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Abstract

Web search engines have been adopted by most universities for searching webpages in their
own domains. Basically, a user sends keywords to the search engine and the search engine
returns a flat ranked list of webpages. However, in university search, user queries are usually
related to topics. Simple keyword queries are often insufficient to express topics as keywords.
On the other hand, most E-commerce sites allow users to browse and search products in various
hierarchies. It would be ideal if hierarchical browsing andkeyword search can be seamlessly
combined for university search engines. The main difficulty is to automatically classify and
rank a massive number of webpages into the topic hierarchiesfor universities.

In this thesis, we use machine learning and data mining techniques to build a novel hybrid
search engine with integrated hierarchies for universities, called SEEU (SearchEngine with
hiErarchy forUniversities).

Firstly, we study the problem of effective hierarchical webpage classification. We develop
a parallel webpage classification system based on Support Vector Machines. With extensive
experiments on the well-known ODP (Open Directory Project)dataset, we empirically demon-
strate that our hierarchical classification system is very effective and outperforms the traditional
flat classification approaches significantly.

Secondly, we study the problem of integrating hierarchicalclassification into the ranking
system of keywords-based search engines. We propose a novelranking framework, called
ERIC (EnhancedRanking by hIerarchicalClassification), for search engines with hierarchies.
Experimental results on four large-scale TREC (Text REtrieval Conference) web search datasets
show that our ranking system with hierarchical classification outperforms the traditional flat
keywords-based search methods significantly.

Thirdly, we propose a novel active learning framework to improve the performance of hi-
erarchical classification, which is important for ranking webpages in hierarchies. From our
experiments on the benchmark text datasets, we find that our active learning framework can
achieve good classification performance yet save a considerable number of labeling effort com-
pared with the state-of-the-art active learning methods for hierarchical text classification.

Fourthly, based on the proposed classification and ranking methods, we present a novel
hierarchical classification framework for mining academictopics from university webpages.
We build an academic topic hierarchy based on the commonly accepted Wikipedia academic
disciplines. Based on this hierarchy, we train a hierarchical classifier and apply it to mine
academic topics. According to our comprehensive analysis,the academic topics mined by our
method are reasonable and consistent with the real-world topic distribution in universities.

Finally, we combine all the proposed techniques together and implement the SEEU search
engine. According to two usability studies conducted in theECE and the CS departments at
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our university, SEEU is favored by the majority of participants.
To conclude, the main contribution of this thesis is a novel search engine, called SEEU, for

universities. We discuss the challenges toward building SEEU and propose effective machine
learning and data mining methods to tackle them. With extensive experiments on well-known
benchmark datasets and real-world university webpage datasets, we demonstrate that our sys-
tem is very effective. In addition, two usability studies of SEEU in our university show that
SEEU has a great promise for university search.

Keywords: Hierarchical Classification, Search Engine, System Evaluation
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Chapter 1

Introduction

Since the emergence of WWW techniques in the 1990s, the web has become the major in-
formational medium for both faculty and students in universities. Every day, thousands of
education and research activities are published as e-documents on the web. With the explosive
growth of university webpages published online, effective organization and search of university
webpages is very important.

Web search engines, due to their great success on the generalweb, have been adopted by
many universities for searching webpages in their own domains. Most of the existing web
search engines (such as Google) licensed by universities are only based on keyword search.
Basically, a user sends keywords to a search engine and the search engine returns a flat ranked
list of webpages.

However, searching webpages in universities is different from searching information on the
general web. In a university search, user queries are often related to topics (e.g., academics,
campus life, news and media) [16]. Simple keyword queries are often insufficient to express
complex topics as keywords [29] (e.g., finding professors ina specific research area among
multiple universities). On the other hand, modern faceted search engines [51] in E-commerce
sites (such as Amazon and eBay) let users browse and search inthe categories of various
hierarchies (such as product categories and regions of the world). Such faceted search engines
have been shown to be more effective for searching information in complex hierarchies than
general keywords-based search engines [50].

It would be ideal if hierarchical browsing and keyword search can be seamlessly combined
for university search engines. Such hybrid search engines allow users to search by keywords
as in Google while drilling down to any (sub)category in multiple hierarchies. If users do not
choose any hierarchy, it would be the same as the current Google. On the other hand, users can
also browse any (sub)category without keywords, and the search engine will return a list of the
most popular webpages (e.g., the webpages with the highest PageRank values [85]) within that
category.

In this thesis, we propose a novel hybrid search engine, called SEEU (SearchEngine with
hiErarchy forUniversities), for Canadian universities to facilitate research collaboration, and
help faculty members and students find desired webpages moreeasily. The novel and key
idea is to incorporate multiple relevant hierarchies (suchas academic topics, universities and
media types) for university webpages in SEEU. See Figure 1.1(the home page) and Figure 1.2

1



2 Chapter 1. Introduction

(the result page) for the user interface (UI) of SEEU1. In SEEU, about two million webpages
from the top 12 largest Canadian universities are crawled, processed, and then classified into
hierarchies.

Figure 1.1: The home page of SEEU. Beneath the search box are the topic hierarchy, the
university hierarchy and the file type hierarchy.

The main challenge in building SEEU is to define commonly accepted hierarchies, and
automatically classify and rank a massive number of webpages into various hierarchies (such
as academics, campus life and media types) for universities. Although hierarchical faceted
search engines [50] have already implemented such functionality, it should be noted that the
items (e.g, products, books, CDs and so on) in these search engines are pre-labeled by human
experts. Give the large number of webpages published daily in universities, manual labeling is
not feasible.

In this thesis, we use machine learning and data mining methods to tackle these chal-
lenges. Firstly, we develop an effective hierarchical webpage classification system for large-
scale webpage categorization in SEEU. Secondly, we proposethe ERIC (EnhancedRanking
by hIerarchicalClassification), a novel ranking framework that combines hierarchical classifi-
cation with keywords-based ranking. Thirdly, we propose a novel active learning framework
to improve hierarchical classification, which is very important for ranking in hierarchies. With
extensive experiments on well-known benchmark classification and web search datasets, we
empirically demonstrate that our proposed methods are veryeffective and they outperform the
traditional flat classification and search methods significantly.

Based on these techniques, we propose a new hierarchical classification framework to mine
academic topics from the challenging two million university webpages in SEEU. Specifically,
we build the academic topic hierarchy based on the commonly accepted Wikipedia academic
disciplines. We train a hierarchical classifier and apply itto classify university webpages into
the academic topic hierarchy. According to our comprehensive analysis, the academic topic
pattern mined by our system is reasonable, consistent with the real-world topic distribution in

1SEEU can be visited athttp://kdd.csd.uwo.ca:88/seeu
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most universities, and better than the state-of-the-art topic modeling methods.

Figure 1.2: The result page of SEEU. It shows an example of searching for “professor” in the
“Computer Security” category in Toronto, Waterloo and Western in SEEU.

Finally, we combine all the proposed techniques together and implement the SEEU search
engine. According to two usability studies conducted in theECE and the CS departments at
our university, SEEU is favored by the majority of participants.

The rest of this chapter is organized as follows. In Section 1.1, we review several search
engine approaches that are closely related to ours. They arekeywords-based search engines,
web directory and faceted search engines. In Section 1.2, weanalyze the advantages and
disadvantages of these approaches when applied for university search. In Section 1.3, we
describe the motivation and challenges for a new search engine for universities. We present
the user interface of SEEU, and briefly discuss the advantages and implementation challenges
of SEEU. In Section 1.4, we list our major contributions in this thesis. Finally, we close this
chapter by presenting the thesis outline in the last section.



4 Chapter 1. Introduction

1.1 Search Engine Approach Review

In this section, we review three search engine approaches that are closely related to our works.
They are keywords-based search engines, web directory and faceted search engines. We de-
scribe the basic concept and technique behind these search engines, and discuss their advan-
tages and disadvantages.

1.1.1 keywords-based Search Engines

The first search engine approach we discuss is the keywords-based search. keywords-based
search engines are currently the most popular search engineapproach for the web. They pro-
vide users a simple and intuitive way to find information. Forexample, Figure 1.3 shows the
user interface of the Google search engine. It simply contains a search box and several search
buttons. When users type keywords in the search box and clickthe search button, Google will
quickly return a ranked list of relevant results (in severalhundred milliseconds).

Figure 1.3: The home page of Google search engine.

How can the keywords-based search engines, such as Google, return results so quickly?
To achieve this, keywords-based search engines usually rely on three important components to
effectively rank the massive number of webpages. They are web crawlers, index databases and
searching model.

The task of web crawlers (or web spiders, web robots) is to crawl webpages and store useful
data into the index database. Specifically, keywords-basedsearch engines usually launch many
web crawlers that periodically surf the web. Each web crawler fetches webpage content from
remote web servers, extract hyperlinks as well as text data in webpages and stores them into
the index database (explained later). After that, the web crawler follows the hyperlinks on the
webpage to fetch more webpages.

The index database is the key to efficiently retrieve the relevant webpages in a short period.
Given a user query, a naive approach to search is to scan the crawled webpages sequentially.
However, it fails when the crawled dataset is very large, such as webpages on the entire web.
To deal with this challenge, keywords-based search enginesoften use a data structure, called
inverted indices [3], to speed up the search. Simply speaking, for a text collection, the inverted
indices maintain a table that maps each word to a list of document-position pairs. For example,
given a text collection crawled by web crawlers,
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• d1 =“Active Learning for Hierarchical Text Classification”.

• d2 =“A Survey of Hierarchical Text Classification”.

• d3 =“Engaging Students Through Active Learning”.

The inverted indices are incrementally built when the search engine indexes the three docu-
ments. The results are shown in Table 1.1. It contains multiple document-position lists. Each
list contains all the word occurrence for a unique word in thedata collection. For example, for
the word “active”,{(1, 1), (3, 4)}means that the word “active” appears at the first position ind1

and the fourth position ind3.

Table 1.1: An example of inverted indices. The two numbers inside each bracket are the
document ID and the word position.

Word Document-position list
“active” {(1, 1), (3, 4)}
“learning” {(1, 2), (3, 5)}
“for” {(1, 3)}
“hierarchical” {(1, 4), (2, 4)}
“text” {(1, 5), (2, 5)}
“classification” {(1, 6), (2, 6)}
“a” {(2, 1)}
“survey” {(2, 2)}
“of” {(2, 3)}
“engaging” {(3, 1)}
“students” {(3, 2)}
“through” {(3, 3)}

Given a query “active learning”, the search engine extractsthe words “active” and “learn-
ing” from the query, conducts set intersection on the document IDs of their corresponding
document-position lists, and returns two documents,d1 and d3, to the user. The positions
stored in the database can be further used to highlight the keywords in results.

It has been shown that both the space complexity and time complexity of searching through
inverted indices are close toO(n0.85) [3]. Thus, the inverted indices allow search engines to find
relevant webpages very quickly.

The third component of keywords-based search engine is the searching model. Many
searching models have been proposed for keywords-based search engines. The simplest search-
ing model is theboolean model[43] which is based on boolean algebra. In theboolean model,
the occurrences of words in both queries and documents are assigned binary truth values (i.e.,
true or false). Users familiar with boolean logic can use boolean operators (e.g., AND, OR,
NOT) to connect keywords, and thus express complex search intention. The search engine only
returns relevant results satisfying the boolean expressions formed by users withtrue value.
However, a drawback of theboolean modelis that the results are judged based on a binary
decision value (i.e.,true or false). As theboolean modelcan not provide graded scores, it is
impossible to further rank the relevant results. In addition, for normal users, it is often difficult
to translate search intention precisely into boolean expressions.
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To resolve the binary matching problem in theboolean model, we can resort to thevector
space model[99, 100]. The basic idea of thevector space modelis to represent both queries
and documents as vectors of words, and assign a numerical weight, not binary (true or false)
weight, to each word. Those word vectors can be used to compute thedegree of similarity
between indexed documents and the query. Thus, thevector space modelcan measure the
relevance of documents to the query much more precisely. Forexample, given a query vector
vq = (w1,w2, . . . ,wn) and a document vectorvd = (w1,w2, . . . ,wn)2, we can measure their
similarity by cosine similarity, which is

sim(vq, vd) =
vq · vd

||vq|| · ||vd||
(1.1)

wherevq · vd is theinner productof vq andvd; ||vq|| is thenormof vq and||vd|| is thenormof vd..
The most popular weighting schema in thevector space modelis the TF·IDF weighting.

It measures both the term frequency (TF) and the inverse document frequency (IDF) for a
matched word in the query. The TF factor assigns high weightsto the frequent words in docu-
ments. Usually, the more often a word appears in the document, the more relevant it is against
the query. For the IDF factor, the intuitive idea is that common words occurring in many
documents are not discriminative to distinguish a relevantdocument from irrelevant ones.

Formally, given a documentd, the TF·IDF score of a termt is computed as

TFIDF(t, d) = TF(t, d) · IDF (t,D) (1.2)

where

TF(t, d) =
f (t, d)

∑

t∈d f (t, d)
and IDF (t,D) = log

|D|
|{d ∈ D : t ∈ d}|

f (t, d) is the number of occurrences of termt in documentd and |D| is the total number of
documents in the collection.

The main drawback of thevector space modelis that it can not deal with synonymy (i.e.,
multiple words that have similar meanings) and polysemy (i.e., a word may have multiple
senses and multiple types of usage in different contexts) because thevector space modelneeds
to exactly match terms in queries and documents.

1.1.2 Web Directory

The web directory is a directory service for the web. It organizes websites (or individual
webpages) into apredefinedtopic hierarchy (taxonomy). The taxonomy can be either a general
purpose topic hierarchy, or a hierarchy related to a specificarea. Examples of well known
general web directories are the Yahoo! Directory3 and the Open Directory Project (ODP)4.
Figure 1.4 shows their user interfaces. We can see that unlike the keywords-based search
engines, a web directory contains a topic hierarchy on the home page. Users can browse
webpages in categories of the hierarchy without typing keywords.

2For the two vectors,wi = 1 means that the wordwi exists in the query or the document andwi = 0 means it
does not exist.

3http://dir.yahoo.com/
4http://www.dmoz.org
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(a) Yahoo! Directory (b) ODP

Figure 1.4: The home pages of (a) Yahoo! Directory and (b) ODPweb directory.

We give a brief discussion of the Yahoo! Directory and the ODPdirectory. The original
Yahoo! search engine is the oldest example of a web directory. It relies on human efforts to
organize webpages into hierarchies. Usually, the editing work is conducted by paid employees
in Yahoo!. Due to the slow editing process by a small group of paid workers, the Yahoo!
Directory can not keep pace with the fast growth of the web. Onthe other hand, ODP applies
an open and free editing policy. Any Internet user can apply to be an editor of a category in
the hierarchy. When an anonymous user submits a website to a category for inclusion, the
corresponding editors review the submission request and decide to accept it or not. Due to
the open editorial policy, ODP has become the largest web directory on the web. From the
statistics shown on the ODP home page in May 2013, there are over 98,000 editors working on
over one million categories that include 5.1 million webpages.5

The major advantage of a web directory over keywords-based search engines is the hi-
erarchical browsing functionality. Users interested in specific topics can browse webpages in
corresponding categories without typing keywords. In addition, as webpages in web directories
are categorized by human editors, the quality of webpage classification in a taxonomy is usu-
ally very high. Thus, the relevance of webpages in each category is often satisfying. However,
a drawback of a web directory is that the relevant webpages ineach category are very limited.
This is because manual classification is too slow to classifyall the webpages on the web. For
this reason, web directories mainly acts as an archive (Yahoo! Directory) or data providers
(e.g., ODP) for Internet companies, such as AOL, Netscape Search and Google Directory.

1.1.3 Faceted Search Engines

The faceted search engine is a hybrid search engine approachthat combines keyword search
and hierarchical browsing (or web directory) to support exploration and discovery within an
information collection [51]. The usefulness of faceted search has been demonstrated by its
numerous applications in E-commerce sites (such as Amazon and e-Bay) [111]. The key dif-
ference that distinguishes faceted search engines from general keywords-based search engines

5See the statistics at the ODP websitehttp://www.dmoz.org.
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is a set of flat or hierarchical facets (see the left panel of the user interface at Amazon in Figure
1.5). These facets can be seen as hierarchies that organize items (e.g., products, documents,
images and so on). When users select labels of facets in the user interface (e.g., selecting
“Movies & TV” under the facet “Departments”), the faceted search engine returns results that
satisfy the conjunctive normal form (logical conjunction of disjunctions) over the selected la-
bels under each facet[51].

For example, Figure 1.5 shows an example of searching the movie “Life of Pi” on Amazon.
A user chooses the facet labels as

• Departments: “Movies & TV”

• Video Format: “Blue-ray” or “DVD”

• Price: “Over $20”

These facet values are translated into a conjunctive normalform as

Query = (Departments= “Movies & TV” )
∧
(

VideoFormat= “Blue-ray” ∨ VideoFormat= “DVD”
)

∧ (Price≥ 20)

where∧ is the operator of logic conjunction and∨ is the operator of logic disjunction.

Figure 1.5: An example of searching for the 2012 movie “Life of Pi” on the Amazon site.

Due to the integrated facet hierarchies, faceted search engines have several advantages
over the keywords-based search engines and the web directories. Firstly, when users issue
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complex search requests (such as the searching “Life of Pi” example above), using faceted
search engines is more intuitive and natural than the keywords-based search engines. Users do
not need to precisely formalize their search intention as a complex boolean expression. They
can simply click the corresponding facet labels. Secondly,different from the web directories
which only have one topic hierarchy, faceted search engineshave multiple orthogonal facet
hierarchies for users to refine results. This is very helpfulto search products (such as books,
movies and laptops) with different meta properties (i.e., brands, price, size, releasing date,
authors and so on).

We can see that the key to the success of faceted search engines is the facet hierarchies
and the classification of items into these hierarchies [6]. In most E-commerce sites (such as
Amazon), as their product databases already provide rich structured meta properties (such as
price, brands and size), both the hierarchies and the classification of items can be extracted
without much effort. However, in unstructured data collections, such as a webpage dataset, it
could be very challenging. Some authors [30, 108, 72] have proposed methods to automatically
building facet hierarchies and classification of items. Although these methods do not need
human supervision, the hierarchies generated by these methods heavily depend on the quality
of corpora [30]. For webpage collections that contain a lot of heterogeneous data, the quality
of the hierarchies generated by these methods may not be satisfying.

In this section, we have discussed three different search engine approaches. These ap-
proaches have many successful applications on the web. However, when we apply these ap-
proaches to search university webpages, will we always get satisfying results? In the next
section, we analyze the limitation of these approaches whenapplied in university search.

1.2 Limitation of Current Approaches

Many Canadian universities currently license Google’s search with “site:” to restrict search
results to be within their own domains6. Thus, we will firstly analyze the limitation of using
keywords-based search engines, such as Google, for searching university webpages.

When professors and graduate students use keywords-based search engines to search uni-
versity webpages, the queries sent by them are usually related to academic topics. However,
simple keywords-based search is often very limited in expressing topics as keywords [29]. For
example, consider searching for “active learning”, a research field in Computer Science (CS).
When a graduate student in CS department sends the keywords to a keywords-based search
engine, such as Google, she expects the search engine to return the results that not only contain
keywords “active learning” but also belong to CS research. However, the returned results (see
Figure 1.6) are actually quite noisy. From Figure 1.6, we cansee that only the 6th result is
about CS research. The other top five results belong to education research. This is because
“active learning” can also mean a methodology in education research that increases student
engagement in classrooms [90].

6TheGoogle Search Westernat the home page of Western is essentially the Google search with “site:uwo.ca”.
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Figure 1.6: Search “active learning”, a research field in Computer Science inGoogle Search
Western.

One may say that for this example we can type more keywords to refine results, such as
“active learning computer science”. We try this query and show the results in Figure 1.7. We
can see that although all the results are related to CS research, each result must contain the
keywords “computer science”. This is also problematic. Because some important webpages
without the keywords “computer science” will now be filteredout. If we type more keywords,
the results will become even worse as more results will be filtered out.

To solve the keyword ambiguity problem, we may resort to the web directory approach
where people can browse webpages without typing any keywords. Suppose there exists a
very large topic hierarchy that covers all the academic topics. For the above case, a user
can browse the category “active learning” in the hierarchy and may quickly find the relevant
results. Although this approach sounds perfect to solve thekeyword ambiguity problem, it
is unrealistic for several reasons. Firstly, it is quite difficult to define a commonly accepted
hierarchy to capture all the academic topics. If such a hierarchy exists, it could be very large
and deep, and thus inconvenient for users to use. Secondly, it is ineffective to only browse one
topic hierarchy to find the desired results. For example, suppose we want to find “Computer
Science” related textbooks. If we just browse the webpages under the category “Computer
Science”, we may need to sequentially scan many pages of results to find related textbooks.
The larger a category is, the slower the result scanning willbe.
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Figure 1.7: Search “active learning computer science” inGoogle Search Western.

In fact, we can combine the keywords-based approach and the web directory approach
together to better resolve the keyword ambiguity problem. This is actually the faceted search
engine approach. It inherits the advantages of both approaches. Faceted search engines allow
users to search by keywords as in a keywords-based search engine while choosing (i.e., drilling
down) any (sub)category in the hierarchy to refine the results solely in that category. For
example, to find “Computer Science” related textbooks, we can search keywords “textbooks”
in the category “Computer Science”.

However, faceted search engine approaches still have the bottleneck of effective classifica-
tion of webpages into hierarchies. Different to the E-commerce sites where products have rich
pre-labeled meta properties (such as price, brands and size), normal webpages do not provide
explicit information about topics. One may say that similarto the web directory approach, we
could recruit professionals (i.e., professors and research assistants) in universities to generate
a high quality classification of webpages. However, it should be noted that human classifica-
tion speed is quite slow compared with the explosive growth rate of webpages. For Western,
the total number of webpages already exceeds two million (asestimated by Google), and this
number is quickly growing every day.

To summarize, in this section, we have analyzed the limitations of applying current search
engine approaches for searching universities webpages. One of the major difficulties is to solve
the keyword ambiguity problem. Although these approaches can be adopted to tackle this and
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other problems, they are either based on unrealistic assumptions or lack of effective algorithms.
In the next section, we propose a new search engine for university search.

1.3 SEEU: A New Search Engine with Integrated Hierar-
chies for Universities

In this thesis, we propose a novel search engine with integrated hierarchies, called SEEU7

(SearchEngine with hiErarchies forUniversities), for Canadian universities to facilitate re-
search collaboration, and help faculty members and students find desired webpages more eas-
ily. The novelty of SEEU is to incorporate multiple relevanthierarchies (such as academic
topics, universities and media types) for university webpages in SEEU. See Figure 1.1 (home
page) and Figure 1.2 (result page) for the user interface (UI) of SEEU. In SEEU, about two
million webpages from the top 12 largest Canadian universities are crawled, processed, and
then classified (using data mining and machine learning methods) into hierarchies based on
their content, not the department or faculty structure.

1.3.1 Advantages of SEEU

Many Canadian universities currently license Google’s search with “site:” to restrict search
results within their own domains. Compared with such a simple solution for university search,
SEEU has four major advantages.

Firstly, SEEU can greatly facilitate research collaboration within and between universities.
Faculty members and students can easily search people, departments or various research areas
within a single or among multiple universities. For example, Figure 1.8(a) shows an example
of searching the Department of Economics webpages, and Figure 1.8(b) shows an example of
searching for professors doing research inComputer Securityin three universities simultane-
ously in SEEU. Performing such search tasks in traditional general search engines without a
university hierarchy could be very inconvenient. Users have to type different “site” keywords
(or switch back and forth among different university search engines) to compare the results in
different universities.

Secondly, in SEEU, users can find desired webpages much more easily, as they can integrate
keyword search and browsing together, or use the hierarchies to filter the results. Figure 1.8(c)
and Figure 1.8(d) show such examples. When searching the ambiguous keywords “active
learning”, researchers in different disciplines such asComputer ScienceandEducation, can
simply choose the corresponding topics to restrict the results to only within their own research
areas.8 We can see that in both cases, the top ranked results in SEEU are exclusively related to
the selected category. Without the integrated topic hierarchy, such search tasks could be very
difficult in flat search engines.

7SEEU can be visited athttp://kdd.csd.uwo.ca:88/seeu.
8If users are not familiar with SEEU’s topic hierarchy, they can also use the category search box above the

hierarchy to locate the desired categories.
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(a) Search “department” inEconomics (b) Search for “professor” inComputer Security

(c) Search “active learning” inComp. Science (d) Search “active learning” inEducation

(e) Browse in flat hierarchy (f) Browse inEarth Sciences

Figure 1.8: Six usage scenarios in SEEU with Toronto, Waterloo and Western selected in the
university hierarchy.

Thirdly, for some search tasks, users may not always know what keywords to use, as they
may not be familiar with the domain. In this case, they can select appropriate categories (e.g.,
topics and universities) and browse the webpages without typing any keywords. For example,
Figure 1.8(e) shows an example of browsing globally the mostpopular and important webpages
in the 12 universities, and Figure 1.8(f) shows an example ofbrowsing the webpages belonging
to Earth Sciencesin three universities simultaneously in SEEU. By contrast,in traditional
general web search engines, no keywords often means no results.
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(a) Home page (b) Topic hierarchy dialog (c) Result page

Figure 1.9: The home page, the topic hierarchy dialog and theresult page in SEEU Mobile.
The university dialog and the file dialog are similar to the topic dialog.

The fourth major advantage is that SEEU is particularly suitable for small-screen devices,
as browsing is much easier than typing keyword(s) on small keyboards [64, 52]. The user
interface of SEEU can automatically adapt to devices with small screens without losing UI
consistency (see Figure 1.9 for the mobile user interface ofSEEU).9 Specifically, due to the
limited screen size, the three hierarchies of SEEU are replaced by three buttons on the home
page. When users click one of the buttons (say Topics), SEEU Mobile opens a popup dialog
(of full screen size) (see Figure 1.9(b)) that only shows thecurrent selected category and its
child subcategories in the hierarchy. Users can click a desired subcategory to browse or filter
the search results. To the best of our knowledge, none of the search engines currently adopted
by Canadian universities (on their home pages) provide mobile-specific user interfaces.

1.3.2 Challenges of Building SEEU

The novel and key idea of SEEU is to leverage multiple relevant hierarchies to search university
webpages. Among the three hierarchies (i.e., topics, universities and media types) in SEEU,
the most powerful yet difficult one is the topic hierarchy. There exist three major challenges to
integrate the topic hierarchy into SEEU.

1. How to define a commonly accepted academic topic hierarchyfor university webpages?

2. How to effectively categorize millions of university webpages into the hierarchy?

3. How to effectively rank webpages in each category of the hierarchy?

9Both PC and mobile versions of SEEU have the same entry link ashttp://kdd.csd.uwo.ca:88/seeu.
When users visit SEEU on mobile devices, they will be automatically redirected to the mobile version of SEEU.
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The first challenge is to define a commonly accepted academic topic hierarchy for uni-
versity webpages. A reasonable and user-friendly hierarchy of topics is very important for
university search. It can greatly benefit the search experience of the users. To build such a
hierarchy for universities, we need to consider at least twoimportant criteria. Firstly, the topic
hierarchy must be academe related. It is desirable to present a hierarchy with a broad coverage
of common academic disciplines so that the majority of university users will feel it is familiar
and convenient in finding the desired topics. The second criterion is that the hierarchy should
be friendly for users to browse. Usually, the tree-structured hierarchies are intuitive and ac-
ceptable in most web-based applications. However, a complicated hierarchical structure (with
deep categories) may be too complex for normal users. Thus, for convenience consideration,
the hierarchy should not be too deep.

The second challenge is to design an effective method to classify millions of webpages into
the predefined hierarchy. As we discussed in Section 1.2, manual classification of webpages
is hopeless due to the large number of webpages and the exponential growth rate. Traditional
text classification methods can only classify documents into a few classes [57, 93, 113, 120].
However, in SEEU, the topic hierarchy may contain a large number of categories. Designing
an effective classification algorithm that can scale to millions of webpages in a large hierarchy
is crucial. In addition, the algorithm should also considerthe hierarchical relationship between
different categories. It is useless to predict contradicted categories (e.g., a webpage predicted
to “Machine Learning” but not “Computer Science”).

