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Abstract 

Functional brain parcellation – the delineation of brain regions based on functional 

connectivity – is an active research area lacking an ideal subject-specific solution 

independent of anatomical composition, manual feature engineering, or heavily labelled 

examples. Deep learning is a cutting-edge area of machine learning on the forefront of 

current artificial intelligence developments. Specifically, autoencoders are artificial neural 

networks which can be stacked to form hierarchical sparse deep models from which high-

level features are compressed, organized, and extracted, without labelled training data, 

allowing for unsupervised learning. This thesis presents a novel application of stacked sparse 

autoencoders to the problem of parcellating the brain based on its components’ (voxels’) 

functional connectivity, focusing on the medial parietal cortex. Various depths of 

autoencoders are investigated, yielding results of up to (68 ± 3)% accuracy compared with 

ground truth parcellations using Dice’s coefficient. This data-driven functional parcellation 

technique offers promising growth to both the neuroimaging and machine learning 

communities.  

Keywords 

Deep Learning, Machine Learning, Unsupervised, Sparse, Stacked, Autoencoders, Brain 

Parcellation, Segmentation, fMRI, Functional Connectivity. 
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Chapter 1  

1 Introduction and Literature Review 

Artificial intelligence has developed significantly in recent years as machine learning and 

classification algorithms have become more sophisticated and powerful. Currently, one of 

the most popular and promising approaches to machine learning is deep learning (Ng, 

Ngiam, Foo, Mai, & Suen, 2013). Deep learning involves learning the hierarchical 

structure of data by initially learning simple low-level features which are in turn used to 

successively build up more complex representations, capturing the underlying regularities 

of the data. Stacked sparse autoencoders are a type of deep network capable of achieving 

unsupervised learning – a type of machine learning algorithm which draws inferences 

from the input data and does not use labelled training examples. Sections 1.1 – 1.6 

discuss the history and theory behind deep learning. 

Functional brain parcellation is the task of delineating the brain based on functional 

connectivity. This active area of neuroscientific research lacks an ideal standard protocol 

as the current techniques assume unrealistic similarity of anatomic composition among 

subjects, depend on manual feature engineering, or heavily labelled examples (further 

discussed in section 1.7). Therefore, the motivation of this thesis will be to develop a 

solution for unsupervised brain parcellation using a deep network to automatically 

delineate brain regions based on functional connectivity. 

1.1 History of Artificial Neural Networks 

Research of artificial neural networks was developed for two distinct areas of study: to 

model biological processes in the brain, and to investigate the application of neural 

networks to artificial intelligence (AI). While there are parallels between the two 

domains, neural networks used in AI are generally simplified models of biological neural 

processing and the degree to which artificial neural networks imitate actual brain function 

is not fundamentally relevant to the machine learning processes presented.  
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Artificial neural networks were initially developed by McCulloch and Pitts in 1943. A 

neuron is used to represent a computational unit that takes some input values and 

produces an output, based on an activation function (McCulloch & Pitts, 1943). For 

example, a binary threshold activation function (commonly known as the Heaviside step 

function) is an all-or-nothing approach which will result in the neuron “firing” 

(outputting results) if the output value is 1, while it will not fire if the output value is 0. 

McCulloch and Pitts developed this neural model using electric circuits and proposed that 

modelling neurons using this binary threshold activation function mimics first order logic 

sentences. That is, providing a neuron with different combinations of 0 (false) and 1 

(true) inputs can accurate represent AND, OR, NOT, NAND, and NOR statements at the 

output. However, it was later shown that the single model (one neuron) could solve 

neither the exclusive-or (XOR) nor exclusive-nor (XNOR) (Minsky & Papert, 1969). 

In the late 1940s, Donald Hebb improved the neural network by proposing that neural 

pathways are strengthened the more they are used, pointing out that this concept is 

fundamental to the process of human learning and memory (Hebb, 1949). Thus, 

McCulloch and Pitts's neuron model was altered to account for this learning process. The 

solution involved assigning non-identical weights to each input. Consequently, an input 

of 1 may possess more or less weight, relative to the total threshold. Based on these new 

developments, Frank Rosenblatt introduced the perceptron, a neural model took   input 

values (   to   ) and   corresponding weights (   to   ) (Rosenblatt, 1962). Each of the 

input values is weighted and summed at the node which only “fires” (outputs) if the 

threshold value is reached. While the perceptron model offered hope for artificial neural 

networks, it was later shown that the perceptron could not be trained to recognize many 

classes of patterns as this single layer network was only capable of learning linearly 

separable patterns. Added the fact that XOR and XNOR statements could not be 

represented, the 1960s to 1990s saw a drastic decline of the use neural networks for 

practical machine learning (Larochelle, Bengio, Louradour, & Lamblin, 2009) as large 

single layer neural networks were inefficient and ineffective at learning tasks (Minsky & 

Papert, 1969). 
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1.2 Modern Artificial Neural Networks 

Based on the perceptron, Figure 1 shows the simplest neural network consisting of just a 

single neuron (computational unit) that takes   input values,           , and a bias 

intercept term which is a constant term (not included in the input) used to shift the 

activation function to the left or right. 

 

Figure 1: A single neuron with 3 input values, a bias term, and 1 output hypothesis value 

(Ng, Ngiam, Foo, Mai, & Suen, 2013) 

Given an input,  , the network outputs a hypothesis     ( ) where   and   are weight 

and bias parameters which can be learned from the input data (Ng, Ngiam, Foo, Mai, & 

Suen, 2013). Thus, this input data acts as a training set to train the network to learn these 

parameters. This neuron’s hypothesized output is defined as 

 

    ( )    (∑      

 

   

)    
 

Equation 1 

where    and    represent the weight connection and input to the  -th of   units, 

respectively. In addition,        is equal to the activation function,  , which will 

correspond to the sigmoid function used to scale the outputs to a range of [0,1]: 

 

 ( )  
 

     
 

Equation 2 

The sigmoid function is an alternative to the threshold function used in earlier literature.  
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A more complex neural network is formed by joining many neurons together, so that the 

output of one neuron can be the input to any another neuron in the network. These 

neurons can be organized into layers, as shown in Figure 2.  

 

Figure 2: A neural network organized into 3 layers. L1 represents the input layer, L2 is a 

hidden layer, and L3 is the output layer. (Ng, Ngiam, Foo, Mai, & Suen, 2013) 

In Figure 2, the input values are also denoted as neuron-like units. The leftmost layer of 

the network is the input layer. The +1 bias unit corresponds to the intercept term. This 

network has 3 input units (not counting the bias). The rightmost layer is the output layer 

which happens to only have 1 output unit. Meanwhile, the middle layer is referred to as a 

hidden layer, as its values are not visible in the input or output data. There are 3 hidden 

units in this network. The connections between each unit (excluding the bias units) each 

represent a weight connection. A matrix,   , can be composed of all the weighted 

connections between units of the adjacent layers,   and    . Therefore the parameters of 

the network are (   ) where (   )  (           ) for the 3 layer model. The 

output of each unit in layer   is represented by an activation vector,   , which represents 

learned features from that layer, analogous to the hypothesis  ( ). 

1.3 Deep Learning 

When tasked with a problem to solve, humans often decompose the problem into smaller, 

easier-to-solve sub-problems at different levels of representation. Humans are able to 
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inadvertently exploit intuition and describe concepts in hierarchical ways, based on 

multiple levels of abstraction. For example, an individual seeks to identity an image. 

Taking the entire image into account, the individual looks specifically at the important 

features of the image. The individual sees a human form in the image, notices facial hair, 

body structure, and clothing and determines that the image is a man. That is, the 

individual has identified the image by breaking it down into smaller features, such as 

“has beard”, “has broad shoulders”, “is wearing a suit” and then determined a 

classification for the image. The problem is broken down on many levels. Without much 

conscious thought, humans look at much smaller features of images, such as lines, 

curves, and edges to determine the higher-level features. These numerous highly-varying, 

non-linear features organized into layers are what constitute a deep network (Bengio, 

Lamblin, Popovici, & Larochelle, 2007). 

Deep learning generally refers to learning models which use feature hierarchies with 

many layers. Thus, a deep artificial neural network is a multi-layer network composed of 

input and output layers, in addition to numerous hidden layers between the input and 

output. Those hidden layers are composed of hidden (or “latent”) units that can be used to 

describe underlying features of the data. Figure 3 depicts a common facial recognition 

task, in which the input layer represents the pixels of the image while the output is the 

corresponding identity (or classification) of the face, while the hidden layers can 

represent low-level features, such as edges and shapes, to high-level features, such as 

“big eyes” or “small nose”. Learning the structure of a deep architecture aims to 

automatically discover these abstractions, from the lowest to highest levels. Favourable 

learning algorithms would be unsupervised, depending on minimal human effort, while 

allowing the network to discover these latent variables on its own, rather than requiring a 

pre-defined set of all possible abstractions. The ability to achieve this task while requiring 

little human input is particularly important for higher-level abstractions as humans are 

often unable to explicitly identify potential hidden, underlying factors of the raw input 

(Bengio, 2009). Thus, the power to automatically learn important underlying features 

fuels the popularity of deep architectures as the wide applications of deep machine 

learning become increasingly attainable.   
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Figure 3: Facial recognition using a deep neural network, demonstrating the multiple 

levels of abstraction of the task, from low dimensional pixels to complex shapes and 

objects defining a human face. (Jones, 2014) 

Deep networks were introduced in the 1980s in Fukushima's Neocognitron (Fukushima, 

1980)  which presented a hierarchical multi-layered neural network used for pattern 

recognition, such as the recognition and classification of handwritten characters. 

However, early deep multilayer networks were often believed to be too difficult to train 

and they were empirically found to be less effective than networks with only one or two 

hidden layers (Tesauro, 1992). Consequently, deep learning was not investigated much in 

machine learning literature.  
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Sepp Hochreiter’s 1991 thesis identified the issue as “the vanishing gradient problem” 

which had led to this major failure of deep artificial neural network (Hochreiter, 1991). 

The problem stemmed from the fact that as a layer of neural network eventually learned a 

task reasonably well, the learned features were not successfully propagated to successive 

layers in the network. The deeper layers did not receive information in order to account 

for these new learned features. Backpropagation via gradient descent had become a 

crucial step of training deep networks (Werbos, 1974). However, due to the lack of 

computing power available at the time, it was thought to be too slow of an algorithm for 

practical training of neural networks, resulting in simple methods such as Support Vector 

Machines (SVMs) monopolizing the field (Mourão-Miranda, Bokde, Born, Hampel, & 

Stetter, 2005). SVMs are sufficient models for basic, linearly separable data, but lacked 

the capability of neural networks to learn for complex, non-linear data.   

In 1992, Hochreiter’s mentor, Jürgen Schmidhuber, attempted to solve the problem 

associated with deep networks by organizing a multi-level deep hierarchy which could be 

effectively pre-trained one level at a time via random initialization and unsupervised 

learning, followed by a supervised backpropagation pass for fine-tuning (Schmidhuber, 

1992). This method allows each level of the hierarchy to learn a compressed 

representation of the input observation which is in turn fed into the next level as the 

successive input. The “vanishing gradient problem” was solved, but it was not until 2006 

that deep learning regained and surpassed its original popularity.   

By the mid-1990s to early 2000s, the standard learning strategy for deep neural networks 

often involved randomly initializing the weights of the network (pre-training), followed 

by backpropagation via gradient descent. However, this method has been empirically 

shown to find poor solutions for networks with multiple hidden layers (Larochelle, 

Bengio, Louradour, & Lamblin, 2009). The computational power to arrive at satisfactory 

results was still out of reach.  As a result, shallow architectures continued to be the 

predominant structure for machine learning algorithms. These shallow architectures 

consist of only two-to-three levels of data-dependent computational elements. For 

example, kernel machines, such as Support Vector Machines (SVMs), and single-layer 

neural networks were popular learning algorithms that made use of shallow architectures.  
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However, it has been shown that deep architectures can be significantly more efficient 

(sometimes exponentially) than shallow architectures with respect to computational 

elements and parameters needed to fully represent some functions (Bengio, Lamblin, 

Popovici, & Larochelle, 2007). Shallow architectures are seriously flawed in their 

inefficiency regarding the number of computational units (hidden units), and 

consequently require a large supply of training examples (Bengio & LeCun, 2007). On 

the contrary, the non-linearity of deep architectures allows highly-varying functions to be 

represented compactly, requiring fewer parameters (Bengio, Lamblin, Popovici, & 

Larochelle, 2007). While it is not the case that deep architectures are always optimal over 

shallow architectures (Salakhutdinov & Murray, 2008), complex high-dimensional 

problems with sufficient data to capture the complexity are solved more efficiently and 

accurately when adopting a deep architecture for learning (Larochelle, Bengio, 

Louradour, & Lamblin, 2009; Lee, Laine, & Klein, 2011). Thus, determining efficient 

learning algorithms for deep architectures became a popular area of interest in the 

machine learning field.  

While deep architectures were promising, the issue remained that many negative 

experimental results were suggesting that gradient-based training of randomly initialized 

supervised deep neural networks easily got stuck in local minima or plateaus (Bengio, 

Lamblin, Popovici, & Larochelle, 2007) and that it becomes increasingly difficult to find 

a good generalization as the architecture got deeper (more layers) (Larochelle, Bengio, 

Louradour, & Lamblin, 2009). 

The algorithm popularized by Geoff Hinton in 2006 revolutionized deep learning as it 

employs a deep architecture and introduces a fast, greedy learning method used to 

construct multilayer directed networks, layer-by-layer (Hinton, Osindero, & Teh, 2006). 

As a result, this algorithm offers a solution to the issue of poor optimization which 

originally stemmed from random initialization of the network’s parameters. The 

algorithm can quickly find a good set of parameters for the network, even in models with 

millions of parameters and many hidden layers. The training method also involves a fine-

tuning component which is capable of learning a very successful generative model, 

outperforming discriminative methods and yielding state-of-the-art results of 
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classification of hand-written digits (Hinton, Osindero, & Teh, 2006). A major 

breakthrough of this generative model is that it can easily interpret the distributed 

representations in the hidden layers of the deep network. 

1.4 Restricted Boltzmann Machines and Deep Belief 

Networks 

The network used by Hinton is composed of several stacked restricted Boltzmann 

machines (RBMs). RBMs (originally named “Harmoniums”) were first introduced in 

1986 by Paul Smolensky. A single RBM consists of a layer of unconnected “visible” 

input units,  , that have undirected, symmetrical connections with another single layer of 

hidden units,  . The network is fully connected between the two layers, yet no units 

within the same layer are connected to one another, forming a bipartite graph 

(Smolensky, 1986). Each connection between units of the two layers has an associated 

weight that must be learned, represented by a weight matrix,   (Figure 4). Data can be 

generated from an RBM by initializing a random state in one of the layers and then 

performing alternating Gibbs sampling, a Markov Chain Monte Carlo algorithm which 

approximates the distribution based solely on previous states. Given the current states of 

the units in one layer, all the units of the other layer are then updated simultaneously. 

This process is repeated until the entire system is sampling from its equilibrium 

distribution (Hinton, Osindero, & Teh, 2006). RBMs are generative models, meaning that 

the training period results in a probability distribution of the training data being learned. 

When the model is later used for testing, it may encounter new, unfamiliar data, but the 

probability distribution can account for these previously unseen occurrences, yielding a 

likely, probabilistic output.  
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Figure 4: A restricted Boltzmann Machine with weighted connections between a layer of 

4 visible input units, x, and a layer of 3 latent hidden units, h.  

