
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

October 2013

Reinforcement learning with motivations for
realistic agents
Jacquelyne T. Forgette
The University of Western Ontario

Supervisor
Mike Katchabaw
The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Jacquelyne T. Forgette 2013

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences
Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.

Recommended Citation
Forgette, Jacquelyne T., "Reinforcement learning with motivations for realistic agents" (2013). Electronic Thesis and Dissertation
Repository. 1651.
https://ir.lib.uwo.ca/etd/1651

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1651?utm_source=ir.lib.uwo.ca%2Fetd%2F1651&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tadam@uwo.ca

REINFORCEMENT LEARNING WITH MOTIVATIONS

FOR REALISTIC AGENTS

(Thesis Format: Monograph)

by

Jacquelyne T. Forgette

Graduate Program in Computer Science

Submitted in Partial Ful�llment of the Requirements

for the Degree of

Master of Science

University of Western Ontario

London, Ontario

October 6, 2013

c© Jacquelyne T. Forgette 2013

Abstract

Believable virtual humans have important applications in various �elds, including computer based

video games. The challenge in programming video games is to produce a non-player controlled

character that is autonomous, and capable of action selections that appear human. In this thesis,

motivations are used as a basis for learning using reinforcements. With motives driving the decisions

of the agents, their actions will appear less structured and repetitious, and more human in nature.

This will also allow developers to easily create game agents with speci�c motivations, based mostly

on their narrative purposes. With minimum and maximum desirable motive values, the agents use

reinforcement learning to maximize their rewards across all motives. Results show that an agent

can learn to satisfy as many as four motives, even with signi�cantly delayed rewards, and motive

changes that are caused by other agents. While the actions tested are simple in nature, they show

the potential of a more complicated motivation driven reinforcement learning system. The game

developer need only de�ne an agent's motivations, based on the game narrative, and the agent will

learn to act realistically as the game progresses.

ii

Acknowledgements

To all my teachers, professors, and supervisors, from the past, present, and future.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Arti�cial Intelligence in Games . 1

1.2 Believability . 3

1.3 Proposed Method . 4

1.4 Thesis Outline . 5

2 Reinforcement Learning 6

2.1 Overview . 6

2.2 Agent-Environment . 6

2.3 Policy . 7

2.4 Expected Reward . 8

2.5 Markov Decision Process . 8

2.6 Value Function . 9

2.7 Temporal-Di�erence . 9

2.7.1 Policy Evaluation . 10

2.7.2 On-Policy Control: Sarsa . 10

2.7.3 O�-Policy Control: Q-Learning . 12

2.8 Eligibility Traces . 13

2.8.1 Theoretical Basis . 13

2.8.2 Algorithmic Implementation . 14

2.8.3 Sarsa(λ) . 15

2.8.4 Q(λ) . 15

2.9 Generalization . 15

2.10 Modelling and Planning . 16

2.11 Hierarchical RL . 17

iv

2.11.1 Scaling Problem . 19

2.11.2 Incorporating Options . 20

2.11.3 Option Discovery . 20

2.12 Summary . 21

3 Realistic Agents 22

3.1 Personality . 22

3.2 Desire Theory . 23

3.3 Emotion RL . 24

3.4 Motivated RL . 26

3.5 Social Believability . 27

3.6 Summary . 28

4 Method 30

4.1 Overview . 30

4.2 Approach . 30

4.2.1 Environment . 31

4.2.2 Motives . 31

4.2.3 Reinforcement Function . 32

4.2.4 Function Approximation . 33

4.2.5 State Representation . 34

4.3 Game Scenarios . 35

4.4 Evaluative Measures . 35

4.5 Testing Approach . 36

4.5.1 Parameters . 36

4.5.2 Exploration Rate . 37

4.5.3 Training and Testing . 38

4.5.4 Discount and Trace-Decay . 38

4.5.5 Multiple Motives . 38

4.5.6 Graphing Results . 39

4.5.7 Testing Outline . 39

4.6 Summary . 39

5 Game One 41

5.1 Testing Outline . 41

5.2 Sarsa . 41

5.2.1 Exploration Rate . 42

v

5.2.2 Reinforcement Learning Rate . 43

5.2.3 Q-Function ANN Learning Rate . 44

5.2.4 Individual Motive Reward . 44

5.2.5 Q-Function Hidden Neurons . 45

5.3 Q-Learning . 46

5.3.1 Exploration Rate . 46

5.3.2 Reinforcement Learning Rate . 47

5.3.3 Q-Function ANN Learning Rate . 47

5.3.4 Individual Motive Reward . 48

5.3.5 Q-Function Hidden Neurons . 49

5.4 Dyna-Q . 50

5.4.1 Model-Function Hidden Neurons . 50

5.4.2 Model-Function Learning Rate . 51

5.4.3 Dyna-Q Planning Steps . 51

5.5 Discussion . 52

5.5.1 Parameters . 52

5.5.2 Consistency . 53

5.5.3 Training Time of Optimal Policy . 54

5.5.4 Qualitative Analysis . 55

5.6 Summary . 56

6 Game Two 57

6.1 Testing Outline . 57

6.2 Sarsa . 58

6.2.1 Exploration Rate . 58

6.2.2 Reinforcement Learning Rate . 59

6.2.3 Q-Function Learning Rate . 59

6.2.4 Individual Motive Reward . 60

6.2.5 Q-Function Hidden Neurons . 61

6.3 Q-Learning . 61

6.3.1 Exploration Rate . 62

6.3.2 Reinforcement Learning Rate . 62

6.3.3 Q-Function Learning Rate . 63

6.3.4 Individual Motive Reward . 64

6.3.5 Q-Function Hidden Neurons . 64

6.4 Dyna-Q . 65

vi

6.4.1 Model-Function Hidden Neurons . 65

6.4.2 Model-Function Learning Rate . 66

6.4.3 Dyna-Q Planning Steps . 67

6.5 Discussion . 67

6.5.1 Parameters . 67

6.5.2 Consistency . 68

6.5.3 Discount and Trace-Decay . 69

6.5.4 Training Time of Optimal Parameters . 70

6.5.5 Qualitative Analysis . 70

6.6 Summary . 71

7 Game Three 72

7.1 Testing Outline . 73

7.2 Sarsa . 73

7.2.1 Exploration Rate . 73

7.2.2 Reinforcement Learning Rate . 74

7.2.3 Q-Function Learning Rate . 75

7.2.4 Individual Motive Reward . 76

7.2.5 Q-Function Hidden Neurons . 77

7.3 Q Learning . 78

7.3.1 Exploration Rate . 79

7.3.2 Reinforcement Learning Rate . 79

7.3.3 Q-Function Learning Rate . 80

7.3.4 Individual Motive Reward . 81

7.3.5 Q-Function Hidden Neurons . 82

7.4 Dyna-Q . 83

7.4.1 Model Function Hidden Neurons . 83

7.4.2 Model Function Learning Rate . 84

7.4.3 Dyna-Q Planning Steps . 85

7.5 Discussion . 86

7.5.1 Parameters . 87

7.5.2 Consistency . 87

7.5.3 Discount and Decay-Trace . 88

7.5.4 Training Time . 89

7.5.5 Qualitative Analysis . 90

7.6 Summary . 93

vii

8 Game Four 94

8.1 Testing Outline . 94

8.2 Sarsa with ε-greedy . 95

8.3 Sarsa with Softmax . 99

8.4 Q-Learning with ε-greedy . 103

8.5 Q-Learning with softmax . 108

8.6 Dyna-Q with ε-greedy . 111

8.7 Dyna-Q with Softmax . 113

8.8 Discussion . 119

8.8.1 Parameters . 119

8.8.2 Consistency . 121

8.8.3 Training Time . 122

8.8.4 Qualitative Analysis . 123

8.9 Summary . 124

9 Game Five 125

9.1 Testing Outline . 126

9.2 Sarsa and ε-greedy . 126

9.3 Discussion . 130

9.3.1 Parameters . 130

9.3.2 Consistency . 130

9.3.3 Training Time . 131

9.3.4 Qualitative Analysis . 132

9.4 Summary . 135

10 Discussion and Conclusion 136

10.1 Discussion . 136

10.2 Main Contributions . 139

10.3 Future Work . 139

Bibliography 141

Vita 145

viii

List of Tables

3.1 Hypotheses of Reiss's theory of 16 basic desires [34]. 25

3.2 Motives in Reiss's Theory of 16 Basic Desires [34]. 25

3.3 Reduced list of appraisals that categorize emotional reactions. 26

4.1 Spilt up into the di�erent RL algorithms, the table describes what parameters are

necessary in each aspect of the system. The parameter mR de�nes the scaling factor of

a motive's individual reward, Hn is an array that de�nes the number of hidden neurons

in each hidden layer of an ANN, pS de�nes the number of planning steps during Dyna-

Q, η de�nes the learning rate of an ANN, λ de�nes the decay-trace value, γ de�nes the

discount value, εs de�nes the starting exploration rate, εe de�nes the ending exploration

rate, τs de�nes the starting temperature value, τe de�nes the ending temperature value,

αs de�nes the starting RL learning rate, and �nally, αe de�nes the ending RL learning

rate. 37

4.2 Testing combinations for discount and trace-decay values, 26 combinations. 38

4.3 Testing outline specifying where to �nd results of speci�c tests. 39

5.1 Outline of �xed variables used in the testing con�gurations for Game One using Sarsa,

and ε-greedy. 42

5.2 How εs and εe vary for di�erent testing con�gurations in Game One using Sarsa, and

ε-Greedy. 42

5.3 How αs and αe vary for di�erent testing con�gurations in Game One with Sarsa, and

ε-Greedy. 43

5.4 How ηQ changes for di�erent testing con�gurations in Game One with Sarsa, and ε-

Greedy. 44

5.5 How mR changes for di�erent testing con�gurations in Game One with Sarsa, ε-Greedy. 44

5.6 How HnQ is changed for di�erent testing con�gurations in Game One with Sarsa, and

ε-greedy. 45

5.7 Outline of �xed variables used in the testing con�gurations for Game One using Q-

learning, and ε-greedy. 46

ix

5.8 How εs and εe vary for di�erent testing con�gurations in Game One using Q-learning,

and ε-Greedy. 46

5.9 How αs and αe vary for di�erent testing con�gurations in Game One with Q-learning,

and ε-Greedy. 47

5.10 How ηQ changes for di�erent testing con�gurations in Game One with Q-learning, and

ε-Greedy. 48

5.11 How mR changes for di�erent testing con�gurations in Game One with Q-learning,

ε-Greedy. 48

5.12 How HnQ is changed for di�erent testing con�gurations in Game One with Q-learning,

and ε-greedy. 49

5.13 Outline of �xed variables used in the testing con�gurations for Game One using Dyna-

Q, and ε-greedy. 50

5.14 How HnM is changed for di�erent testing con�gurations in Game One with Dyna-Q,

and ε-greedy. 50

5.15 How ηM changes for di�erent testing con�gurations in Game One with Dyna-Q, and

ε-Greedy. 51

5.16 How pS changes for di�erent testing con�gurations in Game One with Dyna-Q, and

ε-Greedy. 51

5.17 Outline of the variables used to test the consistency of Game One's optimal policy,

using Dyna-Q and ε-greedy. 54

6.1 Description of Tarzan's actions and their resulting impact on the game world. 57

6.2 Outline of �xed variables used in the testing con�gurations for Game Two using Sarsa,

and ε-greedy. 58

6.3 How εs and εe vary for di�erent testing con�gurations in Game Two using Sarsa, and

ε-Greedy . 58

6.4 Outlines how the starting and ending learning values (αs and αe) vary for training

games (trainN) as well as testing games (testN), in Game Two with Sarsa and ε-greedy. 59

6.5 How ηQ changes for di�erent testing con�gurations in Game Two with Sarsa, and

ε-Greedy. 59

6.6 How mR changes for di�erent testing con�gurations in Game Two with Sarsa, and

ε-Greedy. 60

6.7 How HnQ is changed for di�erent testing con�gurations in Game Two with Sarsa, and

ε-greedy. 61

6.8 Outline of �xed variables used in the testing con�gurations for Game Two using Q-

learning, and ε-greedy. 62

x

6.9 Outlines how εs and εe vary for di�erent testing con�gurations in Game Two using

Q-learning, and ε-Greedy. 62

6.10 Outline how the starting and ending learning values (αs and αe) vary for training games

(trainN) as well as testing games (testN), in Game Two with Q learning, and ε-greedy. 63

6.11 Outlines how ηQ changes during testing, in Game Two with Q-learning, and ε-greedy. 63

6.12 Outlines how mR changes during testing, in Game Two with Q-learning and ε-greedy. 64

6.13 Outlines how HnQ changes during testing, in Game Two with Q learning and ε-greedy. 65

6.14 Outline of �xed variables used in the testing con�gurations for Game Two using Dyna-

Q, and ε-greedy. 65

6.15 Outlines how HnM changes with di�erent testing con�gurations in Game Two with

Dyna-Q, and ε-greedy. 66

6.16 Outline how ηM changes during di�erent testing con�gurations in Game Two with

Dyna-Q, and ε-greedy. 66

6.17 Outlines how pS changes for di�erent testing con�gurations in Game Two with Dyna-Q,

and ε-Greedy. 67

6.18 Outline of the variables used to test the consistency of Game Two's optimal parameters. 69

7.1 Game Three agent motive thresholds. 72

7.2 Outline of �xed variables used in the testing con�gurations for Game Three using Sarsa,

and ε-greedy. 73

7.3 Outlines how εs, and εe, vary during testing con�gurations in Game Three using Sarsa,

and ε-Greedy. 73

7.4 Outline how the starting, and ending learning values (αs and αe), vary for training

games (trainN), as well as testing games (testN), in Game Three with Sarsa, and

ε-greedy. 74

7.5 Outlines how ηQ changes during testing con�gurations in Game Three with Sarsa, and

ε-Greedy. 75

7.6 Outlines mR changes for di�erent testing con�gurations in Game Three with Sarsa,

and ε-Greedy. 76

7.7 Outlines how HnQ changes for di�erent testing con�gurations in Game Three with

Sarsa, and ε-greedy. 77

7.8 Outline of the �xed variables used in the testing con�gurations for Game Three using

Q-learning, and ε-greedy. 78

7.9 Outline how εs and εe vary during testing con�gurations for Game Three tests with

Q-learning and ε-greedy. 79

xi

7.10 Outline how the starting, and ending learning values (αs and αe), vary for training

games (trainN), as well as testing games (testN), in Game Three with Q learning, and

ε-greedy. 79

7.11 Outlines how ηQ changes during testing con�gurations in Game Three with Q-learning,

and ε-greedy. 80

7.12 Outlines how mR changes during testing, in Game Three with Q-learning and ε-greedy. 81

7.13 Outlines how HnQ changes during testing in Game Three using Q-learning, and ε-

greedy. 82

7.14 Outline of �xed variables used in the testing con�gurations for Game Three using

Dyna-Q, and ε-greedy. 83

7.15 Outlines how HnM changes with di�erent testing con�gurations in Game Three with

Dyna-Q, and ε-greedy. 84

7.16 Outline how ηM changes during di�erent testing con�gurations in Game Three with

Dyna-Q, and ε-greedy. 85

7.17 Outlines how pS changes for di�erent testing con�gurations in Game Three with Dyna-

Q, and ε-Greedy. 85

7.18 Outline of the variables used to test the consistency of Game Three's optimal param-

eters. 88

7.19 This table outlines exactly what discount rate, and trace-decay parameter, were used

to train the policies chosen for qualitative analysis. 90

8.1 Description of Tarzan's actions, and the resulting changes in the game world, for Game

Four. 94

8.2 Testing outline for Game Four. 95

8.3 Parameter values tested in Game Four with Sarsa, and ε-greedy. 96

8.4 Parameter values tested for Game Four with Sarsa, and Softmax. 99

8.5 Parameter values tested in Game Four with Q-learning, and ε-greedy. 104

8.6 Parameter values tested in Game Four with Q-learning, and Softmax. 109

8.7 Parameter values tested in Game Four using Dyna-Q, and ε-greedy. 112

8.8 Parameter values tested in Game Four with Dyna-Q, and Softmax. 114

8.9 Outline of the variables used to test the consistency of the results. 121

8.10 Statistics measuring consistency of Game Four results (percent of reward). 121

8.11 Statistics measuring consistency of Game Four results (percent of steps in bounds). . 122

9.1 Description of motivations for all agents, in the Game Five scenario. 125

9.2 Description of how object actions change agent's motives, in the Game Five scenario. 125

9.3 Parameter values tested in Game Four with Sarsa, and ε-greedy. 126

xii

9.4 Outline of the variables used to test the consistency of the results. 130

9.5 Statistics measuring consistency of Game Five results (percent of steps in bounds for

Tarzan). 131

9.6 Statistics measuring consistency of Game Five results (percent of reward for Tarzan). 131

xiii

List of Figures

2.1 Basic Agent-Environment Interaction in Reinforcement Learning. 7

2.2 On-policy control methodology for updating Qπ while following the policy π. 11

2.3 O�-policy control methodology for updating Qπ without following policy π. 12

2.4 Backup diagrams of TD methods ranging from one-step backups to the full termination

backups of Monte Carlo methods, where T is the �nal time step in the episode [40]. . 13

2.5 Backup diagrams of TD(λ). When λ = 0, the backup is reduced to TD(1-step) whereas

when λ = 1, the backup becomes the same as Monte Carlo [40]. 14

2.6 Agent-Environment-Model Interaction in the DynaQ Architecture. 17

2.7 Options replace a series of low-level actions. a) A search tree outlining the task of

searching for a series of actions that result in a favorable state. b) A search tree using

options instead of actions. The task of searching through the search space is simpli�ed

when groups of actions are replaced with an option. [6] 19

4.1 Finite Motive Scale. 32

4.2 For a motive m, its current value is mcurrent, maximum threshold is mmax, minimum

threshold is mmin, and the distance between mcurrent, and the nearest threshold is

de�ned by d. The minimum scaling factor is smin = mmax, and the maximum scaling

factor is smax = 100−mmax. 32

4.3 Features that are used as input into the Q-function approximation ANN, where M is

the number of motives, P is the number of places in the game world, A is the number

of agents in the game world excluding the current agent, and O is the total number of

object types. 34

5.1 Comparing the results of varying εs and εe during �nal policy tests, where t-n is the

nth testing con�guration according to Table 5.2. The testing con�gurations are run in

Game One using Sarsa, and ε-greedy. 43

5.2 Comparing the results of varying αs and αe during �nal policy tests, where t-n de�nes

the nth testing con�guration according to Table 5.3. The testing con�gurations are run

in Game One using Sarsa, and ε-greedy. 43

xiv

5.3 Comparing the results of varying ηQ during �nal policy tests, where t-n is de�ned as

the nth testing con�guration according to Table 5.4. The testing con�gurations are run

in Game One using Sarsa, and ε-greedy. 44

5.4 Comparing the results of varying mR during �nal policy tests, where t-n de�nes the

nth test according to Table 5.5. The testing con�gurations are run in Game One using

Sarsa, and ε-greedy. 45

5.5 Comparing the results of varying HnQ during �nal policy tests, where t-n de�nes the

nth test according to Table 5.6. The testing con�gurations are run in Game One using

Sarsa, and ε-greedy. 45

5.6 Comparing the results of varying εs and εe during �nal policy tests, where t-n is the

nth testing con�guration according to Table 5.8. The testing con�gurations are run in

Game One using Q-learning, and ε-greedy. 47

5.7 Comparing the results of varying αs and αe, where t-n de�nes the nth test according to

Table 5.9, consisting only of the �nal policies reached by each parameter con�guration

(130 results). The agent follows the policy with absolutely no exploration. The testing

con�gurations are run in Game Two using Q-learning, and ε-greedy. 48

5.8 Comparing the results of varying ηQ during �nal policy tests, where t-n is de�ned as

the nth testing con�guration according to Table 5.10. The testing con�gurations are

run in Game One using Q-learning, and ε-greedy. 48

5.9 Comparing the results of varying mR during �nal policy tests, where t-n de�nes the

nth test according to Table 5.11. The testing con�gurations are run in Game One using

Q-learning, and ε-greedy. 49

5.10 Comparing the results of varying HnQ during �nal policy tests, where t-n de�nes the

nth test according to Table 5.12. The testing con�gurations are run in Game One using

Q-learning, and ε-greedy. 49

5.11 Comparing the results of varying HnM during �nal policy tests, where t-n de�nes the

nth test according to Table 5.14. The testing con�gurations are run in Game One using

Dyna-Q, and ε-greedy. 50

5.12 Comparing the results of varying ηM during �nal policy tests, where t-n is de�ned as

the nth testing con�guration according to Table 5.15. The testing con�gurations are

run in Game One using Dyna-Q, and ε-greedy. 51

5.13 Comparing the results of varying pS during �nal policy tests, where t-n is de�ned as

the nth testing con�guration according to Table 5.16. The testing con�gurations are

run in Game One using Dyna-Q, and ε-greedy. 52

5.14 Compare the consistency of the �nal Game One policies learned by the RL agent from

ten repeated tests, where t-n de�nes the nth repeated test. 54

xv

5.15 Showing the percent of reward received after every game (1000 game steps), comparing

two contrasting values of ηM . 54

5.16 Showing the percent of reward received after every game (1000 game steps), comparing

two contrasting values of pS . 55

5.17 Qualitative analysis of best and worst policies found by the set of parameters in Table

5.17. 55

6.1 Comparing the results of varying εs and εe during �nal policy tests, where t-n is the nth

testing con�guration according to Table 6.3. These Game Two testing con�gurations

are run using Sarsa, and ε-greedy. 58

6.2 Comparing the results of varying αs, and αe, where t-n de�nes the nth test according

to Table 6.4, consisting only of (test10), the �nal policy reached by each parameter

con�guration (130 results). The agent follows the policy with no exploration, and no

learning. The testing con�gurations are run in Game Two using Sarsa, and ε-greedy 59

6.3 Comparing the results of varying ηQ, where t-n de�nes the nth test according to Table

6.5, consisting of the �nal policies reached by each parameter con�guration (130 re-

sults). The agent follows the policy with no exploration and no learning. The testing

con�gurations are run in Game Two using Sarsa, and ε-greedy. 60

6.4 Comparing the results of varying mR, where t-n de�nes the nth test according to Table

6.6, consisting only of the �nal policies reached by each parameter con�guration (130

results). The agent follows the policy with no exploration and no learning. The testing

con�gurations are run in Game Two using Sarsa, and ε-greedy. 60

6.5 Comparing the results of varying HnQ during �nal policy tests, where t-n de�nes the

nth test according to Table 6.7. The testing con�gurations are run in Game One using

Sarsa, and ε-greedy. 61

6.6 Comparing the results of varying εs and εe, where t-n de�nes the nth test according to

Table 6.9, consisting of the �nal policies. The testing con�gurations are run in Game

Two using Q-learning, and ε-greedy. 62

6.7 Comparing the results of varying αs and αe, where t-n de�nes the nth test according to

Table 6.10, consisting only of the �nal policies reached by each parameter con�guration

(130 results). The agent follows the policy with no exploration and no learning. The

testing con�gurations are run in Game Two using Q-learning, and ε-greedy. 63

6.8 Comparing the results of varying ηQ, where t-n de�nes the nth test according to Table

6.11, consisting of the �nal policies reached by each parameter con�guration (130 re-

sults). The agent follows the policy with no exploration and no learning. The testing

con�gurations are run in Game Two using Q-learning, and ε-greedy. 64

xvi

6.9 Comparing the results of varying mR, where t-n de�nes the nth test according to

Table 6.12, consisting of the �nal policies reached by each parameter con�guration

(130 results). The agent follows the policy with no exploration and no learning. The

testing con�gurations are run in Game Two using Q-learning, and ε-greedy. 64

6.10 Comparing the results of varying HnQ, where t-n de�nes the nth test according to

Table 6.13, consisting of the �nal policies reached by each parameter con�guration

(130 results). The testing con�gurations are run in Game Two using Q-learning, and

ε-greedy. 65

6.11 Comparing the results of varying HnM during �nal policies, where t-n de�nes the nth

test according to Table 6.15. The testing is run in Game Two using Dyna-Q, and

ε-greedy. 66

6.12 Comparing the �nal policies while varying ηQ, where t-n de�nes the nth test according

to Table 6.16. The testing con�gurations are run in Game Two using Dyna-Q, and

ε-greedy. 66

6.13 Comparing the results of varying pS during �nal policy tests, where t-n is de�ned as

the nth testing con�guration according to Table 6.17. The testing con�gurations are

run in Game Two using Dyna-Q, and ε-greedy. 67

6.14 Comparing the consistency of the �nal policies, trained using optimal parameters out-

lined in Table 6.18, where t-n de�nes the nth repeated test. 69

6.15 Comparing the impact of γ and λ on the percent of total reward given the set of optimal

parameters found in Table 6.18. 69

6.16 Comparing the impact of training time on the percent of reward, for policies using

optimal parameters seen in Table 6.18. 70

6.17 Actual motive values observed during a game following one of the optimal policies

found using parameters described in Table 6.18. The red lines indicate the boundaries

for minimum, and maximum desirable values, that are di�erent for each motivation. 71

6.18 Actual motive values observed during a game following one of the sub-optimal policies

found using parameters described in Table 6.18. The red lines indicate the boundaries

for minimum, and maximum desirable values, that are di�erent for each motivation. 71

7.1 Comparing the results of varying εs, and εe, for the agent Tarzan, where t-n de�nes

the nth test according to Table 7.3. The testing con�gurations are run in Game Three

using Sarsa, and ε-greedy. 74

7.2 Comparing the results of varying εs, and εe, for the agent Jane, where j-n de�nes the

nth test according to Table 7.3. The testing con�gurations are run in Game Three

using Sarsa, and ε-greedy. 74

xvii

7.3 Comparing the results of varying αs, and αe, for the agent Tarzan, where t-n de�nes

the nth test according to Table 7.4. The testing con�gurations are run in Game Three

using Sarsa, and ε-greedy. 75

7.4 Comparing the results of varying αs, and αe, for the agent Jane, where j-n de�nes the

nth test according to Table 7.4. The testing con�gurations are run in Game Three

using Sarsa, and ε-greedy. 75

7.5 Comparing the results of changing ηQ, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.5. The testing con�gurations are run in Game Three using

Sarsa, and ε-greedy. 76

7.6 Comparing the results of changing ηQ, for the agent Jane, where j-n de�nes the nth

test according to Table 7.5. The testing con�gurations are run in Game Three using

Sarsa, and ε-greedy. 76

7.7 Comparing the results of changing mR, from the agent Tarzan, where t-n de�nes the

nth test according to Table 7.6. The testing con�gurations are run in Game Three

using Sarsa, and ε-greedy. 77

7.8 Comparing the results of changing mR, from the agent Jane, where j-n de�nes the nth

test according to Table 7.6. The testing con�gurations are run in Game Three using

Sarsa, and ε-greedy. 77

7.9 Comparing the results of changing HnQ, for the agent Tarzan, where t-n de�nes the

nth test according to Table 7.7. The testing con�gurations are run in Game Three

using Sarsa, and ε-greedy. 78

7.10 Comparing the results of changing HnQ, for the agent Jane, where j-n de�nes the nth

test according to Table 7.7. The testing con�gurations are run in Game Three using

Sarsa, and ε-greedy. 78

7.11 The results of varying ε, where t-n and j-n are the nth test from Table 7.9. The testing

con�gurations are run in Game Three using Q-learning, and ε-greedy. 79

7.12 Comparing the results of varying αs, and αe, for the agent Tarzan, where t-n de�nes

the nth test according to Table 7.10. The testing con�gurations are run in Game Three

using Q-learning, and ε-greedy. 80

7.13 Comparing the results of varying αs, and αe, for the agent Jane, where j-n de�nes the

nth test according to Table 7.10. The testing con�gurations are run in Game Three

using Q-learning, and ε-greedy. 80

7.14 Comparing the results of changing ηQ, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.11. The testing con�gurations are run in Game Three using

Q-learning, and ε-greedy. 81

xviii

7.15 Comparing the results of changing ηQ, for the agent Jane, where j-n de�nes the nth

test according to Table 7.11. The testing con�gurations are run in Game Three using

Q-learning, and ε-greedy. 81

7.16 Comparing the results of changing mR, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.12. The testing con�gurations are run in Game Three using

Q-learning, and ε-greedy. 82

7.17 Comparing the results of changing mR, for the agent Jane, where j-n de�nes the nth

test according to Table 7.12. The testing con�gurations are run in Game Three using

Q-learning, and ε-greedy. 82

7.18 Comparing the results of changing HnQ, for the agent Tarzan, where t-n de�nes the n
th

test according to Table 7.13, consisting of the �nal policies reached by each parameter

con�guration (130 results). The testing con�gurations are run in Game Three using

Q-learning, and ε-greedy. 83

7.19 Comparing the results of changing HnQ, for the agent Jane, where t-n de�nes the nth

test according to Table 7.13, consisting of the �nal policies reached by each parameter

con�guration (130 results). The testing con�gurations are run in Game Three using

Q-learning, and ε-greedy. 83

7.20 Comparing the results of changing HnM , for the agent Tarzan, where t-n de�nes the

nth test according to Table 7.15. The testing con�gurations are run in Game Three

using Dyna-Q, and ε-greedy. 84

7.21 Comparing the results of changing HnM , for the agent Jane, where j-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using

Dyna-Q, and ε-greedy. 84

7.22 Comparing the results of changing ηM , for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using

Dyna-Q, and ε-greedy. 85

7.23 Comparing the results of changing ηM , for the agent Jane, where j-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using

Dyna-Q, and ε-greedy. 85

7.24 Comparing the results of changing pS, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using

Dyna-Q, and ε-greedy. 86

7.25 Comparing the results of changing pS, for the agent Jane, where j-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using

Dyna-Q, and ε-greedy. 86

xix

7.26 Comparing the percent of reward from policies trained using optimal parameters out-

lined in Table 7.18. 88

7.27 Comparing the percent of steps in bounds from policies trained using optimal param-

eters outlined in Table 7.18. 88

7.28 Comparing the impact of γ and λ on the percent of reward for Tarzan, and Jane, given

the optimal set of parameters in Table 7.18. 89

7.29 Comparing how of training time in�uences the percent of reward, and the percent of

steps in bounds, for Tarzan, and Jane, using the optimal Game Three parameter in

Table 7.18. 90

7.30 Actual motive values for the agent Tarzan, where the optimal policy was found using

parameters described in Table 7.18. The red horizontal lines show the boundaries for

minimum, and maximum desirable values. 91

7.31 Actual motive values for the agent Jane, where the optimal policy was found using

parameters described in Table 7.18. The red horizontal lines show the boundaries for

minimum, and maximum desirable values. 91

7.32 Actual motive values for the agent Tarzan, where the terrible policy was found using

parameters described in Table 7.18. The red horizontal lines show the boundaries for

minimum, and maximum desirable values. 92

7.33 Actual motive values for the agent Jane, where the terrible policy was found using

parameters described in Table 7.18. The red horizontal lines show the boundaries for

minimum, and maximum desirable values. 92

8.1 Comparing the percent of reward of α, and ε, during testing for Game Four with Sarsa,

and ε-greedy. 96

8.2 Comparing the percent of reward of γλ, and mR, during testing for Game Four with

Sarsa, and ε-greedy. 96

8.3 Comparing the percent of reward of ηQ, and HnQ, during testing for Game Four with

Sarsa, and ε-greedy. 97

8.4 All results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Sarsa, and ε-greedy. 97

8.5 Results (percent in bounds) from training games 58, 59, and 60, during Game Four

testing with Sarsa, and ε-greedy. Only the results with γ = 0.9, and λ = 0.9 are

included. 98

8.6 Comparing the percent of steps in bounds of ε, and α, during testing for Game Four

with Sarsa, and ε-greedy. Only the results with γ = 0.9, λ = 0.9, and mR = −0.05,

are included. 98

xx

8.7 Comparing the percent of steps in bounds of ηQ, and HnQ, during testing for Game

Four with Sarsa, and ε-greedy. Only the results with γ = 0.9, λ = 0.9, and mR =

−0.05, are included. 98

8.8 Comparing the percent of reward of τ , and γλ, during testing for Game Four with

Sarsa, and Softmax. 99

8.9 Comparing the percent of reward of HnQ, and mR, during testing for Game Four with

Sarsa, and Softmax. 100

8.10 Comparing the percent of reward of ηQ during testing for Game Four with Sarsa, and

Softmax. 100

8.11 All results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Sarsa, and Softmax. 100

8.12 All results (percent of steps in bounds) from training games 58, 59, and 60, during

Game Four testing with Sarsa, and Softmax. 101

8.13 Results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Sarsa, and Softmax. Only the results with γ = 0.9, and λ = 0.9 are

included in this scatter plot. 101

8.14 Results (percent of steps in bounds) from training games 58, 59, and 60, during Game

Four testing with Sarsa, and Softmax. Only the results with γ = 0.9, and λ = 0.9 are

included in this scatter plot. 102

8.15 Comparing the percent of reward, and the percent of steps in bounds, of τ during

testing for Game Four with Sarsa, and Softmax. The results are limited to those with

γ = 0.9, λ = 0.9, and mR = −0.1. 102

8.16 Comparing the percent of reward, and the percent of steps in bounds, of ηQ during

testing for Game Four with Sarsa, and Softmax. The results are limited to those with