The third challenge is to effectively rank webpages in each category of the hierarchy. Tra-
ditional keywords-based search engines usually only rely on keywords matching and page
importance metrics (e.g., PageRank [85]) to rank webpages.However, in SEEU, when a user
searches webpages in a category of the hierarchy, we also need to consider the category rele-
vance of webpages. Usually, given a category of the hierarchy, not all webpages are equally
relevant to it. For example, consider a case when we search the keywords “active learning”
inside the category “Computer Science”. There may exist some webpages that simply mention
“active learning” in the text. Their relevance to “ComputerScience” may not be as high as
the theoretical research works on “active learning”. Thus,SEEU should also take category
relevance into consideration.

1.4 Contributions of the Thesis

Effective information organization and retrieval in universities is important. Current search
engine approaches have limitations in dealing with the challenges of searching university web-
pages. Integrating topic hierarchies and keyword search isknown to improve the users’ search
experience in E-commerce web sites. A major challenge in doing so for university webpages
is to define a commonly accepted academic topic hierarchy, and effectively classify and rank a
massive number of university webpages into the hierarchy.

In this thesis, we propose a novel search engine approach foruniversities, called SEEU10

(SearchEngine with hiErarchies forUniversities), for Canadian universities to facilitate re-
search collaboration and help people find desired university webpages more easily. The main

10SEEU can be visited athttp://kdd.csd.uwo.ca:88/seeu.
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contribution of this thesis are listed as follows.

1. An effective hierarchical webpage classification system. It contains a webpage feature
extraction tool based on Hadoop MapReduce, and a parallel hierarchical SVM (Support
Vector Machine) classifiers based on OpenMPI. Part of this work was published in the
Proceeding of the 22nd Internation Joint Conference on Artificial Intelligence(IJCAI
2011) [67].

2. ERIC (EnhancedRanking by hIerarchicalClassification), a new ranking framework for
search engines with hierarchies. It integrates hierarchical classification probabilities,
keywords relevance and document related metrics into a learning to rank [45, 62, 18]
framework. This work was submitted to theIEEE Transactions on Knowledge and Data
Engineering(IEEE TKDE) [75].

3. A novel active learning framework for hierarchical text classification. It leverages the
top-down tree structure to coordinate classification system and data labeling source on
limited labeled datasets. This work was published in theProceeding of the 17th Pacific-
Asia Conference on Knowledge Discovery and Data Mining(PAKDD 2013) [76]. An
earlier work was published in theProceeding of the 16th Pacific-Asia Conference on
Knowledge Discovery and Data Mining(PAKDD 2012) [74].

4. A novel application of the proposed classification and ranking methods for mining aca-
demic topics in universities.

5. A prototype of SEEU search engine and two usability studies of SEEU in our university.
This work was included in our IEEE TKDE paper [75].

The relation of all contributions can be visualized in Figure 1.10.

Figure 1.10: The relation of all contributions.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2, we review the related works in the field of text
classification, hierarchical text classification, learning to rank and topic modeling. In Chapter
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3, we describe an implementation of an effective hierarchical webpage classification system.
In Chapter 4, we propose the ERIC (EnhancedRanking by hIerarchicalClassification), for
search engines with hierarchies. In Chapter 5, we propose a novel active learning framework
for hierarchical text classification. In Chapter 6, we develop a novel application based on
the proposed classification and ranking methods to mine academic topics in universities. In
Chapter 7, we present the system implementation and conducttwo usability studies to evaluate
SEEU. We end this thesis with conclusions and a discussion offuture works in Chapter 8.

Part of the work presented in this thesis is in collaborationwith Dr. Charles Ling, Da Kuang
and Dr. Huaimin Wang.



Chapter 2

Related Work

In this chapter, we review previous work related to our work.Firstly, as we study document
classification and retrieval in this thesis, we review the state-of-the-art text classification meth-
ods in Section 2.1. Secondly, we review previous work in hierarchical classification related
to the hierarchical browsing and search in SEEU in Section 2.2. Thirdly, in Section 2.3, we
review previous work in learning to rank which is related to the ranking of documents in each
category of the topic hierarchy in SEEU. Finally, in Section2.4, we review topic modeling
techniques, which are related to mining academic topics in universities in SEEU.

It should be noted that we mainly reviewgeneraltopics in each research area in this chapter.
Specific work which is directly compared with ours, will be reviewed in greater detail in the
later chapters.

2.1 Text Classification

In SEEU, we are facing the problem of webpage classification.Due to the explosive growth of
documents (webpage) on the web, manual classification is hopeless. Most text classification
applications on the web (e.g., spam filtering [2, 98], news article categorization [71, 79] and
sentiment classification [86, 65]) usually adopt automatictext classification by supervised text
classification methods.

In supervised text classification, we train a classificationmodel from a set of training data
with labels provided. Usually, the labels are predefined in acategory (class) space. Thus, the
task of supervised text classification is to label documentswith one or more predefined classes.
If the category space has only two classes, the classification task is calledbinary classification.
For classification problems with more than two classes, if a document can only be assigned to
one class, the classification task is calledmulti-class classification[57, 93]; if a document can
be assigned to multiple classes, it is calledmulti-label classification[113, 120, 82, 124].

We give a formal definition of supervised text classificationin the framework ofbinary
classification. For multi-class classificationandmulti-label classification, we can decompose
the learning task into severalbinary classificationsubtasks by training a binary classifier for
each class (i.e., one-vs-rest strategy) [93, 113].

Consider a dataset from a domainX × Y whereX is the example set andY is the label set
{1,−1}. We usually call the example with label 1 a positive example and the example with label

18



2.1. Text Classification 19

-1 a negative example. We assume that a training setDtrain = {(xi , yi)} ⊂ X × Y is given. Each
(xi , yi) in Dtrain denotes a training examplexi and the associated labelyi. The classification
problem is to learn a decision functionf : X → Y from the training setDtrain with good
classification performance on a separate testing setDtest = {(xi , yi)} ⊂ X × Y.

In the next subsections, we will firstly review the three mostpopular text classification
algorithms that learn the decision functionf . They areNaive Bayes, K-nearest Neighborand
Support Vector Machine. After that, we review the methods that evaluate text classification
algorithms on the testing setDtest.

2.1.1 Naive Bayes

In Naive Bayes[83], given an examplex, the decision outputf (x) is learned by maximizing
the posterior probabilityP(y|x):

f (x) = arg max
y∈Y

P(y|x) (2.1)

By applying the Bayes rule, this equation can be rewritten as:

f (x) = arg max
y∈Y

P(y|x) = arg max
y∈Y

P(y)P(x|y)
P(x)

(2.2)

As P(x) is constant, we can simply remove it and yield the followingsimpler form

f (x) = arg max
y∈Y

P(y)P(x|y) (2.3)

Therefore, to learn the classification model ofNaive Bayes, we need to learn the conditional
probabilityP(x|y) and the prior probabilityP(y).

It turns out that calculatingP(x|y) is difficult as we do not know the distribution ofx.
To deal with this issue,Naive Bayesmakes anaive assumption that each documentx can
be represented by a bag of words{w1,w2, . . . ,wn} from a vocabularyV and the words in the
document are independent of each other [70]. Thus, the decision function f (x) can be rewritten
as

f (x) = arg max
y∈Y

P(y)P(x|y) = arg max
y∈Y

P(y)
n
∏

i=1

P(wi |y) (2.4)

Finally, we can compute the decision outputf (x) as

f (x) =















1, P(y = 1)
∏n

i=1 P(wi |y = 1) > P(y = −1)
∏n

i=1 P(wi |y = −1)

0, otherwise
(2.5)

The posterior probabilityP(y|x) for each classy can be obtained as

P(y = i|x) =
P(y = i)

∏n
i=1 P(wi |y = i)

∑

i∈{1,−1} P(y = i)
∏n

i=1 P(wi |y = i)
(2.6)

To train aNaive Bayesmodel, we learn the parametersP(y) andP(wi |y) by the maximal
likelihood principle. Specifically, we can calculateP(y) based on the empirical frequency ofy
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in the training set asN(y)/m, and calculate the posterior probabilityP(wi |y) of each wordwi as
N(wi , y)/

∑

wi∈V N(wi , y), whereN(y) is the total number of examples with labely andN(wi , y)
is the total occurrences of wordwi in the examples with labely. These values can be easily
calculated by counting the frequency in the training set.

It should be noted that the conditional probabilityP(wi |y) is calculated only from the train-
ing set. When we applyNaive Bayesto new documents, it is very likely that we will see
unknown words which will result in a zero probability (i.e.,N(wi , y)/

∑

wi∈V N(wi , y) = 0). This
is undesirable. A common way to solve this problem is to uselaplace smoothing:

P(wi |y) =
N(wi , y) + k

∑

wi∈V N(wi , y) + k ∗ |V|
, (2.7)

where k is the laplace parameter and|V| is the vocabulary size. Usually, we set the parameterk
to 1. That means we add one pseudo example to each word in the vocabulary.

There are two advantages ofNaive Bayes. Firstly, it is very efficient to train the classifi-
cation model as we only need to scan the training set once to count word frequency. With the
recent advances in Big-data platform such as MapReduce [32], we can efficiently trainNaive
Bayeson hundreds of thousands of documents. Secondly, predicting new documents is also
very efficient. As the parameters are already calculated, a simple multiplication of the prior
probability and the conditional probabilities of each wordcan yield the prediction.

However, a major disadvantage ofNaive Bayesis the unrealistic independence assumption.
Naive Bayesassumes that the words of a document are independent. In real-world applica-
tion, the words are often correlated, such as “machine learning” and “data mining”. Simply
discarding such correlation may cause the posterior probability P(y|x) to be not well calibrated
[5].

2.1.2 K Nearest Neighbor

K Nearest Neighbor(KNN) [48] is an instance-based, or lazy-learning classification algorithm.
Unlike Naive Bayes, KNN does not need a training stage to build the classification model. The
main computational cost ofKNN is in the prediction stage (i.e., classifying new examples).

The general idea ofKNN is very simple. Given an examplex, KNN firstly finds k nearest
neighbors for this example and then classifies as to the most common class bymajority vote
among the k neighbors. More formally, the decision functionf (x) of KNN can be defined as

f (x; k) = arg max
y∈Y

|{xi ∈ N(x; k)|yi = y}|, (2.8)

wherek is the parameter ofKNN andN(x; k) is thek nearest neighbors of examplex.
The standardmajority votemethod may not work well in imbalanced datasets where ex-

amples from the major class will dominate the k neighbors. Todeal with this issue, we can
weigh the vote of each neighbor by its distance to the testingexample. The intuitive idea is that
closer examples should have higher weights than more distant examples. The weights can be
computed as the inverse of any distance metrics, such as theEuclidean distance.

Regarding the advantages ofKNN, we can see that it is very simple to implement. For high-
level programming languages, such as Matlab, the implementation ofKNN only takes several
lines of code. In addition, the classifier can be updated online as there is no cost in training.
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HoweverKNN has several weaknesses in text classification. Firstly,KNN is very sensitive
to the noisy and irrelevant features. The prediction accuracy of KNN can quickly degrade
when the total number of features grows. Secondly, as a lazy-learning algorithm,KNN requires
storing the training examples. This could be of great cost and thus makesKNN difficult to scale
to large datasets.

2.1.3 Support Vector Machine

Support Vector Machines(SVMs) are currently the state-of-the-art text classification algorithms
[60, 61, 20, 121]. SEEU usesSVMas the base classifier for document classification. We will
give a detailed description ofSVM.

In SVM [26], each examplex in the training set is represented as a point in a high dimen-
sional feature space. The basic idea ofSVM is to find a hyperplane that separates the positive
examples and the negative examples in the training set with the largest margin (i.e., distance
to the boundary of each class). For example, in Figure 2.1a, we can see three hyperplanesH1,
H2 andH3. H2 andH3 can separate the two classes. However, onlyH3 is themaximal margin
hyperplane as demonstrated in Figure 2.1b.

(a) SVM separating hyperplanes (b) SVM maximum-margin hyperplane

Figure 2.1: Support Vector Machine.

We describe the formation of themaximal marginprinciple. Formally, given an examplex,
the decision hyperplane (function)f of aSVM is defined as the equationf (x; w) = w · x− b =
0 wherew and b are the parameters. Let us assume that the dataset is linearly separable.
This is usually true as the high dimensionality of text features usually results in the dataset
being linearly separable [60]. We need to find two hyperplanes parallel to f such that no
training examples fall between them (perfect classification) and their distance tof is maximal.
Mathematically, the two hyperplanes can be defined asw · x − b = 1 andw · x − b = −1
respectively. Thus, the so-called margin (geometric distance between the two hyperplans) of
SVMcan be calculated as 2/||w||.
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Therefore, training aSVMmeans to find the bestw andb to minimize ||w||. To avoid the
difficulty of dealing with the square root in||w||, we usually change it to12 ||w||

2. In addition, to
ensure that no training examples lie in the margin, we need toadd constrains for each training
examplexi. That is, yi(w · xi − b) ≥ 1. Thus, training anSVM can be formalized as an
optimization problem:

min
w,b

1
2 ‖ w ‖2

sub ject to yi(w · xi − b) ≥ 1, ∀i (1 ≤ i ≤ m)
(2.9)

It may be argued that the assumption of perfect linear separability is unrealistic in a real-
world application. This is usually due to the mislabeled examples or noise in the training
set. Cortes [26] proposes the soft margin approach by introducing the slack variablesξ which
measure the degree of the misclassification of training examples. The optimization problem
becomes

min
w,b,ζ

1
2 ‖ w ‖2 +C

∑m
i=1 ξi

sub ject to, yi(w · xi − b) ≥ 1− ξi, ∀i (1 ≤ i ≤ m)
(2.10)

whereC is the parameter for tradeoff between the maximal margin and the minimal classifica-
tion error.

Many approaches have been proposed for solving this optimization problem, such as Se-
quential Minimal Optimization [87], Stochastic Gradient Descent [125, 102] and Dual Coor-
dinate Descent [56]. The typical software packages for training SVM include SVMLight [61],
LibSVM [23] and LiblinearSVM [41].

We list the advantages of usingSVMas the text classification algorithm.

1. Good generalization capability. SVMhas good generalization capability asSVM tries
to maximize the margin between the positive and the negativeexamples. Moreover, with
the soft margin [26] introduced in the optimization equation, SVMis even robust against
the noisy data in the training set.

2. Effective text classification. Usually, the word vocabulary for text data is very large.
The high dimensionality of text datasets often leads to the training data being linearly
separable [61, 41]. Thus,SVM with linear kernel (e.g., LiblinearSVM) is often very
suitable for text classification task.

Due to the advantages mentioned above,SVM is a good choice for our task. Furthermore,
previous work [60, 61, 20, 121] empirically verifies thatSVMis superior to other classification
algorithms such asNaive BayesandKNN, in terms of text classification performance. Thus, we
chooseSVM, specifically linearSVM, as the base classification algorithm to classify webpages
into search engines (see Chapter 3).

2.1.4 Evaluation Measures

In this subsection, we review methods to evaluate the classification performance of classifiers
on the testing set. We firstly introduce a tool, called a confusion matrix [107], for perfor-
mance analysis. The confusion matrix is a table with two rowsand two columns (see Fig-
ure 2.2). Each cell in the table reports the number of specificprediction judgements, includ-
ing true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).
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Each of the four statistics is computed based on the classifier prediction and the actual true
classes. For example, given a classifierf and a testing datasetDtest, TP can be computed as
∑|Dtest|

i=1 1( f (xi) = 1 andyi = 1) where1 is the indicator function with value 0 and 1 defined on
the logic expression “f (xi) = 1 andyi = 1”.

Figure 2.2: Confusion matrix.

The simplest performance measure is the accuracy, which is defined as the proportion of
correctly classified examples in the testing set:

Maccuracy( f ) =
TP+ TN

TP+ FP+ FN + TN
(2.11)

Although the definition of accuracy is very intuitive, it is rarely used in real-world text clas-
sification due to the class imbalance problem [58]. For example, given a spam classification
dataset with only ten positive examples (i.e., spam mails) and 90 negative examples (e.g., nor-
mal mails), it is trivial to achieve 90% accuracy by predicting all examples as negative (i.e.,
normal mails). However, such ahighly accuratealgorithm is useless for spam classification.

To make a realistic evaluation of classification performance on imbalanced datasets, people
have developed several more effective measures. The most popular measures are precision and
recall.

Mprecision( f ) =
TP

TP+ FP
(2.12)

Mrecall( f ) =
TP

TP+ FN
(2.13)

We can see that precision is actually the ratio of correctly predicted positive examples over
all positive predictions; and recall is actually the ratio of correctly predicted positive examples
over all actual positive examples.

We use an example to show the difference among the three measures. Consider again the
spam classification dataset with ten positive examples and 90 negative examples. We assume
that a classifierf makes a confusion matrix as shown in Table 2.1.
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Table 2.1: An example of confusion matrix.

Actual positive Actual negative
Predicted positive TP=1 FP=3
Predicted negative FN=9 TN=87

Then, we haveMaccuracy= (1+87)/(1+87+3+9) = 0.88,Mprecision= 1/(1+3) = 0.25 and
Mrecall = 1/(1+9) = 0.1. The high accuracy is actually very misleading while the performance
measures based on precision and recall are more realistic. Specifically, for the reported spam
mails, only 25% prediction is correct based on precision. Based on recall, we can find that this
classifier can only detect 10% spam mails. The results based on precision and recall make us
reject this spam classifier for real-world deployment.

Usually, it is more convenient to judge classification performance by a single measure. To
make a trade-off between precision and recall, we often use the harmonic meanof precision
and recall, called F1-score [121], in text classification:

M f 1−score( f ) =
2

1
Mprecision( f ) +

1
Mrecall( f )

=
2× Mprecision( f ) × Mrecall( f )

Mprecision( f ) + Mrecall( f )
(2.14)

Figure 2.3 plots the 3D value curve of a F1-score based on precision and recall. We can
see that to achieve a high F1-score, classifiers must have both high precision and high recall.
Optimizing classifiers on a single measure regardless of theother measure, will not improve
F1-score much. For example, for the spam classification dataset we discussed before, if a
classifier predicts all examples as positive, it can achieve100% recall but the precision will be
only 10%. This results in the F1-score as low as 0.18.

Figure 2.3: The value curve of F1-score based on precision and recall.

To conclude, based on the discussion above, we mainly use theF1-score to evaluate clas-
sification performance. Precision and recall will also be used to explain the results of the
F1-score.
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2.2 Hierarchical Text Classification

We chooseSupport Vector Machine(SVM) as the base classification algorithm in SEEU. How-
ever,SVM is a binary classifier which can only categorize two classes.In hierarchical text
classification, the taxonomy (hierarchy) usually containsa large number of categories. How
can we adoptSVMto categorize text documents into very large hierarchies? In this section, we
review the previous work in hierarchical text classification. We will present our hierarchical
classification system in Chapter 3.

According to Silla [106], the approaches in dealing with hierarchical classification can
be generally categorized into the flat classification approach, the top-down approach, and the
global classifier (or Big-bang) approach. In the following subsections, we will review the three
approaches briefly.

2.2.1 Flat Classification Approach

Figure 2.4: An example of the flat classification approach.

The flat classification approach [4, 49] is the simplest method, which ignores the hierarchical
structure of the categories. This approach usually adopts the one-vs-rest strategy to decom-
pose the hierarchical classification task into multiple binary classification tasks on the leaf
categories. Specifically, the flat approach builds a binary classifier at each leaf category to dis-
tinguish all the other leaf categories. For example, given ahierarchy as shown in Figure 2.4, the
flat approach builds a binary classifier at the 4th category byusing the examples belonging to
4 as positive training examples and the examples at the otherleaf categories (i.e., from the 5th
to the 12th category) as negative training examples. Duringthe prediction phase, if an example
is classified into the 4th category, based on the “IS-A”1 relation in the hierarchy, the example
will also be categorized to the 1st category.

We can see that as a simple learning method, the flat approach is very easy to implement
by adopting existing binary classification algorithms. However, the flat approach has several

1“IS-A” is a relationship where a category A is a subcategory of another category B.
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weaknesses. Firstly, the positive and negative class of thetraining set for each classifier are
usually very unbalanced. For example, in Figure 2.4, the negative class of the 4th category
is eight times larger than the positive class. This imbalance problem will make it difficult to
learn a good classification model. Secondly, as each classifier in the flat approach is trained on
the entire dataset, the computational effort can be very high for to a large hierarchy with hun-
dreds of leaf categories. Thirdly, the flat approach assumesthat all the examples must be pre-
dicted into the leaf categories while many real-world applications are actually non-mandatory
leaf-category classification tasks [106]. That is, the example does not need to be classified at
the leaf categories. For example, given a hierarchy containing a path “Science”→“Computer
Science”→“Artificial Intelligence”, the home page of the Computer Science department should
only be categorized as “Science”→“Computer Science”, not “Artificial Intelligence”.

2.2.2 Top-down Classification Approach

Figure 2.5: An example of the top-down classification approach.

Unlike the flat approach, which only builds binary classifiers at the leaf categories, the top-
down approach [37, 110, 109, 81] builds a binary classifier oneach category of the hierarchy.
Thus, by setting a proper prediction threshold on each category, the top-down approach can
classify examples into internal categories [110, 22]. It may be argued that the top-down ap-
proach is not as efficient as so many classifiers are trained on the hierarchy. To tackle this
problem, the top-down approach builds the training set for each categorylocally by only using
the examples belonging to its parent category. For example,in Figure 2.5, for the 4th category,
its training set consists of the examples belonging to the 4th category (as positive examples)
and the examples belonging to the 5th and the 6th category (asnegative examples). Compared
with Figure 2.4, we can see that a large portion of the negative examples from the 7th to the
12th category are excluded.

There are two benefits of this strategy. First, the training cost of the top-down approach
is much smaller than the flat approach. At each category of thehierarchy, as the negative ex-
amples are only selected from the examples belonging to the parent category, the size of the
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training set is exponentially smaller than the flat approach. Second, the top-down approach
will not suffer from the serious class imbalance problem. As a large number of negative exam-
ples are excluded from the training set, the class distribution of training sets in the top-down
approach is more balanced than the flat approach. This will eventually lead to better classifica-
tion performance.

In the prediction phase, the top-down approach predicts examples from the top-level to the
bottom level. Specifically, given a testing example, the classifiers at the top level first predict
it as positive or negative based on prediction thresholds.2 After that, at each category, if the
example is predicted as positive, the top-down approach will recursivelypush it down to the
lower-level child categories for further prediction untilthe leaf categories are reached.

There are also several weaknesses of the top-down approach.First, the classification per-
formance at the deep categories may not perform well due to the small size of positive training
examples. With very limited training examples at deep categories, it may be difficult to achieve
accurate classification performance. Second, the top-downprediction algorithm may be sub-
optimal. The top-down approach uses thresholds to filter examples from the top level to the
bottom levels. Sometimes, a high threshold may cause examples blocked at the top level, while
a low threshold will introduce wrong prediction into the lower levels. This is usually called the
false negative and the false positive tradeoff in the top-down approach. Some methods have
been proposed to tackle this problem, such asBlocking[109] andRefined Experts[7]. How-
ever, both approaches require training another hierarchical classifier to refine the results. This
is not practical for very large hierarchies.

2.2.3 Global Classification Approach

The global classifier approach basically constructs only one classification model for the entire
hierarchy. This is different from the flat approach and the top-down approaches, where many
binary classifiers need to be built. Some hierarchical classification algorithms can be catego-
rized as global classifier approaches, such as the HMC decision tree [114], the hierarchical
kernel classifier [95] and the deep classifier [119]. In the training phase, these methods often
rely on various special algorithms to cope with the hierarchical relations between categories.
For example, the HMC decision tree uses Predictive Clustering Trees (PCT) [12] to learn opti-
mal attribute-value tests to partition training set into hierarchical clusters. These attribute-value
tests can be used to categorize examples into clusters wherethe major category in a cluster is
used as a prediction result. The deep classifier proposes a search based method to reduce a
very large and deep hierarchy into a small and shallow hierarchy, and build a multi-class Naive
Bayes prediction model. The hierarchical relations between different categories are further
leveraged to increase the positive examples of deep categories.

All the global approaches can directly output a subset of thehierarchy as prediction in the
testing phase. Thus, the prediction time of the global approach is smaller than the flat and the
top-down approaches. However, a major drawback of the global approach is that it may be
difficult to model complicated relations among categories in a single classification model. In
addition, the global approach also lacks the modularity of the top-down approach. When we

2If the prediction probability is larger (smaller) than the prediction threshold, the example will be classified as
positive (negative).
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add a new category into the hierarchy, we only need to add a newbinary classifier for the top-
down approach. However, for the global approach, we may haveto retrain the entire classifier
again on the new hierarchy.

To summarize, in this section, we have reviewed three hierarchical classification approaches,
namely the flat approach, the top-down approach and the global approach. Previous work
[31, 81, 33] has shown that the top-down approach performs better than the flat classification
approach. Moreover, the top-down approach is reported to work effectively on very large hi-
erarchies [81]. Therefore, we choose the top-down approachfor hierarchical text classification
in SEEU (see Chapter 3).

2.3 Learning to Rank

Effectively ranking documents in each category of the hierarchy is important in search engines
with hierarchies. In this section, we review previous work on learning to rank. We present our
ranking system in Chapter 4.

In the information retrieval literature, learning to rank means using machine learning meth-
ods to rank documents in search engines according to their relevance to the queries. Formally,
consider a training setDtrain = {(qi,Di ,4i)|1 ≤ i ≤ m} where each training example (qi ,Di,4i)
consists of a queryqi, a document listDi = {d1, d2, d3, . . . , dm}, and an optimal ranking4i (i.e.,
da 4i db if and only if da is more relevant toqi thandb). We want to learn a functionf on Dtrain

that can output a good ranking for a pair of a query and a document list in the testing setDtest.
Many learning algorithms have been proposed for the rankingproblem in recent years.

Based on the input-output representation and the loss optimization methods, these approaches
can be categorized into three groups, namely the pointwise approach, the pairwise approach
and the listwise approach.

2.3.1 Pointwise approach

Given a query, the pointwise approach assumes that each document in a training example can
be assigned a relevance score. Thus, the ranking problem canbe approximately tackled by
pointwise optimization methods (i.e., optimizing on individual documents), such asregres-
sion [45, 27], multi-class classification[73] andordinal regression[28, 25]. We tabulate the
difference of the three methods in Table 2.2.

Table 2.2: Classification of pointwise approach.

Method Input Output Loss Function
Regression Single document Real values Regression loss

Multi-class classification Single document Categories Classification loss
Ordinal regression Single document Ordinal categories Ordinal regression loss

The regressionmethod is the simplest pointwise ranking approach. It learns a regression
function by minimizing the regression loss (e.g., mean squared error) [27]. Given a query,
after we use a regression function to output regression (numerical) scores for all the indexed
documents, it is straightforward to rank documents by thesenumerical scores.
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Themulti-class classificationmethod assumes that the relevance of documents can be cat-
egorized into several categories, such asirrelevant, relevantandhighly relevant. Thus, the
ranking problem can be cast as a multi-class classification problem. This is motivated by the
fact that perfect classification leads to perfect ranking [73].

Theordinal regressionmethod assumes that the relevance scores of documents are ordinal
categories (e.g.,highly relevant4 relevant4 irrelevant). Thus, theordinal regressionmethod
can be seen as a hybrid ofregressionand multi-class classification. For example, givenn
ordinal categories, Crammer [28] firstly learns a regression function on the training set. After
that, it learnsn intervals (e.g.,ai ≤ f (x) ≤ bi, (1 ≤ i ≤ n)) each of which represents an ordinal
category. Based on this, a large margin principle is furtherproposed to maximize the margin
between adjacent ordinal categories (e.g.,

∑n
i=2(ai − bi−1)) [104, 103].

The main advantage of the pointwise approach is the simplicity. We can directly reuse
existing regression or classification methods. However, itmay be difficult to learn good clas-
sification (or regression) model for ranking due to the extreme minority of relevant instances
[101].