 

Hinton’s proposed learning algorithm acts on several RBMs stacked on top of one 

another to form a generative model called a Deep Belief Network (DBN). The leftmost 

layers (or “lower layers” in some graphical representations) of the network are able to 

extract low-level features from the input,  . These lower level features are fed into the 

rightmost layers (or “upper” levels) which represent more abstract features and concepts 

which can explain the input observation. That is, the model initially learns simple 

concepts which it uses to build more abstract, higher-order concepts (Hinton, Osindero, 

& Teh, 2006; Larochelle, Bengio, Louradour, & Lamblin, 2009). To achieve this 

learning, the algorithm involves greedily pre-training one layer at a time, using 

unsupervised learning at each level in order to preserve information from the input, 

followed by a supervised fine-tuning pass through the entire network (Bengio, Lamblin, 

Popovici, & Larochelle, 2007) Once the stack of RBMs has been learned, the entire 

stacked DBN can be viewed as a single probabilistic model.  

This algorithm is particularly interesting as it provides a method for high-level 

representations to be learned from low-level data, depending mostly on a large supply of 

unlabelled input and limited labelled data which is used to slightly fine-tune the model 

for the current task. This revolutionary learning algorithm for deep architectures 

eliminates the problem caused by random initialization leading to poor optimization 

solutions. This greedy layer-wise training strategy is a crucial tool for improved 

optimizations as it initializes the weights in a region near a good local minimum 

(greedily), resulting in internal representations that are high-level abstractions of the 

input, leading to better generalizations (Bengio, Lamblin, Popovici, & Larochelle, 2007). 
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The learning strategy is greedy in that optimization occurs by initializing the parameters 

of each layer near a good local minimum, independent of the other layers. Adjustments to 

the strength each neuron-like unit depends only on the states of the pre-synaptic and post-

synaptic neurons (Hinton, Osindero, & Teh, 2006). The greedy layer-wise algorithm 

involves first learning the parameters between the first 2 layers, while assuming all the 

other parameters in the remainder of the network are frozen (tied; unchanging). Once the 

first set of parameters is learned, the algorithm freezes all layers except the parameters 

between the next 2 layers. This process continues until the parameters between every 

layer in the network are optimized.  

There is no exact solution to the number of hidden layers required to create an optimal 

deep network, nor for the number of hidden units per layer. The most common approach 

is to validate the model by training and testing on various numbers of hidden layers and 

units. The optimal number of hidden layers in the network tends to depend on the nature 

of the input data, specifically how it is organized hierarchically in various levels of 

abstraction (Heaton, 2008). The decision of units used is crucial to the success of the 

model as it greatly influences the outcome. Too few hidden units results in underfitting, 

where the model is unable to adequately detect the structure in complex datasets. 

Meanwhile, too many hidden units increase the amount of training time and cause 

overfitting, where the information contained in the training set is not enough to train all 

the neurons (Heaton, 2008). Various pieces of literature provide different “rules of 

thumb” regarding the number of hidden units per layer where each layer should have 2/3 

the number of input units (Heaton, 2008), between the number of input and output units 

(Blum & Rivest, 1992), twice the number of input units (Berry & Linoff, 1997), or 1/30
 

of the number of training cases (Heaton, 2008). However, there is no generally accepted 

support for these suggestions, so validation with test cases is frequently used to crudely 

determine the optimal number for the particular dataset. 

Deep networks have developed as tools for a wide variety of applications including 

classification tasks (Bengio, Lamblin, Popovici, & Larochelle, 2007; Larochelle, Bengio, 

Louradour, & Lamblin, 2009), regression (Salakhutdinov & Hinton, 2008), 

dimensionality reduction (Hinton & Salakhutdinov, 2006), robotics (Hadsell, Erkan, 
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Sermanet, Scoffier, Muller, & LeCun, 2008), and natural language processing (Collobert 

& J. Weston, 2008). 

Thus, the original idea of deep learning was not wrong. The earlier setbacks associated 

with deep architectures were results of not using enough data and being limited in 

computational power. Previous deep neural networks did not successfully learn because 

they were not given enough time. However, pre-training allows the network to build a 

model that is likely to succeed (rather than starting from randomly initialized 

parameters), resulting in less time required by the network to learn.  

1.5 Training a Deep Model 

Hinton, et al. (2006) provide an algorithm to pre-train each layer of the DBN using an 

unsupervised approach. This greedy layer-wise unsupervised learning algorithm first 

involves training the lower layer of the model with an unsupervised learning algorithm 

which yields some initial set of parameters for that first layer of the network. That output 

from the first layer is a reduced representation of the input. This output then acts as the 

input for the following layer which is similarly trained, resulting in initial parameters for 

that layer. Again, the output from this second layer is used as the input for the next layer 

until the parameters for each layer are initialized. The overall output of the network is 

delivered as the final activation vector.  

Following this unsupervised pre-training phase of stacked layers, the entire network can 

then be fine-tuned in the opposite direction using backpropagation in this supervised 

learning phase. Backpropagation works by continually readjusting the weights of the 

connections between units of the network. The readjustment maintains the goal of 

minimizing the difference between the actual output vector of the network (the network’s 

activation) and the desired output vector (the true target value). As the weights are 

adjusted, the internal hidden units better represent important features of the task domain 

which are not explicitly part of the input or output values. This ability to capture useful 

new features from the data makes backpropagation a more successful algorithm than 
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earlier, simpler techniques such as the perceptron’s convergence procedure (Rumelhart, 

Hinton, & Williams, 1986). 

1.6 Autoencoders 

In artificial neural networks, backpropagation was developed for improved representation 

learning. The process of backpropagation involves readjusting the weights, depending the 

on the existence of some expected output. In the 1980s, autoencoders (also called “auto-

associators”) were introduced in order to perform backpropagation without a teacher 

(Bourlard & Kamp, 1988). That is, autoencoders offer a method of automatically learning 

features from unlabelled data, allowing for unsupervised learning.   

An autoencoder is an artificial neural network that is able to be trained in a fully 

unsupervised way. In previous neural networks, labelled data were required to act as 

training examples essential to the backpropagation fine-tuning pass as those labels were 

used to readjust the parameters. However, autoencoders provide the opportunity to learn 

without this dependence on labelled data. An autoencoder neural network performs 

backpropagation by setting the target output values equal to the input values, and thus the 

autoencoder is trained to minimize the discrepancy between the data and its 

reconstruction (that is, the difference between the actual output vector and the expected 

output vector where that expected output is the same as the input vector). As a result, 

autoencoders are able to learn without a teacher.  

An autoencoder consists of three or more layers: an input layer; some number of hidden 

layers which forms the encoding; and an output layer whose units correspond to the input 

layer. Hinton et al. defined an autoencoder as a nonlinear generalization of principal 

components analysis (PCA) which uses an adaptive, multilayer “encoder” network to 

transform the high-dimensional input data into a low-dimensional code, while a similar 

“decoder” network is able to recover the data from the code (Hinton & Salakhutdinov, 

2006). That is, an autoencoder network with the same number of hidden units as input 

and output units would be a (linear) PCA model. 



14 

 

Since the outputs of the network are equal to the input, the autoencoder’s goal is to learn 

an approximation of the identity function (Ng, Ngiam, Foo, Mai, & Suen, 2013). While 

this may seem like a trivial learning task, placing constraints on the network can reveal 

interesting structure of the data. An example of a constraint on the network is a limitation 

to the number of hidden units in the hidden layer, thus forcing the network to learn a 

compressed representation of the input. This method allows for the discovery of internal 

representations of the data that rely on fewer intermediate features. For example, for a 

facial recognition task, each pixel of the image may be represented at the input layer. 

That data is compressed in the hidden layer into features such as “small mouth” or “wide 

eyes.” That is, the input data of the face can be described using less data than is actually 

given in the image. That compressed data can then be uncompressed in order to re-

represent the input data at the output layer, allowing the facial image to be reconstructed 

entirely from the learned features.  

Rather than limiting the number of hidden units, an alternative constraint to the network 

could be the sparsity of hidden units that are activated. Sparsity is a useful constraint 

when the number of hidden units is large (even larger than the number of input values) 

that can allow for the discovery of interesting structure of the data (Ng, Ngiam, Foo, Mai, 

& Suen, 2013). A sparse autoencoder has very few neurons that are active. A neuron in 

an artificial neural network is informally considered “active” (or “firing”) if its output 

value is close to 1, while it is considered “inactive” if its output value is close to 0. The 

concept of creating a sparse autoencoder involves constraining the neurons to be inactive 

most of the time (Ng, Ngiam, Foo, Mai, & Suen, 2013). As a result, even with many 

hidden units, the data is constrained, forcing the network to learn the important features 

of the data in order to reconstruct it.  

With deep architectures, learning-feature hierarchies are formed when lower-level 

features are learned and used to compose higher levels of the hierarchy. Similar to how 

RBMs are stacked to form DBNs, this deep approach can be extended to non-linear 

autoencoders to form a stacked autoencoder network (Bengio, Lamblin, Popovici, & 

Larochelle, 2007; Larochelle, Bengio, Louradour, & Lamblin, 2009). A stacked sparse 

autoencoder is a neural network composed of multiple layers of sparse autoencoders in 
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which the outputs of each layer is fed into the inputs of the successive layer (Ng, Ngiam, 

Foo, Mai, & Suen, 2013).  However, optimizing the weights of autoencoders is a 

challenging task. Large initial weights cause autoencoders to find poor local minima, 

while small initial weights result in tiny gradients in the early layers, proving it infeasible 

to train many-layered autoencoders in this condition (Hinton & Salakhutdinov, 2006). 

However, if the initial weights are already close to a good solution, optimization 

techniques, such as gradient descent, work well. It follows that employing a similar 

“greedy layer-wise” learning algorithm (which was used for DBNs) to stacked 

autoencoders is an effective method of pre-training the network of a deep autoencoder 

(Hinton & Salakhutdinov, 2006). 

To see the structural composition of this stacked autoencoder, first consider the single 

layer autoencoder network in Figure 5. Let     
  represents the weighted connection 

between the unit   of layer  , and unit   of layer    , while   
  is the bias associated with 

unit i in the layer    . These values (    
        

 ) are organized in the matrices for each 

unit and layer of the network. Considering a single independent layer model (i.e.: a single 

autoencoder of the stack, composed of an input, output, and hidden layer), the    matrix 

is composed of the weighted connection between the input data and the hidden units, 

while    contains the weighted connection between the hidden units and the output. 

Similarly,    represents the biases from the bias unit in the input layer to each hidden 

unit, while    represents the bias from the bias unit in the hidden layer to the output 

layer. That is, each single layer module has a set of parameters (   )              

representing the weights and biases from the input units to the hidden units, and from the 

hidden units to the output units, as shown in Figure 5.  
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Figure 5: A single layer autoencoder which will be the first in the stack. The weighted 

connections from the input layer,  , join to the hidden layer,  , represented by a matrix, 

  , and the weights from the hidden layer,  ,  to the output units,  ̂, (the representation 

of the input) are stored in the matrix    (Ng, Ngiam, Foo, Mai, & Suen, 2013). 

Note that the output units of the single autoencoder in Figure 5 will not actually present 

in the stacked autoencoder. They are simply used for the training of the single layer. 

Rather, the activation vector which represents the features detected from the hidden layer 

are used as input to the following autoencoder which is added to the stack, as seen in 

Figure 6.  That is, the hidden units of the first autoencoder can be considered the visible 

input units to the next autoencoder. As expected, the output units of the second 

autoencoder in the stack are a representation of the hidden units of the first autoencoder 

(i.e.: the current autoencoder’s input units). Recalling that each single autoencoder has a 

set of parameters (   )              representing the weights and biases from the 

input units to the hidden units, and from the hidden units to the output units, let 

                    represent the parameters             for the  -th autoencoder. 

𝑊  𝑊  

𝑏  
𝑏  

𝑊  𝑊  

𝑏  𝑏  
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Figure 6: The second autoencoder in the stack. The output from the first autoencoder’s 

hidden feature layer (Figure 5) is used as input to the second autoencoder (Ng, Ngiam, 

Foo, Mai, & Suen, 2013).  

To perform this greedy layer-wise pre-training, consider a stacked autoencoder composed 

to    layers. The stacked autoencoder can be greedily pre-trained in order to initialize the 

parameters of this deep network, in a similar way as the DBN was trained: train the first 

layer using the raw input to obtain parameters                     for the first 

autoencoder in the stack, while the rest of the parameters in the remainder of the network 

remain fixed. With these initialized parameters, the raw input can be transformed into a 

vector,   , consisting of the activations (learned features) of the hidden units. The 

autoencoder is able to map the input directly to the hidden layer using a parameterized 

closed-form equation called an encoder (Ng, Ngiam, Foo, Mai, & Suen, 2013): Noting 

that    represents the initial input to the network, x, the activation vector of a layer, l, is 

given as  

 
    (  ) Equation 3 

𝑊    𝑊    

𝑏    𝑏    
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where  ( ) is the sigmoid function, while the step is run forward to acquire the following 

variable such that 

 
                  Equation 4 

In other words,      denotes the total input to the layer    , including the bias, which is 

calculated based on the previous activation vector. This encoding step is thus able to 

transform the high-dimensional input data into a lower-dimensional code. 

The decoding steps are similarly used to map from these learned features from the hidden 

space back to the reconstruction of that input. The decoder is a parameterized closed-

form equation used to “undo” the encoding function where 

 
      (    ) Equation 5 

 
                          Equation 6 

Thus the decoder recovers the high-dimensional data from the code in order to create the 

reconstruction of the input (Ng, Ngiam, Foo, Mai, & Suen, 2013).  

This output activation vector,   , can then be used as input to train the second layer, 

yielding the parameters                    , and thus a new set of features given by the 

activation vector is provided. This procedure is repeated for all subsequent layers of the 

network, as the output of each new layer serves as input into the next layer, while the 

remaining layers are frozen. Finally, the output activation vector     from the final layer 

   gives the activation of the deepest layer of hidden units which, for the autoencoder, is 

the reconstruction of the input vector.  

1.7 Brain Parcellation 

While the fixed anatomical structure of the brain has been thoroughly studied and 

documented, the functional connectivity of the brain is a dynamic, elusive, and less-

understood domain. Unlike other organs, such as the heart, which have dynamic structure 
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with well-defined functions, the brain's static structural networks gives rise to dynamic 

functional connectivity which performs a vast array of tasks, facilitating perception, 

cognition, and actions (Park & Friston, 2013). The mapping of functional connectivity 

through the analysis of resting-state fMRI was first demonstrated in 1995 (Biswal, Zerrin 

Yetkin, Haughton, & Hyde, 1995), leading neuroscientists to examine the relationship 

between resting-state connectivity and the functional organization of the brain, associated 

with processes such as language, motor skills, and memory. To better understand how 

such diverse, complex function can arise from the brain's static neuronal architecture, 

researchers aim to accurately parcellate individual brains based on its functional 

connectivity. 

Brain parcellation refers to the delineation of structural and functional regions of the 

brain (Lee, Laine, & Klein, 2011). It is an important and challenging task to establish 

these correspondences across structural and functional brain images. The ability to parcel 

out functional brain regions non-invasively would enhance the quality of various 

experimental investigations, leading to more accurate across-subject comparisons of 

independent functional regions (Cohen, et al., 2008). Successful brain parcellation 

provides great benefits to clinical neuroscience and cognitive psychology as the relations 

between structure and function become better defined.  

