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Abstract

Blood vessel extraction and visualization in 2D images or 3D volumes is an essential clin-
ical task. A blood vessel system is an example of a tubular tree like structure, and fully auto-
mated reconstruction of tubular tree like structures remains an open computer vision problem.
Most vessel extraction methods are based on the vesselness measure. A vesselness measure,
usually based on the eigenvalues of the Hessian matrix, assigns a high value to a voxel that is
likely to be a part of a blood vessel. After the vesselness measure is computed, most methods
extract vessels based on the shortest paths connecting voxels with a high measure of vessel-
ness. Our approach is quite different. We also start with the vesselness measure, but instead
of computing shortest paths, we propose to fit a geometric of vessel system to the vesselness
measure. Fitting a geometric model has the advantage that we can choose a model with desired
properties and the appropriate goodness-of-fit function to control the fitting results. Changing
the model and goodness-of-fit function allows us to change the properties of the reconstructed
vessel system structure in a principled way. In contrast, with shortest paths, any undesirable re-
construction properties, such as short-cutting, is addressed by developing ad-hock procedures
that are not easy to control.

Since the geometric model has to be fitted to a discrete set of points, we threshold the
vesselness measure to extract voxels that are likely to be vessels, and fit our geometric model
to these thresholded voxels.

Our geometric model is a piecewise-line segment model. That is we approximate the vessel
structure as a collection of 3D straight line segments of various lengths and widths. This can be
regarded as the problem of fitting multiple line segments, that is a multi-model fitting problem.
We approach the multi-model fitting problem in the global energy optimization framework.
That is we formulate a global energy function that reflects the goodness of fit of our piecewise
line segment model to the thresholded vesselness voxels and we use the efficient and effective
graph cut algorithm to optimize the energy.

Our global energy function consists of the data, smoothness and label cost. The data cost
encourages a good geometric fit of each voxel to the line segment it is being assigned to. The
smoothness cost encourages nearby line segments to have similar angles, thus encouraging
smoother blood vessels. The label cost penalizes overly complex models, that is, it encourages
to explain the data with fewer line segment models.

We apply our algorithm to the challenging 3D data that are micro-CT images of a mouse
heart and obtain promising results.

Keywords: Blood vessel extraction, energy minimization, graph-cuts, geometric model
fitting, piece-wise smooth model, Potts model
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Chapter 1

Introduction

1.1 Overview

Blood vessel extraction and visualization is an essential clinical task, it is essential in many
areas such as diagnosis of vascular diseases and blood flow simulation. Therefore, the auto-
mated tracing of vessel structures in 3D images has received much attention over the years
[44]. However, we have to admit that there is still a long way to go, as the medical image data
usually contains a lot of noise and the structures of vessels often exhibit complex morphology.
In this thesis, we focus on automatic vessel extraction of 3D medical images.

Given an input medical volumetric image, our task is to detect the topology structure of the
blood vessels, then reconstruct and visualize those vessels. The medical volumetric images we
used are three-dimensional images that contain vessel structures. They are obtained by a CT
scanner, which is the widely used technique to create images for clinical purposes or medical
science.

Our input data are micro-CT images of a mouse heart. The coronary vessels were perfused
with a radio-opaque dye called Microfil MV-122 from a company called Flowtech [1]. It is
injected in the vessels and then cures to become a solid. The mouse heart is approximately 4
mm across. Figure 1.1 shows several slices of an input medical volume, of size 585x525x892,
and these slices are cross sections. There are 892 slices in this volume but we only show
three slices, namely slices numbered 120,280 and 450. The bright regions are vessels, the
dark regions are background (muscle). In the beginning of the sequence the vessels are mainly
arteries and are pretty thick. Vessels are are getting thinner with the increase of the slice
number.

1



2 Chapter 1. Introduction

Figure 1.1: Three slices of an input medical volume, these slices are cross sections.
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1.2 Motivation and Challenges

A blood vessel system is just one example of a tubular tree like structure. Other examples
include neuronal arbors in optical microscopy image stacks, blood vessels in retinal scans, road
networks in aerial images, etc. Fully automated reconstruction of tubular tree like structures
remains an open computer vision problem [43].

It is very difficult to robustly deal with imaging artifacts such as noise, non-uniform illumi-
nation, inhomogeneous contrasts and scene clutter. Practical systems usually require extensive
manual intervention. For example, in the DIADEM challenge [2], the algorithms with good
performance at tracing dendritic trees usually provide some good tools for manual editing. In
medical science research, such editing tasks are very tedious and need prior knowledge of the
structure, which dramatically slows down the process. Recently, significant progress has been

Figure 1.2: Left: fitting result on a less curvier blood vessel. Right: fitting results on a curvier
vessel.

achieved by formulating the problem as one of optimizing a global objective function [9, 45]
without any manually editing. Our work is based on a similar global energy minimization ap-
proach, and is directly motivated by the graph cuts algorithm for geometric multi-model fitting
problems [10]. In particular, we model a blood vessel as a structure consisting of a sequence of
straight line segments. This is a good approximation, provided line segments are of appropriate
length. To have a good fit, for a very curved blood vessel, a shorter sequence of line segments
is required. For a less curvy blood vessel, a sequence of longer line segments will suffice,
see Figure 1.2. We formulate a global energy function that reflects the goodness of fit of the
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piecewise linear segment model and use the graph cut algorithm [7, 10] for optimization.

Figure 1.3: The first image is the original intensity image, the second image is the thresholded
vesselness measures.

Before we start to fit a piecewise line-segment model to the data, we need to extract the
points that are likely to be blood vessels. This can be accomplished by the so-called ”vesselness
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Figure 1.4: An example of partial voluming effect.

measure” [15]. A vesselness measure assigns a high value to a voxel that is likely to be a part
of a blood vessel, and a lower value to a voxel that is unlikely to be a blood vessel. Usually
vesselness measure is based on the eigenvalues of a Heissian matrix, centered at the given
voxel [15]. We threshold the vesselness measures to obtain the voxels that are likely to be
part of some vessels, and fit our piecewise line-segment model to the thresholded data. More
specifically, our labels correspond to line segments, and the task becomes to fit the thresholded
vesselness measure voxels to some line segments.

Figure 1.3 shows an original intensity image and its corresponding thresholded vesselness
measures. This data is a small cube (88x67x70) cropped from the original volume (585x525x892).
To project 3D data in 2D visualization plane, we use Maximum Intensity Projection (MIP)
technology, and we will introduce it in Chapter 4.

The Multi-model fitting approach of [19] has several advantages for our problem. First,
the energy minimization framework allows formulation of a global energy function that in-
corporates any desired fitness criterion for different models, such as distance from point to a
line segment, angle difference, etc. Second, by formulating the multi-model fitting problem
as a optimal labeling problem, we can use existing optimization technologies, with guaranteed
optimality bounds efficiently, such as α − expansion [7] and α − β swap [7] in graph-cut.

The challenges of our work mainly come from two aspects. First, there are many small
vessels that undergo partial voluming effects. A partial voluming means that part of a vessel
occupies only a portion of a voxel, therefore the intensity of the partially occupied voxel is a
mixture of the background (muscle) and the vessel tissue. An extreme example is a capillary,
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Figure 1.5: An example of bifurcation, The green circled area are shared by the three vessels,
and its split among the three vessels is ambiguous.

which is so thin that the cross section occupies only a small portion of a voxel. Figure 1.4 is an
example of partial voluming effects. The intensity value of a partial voxel is very low due to
intensity mixture, and is difficulty to be distinguished from background. However, most of the
vessels are not capillaries, and are easier to segment. We want to be able to detect vessels even
if they are so thin as to undergo partial voluming artifacts.

The second challenge of our approach is how to fit well around bifurcations. A bifurcation
is a place where two vessels meet and merge into one bigger vessel. It is more challenging
to accurately fit line segments at the bifurcation area, as the ambiguous area has to be divided
among the three vessels, which is illustrated in Figure 1.5.
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1.3 Our Approach

We now outline our approach in more detail. First of all, in this thesis, we assume that we
start with the thresholded vesselness measure voxels. This gives us a set of voxels that are very
likely to be vessels and we fit the piecewise line segment model to these voxels.

Next we need to fit the piecewise line segment model to the thresholded vesselness data.
A possible line segment corresponds to a distinct label in our framework. However, the space
of all possible labels is too large to handle directly. The majority of these all possible line
segments are a very poor fit for the data at hand. Following [10] , we start by sampling a set
of models, i.e. line segments that have a good chance of being a good fit. In our work we use
a density based random sampling strategy. The random sampling strategy is to propose line
segments on the vessel voxels directly, this strategy provides evenly distributed segments on
vessels, and thick vessels usually get more segments than thin vessels, as shown in Figure 1.6.

Figure 1.6: Sample results generated by random sampling approach.

However, if most segments are proposed on thick vessels, there will be not enough segments
on thin vessels. So we use a density based approach to sample more segments on thin vessels
and less on thick vessels, as shown in Figure 1.7. In addition to the ”regular” line segment
models, we also need an outlier model to model outlier points, such as noise.

After sampling, we build a global energy function based on line segment model, which
consists of data cost, smoothness cost and label cost.

• The data cost measures the probability that a vessel voxel belong to a segment. It gives
a high penalty if the voxel is far away form the segment, and vice versa. In our work
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Figure 1.7: Sample results generated by density based random sampling approach.

the data cost is computed as an infinite mixture of isotropic gaussian distribution on line
segment.

• The smoothness cost encourages the labeling to be consistent so that fluctuations caused
by noisy data cost are smoothed out. We also use the smoothness cost to regularize the
relative positions between neighboring segment pairs. Most of the time, two neighboring
segments on the same vessel should have similar directions, and one of their endpoints
should be close enough.

• The label cost penalizes overly-complex models, that is label cost prefers to explain the
data with fewer, cheaper models. We do not want too many line segments fitting one
vessel, so we add label cost to the energy function. For each existing model, we set a
constant penalty to control the line segment numbers.

