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Abstract

Representing DNA sequences graphically and evaluating, as well as displaying, species’

relationships have been considered to be an important aspect of molecular biology research. A

novel approach is proposed in this thesis that combines three methods: a) Chaos Game Rep-

resentation (CGR), to portray quantitative characteristics of a DNA sequence as a black-and-

white image, b) Structural Similarity (SSIM) index, an image comparison method, to compute

pair-wise distances between these images, and c) Multidimensional Scaling (MDS), to visu-

ally display each sequence as a point in a two-dimensional Euclidean space. The proposed

method produces a visual representation called Genome Distance Map (GDM) when applied

to a collection of genomic DNA sequences. In a resulting Genome Distance Map, the se-

quences can be visualized as points in a common two-dimensional Euclidean space, wherein

the geometric distance between any two points is approximate to the differences between their

respective DNA sequence compositions. In addition, the proposed Genome Distance Map

provides a compelling visualization of species’ relatedness in comparison to the phylogenetic

trees. Moreover, the proposed method is sensitive and robust in detecting insertions, deletions,

substitutions of nucleotides in a genome.
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1

Chapter 1

Introduction

After the first successful sequencing of a genome by Fred Sanger [SNC77] in 1977, many meth-

ods have been used to explore the large amount of biological data contained in a genome. To

extract information from the primary DNA sequences, some visualization methods were intro-

duced in literature. The very first among these methods, introduced by Gates [Gat86] used a 2D

coordinate system and the four different directions for the four different nucleotides of a DNA

sequence. Similar representations were proposed by Nandy [Nan94] and Leong et al. [LM95].

All of these methods [Gat86, Nan94, LM95] have the problem of degeneracy and lack of appli-

cations. As a remedy, the vector walk method was proposed by Liao et al. [Lia05] that suffers

from higher computation complexity, requires much memory, and has limited applications. Re-

cently, another 2D approach was proposed by Yu et al. [YLY+10]. The coordinates of the four

nucleotides in the approach of Yu et al. [YLY+10] are dependent on the y- coordinates, and

highly vary with the amount of G+C content of a particular DNA sequence. In [YLY+10], a 2D

space named “genome space” is also proposed to display relatedness among several species.

This space is also completely y- coordinate dependent and the distance between points does not

satisfy the triangular inequality, therefore it is not a 2D metric space. The method proposed in

[YW04] can efficiently analyze smaller region of a DNA sequence (e.g., a specific gene), but

as the length of a chromosomal DNA sequence is very long in general, the efficiency of this

method remains in question. The Huffman coding was used by Qi et al. [QLQ11] to represent

DNA sequences on a 2D Cartesian plane using the frequency information of four nucleotides.

This method overcomes the problem of degeneracy, but did not show potential application to
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the analysis of large genomes. To remove deficiencies of the 2D representation methods, 3D

representations were introduced by many [RVNB00, YLW03, YSW09], some of which can

distinguish genomes of different species. Additionally, some 4D [CD05] and 5D [LLZX07]

representation methods are available in the literature. One of the most promising 2D repre-

sentations was proposed by Jeffrey [Jef90] in 1990: Chaos Game Representation (CGR) is

a unique 2D representation of a DNA sequence. CGR generates interesting fractals and ge-

ometric shapes for different genomes of diverse species. These interesting images of DNA

sequences resulted in further research in CGR [KMC97, DD92, HSS92]. In 1993, Goldman

[Gol93] analyzed the pattern of CGRs in terms of nucleotide, dinucleotide, and trinucleotide

frequencies of a DNA sequence. Goldman stated that “it is unlikely that CGRs can be more

useful than simple evaluation of nucleotide, dinucleotide, and trinucleotide frequencies”. In

other words, CGR images contain no insight beyond the frequencies of different nucleotide

combinations. In 1995, Karlin and Burge [KB95] introduced the concept of genomic signature

and proposed Dinucleotide Relative Abundance Profile (DRAP) as a genomic signature. After-

wards, genomic signatures were widely studied for different genome datasets by researchers in

[CMK99, GK01, DGV+99, DGV+00, HLZ00]. As CGR images exemplify the characteristics

of a genomic signature, in 1999, Deschavanne et al. [DGV+99] showed some interesting prop-

erties for CGRs and provided a link between CGR and genomic signatures. In [DGV+99] a new

variant of CGR was introduced, called FCGR by Almeida et al. [ACM+01]. In 2005, Wang

et al. [WHSK05] proposed the spectrum of genomic signatures and described some of their

properties. Both DRAP and FCGR were proposed as genomic signatures in [WHSK05], and a

relation between DRAP and FCGR was also proposed. Interestingly, Wang et al. [WHSK05]

provided counterexamples to Goldman’s conclusion about CGR. Moreover, some properties

for FCGR were discussed along with different distance methods to compare two CGR images.

In addition, CGR comparisons among 26 mitochondrial DNA sequences were analyzed by

generating phylogenetic trees. Another CGR method called Temporal CGR (TCGR) was pro-

posed by Dunham et al. [DQW+06] to analyze shorter sequences by using a sliding window.

Furthermore, in 2007, Tavassoly et al. [TTR+07] proposed a 3D CGR that can be used to ana-

lyze the complex structure of a genome. A novel 3D CGR model was proposed by Tu [Tu09]

in 2009 on a regular tetrahedron that was used to make comparisons between genomes, as well
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as between melodic signatures.

To summarize, efficient genome comparison can be a powerful tool for genome analysis.

Every year new genomes of different species are being sequenced. For instance, in 2012 alone,

biologists classified between 16,000 and 20,000 new species [Mil12]. Moreover, it was found

[MTA+11] that as many as 86% of existing species on Earth and 91% of species in the ocean are

still await classification. As a consequence, it is necessary to find a comprehensive, quantita-

tive, general-purpose method to reliably identify the relationships among the already classified

1.2 million species as well as among those that have not yet been classified.

In this thesis, a novel approach is proposed that combines a) a 2D visualization method

for DNA sequences called Chaos Game Representation (CGR), b) an image distance (SSIM)

to compute distances between the DNA sequences’ visual representations, and c) a statistical

method called multidimensional scaling (MDS) for representing each genome as a point on

the 2D Euclidean space, to determine the degree of relatedness among species. The proposed

method produces a visual representation Genome Distance Map, from a collection of genomic

DNA sequences. In a resulting map, sequences can be visualized as points in a common 2D

Euclidean space, wherein the geometric distance between any two points approximates the

differences between their respective DNA sequence compositions.

Concretely, if we want to compute and visually display the relationships between DNA se-

quences in a given set S = {s1, s2, ..., sn} of n DNA sequences, a combination of three techniques

is proposed:

• Chaos Game Representation (CGR), to graphically represent each DNA sequence si,

1 ≤ i ≤ n, as a two-dimensional grayscale image ci.

• Structural Similarity (SSIM) index, an image-distance measure, to compute the distances

δ(ci,c j), 1 ≤ i, j ≤ n, between all pairs of CGR images, and produce a distance matrix δ,

where δ is an n×n symmetric dissimilarity matrix.

• Multidimensional Scaling (MDS) applied to the distance matrix δ to generate a map in

the Euclidean space, where each point pi with coordinates (xi,yi) represents the DNA

sequence si whose associated CGR image is ci. The distance between two points pi and

p j reflects the relative distance between the DNA sequences si and s j.
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The organization of the thesis can be summarized as follows:

Chapter 2 gives some fundamental knowledge of molecular biology that includes the con-

cept and structure of DNA, the concept of mitochondrial DNA, sequence alignment, phyloge-

netic trees and biological classifications.

Chapter 3 provides a literature survey of various methods to represent DNA sequences

graphically, including the CGR research, and the applications of these methods to the com-

parison of genomes. At the end of this chapter an image distance comparison method called

Structural Similarity (SSIM) index and the Multidimensional Scaling (MDS) are discussed.

Chapter 4 presents the proposed method to compare DNA sequences in a 2D Euclidean

space. Subsequently, the application of this method to compare genomes at different scales of

biological taxonomies is discussed, along with introducing the concept of Genome Distance

Maps (GDM). The results in this chapter show the advantages of the proposed Genome Dis-

tance Maps over DNA barcodes [HCBD03] and Klee diagrams [SSZ10]. Key biological obser-

vations include the Genome Distance Map for all primates, where the only misplaced species

are two Haplorrhines that are placed with Strepsirrhines, namely Tarsius bancanus and Tarsius

syrichta. These are both tarsiers, whose position within the primates has been a controversial

subject for over a century [JHS+11].

Chapter 5 describes the experimental results implemented to answer several biological and

mathematical questions. This includes the robustness of the proposed CGR/SSIM method un-

der insertion, deletion and substitution of different number of nucleotides at different positions.

The length experiment has as its goal finding the least number of nucleotides required to get

recognizable patterns in a CGR, and have reasonable results for GDMs. Furthermore, the ex-

periment with artificial sequences for the same genome keeping single, di- and trinucleotide

frequencies similar to consider the validity of the Goldman’s conclusion [Gol93] is shown.

In addition, the metamorphosis experiment graph shows how the sequential substitution of a

genome with a completely different genome behaves. Moreover, the SSIM distance graph of

the SSIM distances between one particular genome and all other genomes and analyze the

behaviour of the SSIM as a measurement metric in this setting is discussed.

Chapter 6 gives a summary of the major points of this research and presents the conclusions

along with possible future work.
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This thesis is part of a collaborative project with Dr. Lila Kari (Professor, Department

of Computer Science, University of Western Ontario), Dr. Kathleen A. Hill (Professor, De-

partment of Biology, University of Western Ontario), Nikesh A. Dattani (PhD candidate at the

University of Oxford), and Katelyn Davis (4th year student, Department of Biology, University

of Western Ontario) [KSDH]. My contribution in this project can be summarized as follows:

• Introducing the idea that the CGR images can be compared with various image compar-

ison methods.

• Finding and implementing several image comparison methods to compare CGRs and

empirically deciding that SSIM gives the optimal comparison.

• Writing the Matlab code to compare genomes using sequence files such as FASTA, and

accession numbers with the CGR/SSIM method. Subsequently designing the complete

tool.

• Studying different existing methods and generating phylogenetic trees using those meth-

ods.

• Introducing and implementing Multidimensional Scaling (MDS) to display relatedness

in a 2D space by representing genomes as points.

• Implementation of assigning unique number and appropriate colors to each mitochon-

drial genome in the proposed Genome Distance Map.

• Calculating Stress (the error). Scaling for each of the Genome Distance Maps.

• Designing and implementing all the experimental simulations.
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Chapter 2

Molecular biology background

This chapter provides the necessary molecular biology background for this thesis: the con-

cept and structure of nucleic acids, DNA, mitochondrial DNA, phylogenetic trees, sequence

alignment and biological classifications.

2.1 DNA

Deoxyribonucleic Acid or DNA is a nucleic acid that contains the genetic information used in

the development and functioning of all known living organisms. DNA is often compared to a

set of blueprints, like a recipe or a code, since it contains the instructions needed to construct

other components of cells, such as proteins and RNA molecules. The DNA segments that carry

this genetic information are called genes. DNA is built with long polymers called nucleotides

and connected by phosphodiester bonds through backbones made of sugars and phosphate.

The four different nucleotide bases of DNA are adenine (A), cytosine (C), guanine (G) and

thymine (T). Cytosine (C) and thymine (T) are called pyrimidines. Adenine (A) and guanine

(G) are called purines. DNA sequences can be single stranded or double stranded. In a double

stranded DNA, the nucleotides are pairwise complementary: A is complementary to T, C is

complementary to G, and two complementary nucleotides on opposite strands can bind to

each other by hydrogen bonds. A single strand of DNA has a specific orientation given by

the chemical properties of its sugar-phosphate backbones. The ends of a DNA single strand

are denoted by 5’ and 3’ respectively, based on the chemical convention of naming carbon
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atoms in the sugar ring. Two DNA single strands with opposite orientation and complementary

nucleotides at each position will bind to each other by hydrogen bonds in a process called

base-pairing. Figure 2.1 shows the double helix and chemical structure of a DNA.

Figure 2.1: Structure of DNA [Wik13b].

2.2 Mitochondrial DNA

In this thesis, all the experiments and simulations were performed using a special kind of DNA

named mitochondrial DNA. Mitochondrial DNA (mtDNA or mDNA) is the DNA located in

organelles called mitochondria, which are complex organelles that generate and supply energy

to the cellular organism. These organelles are widely found in eukaryotic cells. Human mi-

tochondrial DNA was the first significant part of the human genome to be sequenced. In all

species, including human, mtDNA is inherited solely from the mother [Opp12]. Mitochondria

have their own genome and are circular, double-stranded DNA strands with few exceptions

[Cla91]. The lengths of mtDNA are different for plants, fungi, animals and protists in terms of

total number of base pairs. However, the gene content and order of all mitochondrial genes are

very similar. The average plant mtDNA genomes are typically longer (40.5-710 knt) than the

mtDNA genomes of animals (13.8-17.5 knt). “knt” stands for killo nucleotides. In this thesis,

the term “nt” will be used to refer nucleotides. Studies of mtDNA genomes are showing great
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promise in the field of evolutionary biology and diagnosis of various diseases. Most impor-

tantly, mutations of mitochondrial DNA can lead to a number of illnesses including exercise

intolerance and Kearns-Sayre syndrome (KSS), which causes a person to lose full function of

heart, eye, and muscle movements [HB92]. Some evidence suggests that mutations of mito-

chondrial DNA might be major contributors to the aging process and age-associated patholo-

gies [ALW04]. In addition, taxonomic classification can be achieved by comparing mtDNA

genomes of different species. This thesis emphasises the comparative analysis of mtDNA

genomes of different species.