Parcellation can be performed by analyzing functional images of the brain. Functional 

neuroimaging allows researchers to study the brain's dynamic functional relationships in 

real-time, based on the current state of the brain's activity, rather than simply the fixed 

anatomical structure of the brain. Current modes of acquiring functional neuroimaging 

include fMRI, PET (invasive), fNIRS, EEG and MEG (poor spatial resolution).  

Functional magnetic resonance imaging (fMRI) permits researchers to associate 

functional activity with specific neuroanatomical regions of the brain with a high degree 

of spatial resolution. This non-invasive tool detects changes in blood oxygenation levels 

and changes in blood flow resulting from neural activity. When a brain region is more 

active, it consumes more oxygen, resulting in increased blood flow to the active area 

(Devlin, 2008). As a result, fMRI are able to map parts of the brain which are involved in 
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a particular mental process. The 3-dimensional brain image is composed of units called 

voxels, each representing a cube of brain tissue. A voxel is a 3-dimensional building 

block of a 3-dimensional fMRI volume, analogous to a pixel being a 2-dimensional 

building block of a 2-dimensional image on a screen. Advances in fMRI analysis have 

led to the discovery of biomarkers and diagnostic indicators for a variety of psychological 

and neurodegenerative disorders (Henley, Bates, & Tabriz, 2005). The ability to 

accurately label various brain regions based on function is imperative to understanding 

the relationships between brain function and structural appearance. A full understanding 

of these correspondences can be applied to understanding the underlying causes of 

various metabolic diseases and fine-scale lesions in the brain, potentially leading to major 

advancements in treating and curing diseases such as Alzheimer's disease (Henley, Bates, 

& Tabriz, 2005). 

Many experiments have been developed which use functional neuroimaging to identify 

brain regions associated with various cognitive processes. Oftentimes, these 

investigations study which brain areas are activated while some task is being performed 

(relative to other tasks). However, these experiments are based on a priori hypotheses 

since those experiments are designed for the purpose of acquiring this knowledge 

(Mourão-Miranda, Bokde, Born, Hampel, & Stetter, 2005). Ideally, a natural, a posteriori 

method of searching for functional localization can be developed and implemented for 

general use. 

There currently exists no standard protocol for such parcellation of the brain into discrete 

regions (Bohland, Bokil, Allen, & Mitra, 2009). A variety of software parcellation 

packages are available, many of which depend on a labelled brain atlas which associate 

physical structure with function. However, each atlas is often developed using a 

parcellation protocol which has only been applied to a single individual or it is simply an 

amalgamation of various brains (Lee, Laine, & Klein, 2011), thus these software 

packages are often inconsistent as they offer different descriptions of neuroanatomical 

organization. An alternate approach to parcellation involves researchers co-registering 

brain images to each other, using a template or labelled brain atlas of the same imaging 

modality. However, these registration methods assume image similarity is a stand-in for 
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anatomical similarly which is often not the case (Lee, Laine, & Klein, 2011). Recent 

large-scale efforts have been established to manually apply standard brain parcellation 

techniques to many different brain images (www.braincolor.org/protocols), but manual 

parcellation is tedious, time-consuming, and heavily dependent on expertise the area 

(Lee, Laine, & Klein, 2011). Automatic brain parcellation is a significantly more 

reasonable approach than manual, yet the intrinsic variability of the human brain makes 

the task of defining consistent correspondences across brains a challenging one for both 

humans and computers (Lee, Laine, & Klein, 2011).  

The ability to parcellate functional regions of the brain without relying on standard 

mappings allows for subject-specific parcellation, providing better diagnoses and 

understanding of unhealthy or abnormal brains. For example, stroke patients suffer 

permanent damage resulting in lesions in the brain and they subsequently lose the ability 

to perform corresponding functions which were originally attributed to the now-damaged 

area. However, some patients are able to recover the lost function over months or years. 

While the irreversible damage is still present, this re-learning of the function indicates 

that another area of the brain has learned to compensate and provide the functionally lost 

(Schmah, Hinton, Zemel, Small, & Strother, 2008). Therefore, a subject-specific 

functional parcellation technique which relies only on the functional connectivity (and 

not anatomic structure) would allow specialists to see the area of the brain providing the 

recovering function.  

To help alleviate the challenges stemming from subject specific parcellations, automated 

parcellation schemes have been developed which do not depend on the use of a brain 

atlas. Automatic learning techniques such as Support Vector Machines (Mourão-

Miranda, Bokde, Born, Hampel, & Stetter, 2005), Principal Component Analysis (Zhong, 

Wang, Lu, Zhang, Jiao, & Liu, 2009), independent component analysis (McKeown & 

Sejnowski, 1998) or single-layer neural networks are used to learn the appropriate 

neuroanatomical categorization of fMRI image data. However, a major drawback of 

current automatic brain parcellation strategies is that they typically depend on algorithms 

with shallow architectures which have been shown to be limited and non-optimal when 

http://www.braincolor.org/protocols
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learning complex high-dimensional features (Bengio & LeCun, 2007). In addition, these 

techniques heavily rely on labelled training examples data for supervised learning.  

Data-driven clustering algorithms offer another approach to partition the brain into 

distinct functional regions. Kelly et al. (2012) present a voxel-wise classification of brain 

imaging data into natural subsets (clusters) based on intrinsic functional connectivity 

using clustering algorithms. The algorithm used assigns each unit of data (each voxel) to 

the same cluster, given that the voxel is more similar to voxels assigned to that particular 

cluster than any other cluster (Kelly, et al., 2012). The similarity between all pairs of 

voxels of intrinsic functional connectivity patterns used for this partition can be 

quantified using   . The    metric is used to measure effect size, which represents the 

strength of the relationship between two variables. When used to evaluate the similarity 

(as a ratio of variance) of each voxel against every other voxel, the value for each pair 

ranges between 0 (no agreement) and 1 (identical). Cohen et al. (2008) introduced the    

statistic for the purpose of delineation based on functional connectivity, suggesting that it 

provides a better measure of similarity between two images than spatial correlation 

because it accounts for differences in scaling and offset between images, while 

correlation does not take these factors into account (Cohen, et al., 2008). The    matrix 

can be calculated as  

 

      
∑  (     )

  (     )
   

   

∑  (    )  (    )   
   

 
Equation 7 

where    and    are the values of the voxel at location   in the maps   and   (i.e.: a 

correlation matrix),    is the mean value of    and    (i.e.: (     )   ), and   is the 

grand total mean of across all voxels. The k-means clustering algorithm uses this    

statistic to measure similarity in order to partition each voxel into a cluster which 

represents a functional brain region. The algorithm was used to delineate the functional 

areas of the brain's insula – a component of the brain used for tasks including sensory, 

somatic, cognitive, and emotional processing (Kelly, et al., 2012). 
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Most current automatic partitioning techniques continue to depend on heuristic manual 

feature engineering (Lee, Laine, & Klein, 2011) which is costly, error-prone, and 

impractically dependent on human expertise in the problem domain, thus compromising 

the generalizability of the model. For example, while k-means clustering is relatively 

effective approach to partitioning, it depends on human expertise and interpretation of the 

problem domain in order to select a k-value to represent the number of clusters a priori. 

K-means clustering discriminates and is biased towards the training data set. For 

example, consider a k-means algorithm set to organize the data into 5 clusters. If an input 

that should (ideally) be partitioned into some 6
th

 cluster is encountered, it will be 

classified incorrectly. K-means clustering can be biased in this way and it often does not 

generalize well, especially for more complex data sets. Additionally, k-means clustering 

is very sensitive to initial conditions, thus with different starting conditions, the same k-

means algorithm may result in different partitions of the same data set. Furthermore, 

while deep learning can be regarded as high-level feature-extraction, k-means clusters 

can be a feature-extractor as well. However, k-means is conceptually equivalent to a 

single layer of a deep network and thus suffers the disadvantages associated with shallow 

architectures. 

In general, the drawbacks of current automated brain parcellation are that they 1) employ 

algorithms with shallow architectures, 2) they are based on heuristic manual feature 

engineering, or 3) they assume the validity of the underlying feature model (Lee, Laine, 

& Klein, 2011). Lee et al. (2011) have attempted to account for these shortcomings by 

approaching the task of brain parcellation via deep learning. Specifically, convolutional 

deep neural networks are used: Training of the deep network is initiated by performing a 

forward propagation pass. Two-dimensional fMRI images were broken up into 28 by 28 

image sites where context-aware feature learning is used to obtain the parcellation labels 

with the greatest probability, composing the convolutional layers of the network. The 

output of these convolutional layers are fed into simple subsampling (pooling) layers in 

order to reduce the computational expense of the model, while introducing scale 

invariance of the learned features. The output nodes of the network are then compared 

with expected labels provided by human experts. The errors can be backpropagated 
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through the network to iteratively fine-tune the parameters. The parcellation is validated 

by the Dice coefficient,  , which is used to measure the agreement between the expected 

output (provided by experts) and the learned brain parcels. The score ranges from 0 to 1 

where 1 indicates a perfect agreement. In general,    was low for small brain parcels 

when compared to larger brain structures, indicating less accurate parcellation of finer 

functional areas. The low parcellation performance and the high inter-subject variability 

were attributed to the limited training set used for the study (Lee, Laine, & Klein, 2011). 

Regardless, the architecture, learning process, and consequent results indicate that deep 

learning is a viable tool for successful two-dimensional brain parcellation. 

The method presented in Chapter 2 proposes a promising approach for automated voxel-

wise brain parcellation using stacked sparse autoencoders for unsupervised learning of 

three-dimensional fMRI data. Semi-supervised softmax regression will be used for voxel 

classification based on ground-truth labels of brain regions. This technique is 

implemented under the hypothesis that the patterns of connectivity underlying the fMRI 

data are of high dimension with features organized complexly in multiple levels of 

abstraction which can be extracted most effectively by a nonlinear deep autoencoder. The 

implementation details and parcellation results will be presented in Chapter 3, while 

Chapter 4 will serve as a final discussion and conclusion of the thesis’s findings, 

weaknesses and significance. 
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Chapter 2  

2 Methodology 

The design and methodology of developing the presented solution to automated brain 

parcellation via deep learning will be outlined in this chapter. Beginning with raw 

resting-state fMRI data, a sparse deep autoencoder will be implemented in the Python 

programming language, learning to classify neural voxels based only on their functional 

connectivity with one another, without regard for their anatomic relations. A general 

summary of the algorithm for brain parcellation is outlined in the following 6 steps which 

will be further investigated in this chapter: 2.1) Prepare the data, 2.2) Pre-train the 

autoencoder, 2.3) Train the softmax classifier, 2.4) Fine-tune the entire network, 2.5) 

Parcellate new data, and 2.6) Visualize the parcellation.  

2.1 Prepare the Data 

The fMRI data of 10 different subjects were used for the training of the autoencoder. The 

size of this dataset allows for feasible runtime, but further investigation of this approach 

would benefit from a larger sample size. For each subject, the raw preprocessed data is 

first loaded into a xifti file format – a format developed for storing neuroimaging data 

with metadata for use with Python and C programs. The subject's functional and 

anatomical brain images are also loaded into the program to provide reference for the 

xifti file. From that file, a correlation matrix is produced using Python’s NumPy library, 

associating the time course of each brain voxel against every other voxel. Thus a single 

row represents the similarity between a single voxel and every other voxel. Consider the 

case with   voxels,           . An       matrix can be formed, composed of Pearson 

product-moment correlation coefficients,  , such that the coefficient of       is at position 

    in the matrix. The coefficient is defined as the covariance of two variables     (i.e.: 

     ), divided by the product of their standard deviations. That is,  

 
  

   (   )

    
 

 [(     )(    )]

    
 Equation 8 



26 

 

 

where     is the covariance,    is the standard deviation of  ,    is the mean of  , and   

is the expectation (the expected outcome given the probability of each potential 

outcome). The coefficients range from [-1,1] such that 0 indicates no correlation, 1 

indicates perfect positive correlation, and -1 indicates negative correlation between the 

voxels. The matrix is symmetric since the correlation between voxels       equals the 

correlation between voxels      . Additionally, the diagonal of the matrix is always 1 

since there is perfect correlation between a voxel’s time-series and itself.   

From a row-wise comparison of the matrix, similarities among rows indicate stronger 

global associations of connectivity. To measure these associations, this correlation matrix 

of   voxels will be converted to an          matrix, as seen in Figure 7. (Note that “ ” 

is the alphabetical character referring to the number of voxels, while “ ” is the Greek 

character “eta” described as follows) while The    statistic (Equation 4) describes the 

strength of the similarity between the voxels, as it represents the ratio of variance 

between each voxel and all the other voxels. Like the correlation matrix, the    matrix 

will be symmetric where a single row represents the strength of the connectivity between 

a single voxel and each other voxel. 
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Figure 7: A 442   442     matrix depicting the global patterns of functional connectivity 

among the 442 voxels from the fMRI data. One row of the matrix represents one voxel’s 

connectivity with each of the 442 voxels representing in the columns. The closer    is to 

1 (red/darker), the stronger the association. 

Using such a matrix allows for the analysis of global correlation patterns among voxels. 

Rather than just investigating the interaction between each two voxels, the matrix allows 

for the investigation of how each voxel relates to the rest of the voxels as a whole. 

Therefore, it is the entire normalized    matrix that serves as the initial low-level features 

of input fed into the stacked autoencoder. Each row of the matrix is a vector acting as a 

single input (visible) unit into the network from which the inherent latent factors will be 

extracted, activating the hidden layers of the network. 

The whole brain can be investigated using the data or, if a particular area is of interest, a 

mask can be applied to the    data, allowing the learning procedure to only act on that 

brain area. While less information is learned if an area is masked out, the problem 

becomes much smaller and easier to manage, resulting in a faster runtime. For this 

reason, this thesis will be focusing on the functional connectivity of the medial parietal 

cortex – an area of the brain associated with sensorimotor integration, regulating the 
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relationship between the sensory and motor systems for tasks such as hand-eye 

coordination. Therefore, only the data associated with this region is considered as the 

remainder of the data is masked out and ignored.  

Once the fMRI data is in the suitable form of input data (a normalized    matrix), the 

deep sparse autoencoder and softmax classifier will be trained and used for parcellation 

of the brain region’s voxels. The final program is dynamic, allowing the user to input 

new fMRI data while specifying the desired number of hidden layers and hidden units per 

layer in the autoencoder. The remainder of this chapter outlines the procedure followed to 

achieve this goal.  

2.2 Pre-train the autoencoder 

Previous deep learning approaches used random initialization of parameters before 

training a network. This was a major downfall of previous deep neural networks as a vast 

amount of time was required for the networks to learn, making the technique infeasible 

for practical learning. However, Hinton's more recent method involved greedy layer-wise 

pre-training of each layer by initializing the parameters near a local minimum (Hinton & 

Salakhutdinov, Reducing the dimensionality of data with neural networks, 2006). By pre-

training each layer, less time is required to learn the optimal parameters and the model 

becomes significantly more computationally powerful. Recall that with a stacked 

autoencoder, each subset of adjacent layers can be viewed as a single-layer autoencoder. 