γ = 0.9, λ = 0.9, and mR = −0.1. 103

8.17 Comparing the percent of reward, and the percent of steps in bounds, of HnQ during

testing for Game Four with Sarsa, and Softmax. The results are limited to those with

γ = 0.9, λ = 0.9, and mR = −0.1. 103

8.18 Comparing the percent of reward of α, and ε, during testing for Game Four with

Q-learning, and ε-greedy . 104

8.19 Comparing the percent of reward of γλ, and mR, during testing for Game Four with

Q-learning, and ε-greedy. 104

8.20 Comparing the percent of reward of ηQ, and HnQ, during testing for Game Four with

Q-learning, and ε-greedy. 105

8.21 All results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Q-learning, and ε-greedy. 105

xxi

8.22 All results (percent of steps in bounds) from training games 58, 59, and 60, during

Game Four testing with Q-learning, and ε-greedy. 106

8.23 Results (percent of steps in bounds) from training games 58, 59, and 60, during Game

Four testing with Q-learning, and ε-greedy. The results are limited to those with

γ = 0.9, and λ = 0.9. 106

8.24 Results (percent of steps in bounds) from training games 58, 59, and 60, during Game

Four testing with Q-learning, and ε-greedy. The results are limited to those with

γ = 0.9, λ = 0.9, and mR = −0.1. 107

8.25 Comparing the percent of steps in bounds of α, and ε, during testing for Game Four

with Q-learning, and ε-greedy . The results are limited to those with γ = 0.9, λ = 0.9,

and mR = −0.1. 107

8.26 Comparing the percent of steps in bounds of ηQ, and HnQ, during testing for Game

Four with Q-learning, and ε-greedy. The results are limited to those with γ = 0.9,

λ = 0.9, and mR = −0.1. 108

8.27 Comparing the results of ε, during testing for Game Four with Q-learning, and ε-

greedy. The results are limited to those withγ = 0.9, λ = 0.9, mR = −0.1, ηQ = 0.7,

HnQ = [100], mR = −0.1, αs = 0.9, and αe = 0.5. 108

8.28 Comparing the percent of reward of τ , and α, during testing for Game Four with

Q-learning, and Softmax. 109

8.29 Comparing the percent of reward of HnQ, and mR, during testing for Game Four with

Q-learning, and Softmax. 109

8.30 Comparing the percent of reward of ηQ during testing for Game Four with Q-learning,

and Softmax. 110

8.31 All results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Q-learning, and Softmax. 110

8.32 All results (percent of steps in bounds) from training games 58, 59, and 60, during

Game Four testing with Q-learning, and Softmax. 111

8.33 Comparing the percent of steps in bounds of HnQ, and τ , during testing for Game

Four with Q-learning, and Softmax. The results are limited to those with mR = −0.1,

ηQ = 0.9, αs = 0.9, and αe = 0.9. 111

8.34 Comparing the percent of reward of ε, and mR, during testing for Game Four with

Dyna-Q, and ε-greedy. 112

8.35 Comparing the percent of reward of HnQ, and HnM , during testing for Game Four

with Dyna-Q, and ε-greedy. 112

8.36 Comparing the percent of reward of pS during testing for Game Four with Dyna-Q,

and ε-greedy. 113

xxii

8.37 All results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Dyna-Q, and ε-greedy. 113

8.38 Comparing the percent of reward of ε, and mR, during testing for Game Four with

Dyna-Q, and Softmax. 114

8.39 Comparing the percent of reward of HnM , and pS, during testing for Game Four with

Dyna-Q, and Softmax. 115

8.40 All results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Dyna-Q, and Softmax. 115

8.41 All results (percent of steps in bounds) from training games 58, 59, and 60, during

Game Four testing with Dyna-Q, and Softmax. 116

8.42 All results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Dyna-Q, and Softmax. 116

8.43 All results (percent of steps in bounds) from training games 58, 59, and 60, during

Game Four testing with Dyna-Q, and Softmax. 117

8.44 Results (percent of reward) from training games 58, 59, and 60, during Game Four

testing with Dyna-Q, and Softmax. These results do not include those with τs = 0.01,

and τe = 0.00001. 117

8.45 Results (percent of steps in bounds) from training games 58, 59, and 60, during Game

Four testing with Dyna-Q, and Softmax. These results do not include those with

τs = 0.01, and τe = 0.00001. 118

8.46 Comparing the performance of pS, during testing for Game Four with Dyna-Q, and

Softmax. The results are limited to those with τs = 0.1, and τe = 0.00001. 118

8.47 Comparing the performance of HnM , during testing for Game Four with Dyna-Q, and

Softmax. The results are limited to those with τs = 0.1, and τe = 0.00001. 119

8.48 Comparing the performance of mR, during testing for Game Four with Dyna-Q, and

Softmax. The results are limited to those with τs = 0.1, and τe = 0.00001. 119

8.49 Showing the percent of reward after every training game to compare the in�uence of

training time. Each run number includes results from the 20 repeated tests from Table

8.9. 123

8.50 Showing the percent of steps in bounds after every training game to compare the

in�uence of training time. Each run number includes results from the 20 repeated tests

from Table 8.9. 123

8.51 Qualitative analysis of the policies found using parameters outlines in Table 8.9. . . . 124

9.1 Comparing the performance of α in Game Four testing with Sarsa, and ε-greedy. . . . 126

9.2 Comparing the performance of ηQ in Game Four testing with Sarsa, and ε-greedy. . . 127

xxiii

9.3 Comparing the performance of ε in Game Four testing with Sarsa, and ε-greedy. . . 127

9.4 Comparing the performance of γ, and λ, in Game Four testing with Sarsa, and ε-greedy. 127

9.5 All results (percent of steps in bounds) from training games 88, 89, and 90, during

Game Four testing with Sarsa, and ε-greedy, separated by ε and γλ. 128

9.6 All results (percent of reward) from training games 88, 89, and 90, during Game Four

testing with Sarsa, and ε-greedy, separated by ηQ, and γλ. 128

9.7 Comparing the performance of α in Game Four testing with Sarsa, and ε-greedy. Only

the results with γ = 0.9, and λ = 0.9, are included in the graph. 129

9.8 Comparing the performance of ηQ in Game Four testing with Sarsa, and ε-greedy. Only

the results with γ = 0.9, and λ = 0.9, are included in the graph. 129

9.9 Comparing the performance of ε in Game Four testing with Sarsa, and ε-greedy. Only

the results with γ = 0.9, and λ = 0.9, are included in the graph. 129

9.10 Comparing the impact of training time on the percent of reward, in Game Five. Every

box includes 10 repeated results, found with parameter values from Table 9.4. 132

9.11 Comparing the impact of training time on the percent of steps in bounds, in Game

Five. Every box includes 10 repeated results, found with parameter values from Table

9.4. 132

9.12 Qualitative analysis of the policy with the highest percent of reward for Tarzan, found

using parameters outlined in Table 9.4. 133

9.13 Qualitative analysis of the policy with the least amount of percent of reward for Tarzan,

found using parameters outlines in Table 9.4. 134

xxiv

1

Chapter 1

Introduction

The application of believable virtual humans is important for many �elds of research, with varying

expectations, de�nitions and requirements of realism. Building a full virtual human is a complex

task, including visual non-verbal emotional responses, cognition, behaviour and conversational skills

[11]. Each facet of a human's response may be in�uenced by underlying personality traits, emotions

and motivations [5, 35, 32] which are also in�uenced by sociological connections and perception

[16, 37, 3].

In video games, realistic agents have long been a problem to developers and gamers. For large

immersive game worlds, players have come to expect the presence of computer generated agents

as either necessary for the narrative, or for populating a scene. While human players would be

ideal, they cannot be controlled in a way that is conducive to the game narrative. For this reason,

non-player characters (NPC) will always be an essential part of video games.

When developing a game, a developer will choose from a wide range of arti�cial intelligence (AI)

techniques to ensure the NPC will behave as realistically as possible, given the requirements and

constraints of the game.

1.1 Arti�cial Intelligence in Games

The application of AI in video games di�ers from most other AI applications such as robotics,

military defence or data mining. The main distinction between video game AI and the traditional

academic de�nition, is their di�ering goals. Contrary to academic AI, video game AI seeks to create

computer controlled agents that provide a challenge, but are ultimately defeated, in an entertaining

manner [31]. The goal of game AI is to have players so immersed in the game world, that they

momentarily forget about the real world [12]. In essence, game AI is the illusion of intelligence on

behalf of NPCs [19]. Despite their usefulness, complex and computational intensive AI should only

be used when its solution serves to further entertain and engage the player.

An NPC is de�ned as a computer controlled character that senses, thinks and acts. The agent

2

continuously loops through a cycle of sensing its environment, evaluating the data gathered, making a

decision (optional learning and remembering) until �nally acting out the selected behaviour. Sensing

could include data gathered from simulated vision, hearing and even inter-agent communications.

The thinking stage requires the agent to evaluate the current knowledge of its environment, and is

usually what is considered true Game AI [31]. The thinking problem is often solved by utilizing

pre-coded expert knowledge, or search algorithms.

Expert knowledge can be transmitted in many ways, including �nite state machines, logical in-

ference and decision trees. It is simple and natural to program, making it an attractive solution.

Developers simply write a series of if-then statements, enabling the agent to make good decisions.

Given that expert knowledge requires many hand crafted rules, they do not typically scale success-

fully to more complex problems. Also, the designed systems are incomplete solutions and require

game testers to uncover unspeci�ed behaviours. When bugs are uncovered, they are patched by

adding more rules, making the system fragile. Only with narrow problem domains is expert knowl-

edge su�cient as a solution [31].

Search algorithms can also be used to address agent thinking, by discovering sequences of steps

that will result in an ideal state, or a complete solution. The most common search technique is

path-�nding, when the agent must decide its next move while considering a �nal destination [31].

When learning must occur, expert knowledge or search techniques are insu�cient. Without learn-

ing or remembering, the agent will never learn from its mistakes, make better decisions over time,

or adapt to a particular player. The majority of existing game AI implementations are limited by

prede�ned decisions and static control systems, which lead to predictable and repetitive behaviours

[42].

Machine learning is a sub-set of AI concerned with creating algorithms that enable the computer

to learn and improve its performance through experience [28]. Learning consists of remembering

speci�c outcomes, and generalizing to unknown situations [31]. It consists of a diverse set of algo-

rithms that provide many di�erent solutions, each suitable for speci�c types of applications. Such

diversity, has advantages and disadvantages. There are often many algorithms that can be used in

a particular situation, creating uncertainty as to the best algorithm for the given task. While care

must be taken in this regard, machine learning techniques are critical in addressing dynamic and

emergent game-play.

Research into machine learning began with perfect knowledge games (Chess, Checkers, Othello...)

with large but �nite state spaces. Perfect information games have been conquered by machine

learning researchers by the end of the 1990s. In 1994, the Checkers World Champion Marion Tinsley,

was defeated by the program Chinook. In 1997, the World Chess Champion Garry Kasparov was

defeated by the program Deep Blue. Finally, the World Othello Champion Takeshi Murakami was

defeated by the program Logistello, in 1997 [14].

3

Most games do not include perfect knowledge and often have hidden states, probabilistic game

play, or even multiple opponents. Games such as Poker and Backgammon were the new target of

machine learning research. The Backgammon program was su�ciently developed and attained good

performance; however Poker still remains a challenge, with current programs incapable of competing

at the world level [14].

Interactive video games included new types of game-play with complex environments, a human

controlled protagonist and computer controlled NPCs. Computer controlled game agents require

realistic behaviour, to immerse the gamer into the game-world. Even though machine learning

techniques are promising, they are not often implemented in commercial video games, requiring

years of experience and in depth knowledge to implement correctly. Most games do not require such

advanced algorithms, as their AI tasks could be completed with less complex techniques, resulting

in similar performance with easier programming, tuning and testability [31].

1.2 Believability

The distinction of believability, related to video game character behaviour, is more accurately de�ned

as the appearance of rational behaviour. While video game literature use the term believability

to de�ne a video game character that appears to act as a human, this in no way indicates that

a believable game agent is the complete solution to the complex problem of human behaviour.

Psychologists would even argue that completely rational behaviour is unbelievable.

The requirements for achieving a believable game agent are extensive and non-trivial, but the

reward in terms of player immersion and satisfaction make this an important problem to solve

[2]. As written in [37], �agents are considered believable when they are viewed by an audience as

endowed with thoughts, desires, and emotions, typical of di�erent personalities�. This de�nition

of believability is not necessarily a de�nition of character but an illusion of life, permitting the

audience's suspension of disbelief. While this idea of believability has long been studied in all types

of arts including literature, theatre, �lms, etc., its di�culty in relation to video games concerns

the required interactivity of a game agent [20]. This level of interactivity requires autonomous and

�exible behaviour that is not de�ned a priori.

With computer games, the NPC and human controlled character appear identical in appearance,

somewhere along the scale between ultra-realistic or highly stylized. Given facial expressions or

body language are not (yet) directly translated from human player to their game world counterpart,

players critique a character's speech and actions when judging if that character is computer or

human controlled. In a �rst person shooter (FPS), NPCs were often very easy to identify, given

they sometimes did not move while being �red upon. Large immersive game worlds are even more

complex than an FPS and require more complex decision making by NPCs.

4

Personality has become a term that is used in everyday conversation, in describing the nature of

a person. It is often the case where a person's actions are said to be consistent with their personality.

Trait personality models propose that certain persistent traits have an in�uence on behaviour. Trait

models use relatively independent personality traits, as dimensions, where any particular personality

can be explained using the personality trait axes [5]. Trait theory shows how large groups of people

are similar, showing the dynamics of personality across people [32].

While personality is said to be �xed, behaviour is often considered to be highly dependent upon

the current situation, making personality traits a poor predictor for human behaviour.

Intra-individual structure of personality occurs when goals and motivations are used to explain

the dynamics of human personality, instead of personality traits [32]. A person can be distinctly

represented through varying motives and motive intensities. Given that an individual's motives and

goals are changing in regards to di�erent situations, they are a better predictor for human behaviour

than traits [35].

In video games, a human player's actions are driven by their motivations, exhibiting cooperative,

competitive or simply chaotic action selections. To determine what a player will do, �nd out their

desires and predict that they will try and satisfy those desires. A desire may include economic,

exploratory, military, etc. Motivation is used to de�ne the urge to perform certain actions based on

internal needs relating to survival and self-su�ciency [7]. To emulate this human realism in NPCs,

motivations would have to drive the learning and reasoning systems.

1.3 Proposed Method

The purpose of this thesis is to create a real-time learning NPC whose personality is de�ned with

motivations. In this way, game developers would be able to develop game characters by directly

referencing the game narrative. The NPC will learn what actions it must take to bene�t its motives,

in real-time.

The theory behind this approach is based on work done by Reiss [35, 34] where motives are the

reason in which a person initiates and performs a voluntary behaviour. Motives are said to a�ect

a person's perception, cognition, emotion and ultimately the resultant behaviours. A person must

have a motive to have performed any particular action even if that person is directly unaware of the

motive.

When the amount of any particular motive is less than desired, the agent will be motivated to

raise the amount of that motive through actions. Similarly, when the amount of motive is much

more than desired, the agent will be forced to take actions that compensate and avoid actions that

would raise the amount of motive even more.

In this thesis, actions are fully de�ned in terms of how they a�ect other objects, agents and

5

places in the game world, including how they in�uence an agent's set of motivations. In this case,

the game developer plays the role of teacher by making complicated actions available to the agents.

1.4 Thesis Outline

In this introductory chapter, the concepts of believable agents were introduced along with the psy-

chological and algorithmic theories behind them. Chapter 2 presents the basic RL theory along

with more recent relevant advances, like planning and hierarchical skill learning. Chapter 3 ex-

plores the psychological theories behind behaviour with a particular highlight on the theories that

inspired this thesis. Chapter 4 explains the use of an agent's motivations as a guide for RL, and

the general testing approach. Results for Game tests follow in Chapters 5 to 9. Each successive

game scenario introduces more complexity in terms of delayed rewards, increased motivations and

inter-agent interactions. After the results are presented, Chapter 10 covers what was learned, and

proposes interesting possibilities for future research.

6

Chapter 2

Reinforcement Learning

2.1 Overview

Reinforcement learning (RL) is a sub-�eld of machine learning, focused on goal directed learning

through trial and error interactions between an agent, and an environment. Though many �avours of

RL algorithms exist, their goals revolve around developing an action-selection policy that maximizes

the reward received across multiple steps. The agent learns from its environment by taking actions,

receiving rewards, and adapting its action-selection policy based on past, present and future rewards.

Value-based approaches attempt to learn the expected value of each state, with the purpose of

arriving at an optimal action-selection policy. More rarely used are the policy search algorithms,

that attempt to search directly in the policy parameter space to �nd the optimal action-selection

policy. Any optimization algorithm can be used for policy search, including genetic algorithms and

simulated annealing. It must be noted that policy search RL techniques do not attempt to learn a

value function.

RL is a very popular learning technique because of its unsupervised nature. One must simply

de�ne the reward function, commence the learning algorithm, and an action-selection policy is re�ned

that will maximize the rewards received over time. While this is the best possible case, the process

is rarely so simple in reality. If the rewards are not clear, the state is not properly represented, or

the learning parameters are wrong for the given task, the learned policy will be sub-optimal.

2.2 Agent-Environment

For RL to learn properly, the environment must be partially or fully observable to the agent. The

actions available to the agent may be low level (e.g. turn right, turn left) or more complex (e.g.

move to speci�c position while avoiding obstacles). If the agent observes perfectly all information in

the environment, then the RL agent chooses an action based upon the true state of the environment.

This ideal state representation is not always possible, but is necessary for the theoretical basis of

7

RL [17].

The goals of an RL agent are de�ned by a reinforcement function. By carefully setting the

necessary positive or negative reinforcements, the goal is outlined to the system in a way that

is understandable and achievable. The reinforcement function de�nes a mapping from state-action

pairs to rewards, thereby determining what action is good in the short-term [40]. RL reward functions

must remain unchanged by the RL system, and instead serve as a basis to change the policy. The

RL system designer is responsible for de�ning the reinforcement function.

Figure 2.1 shows the basics of the agent-environment interaction, where the agent chooses an

action based upon the current state of the environment. This action produces a change in the

environment, either to agents, objects or places. The reinforcement function evaluates the changes

caused by the action, and assigns a reward based upon the agents goals.

Environment

Agent

Agents

Objects

Places
Reinforcement

Function

Reward

Action

State

Figure 2.1: Basic Agent-Environment Interaction in Reinforcement Learning.

2.3 Policy

The policy de�nes how the agent behaves at any given time in the game. It maps the agent's

perceived state of the environment to actions. The policy must be learned if it is to be e�ective.

The reinforcement learning process seeks to discover the optimal policy, given the current goals and

environment [40, 17].

At each step, there is one action that leads to the greatest estimated future cumulative reward,

as determined by the current learned policy. This action is the greedy action, and it is selected

8

if the learning algorithm chooses to exploit the knowledge it currently posses. If an action that is

non-greedy is selected, the algorithm is choosing to explore, potentially obtaining greater knowledge

that can ultimately be used to achieve greater overall reward. It is not possible to both explore and

exploit with one single action selection; proper balance is needed between the two extremes.

The action selection algorithm is the manner in which exploration and exploitation is balanced. A

very simple action selection algorithm would always select the greedy action, focusing on maximizing

the immediate reward, as opposed to exploring inferior actions that could lead to greater reward

[40]. There exist many types of action selection algorithms, the most common are ε − greedy and

Softmax. The ε − greedy method simply chooses an exploratory action with probability ε, and

greedy actions with probability 1 − ε. Softmax action selection weights the probability of taking

an action by its expected value. The Gibbs, or Boltzmann, distribution is used most commonly in

Softmax, choosing an action a on the tth step, with probability

eQt(a)/τ∑
b e
Qt(b)/τ

, (2.1)

where τ is the temperature parameter, and τ ≥ 0.

2.4 Expected Reward

The goal of RL, is to maximize the expected cumulative reward from the current state, until the

end of the game. Formally de�ned, the expected return Rt at time step t is the sequence of rewards

received after t, de�ned as Rt = rt+1 + rt+2 + rt+3 + ...+ rN where N is the last step of the game.

This holds true during games that have a �nal time step.

In the case where the game does not have a set ending, the �nal time step would be T = ∞,

potentially making the expected return itself in�nite. Discounting is needed to determine the present

value of a future reward, for the case of a continuous task with no set ending. The expected return at

time t of a discounted task is de�ned in Equation 2.2, where γ is the discount rate and 0.0 ≤ γ ≤ 1.0

[40].

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1 (2.2)

2.5 Markov Decision Process

The state represents the information about the environment, that is available to the agent at any

time. The state signal can include raw sensory measurements or a complex structural representation.

However, the state signal should not include information about everything. The ideal state signal

should summarize the relative past information in a compact way, where only pertinent information

9

is retained. This idea brings back the de�nition of the Markov property. A state signal is said to

have the Markov property if it succeeds in retaining all relevant information, where the next state

can be completely determined by the current state. If the state signal is non-Markov, it can still be

thought of as an approximation to a Markov state. A task that satis�es the Markov property is said

to be a Markov Decision Process (MDP) [40].

2.6 Value Function

While the reinforcement function gives the agent short-term feedback, the agent must have a way

of considering the long-term consequences of current actions. The value function combines the

short-term rewards with long-term values of future states [40].

Value functions can measure how good it is for an agent to be in a particular state, or more

speci�cally, the value in performing a particular action in a given state. Assuming a MDP, the

value of the state sεS, while following the policy π, denoted V π(s), is the expected return given the

starting state s, and subsequently following π. The state-value function V π(s) is formally de�ned as

V π(s) = Eπ{Rt|st = s}, (2.3)

where Eπ{} is the expected value if the agent follows the policy π at any time step t.

The value of taking an action aεA(s) in the state s, while following the policy π, denoted Qπ(s, a),

is the expected return, given the starting state s, taking the action a, and subsequently following π,

formally de�ned in equation 2.4.

Qπ(s, a) = Eπ{Rt|st = s, at = a} (2.4)

2.7 Temporal-Di�erence

Time is an important consideration for action-selection, given that some actions have no apparent

consequences until some time has passed. This delayed reward makes assigning blame to a particular

action very di�cult. When an undesirable result occurs, is it correct to penalize the most recent

action, or an action that was taken many steps before? Choosing which action to assign the blame

makes reinforcement learning a particularly di�cult task [17].

The solution to this learning problem is a mixture of dynamic programming and Monte Carlo

methods. Dynamic programming (DP) is a collection of algorithms that are used to compute the

optimal policy, given a perfect model of a Markov Decision Process (MDP). Monte Carlo (MC)

methods do not require complete knowledge of the environment, and only require experience (state-

action pairs with their rewards). Temporal di�erence (TD) learning combines the advantages of

10

dynamic programming with the advantages of Monte Carlo methods in an elegant way. TD does

not require a model of the environment's dynamics, but relies on raw experiences for learning. TD

also updates its value estimates based upon other learned estimates, without waiting for the �nal

outcome of the task, similar to DP methods [40].

2.7.1 Policy Evaluation

The policy evaluation or prediction problem is how to estimate the value function V π for a policy π.

TD methods use experience to solve the policy evaluation. For every non terminal state st visited

at time t, V (st) is updated once the return is known. The policy evaluation is formally de�ned as

V (st)← V (st) + α [Rt − V (st)] , (2.5)

where Rt is the return following step t, and α is the constant step-size learning rate. With MC

methods, Rt is only known after the last time step. However, TD methods update their estimate of

V (st) based on another estimate of future values, a method called bootstrapping. The simplest TD

update called TD(1-step), updates V (st) with the estimated value of next state V (st+1), de�ned as

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] , (2.6)

where the return is calculated after the next state is reached. The value Rt can also be calculated

after 2 steps, 3 steps, ..., N-steps, where N is the �nal step. This concept of using multiple steps is

explored more during the discussion of eligibility traces.

2.7.2 On-Policy Control: Sarsa

The control problem, in which the policy is re�ned, can be solved in di�erent ways depending on

the trade-o� between exploration and exploitation.

On-policy control continuously estimates Qπ for the current policy π while also modifying π with

respect to Qπ in a greedy manner. See Figure 2.2.

11

Algorithm 2.1 Pseudo-code for the on-policy TD control algorithm, Sarsa.

Initialize Q(s, a) for all s and a
For each episode

Initialize s
Choose a from s using derived policy (e.g. ε− greedy)
For each step of the episode

Take action a, observe r and s'
Choose next action a′ from s′ using derived policy (e.g. ε− greedy)
Q(s, a)← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)]
s← s′

a← a′

end
end

Figure 2.2: On-policy control methodology for updating Qπ while following the policy π.

The initial state st transitions to the state st+1 by the action at, yielding the reward value rt+1.

Once in the state st+1 the next action at+1 is selected. The update to Q(st, at), after every transition

from a non-terminal state, is de�ned as

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] , (2.7)

where γ is the amount to discount the return and α is the learning rate. The update to Q(st, at)

uses a quintuple of events (st,at, rt+1, st+1,at+1), consisting of every element that makes up the

transition from one state-action pair to the next. This quintuple gives rise to the name Sarsa [40].

Pseudo-code for the Sarsa control algorithm can be seen in Algorithm 2.1.

12

Algorithm 2.2 Pseudo-code for the o�-policy TD control algorithm, Q-Learning.

Initialize Qπ(s, a) for all s and a
For each episode

Initialize s
For each step of the episode

Choose a from s using derived policy from Q (e.g. ε− greedy)
Take action a, observe r and s′

Q(st, at)← Q(st, at) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
s← s′

end
end

2.7.3 O�-Policy Control: Q-Learning

O�-policy TD control (Q-learning), directly estimates the action-value without following the policy.

Q-learning is one of the most important breakthroughs in reinforcement learning as it separates the

action-value function Qπ from the policy π, see Figure 2.3.

Figure 2.3: O�-policy control methodology for updating Qπ without following policy π.

The initial state st transitions to the state st+1 by the action at, yielding the reward value rt+1.

Once in the state st+1 the update to Q(st, at), after every transition from a non-terminal state, is

de�ned as

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(2.8)

where the action with the maximum value is selected as the potential next action a. Pseudo-code

for o�-policy TD control can be seen in Algorithm 2.2 [40]. Note that the action that is used to

update Q(st, at) is not necessarily the next action to be taken as the update may change all value

estimates.

13

2.8 Eligibility Traces

Eligibility traces are used to improve learning time by enabling past actions to bene�t from current

reward, allowing for sequences of actions to be learned. This is particularly important for applications

in which key behaviours are combinations of basic actions. Eligibility traces can modify most TD

methods to produce more generalized and e�cient learning methods [40].

2.8.1 Theoretical Basis

From a theoretical stand-point, eligibility traces bridge the gap between TD methods and Monte

Carlo methods, unifying both concepts. If more than one step is used to calculate the return, TD

methods begin to resemble Monte Carlo methods, that wait until the end of the episode to calculate

the return. Backup diagrams are used to illustrate these concepts, where the large circles are states

and the small circles are rewards. These backup diagrams are used extensively in [40] as a simple and

powerful illustrative tool for understanding RL algorithms. Figure 2.4 shows the backup diagrams

for a range of methods between a simple one-step TD backup, and a full termination backup as used

in Monte Carlo methods. The arrows are added to show when the backup occurs and to what state

the backup applies. The n-step return at time t is de�ned as

R
(n)
t = rt+1 + γrt+2 + . . .+ γn−1rt+n + γnVt(st+n), (2.9)

where the return is truncated after n steps with an added estimate of the value of the nth next state.

Backups can be done with any average of n-step returns, given that the weights on the individual

returns are positive and sum to 1. For example, a complex backup can be done towards a return that

is half of a two-step return and half of a three-step return, given that both halves are positive numbers

that sum to 1. Complex backup diagrams include backup diagrams for each weighted backup, with

a horizontal line above them and the weight fractions below. TD using eligibility traces, TD(λ), can

be thought of as a particular way of averaging n-step backups, seen in Figure 2.5.

TD(1-step) TD(2-step) TD(n-step) Monte Carlo

st

st+1

st

st+1

st

st+1

st+2

st

st+1

... ...

st+2

st+n

...

st+2

st+n

sT

...

Figure 2.4: Backup diagrams of TD methods ranging from one-step backups to the full termination
backups of Monte Carlo methods, where T is the �nal time step in the episode [40].

14

TD(λ)

1-λ ...

(1-λ) λ

(1-λ) λ2

λΤ − t − 1

Figure 2.5: Backup diagrams of TD(λ). When λ = 0, the backup is reduced to TD(1-step) whereas
when λ = 1, the backup becomes the same as Monte Carlo [40].

2.8.2 Algorithmic Implementation

From an algorithmic perspective, eligibility traces keep temporary information about the occurrence

of events, such as visiting a state or performing an action. When a TD error occurs, only the relevant

states are assigned blame or credit. Eligibility traces provide a basic mechanism for further temporal

credit assignment [40].

Eligibility traces require that an additional variable be kept in memory for each state-action

pair. This extra memory does not need to be saved and loaded for reuse. The trace value indicates

how recent the state-action pair was encountered. Rewards can be assigned to past state-action

values according to how recently they were updated. At each step, the trace decays for all previous

state-action pairs, while the trace for the current state-action pair is incremented by 1, see Equation

2.10.

et(s, a) =

et−1(s, a) + 1 if s = st and a = at

γλet−1(s, a) otherwise

for all s, a (2.10)

The variable λ is the trace-decay parameter and γ is the discount parameter [40]. Notice, when

γ = 0, any value for λ will produce the same results. The TD error (δ) is calculated using the

di�erence between the current action value Qt(st, at) and the decayed estimate of the new action

value, Qt(st+1, at+1), and adding the current reward value, see Equation 2.11 [40].

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at). (2.11)

15

Algorithm 2.3 Sarsa with eligibility traces, Sarsa(λ).

Initialize Q(s, a) and e(s, a) for all s and a
For each episode

Initialize s, a
Repeat for each episode

Take action a, observe r and s'
Choose next action a′ from s′ using derived policy (e.g. ε− greedy)
δ ← r + γQ(s′, a′)−Q(s, a)
e(s, a)← e(s, a) + 1
For all s, a

Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

end
s← s′

a← a′

end
end

The updated action value Qt+1(st, at), is calculated by adding the old estimate Qt(st, at) to a fraction

of the error that was calculated in Equation 2.11, see Equation 2.12.

Qt+1(st, at) = Qt(st, at) + αδtet(st, at), for all s and a (2.12)

2.8.3 Sarsa(λ)

The Sarsa algorithm can be extended with eligibility traces, resulting in the algorithm Sarsa(λ), see

Algorithm 2.3 [22, 40]. When function approximation methods are used, the advantages of using

eligibility traces often decrease, and as a result, eligibility traces are mostly used with a tabular

function approximation approach [40].

2.8.4 Q(λ)

There are a few di�erent ways with which to incorporate eligibility traces into the Q-learning al-

gorithm, however only Watkins's method is described below. Because the policy that is learned is

not the policy that is used to select actions, special care is taken when calculating n-step returns.

Pseudo-code for the Q(λ) algorithm can be seen in Algorithm 2.4.

2.9 Generalization

In most of the available literature, RL is applied to problems with small discrete state-spaces. Making

an e�ort to minimize the size of the state space permits the RL algorithm to examine the space

more easily. While this approach is su�cient for most simpler applications, it is too restrictive in

many real-world applications, especially in video game AI.

16

Algorithm 2.4 Pseudo-code for Q-learning with eligibility traces using Watkin's Q(λ) algorithm.

Initialize Q(s, a) and e(s, a) = 0 for all s and a
For each episode

Initialize s, a
Repeat for each episode

Take action a, observe r and s'
Choose a′ from s′ using derived policy from Q (e.g. ε− greedy)
a∗ ← maxbQ(s′, b) (if a′ ties for max, then a∗ ← a′)
δ ← r + γQ(s′, a∗)−Q(s, a)
e(s, a)← e(s, a) + 1
For all s, a

Q(s, a)← Q(s, a) + αδe(s, a)
If a′ = a∗, then e(s, a)← γλe(s, a)

else e(s, a)← 0
end
s← s′

a← a′

end
end

Function approximation is required when extending RL to a high-dimensional state-space. The

information learned by the system must be generalized to other similar states thereby reducing the

amount of information that needs to be collected in order to �nd a near-optimal policy. General-

ization is particularly important for continuous state-spaces as the number of states is realistically

in�nite and the probability of returning to exactly the same state is very small[40].

Luckily, the concept of generalization and function approximation has already been extensively

explored. These function approximation methods use samples of input and output pairs to learn

an approximation of an unknown function. Using function approximation with RL would use value

function updates as the input and output samples needed to train the value function approximation.

The state of the game is represented more compactly with a feature vector that may include con-

tinuous or discrete information. This feature vector is used as the state representation when using

function approximation methods [40].

2.10 Modelling and Planning

Traditionally, reinforcement learning has been solely considered a technique for learning, but more

recently, it is being used in e�ective planning. When using RL for planning, the agent must keep a

model of the environment, to predict how the environment will react to any given action. Given a

state and an action, the model must predict the next state and the next reward.

Planning and learning are very similar; learning uses real experience generated by the environ-

ment, while planning uses simulated experience generated by a model. Online planning introduces

interesting interactions between planning and learning. New interactions with the environment are

17

Environment

Agent

Agents

Objects

Places
Reinforcement

Function

Reward

Action

State

Environment
Model

Update
Model

Simulated
Experience

Figure 2.6: Agent-Environment-Model Interaction in the DynaQ Architecture.

used to alter the model thereby a�ecting the planning.