We minimize the global energy function via a graph cut algorithm. If the smoothness term is a
metric [7] then we use α− expansion to optimize the global function, and if it is a semi-metric
[7] we use α−β swap. The output of the graph cut is the optimal labeling result, which consists
of several clusters. Each cluster consists of all voxels that are assigned to the same label, that
is to the same line segment. Since the set of the initial line segments may have been far from
optimal, we use these initial label results to find a possibly better set of line segment models.
Specifically, we re-estimate the line segments from the initial labeling results by re-fitting the
initial labeling with line segments of best fit. In our work, we use a local greedy search based
approach to re-estimate the model parameters, this approach gives a locally optimal solution in
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a relatively short time. Experimental results show that these solutions give a reasonable fit in
practice.

After parameter re-estimation, we update the set of labels, that is the set of line segments
with the re-fitted models, and remove any line segment models that failed to get any support,
i.e. no voxel was assigned to them. Then, we minimize the global energy function again, using
the updated set of labels. This process is iterated until the convergence of the energy, which is
guaranteed. Figure 1.8 illustrates how our approach works.

Figure 1.8: The flow diagram of our approach. The input data is a small cube (30x20x20)
cropped from the original volume.

1.4 Outline of the Thesis

This thesis is organized as follows. Chapter 2 reviews and analyses the previous works on blood
vessel extraction. Chapter 3 introduces optimizing multi-labeling problem with graph cuts in
energy minimization framework. Chapter 4 introduces the 3D technology used in our work.
Chapter 5 focuses on the construction and optimization of piecewise line segment models.
Some experimental results are provided in Chapter 6. The conclusion and future work is in
Chapter 7.



Chapter 2

Related Work

Extracting curvilinear structures automatically and robustly is of fundamental relevance to
many scientific disciplines, especially in medical research, such as fine modeling of complex
blood vessel structures, automated delineation of linear structures in aerial imagery databas-
es. Recently, there has been a resurgence of interest in automated delineation techniques
[13, 24, 32, 34], which can be categorized into greedy strategies methods [26, 40] and graph-
based methods [14, 37, 43, 45, 50]. In this chapter, we will briefly review several related
methods for automatical delineation of linear structures that form complex and potentially
loopy networks.

2.1 Greedy Strategies and the Vesselness Measures

Greedy strategies start from a set of seed points, incrementally grow branches by evaluating
a local tubularity measure usually based on the Hessian and Oriented Flux matrices [26, 40].
High tubularity paths are then iteratively added to the solution and their end points are treated
as the new seeds from which the process can be restarted. Since the search typically involves
processing only a part of the image data, these methods are computationally fast. However,
they lack robustness to large gaps in the image data as they are sensitive to imaging artifacts
and noise.

In our work, we use tubularity vesselness measure as the input data. A vesselness measure
is obtained on the basis of all eigenvalues of the Hessian. Let λ1, λ2 and λ3 be the eigenvalue of
the Hessian (|λ1| ≤ |λ2| ≤ |λ3|). For a point belongs to an ideal tubular structure in a 3D image,
λ1 should be pretty small (ideally zero), and λ2 and λ3 should be of a large magnitude and equal

10
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sign. The sign is an indicator of brightness.

|λ1| ≈ 0|

|λ1| � |λ2|

λ2 ≈ λ3

(2.1)

The respective eigenvectors u1,u2,u3 point out singular directions: u1 indicates the direction
along the vessel, which is also the minimum intensity variation. We use u1 as the vesselness
orientation. u2 and u3 form a base for plane orthogonal to u1. Figure 2.1 is a snapshot of a
vesselness orientation result. In medical images, vessels emerge as bright tubular structures in
a darker environment. This prior information can be used as a consistency check to discard
structures present in the image with a polarity different than the one sought. The vesselness

Figure 2.1: A snapshot of vesselness orientations, most of which are along the vessels.
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measure function is defined as:

f (x) =


0 λ2 > 0 or λ3 > 0((

1 − exp
(
−

R2
A

2α2

))
exp

(
−

R2
B

2β2

) (
1 − exp

(
− S 2

2c2

)))
otherwise

(2.2)

where RA and RB are two geometric ratios based on the second order ellipsoid, S is the second
order structureness measure. α, β and c are thresholds which control the sensitivity of the line
filter to the measures RA, RB and S. RA = |λ2 |

|λ3 |
refers to the largest area cross section of the

ellipsoid and accounts for the aspect ratio of the two largest second order derivatives. It is
essential for distinguishing between plate-like and line-like structures, since only in the latter
case it is zero. RB = |λ1 |√

|λ2λ3 |
accounts for the deviation from a blob-like structure but cannot

distinguish between a line-like and a plate-like pattern; it attains its maximum for a blob-like
structure and is zero whenever λ1 ≈ 0, or λ1 and λ2 tend to vanish. S =

√∑
j≤3 λ

2
j will be a

low value in the background where no structure is present and the eigenvalues are small for
the lack of contrast. In regions with high contrast compared to the background, S should be a
larger value since at least one of the eigenvalues will be large.

2.2 Graph-based Methods

Graph-based methods find seed points in the whole image or volume by evaluating the tubular-
ity measure [14, 37] densely and finding its local maxima [14, 37, 43, 45, 50]. Although this
is more computationally demanding, it can still be done efficiently in Fourier space or using
GPUs [12, 26, 27]. The seed points are then connected by paths that follow local maxima of
the tubularity measure. This results in a graph that forms an overcomplete representation of
the underlying tree structure and the final step is to build a tree by selecting an optimal subset
of the edges. This can be done by finding the Shortest Path Tree (SPT) [37], the Minimum
Spanning Tree (MST) [14, 53], the k-Minimum Spanning Tree (k-MST) [45], or a solution to
the Minimum Arborescence Problem (MAP) [43]. Some graph-based methods are introduced
in this section.

2.2.1 Automatic 3D neuron tracing using all-path pruning

The reconstruction of a neuron is defined as a set of topologically connected structure com-
ponents that describe the 3D spatial morphology of this neuron in a 3D image. This neuron-
tracing method consists of two major steps, in the first step an initial over-complete reconstruc-
tion (ICR) of a neuron is produced, in the second step the redundant structural components(SC)
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are pruned. SC is a loosely defined concept that could mean neuron branches, individual re-
construction node,voxels or other sub-structures contained in the neuron reconstruction. Figure
2.2 shows the results of different steps in this paper.

Figure 2.2: Results of different steps in automatic 3D neuron tracing using all-path pruning,
and this image is taken from [43].

Initial Reconstruction

The input of this method is a 3D neuron image I and a seed Ps(xs, ys, zs) that is within the
neuron region. Ps is often a bright spot of the neuron and can be automatically detected. A
global threshold ta is used to define the image foreground, that is, any voxel that has smaller
value than ta is assumed to be background, otherwise it belongs to foreground. Typically ta

is set to be the average intensity value of the entire image. After the global thresholding, a
median filter is applied to remove noise.

Then an undirected graph G = (V, E) is created for the image foreground, where the set of
graph vertices V stands for image voxels and the set of undirected graph edges E encodes a
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geodesic metric function which is define as:

e(v0, v1) = ||vo − v1||
(
gI (vo) + gI (v1)

2

)
gI (p) = exp

(
λI (1 − I (p) /Imax)2

)
,

(2.3)

v0 = (x0, y0, z0) and v1 = (x1, y1, z1) are two adjacent foreground voxels, and their spatial
coordinates must satisfy |x0 − x1| ≤ 1, |y0 − y1| ≤ 1, |z0 − z1| ≤ 1. As G only contains edges
of adjacent voxel-vertices, it is highly sparse. I(p) is the intensity value for voxel p, Imax is the
maximum intensity of the entire image I. λI is a positive coefficient.

Then Dijkstra algorithm is applied to G to find the shortest paths from the seed Ps to all
other vertexes in G. In the resultant shortest path map, the vertices that have no child are leaves.
Obviously, a path can be traced back from every leaf vertex to the seed Ps, which is the root
vertex. All these paths share many common sub-paths. The entire solution can be organized as
a tree graph GT . Since it contains all ordered paths from the root to all foreground voxels, the
building of this tree graph is called the all-path reconstruction, and it is an ICR.

Pruning a reconstruction

Since the ICR contains all the possible paths and thus could contain redundant SC, the redun-
dant structural elements need to be pruned by a maximal covering minimal-redundant (MCMR)
subgraph algorithm. MCMR consists three pruning steps: Dark-leaf pruning (DLP),Covered-
leaf pruning (CLP) and Inter-node pruning (INP).

DLP removes dark leaf nodes from GT . In the beginning, the input image is threshold-
ed by ta. ta is a very low value so that all possible paths in the neuron can be captured and
any potential connectivity of any possible neuron regions connecting to the seed can be maxi-
mized. However, ta is so low that the foreground often contains many dark voxels. In an ICR,
these dark voxels correspond to many redundant branches. The DLP iteratively removes the
leaf nodes whose intensity value is lower than tv. tv is a new threshold that defines the lowest
bright voxel intensity. After DLP, the structure complexity is reduced, while the connectivity
of different regions is still maximized. In CLP, a radius-adjustable sphere centered at a recon-
struction node is defined, the radius gradually increases until 0.1% of the image voxels within
this sphere that are darker than ta. Each of the reconstruction nodes, along with its estimated
radius are treated together as an SC. For two SCs, a and b, a is significantly covered by b if the
following condition is satisfied:

Ω(a ∩ b)/Ω(a) ≥ 0.9, (2.4)
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Figure 2.3: (a) The remaining complete reconstruction after DLP. (b) The remaining recon-
struction after CLP. (c) The remaining reconstruction after an INP.

Ω(.) computes the volume of the occupied region of a reconstruction node. This equation tells
us whether node b is significantly covered by node a. When a leaf node is covered by another
node or several other nodes jointly,this leaf node should be pruned, otherwise the leaf node
should be kept. CLP checks all the leaf nodes and removes those being significantly covered
by other nodes. This pruning process is iterated until no more leaf node can be pruned.

After CLP, all neuron regions have been reached by a minimum number of leaf nodes. Then
INP is applied to remove the redundant inter-nodes that connect leaf nodes to branch nodes or
the root. For each leaf node a, suppose b is the immediate parent node of a. If b is not a
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branching node or the root and is significantly covered by a, then b is pruned and a′s parent
is updated as b′s original parent. If b is not pruned, then a same check should be executed on
bs non-branching-node parent. For each node, this process is iterated until a branching parent
node or the root is reached.