2.3.2 Pairwise approach

The pairwise approach is the most popular learning to rank approach. In the pairwise approach,
given a query, the input training examples are multiple pairs of documents with a binary pref-
erence judgement. The pairwise learning algorithms try to learn a preference functionf on the
training set by minimizing the pairwise classification loss(i.e., a relevant document is ranked
lower than an irrelevant document). In the testing phase, given a queryq and two of the testing
documentsd1 andd2, the preference outputf (d1, d2; q) = 1 means that the documentd1 is more
relevant than the documentd2; −1 means less relevant.

Table 2.3: Pairwise approach.

Method Input Output Loss Function
Pairwise A pair of documents Preferences Pairwise classification loss

Many work can be categorized into the pairwise approaches, such as RankNet [17], Rank-
Boost [44] and RankSVM [62]. Here, we primarily review the RankSVM algorithm, which is
currently used in SEEU.

Similar to [28, 104, 103], RankSVM also represents the learning to rank problem as mul-
tiple ordinal regression. Unlike the traditional regression learning, which tries to minimize the
mean squared error, RankSVM learns the ranking model by minimizing the pairwise loss in a
large-margin optimization framework [53, 62].

min
w

1
2 ‖ w ‖2 +C

∑m
i=1

∑

u,v,y(i)
u,v
ζ

(i)
u,v

sub ject to, wT(x(i)
u − x(i)

v ) ≥ 1− ζ(i)
u,v , if y(i)

u,v = 1
ζ

(i)
u,v ≥ 0, i = 1, . . . ,m

(2.15)

wherew is the model parameter;C is the tradeoff between model complexity and classification
error;ζ(i)

u,v is the classification error on the example pair ofxu andxv in theith training example;
y(i)

u,v denotes the preference of examplexu overxv in the ith training example.
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We can see that the formation of RankSVM is very similar to thetraining of SVM (see the
review in Section 2.1.3). In fact, we can simply treatxu − xv as the training examples, and use
the classic SVM optimization algorithm to perform binary classification on these examples to
learn the model parameterw.

It has been shown that minimizing pairwise classification error is equivalent to maximize
the lower bound of ranking loss [62]. To make RankSVM scale tovery large datasets, recently
Joachims [63] proposes theS VMrank algorithm for training RankSVM that proved to have
linear time complexity.

2.3.3 Listwise approach

The listwise approach directly optimizes the ranking over all the documents associated with a
query. Unlike the pointwise and the pairwise approaches, the input of the listwise approach is
usually a query and alist of documents. Based on the difference of optimization methods, the
listwise learning methods can be categorized into two groups, as tabulated in Table 2.4. The
first group tries to minimize the loss function defined on thepermutationof a list of documents,
such as ListNet [19]. The second group tries to optimize the surrogate loss of the IR evaluation
measure, such as AdaRank [117] and LambdaMART [18]. The surrogate loss is a simplified
ranking loss which is mathematically easier to optimize than the complex IR measure, such as
NDCG [59].

Table 2.4: Classification of listwise approach.

Method Input Output Loss Function
Minimization
of listwise loss

A list of documents Permutation Listwise loss

Optimization
of IR measure

A list of documents Ordinal categories Surrogate loss

The listwise approach is reported to outperform the pointwise approach and the pairwise
approach in the literature [19, 117, 18]. However, the ranking model generated by the listwise
approach is usually much more complex than the other approaches. For example, in the re-
cent Yahoo! learning to rank challenge [24], all of the LambdaMART based ranking methods
consist of a large number of regression trees. The high modelcomplexity makes it difficult for
human interpretation and thus may be impractical in real world application.s

To summarize, in this section, we have briefly reviewed threetypes of learning to rank
approaches, namely the pointwise approach, the pairwise approach and the listwise approach.
Due to the simplicity and the efficiency of the pairwise approach, we use the pairwise approach,
more specifically, theS VMrank algorithm, to rank documents in each category of the topic
hierarchy in SEEU (see Chapter 4).

2.4 Topic Modeling

A research area closely related to the work of mining academic topics in universities in SEEU is
topic modeling in natural language processing and information retrieval literature. In general,
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a topic model is a type of mathematical model for discoveringabstract (or latent) topics from
a collection of documents. The intuitive idea behind topic modeling is that given documents
within the same topics, some particular words may appear more frequently than other words.
Many topic modeling methods have been proposed recently. The background mathematics of
these approaches mainly originates from linear algebra andprobabilistic modeling.

In this section, we briefly review three most popular topic modeling algorithms, namely
LSA, PLSA and LDA. We will present our topic mining methods inChapter 6 and compare
the results with state-of-the-art topic modeling methods.

2.4.1 Latent Semantic Analysis

Latent Semantic Analysis (LSA) [34] is a dimensionality reduction technique that projects
documents to a lower-dimensional, latent semantic (topic)space where documents with sim-
ilar topics may be close to each other. By doing so, different terms having similar meaning
(synonyms) can be roughly mapped to the same group in the latent space. Thus, it is possible
to measure the similarity between pairs of documents even ifthey do not share any terms. This
is very common in text classification and clustering where the high dimensionality of text fea-
tures usually results in high sparsity of datasets. That is,few terms are shared between most
pairs of documents.

LSA models the text as a term-document matrixX where each elementxi j represent the
occurrence of the termti in the documentd j. To discover the latent topics behind the corpus,
LSA uses Singular Value Decomposition (SVD) to decompose the matrixX into three small
matrices as shown in Figure 2.6. The valuesσ1, σ2, . . . , σl, are called the singular values, and

Figure 2.6: The SVD decomposition of term-document matrixX.

u1, u2, . . . , ul andv1, v2, . . . , vl are the left and right singular vectors. It turns out that when
we select thek largest singular values (i.e., the first k entries along the diagonal of

∑

) and
the corresponding singular vectorsu1, u2, . . . , uk from U andv1, v2, . . . , vk from V, the term-
document matrixX can be approximated byXk = Uk

∑

k VT
k with minor error. In other words,

we actually strip away most trivial dimensions but only keepk importantabstractdimensions
which capture the most variation inX. Thek remaining vectors inUk andVT

k correspond to
k hidden topics where terms and documents participate. Basedon this, we can project the
documents into the semantic space asD′ =

∑

k VT
k and apply any standard clustering algorithm

to group documents into topics. In addition, we can also project terms into another latent space
asT′ = Uk

∑

k.
Although LSA can detect synonyms, it may not work well to handle polysemy (i.e., a word

may have multiple senses and multiple types of usage in different contexts). The reason is that
in SVD decomposition, after we compute the matrix productUk

∑

k, each termti is mapped
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exactly as a single pointt′i in the latent spaceT′, which means that LSA treats the occurrence
of each term as the same meaning no matter what document context it appears. This may
be unrealistic in a real-world application, such as information retrieval where polysemy terms
are very common (e.g., “active learning” inComputer ScienceandEducation). Probabilistic
Latent Semantic Analysis [54], a statistical technique, isproposed to tackle the deficits of LSA.

2.4.2 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (PLSA) [54] is a statistical technique for the analysis of
co-occurrence data, such as term-document data. Unlike theLatent Semantic Analysis (LSA)
which stems from linear algebra and decomposes the data by Singular Value Decomposition
(SVD), PLSA is based on a statistical model, called an aspectmodel [55] which models the
co-occurrence data by associating a latent variablez to each observation (e.g., a termw in a
documentd).

PLSA assumes that the terms in dataset are generated by threesteps:
(1) Select a documentd with probabilityP(d).
(2) Pick a latent classz with probabilityP(z|d).
(3) Generate a wordw with probabilityP(w|z).

This process can be expressed as a joint probability model as

P(w, d) = P(d)
∑

z∈Z

P(w|z)P(z|d) (2.16)

wherew andd are conditional independent given the latent topicz.
Following the maximum likelihood principle, the parameters P(d), P(w|z) andP(z|d) can

be learned by maximizing the log-likelihood function

L =
∑

d∈D

∑

w∈W

n(d,w)logP(d,w) (2.17)

wheren(d,w) is the term frequency ofw in documentd. A standard procedure to learn the
parameters in an aspect model is via Expectation Maximization [35].

We can find at least two advantages of PLSA over LSA. Firstly, considering the model
interpretability, PLSA has a clear advantage over LSA because PLSA provides a more intuitive
definition of the hidden topics. Specifically, in PLSA, for each latent variable (topic)z, the
top ranked terms by conditional probabilityP(w|z) give a natural interpretation of the topic
meaning forz. By contrast, in LSA, the values in the term-topic matrix arenot normalized and
may even contain negative values which may be difficult to interpret. Secondly, both LSA and
PLSA associate terms into latent topics and thus can handle synonymy. However, LSA may not
work well to handle polysemy, as terms in LSA are mapped into asingle point in the semantic
space. For PLSA, given a termw, the different values of conditional probabilitiesP(w|z) for
different topicsz give a natural explanation of polysemy.

Although PLSA has some advantages over LSA, it still has several weaknesses. A major
difficulty of PLSA is to be prone to overfitting because the number of parameters of PLSA
grows linearly with the number of training documents [11]. Specifically, given a text dataset
with V terms andM documents, training PLSA withk latent variables (topics) requires to
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learnkV + kM parameters, which are linearly growing withM, which in turn is usually very
large. The large number of parameters is due to thek latent variables explicitly linked to the
training documents (P(z|d) in Equation 2.16). To avoid the overfitting problem, LatentDirichlet
Allocation (LDA) [11] proposes a different generative process that reduces the parameters to
kV+ k which does not grow with the number of documents.

2.4.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [11] is a statistical learning algorithm for automatically de-
tecting topics in documents. Similar to PLSA, LDA also viewseach document as a mixture of
various topics. The difference is that LDA does not model the topic mixture in documents ex-
plicitly. LDA treats the topic mixture as a k-parameter hidden random variable with a Dirichlet
prior (i.e., a distribution on multinomials). Specifically, for each document in the collection,
LDA assumes the following generative process:

(1) Randomly choose a per-document topic distribution based on the Dirichlet prior.
(2) Randomly choose a per-topic word distribution for each topic based on another Dirichlet

prior.
(3) For each word in the document

(a) Randomly choose a topic from the distribution over topics.
(b) Randomly choose a word from the distribution over the vocabulary given the sam-

pled topic.
Mathematically, the LDA model can be defined with the following notations. We denote

the Dirichlet priors on the per-document topic distribution and per-topic word distribution as
α andβ. The topic distribution for documenti is θi. The word distribution for topick over
vocabulary is denoted asφk. zj,t is the topic for thetth word in documentj andwj,t is thetth
word in documentj. Based on the generation process, we can write the joint probability of all
known and hidden variables as

P(w, z, θ, φ;α, β) =
K
∏

i=1

P(φi; β)
M
∏

j=1

P(θ j;α)
N
∏

t=1

P(zj,t |θ j)P(wj,t |φZ j,t ) (2.18)

Estimating parameters of LDA by exactly maximizing the likelihood of the whole data collec-
tion is intractable. A popular solution to this problem is touse approximation methods, such
as variational algorithms [11] and Gibbs sampling [46].

As a statistical graphical model, LDA shares similar advantages of PLSA over traditional
LSA method. Moreover, LDA is reported to be less likely overfitting than PLSA in empirical
study. The Dirichlet priorsα andβ are assumed to be given. The parameters that LDA needs to
learn areP(z|θ) andP(w|φ). Thus, there are totallyk + kV parameters which are much smaller
than PLSA.

We have reviewed three most popular topic modeling approaches in the literature. These
approaches have shown promising results in discovering hidden topics from text dataset. How-
ever, we argue that these approaches may not be suitable for SEEU. There are three main
reasons.

1. Unpredictable topics. An important feature of topic modeling is to discover hidden
topics from text dataset. However, all of these approaches are unsupervised learning
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methods. Without supervision information, the topics learned by these approaches may
be unpredictable and even unmeaningful and thus confuse users. In addition, although
some hierarchical extensions, such as hierarchical PLSA [116] and hierarchical LDA
[10] have been proposed, the hierarchical topic structuresgenerated by these methods
are still unpredictable.

2. Unknown topic names. All of the three approaches represent topics in a mathematical
form, such as numerical vector in LSA or word distribution inPLSA and LDA. A serious
problem of such methods is the unknown topic names. Simply grouping the results
by topics without labeling the name of the topics could causea bad user experience.
Moreover, according to [21], assigning meaningful labels to the topics (clusters) is a
very difficult task.

3. Computational inefficiencyThe three approaches stem from solid mathematical back-
ground, such as SVD decomposition in LSA and graphical modelin statistics. However,
when we apply these approaches to large-scale webpage dataset, these methods may not
be efficient. For example, given a new webpage, PLSA needs to rerun the EM algorithm
on the entire text dataset to infer its topics. This could be too slow in real-world search
engines.

Due to the weakness we discussed above, we prefer to use supervised text classification
methods for mining topics in universities. We will compare the topic mining performance
between supervised text classification methods and topic modeling methods in Chapter 6.

2.5 Summary

In this chapter, we have reviewed three different machine learning methods for classifying
and searching documents. They are the supervised text classification methods, the learning
to rank methods and the unsupervised topic modeling methods. For classifying documents in
SEEU, due to the drawbacks of the unsupervised topic modeling methods, we prefer to use
the supervised text classification methods, more specifically, the hierarchical text classification
methods for hierarchical topic classification. For rankingdocuments in SEEU, we will use the
pairwise learning to rank approach to rank documents in eachcategory of the topic hierarchy.



Chapter 3

Effective Hierarchical Webpage
Classification

In this chapter, we study the hierarchical webpage classification problem. A major challenge
in SEEU is to automatically classify a massive number of webpages into a topic hierarchy. An
effective hierarchial classification system is very importantfor SEEU. To deal with the chal-
lenges of learning large-scale webpage datasets, we firstlypropose an efficient webpage feature
extraction tool based on MapReduce. Secondly, we develop a parallel hierarchical SVM clas-
sifier for effective webpage classification. With extensive experimentson the well-known ODP
(Open Directory Project) dataset, we empirically demonstrate that our hierarchical classifi-
cation system is very effective and it outperforms the traditional flat classification approach
significantly.

The rest of this chapter is organized as follows. In Section 3.1, we describe the webpage
feature extraction tool for hierarchical webpage classification. In Section 3.2, we discuss the
algorithm to learn hierarchical classifiers. Section 3.3 reports the experimental results on the
ODP (Open Directory Project) dataset. The last section contains a summary of this chapter.

The implementation of the hierarchical classification system in Section 3.2 was in collabo-
ration with Da Kuang and Dr. Charles Ling. We jointly published this work in theProceeding
of the 22nd International Joint Conference on Artificial Intelligence(IJCAI 2011) [67].

3.1 Webpage Feature Extraction

When we apply text classification algorithms on real-world webpage datasets, the first thing
we need to do is to extract good text features from webpages. In this section, we describe the
webpage features for learning hierarchical classificationmodels. To deal with the challenges
of extracting text features from a large-scale webpage dataset (e.g., one million webpages in
the ODP dataset), we develop a distributed feature extraction tool based on the popular Hadoop
MapReduce platform1.

1The website of Hadoop project ishttp://hadoop.apache.org/.

35
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3.1.1 Webpage Features

To extract text features from webpages, it is important to consider the tag structure of the
HTML source code. We use a webpage (see Figure 3.1) collectedfrom Amazon to describe
features extracted from HTML source. As we can see, HTML source code usually consists of
a head part and a body part. Firstly, inside the head part, we extract the title as well as two meta
texts, i.e., description and keywords. The three text features are very important as they describe
the theme (such as shopping in Amazon) and the content (e.g.,Books, Music and Games) of
the webpage. Secondly, for the body part, we simply treat it like plain text by removing all the
HTML tags. In this thesis, we do not consider the primary HTMLtags such as head (<h>),
paragraph (<p>) and section (<div>), because in most websites, these tags are oriented toward
visualization rather than semantics [91]. However, for anchor tags (<a>), we cannot simply
discard them because the text inside anchor tags is usually very relevant to thepointedwebpage
[14]. Therefore, we also use the anchor text feature for thepointedwebpage. In addition, we
extract text from the webpage URL (not the links inside the anchor tags) because the URL of a
webpage also contains useful information.2 Thus in total, we use six text features for webpage
classification. They are tabulated in Table 3.1.

Figure 3.1: A simplified HTML source code from Amazon home page.

Table 3.1: The six text features of a webpage. They are URL, title, description, keywords, body
and the anchor text.

ID Description
1 URL
2 title
3 description in meta tag
4 keywords in meta tag
5 body
6 anchor text from inbound hyperlinks

2For example, the linkhttp://www.amazon.com/books-used-books-textbooks/...points to the book
department of Amazon. It contains useful words includingbooks, used booksandtextbooks.
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3.1.2 MapReduce based Feature Extraction

A webpage dataset is usually very large. An efficient feature extraction implementation is
non-trivial. Simple sequential scanning over the entire webgraph could be too slow for a large-
scale dataset. In this thesis, we build the feature extraction tool based on the popular Hadoop
MapReduce platform.

We briefly describe the MapReduce programming model. MapReduce is a parallel pro-
gramming model for processing large-scale datasets. In a MapReduce development, the com-
plex low-level system programming, such as data communication, load balancing and fault
tolerance are taken over by the MapReduce platform. Developers only need to focus on the
implementation of high-level algorithms by using the simple mapandreducefunctions [32].
In a typical MapReduce program, the main computation procedure can be implemented as a
series of data manipulation on key-value pairs. Specifically, the main program splits the prob-
lem into many small subproblems. For each subproblem, the MapReduce platform launches a
mapfunction that processes the subproblem and outputs intermediate results as a list of key-
value pairs. When all themapfunctions are finished, the MapReduce platform reorganizesall
the intermediate key-value pairs into many value lists of identical keys. For each value list, a
reducefunction will be launched to process it and output a single key-value pair as the final
results.

We implement the feature extraction tool based on the MapReduce programming model.
Figure 3.2 shows an example of MapReduce pseudo-code for extracting anchor text. It con-
tains amap function and areducefunction. The entire webpage dataset is split into many
webpages by URLs. For each webpage, themapfunction extracts and emits pairs of (“hyper-
link”, “anchor text”) from HTML source code. After all themap functions are finished, the
reducefunction combines the list of anchor text for a URL to form thefinal anchor feature for
a webpage as (“hyperlink”, “merged anchor text”). The code to extract the other text features
is simpler than extracting anchor text. They only have amapfunction which just extracts the
in-page text.

Figure 3.2: The MapReduce pseudo-code for extracting anchor text feature.
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3.2 Hierarchical Classification

A major challenge in building search engines with hierarchies is to automatically classify a
massive number of webpages into various hierarchies. In this section, we use the top-down
hierarchical classification approach (see review in Chapter 2.2) for training hierarchical classi-
fication system.

Top-down Hierarchical Classification Algorithm

Given a predefined topic hierarchyH , we build one binary classifier on each category ofH .
The positive and negative examples for each category are selectedlocally [106]. Specifically,
for each categoryc ∈ H , let ↑ (c) denote the direct parent category ofc andE(c) denote the
examples belonging toc. Then the positive training examples ofc can be defined asTr+(c) =
E(c)3 and the negative training examples ofc can be defined asTr−(c) = Tr+(↑ (c)) − Tr+(c).
As the negative training examples are only selected from thepositive examples of the parent
categories (locally), the classifier would not suffer from the serious imbalance problem [58].

In prediction phase, the top-down approach classifies testing examples in a top-down man-
ner. Specifically, given a testing example, the classifiers at the top level firstly output its predic-
tion probabilities. After that, at each category, if the probability of the example is larger than
a threshold (e.g., 0.5), the example will berecursivelypushed down to its lower-level child
categories for further prediction until reaching the leaf categories.

Tuning prediction thresholds in the top-down approach is very important. Too small pre-
diction thresholds will cause examples wrongly predicted into deeper categories while too
high prediction thresholds will cause examples to be blocked at top level. To tune the op-
timal prediction thresholds, we use the popular SCut [121, 122] algorithm. Its basic idea is
to tune the threshold of each category on a validation set (e.g., 10% training examples) un-
til optimal performance of the classifier is obtained for that category (on the validation set).
In our classification system, we tune the prediction threshold of each category in the set of
{0.3, 0.4, 0.5, 0.6, 0.7}.

We use linear Support Vector Machine (SVM) as the base classifier, because the high di-
mensionality of text data usually results in the dataset being linearly separable [112]. The
popular LIBLINEAR [41] package is used in our implementation. To obtain prediction prob-
abilities from SVM, we implement the famous Platt’s calibration [88] to output calibrated
probabilities by sigmoid function,

P(y = 1|x) =
1

1+ exp(A · f (x) + B)
(3.1)

where f (x) is the SVM output of examplex; A and B are the parameters learned by Platt’s
calibration.

Feature Preprocessing and Selection

We use the bag-of-words model to represent the text data. Each document is treated as a vector
of word features with TF·IDF weighting. Before the construction of the TF·IDF word vector

3For the root category, all the training examples are positive.
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of each document, we need to remove stop words (e.g.,the, a, and) and rare words (e.g., words
occurring in less than three documents) as they are not useful for learning a classification
model. In addition, as we are mainly learning the English documents, words with the same
meaning can appear in different forms, such aslearning, learn and learns. We use the Porter
Stemming [89] algorithm to normalize words to their stem (e.g., learning→ learn).

The feature space in the text classification dataset is usually very large. Training SVM
classifiers on hundreds of thousands of documents in a high dimensional feature space requires
a great number of computational resources. To reduce computational cost, we use the DF
(Document Frequency) [42] feature selection algorithm to select a small portion of relevant
features. Specifically, the DF algorithm assigns a score to each word in the training data. The
DF score is calculated as the number of documents containingthis word. The top ranked
features by the DF scores can be used as useful features for classification. Although the DF
algorithm is very simple, it has been shown that the the DF algorithm is a reliable measure for
selecting informative features [123].

Time Complexity

We analyze the time complexity of training the hierarchicalSVM classifiers. Let us consider a
dataset that containsm examples distributed in a hierarchyH of depthd. The feature size of
the dataset isn.

We use the top-down approach to train a linear SVM classifier at each category ofH . It has
been proved that the time complexity of training a linear SVMgrows linearly with the number
of training examples and features [63]. The time complexityof the DF feature selection is
also linear as we only need to scan the training set once to compute the DF scores for all
words. For the SCut algorithm, estimating the prediction loss for each threshold value requires
classifying all the examples in the validation set. As we only compare a few threshold values on
a small portion of training examples (e.g., 10% of the training set), the complexity of SCut can
be approximately considered as linear. Thus, the total timecomplexity of hierarchical SVM
classifiers is the sum of the complexity of training all the linear SVM classifiers,

Ttrain =

d
∑

i=1

|Hi |
∑

j=1

O(mi j n) (3.2)

where|Hi | is the number of categories at the depthi; mi j is the number of training examples in
the jth category at depthi.

To simplify the derivation of time complexity in a hierarchy, we make two assumptions
here.

• Assumption 1. We assume that each intermediate category hasa unified branching factor
b (i.e., a fixed number of child categories).

• Assumption 2. We assume that we are facing the mandatory-leaf node classification
[9, 106] where each example in the training set is categorized on a single path from the
root to a leaf category.
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Theorem 3.2.1 (Complexity of Hierarchical Classification)Given a dataset containing m ex-
amples distributed in a hierarchy of depth d with n features,the time complexity of training
hierarchical SVM classifiers is

Ttrain =

d
∑

i=1

|Hi |
∑

j=1

(mi j n) = dbO(mn)

Proof We use mathematical induction to prove this. Given a hierarchy of depthd, we want to
proveTtrain(d) = dbO(mn).

For a hierarchy of depth 1, we trainb SVM classifiers on the entire training set. Thus, we
can deriveTtrain(1) = bO(mn). We suppose thatTtrain(d) is true for a hierarchy of depthd. We
need to prove thatTtrain(d + 1) is also true for a hierarchy of depthd+ 1.

Given a hierarchy of depthd + 1, we know that the complexity of training hierarchical
SVM classifiers on the topd levels isdbO(mn). Consider a categoryj at depthd, we use
Ed j to denote the positive examples belonging to it. According to the top-down approach, for
each of its subcategories at depthd + 1, the number of training examples is exactlyEd j (i.e.,
positive examples from the parent category). Based to Assumption 1, we can derive that the
total time complexity for its child categories isbO(Ed jn). Therefore, the total time complexity
at depthd + 1 is b

∑|Hd|

j=1 O(Ed jn). According to Assumption 2, each training example must
pass only once through a category at depthd. Thus, the total examples passing through depth
d is
∑|Hd|

j=1 Ed j = m. Therefore,b
∑|Hd|

j=1 O(Ed jn) = bO(mn). Eventually, we prove that the
time complexity of training hierarchical SVM classifiers for a hierarchy of depthd + 1 is
Ttrain(d+ 1) = dbO(mn) + bO(mn) = (d + 1)bO(mn).

Next, we derive the time complexity of the flat approach for comparison. In the flat ap-
proach, we ignore the hierarchy structure and train SVM classifiers at all the leaf categories. For
each leaf category, a SVM classifier is trained to distinguish that category from all the other leaf
categories. Specifically, the positive training examples of each leaf categoryc can be defined
asTr+(c) = E(c) and the negative training examples ofc can be defined asTr−(c) = D−Tr+(c)
whereD is the entire training set. Thus, the time complexity of the flat approach can be simply
derived asbdO(mn) (bd is the total number of leaf categories inH). We can see that the hier-
archical SVM classifiers are exponentially faster than the flat approach. For example, consider
a hierarchy of four levels with branching factor of five. The flat approach has to train 625
(54 leaf categories at the 4th level) full SVM classifiers (on theentire dataset) while the time
complexity of the hierarchical SVM classifiers is just equivalent to train 20 (= 4× 5) full SVM
classifiers.

We study the time complexity of predicting a testing example. Given a testing example
predicted from the root to a leaf category, the hierarchicalSVM classifiers only use the SVM
classifiers attached to the categories of the prediction path. In other words,b classifiers are
used at each level of the prediction path. Thus, its time complexity is

Ttest = dbO(n) (3.3)

For the flat approach, as each classifier at a leaf category must be used, its time complexity is
bdO(n). We can see that the hierarchical SVM classifiers approach is again far more efficient
than the flat approach.
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Parallel Speed Up

We have proved that the hierarchical SVM classification algorithm is much faster than the flat
approach. However, in a real world application with millions of training examples in large
hierarchies, it could be still slow to sequentiality train many SVM classifiers.

Although we can also use MapReduce for parallelization, we prefer to use OpenMPI4, a
popular High Performance Computing library, because training many SVMs is a computation-
ally intensive task rather than data intensive task where MapReduce is especially suited for
[78]. Thus, similar to [81], we also develop a parallel machine learning system on a small
cluster of PCs.5 The MPI pseudo-code of training hierarchical SVM classifiers is presented in
Figure 3.3. It is based on the classic Master/slave parallel computing model. Simply speaking,
each worker requests a job (category) from the master, and trains the SVM classifier for that
category. This process is repeated until all the jobs are consumed. In an ideal case, given a
cluster ofp processors, the time complexity of training hierarchical SVM classifiers can be
further reduced to

Ttrain = p−1dbO(mn) (3.4)

i f rank != 0 :
/ ∗Worker module∗ /
whi le t rue :

/ / r e q u e s t a c a t e g o r y from t h e master
MPI Send ( req , 0 ) ;
MPI Recv ( ca tego ry , 0 , s t a t ) ;
/ / q u i t i f t h e c a t e g o r y i s empty
i f c a t e g o r y=Nul l :

re turn ;
/ / Top−down b u i l d i n g t r a i n i n g s e t
TrSe t = L o c a l i z e ( Data , c a t e g o r y ) ;
/ / Do f e a t u r e s e l e c t i o n on t h e t r a i n i n g s e t
TrFSSet = F e a t u r e S e l e c t i o n ( T rSe t ) ;
/ / Tra in a SVM model

SVM = TrainSVM ( TrFSSet ) ;
/ / Use SCut t o tune t h e o p t i m a l t h r e s h o l d
Th resho ld = SCut ( TrFSSet ) ;

e l s e:
/ ∗ Master module ( rank=0) ∗ /
/ / s c h e d u l e c a t e g o r i e s t o workers
f o r c a t e g o r y i n H i e r a r c h y :

MPI Recv ( req , MPIANY SOURCE , s t a t ) ;
MPI Send ( ca tego ry , s t a t . s o u r c e ) ;

/ / A l l j o b s are f i n i s h e d , t e l l each worker t o s t o p
f o r worker i n poo l :

MPI Recv ( req , MPIANY SOURCE , s t a t ) ;
MPI Send ( Nul l , s t a t . s o u r c e ) ;

Figure 3.3: The MPI pseudo-code for training hierarchical SVM classifiers.

