, Tsushima et al. [42] examine hyoid bone 
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movement during sequential swallowing and evaluate the relationship among 

trajectory patterns. 

However, there are other studies that tried to track the hyoid bone movement semi-

automatically by designing a special CAD system for that. Kellen et al. [24] focuses on 

the hyoid bone movement during the swallowing process. In their system, the 

radiologists should identify the hyoid bone on one frame, which is the Region Of 

Interest (ROI) as shown in Figure 2.15.  

 
Figure 2.15: User defined template for the ROI (green pixels) approximately cover the 
hyoid bone and surrounding pixels [24]  
 

The next step is tracking the template for the entire image sequence by matching the 

edges. To accurately track the hyoid bone with respect to the patient, Kellen et al. 

compute a patient-centric coordinate system. This system accounts for the subject's 

head and neck movement.  

Hossain [21] designed a special semi-automatic CAD system that focused on tracking 

the hyoid bone movement from videofluoroscopic images. At the beginning of the 

process, the system identifies the beginning of the swallow segment automatically. 

Then, the ROI that has the cervical vertebrae was identified in all frames automatically 

by a classification-based approach that needs a special training. To identify the three 

cervical vertebrae and the hyoid bone that are located in the ROI for all frames, 
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template matching was utilizing after indicating the objects of interest by user input. 

The tracking coordinates for the hyoid bone were transformed to the other reference 

system associated with the patient’s structure to isolate the patient’s movement from 

the hyoid bone movement. The system produces successful results for tracking the 

hyoid bone. 

2.4.3. Correlating hyoid bone and epiglottis together  

There are several interconnected muscles and ligaments in the area between the 

epiglottis and the hyoid bone. The epiglottis is suspended between the adjacent 

structures by fibroelastic elements. The anterior aspect of the epiglottis is connected by 

the hyoepiglottic to the hyoid bone. This suspension of the epiglottis implies that the 

movement of the thyroid cartilage and the hyoid bone are promptly transmitted to the 

epiglottis [16].  

An approach of this structure tilts the epiglottis downward to a transverse position, 

while structure subsequent separation returns the epiglottis to its resting and upright 

position. Therefore, the first movement of the epiglottis from upright to transverse 

position is accomplished by elevation of the hyoid bone and the thyroid cartilage. This 

movement is a passive one, induced by the muscles that lift the hyoid bone. The 

epiglottis’s tilt downward (by 90 degree) is synchronized with the elevation of the 

larynx and hyoid bone [16].  

The second movement of the epiglottis is from the transverse position to a position 

with its tip in the esophageal. This movement is the result of muscles acting directly on 

the epiglottis. This movement occurs later in swallowing and is related to contraction 
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of the thyroepiglottic muscle. During this phase of movement the epiglottis is tilled 

further down 30-90 degrees [16].  

The available evidence shows that, the hyoid bone moves horizontally and vertically in 

sync with the downward-to-transverse movement of the epiglottis. The tip of the 

epiglottis tills down (to the transverse position) while the hyoid bone moves upward 

and forward2. Figure 2.16 shows the positions for the epiglottis and the two 

movements of the epiglottis.  

   
(a) (b) (c) 

Figure 2.16: Three positions for the epiglottis. (a) Resting position, (b) Transverse 
position (c) Final position 
 

 

                                                
2Note that the maximal position of the epiglottis is reached following both the downward-to-
transverse movement and the further movement resulting from internal muscular contraction. 
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2.5. Summary 

This chapter describes how to evaluate and assess a swallowing disorder (dysphagia) 

that can occur due to various diseases. Additionally, it discusses recent CAD studies 

for analyzing the swallowing process using VF. Although several groups work in this 

field, a complete automatic system has not been derived yet. Furthermore, several 

measurements to evaluate the swallowing process have not even been semi-automated. 

At the end of this chapter, we describe hyoid bone and epiglottis movement; 

automating measurements associated with this process is the focus of our research. 

Even though some studies tried to automate hyoid bone, there is no study that tried to 

automate the epiglottis movement. Furthermore, no one has tried to correlate the hyoid 

bone movement with epiglottis movement automatically.  



 

 31 

  

 

Chapter 3  
 

Data and Proposed Method  
 

This chapter contains three significant parts. Section 3.1 describes the data that are 

used in this research in detail. In Section 3.2 the pre-processing steps are described. 

Finally, the actual processing is explained in Section 3.3.  

3.1. Data  

3.1.1. Data Acquisition  

The data used in this research were acquired and stored using the Picture Archiving 

and Communication System (PACS). PACS is a medical imaging technology used by 

radiologists to capture, store and access image data from multiple sources. 

In this research, the only modality we consider is X-ray images. After images are 

captured from an X-ray machine, the image data are archived as video sequences. 

These sequences are then recorded on a DVD disc which can be played in a typical 
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DVD player. Some of the characteristics of the videos recorded on the DVD discs are 

shown in Table 3.1.  

Table 3.1: Characteristics of the videos in the original DVDs 

Encoding scheme MPEG-2 
Frame format YUV420P 

Frame rate 30 fps 
Frame size 720x480 

 

3.1.2. Data Description  

3.1.2.1. Data Format  

The DVD media contains a number of files that serve different purposes. This study is 

only concerned with the files that contain image data; that is, only the files that end 

with a .VOB (Video OBject) extension. Each swallowing session (i.e., each series of 

swallowing video captures associated with a single patient) is divided into a number of 

VOB files to be recorded on the DVD disc. Each disc may contain more than one 

swallowing session. Each DVD disc contains several .VOB files. The names of these 

files started by the three letters VTS (Video Title Set) and follow the naming 

convention VTS_nn_x.VOB, where nn is from 1 to 99 and x is from 1 to 9. All VOB 

files are encoded in standard MPEG-2 video format. 