2.3 Sequence alignment

In the post genomic era, one of the main focuses of research has been to compare various

biological sequences. For this purpose, sequence alignment was introduced, a method of ar-

ranging various biological sequences to find similar regions between them. This is a pairwise

alignment that uses three basic operations: insertion, deletion, and substitution of base pairs.

The central concept of all alignments is to assign a score to each possible alignment and

minimize the score of over all alignments. The residues of the aligned sequences are typically

represented as rows in a matrix. To align the identical or similar nucleotides in successive

columns, gaps are inserted between the residues. There are two major kinds of alignments:

local alignment and global alignment. In local alignment, similar segments of two different

sequences are searched. It does not try to align the whole sequence but attempts to find the

different parts that match well between two sequences [NW70]. Global alignment attempts to

align every residue in every sequence and forces the entire sequence into a single alignment.

Figure 2.2 shows examples of (a) local alignment, (b) global alignment.

Figure 2.2: Example of (a) local alignment, (b) global alignment.
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Local alignment is perhaps widely used but has a limitation; it cannot determine the overall

alignment, in that case global alignment is used. Depending on the total number of sequences

required to be aligned, sequence alignment can be either pairwise alignment or multiple se-

quence alignment. Pairwise alignment performs alignments for two sequences at a time where

multiple sequence alignment can align more than two sequences at the same time. Multiple

sequence alignment is used to find homologous sites of all sequences in an entire set.

2.4 Phylogenetic trees

A phylogenetic tree is a tree that represents the evolutionary interrelationships among various

species or other entities supposed to have a common ancestor. The tree consists of branches

and nodes like the trees used in the computer science data structures. The ancestral node is

represented as the root. The different children nodes or leaf nodes represent taxonomic data

such as genes or populations of species. In a rooted phylogenetic tree, each node contains

descendants, and represents the inferred most recent common ancestor for the descendants.

Branches have different lengths that can be proportional to the changes of difference between

the species or the sequences. A tree displaying evolutionary relationships among different

species is shown in Figure 2.3.

Figure 2.3: Tree of organismal evolution [VVP06].



10

2.5 Biological classifications

Biological classification, or scientific classification in biology, is a scientific taxonomy method

that is used to group and categorize organisms into groups such as genus or species. These

groups are defined as taxa (singular: taxon). Analysis of different biological taxonomies with

the aid of DNA sequence comparison has been considered a very important research issue. The

hierarchy of the common biological taxonomy is shown in Figure 2.4. A classification as de-

fined above is hierarchical. In a biological classification, rank is the level (the relative position)

in a hierarchy. There are seven main ranks defined by the international nomenclature codes:

kingdom, phylum/division, class, order, family, genus, species [Wik13a]. Ranks between the

seven main ones can be produced by adding prefixes such as “super-”, “sub-”. Thus a subclass

has a rank between class and order, a super-family between order and family. There are slightly

different ranks for zoology and for botany, including subdivisions such as tribe.

Figure 2.4: The hierarchy of biological classification’s eight major taxonomic ranks. Interme-
diate minor rankings are not shown [Wik13a].

Summary

We have discussed the primary molecular biology topics related to this thesis. In the next

chapter, we will see how a genome can be graphically represented and the inter genome relat-

edness can be calculated by applying mathematical operations on the graphical representations

of genomes.
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Chapter 3

DNA sequence visualization methods

This chapter describes some of the earlier methods to represent DNA sequences in a common

coordinate system. The basic idea of all these methods is to assign a coordinate for a nucleotide

of a DNA sequence and plot the whole sequence according to the coordinate assignment.

3.1 The 2D rectangular walk method

One of the earliest methods to represent DNA sequences graphically is the 2D rectangular

method that plots a DNA sequence as a random walk on a 2D grid, and the four different

nucleotides are represented in the four different quadrants. Thereafter, the whole sequence is

scanned and plotted for every base according to the directions of the four nucleotides.

The 2D rectangular method was first introduced by Gates [Gat86] in 1986. In this method,

if the base is C, then walk one step in the positive x direction, if G, then one step in the negative

x direction, if A, then one step in the negative y direction, and one step in the positive y direction

if the base is T . Figure 3.1 shows the 2D representation of the sequence ACTCTGT obtained

using Gate’s method. Every edge represents one step in the corresponding direction of the

scanned nucleotide from the DNA sequence. In Figure 3.1, the sequence starts with A, so the

first edge is towards the negative y direction. The second base is C, so the second edge moves

towards the positive x direction. Similarly, for the whole sequence the resulting picture can be

achieved.
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Figure 3.1: 2D rectangular walk plot obtained using Gate’s method for the sequence
ACTCTGT [Gat86].

Afterwards, Nandy [Nan94] used different directions for the four bases. According to his

proposed method, if the base is A, then walk one step in the negative x direction and towards

the opposite if the base is G. For C, walk one step in the positive y direction and in opposite

direction for the base T . Figure 3.2 shows the 2D representation for the sequence ACGCGTG

by Nandy’s method. On the other hand, Morgenthaler [LM95] assigned C for a walk of one

step in the negative x direction, T in the positive y direction, A in the positive x direction, and

G in the negative y direction.

Figure 3.2: 2D rectangular walk method by Nandy’s method for the sequence ACGCGTG
[Nan94].
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Though these methods are the earlier approaches to represent a DNA sequence, they have

some severe limitations such as degeneracy. For example, in Figure 3.2, if there is a sequence

like CGCGCGCGCGAT AT AT AT AT AT there will be just two edges and the image becomes

uninformative. Another problem is that the original sequence cannot be retrieved, as well as,

the representation does not have a one-to-one correspondence with the sequence. Most impor-

tantly, the 2D rectangular methods did not offer any significant application. These problems

were taken into consideration in the later representation methods.

3.2 The vector walk method

The vector walk method was introduced by Liao et al. [Lia05] to eliminate degeneracy of the

2D rectangular walk methods. In this method, four nucleotide bases were represented by four

special vectors that maintain small angles among them. In the vector walk method, the four

bases are plotted on two different quadrants: T and C are assigned to the first quadrant, and

A and G to the fourth quadrant. Figure 3.3 (a) shows the general representation of the vector

walk method. The vectors representing the four nucleotides A,G,C, and T can be written as

(m,−
√

n)→ A, (
√

n,−m)→G, (
√

n,m)→C, (m,
√

n)→ T ,

where m is a real number, n is a positive real number but not a perfect square number. Thus,

a DNA sequence can be reduced to a series of nodes S 0,S 1,S 2....S n, whose coordinates (xi,yi)

(i = 0,1,2, .....n, n= length of the DNA sequence) satisfy

xi = aim + gi
√

n + ci
√

n + tim,

yi = −ai
√

n−gim + cim + ti
√

n.

Here, ai, ci, gi and ti are the cumulative numbers of occurrences of A, C, G and T , respec-

tively. Figure 3.3(b) shows the vector walk graph for the sequence ATGGTGCACC.

The vector walk can completely remove degeneracy. However, it possesses higher compu-

tational complexity, and requires more memory than the 2D rectangular methods.
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Figure 3.3: (a) General representation of vector walk method, (b): vector walk graph for the
sequence ATGGTGCACC [Lia05].

3.3 Yu’s method

Another method was proposed by Yu et al. [YLY+10] recently, where a DNA sequence graph

is constructed in two quadrants of the Cartesian coordinate system. Pyrimidines (C and T )

were placed in the first quadrant and purines (A and G) in the fourth quadrant. The vectors

corresponding to the four nucleotides G, A, T and C were defined as follows:

(1,−2/3)→G, (1,−1/3)→ A,

(1,1/3)→ T, (1,2/3)→C.

With this definition, points for any of the four bases can be calculated. For instance, if

the first base is A, then the point is (1,−1/3), if the second base is T, then the point is (2,0),

and if the third base is G, then the point is (3,-2/3). Figure 3.4(a) shows the distribution of

the four bases and Figure 3.4(b) shows the four different plots obtained with this method for

human, common chimpanzee, Norway rat and hedgehog from their mitochondrial genomes.

In [YLY+10], the authors outlined some applications using their proposed method. A DNA

graphical curve was characterized by the use of moment vectors. In this method, points of a

sequence are (1,y1), (2,y2), ..., (n,yn). As a consequence, a sequence of numbers (1− y1), (2−

y2), .....(n−yn) can be computed in the reverse way and using this series, the original points can

be recovered. The moment vector was defined as follows:
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M j =
∑n

i=1(xi− y j) j/n j, j = 1,2, .....n.

(a)

(b)

Figure 3.4: (a) Coordinate distribution for four bases; (b) Plots of mitochondrial genomes of
four different species using the method of Yu et al.[YLY+10].
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Here, n is the number of nucleotides contained in a DNA sequence and (xi,yi) represents the

position of the ith nucleotide. By definition, each DNA sequence has an n-dimensional moment

vector (M1,M2, ...Mn) associated with it. A 2D space for different genomes was plotted taking

the first two moment vectors. Figure 3.5 shows the plot from the first two moment vectors for

some group of species by the method of [YLY+10].

Figure 3.5: Proposed genome space of Yu et al. [YLY+10].

Limitations of the proposed plot of Yu et al. [YLY+10] includes the y-coordinate depen-

dency of the points. In addition, the curve depends on the C +G content of a DNA sequence

and on the vectors assigned to each nucleotide. The vector assignment for the nucleotides can

be changed from one quadrant to another. As a result, if the vector assignments of C and G are

changed, the whole curve changes and it will be highly dependent on the C +G content of that

particular DNA sequence. Moreover, the space is also y dependent, and not a real metric space:

the distance between points does not satisfy the triangular inequality property. For example, if

we have three points M1, M2, M3, and distance between M1 and M2 is D12, distance between

M1 and M3 is D13, and between M2 and M3 is D23 then it must satisfy

D12 + D13 > D23
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D12 + D23 > D13

D23 + D13 > D12

However, the space proposed in [YLY+10] fails to satisfy the above condition that makes the

space not a metric space.

3.4 The cell method

This 2D representation was introduced by Yao et al. [YW04], where four bases were repre-

sented by four different cells. The cell is a 2× 2 matrix of four different dots, where each dot

represents a nucleotide base. To plot a DNA sequence by the cell method, the sequence is

scanned for every nucleotide, and moved forward according the position of the dot associated

with the scanned nucleotide. The correspondence between the nucleotide bases and coordinates

are calculated as follows:

ϕ(gi) =



(2(i−1),0), gi = G

(2(i−1),1), gi = A

(2(i−1) + 1,0), gi = C

(2(i−1) + 1,1), gi = T

Figure 3.6 shows the representation of a cell. The representation of the sequence ATGGT A

by this method is shown in Figure 3.7.

Figure 3.6: A cell [YW04].
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Figure 3.7: Representation of the sequence ATGGT A by the cell method [YW04].

To exemplify some applications of this method, the authors [YW04] compared 11 different

species by using the graphical representation of the first exon of the β-globin gene. Upon trans-

forming the curve into a matrix, a 12-component vector consisting of the normalized eigenval-

ues λ/N, is calculated, where λ is the leading eigenvalue of some characteristic matrix which

is also generated from the transformed matrix and N is the total number of bases of the DNA

sequence. The distance between two component vectors was calculated by the Euclidean dis-

tance, and it is claimed that similar species have smaller distances between them than distant

ones.

The cell method is applicable for the analysis of a small region of a DNA sequence. For

the whole sequence, the cell method suffers from high computational complexity as represent-

ing each base with a cell consumes large memory. Generally, one single chromosomal DNA

sequence contains more than a billion of base pairs. So, representing one DNA sequence with

the cell method would be very costly in terms of memory.

3.5 The Huffman Coding Method

The Huffman coding method was introduced to reduce degeneracy for the repetitive nucleotides

in a sequence [QLQ11]. In this method, first the frequencies of the four nucleotides in a

sequence are calculated. Afterwards, a binary tree is generated based on the frequencies and the

Huffman coding method. For instance, if we have a sequence with frequencies { fA, fG, fT , fC},

a binary tree is generated from left to right taking the two least probable symbols and putting

them together to form another equivalent symbol having a probability that is equal to the sum

of the two symbols. The process is repeated until there is just one symbol. Following this, the

Huffman tree for the DNA sequence is created. The tree can be read backward, from right to

left, assigning different bits (bit ‘‘0,’’ the left child with a less probability; bit ‘‘1,’’ the right
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child with a larger probability) to different branches. For example, if there is a DNA sequence

with its nucleotides frequencies {0.05; 0.3; 0.2; 0.45}, then the Huffman tree for the sequence

can be drawn as shown in Figure 3.8. The final Huffman codes can be used from the tree, for

the tree in Figure 3.8 they are: C→0, G→11, A→100, and T→101. Using this information, a

2D graphical representation can be made afterwards by a 0-1 graph, where bit 1 is plotted in

the first quadrant and bit 0 in the fourth quadrant of a Cartesian coordinate system as shown in

Figure 3.9. Figure 3.10 shows the Huffman tree and 2D representation for the first exon of the

β-globin gene of chimpanzee. The major advantage of this method is that even if the Huffman

tree is the same for two sequences where the frequencies of four nucleotides are similar, the

resulting 2D representation will be different for two different sequences based on their internal

organization.