4http://www.open-mpi.org
5It consists of four quad-core PCs each with four 2.4 GHz CPU cores and 3GB memory.
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3.3 Hierarchical Classification Experiments

In this section, we describe the experimental dataset and conduct an empirical study on the
classification performance of hierarchical classificationmethods.

3.3.1 Experimental Dataset

We use the well-known ODP (Open Directory Project) hierarchy as our experimental data.
ODP is a human-edited web directory where human experts organize millions of webpages
into a complex topic hierarchy with a maximal depth of 14. We extract a meaningful4-level
topic hierarchy from the original hierarchy of ODP, since itis difficult to train highly accurate
classifiers at the deep levels of the hierarchy [81]. Besides, a very deep hierarchy is not con-
venient for users to browse. To have a broad coverage of common topics, we select 11 out of
the total 16 top categories in the ODP hierarchy. They areArts, Business, Computers, Health,
Home, Recreation, Reference, Science, Shopping, SocietyandSports. After the data collection
and cleaning, we obtain 1,047,560 webpages distributed in 662 categories.6 Here, we report
the statistical information of our topic hierarchy at each level in Table 3.2.

Table 3.2: The statistical information of the topic hierarchy at each level.c is the total number
of categories. ¯r is the average positive class ratio over all documents. ¯n is the average number
of examples.f̄ is the average number of distinct words.

Level c r̄ n̄ f̄
1 11 0.094 1,047,560 755,718
2 99 0.091 104,039 254,606
3 499 0.103 11,026 66,565
4 53 0.106 7,715 68,654

3.3.2 Evaluation

To evaluate our classification system, we conduct five-fold cross validation experiments on
the ODP dataset. Specifically, we randomly split the datasetinto five subsets (folds) with equal
size. At each round of cross validation, four folds are used for training (with 838,048 examples)
and the rest is retained for testing (with 209,512 examples). When training SVM classifiers,
we use the default parameters (i.e.C = 0) of LIBLINEAR. In the testing phase, we report the
average F1-score [121] at each level of the hierarchy.

Comparing the Top-down Approach and the Flat Approach

We firstly compare the performance of the hierarchical SVMs (the top-down approach) with
the traditional flat SVMs (the flat approach). For both approaches, we set the feature number
to 50,000, and set the prediction thresholds for all categories as 0.5. The SCut algorithm is not
used for the top-down approach.

6Although we only choose four-level categories, the webpages in deep levels of the ODP hierarchy are popped
up and collected in the categories of the fourth level.
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Figure 3.4 presents the results. We can see that the top-downapproach has a clear advan-
tage over the flat approach. Generally speaking, the deeper the level is, the more significant
improvement the top-down approach is. The largest improvement can be observed at the 3rd
and the 4th levels. We find that for the flat approach at these two levels, the average positive
class ratios are less than 0.001, much more skewed than the top-down approach (i.e., about
0.1). With serious imbalanced class distribution, it is very difficult to learn a good classifi-
cation model for the flat approach. In addition, we notice that the flat approach is far slower
than the top-down approach. On average, it takes about ten hours to finish training while the
top-down approach uses less than one hour. For the large number (575) of leaf categories in
the ODP hierarchy, the flat approach trains SVM classifiers ontheentiretraining set while the
top-down approach trains SVM classifiers only onexponentially smallerportion of examples.

Figure 3.4: The average F1-score at different levels by the top-down approach and the flat
approach.

Optimal Thresholds in Hierarchical SVM classifiers

Secondly, we study the thresholds in our hierarchical SVM classifiers. In this experiment, we
compare the SCut method with the fixed threshold value 0.5, a common prediction threshold
in text classification. For the SCut method, we tune the threshold of each category on a valida-
tion set (e.g., 10% randomly sampled training examples) until the optimal performance of the
classifier is obtained for that category on the validation set.

We repeat the five-fold cross validation experiments for thehierarchical SVM classifiers,
and report the results in Figure 3.5. We can see that the SCut method consistently outper-
forms the fixed threshold method at all levels. It means that in hierarchical classification, it is
important to tune the prediction thresholds to achieve highclassification performance.

It is also worthy to analyze the distribution of the tuned thresholds by the SCut method.
We plot the distribution of optimal thresholds tuned by the SCut method at all levels in Figure
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Figure 3.5: The average F1-score at different levels by the SCut thresholds and the fixed thresh-
old 0.5 for the top-down approach.

Figure 3.6: The optimal threshold distribution at different levels by the SCut method.
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3.6. We can see that at the top two levels, most of the threshold values are less than 0.5 while
at the 3rd and the 4th levels, larger thresholds (i.e., 0.6 and 0.7) are more often used. This
is reasonable. For the top level, a small threshold value canpush more examples down to
the lower levels, and reduces the class imbalance problem indeeper levels. Thus, the recall
at deeper levels can be improved. In addition, this also helps to resolve the blocking (false
negative) problem [109] in hierarchical classification. One may say that this may introduce
false positive examples into the deeper levels. To reduce such errors propagated from the top
level, the SCut method increases the thresholds for some categories at the deeper levels. This
helps to maintain the precision. As the SCut method can improve both precision and recall for
the large number of deeper-level categories, the overall F1-score will be eventually improved.

Effect of Feature Number in the Hierarchical SVM classifiers

Next, we study the effect of different feature numbers on the classification performance of the
hierarchical SVM classifiers. The feature numbers used in this experiment are 5,000, 10,000,
50,000 and 100,000. Figure 3.7 plots the F1-score at all levels under different feature numbers.
We can see that increasing the number of selected features can improve F1-score consistently
at all levels. This is as we expected as SVM learns more accurately with a large number of
relevant features [60].

Figure 3.7: The average F1-score at different levels by different feature numbers.

We also analyze the correlation between the running time anddifferent feature numbers for
the hierarchical SVM classifiers. Figure 3.8 plots the average training time and testing time
under different feature numbers. We can see that the training time steadily increases along
with the growth of feature numbers. This is because a larger number of features will make
the SVM learning algorithm consume more computational resource and thus become slower to
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converge. However, for testing time, the correlation between feature number and running time
is not clear. The running time is mainly decided by the numberof examples due to the sparsity
of features in text documents [41]. In fact, although the ODPdataset has more than one million
distinct words, we find that the average number of distinct words per document is just 198.
From this analysis, we believe that 50,000 features are goodenough for the hierarchical SVM
classifiers when applied for a hierarchy of medium size (e.g., with several hundred categories).

Figure 3.8: The average training and testing time of the hierarchical SVM classifiers under
different number of features.

Throughput of the Hierarchical SVM classifiers

Finally, we analyze the efficiency of the hierarchical SVM classifiers. From Figure 3.8,we
can see that the training and testing of the hierarchical SVMclassifiers are quite efficient.
For 50,000 features, the average training time at one fold ofcross validation (with 838,048
examples) is 2,350 seconds. The average testing time on one fold (209,512 examples) is 904
seconds.7 The throughput (number of documents classified per second) of our classification
system is 231 (209512/904), which is quite good considering only a small cluster ofPCs is
used. Since both the training and testing processes can be performed off-line, we believe that
the scalability of the hierarchical classification for a large search engines is feasible.

3.4 Summary

In this chapter, we develop an effective hierarchical classification system for large-scaleweb-
page classification in a topic hierarchy. According to our experimental results on the well-
known ODP dataset, we empirically demonstrate that our hierarchical classification system is
very effective and outperforms the traditional flat classification approaches significantly.

7In our previous paper [67], we do not count the time of disk I/O and network I/O. This could be unrealistic
for real world systems. In this thesis, we count the total execution time (including disk I/O and network I/O) of
running a MPI job on our cluster.



Chapter 4

ERIC: Enhanced Ranking by hIerarchical
Classification

Traditional keywords-based web search engines rank documents only based on the text match-
ing between a query of keywords and the indexed documents, and page importance metrics.
However, in search engines with hierarchies, we also need toconsider the topic relevance
in hierarchies. In this chapter, we study the problem of integrating hierarchical classifica-
tion into keywords-based search engines. We propose a novelranking framework, called
ERIC (EnhancedRanking by hIerarchicalClassification), that improves the ranking quality
of a search engine by hierarchical classification. With extensive experiments on four TREC
(Text REtrieval Conference) web search datasets, we empirically demonstrate that our ranking
framework with hierarchical classification outperforms the flat keywords-based search meth-
ods significantly. To the best of knowledge, this is the first work that evaluates the performance
of ranking in hierarchies on the TREC datasets with satisfying results.

The learning to rank experiments in Section 4.3 are done withDr. Charles Ling and Dr.
Huaimin Wang. This work was included in the submission to theIEEE Transactions on Knowl-
edge and Data Engineering(IEEE TKDE) [75].

4.1 Introduction

In traditional keywords-based web search engines, searching documents is usually consid-
ered as a similarity match problem between a query of keywords and the indexed documents,
boosted by page importance metrics (such as PageRank [85]).Usually, the matching algorithm
is based on the TF·IDF weighting with human crafted parameters, such as the popular BM25
[94] ranking methods adopted by most search platforms.

As user queries are usually very short and ambiguous [105], asimple keywords match may
fail to capture the true similarity between queries and the index documents. For example, if
users want to find information about “active learning” (a research field inComputer Science),
they could search keywords “active learning” in a flat searchengine, such as Google. Due to
the ambiguity of the short phrase “active learning”, most ofthe top ten results are related to
Educationresearch. If we combine more keywords, such as “Computer Science”, webpages
about “active learning” without the words “Computer Science” may be filtered out, and thus,

47
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users may miss some important webpages. However, in a searchengine with hierarchies,
such as SEEU, if users select the category “Computer Science” in the topic hierarchy while
searching “active learning” as the keywords, the top ten ranked results will be exclusively
related toComputer Scienceresearch and the results without the words “Computer Science”
will still remain.

The major challenge of integrating hierarchies into a search engine is to classify and rank
a large number of webpages into hierarchies. In previous Chapters, we have studied the prob-
lem of large-scale hierarchical webpage classification. Inthis chapter, we study the prob-
lem of using hierarchical classification to improve the ranking performance of search engines.
We propose a novel ranking framework, called ERIC (EnhancedRanking by hIerarchical
Classification) that integrates the hierarchical classification probabilities into the ranking sys-
tem of search engines with hierarchies. In this framework, we develop several ranking features
to capture text similarity between queries and documents, as well as topic correlation between
user selected categories and the indexed documents, and integrate them into a learning to rank
algorithm. With extensive experiments on four TREC (Text REtrieval Conference) web search
datasets, we empirically demonstrate that by seamlessly integrating hierarchical text classifi-
cation and ranking methods, our framework can boost search engine’s ranking quality signifi-
cantly. To the best of knowledge, this is the first work that evaluates the performance of ranking
in hierarchies on the TREC datasets with satisfying results.

The rest of this chapter is organized as follows. In Section 4.2, we discuss the challenges of
integrating hierarchical classification into the ranking,and propose a novel framework to tackle
the challenges encountered. In Section 4.3, we conduct extensive experiments to evaluate the
effectiveness of our approach, compared with the state-of-the-art flat ranking methods. The
last section presents the summary.

4.2 Integrating Hierarchical Classification into Ranking

When we integrate hierarchical classification into search engines with hierarchies, two chal-
lenges need to be solved.

• The first challenge is how to define a commonly accepted topic hierarchy for the applica-
tion domain and effectively classify the massive number of webpages into the hierarchy.

• The second challenge is how to design effective features for a ranking system. Improper
features may even degrade the performance of a ranking system.

In this section, we will propose a novel rank framework to tackle the two challenges.

4.2.1 General Framework

We propose a novel ranking framework called ERIC (EnhancedRanking by hIerarchical
Classification) for search engines with hierarchies. Figure4.1 presents the main idea of our
framework. Simply speaking, our framework can be considered as a feature processing net-
work which transforms each query-document pair into three different types of features for a
ranking system. The key and novel idea of our framework is to introduce the topic features for
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Figure 4.1: The framework for integrating hierarchical classification into the search engine
with hierarchies.

a ranking system. These features are proposed to capture thetopic correlation between user
selected categories in the hierarchy and the indexed documents. It is computed based on the
categories selected by users and the estimation of topic distribution by the integrated hierarchi-
cal classification system (the square box with caption “Topic Hierarchy” in Figure 4.1).

In the following subsections, we will firstly discuss the topic features due to their im-
portance in our framework. Secondly, we briefly describe theother two text based features
(Document Features and Query-document Features in Figure 4.1). Finally, we discuss how we
integrate the three types of features into the ranking system.

4.2.2 Topic Features

How can we deal with the two challenges when integrating hierarchical classification into
search engines with hierarchies?

The first challenge is to define a reasonable and commonly-accepted topic hierarchy. In
fact, there already exist some high-quality topic taxonomies on the web, such as the Wikipedia
topic hierarchy1 and the ODP (Open Directory Project) category hierarchy2. Due to the large
number of human editing efforts, the quality of these topic hierarchies would be much better
than the topic hierarchies extracted by ad-hoc methods or tools. Thus, we can directly build
the topic hierarchy by reusing these existing taxonomies.

For example, for general-purpose web search, we can use the ODP hierarchy for topic
classification. ODP is a human-edited web directory where human experts organize millions
of webpages into a complex hierarchy. The ODP hierarchy covers a broad scope of common
topics on the web, includingArts, Business, Computers, Health, Home, Recreation, Reference,
Science, Shopping, SocietyandSports. With the high coverage of common topics, we believe
that using the ODP hierarchy to classify webpages in a general web search engine is feasible.
As we have already presented the details of ODP dataset and the hierarchical webpage clas-
sification algorithm in Chapter 3, we will mainly discuss thetopic features derived from the
hierarchical classification results in this framework.

1http://en.wikipedia.org/wiki/Category:Main_topic_classifications
2http://www.dmoz.org/
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In our framework, we use two vectors to denote the user selected categories and the topic
distribution of indexed documents. Consider a hierarchyH of n categories (topics). We use
a vectorT = (T1,T2,T3, . . . ,Tn) to denote the selected topics by users whereTi = 1 means
the topic i is selected whileTi = 0 means it is not. In addition, based on the hierarchical
“IS-A” relations, for each ancestor topick of the selected topici, we can also setTk = 1.
For the indexed documents, we receive a document topic distribution Pd generated from the
hierarchical classification system. The topic distribution is a vector ofn probability values for
all the topics in the hierarchy. It should be noted that the classification of indexed documents is
performed off-line, and the results (topic probabilities) are directly indexed into search engines
for fast online computation of topic features.

Now, we derive the topic features based on the topic selection T and the document topic
distributionPd. A simple idea is to only use the topic probability at the mostspecific topic
selected by users. However, we argue that such a simple method ignores the important hierar-
chical information. In our framework, it could be more useful to define the topic features for
each level of the hierarchy,

F( j)
topic(T,Pd) =

∑

i∈H j

T(i)P
′

d(i), whereP
′

d(i) = Pd(i) ×
∏

k∈an(i)

Pd(k) (4.1)

where j is the jth level of the hierarchy;H j is the set of topics at the levelj; an(i) is the set
of all the ancestor topics ofi; P

′

d(i) is the adjusted probability for topici by multiplying the
probabilities of all its ancestor topics. We can see that this level-based topic feature is not only
based on the topic probability at the selected specific category but also the probabilities of all
the ancestor topics. Thus the hierarchical information is not lost.

We use an example to show how our topic features are derived ina real-world search engine.
Figure 4.2 shows an example of searching for “skin care” under the category hierarchy of “All”
→ “Shopping”→ “Health” in the ODP hierarchy. In this case, the topic selection by the user
is T = (T(Shopping)= 1,T(Health)= 1). For an indexed documentd, we compute the topic
features for each level of the hierarchy as

1. 1st level.
F(1)

topic(T,Pd) = T(Shopping)× Pd(Shopping)

2. 2nd level.
F(2)

topic(T,Pd) = T(Health)× Pd(Health)× Pd(Shopping)

For the 3rd and the 4th levels, as no topics are selected, the corresponding topic features will
be zero.

It should be noted that Bennett [8] also proposed to integrate the category probabilities into
the ranking. However, their problem setting is quite different to ours. In their setting, they
assume that no explicit hierarchies exist for users. They have to use the query classification
approach [13, 105] to estimate the categories for queries. Due to the difficulty of accurate
query classification, the ranking improvement of their approach may not be stable [8]. On the
other hand, in our approach, this challenge is relieved as users can directly choose appropriate
categories in the hierarchies.
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Figure 4.2: Searching for “skin care” under the topic hierarchy “Shopping”→“Health” in the
ODP hierarchy. This is performed in a small demo of the SEEU search engine called SEE.

4.2.3 Text-based Features

The other two types of text-based features are document features and query-document fea-
tures. We tabulate these features in Table 4.1. The meaning of document features can be
self-explained in the feature description. For the important query-document features, we give
a formal description on how we compute them.

In our framework, we consider six text fields in a webpage. They areURL, title, description,
keywords, body textandanchor text(see how we extract them from webpages in Chapter 3). To
simplify the discussion, we denote these fields asfi (1 ≤ i ≤ 6). Give a queryq and a document
d, we list the formulas to compute the query-document features in Table 4.1 as follows:

• 8. Number of matched words in a field

F#matched words(q, d
( fi)) = |{w ∈ q∩ d( fi )}| (4.2)

• 9. Ratio of matched words in a field

F%matched words(q, d
( fi)) =

|{w ∈ q∩ d( fi )}|

|{w ∈ d( fi )}|
(4.3)

• 10. Sum of TF scores of matched words in a field

FTF(q, d( fi )) =
∑

w∈q∩d( fi )

TF(w, d( fi )) (4.4)
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Table 4.1: The text based features in our framework. The fields used to compute query-
document features include URL, title, description, keywords, body text and anchor text.

ID Feature Type Feature Description
1

Document
features

Number of slashes in the URL
2 Length of the URL
3 Number of distinct words in a field
4 Number of total words in a field
5 Number of inlinks
6 Number of outlinks
7 PageRank score
8

Query-document
features

Number of matched words in a field
9 Ratio of matched words in a field
10 Sum of TF scores of matched words in a field
11 Sum of normalized TF scores of matched words in a field
12 Sum of IDF scores of matched words in a field
13 Sum of TF·IDF scores of matched words in a field

• 11. Sum of normalized TF scores of matched words in a field

FNorm TF(q, d
( fi )) =

1
|{w ∈ d( fi )}|

∑

w∈q∩d( fi )

TF(w, d( fi )) (4.5)

• 12.Sum of IDF scores of matched words in a field

FIDF(q, d( fi )) =
∑

w∈q∩d( fi )

IDF (w,D( fi )) (4.6)

• 13. Sum of TF·IDF scores of matched words in a field

FTF·IDF(q, d( fi)) =
∑

w∈q∩d( fi )

TF(w, d( fi )) · IDF (w,D( fi )) (4.7)

whereTF(w, d( fi )) is the term frequency of the matched termw in the document fieldd( fi );
IDF (w,D( fi )) is the reverse document frequency of termw in all the documents with text feature
fi.

To help readers understand how these features are actually calculated, we show the com-
putation of the sum of TF·IDF scores as an example. Consider a query “intelligent system”
and a document with title “intelligent system and technology”. After we remove stop words
and apply stemming in both the query and the document, the sumof TF·IDF feature for itstitle
field is computed as:

FTF·IDF(q, d(title)) = TF(intellig, d(title)) × IDF (intellig,D(title))

+ TF(system, d(title)) × IDF (system,D(title))
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4.2.4 Ranking Strategy

In this subsection, we present how we integrate the three types of features into a ranking system.
The three types of features are all important for the final ranking. It is reasonable that the final
ranking score is defined as a linear function of those features:

SERIC (q, d) =
−−→
WD ·

−−−−→
FD(d) +

−−−−−−→
W<Q,D> ·

−−−−−−−−−−→
F<Q,D>(q, d) +

−−→
WT ·

−−−−−−→
FT(q, d) (4.8)

where
−−−−→
FD(d) is the vector of document-only features;

−−−−−−−−−−→
F<Q,D>(q, d) is the vector of query-

document features for all the six text fields; and
−−−−−−→
FT(q, d) is the vector of topic features. Param-

eters
−−→
WD,

−−−−−−→
W<Q,D> and

−−→
WT are the weights for each feature respectively.3

We can see that the traditional ranking methods, such as the web directory and the keywords-
based search, can be derived from the Equation 4.8. Firstly,if users simply browse a topic cat-

egory without any keywords (i.e.,q = ∅),
−−−−−−−−−−→
F<Q,D>(q, d) will be constant for all webpages. Our

ranking system will return the most popular (large
−−−−→
FD(d) score) and highly category-relevant

(large
−−−−−−→
FT(q, d) score) results at the top. In this case, our ranking system becomes a web direc-

tory, and people can browse the most popular webpages in eachtopic of the whole hierarchy.

Secondly, if users do not choose any category (i.e.,T = ∅),
−−−−−−→
FT(q, d) will become constant for

all webpages. Our ranking system will rank all webpages onlybased on the document features

(
−−−−→
FD(d)) and query matching features (

−−−−−−−−−−→
F<Q,D>(q, d)). In this case, our ranking system acts as the

same as the flat search method. Users can just search the desired documents by keywords.
We use RankSVM [53], a popular learning to rank algorithm, tolearn the weights of our

ranking function. A detailed review of learning to rank algorithms can be found in Chapter 2.3.
RankSVM learns the ranking model by minimizing the pairwiseloss (i.e., a relevant document
is ranked lower than an irrelevant document) [53, 62]. The recently proposedS VMrank [63]
package can learn RankSVM efficiently on very large datasets.

In this section, we have presented how we integrate the probabilities of each webpage
predicted by hierarchical classifiers into our novel ranking system. In the next section, we
will report the evaluation results of our new ranking methodcompared with the traditional flat
ranking methods.

4.3 Evaluation of Hierarchical Classification Enhanced Rank-
ing

In this section, we conduct experiments on the well-known TREC (Text REtrieval Conference)
datasets to compare our ranking algorithm with traditionalflat ranking methods.

3In our previous paper [67], we propose a simple product basedranking function, i.e.,S(q, d, c) = FQ(q, d) ×
FD(d)× FC(c, d). In fact, we can transform this product equation into our framework by taking logarithm on both
sides.
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4.3.1 Experimental Dataset

We use TREC4 web search datasets to evaluate our ranking method. TREC consists of a series
of workshops focusing on different information retrieval research tracks. In our experiments,
we choose the four latest web track datasets in our experiments. They are from TREC 2009,
2010, 2011 and 2012 web tracks.5 Their statistical information is shown in Table 4.2.

Table 4.2: The statistical information of the TREC datasets.

Dataset Documents Unique Words
TREC 2009 23,601 205,135
TREC 2010 25,329 218,068
TREC 2011 19,381 164,516
TREC 2012 16,055 124,950

For each TREC web track dataset, TREC offers a list of 50 ad-hoc search tasks with rel-
evance judgement of documents related to each task. Specifically, each task consists of a
description of the intended search topic and a suggested query (keywords) (See a sample in
Table 4.3). The relevance judgement of each document is in a five-point scale as{-2, 0, 1, 2, 3}
where -2 means spams and 3 means highly relevant results. Foreach task, the participants will
run their own retrieval systems against the query, and submit a list of the top-ranked documents
for evaluation.

Table 4.3: A sample of ad-hoc search tasks from the TREC 2010 web track.

No Category Phrases
1 Find information about horse hooves, their care, and diseases of hooves. horse hooves
2 Find events sponsored by the Association of Volleyball Professionals. avp
3 Find locations and information of Discovery Channel storesand their

products.
discovery
channel
store

4 Find information about iron as an essential nutrient. iron
5 Find information about jobs in Connecticut. ct jobs
6 Find information about penguins. penguins
7 Find information about computer worms, viruses, and spyware. worm
8 Find information about Flushing, a neighborhood in New YorkCity. flushing
9 Find information about PVC pipes and fittings. pvc
10 Find beginners instructions to sewing, both by hand and by machine. sewing

instructions

Given a queryq and a documentd in one of the TREC datasets, we need to calculate the

4The home page of TREC ishttp://trec.nist.gov/.
5We can only download the ground truth relevance judgement from TREC athttp://trec.nist.gov/

data/webmain.html. The actual webpages are provided by Cluweb09 project. We use Indri search API to
download them.Indri can be visited athttp://boston.lti.cs.cmu.edu/Services/clueweb09_catb/ (au-
thentication required).



4.3. Evaluation of Hierarchical Classification Enhanced Ranking 55

features (see Section 4.2) for our ranking framework. Thereare three types of features we need
to calculate.

• Query-document features. We can easily calculate them based on the formulas we list in
Section 4.2.3.

• Document features. We can compute most of them based on the feature extraction tool
(see Chapter 3.1.1). For the PageRank score, we will directly use the normalized PageR-
ank score provided by TREC.6

• Topic features. We want to evaluate the effect of hierarchical classification in search-
ing webpages. Before computing the topic features, we need to find a proper topic for
each search task (or query). In our experiments, we recruit several graduate students to
manually categorize all the search tasks into the ODP hierarchy (see Chapter 3.3.1) in
our ranking system. For example, for the task 2 (“avp”) in TREC 2010 (see Table 4.3),
one possible categorization in the ODP hierarchy is “Sports”. A sample of the assigned
topics by students for the search tasks from the TREC 2010 dataset can be seen in Table
4.4. To get the topic features for each document, we use our hierarchical SVM classifiers
(see Chapter 3.2) to predict its probability estimation, and calculate the topic features
−−−−−−→
FT(q, d) by equation 4.1.

Table 4.4: A sample of assigned topics by students for the search tasks in TREC 2010 web
track dataset.

Task Description Assigned Topics
1 Find information about horse hooves, their care, and

diseases of hooves.
Health

2 Find events sponsored by the Association of Volley-
ball Professionals.

Sports

3 Find locations and information of Discovery Channel
stores and their products.

Shopping

4 Find information about iron as an essential nutrient.Health
5 Find information about jobs in Connecticut. Business
6 Find information about penguins. Recreation/Pets
7 Find information about computer worms, viruses, and

spyware.
Computers→Security

8 Find information about Flushing, a neighborhood in
New York City.

Society

9 Find information about PVC pipes and fittings. Business→Industrial
Goods and Services

10 Find beginners instructions to sewing, both by hand
and by machine.

Arts→Crafts→Needlework

6The PageRank scores can be freely downloaded fromhttp://boston.lti.cs.cmu.edu/clueweb09/
wiki/tiki-index.php?page=PageRank.
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Finally, we conduct feature scaling on each computed feature by min-max normalization in
the range [0,1]:

S′i (d) =
Si(d) −mind Si(d)

maxd Si(d) −mind Si(d)
. (4.9)

4.3.2 Evaluation Metric

To evaluate the performance of the ranking methods, we use a popular information retrieval
measure, named DCG (Discounted Cumulative Gain) [59]. DCG is particularly useful to eval-
uate the performance when the documents are judged by gradedrelevance (e.g., the five-point
scales in TREC) rather than binary relevance. The intuitionof DCG is that the usefulness
(gain) of a document in a ranking list is discounted by its position. In fact, DCG accumulates
the discounted gain over all the documents up to a position. Specifically, the DCG score at a
positionp can be defined as

DCGp =

p
∑

i=1

2reli − 1
log2(1+ i)

(4.10)

wherereli ∈ {−2, 0, 1, 2, 3} is the graded relevance of the result at positioni. Usually, the
DCG scores for different queries vary dramatically. To make the scores betweendifferent
queries comparable, we actually use NDCG (Normalized Discounted Cumulative Gain) in our
experiments:

NDCGp =
DCGp

IDCGp
(4.11)

where IDCGp is the ideal DCG score at positionp. Thus, the DCG score is rescaled in a
comparable range so that we can compare our evaluation metric between different queries.