Planning and learning can be computationally expensive and as a result, computational resources

may need to be divided between them. The most intuitive approach is for planning and learning to

occur in parallel, utilizing shared resources between both processes [40].

The DynaQ method is applied to Watkin's Q(λ) algorithm in Algorithm 2.5, where ssim and

asim are state-action pairs that are randomly selected from previous experience, s′sim and rsim are

the simulated next state and next reward, and a′sim is the simulated next action.

2.11 Hierarchical RL

It is common practice within psychology and neuroscience to explore the applicability of ideas

from a machine learning perspective. Computational reinforcement learning has had a profound and

prolonged impact on the psychological and neuroscience research communities [6]. The initial impact

of RL techniques helped to interpret certain brain activities by providing a similar framework. In

return, advancements in RL-based techniques, particularly the distinction between habitual and

goal-directed behaviours, were motivated by the aforementioned psychological advances.

18

Algorithm 2.5 Pseudo-code for Dyna-Q learning and planning algorithm based on Watkin's Q(λ)
algorithm.

Initialize Q(s, a) and Model(s, a) for all sεS and aεA(s)
For each episode

Initialize s, a
Repeat for each episode

Take action a, observe r and s'
Choose a′ from s′ using derived policy from Q (e.g. ε− greedy)
a∗ ← maxbQ(s′, b) (if a′ ties for max, then a∗ ← a′)
δ ← r + γQ(s′, a∗)−Q(s, a)
e(s, a)← e(s, a) + 1
For all s, a

Q(s, a)← Q(s, a) + αδe(s, a)
If a′ = a∗then e(s, a)← γλe(s, a)

else e(s, a)← 0
end
Model(s, a)← r, s′

for i = 1 to pS
Get random state ssim, and action asim from previous experience
Get s′sim and rsim from Model(ssim, asim)

Q(ssim, asim)← Q(ssim, asim) + α
[
rsim + γmaxa′

sim
Q(s′sim, a

′
sim)−Q(ssim, asim)

]
end
s← s′

a← a′

end
end

The development of RL within computer science focuses on factors that limit its applicability.

In particular, RL methods are unable to cope with large state-action domains, called the scaling

problem. When the space of possible actions or the space of possible states is too large, the RL

system cannot cope [6].

The scaling problem is particularly relevant in interactive video games, with continuous complex

environments. Temporal abstraction is a particular approach to the scaling problem that groups

together interrelated actions as a single higher-level action. New representations are abstracted

across sequences of potentially variable low-level behaviours.

To illustrate the importance and the need for complex sequences of behaviours, imagine the

various actions that might be required when wanting to turn on the TV. One possible sequence of

actions would be to pickup the remote, point the remote towards the TV, and then press the power

button. RL techniques that use temporal abstraction often assume that options can be assembled

into high-level skills in a hierarchical manner. The option for turn on TV might be used to form

the option watch Movie or play XBOX.

RL techniques that use hierarchical temporal abstraction are called hierarchical reinforcement

learning (HRL). HRL addresses the issue of how reusable sets of skills can emerge through learning,

an important topic for behaviour research [6]. This paper follows [41] where sequences of actions are

19

called options. Other HRL paper exists with similar frameworks [29].

2.11.1 Scaling Problem

RL agents learn adaptive policies by trial and error interactions with their environment. As the

state-action space increases, more time is needed to sample all possible actions in all possible states.

The relationship between training time and state-action space size can be de�ned as a positive

acceleration function. As the problem size increases, standard (�at) RL becomes impractical [6, 40].

The state space can be minimized through elimination of irrelevant state distinctions (state ab-

straction). The agent is given a minimal state representation that still holds all required information

needed for learning to occur [40]. State abstraction will not help the scaling problem if there exists

a very large number of actions. HRL solves the scaling problem not through state abstraction, but

through action abstractions. Actions are temporally abstracted and grouped together to form an

option that consists of a sequence of low-level actions or even other options. These options rather

than specifying individual actions to execute, specify a whole policy that should be followed [6].

Figure 2.7: Options replace a series of low-level actions. a) A search tree outlining the task of
searching for a series of actions that result in a favorable state. b) A search tree using options
instead of actions. The task of searching through the search space is simpli�ed when groups of
actions are replaced with an option. [6]

Temporally abstracted actions (options) can alleviate the problems present in the scaling problem,

by introducing structure into the exploration process. Options are used to guide exploration down

partial action paths in the search tree. This potentially allows for earlier discovery of high-value

sequences of actions (traversal). Options e�ectively reduce the size of the search space making the

agent learn optimal policies faster than when using low-level actions. Options also enable the agent

to use past experiences more e�ectively [6].

20

2.11.2 Incorporating Options

An option can be seen as a mini-policy, de�ned by starting conditions, a policy, and a termination

function. The initiation set determines the states in which the option will be available. The policy

determines the closed-loop behaviour to follow, mapping states to actions or even other options. The

termination function determines what set of states will allow the option to terminate. The important

fact, is that options can contain other options, allowing the agent to build complex high-level skills[6].

In a traditional RL policy using Softmax action selection, the actions are weighted depending

on the suitability of performing the action in a certain state. Just like actions, options also have

associated weights. If an option is selected, further actions or options are selected depending on

the current option's policy. The option policy continues to be followed until the option terminates.

Only when the option terminates, is the prediction for the entire option calculated[6].

Option-speci�c policies must �rst be learned, in order to be e�ective. Options are de�ned in

terms of sub-goal states. When the current option being followed reaches its desired sub-goal state,

all actions leading up to the state are reinforced. This reinforcement is di�erent than external

rewards and is therefore attaining a sub-goal results in pseudo-reward. The HRL must maintain

option speci�c value functions that predict the cumulative reward and pseudo-reward that will be

received. Option-speci�c policies are learned just as normal policies are learned. At each step of the

option execution, a prediction error is calculated and used to update the option's value function.

Through repeatedly updating the option's value function, the policy is re�ned to result in behaviour

towards the desired sub-goal [6].

2.11.3 Option Discovery

Options can be thought of as a means to achieve sub-goals. One such sub-goal could be the desire to

leave a room. These options could be perceived through evolutionary methods, whereby the options

are genetically speci�ed and are shaped across generations through natural selection. Some action

sequences in animals, like animal grooming sequences, are possibly genetically speci�ed. These

genetically speci�ed action sequences, act as built-in options. Evolution plays an important role in

building the basis for animal (including human) behaviour [6].

In addition to instinctual behaviours, humans learn more complex behaviour routines through

learning. Options can be formed within a development period in the absence of external goals. The

agent learns from intrinsic rewards that are generated by the occurrence of unexpected salient events.

The unexpected occurrence of salient events while exploring will trigger an e�ort to make the event

reoccur, thus learning options with these events as their sub-goals. This type of sub-goal discovery

can lead to iterative development of hierarchies of skills. Psychology supports this approach, as it

suggests that human behaviour is motivated by either exploration or mastery that is independent

21

of extrinsic goals [6].

According to psychology, unexpected events are only one way to trigger intrinsic rewards. An

individual's social environment can potentially be another source of sub-goals. Humans will spon-

taneously infer goals and sub-goals from watching the behaviour of others. Options can be taught

deliberately by parents or school teachers, or options can be learned indirectly through observation

of behaviour from others. The process of raising a child is done through deliberately transferring

knowledge in the form of useful action sequences. Teaching a child what happens when the light

switch is pressed or showing them how blocks can be stacked one on top of the other [6].

There are typically two types of actions that a human can take, habitual actions that are directly

in�uenced by a given stimuli, or actions that are based on the results of planning. Habits are based

on established stimulus-response links and are learned without a model of the environment relying

on cached action-values. Model-based RL provides the means to look ahead based on an internal

model of the environment that relates actions to their likely results. HRL can be extended with

models whereby each option is associated with an option-model, that indicates the likely outcome,

reward and the amount of time needed to execute the option. With option-models, the agent can look

ahead, enabling the agent to evaluate potential courses of action. The search process can skip-over

large sequences of primitive actions thereby reducing the search tree [6].

With HRL, it is di�cult to recognize overlap between various options such as spreading jam on

toast and spreading icing on a cake. Execution of sub-tasks is very context sensitive, where the

sequence of actions needed is dependent on the initial starting state [6].

2.12 Summary

Reinforcement learning is a useful tool for online agent-learning through interactions with an en-

vironment, including objects, places, and other agents. RL is more useful than ever before, with

temporal credit assignment and temporally abstracted action sequences. With eligibility traces,

credit for current rewards is distributed to previous state-action pairs, updating their values for bet-

ter or worse. HRL allows for sequences of actions to be grouped into options, which they themselves

can be combined into even more complicated options.

With the basics of RL established, the following chapter will explain the psychological aspects

of a human's personality, and what person model most accurately predicts behaviour.

22

Chapter 3

Realistic Agents

Large story driven game genres, such as role playing games, and action-adventure games, consist of

many individual characters that are important to the overall player experience. Game characters

contribute to the player's feeling of being so immersed in the virtual game world that they are

unaware it is arti�cial. These types of game genres would bene�t from the development of realistic

NPCs. Because of the interactivity of video games, a game agent must behave and interact with a

player realistically, without their actions con�icting with their apparent personality. Even if nothing

is explicitly revealed about a game character's personality, or motives, a player builds their own

model of a character through observation. This model drives player's expectations of the NPC's

actions, during game play. While this model will not be wholly accurate, an NPC that con�icts with

too many expectations would result in disbelief on behalf of the player. This type of disbelief is to

be avoided at all costs, because interferes with player immersion.

Many approaches have been taken in the direction of believable game agents. Some techniques

speci�cally target key aspects of believability, including social behaviour [37, 16, 3, 30], personality

traits [5, 32, 9] and even emotional responses [21]. Other works explore perception, focusing on how

the NPC can detect human player intentions [10], and how to project emotion and intention to the

game player [38].

This chapter will cover the basics of personality psychology, and desire theory, along with recent

related advances in reinforcement learning research.

3.1 Personality

The mission behind personality psychology theory, is to use mechanisms to explain a person's thought

patterns, emotions, and behaviours. The most notable problem in personality psychology, is the frag-

mented nature of its many solutions. Integrating the specialized research topics, like developmental,

social, cognitive, and biological, into a unifying understanding of a person, is a particularly di�cult

challenge [13].

23

The historical basis of personality psychology include many di�erent approaches, resulting in

di�erent paradigms like psychoanalytic, trait, behaviourist, and humanistic. Through developments

in these main �elds, other new paradigms were created. The trait and behaviourist paradigms

evolved into social-cognitive and biological approaches. There is also evolutionary psychology, a

completely new paradigm [13].

Regardless of the paradigm followed, in order to empirically study personality, three elements

are key: person, situation, and behaviour [13]. The personality triad is imbalanced, because proper

attention has not been given to the situation variable. While the person variable has been explored

by all the various personality paradigms, the situation variable has not received the same attention

[13]. While this is a problem in real-life situations, it should not be a problem in video games. In

video games, the situation consists of sensory representation of the game world, as it relates to the

agent in question. The problem becomes how to de�ne the person, or in this case, game agent. This

assumes that all pertinent information is available.

All the research into personality dynamics, while diverse, can be grouped roughly into two main

categories. The �rst studies the statistical structure of personality across large groups of people, and

is also called inter-individual personality structure. The second group, intra-individual personality

structure, studies the dynamics of personality within a person, to explain the processing systems

responsible for their personality [32].

3.2 Desire Theory

Voluntary behaviour is in�uenced most heavily by a person's motives. The motives themselves a�ect

a person's perception, cognition, emotion, and behaviour. Motives are said to be either intrinsic,

or extrinsic depending on their purpose. Psychologists have de�ned intrinsic motivation as being

moved to do a particular behaviour, because it is inherently enjoyable. Extrinsic motivation is

de�ned as wanting to do a particular action, because of a speci�cally desired outcome.

Most people have heard of the term �ends vs. the means�, which divides a person's motives based

on the purpose of performing the behaviour [1]. An end motive is when an individual will perform

behaviour for no apparent reason, other than it is what they desire to do. A motive is considered a

means, if it is only needed to full-�ll another end motive. A student may be motivated to get high

grades in order to please their parents. In this example, the motive to get high grades is a means,

and the end motive is to please their parents. A behaviour chain is a series of means that ultimately,

by de�nition, �nishes with an end [34].

There are in�nite ways in which a person can seek to accomplish an end. The number of possible

means is also in�nite, constrained only by the imagination. In contrast to means, ends are �nite

by human nature. The classi�cation of ends is important, given that they reveal an individual's

24

ultimate goals.

The classi�cation of end goals is split into two di�erent perspectives. Multifaceted theory postu-

lates that end goals are unrelated to each other, even genetically distinct with di�erent evolutionary

paths. Unitary theory, in contrast, proposes that end goals can be roughly grouped into a manage-

able number of categories, based on common characteristics [34].

The separation of end goals, into drives and intrinsic motives (IMs), is currently popular with

psychologists. Drive theory de�nes reward as reducing a state of deprivation. When an agent's

hunger drive is in a state of deprivation, food becomes a powerful reward, increasing motivation to

learn actions that produce food. In [18], Hull identi�es four types of drives: hunger, thirst, sex, and

escape from pain. A large disadvantage to drive theory's validity, is the fact that it does not explain

exploration (curiosity), autonomy, and play.

Unitary IM theory is an alternative to drive theory that explains the motives that drive theory

could not. It theorizes that competence is the origin of curiosity, and autonomy. While there may

be a correlation, it is unrealistic to say that if a person has an above average amount of curiosity,

then they must also have an above average autonomy[34].

The multifaceted theory of end goals has been explored by many di�erent angles throughout the

years. Very early on, Aristotle de�ned 12 end motives: con�dence, pleasure, saving, magni�cence,

honour, ambition, patience, sincerity, conversation, social contact, modesty, and righteousness. Evo-

lution may also play an important role in multifaceted theory. Di�erent IMs may originate from

distinct survival needs, embedded in di�erent genes. The need to build nests for survival from

weather or predators, suggests the evolutionary motivation e�cacy. Autonomy being the desire for

freedom, motivates an animal to leave the nest and search for food in a large area[34].

Reiss's theory of 16 basic desires is an important multifaceted model of IM, outlined in Tables 3.2

and 3.1. Studies have shown that the theory can be used to describe religious beliefs [33], athleticism

[36], and lack of scholastic achievement [34]. For example, religious motivation was found to be

motivated by above average honour and family, and below average vengeance and independence.

3.3 Emotion RL

Emotions can in�uence human behaviour by altering our perception of people and events. Beyond

altering perception, the concept of feelings can be used to drive reinforcement learning, towards

quicker learning and better policies. The agent learns behaviours that make it feel good, and avoids

behaviours that make it feel bad. In this context, speci�c goals can lead to a good feeling, to make

the agent want to reach the goal through intrinsically-motivated reward [21].

Following appraisal theory, emotional reactions can be characterized by an evaluation of the stim-

ulus with respect to a number of dimensions, mostly relating to the current goal. These appraisals

25

Hypothesis 1 Each of the basic desires is a trait motive.
Hypothesis 2 The 16 basic desires motivate animals as

well as people (except maybe idealism and acceptance).
Hypothesis 3 The 16 basic desires are considered genetically

distinct with di�erent evolutionary histories.
Hypothesis 4 Satisfying a basic desire produces an intrinsically valued

feeling of joy. Each desire produces a di�erent feeling of joy.
Hypothesis 5 Individuals prioritize each desire di�erently.
Hypothesis 6 Each basic desire is a continuous range between opposite values.
Hypothesis 7 What is motivating are the discrepancies between the amount of

an intrinsic satis�er that is desired and the amount that was
recently experienced.

Hypothesis 8 Basic desires in�uence: attention, cognition, feelings and
behaviour into a coherent action.

Table 3.1: Hypotheses of Reiss's theory of 16 basic desires [34].

Name Motive Intrinsic Feeling

Power Desire to in�uence E�cacy
Curiosity Desire for knowledge Wonder

Independence Desire to be autonomous Freedom
Status Desire for social standing including Self-importance

desire for attention
Social contact Desire for peer companionship Fun

(desire to play)
Vengeance Desire to get even (including Vindication

desire to compete to win)
Honour Desire to obey a traditional moral code Loyalty
Idealism Desire to improve society Compassion

(including altruism and justice)
Physical exercise Desire to exercise muscles Vitality

Romance Desire for sex (including courting) Lust
Family Desire to raise own children Love
Order Desire to organize (including Stability

desire for ritual)
Eating Desire to eat Satiation

Acceptance Desire for approval Self-con�dence
Tranquillity Desire to avoid anxiety, fear Safe, relaxed

Saving Desire to collect, value of frugality Ownership

Table 3.2: Motives in Reiss's Theory of 16 Basic Desires [34].

26

Suddenness Amount that the stimulus is abrupt
or highly intense.

Unpredictability Amount the stimulus could not
have been predicted.

Intrinsic How pleasant the stimulus is,
Pleasantness regardless of the goal?
Relevance How important the stimuli is

compared to the goal?
Causal Agent Stimulus was caused by who?
Causal motive What was the motivation behind

the agent that caused the stimulus?
Outcome Probability Probability of the stimulus actually occurring.
Discrepancy from Compare what was expected,

Expectation to the actual stimulus.
Conduciveness Is the stimulus good, or bad for

the goal? To what extent?
Control Is the stimulus easily in�uenced by anyone?
Power Is the stimulus easily in�uenced

by the agent in question?

Table 3.3: Reduced list of appraisals that categorize emotional reactions.

are described by Scherer [39], but are reduced to a sub-set of appraisals by [21] described in Table

3.3.

Emotions are �eeting and often change in response to new stimuli. In Marinier and Lard's paper

[21], mood is de�ned as a �moving history of emotion�. As appraisals determine an emotion, mood's

value changes incrementally over time towards the most recent emotion. If an agent were to be ruled

by its emotions, its interpretation of a situation would be skewed. Mood provides the emotional

history needed for more levelled interpretations. The combination of mood and emotion is described

as feeling. Though feeling is represented by a set a appraisal values similar to emotion, it can be

measured by a single valenced intensity value that is dependent on conduciveness.

With emotion driven RL, the appraisal process would be considered the critic in a typical RL sys-

tem. The feeling's intensity value is the reward signal for the emotional reinforcement learning agent

[21]. Rules generate the appraisal values by matching patterns in perception and the internal state.

Appraisal values change with the situation, altering the current emotion, mood, and ultimately, the

feeling state of the agent.

This approach to RL has shown to produce improved learning in limited test cases in a maze

type environment [21].

3.4 Motivated RL

Intrinsic motivations allow autonomous organisms to explore their environments without explicit

rewards, promoting play and exploration. These curiosity driven activities favour the development

27

of widespread competence, rather than specialized behaviours. This directly contradicts the purpose

of most machine learning techniques, whose systems are designed to respond to speci�c problems

[8, 4]. General competence can be used to solve a wide range of speci�c problems, making the

approach more versatile than speci�c goal learning.

Despite the wide-spread applicability, and relative power of machine learning techniques, they

are typically only applied to speci�c isolated problems. The type of algorithm must be carefully

chosen, and the parameters must be hand-tuned, to provide the necessary learning capabilities. Also,

e�ective training sets must be constructed, or acquired, to �nd a good solution to the problem.

The solution may lie in a developmental approach, based on cognition, neuroscience, and psy-

chology. An agent would experience a development period, where it learns a set of reusable high-level

skills. This period of development is experienced in humans, when children learn basic skills through

exploration, and playing. These complex skills are later used to overcome larger challenges. What

we learn through intrinsically motivated behaviour is essential to our ability to solve a wide range

of problems [4].

The traditional reinforcement learning technique has been extended with intrinsic motivations

to promote autonomous development of skill hierarchies, called motivated reinforcement learning

(MRL) [25, 23, 26, 27, 24, 4, 8]. MRL uses a motivation function based on interest, to calculate the

reinforcement function. The agent calculates the di�erences, between past and present states, to

compute the reward signal that is responsible for directing learning [25].

The motivation function is not dependent on the domain, instead it is based on the concept

of interest to calculate the intrinsic motivation signal. The skills the agent develops depend on

the environment and its experiences. A single agent model can be applied to di�erent NPCs, with

di�erent agents learning di�erent skills. The skills that are developed over time and can adapt to

changes in the environment [25]. High-level skills are learned during initial competence training,

making speci�c goal learning quicker. To solve speci�c goals, the agent selects from high-level skills,

rather than low-level actions [4].

The motivational pro�les discussed in [27] show how learning sets of skills is a�ected by broad

motivational tendencies for achievement, motivation, and power. During a risk-taking test, power

motivated agents would select goals with high-incentives, whereas achievement motivated agents

would select goals with regards to higher di�culty.

3.5 Social Believability

Humans in general are social animals where our relationships, culture, and values, all play important

roles in how we interact with others. The ways in which social factors in�uence an individual's

thoughts and behaviours are an important part of personality psychology. Work has been done to

28

incorporate the psycho-socially in�uenced behaviour into an NPC, with the goal believability[15, 2,

3].

In work by Bailey et al.[3], a unique role based approach was used for social modeling in addition

to a multi-model approach to personality and emotion. A goal-oriented utility-based planning system

was used with an extension of utility-driven psychosocial behaviour and appraisal theory. The NPC

will encounter an event, appraise it, cope with the consequences, select a goal in response, formulate

a plan, and �nally, select an action. Notice that learning is not a part of this method.

During coping, an NPC must update its internal state in response to the event. In this case,

this adjustment would re�ect the NPC's physical and psychosocial state, which includes mood

and emotional memory. Goal selection is not only based on the NPC's surroundings in the game

world, but also its current social context. The goals themselves are mostly selected from the NPC's

associated roles, which include values, goals, emotional traits, actions, and personality traits.

The results of this approach, are NPCs with personality, emotion and social awareness, capable

of creating engaging and immersive game play for the player [3].

3.6 Summary

In every day life, it comes as a shock when a person acts outside the realm of their personality. Once

the shock subsides, the new information is used to help us re�ne our model of that person. In video

games, if this type of shocking behaviour occurs often, players are puzzled, and often think of these

behaviours as glitches. This type of distraction interrupts the carefully thought out narrative, and

breaks the player's immersion into the game world. To keep action selection believable, the NPCs

must make decisions that are in line with what players expect.

To reliably predict an individual's behaviour, both the situation, and the model of the person,

must be accurate. In video games, the situation is not much of a problem, given that the world is

already entirely represented by the computer. The model of a person, however, is more di�cult.

There are numerous di�erent theories on what a�ects a model of a person, from personality traits,

motivations, evolution, social network, and even biology. An individual's motivations and desires,

likely have the most direct impact on their behaviours.

Emotion and motivated reinforcement learning use psychological principles to improve learning

in a broad sense. Emotions are used to guide the learning process by encouraging the agent to

take actions that make it feel good. Also, the introduction of motivated learning into hierarchical

reinforcement learning helps to solve the problem of automatic option construction (sequences of

actions). This use of motivation or emotion, while loosely in�uencing the action selections, does not

provide speci�c direction for the agent with the purpose of realistic action selection. The goal of

MRL and emotional RL, is for the agent to more quickly learn e�ective policies.

29

In contrast to emotional and motivated RL, the method discussed in this thesis uses intrinsic

motivations to directly guide the reinforcement learning and action selection of the agent with the

express purpose of believability. The focus is not on the e�ciency of the RL method, but on how the

agent's motivations should be incorporated into the situation, guiding the agent's action selection

with believability in mind.

30

Chapter 4

Method

4.1 Overview

This chapter covers the theories behind this approach, and what concessions had to be made during

its implementation.

4.2 Approach

In the literature, a personality triad de�nes a strong relationship between a person, a situation, and

the resulting behaviour. To more easily solve this problem, the relationship is approximated by a

mathematical operation. In the case of action selection policies, behaviour is unknown, and it is

assumed that the parameters de�ning a person are �xed. In this case, the relationship between the

personality triad variables is most accurately de�ned by

Behaviour = person(situation), (4.1)

where the behaviour is the dependent variable, the situation is the independent variable, and person

is a �xed prede�ned function. The person function, includes all necessary information of a person,

and how that person responds to a situation. The problem now becomes a question of function

approximation. What characteristics of a person must be included in the person function, to make

the approximation as close as possible to the true function? Since the person function is not what

is being learned, this problem cannot be solved using function approximation methods.

In real-life situations, the structural representation of a person is very complex. Models for

understanding an individual's personality include traits, motives, and desires. These models can also

depend on psychosocial, evolutionary, or biological factors. In a computer controlled video game,

such complexity may not be required by the performing NPC. Selecting the strongest behaviour

indicator for estimating the person function, allows for a simpler, less computationally intensive

31

approach to realistic agents.

Rather than having motivation drive skill learning as in MRL, this implementation tracks the

state of an agent's motivations, to learn actions that will bene�t an agent's self-interest. The

necessary minimum and maximum desirable motive values remain �xed, representing the person

function. The current desire values are constantly changing, and should therefore be a part of

the situation variable. The implemented system, while drawing inspiration from Reiss's theory of

16 basic desires [35], is not constrained by any particular motivational model. In this way, any

motivation (mean or end) can be created to suit the developers needs.

The actions themselves directly a�ect any number of the agents motivations, and must be specif-

ically de�ned in the action de�nition. The agent will learn to perform actions that bene�t itself,

according to its internal motivation values and thresholds. Each agent will have distinct thresholds

for individual motivations. For example, if an agent's social interaction falls below its minimum

threshold, the agent should learn to choose actions that will increase its social interaction. Con-

versely, if the agent's social interaction value is raised above the maximum threshold, the agent

should seek the opposite, isolation, to return within acceptable limits. Setting di�erent thresholds

for di�erent motivations, and di�erent agents, allows for a unique representation of a person.

4.2.1 Environment

The game world is de�ned through an XML �le that is parsed at the beginning of the game. The

game world is a collection of agents, objects and places. Places contain both agents and objects,

while objects can only contain other objects (fridge contains food). Agents can be de�ned with any

number of motives. All actions are de�ned globally, but an action instance is created for each agent

at the beginning of the game. Actions include the information needed to a�ect changes to objects

(position, ownership, erased, etc.), places (add an agent or object), or agents (position, gaining a

possession, change in motive values, etc.). If an action includes changes to a motive that is not

present in the current agent, the motive changes are ignored. While loading the game world, if the

agent's actions have already been created in a previous game, with no changes to its motives, the

learned action policies are simply loaded from memory.

4.2.2 Motives

A motive consists of a current value, mcurrent, a maximum desired value mmax ≤ 100, and a

minimum desired value mmin ≥ 0 , where mmin < mmax. The minimum and maximum desired

values are also called thresholds, or bounds. A motive value will naturally decay at a linear rate over

time, until an action is taken that increases or decreases the value. See Figure 4.1 for a graphical

representation of a motive.

32

0 100mmin mmax

Figure 4.1: Finite Motive Scale.

4.2.3 Reinforcement Function

The rewards are a means to guide the learning process towards the goals of the developer. With

incorrectly de�ned rewards, the learning system will not reach the desired goal. For this application,

the overall goal is for the agent to have its motive values within threshold, as much as possible. The

goal can be translated into rewards in many ways.

The simplest reinforcement function would assign a reward of +1 when all motives are within

their thresholds, and a reward of −1 otherwise. This reinforcement function does not take into

account the situations in which it is impossible to have all motives within thresholds. Even if it were

always possible to achieve a perfect solution, the learning system must be robust enough to handle

several motives, and actions that have no immediate impact. This simple reinforcement function

would take much too long to train, as there are no guiding rewards aiding the learning process. The

ideal reinforcement function should assign rewards that are weighted according to their importance,

to help the learning process �nd the best possible policy.

For the reinforcement function used in this implementation, the reward r, depends on the distance

between the current motive value, and its nearest threshold value, de�ned by d, see Figure 4.2.

0 100mmin mmaxmcurrent

d
smin smax

Figure 4.2: For a motive m, its current value is mcurrent, maximum threshold is mmax, minimum
threshold is mmin, and the distance between mcurrent, and the nearest threshold is de�ned by d. The
minimum scaling factor is smin = mmax, and the maximum scaling factor is smax = 100−mmax.

For the cases where mmin ≤ mcurrent ≤ mmax, then the distance is d = 0. The distance between

the minimum threshold mmin and 0, is de�ned as smin, and the distance between the maximum

threshold mmax, and 100, is de�ned as smax. The reward associated with the motive m, rm, is

de�ned as

rm =

(d/smin) ∗mR if |mcurrent −mmax| > |mcurrent −mmin|

(d/smax) ∗mR if |mcurrent −mmax| < |mcurrent −mmin|
, (4.2)

33

where mR is the reward scale value. As mcurrent leaves the threshold, d increases, and the negative

reward associated with the motive approaches mR. The value mR is the minimum possible reward

that can be received by the agent, from one motive. The total reward for a state is determined

by a summation of rewards associated with all motives, de�ned in Equation 4.3, where N is the

total number of motives. In this way, every motive has a contribution to the overall reward, and

addressing multiple motives results in greater reward (less negative). Because smin does not have

to be the same as smax, the same d will produce di�erent rm values depending on whether mcurrent

is below mmin, or above mmax.

r =

m=N∑
m=0

rm (4.3)

4.2.4 Function Approximation

Approximating the Q value function is the essence of reinforcement learning. Implementation of

RL in the literature is most often achieved through look-up tables. While using a tabular function

approximation is simple and intuitive to understand, it often does not generalize to unfamiliar

states (particularly with large state spaces) and cannot handle continuous state information. In this

implementation, the state is represented by continuous and discrete variables. ANNs were chosen

to approximate the Q and Model functions, because of their ability to handle both continuous and

discrete input.

There are a separate Q-function and Model-function approximations, for each action. Having

multiple action functions results in a simpler implementation, but it also prevents actions from

bene�ting from experience involving other actions. Every game step, the Q-function is updated

only for the action in question. During the RL algorithm, the value function update Q(s, a) ←

Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)], is an update to the ANN Q-function approximation, using a

value that is estimated using the same Q-function ANN.

Fast Arti�cial Neural Network library (FANN) was used for the implementation of ANNs. The

activation function for the hidden layers and the output layer is sigmoid symmetric, with a span of

−1 < y < 1 for any input. The desired training error for the network is -0.000001, the activation

steepness for hidden neurons and output neurons is 0.5. The learning algorithm used is incremental.

Given that the rewards must be r ≤ 0, the result of the Q function approximation should be

Q(s, a) ≤ 0 for any sεS and aεA(s). If the Q-function ANN approximation is initialized with random

weights, the resulting approximation could be anywhere in the span of −1 < y < 1. For this reason,

when an ANN is �rst created, it is initialized with a training set of 200 random inputs, all with the

desired output of 0. The same initially trained ANN is used for all Q-function action approximations,

enabling all action-value estimates to be identical, before learning begins. If initial action estimates

are very di�erent, more time is needed for the RL system to learn a good policy.

34

Motive 1

Motive 2

Motive M

Place 1

Place 2

Place P

Agent 1

Agent 2

Agent A

Object 1

Object 2

Object O

Contiuous

Discrete

Discrete

Contiuous

Figure 4.3: Features that are used as input into the Q-function approximation ANN, where M is
the number of motives, P is the number of places in the game world, A is the number of agents in
the game world excluding the current agent, and O is the total number of object types.

4.2.5 State Representation

For input to the RL algorithm, the motive values must be transformed into a �oating point value,

that is readable by the ANN function approximation. This mapping will directly a�ect how the

agent will learn its policy. In this case, it was logical to directly map 0 to -1.0 and 100 to 1.0.

If the state of an agent consists only of �oating point motive values, then the agent does not

have knowledge of where it is, what other objects and agents are nearby, and what are the states of

its possessions (does its fridge contain food?). For these reasons, other state variables were added

to include this information.

An additional state variable is added for each possible place in the game world. The variable for

the place in which the agent inhabits is set to 1, and set to 0 otherwise. Also, an additional state

variable is added for every other game agent in the game-world. For example, the state variable

associated with agent1 is set to 1, when agent1 resides in the same place as the current agent, and

set to 0 otherwise.

A �oating point state variable is added for each object that may contain a certain number of

objects, and belongs to the agent in question. The �oating point variable shows the state of the

object, 1 being full, and 0 being empty. The state of the object variable is calculated using the

capacity of the object, and the current number of containing objects. This variable was added for

situations that require knowledge of the fullness of an object. For example, the agent should learn

to go to the grocery store to buy food, when their fridge is empty.

35

4.3 Game Scenarios

For experimental purposes, several di�erent game scenarios were designed to fully explore the po-

tential and shortcomings of this approach. The �rst game, Game one, is a simplistic environment

including only one agent, one motivation, one object, and one place. All actions include immedi-

ate consequences with no delayed rewards. This game is used to demonstrate how easily an agent

can learn the basics. The second game, Game Two, increased the number of motivations, and also

introduces an action (open fridge) that has delayed reward, where the value of opening the fridge

is only found when the food is eaten. This game is used to demonstrate the ability to learn multi-

ple motives, even with delayed rewards. The third game, Game Three, introduced the concept of

inter-agent interaction, where an agent performs an action that a�ects another agent's motivations.

The fourth game, Game Four, introduced an action with a 5-step delayed reward. This game is

used to demonstrate how sequences of actions can be learned. The �fth and �nal game, Game Five,

combined the concepts of inter-agent interaction, 5-step delayed reward, and multiple motive values,

for a comprehensive learning challenge.