Therefore the output activation vector from the first autoencoder in the stack is then used 

as input to the second autoencoder in the stack.  Pre-training involves setting the 

parameters between adjacent single-layer autoencoders independent of the other 

autoencoders in the network. As one set of parameters is being determined (e.g.: the 

parameters between layers 1 and 2), the remaining parameters of the network (between 

layers 2 and 3, layers 3 and 4, etc.) remained fixed. Recall that the parameters of the 

network are (   ) where   and   are matrices representing the weighted connections 

and biases, respectively, joining the units of adjacent layers of network.  
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The following process outlines the method for pre-training each set of parameters 

between layers of the network, while also computing the activation features extracted 

from each unit of that hidden layer. This activation vector output of each layer is in turn 

used as input for the pre-training of the following layer in the stacked autoencoder. This 

process demonstrates that the greedy layer-wise pre-training makes use of the same 

algorithm applied multiple times, once to each layer of the network, until the entire 

network has been pre-trained with optimized parameters.  

Given a network of    layers, the pre-training will be performed on each layer 

independently. Thus, for each layer,  , in the network: 

2.2.1) Initialize the parameters (   ) to small near-zero values 

 2.2.2) Optimize the parameters by minimizing the cost function,        (   ) 

 2.2.3) Calculate the output activation vector,   , and set it as the input for layer 

   . If      (i.e.: the last layer),    , is stored for input to the softmax model  

The following subsections elaborate of these pre-training steps for a single layer of the 

autoencoder.  

2.2.1 Initialize parameters  

The goal of the pre-training is to minimize the cost,        (   ), as a function of   and 

  in order to set the parameters in a good neighbourhood for further training. In order to 

do so, these parameters at each layer must be initialized to some small, random, near-zero 

value. It is crucial that these parameters are not simply originating at values of 0 as such 

an initialization would result in all the hidden layer units learning the same function of 

the input (Ng, Ngiam, Foo, Mai, & Suen, 2013).  

2.2.2 Optimize parameters 

2.2.2.1 Optimization Method 

The cost function is minimized using the Limited memory BFGS (L-BFGS) optimization 

algorithm provided in SciPy's optimization package. BFGS is a quasi-Newton 

optimization method. Newton optimization methods require the gradient of partial 
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derivatives of the function, as well as the inverse Hessian matrix (matrix of second order 

partial derivatives) – a large, costly, and complex factor to store and compute, making it 

infeasible for large optimization tasks. However, quasi-Newton techniques overcome this 

obstacle by instead using an approximation of the inverse Hessian matrix, which the 

method can extract from the first partial derivatives. Regardless, even the quasi-Newton 

BFGS method’s approximation of dense inverse Hessian requires significant memory 

resources. Therefore, the Limited memory BFGS method offers a solution to this 

limitation by only using minimal vectors to represent the matrix implicitly, rather than 

fully calculating and storing the full inverse Hessian in memory (Galen & Jianfeng, 

2007).   

Stochastic gradient descent (SGD) is a simple alternative optimization technique 

commonly used in training. However, it not only requires addition fine-tuning of 

parameters (a learning rate), but it has been shown to be outperformed by L-BFGS when 

training large datasets. In particular, when comparing the two approaches for sparse 

autoencoder optimization, L-BFGS has demonstrated faster and more stable training (Le, 

Ngiam, Coates, Lahiri, Prochnow, & Ng, 2011). L-BFGS is a sophisticated, yet easy-to-

use off-the-shelf optimization method that offers fast, reliable results, while requiring 

only the function to optimize and its gradient. For these reasons, L-BFGS is used 

throughout the project for optimization.  

2.2.2.2 Cost Function 

Starting with randomly assigned, near-zero values for the parameters, pre-training is done 

by training each layer individually. Thus as the first layer is pre-trained to find some 

optimal parameters, the remaining layers remain fixed. The input data of the entire model 

is used as the input data to the first layer. This data is used to determine the parameters 

which minimize the cost function of the sparse autoencoder,        (   ), and the 

corresponding derivatives of        (   ) with respect to the parameters (   ). 

The        (   ) cost function is the sum of three components: a) the average sum-of-

squares error term, b) the weight decay term, and c) the sparsity penalty. The following 

subsections build the complete equation needed for the stacked sparse autoencoder.  
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a) Average Sum-of-Squares Error Term 

The first term of        (   ) is the average sum-of-squares error term. This term 

measures the discrepancy between the observed data and the expected/estimated data.  

Given a set of   training examples,  (     )   (     ) , where    is the  -th input 

and    is its corresponding label, a neural network can be trained using L-BFGS 

optimization. The cost function of a single training example (   ) can initially be defined 

as  

 
 (       )  
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 Equation 9 

where       is the hypothesized output of the particular unit, indicating the likelihood that 

the neuron will be firing. Specifically,     ( )    (∑       )    
    (Equation 1), as 

calculated in the encoding step of the autoencoder. Recall that  ( ) is the sigmoid 

function  ( )  
 

      used to scale the output within the range [0,1]. Meanwhile, 

‖    ( 
 )    ‖ is the Euclidean distance between      and  . Thus to define the mean 

sum-of-squares error over all   training examples, the cost function starts out as 
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]  Equation 10 

b) Weight Decay Term  

The second term of the cost function is the weight decay term. Also called a 

regularization term, a weight decay term is used to add a penalty to the error function. 

This term is useful for decreasing the magnitudes of the weight, thus minimizing the risk 

of overfitting. Without this penalty, large weights can cause excessive variance to the 

output (Geman, Bienenstock, & Doursat, 1992). Therefore the weight decay term is used 

to regularize the weights by decreasing their magnitude. 

The weight decay parameter, λ, is used to control the relative importance of the weight 

decay term of the cost function. Too small of a λ will tend to overfit the data, while too 
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large values of λ likely underfits the data, both leading the poor predictions. The value is 

optimized using a grid search. As a result of adding the weight decay term, the cost 

function is now 
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Equation 11 

where    is total number of layers in the network and    is the number of hidden units in 

the layer. 

c) Sparsity Penalty Term 

While   
  represents the output activation of the j-th hidden unit of the first autoencoder 

in the stack, let   
 ( ) explicitly represent the output activation of that same hidden unit 

given some particular input  .  

The sparse functional connectivity of the brain has been justified through observation as 

neurological findings have demonstrated that neurological processes usually only directly 

interact with few other brain regions (Huang, et al., 2009). Therefore, under the 

reasonable assumption that the underlying data from the fMRI is sparse, a sparsity 

constraint is placed on the network, limiting the activation of the hidden units with the 

goal of discovering the underlying structure of the data, regardless of the number of 

hidden units used. To establish the sparsity constraint on the autoencoder,  ̂ represents 

the average activation of a particular hidden unit, resulting from all the inputs to that unit. 

That is,  

 
 ̂  

 

 
∑[  

 (  )]

 

   

 Equation 12 

where  ̂ represents the average activation of the hidden unit j averaged over the set of m 

training examples. Further, the constraint is set such that  ̂     where   is the sparsity 

parameter of the entire network, the value of which is typically close to 0 so that the 

distribution of activations is highly peaked at zero in order to maintain overall sparsely 
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active neurons in the network. For example, if   = 0.05, most of the hidden units must 

have activations close to 0 in order to maintain an average activation of each hidden unit 

in the network near 0.05, the desired overall sparsity.   

To achieve this requirement of equality between  ̂ and  , an additional penalty term 

based on Kullback-Leibler divergence is added to the cost function, used to penalize  ̂  

when deviating significantly from   (Hinton, A Practical Guide to Training Restricted 

Boltzmann Machines, 2010). KL-divergence measures the difference between two 

probability distributions. Specifically, 
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Equation 13 

is a measure of the information lost when   is used to approximate  ̂, while summing 

over all the    hidden units in the layer.   

Thus, the term enforcing sparse activation is added to the cost function, penalizing the 

units of the autoencoder that are active: 
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 Equation 14 

where   is the sparsity parameter, used to control the relative weight of the sparsity 

penalty term. 

2.2.2.3 Gradient 

Backpropagation is used to determine the gradient vector of the partial derivatives of the 

function. Common backpropagation procedures require some expected results to compare 

with the actual results, and are therefore reliant on supervision. However, recall that the 

fundamental concept behind autoencoders dictates that the output of the network is a 

reconstruction of the input, where the hypothesized output is approximated by the input 

(i.e.:  ( )   ).  
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The gradient of the overall cost function,        (   ), is determined from the following 

partial deriviatives (noting the weight decay term is only applicable with respect to W, 

not b): 
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  Equation 15 
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  Equation 16 

where the partial derivatives of the cost function,        (         ), with respect to a 

single training example, (   ), are given as 

  

    
        (         )    

      Equation 17 

  

   
        (         )     

     Equation 18 

These partial derivatives of individual examples are determined via backpropagation. The 

output activation value of each node in the layer  ,   
  is calculated using the encoding 

equation with the current parameters and then compared with the expected output (i.e.: a 

reconstruction of the input value since it is an autoencoder) and an error term,   
 , is 

calculated to represent the amount that the node   contributed to the discrepancies 

between the actual and expected output.   

The error term is first calculated at the last layer, then propagated backwards through the 

preceding layers. For the last layer in the network, when     , the error term is defined 

as 
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Note that if  ( )  
 

     
 is the sigmoid function, the derivative is given by  
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   ( )   ( )(   ( )). Since the activation of a network is defined as   
   (  

 ), 

then   (  
 )     

 (    
 )  

For each remaining layer,  , in the network (from                )  the error term 

is based on the error of layer     (the succeeding layer) and takes sparsity into account, 

defined as 
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Equation 20 

Now that the cost function and partial derivatives which make up the gradient vector have 

been determined (Equations 15 and 16), the L-BFGS algorithm is run and the parameters 

are updated.  

2.2.3 Compute the activation vector 

Once the cost function for the current layer has been minimized and the optimal 

parameters are returned, those parameters of the current layer are then fed into the feed-

forward encoding steps (Equations 3 and 4), thus extracting the activation feature output 

of that layer, scaled to a value within the range of [0,1] by the sigmoid function. 

In order to stack each single layer autoencoder to form a deep autoencoder, the output of 

the preceding layer is in turn used as the input for the following layer of the autoencoder. 

So while the raw data is used as input into the first layer of the network, the input for 

each following layer is now set to be the value of the activation vector of the previous 

layer. The above pre-training process (parameter initialization, optimization, and 

encoding of activation vectors) continues until the entire network of    layers has been 

pre-trained. Finally, the activation of the last layer in the network,    , will be calculated, 

fundamental in achieving the ultimate goal of this project – to parcellate voxels into 

functional brain regions.  
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2.3 Train the softmax classifier  

After having trained each layer of the network on the unlabelled data, the parameters are 

now starting at a better location in parameter space than if they had been randomly 

initialized – thus accounting for a fundamental flaw in previous deep networks. In 

addition, the final output of the network,    , has been calculated – a feature vector which 

provides a reconstruction of the input with respect to its high-level features. These 

features can be fed into a classifier in order to perform classification of the sparse stacked 

autoencoder’s input value. Continuing from the stacked autoencoder being constructed in 

Figures 5 and 6, Figure 8 illustrates the concept of the last hidden layer’s activation 

vector serving as raw input to the softmax classifier. Note that the softmax classifier is 

not considered an additional layer in the network.  

 

 

Figure 8: Continuing to build the stacked autoencoder from Figures 5 and 6, the 

activation vector resulting from the last hidden layer in the network is used as input to the 

softmax classifier which determines the probability of each possible label (Ng, Ngiam, 

Foo, Mai, & Suen, 2013). 

In general, a classifier can be defined as a function that receives values of various 

features from training examples (independent variables) and provides an output which 

predicts the class or category that each training example belongs to (dependent variables) 

(Pereira, Mitchell, & Botvi, 2009). In the case of this project, each row of the    matrix 
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represents a comparison of a voxel’s global pattern of functional connectivity with those 

of all other voxels, which serves as input to the network. The goal of the classifier being 

trained is to segment the voxels based on their patterns of functional connectivity.  

Logistic regression is a common supervised classification model used to classify data into 

one of two possible categories. However, brain segmentation is much more complex and 

there exist many potential functional brain regions in which a voxel may reside. 

Therefore, a softmax regression model (also known as “multinomial logistic regression” 

– which generalizes logistic regression) will be used for this multi-class classification, 

allowing each voxel to be classified into one of many possible function brain regions. 

Since these regression models require labelled data, the softmax classifier will be training 

using a limited number of labelled training examples in the form of ground truth labels 

provided by two neuroanatomist at the Rotman Research Institute at Baycrest Hospital in 

Toronto. As a result, the classification step is neither supervised nor unsupervised, but 

rather semi-supervised. The labels used are well-defined within their functional regions, 

thus not compromising the accuracy of the classification.  

Given a limited set of   labelled training examples,  (     )   (     ) , where    is 

the  -th input and    is its corresponding label/classification, a softmax regression model 

dictates that    can take on any one of   possible values (where   is the total number of 

potential classifications), such that              . By contrast, binary classification with 

logistic regression limits the label   such that          . The softmax model performs the 

classification by predicting the probabilities of the   possible outcomes given the inputs.  

For convenience, consider an alternate notation for representing the parameters of the 

network. For each layer,  , let     represent a single long, one-dimensional vector 

consisting of the flattened parameter matrices of (   ) concatenated together. 

Furthermore, let   represent a matrix stacking            
 thus storing all parameters of 

the network in a single variable.  

The cost function associated with binary logistic regression is defined by the following 

equation:  
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where 1{∙} is an indicator function. The function evaluates to 1 if {∙} is true, otherwise it 

evaluates to 0 if {∙} is false. That is, 1{true} = 1 (e.g.: 1{1+1 = 2} = 1) and 1{false} = 0 

(e.g.: 1{1+1=3} = 0). For the purpose of this project, the indicator function will represent 

the correspondence with standard ground truth labels. Thus if the output corresponds to 

the ground truth label, the term indicator function evaluates to 1.  

Note that when dealing with multi-class softmax regression, the function must sum over 

all possible   values (i.e.: from           rather than      ). In addition, softmax 

regression holds that given some input  , the probability of the unit  ’s label taking on the 

each of the potential   values (         ) is represented as 
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In continuing to develop the softmax regression cost function, the problem of over-

parameterization must be addressed: the function allows multiple parameter settings to 

exist that result in the same output. Therefore, a weight decay term will be added to the 

cost function, penalizing excessively large values of the parameters, thus preventing 

overfitting.  

As a result of these changes to the logistic regression cost function, the softmax 

regression cost function is formally defined as 
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To implement softmax regression, this function will be optimized via L-BFGS. The 

gradient is 
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 Equation 24 

Now given the cost function and gradient, the final activation vector output from the last 

layer of the stacked autoencoder determined during pre-training,    , is used as input to 

the softmax classifier (Figure 9). The cost function is minimized using the L-BFGS 

optimization algorithm to train the classifier and further improve the parameters.  

 

Figure 9: The entire stacked autoencoder with two hidden layers, viewed as a single 

model capable of classification. The output activations of the second (and final) hidden 

layer are input into the softmax classifier (Ng, Ngiam, Foo, Mai, & Suen, 2013). 