Chapter 3: Data and Proposed Method 

 
33 

3.1.2.2. Interface to the data  

Our research software uses the FFMPEG3 project for input and output operations on a 

DVD VOB file. FFMPEG is an open source software that provides facilities for 

handling multimedia data including video. FFMPEG offers a variety of features. The 

features used in our research are listed as follows: 

• VOB encoding/decoding.  

• Reading/writing from/to various types of video files formats (e.g., avi, vob) 

• Accessing to various attributes of a video file (e.g., pixel format, frame numbers) 

• Converting between various types of multimedia data (e.g., avi, pgm, jpeg) 

In addition, in this research the OpenCV library is used. OpenCV (Open Source 

Computer Vision) is a library of programming functions for real time computer vision 

[2]. See Appendix B for a list of the main OpenCV functions that have been utilized in 

this research.  

3.2. Data pre-processing 

After the data are acquired, the videos in the DVD discs go through several pre-

processing steps. Ishtiaque Hossain wrote software to perform the first pre-processing 

step required for this research project in 2012 [21]. This first step consists of removing 

patient information from frames. Hossain identifies frames containing patient 

                                                
3 The formal website for FFMPEG http://www.ffmpeg.org/ 
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information using frame variance and replaces these frames with a special frame that is 

entirely black except for the first four white pixels (starting from the top-left of the 

frame). At the end of this step, he generated a folder that contains several AVI files 

that have been encoded using FFV1 lossless intra-frame video codec.  

3.2.1. Removing black frames 

Picking up where Mr. Hossain left off, the second pre-processing step is to remove the 

artificial black frames that have been added by Mr. Hossain’s pre-processing step. 

These frames are easy to remove as they have fixed structure (four white pixels 

followed by black pixels). These mostly black frames have been removed to speed the 

process.  

3.2.2. Generating single swallow videos  

The third pre-processing step is to divide videos into several “single-swallow” 

segments, each one depicting exactly one swallow process. The purpose of this step is 

to simplify the coming processing steps for independent “single-swallow video”. As 

explained in Section 2.2.4, each video is an X-ray of a human subject’s head and neck, 

as the subject swallows different types of food that have been mixed with barium. The 

original data from the DVD contains continuous footage of multiple clips, each 

depicting a single swallowing processes. To make matters worse, sometimes a single 

swallowing process spans two AVI files, when a swallowing process beginning near 

the end of one file and ending near the beginning of the next. See Figure 3.1.   
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Figure 3.1: Example of the swallowing process order in a two avi files 
 

In this pre-processing step, a single-swallow video file is created for each swallowing 

process depicted in the original footage; these video files have the technical 

characteristics as described in Table 3.2. The output of this pre-processing step is a 

series of single-swallow videos.  

Table 3.2: Characteristic of the videos that generated in the third pre-processing 
Encoding scheme FFV1 

Frame format Gray8 
Frame rate 25 fps 
Frame size 720x480 

 

This pre-processing step starts by identifying the beginning of the swallow. At a 

predefined location in the top-right corner of each frame, the X-ray machine adds a 

special marker to identify the frame as a beginning of a swallowing process or not. See 

Figure 3.2.  
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Figure 3.2: Marker location in a frame 

For the first few frames of every captured swallowing process, the special marker is set 

to be a white two-digit number on a black background—we will refer to these frames 

and these markers as number-frames and number-markers, respectively (see Figure 

3.3). The used marker in the rest of the frames of the swallowing process is a black 

“XX” on a light grey background—we will refer to these frames and markers as XX-

frames and XX-markers, respectively (see Figure 3.4). As such, identifying the 

beginning of a swallow process involves analyzing the top-right corner of each frame 

to locate and recognize the beginning of the swallowing process in the video footage. 

  
(a) (b) 

Figure 3.3: Two examples of a number-marker 

 

 
Figure 3.4: An Example of XX-marker 
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There are many methods that can be used to identify number-frames. Two of them are 

using template matching or calculate the average. The first method utilizes the 

correlation coefficient between the marker area of each frame and a template from a 

“typical” XX-marker, where a threshold is empirically defined and used to identify the 

frame type.  

The second method that can be used to identify the number-frames is to utilize the 

average pixel value of the marker area. As shown in Figure 3.3 and Figure 3.4, the XX-

marker is brighter than that in the number-marker. To demonstrate this observation, 

the averages of the pixel values in the marker areas for 20 random XX-markers and 20 

random number-markers (see Figure 3.5) are calculated and plotted (see Figure 3.6). 

          

          

          

          

Figure 3.5: Samples of xx-markers and number-markers areas 

The results illustrate that the averages of the XX-marker intensities do not exceed 163 

and do not go less than 158. For the number-marker, the averages do not exceed 63 

and do not go less 59. The threshold we use to differentiate between markers of each 

type is the “middle value” between 63 and 158 i.e., 110.5. That is, if the average 

intensity value of the marker area is less than 111, the frame is a number-frame. 

Otherwise, the frame is an XX-frame.  



Chapter 3: Data and Proposed Method 

 
38 

 

Figure 3.6: Average pixel values of the marker area in 20 random XX-frames and 20 
random number-frames 

The first method (correlation coefficient method) needs to load a template marker and 

do multiple operations on both images (input frames & template marker) each time to 

calculate the correlation coefficient. On the other hand, the second method (the 

average of the marker area method) is a simple procedure and does not require loading 

template marker for comparison. For the purpose of this thesis, the second method was 

applied, as it is more efficient and equally effective.  

3.3. Processing Data  

3.3.1. Locating main area for processing  

The main area, or main region-of-interest, during all processing steps is referred as the 

main-roi. The main-roi is a center area that is about 45% of the original image size. 