2.2.2 Automated Reconstruction using Path Classifiers and Mixed Inte-
ger Programming

In this approach, first a directed graph is constructed, which is an over-complete representation
for the underlying network of tubular structures. Then a Q-MIP (Quadratic Mixed Integer
Programming) problem is formulated to find the most likely arborescence. As well, a path
classifier is trained to provide probabilistic weights, which are of great importance to Q-MIP.

Graph Construction

Figure 2.4: Left:Aerial image of a suburban neighborhood, Right:Graph obtained by linking
the seed points [43].

There are three steps to build a directed graph G. First, a scale space tubularity measure
based on the oriented flux cross-section trace measure [26] is computed. This measure is used
to assess if a voxel lies on a centerline of a tubular at a given scale. Second, seed points are
sampled from the input image by iteratively selecting the maximum tubularity points and then
suppressing their neighboring points. Finally, paths linking the seed points are computed using
a 4D minimal path method [29].
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Q-MIP Formulation

After constructing a directed graph G, this problem is solved by minimizing the following
energy equation

arg min
t∈T (G)

∑
ei jk∈F

ci jkti jk (2.5)

where t is the arborescence in G; T (G) is the set of all possible arborescence. F = {ei jk =

(ei j, e jk)} is the set of pairs of consecutive edges in G, ei jk = (ei j, e jk) represents a pair of
consecutive edges ei j and e jk, ei j = (vi, v j) is the geodesic tubular path linking seed points
vi, v j. ci jk encodes the geometric compatibility of consecutive edges ei jk, and ti jk denotes the
presence or absence of ei jk in the arborescence. The geometric compatibility ci jk is defined as
the probability likelihood ratios assigned to edge-pairs:

ci jk = −log

P
(
Ti jk = 1|Ii jk, pi jk

)
P

(
Ti jk = 0|Ii jk, pi jk

) (2.6)

where Ii jk represents image data around the tubular path pi jk, the probability P(Ti jk = 1|Ii jk, pi jk)
denotes the likelihood of the path pi jk belonging to the arborescence, which is computed based
on global appearance and geometry of the paths.

By decomposing the indicator variable ti jk as the product of the two variables ti j and t jk, the
minimization of the energy function can be formulated as the Q-MIP:

arg min
t∈T (G)

∑
ei j,e jk∈E

ci jkti jt jk (2.7)

This Q-MIP problem is NP-Hard, its solution can be found up to an arbitrarily small tolerance
from the true optimum using a branch-and-cut strategy [43].

Path Classification

The results of the Q-MIP optimization depends heavily on the probabilistic weights ci jk. A
standard approach to computing such weights is to integrate tubularity values along the path-
s. However, this approach is often unreliable because a few very high values along the path
might offset low values, and fail to adequately penalize spurious branches and short-cuts. Fur-
thermore, it is often difficult to balance between allowing paths to deviate from a straight line
and preventing them from meandering too much. The path-classification approach computes
the probability estimates using a more reliable way. First, a tubular path is broke down into
several segments and one feature vector is computed based on gradient histograms for each
segment. Given a tubular path s, let C(s) be the centerline and r(s) the corresponding radius
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Figure 2.5: Left:The graph with probabilities assigned to paths using the path classification
approach. Blue and transparent denote low probabilities, red and opaque high ones. Note that
only the paths lying on roads appear in red. Right: Final reconstruction obtained by solving
the Q-MIP problem [43].

mappings. The path is divided into equal-length overlapping segments, and for each segment
the histogram is computed for points belonging to a certain neighborhood around the centerline
with a certain radius.

Then an embedding approach is used to compute fixed-size descriptors from the potentially
arbitrary number of feature vectors. To derive from them a fixed-size descriptor, a Bow(Bag-
of-Words) approach is used to compactly represent the feature space. The words of the BoW
model are generated by randomly sampling a predefined number of descriptors from the train-
ing data. For a given path of arbitrary length, the embedding of the HGD descriptors are
computed into the codewords of the model. Adapting the sequence embedding approach of
[51], the minimum Euclidean distance is calculated from the paths descriptors to each word in
the model. This yields a feature vector of minimal distances that has the same length as the
number of elements in the BoW model.

Finally, the descriptors are feed to a SVM classifier to compute a probability estimate.
To train the SVM classifier, the positive and negative paths are randomly sampled from the
ground-truth trees associated to the training images. To obtain negative samples, the tubular
graphs are first built in these training images, then paths are randomly selected from these
graphs and matching paths are found in the ground truth tree. For a given path, this is done by
finding the two nodes of the tree that are closest to the start and end points of the path.

This path-classification approach penalizes paths that mostly follow the true tree structure
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but cross the background. Thus, it discourages shortcuts, which is something that integrating
along the path fails to do.



Chapter 3

Energy Minimization Framework

The energy minimization framework is popular for a variety of computer vision applications.
There are mainly two steps in the energy minimization framework. First, build an energy
function, then optimize the energy function. Usually it is difficult to design an appropriate
energy function, and optimizing the function is also not an easy task. However, it is still a
popular framework for several reasons. Firstly, this is a common framework which standard
optimization methods can be applied to once the energy function is built. Also one can easily
incorporate various prior knowledge into the energy function. Besides, the value of the energy
function provides an effective way to evaluate the solution and can be used as a guide in the
optimization algorithm [31].

Many of the important developments in computer vision began with a proposal for a better
energy, a better algorithm for an energy, or a combination of both [11]. Researchers try to use
algorithms that are both effective in theory and fast in practice to optimize new energies. Graph
cut is an optimization algorithm in the energy minimization framework that has been widely
used in a variety of vision problems [46], including stereo and motion [3, 6, 7, 30, 38, 39, 20,
22], image segmentation [5], image restoration [6, 7, 18, 21], image synthesis [25], multi-
camera scene reconstruction [41], and medical imaging [4, 8, 23]. The output result generated
by a graph cut algorithm is often a global minima, while in some case [6, 18, 21, 30], it is local
minima, but still within a known factor of the global minima [7].

Our algorithm implements multi line segment fitting based on a graph-cut algorithm, which
works in the energy minimization framework. The task of line segment fitting is posed as a
multi labeling problem, which can be solved by minimizing an energy function. The max-
flow/min-cut algorithm can globally optimize the energy function. The way to solve multi-
model fitting problem in the framework of energy minimization is shown in Figure 3.1.

In this chapter we will first introduce the way to solve line segment fitting problem in the
framework of energy minimization in Section 3.1, then review several well-known concepts on

20
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which subsequent chapters are based. Section 3.2 explains the s-t min-cut problem. Section 3.3
explains the move-making algorithms “α-expansion” and “αβ-swap” for optimizing the multi-
label energies [7]. We use these move-making algorithms to optimize our energy function.

Figure 3.1: Solving line segment fitting problem in energy minimization framework.

3.1 From Multi Line Segment Fitting to Labeling Problem

Traditionally, to get trajectory of a 3D vessel inside 3D medical images, the clinician must
manually define some points on the path using 3D orthogonal views. But for a complex struc-
ture this path construction task becomes very tedious and one can easily made mistakes. The
goal of our work is to get the topology of the 3D vessel structure in a automatic way.

Our approach uses multiple line segments to fit blood vessels, which is a geometric multi-
model fitting problem. Geometric multi-model fitting is a typical chicken-egg problem: data
points should be clustered based on geometric proximity to models whose unknown parameters
must be estimated at the same time [19]. Currently, most existing methods such as RANSAC
[42, 47, 54], ignore the overall classification of all points, and just greedily search for models
with most inliers that are within a threshold. In this paper we formulate the multi-model fitting
problem as an labeling problem, each geometric model is treated as a label, and a global energy
function is built to balance the regularity of inlier clusters and geometric errors.

A labeling problem is the task of assigning an explanatory label to each element in a set
of observations [11]. Many classical clustering problems are also labeling problems because
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each label represent a cluster of points, and each point could be assigned to a label. Clearly,
we can treat the task of multi-model fitting problem as a labeling problem.

To describe a labeling problem, one needs a set of data points and a set of labels. A
discrete labeling problem associates one discrete variable with each data point, and the goal
of optimization is to find the best labeling to these variables, which must satisfy some global
energy constraints. In computer vision, the data points can be things like pixels in 2D images
or voxels in 3D image, disparity measurement in stereo matching, and intensity measurements
from CT/MRI. The labels are typically either semantic (car, pedestrian, street) or related to
the scene geometry (depth, orientation, shape, texture) [10]. Figure 3.2 shows an example of
transforming stereo matching to a multi-label problem.

Figure 3.2: Multi-layer graph for stereo problem, each label represents a disparity, which is
also a layer. The data points are graph nodes, the vertical arcs are data cost(matching cost),
horizon arcs are smoothness cost.

Assume set P contains all data points, ζ contains all labels. We associate a discrete variable
with each p ∈ P, and each variable p is allowed to take one label from set ζ. The goal of
discrete labeling is to complete a map f:P 7→ ζ which assigns a label fp to each element p ∈P.
In geometric model fitting, the map f assigns labels fp to 3d image voxels. In this thesis, we
are focusing on optimizing the energy function with multiple labels.
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3.2 The s-t min-cut problem

To define an s − t min-cut problem, we need a directed graph G = (V,A), and two designated
terminals s, t ∈ V, s is source node and t is sink node, an arc cost ω(u, v) ≥ 0 for each
(u, v) ∈ A. The s− t min-cut C = (S,T ) is a partition ofV into two disjoint sets S and T such
that s ∈ S and t ∈ T . The cut-set of C is the set {(u, v) ∈ A|u ∈ S, v ∈ T }. The goal of s-t
min-cut is to find and remove the cheapest cut-set C so that there is no path from s to t. The
cost of this cut ω(C) is the total cost of all arcs in C.