4.4 Evaluative Measures

Experimental results of this implementation were carried out in a game world with no graphical

interface, and no user input. Quantitative results are obtained through observing and recording

interactions between singular or multiple computer controlled game agents, in di�erent environments.

In this way, thousands of game variations are tested within minutes, allowing the exploration of

multiple algorithms and parameters.

To fully test this approach would require a fully developed game, with multiple human users, and

computer controlled game agents. A game of the genre role-playing game (RPG), action/adventure/RPG

or even a full massively multiplayer online RPG (MMORPG) would be ideal. While these types of

games would allow for a more complete set of testing data, access to code for these types of games is

limited by the gaming industry. For this reason, a fully functional game would have to be developed

for the purpose of testing and experimentation. Such a large scale game development project takes

years for a team of developers, and therefore is not feasible to produce for the purpose of this thesis.

With the purpose of this work being a more believable game agent, qualitative analysis should

include the degree to which this has been achieved. Since the formation of extensive test groups is

not possible, a hybrid quantitative-qualitative analysis will be done in a variety of di�erent scenarios.

Various signi�cant �nal policies are analyzed in terms of actions sequences, and interactions with

other agents, with a real world perspective.

The ultimate goal of the agent is to stay as close as possible to motivational equilibrium, with

36

all motivations within maximum and minimal thresholds. During a game, a number of statistics are

gathered in regards to each individual game agent. The metric for direct evaluation is the sum of

the rewards received throughout the game. As reward is the parameter with which reinforcement

learning is enforced, this metric allows the most accurate evaluation of the learning capabilities of

this approach. Though maximizing the total reward is the goal of the RL, the secondary purpose

is to have the maximum number of game steps with r = 0 (all motives are within bounds). Both

metrics are recorded as percentages (percent of total reward and percent of steps within bounds)

allowing for direct comparison between two runs with di�erent numbers of game steps.

Random variations in data are expected because of the randomly initialized weights for Q-

function and M-function ANNs. Each repeated test begins with a di�erent set of action value

estimators (ANNs). This random variation is measured using the repeated test runs and graphically

illustrated during the analysis of consistency in each Game scenario.

4.5 Testing Approach

Built into this implementation is the means to use di�erent RL algorithms (Sarsa, Q-learning and

Dyna-Q), with di�erent action selection methods (ε-greedy and Softmax). The various game sce-

narios are tested with di�erent combinations of methods, and various parameter values.

4.5.1 Parameters

With this implementation, there are a large number of parameters and algorithms from which to

choose. Parameter and algorithm choices are outlined in Table 4.1. One of the purposes of the

motivation based RL is to facilitate the development of realistic computer controlled characters. A

set of variables must be found that will perform well in most situations, thereby not complicating

the possible implementation of this method. For this reason, the purpose of extensive testing is to

understand the impact of each variable, on the agent's learning. Given the large number of variables

involved in the testing process, it is impossible to test every variable combination. Instead, an

incremental approach was used to determine what variables produced the best widespread results.

This manner of testing was repeated for each Game scenario, with the understanding that each game

introduces a more complex learning task, potentially requiring certain parameters to be di�erent.

Understanding the parameters needed for each increasingly complex situation, enables the possible

discovery of widespread optimal values.

37

Sarsa Action Selection Reward Learning

ε-greedy Softmax mR αs αe Q(s,a)

εs εe τs τe γ λ Hn η

Q Action Selection Reward Learning

ε-greedy Softmax mR αs αe Q(s, a)

εs εe τs τe γ λ Hn η

Dyna-Q Action Selection Reward Learning Planning

ε-greedy Softmax mR αs αe Q(s, a) pS Model(s, a)

εs εe τs τe γ λ Hn η Hn η

Table 4.1: Spilt up into the di�erent RL algorithms, the table describes what parameters are nec-
essary in each aspect of the system. The parameter mR de�nes the scaling factor of a motive's
individual reward, Hn is an array that de�nes the number of hidden neurons in each hidden layer
of an ANN, pS de�nes the number of planning steps during Dyna-Q, η de�nes the learning rate
of an ANN, λ de�nes the decay-trace value, γ de�nes the discount value, εs de�nes the starting
exploration rate, εe de�nes the ending exploration rate, τs de�nes the starting temperature value,
τe de�nes the ending temperature value, αs de�nes the starting RL learning rate, and �nally, αe
de�nes the ending RL learning rate.

4.5.2 Exploration Rate

The exploration rate is used to balance how often an agent takes exploratory actions, rather than

actions that are known to produce the best results. For video games waiting an extended amount

of time for a policy to converge is not an option. The theoretical optimal exploration rate is of little

use in a real-time application with time constraints. Also, reward functions with delayed rewards

and non-stationary game worlds with constantly evolving characters necessitate more exploration

due to changing or unclear action values. For simple learning tasks, a high exploration rate is not

needed, as the best actions can be discovered rather quickly, with very little exploration. With more

complicated tasks, a higher learning rate would allow for the agent to discover less obvious, but

more bene�cial actions. For this reason, it is also common to start the exploration rate at a higher

value, incrementally decreasing it over time, as the agent learns its environment. Towards the end

of the game, the agent should exploit much more than it explores. A moderate learning rate should

be maintained to allow for the discovery of new solutions in a changing environment. The rate of

exploration needed to learn a particular task is directly related to complexity, in terms of delayed

reward, and number of objectives. For this reason, the degree of exploration needed is expected to

increase as the Game scenarios become more complex.

38

4.5.3 Training and Testing

During training games, exploratory actions are an important part of learning. Without exploration,

the optimal action selection policy might not be found. The current policy is obtained, at any time,

by setting the exploration rate to 0. To clearly illustrate how training time in�uences the learning

process, in some game scenarios, the agent goes through alternating states of training and testing.

The game run TrainN is the N th training game of a particular testing con�guration. The game

run TestN follows the policy obtained through the N th training game run. There are 1000 game

steps in each individual Game run (training or testing). For example, a training game, Train10,

begins with 9000 game steps of training from previous games. The testing runs maintain an RL

learning rate of α = 0, and an exploration rate of ε = 0 for ε-greedy, or τ = 0.00001 for softmax

(τ > 0). While the �nal policies obtained through testing are insightful, they serve little purpose

beyond analyzing the training process. Real agents should maintain a low level exploration rate to

promote the discovery of better policies, given sudden shifts, or changes in the game world.

4.5.4 Discount and Trace-Decay

For each game testing con�guration, a large number of discount and trace-decay combinations are

tested, leading to 26 results, for one game execution (training or testing). The performance of a set

of variables will always include every combination of γ and λ seen in Table 4.2, unless otherwise

speci�ed.

Eligibility Trace λ

Discount γ 0.0 0.1 0.3 0.5 0.7 0.9

0.0 00 - - - - -

0.1 - 11 31 51 71 91

0.3 - 13 33 53 73 93

0.5 - 15 35 55 75 95

0.7 - 17 37 57 77 97

0.9 - 19 39 59 79 99

Table 4.2: Testing combinations for discount and trace-decay values, 26 combinations.

4.5.5 Multiple Motives

With multiple motivations, the percent of total reward may not be the best metric. For example,

given an agent with three motives, the results show an average of 70% of total reward, for a particular

set of testing con�gurations. While this number may appear satisfactory, it indicates the possibility

that one motivation is being ignored entirely, in favour of satisfying the other two motivations.

39

For this reason, both the percent of total reward and the percent of steps in bounds are used in

determining the best possible variable con�gurations.

4.5.6 Graphing Results

The percent of total reward and percent of steps within bounds are graphed using box plots, to

clearly illustrate the distribution of results. In a box plot, the central mark is the median, the edges

of the box are the 25th and 75th percentiles, the whiskers encompass the furthest data points that

are not outliers, and outliers are plotted separately. Raw results may also be plotted using scatter

plots, to show exactly how the results are distributed.

4.5.7 Testing Outline

Testing any particular game is separated by the three main RL algorithms: Sarsa, Q-learning and

Dyna-Q. Testing in some Games is further separated into types of action selection methods, either

Softmax or ε-greedy. In the Table 4.3 below, game testing sections are outlined along with their

associated Chapter sections. See the discussion section of each game for the optimal game policy,

in-depth qualitative analysis of the best and worst policies of the game, and overall lessons learned

for each individual Game.

Game Sarsa Q Learning DynaQ Discussion

ε− greedy Softmax ε− greedy Softmax ε− greedy Softmax

1 5.2 5.3 5.4 5.5

2 6.2 6.3 6.4 6.5

3 7.2 7.3 7.4 7.5

4 8.2 8.4 8.2 8.5 8.6 8.7 8.8

5 9.2 9.3

Table 4.3: Testing outline specifying where to �nd results of speci�c tests.

4.6 Summary

This method incorporates the status of an agent's motivations into the agent's state representation

of the game world. Rewards are given by comparing the change in motivation values, for better or

worst. In this way, reinforcement learning is used to learn an action selection policy that seeks to

satisfy all of the agent's motives.

Experiments were designed to test the impact of each individual parameter associated with RL,

and the ANNs that are used. The goal is to �nd what values give consistently good results, and

40

whether the ideal values change with added game complexity. The following successive Chapters

cover the experimental results of each game scenario.

41

Chapter 5

Game One

Testing begins with a very simple learning scenario. The game world consists of a house that is

occupied by an agent named Tarzan, and an object named food. Every game step, Tarzan has the

option to eat food, or do nothing, with the goal of ultimately satisfying his only motive, hunger. The

action eat food increases Tarzan's hunger motive by 5 units, and takes 1 game step to complete. If

Tarzan decides to do nothing, all motives decay according to a linear decay function. The learning

task for Game One is to develop an action selection policy that knows when it is best to eat, and

when it is best to do nothing.

Testing for Game One will concentrate on determining the impact of the learning parameters,

and comparing the results of di�erent RL methods (Sarsa, Q-learning, and Dyna-Q). Given that

ε-greedy is the most intuitive, and most common, method of managing exploration, it is the only

action selection method used during Game One testing. Softmax action selection is used to guide

exploration to avoid the worst case actions, and will only be tested with more complicated Game

scenarios (Game Four and Game Five).

5.1 Testing Outline

Testing began with Sarsa in Section 5.2, and continued with Q-learning in Section 5.3. Finally,

optimal values found during Q-learning are used as a base for testing Dyna-Q in Section 5.4. The

Section 5.5 discusses parameter signi�cance, qualitative analysis, and addresses the consistency of

the optimal policies. All testing con�gurations in Game One are repeated 5 times to measure

consistency.

5.2 Sarsa

In the following sections, Sarsa is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 5.1.

42

Sub-Section Testing HnQ mR ηQ RL Learning Rate Exploration

5.2.1 ε [100] -0.1 0.7 αs = 0.2 αe = 0.1

5.2.2 α [100] -0.1 0.7 εs = 0.3 εe = 0.1

5.2.3 ηQ [100] -0.1 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

5.2.4 mR [100] 0.99 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

5.2.5 HnQ -0.1 0.99 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

Table 5.1: Outline of �xed variables used in the testing con�gurations for Game One using Sarsa,
and ε-greedy.

5.2.1 Exploration Rate

The testing con�gurations outlined in Table 5.2, show how the starting and ending exploration rates

(εs and εe) impact learning. All other variables are held constant, seen in Table 5.1, to clearly

interpret the results of varying εs and εe. The distributions of results are shown in Figure 5.1, and

discussed in Section 5.5.

Test 1 2 3 4 5

trainN αs 0.2 εs 0.9 0.9 0.9 0.9 0.7

αe 0.1 εe 0.7 0.5 0.3 0.1 0.5

testN αs 0.0 εs 0.0 0.0 0.0 0.0 0.0

αe 0.0 εe 0.0 0.0 0.0 0.0 0.0

Test 6 7 8 9 10

trainN αs 0.2 εs 0.7 0.7 0.5 0.5 0.3

αe 0.1 εe 0.3 0.1 0.3 0.1 0.1

testN αs 0.0 εs 0.0 0.0 0.0 0.0 0.0

αe 0.0 εe 0.0 0.0 0.0 0.0 0.0

Table 5.2: How εs and εe vary for di�erent testing con�gurations in Game One using Sarsa, and
ε-Greedy.

43

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent of reward comparing ε
(Game 1, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10

0

50

100

Percent in bounds comparing ε
(Game 1, egreedy, sarsa, test10)

%

Testing Configurations

Figure 5.1: Comparing the results of varying εs and εe during �nal policy tests, where t-n is the nth

testing con�guration according to Table 5.2. The testing con�gurations are run in Game One using
Sarsa, and ε-greedy.

5.2.2 Reinforcement Learning Rate

The testing con�gurations, outlined in Table 5.3, show how the starting and ending reinforcement

learning rates (αs and αe) impact the learned policies. To clearly interpret the results of varying

αs and αe, all other variables are held constant, seen in Table 5.1. The distributions of results are

shown in Figure 5.2, and discussed in Section 5.5.

Test 1 2 3 4 5 6 7 8 9 10 11

trainN εs 0.3 αs 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3 1.0

εe 0.1 αe 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1 1.0

testN εs 0.0 αs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

εe 0.0 αe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.3: How αs and αe vary for di�erent testing con�gurations in Game One with Sarsa, and
ε-Greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11
0

50

100

Percent of reward comparing α
(Game 1, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11

0

50

100

Percent in bounds comparing α
(Game 1, egreedy, sarsa, test10)

%

Testing Configurations

Figure 5.2: Comparing the results of varying αs and αe during �nal policy tests, where t-n de�nes
the nth testing con�guration according to Table 5.3. The testing con�gurations are run in Game
One using Sarsa, and ε-greedy.

44

5.2.3 Q-Function ANN Learning Rate

A number of testing con�gurations, outlined in Table 5.4, show how the Q-function approximation

ANN learning rate (ηQ) in�uences the learned policies. To clearly interpret the results of varying

ηQ, all other variables are held constant, seen in Table 5.1. The distributions of results are shown

in Figure 5.3, and discussed in Section 5.5.

Test 1 2 3 4 5 6 7 8 9 10

ηQ 0.99 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Table 5.4: How ηQ changes for di�erent testing con�gurations in Game One with Sarsa, and ε-
Greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent of reward comparing η
Q

(Game 1, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10

0

50

100

Percent in bounds comparing η
Q

(Game 1, egreedy, sarsa, test10)

%

Testing Configurations

Figure 5.3: Comparing the results of varying ηQ during �nal policy tests, where t-n is de�ned as the
nth testing con�guration according to Table 5.4. The testing con�gurations are run in Game One
using Sarsa, and ε-greedy.

5.2.4 Individual Motive Reward

A number of testing con�gurations, outlined in Table 5.5, show how the motive reward scaling factor

(mR) in�uences learning. Other key variables are held constant, see Table 5.1, to clearly interpret

the results of varying mR. The distributions of results are shown in Figure 5.4, and discussed in

Section 5.5.

Test 1 2 3 4

mR -1.0 -0.5 -0.1 -0.01

Table 5.5: How mR changes for di�erent testing con�gurations in Game One with Sarsa, ε-Greedy.

45

t−1 t−2 t−3 t−4
0

50

100

Percent of reward comparing mR
(Game 1, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4

0

50

100

Percent in bounds comparing mR
(Game 1, egreedy, sarsa, test10)

%

Testing Configurations

Figure 5.4: Comparing the results of varying mR during �nal policy tests, where t-n de�nes the
nth test according to Table 5.5. The testing con�gurations are run in Game One using Sarsa, and
ε-greedy.

5.2.5 Q-Function Hidden Neurons

A number of testing con�gurations, outlined in Table 5.6, were used to show how the Q-function

approximation ANN's hidden neuron con�guration (HnQ) in�uences learning. Other key variables

are held constant, see Table 5.1, to clearly interpret the results of varying HnQ. The distributions

of results for the percent of reward, and the percent of steps in bounds, are shown in Figure 5.5,

and discussed in Section 5.5.

Test 1 2 3 4

Hn [3] [10] [50] [100]

Test 5 6 7 8

Hn [3 3] [10 10] [50 50] [100 100]

Test 9 10 11 12

Hn [3 3 3] [10 10 10] [50 50 50] [100 100 100]

Table 5.6: How HnQ is changed for di�erent testing con�gurations in Game One with Sarsa, and
ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11t−12
0

50

100

Percent of reward comparing Hn
Q

(Game 1, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11t−12

0

50

100

Percent in bounds comparing Hn
Q

(Game 1, egreedy, sarsa, test10)

%

Testing Configurations

Figure 5.5: Comparing the results of varying HnQ during �nal policy tests, where t-n de�nes the
nth test according to Table 5.6. The testing con�gurations are run in Game One using Sarsa, and
ε-greedy.

46

5.3 Q-Learning

In the following sections, Q-learning is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 5.7.

Sub-Section Testing HnQ mR ηQ RL rate Exploration

5.3.1 ε [100] -0.1 0.7 αs = 0.2 αe = 0.1

5.3.2 α [100] -0.1 0.7 εs = 0.3 εe = 0.1

5.3.3 ηQ [100] -0.1 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

5.3.4 mR [100] 0.99 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

5.3.5 HnQ -0.1 0.99 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

Table 5.7: Outline of �xed variables used in the testing con�gurations for Game One using Q-
learning, and ε-greedy.

5.3.1 Exploration Rate

A number of testing con�gurations, outlined in Table 5.7, show how the starting and ending explo-

ration rates (εs and εe) impact learning. All other variables are held constant, seen in Table 5.7, to

clearly interpret the results of varying εs and εe. The distributions of results are shown in Figure

5.6, and discussed in Section 5.5.

Test 1 2 3 4 5

trainN αs 0.2 εs 0.9 0.9 0.9 0.9 0.7

αe 0.1 εe 0.7 0.5 0.3 0.1 0.5

testN αs 0.0 εs 0.0 0.0 0.0 0.0 0.0

αe 0.0 εe 0.0 0.0 0.0 0.0 0.0

Test 6 7 8 9 10

trainN αs 0.2 εs 0.7 0.7 0.5 0.5 0.3

αe 0.1 εe 0.3 0.1 0.3 0.1 0.1

testN αs 0.0 εs 0.0 0.0 0.0 0.0 0.0

αe 0.0 εe 0.0 0.0 0.0 0.0 0.0

Table 5.8: How εs and εe vary for di�erent testing con�gurations in Game One using Q-learning,
and ε-Greedy.

47

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent of reward comparing ε
(Game 1, egreedy, Q−learning, test10)

%
Testing Configurations

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent in bounds comparing ε
(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 5.6: Comparing the results of varying εs and εe during �nal policy tests, where t-n is the nth

testing con�guration according to Table 5.8. The testing con�gurations are run in Game One using
Q-learning, and ε-greedy.

5.3.2 Reinforcement Learning Rate

The testing con�gurations, outlined in Table 5.9, show how the starting and ending reinforcement

learning rates (αs and αe) impact the learned policies. To clearly interpret the results of varying

αs and αe, all other variables are held constant, seen in Table 5.7. The distributions of results are

shown in Figure 5.7, and discussed in Section 5.5.

Test 1 2 3 4 5 6

trainN εs 0.3 αs 0.9 0.9 0.9 0.9 0.7 0.7

εe 0.1 αe 0.7 0.5 0.3 0.1 0.5 0.3

testN εs 0.0 αs 0.0 0.0 0.0 0.0 0.0 0.0

εe 0.0 αe 0.0 0.0 0.0 0.0 0.0 0.0

Test 7 8 9 10 11

trainN εs 0.3 αs 0.7 0.5 0.5 0.3 1.0

εe 0.1 αe 0.1 0.3 0.1 0.1 1.0

testN εs 0.0 αs 0.0 0.0 0.0 0.0 0.0

εe 0.0 αe 0.0 0.0 0.0 0.0 0.0

Table 5.9: How αs and αe vary for di�erent testing con�gurations in Game One with Q-learning,
and ε-Greedy.

5.3.3 Q-Function ANN Learning Rate

The testing con�gurations outlined in Table 5.10, show how the Q-function approximation ANN

learning rate (ηQ) in�uences the learned policies. To clearly interpret the results of varying ηQ, all

other variables are held constant, seen in Table 5.7. The distributions of results are shown in Figure

5.8, and discussed in Section 5.5.

48

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11
0

50

100

Percent of reward comparing α
(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11

0

50

100

Percent in bounds comparing α
(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 5.7: Comparing the results of varying αs and αe, where t-n de�nes the nth test according to
Table 5.9, consisting only of the �nal policies reached by each parameter con�guration (130 results).
The agent follows the policy with absolutely no exploration. The testing con�gurations are run in
Game Two using Q-learning, and ε-greedy.

Test 1 2 3 4 5 6 7 8 9 10

ηQ 0.99 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Table 5.10: How ηQ changes for di�erent testing con�gurations in Game One with Q-learning, and
ε-Greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent of reward comparing η
Q

(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10

0

50

100

Percent in bounds comparing η
Q

(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 5.8: Comparing the results of varying ηQ during �nal policy tests, where t-n is de�ned as the
nth testing con�guration according to Table 5.10. The testing con�gurations are run in Game One
using Q-learning, and ε-greedy.

5.3.4 Individual Motive Reward

The number of testing con�gurations outlined in Table 5.11, show how the motive reward scaling

factor (mR) in�uences learning. Other key variables are held constant, see Table 5.7, to clearly

interpret the results of varying mR. The distributions of results are shown in Figure 5.9, and

discussed in Section 5.5.

Test 1 2 3 4

mR -1.0 -0.5 -0.1 -0.01

Table 5.11: How mR changes for di�erent testing con�gurations in Game One with Q-learning,
ε-Greedy.

49

t−1 t−2 t−3 t−4
0

50

100

Percent of reward comparing mR
(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4

0

50

100

Percent in bounds comparing mR
(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 5.9: Comparing the results of varying mR during �nal policy tests, where t-n de�nes the nth

test according to Table 5.11. The testing con�gurations are run in Game One using Q-learning, and
ε-greedy.

5.3.5 Q-Function Hidden Neurons

The testing con�gurations outlined in Table 5.12, are used to show how the Q-function approxima-

tion ANN's hidden neuron con�guration (HnQ) in�uences learning. Other key variables are held

constant, see Table 5.7, to clearly interpret the results of varying HnQ. The distributions of results

for the percent of reward, and the percent of steps in bounds, are shown in Figure 5.10, and discussed

in Section 5.5.

Test 1 2 3 4

Hn [3] [10] [50] [100]

Test 5 6 7 8

Hn [3 3] [10 10] [50 50] [100 100]

Test 9 10 11 12

Hn [3 3 3] [10 10 10] [50 50 50] [100 100 100]

Table 5.12: How HnQ is changed for di�erent testing con�gurations in Game One with Q-learning,
and ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9t−10t−11t−12
0

50

100

Percent of reward comparing Hn
Q

(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9t−10t−11t−12

0

50

100

Percent in bounds comparing Hn
Q

(Game 1, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 5.10: Comparing the results of varying HnQ during �nal policy tests, where t-n de�nes the
nth test according to Table 5.12. The testing con�gurations are run in Game One using Q-learning,
and ε-greedy.

50

5.4 Dyna-Q

In the following sections, Dyna-Q is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 5.13.

Sub-Section Test HnQ ηQ mR RL rate Exploration HnM ηM pS

5.4.1 HnM [50] 0.4 -0.1 αs = 0.7 αe = 0.1 εs = 0.3 εe = 0.1 0.4 3

5.4.2 ηM [50] 0.4 -0.1 αs = 0.7 αe = 0.1 εs = 0.3 εe = 0.1 [3] 3

5.4.3 pS [50] 0.4 -0.1 αs = 0.7 αe = 0.1 εs = 0.3 εe = 0.1 [3] 0.4

Table 5.13: Outline of �xed variables used in the testing con�gurations for Game One using Dyna-Q,
and ε-greedy.

5.4.1 Model-Function Hidden Neurons

A number of testing con�gurations, outlined in Table 5.14, were used to show how the Model-

function approximation ANN's hidden neuron con�guration (HnM) in�uences learning. Other key

variables are held constant, see Table 5.13. The distributions of results are shown in Figure 5.11,

and discussed in Section 5.5.

Tests 1 2 3 4

Hn [3] [10] [50] [100]

Tests 5 6 7 8

Hn [3 3] [10 10] [50 50] [100 100]

Tests 9 10 11 12

Hn [3 3 3] [10 10 10] [50 50 50] [100 100 100]

Table 5.14: How HnM is changed for di�erent testing con�gurations in Game One with Dyna-Q,
and ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9t−10t−11t−12
0

50

100

Percent of reward comparing Hn
M

(Game 1, egreedy, Dyna−Q, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9t−10t−11t−12

0

50

100

Percent in bounds comparing Hn
M

(Game 1, egreedy, Dyna−Q, test10)

%

Testing Configurations

Figure 5.11: Comparing the results of varying HnM during �nal policy tests, where t-n de�nes the
nth test according to Table 5.14. The testing con�gurations are run in Game One using Dyna-Q,
and ε-greedy.

51

5.4.2 Model-Function Learning Rate

A number of testing con�gurations, outlined in Table 5.15, show how the Model-function approxi-

mation ANN learning rate (ηM) in�uences the learned policies. To clearly interpret the results of

varying ηM , all other variables are held constant, seen in Table 5.13. The distributions of results are

shown in Figure 5.12, and discussed in Section 5.5.

Test 1 2 3 4 5 6 7 8 9 10

ηM 0.99 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Table 5.15: How ηM changes for di�erent testing con�gurations in Game One with Dyna-Q, and
ε-Greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent of reward comparing η
M

(Game 1, egreedy, Dyna−Q, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10

0

50

100

Percent in bounds comparing η
M

(Game 1, egreedy, Dyna−Q, test10)

%

Testing Configurations

Figure 5.12: Comparing the results of varying ηM during �nal policy tests, where t-n is de�ned as
the nth testing con�guration according to Table 5.15. The testing con�gurations are run in Game
One using Dyna-Q, and ε-greedy.

5.4.3 Dyna-Q Planning Steps

A number of testing con�gurations, outlined in Table 5.16, show how the number of planning steps

(pS) in�uences the learned policies. To clearly interpret the results of varying pS, all other variables

are held constant, seen in Table 5.13. The distributions of results are shown in Figure 5.13, and

discussed in Section 5.5.

Test 1 2 3 4

pS 10 20 50 100

Table 5.16: How pS changes for di�erent testing con�gurations in Game One with Dyna-Q, and
ε-Greedy.

52

t−1 t−2 t−3 t−4
0

50

100

Percent of reward comparing pS
(Game 1, egreedy, Dyna−Q, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4

0

50

100

Percent in bounds comparing pS
(Game 1, egreedy, Dyna−Q, test10)

%

Testing Configurations

Figure 5.13: Comparing the results of varying pS during �nal policy tests, where t-n is de�ned as
the nth testing con�guration according to Table 5.16. The testing con�gurations are run in Game
One using Dyna-Q, and ε-greedy.

5.5 Discussion

In the real-world implementation of desire driven reinforcement learning, the developer should not

worry about setting a large number of variables. This section evaluates the most signi�cant variables

that are important for the overall performance of this method.

5.5.1 Parameters

Exploration Rate The exploration rate needed for this simple game scenario was expected to

be low. Results for Sarsa (Figure 5.1), and Q-learning (Figure 5.6), show the the best policies were

learned when the exploration rate was reduced to 0.1 over time.

Reinforcement Learning Rate The RL learning rate (α) does not show signi�cant di�erence

in results, given nearly equal median percent of total reward for Sarsa (Figure 5.2), and Q-learning

(Figure 5.7).

Q-Function ANN Learning Rate The Q-function ANN learning rate (ηQ) has the most impact

on training time, given it controls how quickly the Q-function is approximated. The results show no

signi�cant di�erence in percent of total reward for the �nal testing game, for Sarsa (Figure 5.3), or

Q-learning (Figure 5.8).

Motive Reward Factor The motive reward scaling factor (mR), is the minimum reward that

can be associated with one of the agent's motives, at any time step in the Game. The variable mR

directly in�uences the magnitude of the rewards throughout a game. The results for Sarsa (Figure

5.4), and Q-learning (Figure 5.9) show that best results occur when mR = −0.1. However, in this

case, Q-learning shows better results than Sarsa when mR = −0.5, and mR = −0.01.

53

Q-Function ANN Hidden Neurons The hidden neuron con�guration for the Q-function ANN

should re�ect the complexity of the function being approximated. Results from Sarsa (Figure 5.5),

and Q-learning (Figure 5.10), show that this simple game scenario requires very little hidden neurons

to achieve a good policy. The test t-2 with Hn = [10] has one hidden neuron layer, and 10 hidden

neurons, but still results in close to 100% of total rewards received for the �nal learned policy.

Adding additional hidden layers increases the complexity with no added bene�ts. Adding additional

hidden layers has a detrimental e�ect on the results when the number of neurons in those hidden

layers is small.

Model-Function ANN Hidden Neurons The complexity of the game world has a direct impact

on the complexity needed for the model-function. Results from testing HnM show the simplicity

of this game scenario, given that only 3 hidden neurons are needed to achieve a good model of the

environment, seen in Figure 5.11. The results also show how a large number of hidden neurons, and

hidden layers, have a detrimental impact on the Model-function approximation.

Model-Function ANN Learning Rate The learning rate of the Model-function approximation,

has a direct impact on the quality of the approximation. If the learning rate is too high, the ANN

will not be able to accurately represent the true model of the environment. However, if the learning

rate is too low, the ANN will need more time to learn the model-function approximation. The Figure

5.12 shows the results of varying ηM , with lower values showing slightly better results given this

simple learning task.

Dyna-Q Planning Steps With an accurate model of the game world, increasing the number of

planning steps directly increases the speed at which the optimal policy is learned. If the model

of the game world is inaccurate, increasing the number of planning steps will negatively a�ect the

performance of the agent. Results from testing pS, seen in Figure 5.17, show that even with pS = 50

the performance is near perfect.

5.5.2 Consistency

Testing the consistency of the results involves repeating tests under identical conditions, and com-

paring the results. In this case, the values in Table 5.17 are used in 10 separate game tests, with

results in Figure 5.14. The resulting policies have equal medians in both percent of total rewards

and percent of steps in bounds, con�rming consistency.

54

HnQ ηQ mR RL Rate Exploration Rate HnM ηM pS

[50] 0.4 -0.1 αs = 0.7 αe = 0.1 εs = 0.3 εe = 0.1 [50] 0.2 50

Table 5.17: Outline of the variables used to test the consistency of Game One's optimal policy, using
Dyna-Q and ε-greedy.

Figure 5.14: Compare the consistency of the �nal Game One policies learned by the RL agent from
ten repeated tests, where t-n de�nes the nth repeated test.

5.5.3 Training Time of Optimal Policy

The rate at which the policy is learned should be as high as possible, without compromising the end

result. Some variables may produce better policies given a shorter training time, however, slower

training in most cases will produce better results when given longer training periods. In the case of

this Game One scenario, the model-function accurately models the game world, resulting in quicker

training time given more planning steps, see Figure 5.16. The model function ANN more accurately

models the game world when its learning rate is lower, see Figure 5.15.

0

50

100

1 2 3 4 5 6 7 8 9 10
Run Number

Percent of reward, training time in Game 1
(η

M
=0.99, egreedy, dynaq, testing)

%

0

50

100

1 2 3 4 5 6 7 8 9 10
Run Number

Percent of reward, training time in Game 1
(η

M
=0.1, egreedy, dynaq, testing)

%

Figure 5.15: Showing the percent of reward received after every game (1000 game steps), comparing
two contrasting values of ηM .

55

0

50

100

1 2 3 4 5 6 7 8 9 10
Run Number

Percent of reward, training time in Game 1
(pS=3, egreedy, dynaq, testing)

%

0

50

100

1 2 3 4 5 6 7 8 9 10
Run Number

Percent of reward, training time in Game 1
(pS=50, egreedy, dynaq, testing)

%

Figure 5.16: Showing the percent of reward received after every game (1000 game steps), comparing
two contrasting values of pS .

5.5.4 Qualitative Analysis

A policy dictates to the agent what action to take, given any situation in the game. The optimal

policy was found using quantitative methods, where the percent of reward, and the percent of steps in

bounds, were used to evaluate the performance of a policy. Quantitative analysis does not examine

impact of the learned sequences of states, and actions. For this reason, a policy should also be

evaluated through actions, rather than percentages. Qualitative analysis of the optimal policy, seen

in Figure 5.17a, shows how the agent's motives are satis�ed according to actions, and the resulting

motive values. The Figure 5.17b shows an example of the action selections taken by an in-optimal

policy. Both policies were found using the parameters in Table 5.17. The in-optimal policy in

Figure 5.17b is within the minimum and maximum bounds for only 1% (10 steps) of the game.

Eating begins too late, at step 23, making the food motive value closer to the minimum bounds, but

never within the desired range. Given that 98.6% of the policies learned during consistency testing

had 100% of steps in bounds, the in-optimal policies are most likely caused by an undesirable initial

ANN.

5 10 15 20 25 30

60

70

80

Time Steps

M
ot

iv
e

V
al

ue

Qualitative Analysis of
Best Policy

↓ ↓ ↓ ↓ ↓

Eat Eat Eat Eat Eat

(a) Best policy found by the set of param-

eters in Table 5.17 with 100% of steps in

bounds.

5 10 15 20 25 30

50

60

70

80

Time Steps

M
ot

iv
e

V
al

ue

Qualitative Analysis of
Worst Policy

↓ ↓
Eat Eat

(b) Worst policy found by the set of

parameters in Table 5.17 with only 1%

of steps in bounds.