2.4 Fine-tune the stacked autoencoder 

A fine-tuning pass is commonly used in training to improve the performance of the 

stacked autoencoder. While layer-wise pre-training is used for finding the features of the 

network, fine-tuning is used to slightly modify the features of the network in order to 

adjust the boundaries between the classification classes (Hinton, 2007). To implement 

fine-tuning of the entire network, all the layers must be treated as a single model. A 

single iteration of fine-tuning improves all the weights of the stacked autoencoder, at 

every level. A similar technique can be used for this fine-tuning step as was used to pre-
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train the parameters by minimizing the        (   ) function by implementing a similar 

backpropagation step to get the gradients. Using the latest parameters discovered during 

classification, fine-tuning involves performing L-BFGS optimization with the goal of 

reducing the error between the actual output of the softmax model and the expected 

output (i.e.: the reconstruction of the input). The same cost function and gradient defined 

in Equations 23 and 24 are used, respectively, and the parameters are updated for the 

final time.  

2.5 Parcellate new fMRI data 

Now that both the network and the classifier are fully trained with putatively optimal 

parameters, entirely new data can be fed into the stacked autoencoder for classification 

provided by new subjects. While fMRI data from 10 subjects was used to train the 

autoencoder, the fMRI data from 2 subjects were retained for testing. For each test, 1 of 

the 2 test subjects was randomly selected for the new parcellation. Note that the training 

data was not used for testing. The new subject’s fMRI data is processed into a normalized 

   matrix to represent the global patterns of functional connectivity among voxels using 

the approach presented in Section 2.1. Starting from this low level data, higher level 

features will be extracted at each new layer of the autoencoder. Finally, the trained 

softmax classifier outputs a vector of digital labels where each row of the    matrix (each 

voxel) yields a corresponding label. This vector of labels can then be re-associated with 

the anatomical structure of the brain to depict the parcellation.  

2.6 Visualize the parcellation 

NIfTI (Neuroimaging Informatics Technology Initiative) is a data format in which the 

classification of each voxel can be assigned to its anatomical counterpart in brain space. 

The 3D NIfTI image resulting from the predicted labels will colour-code voxels such that 

voxels belonging to the same functional brain region will the same colour. An anatomical 

3D image of the brain may underlay the labels to illustrate the parcellation directly on the 

brain’s structure. Alternatively, the NIfTI image of the predicted labels may be compared 

with a NIfTI image created from the ground truth labels that are commonly accepted 
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among experts. This comparison allows for the general visual analysis of the success of 

the functional brain parcellation via unsupervised deep learning.  

Chapter 3 presents the findings of implementing this stacked autoencoder for automated 

brain parcellation. The results will be analyzed and compared with expected functional 

segmentations, measuring the accuracy and success of this solution. 
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Chapter 3  

3 Implementation and Results 

3.1 Preprocessing  

The deep sparse autoencoder was trained on fMRI data from 10 different subjects. The 

dataset contains resting-state fMRI scans (and associated anatomical scans) for 10 right-

handed adults (5 male) ranging in age from 21 to 35 years. None of these participants had 

a history of neurological or psychiatric illness. MRI data were acquired with a 3 T 

Siemens TimTrio MRI scanner using a 32-channel head coil. Functional volumes 

consisted of 36 slices acquired parallel to the ACPC axis using an interleaved slice 

acquisition order and an echo-planar imaging pulse sequence (TR = 2000 ms, TE = 30 

ms, flip angle = 78  , 64 × 64 matrix, 21.1 × 21.1 cm FOV, 3 × 3 × 3 mm voxel 

resolution). A total of 300 functional volumes were collected from each participant. In 

addition, a high-resolution anatomical scan (192 slices, 256 × 256 matrix, 21.1 × 21.1 cm 

FOV, 1 × 1 × 1 mm voxel resolution MP-RAGE pulse sequence) was acquired from each 

participant to assist in visualizing the results of functional analyses and aid in 

preprocessing. 

The use of 10 subject samples allowed for a variable unlabelled training set, while the 

sample size was small enough to be computationally feasible in training and testing 

hundreds of autoencoders with various parameters. However, further investigates of this 

technique would likely benefit from a larger dataset if the resources are available. The 

study focuses specifically on the functional parcellation of the medial parietal cortex, 

therefore a mask is applied to the fMRI information to isolate that region of interest. 

Therefore the input data is composed of the intersection of the total fMRI data with the 

mask, ignoring the rest of the brain. By doing so, less of the brain is segmented, but the 

algorithm runs faster on the drastically reduced number of voxels – a requirement given 

the limited resources and the need for a combinatorial parameter search. The medial 

parietal cortex, composed of 442 voxels, will be segmented by the deep autoencoder. 
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Thus a single    matrix for one subject is a 442   442 matrix where each row represents 

the global patterns of functional connectivity between that voxel and all other voxels of 

the medial parietal cortex. A total of 10    matrices are used as unlabelled training sets 

for the autoencoder to optimize its parameters during training. Once training is 

completed, the autoencoder can be used to parcellate new fMRI data, the resulting output 

of which will be a 1   442 array of labels corresponding with the 442 voxels of the 

subject’s medial parietal cortex in the common functional reference space. 

3.2 Implementation Details 

The training of the deep autoencoder is performed multiple times, using a range of hidden 

layers and a range of hidden units per layer for each run. Consider an autoencoder with   

hidden layers. Each of the   hidden layers are trained and tested with a range of hidden 

units from 200 to 1000, in increments of 200, such that each combination is used. That is, 

since there are 5 possible numbers of hidden units per layer (200, 400, 600, 800, 1000), 

there is a total of 5
n
 autoencoders trained and tested for an autoencoder with   hidden 

layers. As outlined in chapter 1, the choice of number of hidden units per layer is not well 

established as it ranges from suggestions of two-thirds to twice the number of input units. 

However, these rules of thumb are not heavily supported either empirically or 

theoretically, so many tests are performed with varying numbers of hidden units.  

Deep autoencoders with 2, 3, and 4 hidden layers will be investigated using this process. 

Networks with 5 and 6 hidden layers are of interest, but infeasible to test using the same 

strategy as the addition of more layers (of hundreds of units) drastically increases the 

training time (5
5
 = 3125 and 5

6
 = 15625 runs of training and testing would be required). 

Therefore, networks with 5 and 6 hidden layers are tested with 200, 600, and 1000 units 

per hidden layer (a total of 3
5
 = 243 and 3

6
 = 729 runs, respectively). 

While the parameters of the neural network are represented as (   ), the training of the 

network also depends on the hyperparameters  ,  , and   which represent the weight 

decay parameter, sparsity parameter, and weight of the sparsity penalty of network’s cost 

function, respectively. The values of the hyperparameters were determined independently 

for networks with each number of hidden layers. A grid search was used, keeping all 
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hyperparameters constant expect the one being optimized. Table 1 shows the final 

optimal values discovered for these hyperparameteres.  

Table 1: The hyperparameters used for training the autoencoders of various depths. 

Number of Hidden Layers       

2 0.00003 0.040 0.3 

3 0.00005 0.035 0.5 

4 0.00001 0.045 0.3 

5 0.00001 0.045 0.1 

6 0.00003 0.040 0.5 

In addition to the deep autoencoders trained and tested, an autoencoder with 1 hidden 

layer was implemented to provide a comparison of the deep model with a model similar 

to PCA. As introduced in Chapter 1, an autoencoder with a single linear hidden layer 

behaves similarly to PCA. The thesis investigates deep autoencoders under the hypothesis 

that the functional connectivity of the voxels captured in the fMRI data is nonlinear, 

therefore the results from this PCA model will provide insight as to the nature of the 

input used and whether a deep learning approach is worth the significant computational 

cost (training time and computational resources) when compared to a linear approach.  

3.3 Results 

As outlined in Chapter 1, there does not exist a standard method of parcellating 

functional brain regions into discrete regions nor is there a gold standard parcellation to 

use for comparisons, thus limiting the quantitative analysis of the resulting parcellation. 

However, for the purpose of investigating the success of the deep autoencoder, the 

learned labels which represent the grouping of voxels are compared with a set ground 

truth, commonly accepted labels, which were verified by two neuroanatomists, to check 

for validity.  

The Dice coefficient is a statistic to measure the spatial overlap (similarity) of two 

samples, commonly used for segmentation evaluation in medical imaging (Lee, Laine, & 

Klein, 2011). Using this metric to evaluate the algorithm will allow for simple 

comparisons with other studies and alternative approaches. The Dice coefficient,   , is 

determined by the following equation:  
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Equation 25 

where   and   are the two sets being compared,     indicates the size of the set, and the 

operator   represents the union of its operands. In the case of the parcellation technique 

being examined, the two sets are the ground truth labels and the parcellation labels 

acquired from the algorithm. The value of    ranges between 0 (no overlap) and 1 

(perfect agreement). 

The Dice coefficient is calculated for each parcellation resulting from each trained 

autoencoder with every combination of hidden units per layer. Appendices A - D show 

tables of the resulting    values for each autoencoder trained and tested with 2 – 5 hidden 

layers. The most successful parcellation with    = 0.678 was achieved with 5 hidden 

layers of 600, 600, 1000, 1000, 200 units per respective layer. 

Investigating the trend of parcellation accuracy with respect to the number of hidden 

layers of the autoencoder, Figure 10 shows the    value for all the runs, grouped by 

number of hidden layers in the autoencoder, organized in a violin plot with a boxplot 

overlaid. A violin plot is similar to a box plot, but it roughly shows the probability 

density of the data at various values. That is, the figure shows the distribution of    

values for all tests for each number of hidden layers. The wider the plot, the greater 

proportion of runs with that particular    were recorded.  
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Figure 10: Violin and box plots depicting the distribution of Dice coefficients from 

parcellations trained and tested on autoencoders with 2 – 6 hidden layers. 

From the graph, it is evident that the parcellations were most accurate when 4 and 5 

hidden layers were used in the autoencoder. At the 6
th

 layer, the accuracy declines. As 

shown in the graph, the distribution of    for autoencoders of the various depths is 

approximately normal. The minimum, maximum, and mean values are summarized in 

Table 2. The standard error of the mean of    for each number of hidden layers, 

       
, is calculated as        

 
 

√ 
  where   is the standard deviation and   is the 

number of runs performed for that particular number of hidden layers. 

Table 2: The minimum, maximum, mean, and standard deviation of the Dice coefficients 

for parcellations implemented with autoencoders of various depths. 

Number of Hidden Layers      
      

       
         

   

2 0.455 0.552 0.508 ± 0.005 0.023 

3 0.452 0.638 0.563 ± 0.003 0.037 

4 0.514 0.676 0.595 ± 0.001 0.026 

5 0.518 0.679 0.592 ± 0.002 0.029 

6 0.443 0.607 0.523 ± 0.005 0.039 
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Running ANOVA on the results yields a p-value of 3.3 × 10
-10

 between all groups of 

hidden layers. Such a small p-value implies statistical significance between the accuracy 

of the segmentations resulting from the various depths of the autoencoder.  

The linear shallow autoencoder implemented to model PCA had a single hidden layer of 

442 hidden units. Upon optimizing the parameters, the most accurate single layer 

parcellation is described by a Dice coefficient of 0.467. 

Focusing on the deep autoencoder, Figure 11 shows a sample of parcellation results of 

the medial parietal cortex projected back into brain space. All voxels of the same colour 

represent a segmentation of voxels belonging to the same functional region. Recall that 

the parcellations are performed based on no anatomical dependencies – only the 

functional connectivity among the voxels is considered as input for the segmentation. 

Each row of three images in the figure represents one segmentation, viewed in three 

dimensions. The first segmentation (the first row) depicts the ground truth delineation 

based on the labels verified by neurologists, while the following rows show the most 

accurate segmentation resulting from 3, 4, and 5 hidden layers, respectively.   
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Figure 11:  Each row depicts 3 dimensions of a single parcellation of the medial parietal 

cortex: (a) displays the ground truth parcellation verified by anatomists; autoencoders 

trained and tested with (b) 3 hidden layers,    = 0.638 ± 0.037, (c) 4 hidden layers    = 

0.676 ± 0.026, (d) 5 hidden layers,    = 0.679 ± 0.029. 

(d) 

(c) 

(b) 

(a) 
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While Figure 11 (above) shows the parcellations in the context of the whole brain, Figure 

12 (below) shows close-up views of for the ground truth parcellation and the most 

accurate parcellation resulting from 5 layers, allowing for easier visual comparison. In 

other words, Figure 12 depicts zoomed in views of Figure 11 (a) and (d). 

 

Figure 12: Zoomed-in parcellations of the medial parietal cortex where (a) shows the 

ground truth parcellation based on expert verified labels of functional regions in 3 

dimensions and (b) shows a parcellation acquired from a deep autoencoder with 5 hidden 

layers. The spatial overlap between the two parcellations is described by    = 0.679 ± 

0.029. 

 

 

 

(a) 

(b) 
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4 Discussion and Conclusion 

This thesis represents a first step in developing and exploring deep sparse autoencoders 

for voxel-wise automated parcellation of functional brain regions. Functional brain 

parcellation is the task of delineating regions of the brain, based on the functional 

connectivity of the components within the brain (voxels). To perform this task, an 

artificial neural network called a deep autoencoder is constructed and trained with 

unsupervised learning. It works by minimizing the reconstruction error between the input 

data and the reconstruction of that input data at the output, in an unsupervised manner.  

The process of training and testing the autoencoder for parcellation begins by converting 

a subject's raw fMRI data to a normalized    matrix, where each row represents a voxel's 

global patterns of functional connectivity with other voxels. Therefore, each row serves 

as an input feature vector to the autoencoder from which higher level features will be 

extracted, enabling the classification of each voxel to a functional region. The deep 

autoencoder is composed of several single-layered autoencoders stacked together, where 

the features discovered at each layer are able to progressively represent higher-level 

features of the input data as the output of one becomes the input to the next. By pre-

training each set of adjacent layers of the network independently, a good solution is 

found near the local minima prior to the rest of the training, making deep learning a 

significantly more feasible pursuit than otherwise thought. Sparsity is also introduced, 

limiting the overall activation of the network, thus modelling the expected sparse 

connectivity of the brain. The autoencoder uses a semi-supervised softmax regression 

model to segment the voxels based on potential ground truth functional regions, before a 

final backpropagating fine-tuning pass is performed. As a result, the putatively optimal 

parameters of the network are discovered and new fMRI data (converted to an    matrix) 

can be fed into the autoencoder, resulting in a parcellation of the voxels based solely on 

their functional connectivity.  
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4.1 Discussion 

The most accurate parcellations were performed by autoencoders with 4-5 hidden layers, 

thus supporting the hypothesis that the patterns of functional connectivity underlying the 

fMRI are not linear, but rather of high dimension and complexly organized at multiple 

levels of abstraction. The deep autoencoder, in comparison to the linear PCA approach, 

was able to extract those high level features in order to train the classifier and build 

resulting parcellations. Furthermore, once the autoencoder consisted of over 5 hidden 

layers, it is likely that the model suffered from overfitting, leading to less accurate 

parcellations.  

The study performed by Lee et al. (2011) which implemented deep learning in the form 

of a convolutional network to two-dimensional fMRI images performed mean 

segmentations with Dice coefficients of 0.85 ± 0.04 and 0.73 ± 0.04 (for two slightly 

different approaches). The segmentations using the autoencoder implemented in this 

thesis with 5 hidden layers had a mean Dice coefficient of 0.592 ± 0.002 and a maximum 

of 0.68 ± 0.03 (i.e.: (68 ± 3)% accuracy compared with the ground truth) – modest, but 

respectable values demonstrating the potential of the approach. The fact that the deep 

learning parcellation technique implemented with autoencoders provides these promising 

results with no anatomical dependencies for training is an important step for the fields of 

both neuroscience and applied machine learning. 