Figure 3.8: A Huffman tree for a DNA sequence with nucleotide frequencies {0.05; 0.3; 0.2;
0.45}; a) The first nodes; b) The final Huffman tree.

Figure 3.9: The graphical representations of bit ‘‘1’’ and bit ‘‘0.’’
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Figure 3.10: a) The Huffman tree for the first exon of the β-globin gene of chimpanzee; b) The
2D graphical representation of the first exon of the β-globin gene of chimpanzee.

3.6 The ColorSquare method

This method represents a DNA sequence in a big square that contains small squares of different

colors for different nucleotides [ZSZ+12]. ColorSquare has several advantages: (1) no degen-

eracy, (2) no loss of information, (3) highly compact, (4) colorful, and (5) square. To build the

ColorSquare, first the size of the big square needs to be calculated. This is done by calculating

the square root of the length of the DNA sequence. If the length of the sequence is n then

the size of the big square is d
√

ne × d
√

ne. After getting the big square, the small squares are

marked. The marking is done clockwise around in the big square according to the given DNA

sequence. Because d
√

ne × d
√

ne is generally greater than n, the big square contains more that

n squares. It means that there are some small squares left which do not represent DNA bases.

These remaining squares are marked with ‘N’. After marking the big square, the squares are

filled according to color assignments as follows: A → Red, G → Blue, C → Yellow, T →

Green, N →White. Figure 3.11 shows the construction and the final ColorSquare for the first

exon of the human β-globin gene.

This big square can be converted to a matrix with values assigned to nucleotides. For the

conversion of the ColorSquare to a numerical matrix, values are assigned to the four different

color squares and the white squares as follows:

N→White→ 0, A→ Red→ 1, C→ Yellow→ 2, G→ Blue→ 3, T →Green→ 4.



21

Figure 3.11: (a) The whirlpool construction of ColorSquare of the first exon of the human β-
globin gene; (b) The visualization result of ColorSquare of the first exon of human β-globin
gene [ZSZ+12].

Figure 3.12: The matrix representation of ColorSquare (Fig.3.11 (b)) of the sequence of the
first exon of human β-globin gene [ZSZ+12].

The equivalent matrix for Figure 3.11 is shown in Figure 3.12.

To compare two ColorSquare matrices, a numeric characterization is obtained for each ma-

trix using the leading eigenvalues and adopting 24 component vectors [ZSZ+12]. Suppose

there are two sequences i and j, and the obtained numerical characterization vectors are Di and

D j from their corresponding ColorSquare matrices, then the similarity between two sequences

can obtained by calculating the Euclidean distance between the two vectors, Di and D j. The

main problem of this method is that the construction of the ColorSquare is completely unneces-

sary as we are dealing with the final matrix at the end, which can be constructed independently

without using the ColorSquare.

Summary

2D representations can effectively provide visual inspection of data, which can be used to rec-

ognize major differences among several sequences. Earlier methods were limited by degener-

acy and the original sequences were unrecoverable. The concerns with the methods like vector
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walk and cell were memory and computational complexity. In the vector walk method, every

base position has to be counted and stored in the memory to compute cumulative numbers of

bases. The cell method requires each cell to be stored for every base and comparing dissim-

ilarities among species requires additional computations. ColorSquare method involves some

unnecessary computation steps. The Huffman coding method is better than the other methods

as it removes the factor of degeneracy and can produce different representations for differ-

ent sequences which contain the same frequencies for the four nucleotides. In the following

subsections, we will look at some of the 3D representation methods for a DNA sequence.

3.7 Randic’s method

Randic et al. [RVNB00] introduced a 3D representation for a DNA sequence by assigning four

different nucleotides to four different coordinates in a 3D space. The coordinates for the four

nucleotides are as follows:

(+1,−1,−1)→ A, (−1,+1,−1)→G, (−1,−1,+1)→C, (+1,+1,+1)→ T .

Figure 3.13: The 3D representation of the sequence ATGGTGCACC by the method of Randic
al. [RVNB00].
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If the first base is A, then the coordinate is (+1,−1,−1). If the second base is T , then the

point is calculated by adding the previous point to its assigned coordinates. Thus, the result-

ing point will be (+2,0,0). The application described for the cell methods was first introduced

by Randic in [RVNB00]. So, with this plot, we can also find the dissimilarities among sev-

eral regions of a particular DNA sequence and also among several species by using specific

genes. Figure 3.13 shows the plot for the sequence ATGGTGCACC with Randic’s proposed

3D approach to represent a DNA sequence.

3.8 Yuan’s method

Yuan et al. [YLW03] introduced another simple 3D method to represent a DNA sequence,

where the three different coordinates were chosen as follows: A= negative x axis, G= positive

y axis, T = negative y axis and C = positive y axis. The z value of any point is i, where i is the

position of the current base. The coordinate functions are as follows:

ϕ(i) =



(−1,0, i), gi = A,

(1,0, i), gi = G,

(0,−1, i), gi = T,

(0,1, i), gi = C.

For example, the corresponding points for the sequence ATGGTGCACC are {(-1, 0, 1), (0, -1,

2), (1, 0, 3), (1, 0, 4), (0, -1, 5), (1, 0, 6), (0, 1, 7), (-1, 0, 8), (0, 1, 9), (0, 1, 10)}. Figure 3.14

shows the 3D curve generated by this method for the sequence ATGGTGCACC.

Figure 3.14: Characteristic curve of the sequence ATGGTGCACC; The dots denote the bases
making up the sequence [YLW03].
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3.9 The TN curve

The TN curve is one of the most sophisticated 3D representation methods to visualize a DNA

sequence, offering better sensitivity in terms of calculating dissimilarity among different species.

This curve was proposed by Yu et al. [YSW09] based on the trinucleotide organization of a

DNA sequence. With four different bases, there can be 64 different combinations of trinu-

cleotides. In this method, at first values are assigned for the first and third base of any trin-

ucleotide as A→ 1, G → 2, C → 3, and T → 4 to determine the values of the x and y co-

ordinates. The sign of the coordinates are obtained using the sign assignment of the second

base, e.g., +,+↔ A;−,+↔ G;−,− ↔ C;+,− ↔ T . The value of the z coordinate increases

with the successive trinucleotide numbers. The positions of each nucleotide based upon the

second nucleotide are shown in Figure 3.15. To use this curve more effectively, the authors

introduced two other parameters, that are the xi and yi namely the mean of x and the mean of

y. The equations for xi and yi are as follows

x
′

i =
∑i

n=1 xn,

y
′

i =
∑i

n=1 yn.

Figure 3.15: Distribution of the 64 different trinucleotides in Cartesian 2D coordinates
[YSW09].
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Triplets x y z x
′

y
′

ATG 1 -2 1 1 -2

TGG -4 2 2 -3 0

GGT -2 4 3 -5 4

GTG 2 -2 4 -3 2

TGC -4 3 5 -7 5

GCA -2 -1 6 -9 4

CAC 3 3 7 -6 7

ACC -1 -3 8 -7 4

Table 3.1: 3D coordinates for the sequence ATGGTGCACC [YSW09].

For example, if we have the sequence ATGGTGCACC, the coordinate set (x,y,z) and

(x
′

,y
′

,z) can be described by Table 3.1. Figure 3.16 shows the TN curve for the above sequence.

The configuration of the curve can be changed by changing the value of the four bases and

the sign assignment for the second base. The curve is unique for any particular coordinate

distribution but can vary with the change of coordinate assignment.

Figure 3.16: TN curve for the sequence ATGGTGCACC [YSW09].

The characteristic graph (projection on the (x′,z) and (y′,z) plane respectively) for the x
′

and

y
′

are different for genomic sequences originating from different species. Figure 3.17 shows

the x
′

and y
′

curve for four different species chicken, gorilla, human, and opossum. First three

curves have similar kind of displays but the curve for opossum is different. With these plotted
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Figure 3.17: 2D plots of x′ and y′ of the coding sequences of the first exon of β- globin gene
of human, gorilla, opossum and chicken [YSW09].

curves, authors calculated the dissimilarity matrix for the different curves with the Euclidean

distance, which was used to analyze relatedness of different species. Though the dataset chosen

was very small, the curve was better in terms of differentiability than the previous approaches.

The relation between every given DNA sequence with its TN curve is one to one. The TN curve

can be used as a nucleotide descriptor. The second base carries the descriptor information. If

x > 0 then the second base must be A or T , and G or C otherwise. If y > 0 then the second base

must be A or G, and C or T otherwise. So, the TN curve has important mathematical properties

to represent DNA sequences and the curve is unique for each sequence. Moreover, with the

points of the curve, the original sequence can be recovered. The mean value of x and y also

carries important information to differentiate the organization of several segments of the DNA

sequence or between two or more DNA sequences.
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Summary

3D representations are capable of removing the degeneracy of the 2D plots, as well as the

comparison for different species retrieved from the 3D plots was more sensitive. However,

3D representations require more computation than 2D representations. Moreover, for visual-

ization purposes, the 2D plots are more convenient than the 3D plots. TN curve is the recent

proposed 3D representation and proved to be superior to the 2D and other graphical representa-

tions of DNA sequences. In the next section, we will study another sophisticated and efficient

representation of DNA sequences named Chaos Game Representation for a DNA sequence.

3.10 Chaos Game Representation and genomic signatures

Chaos Game Representation (CGR ) was introduced by Jeffrey [Jef90] in 1990 to visualize the

organization of a DNA sequence. By this approach, different DNA sequences produce differ-

ent fractal structures, leading to the interesting area of research of analysing DNA sequence

graphically. The CGR image of any DNA sequence is plotted in a 2D coordinate system in a

unit square. The center is the center of the square. The four corners of the square are the four

different nucleotides of the DNA sequence. The coordinates of the nucleotides are A=(0,0),

C=(0,1), G=(1,1) and T=(1,0). The lower and upper vertices (A+T), (C+G) represent the

base composition, and the diagonals indicate the purines (A, G) or the pyrimidines (C, T). The

whole sequence is read base by base from left to right. The plotting steps are as follows: the

first point is the center of the square, the next point is the midpoint between the current point

and the corner point of the next nucleotide. The basic algorithm of CGR is shown in Algorithm

1.
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Algorithm 1 CGR Plot.
Input : Input: A DNA sequence S

Output: CGR of the sequence S

Point = (.5, .5);

Repeat

Scan next character from S;

Point = (Point + Point of the corner of this nucleotide input character)/2;

Plot a point at this position in the square

Until there are no more characters

CGR images of different DNA sequences show interesting patterns including various ge-

ometric patterns, such as squares, parallel lines, rectangles and triangles. Some of the CGR

images even show complex fractal patterns. Figure 3.18 shows the CGR images of four differ-

ent species, generated using their mitochondrial DNA sequences.

Figure 3.18: CGR image of the mitochondrial genomes of (a) baboon, (b) human, (c) shrimp,
and (d) trout.



29

In 1993, Goldman [Gol93] analyzed the pattern of CGRs in terms of nucleotide and din-

uclotide frequencies using a Markov Chain Model [LM95]. In the first order Markov Chain

model [LM95], the successive bases in a simulated sequence depend only on the preceding

bases. In this model, a 4×4 matrix P defines a set of probabilities, and subsequent bases follow

the current base in a DNA sequence using these probabilities. If the base labels A,C,G, and T

are equated with the numbers 1, 2, 3 and 4, then Pi j, the jth element of the ith row of P, defines

the probability that base j follows base i. The row sum of the matrix P must be equal to 1. With

the use of the matrix P, a simulated DNA sequence is obtained by selecting the first base ran-

domly, according to the frequencies of the bases in the DNA string under study; if this is base

i, then the probabilities Pi1, Pi2, Pi3, and Pi4 are used to select the next base, and so on until the

simulated sequence is of the same length as the original DNA sequence. In the second order

Markov Chain model, each base depends on the previous two bases. The probabilities are in

the form of PXYZ , which implies that this is the probability that base Z follows the dinucleotide

XY to simulate the original sequence.

Goldman simulated CGRs of the Bacteriophage lambda genome with the original sequence

and with second order Markov chain simulated sequence and found similar images [Gol93].

Figure 3.19 shows the resulting CGR images of the simulation in [Gol93]. Thus, he concluded

by saying “it is unlikely that CGRs can be more useful than simple evaluation of nucleotide,

dinucleotide and trinucleotide frequencies”, which implies CGR is only a pictorial representa-

tion of nucleotide, dinucleotide and trinucleotide frequencies of a DNA sequence. After this

conclusion, the research on CGR continued with less frequency.
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Figure 3.19: CGR images simulated in [Gol93].

After two years, the concept of the genomic signature was introduced by Karlin et al.