Figure 5.17: Qualitative analysis of best and worst policies found by the set of parameters in Table
5.17.

56

5.6 Summary

Game One is a simple scenario that is easily learned by a wide range of parameters, given mini-

mal training time. The observations made about signi�cant parameter values are for this scenario

alone. Further testing in the following Chapters will determine if those observations are true for all

game complexities. The next Chapter introduces Game two, with an increased complexity through

additional actions, and multiple motivations.

57

Chapter 6

Game Two

The second game world adds complexity through multiple objects, three motives, and actions with

delayed reward. The agent Tarzan resides in his house, with a TV, a treadmill, and a fridge. The

fridge contains one healthy food and one greasy food. The fridge must be opened before the food

becomes accessible. Tarzan's motives include hunger, health, and entertainment. A detailed outline

of objects, and their associated actions, can be seen in Table 6.1. The purpose of this game is to learn

combination actions, such as open the fridge to eat food, while trying to satisfy multiple motives.

Testing for Game Two is done the same way as Game One. The goal of testing is to determine the

impact of the learning parameters, while also comparing the results between di�erent RL methods

(Sarsa, Q-learning, and Dyna-Q), using the ε− greedy action selection method.

Object Action
A�ects

Hunger Healthy Entertainment More Objects

Healthy food Eat +15 +5

Greasy food Eat +10 -5

Fridge Open Access food

Treadmill Go to -5 +30

TV Go to -5 +20

Table 6.1: Description of Tarzan's actions and their resulting impact on the game world.

6.1 Testing Outline

Testing began with Sarsa in Section 6.2, and proceeded with Q-learning in Section 6.3. Finally,

optimal values found during Q-learning are used as a base for testing Dyna-Q in Section 6.4. The

Section 6.5 discusses the parameter signi�cance with respect to Game One, qualitative analysis, and

explores the consistency of the optimal results. All testing con�gurations in Game Two are repeated

5 times to measure consistency.

58

6.2 Sarsa

In the following sections, Sarsa is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 6.2.

Sub-Section Testing HnQ mR ηQ RL Learning Rate Exploration

6.2.1 ε [10] -0.1 0.4 αs = 0.7 αe = 0.3

6.2.2 α [10] -0.1 0.4 εs = 0.3 εe = 0.1

6.2.3 ηQ [10] -0.1 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

6.2.4 mR [10] 0.9 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

6.2.5 HnQ -0.1 0.9 αs = 1.0 αe = 1.0 εs = 0.3 εe = 0.1

Table 6.2: Outline of �xed variables used in the testing con�gurations for Game Two using Sarsa,
and ε-greedy.

6.2.1 Exploration Rate

To show the impact of the exploration rate (εs and εe) on the results, a number variable con�gu-

rations were tested, see Table 6.3. Other necessary variables are held constant, seen in Table 6.2,

to highlight the results of varying εs and εe. The results are shown in Figure 6.1, and discussed in

Section 6.5.

Test 1 2 3 4 5 6 7 8 9 10

trainN αs 0.2 εs 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

αe 0.1 εe 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1

testN αs 0.0 εs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

αe 0.0 εe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.3: How εs and εe vary for di�erent testing con�gurations in Game Two using Sarsa, and
ε-Greedy .

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent of reward comparing ε
(Game 2, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10

0

50

100

Percent in bounds comparing ε
(Game 2, egreedy, sarsa, test10)

%

Testing Configurations

Figure 6.1: Comparing the results of varying εs and εe during �nal policy tests, where t-n is the nth

testing con�guration according to Table 6.3. These Game Two testing con�gurations are run using
Sarsa, and ε-greedy.

59

6.2.2 Reinforcement Learning Rate

The testing con�gurations, outlined in Table 6.4, show how the starting and ending reinforcement

learning rates (αs and αe) impact the learned policies. To clearly interpret the results of varying

αs and αe, all other variables are held constant, seen in Table 6.2. The distributions of results are

shown in Figure 6.2, and discussed in Section 6.5.

Test 1 2 3 4 5 6 7 8 9 10 11

trainN εs 0.3 αs 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3 1.0

εe 0.1 αe 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1 1.0

testN εs 0.0 αs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

εe 0.0 αe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.4: Outlines how the starting and ending learning values (αs and αe) vary for training games
(trainN) as well as testing games (testN), in Game Two with Sarsa and ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11
0

50

100

Percent of reward comparing α
(Game 2, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11

0

50

100

Percent in bounds comparing α
(Game 2, egreedy, sarsa, test10)

%

Testing Configurations

Figure 6.2: Comparing the results of varying αs, and αe, where t-n de�nes the nth test according
to Table 6.4, consisting only of (test10), the �nal policy reached by each parameter con�guration
(130 results). The agent follows the policy with no exploration, and no learning. The testing
con�gurations are run in Game Two using Sarsa, and ε-greedy

6.2.3 Q-Function Learning Rate

A number of testing con�gurations, outlined in Table 6.5, show how the Q-function ANN learning

rate (ηQ) in�uences the learned policies. To clearly interpret the results of varying ηQ, all other

variables are held constant, seen in Table 6.2. The distributions of results are shown in Figure 6.3,

and discussed in Section 6.5.

Test 1 2 3 4 5 6 7 8 9 10

ηQ 0.99 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Table 6.5: How ηQ changes for di�erent testing con�gurations in Game Two with Sarsa, and ε-
Greedy.

60

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent of reward comparing η
Q

(Game 2, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10

0

50

100

Percent in bounds comparing η
Q

(Game 2, egreedy, sarsa, test10)

%

Testing Configurations

Figure 6.3: Comparing the results of varying ηQ, where t-n de�nes the nth test according to Table
6.5, consisting of the �nal policies reached by each parameter con�guration (130 results). The agent
follows the policy with no exploration and no learning. The testing con�gurations are run in Game
Two using Sarsa, and ε-greedy.

6.2.4 Individual Motive Reward

A number of testing con�gurations, outlined in Table 6.6, show how the motive reward scaling factor

(mR) in�uences learning. Other key variables are held constant, see Table 6.2 , to clearly interpret

the results of varying mR. The distributions of results are shown in Figure 6.4, and discussed in

Section 6.5.

Test 1 2 3 4

mR -0.2 -0.1 -0.05 -0.01

Table 6.6: How mR changes for di�erent testing con�gurations in Game Two with Sarsa, and ε-
Greedy.

t−1 t−2 t−3 t−4
0

50

100

Percent of reward comparing mR
(Game 2, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4

0

50

100

Percent in bounds comparing mR
(Game 2, egreedy, sarsa, test10)

%

Testing Configurations

Figure 6.4: Comparing the results of varying mR, where t-n de�nes the nth test according to Table
6.6, consisting only of the �nal policies reached by each parameter con�guration (130 results). The
agent follows the policy with no exploration and no learning. The testing con�gurations are run in
Game Two using Sarsa, and ε-greedy.

61

6.2.5 Q-Function Hidden Neurons

To show the impact of the Q-function ANN hidden neuron con�guration rate (HnQ) on the results,

a number variable con�gurations were tested, see Table 6.7. Other necessary variables are held

constant, seen in Table 6.2, to highlight the impact of varying HnQ. The results are shown in

Figure 6.5, and discussed in Section 6.5.

Test 1 2 3 4

Hn [3] [10] [50] [100]

Test 5 6 7 8

Hn [3 3] [10 10] [50 50] [100 100]

Test 9 10 11 12

Hn [3 3 3] [10 10 10] [50 50 50] [100 100 100]

Table 6.7: How HnQ is changed for di�erent testing con�gurations in Game Two with Sarsa, and
ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9t−10t−11t−12
0

50

100

Percent of reward comparing Hn
Q

(Game 2, egreedy, sarsa, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9t−10t−11t−12

0

50

100

Percent in bounds comparing Hn
Q

(Game 2, egreedy, sarsa, test10)

%

Testing Configurations

Figure 6.5: Comparing the results of varying HnQ during �nal policy tests, where t-n de�nes the
nth test according to Table 6.7. The testing con�gurations are run in Game One using Sarsa, and
ε-greedy.

6.3 Q-Learning

In the following sections, Q-learning is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 6.8.

62

Sub-Section Testing HnQ mR ηQ RL rate Exploration

6.3.1 ε [50] -0.1 0.5 αs = 0.9 αe = 0.7

6.3.2 α [50] -0.1 0.5 εs = 0.5 εe = 0.1

6.3.3 ηQ [50] -0.1 αs = 0.9 αe = 0.5 εs = 0.5 εe = 0.1

6.3.4 mR [50] 0.7 αs = 0.9 αe = 0.5 εs = 0.5 εe = 0.1

6.3.5 HnQ -0.1 0.7 αs = 0.9 αe = 0.5 εs = 0.5 εe = 0.1

Table 6.8: Outline of �xed variables used in the testing con�gurations for Game Two using Q-
learning, and ε-greedy.

6.3.1 Exploration Rate

A number of testing con�gurations, outlined in Table 6.9, show how the starting and ending explo-

ration rates (εs and εe) impact learning. All other variables are held constant, seen in Table 6.2, to

clearly interpret the results of varying εs and εe. The results are shown in Figure 6.6, and discussed

in Section 6.5.

Test 1 2 3 4 5 6 7 8 9 10

trainN αs 0.2 εs 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

αe 0.1 εe 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1

Table 6.9: Outlines how εs and εe vary for di�erent testing con�gurations in Game Two using
Q-learning, and ε-Greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent reward comparing ε
(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10

0

50

100

Percent in bounds comparing ε
(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 6.6: Comparing the results of varying εs and εe, where t-n de�nes the nth test according to
Table 6.9, consisting of the �nal policies. The testing con�gurations are run in Game Two using
Q-learning, and ε-greedy.

6.3.2 Reinforcement Learning Rate

The testing con�gurations in Table 6.10 show the impact of the RL learning rate (α) on the percent

of total reward, and the percent of steps in bounds. To clearly interpret the results of varying αs and

63

αe, all other variables are held constant, seen in Table 6.2. The distributions of results are shown

in Figure 6.7, and discussed in Section 6.5.

Test 0 1 2 3 4 5 6 7 8 9 10

trainN εs 0.3 αs 1.0 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

εe 0.1 αe 1.0 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1

testN εs 0.0 αs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

εe 0.0 αe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.10: Outline how the starting and ending learning values (αs and αe) vary for training games
(trainN) as well as testing games (testN), in Game Two with Q learning, and ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent reward comparing α
(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10

0

50

100

Percent in bounds comparing α
(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 6.7: Comparing the results of varying αs and αe, where t-n de�nes the nth test according to
Table 6.10, consisting only of the �nal policies reached by each parameter con�guration (130 results).
The agent follows the policy with no exploration and no learning. The testing con�gurations are
run in Game Two using Q-learning, and ε-greedy.

6.3.3 Q-Function Learning Rate

The testing con�gurations outlined in Table 6.11, show how the Q-function approximation ANN

learning rate (ηQ) in�uences the learned policies. To clearly interpret the results of varying ηQ, all

other variables are held constant, seen in Table 6.2. The distributions of results are shown in Figure

6.8, and discussed in Section 6.5.

Test 1 2 3 4 5

ηQ(s,a) 0.9 0.7 0.5 0.3 0.1

Table 6.11: Outlines how ηQ changes during testing, in Game Two with Q-learning, and ε-greedy.

64

t−1 t−2 t−3 t−4 t−5
0

50

100

Percent reward comparing η
Q

(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5

0

50

100

Percent in bounds comparing η
Q

(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 6.8: Comparing the results of varying ηQ, where t-n de�nes the nth test according to Table
6.11, consisting of the �nal policies reached by each parameter con�guration (130 results). The agent
follows the policy with no exploration and no learning. The testing con�gurations are run in Game
Two using Q-learning, and ε-greedy.

6.3.4 Individual Motive Reward

The number of testing con�gurations outlined in Table 6.12, show how the motive reward scaling

factor (mR) in�uences learning. Other key variables are held constant, see Table 6.2, to clearly

interpret the results of varying mR. The distributions of results are shown in Figure 6.9, and

discussed in Section 6.5.

Test 1 2 3 4

mR -0.12 -0.1 -0.08 -0.05

Table 6.12: Outlines how mR changes during testing, in Game Two with Q-learning and ε-greedy.

t−1 t−2 t−3 t−4
0

50

100

Percent reward comparing mR
(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations

t−1 t−2 t−3 t−4
0

50

100

Percent in bounds comparing mR
(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 6.9: Comparing the results of varying mR, where t-n de�nes the nth test according to Table
6.12, consisting of the �nal policies reached by each parameter con�guration (130 results). The agent
follows the policy with no exploration and no learning. The testing con�gurations are run in Game
Two using Q-learning, and ε-greedy.

6.3.5 Q-Function Hidden Neurons

The testing con�gurations outlined in Table 6.13, are used to show how the Q-function approxima-

tion ANN's hidden neuron con�guration (HnQ) in�uences learning. Other key variables are held

65

constant, see Table 6.2, to clearly interpret the results of varying HnQ. The results are shown in

Figure 6.10, and discussed in Section 6.5.

Test 1 2 3 4

Hn [3] [10] [20] [40]

Test 5 6 7 8

Hn [60] [80] [100] [150]

Test 9 10 11 12 13

Hn [200] [20 20] [40 40] [100 100] [200 200]

Table 6.13: Outlines how HnQ changes during testing, in Game Two with Q learning and ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9t−10t−11t−12t−13
0

50

100

Percent reward comparing Hn
Q

(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9t−10t−11t−12t−13

0

50

100

Percent in bounds comparing Hn
Q

(Game 2, egreedy, Q−learning, test10)

%

Testing Configurations

Figure 6.10: Comparing the results of varying HnQ, where t-n de�nes the nth test according to
Table 6.13, consisting of the �nal policies reached by each parameter con�guration (130 results).
The testing con�gurations are run in Game Two using Q-learning, and ε-greedy.

6.4 Dyna-Q

In the following sections, Dyna-Q is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 6.14.

Section Test HnQ mR ηQ RL rate Exploration pS ηM HnM

6.4.1 HnM [40] -0.1 0.7 αs = 0.9 αe = 0.5 εs = 0.5 εe = 0.1 3 0.6

6.4.2 ηM [40] -0.1 0.7 αs = 0.9 αe = 0.5 εs = 0.5 εe = 0.1 3 [3]

6.4.3 pS [40] -0.1 0.7 αs = 0.9 αe = 0.5 εs = 0.5 εe = 0.1 0.9 [3]

Table 6.14: Outline of �xed variables used in the testing con�gurations for Game Two using Dyna-Q,
and ε-greedy.

6.4.1 Model-Function Hidden Neurons

A number of testing con�gurations, outlined in Table 6.14, were used to show how the Model-

function approximation ANN's hidden neuron con�guration (HnM) in�uences learning. Other key

66

variables are held constant, see Table 6.14. The distributions of results are shown in Figure 6.11,

and discussed in Section 6.5.

Tests 1 2 3 4 5 6 7

Hn [3] [10] [15] [20] [50] [100] [150]

Table 6.15: Outlines how HnM changes with di�erent testing con�gurations in Game Two with
Dyna-Q, and ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7
0

50

100

Percent reward comparing Hn
M

(Game 2, egreedy, Dyna−Q, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5 t−6 t−7

0

50

100

Percent in bounds comparing Hn
M

(Game 2, egreedy, Dyna−Q, test10)

%

Testing Configurations

Figure 6.11: Comparing the results of varying HnM during �nal policies, where t-n de�nes the nth

test according to Table 6.15. The testing is run in Game Two using Dyna-Q, and ε-greedy.

6.4.2 Model-Function Learning Rate

The number of testing con�gurations, outlined in Table 6.16, show how the Model-function approx-

imation ANN learning rate (ηM) in�uences the learned policies. To clearly interpret the results of

varying ηM , all other variables are held constant, seen in Table 6.14. The distributions of results are

shown in Figure 6.12, and discussed in Section 6.5.

Test 1 2 3 4 5

ηM 0.9 0.7 0.5 0.3 0.1

Table 6.16: Outline how ηM changes during di�erent testing con�gurations in Game Two with
Dyna-Q, and ε-greedy.

t−1 t−2 t−3 t−4 t−5
0

50

100

Percent reward comparing η
M

(Game 2, egreedy, Dyna−Q, test10)

%

Testing Configurations
t−1 t−2 t−3 t−4 t−5

0

50

100

Percent in bounds comparing η
M

(Game 2, egreedy, Dyna−Q, test10)

%

Testing Configurations

Figure 6.12: Comparing the �nal policies while varying ηQ, where t-n de�nes the nth test according
to Table 6.16. The testing con�gurations are run in Game Two using Dyna-Q, and ε-greedy.

67

6.4.3 Dyna-Q Planning Steps

The testing con�gurations outlined in Table 6.17, show how the number of planning steps (pS) has

an impact on the learned policies. To clearly interpret the results of varying pS, all other variables

are held constant, seen in Table 6.14. The results are shown in Figure 6.13 and the implications of

the results are discussed in Section 6.5.

Test 1 2 3 4 5 6 7

pS 0 1 2 5 10 20 50

Table 6.17: Outlines how pS changes for di�erent testing con�gurations in Game Two with Dyna-Q,
and ε-Greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7
0

20

40

60

80

100

Percent reward comparing pS
(Game 2, egreedy, Dyna−Q, test10)

%

Testing Configurations

t−1 t−2 t−3 t−4 t−5 t−6 t−7
0

20

40

60

80

100

Percent in bounds comparing pS
(Game 2, egreedy, Dyna−Q, test10)

%

Testing Configurations

Figure 6.13: Comparing the results of varying pS during �nal policy tests, where t-n is de�ned as
the nth testing con�guration according to Table 6.17. The testing con�gurations are run in Game
Two using Dyna-Q, and ε-greedy.

6.5 Discussion

This section evaluates the most signi�cant variables, and comparing RL methods (Sarsa, Q-learning,

and Dyna-Q).

6.5.1 Parameters

Exploration Rate Exploration rates that end with 0.1, and 0.3 over time, show higher percent of

reward, and higher percent of steps in bounds, for Sarsa (Figure 6.1), and Q-learning (Figure 6.6).

The optimal exploration rate was found to be εs = 0.3, and εs = 0.1.

Reinforcement Learning Rate Unlike Game One, the RL learning rate (α) for Game Two shows

signi�cant di�erences between high values (αs = 1.0 and αe = 1.0), and low values (αs = 0.3 and

αe = 0.1), where higher values produce higher percent of reward, and higher percent of steps in

bounds, see Figures 6.2, and 6.7.

68

Q-Function ANN Learning Rate The Q-function ANN learning rate (ηQ) has the most impact

on training time, given it controls how quickly the Q-function is approximated. The results show

a signi�cant di�erence in percent of total reward for the �nal testing game, for Sarsa (Figure 6.3),

and Q-learning (Figure 6.8). Performance is better when ηQ is larger. This is a strong indicator

that more training is needed.

Motive Reward Factor The variable mR directly in�uences the magnitude of rewards received

by the agent throughout a game. For Game Two, mR = −0.1 is the optimal value for both Sarsa

(Figure 6.4), and Q-learning (Figure 6.9). The same conclusion was reached for Game One, with

mR = −0.1 being the optimal value.

Q-Function ANN Hidden Neurons Given the more complex game scenario of Game Two, the

resulting function approximation should require more hidden neurons than Game One. This is true

for Q-learning results, where the optimal value is HnQ = [60], seen in Figure 6.10. Results for Sarsa

in Figure 6.5, show the optimal value is close to HnQ = [10], the same as Game One.

Model-Function ANN Hidden Neurons The Figure 6.11 shows optimal results with HnM =

[3]. The results (percent of reward, and percent of steps in bounds) are much less than those from

the basic Q-learning tests previously run, indicating that the learned model does not accurately

predict the game world.

Model-Function ANN Learning Rate Contrary to Game One results, testing the model func-

tion ANN learning rate ηM in Game Two showed that a higher learning rate produces a more

accurate model of the environment, seen in Figure 6.12.

Dyna-Q Planning Steps As the number of planning steps increases, the performance of the agent

decreases, see Figure 6.13, indicating that the model-function does not accurately approximate the

game world.

6.5.2 Consistency

Testing the consistency of the results involves comparing results from repeated tests, under identical

conditions. In this case, the values in Table 6.18 are used in 5 separate game tests, with results in

Figure 6.14. The resulting policies have equal medians in both percent of total rewards and similar

medians for percent of steps in bounds. The consistency of the results is a re�ection of the optimality

of the parameters being tested. In this case near optimal parameters were found.

69

RL Algorithm HnQ ηQ mR RL Rate Exploration Rate

Q-Learning [60] 0.7 -0.1 αs = 0.9 αe = 0.7 εs = 0.5 εe = 0.1

Table 6.18: Outline of the variables used to test the consistency of Game Two's optimal parameters.

t−1 t−2 t−3 t−4 t−5
0

20

40

60

80

100

Percent reward comparing consistency
(Game 2, egreedy, Q−learning, test30)

%

Testing Configurations

t−1 t−2 t−3 t−4 t−5
0

20

40

60

80

100

Percent in bounds comparing consistency
(Game 2, egreedy, Q−learning, test30)

%

Testing Configurations

Figure 6.14: Comparing the consistency of the �nal policies, trained using optimal parameters
outlined in Table 6.18, where t-n de�nes the nth repeated test.

6.5.3 Discount and Trace-Decay

The trace-decay rate, and discount value, are compared given the set of optimal parameters described

in Table 6.18. Graphical results in Figure 6.15 show that a compromise between long term, and

short term reward, γ = 0.5, increases the percent of reward. Propagating the rewards to previous

actions as much as possible (λ = 0.9) also shows an increase in percent of reward.

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

100

γ

Percent of reward comparing γ
(Game 2, ε−greedy, Q−learning, test30)

%

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

100

λ

Percent of reward comparing λ
(Game 2, ε−greedy, Q−learning, test30)

%

Figure 6.15: Comparing the impact of γ and λ on the percent of total reward given the set of optimal
parameters found in Table 6.18.

70

6.5.4 Training Time of Optimal Parameters

From the results in Figure 6.16, 10 training games would have been su�cient for attaining a good

policy.

0 5 10 15 20 25 30
0

50

100

Percent of reward compared by testing game
(Game 2, consistency, egreedy, q, testing)

Run Number

%

Figure 6.16: Comparing the impact of training time on the percent of reward, for policies using
optimal parameters seen in Table 6.18.

6.5.5 Qualitative Analysis

Signi�cant policies (optimal, and in-optimal) found using the parameters in Table 6.18 are analyzed

for their action selection sequences. Motive values, and thresholds, are graphed for every motivation,

see Figures 6.17 and 6.18.

The optimal policy selected for qualitative analysis, was trained with γ = 0.3, and λ = 0.1.

The agent spends most of the game watching TV. Since the entertainment motive has no maximum

threshold (maximum threshold is 100), the agent can watch a lot of TV without going above its

maximum desired entertainment value. However, watching TV does decrease the healthy motive

value. When the healthy motive value is close to the desired minimum, the agent will stop watching

TV, and instead, use the treadmill. When the agent's hunger motive is close to the minimum

desirable amount, the agent will open the fridge, and eat healthy food. The agent does not eat any

greasy food during the entire game. Greasy food satis�es the hunger motive less than healthy food,

and also decreases the healthy motive value. With no incentive in eating greasy food (tastes good),

it is understandable that the agent chooses to eat healthy food instead.

The poor policy selected for qualitative analysis, was trained with γ = 0.9, and λ = 0.3. With

such a high discount rate, the agent will consider long-term rewards much more important than

short-term rewards. The only action with delayed reward is opening the fridge, and the reward is

only delayed by 2 game steps when food is eaten. In fact, the agent is continuously opening the

fridge door, ignoring the other motive values that need to be satis�ed. This type of behaviour is

interesting, but not surprising, as there are no negative consequences associated with opening the

71

fridge (e.g. shortening the life span of the food or using electricity).

0 50 100

70

80

90

100

Time Steps

M
ot

iv
e

V
al

ue
Entertainment motive during

best policy from optimal
parameters (Game 2)

(a)

0 20 40 60

60

70

80

Time Steps

M
ot

iv
e

V
al

ue

Hunger motive during optimal
policy (Game 2)

(b)

0 20 40 60
20

40

60

80

Time Steps

M
ot

iv
e

V
al

ue

Healthy motive during optimal
policy (Game 2)

(c)

Figure 6.17: Actual motive values observed during a game following one of the optimal policies found
using parameters described in Table 6.18. The red lines indicate the boundaries for minimum, and
maximum desirable values, that are di�erent for each motivation.

0 50 100 150
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Entertainment motive during bad
policy from optimal parameters

(Game 2)

(a)

0 100 200 300
40

60

80

100

Time Steps

M
ot

iv
e

V
al

ue

Hunger motive during bad
policy from optimal
parameters (Game 2)

(b)

0 100 200 300
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Healthy motive during bad
policy from optimal
parameters (Game 2)

(c)

Figure 6.18: Actual motive values observed during a game following one of the sub-optimal policies
found using parameters described in Table 6.18. The red lines indicate the boundaries for minimum,
and maximum desirable values, that are di�erent for each motivation.

6.6 Summary

The increase in motivations for Game Two did present more of a challenge for learning, compared to

those of Game One, re�ected in the slightly poorer worst case results. Keep in mind overall 100% of

total reward is desirable, however, it is not a requirement for the success of this method. Most of the

tests include all discount values, and trace-decay rates. The results do suggest that an increase in

training time would bene�t the performance of less ideal parameters, particularly with lower values

of ηQ. The next Chapter will introduce the concept of inter-agent interaction, and actions that

impact more than one agent.

72

Chapter 7

Game Three

This game scenario introduces the possibility of inter-agent interactions. There are three agents:

Tarzan, Jane, and Bob. Tarzan and Jane each have their own private houses. Bob is the bar

tender at the local bar, and does not have the ability to leave. Both Tarzan and Jane have a social

motivation, and a hunger motivation. However, Bob's only motivation is social. Jane and Tarzan

must go to the bar for social interaction, and return to their respective houses to eat. In order to

eat food, the fridge needs to be opened �rst.

Managing social interactions is the most di�cult aspect of this game scenario. When any of

the agents talk to another agent, they receive an increase of 10 in their social motivation, and also

increase the social motivation of the other agent by 5. An agent must learn that doing nothing is

not enough to decrease their social interaction level. Since other agents contribute to the increase

in social interaction, agents must learn to remove themselves from the social situation, and return

home where no social interaction can take place.

All agents have di�erent minimum, and maximum thresholds, for their social motivation. This

allows for a direct comparison of how di�erent motivational pro�les would learn using the same

existing RL algorithm. See Table 7.1 for a more detailed description of motive thresholds for all

agents.

Agent
Social Food

Min Max Min Max

Tarzan 20 60 40 70

Jane 50 80 40 70

Bob 95 100

Table 7.1: Game Three agent motive thresholds.

The purpose of this learning task is to learn inter-agent interactions, compare signi�cant variable

values to Games One and Two, and to compare qualitative results from two di�erent motivation

73

pro�les (Tarzan vs. Jane).

7.1 Testing Outline

Testing once again begins with Sarsa in Section 7.2, and continues with Q-learning in Section 7.3.

Finally, Dyna-Q is explored in Section 7.4. Results and important insights are discussed in Section

7.5. All testing con�gurations in Game Three are repeated 5 times to measure consistency.

7.2 Sarsa

In the following sections, Sarsa is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 7.2.

Sub-Section Testing HnQ mR ηQ RL Rate Exploration

7.2.1 ε [50] -0.1 0.5 αs = 0.9 αe = 0.7

7.2.2 α [50] -0.1 0.5 εs = 0.3 εe = 0.1

7.2.3 ηQ [50] -0.1 αs = 0.9 αe = 0.1 εs = 0.3 εe = 0.1

7.2.4 mR [50] 0.7 αs = 0.9 αe = 0.1 εs = 0.3 εe = 0.1

7.2.5 HnQ 0.7 αs = 0.9 αe = 0.1 εs = 0.3 εe = 0.1

Table 7.2: Outline of �xed variables used in the testing con�gurations for Game Three using Sarsa,
and ε-greedy.

7.2.1 Exploration Rate

The results of testing con�gurations outlined in Table 7.3, show how the starting, and ending ex-

ploration rates (εs and εe), impact learning. All other variables are held constant, see Table 7.2, to

clearly interpret the results of varying εs, and εe. The results are shown in Figure 7.1 for Tarzan,

and Figure 7.2 for Jane. Overall results are discussed in Section 7.5.

Test 1 2 3 4 5 6 7 8 9 10

trainN αs 0.9 εs 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

αe 0.7 εe 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1

Table 7.3: Outlines how εs, and εe, vary during testing con�gurations in Game Three using Sarsa,
and ε-Greedy.

74

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent reward comparing Tarzan ε
(Game 3, egreedy, sarsa, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent in bounds comparing Tarzan ε
(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.1: Comparing the results of varying εs, and εe, for the agent Tarzan, where t-n de�nes the
nth test according to Table 7.3. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10
0

50

100

Percent reward comparing Jane ε
(Game 3, egreedy, sarsa, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10
0

50

100

Percent in bounds comparing Jane ε
(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.2: Comparing the results of varying εs, and εe, for the agent Jane, where j-n de�nes the
nth test according to Table 7.3. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

7.2.2 Reinforcement Learning Rate

The testing con�gurations outlined in Table 7.4 are meant to show the impact of the RL learning

rate (α) on the percent of total reward, and the percent of steps in bounds. To clearly interpret the

results of varying αs, and αe, all other variables are held constant, see Table 7.2. The results are

shown in Figure 7.3 for Tarzan, and Figure 7.4 for Jane. Overall results are discussed in Section 7.5.

Test 1 2 3 4 5 6 7 8 9 10 11

trainN εs 0.3 αs 1.0 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

εe 0.1 αe 1.0 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1

testN εs 0.0 αs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

εe 0.0 αe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7.4: Outline how the starting, and ending learning values (αs and αe), vary for training games
(trainN), as well as testing games (testN), in Game Three with Sarsa, and ε-greedy.

75

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11
0

50

100

Percent reward comparing Tarzan α
(Game 3, egreedy, sarsa, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10t−11
0

50

100

Percent in bounds comparing Tarzan α
(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.3: Comparing the results of varying αs, and αe, for the agent Tarzan, where t-n de�nes the
nth test according to Table 7.4. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10j−11
0

50

100

Percent reward comparing Jane α
(Game 3, egreedy, sarsa, test30)

%

(a) Percent of reward for Jane.

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10j−11
0

50

100

Percent in bounds comparing Jane α
(Game 3, egreedy, sarsa, test30)

%

(b) Percent in bounds for Jane.

Figure 7.4: Comparing the results of varying αs, and αe, for the agent Jane, where j-n de�nes the
nth test according to Table 7.4. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

7.2.3 Q-Function Learning Rate

The set of testing con�gurations seen in Table 7.5, are designed to show how the Q-function ANN

learning rate (ηQ) changes the learned policies. To clearly interpret the results of varying ηQ, all

other variables are held constant, seen in Table 7.2. The results are shown in Figure 7.5 for Tarzan,

and Figure 7.6 for Jane. Overall results are discussed in Section 7.5.

Test 1 2 3 4 5

ηQ 0.9 0.7 0.5 0.3 0.1

Table 7.5: Outlines how ηQ changes during testing con�gurations in Game Three with Sarsa, and
ε-Greedy.

76

t−1 t−2 t−3 t−4 t−5
0

50

100

Percent reward comparing Tarzan η
Q

(Game 3, egreedy, sarsa, test30)
%

(a)

t−1 t−2 t−3 t−4 t−5
0

50

100

Percent in bounds comparing Tarzan η
Q

(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.5: Comparing the results of changing ηQ, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.5. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

j−1 j−2 j−3 j−4 j−5
0

50

100

Percent reward comparing Jane η
Q

(Game 3, egreedy, sarsa, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5
0

50

100

Percent in bounds comparing Jane η
Q

(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.6: Comparing the results of changing ηQ, for the agent Jane, where j-n de�nes the nth test
according to Table 7.5. The testing con�gurations are run in Game Three using Sarsa, and ε-greedy.

7.2.4 Individual Motive Reward

The set of testing con�gurations outlined in Table 7.6, are intended to show how the motive reward

scaling factor (mR) in�uence learning. Other key variables are held constant, see Table 7.2. The

results are shown in Figure 7.7 for Tarzan, and from in Figure 7.8 for Jane. Overall results are

discussed in Section 7.5.

Test 1 2 3

mR -0.15 -0.1 -0.05

Table 7.6: Outlines mR changes for di�erent testing con�gurations in Game Three with Sarsa, and
ε-Greedy.

77

t−1 t−2 t−3
0

50

100

Percent reward comparing Tarzan mR
(Game 3, egreedy, sarsa, test30)

%

(a)

t−1 t−2 t−3
0

50

100

Percent in bounds comparing Tarzan mR
(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.7: Comparing the results of changing mR, from the agent Tarzan, where t-n de�nes the
nth test according to Table 7.6. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

j−1 j−2 j−3
0

50

100

Percent reward comparing Jane mR
(Game 3, egreedy, sarsa, test30)

%

(a)

j−1 j−2 j−3
0

50

100

Percent in bounds comparing Jane mR
(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.8: Comparing the results of changing mR, from the agent Jane, where j-n de�nes the nth

test according to Table 7.6. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

7.2.5 Q-Function Hidden Neurons

To show the impact of the Q-function ANN hidden neuron con�guration rate (HnQ) on the results, a

number variable con�gurations were tested, see Table 7.7Other necessary variables are held constant,

seen in Table 7.2. The results are shown in Figure 7.9 for Tarzan, and Figure 7.10 for Jane. Overall

results are discussed in Section 7.5.