4.2 Contributions 

Currently, there does not exist a single acknowledged standard method for automatic 

brain parcellation of functional regions. Existing protocols rely heavily on static labelled 

brain atlases (which assume significant anatomical similarity among brains), manual 

feature engineering (which are tedious and prone to human error), or use classification 

methods which do not scale well to fMRI's complex data sets (such as k-means 

clustering). This thesis presents a novel solution to automated functional parcellation of 

three-dimensional fMRI data via deep autoencoders. The ability to accurately parcel 
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functional regions automatically enhances the quality of further experimental 

investigations, as more accurate segmentations can be discovered and investigated.  

In addition, a major contribution of the parcellation technique presented is that, unlike 

many alternative approaches, the project presented does not rely on the anatomical 

structure of the data to delineate the brain space. That is, the physical locations of the 

voxels do not play a role in the resulting delineation. Rather, only the degree of 

functional connectivity among voxels discovered in the raw fMRI data is used to train the 

autoencoder for the segmentation discovered. Therefore this research offers new insights 

to both the neuroscience and machine learning communities.   

In a practical setting, an automated unsupervised method of parcellation permits 

neurologists to apply the parcellation technique directly to their patients. After an fMRI 

scan, the preprocessed data can be fed into the program developed. From there, the data 

are converted to a normalized eta-squared matrix which is used as input to the trained 

stacked autoencoder, resulting in a segmentation of the voxels in the brain. This 

technique requires neither human input nor machine learning expertise from the user of 

the program. As a result, the user will have access to a customized delineated brain 

image, based on specific functional connectivity of the subject, rather than a brain image 

segmented by simply associating standard structural regions with functions. The 

segmentation technique can be used in clinical neuroscience and cognitive psychology to 

better under the brain's connectivity and perhaps provide better diagnoses and treatment 

to individuals with neurodegenerative diseases such as Alzheimer's. Subtle abnormalities 

in functional connectivity can be indicative of Alzheimer’s disease years before clinical 

diagnoses (Sheline & Raichle, 2013). Therefore, the parcellations depicted from this 

deteriorating functional connectivity may serve as an instrument for early detection of the 

disease. The research has the potential to provide the medical community with a feasible, 

automated way of modelling the relationship between structure and function in the brain 

that can be consistently and repeatedly applied to different subjects of varying health. It is 

the intent that the current research effort will contribute to a more accurate and precise 

mapping of function within the brain. Through the advances of this data-driven machine 

learning technique, this methodology may be extend beyond the neuroimaging 
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community and benefit communities in any domain which can be modelled as a network, 

eliminating the need for guesswork and prior knowledge.  

In addition, this thesis contributes to the machine learning research community a novel 

application of a deep autoencoder, stacked for the classification of functional brain 

regions. Applying this approach to a task as large in scale and complex as the human 

brain will undoubtedly prove informative for the growth of the practical deep 

learning. Furthermore, deep learning is a relatively young research area. Successful 

application of techniques from unsupervised deep learning to the important, real-world 

problem of brain parcellation will help to validate what has been, for much of its history, 

a largely supervised enterprise. 

4.3 Threats to Validity 

A criticism of the parcellations performed is that for each test, the deep autoencoder was 

consistently trained using the fMRI data of the medial parietal cortex from only 10 

subjects. This sample size was chosen as a balance between fair representation and 

efficiency. Nevertheless, the sample size used is relatively small. While using more 

subjects' data would have been infeasible (time-wise) for the number of tests run 

(individual tests – out of thousands – ranged from approximately 2 minutes – 1.5 hours 

running on 8 processors, depending on the size of the autoencoder), additional data would 

provide more reputable training data. Therefore, the accuracy of the test runs likely 

suffered as a result of this limited training set.  

In addition, deep networks are notoriously difficult to train due to the difficult 

optimization of the algorithm’s hyperparameters. Although the training was performed 

from empirically “good” hyperparameters, it is possible that the optimization algorithm 

got stuck in poor local optima, preventing the most effective parameters from being used. 

Furthermore, the hyperparameters could not be optimized for every combination of 

number of hidden units per layer, so even if the best hyperparameters were found via 

optimization, they are not necessarily ideal for every test.  
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A fundamental challenge of this project stems from the lack of gold standard with which 

the results of the parcellation can be compared for analysis. A segmentation derived via 

k-means which was approved by anatomists is used as the “ground truth” for the sake of 

validating the parcellation, but it is crucial to acknowledge that the brain is a dynamic 

organ, and somewhat unique for each individual. A major motivation of this study is to 

find an alternative to applying a single parcellation to multiple subjects, so the reliance on 

it for comparisons compromises the measure of the method’s ability to capture subject-

specific functional variability. The ground truth labels are determined from healthy 

subjects, and therefore do not take abnormalities in connectivity into consideration. As a 

result, while the ground truth labels offer confidence to the measure of parcellation 

success, the labels used for validation do not provide ideal confirmation of the subject-

specific accuracy.  Nevertheless, this investigation has demonstrated that a deep learning 

approach to the problem is both feasible and meritorious of further study.  

4.4 Future Work 

To further develop this approach, it would be prudent to attempt the parcellation with 

more training data than from 10 subjects. While more subject data can be acquired 

experimentally, the NIH Human Connectome Project data offers a large database of 

highly reliable neuroimaging data as the Project aims to map anatomical and functional 

connectivity within the brain (The Human Connectome Project, 2014). The vast number 

of subject data provided from this database would result in a more credible conclusion as 

a large sample size can be used – hundreds of different brains can be used for training 

and validation of the parcellation technique. In addition, parcellation of the entire brain – 

not just the medial parietal cortex – would provide insight into the accuracy of the 

approach at a larger scale.  

Additionally, since there is no gold standard functional segmentation of the brain, the 

ground truth labels used for validation are not necessarily accurate for each specific 

subject. Objective and accurate evaluation of any segmentation method is crucial for a 

technique to be accepted in practice. Therefore, a prudent step for improved validation 

would be to manually segment each subject's brain based on functional connectivity. Of 
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course, while a motivation of this investigation is to eliminate the need for this tedious, 

time-consuming task, a comparison to a subject-specific manual segmentation may 

provide additional insight into the true accuracy of the deep autoencoder.  

Another future step in improving this parcellation technique would be to implement the 

deep autoencoder on a GPU. The algorithm implemented makes heavy use of matrix 

multiplication and element-wise operations. Such calculations associated with deep 

learning have been found to be 10 – 30 times faster when implemented on a GPU 

compared with common CPUs (Bergstra, Bastien, Turian, Pascanu, & Delalleau, 2010). 

By implementing the deep autoencoder in this way, the optimization of parameters (and 

hyperparameters) will be significantly more efficient, allowing for more accurate 

parcellations in less time.  

Furthermore, a future step for improving this parcellation technique would be to 

implement a more efficient search of the hyperparameters. While the most widely used 

strategies make use of a manual and grid searches, Bergstra and Bengio (2012) propose 

that random searches for hyperparameters are most efficient and effective, as this method 

of optimization does not treat each hyperparameter with equal importance, therefore not 

wasting resources optimizing a value which does not play an crucial role to the overall 

function.  

In closing, the future directions of this work may expand upon this novel and promising 

approach which serves as an important initial step in developing a deep learning approach 

for voxel-wise functional brain parcellation. 
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Appendices 

Appendix A: Dice coefficients comparing parcellations acquired from autoencoders 

trained and tested with 2 hidden layers versus the ground truth parcellation provided by 

anatomists. The bolded row represents the parcellation with the maximum accuracy. 

Units per Hidden Layer    

200 200 0.515747 

200 400 0.538371 

200 600 0.522534 

200 800 0.49086 

200 1000 0.506697 

400 200 0.540633 

400 400 0.508959 

400 600 0.506697 

400 800 0.529321 

400 1000 0.533846 

600 200 0.454661 

600 400 0.486335 

600 600 0.486335 

600 800 0.529321 

600 1000 0.551946 

800 200 0.506697 

800 400 0.527059 

800 600 0.49991 

800 800 0.479548 

800 1000 0.486335 

1000 200 0.502172 

1000 400 0.488597 

1000 600 0.495385 

1000 800 0.522534 

1000 1000 0.479548 
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Appendix B: Dice coefficients comparing parcellations acquired from autoencoders 

trained and tested with 3 hidden layers versus the ground truth parcellation provided by 

anatomists. The bolded row represents the parcellation with the maximum accuracy.  

Units per Hidden Layer    

200 200 200 0.52262 

200 200 400 0.45249 

200 200 600 0.54751 

200 200 800 0.51584 

200 200 1000 0.61086 

200 400 200 0.51584 

200 400 400 0.45928 

200 400 600 0.51584 

200 400 800 0.50452 

200 400 1000 0.52036 

200 600 200 0.49095 

200 600 400 0.53846 

200 600 600 0.47285 

200 600 800 0.51584 

200 600 1000 0.45249 

200 800 200 0.54977 

200 800 400 0.57014 

200 800 600 0.57919 

200 800 800 0.5905 

200 800 1000 0.57014 

200 1000 200 0.59729 

200 1000 400 0.50905 

200 1000 600 0.52941 

200 1000 800 0.53167 

200 1000 1000 0.51131 

400 200 200 0.56561 

400 200 400 0.56787 

400 200 600 0.58371 

400 200 800 0.56787 

400 200 1000 0.58824 

400 400 200 0.58145 

400 400 400 0.55656 

400 400 600 0.55656 

400 400 800 0.59276 

400 400 1000 0.56787 

400 600 200 0.53394 

400 600 400 0.6086 

400 600 600 0.60407 

400 600 800 0.61086 

400 600 1000 0.55656 

400 800 200 0.55204 

400 800 400 0.54977 

400 800 600 0.57692 

400 800 800 0.53846 

400 800 1000 0.60633 

400 1000 200 0.5905 

400 1000 400 0.5543 

400 1000 600 0.58145 

400 1000 800 0.55656 

400 1000 1000 0.63801 

600 200 200 0.52489 

600 200 400 0.57014 

600 200 600 0.58824 

600 200 800 0.60407 

600 200 1000 0.55656 

600 400 200 0.62896 

600 400 400 0.54751 

600 400 600 0.55656 

600 400 800 0.50452 

600 400 1000 0.54751 

600 600 200 0.56787 

600 600 400 0.57014 

600 600 600 0.54751 

600 600 800 0.58824 

600 600 1000 0.6086 

600 800 200 0.63122 

600 800 400 0.57466 

600 800 600 0.54977 

600 800 800 0.54299 
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600 800 1000 0.61086 

600 1000 200 0.57466 

600 1000 400 0.57692 

600 1000 600 0.54072 

600 1000 800 0.58371 

600 1000 1000 0.62443 

800 200 200 0.54751 

800 200 400 0.55656 

800 200 600 0.5362 

800 200 800 0.60407 

800 200 1000 0.57466 

800 400 200 0.53394 

800 400 400 0.55656 

800 400 600 0.58597 

800 400 800 0.57466 

800 400 1000 0.61991 

800 600 200 0.54299 

800 600 400 0.55204 

800 600 600 0.55882 

800 600 800 0.6086 

800 600 1000 0.58145 

800 800 200 0.53846 

800 800 400 0.5543 

800 800 600 0.61991 

800 800 800 0.59955 

800 800 1000 0.57466 

800 1000 200 0.58597 

800 1000 400 0.57014 

800 1000 600 0.60633 

800 1000 800 0.62896 

800 1000 1000 0.60407 

1000 200 200 0.5362 

1000 200 400 0.53846 

1000 200 600 0.5905 

1000 200 800 0.62443 

1000 200 1000 0.5543 

1000 400 200 0.55656 

1000 400 400 0.58145 

1000 400 600 0.61312 

1000 400 800 0.5543 

1000 400 1000 0.57692 

1000 600 200 0.58597 

1000 600 400 0.56335 

1000 600 600 0.52262 

1000 600 800 0.5905 

1000 600 1000 0.5181 

1000 800 200 0.56787 

1000 800 400 0.53846 

1000 800 600 0.54525 

1000 800 800 0.54751 

1000 800 1000 0.57692 

1000 1000 200 0.54751 

1000 1000 400 0.54751 

1000 1000 600 0.60181 

1000 1000 800 0.55204 

1000 1000 1000 0.58145 
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Appendix C: Dice coefficients comparing parcellations acquired from autoencoders 

trained and tested with 4 hidden layers versus the ground truth parcellation provided by 

anatomists. The bolded row represents the parcellation with the maximum accuracy. 

Units per Hidden Layer    

200 200 200 200 0.579186 

200 200 200 400 0.597285 

200 200 200 600 0.631222 

200 200 200 800 0.617647 

200 200 200 1000 0.579186 

200 200 400 200 0.58371 

200 200 400 400 0.59276 

200 200 400 600 0.556561 

200 200 400 800 0.665158 

200 200 400 1000 0.606335 

200 200 600 200 0.638009 

200 200 600 400 0.556561 

200 200 600 600 0.576923 

200 200 600 800 0.599548 

200 200 600 1000 0.595023 

200 200 800 200 0.588235 

200 200 800 400 0.658371 

200 200 800 600 0.61991 

200 200 800 800 0.613122 

200 200 800 1000 0.665158 

200 200 1000 200 0.608597 

200 200 1000 400 0.597285 

200 200 1000 600 0.595023 

200 200 1000 800 0.588235 

200 200 1000 1000 0.631222 

200 400 200 200 0.606335 

200 400 200 400 0.565611 

200 400 200 600 0.556561 

200 400 200 800 0.633484 

200 400 200 1000 0.567873 

200 400 400 200 0.624434 

200 400 400 400 0.676471 

200 400 400 600 0.61086 

200 400 400 800 0.58371 

200 400 400 1000 0.61086 

200 400 600 200 0.60181 

200 400 600 400 0.563348 

200 400 600 600 0.635747 

200 400 600 800 0.581448 

200 400 600 1000 0.565611 

200 400 800 200 0.561086 

200 400 800 400 0.638009 

200 400 800 600 0.622172 

200 400 800 800 0.606335 

200 400 800 1000 0.599548 

200 400 1000 200 0.61086 

200 400 1000 400 0.615385 

200 400 1000 600 0.595023 

200 400 1000 800 0.608597 

200 400 1000 1000 0.597285 

200 600 200 200 0.59276 

200 600 200 400 0.628959 

200 600 200 600 0.581448 

200 600 200 800 0.617647 

200 600 200 1000 0.608597 

200 600 400 200 0.647059 

200 600 400 400 0.61991 

200 600 400 600 0.561086 

200 600 400 800 0.635747 

200 600 400 1000 0.585973 

200 600 600 200 0.613122 

200 600 600 400 0.606335 

200 600 600 600 0.649321 

200 600 600 800 0.58371 

200 600 600 1000 0.633484 

200 600 800 200 0.581448 

200 600 800 400 0.61086 

200 600 800 600 0.570136 

200 600 800 800 0.651584 

200 600 800 1000 0.60181 

200 600 1000 200 0.590498 

200 600 1000 400 0.617647 

200 600 1000 600 0.597285 
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200 600 1000 800 0.581448 