[KB95]. A genomic signature is a specific arithmetic characteristic dissimilar for different

organisms but pervasive in the genome of same organism [KB95]. A genomic signature has

two major properties: pervasiveness and differentiability. This means the signature will be

pervasive in the genome of same the organism and must be different for unlike organisms. The

signature proposed by Karlin and Burge [KB95] was the ratio of dinucleotide frequencies to

the total number of mononucleotide frequencies. DRAP can be defined as follows:

Definition 1 For a sequence s, the dinucleotide relative abundance profile DRAP(s) is an ar-

ray ρXY = fXY/ fX fY , where XY stands for all combinations of dinucleotides, fX denotes the

frequency of the mononucleotide X in s, and fXY denotes the frequency of the dinucleotide XY

in s.

Afterwards, Deshavanne et al. [DGV+99] showed that CGR images inside a particular

genome vary less than among different genomes. Furthermore, in this paper [DGV+99], an-

other type of CGR which is called Frequency Chaos Game Representation (FCGR) was intro-

duced. The name FCGR was given by Almeida et al. [ACM+01]. FCGR can quantitatively

express the structure and complexity of a DNA sequence. Though CGR images provide a vi-

sualization for human eyes, it has a limitation of resolution if they are computer generated,

which can be solved by FCGR. A kth-order FCGR can be obtained in two ways: a) counting

the number of points inside the grid that can be obtained by dividing the CGR plot into 2k×2k
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grid, and putting the number into a corresponding matrix element, b) directly counting the

number of occurrences of each length k oligonucleotide in the sequence, and putting it into the

corresponding place in the matrix. A kth-order FCGR is a 2k×2k matrix, and can be defined as

follows.

Definition 2 A kth-order FCGR of a sequences s, denoted by FCGRk(S ), is a 2k × 2k matrix.

A first order FCGR and second order FCGR are shown below where Nw is the number of

occurrences of the oligonucleotide w in the sequence s.

FCGR1(s) =

 NC NG

NA NT



FGCR2(s) =



NCC NGC NCG NGG

NAC NTC NAG NTG

NCA NGA NCT NGT

NAA NT A NAT NTT


Then, the (k + 1)th - order FCGRk+1(s) can be obtained by replacing each element in Nx in

FCGRk(s) with four elements

 NCX NGX

NAX NT X


The kth-order FCGR of a DNA sequence s concatenated with its reverse complement s′ is

denoted by FCGRk(ss′).

In 2005, Wang et al. [WHSK05] proposed the concept of a spectrum of genomic signatures.

Some common features for genomic signatures were also discussed such as a) each genomic

signature is a numerical matrix and can be visualized in a CGR, b) a positive integer number

called order determines its granularity, and c) if the order is k, the numerical matrix has 2k×2k

elements. Wang et al. [WHSK05] claimed that a kth-order FCGR is equivalent to a CGR of

resolution 1/2k, and if the resolution of a CGR is 1/2k and the length of a DNA sequence is

much longer than k, then the numbers of length k oligonucleotide occurrences are the complete

determinants of the CGR pattern. Both DRAP and FCGR were proposed as genomic signatures
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by Wang et al. [WHSK05], and there is a direct relation between the two. Both the second

order FCGR and DRAP have 16 elements that correspond to one dinucleotide. An element of

a second order FCGR represents only the frequency of a specific dinucleotide. On the other

hand, an element of a DRAP is the ratio of the dinucleotide frequency to the frequencies of the

two single nucleotides composing this dinucleotide. Thus, an element of DRAP can be called

a relative frequency, and DRAP can be defined as a second order relative FCGR and can be

denoted as rFCGR2(s).

rFCGR2(s) =



ρCC ρGC ρCG ρGG

ρAC ρTC ρAG ρTG

ρCA ρGA ρCT ρGT

ρAA ρT A ρAT ρTT


In a DRAP, all the elements are organized in an array; whereas in a second-order relative

FCGR the same elements are organized in a matrix. So by organizing the elements of a DRAP

as a second-order FCGR the similarity of a DRAP and a FCGR is revealed.

In [WHSK05], the authors proved that Goldman’s conclusion does not always hold, us-

ing simulations. Figure 3.20 shows the counterexamples to the conclusions of [Gol93]. The

three CGRs on the left column of the figure are plotted from human DNA sequence, human

mtDNA sequence, and a Neurospora crassa mtDNA sequence respectively. The CGRs on the

right column are plotted from the sequences constructed by simulating the length and single-

nucleotide, dinucleotide, and trinucleotide frequencies of the corresponding sequences in the

left column. Interestingly, the CGR images of each pair of sequences are not similar at all,

despite the fact that the length, single-nucleotide, dinucleotide, and trinucleotide frequencies

are the same. This result shows that Goldman’s conclusion does not always hold.
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Figure 3.20: Counter example to Goldman’s conclusion showed in [WHSK05].

Another version of CGR was proposed by Dunham et al. [DQW+06] called Temporal

Chaos Game Representation (TCGR). The major objective of TCGR was to deal with shorter

sequences and analyzing the variability in distribution based on positions within the long se-

quence by using a sliding window. The term “temporal” refers to the starting point of a sliding

window [DQW+06]. Traditional CGR methods have no ability to deal with a set of short se-

quences, and are not suitable for evaluating any kind of changes that occur inside a genomic

sequence. In order to overcome these imperfections of traditional CGR, TCGR was introduced.

With experimental results on different groups of miRNAs, TCGRs showed the ability to visu-

alize similarities and differences among the miRNA groups of viruses, nematodes, rodents and

primates [DQW+06]. As TCGR uses a sliding window to capture the variation of the distribu-

tion of nucleotides, it can be used to differentiate between the coding and non coding regions

in the genome. The sliding window can also be useful in examining the internal structure of a
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DNA sequence.

In 2007, Tavassoly et al. [TTR+07] proposed a 3D CGR on a cube to analyze coding and

non coding regions in genomic sequences. The eight corners of the cube were used to map the

four nucleotides of the coding regions and four nucleotides of non-coding regions of a DNA

sequence. Afterwards, the points for each nucleotide were calculated with a similar approach

of Algorithm 1 with an additional z value for the z axis. The resulting CGR image contains two

parallel 2D CGRs with very few dots between them.

Another 3D-CGR to visualize a DNA sequence was proposed by Tu [Tu09] on a regular

tetrahedron. A tetrahedron is a polyhedron with four vertices, six edges, and four triangle

faces. A regular tetrahedron is one of the platonic solids with the faces all being equilateral

triangles. The four nucleotide bases were placed at the four corners of the regular tetrahedron.

The center of the tetrahedron is the starting point. The next steps are similar to the traditional

CGR plotting. Figure 3.21 shows the 3D-CGR of human and mouse mtDNA genome plotted

in [Tu09]. 3D-CGR is useful in exploring the complex structure of the whole genome, but in

terms of complexity and application, it could not outperform 2D-CGRs.

Figure 3.21: 3D-CGR images of mouse and human mtDNA sequence [Tu09].
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3.10.1 Applications of CGR: Computing species’ relatedness

CGR images show distinct patterns for unlike species and similar patterns for closely related

species. Thus, by comparing CGR images, species’ relatedness can be efficiently measured.

Different methods have been proposed to compare CGR images of diverse species in litera-

ture [WHSK05, ACM+01, DGV+99], but the most efficient result was achieved by Wang et al.

[WHSK05]. In [WHSK05], three different distance methods for calculating FCGR distance

were implemented for 26 mitochondrial genomes from a diverse range of species. They com-

pared their resulting phylogenetic trees with trees obtained using ClustalW and showed how

FCGR can effectively outperform the traditional alignment based measurement of species’ re-

latedness. The three distance methods compared are: a) Euclidean distance, b) image distance,

and c) Pearson distance. Before calculating the distance between two FCGR matrices, they

must first be standardized. The sum of all elements in a FCGR is proportional to the total

number of base pairs in the DNA sequence. So, to make comparisons fair in terms of length

and to be able to compare FCGRs obtained from DNA sequences of different lengths, we need

to eliminate the length factor of FCGRs. This method of eliminating the sequence length pa-

rameter from FCGR is called standardization. A quantitative method of standardization was

described in [WHSK05].

Suppose, A is a kth-order FCGR. From the definition of a FCGR, we know that A is a 2k×2k

matrix. Let ai, j(1 ≤ i ≤ 2k,1 ≤ j ≤ 2k) be the elements of this matrix. If the standardized matrix

of A is Ā, then

Ā =
4k∑

i
∑

j ai, j
A.

Assuming that the elements in Ā are denoted by bi, j, the following property holds:

2k∑
i=1

2k∑
j=1

bi, j = 4k.
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This property implies that in a standardized kth-order FCGR, the sum of all elements is

equal to the number of elements, and therefore the average value of the elements of the FCGR

matrix is 1. If the FCGRs are standardized, we can compare DNA sequences of different

lengths. We will now look at some of the distance methods for comparing FCGR matrices.

Definition 3 (Euclidean distance). If Ā = (a)2k×2k and B̄ = (b)2k×2k are two standardized kth-

order FCGRs, then we define Euclidean distance between Ā and B̄ as:

dE(Ā, B̄) =
√

2k

4k

√∑2k

i=1
∑2k

j=1(ai, j−bi, j)2.

The constant
√

2k

4k is related to the definition of a standardized FCGR.

Definition 4 (Hamming distance). If Ā = (a)2k×2k and B̄ = (b)2k×2k are two standardized kth-

order FCGRs, then we define Hamming distance between Ā and B̄ as:

dH(Ā, B̄) = 1
4k

∑2k

i=1
∑2k

j=1 |ai, j−bi, j|.

There is an another method which compares two CGR images according to the image

similarity between the two CGRs, called Image distance. This is an expansion of Hamming

distance. Before defining the Image distance, we need the following definitions.

Definition 5 (Neighbourhood). Let A be a matrix A = (a)n×n, R be a positive integer, and (i, j)

be a pair where 1 ≤ i, j ≤ n. A neighbourhood of radius R, centered at (i,j), denoted as θR(i, j),

consists of all integer pairs (s,t), where 1≤ s≤ n,1≤ t ≤ n, s ∈ [i−R, i + R], and t ∈ [ j−R, j + R].
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Definition 6 (Density). For a matrix A = (a)n×n, the density matrix (densityR(A))n×n, where

for any (i, j), 1 ≤ i ≤ n,1 ≤ j ≤ n, is defined as:

densityR(A)i, j =

∑
(s,t)∈θR(i, j) as,t∑

(s,t)∈θR(i, j) 1 .

Now the Image distance of two FCGRs can be defined as follows:

Definition 7 (Image distance). Suppose we have two kth-order standardized FCGR matrices

Ā = (a)2k×2k and B̄ = (b)2k×2k , then the Image distance between Ā and Ā is:

dIR(Ā, B̄)= 1
4k

∑2k

i=1
∑2k

j=1 |densityR(Ā)i, j−densityR(B̄)i, j|.

Precisely, while we are calculating image distance, we are comparing two neighbourhoods

of certain radius of the two different CGR images.

Definition 8 (Pearson distance). If we express FCGR A as an array (xi)(1≤i≤n), and FCGR B

as (yi)(1≤i≤n), then the Pearson distance dP(A,B) can be defined as:

dP(A,B) = 1− rwx,y,

where

nw =
∑n

i=1 xi · yi, x̄w =

∑n
i=1 x2

i ·yi
nw , ȳw =

∑n
i=1 xi·y2

i
nw

sx =

∑n
i=1(si−x̄w)2·xi·yi

nw , sy =

∑n
i=1(yi−ȳw)2·xi·yi

nw .

rwx,y =

∑n
i=1

si−s̄w
√

sx
·
yi−ȳw
√

sy ·xi·yi

nw .

In the case of Pearson distance, one advantage is that we do not need to standardize the

FCGR matrices before calculating the distance. These distance methods can be effectively
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used to compare different FCGRs, which can be then used to analyze phylogenetic evolution-

ary relations among diverse species. ClustalW is a tool used to align multiple sequences in

order to compute their phylogenetic relations. In [WHSK05], FCGRs of 26 mitochondrial se-

quences were compared with the four distance method discussed here. The authors compared

the phylogenetic trees generated by comparing the FCGRs of those 26 species computed by

the various distance methods. They also compared the result with the conventional ClustalW

tool. Table 3.2 shows the dataset chosen in [WHSK05]. The tree generated using Euclidean

distance was the best among all in terms of species’ relatedness. This tree can distinguish all

the vertebrates from other organisms. The invertebrates are also differentiated from all other

organism with the exception of yeast B. The other trees generated using the image distance,

Pearson distance, and ClustalW did not produce results as accurate as the Euclidean distance.

Summary

We have seen how FCGR can be constructed and how the calculation of the distances among

different FCGRs can be used to generate phylogenetic trees for diverse species. ClustalW was

one of the widely used alignment tools used to analyze phylogenetic relationship, but FCGR

shows strong evidence in outperforming it. Thus, CGR can be an efficient and effective tool

for measuring species’ relationships.