Test 1 2 3 4 5 6 7

Hn [3] [10] [25] [50] [75] [100] [250]

Test 8 9 10

Hn [50 50] [100 100] [250 250]

Table 7.7: Outlines how HnQ changes for di�erent testing con�gurations in Game Three with Sarsa,
and ε-greedy.

78

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent reward comparing Tarzan Hn
Q

(Game 3, egreedy, sarsa, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent in bounds comparing Tarzan Hn
Q

(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.9: Comparing the results of changing HnQ, for the agent Tarzan, where t-n de�nes the
nth test according to Table 7.7. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10
0

50

100

Percent reward comparing Jane Hn
Q

(Game 3, egreedy, sarsa, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10
0

50

100

Percent in bounds comparing Jane Hn
Q

(Game 3, egreedy, sarsa, test30)

%

(b)

Figure 7.10: Comparing the results of changing HnQ, for the agent Jane, where j-n de�nes the nth

test according to Table 7.7. The testing con�gurations are run in Game Three using Sarsa, and
ε-greedy.

7.3 Q Learning

In the following sections, Q-learning is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 7.8.

Sub-Section Testing HnQ mR ηQ RL Rate Exploration Rate

7.3.1 ε [50] -0.1 0.5 αs = 0.9 αe = 0.7

7.3.2 α [50] -0.1 0.5 εs = 0.3 εe = 0.1

7.3.3 ηQ [50] -0.1 αs = 0.9 αe = 0.7 εs = 0.3 εe = 0.1

7.3.4 mR [50] 0.7 αs = 0.9 αe = 0.7 εs = 0.3 εe = 0.1

7.3.5 HnQ -0.05 0.7 αs = 0.9 αe = 0.7 εs = 0.3 εe = 0.1

Table 7.8: Outline of the �xed variables used in the testing con�gurations for Game Three using
Q-learning, and ε-greedy.

79

7.3.1 Exploration Rate

A number of testing con�gurations, outlined in Table 7.9, are intended to show how the starting,

and ending exploration rates (εs and εe), in�uence learning. All other variables are held constant,

seen in Table 7.8, to clearly interpret the results of varying εs and εe. The results are shown in

Figure 7.11b for Tarzan, and Figure 7.11a for Jane. Overall results are discussed in Section 7.5.

Test 1 2 3 4 5 6 7 8 9 10

trainN αs 0.9 εs 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

αe 0.7 εe 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1

Table 7.9: Outline how εs and εe vary during testing con�gurations for Game Three tests with
Q-learning and ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10
0

50

100

Percent in bounds comparing Jane ε
(Game 3, egreedy, q, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent in bounds comparing Tarzan ε
(Game 3, egreedy, q, test30)

%

(b)

Figure 7.11: The results of varying ε, where t-n and j-n are the nth test from Table 7.9. The testing
con�gurations are run in Game Three using Q-learning, and ε-greedy.

7.3.2 Reinforcement Learning Rate

The testing con�gurations in Table 7.10 are meant to show the impact of the RL learning rate (α)

on the percent of total reward, and the percent of steps in bounds. To clearly interpret the results

of varying αs, and αe, all other variables are held constant, seen in Table 7.8. The results are shown

in Figure 7.12 for Tarzan, and from Jane in Figure 7.13. Overall results are discussed in Section 7.5.

Test 1 2 3 4 5 6 7 8 9 10

trainN εs 0.3 αs 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.5 0.5 0.3

εe 0.1 αe 0.7 0.5 0.3 0.1 0.5 0.3 0.1 0.3 0.1 0.1

testN εs 0.0 αs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

εe 0.0 αe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7.10: Outline how the starting, and ending learning values (αs and αe), vary for training
games (trainN), as well as testing games (testN), in Game Three with Q learning, and ε-greedy.

80

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent reward comparing Tarzan α
(Game 3, egreedy, q, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8 t−9 t−10
0

50

100

Percent in bounds comparing Tarzan α
(Game 3, egreedy, q, test30)

%

(b)

Figure 7.12: Comparing the results of varying αs, and αe, for the agent Tarzan, where t-n de�nes the
nth test according to Table 7.10. The testing con�gurations are run in Game Three using Q-learning,
and ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10
0

50

100

Percent reward comparing Jane α
(Game 3, egreedy, q, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8 j−9 j−10
0

50

100

Percent in bounds comparing Jane α
(Game 3, egreedy, q, test30)

%

(b)

Figure 7.13: Comparing the results of varying αs, and αe, for the agent Jane, where j-n de�nes the
nth test according to Table 7.10. The testing con�gurations are run in Game Three using Q-learning,
and ε-greedy.

7.3.3 Q-Function Learning Rate

The testing con�gurations outlined in Table 7.11, are meant to show how the Q-function approx-

imation ANN learning rate (ηQ) in�uences the learned policies. To clearly interpret the results of

varying ηQ, all other variables are held constant, seen in Table 7.8. The results are shown in Figure

7.14 for Tarzan, and Figure 7.15 for Jane. Overall results are discussed in Section 7.5.

Test 1 2 3 4 5

ηQ 0.9 0.7 0.5 0.3 0.1

Table 7.11: Outlines how ηQ changes during testing con�gurations in Game Three with Q-learning,
and ε-greedy.

81

t−1 t−2 t−3 t−4 t−5
0

50

100

Percent reward comparing Tarzan η
Q

(Game 3, egreedy, q, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5
0

50

100

Percent in bounds comparing Tarzan η
Q

(Game 3, egreedy, q, test30)

%

(b)

Figure 7.14: Comparing the results of changing ηQ, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.11. The testing con�gurations are run in Game Three using Q-learning,
and ε-greedy.

j−1 j−2 j−3 j−4 j−5
0

50

100

Percent reward comparing Jane η
Q

(Game 3, egreedy, q, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5
0

50

100

Percent in bounds comparing Jane η
Q

(Game 3, egreedy, q, test30)

%

(b)

Figure 7.15: Comparing the results of changing ηQ, for the agent Jane, where j-n de�nes the nth

test according to Table 7.11. The testing con�gurations are run in Game Three using Q-learning,
and ε-greedy.

7.3.4 Individual Motive Reward

The number of testing con�gurations outlined in Table 7.12, are meant to show how the motive

reward scaling factor (mR) in�uences learning. Other key variables are held constant, see Table 7.2,

to clearly interpret the results of varying mR. The results are shown in Figure 7.16 for Tarzan, and

Figure 7.17 for Jane. Overall results are discussed in Section 7.5.

Test 1 2 3 4 5 6

mR -0.3 -0.2 -0.1 -0.05 -0.01 -0.005

Table 7.12: Outlines how mR changes during testing, in Game Three with Q-learning and ε-greedy.

82

t−1 t−2 t−3 t−4 t−5 t−6
0

50

100

Percent reward comparing Tarzan mR
(Game 3, egreedy, q, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6
0

50

100

Percent in bounds comparing Tarzan mR
(Game 3, egreedy, q, test30)

%

(b)

Figure 7.16: Comparing the results of changing mR, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.12. The testing con�gurations are run in Game Three using Q-learning,
and ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6
0

50

100

Percent reward comparing Jane mR
(Game 3, egreedy, q, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5 j−6
0

50

100

Percent in bounds comparing Jane mR
(Game 3, egreedy, q, test30)

%

(b)

Figure 7.17: Comparing the results of changing mR, for the agent Jane, where j-n de�nes the nth

test according to Table 7.12. The testing con�gurations are run in Game Three using Q-learning,
and ε-greedy.

7.3.5 Q-Function Hidden Neurons

The testing con�gurations outlined in Table7.13, are used to show how the Q-function approxima-

tion ANN's hidden neuron con�guration (HnQ) in�uences learning. Other key variables are held

constant, see Table 7.18, to clearly interpret the results of varying HnQ. The results are shown in

Figure 7.19 for Tarzan, and Figure 7.17 for Jane. Overall results are discussed in Section 7.5.

Test 1 2 3 4

Hn [3] [10] [20] [30]

Test 5 6 7 8

Hn [40] [50] [75] [100]

Table 7.13: Outlines how HnQ changes during testing in Game Three using Q-learning, and ε-greedy.

83

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8
0

50

100

Percent reward comparing Tarzan Hn
Q

(Game 3, egreedy, q, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8
0

50

100

Percent in bounds comparing Tarzan Hn
Q

(Game 3, egreedy, q, test30)

%

(b)

Figure 7.18: Comparing the results of changing HnQ, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.13, consisting of the �nal policies reached by each parameter con�guration
(130 results). The testing con�gurations are run in Game Three using Q-learning, and ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8
0

50

100

Percent reward comparing Jane Hn
Q

(Game 3, egreedy, q, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8
0

50

100

Percent in bounds comparing Jane Hn
Q

(Game 3, egreedy, q, test30)

%

(b)

Figure 7.19: Comparing the results of changing HnQ, for the agent Jane, where t-n de�nes the nth

test according to Table 7.13, consisting of the �nal policies reached by each parameter con�guration
(130 results). The testing con�gurations are run in Game Three using Q-learning, and ε-greedy.

7.4 Dyna-Q

In the following sections, Dyna-Q is tested with the goal of determining what parameters produce

signi�cant results. The variables that remain �xed during testing are outlined in Table 7.14.

Section Test HnQ mR ηQ RL Rate Exploration Rate pS ηM HnM

7.4.1 HnM [40] -0.05 0.7 αs = 0.9 αe = 0.7 εs = 0.3 εe = 0.1 10 0.5

7.4.2 ηM [40] -0.05 0.7 αs = 0.9 αe = 0.7 εs = 0.3 εe = 0.1 10 [5]

7.4.3 pS [40] -0.05 0.7 αs = 0.9 αe = 0.7 εs = 0.3 εe = 0.1 0.9 [5]

Table 7.14: Outline of �xed variables used in the testing con�gurations for Game Three using
Dyna-Q, and ε-greedy.

7.4.1 Model Function Hidden Neurons

The testing con�gurations outlined in Table 7.15 are used to show how the Model-function approxi-

mation ANN's hidden neuron con�guration (HnM) in�uences learning. Other key variables are held

84

constant, see Table 7.14. The results are shown in Figure 7.20 for Tarzan, and Figure 7.21 for Jane.

Overall results are discussed in Section 7.5.

Test 1 2 3 4 5 6 7 8

Hn [3] [5] [10] [15] [25] [50] [75] [100]

Table 7.15: Outlines how HnM changes with di�erent testing con�gurations in Game Three with
Dyna-Q, and ε-greedy.

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8
0

50

100

Percent reward comparing Tarzan Hn
M

(Game 3, egreedy, dynaq, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6 t−7 t−8
0

50

100

Percent in bounds comparing Tarzan Hn
M

(Game 3, egreedy, dynaq, test30)

%
(b)

Figure 7.20: Comparing the results of changing HnM , for the agent Tarzan, where t-n de�nes the
nth test according to Table 7.15. The testing con�gurations are run in Game Three using Dyna-Q,
and ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8
0

50

100

Percent reward comparing Jane Hn
M

(Game 3, egreedy, dynaq, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5 j−6 j−7 j−8
0

50

100

Percent in bounds comparing Jane Hn
M

(Game 3, egreedy, dynaq, test30)

%

(b)

Figure 7.21: Comparing the results of changing HnM , for the agent Jane, where j-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using Dyna-Q, and
ε-greedy.

7.4.2 Model Function Learning Rate

The number of testing con�gurations outlined in Table 7.16, are meant to show how the Model-

function approximation ANN learning rate (ηM) in�uences the learned policies. To clearly interpret

the results of varying ηM , all other variables are held constant, seen in Table 7.14. The results are

shown in Figure 7.22 for Tarzan, and from in Figure 7.23 for Jane. Overall results are discussed in

Section 7.5.

85

Test 1 2 3 4 5

ηM 0.9 0.7 0.5 0.3 0.1

Table 7.16: Outline how ηM changes during di�erent testing con�gurations in Game Three with
Dyna-Q, and ε-greedy.

t−1 t−2 t−3 t−4 t−5
0

50

100

Percent reward comparing Tarzan η
M

(Game 3, egreedy, dynaq, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5
0

50

100

Percent in bounds comparing Tarzan η
M

(Game 3, egreedy, dynaq, test30)

%

(b)

Figure 7.22: Comparing the results of changing ηM , for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using Dyna-Q, and
ε-greedy.

j−1 j−2 j−3 j−4 j−5
0

50

100

Percent reward comparing Jane η
M

(Game 3, egreedy, dynaq, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5
0

50

100

Percent in bounds comparing Jane η
M

(Game 3, egreedy, dynaq, test30)

%

(b)

Figure 7.23: Comparing the results of changing ηM , for the agent Jane, where j-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using Dyna-Q, and
ε-greedy.

7.4.3 Dyna-Q Planning Steps

The testing con�gurations outlined in Table 7.17, are meant to show how the number of planning

steps (pS) has an impact on the learned policies. To clearly interpret the results of varying pS,

all other variables are held constant, seen in Table 5.13. The results are shown in Figure 7.22 for

Tarzan, and Figure 7.23 for Jane. Overall results are discussed in Section 7.5.

Test 1 2 3 4 5 6 7

pS 0 1 2 5 10 20 50

Table 7.17: Outlines how pS changes for di�erent testing con�gurations in Game Three with Dyna-Q,
and ε-Greedy.

86

t−1 t−2 t−3 t−4 t−5 t−6 t−7
0

10

20

30

40

50

60

70

80

90

100

Percent reward comparing Tarzan pS
(Game 3, egreedy, dynaq, test30)

%

(a)

t−1 t−2 t−3 t−4 t−5 t−6 t−7
0

10

20

30

40

50

60

70

80

90

100

Percent in bounds comparing Tarzan pS
(Game 3, egreedy, dynaq, test30)

%

(b)

Figure 7.24: Comparing the results of changing pS, for the agent Tarzan, where t-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using Dyna-Q, and
ε-greedy.

j−1 j−2 j−3 j−4 j−5 j−6 j−7
0

10

20

30

40

50

60

70

80

90

100

Percent reward comparing Jane pS
(Game 3, egreedy, dynaq, test30)

%

(a)

j−1 j−2 j−3 j−4 j−5 j−6 j−7
0

10

20

30

40

50

60

70

80

90

100

Percent in bounds comparing Jane pS
(Game 3, egreedy, dynaq, test30)

%

(b)

Figure 7.25: Comparing the results of changing pS, for the agent Jane, where j-n de�nes the nth

test according to Table 7.15. The testing con�gurations are run in Game Three using Dyna-Q, and
ε-greedy.

7.5 Discussion

The added complexity of Game Three over Games One, and Two, make a direct comparison hard to

make. This section will evaluate the most signi�cant variables, compare the results of di�erent RL

methods (Sarsa, Q-learning, and Dyna-Q), and compare the di�erence in results between agents.

The di�culty in this scenario is not the delayed reward associated with opening the fridge, but

rather the fact that an agent could be doing nothing, and still gain social interaction through other

agent's actions.

87

7.5.1 Parameters

Exploration Rate The ε-greedy action selection algorithm showed predictable results with the

optimal value being εs = 0.3 and εe = 0.1, for Sarsa (Figure 7.2) and Q-learning (Figure 7.11).

The results from the agent Jane, show slightly higher performance over the results from the agent

Tarzan, regardless of reinforcement learning algorithm. The di�erence in results between agents is

caused by di�erent threshold values.

Reinforcement Learning Rate The results comparing the learning rate for Sarsa, shown in

Figures 7.3, and 7.4, and Q-learning, shown in Figures 7.12, and 7.15, show very little performance

di�erence between values of αs, and αe. In these tests, the agent Jane shows higher performance

than the agent Tarzan, in both Sarsa, and Q-learning.

Q-Function ANN Learning Rate Results from using Sarsa (Figure 7.5 for Tarzan, and Figure

7.6 for Jane) show near equal median percent of reward, for ηQ = 0.9, ηQ = 0.7, ηQ = 0.5, and

ηQ = 0.3. Results from using Q-learning show similar results, with slightly more variation (Figure

7.14 for Tarzan, and Figure 7.15 for Jane). The results for Jane consistently have higher performance

(percent of reward, and percent of steps in bounds) than results for Tarzan.

Motive Reward Factor The minimum reward received by the agent from one of their motivations

does signi�cantly a�ect the resulting percentages if mR < −0.1, see Figures 7.8 and 7.17. Note that

Tarzan and Jane have di�erent optimal values, caused by their di�erent motivation thresholds.

Q-Function ANN Hidden Neurons Testing has shown that it is best to use only one hidden

neuron layer. With this game scenario, good policies are found with at least 10 hidden neurons, and

up to 100 hidden neurons.

Dyna-Q All the results associated with Dyna-Q, in Figures 7.20, 7.21, 7.22, 7.23, 7.24, and 7.25,

show worst performance than those of Q-learning, indicating that only a few of the parameter

con�gurations were able to accurately train the model-function approximation. There are still cer-

tain parameter con�gurations that reach 100% of total reward with Dyna-Q, indicating the model

function approximation was correct in some cases.

7.5.2 Consistency

Testing the consistency of the results involved repeating tests under identical conditions, and com-

paring the results. In this case, the values in Table 7.18 are used in 5 separate game tests, with

results in Figures 7.26, and 7.27. The results show similar median percent of rewards, but with a

larger variation in result for percent of steps in bounds.

88

RL Algorithm HnQ ηQ mR RL Rate Exploration Rate

Q learning [100] 0.7 -0.05 αs = 0.9 αe = 0.7 εs = 0.3 εe = 0.1

Table 7.18: Outline of the variables used to test the consistency of Game Three's optimal parameters.

0

50

100

1 2 3 4 5
Repeated test

%

Percent reward comparing
consistency of Tarzan in Game 3

0

50

100

1 2 3 4 5
Repeated test

%

Percent reward comparing
consistency of Jane in Game 3

Figure 7.26: Comparing the percent of reward from policies trained using optimal parameters out-
lined in Table 7.18.

0

50

100

1 2 3 4 5
Repeated test

%

Percent in bounds comparing
consistency of Tarzan in Game 3

0

50

100

1 2 3 4 5
Repeated test

%

Percent in bounds comparing
consistency of Jane in Game 3

Figure 7.27: Comparing the percent of steps in bounds from policies trained using optimal parameters
outlined in Table 7.18.

7.5.3 Discount and Decay-Trace

The policies trained using optimal parameters outlined in Table 7.18 are used to compare the decay-

trace rate, and discount values. This game scenario is fairly simple with regards to delayed rewards

and number of motives. Notice that all trace-decay values, and discount rates, show a maximum

of 100% percent of reward. For Tarzan, and Jane, λ = 0.9 produces the higher median percent of

reward. The highest median percent of reward is γ = 0.5 for Tarzan, and γ = 0.7 for Jane.

89

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

100

γ

Percent of reward comparing γ
(Game 3, Tarzan, ε−greedy, Q−learning, test30)

%

(a)

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

100

λ

Percent of reward comparing λ
(Game 3, Tarzan, ε−greedy, Q−learning, test30)

%

(b)

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

100

γ

Percent of reward comparing γ
(Game 3, Jane, ε−greedy, Q−learning, test30)

%

(c)

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

100

λ

Percent of reward comparing λ
(Game 3, Jane, ε−greedy, Q−learning, test30)

%

(d)

Figure 7.28: Comparing the impact of γ and λ on the percent of reward for Tarzan, and Jane, given
the optimal set of parameters in Table 7.18.

7.5.4 Training Time

The policies found using the parameters in Table 7.18 are graphed according to training game. From

the results in Figure 7.29, the policies do not appear to improve past the 15th training game.

90

0 5 10 15 20 25 30
0

50

100

Percent of reward compared by testing game
(Game 3, Tarzan, egreedy, q, testing)

Run Number

%

(a)

0 5 10 15 20 25 30
0

50

100

Percent in bounds by training time
(Game 3, Tarzan, egreedy, q, testing)

Run Number

%

(b)

0 5 10 15 20 25 30
0

50

100

Percent of reward compared by testing game
(Game 3, Jane, egreedy, q, testing)

Run Number

%

(c)

0 5 10 15 20 25 30
0

50

100

Percent in bounds by training time
(Game 3, Jane, egreedy, q, testing)

Run Number
%

(d)

Figure 7.29: Comparing how of training time in�uences the percent of reward, and the percent of
steps in bounds, for Tarzan, and Jane, using the optimal Game Three parameter in Table 7.18.

7.5.5 Qualitative Analysis

Signi�cant results (optimal, and non-optimal), from parameters listed in Table 7.18, are analyzed

by their action selection sequences, rather than percent of reward.

Optimal Non-Optimal

Tarzan
γ 0.5 0.7

λ 0.9 0.1

Jane
γ 0.5 0.1

λ 0.9 0.7

Table 7.19: This table outlines exactly what discount rate, and trace-decay parameter, were used to
train the policies chosen for qualitative analysis.

91

20 30 40 50
0

50

100

Time Steps

M
o

ti
v

e
V

al
u

e

Hunger motive for Tarzan during
optimal policy (Game 3)

Eat Eat

(a)

0 50 100
0

50

100

Time Steps

M
o
ti

v
e

V
al

u
e

Social motive for Tarzan during
optimal policy (Game 3)

(b)

Figure 7.30: Actual motive values for the agent Tarzan, where the optimal policy was found using
parameters described in Table 7.18. The red horizontal lines show the boundaries for minimum, and
maximum desirable values.

0 20 40 60
0

50

100

Time Steps

M
o

ti
v

e
V

al
u

e

Hunger motive for Jane during
optimal policy (Game 3)

(a)

0 10 20 30 40 50
40

60

80

100

Time Steps

M
o
ti

v
e

V
al

u
e

Social motive for Jane during
optimal policy (Game 3)

(b)

Figure 7.31: Actual motive values for the agent Jane, where the optimal policy was found using
parameters described in Table 7.18. The red horizontal lines show the boundaries for minimum, and
maximum desirable values.

92

0 50 100
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Hunger motive for Tarzan during
sub−optimal policy (Game 3)

(a)

20 30 40 50
0

50

100

Time Steps

M
o
ti

v
e

V
al

u
e

Social motive for Tarzan during
sub−optimal policy (Game 3)

Talk Talk

(b)

Figure 7.32: Actual motive values for the agent Tarzan, where the terrible policy was found using
parameters described in Table 7.18. The red horizontal lines show the boundaries for minimum, and
maximum desirable values.

0 50 100
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Hunger motive for Jane during
sub−optimal policy (Game 3)

(a)

0 50 100
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Social motive for Jane during
sub−optimal policy (Game 3)

(b)

Figure 7.33: Actual motive values for the agent Jane, where the terrible policy was found using
parameters described in Table 7.18. The red horizontal lines show the boundaries for minimum, and
maximum desirable values.

In the case of the optimal policies, both Jane and Tarzan are not spoken to by another agent,

shown in Figures 7.30 and 7.31. Both agents go to the bar, talk to Bob, and immediately return

home. Both agents are repeatedly opening the fridge, making food accessible, and allowing the

motive values to decay naturally. Since there are no negative consequences associated with opening

the fridge (spoiled food), this learned sequence of actions is not surprising.

During the non-optimal policy for Tarzan, he rarely talks to other agents, and instead allows

93

them to talk to him. Where the rise in social motive is particularly high, Bob and Jane talk to

Tarzan at the same time, see Figure 7.32b. Tarzan is constantly moving between his house, and the

bar, perhaps looking for other agents that will to talk to him, since he won't talk to them.

The non-optimal policy for Jane shows her only going to the bar when her social motive is as

low as 33, and then having a conversation with Bob (Jane talking to Bob, and Bob talking to Jane).

Jane returns home when her social motive value becomes close to the maximum, see Figure 7.33b.

Otherwise Jane spends the majority of her time doing nothing, and occasionally opening her fridge

to eat food.

7.6 Summary

The introduction of inter-agent interactions has added a di�erent complexity to the game. The

number of other agents occupying the same space is important in learning why a motive is increasing

regardless of the agents actions. The small variation in results, between Tarzan, and Jane, suggests

that di�erent minimum, and maximum thresholds, have small in�uence on the required parameters

of the agents.

DynaQ planning shows a reduction in the median percent reward, and median percent in bounds,

over Sarsa, and Q-learning. The best case results with Dyna-Q have 100% of steps in bounds, even

with pS = 50, suggesting that Dyna-Q only reduces the performance in cases where the model is

learned incorrectly. Using Dyna-Q will not be practical with increasingly complex game scenarios,

because the worst case results should be reduced, even at the expense of slightly lower best case

results.

94

Chapter 8

Game Four

The fourth game scenario adds complexity by introducing an action with extremely delayed reward.

The agent must go to the grocery store, buy food, return home, open the fridge, and �nally, eat

the food. All �ve steps must be completed to increase the current hunger value. Tarzan's hunger

motive has a minimum of 60, and maximum of 80. Tarzan can move between his house, and the

grocery store. Only one food item can be bought at any time, and a food item must belong to

Tarzan (ownership) before he can eat it. Tarzan has access to eight actions that are listed in Table

8.1.

Object or
Action

A�ects

Place Food Position Ownership More Objects

Healthy food Eat +15 - - -

Buy - food to fridge Tarzan -

Unhealthy food Eat +10 - - -

Buy - food to fridge Tarzan -

Fridge Open
- - -

Access objects

in fridge

Grocery store Go to - agent to store - -

Tarzan's home Go to - agent to home - -

- Nothing - - - -

Table 8.1: Description of Tarzan's actions, and the resulting changes in the game world, for Game
Four.

8.1 Testing Outline

Using the insights gained from previous scenarios, Game Four tests complete combinations of a few

speci�cally chosen variables. Testing combinations of values allows the graphical analysis to show

95

interactions between parameters. Given the increased complexity of Game Four, Softmax action

selection is tested along with ε-greedy.

Initial results are analyzed with box-plots, showing the distribution of results across multiple pa-

rameter values. Further analysis is done using scatter plots, to see the actual results, and interactions

between parameters.

Most variables, once set, remain constant throughout the various training games, with the ex-

ception of the exploration (ε, and τ), and learning (α) rates. For example, if αs = 1.0, and αe = 0.1,

and there are a total of 60 training games, then the value for α will decrease by 0.015 for each

successive training game. The true measure of ε, τ , and α, cannot be determined until the �nal

training games, when their current values are close to their desired ending values. For this reason,

only the last three training games are taken into consideration during analysis (instead of testing

games with no exploration, or learning). An outline of Game Four testing can be seen in Table 8.2.

Section RL Algorithm Action Selection

8.2 Sarsa ε-greedy

8.3 Sarsa softmax

8.4 Q learning ε-greedy

8.5 Q learning softmax

8.6 DynaQ ε-greedy

8.7 DynaQ softmax

Table 8.2: Testing outline for Game Four.

8.2 Sarsa with ε-greedy

With this complicated game scenario, being able to look ahead for future rewards, and credit past

actions with current rewards, are important to learning actions with delayed consequences. The

values tested for each parameter are listed in Table 8.3. Each combination of variables is repeated

5 times, completing 60 training games for each repeated testing con�guration. In this case, 324000

di�erent results (percent of reward, and percent within bounds) were recorded. Box-plots showing

the distribution of results, according to di�erent parameter values, can be seen in Figures 8.1, 8.2,

and 8.3. A scatter plot showing the percent of reward can be seen in Figure 8.4.

After initial analysis, the best results occur with a high discount rate, and high trace-decay value.

For this reason, the 324000 results are reduced to 64800, thereby isolating the results to those with

γ = 0.9, and λ = 0.9. These narrowed results are graphed with a scatter plot, in Figure 8.5.

The best value for mR, according to Figure 8.5, is mR = −0.1, or mR = −0.05. The 64800

results are once again reduced, to 21601, in order to isolate the results with mR = −0.05. The

96

results of policies with γ = 0.9, λ = 0.9, and mR = −0.05, are illustrated with box-plots in Figures

8.6, and 8.7.

Variable Values

[γ, λ] [0.9, 0.9] [0.5, 0.5] [0.1, 0.1] [0.9, 0.1] [0.1, 0.9]

[εs, εe] [0.9, 0.1] [0.9, 0.5] [0.5, 0.1]

[αs, αe] [0.9, 0.1] [0.9, 0.5] [0.5, 0.1]

mR -0.1 -0.5 -0.05

ηQ 0.7 0.3

HnQ [10] [25] [50] [100]

Table 8.3: Parameter values tested in Game Four with Sarsa, and ε-greedy.

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

20

40

60

80

100

%

Percent of reward comparing α
(Game 4, sarsa, egreedy, train58 train59 train60)

(a)

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

20

40

60

80

100
%

Percent of reward comparing ε
(Game 4, sarsa, egreedy, train58 train59 train60)

(b)

Figure 8.1: Comparing the percent of reward of α, and ε, during testing for Game Four with Sarsa,
and ε-greedy.

0.9,0.9 0.5,0.5 0.1,0.1 0.9,0.1 0.1,0.9
0

20

40

60

80

100

%

Percent of reward comparing γλ
(Game 4, sarsa, egreedy, train58 train59 train60)

(a)

−0.1 −0.5 −0.05
0

20

40

60

80

100

%

Percent of reward comparing mR
(Game 4, sarsa, egreedy, train58 train59 train60)

(b)

Figure 8.2: Comparing the percent of reward of γλ, and mR, during testing for Game Four with
Sarsa, and ε-greedy.

97

0.7 0.3
0

20

40

60

80

100

%

Percent of reward comparing ηQ
(Game 4, sarsa, egreedy, train58 train59 train60)

(a)

 [10] [25] [50] [100]
0

20

40

60

80

100

%

Percent of reward comparing Hn
Q

(Game 4, sarsa, egreedy, train58 train59 train60)

(b)

Figure 8.3: Comparing the percent of reward of ηQ, and HnQ, during testing for Game Four with
Sarsa, and ε-greedy.

0

10

20

30

40

50

60

70

80

90

100

Game Four (Sarsa, ε−greedy,Tarzan)

Percent of total reward for train58 train59 train60

P
er

ce
n
t

o
f

to
ta

l
re

w
ar

d

γ=0.1 λ=0.9 γ=0.1 λ=0.1 γ=0.5 λ=0.5 γ=0.9 λ=0.9 γ=0.9 λ=0.1 γ=0.1 λ=0.9 γ=0.1 λ=0.1 γ=0.5 λ=0.5 γ=0.9 λ=0.9 γ=0.9 λ=0.1 γ=0.1 λ=0.9 γ=0.1 λ=0.1 γ=0.5 λ=0.5 γ=0.9 λ=0.9 γ=0.9 λ=0.1

ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1

Figure 8.4: All results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Sarsa, and ε-greedy.

98

0

20

40

60

80

100

Game 4 (sarsa,egreedy,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
nt

 o
f s

te
ps

 in
 b

ou
nd

s

mR=−0.5 mR=−0.1 mR=−0.05 mR=−0.5 mR=−0.1 mR=−0.05 mR=−0.5 mR=−0.1 mR=−0.05
ε=0.5 to 0.1 ε=0.9 to 0.5 ε=0.9 to 0.1

Figure 8.5: Results (percent in bounds) from training games 58, 59, and 60, during Game Four
testing with Sarsa, and ε-greedy. Only the results with γ = 0.9, and λ = 0.9 are included.

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

50

100

%

Percent in bounds comparing ε
(Game 4, sarsa, egreedy, train58 train59 train60)

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

50

100

%

Percent in bounds comparing α
(Game 4, sarsa, egreedy, train58 train59 train60)

Figure 8.6: Comparing the percent of steps in bounds of ε, and α, during testing for Game Four
with Sarsa, and ε-greedy. Only the results with γ = 0.9, λ = 0.9, and mR = −0.05, are included.

0.7 0.3
0

50

100

%

Percent in bounds comparing ηQ
(Game 4, sarsa, egreedy, train58 train59 train60)

 [10] [25] [50] [100]
0

50

100

%

Percent in bounds comparing Hn
Q

(Game 4, sarsa, egreedy, train58 train59 train60)

Figure 8.7: Comparing the percent of steps in bounds of ηQ, and HnQ, during testing for Game Four
with Sarsa, and ε-greedy. Only the results with γ = 0.9, λ = 0.9, and mR = −0.05, are included.

99

8.3 Sarsa with Softmax

With Game Four being the �rst scenario to test Softmax action selection, it is important to test

many temperature values. The list of tested variables can be seen in Table 8.4. Each combination

of values is repeated 5 times, completing 60 training games for each repeated testing con�guration.

In this case, all combinations of parameter values give 36000 results. Analysis showing distributions

of the results can be seen in Figures 8.8, 8.9, and 8.10. The results are also graphed in Figures 8.11,

and 8.12.

An initial analysis shows that the best results occur with a high discount rate, and high trace-

decay value. For this reason, the 36000 results are reduced to 12000, thereby isolating the results to

those with γ = 0.9, and λ = 0.9. A scatter plot of the reduced results can be seen in Figures 8.13,

and 8.14. Finally, the results reduced to those with mR = −0.1, and graphed in Figure 8.15, 8.16,

and 8.17.

Variable Values

[γ, λ] [0.9, 0.9] [0.7, 0.9] [0.7, 0.5]

[τs, τe] [1.0,0.01] [0.01, 0.001] [0.1, 0.001] [10, 1] [1.0, 0.001]

[αs, αe] [0.9. 0.9]

mR -0.1 -0.01

ηQ 0.3 0.9

HnQ [50] [100]

Table 8.4: Parameter values tested for Game Four with Sarsa, and Softmax.

