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Abstract 

Image denoising is a well studied field, yet reducing noise from images is still a valid 

challenge. Recently proposed Block-matching and 3D filtering (BM3D) is the current 

state of the art algorithm for denoising images corrupted by Additive White Gaussian 

noise (AWGN). Though BM3D outperforms all existing methods for AWGN denoising, 

still its performance decreases as the noise level increases in images, since it is harder to 

find proper match for reference blocks in the presence of highly corrupted pixel values. It 

also blurs sharp edges and textures. To overcome these problems we proposed an edge 

guided BM3D with selective pixel restoration. For higher noise levels it is possible to 

detect noisy pixels form its neighborhoods gray level statistics. We exploited this 

property to reduce noise as much as possible by applying a pre-filter. We also introduced 

an edge guided pixel restoration process in the hard-thresholding step of BM3D to restore 

the sharpness of edges and textures. Experimental results confirm that our proposed 

method is competitive and shows better results than BM3D in most of the considered 

subjective and objective quality measurements, particularly in preserving edges, textures 

and image contrast. 

Keywords 

image denoising, additive white gaussian noise, block matching, sparsity, transform 

domain filtering, edge guidance, and pre-filtering. 
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Chapter 1  

1 Introduction 

A digital image is composed of set of pixels which is defined as a two dimensional 

function,         where   and   are spatial coordinates. The value of   at any particular 

pair of coordinates       is called the gray level or intensity of the image at that location. 

The image becomes a digital image when      and the values of   are all finite, discrete 

quantities. These values of   are generally referred to as pixels. Pixel values in images 

can be noisy. Noise in images is mainly caused by sensors during acquisition, 

environments (e.g. poor illumination) or during transmissions. No matter how good the 

image acquisition devices are, an image improvement is always sought-after to improve 

their range of applications in various fields. The process of estimating the original image 

by reducing the noises from noise-contaminated image is referred to as image denoising 

in image processing. Image denoising is a very important task in image processing as a 

process itself or as an element of other image processing tasks. 

Image denoising is a well-studied field and yet it’s still one of the most active research 

areas in image processing and computer vision.  It’s a pre-requisite for many image 

processing tasks such as image segmentation, image restoration, object recognition, 

image classification, and image registration, where estimating the true signal is crucial to 

accomplish desirable results. 

The form of the noise can be additive, which is generally independent of image data, or 

multiplicative, which is dependent on image data. 
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The formula for additive noise is 

                 1.1 

whereas the formula for multiplicative noise is 

                 1.2 

Here,   represents the location of pixels,      is the original signal, while      denotes 

the noise introduced to form the corrupted image     . 

Most of the images are assumed to be contaminated by additive random noise and can be 

modeled by a Gaussian distribution. Hence, this type of noise is referred to as Additive 

White Gaussian Noise (AWGN). AWGN is also probably the simplest and most 

commonly used model in the image denoising literature. As AWGN is random in nature 

and it corrupts almost all areas of images, it is challenging to remove AWGN from 

images. It becomes increasingly difficult to preserve the small details of an image as the 

error level increases.  

This thesis work proposes a few improvements over state of the art method for reducing 

the effect of AWGN, famously known as Block Matching and 3-D Filtering (BM3D) [1].  

 

1.1 Motivations 

The BM3D algorithm exploits non-local image modeling through the signature method of 

grouping and collaborative filtering in transform domain. It capitalizes on two principal 

properties of natural scene images: the existence of mutually similar patches within a 

close neighborhood and the local correlation of pixel values within a single patch. 

Grouping similar 2D patches into 3D data arrays allows us to exploit both intra-patch 

correlation and inter-patch correlation based on the above two assumptions. As a result, 

the group enjoys correlation in all three dimensions, allowing a very high sparse 

representation of the image in the transform domain. Here by the term sparse, we refer to 
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linear-transform domain representations which have few high magnitude coefficients and 

many low magnitude coefficients. Sparseness refers to the energy compaction property 

(i.e. most of the image details are represented by few large coefficients while noise is 

spread across a range of small coefficients). This kind of sparse representation allows us 

to separate the noise from the true signal by applying shrinkage on the coefficients in 

transform domain. Thus BM3D acts as a very efficient and powerful denoiser and to our 

knowledge it exhibits the best performance for AWGN.  

BM3D exhibits good results when the number of matching blocks in the defined 

neighborhood is plenty enough (e.g. repeating patterns, textures and uniformed areas) to 

achieve high sparsity, where nonlocal image modeling is suitable. Also the assumption 

that image content is highly correlated on a square patch is not always true for natural 

image scenes. If the patch contains curved edges, small image details or singularities, the 

non-adaptive transform of BM3D cannot produce a sparse representation of the image, 

resulting in poorer denoising performance introducing certain artifacts.  

The performance of BM3D also sharply degrades as the noise level increases. At 

relatively higher noise levels, due to the increase of noisy pixels, it becomes increasingly 

harder for BM3D to differentiate between noise and true image textures, edges, and 

image details. 

 

1.2 Thesis contributions 

To address the problem of BM3D for irregular image shapes or textures, curved edges 

and singularities, we propose an Adaptive Edge-Guided Block-Matching and 3D filtering 

(AEG-BM3D) algorithm. In our method, we try to adapt the estimation of pixel values 

according the edge activity found in a given block. We extract the edges from the 

corrupted image after the first stage of BM3D and use this as guidance to better estimate 

the pixel values. The edge information allows us to choose different block sizes for 

different types of regions within the same image. Our method tries to integrate the local 

adaptively to image features with the nonlocal image modeling of BM3D.  
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To address the performance issue of BM3D for higher noise levels, we also proposed a 

simple denoising pre-filter to show that the pre-filters can effectively increase the 

performance of the denoising at little computational overhead when the additive noise is 

strong in images. We applied a simple selective median filter based on an empirically 

selected threshold value on the raw corrupted input image. That is, we don’t apply the 

median filter for all the image pixels, except the one which has been classified as a 

corrupted one. Our method searches the whole image for corrupted pixels in a raster scan 

fashion, and we apply the filter only for the pixels which is highly likely to be corrupted. 

Experimental results show that the proposed method shows a significant improvement 

over current state of the art BM3D algorithm in terms of both subjective and objective 

evaluation, particularly when the noise level is high (    ). 

1.3 Thesis outline 

This thesis is divided into five chapters including this introductory discussion, Chapter 1. 

The rest of the thesis is organized as follows. Chapter 2 discusses the noise model 

considered for our work. It also presents a brief introduction of the vast field of image 

denoising, roughly classified into spatial domain filters and transform domain filters. At 

the end of this chapter we discussed our method of interest that is, Block Matching and 

3D Filtering or BM3D, and its various variants proposed by various literatures till now, 

along with its applications in practical image processing problems. In Chapter 3, we 

described our proposed method in detail. Experimental results and relevant analysis are 

presented in Chapter 4. Finally, Chapter 5 offers the concluding remarks and future 

directions of the presented research work. 
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Chapter 2  

2 Background 

Noise models are of particular importance in image denoising as most denoising methods 

work well with a particular noise model. Probabilistic models best reflect the randomness 

of the noise within images. In image denoising applications, parametric models (with few 

parameters) of the probability density function (PDF) are most commonly used. This 

chapter introduces the noise model considered for this thesis, AWGN, along with a 

detailed review of existing filters to remove this type noise. 

 

2.1 Additive white Gaussian noise 

A random signal with flat (constant) power spectral density is known as white noise. In 

Additive White Gaussian Noise the image is contaminated with a linear combination of 

white noise with a constant spectral density, where the amplitude has a Gaussian 

distribution. Most often, it is assumed that Gaussian noise necessarily means white noise, 

which is not correct also. The term Gaussian refers to the probability density function, 

that is, the probability distribution with respect to the signal value, while the term white 

refers to the way signal power is distributed over time among frequencies. It is possible to 

have Poisson white noise, for example, just like Gaussian white noise.  

Gaussian noise is the most common type of noise found in natural images. It represents 

many real world situations and generates mathematically tractable model in both the 

spatial and transform domain. White Gaussian noise is also commonly found in other 

fields than image processing such as music, electronics engineering, and acoustics etc. 

The two principal sources of Gaussian white noise in digital images are the acquisition 
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stage and the transmission stage. During acquisition, noise may be generated by sensor 

due to poor illumination and/or high temperature while electronic circuit may generate 

noise during transmission. 

Moreover, dealing with the uniform Gaussian noise makes the discussion of image 

denoising methods much easier. Two papers published in 2011 on the Anscombe 

variance-stabilizing transform by M. Mäkitalo and A. Foi (for low-count Poisson noise) 

[39] and A. Foi (for Rician noise) [40] argue that, when combined with suitable forward 

and inverse variance stabilizing transformation (VST) transformations, methods 

designed for AWGN work just as well as ad hoc algorithms based on signal dependent 

noise models. This also explains why, in most of the image denoising literature noise is 

assumed to uniform, white, and Gaussian. 

The PDF of a Gaussian random variable, ω,is given by 

      
 

   
     

  

 
                             2.1 

The mean of ω is zero and its variance is 1.  

A general Gaussian random variable is given by 

          2.2 

where, the mean of the variable z is µ, whereas    is the variance of z.  

We can rewrite the probability density function of Equation 2.1 as follows: 

      
 

     
     

      

   
    2.3 

In case of image, z represents the gray level of pixel values.  
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Figure 2-1: Probability density function for the Gaussian noise model [98]. 

Figure 2-1 illustrates the Gaussian probability density function. Approximately 68.27% 

of the values are contained between     and 95.45% of the values are contained 

between     . 

 

2.2 Existing filters to remove AWGN 

In this section we will try to give an introduction to the common AWGN filtering 

techniques in past few decades. Throughout the rest of this thesis, unless the noise model 

is explicitly specified, we implicitly assume the AWGN model. We broadly classify the 

image denoising filters into two major categories: Spatial Domain Filters and Transform 

Domain Filters. We will also attempt to group them together according to their 

characteristics within these categories. 
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2.2.1 Spatial Domain Filters 

One of the most common ways to reduce noise from images is to use Range filters. These 

classes of filters are computationally simple to calculate, easy to implement and are 

neighborhoods adaptive to the image data. Bilateral filter [41], the SUSAN filter [93] and 

the sigma filter [43] are noteworthy among these filters. The range filters use nonlinear 

weighted averaging with adaptive weights that depends on the spatial distance and the 

photometric distance, which is the distance between the pixel intensities (i.e. the image 

range). The general equation for the range filters is  

                                     

   

 2.4 

where z(k) is the noisy signal and y(x) is the filtered or denoised signal. The function gsp 

depends on the spatial distance between pixels and the function grng depends on the 

distance between intensities. The grng function here gives the range filters ability to adapt 

to image data and better preserve salient details such as edges, without blurring while 

doing spatial smoothing in regions with relatively homogeneous intensities.  However, as 

the noise level increases it becomes increasingly difficult to differentiate between noisy 

pixels and their noise free counterparts with edges, resulting in decreased performance of 

range filters. Staircase effects are also visible in these types of filters. One approach to 

overcome this drawback is to take advantage of the similarities between image 

neighborhoods (e.g. nonlocal filters), which will be discussed later in this section. 

Some satisfactory results have been obtained for image restoration through Bayesian 

filters. The general idea in the Bayesian estimation framework is to find the noise free 

image given the prior information of the noise and the observed noisy image z. The 

Bayes formula for the posterior probability is given below: 

            
                  

     
  2.5 
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Here, z is the image being observed or the noisy image, while γ is an estimation of the 

noise free image y, the image prior pprior(γ) denotes the probability that γ belongs to 

family of noise free images, the likelihood (or data fit) pfit(z| γ) is the conditional 

probability of generating z according to the assumed noise model from γ, and pz(z) is the 

marginal probability of obtaining the noisy realization z. Bayesian estimation based filters 

are based on finding a solution γ using the posterior probability ppost(γ|z) from Equation 

2.5. The main challenge for Bayesian estimation in image processing is the derivation of 

a better image prior pprior [89]. 

Another class of spatial domain filters is the Variational and PDE-based filters. The 

Total Variation (TV) minimization was introduced by Rudin, Osher and Fatemi [44] as a 

regularizing functional for image denoising. Total variation denoising (TVD) is defined 

in terms of an optimization problem by minimizing a particular cost function. TVD 

removes unwanted detail whilst preserving sharp edges in the original signal. Numerous 

methods have been proposed to solve the TDV problem [45] [46] [47]. The original TV 

model considered the removed noise as an error and no longer considered them in the 

reconstruction process.  However, some structures and textures are always present in the 

removed errors. Later on, the authors tried to reduce this effect by using the Rudin, 

Osher, and Fatemi total variation minimization iteratively [48] [49]. Total variation is 

also used by researchers for general image restoration problems such as compressed 

sensing, interpolation, deconvolution, etc. [50] [51].  