Figure 3.3 shows an instance of the min-cut problem. The capacity of an edge is a mapping

Figure 3.3: A simple min-cut problem instance. There are 9 possible s-t cuts: C =

{sa, sb}, {sa, bd}, {sa, dt}, {ac, sb}, {ac, bd}, {ac, dt}, {ct, sb}, {ct, bd}, {ct, dt}. Two of the cuts
{sa, bd}, {sa, dt} have minimal cut cost ω(C) = 3, which means the min-cut solution is not
unique.

c : A → R+, denoted by cuv. It represents the maximum amount of flow that can pass through
this edge. A flow of an edge is a mapping f : A→ R+, denote by fuv. There are two constrains
with a flow: the flow fuv can not exceed its capacity cuv, and the sum of the flows leaving a
node must equal with the sum of flows entering this node, except for the sink node and source
node. The value of flow is defined by | f | =

∑
u∈v fsv, where s is the source node. It represents

the amount of flow passing from the source to the sink. The maximum flow problem is to
maximize | f |, and the maximum value of an s-t flow is equal to the minimum capacity over all
s − t cuts [36]. In optimization theory, max-flow/min-cut theorem is stated as follows:

Theorem 3.2.1 A. f is a maximum flow.

B. there exists an s-t cut which capacity is equal to the value of f.

C. The residual graph after cut contains no directed path from s to t.
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Max-flow/min-cut theorem implies that in a flow network, the min-cut can be computed in
a low order polynomial time by a number of classical s − t maximum flow algorithms [31].
Cormen et al. in [28] describe an augmenting path strategy to compute the minimum cut of a
graph. Goldberg and Tarjan [17] proposed an push-relabel approach to solve the minimum cut
problem.

3.3 Multi-Label Energy Minimization

The multi-label energy implies that the label set has cardinality |L| > 2. The s− t cut reduction
is inherently fit for two label problems because there are two terminals s and t. There are special
local search algorithms for direct energy minimization, also called move-making algorithms in
the computer vision literature [11]. We will explain two move making algorithms in that use
graph cuts: the “α-expansion” algorithm and “αβ-swap” algorithm. The two algorithms find
approximate solutions by decreasing the energy on appropriate graphs iteratively, which leads
to significantly better solutions than the previous algorithms based on ‘standard’ moves. In our
experiment we use both “α-expansion” algorithm and “αβ-swap” algorithm.

3.3.1 “α-expansion”

The α-expansion algorithm performs local search on multi-label energies. Given current la-
beling f, the idea of one α-expansion move is as follows: all variables should either switch to
a particular label α or keep its current label. For a particular label α there are an exponential
number of possible moves. Intuitively, α- expansion means the label α can expand its region.
The α-expansion algorithm is implemented as shown as below.

1. start with an arbitrary labeling f

2. while true
3. for each label α ∈ L
4. Find ft=argminE( f ) among ft within one ”α-expansion” move of f
5. if E( ft) <E( f )
6. f = ft

7. if converged
8. return f

The α-expansion algorithm could only be used to approximately minimize the energy E( f )
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with metric interaction penalty V. V is called a metric on the space of labels L if it satisfies

V(α, β) = 0⇔ α = β

V(α, β) = V(β, α) ≥ 0

V(α, β) ≤ V(α, γ) + V(γ, β)

(3.1)

where labels α, β, γ ∈ L.

3.3.2 “αβ-swap”

The αβ-swap algorithm performs local search using a different kind of moves. Given a current
labeling f , the idea of one αβ-swap move is as follows: all variables with fp ∈ {α, β} choose
a new label in α, β. That is each variable with label fp ∈ {α, β} could either swap to the other
label or just keep its current label. The αβ-swap algorithm is implemented as shown as below.

1. start with an arbitrary labeling f

2. while true
3. for each pair of labels α, β ∈ L
4. Find ft=argminE( f ) among ft within one ”αβ-swap” move of f
5. if E( ft) <E( f )
6. f = ft

7. if converged
8. return f

The αβ-swap algorithm could be used to approximately minimize the energy E( f ) with semi-
metric interaction penalty V. V is called a semimetric on the space of labels L if it satisfies

V(α, β) = 0⇔ α = β

V(α, β) = V(β, α) ≥ 0
(3.2)

3.4 Label Cost in Graph Cut

In a basic energy E( f ) =
∑

p Dp( fp), the optimal fp can be computed by minimizing data
cost independently. However, we might want to use as few unique labels as necessary. For
example, in model fitting we do not want to use too many models, we prefer to fit the data
points with fewer models. Then we can introduce a new energy term, which balances the
individual preference (the data cost) against the global preference which tends to have fewer
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unique models. This new energy term is called as label cost and it penalizes each existing
unique label in f .

E( f ) =
∑
p∈P

Dp( fp) +
∑
l∈L

H(l) · δl( f ) (3.3)

Elabelcost =
∑
l∈L

H(l) · δl( f ) (3.4)

where H(l) is the non-negative label cost of label l, δl( f ) is the indicator function

δl( f ) =

1 ∃p : fp = l

0 otherwise
(3.5)

The label cost can be viewed as a special case of global interactions recently studied in com-
puter vision by Werner [16] and Woodford [19]. Werner proposed a cutting plane algorithm to
make certain high-order potentials tractable in an LP relaxation framework [16]. However, this
algorithm is very slow. In [10] they proposed a fast algorithm to minimize energy with label
cost, by extending the α − expansion algorithm to incorporated label cost at each expansion.
Figure 3.4 and 3.5 shows α − expansion with label cost in both directed and undirected graph
for label β.

Figure 3.4: An example of α − expansion with label cost in directed graph, from [11]. Left: s
is source node and t is sink node. X1, X2..Xk are variables. y is an auxiliary node. Right: several
possible cuts on this graph.

In Figure 3.4, an auxiliary node y is introduced to construct a subgraph. The cost between
each variable node Xp to auxiliary node y is h. y is connected with sink node t. The cost
between y and node t is h, which means the max-flow of this subgraph could not exceed h. So
in a minimal s-t cut, the subgraph contributes cost is 0 if no Xp is assigned to label β(cut 1), as
there is no cut on this subgraph. Otherwise it is h (cut 2,4,5), in such case there is at least one
Xp is assigned to label β. Cut 3 could not be a min-cut as its cost is greater than h.

In Figure 3.5, if all variable nodes are cut to sink t and none are assigned to label β, then



3.4. Label Cost in Graph Cut 27

Figure 3.5: An example of α − expansion with label cost in undirected graph,cited from [11].
Left: each variable node Xp is connected with sink t and auxiliary node † at cost h/2. Right:
several possible cuts on this graph.

the min-cut value of this subgraph is 0 (cut 1). If at least one node is assigned label β, then
the the subgraph contributes cost h (cut 3,cut 4). Cut 2 could not be a min-cut with respect to
auxiliary variable y.



Chapter 4

3D Visualization

The 3D visualization plays a very important role in our work, that is visualization of the input
3D volumes and output results. As well, we also need to develop some assistant tools to help
us to evaluate and debug the results of model fitting in a convenient setting. In this chapter, we
introduce our development platform and relevant technologies that are used in our work.

4.1 3D Development Platform

Figure 4.1: The architecture of OpenSceneGraph.

28
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We develop our 3D programs based on OSG (OpenSceneGraph) [33], which is an open
source 3D graphics application programming interface. It is entirely based on OpenGL [52],
which ensures it to be a multi-platform application programming interface for drawing 3D and
2D graphics. But it goes beyond OpenGL by providing common function to many 3D appli-
cations, such as texture mapping, level of detail control, 3D file and image loaders. Because
of its rich features and open source license, OSG has been used by application developers in
fields such as visual simulation, virtual reality, scientific visualization and computer games.
Besides, OSG is written in Standard C++ language, using the standard template library (STL)
for containers, which makes it quite compatible with our main program.

OSG is a well-designed rendering middleware application, which is actually a deferred
rendering system based on the theory of a scene graph. A deferred rendering system records
rendering commands and rendering data in a buffer so that the commands can be executed at a
later time. This deferred rendering design allows the system to perform various optimizations
before rendering, as well as implement a multi-threaded strategy for handling complex scenes.
A scene graph is a general data structure which represents the 3D worlds as a graph of nodes
that contain logical and spatial relationship information.

Typically a scene graph is represented as a hierarchical graph, which contains a set of nodes.
Usually there is a top root node, several group nodes which can contain any number of child
nodes. There are also a number of leaf nodes, which serves as the bottom layer of the graph.
A group node can have an unlimited number of child nodes, and child nodes that belong to
the same group node can be treated as one unit and share the information of the parent node.
An operation performed on a parent node will be propagated to all the child nodes by default.
A typical scene graph tree does not allow isolated elements and directed cycles. Sometimes a
child node may have more than one parent node, which means this node is considered to be
”instanced”, and the scene graph can be defined as a directed acyclic graph (DAG). Instancing
produces many interesting effects, including data sharing and multi-pass rendering [49].

4.2 Maximum Intensity Projection

The maximum intensity projection (MIP) is a volume rendering method for 3D data that
projects in the visualization plane the voxels with maximum intensity that fall in the way of
parallel rays traced from the viewpoint to the plane of projection [48]. If using orthographic
projection, then two MIP renderings from opposite viewpoints will be symmetrical images. In
OSG it is quite convenient to use MIP, first we need to build a 3D texture for the input volume
and sent it to the scene graph, then we set the rendering option to be MIP MODE and render a
new frame. OSG will automatically transform the 3D volume into 2D result by comparing and
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Figure 4.2: Six slices of a small cube of the original data, these slices are cross sections.
The slice numbers are 3,13,17,23,27 and 31 from left to right and up to down. It is hard to
understand the structure of the vessels from the cross sections..
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Figure 4.3: The 3D visualization results with MIP on the same cube, the structure is quite clear.

selecting the points with maximum intensity.

Figure 4.2 shows several slices of an input data cube, of size 102x96x34, and these slices
are cross sections. There are 34 slices and we show six of them, namely slices numbered
3,13,17,23,27 and 31. From these slides, it’s impossible to figure out the structure of the
vessels, but from the MIP projection, the structure becomes clear, which is illustrated in Figure
4.3.

However, the 2D MIP projection looses depth information, and cannot provide complete
information about the original 3D data. To improve the sense of 3D, in our program we allow
to rotate the 3D data, during the rotation we continue rendering the new MIP results under a
different view. This way, the users can perceive the relative 3D positions of the data compo-
nents. So we use the orthogonal projection, no adjustment for distance from the camera made
in this projection, so that objects on the screen will appear the same size no matter how close
or far away they are. There are also some drawbacks in orthogonal projection, it is difficult
for user to distinguish between left and right, front and back. However, as we can rotate to a
proper angle if we are confused, these drawbacks are no longer important for our application.
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Figure 4.4: Left: the 3D scene contains vesselness points and the line segments fitted to these
points. The yellow circled area shows our segment of interest. Right: the detailed result after
isolating the segment of interest, now the rotation center is reset to this segment, notice that the
rotation center has moved to this segment, which enables us rotate and observe it more clearly.