The main-roi is framed by the text at the top and bottom of the image, and the black 

areas on left and right sides; that is to say, it is defined as the area below the text at the 

top, above the text at the bottom, and between the black areas to the left and right. 
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After doing simple experiments to identify the main-roi in individual patients images, 

it was determined that the top-right corner of the main-roi is situated at 120 pixels 

from the right edge and 80 pixels from the top edge, with a width of 525 pixels and a 

height of 300 pixels. Figure 3.7 shows the main-roi in one frame. The main-roi is fixed 

for all swallowing segments in all patients. Defining the main-roi as the region of 

interest for all processing steps reduces the search space for locating smaller points and 

areas of interest. Two functions from the OpenCV library are used to set and reset the 

Region Of Interest (ROI) in the images, cvSetImageROI and cvResetImageROI [2]. 

See Appendix B.  

 

Figure 3.7: Example of the main-roi in a frame 
 

3.3.2. Locating first frame for processing  

As mentioned in Section 3.2.2, the swallowing process starts with a group of number-

frames followed by a group of XX-frames. The processing steps associated with a 

particular swallow start at the first XX-frame. However, the first 25 XX-frames of the 

swallowing (i.e., the first second) are ignored because of the transition of the 
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illumination intensity of the light during this time. Figure 3.8 shows an example of a 

transitional intensity frame in the first second.   

 

Figure 3.8: Example of a transitional intensity frame in the first second of the 

swallowing 

 

3.3.3. Identifying the Region Of Interest (ROI) 

The first step for processing data is identifying the region of interest (ROI) that 

contains the second, third, and fourth cervical vertebrae (C2, C3, and C4, respectively). 

We can refer to this area as vertebrae-area. Identifying this area is important because 

the hyoid bone and the epiglottis area are located at the left side of the vertebrae-area. 

Using the vertebrae-area the three cervical vertebrae (C2, C3, and C4) can be 

identified. In addition, the vertebrae-area can be used to generate a frame reference 

point that is anchored by the patient’s location in the frame rather than the frame itself. 

The vertical axis (V-axis) of this reference co-ordinate is defined by the bottom-left 

corners of a simple bounding box around the regions identified by the C2, C3, and C4 

vertebrae (see the blue and red boxes in Figure 3.9). The horizontal axis (U-axis) is 
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simply defined by the line perpendicular to the V-axis that passes through the bottom-

left corner of the C4 box (the origin). This axis definition is illustrated in Figure 3.9. 

 

Figure 3.9: The ROI and axes defined by the patient’s location in the frame. The white 
box is the vertebrae-area that contains C2, C3, and C4 boxes. The yellow box contains 
the hyoid bone and epiglottis. 
 

3.3.3.1.  Identifying the vertebrae-area  

As mention in [21], the vertebrae area cannot be easily identified using typical image 

segmentation techniques such as edge detection, binarization and corner detection 

algorithms. In this context, SURF is used to identify the vertebrae-area. 

SURF (Speed Up Robust Features) is a computer vision algorithm presented by Bay et 

al. in 2008 [7]. SURF is a scheme that can find corresponding points in two images for 

the same object. Finding the corresponding points in separate images is a three-step 

process:  

1. Detecting interest points at distinctive locations such as corners, blobs.  
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2. Representing the neighborhood of each distinctive point as a feature vector 

called a descriptor.  

3. Matching descriptors for both images based on the distance between vectors. 

The OpenCV library provides a function for extracting SURF data from an image. This 

function can be used for object tracking and localization [2]. See Appendix B. 

For this research, the SURF function is used for each frame to identify the vertebrae-

area in the image. To identify the vertebrae-area, the user must select the vertebrae-

area in the first frame to be processed. This manually selected area is used as a 

template image (an example is shown in Figure 3.10). Then, SURF tracks the 

vertebrae-area in the next images, which have points of interest similar to the template 

image.  

 

Figure 3.10: An example of the selected vertebrae-area 
 

The main-roi is used as a searching area for locating the vertebrae-area. SURF is 

rotation-invariant; that is, when the patient tilts her or his head back and forth, the 

SURF can still detect the vertebrae-area. The output of the SURF algorithm is a top 

left corner of the vertebrae-area in a current frame. Then, a box around the vertebrae-
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area is generated with the same size and orientation as the user specified in the first 

frame. The generated box should follow two rules: 

• The generated box should be inside the main-roi area. 

• The maximum horizontal displacement for the vertebrae-area between two 

consecutive frames should not exceed three pixels; likewise vertical 

displacement should not exceed two pixels. See Section 3.3.3.3 for a more 

detailed discussion of this constraint. 

Figure 3.11 shows an example of a frame after applying the SURF scheme, where the 

vertebrae-area is correctly identified. One advantage of using the SURF scheme is that 

the object can be located without training data. 

 

Figure 3.11: Example of a frame after applying SURF 
 

3.3.3.2. Identify the three cervical vertebrae (C2, C3 and C4)  

For tracking the three cervical vertebrae, a template-matching method is used instead 

of SURF. SURF does not give good results with these three cervical vertebrae because 



Chapter 3: Data and Proposed Method 

 
44 

the template images for the three cervical vertebrae are small and do not have enough 

points of interest to find them in vertebrae-area. 

The OpenCV library provides a function called cvMatchTemplate that applies an 

appropriate template-matching technique. This function slides through the image and 

compares the overlapped patches with the template image, returning the patch that best 

matches the template image [2]. See Appendix B.  

The user must individually select the three cervical vertebrae (C2, C3, and C4) in the 

first frame to be processed. Each of the three selections is used as a template image (an 

example is shown in Figure 3.12). Then, the template-matching algorithm is applied 

three times (once for each vertebra). The vertebrae-area is used as a searching area to 

locate the three vertebrae.  