Partial differential equations (PDE) based diffusion techniques are yet another effective 

way to denoise images and are very similar to variational techniques. These technique has 

wide range of application in image processing [53] [54] such as image 

enhancement/denoising, edge detection, and flow field visualization, since the first model 

was introduced by Perona and Malik in 1987 [52]. This type of diffusion can effectively 

remove noises and at the same time can enhance edges. One of the most widely used 

PDE formulation in image processing is the anisotropic diffusion proposed my Perona 

and Malik in 1990 [55], which preserves the edges by guiding the smoothing with spatial 

derivative. A range of applications of PDEs in image processing can be found [53] [54] 

[56]. 
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In recent years, the Non-Local means (NL-means) algorithm, has attained great deal of 

attention within the image processing community [57] [58]. A detailed study of NL-

means with various extensions can be found in [58]. Fundamentally, it is a relatively 

simple generalization of the range filters like bilateral filter, in particular the point-wise 

photometric term in the similarity kernel of range filters is replaced by the block-based 

(or patch-based) similarity kernel. Another difference is that the geometric distance 

between the blocks is in fact ignored, which leads to the strong contribution of blocks that 

may not be essentially near the pixel of interest. The NL-means algorithm tries to exploit 

the property that natural images have high degree of self-similarity or redundancy 

between image neighborhoods, from which the name Non-Local originated. It is worth 

mentioning that the NL-means filters exploits resemblance between surrounding 

neighborhoods while the range filters exploits resemblance between individual pixels. 

Boulanger and Kervrann [59] demonstrated the true potential of NL-means filters with 

the optimal spatial adaptation (OSA) which is based on adaptive estimation 

neighborhoods. In recent years, the non-local priors variational formulation has also 

became a very popular research topic [60] [61] [62] in the image processing community. 

In these approaches, the authors have formulated the nonlocal image modeling as 

particular regularization functionals. 

 

2.2.2 Transform Domain Filters 

Since their introduction, multiscale transforms such as wavelets, ridgelets, curvelets etc.  

[64] [65] [66] [67]. has been widely use by the image processing community to get sparse 

representation of images [68]. A recent study [63] showed that natural images contain 

areas which are similar to other areas at the same resolution/orientation and across 

resolution/orientations. Multiscale transform is concerned with representation and 

analysis of signal at more than one resolution based on the fact that features that might go 

undetected at one resolution may be easily detected at another resolution. One of the most 

commonly used multiscale transform is wavelet decomposition. In wavelet 

decomposition, a wavelet generating function ψ of zero mean is used to generate a 

dictionary of basis elements, which is expressed in the continuous domain as follows 
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   2.6 

where, s and u are the scale and shift (translation) parameters respectively. Multiscale 

decompositions are localized in both time and frequency and, possibly with varying 

orientation whereas transforms with fixed spatial localization (e.g. short time Fourier 

transform) or trigonometric transforms (e.g. DCT, DFT) are only localized in frequency. 

In recent years, the over-completeness of multiscale representations has led to much 

interesting research problems in image restoration [68] [69] [70]. Formally, an over-

complete dictionary contains prototype signal-atoms and any signal can be represented by 

more than one combination of these atoms. Over-completeness is required for translation 

invariance [69] of multiscale representations. Dual-tree complex wavelet [71] and 

steerable pyramid [72] [73] are amongst the most commonly used over-complete 

transforms. 

All of the above mentioned methods use fixed dictionaries. Dictionaries can also be 

adaptive to the input image. Independent Component Analysis (ICA) [75] and Principal 

Component Analysis (PCA) [74] are two well recognized such data adaptive transforms 

that have found lots of interesting applications in image processing. PCA is particularly 

successful in reconstructing oscillatory patterns and textures while ICA has been 

successfully applied in image denoising, as it can achieve better sparsity for natural 

images. To name a few other adaptive transform domain filters that have been applied in 

image denoising very successfully, we would like to mention shape adaptive DCT or SA-

DCT [86], point-wise shape adaptive DCT (P.SA-DCT) [76] [87], and K-SVD [34]. 

Among these methods we would like single out the state of the art method, K-SVD, a 

generalization of the k-means clustering method, which is regarded as one of the major 

advancements in the field of adaptive transform domain filters. It is an iterative method 

that iteratively alternates between sparse coding coefficients of the examples based on the 

current dictionary and a method of updating the atoms in the dictionary to better fit the 

data. 
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Among the shrinkage filters, Wiener filters showed good potential for denoising. For 

AWGN a parametric version of Weiner filter,       , is used which is defined by the 

following equation, 

        
       

           
 2.7 

where,         is the complex conjugate of the degradation function        and   is a 

pre specified constant. However, wiener filtering for white noise tends to weaken the 

energy signal spectral coefficients leading to poor denoising performance. 

In recent years, wavelet shrinkage filters has became one of the most important and 

powerful tools for image and video processing. The wavelet transform has the important 

properties such as compression or sparsity, which means that wavelet transforms tends to 

be sparse. Therefore, wavelet shrinkage is based on the fact that in the wavelet domain, a 

signal is represented with few large coefficients, which are processed or kept according to 

particular shrinkage function, whereas noises in signal is distributed across small 

coefficients, which are removed. The WaveShrink or the shrinkage of wavelet 

coefficients was introduced and extensively studied by Donoho and Johnstone in their 

seminal work [77] [78]. Donoho and Johnstone proposed two basic shrinkage algorithms 

[77]: soft thresholding and hard-thresholding, governed by the following equations: 

             
                       
                                                  

    2.8 

and             
                   
                    

  . 2.9 

Here, τ is the thresholding parameter, which is predefined, and selection of an optimal 

value for τ is a critical problem. The authors recognized this issue and proposed an 

expression of the optimal threshold as a function of the noise variance σ
2
 and the number 

of samples N, 
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              2.10 

This is known as universal threshold, application of which in wavelet domain is called 

VisuShrink [77]. 

The above mentioned shrinkages are non-adaptive and don’t perform satisfactorily in 

most cases. A lot of work has been done to propose different data-adaptive thresholding 

methods to improve the performance of the WaveShrink estimators. Donoho and 

Johnstone themselves acknowledged this drawback and proposed the SureShrink 

approach [78] in which they introduced an data adaptive threshold that chooses the 

thresholding parameter,  , by minimizing the Steins unbiased risk estimator (SURE) [79]. 

More recent studies have shown that better denoising can be achieved by exploiting intra-

scale and inter-scale correlations of the wavelet coefficients. One such method is 

ProbShrink [80], which is driven by the estimation of the probability that a given 

coefficient contains considerable level of information. The bivariate shrinkage or 

BiShrink [81] exploits inter-scale correlations by using a new non-gaussian bivariate 

distribution to model the dependencies.  In another article [82], the authors, Sendur and 

Selesnick, accounted the intra-scale dependency by extending their previous approach. 

Luisier et al. proposed a new SURE-based method SURE-LET [83] to wavelet based 

image denoising exploiting inter-scale correlation, which was later extended by Yan et al. 

[84] including inter-scale correlation. More recently, the trivariate shrinkage was 

introduced by Yu et al. [85], here wavelet coefficients are modeled as a trivariate 

Gaussian distribution and then a trivariate shrinkage filter by using the maximum a 

posteriori (MAP) estimator is then derived. It successfully models both the inter-scale 

and intra-scale correlations of wavelet coefficients. All these shrinkage based methods 

discussed above rely on one fundamental property, the sparsity of natural images in 

wavelet domain. 

However for our study, the most important class of filters is the non-local transform 

domain filters. This class of filters is blessed by both the sparsity of the transform domain 

representations and the nonlocal modeling. Mallat [88] proposed a geometric grouplet 
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transform, which is a multi-scale adaptive transform in which the main component is a 

modified Haar dyadic decomposition. Though this method doesn’t exhibit competitive 

results in terms of MSE, it effectively reconstructs image details. BM3D, our algorithm 

of interest, falls in this class of non-local transform domain filters, which is a recent 

development by Dabov et al. [1]. BM3D is basically a generalization of their previous 

work [2]. In that work, the authors exploited nonlocal modeling by grouping similar 

neighboring blocks, sparsity in transform domain by collaborative filtering and 

aggregation by combining different estimates from the previous collaborative filtering 

stage. Based on the achievement of BM3D in image denoising it is extended to other 

image processing tasks successfully (e.g. image restoration, deblurring, sharpening and 

video denoising). A detailed discussion on BM3D is in order. 

 

2.3 Introduction to BM3D and its Variants 

In past few years there has been a growing interest in the development of sparse 

representation of signals. In image denoising, this approach has gained much traction and 

led to several state of the art denoising algorithms, such as K-SVD [34] and BM3D [1]. 

Image denoising by sparse 3D transform-domain collaborative filtering [1], famously 

known as block-matching and 3D filtering, which exploits nonlocal image modeling [5] 

with a method termed grouping and collaborative filtering was proposed in 2007 by 

Dabov et al. It was an improvement over the novel algorithm [2] proposed by the same 

authors. In this section we will investigate the different aspects of the BM3D algorithm 

giving a sufficient introduction to the background of BM3D, to understand the basic 

underpinnings of the method. We also try to provide a comprehensive analysis of BM3D 

and its variants on various natural images, as well as describing the limitations of existing 

methods. 

BM3D is currently known as the state of the art method for image denoising and 

outperforms all other algorithm when it comes to removing AWGN at a reasonable 

computational complexity. BM3D relies on the assumption that an image has a locally 

sparse representation in the transform domain. In BM3D the sparsity is enhanced by 
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grouping similar 2D fragments into 3D data array which the authors called “groups”. 

Because each block in the group was chosen according to some similarity measure with 

respect to a reference block, the use of a higher dimensional filtering of each group was 

possible. This exploits the potential similarity (correlation, affinity, etc.) between grouped 

blocks to estimate the true signal in each of them by producing a highly sparse 

representation in 3D transform domain, so that the noise can be removed by wavelet 

shrinkage. This approach of exploiting similarity and estimating the original signal is 

called as collaborative filtering.  Collaborative filtering has three successive steps: 

1. For each reference patch, find similar patches from the input image by classifying 

them according to some similarity criteria and transform them into a 3D data 

array by grouping the matched 2D blocks.  

2. Shrinkage of the coefficients in transformed 3D spectrum is applied to attenuate 

the noise.  

3. Apply inverse 3D transform to the shrunken coefficients and return the obtained 

2D estimates of the grouped blocks to their original positions.  

In this way the collaborative filtering process gives a 3D estimation of the jointly filtered 

2D blocks. As the grouped 2D blocks are similar, the transformation can achieve a very 

high sparse representation of the original signal. This process reveals the finest details 

shared by grouped blocks by preserving the unique features of each individual block. 

 

2.3.1 Architecture of the BM3D algorithm 

The BM3D algorithm can be distinctively decomposed into two almost identical steps 

which are illustrated in Figure 2-2. 
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The general concept of the two steps in BM3D is as follows: 

Step 1: In this step an intermediate (i.e. basic estimate) denoised image is estimated using 

hard thresholding during the collaborative filtering process by taking the original image 

(noisy image) as the input: 

a) Grouping and collaborative filtering: The input image is processed block by 

block. These blocks are called reference blocks. For each reference block similar 

blocks to the currently processed one are found using a similarity measure (block 

matching). A 3D group (array) is then built by stacking the matched blocks and a 

collaborative filter is applied to the grouped blocks. In this step, hard thresholding 

is applied during shrinkage of the coefficients in the transform domain. 

b) Aggregation: After collaborative filtering, we get an estimate of each block and a 

variable number of estimates for each pixel due to the overlapping of blocks. The 

output of the first step is obtained by weighted averaging of all the achieved 

block-wise estimates that have overlapped. 

Step 2: This step produces the final denoised estimate based on both the input noisy 

image and the basic estimate obtained from step 1. Here, instead of hard thresholding, 
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Figure 2-2: Flowchart of BM3D image denoising algorithm. 
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Wiener filtering [35] is used as the shrinkage method. It applies Wiener filtering to the 

original noisy input image by using the basic estimate obtained from step 1 as an oracle: 

a) Grouping and collaborative filtering: The basic estimate is used to find locations 

of the matched blocks similar to the currently processed one. Two 3D groups 

(arrays) are formed from the locations of the basic estimate, one from the original 

input (noisy) image and the other from the basic estimate. Then, collaborative 

filtering is applied on the noisy image. Here, a 3D transform is applied on both 

groups and during shrinkage, Wiener filtering is applied on the noisy image using 

the energy spectrum of the basic image as the true energy spectrum. 

b) Aggregation: By aggregating all the estimates using a weighted average the final 

denoised image is obtained. 

2.3.2 Applications of BM3D 

Though the major application of BM3D is image denoising, it is shown to be equally 

effective by Dabov et al. [11][12] in different areas of image processing such as generic 

image and video restoration, image deblurring [7][8], image sharpening [9][10] and video 

denoising [13][14][15]. In this section we address different applications of BM3D, its 

limitations, and published extensions. 