200 600 1000 1000 0.651584 

200 800 200 200 0.60181 

200 800 200 400 0.576923 

200 800 200 600 0.574661 

200 800 200 800 0.588235 

200 800 200 1000 0.61086 

200 800 400 200 0.631222 

200 800 400 400 0.628959 

200 800 400 600 0.606335 

200 800 400 800 0.617647 

200 800 400 1000 0.599548 

200 800 600 200 0.628959 

200 800 600 400 0.595023 

200 800 600 600 0.606335 

200 800 600 800 0.613122 

200 800 600 1000 0.613122 

200 800 800 200 0.585973 

200 800 800 400 0.608597 

200 800 800 600 0.606335 

200 800 800 800 0.640271 

200 800 800 1000 0.649321 

200 800 1000 200 0.579186 

200 800 1000 400 0.613122 

200 800 1000 600 0.576923 

200 800 1000 800 0.633484 

200 800 1000 1000 0.61086 

200 1000 200 200 0.61086 

200 1000 200 400 0.595023 

200 1000 200 600 0.617647 

200 1000 200 800 0.61086 

200 1000 200 1000 0.59276 

200 1000 400 200 0.635747 

200 1000 400 400 0.658371 

200 1000 400 600 0.552036 

200 1000 400 800 0.631222 

200 1000 400 1000 0.58371 

200 1000 600 200 0.585973 

200 1000 600 400 0.61991 

200 1000 600 600 0.626697 

200 1000 600 800 0.58371 

200 1000 600 1000 0.60181 

200 1000 800 200 0.638009 

200 1000 800 400 0.595023 

200 1000 800 600 0.588235 

200 1000 800 800 0.563348 

200 1000 800 1000 0.642534 

200 1000 1000 200 0.61991 

200 1000 1000 400 0.665158 

200 1000 1000 600 0.574661 

200 1000 1000 800 0.622172 

200 1000 1000 1000 0.581448 

400 200 200 200 0.622172 

400 200 200 400 0.653846 

400 200 200 600 0.606335 

400 200 200 800 0.570136 

400 200 200 1000 0.61086 

400 200 400 200 0.606335 

400 200 400 400 0.613122 

400 200 400 600 0.613122 

400 200 400 800 0.60181 

400 200 400 1000 0.604072 

400 200 600 200 0.574661 

400 200 600 400 0.631222 

400 200 600 600 0.585973 

400 200 600 800 0.608597 

400 200 600 1000 0.570136 

400 200 800 200 0.585973 

400 200 800 400 0.61991 

400 200 800 600 0.588235 

400 200 800 800 0.631222 

400 200 800 1000 0.626697 

400 200 1000 200 0.588235 

400 200 1000 400 0.58371 

400 200 1000 600 0.58371 

400 200 1000 800 0.662896 

400 200 1000 1000 0.624434 

400 400 200 200 0.563348 

400 400 200 400 0.572398 

400 400 200 600 0.579186 

400 400 200 800 0.608597 

400 400 200 1000 0.631222 
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400 400 400 200 0.570136 

400 400 400 400 0.622172 

400 400 400 600 0.567873 

400 400 400 800 0.59276 

400 400 400 1000 0.61086 

400 400 600 200 0.581448 

400 400 600 400 0.595023 

400 400 600 600 0.61086 

400 400 600 800 0.597285 

400 400 600 1000 0.61086 

400 400 800 200 0.597285 

400 400 800 400 0.581448 

400 400 800 600 0.597285 

400 400 800 800 0.638009 

400 400 800 1000 0.595023 

400 400 1000 200 0.595023 

400 400 1000 400 0.540724 

400 400 1000 600 0.585973 

400 400 1000 800 0.642534 

400 400 1000 1000 0.635747 

400 600 200 200 0.626697 

400 600 200 400 0.640271 

400 600 200 600 0.595023 

400 600 200 800 0.599548 

400 600 200 1000 0.576923 

400 600 400 200 0.595023 

400 600 400 400 0.61086 

400 600 400 600 0.608597 

400 600 400 800 0.588235 

400 600 400 1000 0.59276 

400 600 600 200 0.656109 

400 600 600 400 0.60181 

400 600 600 600 0.644796 

400 600 600 800 0.617647 

400 600 600 1000 0.588235 

400 600 800 200 0.61086 

400 600 800 400 0.647059 

400 600 800 600 0.599548 

400 600 800 800 0.581448 

400 600 800 1000 0.628959 

400 600 1000 200 0.613122 

400 600 1000 400 0.595023 

400 600 1000 600 0.572398 

400 600 1000 800 0.615385 

400 600 1000 1000 0.570136 

400 800 200 200 0.595023 

400 800 200 400 0.581448 

400 800 200 600 0.576923 

400 800 200 800 0.595023 

400 800 200 1000 0.61991 

400 800 400 200 0.633484 

400 800 400 400 0.615385 

400 800 400 600 0.617647 

400 800 400 800 0.574661 

400 800 400 1000 0.570136 

400 800 600 200 0.608597 

400 800 600 400 0.599548 

400 800 600 600 0.608597 

400 800 600 800 0.628959 

400 800 600 1000 0.61991 

400 800 800 200 0.558824 

400 800 800 400 0.588235 

400 800 800 600 0.597285 

400 800 800 800 0.597285 

400 800 800 1000 0.595023 

400 800 1000 200 0.576923 

400 800 1000 400 0.615385 

400 800 1000 600 0.617647 

400 800 1000 800 0.60181 

400 800 1000 1000 0.615385 

400 1000 200 200 0.59276 

400 1000 200 400 0.615385 

400 1000 200 600 0.565611 

400 1000 200 800 0.590498 

400 1000 200 1000 0.579186 

400 1000 400 200 0.60181 

400 1000 400 400 0.606335 

400 1000 400 600 0.649321 

400 1000 400 800 0.61086 

400 1000 400 1000 0.574661 

400 1000 600 200 0.628959 

400 1000 600 400 0.597285 
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400 1000 600 600 0.576923 

400 1000 600 800 0.61991 

400 1000 600 1000 0.660633 

400 1000 800 200 0.606335 

400 1000 800 400 0.626697 

400 1000 800 600 0.615385 

400 1000 800 800 0.61991 

400 1000 800 1000 0.61086 

400 1000 1000 200 0.585973 

400 1000 1000 400 0.617647 

400 1000 1000 600 0.588235 

400 1000 1000 800 0.638009 

400 1000 1000 1000 0.635747 

600 200 200 200 0.561086 

600 200 200 400 0.590498 

600 200 200 600 0.597285 

600 200 200 800 0.599548 

600 200 200 1000 0.576923 

600 200 400 200 0.576923 

600 200 400 400 0.576923 

600 200 400 600 0.613122 

600 200 400 800 0.585973 

600 200 400 1000 0.581448 

600 200 600 200 0.597285 

600 200 600 400 0.606335 

600 200 600 600 0.613122 

600 200 600 800 0.585973 

600 200 600 1000 0.579186 

600 200 800 200 0.61086 

600 200 800 400 0.588235 

600 200 800 600 0.579186 

600 200 800 800 0.595023 

600 200 800 1000 0.597285 

600 200 1000 200 0.597285 

600 200 1000 400 0.613122 

600 200 1000 600 0.588235 

600 200 1000 800 0.633484 

600 200 1000 1000 0.590498 

600 400 200 200 0.570136 

600 400 200 400 0.572398 

600 400 200 600 0.59276 

600 400 200 800 0.617647 

600 400 200 1000 0.590498 

600 400 400 200 0.585973 

600 400 400 400 0.61991 

600 400 400 600 0.581448 

600 400 400 800 0.626697 

600 400 400 1000 0.597285 

600 400 600 200 0.563348 

600 400 600 400 0.588235 

600 400 600 600 0.633484 

600 400 600 800 0.567873 

600 400 600 1000 0.595023 

600 400 800 200 0.613122 

600 400 800 400 0.576923 

600 400 800 600 0.58371 

600 400 800 800 0.565611 

600 400 800 1000 0.572398 

600 400 1000 200 0.581448 

600 400 1000 400 0.638009 

600 400 1000 600 0.563348 

600 400 1000 800 0.576923 

600 400 1000 1000 0.606335 

600 600 200 200 0.552036 

600 600 200 400 0.635747 

600 600 200 600 0.59276 

600 600 200 800 0.597285 

600 600 200 1000 0.615385 

600 600 400 200 0.613122 

600 600 400 400 0.595023 

600 600 400 600 0.597285 

600 600 400 800 0.585973 

600 600 400 1000 0.604072 

600 600 600 200 0.585973 

600 600 600 400 0.595023 

600 600 600 600 0.563348 

600 600 600 800 0.588235 

600 600 600 1000 0.579186 

600 600 800 200 0.606335 

600 600 800 400 0.599548 

600 600 800 600 0.581448 

600 600 800 800 0.60181 
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600 600 800 1000 0.633484 

600 600 1000 200 0.628959 

600 600 1000 400 0.626697 

600 600 1000 600 0.608597 

600 600 1000 800 0.581448 

600 600 1000 1000 0.58371 

600 800 200 200 0.615385 

600 800 200 400 0.631222 

600 800 200 600 0.647059 

600 800 200 800 0.574661 

600 800 200 1000 0.595023 

600 800 400 200 0.554299 

600 800 400 400 0.61991 

600 800 400 600 0.549774 

600 800 400 800 0.622172 

600 800 400 1000 0.574661 

600 800 600 200 0.581448 

600 800 600 400 0.615385 

600 800 600 600 0.579186 

600 800 600 800 0.58371 

600 800 600 1000 0.565611 

600 800 800 200 0.613122 

600 800 800 400 0.576923 

600 800 800 600 0.658371 

600 800 800 800 0.585973 

600 800 800 1000 0.613122 

600 800 1000 200 0.59276 

600 800 1000 400 0.563348 

600 800 1000 600 0.579186 

600 800 1000 800 0.599548 

600 800 1000 1000 0.590498 

600 1000 200 200 0.604072 

600 1000 200 400 0.579186 

600 1000 200 600 0.565611 

600 1000 200 800 0.563348 

600 1000 200 1000 0.585973 

600 1000 400 200 0.624434 

600 1000 400 400 0.574661 

600 1000 400 600 0.579186 

600 1000 400 800 0.597285 

600 1000 400 1000 0.588235 

600 1000 600 200 0.558824 

600 1000 600 400 0.604072 

600 1000 600 600 0.622172 

600 1000 600 800 0.558824 

600 1000 600 1000 0.572398 

600 1000 800 200 0.574661 

600 1000 800 400 0.579186 

600 1000 800 600 0.597285 

600 1000 800 800 0.595023 

600 1000 800 1000 0.60181 

600 1000 1000 200 0.58371 

600 1000 1000 400 0.576923 

600 1000 1000 600 0.633484 

600 1000 1000 800 0.61086 

600 1000 1000 1000 0.574661 

800 200 200 200 0.563348 

800 200 200 400 0.547511 

800 200 200 600 0.570136 

800 200 200 800 0.647059 

800 200 200 1000 0.572398 

800 200 400 200 0.558824 

800 200 400 400 0.608597 

800 200 400 600 0.597285 

800 200 400 800 0.536199 

800 200 400 1000 0.615385 

800 200 600 200 0.561086 

800 200 600 400 0.608597 

800 200 600 600 0.58371 

800 200 600 800 0.572398 

800 200 600 1000 0.565611 

800 200 800 200 0.58371 

800 200 800 400 0.567873 

800 200 800 600 0.595023 

800 200 800 800 0.595023 

800 200 800 1000 0.549774 

800 200 1000 200 0.563348 

800 200 1000 400 0.597285 

800 200 1000 600 0.61086 

800 200 1000 800 0.581448 

800 200 1000 1000 0.595023 

800 400 200 200 0.574661 
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800 400 200 400 0.554299 

800 400 200 600 0.595023 

800 400 200 800 0.613122 

800 400 200 1000 0.581448 

800 400 400 200 0.567873 

800 400 400 400 0.58371 

800 400 400 600 0.558824 

800 400 400 800 0.590498 

800 400 400 1000 0.581448 

800 400 600 200 0.567873 

800 400 600 400 0.570136 

800 400 600 600 0.552036 

800 400 600 800 0.585973 

800 400 600 1000 0.538462 

800 400 800 200 0.563348 

800 400 800 400 0.558824 

800 400 800 600 0.563348 

800 400 800 800 0.61086 

800 400 800 1000 0.59276 

800 400 1000 200 0.599548 

800 400 1000 400 0.606335 

800 400 1000 600 0.588235 

800 400 1000 800 0.567873 

800 400 1000 1000 0.581448 

800 600 200 200 0.631222 

800 600 200 400 0.599548 

800 600 200 600 0.574661 

800 600 200 800 0.626697 

800 600 200 1000 0.554299 

800 600 400 200 0.513575 

800 600 400 400 0.61991 

800 600 400 600 0.572398 

800 600 400 800 0.59276 

800 600 400 1000 0.617647 

800 600 600 200 0.631222 

800 600 600 400 0.558824 

800 600 600 600 0.576923 

800 600 600 800 0.599548 

800 600 600 1000 0.606335 

800 600 800 200 0.570136 

800 600 800 400 0.570136 

800 600 800 600 0.595023 

800 600 800 800 0.626697 

800 600 800 1000 0.59276 

800 600 1000 200 0.61086 

800 600 1000 400 0.581448 

800 600 1000 600 0.608597 

800 600 1000 800 0.59276 

800 600 1000 1000 0.581448 

800 800 200 200 0.579186 

800 800 200 400 0.61086 

800 800 200 600 0.558824 

800 800 200 800 0.585973 

800 800 200 1000 0.552036 

800 800 400 200 0.585973 

800 800 400 400 0.558824 

800 800 400 600 0.60181 

800 800 400 800 0.572398 

800 800 400 1000 0.567873 

800 800 600 200 0.558824 

800 800 600 400 0.58371 

800 800 600 600 0.576923 

800 800 600 800 0.59276 

800 800 600 1000 0.576923 

800 800 800 200 0.59276 

800 800 800 400 0.588235 

800 800 800 600 0.599548 

800 800 800 800 0.638009 

800 800 800 1000 0.608597 

800 800 1000 200 0.588235 

800 800 1000 400 0.60181 

800 800 1000 600 0.599548 

800 800 1000 800 0.579186 

800 800 1000 1000 0.574661 

800 1000 200 200 0.624434 

800 1000 200 400 0.547511 

800 1000 200 600 0.563348 

800 1000 200 800 0.60181 

800 1000 200 1000 0.565611 

800 1000 400 200 0.547511 

800 1000 400 400 0.604072 

800 1000 400 600 0.581448 
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800 1000 400 800 0.590498 