Unluckily, the template-matching scheme in OpenCV does not provide object rotation. 

To solve this problem, the template image is rotated 2 degrees in both directions, 

starting at the rotation angle from the pervious frame, each time for all frames. Then, 

the best match between the rotated templates and the object in the image is considered 

by calculating the correlation coefficient. When applying the template-matching 

scheme, the output is a top left corner of the cervical vertebra area. A box around the 

cervical vertebra is generated with the same size and orientation as the user specified 

in the first frame. 
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(a) (b) (c) 

Figure 3.12: Example of the three selected vertebrae areas; (a),(b), and(c) showing the 
C2, C3 and C4 areas, respectively 

 

The ideal arrangement locations for the three cervical vertebrae is shown in Figure 

3.13.  

 

Figure 3.13: Ideal arrangement for the three cervical vertebrae 

 

The locations of the three cervical vertebrae should satisfy several rules: 

• Each box of the cervical vertebra should be inside the vertebrae-area. See 

Figure 3.14 (a).  

• C2 box should be above C3 box and C3 box should be above C4 box. See 

Figure 3.14 (b).   

• The horizontal displacement between the three cervical vertebrae boxes should 

be consistent. See Figure 3.14 (c).  



Chapter 3: Data and Proposed Method 

 
46 

• The vertical space between the three vertebrae should be fixed in all frames 

because the bone structure does not change during the swallowing process. 

Meaning, the space between C2-C3 or between C3-C4 should be similar in all 

frames. 

• The maximum horizontal displacement of a vertebra between two consecutive 

frames should not exceed three pixels; likewise vertical displacement should 

not exceed two pixels. See Section 3.3.3.3 for a detailed discussion of this 

constraint.  

   
(a) (b) (c) 

Figure 3.14: Some examples for the rejected vertebrae cases (a) vertebrae outside 
vertebrae-area (b) vertebrae in wrong order (c) vertebrae have inconsistent horizontal 
displacement 

 

3.3.3.3. Determining maximum speed of patient movement 

Estimating the upper bound on the speed of a patient’s head and neck movement was 

needed to calculate several of the constraints described in Section 3.3.3.1 and Section 

3.3.3.2. To do so, an experiment was performed by choosing five single-swallow 

videos from five different patients that exhibited noticeable movement of the patient’s 

head. The bottom left corner of the C2 vertebra was located manually in all frames. 
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Then, the difference between the two locations in each pair of consecutive frames was 

calculated. Figure 3.15 and Figure 3.16 show the horizontal and vertical displacements 

for the five patients, respectively. The maximum horizontal displacement was three 

pixels from frame to frame (except in very few outlier cases, where the maximum was 

5 pixels), while the maximum vertical displacement was only two pixels. In this 

research, we decided to ignore the outlier cases. Hence, we estimated the maximum 

horizontal displacement to be three pixels, while the maximum vertical displacement 

to be two pixels. 
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Figure 3.15: Horizontal displacement in pixels for five patients 
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Figure 3.16: Vertical displacement in pixels for five patients 
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3.3.4. Generating patient-relative frame of reference 

After applying the template-matching and identifying the three cervical vertebrae, the 

three bottom left corners of the cervical vertebrae boxes are used to generate the new 

axes. These three points are sent to the cvFitLine function [2] (See Appendix B) to 

calculate the best fitting line between them, which is the vertical axis (V) of the new 

axes. Then, the perpendicular line (U) that passes through the left bottom corner of the 

C4 can be computed. Figure 3.17 shows the simulation for the new axes and their 

signs. Because the new axes are relative to the cervical vertebrae of the patient, they 

move with the patient’s movement and the final trajectory of the hyoid bone and 

epiglottis can be calculated relative to the patient. The patient-relative frame of 

reference is essential to isolate the movement of the hyoid bone and epiglottis from the 

patient’s movement. 

 

Figure 3.17: A simulation example of the new axes and their signs. The top left quarter 
is the positive quarter  
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3.3.5. Hyoid bone and epiglottis area 

The area that has the hyoid bone and epiglottis is in the left side of the vertebrae-area 

(see, for example, Figure 3.9). This area is easy to identify because the vertebrae-area 

has already been identified using methods described in Section 3.3.3.1. 

3.3.5.1. Tracking the hyoid bone  

To accurately track the hyoid bone and the epiglottis, the user must identify them in 

the first frame using three points. These three points are (from left-to-right) the center 

of the hyoid bone, the base of the epiglottis and the tip of the epiglottis (see Figure 

3.18). The optical flow Lucas-Kanade algorithm [30] is used to track the hyoid bone 

point across all frames.  

 

Figure 3.18: An example of identified hyoid bone, base and tip of the epiglottis in a 
videofluoroscopic frame 
 

Optical flow is a method for estimating the motion of an object in sequential frames 

without any prior knowledge other than its initial location. One of the most popular 

optical flow tracking techniques is the Lucas-Kanade (LK) algorithm. The Lucas-
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Kanade algorithm was proposed in 1981 [30]. The LK algorithm relies on local 

information that is derived from a small window surrounding the points of interest.  

The OpenCV library provides a function that calculates the optical flow using the 

iterative Lucas-Kanade method. This function calculates the coordinates of the points 

of interest on the current video frame given their coordinates on the previous frame 

[2]. See Appendix B.  

The optical flow function receives as input the hyoid area from the previous and 

current frame, as well as the coordinates of the hyoid bone in the previous frame. The 

optical flow function returns the coordinate of the new location for the hyoid bone in 

the current frame. The new coordinate of the hyoid bone location should be inside the 

provided hyoid area.  