4.3.3 Experiment Configuration

We compare our ranking method with the traditional flat ranking methods without hierarchy.
To simplify the notation, we denote the two ranking methods as ERIC and FLAT (flat search
method). For ERIC, we trainS VMrank on all the features (in ranking Equation 4.8) including
the topic features. For FLAT, we use the classic Okapi BM25 [94] ranking function. It only
uses the query-document features and PageRank score. In ourexperiment, the Okapi BM25
ranking score is computed as

SBM25(q, d) =















∑

1≤i≤6

BM25(q, d( fi))















· FPageRank(d) (4.12)

whereBM25(q, d( fi)) is defined as

BM25(q, d( fi)) =
∑

w∈q∩d( fi )

IDF (w,D( fi )) ·
TF(w, d( fi )) · (k1 + 1)

TF(w, d( fi )) + k1 · (1− b+ b · |d|avgdl)
(4.13)

where the definition ofTF(w, d( fi )) and IDF (w,D( fi )) is the same as computing the query-
document features in ERIC;|d| is the length of the documentd in terms;avgdl is the average
document length in the dataset;b andk1 are the parameters.
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We use a variation of the cross validation method in our experiments. When we conduct
experiments for a dataset (such as TREC 2009), we choose thatdataset as the testing set and
use the other three datasets (i.e., TREC 2010, 2011 and 2012)as the training set. We train
the ranking methods of ERIC and FLAT on the training set to tune the parameters, and eval-
uate their performance on the testing set respectively. We report the average NDCG scores at
different positions in the set{3, 5, 10, 30, 50}. Furthermore, we measure the significance of per-
formance difference by paired t-test at 5% significance level between ERICand FLAT.7 When
ERIC achieves significantly better performance than FLAT, we will mark its NDCG scores in
bold.

4.3.4 Results

Comparing ERIC and FLAT

Table 4.5 compares the performance of ERIC and FLAT, in termsof the NDCG scores at the
positions of 3, 5, 10, 30 and 50. We can see that the results of ERIC are quite good. In all cases,
ERIC always performs significantly better than FLAT. The largest performance gain (about 0.2
NDCG improvement) can be observed on TREC 2010 dataset. The performance on the other
datasets also increases by 0.05 to 0.2. It clearly demonstrates that our ranking method is much
better than the traditional flat ranking approach.

Table 4.5: The NDCG scores of ERIC and FLAT.

TREC 2009 TREC 2010 TREC 2011 TREC 2012
NDCG ERIC FLAT ERIC FLAT ERIC FLAT ERIC FLAT
N@3 0.307 0.145 0.275 0.046 0.251 0.080 0.189 0.104
N@5 0.317 0.165 0.278 0.063 0.253 0.087 0.195 0.086
N@10 0.315 0.183 0.292 0.080 0.250 0.094 0.200 0.095
N@30 0.312 0.200 0.344 0.101 0.302 0.106 0.255 0.114
N@50 0.344 0.211 0.369 0.122 0.333 0.116 0.290 0.138

DiscussionWhy does ERIC perform better than FLAT? We will use the task 2 (see Table
4.3) in TREC 2010 as a case study. The topic of task 2 is to find events sponsored by the
Association of Volleyball Professionals (AVP) and the suggested query is “avp”. The topic of
this task is about “Sports”. Figure 4.3 shows the top ten ranked results by ERIC and FLAT.
We can see that by integrating the probabilities of “Sports”of each webpage, ERIC success-
fully returns the highly relevant results related to the Association of Volleyball Professionals.
However, for FLAT, we can see that the top six ranked results are irrelevant. Actually, these
results are about the movie “Alien vs. Predator” which also has an abbreviated form as “avp”.
As “avp” is an ambiguous keyword in this task, FLAT without hierarchical classification can
not distinguish the webpages belonging to “Sports”. Thus, its results are worse than ERIC.

7We use the significance test script from LETOR dataset. It canbe downloaded athttp://research.
microsoft.com/en-us/um/beijing/projects/letor/.
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1. avp - about the avp
http://www.avp.com/About-Us/About-the-AVP.aspx

2. volleyball @ avp.com: about: about the avp
http://www.avp.com/about/

3. avp volleyball tickets - avp volleyballtickets at stubhub!
http://www.stubhub.com/avp-volleyball-tickets/

4. avp manhattan beach open, pubclub.com!
http://www.pubclub.com/specialevents/avp.htm

5. volleyball @ avp.com: tour schedule: 2008 avp crocs tour schedule
http://web.avp.com/schedule/

6. volleyball @ avp.com: news: avp.com
http://web.avp.com/news/

7. volleyball @ avp.com: photos: avp.com
http://web.avp.com/photos/

8. volleyball @ avp.com: photos: avp.com
http://www.avp.com/photos/

9. volleyball @ avp.com: tour schedule: avp hot winter nights tour
http://web.avp.com/schedule/winter_tour.jsp

10. volleyball @ avp.com: avpnext: avpnext
http://web.avp.com/volleyball_nation/avpnext/

(a) Ranked results by ERIC

1. avp home — ugos world of alien vs. predator — ugo.com
http://avp.ugo.com/

2. aliens vs. predator extinction - planet avp
http://www.planetavp.com/avpextinction/

3. planet avp - news, screenshots, previews, reviews, guides
http://www.planetavp.com/

4. avp - planet avp
http://www.planetavp.com/avp/

5. planet avp: avp movie
http://www.planetavp.com/avpmovie/

6. planet avp: avp movie: files
http://www.planetavp.com/avpmovie/files/

7. volleyball @ avp.com: tour schedule: 2008 avp crocs tour schedule
http://www.avp.com/schedule/

8. volleyball @ avp.com: home: the #1 volleyball destination online!
http://web.avp.com/index.jsp

9. volleyball @ avp.com: tour schedule: avp hot winter nights tour
http://web.avp.com/schedule/winter_tour.jsp

10. planet avp: avp requiem
http://www.planetavp.com/avp2movie/

(b) Ranked results by FLAT

Figure 4.3: Ranked results for query “avp” in TREC 2010 by ERIC and FLAT. The relevant
results are marked in bold.
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Comparing ERIC and FLAT with category keywords

It may be argued that as we already use the category information (as hierarchical probabilities
output by SVMs) in ERIC, it could be unfair to only use the keywords and webpage impor-
tance for FLAT. Thus, in our next experiment, for FLAT, we addthe category phrase into the
query keywords and repeat the experiments for FLAT on all thedatasets. For example, when
conducting experiments for the “avp” task in FLAT, we changeits query to “avp sports”. We
compare the results between ERIC and FLAT with category keywords. The results are shown
in Table 4.6. Comparing Table 4.6 and Table 4.5, we find that inmost cases adding the category
phrase into the query keywords for FLAT does improve its performance. However, compared
to the new results of FLAT, ERIC still consistently performsbetter in all cases.

Table 4.6: The NDCG score of ERIC and FLAT with category keywords.

TREC 2009 TREC 2010 TREC 2011 TREC 2012
NDCG ERIC FLAT ERIC FLAT ERIC FLAT ERIC FLAT
N@3 0.307 0.188 0.281 0.128 0.256 0.109 0.185 0.096
N@5 0.317 0.184 0.284 0.134 0.260 0.109 0.192 0.104
N@10 0.315 0.200 0.298 0.150 0.257 0.120 0.197 0.122
N@30 0.312 0.213 0.348 0.183 0.307 0.080 0.253 0.135
N@50 0.344 0.221 0.375 0.210 0.337 0.054 0.288 0.149

DiscussionWhy does FLAT with category keywords still perform worse than ERIC? Here,
we still use the “avp” example for discussion. Figure 4.4 shows the results of FLAT with
category keywords. We can see that by combining the suggested query with the category phrase
(i.e., “avp Sports”), the returned results are still not good. Firstly, there are still two pages (i.e.,
the 4th and the 10th pages) related to the movie “Alien vs. Predator”. This is because the
word “Sports” also appears in the two pages. Secondly, the top three ranked results are still
not relevant. Although both words appear in these pages, they are more likely to be relevant
to the general word “Sports” rather than the Association of Volleyball Professionals (“avp” ).
Moreover, we also find that the relevant results (i.e., 7th, 8th and 9th results) in Figure 4.3(b) are
filtered out. This is because the word “Sports” does not appear in these pages. This experiment
confirms that simple keyword queries are often insufficient to express topics as keywords [29].



60 Chapter 4. ERIC:Enhanced Ranking by hIerarchical Classification

1. buy sports tickets online from a sports ticket broker, agency for philadelphia,
chicago, new york, los angeles
http://www.abctickets.com/sports/

2. indiana university
http://www.indiana.edu/

3. tickets at stubhub! where fans buy and sell tickets
http://www.stubhub.com/

4. avp home — ugos world of alien vs. predator — ugo.com
http://avp.ugo.com/

5. huntington beach events calendar information
http://www.huntingtonbeachevents.com/

6. board of directors - associated content
http://www.associatedcontent.com/company_directors.shtml

7. gamespy: game sites
http://www.gamespy.com/network/

8. avp manhattan beach open, pubclub.com!
http://www.pubclub.com/specialevents/avp.htm

9. volleyball @ avp.com: about: avp media guide
http://www.avp.com/about/mediaguide.jsp

10. jammsbro s movie news: official avp2 website up and running
http://alelbert.xm.com/topic-1306.htm

Figure 4.4: Ranked results for query “avp Sports” in TREC 2010 by FLAT. The relevant results
are marked in bold.

4.3.5 Analysis of Ranking Feature Importance

In this subsection, we study the importance of different features of the learned ranking models.
Recalling that our ranking model is in the form of a linear regression function (see Equation
4.8), we analyze the weights of the linear regression function. In this analysis, we report the
top ten most important features of the ranking model trainedfor the TREC 2010 dataset (see
Figure 4.5). The results on other datasets are similar.

Firstly, we analyze the query-document features. From Figure 4.5(a), we can see that nine
out of the top ten features (marked by bullets) are related tothe meta text of webpages (i.e.,
title, description, keywords, anchor text); only one feature is related to the body text. This result
shows that matching keywords in the meta text of webpages forranking is very important.

Secondly, we analyze the document features from Figure 4.5(b). We can see that the
weights of both inlinks and outlinks are positive. It means that webpages with rich link con-
nection may be more relevant. It is interesting to see that the URL related features (length and
number of slashes) have small or even negative weights. It means that our ranking model may
give high relevance scores to webpages with short URLs. Thisis reasonable because webpages
with short URLs are usually website portals which are more important. Surprisingly, we find
that the sign of PageRank weight is negative. This is somehowcontrast to the conclusion from
[85]. To analyze this issue, we plot the histogram of the PageRank scores for both the relevant
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Field Feature Weight
• Description Sum of TF score of matched words 16.129
• Anchor Text Sum of TF·IDF scores of matched words 7.583
• Keywords Sum of TF score of matched words 5.932
• Title Number of total words 4.756

Body Number of matched words 4.487
• Anchor Text Number of total words 3.052
• Title Sum of IDF scores of matched words 3.032
• Keywords Number of total words 2.702
• Description Number of matched words 2.592
• Anchor Text Number of matched words 1.720

(a) Top ten ranked query-document features. Meta text features are marked by bullets.

Feature Weight
Number of outlinks 2.393
Number of inlinks 1.765
Length of the URL 0.424
Number of slashes in the URL -0.302
PageRank score -0.414

(b) Ranked document features

Feature Weight
1st level topic feature 1.408
2nd level topic feature 0.675
3rd level topic feature 0.163

(c) Ranked topic features

Figure 4.5: Most important ranking features with learned weights from the ranking model
trained on the TREC 2010 dataset.

and the irrelevant webpages in the training set of TREC 2010 dataset8 (see Figure 4.6). We
can see that for most of the PageRank scores, the irrelevant results occur far more often than
the relevant results. This observation is consistent with the learned weight of PageRank feature
that penalizes webpages with large PageRank scores.

Thirdly, we analyze our proposed topic features. We can see from Figure 4.5(c) that all
the topic feature weights are positive. It means that they all have a positive contribution to the
final relevance scores. Although the absolute weight value of the topic features are smaller
than the other two types of features. It does not mean that thetopic features are not important.
For example, Figure 4.7 shows the contribution of the three types of features for the ranking of
“avp” example in TREC 2010 dataset. We can see a clear patternthat for the relevant results
(with relevance scores 1, 2, or 3), topic features have more than 40% contribution, while for
the irrelevant results (with relevance scores -2 or 0), the corresponding contribution by topic

8The training examples of TREC 2010 dataset come from TREC 2009, 2011 and 2013 datasets.
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features is less than 5%. This analysis clearly demonstrates that our proposed topic features are
quite effective for boosting the ranking of relevant results above irrelevant results in the search
engine with hierarchies.

Figure 4.6: PageRank histogram for the irrelevant and relevant webpages on TREC 2010
dataset. The X axis are the PageRank scores.

Figure 4.7: The score contribution for the “avp” example in TREC 2010 dataset.

To summarize, in this section, we conduct experiments on theTREC datasets to evaluate
our proposed ranking framework ERIC. From the experimentalresults, we find that by seam-
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lessly integrating hierarchical text classification into ranking, our method can significantly out-
perform the traditional flat search methods.

4.4 Summary

In this chapter, we present a novel ranking framework, called ERIC (EnhancedRanking by
hIerarchicalClassification), for search engines with hierarchies, and report our experimental
results on the well-known TREC (Text REtrieval Conference)web search datasets. From the
experimental results, we find that by seamlessly integrating hierarchical text classification and
learning to rank methods into the search engine, our framework with hierarchical classification
can outperform the traditional flat search methods significantly.



Chapter 5

Improving Hierarchical Classification by
Active Learning

Hierarchical classification is important for building search engines with hierarchies. To build an
accurate hierarchical classification system with many categories, usually a very large number
of documents must be labeled and provided. This can be very costly. Active learning has
been shown to effectively reduce the labeling effort in traditional (flat) text classification, but
few work have been done in hierarchical text classification due to several challenges. A major
challenge is to reduce the so-calledout-of-domain(defined later) queries. Previous state-of-
the-art approaches tackle this challenge by simultaneously forming the unlabeled pools on all
the categories regardless of the inherited hierarchical dependence of classifiers.

In this chapter, we propose a novel top-down hierarchical active learning framework with
effective strategies to tackle this and other challenges. Withextensive experiments on eight
real-world hierarchical text datasets, including the RCV1-v2 and ODP datasets, we demon-
strate that our strategies are highly effective, and they outperform the state-of-the-art hierarchi-
cal active learning methods by reducing 20% to 40% queries.

This work was in collaboration with Dr. Charles Ling and Dr. Huaimin Wang. We pub-
lished the results in theProceeding of the 17th Pacific-Asia Conference on KnowledgeDiscov-
ery and Data Mining(PAKDD 2013) [76].

5.1 Introduction

Given documents organized in a meaningful hierarchy (such as a topic hierarchy), it is much
easy for users to browse and search the desired documents. Thus, hierarchical text classification
is an important task in many real-world applications, whichinclude, for example, news article
classification [71], webpage topic classification [38, 22, 81] and patent classification [40].

In hierarchical text classification, a document is assignedwith multiple suitable categories
from a predefined hierarchical category space. Different from traditional flat text classifica-
tion, the assigned categories for each document in the hierarchy have inherited hierarchical
relations. For example, in the hierarchy of the Open Directory Project1 (ODP), one path of

1http://www.dmoz.org/

64
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the hierarchy (see Figure 5.1) includesComputers(Comp.)→ Artificial Intelligence(A.I.) →
Machine Learning(M.L.). Any webpage belonging toM.L. also belongs toA.I. andComp..

Figure 5.1: A partial hierarchy of ODP.

In this chapter, we study machine learning approaches for building a hierarchical classifi-
cation system. According to [106], the most effective and appropriate approach for building a
hierarchical classification system is to train a binary classifier on each category of the hierar-
chy (see detailed review in Chapter 2.2). To train an accurate hierarchical classification system
with many categories, usually a very large number of labeleddocuments must be provided
for a large number of classifiers. However, labeling a large number of documents in a large
hierarchy is very time-consuming and costly. This severelyhinders the training of accurate
hierarchical classification systems.

Active learning has been studied and successfully applied to reduce the labeling cost in
binary text classification [112, 96, 118]. In active learning, in particular the pool-based active
learning, the learner intelligently selects the most informative unlabeled example from the un-
labeled pool to query an oracle2 for the label. This can lead to a good classification model with
a much smaller number of labeled examples, compared to traditional passive learning. Several
works have extended binary active learning to multi-class and multi-label text classification
[15, 39, 120]. Basically, they use the one-vs-rest approachto decompose the learning problem
to several binary active learning tasks.

However, active learning has not been widely studied for hierarchical text classification.
The key question is how to effectively select the most useful unlabeled examples for alarge
number ofhierarchicallyorganized classifiers. Many technical challenges exist. For example,
how should the unlabeled pool be formed for each category in the hierarchy? If not formed
properly, the classifier may select many so-calledout-of-domainexamples from the pool. For
example, in Figure 5.1, a classifier onA.I. is trained on the examples under the category of
Comp.. These examples are calledin-domainexamples forA.I.. Examples not belonging to
Comp.are the so-calledout-of-domainexamples forA.I.. If an unlabeled example selected by

2In the literature of active learning, an oracle means a humanbeing or an artificial system that can provide
labels for examples.
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the classifier forA.I. is anout-of-domainexample, such as a document belonging toSociety,
the oracle will always answer “no”, and such a query will be virtually useless, and thus wasted
in training the classifier forA.I.. Thus, avoiding theout-of-domainexamples for hierarchical
classifiers is very important.

As far as we know, only one work [74] has been published previously on hierarchical
active learning. To solve theout-of-domainproblem, the authors use the prediction of higher-
level classifiers to refine the unlabeled pools for lower-level classifiers. In their approach, the
quality of the lower-level unlabeled pools depends critically on the classification performance
of the higher-level classifiers. However, the authors seemed not to pay enough attention to
this important fact, and their methods allow all classifiersto simultaneously select examples to
query oracles (see Section 5.2 for a review). This still leads to a large number ofout-of-domain
queries, as we will show in Section 5.4.3.

As the hierarchical classifiers are organized based on the top-down tree structure, we be-
lieve that a natural and better way to form the unlabeled pools is also in the top-down fashion.
In this chapter, we propose a novel top-down active learningframework, to effectively form the
unlabeled pools, and select the most informative,in-domainexamples for the hierarchical clas-
sifiers. Under our top-down active learning framework, we discuss effective strategies to tackle
various challenges encountered. With extensive experiments on eight real-world hierarchical
text datasets, including the RCV1-V2 and ODP datasets, we demonstrate that our method is
highly effective, and it outperforms the state-of-the-art hierarchical active learning methods
including [74] by reducing the number of queries 20% to 40%.

The rest of this chapter is organized as follows. In Section 5.2, we review the state-of-the-
art hierarchical active learning method. In Section 5.3, wepresent our top-down hierarchical
active learning framework. Section 5.4 describes the experimental methodology and reports
the experimental results. The last section contains the summary.

5.2 Previous Works

To the best of knowledge, only one work [74] has been published previously in active learning
for hierarchical text classification. We call it theparallel active learning framework. In their
approach, at each iteration of active learning (see Figure 5.2), the classifiers for all categories
independentlyandsimultaneouslyquery the oracles for the corresponding labels. To avoid se-
lecting theout-of-domainexamples, they use the prediction of higher-level classifiers to refine
the unlabeled pools for lower-level classifiers. Specifically, an unlabeled example will be added
into the lower-level unlabeled pools only if its predictions from all the ancestor classifiers are
positive.

A drawback of their approach is that they do not consider the hierarchical dependence
of classification performance of the classifiers in their framework but allow all classifiers to
simultaneouslyform the pools and select examples to query oracles. Consider a typical running
iteration of their approach (see Figure 5.2). If the qualityof the unlabeled poolUcomp (formed
by the classifier forComp.) is not good, possibly manyout-of-domainexamples (e.g., examples
from Society) may still be selected by the classifiers forA.I.. This will lead to a large number
of out-of-domain(wasted) queries, as we will show in Section 5.4.3.
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Figure 5.2: A typical iteration of the parallel active learning framework. Multiple active learn-
ing processes (represented by dashed windows) are simultaneously conducted. U denotes the
unlabeled pool and O denotes the oracle. The horizontal arrows mean querying the oracle while
the down arrows mean building the unlabeled pools.

How can we effectively solve theout-of-domainproblem and the other challenges to im-
prove active learning in hierarchical text classification?As the hierarchical classifiers are orga-
nized based on the top-down tree structure, we believe that anatural and better way to do active
learning in hierarchical text classification is also in the top-down fashion. In the next section,
we propose a new top-down active learning framework for hierarchical text classification to
effectively tackle these challenges.

5.3 Top-down Hierarchical Active Learning Framework

In this section, we propose our top-down hierarchical active learning framework. Different to
the parallel framework which simultaneously forms the unlabeled pools for all categories, our
top-down approach forms the unlabeled pools in the top-downfashion. We use Figure 5.3 to
describe our basic idea.

In Figure 5.3(a), we start active learning at the top level ofthe hierarchy. The top-level
classifiers forComp. and Societyselect examples from the global unlabeled poolUroot to
query the oracle for the labels of top-level categories. Theanswered examples from the oracle
will be used to form the unlabeled poolsUcompandUsoc. After the top-level classifiers are well
trained (estimated by our stopping strategy. see Section 5.3.2), we start active learning in the
second level. In Figure 5.3(b), the second-level classifiers for A.I. (or History) and its sibling
categories select examples from the unlabeled poolUcomp (or Usoc) to query the oracle. As
the examples inUcomp (orUsoc) have true labels ofComp. (or Society) which are answered
by the oracle, we can ensure that the second-level classifiers will not selectany out-of-domain
examples.
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(a) The top level learning stage. (b) The second level learning stage.

Figure 5.3: Examples of two typical active learning stages in the top-down active learning
framework. Only partial nodes in the hierarchy are allowed to do active learning. The notations
in this figure follow Figure 5.2.

Comparing Figure 5.2 and Figure 5.3, we can see that the main difference between the par-
allel framework and our top-down framework is which nodes are chosen to do active learning
(the dashed windows in both figures) at each iteration. The parallel framework chooses all the
nodes while our top-down framework only chooses a subset of appropriate nodes in the top-
down fashion. We call the set of those nodes asworking set, denoted byW. We present the
pseudo code of our top-down active learning framework:

Input : Query budgetB
Output : Classifiers for all nodes

1 repeat
2 Add the root nodesn0 intoW;
3 repeat
4 Select examples fromUn to query oracles and update children classifiers for each node

n inW until its stopping criteria is satisfied;
5 Form the unlabeled pools for the children nodes of the finished nodes;
6 Replace the finished nodes inW with their children nodes;
7 until W is empty;
8 until B = 0;

In our top-down active learning framework, two critical challenges need to be resolved for
effective active learning. The first challenge is that the unlabeled pools may be too small. We
use the examples answered by the oracle to form the unlabeledpools, and they can be too
small for lower-level classifiers to learn effectively. The problem may become worse when
active learning is applied to even lower-level categories.The second challenge is how do we
stop learning as it is critical for the effective scheduling of active learning at different levels.
We will tackle the two challenges in the following subsections.

5.3.1 Dual-pool Strategy

For the second and lower-level nodes, we need to form the unlabeled pools that are large enough
but have fewout-of-domainexamples. In this section, we propose a novel dual-pool strategy
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to enlarge the unlabeled pools. Two different unlabeled pools will be built: theanswered pool
and thepredicted pool.

Answered poolOur top-down active learning framework schedules the nodesto query the
oracle from the top level to the bottom level. For a node (category) in the working set, we ask
oracles for the labels of its children categories. For a child categoryc, among the answered
examples from the oracle, thepositiveexamples ofc will be used to form the unlabeled pool
for the children categories ofc. Thenegativeexamples will not be used as they are already
out-of-domain. By doing so, we can ensure that noout-of-domainexamples will be selected
into the unlabeled pools of children categories. We call such a pool theanswered pooland use
Ua to denote it.

Predicted poolThe quality of the answered poolUa is perfect. However, as the size ofUa

depends on the positive class ratio of the ancestor nodes, itcould be very slow to accumulate
enough examples. Thus, we can also use the prediction of the higher-level classifiers to enlarge
the unlabeled pools. Although this method is also used in theparallel framework (see Section
5.2), it should be noted that when we build the lower-level unlabeled pools, the higher-level
classifiers are already assumed to be well-trained. The prediction of higher-level classifiers
would be accurate. Thus, the risk of introducingout-of-domainexamples would be much
smaller than the parallel framework. We call the pool built by this method aspredicted pool,
denoted byUp.

Refiltering dual pools We have two unlabeled pools for each nodeni in our top-down
framework. When we select a batch of examples to query the oracle, a natural question is how
do we allocate the batch of queries to each pool? On one hand, the quality of the answered
poolUa

i is perfect but the uncertain (useful) examples may be too fewdue to the small pool
size; on the other hand, more useful examples may exist in thelarger predicted poolUp

i but we
may take the risk of selecting theout-of-domainexamples. To balance the tradeoff, we propose
a refiltering strategyfor allocating the queries to bothUa

i andUp
i .

Our basic idea is to filter out the certain examples from the pools before we allocate the
batch of queries. Specifically, given the batch sizeM, we firstly filter out the certain examples
from bothUa

i andUp
i to generate two small candidate poolsCa

i andCp
i . The filtering threshold

will be empirically tuned in our experiments (See Section 5.4.3). As the examples inCa
i are

all perfect (answered by oracle) and uncertain (worthy to learn), we put more queries into the
perfect candidate poolCa

i by allocating min{|Ca
i |,M} queries. The rest of the queries will be

allocated toCp
i .

5.3.2 Stopping Strategy

An important factor of our top-down hierarchical active learning framework is knowing when
to stop learning for the nodes in the working set. In other words, how do we estimate if
the classifiers are well-trained or not? A heuristic approach is to estimate the classification
performance by cross-validation. However, from our pilot experiments, such a method is quite
unstable due to the small size of the labeled examples in active learning.

In this chapter, we adopt a simple yet effective approach to stop learning. Simply speaking,
if no uncertain examples can be further selected from the candidate pools, we stop learning.
This is reasonable as querying very certain examples can notimprove the classification perfor-
mance [126]. In our top-down framework, this strategy can beimplemented by checking the
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size of the two candidate poolsCa andCp. If both pools are empty, that means all the examples
in the unlabeled pools are very certain, we stop learning.3

To summarize, in this section, we propose our top-down hierarchical active learning frame-
work with several strategies to tackle theout-of-domainproblem and the other challenges en-
countered. In the next section, we will conduct extensive experiments to verify the effectiveness
of our framework.

5.4 Experiments on Hierarchical Text Classification

In this section, we conduct extensive empirical studies to evaluate our top-down hierarchi-
cal active learning framework compared to the state-of-the-art hierarchical active learning ap-
proaches.

5.4.1 Datasets

We use eight real-world hierarchical text datasets in our experiments (see Table 5.1). The first
three datasets (20 Newsgroup, OHSUMED and RCV1-V2) are common benchmark datasets
for evaluation of text classification methods. The other fivedatasets are webpages collected
from the Open Directory Project (ODP).

Table 5.1: The statistics of the datasets. Cardinality is the average categories per example
(multi-label).