4.3 Isolating 3D Objects of Interest

Beside 3D visualization, we also need some assistant tools for visualizing and debugging the
model fitting results. For example, if we want to know how well a specific segment fits the
vessels points that are assigned to it, we need to rotate this segment to an appropriate angle,
and zoom it into a proper scale, so that we can observe the fitting details more clearly. If we try
to perform this test on the full model, this is cumbersome for the user and also computationally
inefficient, especially when there are many segments in the results. Usually, there will be more
than 200 line segments for fitting a medium data set (200*120*100), and a lot of segments
overlap with each other. The overlap makes it more difficult to observe the fitting quality, even
after careful rotation and zooming in.

So we developed a 3D segment isolation tool to solve this problem. The isolation tool is
quite easy to use, the user just need to double click the segment of interest, then other segments
will be hidden from the view and the chosen segment will be displayed on the screen alone,
together with the vessel points assigned to it. If the user double click this segment again, then
other hidden segments will be visible again. Figure 4.4 shows an example of using the isolation
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Figure 4.5: The figure of the mechanism for object isolation. The truncated pyramid is the
perspective projection view volume, objects outside this volume will not be rendered. The
red rectangle is a the bounding box surrounding a line segment. We first build l(Pnear, P f ar),
then visit all nodes within this volume to find the intersected objects, which should be the
surrounding box of the segment of interest. In OSG the surrounding box shares a same parent
node with its surrounded segment, so we can easily get the pointer of the segment.

tool.

To implement the isolation tool, we need to transform the coordinates of the clicked points.
There are two important coordinate systems in OSG, the world coordinates and the screen co-
ordinates. The world coordinate system is also known as the universe coordinate system. This
is the base reference system for the overall model in 3D, to which all other model coordinates
relate. The screen coordinate system refers to the physical coordinates of the pixels on the
computer screen, based on current screen resolution. When clicking on the screen, we can get
the mouse position x and y. Let the point Pm(x,y) belong to screen coordinate system. We
need to convert it to a point Pw in world coordinate system. To perform the transformation, we
need to use a series of matrices, such as projection matrix and model view matrix, which are
provided in the public interfaces of OSG.

In Figure 4.5, we build a ray that starts from the project reference point and passes through
Pm. Its intersection point with the Front Plane is pnear, the intersection point with the Back
Plane is p f ar. We can calculate pnear and p f ar by back projection with the projection matrices.
The world coordinate point Pw is located on the line segment l(pnear, p f ar). We visit all the
nodes to find the nearest object intersected with l(Pnear, P f ar). This is computationally fast in



34 Chapter 4. 3D Visualization

OSG due to its scene graph structure, we only need to visit nodes in the view volume, not all
scene graph.

To isolate a segment, the user need to click right on it. This is quite a tough task as the
segments are too ‘thin’ to be clicked on easily. To solve this problem, we add a hidden bounding
box for each line segment. Each box is added to the direct parent node of its corresponding
segment. If the box is clicked, we can easily find out its corresponding segment as they share
the same parent in the scene graph. The surrounding boxes are set to be invisible, so that the
user is not distracted by them.

4.4 Window Center Adjustment

Figure 4.6: Suppose the full intensity range of the data is between -4000 and 32767, and most
of the voxels have intensity range between 2000 and 6000. When we use linear interpolation,
pixels in the range between 2000 and 6000 get mapped to a very narrow range of output inten-
sities. If we use Window Center adjustment (bottom image), pixels in the range from 2000 to
6000 get mapped into the full output range.

The intensity of each voxel in the original 3D image ranges from -4000 to 32767. However,
the monitor’s dynamic range is between 0 and 255. The input gray level greatly exceeds the
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Figure 4.7: A comparison of visualization results with and without Window Center Adjust-
ment. Here we map voxels whose intensity ranges between 2000 and 6000 to the whole output
range. After adjustment, the thin vessels are brighter than before.

output gray level, therefore, when we map the output gray range to the input gray range, we
are likely to loose a lot of important details, as shown in Figure 4.6. Most voxels have intensity
in the range from 2000 to 6000, but after mapping them to a narrow range of intensities, lots of
important details were lost.

We use a window center adjustment approach to solve this problem. We set a window on
the input gray level, centered in the middle of the range of interest. The window size should not
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exceed the interest range size. Then we map the input gray level within the window to 0-255,
according to Equation 4.1.

f (I) =


0 I < Ic −W/2

255 I > Ic + W/2

(I − Ic + W/2) · (255/W) otherwise

. (4.1)

where Ic is the center of the window, W is the window size, I is the input intensity value. With
window-center approach, we can assign our input range of interest to the largest possible output
range. Therefore the details are easier to observe.
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Piecewise Line Segment Model

To reliably extract the vessel structure from the input data, we use a model fitting approach in
the energy minimization framework. A model fitting approach has an advantage that it imposes
a strong prior, or regularization, on what the vessels should look like. A prior on the data helps
to extract the structure more reliably, since unlikely, under the prior (model) configurations are
prohibited. Using energy optimization framework for model fitting is a principled approach
that allows us to incorporate all the desired problem constraints into an objective function
which is then minimized. In addition, we are able to use graph cut algorithms for optimization
which have proved to be successful for a variety of vision problems.

We cannot fit our model for the vessel structure to the raw input data directly. The model
should be fitted only to those voxels that have a high chance of actually being a vessel. Since
vessels have brighter intensity, we could threshold the intensity data and fit the model to voxels
that are above the prescribed threshold. However, intensity information is not so reliable. The
vesselness measure, discussed in Section 2.1 is much more reliable to detect vessel voxels.
Therefore we compute the vesselness measure at each voxel, threshold it, and fit the model to
the voxels that are above some prescribed threshold of the vesselness measure. Throughout
the thesis, we often refer to these voxels as ”thresholded vesselness voxels” or simply ”vessel
voxels”. The work of computing vesselness measures from the raw data is finished by a partner
in the lab.

We model a blood vessel as a structure consisting of a sequence of straight line segments.
This is a good approximation provided that line segments are of appropriate length. To have a
good fit, for a very curved blood vessel, a sequence of shorter line segments are required. For a
less curvy blood vessel, a sequence of longer line segments will suffice. We formulate a global
energy function that reflects the goodness of fit of the piecewise linear segment model and use
the graph cut algorithm for optimization.

37
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5.1 Overview

Figure 5.1: The flow diagram of our line segment fitting approach.

Figure 5.1 shows the flow diagram of our approach. Our approach is based on fitting line
segments to the thresholded vesselness voxels. Each label corresponds to a particular line
segment. Since the number of possible lines segments is infinite, and the number of possible
segments is finite, in the discrete energy minimization approach, we need an efficient approach
to handle labels. We start by sampling a set of line segments (labels) that have a good chance
of being a good fit. We use a density based random sampling strategy with angle agreement.
The random sampling strategy is to propose line segments that directly connect vessel voxels.
The density based approach samples more segments around thin vessels and less around thick
vessels. This way, we have approximately the same number of line segments per length of
the vessels for the thin and for the thick vessels. This prevents undersampling in the area of
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thin vessels and oversampling in the area of thick vessels. Oversampling is not a problem,
other than computational efficiency. Undersampling can result in less accurate results. The
angle agreement makes sure that the sampled line segments agree with the vessel orientation
estimated by the vesselness measure, recall that we explained vessel orientation in chapter 2.1.
Such line segments have a higher chance of being a good fit for the data. In addition to the
regular line segment models, we also use an outlier model to fit outlier points, such as noise.

We build a global energy function based on line segment model, which consists of data
cost, smoothness cost and label cost. Our energy function is designed to encourage a good
geometrical fit of vesselness voxels to the line segments (through the data terms), nearby line
segments to have similar orientations (through the smooth term), and to use not too many line
segments in the fit (through the use of label cost). Then we minimize the global energy function
via graph cut algorithm. In our work, we use two different smoothness terms: one is the Potts
model [46] and the other is the piece-wise smooth model [46]. We use two graph cut based
optimization algorithms: α−expansion to optimize the global function for the Potts model, and
α − β swap for the piece-wise smooth model.

The output of a graph cut algorithm is an approximately optimal labeling result, which
partitions the input vesselness points into several clusters. Each cluster consists of all voxels
that are assigned to the same label, that is to the same line segment. Since the set of the initial
line segments may have been far from optimal, we use these initial labeling results to find a
possibly better set of line segment models. That is we use the vessel points currently assigned
to a line segment to estimate a better line segment through this set of points. This gives us a
better label (line segment) than the current one assigned to these vessel points. We use a local
greedy search to estimate the line segment through a set of points.

After parameter re-estimation, we update the set of labels, that is the set of line segments
with the re-fitted models, and remove any line segments that failed to get any support voxels.
We also need re-sample additional line segments around the outliers. Ideally, all outliers should
be noisy points and do not need to be fitted by a ’regular’ segment. However, there are usually
still some ‘good’ vessel voxels that are misclassified as outliers, if there are no initial segments
near them. The density based sampling strategy cannot guarantee enough initial segments for
all vessels, unless we sample much more segments than needed. For computation efficiency,
we use a cheaper approach, that is we sample more line segment models around the regions
with outlier labels after each iteration. Usually there is not many outliers, so we do not need
re-sample too many new segments.

Then we minimize the global energy function again, using the updated set of labels. This
process is iterated until the convergence of the energy. It is guaranteed that the energy is de-
creased at each step, since re-estimating line segments brings both the data and the smoothness



40 Chapter 5. Piecewise Line SegmentModel

cost of the energy down.

5.2 Model Sampling

5.2.1 Random Sampling Strategy

Figure 5.2: Random sampling result on a image data of size 102x96x34. There are many
segments around thick vessels, but very few segments around thin vessels.