3.3.5.2. Tracking the tip of the epiglottis     

The tip of the epiglottis goes down while the hyoid bone moves upward and forward. 

Using the hyoid bone location, the area that has the tip of the epiglottis can be 

identified in order to find the exact location for the tip.  

 

Figure 3.19: Epiglottis tip area that can be identified using hyoid bone location 
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To track the tip of the epiglottis, optical flow LK is applied as mentioned in Section 

3.3.5.1. The optical flow function receives as input the tip area from the previous and 

current frame, as well as the coordinates of the tip in the previous frame. The optical 

flow function returns the coordinate of the new location for the tip in the current frame. 

To accurately locate the tip location, the tip area needs to be filtered by a Laplacian 

filter before applying the optical flow LK algorithm. The new tip location should be 

located inside the tip area and the horizontal displacement for the tip location between 

two consecutive frames should not exceed three pixels; likewise the vertical 

displacement should not exceed two pixels, as described in Section 3.3.3.3.  

3.3.5.3. Tracking the base of the epiglottis  

The hyoid bone location, which was identified by the LK optical flow scheme, and the 

tip area are used to approximate the new location for the base of the epiglottis.  

As mentioned in Section 2.4.3, the first movement of the epiglottis is a consequential 

movement. This movement happens synchronously with the hyoid bone movement, 

i.e. the hyoid bone vertical and horizontal movements lead to the epiglottis movement 

to the transverse position. When the hyoid bone moves, the base of the epiglottis is 

pulled because the base of the epiglottis is attached to the ligaments between the hyoid 

bone and epiglottis. At the same time, the space between the base and the tip of the 

epiglottis are fixed because the epiglottis size does not change while swallowing. 
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3.3.5.3.1. Manual experiments  

To demonstrate the pervious observation, manual experiments were done on 10 single-

swallow videos for 10 different patients. The hyoid bone, the base and the tip of the 

epiglottis are located manually in all frames. The relations between the coordinates of 

the three points were analyzed. The correlation between horizontal and vertical 

displacements between hyoid bone, base and tip of the epiglottis were calculated as 

shown in Table 3.3. 

Table 3.3: Pairwise horizontal and vertical correlation between hyoid bone, base and 

tip of the epiglottis  

 
Horizontal (X values) Vertical (Y values) 

Patient (H,B) (H,T) (B,T) (H,B) (H,T) (B,T)4 
1 0.927 -0.194 -0.032 0.945 0.061 0.194 
2 0.931 0.131 0.348 0.955 0.398 0.419 
3 0.915 0.094 0.398 0.975 0.709 0.615 
4 0.801 0.282 0.736 0.947 0.156 0.167 
5 0.924 0.548 0.688 0.862 0.593 0.574 
6 0.886 0.443 0.591 0.924 0.622 0.419 
7 0.952 0.857 0.94 0.899 0.682 0.565 
8 0.764 0.085 0.277 0.905 0.646 0.451 
9 0.925 -0.156 0.003 0.833 0.005 -0.399 
10 0.777 0.257 0.266 0.961 0.899 0.862 

 Average  0.880 0.234 0.421 0.920 0.477 0.386 

 

As seen in Table 3.3, the correlation coefficients between the hyoid bone and base of 

the epiglottis are high enough to depict a strong relation between them. When the 

hyoid bone moves vertically and horizontally, the base of the epiglottis moves with a 

                                                
4 H: Hyoid bone, B: Base of the epiglottis, T: Tip of the epiglottis  
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similar displacement. To further investigate this result, each video, is used in the 

previous experiment, is divided into two groups of frames. The first group has frames 

of the actual swallowing process; while the second group contains frames without the 

swallowing process (i.e. during chewing, breathing or after swallowing). The 

correlation coefficient for the hyoid bone and the base of the epiglottis horizontally 

and vertically are calculated for both groups separately, as given in Table 3.4.  

Table 3.4: Pairwise correlation coefficient between the hyoid bone and the base of the 

epiglottis for swallowing and non-swallowing frames 

 
Swallowing  Non-swallowing 

Patient Horizontal (x) Vertical (y) Horizontal (x) Vertical (y) 
1 0.951 0.969 0.812 0.619 
2 0.902 0.936 0.938 0.91 
3 0.966 0.973 0.987 0.768 
4 0.788 0.907 0.895 0.767 
5 0.937 0.592 0.889 0.915 
6 0.864 0.923 0.982 0.923 
7 0.874 0.931 0.962 0.954 
8 0.787 0.902 0.738 0.911 
9 0.935 0.591 0.885 0.931 
10 0.715 0.371 0.55 0.974 

Average  0.871 0.809 0.863 0.867 

 

Figure 3.20 and Figure 3.21 show the horizontal and vertical displacements for the 

hyoid bone, base and tip of the epiglottis for the first patient. The figures show, the 

sold blue line (hyoid bone) and the dotted green line (base of the epiglottis) have 

nearly synchronized movements. The other figures that show the horizontal and 

vertical displacements for the rest of patients can be found in the Appendix A.  
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Figure 3.20: Horizontal displacement for the hyoid bone, base and tip of the epiglottis 
for patient 1 

 
 

 

Figure 3.21: Vertical displacement for the hyoid bone, base and tip of the epiglottis for 
patient 1 
 

3.3.5.3.2. Correlate the movements to find base location  

The previous experiments and figures show that the hyoid bone trajectory has a 

correlated movement with the base of the epiglottis trajectory. Therefore, when the 

hyoid bone moves vertically or horizontally, the base of the epiglottis moves in the 

same direction. Moreover, the space between the hyoid bone and epiglottis is a fixed 
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value for each patient. Using this knowledge, the location of the base of the epiglottis 

can be calculated depending on the location of the hyoid bone and the tip of the 

epiglottis (see for example Figure 3.22). The base of the epiglottis should be in the tip 

area and should be a fixed distance from hyoid bone. In addition, the horizontal and 

vertical displacements of the base of the epiglottis should imitate the horizontal and 

vertical displacement for the hyoid bone.  