Dataset Examples Features Nodes Cardinality Height
20 Newsgroup 18,774 61,188 27 2.20 3
OHSUMED 16,074 12,427 86 1.92 4
RCV1-V2 23,149 47,152 96 3.18 4
Astronomy 3,308 54,632 34 1.91 4

Biology 17,450 148,644 108 3.03 4
Chemistry 4,228 56,767 34 1.44 4

Earth Sciences 5,313 71,756 58 2.16 4
Math 11,173 108,559 107 1.93 4

The first dataset is20 Newsgroups4, a collection of news articles partitioned evenly across
20 different newsgroups. We manually group these categories into ameaningful three-level
hierarchy. The second dataset isOHSUMED5, a clinically-oriented MEDLINE dataset. We use
the subcategoryheart diseaseswhich is also used by [68, 97]. The third dataset isRCV1-V2
[71], a news archive from Reuters. We use the 23,149 documents from the topic classification
task in our experiments.6 The other five datasets are webpages collected from the ODP. ODP

3For the root node which selects examples from the very large global unlabeled pool, this stopping strategy
could be very slow. Thus, we empirically set 25% remained budget as the query limit for the root node.

4http://people.csail.mit.edu/jrennie/20Newsgroups/
5http://ir.ohsu.edu/ohsumed/
6http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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is a web directory with a complex topic hierarchy. In our experiments, we focus on a subset of
the webpages extracted from theSciencesubtree.7 The original Science subtree has more than
50 subcategories. We choose five subcategories closely related to academic disciplines.8 They
areAstronomy, Biology, Chemistry, Earth SciencesandMath.

For each dataset, we use bag-of-words model to represent documents. Specifically, each
document is represented by a vector of term frequencies. We use Porter Stemming to stem each
word and remove the rare words occurring less than three times. Small categories which have
less than ten documents are also removed.

5.4.2 Experiment Configuration

We adopt the hierarchical SVMs [81, 110, 119] as the base learner. In each category, a linear
SVM classifier is trained to distinguish its sibling categories under the same parent category.
We use LIBLINEAR [41] as the implementation of linear SVM. Following the configuration
of [74], we set up the penaltyC as 1,000 and the cost coefficient w as the ratio of negative
examples in the training set. Other parameters of LIBLINEARare set to the default values.

To evaluate the performance of hierarchical classifiers, weuse the hierarchical F-measure
[115, 106, 74], a popular performance measure in hierarchical text classification. It is defined
as,

hF =
2× hP× hR

hP+ hR
, hP=

∑

i |P̂i
⋂

T̂i |
∑

i |P̂i |
, andhR=

∑

i |P̂i
⋂

T̂i |
∑

i |T̂i |
(5.1)

wherehP is the hierarchical precision andhR is the hierarchical recall.̂Pi is the hierarchical
categories predicted for test examplexi while T̂i is the true categories ofxi.

We compare our top-down framework with the parallel framework [74] and the baseline
random approach. For our top-down framework, we useaverage uncertainty[39] as the infor-
mativeness measure. It measures the example based on the average uncertainty among all child
classifiers under the same parent. For the parallel framework, we chooseuncertainty sampling
[112] which is also used in their experiments. For both approaches, the uncertainty of an ex-
ample is measured by the absolute SVM margin score. For the random approach, we simply
select the examples randomly from the global unlabeled pool.

Now, we describe the active learning setting in our experiments. We set up the total query
budget as 1000. The active learning experiment is decomposed into several iterations. In each
iteration, each node in the working set selectsM examples to query the oracle. Similar to [74],
the batch sizeM is set as the logarithm of the unlabeled pool size on each category. We use a
simulated oracle in our experiments. When receiving a query, the oracle replies with the true
labels for all its subcategories. It should be noted that in [74], each query only returns one
label. To make a fair comparison, we also return the labels ofall the subcategories for the
parallel framework and the random approach. After receiving the oracle answers, we update
the labeled dataset, retrain the classification models and record the F-measure results on the
testing set.

7It can be freely downloaded athttp://olc.ijs.si/dmozReadme.html.
8Most of the other subcategories are A-Z index lists and non-academic topics (e.g., Publications and Confer-

ences).
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To avoid the impact of randomness, we use 10-fold cross validation to evaluate the per-
formance of active learning approaches. Specifically, whenconducting active learning experi-
ments on each dataset, we randomly split the dataset into 10 subsets with equal size. Of the 10
subsets, one set is retained as testing data. For the remaining nine sets, we randomly sample
0.1% data as the labeled set. The remaining examples will be used as the unlabeled pool. The
active learning experiments are then repeated 10 times. Thefinal results are averaged over the
10 runs and accompanied by the error margins with 95% confidence intervals.

5.4.3 Experimental Results on Benchmark Datasets

Before the experiments, we set up the parameters for our top-down framework. We need to
decide a proper uncertainty threshold to filtering out certain examples (see dual-pool strategy
in Section 5.3.1). As the SVM margin score based uncertaintyis not comparable, we normalize
it by the functiong( f ) = exp(− f 2

0.01) (0 < g ≤ 1) wheref is the SVM margin score. We compare
the uncertainty thresholds in different values from 0.1, 0.2, to 0.9 on the RCV1-V2 dataset. The
results are plotted in Figure 5.4. We find that generally the larger the threshold is, the better the
performance is. Thus, we use 0.9 as the uncertainty threshold in our experiments.
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Figure 5.4: Hierarchical F-measure on RCV1-V2 dataset withdifferent uncertainty thresholds
from 0.1 to 0.9..

Firstly, we discuss the experimental results on the three benchmark datasets (20 News-
group, OHSUMED and RCV1-V2). Figure 5.5 shows the performance curves of hierarchical
F-measure averaging over 10 runs. We can see that our top-down approach (framework) out-
performs the parallel approach and the random approach significantly on all datasets. Specif-
ically, on the OHSUMED and RCV1-V2 datasets, the performance curves of our top-down
approach dominate the parallel approach and the random approach throughout all iterations.
On the 20 Newsgroup dataset, surprisingly, during the earlier stage of active learning (before
400 queries), we observe the overlap of performance curves of our top-down approach and the
random approach. The parallel approach performs even worse. This could be due to the poor
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initial classification performance (smaller than 0.1). However, after around 500 queries, our
approach starts to outperform the random approach and the parallel approach and keeps the
dominant margin till the end.
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Figure 5.5: Hierarchical F-measure on the 20 Newsgroup, OHSUMED and RCV1-V2 datasets.

We examine the ratio ofout-of-domainqueries. Figure 5.6 shows the averageout-of-domain
ratios on the three datasets. We can see that our top-down approach has a huge reduction of
theout-of-domainqueries. Among the three datasets, our top-down approach issues less than
10%out-of-domainqueries. By analyzing the experiment logs of our top-down approach, we
discover that for the second and the lower-level, on averageabout 40% queries are allocated
to the answered pools (see Section 5.3.1). As the labels in the answered pools are given by
the oracle, the quality of the selected examples is perfect.Thus, noout-of-domainexamples
will be selected. The observed fewout-of-domainexamples only occur in the predicted pools.
The low ratio also indicates that the predicted pools built by our dual-pool strategy are much
more accurate than the parallel framework. This explains why our top-down active learning
approach is more effective than the parallel approach.
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Figure 5.6: Theout-of-domainratios of the queries on the 20 Newsgroup, OHSUMED and
RCV1-V2 datasets.
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We also study how many queries can be saved by our top-down approach. For the three
approaches, we record their best performance and the queries needed in Table 5.2. We find that
to achieve the best performance of the parallel approach, our top-down approach needs much
fewer queries. About 20% to 37% queries can be saved. For example, on the RCV1-V2 dataset,
the parallel approach needs 1,000 queries to achieve 0.606 hierarchical F-measure, while our
top-down approach only requires 630 queries. Thus, (1000− 630)/1000= 37% queries are
saved. Compared to the random approach, the query reductionis even more significant (about
30% to 56%). It clearly indicates that our top-down approachis more effective in reducing the
queries than the parallel approach and the baseline random approach.

Table 5.2: The best hierarchical F-measure with needed queries on the 20 Newsgroup,
OHSUMED and RCV1-V2 datasets. The value in the bracket is therelative query reduction.

Method Hier F1 Random Parallel Top-down

20 Newsgroup
Random 0.455 1000 850 (15%) 700 (30%)
Parallel 0.483 1000 800 (20%)

Top-down 0.518 1000

OHSUMED
Random 0.552 1000 720 (28%) 440 (56%)
Parallel 0.591 1000 680 (33%)

Top-down 0.630 1000

RCV1-V2
Random 0.587 1000 660 (34%) 490 (51%)
Parallel 0.606 1000 630 (37%)

Top-down 0.661 1000

5.4.4 Experimental Results on ODP datasets

In the following experiments, we compare the performance ofthe three approaches on five
ODP datasets. From Figure 5.7, we find that on all datasets, our top-down approach performs
consistently better than both the parallel approach and therandom approach. The largest im-
provement occurs on the Math dataset where our top-down approach saves 40% queries to
achieve the best performance of the parallel approach.9 By analyzing theout-of-domainratio
in Figure 5.7f, we find that our top-down approach reduces theratio of out-of-domainqueries
by 32% on the Math dataset compared to the parallel approach.The similar pattern can also
be observed on the Biology and Earth Sciences datasets whereabout 32% and 23%out-of-
domainqueries can be saved. For the Astronomy and Chemistry datasets, we can see that the
parallel approach makes less than 20%out-of-domainratios. This can explain why our top-
down approach performs only slightly better than the parallel approach on the Astronomy and
Chemistry datasets. However, on some of the ODP datasets, the performance curves of the par-
allel approach have an obvious large overlap with the randomapproach, while our top-down
approach always outperforms the two approaches at the end ofactive learning.

To summarize, from our extensive experiments on eight real-world hierarchical text datasets,
we empirically demonstrate that our top-down active learning framework is more effective than
the state-of-the-art active learning approaches for hierarchical text classification.

9The top-down approach requires 600 queries to achieve 0.4 hierarchical F-measure of the parallel approach
which requires 1,000 queries. The saving is (1000− 600)/1000=40%.
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Figure 5.7: Hierarchical F-measure and the ratios ofout-of-domainqueries on the ODP
datasets.

5.5 Summary

In this chapter, we studied the problem of using active learning to improve the performance of
hierarchical text classification. A major challenge for effective hierarchical active learning is to
form the unlabeled pools to avoid the so-called out-of-domain queries. Previous state-of-the-
art approaches tackle this challenge by simultaneously forming the unlabeled pools on all the
categories of the hierarchy regardless of the inherited hierarchical dependence of classifiers.
We propose a novel top-down hierarchical active learning framework which utilizes top-down
tree structure to form the unlabeled pools. Under our framework, we propose several effective
strategies to tackle the out-of-domain problem and the other challenges encountered. With
extensive experiments on eight real-world hierarchical text datasets, we demonstrate that our
top-down framework is highly effective, and it outperforms the state-of-the-art hierarchical
active learning methods by reducing 20% to 40% queries.

We believe that our top-down active learning framework can greatly help the construction
of hierarchical classifiers for search engines with hierarchies, especially when the labeled ex-
amples are very costly to acquire.



Chapter 6

Mining Academic Topics in Universities

In previous chapters, we have discussed the foundation of building SEEU. The fundamental
algorithm is the hierarchical webpage classification. Due to the resource constraints of our
small cluster, we cannot conduct a full classification of theentire web and run a full search
engine such as Google or Bing. However, our classification system can be very useful for
organizations such as governments, universities, companies, or any vertical areas.

In this chapter, we present a novel hierarchical classification framework for mining aca-
demic topics in universities. In our framework, we train a hierarchical classifier based on
the Wikipedia academic disciplines, and apply it to mine academic topics in the 12 largest
universities in Ontario, Canada. According to our comprehensive experiments, the academic
topics mined by our hierarchical classification framework are reasonable, consistent with the
real-world topic distribution in most universities, and better than the traditional LDA topic
modeling approaches. To the best of knowledge, this is the first work that mines academic
topics in large-scale university webpage dataset with satisfying results.

6.1 Introduction

Academic research is one of the major activities in universities. It plays an important role in fa-
cilitating knowledge discovery and technology innovationin modern society. Mining academic
topics from university webpages can help researchers analyze the organization and relations of
academic research in universities. It is also the basic of university based web applications, such
as the university web search engines with hierarchies (i.e., SEEU).

A simple approach to mine academic topics in universities isto use the department or fac-
ulty organization structure (i.e., a web directory in a university) [80], and classify webpages
by matching department host names in URLs. However, such a simple approach can only ex-
tract a very shallow hierarchy where specific and more usefultopics are missing. For example,
at Western, although we can judge webpages belonging to the topic of “Computer Science”
(CS) by matching the CS department host name (csd.uwo.ca) in URLs, we may not know
if a webpage belongs to specific topics, such as “Support vector machine” or “Computational
linguistics”, because topic related information is often not explicitly expressed in URLs. In
addition, this approach can only assign hard classificationto webpages, and not degrees of
confidence (or probability), which is very important for ranking webpages in an academic

76
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topic hierarchy (as discussed in Chapter 4).
Some content based methods have been proposed for mining topics in text documents.

The most popular methods are the topic modeling approach in natural language processing
and information retrieval research, such as LSA [34], PLSA [54] and LDA [11]. Basically,
these methods use mathematical or statistical algorithms to find topics by analyzing the co-
occurrence of word-document data (see detailed review in Chapter 2.4). A major advantage of
these approaches is that they do not require human supervision. Thus, the topic mining process
can be conducted automatically and directly on the targeteddataset. This is based on the
assumption that the topic structure can be self-described (or generated) directly by the dataset.
However, the topics generated by these methods are heavily dependent on the quality of text
corpora. For webpage collections that contain a lot of heterogeneous data (e.g., documents
with different length and format, skewed topic distribution and so on), the topic quality of
these methods may not be satisfying. This is confirmed in our experiments on the SEEU
dataset where the mined academic topics by these approachesare not satisfying (see Section
6.6).

In this chapter, we present a novel hierarchical classification framework for mining aca-
demic topics in universities. In our framework, we build an academic topic hierarchy based
on the commonly-accepted Wikipedia academic disciplines1. Based on this academic topic
hierarchy, we train a hierarchical classifier, and apply it to classify webpages from the top 12
largest universities in Ontario, Canada into the topic hierarchy. According to our comprehen-
sive experiments, the academic topic pattern mined by our hierarchical classification system is
reasonable, consistent with the common sense of topic distribution in these universities, and
better than the state-of-the-art LDA topic modeling approach. To the best of knowledge, this
is the first work that uses hierarchical classification to mine academic topics in large-scale
university webpage datasets with satisfying results.

The rest of this chapter is organized as follows. In Section 6.2, we present a high-level
overview of our general framework for mining topics by hierarchical classification. The de-
tailed components of the framework will be discussed in the following three sections. Specif-
ically, Section 6.3 discusses the methods to build topic hierarchies. Section 6.4 shows the
training of the hierarchical classifier. Section 6.5 describes the SEEU webpage dataset and
conducts a comprehensive analysis of the academic topics mined by our hierarchical classifi-
cation system. In Section 6.6, we compare our approach to a state-of-the-art topic modeling
approach. The last section is the summary.

6.2 The General Framework

In this section, we describe our general framework for mining topics by hierarchical classifica-
tion in domain-specific datasets, such as the university webpage dataset. Figure 6.1 shows the
high-level overview of our framework which consists of three steps:

1. Building a topic hierarchy based on the application domain knowledge.

2. Training a hierarchical classifier for the hierarchy.

1http://en.wikipedia.org/wiki/List_of_academic_disciplines
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3. Conducting hierarchical topic classification and visualizing/analyzing the results.

Figure 6.1: The general framework for mining topics by hierarchical classification.

The first and most important step in our framework is to build areasonable and commonly-
accepted topic hierarchy for the application domain. In this step, we emphasize the importance
of the domain knowledge. Usually, for well-developed application domains (e.g., electronic
encyclopedia, web directory, patent, news media), there already exists some high-quality topic
taxonomies on the web, such as the Wikipedia topic hierarchy2, the ODP (Open Directory
Project) category hierarchy3, the WIPO (World Intellectual Property Organization) patent tax-
onomy4, and the IPTC (International Press and TelecommunicationsCouncil) NewsCodes tax-
onomy5. Due to the large number of human editing effort, the quality of these topic hierarchies
would be much better than the topic hierarchies extracted byad-hoc methods or tools. Thus,
we can directly build the topic hierarchy by reusing these existing taxonomies. Section 6.3
discusses the details of our topic hierarchy for the domain of universities.

The second step is to train a hierarchical classifier for the pre-built topic hierarchy. In our
framework, we use supervised machine learning algorithms,more specifically, the hierarchical
classification algorithm (see Chapter 3), to train the classifier. The most difficult part in this
step is to collect enough training data for the learning algorithm. The training data should be
consistent with the targeted application dataset and largeenough to cover sufficient words and

2http://en.wikipedia.org/wiki/Category:Main_topic_classifications
3http://www.dmoz.org/
4http://web2.wipo.int/ipcpub
5http://iptc.cms.apa.at/site/NewsCodes/
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documents related to the application domain. After the training data acquisition, we can train
a hierarchical classifier. Finally, it is very important to perform model evaluation to assess the
quality of the trained hierarchical classifier. We discuss our data acquisition method and the
evaluation of the trained hierarchical classifier in Section 6.4.

The third step is the standard text classification task wherewe apply the trained hierarchical
classifier to classify the application dataset into the pre-built topic hierarchy. After that, we
obtain topic probabilities of each text document and conduct visualization analysis to reveal
the mined topic pattern. Section 6.5 applies the trained hierarchical classifier on a large-scale
university webpage dataset and give a detailed discussion about the topic pattern mined by our
framework.

6.3 Building Academic Topic Hierarchy

A reasonable and commonly accepted topic hierarchy is very important for the university
search engine. It can greatly benefit the search experience of users. There are several crite-
ria that we think a good topic hierarchy should have for university search engines.

1. Academic Topics. Academic institutions usually have various academic disciplines. It
is important to define a hierarchy with a broad coverage of common academic disciplines
so that the majority of university users will feel familiarized and convenient to find the
desired topics.

2. Tree structure. The tree-structured hierarchies are intuitive and user-friendly user in-
terfaces for most of web applications. However, a complicated hierarchical structure
(with deep categories) may not be easy for browsing. Thus, the topic hierarchy in SEEU
should not be too deep.

In fact, to build the hierarchy for SEEU, we can reuse existing well-known taxonomies,
such as the Open Directory Project (ODP)6 and the category structure inWikipedia.

• ODP hierarchy. The topic hierarchy of ODP is a tree structure. The relationship between
a parent category and a child category basically follows the”IS-A” constraint. Thus,
it may be a good choice to use the ODP taxonomy for SEEU. Several works [67, 92]
have successfully used the ODP hierarchy in text classification. However, we argue that
the ODP hierarchy is not suitable for academic institutions, because ODP is a general
(not academe oriented) taxonomy. For example, we can find many non-academic cate-
gories in the ODP, such as “Shopping”, “Home”, “Games”, “Clothing”, “Vehicles” and
“Massage Equipment”. Those (sub)categories are useless for university search engines.
Moreover, we can also observe a noisy mixture of academic andnon-academic subcate-
gories inside ODP. For example, under the top-level category “Computers”, we can find
non-academic subcategories of “E-Books”, “Usenet” and “Emulators” as well as aca-
demic subcategories, such as “Parallel Computing” and “Artificial Intelligence”. Such a
confusing category structure will not only mislead users, but also reduce the classifica-
tion performance.

6http://www.dmoz.org
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• Wikipedia hierarchy. The taxonomy in Wikipedia is a directed acyclic graph (DAG)
rather than a tree-structured hierarchy. In a DAG graph, onenode can have multiple par-
ent nodes. For example, in Wikipedia, the category “Universe” has two parent categories,
i.e., “Nature” and “Astrophysics”. Such a DAG hierarchy violates the second criterion
(tree structure) we mentioned before. Therefore, it may confuse normal users who are
usually familiar with the tree-based browsing. Another problem of Wikipedia categories
is that not all the child-parent relations strictly follow the “IS-A” semantics. For ex-
ample, on the help page of Wikipedia categories7, there is a category path “History”→
“History by location”→ “History by country”→ “History of Australia”→ “History
of Australia by location”→ “History of Australia by state or territory”→ “New South
Wales, Queensland”. We can see that, the state “New South Wales” definitely does not
belong to (is a) “History”.

Therefore, in this thesis, we prefer to manually8 build an academic topic hierarchy. We
build an academic topic hierarchy by using the Wikipedia “List of Academic Disciplines”9,
which is a tree-structured hierarchy containing a broad scope of academic disciplines. We also
survey and adopt categories of web directories in several top Medical Doctoral universities
in Canada (e.g., Western, Queen’s and Toronto). After several rounds of discussion with do-
main experts (i.e., faculty and graduate students) in different disciplines, we eventually build a
four-level academic topic hierarchy of 464 categories. It covers a broad scope of academic dis-
ciplines, including “Business”, “Education”, “Engineering”, “Health science”, “Humanities”,
“Journalism and media studies”, “Law”, “Medicine”, “Natural sciences” and “Social sciences”.

A partial snapshot of this academic topic hierarchy can be seen in Figure 6.2. To help read-
ers understand how this hierarchy works in SEEU, we also showan example that searches for
“data mining” under the category hierarchy “Natural sciences”→“Computer sciences”→“Information
science” in SEEU (see Figure 6.3). It should be mentioned that although there may exist some
categories not covered by our hierarchy, it does not mean that the university webpages belong-
ing to those categories are lost. In SEEU, users can still findthose pages by simply searching
for keywords without any categories or searching for keywords at a higher-level category (e.g.,
“Computer sciences”) .

6.4 Training the Hierarchical Classifier

In this section, we describe the training of the hierarchical classifier in our framework. We have
already discussed the hierarchical classification algorithm in Chapter 3. We will mainly focus
on the training data acquisition and model evaluation of thetrained hierarchical classifier.

6.4.1 Training Data acquisition

After we build the topic hierarchy, we need to collect enoughlabeled documents as training set.
The dataset we collect must satisfy two criteria. Firstly, the text representation of the training

7http://en.wikipedia.org/wiki/Help:Categories
8We still use existing topic hierarchies, such as Wikipedia as basic.
9http://en.wikipedia.org/wiki/List_of_academic_disciplines
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Figure 6.2: A partial hierarchy in SEEU under the “Natural sciences” category.

documents should be as similar as the targeted university webpages. Secondly, the collected
dataset should contain accurate yet enough documents.

One may say that as we build the topic hierarchy based on the Wikipedia academic disci-
plines, we can simply collect the Wikipedia pages in those categories as the training set. We
argue that this is actually not a good idea. For most Wikipedia categories, the number of pages
belonging to them is so small that it is insufficient to train accurate text classifiers. Moreover,
the text representation of Wikipedia articles is quite different from normal university web-
pages. The difference of text distribution may even degrade the classification performance of
supervised learning algorithms.

To tackle this problem, we propose to use commercial search engines to collect the labeled
webpages for each category of SEEU’s topic hierarchy. This method is also used in Li [77] and
Ha-Thuc [47]. Specifically, for each category, we firstly carefully prepare a list of keywords
that are closely related to the meaning of the categories (see Table 6.1 for an example). We
then submit these keywords to several commercial search engines (e.g., Google or Bing). The
top ranked webpages can be approximately treated as labeledexamples for a category.10 By
automatically exploring the huge number of indexed webpages in commercial search engines,
we can easily collect a large number of labeled webpages.

10To reduce the number of noisy webpages, we only use the top 100returned results which are usually relevant
to the query.
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Figure 6.3: Searching “data mining” under the topic hierarchy “Natural sciences”→“Computer
sciences”→“Information science” in SEEU.

Table 6.1: A sample of the manually prepared phrases for querying search engines.

NO. Category Query keywords
1 Business “Business”,“Business analysis”,“Marketing”
2 Education “Education”, “Curriculum instruction”, “Educa-

tion technology”
3 Engineering “Engineering”, “Engineering research”, “Engi-

neering system”
4 Health science “Health science”
5 Humanities “Humanities”, “Arts”, “Human culture”
6 Journalism and me-

dia studies
“Journalism”, “Media studies”, “Communication”

7 Law “Law”
8 Medicine “Medicine”, “Disease”, “Diagnosis and treatment”
9 Natural sciences “Natural sciences”, “Formal sciences”
10 Social sciences “Social sciences”, “Society”, “Sociology”

In addition, as we are building a search engine for academic institutions (not the general
web), we restrict the search results in the domain of universities by adding “site:edu” in the
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query.11 Thus, the difference of data distribution between the labeled dataset (i.e., the collected
webpages from search engines) and the testing set (i.e., theuniversity webpages) can be greatly
reduced. Readers may ask why not just search webpages in the targeted universities? We argue
that this may cause overfitting problem [36] as we will train and test the classification model
on the same dataset.

It should be noted that we can leverage the hierarchical “IS-A” relations to further enlarge
the training set for intermediate categories by propagating the returned webpages to lower-level
subcategories. For example, when we send a query “Artificialintelligence” to search engines,
we can lift the returned webpages to its ancestor categories, i.e., “Computer sciences” and
“Natural sciences”.

By crawling search engines, we eventually collect about 570,000 labeled webpages in 464
categories as the training set. We randomly sample 30 categories to assess the quality of the
dataset. Two graduate students were recruited to manually examine a small subset (less than
500) of the webpages in each category, and reported the average accuracy of labeling webpages.
Based on their report, our dataset has about 90% accuracy which we believe is acceptable for
training SVMs due to the soft margin principle of SVM which isvery robust to noisy data[26].

We use the bag-of-words model to represent the crawled webpages. Each webpage is
treated as a vector of word features represented as TF·IDF weights. After we extract text
features by our feature extraction tool (see Chapter 3), we remove rare words occurring in less
than three documents and apply Porter Stemming [89] to all words. Short documents with less
than ten words are also removed. Eventually, we generate 563,163 labeled examples in 464
categories as the training set. We tabulate the statistics of our training set in Table 6.2.

Table 6.2: The statistical information of the training set at each level of SEEU’s hierarchy.

Level Categories Class Ratio Examples Features
1 10 0.0979 563,163 1,329,110
2 88 0.1009 57,777 432,697
3 261 0.1012 15,362 254,037
4 105 0.1717 5,788 163,521

Based on the collected labeled examples for the new hierarchy, we can train a hierarchical
classification system. We use search engines to collect the training set. It may be argued that
this method will introduce noise to the dataset, and result in a bad hierarchical classification
system. However, in the next subsection of model evaluation, we will show that the trained
hierarchical classification system is actually very good.

6.4.2 Evaluation of Classification Model

In this subsection, we will firstly conduct experiments to evaluate the classification perfor-
mance of our hierarchical classification system on the collected dataset. After that, we will
analyze the classification models to explain its effectiveness.

11Both Google and Bing support “site” syntax in the queries
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Cross-validation Experimental Results

We use the hierarchical SVM classifiers developed in Chapter3 as the classification model.
As the feature size is very large (i.e., more than one millionwords in Table 6.2), we need to
select a relatively small number of features to reduce training time. We use the DF (Document
Frequency) feature selection algorithm and 50,000 features in this experiment. They are the
best parameter setting in our previous hierarchical classification experiments (see Chapter 3.3).

Five-fold cross validation is performed on the dataset for evaluation. We show plots of the
average precision, recall and F1-score at each level of the hierarchy in Figure 6.4. We can
see that the hierarchical SVM classifiers can achieve a decent performance on the collected
dataset. Specifically, the average F1-score at the top two levels is larger than 0.7. This is due to
the good balance between high precision and high recall (i.e., both are larger than 0.7). For the
3rd and the 4th levels, although the F1-score drops, it should be noted that the worst F1-score
is still larger than 0.6 which is better than our previous experiments on the ODP dataset.

Figure 6.4: The average F1-score at different levels by the hierarchical SVM classifiers on the
SEEU dataset.
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Figure 6.5: The optimal threshold distribution at different levels.

We study the learned prediction thresholds. Figure 6.5 shows the threshold distribution at
each level. We can see that the result is consistent with our previous hierarchical classification
experiments in Chapter 3.3. Generally speaking, most categories at the top two levels favor
lower thresholds (i.e., less than or equal to 0.5) while larger thresholds (i.e., 0.6 and 0.7) are
more often used at the lower levels. This explains the high recall at the top levels and the high
precision at the deeper levels.