We now discuss our random sampling strategy for the initial set of line segments (labels).
We first randomly choose one point P1 from vessel voxels and take it as one endpoint of the
segment. Then we build a size-adjustable cube centered at P1 and randomly select voxel P2
from all the vessel voxels that fall into this cube. P1 and P2 construct a new line segment
LP1,P2. We do not want very long or short segments. By setting the cube size properly we can
control the maximum length of LP1,P2. For short segments, we check the length of LP1,P2. If its
length is smaller than a threshold, we discard it and select P2 again. This is repeated until we
find a line segment of proper length. If this step has been repeated too many times (higher than
a threshold), and we still can not find a proper segment, we will re-select P1 as the old one is
probably an isolated noisy point, and, therefore, we do not want any candidate line segments
around it.

5.2.2 Density Based Random Sampling

From practical experiments, we found that we need to sample around 400 line segments for a
dataset whose size is about 100x50x80. However, we notice that thick vessels often get most
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Figure 5.3: Sample results based on the density of vessel points. This strategy samples less
points around thick vessels and more points around thin vessels, making the overall distribu-
tion of line segments more equal throughout the dataset. This ensures that there is neither
oversampling (leading to longer computational time) no undersampling leading to poor model
fit).

segments, while thin vessels get few. This problem is illustrated in Figure 5.2. The reason is
that we only choose endpoints of segments from vessel points, and since thick vessels contains
more vessel points, they get more line segments sampled around them. On the contrary, thin
vessels do not get enough line segments, some thin vessels have no nearby line segment at all.
The situation is especially bad for the endpoints of the thin vessels. If there are no nearby line
segments around a vessel, all its points will be fitted by an outlier model, since an outlier model
fits, albeit at a higher than normal cost, to any vessel point.

To solve this problem, we use a new sample strategy based on taking the density of vessel
points into consideration. We first build a density map before sampling, for each vessel voxel,
stores the number of other vessel voxel in the neighborhood of some fixed size. Now, when we
sample point P1, we sample with probability inversely proportional to the density map. That
is the higher the density, the less likely we are to sample that point as P1. This way, we can
sample more segments around thin vessels, which is illustrated in Figure 5.3.

5.2.3 Random Sampling with Angle Agreement

The above approach does not take the inner parameters of line segment into consideration, such
as angle. So the direction of segments is not controlled. However, we know in final result the
line segment should have similar direction to the direction of the vessel that it fits. For each
vessel voxel, we have the estimation of the vessel direction from the vesselness measure, see
Section 2.1. Therefore we add the angle agreement between the sampled line segment and the
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Figure 5.4: Sample result without angle agreement.

Figure 5.5: Sample result with angle agreement.

estimated vessel orientation. This is done as follows. After we generated a new line segment,
we calculate the angle β between the average vessellness orientation measure of the segment
endpoints and the orientation of the line segment (P1,P2). If β is bigger than 15 degree, we
believe the direction of this segment is too different from the orientation of the vessel that its
endpoints pass through, so we discard P2 and select a new one. If there is no proper P2, we
re-select P1 as P1 may be a noise point.

Figure 5.4 shows the sampling result without vessel angle agreement. These line segments
have random orientations that are far from the orientations of the underlying vessels. Figure
5.5 is the result with angle agreement, most sample segments have similar directions with the
underlying vessels.
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Figure 5.6: Result comparison with and without outlier model. In the first image, a wrong
segment L1 fits both inlier and one outlier point marked with ”p” in the image. . In the second
image the outlier model was added and L2 only fits the inliers. The data cost between noise P
and L2 is very high, if there is no outlier model, L1 is definitely a better option than L2.

5.2.4 Outlier Model and Re-Sampling

There is a lot of noise in the original image data, and noise points should not be fitted by any
line segments. If we have no outlier model, noise points will have to be fitted by valid line
segments. If the line segment also contains true vessel points, not just the noise points, the
segment is likely to deviate from its optimal position as illustrated in the first image of Figure
5.16.

To solve this problem, we add an outlier model to the set of valid segment labels. An outlier
model is a special label, and it is not actually a segment. Its meaning is as follows: any point
assigned to an outlier label is considered not to belong to any line segment. The data cost of
the outlier model is set to a constant value Toutlier. Usually the distance (that is geometric fit)
between a noise voxel and the line segment is much longer than the distance between the true
vessel voxel and a segment. So the data cost of noise voxel is much higher than that of a true
vessel voxel. If we set an appropriate Toutlier value, the noise voxels will prefer to get assigned
to the outlier model instead of a regular line segment. Suppose Tave is the data cost averaged
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among true vessel voxels, Terror is the average data cost if an outlier voxel is assigned to its
nearest line segment. Then Toutlier should be much higher than Tave, but lower than Terror.

Outlier model is not only useful for the noise voxels, but also it can temporarily accept
those vessel voxels that are currently not well fitted by any segments. There are always some
tiny vessels that failed to get enough models sampled around them, even with the density based
sampling approach. They can be labeled as outliers ”temporarily”, and we could re-sample
models around the regions with outlier labels at the end of each iteration. Figure 5.6 shows a
comparison of results with and without outlier models.

5.3 Global Energy Function

We build a global energy function based on the line segment model, which consists of data
cost, smoothness cost and label cost.

E( f ) =
∑
p∈P

Dp( fp) +
∑
pq∈N

Vpq( fp, fq) +
∑
l∈L

H(l) · θl( f ) (5.1)

where
∑

p∈P Dp( fp) is the data cost,
∑

pq∈N Vpq( fp, fq) is the smoothness cost,
∑

l∈L H(l) · θl( f )
is the label cost. In the following sections we will introduce how these three energy terms are
designed in our work.

5.3.1 Data Cost

Data cost measures the cost of assigning a label to a vesselness voxel. In this thesis, the data
cost is how well a vessel voxel fits to a line segment. Each three dimensional line segment Lab

has parameters θLab = {a, b, σ}, where a, b are endpoints of the segment, σ2 is the variance of
the data, the initial σ is set to a small constant value. We here model a line segment from point
a to point b as an infinite mixture of isotropic Gaussian N(µ, σ2) for each µ interpolating a and
b [10]. The probability that point p belongs to Lab are shown in equation 5.2.

Pr
(
x|a, b, σ2

)
=

∫ 1

0
N

(
x| (1 − t) a + tb, σ2

)
dt. (5.2)

q belongs to the line segment Lab, x is a vessel point, the probability that x appears near q should
follow the gaussian distribution with mean equal to the point q. We assume that q follows a
uniform distribution on segment Lab. Figure 5.7 shows how to calculate the data cost on this
segment model. This particular model is chosen because it encourages endpoints a, b not to
extend too far beyond the actual vesel voxels that are assigned to this line segment. That is a
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Figure 5.7: Line segment model. Here t is a point on the segment, x is a vessel point. We
assume that the probability of x to appear at some distance from t follows gaussian distribution,
and t is evenly distribution on the segment. So the data cost is an infinite mixture of Gaussian
distributions.

‘compact’ line segment is encouraged for a set of vessel points.

In three dimensions, the above integral evaluates to

Pr
(
x|a, b, σ2

)
=

1
4πσ2||a − b||

· exp
(
−

D2
x

2σ2

)
·

(
er f

(
(x − b) · (a − b)
√

2σ||a − b||

)
− er f

(
(x − a) · (a − b)
√

2σ||a − b||

)) (5.3)

where erf(.) is the error function, which is also called the Gauss error function. It is related
to the cumulative distribution Φ, the integral of the standard normal distribution by Φ(x) =
1
2 + 1

2er f (x/
√

2). Dx is the orthogonal distance from x to Lab.

Given a set Xl = {xp : fp = l} of inliers for label l, we calculate the maximum-likelihood
estimators of θ = {a, b, σ} by minimizing the negative-log likelihood function

Dp( fp) = −
∑

p

logPr(p|a, b, σ2) (5.4)

Edata is our data term, but it is difficult to compute the derivative of the erf function. So we do
not use gradient descent to estimate the parameters, instead we use a local greedy search based
approach to calculate the parameters, which will be discussed in the following section.

We also tested a simplified model, which measures the probability that point x belongs
to an infinite line model L, as opposed to a line segment. In 3D each line has parameters
θl = {A, B,C,D, σ} where Ax + By + Cz + d = 0 defines the line and σ2 is the variance of data.
The parameters A, B,C,D have been scaled so that A2 + B2 +C2 = 1. The initial line models are
generated the same way as line segments models, by selecting two random points from vessel
points and fitting A, B,C,D accordingly. The initial σ is set to a small constant value. So the
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Figure 5.8: Line Model.

data cost of line model is

Dp

(
fp

)
= −log

(
1
√

2πσ
exp

(
−

(Apx + Bpy + C)2

2σ2

))
(5.5)

This line model can result in line segments that extend far beyond the actual vessel voxels
assigned to it, see Figure 5.9. We will compare the results of the two models in the experiment
section.

Figure 5.9: Result generated by line model based approach.

5.3.2 Smoothness Cost

We tested two different smoothness terms: one is based on Potts model, the other is based on
piece-wise smooth model. Potts model is the simplest smoothness term that allows discontinu-
ities. It can be modeled by the following neighbor interaction function:

Vp,q = up,q · T ( fp, fq) (5.6)
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Figure 5.10: The Potts model, here Lp and Lq are two different labels. In our work, we set a
constant penalty Tpotts. If two points belongs to different labels the penalty is Tpotts, otherwise
the penalty is 0.

where

T ( fp, fq) =

 1 ( fp , fq)

0 (otherwise)
(5.7)

This neighbor interaction function gives penalty up,q if two neighboring points are assigned
different labels. up,q does not depend on the size of the difference in labels Lp and Lq, what
matters is if they are different or not. The graph of Potts model is shown in Figure 5.10.

The Potts model encourages a labeling consists of different regions, where voxels in the
same region have the same labels. Therefore, Potts model is informally called a piecewise
constant model. In our work, the Potts model provides a smoothness penalty between different
line segments, that is voxels that belong to the same vessel tend to be assigned to the same
label to lower the smoothness cost. However, the Potts model does not care about about the
difference/similarity between different labels. Different labels, even if they are very similar,
are penalized by the same amount as different labels that are very different. This leads to a
problem in our fitting result, which is shown in Figure 5.11.