 

2.3.2.1 BM3D in medical imaging 

BM3D approach is used to reconstruct medical imagery. Significant denoising 

performance in clinical MRI image denoising has been attained by optimizing the cost 

functions for noise removal [16]. ART-BM3D [17] is applied to limited-angle 

reconstruction in CT reconstruction which uses BM3D to find a sparse representation of 

the original image. Kang et al. [18] applied adaptive BM3D by estimating the noise using 

a wavelet based noise estimation technique [19] for low-radiation dose coronary CT 

angiography images. Other similar efforts [20][21][22][23][24][25] of medical image 

denoising by using BM3D are proposed by various authors. 
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2.3.2.2 Application in removing other kinds of noise than AWGN 

BM3D is also proven to be effective for removing other kinds of noise than AWGN. In 

the PIDD-BM3D algorithm Danielyan et al. [26] used data adaptive BM3D-frames and 

formulated image reconstruction as a generalized Nash equilibrium problem to remove 

Poisson noise from images. Begovic et al. [27] proposed two separate contrast 

enhancement and denoising framework based on two popular techniques, K-SVD and 

BM3D for solar images corrupted with a mixture of pixel-dependent Poisson noise and 

white Gaussian noise. BM3D is also successfully tailored to remove power-law noise 

[28] and correlated noise from images [29]. 

 

2.3.3 Limitations and enhancements of BM3D 

BM3D has generated much interest in the field of image and video denoising since it was 

published in 2007, followed by several improvements proposed by Dabov et al., quickly 

followed by different variations, enhancements and applications of BM3D by the image 

processing community. Dabov et al. [3] exploited both locally adaptive anisotropic 

estimation and non-local image modeling, which only improves the denoising 

performance when the noise level is low but for higher noise level its performance is 

inferior to BM3D [1]. Dabov et al. also exploited local shape-adaptive anisotropic 

estimation, principal component analysis (PCA) and nonlocal image modeling [4] which 

preserves image details and introduces few artifacts than [1], but only shown to be 

effective up to noise level of standard deviation 35. 

BM3D performs best when the number of matched blocks is higher (e.g., textures, 

regular shaped image structures, or uniform areas). It is not effective when a large 

amount of matching blocks is not found. As the content of natural images is not always 

highly correlated and large numbers of matching blocks are not always guaranteed in 

natural images, BM3D introduces artifacts and doesn’t perform as well. Also, if the 

image is highly contaminated by noise, the image features becomes inseparable from the 
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noise itself. In these situations, though it preserves the fine image details after denoising, 

it can blur the edges after the collaborative filtering and aggregation step. In the 

transform domain the edges and the noises are not distinguishable and this forces the 

filtering process to remove some of the edge information making edges blurry. Several 

enhancements were proposed to overcome these shortcomings of BM3D [1]. The 

shortcomings of BM3D and efforts made to mitigate these issues are described below. 

2.3.3.1 Performance decreases if the noise level is high and 
artifact appears: 

Though BM3D introduces fewer artifacts than other denoising methods it still exhibits a 

few artifacts under certain conditions. A number of periodic artifacts appears when 2D-

Bior1.5 (bi-orthogonal spline wavelet with vanishing moments of the decomposing and 

the reconstructing wavelet functions of 1 and 5, respectively) is replaced by 2D-DCT for 

high noise level (    ) and the block size (  
  ) is increased to 12 from 8 in the first 

step of BM3D [1]. Hou et al. argued [36] that these changes are unnecessary and 

proposed a scheme which gives better peak signal to noise ratio (PSNR) and also 

superior subjective visual quality than [1]. The authors simply changed the DCT 

transform to Bior1.5, increasing the maximum number of matched blocks (  
  ) by 

increasing the maximum threshold (      
  ) while matching. Hou et al. [32] separated the 

3D transform of BM3D to two steps 1D transform, which also shows better denoising 

performance than original BM3D algorithm for greater noise levels in terms of peak 

signal-to-noise ratio, structural similarity and subjective visual quality, and introduces 

lesser periodic artifacts. BM3D is more effective when it finds a sufficient number of 

matches for the reference patch. Separating edges from noise becomes increasingly 

difficult as the level of noise increases which results in poor matching. The calculation of 

each pixel values by weighted averaging of block-wise estimates also leads to blurring of 

edges as averaging works like a low pass filter. These issues are addressed by Chen and 

Wu [6] and they proposed a bounded BM3D approach which partitions the image in 

several regions before block matching. In addition, the authors used partial block 

matching instead of the block as a whole if the block contains edges and it belongs to 

more than one region for each coherent segment. Another approach that tries to improve 
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performance, when the noise standard deviation reaches 40, is proposed by Li et al. [33], 

they combine BM3D with Tetrolet prefiltering [92]. Here the Tetrolet transform is 

applied to the initial noisy image to remove part of the noise before executing BM3D. 

Though this approach shows slightly lower denoising performance than BM3D-SAPCA 

[4], its execution time is significantly less than the later one. 

2.3.3.2 The values of the parameters in BM3D are fixed for all 
images: 

The values of all the parameters are given a priori, irrespective of the type of image and 

the level of noise provided as input. This feature of BM3D sometimes can lead to poor 

denoising performance. One important such parameter is the threshold value in the 

shrinkage step. Zhang et al. [30] used an adaptive approach that applies a weak (i.e. low) 

threshold for low activity (flat) blocks and a strong (i.e. high) threshold for high activity 

(detailed) blocks based on Structural SIMilarity (SSIM) between similar blocks. The 

authors claimed that this method gives comparable performance for low noise levels but 

shows better denoising performance for high noise levels. BM3D relies on the sparsity of 

the image in the transform domain. Sparsity of the blocks is not achievable when the 

image contains fine details, curved edges or singularities. Sparsity is also hard to achieve 

when the level of noise is elevated. To overcome this difficulty, Poderico et al. [31] 

proposed a modified BM3D approach that works on the shrinkage parameter when 

enough sparsity is not achievable. They proposed a more agile and smoother shrinkage 

based on Smooth Sigmoid-Based Shrinkage, resulting in better denoising performance 

especially for large noise levels [37]. Mittal et al. [38] showed that a blind parameter 

estimation for BM3D based on natural scene statistics, which maps statistical features to 

noise variance using support vector machine regressor exhibits better denoising 

performance than the reference BM3D implementation in [1], measured using the Multi-

scale Structural Similarity Index (MS-SSIM). 
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Chapter 3  

3 Methodology 

BM3D is one of the most powerful and efficient image denoising algorithms available 

currently. In recent years, it has gain much interest within the image processing 

community due to its improved performance, both in terms of reducing noise from 

images and in terms of maintaining visual image details. It takes advantage of a locally 

sparse representation of images in the transform domain. In BM3D, highly sparse 

representation of images in the transform domain is achieved through grouping and 

collaborative filtering followed by a weighted averaging. Enhancement of sparsity is 

achieved by finding and grouping similar 2D image blocks and stacking them together 

into 3D arrays or groups. The data exhibits a high level of correlation due to inherent 

similarity in a group. Besides reducing the noise, the collaborative filtering procedure 

reveals even the finest image details shared by grouped blocks, while preserving the 

unique features of each block. 

Despite excellent results, BM3D has certain drawbacks and some improvement is still 

possible, especially for higher noise levels. BM3D produces many artifacts when the 

noise level is high (    ). The performance of noise reduction also significantly drops 

as the noise level increases. When the noise level is large, block matching is not reliable 

any more, as blocks which are not similar to the referenced block can easily be grouped 

together into the 3D array, resulting in less sparser representation in transform domain. It 

also tends to give poor visual results when exposed to micro-textured zones in natural 

images. Another important drawback of BM3D is that it blurs sharp edges, as it uses a 

weighted averaging at the end of each step (i.e. first step and second step), which works 

more like a low pass filter. BM3D also reduces the contrast of images which can easily 
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be observed in almost all of its denoised images. The Lena image in Figure 3-1, for 

example, demonstrates all these shortcoming of BM3D for higher noise levels: 

 
(a) noise free image 

  
(b) noisy image (    ) (c) denoised by BM3D 

  
(d) noisy image (    ) (e) denoised by BM3D 

  
(f) noisy image (     ) (g) denoised by BM3D 

Figure 3-1: A pictorial demonstration of the major weaknesses of BM3D. (a) Noise free 

standard Lena image. (b), (d), and (f) noisy images with different noise levels. (c), (e), 

and (g) BM3D denoised image. 
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In this thesis, we present an enhancement over BM3D to overcome its above mentioned 

limitations. For higher noise levels some noisy pixel can be detected and restored based 

on its neighboring pixels to reduce the effect of higher noise during grouping and 

collaborative filtering. We used this pre-filter when the noise level is high enough   

   . Also to reduce the effect of blurring sharp edges, we used an edge guided pixel 

estimation technique. Experimental results show that our method outperforms BM3D in 

terms of both objective and subjective measures. The proposed method also better 

preserves contrast and edges as compared to BM3D, in particular for higher noise levels. 

 

3.1 Data adaptive BM3D with selective median filtering 

Our proposed method is divided into three major steps which are illustrated in Figure 3-2. 

In the first step we detect the noisy pixels and try to restore these values using median 

filter. This pre-filtering is applied only for higher noise levels       . If the noise level 

is low        or if a pixel cannot be decided as corrupted, this first step works as an 

identity filter. Here we assume standard deviation of noise is a priori knowledge, as it can 

be accurately estimated [99]. Moreover, assessing the value of sigma is out of the scope 

of my thesis. In second step, we group the matching blocks into a 3D data array for each 

reference block and apply collaborative hard thresholding for two different block sizes 

based on the noise level present in the input noisy image as described in Section 3.3. 

Unlike BM3D, here we get two preliminary basic estimates which we process to produce 

the final estimate. We always choose the basic estimate with block size     for 

determining the edge map. After that, based on the obtained edge map, we aggregate the 

estimation from the two different preliminary basic estimates, producing the final basic 

estimate. Then together with the pre-filtered noisy image we fed this more refined basic 

estimate as an oracle into the collaborative Wiener filtering stage which is identical to the 

original BM3D algorithm [1]. 
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Figure 3-2: Scheme of data adaptive BM3D with selective median filtering 

Let us assume an image has been corrupted by AWGN resulting in a noisy image 

        of the form. 

                               3.1 

where y is the uncorrupted or noiseless image, x represents the pixels of an image in 2D 

spatial domain     , η is independent and identically distributed zero mean AWGN 

with variance   .  
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3.1.1 First step: Selective pixel restoration with median filter 

In this step we apply a simple decision-based linear filter to reduce noisy pixels from the 

image before applying the actual denoising method. This approach gives considerably 

good results for higher noise levels. 

 

            

                

         

Figure 3-3: Illustration of a window of size     (i.e.    ) or       (i.e.    ) 

We use a sliding window method from left to right, top to bottom for each pixel location 

to identify the noisy pixel and then restore it subsequently. For this section, with   
  we 

denote a filter window of size      or      taken from the noisy input image z, 

   
                          , 3.2 

where    or    is the center pixel of the window   
  under processing. For our work, we 

use a     filter window    
  (depicted in Figure 3-3) centered at x, 

   
                          . 3.3 

To identify the noisy pixel we use a binary classification method to classify the pixel in 

consideration as corrupted or not corrupted, based on the current pixel value and its 

neighboring pixel values. The current pixel      can be classified as corrupted if it is 

significantly lower or greater than all other pixel values in the considered neighborhood. 

If the current pixel is a maximum or a minimum, we sort the pixel values (excluding   ) 

of the filter window    
  in ascending order.  
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The re-arranged vector is shown below 

                            , 3.4 

where                     are the pixel values of the window    
  sorted in ascending 

order. To classify the current pixel, we choose a simple classifier that operates on the 

differences of the current input pixel and maximum or minimum of the vector,     : 

       
                                              

           
  , 3.5 

where      is a threshold value determined through empirical analysis. If the pixel is 

classified as corrupted (i.e.       ) then we use a median filtering function on the 

window   
  to determine the value of the pixel and replace it. Otherwise, the original 

pixel value is kept, 

               
   

     
       

                      

                  
  , 3.6 

where SMEDIAN refers to the selective median operation. The effect of this simple 

selective prefilter is considerable for noisy images with relatively higher noise levels, 

where the contrast and edges are best preserved with a higher peak signal-to-noise ratio 

(PSNR) in denoised images than the original BM3D algorithm [1]. 

3.1.2 Second step: data adaptive estimation of the basic denoised 
image 

In this step we obtain the basic estimate using the pre-filtered version of the noisy image. 

We follow the following procedure for two different block sizes of         

   , and      

  
 , 

depending on the noise level present in the examined image. Unless otherwise mentioned, 

for the rest of this step we will drop the subscript guide and est as the process is similar 

for both the case. 

Let us denote the basic estimate by         and the final estimate by        . We define Zx 

to denote a block of size       extracted from the provided noisy image  . Here   in 
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Zx is the coordinate of the top left corner of the patch. In other word, we can say that the 

patch Zx is located at location   in the image  . A 3D group or a group of selected 2D 

patches is denoted by a bold face capital letter with a subscript representing the set of its 

grouped patches coordinates (e.g. Zs represents a collection of 2D patches composed of 

patches Zx located at      ). As we have two near identical steps in BM3D we use 

the superscript ht (stands for hard thresholding) and wie (stands for Wiener filtering) to 

represent the parameters in the first step and the second step respectively. That is, the 

patch size used in first step is denoted by   
   and the patch size used in second step is 

denoted by   
   . We process the blocks in sliding-window manner by following a raster 

scan where each next block is taken with a fixed pixel shift from the previous one. This 

ensures there is at least one estimate for each image pixel. We denote the currently 

processed block by    
 and call it reference block. 