One important point to consider while constructing FCGR is the value of the order k. Ex-

perimental results show [WHSK05] that the higher order FCGR are preferable to the lower

ones, but no definitive conclusion was made. Also, when increasing the order of FCGR, after

some point, higher order FCGR does not give better result than the lower ones. The increment

of order increases the time and space complexity exponentially. As there is no theoretical or

mathematical conclusion on what should be the optimal order for FCGR, in [WHSK05], it was

empirically proposed that the value for k = 10 is an upper bound for the order of FCGR. The

authors recommended choosing a value of k between 1 and 10. A kth-order FCGR becomes

sparse with the increase of k, and thus, higher values of k should be avoided. The FCGR

matrices are not sparse as long as k ≤ 10, when the DNA sequence is long enough (10,000 nt).
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Genome

Number

Accession

number

Name Short name mtDNA length

1321 NC 012920 Homo sapiens human 16569

2514 NC 006853 Bos taurus cow 16338

2757 NC 005089 Mus musculus mouse 16299

3012 NC 001329 Podospora anserina fungus 100314

3047 NC 001324 Paramecium aurelia protozoan 40469

3070 NC 001224 Saccharomyces

cerevisiae S288c

yeast B 85779

3079 NC 001327 Ascaris suum roundworm 14284

3081 NC 001453 Strongylocentrotus

purpuratus

urchin B 15650

3082 NC 001620 Artemia franciscana shrimp 15822

3102 NC 001321 Balaenoptera physalus whale A 16398

3103 NC 001322 Drosophila yakuba fruitfly 16019

3104 NC 001323 Gallus gallus chicken 16775

3105 NC 001325 Phoca vitulina seal B 16826

3106 NC 001566 Apis mellifera ligustica honeybee 16343

3107 NC 001572 Paracentrotus lividus urchin A 15696

3109 NC 001601 Balaenoptera musculus whale B 16402

3110 NC 001602 Halichoerus grypus seal A 16797

3111 NC 001606 Cyprinus carpio carp 16575

3112 NC 001610 Didelphis virginiana opposum 17084

3116 NC 001665 Rattus norvegicus rat 16313

3122 NC 001717 Oncorhynchus mykiss trout 16642

3123 NC 001727 Formosania lacustris loach 16558

3155 NC 002084 Anopheles gambiae mosquito 15363

3172 NC 001613 Prototheca wickerhamii alga 55328

3174 NC 001660 Marchantia polymorpha plant 186609

3175 NC 001326 Schizosaccharomyces

pombe

yeast A 19431

Table 3.2: The dataset of mitochondrial genomes used by Wang el al. [WHSK05].
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3.11 SSIM: Measuring species’ relatedness with CGR

In previous sections, we have seen how the CGR of a genome can give detailed information

and insight about the genome and how making efficient comparison among CGRs of different

genomes is capable of providing relatedness analyses of those genomes. This section gives a

brief discussion of an image comparison method that can be efficiently used to compare CGRs

of various genomes. The method is called Structural Similarity (SSIM) index. This method

was proposed in [WBSS04] to asses the similarity of two different images. Figure 3.22 shows

the system diagram of SSIM.

Figure 3.22: Diagram of the structural similarity (SSIM) measurement system.

Precisely, suppose we have two non-negative image signals x and y, which are aligned to

each other. If we consider that one of the images has perfect quality, then the similarity measure

of these two images can serve as a quantitative measurement of the quality of the second signal.

The task of the similarity measurement is achieved by three comparison steps: luminance,

contrast and structure. First, the luminance of each signal is compared. The function of the

luminance comparison, denoted by l(x,y) is a function of µx and µy, where µ is the mean

intensity and can be defined as

µx = 1
N
∑N

i=1 xi.

Consequently l(x,y) is defined as

l(x,y) =
2µxµy+C1

µ2
x+µ2

y+C1
.
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Here, the constant C1 is included to avoid instability when µ2
x + µ2

y is very close to zero. In

[WBSS04], the value of the constant C1 was chosen as follows

C1 = (K1L)2,

where L is the dynamic range of the pixel values (255 for 8-bit grayscale images), and K1

is a small constant. Similar considerations also apply to contrast comparison and structure

comparison described later.

In the second step, the mean intensity is removed from the signal. The resulting signal

(x−µx) corresponds to the projection of vector x onto the hyperplane defined by

∑N
i=1 xi = 0.

The standard deviation is used as an estimate of the signal contrast. An unbiased estimate

in discrete form is given by

σx = ( 1
N−1
∑N

i=1(xi−µx)2)1/2.

The contrast between two signals x and y is then compared by the following definition

c(x,y) =
2σxσy+C2

σ2
x+σ2

y+C2
,

where C2 is another constant and defined by C2 = (K2L)2, used to avoid instability when

σ2
x +σ2

y is very close to zero.

In the third step, the signal is normalized by its own deviation, so the two signals being

compared have unit standard deviation. Afterwards, the structure comparison s(x,y) is con-

ducted on these normalized signals (x−µx)/σx and (y−µy)/σy. The definition of s(x,y) is as

follows:

s(x,y) =
2σxy+C3
σxσy+C3

,

where the constant C3 is used to avoid instability when σxσy is very close to zero, and σxy is

defined as

σxy = 1
N−1
∑N

i=1(xi−µx)(yi−µy).
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Finally, the three components are combined to output the overall similarity measure that

can be defined as

SSIM(x,y) =
(2µxµy+C1)(2σxy+C2)

(µ2
x+µ2

y+C1)(σ2
x+σ2

y+C2)
.

Here, C2=C3.

To achieve a single overall similarity measure of the entire image, a mean SSIM (MSSIM)

index is used, and defined as

MSSIM(X,Y) =
1
M

M∑
j=1

SSIM(x j,y j).

where X and Y are the reference and the distorted images, respectively; x j and y j are the image

contents at the jth local window; and M is the number of local windows of the image. The

three components (luminance, contrast, and structure) are relatively independent. The detailed

analysis of all the terms of SSIM can be found in [WBSS04].

To summarize, the Structural Similarity (SSIM) index is an image distance measure that

is widely used in the context of image processing and computer vision to compare two gray

images from the point of view of their structural similarities [WBSS04]. SSIM was designed to

perform most similarly to the human visual system, which is highly adapted to extract structural

information from viewing.

The theoretical range of the MSSIM distance is [−1,1], with the distance being 1 between

two identical images, 0 between a black image and a white image, and -1 if the two images

are negatively correlated, that is, MSSIM(X,Y) = −1 if and only if every pixel of image X has

the inverted value of the corresponding pixel in Y . To compute dissimilarity between two CGR

images, we first compute MSSIM(X,Y). In this thesis, the dissimilarity for the CGR images,

DMSSIM is calculated performing 1−MSSIM(X,Y). As a result, for our case the range of

the DMSSIM is [0,2]. More precisely, if we have two identical CGRs then the DMSSIM will

return a distance of 0, if we have one black and a white CGR image, the DSSIM will give a

distance of 1, and if the two CGR images are negatively correlated then the DSSIM distance

will be 2. For the dataset of genomic CGR images used in this thesis, all distances range

between 0 and 1.
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Using SSIM as a distance calculation method to compare two CGR images has some ad-

vantages. The value of the order k in the calculation of FCGR [WHSK05] is no longer required.

The increment of k increases the computation complexity of FCGR exponentially. All of these

problems are bypassed if we use SSIM to compare two CGR images. Moreover, SSIM normal-

izes the image signals with standard deviation, which implies we no longer have to normalize

the CGR images separately.

SSIM is a sensitive comparison method, as will be seen in subsequent sections. However,

one problem with SSIM is that the distance calculated by SSIM for a set of images may not

satisfy the triangular inequality property.

Summary

We have seen how to produce CGR images for genomes and discussed an image comparison

method to compare two CGR images. As a result, we can generate a dissimilarity or similarity

matrix for any number of given genomes using their CGRs and comparing them with SSIM.

Next, we want to display the relatedness. A method called Multidimensional Scaling (MDS)

will be employed to display species relatedness in a 2D Euclidean space. The following section

briefly describes MDS.

3.12 Multi Dimensional Scaling (MDS)

MDS has been used for the visualization of data relatedness in various fields such as cognitive

science, information science, psychophysics, psychometrics, marketing, and ecology [BG10].

MDS takes as input a distance matrix containing the pairwise distances between n given items

and outputs a plot wherein each item is represented by a point, and the geometric distances

between points are a linear function of the distances between the corresponding items in the

distance matrix. In a classic example [CC01], if we have distances among 10 different north

American cities, MDS generates the map of these cities taking the distances as input. To

illustrate more precisely, if we have the following distance matrix for the ten North American

cities showed in Table 3.3, then MDS will plot the map of these cities as shown in Figure 3.23.
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London Toronto Vancou-

ver

Chicago New

York

Seattle Montreal Washing-

ton

Dc

Detroit Texas

London 0 192 4181 647 862 3965 721 847 199 2379

Toronto 192 0 4371 837 790 4155 543 775 372 2557

Vancou-

ver

4181 4371 0 3537 4086 227 4900 4660 3989 3324

Chicago 647 837 3537 0 1271 3321 850 1126 455 1813

New York 862 790 4086 1271 0 4590 595 366 988 2846

Seattle 3965 4155 227 3321 4590 0 4685 4444 3773 3108

Montreal 721 543 4900 850 595 4685 0 944 901 3086

Washing-

ton DC

847 775 4660 1126 366 4444 944 0 845 2493

Detroit 199 372 3989 455 988 3773 901 845 0 2189

Texas 2379 2557 3324 1813 2846 3108 3086 2493 2189 0

Table 3.3: Distance in kilometers among ten North American cities obtained from Google map
(not real straight line distances).

Figure 3.23: MDS plot of the ten cities from Table 3.3.
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The application of MDS is not limited to reconstructing maps. MDS can be used with

a wide range of dissimilarities and similarities arising from various situations. It covers any

method which produces a graphical representation of objects from multivariate data. For ex-

ample, dissimilarities obtained from analyzing DNA sequences could be used for an interrela-

tionship study for various taxonomic groups. First let us look into several data types that can

be analyzed by MDS.

3.12.1 Types of data

Variables in the analysis of similarity and dissimilarity of objects are classified according to

their “measurement scale”. The different scales are the nominal scale, the ordinal scale, the

interval scale, and the ratio scale. The following subsections will briefly discuss these scales.

Nominal scale

Nominal data are classificatory. Nominal scale refers to quality more than quantity. A

nominal level of measurement is simply a matter of distinguishing by name, e.g., 1 = male, 2

= female. Even though we are using the numbers 1 and 2, they do not denote quantity. The

binary category of 0 and 1 used for computers is a nominal level of measurement. They are

categories or classifications. We can think about some more examples such as meal preference:

vegetarian, non-vegetarian; religious affiliation: 1 = Buddhist, 2 = Muslim, 3 = Christian, 4 =

Jewish, 5 = Other; political orientation: Republican, Democratic, Libertarian, Green etc..

Ordinal scale

Data on the ordinal scale can be ordered, but are not quantitative. Ordinal scale refers to

order in measurement. For instance, rank first can be judged to be better than rank seven. More

examples, level of speed: slow, medium, fast; alignment: left, center, right etc..
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Interval scale

Data on the interval scale are quantitative data, where the numerical difference between

two values is meaningful. An example of an interval scale is temperature, either measured on a

Fahrenheit or Celsius scale. A degree represents the same underlying amount of heat, regard-

less of where it occurs on the scale. Measured in Fahrenheit units, the difference between a

temperature of 46 and 42 is the same as the difference between 72 and 68. Another example of

interval scale is time of day on a 12-hour clock.

Ratio scale

Data measured on the ratio scale is similar to that on the interval scale, with the exception

of having a meaningful zero point, for instance, weight, height, temperature recorded in degrees

Kelvin. We can define two more examples, number of children: 3; height : 173 cm.

So, we have seen the different data scales that can be modelled by MDS. Depending on

variations of data types there are different models of MDS. The different MDSs are Classical

MDS, Metric MDS, Non-metric MDS, and Generalized MDS.

Furthermore, some more types can be found in [CC01] such as Metric Least Square Scaling,

Procrustes analysis, Unidimensional Scaling, Biplots, Unfolding etc. Different models of MDS

are used based on the data types. For instance, if the distances in the configuration space are

to be Euclidean and the dissimilarities are precisely Euclidean distances, then Classical MDS

model is used. Both the Classical MDS and Metric Least Square Scaling are example of metric

scaling, where the term metric means that the dissimilarity of data is a metric. In contrast,

non-metric MDS is used if we have a non-metric dissimilarity matrix. For example, for ordinal

data, non-metric MDS is used, where the rank order of the dissimilarities has to be preserved.

In this thesis, the distance we have, using the CGR and comparing with SSIM method, is a

metric, that is it satisfies a) non-negativity, b) identity of indiscernibles, c) symmetry, and d)

triangular inequality . The data falls in the category of “ratio scale”. As a result, for our

proposed method, the classical MDS has been used. Let us have a brief look at the classical

MDS.
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Classical MDS

Classical MDS receives as input a parameter n, corresponding to a set of n items, and an n×n

distance matrix that contains the pairwise distances between any two items in the set:

4 =



δ1,1 δ1,2 . . δ1,n

δ2,1 δ2,2 . . δ2,n

. . . . .

. . . . .

δn,1 δi,2 . . δi,n


The output of classical MDS consists of n points in a k-dimensional space, whose pairwise

Euclidean distances are similar to the distances between the corresponding items in the input

distance matrix. More precisely, MDS will return n points x1, x2 . . . , x ∈ Rk such that

||xi− x j||≈ δ(i, j)

for all i, j ∈ n.