Note that the location of the base of the epiglottis is computed depending on the 

locations of the hyoid bone and tip of the epiglottis because the base area does not 

have any features to track. In addition, the base of the epiglottis moves by the 

ligaments that are located between the hyoid bone and epiglottis. The base of the 

epiglottis is essential in calculating the angle of the epiglottis rotation. 

 

Figure 3.22: Example of the results for calculating the base of the epiglottis using the 
hyoid bone location. Red point represents the base of the epiglottis while the white 
point represents the hyoid bone location.  

 

3.3.5.3.3. Transformed coordinates  

All points that might be used for tracking the hyoid bone and epiglottis must be 

translated into the coordinate system of the patient-relative frame of reference. After 

the hyoid bone, the base, and the tip of the epiglottis locations have been determined 
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their coordinates are transformed to the new relative-patient reference in each frame as 

described in Section 3.3.4.  

3.3.5.4. Calculating the hyoid bone displacement  

As described in Section 3.3.5.1, the trajectory of the hyoid bone can be identified in a 

single-swallow video. The maximum displacements of the hyoid bone horizontally and 

vertically, as well as the speed of the movement can be computed. In addition, this 

displacement and speed can be converted to unit of millimeters (mm) for the 

displacement and mm/second for the speed. To convert from pixels to millimeters, a 

Canadian penny is attached to the patient’s ear is used as a reference (see Figure 3.23). 

The diameter of the Canadian penny in pixels was calculated manually from different 

patients who are having a penny in their ear. The penny diameter is 19.05 mm and it is 

almost equal to 44 pixels in the patient frame. For conversion from pixel to mm, the 

number of pixels is multiplied by 0.431.  

 

Figure 3.23: Patient that has a Canadian penny attached to his/her ear 
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3.3.5.5. Calculating the angle of epiglottis rotation   

To calculate the angle of rotation of the epiglottis, the base and the tip of the epiglottis 

are tracked in all frames. Then the line between the base and the tip of the epiglottis at 

the resting position is considered as references for measuring the angle (see Figure 

3.24). Therefore, the rotation angle can be calculated mathematically at each frame 

using the base and the tip locations in the current frame and the base and the tip 

locations in the resting position.   

 

Figure 3.24: Simulation of the epiglottis angle. Base1, Tip1 are the location of the base 
and the tip at the resting position frame. Base2, Tip2 are the location in the other 
frame. 

 

3.4. Flowchart  

To summarize the described method in this chapter, two flowcharts for the pre-

processing steps and the actual proposed method are shown in Figure 3.25 and Figure 

3.26 respectively.  
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Figure 3.25: A flowchart for the pre-processing steps 
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Figure 3.26: A flowchart for the proposed method 
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3.5. Summary  

To sum up, the proposed method starts by reading a single-swallow video that is 

generated from the pre-processing steps. At the beginning of the proposed method, the 

first frame to be processed is identified automatically. Then, the region of interest that 

has the three cervical vertebrae (C2, C3, and C4) is identified using SURF. Each 

cervical vertebra is located by applying template-matching. Afterward, the hyoid bone 

and the tip of the epiglottis locations are tracked by optical flow. The location of the 

base of the epiglottis is approximated using the locations of the hyoid bone and the tip 

of the epiglottis. At the end, the coordinates for the hyoid bone, base and tip of the 

epiglottis are transformed to the new relative-patient reference. Finally, the 

transformed locations are used to calculate the measurements of the epiglottis and 

hyoid bone.  
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Chapter 4  
 

Experiments and Results  
 

This chapter describes the experiments for the proposed method that was described in 

Chapter 3. These experiments have been applied on videos that are recorded for 

patients with Parkinson’s disease. Each patient swallows several kinds of food. The 

analysis and results are presented in the next sections.  

4.1.  Experiments  

Each DVD goes through the three pre-processing steps that are described in Section 

3.2. Then, the actual processing, which is described in Section 3.3, is applied on each 

single-swallow video separately. The hyoid bone, the base, and the tip of the epiglottis 

are tracked and their transformed coordinates are stored. Finally, the maximum 

displacements for the hyoid bone vertically and horizontally are calculated from the 

trajectory. In addition, the time and the speed that are needed to reach to the maximum 

horizontal and vertical places are also computed. As well, for the epiglottis, the 
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rotation angle in each frame as well as the maximum angle are computed using the 

location of the base and tip of the epiglottis.  

4.2. Results for different cases 

In this section, the results of three swallowing processes are displayed only. These 

three swallowing segments are taken from three different patients. For more results, 

see Appendix C.  

To show the epiglottis rotation, Figure 4.1(a), Figure 4.4(a), and Figure 4.7(a) 

demonstrate the rotation angles in degrees in each frame for the three swallowing 

cases, respectively.  

Figure 4.1(b), Figure 4.4(b), and Figure 4.7(b) show the horizontal displacement for 

the hyoid bone in millimeters for the three cases, respectively. Likewise, Figure 4.1(c), 

Figure 4.4(c), and Figure 4.7(c) show the vertical displacement for the hyoid bone in 

millimeters for the three cases, respectively.  

The hyoid bone transformed coordinates are plotted in Figure 4.2(a), Figure 4.5(a), and 

Figure 4.8(a) after converting the units from pixels to millimeters. These plots show 

the trajectories of the hyoid bone in horizontal and vertical displacements for the three 

cases, respectively. In addition, these plots expressed only the frames that have actual 

swallowing process.  