Firstly, we find the blocks that are similar to the reference one within a fixed 

neighborhood. We define the similarity based on the block-distance and only consider 

those blocks whose distance is less than a pre-defined threshold. The distance is obtained 

by applying a normalized 2D linear transform on both blocks followed by a hard-

thresholding on the obtained coefficients. 

 

’ 

3.7 

here,      
     is the distance between the two blocks in consideration. ϒʹ denotes the 

hard thresholding operator with threshold value      and    
     denotes the linear 

transform. 

By applying the above equation and defining a maximum distance    
   to match the 

similar blocks we get the coordinates of a set of blocks,    
  , that are similar to    

, 

  
. 

3.8 
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    as the reference block matches with itself. It implies that we will find at 

least one match for each reference block leaving the set    
   , always non-empty. By using 

the found set    
   we form a 3D group     

  , stacking the noisy blocks        
  .  

Then we perform the collaborative filtering on the formed 3D group by applying hard 

thresholding in 3D transform domain. This is done by first applying the 3D transform to 

the group, performing shrinkage of the transform coefficient by applying hard-

thresholding, inverting the 3D transformed coefficients and finally returning the estimates 

of the blocks back to their previous positions, 

 
, 

3.9 

here, ϒ represents the hard thresholding operator with a threshold value of     . The 3D 

array     
  

  
 is made of the block-wise estimates   

      
 located at the matched 

coordinates      
  . In   

      
 the subscript x represents the location or the coordinates of 

this block-estimate and the superscript     refers to the reference block. 

As the block-wise estimates        
  

      
 of pixels overlap, we obtain a overcomplete 

representation of the true image. A block can be matched and grouped with multiple 

reference blocks. For example,     

      
 and     

      
 are both located at xp and xq but 

matched during the processing of reference blocks located at xp and xq respectively. This 

process produces a substantially overcomplete representation of the true image if there is 

plenty of overlapping block-wise estimates. To get basic estimate at the end of the first 

stage, we perform aggregation on the corresponding block-wise estimates        
  

      
 by 

applying a weighted averaging. The aggregation of block-wise estimates is a critical step 

which relies on the proper selection of aggregation weights. Inspired by [76] and [90], the 

authors of BM3D proposed aggregation weights that are inversely proportional to the 

total sample variance of the corresponding block-wise estimates. That is, the more 

dissimilar or noisy the block-wise estimate is the less the weight is. This ensures higher 

contribution from the similar block-wise estimates in the final estimation of the basic 
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image. The following weight is applied to the group of the overlapping block-wise 

estimates        
  

      
 for each     , 

 

, 

3.10 

where σ is the variance and       
    denotes the number of retained coefficients after the 

hard thresholding. 

Finally, we compute the preliminary basic estimate         by a weighted average of the 

block-wise estimates        
  

      
 located at the same place, using the weights from Equation 

3.10, 

 

 

3.11 

where    
         is the characteristic function of the square support of a block 

located at     . 

At this stage, unlike BM3D, which computes final basic estimate         by a weighted 

average of the block-wise estimates        
  

      
 located at the same place, using the weights 

from Equation 3.10, we compute two preliminary estimates (i.e.       ) namely,          

and       for the two different block size. We apply the Canny edge detector [91] on the 

preliminary basic estimation          to construct a edge map. The Canny edge detector 

highlights regions with high spatial derivatives  by applying a Gaussian smoothing with a 

kernel size           to reduce the level of noise in the input image, followed by the 

processing of derivative  in both x and y direction to get the magnitude and direction of 

gradient, 

      
         

       , 3.12 
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and            
       

       
  , 3.13 

where D is the magnitude of gradient and θ is angle of gradient. Given the values of the 

gradient, the algorithm applies non-maximum suppression, which suppresses any pixel 

that is not at the maximum. This is done by preserving all local maxima in the gradient 

image, and deleting everything else. Furthermore, the gradient array is reduced by 

hysteresis that uses two thresholds,      and      , determined empirically. Pixels with 

gradient magnitude        are discarded, while pixels with gradient magnitude 

         are kept as edges. If the magnitude is between the thresholds (i.e.       

     ), it is only kept as an edge if and only if there is a path from this pixel to a pixel 

with gradient        . Once we get the edge map by applying the Canny, we binarize 

the array values, 

                         

                     , 3.14 

where,             

         
 represents the Canny edge detection process and    represents the 

binarization method.  

The obtained edge guide           is then used to combine the values from the two 

preliminary basic estimates         and        to form the final basic estimate        . This 

is done by processing each pixel in a raster scan fashion and obtaining the edge strength 

for that location based on its neighboring pixels. For this processing, with   
   

 we denote 

a block of size          taken from          , where x is the center of the block; and 

with     we denote a pixel at location x. The edge strength      of a         block is 

defined as the number of pixels indicating edge over the total number of pixels, 

    
             

      
   

   
   

 
 . 3.15 

Here,    
   

  denotes the cardinality of block    
   

.  
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Now we select the estimation for our current pixel based on the calculated edge 

strength     . We define a threshold         
   and if the edge strength       is greater than 

this threshold value (i.e.              
  ) we call this block,    

   
, a block with edges or 

edged block, otherwise (i.e.              
  ), we call this a smooth block. 

Once the edge strength in the block is calculated for the current pixel of interest we get 

the value for each pixel of the final basic estimate by the following equation: 

               
                              

  

                                
  

  . 3.16 

Where, the threshold         
   is defined empirically, which we will discuss later in 

Section 3.2. In the above equation, what we basically do is select the estimation for each 

pixel from different block size based on the edge activity present in its defined 

neighborhood     
   

.  

The obtained basic estimate        , together with the pre-filtered noisy image, is used in 

the third step to process the final denoised image. 

3.1.3 Third step: estimating the true image from the basic estimate 
and the noisy image 

The third and final step is similar to the original BM3D algorithm except instead of 

original noisy image we use the pre-filtered image as the input to this step. In this step, 

both the basic estimate          and the pre-filtered noisy image are used to improve the 

denoising.  We take advantage of the basic estimate by processing the grouping within 

the basic estimate and using collaborative Wiener filtering. The significant reduction of 

noise in the basic estimate allows us to use the normalized   -distance for grouping the 

similar blocks for reference blocks 

 

 

3.17 
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here,       indicates the   -norm. By applying the distance measure from the above 

equation we get the set of matched blocks for each reference block 

 

 

3.18 

By using the coordinates from the set    
   , two groups are     

   
     

 and      
    are formed 

from the basic estimate and the noisy image respectively. 

The 3D transform domain collaborative Wiener filtering of     
    is done by element by 

element multiplication of the Wiener shrinkage coefficients     
    and the 3D transform 

domain coefficients of the noisy data    
         

    , 

 

 

3.19 

 
 

3.20 

Here, the 3D array     
   

   
 is made of the block-wise estimates   

       
,       

   . The 

aggregation of the block-wise estimate for the global final estimate         is done same 

way as the first step except the aggregation weights, which are obtained by the following 

equations, 

 

 

3.21 
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3.22 

3.2 Different schemes and selection of parameters 

We have experimented with various variations of our new proposed method. They vary 

mainly in terms of the values of different parameters and the selection of pre-filter 

depending on the level of noise present in the noisy input image. Let us review some 

parameters that we have introduced in the previous two sections in addition to the 

parameters introduced in the original BM3D article [1]: 

     : threshold used for the selection of corrupted pixel in the selective pixel 

restoration step. 

          : size of the Gaussian kernel used for Canny edge detector in second step 

of our algorithm. 

      and      : two thresholds used during hysteresis in Canny edge detector. 

         
  : a threshold value for edge strength, used for determining the patch size 

for higher noise levels.  

    : patch size used in data adaptive estimation phase. 

We examined the proposed method using different set of values for these parameters. For 

example we have studied our algorithm for different values and the combination of the 

following parameters: 

     : 20, 30, 40, 50, and 60. 

          : 3, 5, and 7. 

     : 20, 25, 30, and 35 for each          . 

      : 50, 75, 100, 125 and 150 for each     . 

         
  : 0.1, 0.2, 0.3 0.4 and for point operation (i.e.      ) we used 1.  

    : 1, 3, 5, and 7. 
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We call the method combining each set of these parameters a scheme. We examined a 

substantial amount of schemes, but here we will present a few of them as the other 

schemes do not produce comparable results with respect to the schemes presented here. 

Later we will combine all these different schemes to present our final proposed method.  

We empirically determined best values for the parameters (i.e.     ,      , and          ) 

used in the Canny edge detector and used it for all our experiments. We used minimum 

Gaussian smoothing by setting            , as our input image to the Canny edge 

detector is already smoothed by its previous steps. The value of      and       are 

determined to be 25 and 75 respectively by empirical analysis.   For simplicity of our 

discussion, we introduce two new parameter,   
       and   

     
 , which are nothing 

but the block sizes taken for the smooth block and edged block based on the edge activity 

discussed at the end of section 3.1.2. The following table shows the selected different 

schemes that we have studied: 

Table 3-1: Parameters used for different schemes 

Scheme σ             
      

          
     

      

SCHEME1 
      1 1 4 8 

N/A 
     5 0.2 8 12 

SCHEME2 
      1 1 8 4 

N/A 
     5 0.2 12 8 

SCHEME3 
      1 1 8 12 

N/A 
     5 0.3 8 12 

SCHEME4 
      1 1 12 8 

N/A 
     5 0.3 12 8 

SCHEME3-1 
      1 1 8 12 

30 
     5 0.3 8 12 

SCHEME3-2 
      1 1 8 12 

40 
     5 0.3 8 12 

SCHEME3-3 
      1 1 8 12 

50 
     5 0.3 8 12 
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The N/A in the above table means no pre-filtering is used for those schemes. SCHEME3-

1, SCHEME3-2, and SCHEME3-3 are the pre-filtered extensions of SCHEME3, 

specifically designed for higher noise levels. Note again, Table 3-1 only presents the 

schemes that we are interested in as they show relatively better image denoising; the 

others have been discarded.  

Unless otherwise mentioned, for all other parameters we have used the default values 

suggested by the original BM3D article [1] for all the above mentioned schemes, which 

are given below: 

 

Table 3-2: Value of Parameters inherited from BM3D 

             

  
     8 12 

  
   16 16 

  
     32 32 

      
   2500 5000 

      
    400 3500 

    2.7 2.7 

     
   3 3 

     
    3 3 

   
    DCT DCT 

   
     DCT DCT 

 

The set of parameters mentioned in Table 3-1 table is: 

   
    : patch size used in the collaborative Wiener filtering step. 
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   and   

    : are the maximum number of similar patches kept during the hard 

thresholding step and collaborative Wiener filtering step. 

       
   and       

   : maximum thresholds for the distance between two similar 

blocks. 

    : threshold for the coefficient of hard thresholding stage. 

      
   and      

   : rather than sliding by one pixel to every next reference block, to 

speed up the processing, step size      
   and      

   is used in the hard thresholding 

and Wiener filtering stage respectively. 

    
    and    

    : transforms applied in the hard thresholding step and Wiener 

filtering step respectively.  

 

One notable change in table Table 3-1 from the original article is the choice of DCT as 

   
    for noise level. It is well defined from the original BM3D article and several other 

articles that this choice of    
    between different transforms (e.g. DCT, Bior1.5) does not 

have significant impact on the denoising results, which has been shown experimentally in 

[1]. Choosing DCT instead of Bior1.5 lets us to experiment with block sizes which are 

not a power of 2 (Bior1.5 transform requires the block sizes to be a power of 2). This 

allowed us to work with a patch size of 12 instead of 16 for higher noise levels, which 

significantly reduced the computation time. 

 

3.3 Selected parameters for our proposed method 

Experimental results demonstrate that all these schemes achieves significantly better 

results compared to BM3D in terms of both objective and subjective qualities at certain 

noise level. Each scheme has its own strength and weakness due the inherent structure of 

those schemes and outperforms BM3D at certain noise levels. For example SCHEME1 

and SCHEME3 perform better when noise level is less than or equal to 60 (i.e. 

     ), while SCHEME3-1 and SCHEME3-3 outperforms BM3D when noise level is 
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relatively high (     ). Based on the experimental results, our final proposed method 

AEG-BM3D is governed by the following parameters and their mentioned values: 

Table 3-3: Parameter values for our proposed method 

σ             
      

          
     

      

      1 1 4 8 X 

        5 0.3 8 12 X 

      5 0.3 8 12 50 

 

We have used 32 random images to perform our denoising experiment, including some 

popular standard images used in image denoising literatures. Our results show that our 

proposed method significantly outperforms BM3D in terms of both subjective and 

objective qualities. Our method also preserves contrast and edges well as compared to 

BM3D [1] for higher noise levels. 
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Chapter 4  

4 Experimental Results and Analysis 

In this chapter we will discuss the details of our experiments and the obtained results. 

Before evaluating and analyzing our proposed algorithm, we also present a brief 

introduction to the dataset used and performance measures employed during 

experimentation. 