Here, k can be at most n−1, and the points are recovered from the eigenvalues and eigen-

vectors of the input n×n distance matrix [CC01]. In this thesis, we have used the first two sets

of points returned by MDS (i.e value of k = 2).

In general, the purpose of MDS is to provide a visual representation of the pattern of prox-

imities among a set of objects. MDS has not been widely used so far in the field of molecular

biology. It was used in [Les90] for the analysis of the geographic genetic distribution of some

natural populations and, in [HCBD03], to provide a graphical summary of the distances among

the CO1 genes from various species. There are some advantages of the MDS to represent

species’ relatedness over phylogenetic trees. The representation and construction of the con-

ventional phylogenetic trees comes with some limitations. In a phylogenetic tree, branches can

be rotated. As a consequence, the adjacency of two species-representing leaves is not always

informative. We can visually see and determine if two nodes are closer but it is difficult to see

how much difference is there when the two nodes are far away from each other.

Though MDS can be efficiently used for similarity or dissimilarity analysis, it comes with

some limitations. Firstly, the points xi are not unique. Indeed, one can translate or rotate the
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main map without affecting the pairwise Euclidean distances ||xi− x j||. In addition, when more

data items are added to the input set, the obtained points in an MDS map may change coordi-

nates as the output of the MDS aims to preserve only the pairwise Euclidean distance between

points, and this can be achieved even when some of the points change their coordinates. Sec-

ondly, the method does not work properly for a dataset that contains less than eight data points.

Moreover, for too many data points, the plot can be cumbersome to visualize. Lastly, each

MDS map has some error, which we will define by the term “Stress”. The Stress is in general

lower for an MDS map in a higher-dimensional space when using the same dataset. In this

thesis, stress defined in [Kru64] has been used to study the errors of different MDS plots. The

Stress-1 (Kruskal stress, [Kru64]) is defined as follows:

Stress-1 = σ1 =

√√
Σi< j[ f (δi, j)−di, j]2

Σi< jd2
i, j

.

Here, di, j is the Euclidean distance between xi and x j.

The linear function f is used to determine the relation between δi, j and di, j. To calculate

the function f of f (δi, j), we have calculated two coefficients a and b with the use of linear

regression and define f (δi, j) = a×δi, j +b. Using a built-in Matlab function ployfit, the best line

of fit is calculated for the pairwise distances of the points over the associated original distance

in the input distance matrix and the value of a and b are retrieved . The function is defined as

follows, p = poly f it(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits the

data, p(x(k)) to y(k), in a least squares sense. For our case, xk = δk, yk = dk, and n = 1.

Summary

In this chapter, some of the 2D and 3D representation methods for a DNA sequence were

discussed. In addition, CGR and different applications of CGR images were described. At

the end, an image comparison method SSIM, and a method, called MDS, to represent species

relatedness in an Euclidean space were introduced. In the next chapter, Genome Distance Maps

will be introduced that use CGR, SSIM and MDS to give a visual representation of species’

interrelationships.
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Chapter 4

Proposed method and results

4.1 Quantitatively measuring DNA sequence distances and

displaying the inferred genome relatedness

A new method to visualize species’ relatedness in a common Cartesian coordinate system is

proposed in this chapter. Herein, the novel combination of CGR, SSIM and MDS is used to

implement the method. More precisely, if we want to compare genomes from a diverse set and

display their relatedness, we can use this method very efficiently. The step by step operation

can be summarized according to Algorithm 2.

Algorithm 2 Steps to produce Genome Distance Map (GDM)
Input : Input: n DNA sequences

Output: n points in a 2D Euclidean space

1. Compute the CGRs of the sequences using Algorithm 1.

2. Compare the CGRs generated in Step 1 with SSIM and produce an n×n distance matrix.

3. Apply MDS to the distance matrix produced in Step 2 and generate n vectors of dimen-
sion (n−1).

4. Take the first two components of each vector in Step 3 and plot the n points in a 2D space
that have them as coordinates.

This method can take any set of DNA sequences as input and output the interrelation-
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ship in a 2D map between the sequences. For instance, if we give 10 accession numbers of

10 mitochondrial genomes from NCBI, the final output will be a 2D plot that contains 10

points representing the corresponding genomes. We will call the plot a Genome Distance Map

(GDM).

In this thesis, every sequence has been downloaded from NCBI (url:http://www.ncbi.nlm.nih.gov/)

and only mtDNA sequences are analyzed. The last updated dataset as of July 12, 2012 for all

mtDNA genomes is used for all the experiments and simulations.

A total of 3,176 mtDNA sequences were contained in this dataset. An excel file has been

created describing the entire dataset along with specific information for each mitochondrial

genome. The information includes the accession number, sequence length, biological name

and taxonomic description from kingdom to genus. For an efficient and consistent analysis,

a unique number was assigned to each mtDNA sequences. For instance, if the number 1321

represents the mitochondrial genome of the Homo sapiens (human), then in every GDM, 1321

will be representing the mtDNA sequence of the Homo sapiens. We will use the abbreviation

GN (Genome Number) to refer to the associated number for a genome. Furthermore, in every

plot, genomes are given different colors according to their biological classifications.

Each of the map comes with legends containing useful biological and mathematical infor-

mation about the map, such as total number of sequences from each taxonomy. For readability

purposes, all maps are scaled so that the x- and the y- coordinates always span the interval

[−1,1]. To make the interval consistent for all the maps, the following scaling formula is used

xsca = 2 · ( x−xmin
xmax−xmin

)− 1, ysca = 2 · ( y−ymin
ymax−ymin

)− 1, where xmin and xmax are the minimum and

maximum of the x-coordinates of all the points in the map, and similarly for ymin and ymax.

Furthermore, the Stress or error for each of the plots as discussed in Section 3.12 is calcu-

lated. After taking the first two sets of points returned by MDS, the pairwise distances between

every pair is calculated and consequently di, j is computed. Afterwards, applying the the polyfit

function to the original DSSIM distances, we have generated a and b for each entries of di, j over

δi, j. Subsequently, the the f (δi, j) was calculated by the following formula f (δi, j)=δi, j × a + b.

At the end the Stress-1 for each map was computed.
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4.2 Genome Distance Maps

From Algorithm 2, we can see that the combination of CGR, SSIM, and MDS applied to a

particular set of genomic sequences yields a so-called Genome Distance Map, which visually

illustrates the quantitative relationships and patterns of proximities among the given genomic

sequences and the species they represent.

In a Genome Distance Map, we can display relatedness between any two sequences as well

as among a set of sequences. We have applied this method to experiment species’ relationship

at different taxonomic levels. For example, Figure 4.1 shows the Genome Distance Map for all

vertebrate mitochondrial sequences in our database. In this map and all other Genome Distance

Maps in this thesis, the numbers refer to the associated Genome Numbers for the mitochondrial

sequences of our database.

Figure 4.1: Genome Distance Map of the phylum Vertebrata, with its five subphyla: mammals,
amphibians, reptiles, birds and fishes.
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Figure 4.1 displays the five different vertebrates clusters Birds, Fishes, Amphibians, Mam-

mals, and Reptiles, all clearly separated. By the term clear separation, it is meant that the

different colored clusters are not mixed up with any other cluster. In this figure, a total of 371

mammals, 112 amphibians, 179 reptiles, 969 fishes and 160 birds (a total of 1791 organisms)

are represented. The Stress for this particular figure is 0.12. To make the map consistent with

all other maps, we did some scaling. The original xmin, xmax, ymin, ymax are -0.16172, 0.19668,

-0.1396, and 0.2312 respectively.

4.3 Genome Distance Map of all eukaryotes

To begin with, we first have the GDM of all eukaryotes (the entire database) shown in Figure

4.2.

Figure 4.2: Genome Distance Map of all eukaryotes.
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This is the map at the kingdom level. We have four different kingdoms with a certain

number of representatives in the database. The database contains mitochondrial DNA sequence

of 2703 animals, 283 plants, 79 protists, and 111 fungi. This map is dominated by the total

number of animals. We can see the plants are not all grouped together. This may be due to the

high total number of species in this map and the over representation of the kingdom Animalia.

We have a total 3,176 organisms in this plot. The xmin, xmax, ymin, ymax, and Stress for the map

are -0.2692, 0.44666, -0.18498, 0.2175, and 0.142 respectively.

4.4 Across classifications

We next applied our method to investigate large scale differences, plotting together mitochon-

drial genomes across classifications.

Figure 4.3: Genome Distance Map across classifications.
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The map in Figure 4.3 comprises all represented species from a genus (Zea, plants, 4

species), a family (Hominidae, great apes, 9 species), an order (Anura, frogs, 41 species), a

class (Aves, birds, 160 species) and a phylum (Arthropoda, 460 species).

Figure 4.3 shows that our method can distinguish species across different classifications.

All species from the genus, family, order and class are grouped together in a separate cluster.

The main motivation of plotting this dataset was to observe effectiveness of our method to an-

alyze large scale phylogeny. We took representatives from the genus to the phylum level and

succeeded to show applicability of the method over the hierarchy of the biological classifica-

tion.

The information for this map is as follows, total number of organisms 674 (4 plants, 41

frogs, 160 birds and 460 arthropods), S tress = 0.15504, xmin = −0.16392, xmax = 0.28038,

ymax = 0.65699, ymin = −0.099185.

4.5 Three classes : Amphibia, Insecta and Mammalia

Subsequently, we compared different classes and plotted together all available mitochondrial

genomes from three classes, Amphibia, Insecta and Mammalia (Figure 4.4).

The three classes are grouped together without any kind of mix ups with another class. As a

consequence, we can claim our proposed method can be successfully applied where relatedness

analyses at class level is required.

The total number of organisms in Figure 4.4 is 790 (307 insects, 371 mammals, and 112 am-

phibians), S tress = 0.16291, xmax = 0.187, xmin = −0.19862, ymax = 0.18092, ymin = −0.19862.

On a finer scale, in the next subsections we applied this method to observe relationships

within a Class: Class Amphibia and its three orders in Figure 4.5, Class Insecta and its major

orders in Figure 4.6, Class Mammalia with primates highlighted in Figure 4.7.
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Figure 4.4: Genome Distance Map of three classes: amphibians, insects, and mammals.

4.6 Class Amphibia and its three orders

The dataset for Figure 4.5 consists of all the 112 amphibian mtDNA represented in our dataset,

classified into three groups: 8 Caecilians (order Gymnophiona), 41 Frogs (Order Anura), and

63 Newts/Salamanders (order Caudata).
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Figure 4.5: Genome Distance Map of the Class Amphibia and its three orders: Gymnophiona,
Anura, and Caudata.

The map contains three separate clusters with little overlaps of the order Gymnophiona

with the other two orders. These mix ups may not be anomalies. As the total number species

of the order Gymnophiona is lower than the other two orders and the SSIM distances among

these orders are very low, these 8 Gymnophionas took position in the middle of the other two

orders. The numerical characteristics for this figure are S tress = 0.16973, xmax = 0.23309,

xmin = −0.23772, ymax = 0.1445, ymin = −0.32096.
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4.7 Class Insecta and its major orders

The dataset of Figure 4.6 consists of the mtDNA of the 307 insect species in the database, 55

from the order hemiptera (true bugs), 23 from the order isoptera (termites), 37 from the order

coleoptera (beetles), 51 from the order diptera (true flies), 55 from the order lepidoptera (lepi-

dopterans), 19 from the order hymenoptera (sawflies, wasps, bees and ants), and 52 from the or-

der orthoptera (grasshoppers, crickets, weta and locusts). In addition, it contains 3 Mecopteras,

3 Ephemeropteras, 2 Odonatas, 3 Thysanuras and 4 Archaeognathas. Stress for this map is

0.13896, xmin = −0.13514, xmax = 0.23813, ymin = −0.23779, ymax = 0.07835.

Figure 4.6: Genome Distance Map of the Class Insecta and its major orders.
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4.8 Class Mammalia with primates highlighted

Figure 4.7 displays the genome distance map of all mammal mtDNA genomes, with the pri-

mates highlighted. The map in Figure 4.7, has a total of 371 mammals, out of which 62 are

primates. The shape of the map takes on a shape of three outstretched arms, with the primates

occupying a distinct arm from the other mammals. The xmin, xmax,ymin,ymax, and Stress for the

map are -0.16992, 0.31409, -0.25783, 0.15513, and 0.15 respectively. To zoom in further, in

the next section, we have a map of interrelationship within an order, the Primates order.

Figure 4.7: Genome Distance Map of Class Mammalia with the order Primates highlighted.
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4.9 Primates

The two different suborders of the Order Primate are Strepsirrhini and Haplorrhini. The

Genome Distance Map for the order Primates is shown in Figure 4.8. In this map, we have two

misplaced Haplorrhines that are placed with the Strepsirrhines, namely Tarsius bancanus (GN:

2978) and Tarsius syrichta (GN: 1381). These are both tarsiers, whose position within the pri-

mates has been a controversial subject for over a century [JHS+11]. This map can thus support

the claim of Chatterjee et al. [CHBG09] that these two Tarsius should actually classified in to

Strepshirrini group. In contrast, the reverse is claimed by Jameson et al. [JHS+11]. Total num-

ber of organisms is 62 (14 Strepsirrhini, 48 Haplorrhini), S tress = 0.19524, xmax = 0.15117,

xmin = −0.33695, ymax = 0.24929, ymin = −0.28896.