Interpreting Hierarchical Classification Models

Why can our hierarchical SVM classifiers can achieve such a good performance despite the
potentially noisy training set? To explain the effectiveness of our hierarchical SVM classifiers,
we use a white-box method to analyze the learned SVM models. Recall that a linear SVM
classification model is in the form of linear functions (see Chapter 2.1.3),

f (x; w) = −→w · −→x =
∑

1≤i≤n

wi xi (6.1)

wherexi is a word in the documentx; wi is the learned weight for that word. Intuitively, for
each wordxi, a large positive weight ofwi means that the wordxi may be quite relevant to the
learned topic while a negative weight may indicate an irrelevant word. Thus, we can actually
analyze the words with highest weights to interpret the classification models of linear SVMs.

We firstly analyze the words with highest weights in SVM models at the first-level topics.
We tabulate the top ten words in Figure 6.6. We can see that those words are quite relevant to
the learned concept (topics). For example, in the topic of “Business”, the top ten words are all
about the business activities or related areas, such asentrepreneurship, purchasingandtrade.
As SVM models successfully learn those domain-specific words, it makes the hierarchical
classifier achieve a highrecall as shown in Figure 6.4. In addition, we also find that there is
no overlapping of the top ten words between each pair of topics. Even by checking the top
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Figure 6.6: The top ten most relevant words in SVM models at the first-level topics.

100 words, we find that the average overlapping rate is still less than 1% (i.e., one word). This
means that our classification system can learn very good discriminative words among different
concepts. This explains why theprecisionis also very high in Figure 6.4.

One may argue that it may be easy to learn the first-level topics as they are general concepts.
Will our classification system also learn good models for deeper and more specific topics?
As we are more familiar with “Computer science” research, wechoose the subtopics under
“Computer science” as a case study. There are 13 subtopics under it. Figure 6.7 tabulates
the top ten most relevant words for those subtopics. We can see that, overall, the results are
also very good. For example, we can find familiar words such asdata mining, information
retrievalandknowledge discoveryin “Information science”;object orientedin “Programming
languages” anddeadlockandos in “Operating systems”.

We check the F1-score for those subtopics under “Computer science”. We find that most of
subtopics (12/13) have F1-score around 0.69, similar to the average F1-score (0.69) at the third
level. It means that the SVM models learned under “Computer science” are also reasonbly
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Figure 6.7: The top ten most relevant words in SVM models at the subtopics under “Computer
sciences”.
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good. However, there is one subtopic with only 0.55 F1-score. It is the “Information systems”
category. We can see from Figure 6.7(b) that several words (e.g.,desk, servicesandsystem) are
too general to represent the concept of “Information systems”. On the other hand, it may also
due to the reason that the concept of “Information systems” is too broad compared with other
subcategories and thus difficult to learn.

To summarize, in this section, we have demonstrated that ourhierarchical SVM classifiers
can achieve good performance for academic topic classification in the collected dataset. In
the next section, we will apply it to mine academic topics from the challenging two million
university webpages in the SEEU dataset.

6.5 Hierarchical Topic Classification

In this section, we describe the SEEU university webpage dataset and apply the trained hierar-
chical classification system to mine (classify) academic topics in the SEEU dataset.

6.5.1 SEEU Webpage Dataset

According to Wikipedia, there are in total 98 universities in Canada.12 Due to the limited
computational resources, we can not index and classify webpages from all the universities in
Canada. In this thesis, we focus on the 12 largest universities in Ontario based on the total
number of student enrolment. They are Toronto, York, Ottawa, Western, Ryerson, McMaster,
Carleton, Waterloo, Guleph, Queen’s, Brock and Windsor.

For each university, we use the popularApache Nutch13 crawler to crawl the webpages
in its university domain (see detailed crawling method in Appendix A), and use our feature
extraction tool to extract the text in webpages. We use the same feature preprocess method
(see Section 6.4) to clean the dataset. The final SEEU university dataset is tabulated in Table
6.3.

12Seehttp://en.wikipedia.org/wiki/List_of_universities_in_Canada.
13The home page ofNutchis http://nutch.apache.org/.
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Table 6.3: The 12 largest universities in Ontario based on the total number of student enrolment.
Enrolment data are from the Wikipedia page “List of universities in Canada” in April 2013.

University URL Enrolment Pages Unique Words Total words
Toronto www.utoronto.ca 74,760 433,418 606,865 3.23× 108

York www.yorku.ca 52,290 214,142 471,077 1.46× 108

Ottawa www.uottawa.ca 38,700 122,708 284,777 0.87× 108

Western www.uwo.ca 34,100 278,414 394,721 1.35× 108

Ryerson www.ryerson.ca 31,770 65,900 156,710 0.28× 108

McMaster www.mcmaster.ca 26,070 261,256 404,449 1.48× 108

Carleton www.carleton.ca 24,250 63,012 214,691 0.38× 108

Waterloo www.uwaterloo.ca 24,160 221,283 466,409 2.04× 108

Guleph www.uoguelph.ca 22,080 85,239 192,245 0.45× 108

Queen’s www.queensu.ca 20,550 153,291 370,970 1.24× 108

Brock www.brocku.ca 17,006 43,064 154,155 0.88× 108

Windsor www.uwindsor.ca 16,180 34,417 140,141 0.17× 108

6.5.2 Results from Hierarchical Classification

We apply the trained hierarchical classification system to classify webpages in the SEEU
dataset into the academic topic hierarchy, and analyze the results.

We briefly describe the experimental methodology in this data mining task (step 3 in our
general framework; see Section 6.2). Specifically, for eachwebpage in the dataset, we apply
our trained hierarchical SVM classifiers to output a vector of probabilities indicating the degree
of confidence of each topic in the hierarchy.14 Based on these topic probability vectors, we are
interested in answering the following questions.

1. How are the academic topics distributed in universities?

2. What relations exist between different topics?

3. Which university has the largest program in a specific topic?

In this analysis, as we are more familiar with the academic disciplines of “Natural sciences” and
especially the “Computer sciences” research, we will mainly analyze the topic classification
results under the topic hierarchy of “All”→ “Natural sciences”→ “Computer sciences”.

14To preserve the hierarchical information, we adjust the topic probability prediction outputted by SVMs as
Pad j(t) = P(t) ×

∏

t′∈⇑t P(t
′

), whereP(t) is the likelihood probability of topict and⇑ t is the set of all the ancestor
topics of the topict.



90 Chapter 6. Mining Academic Topics in Universities

Topic Pattern at the First Level

Figure 6.8: Topic classification distribution at the first level.

We first analyze the topic classification results at the first level of the topic hierarchy. For
each university, we plot the average topic probabilities ofall the webpages in Figure 6.8. Each
stacked column represents the first-level topic classification distribution (percentage) in a uni-
versity. We can see a clear pattern that all the universitieshave a large portion (about 80%)
of webpages categorized into three primary topics, i.e., “Natural sciences”, “Humanities” and
“Social sciences”. This result is reasonable because most of the scientific research works in
universities are related to the three topics. Successfullyidentifying the three important topics
is a strong evidence of the effectiveness of our classification framework. The remaining 20 per-
centage of webpages are categorized into seven small topics. By the percentage ranking, they
are “Engineering”, “Journalism”, “Medicine”, “Education”, “Health”, “Business” and “Law”.
This ordered topic list is also reasonable. We can see that the top ranked topics are also about
research, such as “Engineering” while the low ranked topics(e.g., “Business” and “Law”) are
mainly about professional education where relatively fewer webpages are published in univer-
sities.
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Topic Pattern under “Natural sciences”

Figure 6.9: Topic classification distribution under “Natural sciences”.

Next, we study the topic classification results under “Natural sciences”. From Figure 6.9, we
can see that the top four largest topics are disciplines concerning formal science15, such as
“Computer sciences”, “Mathematics” and “Statistics”, while the rest topics are about classical
natural science research, such as “Physics” and “Chemistry”. Is this classification pattern by
our hierarchical classification system consistent with thereal world webpage distribution? To
study this issue, we use commercial search engines to estimate the number of webpages in the
corresponding departments in each university. For example, for the Department of Computer
Science at Western, we can type “site:csd.uwo.ca” inGoogleto estimate its total number of
webpages.16 By using this method, we make an approximation of the corresponding topic
order in Western asComputer Science> Mathematics> Statistics> Applied Mathematics>
Physics>Biology>Earth Science>Chemistry.17 Despite a slight difference of several pairs of
topics, we can see that the general partition of formal science and natural science is consistent
with ours.

It is also interesting to study the relations of these topicsunder “Natural sciences”. In this
analysis, we still focus on the topic prediction results in Western. For the ten topics under
“Natural sciences”, we can find eight corresponding departments in the Faculty of Science of

15http://en.wikipedia.org/wiki/Formal_science
16It should be noted that some non-academic pages may be over-counted.
17The “Space science” webpages are included in thePhysicsdepartment. Western does not have “Agriculture”

department.
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Western. We compute the average topic probabilities for webpages belonging to these depart-
ments, and plot a heat map matrix18 in Figure 6.10.

Figure 6.10: A heat map matrix showing the average topic probabilities estimated by our hierar-
chical classifiers for webpages belonging to departments inthe Faculty of Science of Western.
Each row is a vector of topic probabilities. The dark blue color means small probability while
the bright red color means large probability.

We can find three interesting relations from Figure 6.10 thatsupport the effectiveness and
usefulness of our hierarchical classification framework.

• A strong diagonal in the heat map. This indicates that most webpages in those depart-
ments (at the y-axis) have high probabilities towards the corresponding inferred topics (at
the x-axis), but low probabilities in other topics. It meansthat our hierarchical classifier
can achieve good classification performance under “Naturalsciences”.

• A bright submatrix at the lower-left corner. This submatrixshows the relations among
four closely related departments (Computer sciences, Math, ApMath and Statistics) that
all deal with computation or data analysis and processing related research.

• Popularity of computer science topics. We can see another pattern that the computer
science topic exists in most of the departments. It is well-known that the computer
science has become an important tool to support scientific research in most research
disciplines.

18A heat map matrix is a graphical representation of matrix where each grid shows the intensive of values.
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Topic Pattern under “Computer sciences”

Figure 6.11: Number of pages for topics under “Computer sciences”.

Finally, we study the detailed topic classification resultsunder “Computer sciences” (CS).
Different to the previous analysis that focuses on the topic classification distribution, in this
study, we analyze the amount of research activity by visualizing the number of predicted CS
webpages of each university in Figure 6.11.

We analyze the ranking of page number in Figure 6.11. This ranking is consistent to the
real-world ranking by scale and size of CS research in different universities. We can see two
highest peaks from Toronto and Waterloo. It is well-known that the two universities have the
largest Computer Science programs in Ontario. The next fouruniversities by the number of
CS webpages are York, Ottawa, McMaster and Western. As far aswe know, these universities
have an intermediate size of CS departments or CSE (ComputerScience and Engineering)
departments.

Readers may notice a large number of webpages categorized as“General computer science”
(i.e., not predicted into any specific subtopics). We find that these webpages are either about
general topics of CS, such as home page, research interest list and program introduction, or
related CS pages from the other departments, such asCHASS Facilities(in Faculty of Arts
of Toronto)19, Arts Computing Office (in Faculty of Arts of Waterloo)20 andSocial Science
Network and Data Services(in Faculty of Social Science of Western)21. Due to the large
number of CS related webpages in other disciplines, the webpages classified into “General
computer science” are far more than the other subtopics.

19http://www.chass.utoronto.ca/facilities/
20https://artsonline.uwaterloo.ca/aco/
21http://ssnds.uwo.ca/rooms.asp
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To summarize, in this subsection, we conduct comprehensiveanalysis of the academic
topics mined by our hierarchical classification approach. We find that the results are reasonable
and consistent with the common sense of topic distribution in universities. In the next section,
we will conduct a comparative experiment to demonstrate thesuperiority of our approach to a
state-of-the-art topic modeling approach.

6.6 Comparing Results from Topic Modeling Approach

In this section, we compare the academic topics mined by our hierarchical classification frame-
work to the results mined by a state-of-the-art topic modeling approach, namely the LDA (La-
tent Dirichlet Allocation) model (see detailed review in Chapter 2.4).

We use the popular Mallet [84] package for learning the LDA model from Western. We
set the number of topics as 200, a common topic parameter for learning a LDA model. The
hyperparameters alpha and beta are set to 0.25 (50/200) and 0.1 according to [46].

Analyzing Topic Structure

We first analyze the mined topic structure. As an unsupervised learning algorithm, the LDA
model does not need training data. In a LDA model, each topic is learned as a word distribution
directly from the testing dataset. The most probable words (with largest probabilities) can be
used to interpret the semantics of topics. We tabulate the top ten most probable words from
some sample topics in table 6.4.

Unfortunately, we see that the topics mined by the LDA model are very noisy. Although the
LDA model can discover some academic topics, such as T1 (”Programming Language”), T26
(“Astronomy”), T37 (“Chemistry”) and T49 (“Biology”), we can find many non-academic and
even unmeaningful topics, such as T11 (“Assignment”), T22 (“Mustang”) and T39 (“Build-
ing”). This is due to the reason that the LDA learning algorithm (e.g., the Gibbs sampling
[46]), as an unsupervised model, does not have explicit distinction between academic topics
and non-academic topics. All the topics in the LDA learning procedure are just word distribu-
tion estimated from the co-occurrence of word-document data.

On the other hand, in our hierarchical classification based approach, the mined topics (see
Table 6.6 and Table 6.7) are more meaningful and controllable. This is because our hierarchi-
cal classification system is guided by a manually-built academic topic hierarchy and trained
on a large number of labeled webpages. This is one of the majoradvantages of supervised
classification approaches over unsupervised topic modeling approaches.

In addition, it should be noted that the labels (names) of those topics in LDA have to be
labeled by a human. This could be very costly for a real world application where automated
data mining process is crucial. While in our hierarchical classification approach, the topic
hierarchy is built off-line.

Analyzing Topic Distribution

Secondly, we analyze the quality of the inferred topic distribution of each webpage. Following
the same experimental methodology in Section 6.5.2, we alsofocus on the topic prediction
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Table 6.4: Some sample topics mined by the LDA model from webpages in Western. Academic
topics are marked in bold.

Topic Top ten most probable words
T1 class, methods, public, java, int, string, return, objectives, lang, field
T2 award, scholarship, president, canada, faculty, year, ontario, graduate, honour, communications
T3 vol, iss, papers, science, discussion, home, issue, search, psc, series
T4 canadian, poetry, poems, early, love, long, poets, thy, day, heart
T5 chrw, comments, radio, chrwradio, events, view, music, dolor, year, london
T6 oset, spline, components, change, radius, rgb, create, colour, color, declared
T7 post, cpsx, events, news, mission, science, comments, space, march, read
T8 chrw, comments, london, radio, blogs, week, chrwradio, year, music, news
T9 papers, present, research, questions, student, discussion, project, topics, work, including
T10 exam, psychology, chapter, student, lecture, test, assignments, final, office, class
T11 assignments, student, exam, read, lecture, class, lab, final, week, mark
T12 teaching, graduate, student, program, learning, faculty,workshops, research, resources, award
T13 computer, student, science, web, research, csd, information, department, grad, graduate
T14 music, band, album, song, record, rock, cd, play, sound, london
T15 war, world, life, time, people, year, history, church, live, god
T16 media, program, information, student, studies, courses, admission, application, mit, faculty
T17 time, people, year, work, don, good, feel, life, student, day
T18 meeting, committee, council, club, members, usc, executive, board, policy, reporter
T19 patients, clinical, cancer, treatment, studies, trial, disease, year, risk, group
T20 network, system, services, computer, mail, message, internet, user, information, security
T21 gazette, student, editor, comments, archive, post, news, read, advertise, contribute
T22 form, men, women, mustang, club, athletics, schedule, information, student, campus
T23 music, performance, faculty, piano, wright, orchestra, opera, record, instruments, student
T24 limited, canada, corporate, library, company, corp, funding, resources, canadian, mining
T25 research, development, canada, ontario, technology, industry, london, city, centre, governance
T26 physical, star, astronomy, earth, planet, sun, orbit, energy, magnetic, mass
T27 scholarship, geography, science, author, search, research, ontario, digital, faq, journal
T28 web, standards, news, advertise, campus, daily, browser, feed, student, services
T29 web, standards, news, advertise, daily, campus, browser, feed, london, student
T30 blood, patients, heart, increase, infusion, iv, transfusion, dose, cardiac, effective
T31 wed, thu, tue, fri, news, gazette, archive, student, links,campus
T32 neurological, dr, science, residence, clinical, london, neuro, view, department, bio
T33 pain, surgery, stroke, patients, research, muscle, studies, injury, knee, joint
T34 wed, thu, tue, fri, gazette, archive, arts, entertainment,links, sports
T35 studies, history, culture, literature, religious, anthropology, compared, french, topics, theology
T36 meteor, meteorite, research, public, project, video, overview, photos, web, camera
T37 chemistry, reaction, protein, structure, mass, sample, acid, nmr, solution, chemical
T38 language, speech, hear, science, research, pathology, communications, disorders, children, au-

diology
T39 room, turn, door, open, north, east, building, day, road, time
T40 patients, health, care, program, research, cancer, family, london, lhsc, hospital
T41 english, literature, book, history, read, century, text, ed, author, studies
T42 writing, assignments, class, student, chapter, grade, due, week, essay, medical
T43 web, standards, news, advertise, campus, daily, browser, feed, london, services
T44 web, standards, research, graduate, student, browser, science, health, information, page
T45 gi, nc, tx, synthase, dehydrogenase, ref, phosphate, sp, protein, subunit
T46 click, map, number, selected, line, data, file, true, enter,list
T47 ontario, research, canada, professor, association, dr, conference, toronto, department, canadian
T48 health, risk, diabetes, women, vaccine, test, hiv, clinical, pregnancy, medical
T49 biology, plant, animal, species, ecology, evolution, change, nature, bird, human
T50 year, work, people, time, london, life, love, family, day, stories
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results in the Faculty of Science of Western. We compute the average topic probabilities for
webpages belonging to these departments. As we are not awareof the true semantics of each
topic inferred by the LDA model, we use the top five most probable topics for each department.
Figure 6.12 plots the heat map matrix. We can see a relativelystrong diagonal in the matrix.
This means that the LDA model can also work well to infer related topics for each department.

Figure 6.12: A heat map matrix showing the average topic probabilities by the LDA model for
webpages belonging to departments in the Faculty of Scienceof Western. Each row is a vector
of topic probabilities.

However, comparing the results by our hierarchical classification approach in Figure 6.10,
we can not see the strong correlation among the four closely related departments (CS, Math,
ApMath and Statistics). The pattern that CS topics are shared among most of departments is
also not observable. Even by trying more topics (e.g., 300 and 400) and repeating the LDA
learning , we still can not observe the correlation among these departments. Actually, for de-
partment of CS, we find that the five most probable topics by LDAare either about specific
topics, such as “Programming language” or non-academic information such as the CS depart-
ment website. It is unlikely that such topics can be shared bythe other departments. On the
other hand, our hierarchical classification approach can exploit the topic hierarchy to infer top-
ics in different levels of granularity so that specific CS topics (e.g.,“Machine learning” and
“Data mining”) related to other research disciplines (e.g., “Statistics”, “Applied mathematics”)
can be learned. This is why our approach can detect the topic correlation among related de-
partments.

To summarize, in this experiment, we compare the academic topics mined by our hierar-
chical classification approach with the LDA topic modeling approach. We find that the results
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mined by our approach are better than the LDA topic modeling approach.

6.7 Summary

In this chapter, we have presented a novel hierarchical classification framework for mining
academic topics from webpages in the 12 largest universities in Ontario, Canada. According to
our comprehensive experiments, the academic topic patternmined by our hierarchical classifi-
cation framework is reasonable, consistent with the commonsense of topic distribution in these
universities, and better than the traditional LDA topic modeling approach. In the next Chapter,
we will integrate the hierarchical classification results into the implementation of SEEU and
conduct usability studies to evaluate the usefulness of SEEU.



Chapter 7

System Implementation and Usability
Studies

In this chapter, we describe the system implementation of SEEU and conduct two usability
studies to evaluate SEEU. We first describe the main system components of SEEU. After that,
we analyze the university dataset characteristics which are related to the implementation. Fi-
nally, we conduct two usability studies to evaluate SEEU anddiscuss the evaluation results.

The useability studies in Section 7.3.2 were in collaboration with Dr. Charles Ling and
Dr. Ali Bou Nassif from the ECE department of Western. This work was included in the
submission to theIEEE Transactions on Knowledge and Data Engineering(IEEE TKDE)
[75].

7.1 System Implementation

In this section, we describe the implementation details of SEEU at the system level (i.e. focus-
ing on the functionality and connection between different system modules).

Figure 7.1: The system view of SEEU.

Figure 7.1 presents the system view of the SEEU search engine, which includes the user
interface (for both PC and mobile phones), the web server, the indexing and query server,
the hierarchical SVMs and the web crawlers. Here, we give a high-level overview of the five
system modules from the client side to the server side. At theclient side, the user interface
visualizes the search results and help users navigate during search sessions. The web server

98
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acts as an agent between the user interface and the indexing and query server. It receives user
queries, translates them into internal query expressions (to be analyzed by the indexing server),
retrieves the ranked results from the indexing server and returns them to users. The indexing
and query server is the core of our search engine. It indexes the text data, SVM classification
probabilities outputted by the hierarchical SVMs and the PageRank score of each webpage
into the search engine, and responses to the queries sent through the web server. The last
component of the web crawlers crawl the university webpagesand extract the text data and
PageRank scores.

As we have already presented the classification and ranking algorithms in Chapter 3, Chap-
ter 4 and Chapter 6, we do not repeat the algorithm of hierarchical SVMs and the method of
ranking in hierarchies. In the following subsections, we will briefly discuss the implementation
of the other four system modules.

7.1.1 User Interface

In SEEU, with the integration of multiple hierarchies, the interaction between users and the
search engine is more complex than traditional keywords-based search engines. Besides the
(optional) query keywords, the user interface of SEEU should also manage the contextual cat-
egory information for navigation, and present them to usersin an intuitive way. In addition, as
we design both PC and mobile versions of SEEU, the user interface should be easily extended
to different platforms.

To deal with these design challenges, we adopt the MVC (Model-View-Controller) archi-
tecture [66, 69], a software architecture pattern, to separate the complex representation of
contextual information from the user’s interaction. In SEEU, the MVC architecture can be
instantiated as in Figure 7.2.

Figure 7.2: The MVC architecture of SEEU user interface. Thefive UI widgest are attached to
the Views.



100 Chapter 7. System Implementation and Usability Studies

• The Model manages the current user status in a search session. In SEEU, the user status
is a five-tuple array, consisting of the keywords, the searchresults and three contextual
information, i.e., the selected topics, the selected universities and the selected files. To
reduce the storage cost of servers, the information of user status is stored at client-side
browsers as cookies1.

• The View mainly deals with the visualization of user status.Each View corresponds to
an individual user status. Thus, five different Views are implemented in SEEU, as shown
in Figure 7.3. We can see a search box, a topic hierarchy, a university hierarchy, a file
type hierarchy and a search result panel.

Figure 7.3: The implementation of Views in SEEU. Each View corresponds to an individual
user status (wrapped by brackets).

• The Controller acts as a bridge between the Model and the five Views. On one hand,
when the Model changes, it sendsupdatecommands to all Views to change their pre-
sentation of the related user status. On the other hand, whenthe controller receives user
actions from Views, it queries the web server (see later in Section 7.1.2) to retrieve ranked
results and change the Model data.

1See discuss of web browser cookie inhttp://en.wikipedia.org/wiki/HTTP_cookie.
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The most complex UI widget (View) in SEEU is the topic hierarchy as shown in Figure 7.4.
The basic functionality of the topic hierarchy is to help users explore the indexed webpages
and be effectively navigated during the search session. For example,when a user clicks a topic
category, such as “Natural sciences”, the topic hierarchy shows not only its child subcategories
but also its sibling categories. In addition, no matter whatkeywords the user types, the currently
selected category is always be highlighted.

Readers can see numbers surrounded by brackets besides eachcategory. These numbers
denote the number of webpages classified into each category of the hierarchy under the condi-
tions that they also match the current keywords and satisfy the constrains in other hierarchies
(i.e., the selected universities and the selected file types).2 Similar to the faceted search [51],
users can use these numbers as a guide to explore the topic hierarchy, such as skipping smaller
categories or rolling up or drilling down to different categories. With these rich contextual
information, we believe that user’s search experience can be greatly improved.

Figure 7.4: The topic hierarchy in SEEU. A
user clicks the “Natural sciences” category.

A novel feature of SEEU is that these
numbers are automatically updated accord-
ing to the different keywords (or categories
in other hierarchies) that users issue. Read-
ers may ask how do we efficiently compute
these numbers on the client side? Actu-
ally, these numbers are acquired by send-
ing a special search request to the indexing
and query server that only returns the num-
ber of matched webpages rather than a list
of indexed webpage features (i.e., URL, ti-
tle, description, keywords, and so on). Thus,
the network transmission cost can be greatly
saved (just a list of integers). This technique
is also used in the other two hierarchies.

In SEEU, the MVC architecture is imple-
mented as ajQuery/Ajax3 framework on the
client-side. Although we only discuss the UI
implementation of SEEU for the standard PC
version, this framework can be easily adapted
to mobile platforms. We only need to change
the visualization code of the different Views.
Figure 7.5 presents the mobile user interface.
Due to the limited screen size, the three hi-

erarchies (Views) are replaced by three buttons on the home page (see Figure 7.5(a)). When
users click one of the buttons (say Topics), SEEU Mobile opens a popup dialog (of full screen
size) that shows the hierarchy similar to the PC version (seeFigure 7.5(b)). Users can click a
desired subcategory to browse or filter the search results (see Figure 7.5(c)).

2The empty categories (i.e., no results) are hidden by SEEU. This is to avoid user confusion when they click
an empty category but do not see any results.

3http://jquery.com/
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(a) Home page (b) Topic hierarchy dialog (c) Result page

Figure 7.5: The home page, the topic hierarchy dialog and theresult page in SEEU Mobile.
The university dialog and the file dialog are similar to the topic dialog.

7.1.2 Web Server

The web server in SEEU mainly acts as an agent between the userinterface and the indexing
and query server. It translates user queries (i.e., user status sent from the controller in MVC
implementation) into internal query expressions (explained later in Section 7.1.3), retrieves the
ranked results from the indexing and query server and returns them to users.

It may be argued that it is not necessary to add this intermediate layer as we can directly
expose the internal query API to users. However, we believe that it is worth to do so. Because
we can hide the implementation details of the indexing and query server from the user interface.
If we change the query API, we do not need to change any code on the client side (e.g., both PC
and mobile UI). Moreover, adding an intermediate layer can also ensure the security of SEEU.
It should be noted that we also provide APIs to modify or delete indexed data. Exposing such
an API to users could make SEEU vulnerable.

In SEEU, the web server also acts as a load balancing server. When users search documents,
the main computation is performed at the indexing and query server. When many users visit
SEEU simultaneously, only using one indexing server may seriously increase response time. To
solve the bottleneck of querying index server, we use thereplicationtechnique to make several
copies of the index server to reduce response time. At the webserver sides, we implement
a simpleRound-robinstrategy for load balancing. Specifically, givenm index servers with
process IDs as 0, 1, ...,m− 1, the web server dispatches thenth user query to the machine with
ID=n Mod m where Mod is the modulo operation. In ideal scenarios, the throughput rate of
SEEU can be increased bym times.
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7.1.3 Indexing and Query Server

We useApache Solr4, a popular open source search platform, as the main indexingand query
server. The major features ofSolr include powerful full-text search, hit highlighting, nearreal-
time indexing, faceted search, and so on. As the indexing andquery server is the core of SEEU
search engine, we briefly describe its implementation in this subsection.