The final printouts from the system for the interesting measurements as described in 

Section 3.3.5.4 and Section 3.3.5.5 are shown in Figure 4.2(b), Figure 4.5(b), and 

Figure 4.8(b).  
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The first initial frames in each swallowing process are shown in Figure 4.3(a), Figure 

4.6(a), and Figure 4.9(a) for the three cases, respectively.   

One of the middle frames in the swallowing process for each case is shown in Figure 

4.3(b), Figure 4.6(b), and Figure 4.9(b).  

Finally, the last frames after the swallowing process for the three cases are shown in 

Figure 4.3(c), Figure 4.6(c), and Figure 4.9(c) respectively.   
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• First Swallowing Process:  

 
(a) 

 
(b) 

 
(c) 

Figure 4.1: First swallowing process plots. (a) Epiglottis rotation angels in degrees. (b) 
Horizontal displacement of the hyoid bone in mm. (c) Vertical displacement of the 
hyoid bone in mm 
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(a) 

 
 

 
(b) 

Figure 4.2: First swallowing process trajectory and printout. (a) Trajectory of the hyoid 
bone in mm for the first swallowing process. (b) Printout the final results from the 
system for this swallowing process 
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(a) 

 
(b) 

 
(c) 

Figure 4.3: Some frames in first swallowing process. (a)First initial frame (b) Snapshot 
of the frame in the middle of the swallowing process. (c) Last frame in the swallowing 
process 

 



Chapter 4: Experiments and Results 

 
69 

• Second Swallowing Process: 

 
(a) 

 
(b) 

 
(c) 

Figure 4.4: Second swallowing process plots. (a) Epiglottis rotation angels in degrees. 
(b) Horizontal displacement of the hyoid bone in mm. (c) Vertical displacement of the 
hyoid bone in mm 
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(a) 

 
 

 
(b) 

Figure 4.5: Second swallowing process trajectory and printout. (a) Trajectory of the 
hyoid bone in mm for the first swallowing process. (b) Printout the final results from 
the system for this swallowing process 
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(a) 

 
(b) 

 
(c) 

Figure 4.6: Some frames in second swallowing process. (a)First initial frame (b) 
Snapshot of the frame in the middle of the swallowing process. (c) Last frame in the 
swallowing process 
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• Third Swallowing Process:  

 
(a) 

 
(b) 

 
(c) 

Figure 4.7: Third swallowing process plots. (a) Epiglottis rotation angels in degrees. 
(b) Horizontal displacement of the hyoid bone in mm. (c) Vertical displacement of the 
hyoid bone in mm 
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(a) 

 
 

 
(b) 

Figure 4.8: Third swallowing process trajectory and printout. (a) Trajectory of the 
hyoid bone in mm for the first swallowing process. (b) Printout the final results from 
the system for this swallowing process 

 

 

 

 



Chapter 4: Experiments and Results 

 
74 

 
(a) 

 
(b) 

 
(c) 

Figure 4.9: Some frames in third swallowing process. (a)First initial frame (b) 
Snapshot of the frame in the middle of the swallowing process. (c) Last frame in the 
swallowing process 
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4.3. Analysis  

As shown from the previous results in Section 4.2, the proposed CAD system can track 

the hyoid bone and epiglottis semi-automatically. When the hyoid bone reaches its 

maximum horizontal and vertical location, the epiglottis rotation angle also reaches its 

maximum value, i.e. when the hyoid bone moves horizontally and vertically, the 

epiglottis rotates down. Then, when the hyoid bone goes back, the epiglottis goes back 

as well to the resting position. In addition, for the hyoid bone, the trajectories show 

that the hyoid bone moves upward and forward at the beginning of the swallowing 

then it goes back to the original location, which follows the typical movement for the 

hyoid bone. For the epiglottis rotation, the angle increases to reach a maximum value 

then goes back to the original position, which is the typical movement for the 

epiglottis. To evaluate patient situation, a radiologists can interpolate the printout of 

the system that shows the measurements in actual units (mm, second, mm/second, and 

degree).  

The proposed method and results have been verified and approved by a Speech-

Language Pathologist specialist at London Health Science Center.  

4.4. Summary    

This chapter presents results and analysis for the proposed method in several 

swallowing cases. These results show the correlated relation between the hyoid bone 

and the epiglottis movements. In addition, one expert has verified these results. 
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Chapter 5  

 

Conclusions and Future Work  
 

5.1. Summary and conclusions  

In this thesis, a CAD system that can track the hyoid bone and the epiglottis semi-

automatically is proposed. This system can help the radiologists to measure the hyoid 

bone and epiglottis movement during swallowing. The proposed system needs small 

interaction from the user to indicate special area and points in the first process frame. 

Then, the vertebrae-area can be identified automatically by using SURF. Template-

matching is used to identify the three cervical vertebrae (C2, C3, and C4). The hyoid 

bone and the tip of the epiglottis can be tracked in all frames using the LK optical flow 

algorithm. Then, the base of the epiglottis is computed using the hyoid bone and tip 

locations. At the end, the system transforms the calculated coordinates of the hyoid 

bone and the base and the tip of the epiglottis to the new patient-relative system.  

The hyoid bone and epiglottis measurements have essential roles to evaluate the 
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success of swallowing. The proposed method provides results that can be used in 

therapeutic sessions to evaluate the patient status.   

Tracking the tip of the epiglottis is a challenging process because it can be missed in 

some frames and its features are so weak. The lack of studies that try to track the 

epiglottis from x-ray images adds to the challenge. There are some researchers who 

studied the epiglottis movement medically. However, there is no study that tries to 

track it using computer vision tools. 