0

50

100

%

Percent of reward comparing τ
(Game 4, sarsa, softmax, train58 train59 train60)

τ s=
1.

0
 τ e

=0.
01

τ s=
0.

01
 τ

e
=0.

00
1

τ s=
0.

1
 τ e

=0.
00

01

τ s=
10

 τ
e
=1

τ s=
1

 τ e
= 0

.0
01

(a)

0

50

100

%

Percent of reward comparing γ λ
(Game 4, sarsa, softmax, train58 train59 train60)

γ =
 0.

9

λ= 0
.9

γ =
 0.

7

λ= 0
.9

γ =
 0.

7

λ= 0
.5

(b)

Figure 8.8: Comparing the percent of reward of τ , and γλ, during testing for Game Four with Sarsa,
and Softmax.

100

[50] [100]
0

50

100

%

Percent of reward comparing Hn
Q

(Game 4, sarsa, softmax, train58 train59 train60)

(a)

−0.1 −0.01
0

50

100

%

Percent of reward comparing mR
(Game 4, sarsa, softmax, train58 train59 train60)

(b)

Figure 8.9: Comparing the percent of reward of HnQ, and mR, during testing for Game Four with
Sarsa, and Softmax.

0.9 0.3
0

50

100

%

Percent of reward comparing ηQ
(Game 4, sarsa, softmax, train58 train59 train60)

(a)

Figure 8.10: Comparing the percent of reward of ηQ during testing for Game Four with Sarsa, and
Softmax.

0

20

40

60

80

100

Game 4 (sarsa,softmax,tarzan) percent of total
reward for train58 train59 train60

P
er

ce
nt

 o
f t

ot
al

 r
ew

ar
d

mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01
τ=0.01 to 0.001 τ=0.1 to 0.0001 τ=1 to 0.01 τ=1 to 0.001 τ=10 to 1

Figure 8.11: All results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Sarsa, and Softmax.

101

0

20

40

60

80

100

Game 4 (sarsa,softmax,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
nt

 o
f s

te
ps

 in
 b

ou
nd

s

mR=−0.1mR=−0.01mR=−0.1mR=−0.01mR=−0.1mR=−0.01mR=−0.1mR=−0.01mR=−0.1mR=−0.01
τ=0.01 to 0.001 τ=0.1 to 0.0001 τ=1 to 0.01 τ=1 to 0.001 τ=10 to 1

Figure 8.12: All results (percent of steps in bounds) from training games 58, 59, and 60, during
Game Four testing with Sarsa, and Softmax.

0

20

40

60

80

100

Game 4 (sarsa,softmax,tarzan) percent of total
reward for train58 train59 train60

P
er

ce
nt

 o
f t

ot
al

 r
ew

ar
d

mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01
τ=0.01 to 0.001 τ=0.1 to 0.0001 τ=1 to 0.01 τ=1 to 0.001 τ=10 to 1

Figure 8.13: Results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Sarsa, and Softmax. Only the results with γ = 0.9, and λ = 0.9 are included in this
scatter plot.

102

0

20

40

60

80

100

Game 4 (sarsa,softmax,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
nt

 o
f s

te
ps

 in
 b

ou
nd

s

mR=−0.1mR=−0.01mR=−0.1mR=−0.01mR=−0.1mR=−0.01mR=−0.1mR=−0.01mR=−0.1mR=−0.01
τ=0.01 to 0.001 τ=0.1 to 0.0001 τ=1 to 0.01 τ=1 to 0.001 τ=10 to 1

Figure 8.14: Results (percent of steps in bounds) from training games 58, 59, and 60, during Game
Four testing with Sarsa, and Softmax. Only the results with γ = 0.9, and λ = 0.9 are included in
this scatter plot.

1
to

 0
.0

1

0.
01

 to
 0

.0
01

0.
1

to
 0

.0
00

1

10
 to

 1

1
to

 0
.0

01
0

50

100

%

Percent of reward comparing τ
(Game 4, sarsa, softmax, train58 train59 train60)

(a)

0

50

100

%

Percent in bounds comparing τ e
(Game 4, sarsa, softmax, train58 train59 train60)

1
to

 0
.0

1

0.
01

 to
 0

.0
01

0.
1

to
 0

.0
00

1

10
 to

 1

1
to

 0
.0

01

(b)

Figure 8.15: Comparing the percent of reward, and the percent of steps in bounds, of τ during
testing for Game Four with Sarsa, and Softmax. The results are limited to those with γ = 0.9,
λ = 0.9, and mR = −0.1.

103

0.9 0.3
0

50

100

%

Percent of reward comparing ηQ
(Game 4, sarsa, softmax, train58 train59 train60)

(a)

0.9 0.3
0

50

100

%

Percent in bounds comparing ηQ
(Game 4, sarsa, softmax, train58 train59 train60)

(b)

Figure 8.16: Comparing the percent of reward, and the percent of steps in bounds, of ηQ during
testing for Game Four with Sarsa, and Softmax. The results are limited to those with γ = 0.9,
λ = 0.9, and mR = −0.1.

 [50] [100]
0

50

100

%

Percent of reward comparing Hn
Q

(Game 4, sarsa, softmax, train58 train59 train60)

(a)

 [50] [100]
0

50

100

%

Percent in bounds comparing Hn
Q

(Game 4, sarsa, softmax, train58 train59 train60)

(b)

Figure 8.17: Comparing the percent of reward, and the percent of steps in bounds, of HnQ during
testing for Game Four with Sarsa, and Softmax. The results are limited to those with γ = 0.9,
λ = 0.9, and mR = −0.1.

8.4 Q-Learning with ε-greedy

The tested values for Game Four with Q-learning, and ε-greedy, are listed in Table 8.5. Every

variable combination is repeated 5 times, completing 60 training games for each repeated testing

con�guration. An analysis showing distributions of the results can be seen in Figures 8.18, 8.19, and

8.20. All results are also graphed using a scatter plot, in Figures 8.21, and 8.22.

After an initial analysis, the results are reduced to those with γ = 0.9, and λ = 0.9, and graphed

with a scatter plot, in Figure 8.23. The results are further reduced to those with mR = −0.1, and

graphed with a scatter plot in Figure 8.24, and box-plots in Figures 8.25, and 8.26.

Finally, results are reduced to those with ηQ = 0.7, HnQ = [100], αs = 0.9, and αe = 0.5, and

compared in Figure 8.27.

104

Variable Values

[γ, λ] [0.9, 0.9] [0.5, 0.5] [0.1, 0.1] [0.9, 0.1] [0.1, 0.9]

[εs, εe] [0.9, 0.1] [0.9, 0.5] [0.5, 0.1]

[αs, αe] [0.9, 0.1] [0.9, 0.5] [0.5, 0.1]

mR -0.1 -0.5 -0.05

ηQ 0.7 0.3

HnQ [10] [25] [50] [100]

Table 8.5: Parameter values tested in Game Four with Q-learning, and ε-greedy.

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

20

40

60

80

100

%

Percent of reward comparing α
(Game 4, q, egreedy, train58 train59 train60)

(a)

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

20

40

60

80

100

%

Percent of reward comparing ε
(Game 4, q, egreedy, train58 train59 train60)

(b)

Figure 8.18: Comparing the percent of reward of α, and ε, during testing for Game Four with
Q-learning, and ε-greedy .

γ=
0.

9
λ=0.

9

γ=
0.

5
λ=0.

5

γ=
0.

1
λ=0.

1

γ=
0.

9
λ=0.

1

γ=
0.

1
λ=0.

9
0

20

40

60

80

100

%

Percent of reward comparing γλ
(Game 4, q, egreedy, train58 train59 train60)

(a)

−0.1 −0.5 −0.05
0

20

40

60

80

100

%

Percent of reward comparing mR
(Game 4, q, egreedy, train58 train59 train60)

(b)

Figure 8.19: Comparing the percent of reward of γλ, and mR, during testing for Game Four with
Q-learning, and ε-greedy.

105

0.7 0.3
0

20

40

60

80

100

%

Percent of reward comparing ηQ
(Game 4, q, egreedy, train58 train59 train60)

(a)

[10] [25] [50] [100]
0

20

40

60

80

100

%

Percent of reward comparing Hn
Q

(Game 4, q, egreedy, train58 train59 train60)

(b)

Figure 8.20: Comparing the percent of reward of ηQ, and HnQ, during testing for Game Four with
Q-learning, and ε-greedy.

0

20

40

60

80

100

Game 4 (q,egreedy,tarzan) percent of total reward
for train58 train59 train60

P
er

ce
n

t
o

f
to

ta
l

re
w

ar
d

ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1 ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1 ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1 ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1 ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1

γ=0.1 λ=0.9 γ=0.1 λ=0.1 γ=0.5 λ=0.5 γ=0.9 λ=0.9 γ=0.9 λ=0.1

Figure 8.21: All results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Q-learning, and ε-greedy.

106

0

20

40

60

80

100

Game 4 (q,egreedy,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
n

t
o

f
st

ep
s

in
 b

o
u

n
d

s

γ=0.1 λ=0.9 γ=0.1 λ=0.1 γ=0.5 λ=0.5 γ=0.9 λ=0.9 γ=0.9 λ=0.1

ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1 ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1 ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1 ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1 ε =0.5 to 0.1 ε =0.9 to 0.5 ε =0.9 to 0.1

Figure 8.22: All results (percent of steps in bounds) from training games 58, 59, and 60, during
Game Four testing with Q-learning, and ε-greedy.

0

20

40

60

80

100

Game 4 (q,egreedy,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
nt

 o
f s

te
ps

 in
 b

ou
nd

s

mR=−0.5 mR=−0.1 mR=−0.05 mR=−0.5 mR=−0.1 mR=−0.05 mR=−0.5 mR=−0.1 mR=−0.05
ε=0.5 to 0.1 ε=0.9 to 0.5 ε=0.9 to 0.1

Figure 8.23: Results (percent of steps in bounds) from training games 58, 59, and 60, during Game
Four testing with Q-learning, and ε-greedy. The results are limited to those with γ = 0.9, and
λ = 0.9.

107

0

20

40

60

80

100

Game 4 (q,egreedy,tarzan) percent of steps in
bounds for train58 train59 train60

Pe
rc

en
t o

f
st

ep
s

in
 b

ou
nd

s

ε=0.5 to 0.1ε=0.9 to 0.5ε=0.9 to 0.1ε=0.5 to 0.1ε=0.9 to 0.5ε=0.9 to 0.1ε=0.5 to 0.1ε=0.9 to 0.5ε=0.9 to 0.1
α=0.5 to 0.1 α=0.9 to 0.5 α=0.9 to 0.1

Figure 8.24: Results (percent of steps in bounds) from training games 58, 59, and 60, during Game
Four testing with Q-learning, and ε-greedy. The results are limited to those with γ = 0.9, λ = 0.9,
and mR = −0.1.

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

50

100

%

Percent in bounds comparing α
(Game 4, q, egreedy, train58 train59 train60)

(a)

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

50

100

%

Percent in bounds comparing ε
(Game 4, q, egreedy, train58 train59 train60)

(b)

Figure 8.25: Comparing the percent of steps in bounds of α, and ε, during testing for Game Four with
Q-learning, and ε-greedy . The results are limited to those with γ = 0.9, λ = 0.9, and mR = −0.1.

108

0.7 0.3
0

50

100

%

Percent in bounds comparing ηQ
(Game 4, q, egreedy, train58 train59 train60)

(a)

 [10] [25] [50] [100]
0

50

100

%

Percent in bounds comparing Hn
Q

(Game 4, q, egreedy, train58 train59 train60)

(b)

Figure 8.26: Comparing the percent of steps in bounds of ηQ, and HnQ, during testing for Game
Four with Q-learning, and ε-greedy. The results are limited to those with γ = 0.9, λ = 0.9, and
mR = −0.1.

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

50

100

%

Percent of reward comparing ε
(Game 4, q, egreedy, train58 train59 train60)

(a)

0.9 to 0.1 0.9 to 0.5 0.5 to 0.1
0

50

100

%

Percent in bounds comparing ε
(Game 4, q, egreedy, train58 train59 train60)

(b)

Figure 8.27: Comparing the results of ε, during testing for Game Four with Q-learning, and ε-
greedy. The results are limited to those withγ = 0.9, λ = 0.9, mR = −0.1, ηQ = 0.7, HnQ = [100],
mR = −0.1, αs = 0.9, and αe = 0.5.

8.5 Q-Learning with softmax

The tested values for Game Four with Q-learning, and Softmax, are listed in Table 8.6. Each

combination of variables is repeated 5 times, completing 60 training games for each repeated test

con�guration. Analysis showing distributions the of results can be seen in Figures 8.28, 8.29, and

8.30. All results from the last three training games (train58, train59, and train60), are graphed

using a scatter plot in Figures 8.31, and 8.32. The full combinations of results are reduced to those

with γ = 0.9, λ = 0.9, mR = −0.1, ηQ = 0.9, mR = −0.1, αs = 0.9, and αe = 0.9. The narrow

results can be seen in Figure 8.33.

109

Variable Values

[γ, λ] [0.9, 0.9]

[τs, τe] [0.1, 0.001] [1, 0.001] [1,0.0001] [0.1, 0.0001]

[αs, αe] [0.9. 0.9] [0.5. 0.5]

mR -0.1 -0.01

ηQ 0.9 0.3

HnQ [50] [100] [150]

Table 8.6: Parameter values tested in Game Four with Q-learning, and Softmax.

0.1 to 0.001 1 to 0.001 1 to 0.0001 0.1 to 0.0001
0

50

100

%

Percent of reward comparing τ
(Game 4, q, softmax, train58 train59 train60)

(a)

0.9 to 0.9 0.5 to 0.5
0

50

100

%

Percent of reward comparing α
(Game 4, q, softmax, train58 train59 train60)

(b)

Figure 8.28: Comparing the percent of reward of τ , and α, during testing for Game Four with
Q-learning, and Softmax.

[50] [100] [150]
0

50

100

%

Percent of reward comparing Hn
Q

(Game 4, q, softmax, train58 train59 train60)

(a)

−0.1 −0.01
0

50

100

%

Percent of reward comparing mR
(Game 4, q, softmax, train58 train59 train60)

(b)

Figure 8.29: Comparing the percent of reward of HnQ, and mR, during testing for Game Four with
Q-learning, and Softmax.

110

0.9 0.3
0

50

100

%

Percent of reward comparing ηQ
(Game 4, q, softmax, train58 train59 train60)

(a)

Figure 8.30: Comparing the percent of reward of ηQ during testing for Game Four with Q-learning,
and Softmax.

0

20

40

60

80

100

Game 4 (q,softmax,tarzan) percent of total reward
for train58 train59 train60

P
er

ce
nt

 o
f t

ot
al

 r
ew

ar
d

mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01
τ=0.1 to 0.001 τ=0.1 to 0.0001 τ=1 to 0.001 τ=1 to 0.0001

Figure 8.31: All results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Q-learning, and Softmax.

111

0

20

40

60

80

100

Game 4 (q,softmax,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
nt

 o
f s

te
ps

 in
 b

ou
nd

s

mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01 mR=−0.1 mR=−0.01
τ=0.1 to 0.001 τ=0.1 to 0.0001 τ=1 to 0.001 τ=1 to 0.0001

Figure 8.32: All results (percent of steps in bounds) from training games 58, 59, and 60, during
Game Four testing with Q-learning, and Softmax.

[50] [100] [150]
0

50

100

%

Percent in bounds comparing Hn
Q

(Game 4, q, softmax, train58 train59 train60)

(a)

0.1 to 0.001 1 to 0.001 1 to 0.0001 0.1 to 0.0001
0

50

100

%

Percent in bounds comparing τ e
(Game 4, q, softmax, train58 train59 train60)

(b)

Figure 8.33: Comparing the percent of steps in bounds of HnQ, and τ , during testing for Game
Four with Q-learning, and Softmax. The results are limited to those with mR = −0.1, ηQ = 0.9,
αs = 0.9, and αe = 0.9.

8.6 Dyna-Q with ε-greedy

The tested values for Game Four with Dyna-Q, and ε-greedy, are listed in Table 8.7. Analysis

showing distributions of the results can be seen in Figures 8.34, 8.35, and 8.36. All results from the

last three training games (train58, train59, and train60), are graphed using a scatter plot seen in

Figure 8.37. Every variable combination is repeated 5 times, completing 60 training games steps for

each repeated testing con�guration.

112

Variable Values

[γ, λ] [0.9, 0.9]

[εs, εe] [0.5, 0.2] [0.3, 0.1]

[αs, αe] [1.0, 1.0]

mR -0.1 -0.01

ηQ 0.9

HnQ [50] [100]

ηM 0.7

HnM [10] [20]

pS 0 5

Table 8.7: Parameter values tested in Game Four using Dyna-Q, and ε-greedy.

0.5 to 0.2 0.3 to 0.1
0

50

100

%

Percent of reward comparing ε
(Game 4, dynaq, egreedy, train58 train59 train60)

(a)

−0.1 −0.01
0

50

100
%

Percent of reward comparing mR
(Game 4, dynaq, egreedy, train58 train59 train60)

(b)

Figure 8.34: Comparing the percent of reward of ε, and mR, during testing for Game Four with
Dyna-Q, and ε-greedy.

 [50] [100]
0

50

100

%

Percent of reward comparing Hn
Q

(Game 4, dynaq, egreedy, train58 train59 train60)

(a)

 [10] [20]
0

50

100

%

Percent of reward comparing Hn
M

(Game 4, dynaq, egreedy, train58 train59 train60)

(b)

Figure 8.35: Comparing the percent of reward of HnQ, and HnM , during testing for Game Four
with Dyna-Q, and ε-greedy.

113

0 5
0

50

100

%

Percent of reward comparing pS
(Game 4, dynaq, egreedy, train58 train59 train60)

(a)

Figure 8.36: Comparing the percent of reward of pS during testing for Game Four with Dyna-Q,
and ε-greedy.

0

20

40

60

80

100

Game 4 (dynaq,egreedy,tarzan) percent of total
reward for train58 train59 train60

Pe
rc

en
t o

f
to

ta
l r

ew
ar

d

pS=0 pS=5 pS=0 pS=5
ε=0.3 to 0.1 ε=0.5 to 0.2

Figure 8.37: All results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Dyna-Q, and ε-greedy.

8.7 Dyna-Q with Softmax

The tested values for Game Four with Dyna-Q, and Softmax, are listed in Table8.8. Analysis showing

distributions of the results can be seen in Figures 8.38, and 8.39. All results from the last three

training games (train58, train59, and train60), are graphed using a scatter plot, in Figures 8.40,

8.41, 8.42, and 8.43. Every variable combination is repeated 5 times, completing 60 training games

for each repeated testing con�guration.

After analyzing the initial results, the values τs = 0.01, and τe = 0.00001, produce policies that

are split between great, and terrible, percent of reward, and percent of steps in bounds. With the

114

goal of maximizing the performance of all policies, all results with τs = 0.01, and τe = 0.00001,

are eliminated from the overall results. The reduced results show that more planning steps produce

policies with better performance, particularly when the temperature value is reduced to τe = 0.00001,

see Figures 8.44, and 8.45. The results are further reduced to those with τs = 0.1, and τe = 0.00001,

with box-plots in Figures 8.46, 8.47, and 8.48.

Variable Values

[γ, λ] [0.9, 0.9]

[τs, τe] [0.01,0.00001] [0.1,0.0001] [0.1,0.00001]

[αs, αe] [1.0, 1.0]

mR -0.1 -0.01

ηQ 0.9

HnQ [50] [100]

ηM 0.7

HnM [20] [50]

pS 0 5

Table 8.8: Parameter values tested in Game Four with Dyna-Q, and Softmax.

0.01 to 1e−005 0.1 to 0.0001 0.1 to 1e−005 1 to 0.001

0

50

100

%

Percent of reward comparing τ
(Game 4, dynaq, softmax, train58 train59 train60)

(a)

−0.1 −0.01
0

50

100

%

Percent of reward comparing mR
(Game 4, dynaq, softmax, train58 train59 train60)

(b)

Figure 8.38: Comparing the percent of reward of ε, and mR, during testing for Game Four with
Dyna-Q, and Softmax.

115

0 5
0

50

100

%

Percent of reward comparing pS
(Game 4, dynaq, softmax, train58 train59 train60)

(a)

 [20] [50]
0

50

100

%

Percent of reward comparing Hn
M

(Game 4, dynaq, softmax, train58 train59 train60)

(b)

Figure 8.39: Comparing the percent of reward of HnM , and pS, during testing for Game Four with
Dyna-Q, and Softmax.

0

20

40

60

80

100

Game 4 (dynaq,softmax,tarzan) percent of total
reward for train58 train59 train60

P
er

ce
n

t
o

f
to

ta
l

re
w

ar
d

τ=0.01 to 1e−005 τ=0.1 to 0.0001 τ=0.1 to 1e−005 τ=1 to 0.001 τ=0.01 to 1e−005 τ=0.1 to 0.0001 τ=0.1 to 1e−005 τ=1 to 0.001

mR=−0.1 mR=−0.01

Figure 8.40: All results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Dyna-Q, and Softmax.

116

0

20

40

60

80

100

Game 4 (dynaq,softmax,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
n
t

o
f

st
ep

s
in

 b
o
u
n
d
s

τ =0.01 to 1e−005 τ =0.1 to 0.0001 τ =0.1 to 1e−005 τ =1 to 0.001 τ =0.01 to 1e−005 τ =0.1 to 0.0001 τ =0.1 to 1e−005 τ =1 to 0.001

mR=−0.1 mR=−0.01

Figure 8.41: All results (percent of steps in bounds) from training games 58, 59, and 60, during
Game Four testing with Dyna-Q, and Softmax.

0

20

40

60

80

100

Game 4 (dynaq,softmax,tarzan) percent of total
reward for train58 train59 train60

P
er

ce
n

t
o

f
to

ta
l

re
w

ar
d

τ=0.01 to 1e−005 τ=0.1 to 0.0001 τ=0.1 to 1e−005 τ=1 to 0.001 τ=0.01 to 1e−005 τ=0.1 to 0.0001 τ=0.1 to 1e−005 τ=1 to 0.001

pS=0 pS=5

Figure 8.42: All results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Dyna-Q, and Softmax.

117

0

20

40

60

80

100

Game 4 (dynaq,softmax,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
n
t

o
f

st
ep

s
in

 b
o
u
n
d
s

τ =0.01 to 1e−005 τ =0.1 to 0.0001 τ =0.1 to 1e−005 τ =1 to 0.001 τ =0.01 to 1e−005 τ =0.1 to 0.0001 τ =0.1 to 1e−005 τ =1 to 0.001

pS=0 pS=5

Figure 8.43: All results (percent of steps in bounds) from training games 58, 59, and 60, during
Game Four testing with Dyna-Q, and Softmax.

0

20

40

60

80

100

Game 4 (dynaq,softmax,tarzan) percent of total
reward for train58 train59 train60

P
er

ce
nt

 o
f t

ot
al

 r
ew

ar
d

pS=0 pS=5 pS=0 pS=5 pS=0 pS=5
τ=0.1 to 0.0001 τ=0.1 to 1e−005 τ=1 to 0.001

Figure 8.44: Results (percent of reward) from training games 58, 59, and 60, during Game Four
testing with Dyna-Q, and Softmax. These results do not include those with τs = 0.01, and τe =
0.00001.

118

0

20

40

60

80

100

Game 4 (dynaq,softmax,tarzan) percent of steps in
bounds for train58 train59 train60

P
er

ce
nt

 o
f s

te
ps

 in
 b

ou
nd

s

pS=0 pS=5 pS=0 pS=5 pS=0 pS=5
τ=0.1 to 0.0001 τ=0.1 to 1e−005 τ=1 to 0.001

Figure 8.45: Results (percent of steps in bounds) from training games 58, 59, and 60, during Game
Four testing with Dyna-Q, and Softmax. These results do not include those with τs = 0.01, and
τe = 0.00001.

0 5
0

50

100

%

Percent of reward comparing pS
(Game 4, dynaq, softmax, train58 train59 train60)

(a)

0 5
0

50

100

%

Percent in bounds comparing pS
(Game 4, dynaq, softmax, train58 train59 train60)

(b)

Figure 8.46: Comparing the performance of pS, during testing for Game Four with Dyna-Q, and
Softmax. The results are limited to those with τs = 0.1, and τe = 0.00001.

119

 [20] [50]
0

50

100

%

Percent of reward comparing Hn
M

(Game 4, dynaq, softmax, train58 train59 train60)

(a)

 [20] [50]
0

50

100

%

Percentin bounds comparing Hn
M

(Game 4, dynaq, softmax, train58 train59 train60)

(b)

Figure 8.47: Comparing the performance of HnM , during testing for Game Four with Dyna-Q, and
Softmax. The results are limited to those with τs = 0.1, and τe = 0.00001.

−0.1 −0.01
0

50

100

%

Percent of reward comparing mR
(Game 4, dynaq, softmax, train58 train59 train60)

(a)

−0.1 −0.01
0

50

100

%

Percent in bounds comparing mR
(Game 4, dynaq, softmax, train58 train59 train60)

(b)

Figure 8.48: Comparing the performance of mR, during testing for Game Four with Dyna-Q, and
Softmax. The results are limited to those with τs = 0.1, and τe = 0.00001.

8.8 Discussion

This section will discuss the testing results for Game Four in terms of optimal parameters, consis-

tency, training time, and selective qualitative analysis.

8.8.1 Parameters

Exploration Rate Since Game Four introduced Softmax action selection for the �rst time, the

exploration rate refers to both ε, and τ . After testing ε-greedy with Sarsa, and Q-learning, the value

that maximizes the percent of steps in bounds, was found to be εs = 0.5, and εe = 0.1, see Figures

8.6, and 8.27. Results also show that values of εs = 0.9, and εe = 0.5, produce policies with much

higher percent of reward, see Figures 8.6, and 8.27. The best possible exploration rate will depend

on the importance of reward, and steps in bounds.

After testing the Softmax action selection, similar results were seen for Sarsa, and Q-learning.

The values that produce higher percent of reward, and higher percent of steps in bounds, that start

120

with τs = 1, and end with τe = 0.001, or τe = 0.001, see Figures 8.15, and 8.33.

The exploration rates that were successful for Dyna-Q were much smaller than for Sarsa, or

Q-learning. In the case of Dyna-Q with ε-greedy, better policies are trained with εs = 0.3, and

εe = 0.1, see Figure 8.34. For Dyna-Q and Softmax, higher performing (percent of reward, and

percent of steps) policies were trained with τs = 0.1, and τe = 0.00001, see Figures 8.44, and 8.45.

Reinforcement Learning Rate Not all variable combinations included multiple values for the

reinforcement learning rate (α). When the values were tested, the policies always perform better

with higher values of α, see Figures 8.6, and 8.25.

Q-Function ANN Learning Rate For this game scenario, larger values for ηQ produce policies

with a higher percent of reward, and a higher percent of steps in bounds, see Figures 8.7, 8.16, 8.26,

and 8.30.

Motive Reward Factor For this game scenario, mR = −0.1 produced better policies for all RL

algorithms, and action selection methods, see Figures 8.5, 8.11, 8.23, and 8.31. There is very little

variation in results when changing mR while using ε-greedy action selection. However, because mR

directly in�uences the magnitude of rewards, and the resulting Q-function values, di�erent values

for mR require di�erent temperature rates.

Discount and Trace-Decay Throughout all tests for this game scenario, the optimal values are

consistently γ = 0.9 and λ = 0.9. This suggests that optimal policies are found when rewards are

propagated to previous actions as much as possible, and future rewards are considered more heavily

than short-term rewards.

Q-Function ANN Hidden Neurons For this game scenario, all values of HnQ have only 1

hidden layer. Best results were achieved with HnQ = [50], or HnQ = [100], see Figure 8.7, 8.17,

8.26, 8.29, and 8.35.

Dyna-Q Given the Game Four scenario is more complex than previous Games, it was expected

that Dyna-Q results, with pS > 0, would produce terrible policies. This expectation was con�rmed

in the testing results for Dyna-Q and ε-greedy, see Figure 8.36. The results for Dyna-Q and Softmax

are more promising, see Figure 8.46. The median percent of steps in bounds, and the median percent

of reward, are higher for pS = 5, than for pS = 0.

121

RL HnQ ηQ mR αS αe εs εe γ λ
Sarsa [100] 0.7 -0.1 0.9 0.5 0.9 0.5 0.9 0.9

Table 8.9: Outline of the variables used to test the consistency of the results.

Percent of Reward

Test Number train58 train59 train60 mean

1 97.70 98.87 98.14 98.24

2 97.14 96.67 97.51 97.11

3 96.25 96.04 96.86 96.38

4 96.66 97.58 97.77 97.34

5 96.52 97.41 96.51 96.82

6 97.74 97.72 95.48 96.98

7 98.28 98.43 96.16 97.62

8 97.23 97.45 97.68 97.45

9 96.71 97.17 97.92 97.27

10 90.25 95.29 97.70 94.41

11 96.88 88.73 93.17 92.93

12 92.50 96.74 96.33 95.19

13 95.83 97.38 96.83 96.68

14 93.78 97.21 95.44 95.48

15 91.84 95.76 96.30 94.63

16 94.75 96.53 96.71 96.00

17 97.80 95.80 97.75 97.12

18 95.37 97.57 97.81 96.92

19 95.22 96.35 94.82 95.46

20 97.46 98.29 97.48 97.74

Std 2.19 2.09 1.26 1.33

Table 8.10: Statistics measuring consistency of Game Four results (percent of reward).

8.8.2 Consistency

Testing the consistency of the results involves repeating a test under identical conditions and com-

paring the results. To determine consistency, 20 repeated tests were run with identical parameter

values (Table 8.9). The results of the last 3 training games (train58, train59, and train60), for every

test number, can be found in Table 8.10 for the percent of reward, and Table 8.11 for the percent

of steps in bounds. After analyzing the results, it is clear that there is more variation among the

percent of steps in bounds, than the percent of reward.

122

Percent of Steps in Bounds

Test Number train58 train59 train60 mean

1 71.8 78.8 73.3 74.63

2 67.3 60.5 70.7 66.17

3 58.4 57.2 57.3 57.63

4 56.9 66.9 73.4 65.73

5 62.2 68.6 62.8 64.53

6 67.5 68.3 45 60.27

7 73.6 74.6 59.1 69.10

8 66.2 60.3 64.6 63.70

9 57.4 62.6 68.1 62.70

10 29.1 51.4 67.7 49.40

11 56.6 38.1 32.2 42.30

12 37.2 58.7 60.1 52.00

13 51.2 70.4 63.4 61.67

14 47.7 65.3 57.3 56.77

15 38.6 61.6 50.1 50.10

16 42.7 57 59.7 53.13

17 75.5 59.7 72.2 69.13

18 57.7 67 71.5 65.40

19 51.3 55.7 59.2 55.40

20 66.8 73 63.1 67.63

Std 12.83 9.05 10.24 8.12

Table 8.11: Statistics measuring consistency of Game Four results (percent of steps in bounds).

8.8.3 Training Time

Complexity of the game four scenario necessitates a longer training time. The Figures 8.49 and 8.50

show distributions of the results for the 20 repeated tests, after each training game. The parameter

values tested are outlined in Table 8.9. Further training has the potential to improve the percent in

bounds given the fact that the values are slowly increasing, even at the 60th training game.

123

0 10 20 30 40 50 60
0

20

40

60

80

100

Percent reward, training time in Game 4
(egreedy, sarsa, training)

Run Number

%

Figure 8.49: Showing the percent of reward after every training game to compare the in�uence of
training time. Each run number includes results from the 20 repeated tests from Table 8.9.

0 10 20 30 40 50 60
0

20

40

60

80

100

Percent in bounds, training time in Game 4
(egreedy, sarsa, training)

Run Number

%

Figure 8.50: Showing the percent of steps in bounds after every training game to compare the
in�uence of training time. Each run number includes results from the 20 repeated tests from Table
8.9.

8.8.4 Qualitative Analysis

Analyzing how motive values change during a game is important to the overall goal of believability.

Figure 8.51 shows the motive values from two policies that were found using the variables described

in Table 8.9. In both cases, the agent prefers to go below the minimum threshold, rather than go

above the maximum. This is easily explained by the bounds themselves. The individual motive

reward is scaled by the range between the maximum and 100, or minimum and 0, depending on

which side of the bounds the current motive value resides. The smaller the range, the more severe the

negative reward. Going over the maximum threshold by 10 received much larger negative reward,

than if the motive value were 10 below the minimum threshold. For this reason it makes complete

sense that the agent avoids going over the maximum much more than it avoids going under the

minimum. It is an accurate result of the learning.

124

0 500 1000
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Hunger motive during best
reward policy (Game 4)

(a) The hunger motive values throughout the �-

nal training game that maximizes the amount of

reward.

0 500 1000
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Hunger motive during best in
bounds policy (Game 4)

(b) The hunger motive values throughout the �nal

training game that maximizes the amount of steps

in bounds.

Figure 8.51: Qualitative analysis of the policies found using parameters outlines in Table 8.9.