In this result chapter, we compare our proposed extension of BM3D only with the 

original BM3D algorithm [1]. We found it superfluous to compare our results with other 

existing methods as the superiority of BM3D for AWGN has already been established by 

several scholarly articles [94] [95]. In these articles, the authors studied the performance 

of various current state of the art image denoising methods and demonstrated that BM3D 

is among the best performing algorithm considered therein. 

We used the implementation found in Image Processing Online (IPOL) [95] to reproduce 

and extend the original BM3D algorithm. The code was implemented in C. We also used 

OpenCV for some part of our implementation and Matlab to obtain the SSIM values. 

 

4.1 Dataset and performance measures 

4.1.1 Dataset 

We used 32 different images to quantify the performance of the proposed algorithm. Our 

dataset includes standard test images along with few other selected images from the 

CMU image database [96] and one synthetic image. For our discussion, we have roughly 

classified these images into less textured images (i.e. images with relatively more smooth 
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area or details) and heavily textured images (i.e. images with high textures). Figure 4-1 

and Figure 4-2 shows the set of less textured and heavily textured images. For the sake of 

simplicity, out of 16 less textured and 16 heavily textured images we have selected 5 

from each of them to compare our denoising performance. In this chapter, for less 

textured images we will evaluate the data for Lena, Man, Boat, Cameraman, Couple and 

Hill, while for heavily textured images we will evaluate data for Mandril, Barbara, 

Fingerprint, House, and Shoe. 

    
(a) Lena (b) Man (c) Boat (d) Cameraman (256x256) 

    
(e) Couple (f) Hill (g) Gray Shades (h) Castle 

    
(i) Field (j) Hill 2 (k) Pine (l) Town 

    

(m) Pingpong (n) Building 01 (o) Bush (p) Building 02 

Figure 4-1: Set of less textured noise-free images used for the comparison tests. 



Chapter 4: Experimental Results and Analysis 

40 

 

 

    
(a) Mandril (b) Barbara (c) Fingerprint (d) House (256x256) 

    
(e) Shoe (f) Golf (g) Grid (h) Hotel 

    
(i) Tiger (j) Train (k) Artichoke (l) Lab 

    
(m) Building 03 (n) Corner (o) Texture 01 (p) Texture 02 

Figure 4-2: Set of heavily textured noise-free images used for the comparison tests. 

 

The results presented in this thesis are obtained by adding simulated AWGN to true 

noiseless images. After denoising the results are compared with the true noiseless image 

for performance evaluation. We analyzed our images with noise levels (i.e.  ) 2, 5, 10, 
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20, 30, 40, 60, 80, 90 and 100. Results presented here are acquired on exactly the same 

noisy image for both the BM3D and our proposed method.  

All of our images are 8-bit gray scale images and of dimension        , except House 

and Cameraman images, which have         pixels. 

 

4.1.2 Performance Measures 

There is no universally accepted image denoising quality measurement. Therefore, we 

compare our denoised images both objectively and subjectively. For objective 

measurement or numerical measurement we present the widely used PSNR and SSIM for 

each observed image, as there is no precise rule to select one measure over the other. 

Evaluation of the subjective quality is done by comparing fragments of images side by 

side. In visual evaluation we particularly compare sharpness of edges and preservation of 

contrast. We also present intensity profiles of the true image along with BM3D and our 

proposed method to check the preservation of edges and denoising quality.  

4.1.2.1 Peak Signal to Noise Ratio (PSNR) 

Peak Signal to Noise Ratio (PSNR) is the most widely used quality measurement metric 

for image denoising based on Mean Squared Error (MSE). Larger PSNR values indicate 

better signal restoration. PSNR does not depend on any visual analysis. The PSNR in 

decibels (dB) is defined as follows: 

     
 

   
             

 

   

 

   

    4.1 

              
    

   
    4.2 

The Mean Squared Error is basically defined as the squared Euclidean distance of true 

noiseless image and resultant (i.e. denoised or output) image pixels. If the distance 

between them is huge, the MSE is larger and therefore PSNR is lower. Again, if the 
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distance between two pixels of same coordinate is small, MSE is small and hence the 

PSNR is higher. In brief, if PSNR is high, it indicates that the reconstructed image is 

close to the original image or more noise is reduced. Most denoising literature dealing 

with AWGN use only PSNR for performance comparison, as it is more sensitive to 

additive Gaussian noise than other quality measures such as SSIM. In this study, our key 

goal is to improve PSNR for most noise levels, in particular for higher noise levels. 

4.1.2.2 Structural Similarity Index (SSIM) 

SSIM was introduced by Wang et al. [97], which provide higher values when two images 

are structurally similar. It means that an acceptable value of SSIM ensures the 

reconstructed image (denoised image in our case) is visually similar to the original one. 

In other words, we can say, if we get an acceptable SSIM value, we can say that our 

denoised image is not changed as a result of applying our proposed mechanism. The 

following equation defines SSIM, 

      
                   

   
    

        
    

     
   4.3 

where   and   are two windows of common size (e.g.    ),    and    is the average 

of   and  , respectively.    and    are the standard deviation of   and  , and     is the 

co-variance of   and  .    and    are two variables to stabilize the division with weak 

denominator and are defined as follows, 

             4.4 

and             4.5 

where   is the dynamic range of the pixels and      ,       (0.01 and 0.03 

respectively by default). The covariance     is defined as follows, 

     
 

   
               

 

   

   4.6 
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4.2 Experimental results and analysis 

4.2.1 Signal Restoration 

In this section we compare the signal restoration capability of our proposed method to 

that of BM3D. First we analyze our experimental results for less textured images and 

then we do the same for heavily textured images. Finally, we will give a summary of our 

obtained results for PSNR at the end of this section. In this chapter, we will present and 

discuss our result for few selected schemes (namely, SCHEME1, SCHEME3, SCHEME3-

1, and SCHEME3-3) from the ones that we mentioned in Table 3-1. We have selected 

these schemes empirically based on their performance for the ease of presentation of 

experimental results. 

In terms of PSNR, our method demonstrates the best performance and outperforms 

BM3D in almost all noise levels for less textured images. Let us start by an example for 

the image Lena. Table 4-1 summarizes the PSNR obtained for this image for four 

selected schemes or variations of our experimental methods, final proposed method (i.e. 

AEG-BM3D) and original BM3D.  

Table 4-1: PSNR (dB) comparison for Lena image among BM3D, our four experimental 

schemes and final proposed method for different noise levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

2 43.5495 43.5388 43.5058 43.5495 43.5495 43.5389 

5 38.8128 38.728 38.7966 38.8063 38.8128 38.7264 

10 35.883 35.885 35.6882 35.6971 35.885 35.8841 

20 33.0003 33.0008 32.8148 32.9886 33.0008 32.9968 

30 31.179 31.1758 30.7269 31.0603 31.1758 31.1574 

40 29.8065 29.8042 29.3625 29.6822 29.8042 29.7966 

60 27.731 27.7289 27.3329 27.5946 27.7289 27.7087 

80 25.5363 25.5375 25.7454 25.9448 25.9448 25.5006 

90 24.6505 24.65 25.2148 25.3037 25.3037 24.5864 

100 23.8188 23.8203 24.6355 24.673 24.673 23.7521 
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The bolded PSNR values in Table 4-1 are greater than (in very few cases, equal to) the 

PSNR values obtained by BM3D. From the table we can see that edge guided schemes 

without pre-filtering (i.e. SCHEME1, SCHEME3) performs well for lower noise levels, 

while the addition of pre-filter (i.e. SCHEME3-1, SCHEME3-3) increases the PSNR for 

higher noise levels significantly (details of these intermediate schemes can be found in 

Section 3.2). In particular, for noise levels     , the schemes with selective pixel 

restoration step produce PSNR values almost one decibel higher than the original BM3D 

algorithm. Moreover, one can observe that our final proposed method, AEG-BM3D, 

easily outperforms BM3D for all noise levels. Notably, these better PSNR values also 

corresponds to better edge preservation and contrast preservation as we will see in the 

subjective quality comparison Section 4.2.3.  

In Table A-1 of Appendix A we present experimental results for four more standard less 

textured images namely Man, Boat, Cameraman, and Couple. From this table we can also 

observe that our proposed method, AEG-BM3D, produces better denoising results for 

almost all noise levels except for a few cases. 

Table 4-2: PSNR (dB) comparison for standard Mandril image among BM3D, our four 

experimental schemes and final proposed method for different noise levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

2 44.2744 44.5326 43.5279 44.2744 44.2744 44.5166 

5 37.9243 38.0936 37.7245 37.9102 37.9243 38.092 

10 33.4354 33.4384 33.2251 33.3584 33.4384 33.4406 

20 29.1274 29.1224 28.8142 29.0787 29.1224 29.1114 

30 26.846 26.8315 26.2737 26.6569 26.8315 26.8046 

40 25.4003 25.3887 24.8314 25.165 25.3887 25.3906 

60 23.4031 23.4056 23.0906 23.4873 23.4056 23.3718 

80 22.0596 22.0756 22.0723 22.1969 22.1969 21.9692 

90 21.5781 21.5849 21.7334 21.8169 21.8169 21.4804 

100 21.169 21.1736 21.4005 21.4881 21.4881 21.0728 
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However, for highly textured images, which has lots of repetitive patterns, the 

performance of our experimental schemes and proposed methods decreases a little as 

compared to the performance showed for less textured images, but still outperforms 

BM3D for most of the cases.  

From Table 4-2, it is clear that, our experimental schemes and final proposed method 

outperforms BM3D for most noise levels for Mandril, the heavily textured image under 

discussion. However, the results obtained for lower noise level are not comprehensively 

greater than BM3D for Mandril. In fact, in some cases BM3D shows better denoising 

result. This is because, we used a block size of     for smooth regions to estimate pixel 

values when noise levels less than 10 and this fails to give better estimation when that 

particular pixel is not on a edge but there is high edge activity around that pixel. 

However, still for higher noise levels      our method gives significantly better 

denoising result as compared to BM3D. In Table A-3 and Table A-4 of Appendix A, we 

present PSNR values for four more heavily textured images just like we did in our 

discussion for less textured images and we can see from the table that the same pattern, 

discussed above, follows for all of these heavily textured images. 

From the above discussion it is clear that our proposed method consistently yields higher 

denoising PSNR values for all of the images and noise levels. If we calculate the results 

in percentage for all 16 less textured and 16 heavily textured test images for all noise 

levels we are using, we end up with Table 4-3. In this table, we present the performance 

of our intermediate experimental schemes and of the proposed method against the 

original BM3D method. We present the percentage as Better or Less when our methods 

exhibit higher or lower PSNR values respectively than BM3D. In all other cases the 

values are same. 

One notable thing from this analysis is that our proposed method demonstrates excellent 

PSNR values for less textured images, in particular for noise levels greater than 40. 

Overall, for all images and all noise levels our proposed method AEG-BM3D exhibits 

significant improvement (i.e. 96.09%) over BM3D. 
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Table 4-3: PSNR performance comparison of examined schemes and our proposed 

method with BM3D for all 32 images in our test dataset 

  

SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D 

B
etter

 %
 

L
ess %

 

B
etter

 %
 

L
ess %

 

B
etter

 %
 

L
ess %

 

B
etter

 %
 

L
ess %

 

B
etter

 %
 

L
ess %

 

less textured Images 

All 80.59 19.41 79.41 20.59 50.59 49.41 61.18 38.82 84.12 15.88 

> 40 100 0 100 0 88.24 11.76 94.12 5.88 100 0 

heavily textured Images 

All 62.50 36.88 66.25 33.75 42.50 57.50 48.75 51.25 67.50 31.88 

> 40 87.50 12.50 87.50 12.50 81.25 18.75 92.19 7.81 92.19 7.81 

total (less textured Images  + heavily textured Images) 

All 71.88 27.81 73.44 26.56 45.63 54.38 54.69 45.31 76.25 23.44 

> 40 93.75 6.25 93.75 6.25 84.38 15.63 92.97 7.03 96.09 3.91 

 

4.2.2 Structural similarity preservation 

To compare the structural similarity preservation we use the same dataset and follow the 

same procedure employed in section 4.2.1 to present the experimental results for PSNR. 