The proposed system is considered to be a pioneer for tracking the epiglottis, as it is 

the first of its kind that tries to semi-automatically track the epiglottis from digital 

fluoroscopic images. 

5.2. Limitation  

Even though the proposed CAD can track the hyoid bone and the epiglottis 

successfully in many cases, it does not give good results for the epiglottis when the 

patient swallows liquid. Swallowing liquids hides the tip of the epiglottis for a long 

time. Therefore, the LK optical flow will track the liquid instead of the tip. In addition, 

the single-swallow videos might contain some blurred images. In such case, SURF and 

template-matching schemes cannot find the areas of interest correctly. Moreover, the 

proposed method assumes that the ligaments between the hyoid bone and the epiglottis 

are intact. If there are any problems with ligaments, the base location might be 

incorrect. Although some cases do not work with the system, it significantly adds to 

the field because, to the best of our knowledge, tracking the epiglottis semi-

automatically is a new research. 
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5.3. Future Work  

The proposed method is built to function when patients swallow a spoonful of fluid 

and solid food. Further research is needed to expand our system to deal with larger 

amounts of fluid. Also, the proposed method can be improved by including techniques 

to fix the blurred frames to avoid incorrect detection of areas of interest. Moreover, the 

method can be further improved by introducing automatic detection of the first and last 

swallowing frames in order to track the hyoid bone and epiglottis locations on the 

swallowing-only frames. In addition, for more verification, the system results might be 

compared with manual assessment by experts. Finally, our proposed method may be 

integrated with a larger system that calculates further measurements semi-

automatically, which in turn, will aid radiologists in their work.  
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Appendices  

Appendix A. Manual Experiments Plots  
Plots for horizontal and vertical displacements for the hyoid bone, base and tip of the 

epiglottis that are located manually in10 patients  

 

 
(a) 

 
(b) 

Figure A.1: Horizontal and Vertical displacements for the hyoid bone, base and tip of 
the epiglottis in patient 2 
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(a) 

 
(b) 

Figure A.2: Horizontal and Vertical displacement for the hyoid bone, base and tip of 
the epiglottis for patient 3 
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(a) 

 
(b) 

Figure A.3: Horizontal and Vertical displacement for the hyoid bone, base and tip of 
the epiglottis for patient 4 
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(a) 

 
(b) 

Figure A.4: Horizontal and Vertical displacement for hyoid bone, base and tip of the 
epiglottis for patient 5 
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(a) 

 
(b) 

Figure A.5: Horizontal and Vertical displacement for the hyoid bone, base and tip of 
the epiglottis for patient 6 
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(a) 

 
(b) 

Figure A.6: Horizontal and Vertical displacement for the hyoid bone, base and tip of 
the epiglottis for patient 7 
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(a) 

 
(b) 

Figure A.7: Horizontal Vertical; displacement for the hyoid bone, base and tip of the 
epiglottis for patient 8 
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(a) 

 
(b) 

Figure A.8: Horizontal and Vertical displacement for the hyoid bone, base and tip of 
the epiglottis for patient 9 
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(a) 

 
(b) 

Figure A.9: Horizontal and Vertical displacement for the hyoid bone, base and tip of 
the epiglottis for patient 10 
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Appendix B. OpenCV Functions  
Table B.1: OpenCV functions that are used and explanation 

Function name Explanation 

cvCaptureFromFile  Initializes capturing a video from a file. 

cvGetCaptureProperty Gets video capturing properties. 

cvCreateImage Creates the header and allocates data 

cvCopyImage Copy data in the images 

cvCloneImage Makes a full copy of an image, including the header, data, 
and ROI. 

cvSaveImage Saves an image to a specified file. 

cvReleaseImage De-allocates the image header and the image data. 

cvSetImageROI  Sets an image Region Of Interest (ROI) for a given 
rectangle. 

cvResetImageROI  Resets the image ROI to include the entire image and 
releases the ROI structure. 

cvLaplace Calculates the Laplacian of an image. 

cvRectangle Draws a simple, thick, or filled rectangle. 

cvCircle Draws a circle. 

cvLine Draws a line segment connecting two points. 

SurfFeatureDetector  Detects key-points and computes SURF descriptors for 
them. 

SurfDescriptorExtractor Computes the descriptors for a set of key-points detected 
in an image  

BruteForceMatcher Compute matching  
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drawMatches This function draws matches of key-points from two 
images on output image. 

cvCalcOpticalFlowPyrLK Calculates the optical flow for a sparse feature set using 
the iterative Lucas-Kanade method with pyramids. 

cvFitLine Fits a line to a 2D or 3D point set. 

cvEqualizeHist Equalizes the histogram of a gray-scale image. 

cvMatchTemplate Compares a template against overlapped image regions. 

cvGetQuadrangleSubPix Retrieves the pixel quadrangle from an image with sub-
pixel accuracy. 

cvSetMouseCallback Assigns callback for mouse events. 

cvNamedwindow Creates a window. 

cvStartWindowThread Allow OpenCV updating its windows automatically 

cvShowImage Displays the image in the specified window 

cvDestroyAllWindows Destroy all windows  
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Appendix C. Extra Results For the 
Proposed Method   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.1: First Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.2: Second Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.3: Third Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis 
  



Appendix C: Extra results For the Proposed Method 

 
99 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.4: Fourth Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.5: Fifth Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.6: Sixth Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.7: Seventh Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis 
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(a) 

 
(b) 

 
(c) 

 
(d) 

FigureC.8: Eighth Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.9: Ninth Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.10: Tenth Swallowing Process. (a) Trajectory of the hyoid bone. (b) Horizontal 
displacement. (c) Vertical displacement. (d) Rotation angels for the epiglottis 
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