8.9 Summary

The results show that an agent can learn actions even with rewards that are delayed as much as �ve

game steps. The agent Tarzan, learns to go to the grocery store, buy food, return home, open the

fridge, and eat the food. In this simpli�ed real life scenario, the food can only be purchased one at a

time, and the food instantly goes into the fridge once purchased. The fridge does have a maximum

capacity, to prevent the agent from buying too much food at any given time. With the introduction

of Softmax action selection, it was interesting to see that mR has such large in�uence on the best

τ value. Softmax uses estimated Q-values to calculate action probabilities, and mR determines the

magnitude of the Q-values learned, therefore, mR has a direct impact on the required values for

τ . Also, surprisingly, Dyna-Q with Softmax was able to approximate the environment enough to

produce better polices with pS > 0. Dyna-Q appears to be more e�ective when trained with smaller

rates of exploration, compared to the exploration needed for Sarsa, and Q-learning.

125

Chapter 9

Game Five

The �fth, and �nal, game scenario, is the culmination of all previous testing games. It includes

inter-agent actions, delayed reward, and multiple motives. The game world consists of four places:

Tarzan's house, Jane's House, the bar, and the grocery store. Both Jane, and Tarzan, have the

option of going to the bar, or the grocery store, but not to each other's houses. Bob is meant to

be the bartender, but he also has the option of going to the grocery store. When an agent talks to

another agent, they receive +20 social, and +3 entertainment, while the agent they talk to receives

+5 social, and +1 entertainment. Since Jane has no entertainment motive, any motive change for

entertainment has no e�ect on her. Table 9.1 shows the motives, and their bounds, for each agent

in the game world. Table 9.2 shows actions that are associated with objects, and how the actions

change an agent's motive values.

Agent
Social Food Health Entertainment

Min Max Min Max Min Max Min Max

Tarzan 10 50 40 70 50 90 70 100

Jane 50 80 40 70

Bob 99 100

Table 9.1: Description of motivations for all agents, in the Game Five scenario.

Object Action A�ects Motive

Social Food Healthy Entertainment

Healthy food eat +20 +1

Greasy food eat +15 -1

Treadmill use -2 +25

TV watch -2 +20

Table 9.2: Description of how object actions change agent's motives, in the Game Five scenario.

126

9.1 Testing Outline

For this particular game scenario, testing is done with Sarsa, and ε-greedy. The goal is to show

that this level of complexity is possible to learn. Testing is done with complete combinations of the

variables outlined in Table 9.3. Each testing con�guration has 90 training games, and is repeated

5 times for consistency measures. Only the last 3 training games (train88, train89 and train90) are

used for analysis purposes.

9.2 Sarsa and ε-greedy

Variables Tested Values

[γ, λ] [0.9, 0.9] [0.7, 0.9] [0.7, 0.7] [0.5, 0.9]

[εs, εe] [0.5, 0.1] [0.5, 0.2]

[αs, αe] [1.0, 1.0] [0.5, 0.5]

mR -0.01

HnQ [100]

ηQ 0.9 0.3

Table 9.3: Parameter values tested in Game Four with Sarsa, and ε-greedy.

The following graphs show the results of the last three training games from all combinations of

variables seen in Table 9.3. After analyzing the initial results, it is clear that the policies with

γ = 0.9, and λ = 0.9, have the highest performance, see Figures 9.4 and 9.5. Creating a separate

subset of results, with γ = 0.9 and λ = 0.9, allows the variable interactions within that subset to

become more clear, see Figures 9.7, 9.8, and 9.9.

1 to 1 0.5 to 0.5
0

50

100

%

Percent of reward comparing α
(Game 5, sarsa, egreedy, train88 train89 train90)

(a)

1 to 1 0.5 to 0.5
0

50

100

%

Percent in bounds comparing α
(Game 5, sarsa, egreedy, train88 train89 train90)

(b)

Figure 9.1: Comparing the performance of α in Game Four testing with Sarsa, and ε-greedy.

127

0.9 0.3
0

50

100

%

Percent of reward comparing ηQ
(Game 5, sarsa, egreedy, train88 train89 train90)

(a)

0.9 0.3
0

50

100

%

Percent in bounds comparing ηQ
(Game 5, sarsa, egreedy, train88 train89 train90)

(b)

Figure 9.2: Comparing the performance of ηQ in Game Four testing with Sarsa, and ε-greedy.

0.5 to 0.1 0.5 to 0.2
0

50

100

%

Percent of reward comparing ε
(Game 5, sarsa, egreedy, train88 train89 train90)

(a)

0.5 to 0.1 0.5 to 0.2
0

50

100

%

Percent in bounds comparing ε
(Game 5, sarsa, egreedy, train88 train89 train90)

(b)

Figure 9.3: Comparing the performance of ε in Game Four testing with Sarsa, and ε-greedy.

0.9,0.9 0.7,0.9 0.7,0.7 0.5,0.9
0

50

100

%

Percent of reward comparing γλ
(Game 5, sarsa, egreedy, train88 train89 train90)

(a)

0.9,0.9 0.7,0.9 0.7,0.7 0.5,0.9
0

50

100

%

Percent in bounds comparing γλ
(Game 5, sarsa, egreedy, train88 train89 train90)

(b)

Figure 9.4: Comparing the performance of γ, and λ, in Game Four testing with Sarsa, and ε-greedy.

128

0

20

40

60

80

100

Game 5 (sarsa,egreedy,tarzan) percent of steps in
bounds for train88 train89 train90

Pe
rc

en
t o

f
st

ep
s

in
 b

ou
nd

s

ε=0.5 to 0.2 ε=0.5 to 0.1 ε=0.5 to 0.2 ε=0.5 to 0.1 ε=0.5 to 0.2 ε=0.5 to 0.1 ε=0.5 to 0.2 ε=0.5 to 0.1
γ=0.5 λ=0.9 γ=0.7 λ=0.9 γ=0.7 λ=0.7 γ=0.9 λ=0.9

Figure 9.5: All results (percent of steps in bounds) from training games 88, 89, and 90, during Game
Four testing with Sarsa, and ε-greedy, separated by ε and γλ.

50

60

70

80

90

100

Game 5 (sarsa,egreedy,tarzan) percent of total
reward for train88 train89 train90

P
er

ce
n
t

o
f

to
ta

l
re

w
ar

d

γ=0.5 λ=0.9 γ=0.7 λ=0.9 γ=0.7 λ=0.7 γ=0.9 λ=0.9 γ=0.5 λ=0.9 γ=0.7 λ=0.9 γ=0.7 λ=0.7 γ=0.9 λ=0.9

η
Q

=0.3 η
Q

=0.9

Figure 9.6: All results (percent of reward) from training games 88, 89, and 90, during Game Four
testing with Sarsa, and ε-greedy, separated by ηQ, and γλ.

129

1 to 1 0.5 to 0.5
0

50

100

%

Percent of reward comparing α
(Game 5, sarsa, egreedy, train88 train89 train90)

(a)

1 to 1 0.5 to 0.5
0

50

100

%

Percent in bounds comparing α
(Game 5, sarsa, egreedy, train88 train89 train90)

(b)

Figure 9.7: Comparing the performance of α in Game Four testing with Sarsa, and ε-greedy. Only
the results with γ = 0.9, and λ = 0.9, are included in the graph.

0.9 0.3
0

50

100

%

Percent of reward comparing ηQ
(Game 5, sarsa, egreedy, train88 train89 train90)

(a)

0.9 0.3
0

50

100

%

Percent in bounds comparing ηQ
(Game 5, sarsa, egreedy, train88 train89 train90)

(b)

Figure 9.8: Comparing the performance of ηQ in Game Four testing with Sarsa, and ε-greedy. Only
the results with γ = 0.9, and λ = 0.9, are included in the graph.

0.5 to 0.1 0.5 to 0.2
0

50

100

%

Percent of reward comparing ε
(Game 5, sarsa, egreedy, train88 train89 train90)

(a)

0.5 to 0.1 0.5 to 0.2
0

50

100

%

Percent in bounds comparing ε
(Game 5, sarsa, egreedy, train88 train89 train90)

(b)

Figure 9.9: Comparing the performance of ε in Game Four testing with Sarsa, and ε-greedy. Only
the results with γ = 0.9, and λ = 0.9, are included in the graph.

130

9.3 Discussion

This section will discuss the results of Game 5 in terms of optimal parameters, accuracy of the

results, training time and selective qualitative analysis. Tarzan is the only agent being analyzed

because Jane, and Bob, both have the same con�gurations as previous games.

9.3.1 Parameters

The results at a glance in Figures 9.1 to 9.4, show how speci�c variables perform as a whole, in the

last three training games. More speci�c results can be seen in the scatter plots, showing variable

results and interactions. The results in Figure 9.5 are sorted once by ε, and second with γλ. The

resulting graph shows that the best trace-decay value, and discount rate, are γ = 0.9, and λ = 0.9,

regardless of other parameter values. Sorting the results with γλ, and then with ηQ, shows that a

higher percent of reward can be reached with a lower ηQ, only with γ = 0.9, and λ = 0.9, see Figure

9.6.

Further analysis reduces the results to those with γ = 0.9 and λ = 0.9. The reduced distributions

of results are graphed in Figures 9.7, 9.8, and 9.9.

9.3.2 Consistency

Testing the consistency of the results involves repeating a test under identical conditions and com-

paring the results. To determine consistency, 10 repeated tests were run with identical parameter

values (Table 9.4). The training time is extended from 90 games, to 200 training games. The results

of the last 3 training games (train58, train59, and train60), for every test number, can be found in

Table 9.5 for the percent of reward, and Table 9.6 for the percent of steps in bounds. Contrary to

Game Four, analyzing the consistency for Game Five shows there is larger variation in the percent

of reward, than the percent of steps in bounds.

HnQ ηQ mR αS αe εs εe γ λ

[100] 0.3 -0.1 1.0 1.0 0.5 0.1 0.9 0.9

Table 9.4: Outline of the variables used to test the consistency of the results.

131

Percent of Reward

Test train196 train197 train198 train199 train200 mean

1 95.64 97.65 97.81 89.75 60.51 88.27

2 95.62 97.26 96.84 87.41 96.17 94.66

3 97.19 97.37 97.48 96.46 98.45 97.39

4 94.99 83.72 84.33 91.62 93.76 89.69

5 96.57 96.11 96.37 78.11 87.57 90.95

6 98.09 85.41 89.77 83.53 85.16 88.39

7 97.79 95.04 98.50 96.66 96.45 96.89

8 78.35 80.20 84.39 95.90 98.04 87.38

9 87.33 76.77 81.22 88.72 86.00 84.01

10 94.42 96.62 95.95 96.98 96.21 96.03

std 6.17 8.16 6.68 6.34 11.46 4.61

Table 9.5: Statistics measuring consistency of Game Five results (percent of steps in bounds for
Tarzan).

Percent of Steps in Bounds

Test train196 train197 train198 train199 train200 mean

1 9.56 9.77 9.78 8.97 6.05 8.83

2 9.56 9.73 9.68 8.74 9.62 9.47

3 9.72 9.74 9.75 9.65 9.84 9.74

4 9.50 8.37 8.43 9.16 9.38 8.97

5 9.66 9.61 9.64 7.81 8.76 9.09

6 9.81 8.54 8.98 8.35 8.52 8.84

7 9.78 9.50 9.85 9.67 9.65 9.69

8 7.83 8.02 8.44 9.59 9.80 8.74

9 8.73 7.68 8.12 8.87 8.60 8.40

10 9.44 9.66 9.59 9.70 9.62 9.60

std 0.62 0.82 0.67 0.63 1.15 0.46

Table 9.6: Statistics measuring consistency of Game Five results (percent of reward for Tarzan).

9.3.3 Training Time

The results from consistency testing are graphed with respect to training time, in Figures 9.10 and

9.11. Increased training time does improve both the percent of reward, and the percent of steps in

132

bounds, but not signi�cantly compared to the 90 training games tested previously.

0 50 100 150 200
0

50

100

Percent reward, training time in Game 5
(Tarzan, egreedy, sarsa, training)

Run Number

%

Figure 9.10: Comparing the impact of training time on the percent of reward, in Game Five. Every
box includes 10 repeated results, found with parameter values from Table 9.4.

0 50 100 150 200
0

50

100

Percent in bounds, training time in Game 5
(Tarzan, egreedy, sarsa, training)

Run Number

%

Figure 9.11: Comparing the impact of training time on the percent of steps in bounds, in Game
Five. Every box includes 10 repeated results, found with parameter values from Table 9.4.

9.3.4 Qualitative Analysis

Taking a closer look at actual action selection sequences shows how the agent learned, or did not

learn, how to balance all four motives. The �rst policy, in Figure 9.12, shows the policy that resulted

in the highest percent of reward in the last �ve training games (train198 of repeated test number 7).

The entertainment motive was easily learned given there are no bounds on the maximum desirable

value. Much of the agent's time is spent moving between the grocery store and the bar in search

for social interaction from either Bob or Jane. The second policy, in Figure 9.13, shows the policy

that resulted in the worst percent of reward in its last �ve training games (train200 of repeated test

number 1). During the game, Tarzan goes to the grocery store to buy food, but continuously gets

talked to by Jane, resulting in much higher social interaction than desired.

133

0 500 1000

70

80

90

100

Time Steps

M
ot

iv
e

V
al

ue

Entertainment motive during
best policy (Game 5)

(a) The entertainment motive values for Tarzan
in train198, repeated game number 7.

0 500 1000
0

50

100

Time Steps
M

ot
iv

e
V

al
ue

Healthy motive during best
policy (Game 5)

(b) The healthy motive values for Tarzan in
train198, repeated game number 7.

0 500 1000
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Hunger motive during best
policy (Game 5)

(c) The hunger motive values for Tarzan in
train198, repeated game number 7.

0 500 1000
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Social motive during best
policy (Game 5)

(d) The social motive values for Tarzan in
train198, repeated game number 7.

Figure 9.12: Qualitative analysis of the policy with the highest percent of reward for Tarzan, found
using parameters outlined in Table 9.4.

134

0 500 1000
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Entertainment motive during
un−optimal policy (Game 5)

(a) The entertainment motive values throughout
the �nal training game with the least amount of
reward for Tarzan.

0 500 1000
0

50

100

Time Steps
M

ot
iv

e
V

al
ue

Healthy motive during
un−optimal policy (Game 5)

(b) The healthy motive values throughout the �nal
training game with the least the amount of reward
for Tarzan.

0 500 1000
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Hunger motive during
un−optimal policy (Game 5)

(c) The hunger motive values throughout the �nal
training game with the least amount of reward for
Tarzan.

0 500 1000
0

50

100

Time Steps

M
ot

iv
e

V
al

ue

Social motive during
un−optimal policy (Game 5)

(d) The social motive values throughout the �nal
training game with the least amount of reward for
Tarzan.

Figure 9.13: Qualitative analysis of the policy with the least amount of percent of reward for Tarzan,
found using parameters outlines in Table 9.4.

135

9.4 Summary

Despite having four motivations to satisfy, and having an action with 5 steps of delayed reward, the

agent Tarzan can successfully �nd a policy that achieves up to 98.5% of possible reward. The best

results were seen with a lower ηQ, and increased training time.

136

Chapter 10

Discussion and Conclusion

There were two main goals associated with this work. The �rst was to create an NPC that learns

to take actions that satisfy its motives. The second was to explain how parameter values in�uenced

the agent's learning. After extensive testing, the results show that an RL agent is able to satisfy up

to four motives, even when the environment has actions with delayed reward, and inter-agent inter-

actions. After every testing scenario, the optimal parameter values were compared, and explained.

This �nal Chapter explains the most common optimal parameters, the main contributions of this

work, and how this work can be extended in the future.

10.1 Discussion

An important factor to consider, for any new game AI, is the ease in which a developer can incor-

porate the proposed method into their game. Beyond the programming details, it is important to

have the modi�able parameters clearly outlined, with guidelines for optimal value selection. This

section outlines how every parameter a�ects the learning, and what values are best to optimize the

performance of policies (percent of reward received, and the percent of steps the agent remains in

motivational equilibrium).

Balancing between exploration, and exploitation, is an important parameter to consider with any

RL task. Exploration is needed for discovering the best possible actions, but exploitation is needed

for actually choosing the best possible actions. The needed degree of exploration is dependant upon

the complexity of the environment, the required adaptability, and the available training time. The

learning task typically begins with a higher exploration rate, which is reduced to a small value over

time. RL algorithms behave di�erently towards exploratory action selections. Sarsa(λ) updates its

eligibility trace information, even when a selected action is exploratory in nature. Watkin's Q(λ)

will not assign credit, or blame, to exploratory action selections, by clearing all eligibility trace

information, after the estimated best action is not selected. The Dyna-Q(λ) based on Watkin's

Q(λ), clears the eligibility traces after exploration, but still uses the exploratory action to update

137

its model of the game world.

In general, if an agent has access to multiple motives, and is required to learn actions with

delayed reward, starting the exploration rate with a larger value, tends to help with action sequence

discovery, in Sarsa(λ), and Q(λ). However, Dyna-Q(λ) performs better when the exploration is

kept low throughout the game. The exploration rate should be decreased over time, and the �nal

(smallest) exploration rate should re�ect the desired adaptability of the agent. An agent using

very little exploration cannot quickly react to changes in the environment, given that it acts on

knowledge gained before the changes in the environment were made. Testing shows that decreasing

the exploration to a small value will produce policies with a greater number of steps in bounds

(learned a good policy), or very few steps in bounds (knowledge is incomplete). Keeping a modest

exploration rate after the initial training period, produces policies with smaller total reward, and

fewer steps in bounds, but also increases the performance of policies with insu�cient knowledge

(better worst cases).

Eligibility traces allow credit, or blame, to be assigned to previous state-action pairs. The trace-

decay value determines how many past state-action pairs are updated with current value information,

and the degree in which they are updated. During testing (Game Two, Three, and Four), a higher

trace-decay value produced overall better policies. The larger the number of past state-action pairs

updated, the more calculations need to be made every game step. Therefore, higher trace-decay

values will increase the time needed to update a game agents logic.

The value of a state action-pair is part current reward, and part future reward. Discounting

speci�es how much the agent will look ahead, considering the future possible reward. The degree of

di�culty associated with delayed rewards has an impact on the optimal discount value. For example,

Game Two introduced a 2-step delayed reward, with best found policies with γ = 0.5. Game Three,

with the ability to move places, and talk to agents, found best policies with γ ≥ 0.5. Game Four

with a large delayed reward, achieved better policies with γ = 0.9. As a general rule, the more

actions that are required to get a reward, the higher the discount rate should be.

With temporal di�erence methods, the current value of a state-action pair at time t, Q(st, at),

is updated by adding a fraction of the expected value, de�ned by

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] .

This fraction, α, determines how quickly new information will override stored values (old informa-

tion). Realistically, a reduced the learning rate would require a longer training period, but a high

learning rate might produce inferior policies. In this implementation, ANNs are used as the Q-

function approximation, with Q(st, at) as input, and Q(st, at)+α [rt+1 + γQ(st+1, at+1)−Q(st, at)]

as the desired output. The function approximation itself has an associated learning rate (ηQ). If the

138

ANN learning rate is too large, the function may not be successfully approximated. Lower values

of ηQ would take longer to train, but may produce a better approximation of the function. Testing

for all Game scenarios showed that higher values of α performed better, or just as well, as lower α

values. Testing also shows an increase in performance with a lower ηQ, given longer training times.

The ANN for Q-function approximation, must be con�gured to match the true Q-function's

complexity. During testing, it was determined that only one hidden neuron layer was needed. The

optimum number of neurons in the hidden layer varies by Game complexity, but there is a common

range that produces good results. In Game One, the optimal number of hidden neurons is between

3, and 100. In Game Two, the optimal number of hidden neurons for Sarsa is between 10, and

100 (optimal at 10), and for Q-learning between 20, and 200 (optimal at 100). In Game Three the

optimal number of neurons with Sarsa is between 10, and 250 (optimal at 100), and Q-learning is

between 10, and 100 (optimal at 100). Finally, the optimal number of hidden neurons in Game Four

is either 50, or 100. For all testing games, the common optimal number of hidden neurons in the

only hidden layer, is HnQ = 100.

The algorithm Dyna-Q uses a model of the environment to simulate real experiences. If the

model is wrong, the experiences will also be incorrect. Naturally, when a policy learns from incorrect

experience, it performs worst when interacting with the real environment. In most game scenarios

tested, Dyna-Q performed worst than Sarsa, and Q-learning, when pS > 0. Testing Dyna-Q in

Game Four did show improved results, given low exploration rates. Overall, the model function

approximation has a hard time accurately approximating the game world, making Dyna-Q less than

the ideal choice of RL method.

All the previously mentioned parameters are needed to learn good action selection policies. For

every action, there is a ANN that approximates its value, given a current game state. In a real

life scenario, there are an in�nite number of actions available to an individual, each with their

unique consequences. In the game world, there are a �nite set of actions available to the agent.

Drawing parallels between a game scenario, and a real life situation is convenient. However, it is

also important to understand that some consequences for real actions may not be speci�ed in the

game world, either because they have no relevance, or they were overlooked. For example, in most

of the game scenarios, the agent must open the fridge to make the food items available. In real

life, cold air escapes from the fridge for as long as the fridge is open. A person will open the fridge

in short amounts of time, to keep the food inside from spoiling. During testing, because there

are no negative consequences (reinforcements) associated with opening the fridge, it is completely

understandable that the agent will choose to continuously open the fridge, until such a time where

the agent becomes hungry. All the necessary reinforcements need to completely de�ne the learning

task, for the agent to learn as the developer envisions.

139

10.2 Main Contributions

Programming believable game agents is a non-trivial problem, that involves creating an NPC that

acts realistically in the eyes of the player. A complete believable agent would have thoughts, desires,

and emotions, that are the manifestation of di�erent personalities. They would also incorporate

full interactivity, with realistic body language, and natural language processing. In video Game AI,

behaviour selection is the most important aspect of believable agents.

There are many approaches that address realistic action selection, and they most often involve

personality traits, or social understanding. These methods use facets of human personality to create

realistic, and entertaining NPCs. While these methods are emergent, their actions are entirely

dependent on models of personality, and even general roles. Emergent behaviour is possible, but

learning is not part of the process.

Allowing the agent to learn during a game is an important part of believability. Beyond simple

learning, machine learning algorithms, reinforcement learning in particular, have been in�uenced by

concepts of personality. RL has been extended to form emotion driven RL, and motivated RL for

hierarchical skill learning. However, these extensions to RL are focused on better learning of general

actions, not on creating realistic NPCs.

The agent learning method proposed in this thesis, introduces reinforcement learning guided

by an agent's motives, with the purpose of creating realistic NPC behaviour. A person's motives

can be split into two parts: the desired values that remain constant, and the current values that

change according to situations, and actions. The current motive values are incorporated into the

agent's state of the game world. The actual game state used for learning includes information about

places, other agents, and the state of the agent's objects. The reinforcements are calculated using

the constant desired motive values (minimum, and maximum), in response to the agent's current

motive values. As a result, the agent learns what behaviours to take, to fully satisfy its motives.

10.3 Future Work

The method developed in this thesis, is very much a starting point for a more advanced realistic

agent. There are many opportunities to improve on the proposed method, including the addition of

more advanced reinforcement learning techniques, and the addition of other motive elements.

In theory, an individual's motives describe a continuum of possible values, with no limits in either

direction. When motives were adopted for use in this method, the motive continuum had to become

a �nite scale, to allow learning, and computation of rewards. The range of possible motive values is

much smaller in practice (between 0 and 100), than in real-life (−∞ to ∞). All motives decay at

the same rate, according to a linear decay function. If di�erent decay functions were available, it

140

would add another way of making motives unique across multiple agents. Variable decay functions

could also be used to emulate an in�nite motive range, given a slow enough decay function, linear,

or otherwise.

Currently, the actions available to the agent are very basic (e.g. open fridge, eat food, watch

TV). It is possible for sequences of actions to become skills, or options, through the use of motivation

reinforcement learning (MRL). An option would have an associated Q-value, and reward, the same

as any action. With the addition of option models, the agent could look ahead, and determine the

likely value of performing an option, according to the estimated changes to its motive values.

The reinforcement function is meant to provide more positive (less negative) reward when multi-

ple motives have been addressed, but there are no noticeable di�erences between addressing di�erent

motives. The reinforcement function could be modi�ed to assign more importance to the motives

that are further from their bounds. If two motives can be modi�ed in the same amount, more reward

should be given when the motive that is further from its bounds is addressed, and less to the other.

This change might decrease the situation where one motive is completely ignored over satisfying

others.

The addition of more motive elements, and more advanced RL techniques, would enable more

diverse agent speci�cations, and more realistic action sequences. Ultimately, this method also re-

quires a more comprehensive qualitative analysis, aimed to determine the actual believability of a

desire driven game agent.

141

Bibliography

[1] Aristotle, J.A.K. Thomson, and H. Tredennick. The ethics of Aristotle: the Nicomachean ethics.

Penguin classics. Pengüin, 1976.

[2] C. Bailey and M. Katchabaw. An emergent framework for realistic psychosocial behaviour in

non player characters. In Proceedings of the 2008 Conference on Future Play: Research, Play,

Share, pages 17�24. ACM, 2008.

[3] C. Bailey, J. You, G. Acton, A. Rankin, and M. Katchabaw. Believability through psychosocial

behaviour: Creating bots that are more engaging and entertaining. Believable Bots: Can

Computers Play Like People?, page 29, 2012.

[4] A. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchical collections

of skills. In Proceedings of the 3rd International Conference on Developmental Learning (ICDL

'04), LaJolla CA, 2004.

[5] E. Bevacqua, E. de Sevin, C. Pelachaud, M. McRorie, and I. Sneddon. Building credible agents:

Behaviour in�uenced by personality and emotional traits. In Proceedings of International Con-

ference on Kansei Engineering and Emotion Research, 2010.

[6] M. Botvinick, Y. Niv, and A. Barto. Hierarchically organized behavior and its neural founda-

tions: A reinforcement learning perspective. Cognition, 113:262�280, 2009.

[7] L. Cañamero. Designing emotions for activity selection in autonomous agents. Emotions in

humans and artifacts, 115:148, 2003.

[8] N. Chentanez, A. Barto, and S. Singh. Intrinsically motivated reinforcement learning. In

Advances in neural information processing systems, pages 1281�1288, 2004.

[9] T. Doce, J. Dias, R. Prada, and A. Paiva. Creating individual agents through personality traits.

In Intelligent Virtual Agents, pages 257�264. Springer, 2010.

[10] E. Doirado and C. Martinho. I mean it!: detecting user intentions to create believable behaviour

for virtual agents in games. In Proceedings of the 9th International Conference on Autonomous

142

Agents and Multiagent Systems: volume 1-Volume 1, pages 83�90. International Foundation for

Autonomous Agents and Multiagent Systems, 2010.

[11] E. Douglas-Cowie, R. Cowie, C. Cox, N. Amier, and DKJ Heylen. The sensitive arti�cial listner:

an induction technique for generating emotionally coloured conversation. 2008.

[12] B. Ellinger. Arti�cial Personality: A Personal Approach to AI. AI Game Programming Wisdom

4, pages 671�683, 2008.

[13] D. C. Funder. Personality. Annual Review of Psychology, 52(1):197�221, 2001. PMID: 11148304.

[14] L. Galway, D. Charles, and M. Black. Machine learning in digital games: a survey. Artif. Intell.

Rev., 29:123�161, April 2008.

[15] L. Gruenwoldt, M. Katchabaw, and S. Danton. A realistic reaction system for modern video

games. In the Proceedings of the DiGRA 2005 Conference: Changing Views�Worlds in Play ,

2005.

[16] A. Guye-Vuilleme and D. Thalmann. A high-level architecture for believable social agents.

Virtual Reality, 5(2):95�106, 2000.

[17] M. Harmon and S. Harmon. Reinforcement Learning: A Tutorial.

http://citeseer.ist.psu.edu/harmon96reinforcement.html, 1996.

[18] C. L. Hull. Principles of behavior (1943). New York Appleton�Century-Crofts.

[19] M. Joselli and E. Clua. GPUWars: Design and Implementation of a GPGPU Game. In Games

and Digital Entertainment, Brazilian Symposium, pages 132�140, 2009.

[20] A.B. Loyall. Believable agents: building interactive personalities. PhD thesis, Stanford Univer-

sity, 1997.

[21] R. Marinier III and J. Laird. Emotion-Driven Reinforcement Learning. 2009.

[22] M. McPartland and M. Gallagher. Reinforcement Learning in First Person Shooter Games.

IEEE Transactions on Computational Intelligence and AI in Games , 3(1):43�56, 2011.

[23] K. Merrick. Modeling motivation for adaptive nonplayer characters in dynamic computer game

worlds. Computers in Entertainment (CIE), 5(4):5:1�5:32, 2008.

[24] K. Merrick. A computational model of achievement motivation for arti�cial agents. In The 10th

International Conference on Autonomous Agents and Multiagent Systems - Volume 3 , AAMAS

'11, pages 1067�1068, Richland, SC, 2011. International Foundation for Autonomous Agents

and Multiagent Systems.

143

[25] K. Merrick and M. Maher. Motivated reinforcement learning for non-player characters in persis-

tent computer game worlds. In Proceedings of the 2006 ACM SIGCHI international conference

on Advances in computer entertainment technology, ACE '06, New York, NY, USA, 2006. ACM.

[26] K. Merrick and M. Maher. Motivated Reinforcement Learning: Curious Characters for Multiuser

Games. Springer Publishing Company, Incorporated, 1st edition, 2009.

[27] K. Merrick and K. Sha�. Achievement, a�liation, and power: Motive pro�les for arti�cial

agents. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems ,

19(1):40�62, February 2011.

[28] T.M. Mitchell. Machine Learning. McGraw-Hill Series in Computer Science. McGraw-Hill,

1997.

[29] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. NIPS, 1997.

[30] R. Prada, G. Raimundo, J. Dimas, C. Martinho, J. F. Peña, M. Baptista, P. A. Santos, and

L. L. Ribeiro. The role of social identity, rationality and anticipation in believable agents.

In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent

Systems-Volume 3, pages 1175�1176. International Foundation for Autonomous Agents and

Multiagent Systems, 2012.

[31] S. Rabin. Introduction to game development. Game development series. Course Technology,

2010.

[32] S. Read, B. Monroe, A. Brownstein, Y. Yang, G. Chopra, and L. Miller. A neural network

model of the structure and dynamics of human personality. Psychological review, 117(1):61�92,

2010.

[33] S. Reiss. Why people turn to religion: A motivational analysis. Journal for the Scienti�c Study

of religion, 39(1):47�52, 2000.

[34] S. Reiss. Multifaceted nature of intrinsic motivation: The theory of 16 basic desires. Review of

General Psychology, 8(3):179, 2004.

[35] S. Reiss and S. Havercamp. Toward a comprehensive assessment of fundamental motivation:

Factor structure of the Reiss Pro�les. Psychological assessment, 10(2):97�106, 1998.

[36] S. Reiss, J. Wiltz, and M. Sherman. Trait motivational correlates of athleticism. Personality

and Individual Di�erences, 30(7):1139�1145, 2001.

[37] P. Rizzo, M. Veloso, M. Miceli, and A. Cesta. Personality-driven social behaviors in believable

agents. In Proceedings of the AAAI Fall Symposium on Socially Intelligent Agents , pages 109�

114, 1997.

144

[38] P. Ruijten, C. Midden, and J. Ham. I didn't know that virtual agent was angry at me: Investi-

gating e�ects of gaze direction on emotion recognition and evaluation. In Persuasive Technology,

pages 192�197. Springer, 2013.

[39] K. R. Scherer. Appraisal considered as a process of multilevel sequential checking , volume 92.

2001.

[40] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. 1998.

[41] R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal

abstraction in reinforcement learning. Arti�cial Intelligence, 112:181�211, 1999.

[42] I. Szita, M. Ponsen, and P. Spronck. E�ective and Diverse Adaptive Game AI. Computational

Intelligence and AI in Games, IEEE Transactions on, 1(1):16 �27, march 2009.

145

VITA

Name: Jacquelyne T. Forgette

Previous Positions

University of Western Ontario � September 2010 to May 2012

Teaching Assistant in the Department of Computer Science

Nipissing University � January 2010 to April 2010

Teaching Assistant in the Department of Computer Science

Nipissing University � April 2009 to April 2010

Research Assistant in the Department of Physical Education and English

Education

University of Western Ontario � September 2010 to present

M.Sc. (Computer Science) expected September 2013,

Supervisor: Mike Katabaw

Nipissing University � September 2006 to April 2010

Hons. B.Science. (Computer Science with Distinction) received June 2010

Awards

Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate

Scholarship (PGS-M) (2010 - 2011)

Western Graduate Research Scholarship (2010 - 2011)

Publications

J. Forgette, R. Wachowiak-Smolikova, and M. Wachowiak. "Implementing Independent

Component Analysis in General-Purpose GPU Architectures." In Digital Information

Processing and Communications, pp. 233-243. Springer Berlin Heidelberg, 2011.

J. Forgette, R. Wachowiak-Smolikova, and M. Wachowiak. "Scalable parallel

implementation of independent components analysis on the graphics processing unit."

In Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference on,

pp. 000912-000916. IEEE, 2011.

146

J. Forgette, R. Wachowiak-Smolikova, and M. Wachowiak. "In�uence maps For

Facilitating Tactical Engagement Decisions In Real-Time Strategy Games."

International Journal of Intelligent Games & Simulation 6, no. 1 (2010): 8.

	Western University
	Scholarship@Western
	October 2013

	Reinforcement learning with motivations for realistic agents
	Jacquelyne T. Forgette
	Recommended Citation

	Reinforcement learning with motivations for realistic agents