Though our main goal was to improve PSNR, the most widely used numerical measure 

for comparing denoising performance; we still present the SSIM results for our test cases 

and show that while dealing with PSNR we do not let our proposed method down with 

another important metric, SSIM, which correlates aptly with human perception. Table 4-4 

and Table 4-5 show the SSIM values for Lena and Mandril respectively. The SSIM 

values of other selected test images are presented in Table B-1 to Table B-4 of Appendix 

B. 
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Table 4-4: SSIM comparison for standard Lena image among BM3D, our four 

experimental schemes and final proposed method for different noise levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

2 0.9777 0.9775 0.9776 0.9777 0.9777 0.9775 

5 0.9461 0.9438 0.946 0.9461 0.9461 0.9438 

10 0.9157 0.9157 0.9098 0.9099 0.9157 0.9155 

20 0.8753 0.8752 0.8725 0.8752 0.8752 0.8749 

30 0.8417 0.8416 0.8331 0.8397 0.8416 0.841 

40 0.8118 0.8117 0.8018 0.8105 0.8117 0.8083 

60 0.7729 0.7729 0.7409 0.7552 0.7729 0.7699 

80 0.7339 0.734 0.6822 0.7036 0.7036 0.7344 

90 0.7261 0.7261 0.6708 0.6933 0.6933 0.7259 

100 0.7109 0.7109 0.6492 0.6758 0.6758 0.7134 

 

Table 4-5: SSIM comparison for standard Mandril image among BM3D, our four 

experimental schemes and final proposed method for different noise levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

2 0.9933 0.9936 0.993 0.9933 0.9933 0.9936 

5 0.9744 0.975 0.9741 0.9744 0.9744 0.975 

10 0.9347 0.9346 0.9339 0.9348 0.9346 0.9344 

20 0.851 0.8505 0.8416 0.8496 0.8505 0.8495 

30 0.7736 0.7725 0.7474 0.7648 0.7725 0.7705 

40 0.7001 0.6989 0.6713 0.6902 0.6989 0.6988 

60 0.5731 0.5732 0.5645 0.5752 0.5732 0.568 

80 0.4731 0.4749 0.4964 0.4978 0.4978 0.46 

90 0.4348 0.4356 0.4668 0.4634 0.4634 0.4235 

100 0.4123 0.4127 0.442 0.4416 0.4416 0.3991 
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In Table 4-6 we present the total performance of our experimental schemes and final 

proposed method with compare to BM3D in terms of SSIM. From this table we can see 

that in terms of structural similarity preservation capability, our proposed method is 

better than BM3D for 60.31% of the cases, while BM3D is only better for 30.63% of the 

cases in total. However, no specific conclusion about superiority can be made from the 

values of SSIM as the results are mixed. 

Table 4-6: Total SSIM performance comparison of examined schemes and our proposed 

method with BM3D for all 32 images in our test dataset 

  

SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D 

B
etter

 %
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ess %

 

B
etter

 %
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etter

 %
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etter

 %
 

L
ess %

 

B
etter

 %
 

L
ess %

 

All 64.69 28.75 59.38 19.06 25.00 71.56 42.19 52.19 60.31 30.63 

       76.25 19.38 75.00 14.38 18.75 81.25 39.38 55.00 75.00 14.38 

     69.53 28.91 66.41 32.03 33.59 65.63 52.34 47.66 59.38 39.84 

     67.71 30.21 64.58 34.38 37.50 61.46 55.21 44.79 55.21 44.79 

4.2.3 Visual quality comparison and intensity profile 

Visual quality comparison is amongst the most important criteria to perceive the 

performance of a denoising algorithm.  Producing visually improved image is also one of 

the key purposes of image denoising, which also allow us to gain better performance for 

further image processing tasks, for example, object recognition or classification. Let us 

present some of experiments on standard test images. In this section we will compare 

BM3D only with our final proposed method dropping out comparisons with our 

intermediate experimental schemes for simplicity, as it is difficult to present a visual 

comparison of several methods in a concise manner.  

Visual comparison of our proposed method, AEG-BM3D and original BM3D are 

presented in Figure 4-3 to Figure 4-9 for Mandril. We have also presented the same set of 

comparison for Lena and Boat from Figure C-1 to Figure C-14 in Appendix C. Here we 

have presented comparison for three standard images (i.e. Boat, Lena and Mandril) for 
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noise levels     . For noises levels less than that, the difference is not that perceivable 

as the amount of added noise is small. Both BM3D and our proposed method perform 

equally well, at least visually, to reconstruct image details and edges for these kinds of 

noisy images.  

Though the obtained PSNR of BM3D is beyond the capabilities of most of the 

sophisticated and recent denoising methods, the non adaptive approach of original BM3D 

is not able to deliver highly sparse representation of images for finer image details or 

sharp and curved edges. This can be perceived in the examples shown in the following 

figures, in particular for higher noise levels. In contrast to BM3D, one can see that our 

proposed method is able to effectively reconstruct fine image details, sharp edges and at 

the same time preserves contrasts better. The adaptive edge guided pixel estimation step 

in our proposed method enable local adaptively to image features such as edges or small 

details which improves the sparsity as compared with the original BM3D. This enhanced 

sparsity allows the Wiener filtering stage (see Section 3.1.3) to reconstruct edges and 

preserve contrast better. This observation is also supported by improved PSNR and SSIM 

values presented earlier.  

Our proposed method also outperforms BM3D for micro-texture images, which can be 

seen for the image of Mandril images (Figure 4-3 to Figure 4-9). From these images it is 

clear that edges were reconstructed significantly better than BM3D due to edge guided 

pixel restoration step in our method. 

The denoising performance of our proposed method as compared to BM3D is further 

depicted in Figure 4-10 and Figure 4-11, where we present fragments of two standard 

noisy (for                   ) test images along with the fragment of the noiseless 

image and denoised ones. This comparison allows us to easily distinguish the visual 

improvement of our proposed method with respect to BM3D for edge reconstruction and 

contrast preservation. Although in Figure 4-10 and Figure 4-11, the true signal is almost 

completely buried under noise we can see that our method effectively restored the image 

details and edges. 
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(a) (b) 

  

(c) (d) 

Figure 4-3: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Mandril at noise level     . (a) Noise free Mandril image. (b) Noisy image with   

  . (c) Denoised image using BM3D, PSNR = 29.1114, SSIM = 0.8495. (d) Denoised image using AEG-

BM3D, PSNR = 29.1224, SSIM = 0.8505. 
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(a) (b) 

  

(c) (d) 

Figure 4-4: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Mandril at noise level     . (a) Noise free Mandril image. (b) Noisy image with   

  . (c) Denoised image using BM3D, PSNR = 26.8046, SSIM = 0.7705. (d) Denoised image using AEG-

BM3D, PSNR = 26.8315, SSIM = 0.7725. 
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(a) (b) 

  

(c) (d) 

Figure 4-5: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Mandril at noise level     . (a) Noise free Mandril image. (b) Noisy image with   

  . (c) Denoised image using BM3D, PSNR = 25.3906, SSIM = 0.6988. (d) Denoised image using AEG-

BM3D, PSNR = 25.3887, SSIM = 0.6989. 
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(a) (b) 

  

(c) (d) 

Figure 4-6: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Mandril at noise level     . (a) Noise free Mandril image. (b) Noisy image with   

  . (c) Denoised image using BM3D, PSNR = 23.3718, SSIM = 0.5680. (d) Denoised image using AEG-

BM3D, PSNR = 23.4056, SSIM = 0.5732. 
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(a) (b) 

  

(c) (d) 

Figure 4-7: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Mandril at noise level     . (a) Noise free Mandril image. (b) Noisy image with   

  . (c) Denoised image using BM3D, PSNR = 21.9692, SSIM = 0.4600. (d) Denoised image using AEG-

BM3D, PSNR = 22.1969, SSIM = 0.4978. 
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(a) (b) 

  

(c) (d) 

Figure 4-8: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Mandril at noise level     . (a) Noise free Mandril image. (b) Noisy image with   

  . (c) Denoised image using BM3D, PSNR = 21.4804, SSIM = 0.4235. (d) Denoised image using AEG-

BM3D, PSNR = 21.8169, SSIM = 0.4634. 
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(a) (b) 

  

(c) (d) 

Figure 4-9: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Mandril at noise level      . (a) Noise free Mandril image. (b) Noisy image 

with      . (c) Denoised image using BM3D, PSNR = 21.0728, SSIM = 0.3991. (d) Denoised image 

using AEG-BM3D, PSNR = 21.4881, SSIM = 0.4416. 
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Figure 4-10: Comparison of edge and contrast preservation for zoomed fragment of Boat image. (a) Noise 

free fragment. (b)-(e) Noisy fragment with                    respectively. (f)-(i) Denoised 

fragment using BM3D (j)-(m) Denoised fragment using AEG-BM3D. 
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Figure 4-11: Comparison of edge and contrast preservation for zoomed fragment of Lena image. (a) Noise 

free fragment. (b)-(e) Noisy fragment with                    respectively. (f)-(i) Denoised 

fragment using BM3D (j)-(m) Denoised fragment using AEG-BM3D 
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From this visual comparison we can confirm that the edge guided pixel estimation step 

used in our proposed method is a feasible approach to better preserve the edges and 

micro-textured regions. It is also confirmed that AEG-BM3D produces denoised images 

with more contrast and details than the original BM3D.  

The performance of our proposed method for edge preservation as compare to BM3D can 

also be justified by intensity profiling. Intensity profile is a graphical representation of an 

image line showing its intensity of each pixel along the line. We plot all the pixel 

numbers along   axis and the intensities of each pixel along   axis. This is a popular tool 

for visual observation of how much the denoised image is deviated from the original one. 

Here, we will present the intensity profile of a selected scan line of the standard House 

image along with their denoised version by BM3D and our proposed method.  

Figure 4-13 shows an intensity profile of the popular house image at scan line 50, which 

is illustrated in Figure 4-12. In Figure 4-13, the   axis contains all the 256 pixels along 

the line 50. At each pixel, we plot its intensity along the   axis. The red curve denotes the 

true noise free image line while the blue one indicates its denoised version by BM3D 

with noise level equals 80. The point here is to consider how much the denoised version 

is deviated from the original one.  

 

Figure 4-12: Row number 50 of the standard House image is chosen as the scan line (presented by a dark 

red straight line) to generate intensity profiles. 
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Now, let us consider Figure 4-14 where we plot the intensity profile of the original image 

with that of our proposed method. Clearly, for the pixels between 120-255, the intensity 

profile of proposed method is much closer than that of BM3D. Again, in this scan line, 

there are two sharp edges, for which the proposed method tends to be closed to the 

original image. Since BM3D does not treat edges differently than smooth areas, in Figure 

4-13, we can observe that the intensity profile deviates in edge lines. Here we are 

presenting the intensity profile for higher noise levels only as it is difficult to perceive the 

difference between intensity profiles of BM3D and our proposed method when the noise 

level is very low.  

 

In figures Figure 4-15 to Figure 4-18 we are presenting the same scan line of the same 

image for other noise levels. In every case, we can see that the proposed method tends to 

produce better result than original BM3D. 

 

However, one can also observe that the denoised images produced by our method 

introduce some artifacts in smooth areas which impede the visual quality, both from the 

denoised images and intensity profiles presented in the discussion. This is due to the edge 

guided estimation approach that we employed in Section 3.1.2 and the reason can be 

given as follows: We estimated the pixel based on an edge guidance and selected the 

estimated pixel value from two different estimation available (i.e.          and      ). In 

some cases, it is possible that we take the estimation for one pixel from one of this 

estimation, while taking its neighboring values from the other estimation, introducing the 

artifact that we have observed. 

  



Chapter 4: Experimental Results and Analysis 

61 

 

 

Figure 4-13: Intensity profile of House image and denoised image by BM3D at scan Line 50 (σ=80) 

 

 

Figure 4-14: Intensity profile of House image and denoised image by proposed method at scan line 50 

(σ=80) 
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Figure 4-15: Intensity profile of House image and denoised image by BM3D at scan line 50 (σ=90) 

 

Figure 4-16: Intensity profile of House image and denoised image by proposed method at scan line 50 

(σ=90) 
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Figure 4-17: Intensity profile of House image and denoised image by BM3D at scan line 50 (σ=100) 

 

Figure 4-18: Intensity profile of House image and denoised image by proposed method at scan line 50 

(σ=100) 
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4.2.4 Average SSIM, PSNR, and Runtime Comparison 

We have used the standard Lena image and Mandril image to compare the average SSIM, 

PSNR, and Runtime of our proposed method AEG-BM3D with BM3D. Table 4-7 and 

Table 4-8 shows the average SSIM, PSNR, and runtime for Lena and Mandril image 

respectively along with their standard deviations, denoted by STD. These results are 

calculated as the average over 10 runs measured in seconds on a 2.00 GHz core i7 

processor with 8GB RAM running under LINUX based OS Ubuntu 12. Actual CPU 

times are counted instead of elapsed time.  