To index documents intoSolr, we need to customize theSolr configuration file that defines
the document attributes to be indexed. In SEEU, we define theSolrconfiguration file to contain
a unified document ID, a page importance score, multiple textfeatures and a list of probability
values for each category in SEEU’s topic hierarchy. Table 7.1 tabulates a brief summary of
these attributes. Most of these attribute values are derived from the subsystems we presented in
previous chapters. Specifically, the PageImportance attribute (2) is derived from the importance
score generated by crawlers (see Appendix A); the text attributes (3 to 8) are extracted by the
MapReduce feature extraction tool (see in Section 3.1); thefile type attribute (10) and the
university attribute (11) can be easily extracted from URLs; the CatProb attributes (12-475)
are outputted by our hierarchical SVM classifiers (see Section 6.5). These attributes are used
to compute the ranking score for each indexed document during query.

Table 7.1: The indexed document attributes inSolr.

NO. Name Description
1 ID Unique document identifier
2 PageImportance Page importance score
3 URL Page URL
4 Title Page title
5 Description Page description (empty for non HTML pages)
6 Keywords Page keywords (empty for non HTML pages)
7 Content Page content
8 AnchorText Anchor text from inbound links
10 FileType Page file type
11 University The name of university where the page is crawled

12-475 CatProb(ID) SVM probability of a category

To query documents inSolr, we need to implement our ranking function inSolr. Recall
that we use a linear functionf (−→x ) = −→w ·−→x to output a ranking score for each indexed document
(see Chapter 4). InSolr, a standard way to search and rank documents is to use the HTTP/XML
API. Our linear ranking function can be implemented by specifying Solr’s popular Extended
DisMax (eDisMax) query parser in HTTP requests. For example, to search for “data mining”
in “Natural science”→ “Computer sciences” inSolr, we can issue a HTTP request toSolrwith
parameters:

4http://lucene.apache.org/solr/
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defType= edismax
q = data mining
qf = URL̂ 1.15 Titlê 2.5 Description̂3.2 Keywordŝ3.5 Content̂1.1 AnchorText̂3.0
tie = 1
bf = sum(product(PageImportance,2.2),product(CatProb403,CatProb456,1.13))

We list the meaning of the eDisMax request parameters as follows

• defTypespecifies the type of query. In SEEU, we use the eDisMax query parser.

• q specifies the query terms, such as “data mining”. We can useq=*:* to issue empty-
word queries (i.e., browsing).

• qf specifies the text attributes used in our ranking function. The superscripts denote the
weights of attributes. For example,Titleˆ2.5means the weight ofTitle score is 2.5.

• tie specifies the ranking score aggregation method on theqf attributes. InSolr, tie=1
means a linear weighted sum ofqf parameter values (i.e.,

∑

f∈d w( f ) · s( f ) wherew( f )
denotes the weight ands( f ) denotes the score of attributef ) while tie=0 means a maxi-
mum function (i.e.,maxf∈dw( f ) · s( f )). We usetie = 1 in SEEU.

• bf specifies the additional boosting scores from non-text attributes (i.e., page importance
and category probabilities). In the above example,sumandproductare mathematical
functions. CatProb403denotes the probability of “Natural science”.CatProb456de-
notes the probability of “Computer sciences”. The score calculated by the mathematical
expression will be added into the final ranking score.

Thus, for the above HTTP request example, the final ranking score for each document inSolr
is

S core = 1.15× S core(URL) + 2.5× S core(Title) + 3.2× S core(Description)
+ 3.5× S core(Keywords) + 1.1× S core(Content) + 3.0× S core(AnchorText)
+ 2.2× PageImportance+ 1.13×CatProb 403×CatProb456

where eachS corefunction is a TF·IDF score between the query and a document attribute. We
can see that this ranking score equation is similar to the linear ranking function we discussed in
Chapter 4. The weights of the ranking function are stored in our web server after the training
of the ranking system.

We discuss the implementation of hierarchical refinement (selecting categories to refine
results) in SEEU. Besides these basic parameters,Solr provides a filter parameterf q to restrict
results by constrain. Developers can add any number off q parameters in a HTTP request to
refine the results. In SEEU, we can usef q parameters to refine the results in three hierarchies
(i.e., topics, file types and universities). For the previous example, we can

• use fq=CatProb403:[0.3 TO 1]&fq=CatProb456:[0.6 TO 1] to restrict the results in the
category path of “Natural science” (CatProb403)→ “Computer sciences” (CatProb456).
The meaning of CatProb403:[0.3 TO 1] is that the probabilityof documents belonging to
“Natural science” must be between 0.3 and 1. The number 0.3 is actually the prediction
threshold tuned by our hierarchical SVM classifiers (see Section 6.4.2).
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• use fq=FileType:(PDF OR DOC) to restrict the file types in “PDF” or “DOC”.

• use fq=University:(Western OR Toronto) to restrict the results only in Western or Toronto.

All of the parameters composition and transformation to HTTP requests are conducted by the
Controller in the MVC implementation.

7.1.4 Web Crawlers

We use the popularApache Nutchcrawler5 in SEEU.Nutch is an open source web crawler
written in Java. It has a highly modular architecture. Many useful plug-ins, such as data
retrieval, hyperlink analysis and document parsing, are already integrated intoNutch. Thus,
we can collect webpages in an automated manner, and reduce lots of implementation work.
The detailed configuration ofNutchcan be found in Appendix A.

In this section, we have discussed the implementation of SEEU in a high level. We discuss
the challenges of building SEEU, and propose several effective implementation strategies to
solve them. In the next section, we analyze the characteristic of the SEEU dataset which is
closely related to the implementation of SEEU search engine.

7.2 Characteristics of University Webpage Data

By usingNutch, we start 12 independent crawling jobs and collect 1,974,172 webpages from
the 12 universities. In this subsection, We analyze the characteristics of the SEEU dataset,
which include the page importance scores, the file type distribution and the web graph gener-
ated byNutch.

Firstly, we examine the page importance scores in the SEEU dataset. We normalize the
page importance scores generated byNutchinto the range [1, 100], and plot their histogram in
ten bins in Figure 7.6. We can see a skewed page number distribution. That is, most webpages
have very low importance scores. Specifically, about 99% of the webpages have importance
score less than 10. It means that most of the webpages in universities have few inbound links.
This is reasonable because it is not common to see hyperlinksbetween different departments.
For the 1% of webpages with high importance scores, we find that they are about university
home pages, department home pages or student service related pages (i.e., library, admission).
This may be due to the reason that most universities deploy unified HTML templates that
contain important entry pages (e.g., university home page or department home page) for the
web design. Thus, those primary entry pages appear in most ofthe webpages (embedded in the
same template). With a large number of inbound links, their importance scores are very high.

5The home page ofNutchis http://nutch.apache.org/.
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Figure 7.6: Histogram of the page importance scores in SEEU dataset.

Secondly, we study the file type distribution in our data collection (see Figure 7.7). As the
majority of university documents are published as HTML pages, it is not surprising to see that
the HTML pages comprise over 80% of the dataset in our collection. The second largest file
type is the PDF file. This is because people in universities usually publish research papers and
course materials as PDF files. For the remaining five percent of the data collection, they are
TXT, DOC, PPT, XML andXLS. It should be noted that each file type does not mean a single
file format. For example, theDOC category includes both Word 2003 (.doc) and Word 2007
(.docx) files.

Figure 7.7: The file type distribution of crawled webpages inSEEU dataset.

Thirdly, we study the hyperlink graph (or web grpah) generated byNutch. We do not study
the properties of hyperlinks inside each university but focus on the relations among the 12
universities by analyzing the inter-university hyperlinks. For each university, we compute the
proportions of hyperlinks pointing to each of the other universities. For example, for Western,
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the number of hyperlinks and corresponding proportions (inbrackets) to other universities is
tabulated below.

Brock: 197 (0.03) Carleton: 137 (0.02) Guelph: 267 (0.04) McMaster: 625 (0.08)
Ottawa: 276 (0.04) Queen’s: 604 (0.08) Ryerson: 169 (0.02) Toronto: 2219 (0.3)

Waterloo: 720 (0.09) Windsor: 1731 (0.23) York: 634 (0.08)

We plot the results as a heat map matrix in Figure 7.8.6 Each row represents the hyperlink
proportion vector for a university. We can find three types ofuniversity relations from this
figure.

Figure 7.8: The proportions of hyperlinks pointing to each of the other universities in SEEU
dataset. Each row is a vector of hyperlink proportion.

• Relations by authority. We can see that nearly all the universities have a relatively strong
connection to Toronto. By analyzing the detailed hyperlinkURLs, we find that most
of the hyperlinks are pointing to the UT Library (www.library.utoronto.ca). This
could be due to the reason that UT Library is the largest in Ontario so that the references
from other universities are high.

• Relations by regions. Several strong relations between pairs of universities are based
on regional neighborhood, such as Ottawa-Carleton, Guelph-Waterloo, and Ryerson-
Toronto-York. For example, the two strong cells between Guelph and Waterloo are

6The hyperlinks inside each university are extremely largerthan the hyperlinks to other universities. For
example, the number of hyperlinks insides Western is 17,757,956. We do not show them in this figure.
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caused by theTriUniversity Group of Libraries7 where long-term library collaboration
exists between the two geographically closer universities.

• Relations by collaboration. Education or research collaboration can also form rela-
tions between universities, such as Western-Windsor, McMaster-Queen’s, McMaster-
Waterloo and Carleton-Waterloo. For example, the impressive number of hyperlinks
from Western to Windsor is caused by the program expansion ofSchulich Medicine
School of Western to Windsor; the hyperlinks from McMaster and Queen’s are made by
the project ofHistorical Perspectives on Canadian Publishing8 collaborated by McMas-
ter and Queen’s; the relations between Carleton and Waterloo is formed by the hyperlinks
from Education Development Centrein Carleton toCentre for Teaching Excellence Blog
in Waterloo.

Such relations are revealed from the traditional link analysis. However, the web links between
universities are actually very sparse compared to the totalnumber of webpages. For example,
only 0.4% links in the SEEU dataset have connection to Western. Only using link analysis
may not reflect the true collaboration and be difficult to reveal the potential collaboration be-
tween universities. This can again be seen as a motivation examples for the SEEU search
engine which relies on content based data mining method (i.e., keywords matching and text
classification) for facilitating research collaboration between universities.

In this section, we have analyzed the characteristic of SEEUdataset. The analysis poses a
strong motivation of SEEU search engine for facilitating research collaboration between uni-
versities. In the next section, we evaluate SEEU by conducting two usability studies in our
university.

7.3 Usability Studies

We conducted two usability studies to evaluate SEEU. One wasconducted in the Electrical and
Computer Engineering Department of our university, and theother one was conducted in the
Computer Science Department at the same university.

7.3.1 Usability Study in the ECE Department

We collaborated with the ECE (Electrical and Computer Engineering) Department to evaluate
the usability of SEEU. The usability study was conducted as an assignment in an undergraduate
Software Engineering course9 in October 2012.

27 undergraduate students in this course were evenly split into three groups (i.e., each with
nine people). Before the usability study, the students wereasked to review our IJCAI [67]
paper to understand the motivation and basic functionalityof SEEU. After that, we handed out
the assignment which describes the evaluation guidelines including:

7http://trellis3.tug-libraries.on.ca/
8http://hpcanpub.mcmaster.ca/
9The course name is SE4452a Software Verification and Validation. More information can be found athttp:

//www.eng.uwo.ca/electrical/education/undergraduate_programs/SE4452A-2012-13Approved.

pdf.
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1. Query relevance. Evaluate the result relevance of SEEU (using hierarchy) compared with
general search engines (e.g., Google, Bing and Yahoo!) using “site:uwo.ca”.

2. Search functionality. Evaluate the functionality of SEEU, such as browsing in topic
hierarchy, searching among multiple universities and filtering by file types.

3. UI adaptability. Evaluate SEEU (compared with general search engines) on different
platforms that include but not limited to desktop PCs, MacBooks, and smart phones.

Students were asked to perform many test cases based on but not limited to the assign-
ment guidelines we gave to them. For each test case, studentsreported either it is accepted
or rejected. Specifically, an accepted case means that the search quality or UI adaptability of
SEEU is better or comparable to the general web search engines. Finally, each group submited
a professional report including all the test cases that theydid.

We received the test reports in early November 2012. In total, 1,082 test cases were con-
ducted by students. We tabulate the results in Table 7.2. As we can see, in total, about 77%
of test cases are accepted by students. For each specific evaluation task, the result is also
very good. For example, the accept rate of query relevance isabove 70% which is quite good
for an initial design of SEEU compared with commercial search engines (i.e.,Google Search
Western). This result demonstrates that in university search domain, combing keywords-based
search with hierarchies (e.g., topic, universities and filetypes) can improve search result rele-
vance.

Table 7.2: The results of a usability study in the ECE department. Accept means the search
quality or UI usability of SEEU is better or comparable to thegeneral web search engines with
“site:uwo.ca”.

Content Accept Reject Total Accept Rate
Query relevance 206 87 293 70.31%
Search functionality 331 88 419 79.00%
UI adaptability 297 73 370 80.27%
Total 834 248 1,082 77.08%

The highest accept rate is for the UI adaptability. From Figure 7.9(a), we find that students
have evaluated SEEU on seven platforms includingPC, Mac, iPhone, iPad, Android Phone,
Android PadandBlackberry Playbook. We can see that 35% of test cases were conducted on
mobile devices. The overall accept rate on mobile devices (calculated from Figure 7.9(b)) is
about 76%10. It means that SEEU on mobile devices offers students a better search experience
than general web search engines. This is as we expected. In SEEU Mobile, users can click
different categories in hierarchies to browse or filter results.This is much easier than typing
keywords on small keyboards.

10Computed as (54+ 25+ 140+ 43+ 29)/(65+ 43+ 182+ 56+ 33)= 291/379= 0.7678.



110 Chapter 7. System Implementation and Usability Studies

(a) Platform Distribution

(b) Platform Dependent Report

Figure 7.9: The platform distribution and the detailed platform dependent test report from the
usability study in the ECE department. 35% of platforms are mobile devices and the accept
rate on mobile devices is 76.78%.
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7.3.2 Usability Study in the CS Department

To make a real-world trail of SEEU, we invite all the faculty members and students of the
Computer Science (CS) Department to try SEEU. This usability study started from November
2012 till March 2013. We also found many successful search stories. For example, one fac-
ulty member was looking for collaborators doing research in“Computer Security”. He used
SEEU to quickly find researchers in other universities whileusingGoogle Search Westernal-
ways returns undesired results. In SEEU, this search task can be easily done by searching
“professor” in “Natural Sciences”→“Computer Science”→“Computer Security” with univer-
sity hierarchies selected.

To study how faculty members and students use SEEU, we further analyze the usage pat-
terns of users. From our search log, there are in total 4,336 usage records11. Based on different
combinations of using keywords and hierarchies, we categorize these records into three groups
as shown in Figure 7.10(a). They are “Flat Search” (no hierarchies), “Browse in Hierarchies”
(no keywords) and “Search in Hierarchies”. We plot the detailed statistics of the three usage
patterns in Figure 7.10(b).

(a) Classification of Usage Patterns (b) Usage Patterns Distribution

Figure 7.10: The classification of usage patterns and their distribution from the usability study
in the CS department.

We can see that the frequency of using SEEU’s hierarchies (topics, universities and files) is
about 94% while using SEEU without hierarchies is only about6% percentage. The high traf-
fic of using hierarchies may be due to the easy and fast browsing. When faculty members and
students search webpages related to academic topics, clicking the related categories in hierar-
chies makes SEEU immediately refresh the results for the selected categories. This is much
faster than typing keywords in the search box. In addition, among the usage of hierarchies,
31% of usage records do not show any keywords. This means thatin these records, faculty
members and students simply use SEEU to browse different hierarchies. A possible explana-
tion is that when searching documents in academic topics, users may not always know the right
keywords. Sometimes, junior researchers (graduate students) even do not know exactly what
they are looking for, as they may not be familiar with the domain. In SEEU, they can select

11For this analysis, we do not count the usage from our lab. Thisensures that we exclude the traffic caused by
the development and testing of SEEU in our lab.
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an appropriate category and browse the webpages. This is very useful for surveying a research
area or browsing an organization.

Besides the usability study results, we also received many comments from faculty members
and students. Basically, most of the comments give us positive ratings on the uniqueness of
SEEU. We highlight the main points of their comments.

• “ In general, the hierarchy concept was very well received. Itis an intuitive and well-
structured method of seeking more specific information.”

• “The navigation of the menus was very smooth and nice to be to use. It made making
selections easy for the different options.”

• “The ability to specify which university in Ontario that you would like search in further
adds to the uniqueness, versatility, and usefulness of SEEU.”

• “The user interface design of SEEU mobile is beautifully done. It is a great looking
webpage on all mobile devices, in both landscape and portrait.”

• “Most results were only a second or so slower than commercial sized search engines.
Assuming the bottleneck here is the server, SEEU is definitely fast enough to be scalable
and useful enough to possibly replace current university search solutions.”

From the comments of users, we see a great promise for using SEEU in universities.

7.4 Summary

In this chapter, we have presented the system implementation of SEEU. We discuss the chal-
lenges to build the SEEU search engine and propose several effective implementation solutions.
According to two usability studies (in the ECE and the CS departments in our university),
SEEU is favored by the majority of participants.



Chapter 8

Conclusions and Future Work

In this thesis, we study the problem of building a novel search engine with integrated hierar-
chies for universities. In this final chapter, we first summarize the contribution of this thesis,
then point out important research problems to be solved in future work.

8.1 Conclusions

The web is one of the most important information media for people in universities. Web search
engines, due to their success on the general web search, havebeen adopted by most universities
for searching webpages in their own domains. Basically, a user sends keywords to the search
engine and the search engine returns a flat ranked list of webpages. However, in university
search, user queries are usually related to topics (e.g., academics, campus life, media and so
on). Simple keyword queries are often insufficient to express topics as keywords. On the
other hand, modern E-commerce sites (such as Amazon and eBay) allow users to browse and
search products in various hierarchies (such as product category and region of the world). It
would be ideal if hierarchical browsing and keyword search can be seamlessly combined for
university search engines. The main difficulty is to define a commonly accepted academic topic
hierarchy, and automatically classify and rank a massive number of webpages into hierarchies
for universities.

In this thesis, we use machine learning and data mining techniques to build a novel hybrid
search engine with integrated hierarchies for universities, called SEEU (SearchEngine with
hiErarchy forUniversities).

In Chapter 3, we develop an effective hierarchical webpage classification system, and
demonstrate its efficiency and effectiveness on large-scale webpage dataset. More specifically,

• We implement a webpage feature extraction tool based on Hadoop MapReduce to extract
text features from large-scale webpage datasets.

• We implement a parallel hierarchical SVM (Support Vector Machine) classifier based on
OpenMPI.

• According to our experiments on the well-known ODP dataset,we empirically demon-
strate that our hierarchical classification system is very effective and outperforms the
traditional flat classification approach significantly.

113
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In Chapter 4, we propose the ERIC (EnhancedRanking by hIerarchicalClassification), a
novel ranking framework for search engines with hierarchies. More specifically,

• We integrate hierarchical classification probabilities, text-based query relevance and web-
page related metrics (such as PageRank) into a learning to rank framework.

• Empirical study on the well-known TREC (Text REtrieval Conference) web search datasets
show that our ranking framework with hierarchical classification outperforms the tradi-
tional flat keywords-based search methods significantly.

In Chapter 5, we study the problem of improving hierarchicalclassification when the la-
beled dataset is limited. By leveraging the top-down tree structure of hierarchy, we propose a
new active learning framework for hierarchical text classification. More specifically,

• We discuss theout-of-domainproblem in the state-of-the-art parallel hierarchical active
learning approach.

• We propose to leverage the top-down tree structure to conduct active learning for the
hierarchical classification system in a top-down manner.

• From our experiments on benchmark text classification datasets and the ODP dataset, we
find that our hierarchical active learning strategy can achieve good classification perfor-
mance yet save a considerable number of labeling effort compared with the state-of-the-
art active learning methods for hierarchical text classification.

In Chapter 6, we present a novel hierarchical classificationframework for mining academic
topics in universities. More specifically,

• We build an academic topic hierarchy based on the commonly accepted Wikipedia aca-
demic disciplines. We propose to use search engines to quickly collect the training data
for this new hierarchy.

• We train a hierarchical classifier based on the new hierarchyand apply it to predict two
million university webpages in SEEU.

• According to our comprehensive analysis, the academic topic pattern mined by our sys-
tem is reasonable, consistent with the common sense of topicdistribution in most uni-
versities, and better than the traditional LDA topic modeling approach.

In Chapter 7, based on the proposed classification and ranking methods, we discuss the
system implementation of SEEU and conduct two usability studies to evaluate the usefulness
of SEEU. More specifically,

• We index both webpage text features and hierarchical classification probabilities into the
Solr search platform, and develop a MVC (Model-View-Controller) based user interface
to separate complex visualization from user interaction.

• We conduct two usability studies to evaluate SEEU. One was conducted at the Electrical
and Computer Engineering Department at our university, andthe other one was con-
ducted at Computer Science Department at our university. SEEU has received excellent
user feedback in the initial testing and deployment at our university.
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To conclude, the main contribution of this thesis is a novel search engine with integrated
hierarchies for universities, called SEEU (SearchEngine with hiErarchy for Universities).
We discuss the challenges toward building SEEU and propose effective machine learning and
data mining methods to tackle them. With extensive experiments on well-known benchmark
datasets and real-world university webpage datasets, we demonstrate that our search engine
is better than traditional keywords-based search engine. In addition, two usability studies of
SEEU in our university show that SEEU has a great promise for university search.

8.2 Future Work

In our future work, we plan to improve our search engine in three directions.

• Firstly, we will incorporate more hierarchies to better capture users’ search intention,
such as campus life (i.e., clubs, recreation, news), peopledirectory, regions of places in
Canada, into SEEU. Some existing speciality search, such asvideo and image search,
can also be introduced. In this way users can search across multiple topic hierarchies
and different media types.

• Secondly, we plan to use active learning on crowdsourcing platforms (such as Amazon
Mechanic Turk1) to improve hierarchical classification. We can use active learning to
reduce the number of noisy training webpages crawled from search engines. In addition,
active learning can also be used to correct webpage classification errors and thus improve
hierarchical browsing.

• Thirdly, we will also study the problem of classification in dynamic (not fixed) topic
hierarchies. When a new topic (e.g., hot event, new researcharea) is emerging, it is
very likely that many webpages belonging to that topic can not be predicted into any
subcategories but stay at the top categories. Detecting such emerging topics is crucial for
maintaining the effectiveness of hierarchical classification.

Finally, we have reported our search engine to the Information and Technology Service2 in
our university. They are very interested in SEEU. We are now working with them to deploy
SEEU in our university.

1https://www.mturk.com/mturk/
2Information and Technology Service is responsible for the network management and search engine develop-

ment in Western University. Their home page ishttp://www.uwo.ca/its.
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tion of query intent detection methods. InProceedings of the 2009 workshop on Web
Search Click Data, WSCD ’09, pages 1–7, New York, NY, USA, 2009. ACM.

[14] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. InProceedings of the seventh international conference on World Wide Web 7,
WWW7, pages 107–117, Amsterdam, The Netherlands, 1998. Elsevier Science Pub-
lishers B. V.

[15] Klaus Brinker. On active learning in multi-label classification. InFrom Data and Infor-
mation Analysis to Knowledge Engineering, pages 206–213. 2006.

[16] Andrei Broder. A taxonomy of web search. InACM SIGIR Forum, volume 36, pages
3–10, New York, NY, USA, September 2002. ACM.

[17] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and
Greg Hullender. Learning to rank using gradient descent. InProceedings of the 22nd
international conference on Machine learning, ICML ’05, pages 89–96, New York, NY,
USA, 2005. ACM.

[18] Christopher J. C. Burges. From ranknet to lambdarank tolambdamart: An overview.
Technical report, Microsoft Research, 2010.

[19] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from
pairwise approach to listwise approach. InProceedings of the 24th international con-
ference on Machine learning, ICML ’07, pages 129–136, New York, NY, USA, 2007.
ACM.

[20] A. Cardoso-Cachopo and A. Oliveira. An empirical comparison of text categorization
methods. InString Processing and Information Retrieval, pages 183–196. Springer,
2003.
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Appendix A

Nutch Crawler

We use the popular ApacheNutchcrawler1 in SEEU.Nutch is an open source web crawler
written in Java. It has a highly modular architecture. Many useful plug-ins, such as data
retrieval, hyperlink analysis and document parsing, are already integrated intoNutch. Thus,
we can collect webpages in an automated manner, and reduce lots of implementation work.

We briefly describe the work flow ofnutchcrawlers. Given a crawling task (such as crawl-
ing webpages in Western),Nutch uses a Breadth-first search algorithm to crawl webpages.
Algorithm 1 shows the pseudo code ofNutchcrawling algorithm. It iteratively loops though
four basic operations (Generate, Fetch, ParseandUpdate) until all the webpages are crawled.

Input : S: A list of initial URL seeds,
N: the number of webpages to be fetched at each iteration,
T: the maximal iteration,
R: the URL matching rules

Output : All the parsed documents
1 Create the crawling database fromS;
2 t = 1;
3 repeat
4 Generatethe topN most important webpagesW that satisfiesR from the crawling database;
5 if W = ∅ then
6 Quit;
7 end
8 Fetchthe URLs inW and estimate their importance scores;
9 Parsethe crawled webpages inW;

10 Updatethe crawling database by injecting new URls;

11 t ← t + 1;
12 until t > T;

Algorithm 1: The pseudo code ofNutchcrawling algorithm.

We list the details of the four operations as follows.

• Generate. The Generatecommand reads the crawling database, filters out unwanted
URLs by the URL matching rules and picks up the topN most important URLs inW

1The home page ofNutchis http://nutch.apache.org/.
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128 Chapter A. Nutch Crawler

(importance scores are computed inFetchcommand). Specifically, whenNutchcrawls
webpages in a university, there usually exists many irrelevant webpages, such as web-
pages from Youtube and Facebook. InNutch, we can set up URL matching rules to filter
out these unnecessary webpages. For example, to restrictNutch to crawl webpages in
Western only , we can set up a Regex rule as “+ˆhttps?://([a-z0-9]*\.)*uwo.ca”. In addi-
tion, as we mainly study text classification and retrieval inthis thesis, we need to restrict
Nutch to skip multimedia files (e.g., images, videos, compressed archives and so on).
We also skip the URLs containing special characters (e.g., &,?,=) as dynamic queries. A
sample of the URL matching rules that used for crawling webpages from Western can be
seen in Table A.1.

Table A.1: A sample of the URL matching rules for crawling webpages from Western.

Description Regex Rule

Skip multimedia
-\.(gif|jpg|png|ico|css|sit|eps|wmf|zip|rar|bz2|tar|jar|mpg|gz|rpm|tgz|mov
|exe|jpeg|bmp|js|sdc|iso|7z|mp3|flv|avi|AVI |wmv|pdb|psd|mp4|wav|sql
|deb|vrdfits|rdvfits|fits|debug|class|dmg|dtd)

Skip queries -[*!@&]
Only Western +ˆhttps?://([a-z0-9]*\.)*uwo.ca

• Fetch. TheFetchcommand crawls the webpages from the URL listW and store the raw
webpage content in a local database. WhenNutchvisits a webpage, theFetchcommand
updates its importance score by the OPIC (Adaptive On-line Page Importance Computa-
tion) algorithm [1].

The basic idea of OPIC algorithm is to model the web as a simplefinical system. The
importance score of each webpage is modeled as the total number ofvirtual cashflowing
through it during crawling. Specifically, OPIC initializesa cash account for each web-
page. When visiting a webpage, OPIC add its current cash to its history, distribute the
cash uniformly to all its adjacent webpages and clear its account. After a finite number
of iterations, the importance score of each webpage is computed as the sum of history
cash and the current cash.

The importance score is used forGeneratecommand to bias the selection of the topN
most important webpages. It can also be used as an approximation of the PageRank [14]
scores as proved in [1].

• Parse. TheParsecommand parses the crawled webpages and extracts text data.Nutch
has already integrated many parser plug-ins to process different file types, such as PDF,
DOC and XML. When parsing a file type,Nutchwill call the corresponding parser plug-
in to extract the text data.

• Update. TheUpdatecommand updates the crawling database by injecting new URLs
extracted by theFetchcommand.
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