800 1000 400 1000 0.599548 

800 1000 600 200 0.588235 

800 1000 600 400 0.59276 

800 1000 600 600 0.567873 

800 1000 600 800 0.570136 

800 1000 600 1000 0.595023 

800 1000 800 200 0.60181 

800 1000 800 400 0.540724 

800 1000 800 600 0.59276 

800 1000 800 800 0.585973 

800 1000 800 1000 0.567873 

800 1000 1000 200 0.638009 

800 1000 1000 400 0.574661 

800 1000 1000 600 0.565611 

800 1000 1000 800 0.579186 

800 1000 1000 1000 0.556561 

1000 200 200 200 0.585973 

1000 200 200 400 0.581448 

1000 200 200 600 0.552036 

1000 200 200 800 0.613122 

1000 200 200 1000 0.58371 

1000 200 400 200 0.540724 

1000 200 400 400 0.597285 

1000 200 400 600 0.644796 

1000 200 400 800 0.565611 

1000 200 400 1000 0.58371 

1000 200 600 200 0.540724 

1000 200 600 400 0.552036 

1000 200 600 600 0.581448 

1000 200 600 800 0.576923 

1000 200 600 1000 0.588235 

1000 200 800 200 0.640271 

1000 200 800 400 0.572398 

1000 200 800 600 0.565611 

1000 200 800 800 0.567873 

1000 200 800 1000 0.570136 

1000 200 1000 200 0.576923 

1000 200 1000 400 0.552036 

1000 200 1000 600 0.590498 

1000 200 1000 800 0.606335 

1000 200 1000 1000 0.615385 

1000 400 200 200 0.549774 

1000 400 200 400 0.556561 

1000 400 200 600 0.60181 

1000 400 200 800 0.563348 

1000 400 200 1000 0.643222 

1000 400 400 200 0.570824 

1000 400 400 400 0.588923 

1000 400 400 600 0.611548 

1000 400 400 800 0.618335 

1000 400 400 1000 0.582136 

1000 400 600 200 0.582136 

1000 400 600 400 0.607023 

1000 400 600 600 0.638697 

1000 400 600 800 0.60476 

1000 400 600 1000 0.62286 

1000 400 800 200 0.593448 

1000 400 800 400 0.620597 

1000 400 800 600 0.60476 

1000 400 800 800 0.593448 

1000 400 800 1000 0.591186 

1000 400 1000 200 0.62286 

1000 400 1000 400 0.570824 

1000 400 1000 600 0.597973 

1000 400 1000 800 0.564036 

1000 400 1000 1000 0.597973 

1000 600 200 200 0.570824 

1000 600 200 400 0.61381 

1000 600 200 600 0.584398 

1000 600 200 800 0.579873 

1000 600 200 1000 0.570824 

1000 600 400 200 0.59571 

1000 600 400 400 0.588923 

1000 600 400 600 0.60476 

1000 600 400 800 0.588923 

1000 600 400 1000 0.60476 

1000 600 600 200 0.578498 

1000 600 600 400 0.587548 

1000 600 600 600 0.576235 

1000 600 600 800 0.58076 

1000 600 600 1000 0.555873 
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1000 600 800 200 0.558136 

1000 600 800 400 0.583023 

1000 600 800 600 0.58981 

1000 600 800 800 0.528724 

1000 600 800 1000 0.58076 

1000 600 1000 200 0.573973 

1000 600 1000 400 0.555873 

1000 600 1000 600 0.626009 

1000 600 1000 800 0.562661 

1000 600 1000 1000 0.553611 

1000 800 200 200 0.567186 

1000 800 200 400 0.544561 

1000 800 200 600 0.596597 

1000 800 200 800 0.576235 

1000 800 200 1000 0.58981 

1000 800 400 200 0.587548 

1000 800 400 400 0.567186 

1000 800 400 600 0.562661 

1000 800 400 800 0.612434 

1000 800 400 1000 0.535511 

1000 800 600 200 0.551348 

1000 800 600 400 0.58981 

1000 800 600 600 0.553611 

1000 800 600 800 0.535511 

1000 800 600 1000 0.592072 

1000 800 800 200 0.569448 

1000 800 800 400 0.606647 

1000 800 800 600 0.586285 

1000 800 800 800 0.570448 

1000 800 800 1000 0.640584 

1000 800 1000 200 0.59081 

1000 800 1000 400 0.565923 

1000 800 1000 600 0.563661 

1000 800 1000 800 0.577235 

1000 800 1000 1000 0.59986 

1000 1000 200 200 0.620222 

1000 1000 200 400 0.617959 

1000 1000 200 600 0.595335 

1000 1000 200 800 0.606647 

1000 1000 200 1000 0.588548 

1000 1000 400 200 0.617959 

1000 1000 400 400 0.584023 

1000 1000 400 600 0.595335 

1000 1000 400 800 0.602122 

1000 1000 400 1000 0.602122 

1000 1000 600 200 0.574973 

1000 1000 600 400 0.597597 

1000 1000 600 600 0.595335 

1000 1000 600 800 0.629271 

1000 1000 600 1000 0.638321 

1000 1000 800 200 0.568186 

1000 1000 800 400 0.602122 

1000 1000 800 600 0.565923 

1000 1000 800 800 0.622484 

1000 1000 800 1000 0.59986 

1000 1000 1000 200 0.59986 

1000 1000 1000 400 0.584023 

1000 1000 1000 600 0.606647 

1000 1000 1000 800 0.59986 

1000 1000 1000 1000 0.58176 

 

 

 

 

 

 



72 

 

Appendix D: Dice coefficients comparing parcellations acquired from autoencoders 

trained and tested with 5 hidden layers versus the ground truth parcellation provided by 

anatomists. The bolded row represents the parcellation with the maximum accuracy. 

Units per Hidden Layer    

200 200 200 200 200 0.631222 

200 200 200 200 600 0.529412 

200 200 200 200 1000 0.597285 

200 200 200 600 200 0.599548 

200 200 200 600 600 0.613122 

200 200 200 600 1000 0.604072 

200 200 200 1000 200 0.59276 

200 200 200 1000 600 0.617647 

200 200 200 1000 1000 0.579186 

200 200 600 200 200 0.588235 

200 200 600 200 600 0.615385 

200 200 600 200 1000 0.572398 

200 200 600 600 200 0.606335 

200 200 600 600 600 0.61086 

200 200 600 600 1000 0.626697 

200 200 600 1000 200 0.567873 

200 200 600 1000 600 0.549774 

200 200 600 1000 1000 0.529412 

200 200 1000 200 200 0.585973 

200 200 1000 200 600 0.622172 

200 200 1000 200 1000 0.628959 

200 200 1000 600 200 0.538462 

200 200 1000 600 600 0.633484 

200 200 1000 600 1000 0.59276 

200 200 1000 1000 200 0.613122 

200 200 1000 1000 600 0.61991 

200 200 1000 1000 1000 0.624434 

200 600 200 200 200 0.61086 

200 600 200 200 600 0.59276 

200 600 200 200 1000 0.563348 

200 600 200 600 200 0.570136 

200 600 200 600 600 0.579186 

200 600 200 600 1000 0.58371 

200 600 200 1000 200 0.595023 

200 600 200 1000 600 0.570136 

200 600 200 1000 1000 0.624434 

200 600 600 200 200 0.597285 

200 600 600 200 600 0.615385 

200 600 600 200 1000 0.633484 

200 600 600 600 200 0.581448 

200 600 600 600 600 0.576923 

200 600 600 600 1000 0.570136 

200 600 600 1000 200 0.61991 

200 600 600 1000 600 0.628959 

200 600 600 1000 1000 0.615385 

200 600 1000 200 200 0.599548 

200 600 1000 200 600 0.542986 

200 600 1000 200 1000 0.60181 

200 600 1000 600 200 0.604072 

200 600 1000 600 600 0.590498 

200 600 1000 600 1000 0.651584 

200 600 1000 1000 200 0.631222 

200 600 1000 1000 600 0.61991 

200 600 1000 1000 1000 0.538462 

200 1000 200 200 200 0.59276 

200 1000 200 200 600 0.624434 

200 1000 200 200 1000 0.561086 

200 1000 200 600 200 0.590498 

200 1000 200 600 600 0.563348 

200 1000 200 600 1000 0.570136 

200 1000 200 1000 200 0.558824 

200 1000 200 1000 600 0.581448 

200 1000 200 1000 1000 0.59276 

200 1000 600 200 200 0.631222 

200 1000 600 200 600 0.585973 

200 1000 600 200 1000 0.624434 

200 1000 600 600 200 0.527149 

200 1000 600 600 600 0.613122 

200 1000 600 600 1000 0.59276 

200 1000 600 1000 200 0.595023 

200 1000 600 1000 600 0.628959 
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200 1000 600 1000 1000 0.570136 

200 1000 1000 200 200 0.651584 

200 1000 1000 200 600 0.558824 

200 1000 1000 200 1000 0.540724 

200 1000 1000 600 200 0.561086 

200 1000 1000 600 600 0.640271 

200 1000 1000 600 1000 0.617647 

200 1000 1000 1000 200 0.617647 

200 1000 1000 1000 600 0.549774 

200 1000 1000 1000 1000 0.613122 

600 200 200 200 200 0.585973 

600 200 200 200 600 0.565611 

600 200 200 200 1000 0.604072 

600 200 200 600 200 0.608597 

600 200 200 600 600 0.628959 

600 200 200 600 1000 0.613122 

600 200 200 1000 200 0.606335 

600 200 200 1000 600 0.61991 

600 200 200 1000 1000 0.590498 

600 200 600 200 200 0.628959 

600 200 600 200 600 0.579186 

600 200 600 200 1000 0.549774 

600 200 600 600 200 0.599548 

600 200 600 600 600 0.595023 

600 200 600 600 1000 0.558824 

600 200 600 1000 200 0.633484 

600 200 600 1000 600 0.556561 

600 200 600 1000 1000 0.590498 

600 200 1000 200 200 0.579186 

600 200 1000 200 600 0.622172 

600 200 1000 200 1000 0.606335 

600 200 1000 600 200 0.563348 

600 200 1000 600 600 0.572398 

600 200 1000 600 1000 0.576923 

600 200 1000 1000 200 0.590498 

600 200 1000 1000 600 0.579186 

600 200 1000 1000 1000 0.617647 

600 600 200 200 200 0.628959 

600 600 200 200 600 0.5181 

600 600 200 200 1000 0.570136 

600 600 200 600 200 0.595023 

600 600 200 600 600 0.606335 

600 600 200 600 1000 0.588235 

600 600 200 1000 200 0.581448 

600 600 200 1000 600 0.58371 

600 600 200 1000 1000 0.597285 

600 600 600 200 200 0.536199 

600 600 600 200 600 0.588235 

600 600 600 200 1000 0.640271 

600 600 600 600 200 0.624434 

600 600 600 600 600 0.597285 

600 600 600 600 1000 0.59276 

600 600 600 1000 200 0.613122 

600 600 600 1000 600 0.61086 

600 600 600 1000 1000 0.554299 

600 600 1000 200 200 0.61086 

600 600 1000 200 600 0.558824 

600 600 1000 200 1000 0.588235 

600 600 1000 600 200 0.617647 

600 600 1000 600 600 0.58371 

600 600 1000 600 1000 0.647059 

600 600 1000 1000 200 0.678733 

600 600 1000 1000 600 0.61086 

600 600 1000 1000 1000 0.638009 

600 1000 200 200 200 0.59276 

600 1000 200 200 600 0.624434 

600 1000 200 200 1000 0.554299 

600 1000 200 600 200 0.604072 

600 1000 200 600 600 0.579186 

600 1000 200 600 1000 0.567873 

600 1000 200 1000 200 0.61086 

600 1000 200 1000 600 0.595023 

600 1000 200 1000 1000 0.59276 

600 1000 600 200 200 0.531674 

600 1000 600 200 600 0.635747 

600 1000 600 200 1000 0.574661 

600 1000 600 600 200 0.604072 

600 1000 600 600 600 0.574661 

600 1000 600 600 1000 0.59276 

600 1000 600 1000 200 0.574661 

600 1000 600 1000 600 0.581448 

600 1000 600 1000 1000 0.608597 
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600 1000 1000 200 200 0.613122 

600 1000 1000 200 600 0.613122 

600 1000 1000 200 1000 0.606335 

600 1000 1000 600 200 0.613122 

600 1000 1000 600 600 0.59276 

600 1000 1000 600 1000 0.588235 

600 1000 1000 1000 200 0.622172 

600 1000 1000 1000 600 0.624434 

600 1000 1000 1000 1000 0.588235 

1000 200 200 200 200 0.58371 

1000 200 200 200 600 0.547511 

1000 200 200 200 1000 0.633484 

1000 200 200 600 200 0.561086 

1000 200 200 600 600 0.552036 

1000 200 200 600 1000 0.545249 

1000 200 200 1000 200 0.617647 

1000 200 200 1000 600 0.617647 

1000 200 200 1000 1000 0.622172 

1000 200 600 200 200 0.59276 

1000 200 600 200 600 0.599548 

1000 200 600 200 1000 0.522624 

1000 200 600 600 200 0.558824 

1000 200 600 600 600 0.552036 

1000 200 600 600 1000 0.590498 

1000 200 600 1000 200 0.558824 

1000 200 600 1000 600 0.60181 

1000 200 600 1000 1000 0.590498 

1000 200 1000 200 200 0.549774 

1000 200 1000 200 600 0.58371 

1000 200 1000 200 1000 0.588235 

1000 200 1000 600 200 0.574661 

1000 200 1000 600 600 0.597285 

1000 200 1000 600 1000 0.565611 

1000 200 1000 1000 200 0.606335 

1000 200 1000 1000 600 0.604072 

1000 200 1000 1000 1000 0.60181 

1000 600 200 200 200 0.595023 

1000 600 200 200 600 0.590498 

1000 600 200 200 1000 0.558824 

1000 600 200 600 200 0.579186 

1000 600 200 600 600 0.58371 

1000 600 200 600 1000 0.576923 

1000 600 200 1000 200 0.545249 

1000 600 200 1000 600 0.527149 

1000 600 200 1000 1000 0.597285 

1000 600 600 200 200 0.554299 

1000 600 600 200 600 0.574661 

1000 600 600 200 1000 0.599548 

1000 600 600 600 200 0.60181 

1000 600 600 600 600 0.599548 

1000 600 600 600 1000 0.585973 

1000 600 600 1000 200 0.631222 

1000 600 600 1000 600 0.628959 

1000 600 600 1000 1000 0.640271 

1000 600 1000 200 200 0.588235 

1000 600 1000 200 600 0.59276 

1000 600 1000 200 1000 0.608597 

1000 600 1000 600 200 0.556561 

1000 600 1000 600 600 0.558824 

1000 600 1000 600 1000 0.579186 

1000 600 1000 1000 200 0.608597 

1000 600 1000 1000 600 0.626697 

1000 600 1000 1000 1000 0.545249 

1000 1000 200 200 200 0.588235 

1000 1000 200 200 600 0.531674 

1000 1000 200 200 1000 0.595023 

1000 1000 200 600 200 0.61991 

1000 1000 200 600 600 0.581448 

1000 1000 200 600 1000 0.595023 

1000 1000 200 1000 200 0.570136 

1000 1000 200 1000 600 0.570136 

1000 1000 200 1000 1000 0.613122 

1000 1000 600 200 200 0.590498 

1000 1000 600 200 600 0.608597 

1000 1000 600 200 1000 0.597285 

1000 1000 600 600 200 0.597285 

1000 1000 600 600 600 0.622172 

1000 1000 600 600 1000 0.61086 

1000 1000 600 1000 200 0.563348 

1000 1000 600 1000 600 0.613122 

1000 1000 600 1000 1000 0.588235 

1000 1000 1000 200 200 0.545249 
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1000 1000 1000 200 600 0.581448 

1000 1000 1000 200 1000 0.617647 

1000 1000 1000 600 200 0.536199 

1000 1000 1000 600 600 0.626697 

1000 1000 1000 600 1000 0.590498 

1000 1000 1000 1000 200 0.585973 

1000 1000 1000 1000 600 0.651584 

1000 1000 1000 1000 1000 0.617647 
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