We want to relate the smoothness cost with the inner parameters of the line segment, such
as direction and position. If two line segments are neighbors, they usually belong to the same
underlying vessel, and, therefore, they should have similar orientation. Besides, the distance
between the two segments should also be a small value. To model this, we use a piecewise
smooth model as the smoothness term.

In piecewise smooth model, V(Lp, Lq) = max(T, θ(Lp) − θ(Lq)), where θ(Lp) and θ(Lq) are
parameters of segments Lp and Lq, such as angle and spatial coordinates. T is a constant value
to truncate the cost. The piecewise smooth model encourages labeling consisting of several
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Figure 5.11: A snapshot of the Potts model result. The triangular shaped area is fitted by a
horizontal line segment , however, we want a vertical segment as neighboring segments should
have similar directions. The energy of the Potts model is not related to the difference/similarity
of line segments (labels), so it can not regularize the relative orientations of the nearby seg-
ments.

regions where voxels in the same region tend to have similar, but not necessarily equal labels.
Figure 5.12 shows a truncated linear piecewise smoothness cost. Such smoothness cost can be
used to encourage nearby line segments to have a similar orientation and spatial coordinates,
since under this model similar labels cost less than labels that are not similar. .

W use a piece-wise smooth term proposed by Olsson and Boykov [35]. They proposed a
curvature optimization framework to approximate surfaces from a cloud of point measurements
corrupted by noise and outliers. Instead of using graphic models with higher order interactions,
they extended the label space to encode both orientation and position of a curve, as shown in
Figure 5.13.

This piece-wise smooth model could integrate both the angle and spatial information in a
principled way, which makes it quite suitable to solve our problem. Suppose p̃ and q̃ are two
neighboring points, p̃ is fitted by line segment Lp, q̃ is fitted by Lq. Then the smoothness cost
based on Olsson and Boykov model is defined as

V( p̃, q̃) =

(
|p − p′|
|p − q|2

+
|q − q′|
|p − q|2

)
· |p − q| (5.8)

Where p is the projection of p̃ on segment Lp. Here we assume p̃ is a noisy point around Lp,
p is the estimated true position on Lp. Then

(
|p−p′ |
|p−q|2 +

|q−q′ |
|p−q|2

)
minimizes the curvatures at p and
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Figure 5.12: A truncated linear piecewise smoothness cost.

Figure 5.13: A 2D example of Olsson and Boykov model. Points p̃ and q̃ are noisy measure-
ments of points p and q on the underlying curve. The quotient |q−q′ |

|p−q|2 yields half the curvature at
p under the assumption that p and q belong to a constant curvature segment.

q, where |p − q| minimizes the distance. This way, we ensure neighboring points are on an
underlying piecewise smooth curve. The fitting result is much improved compared with Potts
model, as shown in Figure 5.14.

5.3.3 Label Cost

The goal of model fitting is to find the best fitting model for each cluster of points. And for each
cluster, we need to find the best fitting model which minimizes the data terms of points that
belong to this cluster. However, there are two approaches to minimize the data terms, either
finding one model which fits the whole cluster very well, or finding multiple models, where
each model fits a smaller part of the cluster much more precisely than one model per cluster



50 Chapter 5. Piecewise Line SegmentModel

Figure 5.14: Comparison results between Potts model and piece-wise smooth model.

ever could. In the limit, if we add one line segment per data point, we will fit the data perfectly,
but will use too many models. We do not want too many line segments fitting one vessel, so
we add a label cost to the energy function. That is for each line segment (label) that is being
’used’ (i.e. some vessel voxels are assigned to it), we add a penalty Tv. This encourages as few
models as possible in the fitting result. If Tv is too small, than too many line segments are used.
If Tv is too large, then only very few line segments are allowed. Experimentally, we found that
the value of 320 for Tv gives us good results, resulting in neither too few nor too many line
segments.

5.4 Parameter Estimation

5.4.1 Exhaustive Grid Search

We first use the graph-cut algorithm to optimize the energy function defined in Equation (5.1)
to get an approximately optimal labeling, then estimate the model parameters based on the
labeling results. However, re-estimating the parameters of a line segment model is not an easy
task, as the derivative of the function in Equation (5.3) is difficult to compute. Instead we use
an exhaustive grid search approach to find the approximate minimum solution. Figure 5.15
illustrates how this approach works.

Figure 5.15 is a example of the exhaustive grid search on 2D image data, which is easier to
understand than 3D. To fit a point setS0, we first build a grid covering all points inS0, LetSg be
the set that contains all grid corner points and S0 ∈ Sg. We then perform exhaustive grid search
for every pair of points (p, q), p, q ∈ Sg, and p! = q. That is we take p, q as the endpoints of line
segment Lp,q, compute the data cost Edata(r, Lpq) of assigning r to Lp,q according to Equation
(5.3), r ∈ S0. We also need to search all possible values of σ, however σ usually varies in
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Figure 5.15: 2D example of our exhaustive grid search approach. The grid is our search space,
the red line segment is the global minima, the green one is our exhaustive search result. There is
some different between the two line segments, as we only search points on the grid corners. But
the endpoints of the global minimum solution may be located not exactly on the grid corners.
Finding a more precise solution would require a sub-pixel search, which is too computational
expensive.

a small range [0.5-5]. Compared to the huge search range of a, b, the influence of σ on the
algorithm speed is small.

The data cost of fitting S0 with Lp,q is

Edata(S0, Lpq) =
∑
r∈S0

Edata(r, Lpq) (5.9)

The optimal line segment is computed via

Lm = arg min
Lp,q

(
Edata

(
S0, Lpq

)
+ Esmooth

(
S0, Lpq

))
(5.10)
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5.4.2 Least Squares Based Search

This exhaustive grid search method could generate results which are very close to the globally
optimal solution, but too computational expensive. Suppose there are N points in S0, the
exhaustive grid search algorithm complexity is O(N3). In the experiment it takes about 8 hours
to process a small data cube (25x21x25). So we use a faster approach which is based on
the least squares method and local search to estimate the model parameters. Least squares is
a standard approach to the approximate solution of over determined systems, the name least
squares means that the overall solution minimizes the sum of the squares of the errors made in
the results.

Figure 5.16: A snapshot of fitting results based on the least squares approach. These segments
are roughly correct, but their precision is not good enough, as this approach only minimizes
part of the energy function in equation 5.3.

We notice that the first part of Equation (5.3) is 1
4πσ2 ||a−b|| and the second part is exp(− D2

x
2σ2 ).

There are three unknown parameters σ,||a − b|| and Dx. For σ we can simply iterate over a
range of likely values, indeed if we set the search step to be 0.5, there are at most 20 possible
values in the range [0.5,10]. ||a − b|| is the length of the segment, which is independent from
the segment direction. That means if we can find the correct direction of the segment, then
the length of the segment can be calculated in the same way as σ. The third parameter Dx is
the orthogonal distance from point x to the segment. So we use the least squares method to
minimize the sum of D2

x, which can provide us the optimal direction of segments. The third part
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of Equation (5.3) is erf function, and least square method can not optimize it. This approach
could only generate a local minima, although there maybe some distance to the global minima,
as shown in Figure 5.16.

5.4.3 Fast Local Search Approach

Figure 5.17: The local search approach, the green segment is the least squares solution, the red
segment is the globally optimal solution. We locally search the endpoints within the regions
surrounded by the yellow boxes. In this example, a globally optimum solution will be found as
both the endpoints of the globally optimum solution are inside the yellow boxes.

We are not satisfied with the local optimal solution generated by the least squares approach,
so after least squares we use a fast local search approach to get more accurate results. We do
not search all points in S0 due to huge computational expense, instead we search a small area
to find a better solution iteratively.

Figure 5.17 shows how the local search approach works. Before running the local we al-
ready have a segment L by the least squares approach, which is shown with green color. Then,
we build two small boxes around the endpoints of L, and search within those two areas. Specif-
ically, we try all possible voxels in one of the boxes for first endpoint of the interval, and all
possible voxels in the other box for the second endpoint. That is, all possible combinations of
the endpoints are tried, where the first endpoint comes from one box and the second endpoint
comes from the other box. The pair of endpoints that minimizes the objective function is select-
ed, and then this process is repeated again, moving the search boxes around the newly found
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Figure 5.18: A snapshot of fitting result based on local search. The green circle shows much
improved results compared with least squares solution in Figure 5.16.

endpoints This process is iterated until convergence, which is guaranteed since the number of
points is finite and the energy always goes down. The size of the box is first set to be a larger
value, to ensure the algorithm will not be easily trapped into local minima. After several itera-
tions we use a smaller size, as we know we are more likely to be near the global minima. This
approach is fast enough to allow sub-pixel precision, that is we can search the grid at floating
point precision for the spatial coordinates in the local areas, if necessary. Experimentally, we
found that half-pixel precision is sufficient, while one-pixel precision sometimes is not accurate
enough. Figure 5.18 shows a snapshot of the local search result.
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Experimental Results

In this chapter, we present experimental results of the proposed algorithm, compare results
generated by using different energy terms and analyze the difference.

6.1 Data Term Experiments

Figure 6.1: Left: fitting result generated by line model. Right:fitting result generated by line
segment model.

We test two type of data terms, the first one based on the line segment model, and the
second one based on the line model. Figure 6.1 compares the fitting results of the two models
on a cluster of points. There is only one label, so the smoothness cost is 0, and the label cost
is equal. It is clear that the segment generated by the line model is longer compared to that of
the line segment model. This is because there is no ’length’ parameter in the energy function
for the line model. No matter how long the line segment is, the corresponding data cost in the
energy function is the same. As the length is not part of the estimation in the case of the line
model, we estimate the length by the following ‘guess’ strategy. We first build a bounding box
for each cluster of voxels, then extend the line until it falls beyond the bounding box. As the
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Figure 6.2: A snapshot of fitting result based on the line model. As we have to ’guess’ the
length, the line segments often extend beyond what they should be.

Figure 6.3: A snapshot of fitting result based on the line segment model.

bounding box contains all voxels in the cluster, including noise and outliers, this greedy guess
strategy often generates longer line segments. However, there is no such problem in the line
segment model. As the length parameter is part of the data term, we can directly compute it by
minimizing the energy function.