Table 4-7: Average SSIM, PSNR, and Runtime performance comparison of our 

proposed method AEG-BM3D with BM3D for standard Lena image 

Sigma 
 SSIM PSNR Runtime in Seconds 

 AEG-BM3D BM3D AEG-BM3D BM3D AEG-BM3D BM3D 

2 
Average 0.977730 0.977620 43.554940 43.541750 11.603020 10.459029 

STD 0.000046 0.000075 0.010214 0.009731 1.229432 1.933546 

5 
Average 0.945950 0.943780 38.786510 38.709390 12.793990 11.153765 

STD 0.000175 0.000160 0.016017 0.014875 1.918378 2.043569 

10 
Average 0.915540 0.915460 35.883080 35.885450 14.715000 11.564860 

STD 0.000369 0.000383 0.015742 0.016321 1.035653 2.477389 

20 
Average 0.875310 0.875120 32.987370 32.984300 13.854470 11.032515 

STD 0.000658 0.000658 0.020894 0.022668 1.488480 2.480096 

30 
Average 0.841570 0.841170 31.201270 31.188090 15.883890 11.242479 

STD 0.001023 0.001043 0.023671 0.024972 2.010854 1.504644 

40 
Average 0.814720 0.811750 29.865570 29.849270 21.510700 20.989660 

STD 0.001795 0.001483 0.044928 0.043668 2.710620 3.175685 

60 
Average 0.768570 0.765650 27.648770 27.613410 22.214800 18.511230 

STD 0.002622 0.002730 0.070433 0.067009 2.656465 2.617268 

80 
Average 0.719710 0.735580 25.391570 25.521770 23.600770 22.564640 

STD 0.002773 0.003151 0.068865 0.066393 2.757263 3.769843 

90 
Average 0.703190 0.724070 24.463360 24.568130 24.204130 21.936040 

STD 0.002239 0.002037 0.047206 0.060949 3.170428 2.697791 

100 
Average 0.690010 0.712690 23.611330 23.679560 24.157920 22.746670 

STD 0.002315 0.001377 0.034317 0.036759 2.599486 4.524312 
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Table 4-8: Average SSIM, PSNR, and Runtime performance comparison of our 

proposed method AEG-BM3D with BM3D for standard Mandril image 

Sigma 
 SSIM PSNR Runtime in Seconds 

 AEG-BM3D BM3D AEG-BM3D BM3D AEG-BM3D BM3D 

2 
Average 0.993320 0.993610 44.294120 44.530330 12.679419 11.512850 

STD 0.000040 0.000030 0.015660 0.015077 2.567868 2.656986 

5 
Average 0.974460 0.974950 37.934750 38.095590 11.634940 8.998986 

STD 0.000150 0.000169 0.010087 0.010881 1.253602 1.646073 

10 
Average 0.934820 0.934680 33.451970 33.457060 14.118150 10.144318 

STD 0.000260 0.000271 0.018001 0.017437 1.029466 2.653537 

20 
Average 0.850800 0.849640 29.133600 29.118200 14.063640 9.759393 

STD 0.000587 0.000623 0.021254 0.021110 1.712800 2.183927 

30 
Average 0.771740 0.769700 26.853310 26.822990 16.030400 9.610290 

STD 0.001426 0.001374 0.020743 0.020767 1.723739 1.510655 

40 
Average 0.700500 0.700100 25.365130 25.367720 21.494560 17.989280 

STD 0.001521 0.001547 0.027196 0.028129 2.130412 2.879697 

60 
Average 0.571920 0.566960 23.382770 23.347020 21.340370 20.125880 

STD 0.002527 0.002581 0.020836 0.021354 2.591571 4.145865 

80 
Average 0.493050 0.462550 22.170720 21.991090 23.548420 20.838790 

STD 0.002816 0.002482 0.026201 0.029685 2.686709 3.413759 

90 
Average 0.460200 0.423350 21.692170 21.470440 25.892500 21.190950 

STD 0.001972 0.002286 0.028022 0.018580 4.092002 2.926935 

100 
Average 0.435410 0.395770 21.287050 21.044780 25.398420 20.164410 

STD 0.002234 0.002516 0.022995 0.022154 1.493795 2.042982 

From the Table 4-7 and Table 4-8 we can see that the average runtime of our proposed 

method is greater than BM3D. This is expected as we have incorporated two new stages 

(i.e. the prefiltering stage and the edge guidance stage) along with the stages of BM3D. 

But the running time increment is linear with respect to the size of the input image as the 

new incorporated stages of our proposed method can be computed in linear time. 
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4.3 Overall results discussion 

The experimental results presented in this chapter confirm the superiority of our proposed 

method, AEG-BM3D, over original BM3D, both numerically and visually. We have used 

32 standard test images for our experiment and we showed that our proposed method 

performs well for these standard test images. Also we have conducted test with 10 

different noise levels for AWGN. 

To compare the denoising results quantitatively or objectively, we have evaluated both 

PSNR and SSIM for all the test images. In terms of PSNR our method shows 

significantly improved denoising results as compared to BM3D algorithm. Although for 

lower noise levels the improvement is not that significant, our method truly excelled 

when the image is highly corrupted with AWGN. The SSIM values presented also 

demonstrate the superiority of our proposed method in terms of structural similarity 

preservation. 

When compared visually we can clearly see that our method can reduce more noise while 

preserving sharp edges, micro-textured regions, and fine details. We also observed better 

contrast preservation in denoised images along with some artifacts. 

In summary, the denoised images of our proposed method, AEG-BM3D, shows: 

 better reconstruction of sharp edges (e.g. borders of objects in Boat and Lena 

image), 

 better reconstruction of micro-textured regions and repeating patterns (e.g. the 

texture of Lena’s hair and face texture of Mandril), 

 better preservation of contrast (this can be seen in all the images), 

 PSNR results are better than BM3D for most of the noise levels, 

 SSIM values are mixed, 

 Few artifacts in smooth regions of denoised images. 
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Chapter 5  

5 Concluding Remarks and Future Work 

5.1 Conclusion 

In this study we have introduced an extension to the BM3D algorithm [1] by introducing 

edge guidance and selective prefiltering of noisy pixels. In Chapter 4 we have extensively 

tested and analyzed our proposed method in both visual quality measures and quantitative 

measures and verified its superiority over the current state of the art denoising algorithm, 

BM3D. 

In our proposed method, AEG-BM3D, the improvement contributed by the pre-filtering 

and edge guided pixel estimation in step 1 and step 2 before the final step of Wiener 

filtering can be justified as follows. We tried to remove as much noise as possible from 

the basic estimate. We also estimated the edges better than BM3D in the hard-

thresholding step due to the edge guidance process and Canny edge detection. Because 

more noise has already been attenuated, preserving the edges, both block matching and 

estimation of pixels in third step are more accurate when these processes are applied on 

the refined basic estimate. It results in sparser representation in transform domain. 

Moreover, Wiener filleting in the third step is more effective when it is applied by using a 

more reliable basic estimate as an oracle. 

Experimental results confirm that our proposed extension shows better result than BM3D 

in most of the cases. The PSNR improvement is well for higher noise levels. Though one 

can argue that the SSIM improvement is modest, but during subjective evaluation we 

have shown that the images denoised by our proposed method preserves edges and details 

better along with superior contrast preservation when compared to state of the art BM3D. 



Chapter 5: Concluding Remarks and Future Work 

68 

 

5.2 Future work 

The current state of the art denoising algorithms shows near optimal denoising 

performance [94]. However, we have demonstrated in our study that there is still room 

for perfection in some cases. Images rich in texture or images corrupted with higher level 

of noise are harder to denoise and some improvement can be possible. Some visual 

enhancement is also possible, as we have seen that some artifact is introduced by both our 

proposed method AEG-BM3D and BM3D.  

In the prefiltering step we have used a simple neighborhood based technique for detection 

of noisy pixels and restored their values using median filter. Instead, in this step we can 

assume the noisy pixels to be restored as the pixels corrupted by impulse noise and use 

some current state of the art method for impulse noise detection and restore their values 

using more statistics from the neighboring healthy pixels. Also we have used the pre-

filtered image as input to both the hard-thresholding step and the Wiener filtering step. It 

will be interesting to experiment with pre-filtered image as the input to the hard-

thresholding step only, while feeding the original corrupted image as the input to the 

Wiener filtering step as it uses the information from basic estimate obtained in the first 

step. 

We have applied the edge guidance in the hard-thresholding step only. It will be 

interesting to verify whether some improvement is possible by using the same procedure 

in the Wiener filtering step. 

Visual evaluation shows some artifacts were introduced in images denoised by our 

proposed method, particularly for images corrupted with higher noise level. Future work 

shall address this problem by using more smooth edge guidance in the hard-thresholding 

step. 

AEG-BM3D can easily be applied to color images with a small change during the 

prefiltering and edge guidance step. Besides AWGN, it can also be applied to other types 

of noise models, for example, non-Gaussian noise and Poison noise. Just like BM3D our 
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proposed method can also be extended for other image processing tasks such as image 

and video restoration, deblurring, and sharpening. 
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Appendices 

Appendix A.  
PSNR for selected standard images 

Table A-1: PSNR (dB) comparison for standard Man and Boat images among BM3D, 

our four experimental schemes and final proposed method for different noise levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

Man 

2 43.5457 43.4819 42.9735 43.4583 43.5457 43.485 

5 37.7604 37.6678 37.5985 37.7359 37.7604 37.6735 

10 33.8015 33.798 33.7419 33.8318 33.798 33.7916 

20 30.4474 30.4473 30.2096 30.4085 30.4473 30.4378 

30 28.7515 28.7512 28.3983 28.6523 28.7512 28.7461 

40 27.458 27.4667 27.1113 27.3429 27.4667 27.3817 

60 25.6895 25.6975 25.5663 25.6992 25.6975 25.6155 

80 24.1857 24.1921 24.4492 24.5661 24.5661 24.0964 

90 23.2551 23.2613 23.9335 23.9307 23.9307 23.1692 

100 22.6412 22.6455 23.4451 23.4189 23.4189 22.5421 

Boat 

2 43.1182 43.1414 42.5873 43.085 43.1182 43.1403 

5 37.3464 37.3243 37.2138 37.3464 37.3464 37.3187 

10 33.8105 33.8111 33.7615 33.8644 33.8111 33.8095 

20 30.6796 30.6849 30.4418 30.6493 30.6849 30.6902 

30 28.8458 28.851 28.3904 28.7303 28.851 28.8529 

40 27.4279 27.4322 26.9959 27.2648 27.4322 27.3769 

60 25.3871 25.3935 25.1499 25.3252 25.3935 25.355 

80 23.6918 23.7009 23.8009 23.9182 23.9182 23.6621 

90 22.9302 22.9353 23.2529 23.3414 23.3414 22.8584 

100 22.2424 22.2477 22.8864 22.8964 22.8964 22.175 
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Table A-2: PSNR (dB) comparison for standard Cameraman and Couple images among 

BM3D, our four experimental schemes and final proposed method for different noise 

levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

Cameraman 

2 43.9597 43.8287 39.981 41.8708 43.9597 43.8318 

5 38.1362 38.0827 36.7492 37.5484 38.1362 38.0906 

10 33.8924 33.8872 33.2674 33.6378 33.8872 33.8852 

20 30.0635 30.0703 29.4298 29.8429 30.0703 30.1032 

30 28.0241 28.0388 27.4873 27.8454 28.0388 28.0719 

40 26.1962 26.2102 25.7641 26.0094 26.2102 26.1147 

60 23.6928 23.7073 23.7146 23.8123 23.7073 23.5987 

80 21.7923 21.8012 22.2477 22.1974 22.1974 21.7183 

90 20.9579 20.962 21.7302 21.6412 21.6412 20.875 

100 20.1095 20.1175 21.1255 20.9588 20.9588 20.0129 

Couple 

2 43.0916 43.0826 42.689 43.0916 43.0916 43.0832 

5 37.4362 37.3591 37.3316 37.4291 37.4362 37.3603 

10 33.8451 33.8465 33.8075 33.9079 33.8465 33.851 

20 30.5545 30.5548 30.306 30.5183 30.5548 30.5425 

30 28.6125 28.6096 28.1849 28.4895 28.6096 28.5898 

40 27.2012 27.198 26.7479 27.0327 27.198 27.1841 

60 25.1486 25.147 24.8818 25.0359 25.147 25.1236 

80 23.5197 23.5234 23.5719 23.6797 23.6797 23.4911 

90 22.8324 22.8356 22.993 23.1174 23.1174 22.7918 

100 22.2022 22.2045 22.6833 22.7297 22.7297 22.1428 
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Table A-3: PSNR (dB) comparison for standard Barbara and Fingerprint images among 

BM3D, our four experimental schemes and final proposed method for different noise 

levels. 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

Barbara 

2 43.6505 43.7073 42.6158 43.6505 43.6505 43.7008 

5 38.3514 38.3975 37.9514 38.3514 38.3514 38.3899 

10 34.9944 34.9957 34.3711 34.784 34.9957 34.9887 

20 31.7272 31.7224 31.0047 31.5994 31.7224 31.6955 

30 29.8447 29.8315 28.7591 29.5514 29.8315 29.7868 

40 28.3166 28.2989 26.992 27.8213 28.2989 28.3344 

60 25.8156 25.7977 24.844 25.4039 25.7977 25.847 

80 23.6435 23.6196 23.3027 23.6832 23.6832 23.6616 

90 22.5812 22.5612 22.6132 22.8494 22.8494 22.6093 

100 21.7061 21.6885 22.0618 22.1557 22.1557 21.7381 

Fingerprint 

2 42.9371 42.9501 42.9284 42.9371 42.9371 42.9493 

5 36.7304 36.7069 36.7261 36.7304 36.7304 36.7079 

10 32.5512 32.5543 32.5928 32.6044 32.5543 32.5561 

20 28.8283 28.8342 28.6839 28.8173 28.8342 28.834 

30 26.7707 26.7737 26.4804 26.7044 26.7737 26.7713 

40 25.3958 25.4031 25.0775 25.2826 25.4031 25.3486 

60 23.2935 23.3044 23.248 23.3308 23.3044 23.2339 

80 21.6866 21.6947 22.0816 22.0624 22.0624 21.6048 

90 20.9466 20.9482 21.5656 21.5004 21.5004 20.8807 

100 20.2144 20.2108 21.0785 20.9409 20.9409 20.1802 
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Table A-4: PSNR (dB) comparison for standard House and Shoe images among BM3D, 

our four experimental schemes and final proposed method for different noise levels. 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