Figure 4.8: Genome Distance Map of the Order Primate and its two suborders Strepsirrhini
and Haplorrhini.
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Figure 4.9: Zoomed in part of a particular region of the GDM of Figure 4.8

.

Whenever we need to look into a particular region of a GDM to observe mix ups or close

relatedness, we can do it by zooming in on that particular region of a GDM. For instance,

Figure 4.9 shows the zoomed in part of the misplaced Haplorrhines of Figure 4.8.

4.10 All protists

None of the datasets we explored so far showed the applicability of our method to the study of

protists. Protists are unicellular organisms and did not fit into other kingdoms, and historically

they were treated as a biological kingdom called Protista. With the use of molecular informa-

tion, this group was redefined in modern taxonomy as diverse and often distantly related phyla.

Consequently, the group of protists is now considered to mean diverse phyla, which are not

closely related through evolution and have different life cycles, trophic levels, modes of loco-

motion, and cellular structures [Sim05]. Furthermore, besides their relatively simple levels of

organization, the protists do not have much in common. They can be unicellular or multicel-

lular without containing any kind of specialized tissues that makes them different from other

eukaryotes such as animals, fungi and plants. Figure 4.10 is the Genome Distance Map of all

protists in the dataset. This map contains a total of 79 protists, 31 from the phylum Alveolata,

7 from the phylum Amoebozoa, 1 from the Class Choanoflagellida, 1 from the phylum Het-
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erolobosea, 1 from the Class Jakobida, 1 from the Class Malawimonadidae, 2 from the Class

Cryptophyta, 1 from the Class Haptophyceae, and 34 from the phylum Stramenopiles.

Stress for this map is 0.27, xmin = −0.47439, xmax = 0.29071, ymin = −0.25916, ymax =

0.31939.

Figure 4.10: Genome Distance Map of all protists.
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Chapter 5

Empirical analysis

While using the CGR/SSIM/MDS method to analyze species relatedness using their mitochon-

drial genomes, there are some issues that should be considered. At the beginning of this chap-

ter, we will try to find the minimum number of nucleotides required to get detectable patterns in

a CGR. Afterwards, we will experiment with the robustness and sensitivity of the CGR/SSIM

method by observing the effect of the insertion, deletion and substitution of different number

of nucleotides. In addition, we will perform length experiment on two datasets to see the dif-

ferences on the final GDMs and decide the minimum sequence length requirement needed to

get results for GDMs with clear separation of different clusters.

One additional experiment is implemented to see if the CGR of a genome contains more

information than the mono, di-, and trinucleotides frequencies.

Furthermore, to asses the overall behaviour of the SSIM as a distance measurement method,

we will see the graph of the SSIM distances between Homo sapiens (GN: 1321) and Malawi-

monas jakobiformis (GN: 3028) and all other organisms of our database.

5.1 CGRs of plants with long mtDNA

The contrast (dark or white) of a CGR image depends on the total number nucleotides in a

genome. Generally, the mtDNA sequences of plants are longer than other eukaryote genomes.

In this section we will see CGRs of some plant mitochondrial genomes that contain a large

number of nucleotides and try to observe how dark the CGRs can be.
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In Figure 5.1, the CGRs of four different plants are shown. Figure 5.1a shows the CGR of

the mtDNA genome of Anomodon regelii, Figure 5.1b shows the CGR of the mtDNA genome

of Treubia lacunosa, Figure 5.1c CGR of the mtDNA genome of Huperzia squarrosa, and Fig-

ure 5.1d shows the CGR of the mtDNA genome of Phoenix dactylifera. We can see that the

CGRs get darker as the total number of nucleotides increases. Consequently, we can conclude

saying that the contrast or darkness of a CGR is proportional to the total number of nucleotides

in a genome. As DSSIM returns 1, when comparing one black and one white image, compar-

ison of long mitochondrial plant genomes with a genome of shorter length is always expected

to be higher with our proposed CGR/SSIM method.

(a) CGR of the mitochondrial genome of Anomodon rugelii, sequence length 104,239 nt, GN:508.
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(b) CGR of the mitochondrial genome of Treubia lacunosa, sequence length 151,983 nt, GN:509.

(c) CGR of the mitochondrial genome of Huperzia squarrosa, sequence length 413,530 nt, GN:118.



65

(d) CGR of the mitochondrial genome of Phoenix dactylifera, sequence length 715,001 nt, GN:243.

Figure 5.1: CGRs of plants with long mtDNA.

5.2 CGR of human mtDNA genome and Phoenix dactylifera

mtDNA genome truncated at different length positions

This experiment was performed to see what should be the minimum number of nucleotides re-

quired for a DNA sequence to produce a recognizable pattern in a CGR. At first, CGRs of the

human mtDNA genome at different length truncations were imaged. The consecutive CGRs

shown in Table 5.1 are generated taking the first 50, 500, 1000, 2000, 4000, 5000, 10000,

12000, 15000 nucleotides of the human mtDNA sequence and the last image shows the CGR

of the whole human mtDNA sequence. For these cases, we can say that for a mtDNA sequence

with shorter length, the first 12,000 nt sequence is sufficient to get a recognizable pattern in its

corresponding CGR.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Table 5.1: CGRs of human mtDNA taking the first (a) 50, (b) 500, (c) 1000, (d) 2000, (e) 4000,
(f) 5000, (g) 10000, (h) 12000, (i) 15000, and (j) 16569 nucleotide positions (left to right and
top to bottom).

CGRs of Table 5.2 are generated taking the first 50, 1000, 2000, 5000, 10000, 20000,

50000, 100000, 200000, 300000, 700000 nucleotides of the mtDNA of date palm (GN: 243,

Phoenix dactylifera). The last image shows the CGR of the whole mtDNA sequence. In this

case, the first 20,000 nt generate detectable patterns in CGR. In general, it is difficult to draw a

general conclusion about the minimum number of nucleotides required for different genomes,

where the corresponding CGR image of one genome starts to generate noticeable patterns. For

these two experiments, the nucleotide range of 12,000-20,000 nt seems reasonable to get no-
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ticeable patterns in CGR and well suited for CGR based analyses. This does not imply that

sequences of other lengths can not be imaged and compared for particular applications.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

(i) (j)
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(k) (l)

Table 5.2: CGRs of the mtDNA of date palm (GN: 243, Phoenix dactylifera) taking the first
(a) 50, (b) 1000, (c) 2000, (d) 5000, (e) 10000, (f) 20000, (g) 50000, (h) 100000, (i) 200000,
(j) 300000, (k) 700000, and (l) 715001 nucleotide positions (left to right and top to bottom).

5.3 Robustness and sensitivity of CGR/SSIM: Insertion dele-

tion experiment

The purpose of the following experiments is to asses the impact of insertions/deletions and

substitutions of varying number of nucleotides at different positions of a genome. We aimed to

answer the following questions:

1. How sensitive is SSIM to detect single nucleotide insertion, deletion and substitution in

a genome?

2. Which operation has the highest impact while doing comparison?

3. How do substitutions of subsequences of a genome with subsequences from completely

different genomes impact the distance?

To answer these questions the human mitochondrial genome was used, wherein 1,000 nt

were deleted from the middle, which resulted in a DSSIM distance of 0.0299 from the original
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sequence. The insertion of 1,000 nt from the same human genome resulted in a DSSIM distance

of 0.0007 from the original sequence. The insertion into the human mitochondrial genome of a

1,000 nt sequence from an unrelated species, Marchantia polymorpha (GN:3174), at the same

position, resulted in a much larger distance of 0.0515. A replacement of a 1,000 nt sequence

from Marchantia in the middle of the human mitochondrial genomes resulted in a distance

of 0.084. In addition, SSIM may be sensitive enough to detect single nucleotide insertion,

deletion and substitution. Deletion of one single nucleotide from the middle of human mtDNA

result in a distance of 0.0001 from the original sequence, whereas insertion of one nucleotide

results in a 0.0002 distance.

Furthermore, to analyze the effect of subsequence substitutions, a “metamorphosis” was

simulated of one species into another, starting with the human mtDNA and substituting 100,

200, 300, . . . all nucleotides with the subsequences of the same length and starting at the same

position from the mtDNA of Marchantia polymorpha (GN:3174). Subsequently, the distances

between the human mtDNA and all the intermediate chimera-organisms were plotted and the

shape of the trajectory was investigated . Interestingly, the trajectory showed a very small

increase in distance when the length of the substituted sequences increased from zero to 1000

nt (where the distance was 0.0941), and afterwards the distance increased linearly until the

entire 16,569 nt from the human mitochondrial genome was substituted with Marchantia. The

maximum distance of 0.974 was found when the mtDNA genome of human was completely

substituted by the plant genome. The distance between the human mtDNA genome and the

full-length 186,609 nt Marchantia mitochondrial genome is 0.9838.

Together with the genome-specificity of CGR, it can be said that the above experiments

indicate that insertions of sequences from the same mtDNA would have a negligible effect

on the position of a species-point in the map, while insertions or substitutions of relatively

large sequence from the mtDNA of a distant species may significantly change the position

of the species-point in a genome distance map. Table 5.3 shows the resulting impact of the

insertion, deletion and substitution of a human mtDNA sequence and Figure 5.2 shows the

metamorphosis graph.
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Figure 5.2: The graph plots the DSSIM distances (measured with SSIM of CGRs), between the
original human mtDNA and artificial DNA sequences obtained by substituting the beginning
sequence of the human mtDNA with Marchantia Polymorpha mtDNA. The process was re-
peated with subsequences of increasing length, until the entire human mtDNA was substituted
with plant mtDNA.

5.4 Genome Distance Maps at different length truncations

In this experiment, the effect of sequence length on the resulting Genome Distance Maps is

investigated.

At first, the dataset used in Wang et al. [WHSK05] has been considered. The following

figures are Genome Distance Maps obtained using successive truncations of the mtDNA of the

organisms in the dataset: The first Genome Distance Map uses as input data the first 100 nt

from each mitochondrial genome in the dataset, the second map uses the first 500 nt from each

genome, and the subsequent ones use the first 1,000 nt, 2,000 nt, 4,000 nt, 6,000 nt, 8,000 nt,

10,000 nt, 12,000 nt, 14,000 nt, 15,000 nt, and full genomes respectively.
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For this experiment, we start to get reasonable separation at 12,000 nucleotides and get

complete visual separation of clusters at 15,000 nucleotides. The different 26 species start to

group according to their biological classifications after the first 12,000 nucleotides were taken.

(a) GDM for the dataset of Wang et al. [WHSK05] taking the first 100 nt of each mtDNA genome.
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(b) GDM for the dataset of Wang et al. [WHSK05] taking the first 500 nt of each mtDNA genome.

(c) GDM for the dataset of Wang et al. [WHSK05] taking the first 1,000 nt of each mtDNA genome.
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(d) GDM for the dataset of Wang et al. [WHSK05] taking the first 2,000 nt of each mtDNA genome.

(e) GDM for the dataset of Wang et al. [WHSK05] taking the first 4,000 nt of each mtDNA genome.
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(f) GDM for the dataset of Wang et al. [WHSK05] taking the first 6,000 nt of each mtDNA genome.

(g) GDM for the dataset of Wang et al. [WHSK05] taking the first 8,000 nt of each mtDNA genome.
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(h) GDM for the dataset of Wang et al. [WHSK05] taking the first 10,000 nt of each mtDNA genome.

(i) GDM for the dataset of Wang et al. [WHSK05] taking the first 12,000 nt of each mtDNA genome.
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(j) GDM for the dataset of Wang et al. [WHSK05] taking the first 14,000 nt of each mtDNA genome.

(k) GDM for the dataset of Wang et al. [WHSK05] taking the first 15,000 nt of each mtDNA genome.
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(l) GDM for the dataset of Wang et al. [WHSK05] taking the complete mtDNA genome.

Figure 5.3: GDMs for the entire dataset of Wang et al. (2005) using the mtDNA genomes at
different length truncations.

A similar experiment was performed using a dataset of mtDNA from species across classi-

fications, which is a subset of the dataset for Figure 4.3, including species from a genus (Zea,

plants, 4 species), a family (Hominidae, 9 species), an order (Anura, frogs, 10 species), a class

(Aves, birds, 10 species) and a phylum (Arthropoda, 9 species), and additional plants with very

long mitochondrial genomes (4 species). The dataset is described in Table 5.4. The following

figures are Genome Distance Maps obtained using successive truncations of each mtDNA of

the organisms in the dataset. The first Genome Distance Map of Figure 5.4, uses as input data

the first 8,000 nt from each mitochondrial genome in the dataset, the second map uses the first

10,000 nt from each genome, and the subsequent ones use the first 12,000 nt, 15,000 nt and

full genomes respectively. If we compare the subsequent figures with the last figure, where

the original length is preserved, we cannot draw a definite conclusion as to which figure works

best. For 8,000 nt there is one mix up of arthropods with large plants, for 10,000 nt, there

are a couple of mix ups of arthropods with the same plants, but for 12,000 nt there are more
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than 3 mix ups, and for 15,000 nt only one mix up. On the other hand, with the exception of

these mix ups of arthropods with large plants, all the other genomes group together very well

even if we take the first 8,000 nt. Consequently, for this experiment, a nucleotide range of

12,000-20,000 seems well suited for CGR/SSIM analyses. Nevertheless, this range can vary

for different situations and different applications.