Figure 6.2 and 6.3 are the fitting results generated by the two model. The smoothness term
is based on Potts model, and label cost is set to be the same constant value. As the line model
encourages long line segments, there are only 5 line segments in the result. On the contrary,
the segments generated by the line segment model are neither too long nor too short, and there
are 7 segments. For a greater accuracy of the vessel structure model, the line segment seems to
be a better model.
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6.2 Label Cost Experiments

Figure 6.4: Comparison of of results with different label cost. There is no smoothness cost, and
the data cost is based on the line segment model. Tv is the value of the label cost. But there is
no good value that can generates very reasonable results. Without smoothness cost, label cost
alone does not do a good job.

We now evaluate what effect the label cost has on our fitting results. Figure 6.4 is the com-
parison of results with different label cost. For simplicity of comparison there is no smoothness
terms, and the data terms are based on the line segment model. When the label cost Tv = 0 ,
there are much too many segments fitting one vessel. This is because the lower the label cost,
the more models are allowed. When Tv = 1200, there are only 3 segments, each segment fits
a very large part of a vessel. From this comparison, we conclude that choosing an appropriate
label cost is very important, especially when there is no smoothness cost. It is also clear that
without smoothness cost, label cost alone does not generate very good results.

When the smoothness cost is used, the label cost still performs a meaningful job. In Figure
6.5 we use Potts model with smoothness parameter set to 10. We still need the label cost
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Figure 6.5: Comparison of results without label cost, left (TV = 0) and with the label cost, right
(Tv = 320). The smoothness cost is set to 10. The result is better with non-zero label cost.

Figure 6.6: Fitting result without label cost, the smoothness cost is set to 30.

to reduce the number of models. We can get similar results by tuning the parameter of the
terms. In Figure 6.6, we increased the smoothness cost to 30 and set label cost to be 0. The
fitting result is somewhat similar to the one shown in Figure 6.5, but not as good. In addition,
experiments show that it is easier to find a good parameter range if we use both Potts model
and label cost.

We do not do experiment with piece-wise model and labelcost.The piece-wise model can
result in good fitting results even without label cost. This will be illustrated in the following
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sections.

6.3 Smoothness Term Experiments

Figure 6.7: A snapshot of fitting result generated by Potts model, with constant label cost and
line segment model data cost.

We now evaluate different smoothness terms for vessel fitting. Figure 6.7 is the fitting
result generated by Potts model on a cube (111x44x111). Figure 6.8 is the result generated by
the piece-wise smooth model. The result generated by piece-wise smooth model is better than
Potts model. This is because the Potts model does not care about the similarity between the line
segments fitted to nearby pixels. On the contrary, the piece-wise smooth model integrates both
the angle and spatial information in a principled way, nearby line segments are encouraged to
have a similar orientation and spatial coordinates.
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Figure 6.8: A snapshot of fitting result generated by piece-wise smooth model. There is no
label cost, the data cost is based on the line segment model.

6.4 Comparison of Different Parameter Re-Estimation Ap-
proaches

We now compare the fitting results between different approaches to re-estimating the parame-
ters of the line segment models. Figure 6.9 is the result generated by the exhaustive grid search
approach. The smoothness cost is based on the piece-wise smooth model.

There are two steps in the fast local search approach, first we need to run a least squares
based fast fitting approach, then we use the local search approach on the results generated by
the least squares approach. Both approaches use piece-wise smooth model. Figure 6.10 is
the result generated by the local search approach, Figure 6.11 is the fitting results of the least
squares approach.

There is some difference between the results in Figure 6.9 and 6.10, but this difference
is insignificant. This illustrates the effectiveness of our fast local search approach. Table 6.1
shows the running times of these two approaches. The processors of the our experiment PC
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Figure 6.9: A snapshot of fitting result generated by exhaustive grid search approach.

Figure 6.10: A snapshot of fitting result generated by local search approach. The input of this
approach is the results generated by least squares based approach.
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Figure 6.11: A snapshot of fitting result generated by least squares based search approach.

are Intel(R) Core(TM)i5-2400 CPU @3.10GHZ(4 CPUs); the memory size is 4096 MB. We
have not use any parallel computational technology in our current experiments. In the future,
we will try to run our program on better machines, and use some parallel technologies such as
multi-thread and CUDA.

Size
Fast Local Search

Greedy Grid Search
Least Squares Local Search

88x67x70 3min 50min 6 hours
111x44x111 13min 216min 30 hours
151x84x151 22min 382min >50 hours

Table 6.1: Running times of these two approaches.

6.5 Estimation of σ

σ is one parameter of the line segment model, which can be called as ’line width’. The ’line
width’ is directly proportional to the radius of the fitting vessel. Figure 6.12 shows the an
example of σ estimation. In most areas the estimation of σ is reasonbale, but incorrect estima-
tions still exist in some areas. For example, the value of σ in the yellow circle is much bigger
than it should be. The reason is this model fits both the vessel voxels and noise points, which
increases the width of the segment incorrectly.
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Figure 6.12: The left image is the input vesselness measure, the right image is the correspond-
ing σ estimation. σ is directly proportional but not equal to the radius of the vessel.

6.6 Experiment of the Energy

We run both α−expansion and α−β swap for 10 times, and record the converged energy values.
Figure 6.13 is the graph of the converged energy values of α − expansion. The average value
is 54160.9, the standard deviation is 489.5. Figure 6.14 shows the converged energy values
of α − expansion. The average value is 17336.9, the standard deviation is 141.7. It is clear
that both α − expansion and α − β swap can converge to a certain energy value, with a small
standard deviation. The average energies of α−expansion and α−β swap are different. This is
because α − expansion optimizes the Potts model, while α − βswap optimizes the piece-wise
smooth model.

Figure 6.13: The converged energy values of α − expansion.
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Figure 6.14: The converged energy values of α − βswap.

6.7 Remaining Challenges

Figure 6.15: A snapshot of fitting result with rings (yellow circle).

We run the fast local search approach on more data cubes. Experiment results show that
although this piece-wise smooth line segment model can generate reasonable fitting results,
there are still some problems. One problem is the ring noise. There is ring noise in the original
input data, which is caused by CT scanner. Before computing the vesselness, we have pre-
processed the input data with some ring removal algorithms, but there are still some rings left.
Therefore we fit line segments to the rings that have high enough vesselness measure, as shown
in Figure 6.15.
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Figure 6.16: A bad case of fitting around a bifurcation. As the ambiguous area among the three
vessels are not divided properly, an extra line segment is used to fit vessel voxels within the
yellow circle.

Another problem is fitting around bifurcations. There are usually three vessels on a bifurca-
tion, two vessels meet and merge into one bigger vessel. It is difficult to divide the ambiguous
area among these three vessels properly. Figure 6.16 shows fitting failure around a bifurcation.
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Conclusion and Future Work

In this thesis, we formulate blood vessel automatic extraction as a geometric multi-model fitting
problem, which can be optimized via graph cuts algorithm. Our input data are micro-CT
images of a mouse heart. We first extract the points that are likely to be blood vessels by
estimating the vesselness measures. Then we propose a piecewise line-segment model to fit
the thresholded vesselness measure voxels.

7.1 Summary

Before performing multi-model fitting, we first sample a set of line segment models on the ves-
sel voxels by a density based random sampling strategy with angle agreement. This sampling
strategy can sample more segments on thin vessels and less on thick vessels, and control the
direction of the segments. In addition to these regular models, we also add an outlier model
to model outlier points. Experimental results illustrate the importance of the outlier model,
especially when fitting noise voxels.

After sampling, we build a global energy function based on the line segment model. Our
energy function consists of data cost, smoothness cost and label cost. The data cost measures
the probability that a vessel voxel belongs to a segment. We test two different data cost, one
is computed as an infinite mixture of isotropic gaussian distribution on line segment; the other
measures the probability that points belong to an infinite line model L. The line model is
much simpler than the line segment model, however, the latter can generate better results. We
compare two different smoothness terms: the Potts model and the piecewise smooth model.
Both of the models encourage the labeling to be consistent, but the piecewise smooth model
can also regularize the relative positions between neighboring segment pairs. The label cost
penalizes overly-complex models, that is label cost prefers to explain the data with fewer,
cheaper models. But label cost alone does not generate good results, it should be used together
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with the Potts model.
We minimize the global energy function via graph cut algorithm. If the smoothness term is

a metric then we use α − expansion to optimize the global function, and if it is a semi-metric
we use α − β swap. The output of graph cut is the optimal labeling result, we re-estimate the
line segments from these labeling results by re-fitting the optimal labeling with line segments
of best fit. In our work, we test two different approaches: the exhaustive grid search and fast
local search. The exhaustive grid search approach can generate approximate global minima
reliably but is computational expensive. The fast local search gives a locally optimal solution
in a relatively short time. Experimental results show that these solutions give a reasonable fit
in practice.

After parameter re-estimation, we update the set of labels, that is the set of line segments
with the re-fitted models, and remove any line segment models that failed to get any support.
Then minimize the global energy function again, using the updated set of labels. This process
is iterated until the convergence of the energy.

7.2 Limitations

There are some limitations of our algorithms. First is the running speed. The fast local search
approach can generate results on small data cubes in a relatively short time, as shown in table
6.1. But it is still too slow for the whole dataset. Besides, we have to tune new parameters for
new data set, which greatly increases the running time on the big datasets. The slow running
speed is caused by our over-complex line segment model. Besides, we can not validate our
fitting results as there is no ground truth. We have to manually check the fitting results.

7.3 Future Work

Although the approach presented in this work can generate reasonable fitting results, there are
still some issues to investigate, which are listed as follows:

• It is difficult to fit well around bifurcations. There are usually three vessels around a
bifurcation. It is quite a challenging task to accurately fit line segments at the bifurcation
areas, as the ambiguous area has to be divided among the three vessels. If the area is not
divided properly, then the fitting result is not satisfying.

• We should either find a faster parameter re-estimation method, or propose a simpler mod-
el to replace the line segment model. As the parameter re-estimation of such complex
model takes too much time to fitting big datasets. Parallel computation is another choice.



68 Chapter 7. Conclusion and FutureWork

• Although we have pre-processed the input data with some ring noise removal algorithms,
there are still some ring artifacts left. So we need to improve the ring removal algorithms.

• We do not deal with the partial voluming effects in our present work. This problem
should also be solved in the future work.
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