House 

2 44.6179 44.5737 44.6179 44.6179 44.6179 44.5753 

5 39.7285 39.7297 39.7285 39.7285 39.7285 39.7339 

10 36.5933 36.6013 36.3279 36.3452 36.6013 36.6006 

20 33.7019 33.7029 33.4999 33.6897 33.7029 33.6938 

30 31.8981 31.8991 31.3522 31.7783 31.8991 31.867 

40 30.5189 30.5348 29.8659 30.3039 30.5348 30.4538 

60 28.0795 28.0808 27.3526 27.7633 28.0808 28.0653 

80 25.8092 25.8068 25.8157 26.0211 26.0211 25.7544 

90 24.6542 24.664 25.1173 25.1994 25.1994 24.5936 

100 23.8497 23.8509 24.5849 24.6315 24.6315 23.837 

Shoe 

2 47.9662 48.252 47.9662 47.9662 47.9662 48.1903 

5 43.2197 43.9594 43.2197 43.2197 43.2197 43.8087 

10 40.6527 40.561 39.079 39.0776 40.561 40.1852 

20 36.7288 36.5804 36.4531 36.57 36.5804 35.9948 

30 32.4314 32.3589 32.2601 32.3353 32.3589 31.9577 

40 29.1596 29.1399 29.4793 29.3402 29.1399 30.2805 

60 24.8187 24.8188 26.4451 25.8354 24.8188 25.0346 

80 22.2223 22.222 24.9628 24.0441 24.0441 22.1107 

90 21.0928 21.0928 24.2811 23.2556 23.2556 20.9546 

100 20.0176 20.0176 23.4891 22.4062 22.4062 19.8889 
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Appendix B.  
SSIM for selected standard images 

 

Table B-1:  SSIM comparison for standard Man and Boat images among BM3D, our 

four experimental schemes and final proposed method for different noise levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

Man 

2 0.9847 0.9845 0.9842 0.9847 0.9847 0.9845 

5 0.9539 0.9527 0.9533 0.9539 0.9539 0.9527 

10 0.9051 0.9049 0.903 0.9039 0.9049 0.9045 

20 0.83 0.8297 0.8236 0.8289 0.8297 0.829 

30 0.7746 0.7744 0.7638 0.7716 0.7744 0.774 

40 0.729 0.7293 0.7191 0.7275 0.7293 0.7229 

60 0.6659 0.6663 0.6569 0.6656 0.6663 0.6606 

80 0.6262 0.6265 0.6113 0.6216 0.6216 0.6215 

90 0.6018 0.6021 0.5899 0.599 0.599 0.5982 

100 0.5864 0.5866 0.5714 0.582 0.582 0.5818 

Boat 

2 0.9829 0.9831 0.9828 0.9829 0.9829 0.9831 

5 0.9416 0.9405 0.9414 0.9416 0.9416 0.9404 

10 0.8881 0.888 0.8902 0.8909 0.888 0.8876 

20 0.8218 0.8218 0.8156 0.8209 0.8218 0.8215 

30 0.7737 0.7736 0.7579 0.7694 0.7736 0.7731 

40 0.7282 0.7282 0.7116 0.7229 0.7282 0.7256 

60 0.6605 0.6606 0.6425 0.6533 0.6606 0.6583 

80 0.607 0.6075 0.5902 0.6006 0.6006 0.6049 

90 0.5806 0.5808 0.5622 0.5762 0.5762 0.5771 

100 0.5607 0.561 0.5515 0.5625 0.5625 0.5563 
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Table B-2:  SSIM comparison for standard Cameraman and Couple images among 

BM3D, our four experimental schemes and final proposed method for different noise 

levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

Cameraman 

2 0.9831 0.9824 0.9811 0.9826 0.9831 0.9824 

5 0.9596 0.9601 0.9576 0.9591 0.9596 0.96 

10 0.9283 0.9281 0.9178 0.9204 0.9281 0.9275 

20 0.8674 0.8671 0.8569 0.8648 0.8671 0.8667 

30 0.8198 0.8199 0.808 0.8183 0.8199 0.8197 

40 0.7792 0.7794 0.76 0.7713 0.7794 0.7731 

60 0.7049 0.7053 0.6892 0.7034 0.7053 0.6997 

80 0.6519 0.6522 0.6312 0.6458 0.6458 0.647 

90 0.6252 0.6253 0.5959 0.6125 0.6125 0.6241 

100 0.6022 0.6025 0.592 0.5983 0.5983 0.5978 

Couple 

2 0.9843 0.9843 0.9841 0.9843 0.9843 0.9843 

5 0.9506 0.9493 0.9504 0.9505 0.9506 0.9493 

10 0.9058 0.9058 0.9068 0.9075 0.9058 0.9056 

20 0.8409 0.8407 0.8349 0.8401 0.8407 0.84 

30 0.785 0.7847 0.7698 0.7811 0.7847 0.7834 

40 0.7391 0.7386 0.7198 0.7325 0.7386 0.7381 

60 0.6523 0.652 0.6315 0.6416 0.652 0.6499 

80 0.5897 0.5898 0.5698 0.5813 0.5813 0.5885 

90 0.5615 0.5616 0.5355 0.55 0.55 0.56 

100 0.5399 0.5399 0.5239 0.5362 0.5362 0.5367 
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Table B-3:  SSIM comparison for standard Barbara and Fingerprint images among 

BM3D, our four experimental schemes and final proposed method for different noise 

levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

Barbara 

2 0.9861 0.9863 0.9859 0.9861 0.9861 0.9863 

5 0.9649 0.9646 0.9646 0.9649 0.9649 0.9646 

10 0.9418 0.9417 0.9356 0.9366 0.9417 0.9417 

20 0.9044 0.9042 0.8967 0.9031 0.9042 0.9038 

30 0.868 0.8676 0.8448 0.8623 0.8676 0.8663 

40 0.8307 0.8296 0.7881 0.8161 0.8296 0.8309 

60 0.7573 0.7561 0.6973 0.7282 0.7561 0.7612 

80 0.69 0.6883 0.6275 0.6566 0.6566 0.6942 

90 0.6551 0.6537 0.5945 0.6178 0.6178 0.6618 

100 0.6208 0.6193 0.5676 0.5891 0.5891 0.628 

Fingerprint 

2 0.997 0.997 0.997 0.997 0.997 0.997 

5 0.988 0.9879 0.988 0.988 0.988 0.9879 

10 0.9693 0.9693 0.9694 0.9696 0.9693 0.9692 

20 0.9299 0.9298 0.9268 0.9295 0.9298 0.9295 

30 0.8921 0.8921 0.8843 0.89 0.8921 0.8917 

40 0.8579 0.8578 0.8477 0.8542 0.8578 0.8567 

60 0.7902 0.7904 0.7911 0.7931 0.7904 0.7882 

80 0.7172 0.7173 0.7426 0.7381 0.7381 0.7127 

90 0.6808 0.6804 0.7195 0.7129 0.7129 0.677 

100 0.6343 0.6332 0.6928 0.6807 0.6807 0.6326 
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Table B-4:  SSIM comparison for standard House and Shoe images among BM3D, our 

four experimental schemes and final proposed method for different noise levels 

σ SCHEME1 SCHEME3 SCHEME3-1 SCHEME3-3 AEG-BM3D BM3D 

House 

2 0.9833 0.9831 0.9833 0.9833 0.9833 0.9831 

5 0.9553 0.9562 0.9553 0.9553 0.9553 0.9562 

10 0.9218 0.9218 0.9119 0.912 0.9218 0.9217 

20 0.8747 0.8747 0.8693 0.874 0.8747 0.8745 

30 0.8425 0.8424 0.8311 0.8405 0.8424 0.8421 

40 0.8216 0.8218 0.8008 0.8158 0.8218 0.8179 

60 0.7848 0.7845 0.7483 0.7675 0.7845 0.7804 

80 0.7525 0.7525 0.7023 0.7217 0.7217 0.7486 

90 0.735 0.7353 0.6884 0.7073 0.7073 0.7358 

100 0.7317 0.7316 0.6634 0.6924 0.6924 0.7346 

Shoe 

2 0.9954 0.9957 0.9954 0.9954 0.9954 0.9956 

5 0.988 0.9898 0.988 0.988 0.988 0.9896 

10 0.9793 0.9789 0.9702 0.9701 0.9789 0.9775 

20 0.9509 0.9495 0.9477 0.9493 0.9495 0.9434 

30 0.8767 0.8745 0.8651 0.871 0.8745 0.8625 

40 0.7554 0.7539 0.7402 0.7477 0.7539 0.8311 

60 0.4638 0.4638 0.5044 0.4905 0.4638 0.5407 

80 0.3988 0.3988 0.4319 0.4212 0.4212 0.4144 

90 0.3753 0.3753 0.4125 0.4028 0.4028 0.3827 

100 0.3612 0.3612 0.4012 0.3911 0.3911 0.3633 
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Appendix C.  
Subjective comparison of Boat and Lena  

  

(a) (b) 

  

(c) (d) 

Figure C-1: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Boat at noise level     . (a) Noise free Boat image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 30.6902, SSIM = 0.8215. (d) Denoised image using AEG-

BM3D, PSNR = 30.6849, SSIM = 0.8218. 
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(a) (b) 

  

(c) (d) 

Figure C-2: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Boat at noise level     . (a) Noise free Boat image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 28.8529, SSIM = 0.7731. (d) Denoised image using AEG-

BM3D, PSNR = 28.8510, SSIM = 0.7736. 
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(a) (b) 

  

(c) (d) 

Figure C-3: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Boat at noise level     . (a) Noise free Boat image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 27.3769, SSIM = 0.7256. (d) Denoised image using AEG-

BM3D, PSNR = 27.4322, SSIM = 0.7282. 
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(a) (b) 

  

(c) (d) 

Figure C-4: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Boat at noise level     . (a) Noise free Boat image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 25.3550, SSIM = 0.6583. (d) Denoised image using AEG-

BM3D, PSNR = 25.3935, SSIM = 0.6606. 
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(a) (b) 

  

(c) (d) 

Figure C-5: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Boat at noise level     . (a) Noise free Boat image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 23.6621, SSIM = 0.6049. (d) Denoised image using AEG-

BM3D, PSNR = 23.9182, SSIM = 0.6006. 
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(a) (b) 

  

(c) (d) 

Figure C-6: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Boat at noise level     . (a) Noise free Boat image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 22.8584, SSIM = 0.5771. (d) Denoised image using AEG-

BM3D, PSNR = 23.3414, SSIM = 0.5762. 
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(a) (b) 

  

(c) (d) 

Figure C-7: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Boat at noise level      . (a) Noise free Boat image. (b) Noisy image with   

   . (c) Denoised image using BM3D, PSNR = 22.175, SSIM = 0.5563. (d) Denoised image using AEG-

BM3D, PSNR = 22.8964, SSIM = 0.5625. 
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(a) (b) 

  

(c) (d) 

Figure C-8: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Lena at noise level     . (a) Noise free Lena image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 32.9968, SSIM = 0.8749. (d) Denoised image using AEG-

BM3D, PSNR = 33.0008, SSIM = 0.8752. 
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(a) (b) 

  

(c) (d) 

Figure C-9: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Lena at noise level     . (a) Noise free Lena image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 31.1574, SSIM = 0.8410. (d) Denoised image using AEG-

BM3D, PSNR = 31.1758, SSIM = 0.8416. 
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(a) (b) 

  

(c) (d) 

Figure C-10: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Lena at noise level     . (a) Noise free Lena image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 29.7966, SSIM = 0.8083. (d) Denoised image using AEG-

BM3D, PSNR = 29.8042, SSIM = 0.8117. 
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(a) (b) 

  

(c) (d) 

Figure C-11: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Lena at noise level     . (a) Noise free Lena image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 27.7087, SSIM = 0.7699. (d) Denoised image using AEG-

BM3D, PSNR = 27.7289, SSIM = 0.7729. 
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(a) (b) 

  

(c) (d) 

Figure C-12: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Lena at noise level     . (a) Noise free Lena image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 25.5006, SSIM = 0.7344. (d) Denoised image using AEG-

BM3D, PSNR = 25.9448, SSIM = 0.7036. 
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(a) (b) 

  

(c) (d) 

Figure C-13: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Lena at noise level     . (a) Noise free Lena image. (b) Noisy image with     . 

(c) Denoised image using BM3D, PSNR = 24.5864, SSIM = 0.7259. (d) Denoised image using AEG-

BM3D, PSNR = 25.3037, SSIM = 0.6933. 
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(a) (b) 

  

(c) (d) 

Figure C-14: Subjective comparison of denoising performance between BM3D and AEG-BM3D for 

standard test image Lena at noise level      . (a) Noise free Lena image. (b) Noisy image with   

   . (c) Denoised image using BM3D, PSNR = 23.7521, SSIM = 0.7134. (d) Denoised image using AEG-

BM3D, PSNR = 24.673, SSIM = 0.6758. 
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