(a) GDM for a sub-dataset of the dataset in Figure 4.3 taking the first 8,000 nt of each mtDNA genome.
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(b) GDM for a sub-dataset of the dataset in Figure 4.3 taking the first 10,000 nt of each mtDNA genome.

(c) GDM for a sub-dataset of the dataset in Figure 4.3 taking the first 12,000 nt of each mtDNA genome.
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(d) GDM for a sub-dataset of the dataset in Figure 4.3 taking the first 15,000 nt of each mtDNA genome.

(e) GDM for a sub-dataset of the dataset in Figure 4.3 taking the complete mtDNA genome.

Figure 5.4: Length experiment: Across classifications.
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Number Accesion number Name Sequence length

3 NC 018118 Elodia flavipalpis 14932

5 NC 018120 Mastotermes darwiniensis 15487

6 NC 018121 Porotermes adamsoni 16039

7 NC 018122 Microhodotermes viator 15704

8 NC 018123 Zootermopsis angusticollis 15483

9 NC 018124 Neotermes insularis 15799

10 NC 018125 Coptotermes lacteus 16326

11 NC 018126 Schedorhinotermes breinli 15864

12 NC 018127 Heterotermes sp. SLC-2012 16370

2220 NC 008331 Zea perennis 570354

2221 NC 008332 Zea mays subsp. parviglumis 680603

2222 NC 008333 Zea luxurians 539368

2338 NC 007982 Zea mays subsp. mays 569630

2171 NC 008548 Micrastur gilvicollis 17344

2172 NC 008549 Pteroglossus azara flavirostris 18736

2173 NC 008550 Pandion haliaetus 17864

2174 NC 008551 Ardea novaehollandiae 17511

2175 NC 008540 Apus apus 17037

2276 NC 008132 Nipponia nippon 16732

2282 NC 008138 Eudyptes chrysocome 16930

2283 NC 008139 Gavia pacifica 15574

2284 NC 008140 Podiceps cristatus 16134

1052 NC 013993 Homo sp. Altai 16570

1321 NC 012920 Homo sapiens 16569

1720 NC 011137 Homo sapiens neanderthalensis 16565

1721 NC 011120 Gorilla gorilla gorilla 16412

3084 NC 001643 Pan troglodytes 16554
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3085 NC 001644 Pan paniscus 16563

3086 NC 001645 Gorilla gorilla 16364

3087 NC 001646 Pongo pygmaeus 16389

3154 NC 002083 Pongo abelii 16499

506 NC 016119 Nanorana pleskei 17660

522 NC 016059 Rana chosenica 18357

650 NC 015615 Hymenochirus boettgeri 18007

651 NC 015617 Pipa carvalhoi 19534

652 NC 015618 Pseudhymenochirus merlini 18029

653 NC 015620 Rhinophrynus dorsalis 17299

738 NC 015305 Rana ishikawae 21020

889 NC 014685 Occidozyga martensii 18321

895 NC 014691 Leiopelma archeyi 16593

2569 NC 006408 Polypedates megacephalus 16473

3104 NC 001323 Gallus gallus 16775

243 NC 016740 Phoenix dactylifera 715001

1641 NC 012119 Vitis vinifera 773279

1013 NC 014050 Cucurbita pepo 982833

533 NC 016005 Cucumis sativus 1555935

Table 5.4: Dataset of the species in Figure 5.4.

5.5 Pseudo genome experiment: Robustness of CGR

This experiment was done to verify the validity of the conclusion made by Goldman in 1993

[Gol93] that CGR does not give more insight than the mono, di- and trinucleotide frequencies

of a genome. To analyze this statement, artificial genomes of Ustilago maydis (GN: 2214,

fungus), Arabidopsis thaliana (GN: 3167, plant), Apis mellifera ligustica (GN: 3106, insect),

Danio rerio (GN: 3048, fish), Gallus gallus (GN: 3104, bird), and Homo Sapiens (GN: 1321)
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were added to the dataset from [WHSK05].

For each of these genomes, three pseudo-genomes were generated. For example, for the

human mitochondrial genome, GN: 1321, the pseudo-genome 1321a, a DNA sequence with

the same length and single nucleotide frequency as the original; the pseudo-genome 1321b

with the same length and dinucleotide frequency as the original; the pseudo-genome 1321c

with the same length and trinucleotide frequency as the original , and similar for the other five

genomes were added.

Figure 5.5 represents the Genome Distance Map of the original genomes along with the

above pseudo-genomes. We can note the dramatic change in the positions of the human and

chicken pseudo-genomes compared with the original genomes’ position. This experiment

contradicts the statement made by Goldman [Gol93] for CGRs. Even having same length

and same single, di- and trinucleotide frequencies as the original genome, the artificial se-

quences are farther away from the original genome. For instance, the human pseudo-genomes

(1321a, 1321b, 1321c), moved dramatically away from the real human genome (GN: 1321).

The distances, δ(GN : 1321,GN : 1321a) = 0.9540, δ(GN : 1321,GN : 1321b) = 0.9467, and

δ(GN : 1321,GN : 1321c) = 0.935, mean that all three human pseudo-genomes were farther

away from the original human genome than Drosophila yakuba (GN: 3103, fruit fly) is, with

δ(3103,1321) = 0.934. In addition, the human pseudo-genomes were farther away from the

mammal cluster, e.g., from Bos taurus (GN: 2514, cow), Mus musculus (GN: 2757, mouse),

Balaenoptera physalus (GN: 3102, finback whale), Phoca vitulina (GN: 3105, harbor seal),

Balaenoptera musculus (GN: 3109, blue whale), Halichoerus grypus (GN: 3110, grey seal),

Rattus norvegicus (GN: 3116, rat). Consequently, this indicates that single, di- and trinu-

cleotide frequency may not contain sufficient information to classify a genomic sequence, con-

tradicting thus Goldman’s claim [Gol93] that “CGR gives no futher insight into the structure

of the DNA sequence than is given by the dinucleotide and trinucleotide frequencies”.
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Figure 5.5: Genome Distance Map of the organisms from the data set of Want et al.[WHSK05]
(in black) together with six other mitochondrial genomes (in colour) and their respective
pseudo-genomes. The pseudo-genomes are marked by the letter a (same length, same sin-
gle nucleotide frequency), b (same length, same single dinucleotide frequency) and c (same
length, same single trinucleotide frequency) following the organism’s identification number.

5.6 Graphs of DSSIM distances between the CGR images

of human mtDNA and each of the 3,176 mitochondrial

genomes of the dataset

To observe the overall behaviour of SSIM as a distance measurement method, this section

describes the sorted and unsorted graphs of the DSSIM distances between the CGR images of

the human mitochondrial genome and each of the 3,176 mitochondrial genomes. The minimum

distance to Homo sapiens was found to be δ(1321,1720) = 0.109, the distance to Homo sapiens

neanderthalensis (GN: 1720), and the second smallest distance is δ(1321,1052) = 0.18, the

distance to Homo sp. altai (GN: 1052), with the third smallest distance being δ(1321,3084) =
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0.4655 to Pan troglodytes (GN: 3084, chimp). In contrast, the maximum distance from the

human mtDNA was found to be δ(1321,533) = 0.9946, the distance from Cucumas sadivus

(GN: 533, cucumber), the plant with the longest mitochondrial genome in the dataset, with a

length of 1,555,935 nt. Overall the graph showed that the distance rose quickly to 0.65 with a

second marked increase after reaching 0.80, and mostly ranging between 0.65 and 0.80.

Figure 5.6: Graph of the SSIM distances between the CGR images of human mtDNA and each
of the 3,176 mitochondrial genomes (sorted).

Figure 5.7: Graph of the DSSIM distances between the CGR images of human mtDNA and
each of the 3,176 mitochondrial genomes (unsorted).
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5.7 Graphs of DSSIM distances between the CGR images of

the mitochondrial genome of an ancient eukaryote Malaw-

imonas jakobiformis, and each of the 3,176 mitochondrial

genomes

This section contains the sorted and unsorted graphs of the DSSIM distances between the CGR

images of the mitochondrial genome of an ancient eukaryote Malawimonas jakobiformis (GN:

3028) and each of the 3,176 mitochondrial genomes.

Figure 5.8: Graph of the SSIM distances between the CGR images of an ancient euraryote
Malawimonas jakobiformis (GN: 3028) mtDNA and each of the 3,176 mitochondrial genomes
(sorted).

Figure 5.9: Graph of the SSIM distances between the CGR images of an ancient euraryote
Malawimonas jakobiformis (GN: 3028) mtDNA and each of the other 3,176 mitochondrial
genomes (unsorted).
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The distances rise sharply to 0.75, with the majority of distances being between 0.75 and

0.85. Figure 5.8 and 5.9 shows the sorted and the unsorted graphs.

5.8 Software and tools used to implement this project

All the maps and implementations were implemented using MALTLAB R2010a. Pseudo

genomes were generated using the software CLC Sequence Viewer, version 6, and a C++

program1. Phylogenetic trees were generated using the PHYLIP 3.69 package and the web

interface of ITOL [LB11].

5.9 Discussion

The proposed method is successful in comparing a wide range of DNA sequences. Any genome

can be imaged by CGR and subsequently compared with SSIM. CGR images can be success-

fully used to analyze species’ relatedness starting from genomic sequences of any length.

The SSIM is a very sensitive image comparison method with the ability of detecting sin-

gle nucleotide variation in two genomes. Substitution of a genome with a genome of a dif-

ferent species has the most impact (among insertion, deletion and substitutions) while using

CGR/SSIM method. For our dataset, the computed DSSIM distances between all pairs of full

length mitochondrial genomes varied from 0 to 0.9969. The minimum DSSIM distance 0 was

found between the Rhinomugil nasutus (GN: 98, commonly known as shark mulet, sequence

length 16,974 nt) and Moolgarda cunnesius (GN: 103, commonly known as longarm mullet,

sequence length 16,974 nt). These two genomes are actually two identical genomes, which

is exposed by a base by base sequence comparison. The maximum DSSIM distance 0.9969

was found between Huperzia squarrosa (GN:118, a firmoss, sequence length 413,530 nt) and

Candida subhashii (GN:954, a yeast, sequence length 29,795nt). One interesting observation

for the maximum SSIM is that the maximum DSSIM distance is not between the longest (GN:

533, cucumber, sequence length 1,555,935 nt) and the shortest (GN: 440, Silene conica, se-

quence length: 288 nt) mitochondrial DNA sequence in our dataset. This may be because,
1A C++ code written by S. Kopecki that generates DNA sequences with the same length and trinucleotide

frequency as a given input DNA sequence
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while comparing two CGRs with DSSIM, only the luminance distortion directly depends on

length. In contrast, the two other parameters (contrast distortion and linear distortion) weakly

depend on length of a genome.

The DSSIM distance matrix for our entire distance matrix fails to satisfy the property of

a metric distance completely. The first exception was for the case of two different species

x,y with δ(x,y) = 0 discussed earlier. The other violation was found for a triplet of three

corals. The three genomes Montastraea annularis (GN: 2432, length 16,138 nt), Montastraea

franksi (GN: 2433, length 16,137 nt), and Montastraea faveolata (GN: 2434, length 16,138

nt). The corresponding SSIM distances are as δ(2432,2434) = 0.0008, δ(2433,2432) = 0.0096,

δ(2433,2434) = 0.0087. The reason for this violation could be due to the similarity among

these three corals. The genomes are so close to each other that they could not maintain a

property of metric distance.

The resulting Genome Distance Maps are generated using the MDS method. All the maps

are scaled so that the range of x and y is [-1 1]. The Stress values for each of the maps are

less than 0.2, which is within the acceptable range proposed in [Kru64], with the exception of

Figure 4.10.
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Chapter 6

Conclusions and future work

Representing DNA sequences graphically and measuring, as well as displaying, species’ re-

lationships have been considered to be major aspects of molecular biological research. This

thesis discusses some of the 2D and 3D methods used to represent genomes and their potential

applications. In addition, we discuss Chaos Game Representation and genomic signatures for

DNA sequences.

In this thesis, a novel way to quantitatively measure species’ relatedness in a Euclidean

space using the mtDNA genomes of the species is proposed. The proposed method can be

effectively used to compare species using their mitochondrial DNA. Moreover, the proposed

Genome Distance Maps might be more informative than the phylogenetic trees, where relation-

ships among distinct species are difficult to judge and a large number data points is challenging

to visualize. Furthermore, whenever a new genome is sequenced, this method can be used to

define the taxonomic classification for that genome.

This method is also applicable where we have an alphabet that can be transformed and

partitioned into four subsets. For example, any binary sequence can be mapped with the CGR

method by labelling the corners as 00, 01, 10, and 11.

The proposed method is usable for genome comparison. However, to make it more user

friendly, one complete software project can be a possible future work, where the tool will be a

web interface, the end users can give inputs, and the software would output a “google” map of

genomes, with complete information displayed along with relatedness.

The SSIM algorithm can be improved so that it can work regardless of the sequence length.
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In addition, higher-dimension representations for MDS can be experimented with to produce

maps with lower Stress. Moreover, more image comparison methods can be empirically tested

to gain better sensitivity when comparing two CGR images.
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